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Département d’économie
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Essays on Innovation and Trade

Stefan Pauly

Thesis supervised by

Thomas Chaney, Professor of Economics, Sciences Po

defended on June 29, 2023

Jury

Davide Cantoni (referee)

Professor of Economics and Economic History, Ludwig-Maximilians-Universität München

Thomas Chaney (thesis supervisor)

Professor of Economics, Sciences Po
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Introduction

Starting in the late 1980s, with the inception of the endogenous growth literature, economists

have recognized the important role of technological progress for sustained economic

growth. In a landmark paper Romer (1990) models technological progress as a function

of deliberate human capital investment in a nonrival, partially excludable good. The

nonrivalry of ideas, a key feature of Romer’s model, implies that new ideas create positive

externalities. Knowledge spillovers have also long been recognized as a key agglomera-

tion externality (Marshal, 1920). Yet, despite of their perceived importance, knowledge

spillovers are hard to pin down empirically.

Jaffe et al. (1993) made an important step in this direction by introducing the use of

patent data to the economic literature. They use patent citations to study the geographic

localization of knowledge spillovers. Building on this early work and the subsequent

literature, the first two chapters of this thesis use patent data to closely track how inventors

collaborate and build on each others’ ideas. In particular, patent data contains precise

information on where inventor teams are located, which pre-existing knowledge they cite

and rely on, and which firms file the patent.

The first chapter of this thesis, co-authored with Fernando Stipanicic, investigates how

an increase in human mobility can lead to more knowledge spillovers across locations.

We then study how these knowledge spillovers translate into the creation of new ideas.

This helps to identify key parameters of the production function of ideas that the early

theoretical literature was not able to pin down due to a lack of detailed data. In addition,

we show that initially less innovative cities benefit the most from an increase in spillovers,

thereby causing convergence.

Rather than studying knowledge spillovers and its effects at a fairly aggregate level, a

recent strand of literature describes how knowledge is produced inside the firm. With the
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rise of multinational firms, production has become increasingly dispersed across countries

inside the same firm. At the same time multinationals are responsible for a large share

of knowledge creation. The second chapter, which is joint work with Çagatay Bircan

and Beata Javorcik, looks at how frictions to communication can affect the collaboration

between affiliate-based inventors with those located at the firm’s headquarters. This is

crucial since a large stock of firms’ knowledge is held by HQ-based inventors and, as we

show, inventors in foreign affiliates file patents of higher quality if they collaborate with

HQ. While the first chapter captures knowledge spillovers across firms, the second chapter

thus looks at the determinants of knowledge diffusion inside the firm.

Compared to knowledge spillovers and the exchange of ideas, the exchange of physical

goods has long been recognized as a key driver of modern economic growth. A plethora

of papers studies the interaction between bilateral frictions to trade, the exchange of goods

and its effects on welfare and growth. While much of this literature focuses on more

permanent frictions to trade such as tariffs or geography, few studies look at how frequent,

unpredictable disruptions to markets affect how firms trade. This is especially relevant in

developing countries where infrastructure can be unreliable and trade is often dominated

by informal, less resilient firms. I study in my third chapter how firms in Myanmar deal

with a repeated loss of access to markets in neighboring countries caused by ethnic conflicts

along major roads. I find that firms partially compensate losses by selling domestically and

delaying shipments. Firm size and connections to the military make firms more resilient.

Chapter 1: The Creation and Diffusion of Knowledge: Evi-

dence from the Jet Age

In the first chapter, which is joint work with Fernando Stipanicic, we look at how the mo-

bility of people affects the diffusion of ideas. We study a major technological breakthrough

which made travel easier: In the 1950s the jet engine was introduced to civil aviation

which resulted in faster, longer-range airplanes. At the time the flight network was heavily

regulated, constraining airlines in reoptimizing their routes, allowing us to argue that

the improvements in technology resulted in a plausibly exogenous shock to the existing

network.

To study this historical period we digitize flight schedules of the major airlines operating

at the time. This allows us to compute the exact travel time by plane before and after the

arrival of jet planes. We find that travel time between US cities decreased by one third
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from 1951 to 1966. We combine this with data on patents assigned to firms and inventor

locations. This gives us the full picture of a firm’s patenting at a particular time, including

where the patented knowledge was produced and which prior art it was citing.

We find that the large increase in mobility resulted in an increased flow of ideas, especially

for long distances. Patent citations between establishments at a distance of more than

2000km increase by 8% as a consequence of the reduction in travel time, corresponding to

38% of the overall increase in that distance interval.

The increase in knowledge diffusion further led to the creation of new knowledge. Using

the elasticity of knowledge diffusion to travel time estimated in the first step, we construct

a measure of knowledge access. We show that the rate of patenting increases, as a sector

in a particular location gains access to new knowledge through the decline in travel

times. Moreover, the results provide evidence that this effect was stronger for initially less

innovative locations, implying innovation convergence across locations.

In summary, this historical episode allows us to establish a causal link between travel

time and knowledge diffusion. Lowering frictions to the mobility of people increases the

flow of ideas. We show that increased knowledge diffusion is crucial to new innovation,

especially for inventors located outside of the biggest innovation hubs.

Chapter 2: Time after Time: Communication Costs and In-

ventor Collaboration in the Multinational Firm

In the second chapter, which is joint work with Çağatay Bircan and Beata Javorcik, we look

at knowledge production inside the global firm. To study the global R&D activities of firms,

we combine patent data with firm ownership links, allowing us to attribute each patent

to its ultimate owner and its location of production through information on inventors’

location of residence.

We first document that a large share of firms’ R&D happens outside of the HQ country.

For example, only around 61% of the most valuable patents filed by US firms are produced

by purely US-based inventor teams. Focusing on patents that involve a foreign affiliate,

we show that inventions are of higher quality if they are created in collaboration with

HQ. This suggests that accessing HQ knowledge can make affiliate-based inventors more

productive and underlines the importance of frictions to this knowledge diffusion.
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We find that larger time zone differences between an affiliate and headquarters make

collaborations less likely. A doubling in business hour overlap increases the probability of

collaboration by 5 percentage points, even more so in experimental technology classes that

likely require a high frequency of interactions. The effect remains relatively stable after

controlling for physical distance. Taken together, this suggests that time zone differences

constitute a friction to communication, which is distinct from travel cost.

Motivated by an increasing share of global collaborative patents and to provide causal

evidence on the role of communication frictions, we study liberalization episodes of the

telecom sector in the 1980s and 1990s. This deregulation led to a significant drop in

international call prices. Gathering data on liberalization dates and bilateral call prices,

we show that collaborations between affiliates and headquarters increase when telecom

markets are liberalized in both countries and bilateral call prices fall. We then show that the

effect of cheaper international calls was concentrated in location pairs with a high overlap

in business hours and in experimental technologies, consistent with our cross-sectional

results. Finally, we show that the effect is concentrated in less experienced inventors.

In summary, we show that time zone differences are a barrier to knowledge diffusion

inside multinational firms. While improved communication technologies can facilitate

cross-border inventor collaboration, time zones will likely continue to matter. We show

that this is especially true for technologies that require a high frequency of communication

and less experienced inventors.

Chapter 3: Traders in Trouble on the Road to Mandalay

Finally, in a third paper, I look at how uncertainty in trade frictions affects the exchange

of goods. I combine transaction-level trade data from Myanmar with data on conflict.

Myanmar has a long history of ethnic conflict which is concentrated in its border regions.

At the same time, it relies heavily on exports to its neighbors (China and Thailand, in

particular), some of which travels via the land route and thus through the conflict-affected

areas. Treating the emergence of insurgencies in border regions as sudden, unexpected

shocks to trade costs, I confirm anecdotal evidence that conflicts negatively affect the trade

passing through.

Next, I document that firms’ exports typically trade via one border city only. This lack of

diversification makes firms vulnerable to disruptions caused by conflicts along a particular
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route. Accordingly, local prices of export goods drop when important routes are disrupted,

suggesting that firms cease to export and instead sell some of their produce on local

markets. Trade drops more for perishable products that are risky to export when travel

time to the border is uncertain. For durable products I observe that firms bundle shipments

and increase the average shipment size, shielding them from losses.

Using the perishability of products to identify how different firms operate under uncer-

tainty, I find that large firms are more likely to continue exporting. In addition, connections

to the military, a powerful actor in Myanmar, are especially valuable during times of

conflict and for firms that trade perishable products.

In summary, this project shows that the combination of a lack of diversification in export

markets, combined with frequent disruptions, exerts a large toll on gains from exporting

affecting firms and sectors heterogenously. While an end to Myanmar’s ethnic conflicts is

not in sight, reducing entry barriers to new export routes and a strong domestic market

would significantly increase the resilience of firms.

21



References

Jaffe, A. B., Trajtenberg, M., and Henderson, R. (1993). Geographic localization of knowl-

edge spillovers as evidenced by patent citations. The Quarterly Journal of Economics,

108(3):577–598.

Marshal, A. (1920). Principles of economics. London: Mcmillan.

Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy,

98(5):S71–S102.

22



Chapter 1

The Creation and Diffusion of

Knowledge: Evidence from the Jet Age

This chapter is co-authored with Fernando Stipanicic (UC Berkeley).

Abstract

This paper provides new causal evidence of the impact of air travel time on the creation

and diffusion of knowledge. We exploit the beginning of the Jet Age as a quasi-natural

experiment. We digitize airlines’ historical flight schedules and construct a novel data set

of the flight network in the United States. Between 1951 and 1966, travel time between

locations more than 2,000 km apart decreased on average by 41%. The reduction in travel

time explains 33% of the increase in knowledge diffusion as measured by patent citations.

The increase in knowledge diffusion further caused an increase in the creation of new

knowledge. The results provide evidence that jet airplanes led to innovation convergence

across locations and contributed to the shift in innovation activity towards the South and

the West of the United States.

JEL Classification: O31, O33, R41, N72

Keywords: Knowledge Diffusion, Innovation, Travel Time, Airplanes, Jet Age
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1. Introduction

“If I have seen further it is by standing on the shoulders of Giants.”

– Isaac Newton (1675)1

“(...) if one man starts a new idea, it is taken up by others and combined with suggestions of their

own; and thus becomes the source of further new ideas.”

– Alfred Marshall (1890)2

In their famous quotations Isaac Newton and Alfred Marshall illustrate that access to

knowledge is key for the creation of new knowledge. Understanding the process of

creation of new knowledge is crucial as it has been characterized as one of the main causes

of economic growth (Lucas (1993), Aghion and Howitt (1997) and Jones (2002)). Access

to knowledge spurs the creation of new knowledge (Furman and Stern (2011), Acemoglu

et al. (2016)). Physical proximity, by facilitating face to face interactions, is a key driver

of the diffusion of knowledge and hence of access to knowledge (Storper and Venables

(2004), Glaeser (2011)).

Providing evidence of the effect of access to knowledge on the creation of new knowledge

is an empirical challenge. Agents who are highly productive in terms of creation of

knowledge may endogenously sort towards locations with high access to knowledge,

leading to reverse causality. Additionally, access to knowledge is correlated with other

drivers of innovation as access to markets, resulting in a potential omitted variable bias

due to confounding factors.

This paper provides new causal evidence on this question by exploiting as a quasi-natural

experiment the beginning of the Jet Age in the United States. During the 1950s the intro-

duction of jet engines into civil aviation led to a large reduction in travel time. We exploit

changes in travel time to identify changes in knowledge diffusion, which are further

translated into changes in access to knowledge. Then, we exploit changes in access to

knowledge to study the impact on the creation of new knowledge. The results provide

evidence that jet airplanes led to innovation convergence across locations and contributed

1Quoted from a letter of Isaac Newton to Robert Hooke, 1675. A digital copy of the letter can be found at:
https://digitallibrary.hsp.org/index.php/Detail/objects/9792

2Quoted from Duranton and Puga (2004), page 2066.
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to the shift in innovation activity towards the South and the West of the United States.

We start by constructing a new dataset of the flight network in the United States during

the 1950s and 1960s. We digitize historical flight schedules of the major interstate airlines

operating in the period and obtain the fastest route between every two airports in the

network.3 We document that between 1951 and 1966 travel time decreased on average by

29%, and the decrease is on average of 41% for airports located more than 2,000km apart.4

This nationwide shock was arguably exogenous as it happened in a strictly regulated

environment. We decompose the change in travel time and find that 90% of the change

is due to the improvement in aircrafts’ speed, while 10% is due to a change in the flight

routes. This is consistent with the fact that during this period the Civil Aeronautics Board

(CAB) was imposing strong regulation in the interstate airline market. With the objective

to promote a stable airline industry, the CAB determined ticket prices and restricted entry

of airlines into new or existing routes.

Additionally, during the 1950s and 1960s airplanes were predominantly used to transport

people and not goods. Hence, the change in travel time represented a shock to the mobility

of people while not significantly affecting the shipment of goods.

To study knowledge creation and diffusion we use patent data. We follow Jaffe et al. (1993)

and use patent citations as our observable measure of knowledge flow. We assemble one

dataset with all corporate patents granted by the United States Patent and Trademark

Office (USPTO) with filing year between 1949 and 1968, which includes for each patent:

filing year, technology classification, location (Metropolitan Statistical Area, MSA) of the

inventors when they applied for the patent, owner of the patent and citations to other

patents which were granted by the USPTO.

We document three facts of patenting activity during our sample period. First, patent

growth was stronger both in initially less innovative MSAs and in MSAs in the South and

the West of the US. Second, over time multi-establishment firms expanded geographically

and accounted for a larger share of patents. Third, the mass of citations shifted towards

longer distances. Our results show that the decrease in travel time contributed to all three

3The 6 domestic airlines in our data accounted for 75% of total air passenger transport.
4New York and Boston are about 300km apart, while New York and San Francisco are located about

4,130 km apart. Between 1951 and 1966 we observe a reduction of travel time of 23% (13 minutes reduction)
between New York and Boston, while the reduction is of 50% (5 hours 30 minutes reduction) between New
York and San Francisco.
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facts.

We do our analysis in three steps. In the first step, we estimate a gravity equation to

obtain the elasticity of citations to travel time. We identify the elasticity exploiting only

within establishment-pair across-time variation in citations and travel time. The estimated

elasticity implies that citations increased on average 2.4% due to the decrease in travel

time between 1951 and 1966. We find that the absolute value of the elasticity is increasing

with the distance between the citing and cited establishments. At a distance of more than

2,000km, the change in travel time implies an increase in citations of 6.9%. This accounts

for 32.7% of the observed increase in citations in this distance range.

In order to rule out the possibility that the opening of new routes or the timing of adoption

of jets at the route level was driven by variables that also affected knowledge flows, we

perform an instrumental variables estimation. We instrument the observed travel time

with a fictitious travel time computed by fixing routes to the initial time period and

assuming in each year all routes are operated with the year’s average airplane. Hence,

changes in fictitious travel time are only due to the nationwide roll out of jets and is

thus independent of decisions at the route level. The results do not change significantly,

reflecting the reduced scope for endogeneity of travel time. In addition, the results are

robust to controlling for potential confounding factors such as changes in highway travel

time, telephone connectivity and flight ticket prices. Finally, the results also remain after

restricting the sample to contain only establishments that existed in the initial time period.

In the second step, using the estimated elasticity of diffusion of knowledge, we compute

a measure of knowledge access that is specific to each location-technology. The measure

captures changes in knowledge access that are only consequence of the change in travel

time. We use knowledge access as an externality that affects the production of new

patents and estimate the elasticity of new patents to knowledge access. We identify

the elasticity at the establishment level comparing only across time variation in patents

and knowledge access across establishments within a location, conditional on aggregate

technological trends. Thus, the identification is independent of location specific changes in

local population or R&D subsidies. The estimated elasticity implies that the amount of new

patents filed increased at a yearly growth rate of 3.5% due to the increase in knowledge

access, which accounts for 79.5% of the observed yearly growth rate.

Given the reduction in travel time was larger for longer distances, the increase in knowl-

edge access was stronger in locations geographically far from the initial innovation centers
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located in the Midwest and the Northeast. Hence, by increasing access to knowledge, the

reduction in travel time led to a shift in the distribution of innovative activity towards the

South and the West of the US. The South and the West had an average yearly growth rate

of patenting 2.1 percentage points higher than the Northeast and the Midwest during our

sample period. The change in travel time explains 35% of the observed differential growth.

We find that the value of the elasticity of patents to knowledge access is bigger in magnitude

for establishments located in initially less innovative locations. Within each technology

class, we rank locations according to the amount of patents in the initial time period and

split them into four quartiles. We find that the increase in knowledge access predicts a 4.5%

yearly growth rate of patenting in locations in the lowest quartile of initial innovativeness,

while it predicts a 3.4% yearly growth rate in the highest quartile. The difference in growth

rates indicates that the increase in knowledge access acted as a convergence force between

locations, and it can explain 21% of the convergence observed in the data. Results go in

the same direction if we rank locations in terms of patents per capita.

Our results are robust to controlling for changes in market access by highway, changes

in market access by airplanes and time changing telephone connectivity. Results do not

change if we compute knowledge access using only knowledge located at long distances.

Additionally, we present suggestive evidence that the results are not driven by a decrease

in financial frictions.

In the third step, we uncover the sources of the increase in patenting. We find that most

of the effect of knowledge access on new patents happens through two entry margins:

entry of establishments of new firms and entry of subsidiaries of firms that expanded from

other locations. The two entry margins are stronger in initially less innovative locations,

meaning that convergence comes both from new firms and the geographic expansion of

multi-establishment firms.

To more directly test the firm expansion channel, we study if a firm’s subsidiary’s location

decision depends on travel time to headquarters. We estimate a probability model to

analyze if the locations in which firms have inventors applying for patents depends on

travel time to the firm’s headquarters. We identify the change in the probability only from

changes in travel time and locations in which the firm starts patenting or stops patenting.

We find that the probability that a firm has inventors applying for patents in a certain

location goes up when then travel time from that location to the firm’s headquarters

reduces. In addition, the change in the probability is stronger for potential recipient
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locations that were initially less innovative, again highlighting the importance of this

channel for convergence.

This paper contributes to multiple branches of literature. First, it contributes to the

literature on agglomeration and knowledge spillovers. Agglomeration forces are usually

understood as happening in a geographically localized manner (Glaeser (2011), Arzaghi

and Henderson (2008)). The literature on tech clusters also documents this fact (Duranton

et al. (2009), Kerr and Robert-Nicoud (2020), Moretti (2021)). The seminal paper Jaffe et al.

(1993) finds that patent citations decay rapidly with distance. Our results show that jet

airplanes allowed long distance knowledge spillovers, facilitating the development of tech

clusters in other regions. The literature that provides evidence of knowledge spillovers

usually focuses on changes in the supply of knowledge (Bloom et al. (2013), Acemoglu

et al. (2016)). In our case we fix the supply of knowledge and focus on changes in the

degree of accessibility.

We contribute to the literature on transportation by studying a new quasi-natural experi-

ment that isolates a shock to the mobility of people. To do so we construct a new dataset

that could be used to answer many other questions.5 Other papers have studied the impact

of transportation improvements on innovation. Agrawal et al. (2017) study the impact on

innovation of a region’s stock of highways, while Perlman (2016) uses 19th century data on

locations’ density of railroads. Andersson et al. (2017) and Tsiachtsiras (2021) do so using

the historical railroad expansion in Sweden and France. Relative to them, we contribute

by exploiting a quasi-natural experiment that allows us to isolate a channel of face to face

interaction, with little scope for a trade channel. In contemporaneous work Bai et al. (2021)

estimate the elasticity of patent citations to air travel time using the introduction of new

airline routes in a more recent period, post deregulation of the airline market. Relative to

them, we contribute by exploiting a set up in which the risk for endogeneity of travel time

is limited. Our work is related to other literature which found that business travel affects

innovation (Hovhannisyan and Keller (2015)), trade (Söderlund (2020)) and industrial

activity (Coscia et al. (2020)). Also, air travel shapes collaboration between researchers

(Catalini et al. (2020)).

The impact of transportation improvements in economic outcomes has long been a subject

of study (Fogel (1963), Baum-Snow (2007), Michaels (2008), Donaldson and Hornbeck

(2016), Jaworski and Kitchens (2019) and Herzog (2021)). Our convergence result contrasts

5Our dataset also includes international flights. We are currently digitizing more airlines to increase
coverage both inside the US and internationally.
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with previous studies on improvements in other means of transport. Pascali (2017) finds

that the introduction of steam engine vessels in the second half of the 19th century led

to an increase in international trade which contributed to economic divergence between

countries. Faber (2014) finds that the expansion of the highway system in China led to a

reduction of GDP growth of peripheral counties, with evidence suggesting a trade channel.

While both papers emphasize a trade channel, in our set up the trade channel would not

be of first order. Hence, we uncover a new effect of improved connectivity.

Finally, we contribute to the literature on firm’s location decision. Our result about

firms deciding their establishments’ locations based on travel time to headquarters is

comparable to the one found by Giroud (2013), who finds that a reduction in air travel time

to headquarters increases plant level investment and total factor productivity. Similarly,

Campante and Yanagizawa-Drott (2017) finds that firms’ cross country investment decision

depends on connectivity to headquarters.

The paper is structured as follows. First, we present a simple theoretical framework which

lays the foundations of how to think about the creation and diffusion of knowledge. The

framework shows the two key parameters to estimate. Second, we describe the historical

context in which jet airplanes were introduced. Third, we present the two datasets that we

use: travel times and patents. Fourth, we perform the analysis to estimate the impact of

travel time on the diffusion of knowledge, the creation of knowledge, and firm’s location

decision. Fifth, we conclude.

2. Conceptual framework

This section lays out a simple theoretical framework to think about the creation of knowl-

edge. The framework clearly shows the two key parameters to estimate empirically: the

elasticity of knowledge diffusion to travel time and the elasticity of knowledge creation to

knowledge access.

Following Carlino and Kerr (2015) we consider a production function of knowledge which

includes external returns in the form of knowledge spillovers. Knowledge output of a firm

depends not only on firm’s specific characteristics as its idiosyncratic productivity and

input decisions, but also on an externality due to knowledge spillovers. We consider a
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production function of knowledge of the following form:

New KnowledgeFi = f (zFi, inputsFi) × Knowledge Access
ρ
i (1.1)

where New KnowledgeFi is the knowledge created by firm F located in i. The output of Fi

depends on an internal component and on an external component. The internal component

is the firm’s idiosyncratic productivity zFi and choice of inputs inputsFi. The external

component, Knowledge Accessi, represents knowledge spillovers to which all firms F in

location i are exposed to. The degree to which this externality affects the production of

knowledge is governed by the parameter ρ. If ρ is zero then knowledge spillovers have

no effect on the creation of new knowledge. On the other hand, a positive ρ implies that,

keeping productivity and inputs constant, an increase in the level of knowledge spillovers

leads to an increase in firm F’s creation of new knowledge.

A long standing literature studies the importance of knowledge spillovers for the creation

of new knowledge.6 The concept of knowledge spillovers goes back at least to Marshall

(1890) who explains it as one of the agglomeration forces. Krugman (1991) refers to

knowledge spillovers as one of the justifications for external increasing returns, and that

the degree of spillovers are dependent on physical distance. The geographic decay of

spillovers is grounded in the fact that not all knowledge is easy to codify, usually referred to

as tacit knowledge, and geographic proximity increases the degree of knowledge spillovers

by facilitating face to face interactions (Storper and Venables (2004), Glaeser (2011)). Hence,

we consider the total amount of knowledge spillovers to which the firm F in location i is

exposed to has the following functional form:

Knowledge Accessi = ∑
j

Knowledge stockj × distance
β

ij (1.2)

where Knowledge stockj is the total amount of knowledge in location j (which is non-

negative) that could potentially spill over to location i and distanceij is a measure of

distance from j to i. The amount of knowledge that spills over from j to i depends

on distance and the degree with which distance impedes spillovers, governed by the

parameter β. If β is zero, then distance does not affect knowledge spillovers from j to i and

all locations perfectly share the same level of Knowledge Access. On the contrary, a negative

β implies a decay in knowledge spillovers when distance increases. In other words, a

6The chapters of Audretsch and Feldman (2004) and Carlino and Kerr (2015) in the Handbook of Regional
and Urban Economics provide an excellent review on the literature on knowledge spillovers, their geographic
decay and how they affect the creation of knowledge.
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negative β implies that if we reduce the distance from j to i while keeping every other

distance constant, the amount of spillovers from j to i will weakly increase.

This theoretical framework bears resemblance to the concept of Market Access presented

in Donaldson and Hornbeck (2016) and Redding and Venables (2004). If we interpret

Knowledge Access as one of the inputs in the production function of knowledge, then

Knowledge Accessi could be interpreted as a measure of Input Market Access. This measure

captures how cheaply firms in location i can access pre-existing knowledge, where the cost

of accessing knowledge depends on distance between i and j. Also, Knowledge Access is

similar to a measure of network centrality. The centrality of each location i (node) is the

weighted sum of distance (edges) to every location, where the weight of each location is

given by its knowledge stock.

The theoretical framework highlights the two parameters to estimate: ρ and β. Empirically,

we use travel time as a measure of distance to first estimate β and then conditional on β

we estimate ρ. Changes in travel time due to improvements in commercial aviation allow

us to estimate both parameters. First, we use citations between patents as a proxy for the

diffusion of knowledge. We estimate β by relating changes in travel time between research

establishments to changes in citations between them. Second, we use the stock of patents

filed by inventors in each location as proxy for each location’s stock of knowledge. We

construct a measure of knowledge access using the patent stock, travel times and the value

of β. New patents in each location proxy for new knowledge. Changes in travel time lead

to changes in knowledge access which allow us to estimate ρ.

3. Historical context

3.1. Air transport: jet arrival

The jet aircraft was first invented in 1939 for military use, with the German Heinkel He

178 being the first jet aircraft to fly. The first commercial flight by a jet aircraft was in 1952

by the British Overseas Airways Corporation (BOAC) from London, UK to Johannesburg,

South Africa with a Havilland Comet 1. Nonetheless, given the amount of accidents of

the Havilland Comet 1 due to metal fatigue, jet commercial aviation did not truly take

off until the Boeing 707 entered commercial service in late 1958. The 24th of January of

1959 represented a major milestone in the jet era: American Airlines Flight 2 flew with a

Boeing 707 jet aircraft from Los Angeles to New York, the first non-stop transcontinental
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commercial jet flight.7

In 1951 New York City and Los Angeles were connected with a one-stop flight in 10

hours and 20 minutes. The flight had a forced stop in Chicago and was operated with the

propeller aircraft Douglas DC-6, which had a cruise of 500 kmh. By 1956, New York City

and Los Angeles were connected with a non-stop flight in 8 hours and 30 minutes. This

was accomplished due to the introduction of the propeller aircraft Douglas DC-7 which

had a cruise speed of 550kmh, and a change in regulation which increased maximum

flight time of a crew from 8 to 10 hours within a 24-hour window.8 In 1961, the route was

covered with the jet aircraft Boeing 707 in a non-stop flight in 5 hours 15 minutes, reaching

5 hours 10 minutes in 1966. The Boeing 707 had a cruise speed of 1000kmh, cutting travel

time from New York City to Los Angeles in half between 1951 and 1966.

3.2. Air transport: moving people, not goods

During the 1950s and 1960s, air transportation served to transport people but not goods.

Figures 1.1 and 1.2 are images (edited for better readability) from annual reports of the

Interstate Commerce Commission of 1967 and 1965 respectively. Figure 1.1 displays the

amount of passenger-miles9 for Air, Motor and Rail transportation from 1949 to 1966. We

observe that, while transport of people by rail decreased and by motor remained relatively

constant, transport of people by air multiplied by 6 in a 16-year period, which translates

to around 12% compound annual growth. In 1966, air transport accounted for more

passenger-miles than both rail and motor transportation together, reflecting the growing

importance of this mean of transport.

Figure 1.2 shows shipments in ton-miles for the period 1939 to 1964 by different means

7The reader passionate of aviation history would enjoy reading the following New York Times article
which tells the experience of the first transcontinental jet flight: https://www.nytimes.com/2009/01/26/
nyregion/26american.html

8AA and TWA had transcontinental non-stop propeller flights scheduled since at least 1954. These flights
were scheduled to take 7 hours 55 minutes, just under the maximum flight time allowed by regulation
in domestic flights: regulation impeded pilots from being on duty more than 8 hours within a 24 hours
window. Nonetheless, the propeller aircrafts used in these flights, the Douglas DC-7 and the Lockheed Super
Constellation, overheated their engines due to excessive demand to cover the route in less than 8 hours. AA
fought intensely until the CAB approved a waiver that allowed non-stop transcontinental flights to take up
to 10 hours to accomplish the non-stop transcontinental flight. See page 16 of the edition of the 21st of June
1954 of the Aviation Week magazine https://archive.org/details/Aviation_Week_1954-06-21/page/

n7/mode/2up
9Passenger-miles is a standard unit of measurement in transport, where one passenger-mile accounts for

one person traveling one mile. The reasoning is the same for ton-miles, with one ton of goods traveling one
mile.
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of transport. Interestingly, we observe that air transport of goods, even if it increased, it

accounted for less than 0.1% of transport of goods in 1964.10

Fig. 1.1. Passenger Miles By Means of Transport

Source: Interstate Commerce Commission, Annual Report 1967. Edited by the authors.

Fig. 1.2. Ton Miles by Means of Transport

Source: Interstate Commerce Commission, Annual Report 1965. Edited by the authors.

10We have not found data about shipments by mean of transport measured in monetary values.
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3.3. Regulation

As explained in Borenstein and Rose (2014), in the 1930s the airline industry was seen

as suffering from coordination issues, destructive competition and entry. Additionally,

the industry was developing in a context of financial instability and increasing military

concerns post Great Depression. A strong domestic airline industry was perceived as

an interest of national defense. As consequence, the Civil Aeronautics Board (CAB) was

created in 1938 with the objective to promote, encourage and develop civil aeronautics.11

It was empowered to control entry, fares, subsidies and mergers.12 In other words, the

CAB regulated the market by deciding which airlines could fly, in which routes they could

operate, the price that they charged in each route, the structure of subsidies and merger

decisions. The CAB regulated the airline industry in a barely unchanged manner until it

ceased to exist in 1985.

When the CAB was created, it conceived special rights to the existing airlines over the

connections they were operating. The CAB did not permit entry of new airlines on

interstate routes and gradually allowed current airlines to expand their routes. The CAB

controlled both the system and each airline’s network. The network was designed to

maintain industry stability and minimize subsidies, leading to a system where each route

was mainly operated by one or two airlines.13 Importantly, Borenstein and Rose (2014)

in pages 68-69 explain that ”the regulatory route award process largely prevented airlines from

reoptimizing their networks to reduce operation costs or improve service as technology and travel

patterns changed.” As a consequence, any technological improvement such as increases in

aircraft speed, capacity or range would not affect each airline’s flight network in the short

term.

By regulating fares, the CAB explicitly encouraged airlines to adopt new aircraft. Airlines,

when operating an older aircraft, would apply for a fare reduction arguing that it is

needed in order to preserve demand for low quality service. The CAB would refuse this

application, hence airlines would have to adopt new aircraft or risk losing consumers who

would choose another airline which flies newer aircrafts.

11The CAB was a federal agency hence, in principle, would not have control over intrastate routes.
Nonetheless, according to Borenstein and Rose (2014) the CAB managed to have some intrastate markets
under its control using legal arguments.

12Safety regulation was under the control of the Federal Aviation Administration.
13Borenstein and Rose (2014) in page 68, based on Caves (1962), expose ”In 1958, for example, twenty-three of

the hundred largest city-pair markets were effectively monopolies; another fifty-seven were effectively duopolies; and in
only two did the three largest carriers have less than a 90 percent share.”
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4. Air travel data

We construct a new data set of the flight network in the United States during the 1950s

and 1960s. We collected and digitized information of all the flights operated by the main

airlines and obtained the fastest route and travel time between every two airports in the

network.

To construct the flight network we use historical flight schedules of the main airlines

operating in 1950s and 1960s. Figure 1.3 is a fragment from an example page of the 1961

flight schedule of American Airlines. In the flight schedule we observe in the center

column the name of departure and arrival cities (which we match to airports using airlines’

historical ticket office geographical location), while the small columns on the sides depict

flights. In the top of the small columns we observe the type of service provided (first class,

coach or both), aircraft operated, days operated (daily if information is missing) and flight

number. The content of the small columns displays the departure and arrival time (local

time, bold numbers represent PM) at each city, including all intermediate stops.

Fig. 1.3. Fragment of flight schedule American Airlines 1961
Source: American Airlines 1961. The center column displays the name of departure and arrival cities.
The small columns on the sides display flights with departure and arrival time (local time, bold numbers
represent PM). The top of the small columns shows the type of service provided (first class, coach or both),
aircraft operated, days operated (daily if information is missing) and flight number.
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We digitize flight schedules for the years 1951, 1956, 1961 and 1966 of six domestic air-

lines: American Airlines (AA), Eastern Airlines (EA), United Airlines (UA), Trans World

Airlines (TWA), Braniff International Airways (BN), Northwest Airlines (NW),14 and one

international airline: Pan American Airways (PA). This group of airlines includes the Big

4: AA, EA, UA and TWA, which accounted for between 69% and 74% of interstate air

revenue passenger miles in the US in the years collected. BN and NW were digitized in

order to have a wide geographical coverage, while PA provides international flights. Based

on C.A.B. (1966), in the years collected, the six domestic airlines together accounted for

between 77% and 81% of interstate air revenue passenger miles.

In total we have digitized 6,143 US flights (unique combinations of flight number-year,

7,007 worldwide). However, flights often have multiple stops. If we count each non-

stop part (leg) of these flights separately, our sample contains 17,737 legs in the US and

21,210 worldwide. Our data connects 275 US airports (434 worldwide) creating 2,563

unique origin-destination (directional) airport links (3,466 worldwide). Figure 1.4 displays

the flight network in continental United States pooling all years together. In Appendix

A.2 we show the US flight network by year, around 80% of the non-stop flights remain

year-on-year.

Using departure and arrival time of each flight at each airport, we obtain the fastest route

and corresponding travel time between every two airports in our data. To obtain the fastest

route and travel time we modify the Dijkstra algorithm to account for layover time in case

the fastest route includes connecting flights.

Once the fastest route between every two airports is computed, we match every airport to

1950 Metropolitan Statistical Areas (MSA) using the shape file from Manson et al. (2020).

We consider only MSAs in contiguous United States. We use MSAs as the geographical

unit of analysis because they are constructed taking into account commuting flows. We

assume that people in an MSA would use, for each desired route, the most appropriate

airport lying inside or nearby the MSA. We match each airport to all MSAs for which it lies

14These are six of the fifteen trunk (interstate) airlines operating in 1951. Many of the remaining trunk
airlines would merge with another trunk airline over the years, and there would be zero entry of new airlines.
We are currently digitizing the remaining trunk airlines and we plan to add them to the travel time dataset
in the future. We have already digitized: Allegheny Airlines, Capital Airlines, Colonial Airlines, Continental
Airlines and Delta Air Lines. We have also digitized the year 1970 for the six airlines used in this paper
and Pan American. Due to a time constraint we have not included them in the current analysis. We plan to
digitize BOAC to obtain more international flights, and to cover the time period 1930 to 2000 for all airlines
that is possible.
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Fig. 1.4. United States flight network 1951-1966

inside the MSA or is at most 15km away from its boundary.15 176 out of 275 US airports

are matched to at least one MSA. Meanwhile, 142 out of 168 MSAs are matched to one or

more airports in at least one year, and 108 MSAs are matched to one or more airports in

the four years. We use the sample of 108 MSAs that had an airport in the four years as our

baseline travel time data.16

4.1. Descriptive statistics: Air travel

To understand the changes in travel time we will first study travel time of non-stop flights

and then of all routes including connecting flights. Figure 1.5 displays the non-stop fastest

flight within each MSA pair that was operating in each year. In 1951 the longest non-stop

flight across MSAs was between Chicago and San Francisco using the Douglas DC-6,

covering a distance of 2,960 km in 7 hours 40 minutes. This travel time was just under 8

hours, the maximum flight time allowed for a crew in a 24-hour period.17 In 1956, new

regulation allowed up to 10 hour flights for transcontinental flights, the longest non-stop

15The 15km distance was chosen after inspecting airports near the border that should arguably be matched,
as for example, Atlanta ATL airport.

16In Appendix A.2 we include a table with the 168 MSAs, those connected at least once and those
connected in the four years. Among the MSAs not connected is San Jose, California, which in our patent
sample accounted for around 2% of patents. San Jose had an airport (SJC) during our time period but it was
not served by any of our airlines, so it is not included in our analysis. In the future we plan to include the
currently non-connected MSAs by matching them to airports that may have served them and accounting for
the commuting travel time.

17Honolulu was not concerned by the regulation. Honolulu was connected with non-stop flights to San
Francisco (9 hours 40 minutes), Los Angeles (11 hours) and Portland (12 hours 55 minutes).
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flight between MSAs was New York to San Francisco with the Douglas DC-7, covering a

distance of 4,151 km in 9 hours. Between 1951 and 1956, while we observe an increase in

average flight speed that went up to 17%, the main change observed is that longer non-stop

routes were possible.

In 1961, the first year in which we have jet aircrafts in the travel time data, there is a

reduction in travel time between MSA-pairs, especially for those far apart from each other.

In 1966, there is a further decrease in travel time due to a widespread adoption of jet

aircrafts in shorter distances. In Appendix Figure 1.22 we show the jet adoption rate by

distance for MSAs connected with a non-stop flight. All MSA-pairs more than 3,000km

apart connected with a non-stop flight operated at least one jet flight in 1961, and this

expanded to all those more than 2,000km apart in 1966. The speed gain of jets relative to

propeller aircrafts is increasing with the amount of time that the jet can fly at its cruise

speed, arguing in favor of an adoption that is increasing with the distance between origin

and destination.18

Fig. 1.5. Non-stop fastest flights United States MSAs

The change in travel time in non-stop flights is also reflected in the travel time for connect-

18We are currently exploring the differential timing of jet adoption across airlines. Differences in (pre-
existing) route distance and past contractual relationships with aircraft suppliers potentially led to different
adoption rates at each time period. For example, Eastern Airlines’ routes were particularly shorter than for
other airlines. Also, those committed to buy Douglas airplanes (the leader US commercial aircraft supplier
pre-jet era) would have adopted jets later, as Douglas launched jet airplanes later than Boeing.
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ing flights. Figure 1.6 shows, relative to 1951, the average and standard deviation change

in travel time for all MSA-pairs, including non-stop and connecting flights.19 Between 1951

and 1956, there is an average reduction in travel time of 9.2% which is roughly constant

for all distances over 500km. Between 1951 and 1961, there is a reduction in travel time

that is increasing with distance. The average decrease in travel time is of 16.8%, while

the reduction is of 29.4% for a distance of more than 2,000km and 39.2% for a distance

of 4,250-4,500km. Between 1951 and 1966, there is an even stronger decrease in travel

time at all distances. The average reduction in travel time is 28.7% across all distances,

40.8% for a distance of more than 2,000km and 48.4% for a distance of 4,250-4,500km. The

increased adoption of jets for short distance flights implied that both non-stop flights at

short distance and connecting flights at farther distance had a decrease in travel time.

Fig. 1.6. Change in MSAs travel time

Figure 1.25 in Appendix A.2 shows that the change in travel time is accompanied by a

reduction of the amount of legs needed to connect two MSAs at every distance. This

reduction is especially marked between 1951 and 1956, and 1961 and 1966. Between

1956 and 1961, we do not observe a big reduction in the amount of legs, implying that

the decrease in travel time observed in Figure 1.6 between 1956 and 1961 comes from a

source other than the amount of legs. In Appendix Figure 1.26 we open up the change

19The plot includes only MSA-pairs with travel time in all time periods. The standard deviation for
MSA-pairs less than 250km apart is big relative to the ones at other distances. Hence we decided not to
include it because it distorts the visualization of the rest of the plot.
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in travel time by the way an MSA pair was connected in 1951 and 1966: either directly

(non-stop flight) or indirectly (connecting flight). We observe that much of the increase

in travel time for MSA pairs less than 250km apart comes from routes that in 1951 were

operated non-stop while in 1966 were operated with connecting flights.20 Interestingly,

for MSA-pairs more than 2,000km apart travel time reduced on average 42% for those

pairs that were connected indirectly in both periods, and 51% for those that switched from

indirect to direct. This fact shows the relevance of improvements in flight technology even

for MSAs that were not directly connected.

It could be the case that a reduction in the amount of legs or an increase in frequency

of flights reduces layover time, which then translates into a reduction of travel time. In

Appendix Figure 1.28 we compare the change in travel time from 1951 to 1966 with a

counterfactual change in travel time in which we eliminate layover time in both time

periods. We observe that the average change in travel time is stronger at every distance in

the counterfactual scenario without layover time. This implies that the relative importance

of layover time to total travel time within a route increased between 1951 and 1966, so

total travel time did not decrease proportionally to the change of in-flight travel time. In

short, layover time attenuated the reduction in travel time.

4.2. Constructing an instrument

In this section we construct an instrumental travel time that is based on the pre-existing

flight routes and the time-varying nationwide roll out of jets. In this way, the instrument

abstracts from the endogenous decisions of two agents: First, regulator’s decision on the

opening/closure of routes. Second, airlines’ decision about to which routes allocate jet

vs propeller airplanes and scheduling (frequency of flights and layover time). We first

explain the idea and identifying assumptions of the instrument, and then we detail how it

is constructed.

In Borenstein and Rose (2014) it is argued that, due to strict regulation, it was difficult for

airlines to adapt their flight network when technology to fly changed. However, we may

be concerned that the decision of the regulator to grant new routes could be targeted to

specific pairs or correlated with unobservable variables that also affect the creation and

20Appendix Figure 1.27 repeats the exercise discarding layover time in all time periods. By comparing
Figure 1.26 and Figure 1.27 we can disentangle the effect of layover time and the change in in-flight time. For
MSA pairs less than 250km that changed from direct to indirect connection, 80% of the increase in travel
time is due to the increase in layover time (which was previously zero as it was a non-stop flight), and 20%
is due to the increase of in-flight time.
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diffusion of knowledge.21 Hence, as the first step in the construction of our instrument,

we fix routes to the ones we observe in 1951. In this way the instrumental travel time is

computed only using non-stop flights present in 1951, and does not consider appearance

or disappearance of non-stop flights in the data. The identifying assumption is that the

network of flight routes in 1951 did not yet include the changes that would be optimal to

operate with jet airplanes. In other words, we require that the regulator did not change

routes already by 1951 in anticipation of the arrival of jet airplanes.22,23

Airlines could decide on two factors that affect travel time: the type of airplane (jet vs.

propeller) operated in each route and scheduling, which consists on the frequency of

flights and layover time in case of connecting flights.24 We may be concerned that, as with

the regulator, airlines’ decisions could be correlated with unobservables that also affect

the creation and diffusion of knowledge.25 The second step in the construction of our

instrument is to discard layover time (hence discarding all scheduling decisions) in all

time periods, and assume that in each year all routes are operated with a fictitious average

airplane of the year. Hence, the change in instrumental travel time in a route is independent

of the type of airplane used in the route and it only depends on the nationwide roll out of

jets. The identifying assumption is that no single route had the power to shift the average

speed of the year.

To construct the instrumental travel time we first estimate, separately for each year, a linear

regression of travel time on flight distance using only the fastest non-stop flight in each

origin-destination airport pairs.26 These yearly regressions provide us with the fictitious

average airplane of each year: the intercept gives the take-off and landing time of the

airplane while the slope provides the (inverse) speed. Second, we fit these regressions

to obtain predicted travel time in each non-stop flight and year. Third, for each year, we

21For example, the regulator could have targeted the opening of new routes between places in order to
boost their economic activity.

22For example, in the instrument there are no non-stop transcontinental routes.
23In our estimations we exploit time variation for identification. Hence, if pre-existing routes affect the

levels at the origin-destination level, this does not drive our identification. However, we may be concerned
that pre-existing routes could affect future growth and not only levels. To address this concern, in robustness
analysis we estimate the elasticity of citations to travel time using only MSA-pairs that are always indirectly
connected. Results go in the same direction.

24In 1961, all non-stop flights of more than 3,000km had at least one jet operating within them, while in
1966 it was the case in all non-stop flights of more than 2,000km. Therefore the endogeneity of jet adoption is
a smaller concern for long distance flights.

25For example, airlines may have decided to prioritize the allocation of jets to routes which had a higher
share of business travel, which may be correlated with the diffusion of knowledge.

26The use of a linear regression is motivated by the linearity between travel time and distance displayed in
Figure 1.5. To estimate these regressions we use all routes appearing in each year.
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compute the fastest travel time using the Dijkstra algorithm. The Dijkstra algorithm looks

for the fastest path using only 1951 non-stop flights, while the travel time in each non-stop

flight in each year is given by the predicted travel time from the previous step. Layover

time is set to zero in all years.

Figure 1.7 shows the percentage change in observed and instrumental travel time relative

to 1951. We compute the percentage change within each MSA-pair for each year and then

take averages within 250km bins. We observe that the instrumental travel time follows

pretty closely the observed change in travel time in each year. Especially, it replicates the

pattern of a stronger decrease in travel time for MSAs located farther apart. It is only for

MSAs less than 250-500km apart that the change in the instrumental travel time departs

from the observed change.27 This finding shows that most of the change in travel time that

we observe is due to the change in speed of airplanes, and that the endogeneity concern is

limited for MSAs located far away from each other.

Fig. 1.7. Instrumental Travel Time between US MSAs.

In Appendix A.2 we present other two counterfactual travel times: one in which we

27We observe an increase in travel time for short distances in 1961 relative to 1951. Given that non-stop
routes are fixed and that for longer distances there is a decrease in travel time, the increase in travel time in
short distances comes from an increase in the value of the intercept relative to the slope in 1961, relative to
1951.
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fix airplanes to be the average airplane of 1951 and allow routes to evolve, and another

in which both the average airplane and routes are varying. These two counterfactuals

together with the one presented in this section allow us to decompose the change in travel

time by the change in routes and the change in speed of airplanes. We obtain that around

90% of the change in travel time is due to the change in speed of airplanes, while around

10% of the change is due to the change in the flight routes. Appendix Figure 1.30 shows

that the share is roughly constant for all distances. This finding confirms that most of the

observed changes in travel time are due to improvements in flight technology.

5. Patent data

We use patent data to measure innovation. We construct a dataset of all patents granted by

the United States Patent and Trademark Office (USPTO) with filing year28 between 1949

and 1968, which includes for each patent: filing year, technology classification, location

of the inventors when they applied for the patent, owner of the patent and citations to

other patents also granted in the United States. This dataset provides the distribution of

patents and citations over the geographic space, allowing to take into account ownership

structure.

To construct the patent dataset we downloaded from Google Patents all patents granted by

the USPTO with filing year between 1949 and 1968. This dataset contains patent number,

filing year and citations.29,30 Based on the patent number we merge it with multiple

datasets. First, we obtained technology class from the USPTO Master Classification File31

and we aggregated them to the six technology categories of Hall et al. (2001). Second,

we obtained geographic location of inventors from three datasets: HistPat (Petralia et al.

(2016)) and HistPat International (Petralia (2019)) for patents published until 1975, Fung

Institute (Balsmeier et al. (2018)) for patents published after 1975.32 We match all inventors’

28Filing year, also called application year, is the closest date to the date of invention that is present in
the data and it represents the date of the first administrative event in order to obtain a patent. In the other
hand, the publishing (also called granting year) is a later year in which the patent is granted. The difference
between filing and publishing year depends on diverse non-innovation related factors (as capacity of the
patent office to revise applications) and changes over time. Hence filing year is the date in our data that
approximates the best to the date of invention.

29Very few patents had missing information on filing year. We complemented both missing filing year and
citations with the OCR USPTO dataset.

30We note that the patent citation record starts in 1947, year in which the USPTO made it compulsory to
have front page citations of prior art. Gross (2019)

31https://www.google.com/googlebooks/uspto-patents-class.html
32Due to the gap between the filing year and publishing year we also do the matching to patents published
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locations to 1950 Metropolitan Statistical Areas (MSAs) in contiguous United States. To

do the match we obtain geographical coordinates from the GeoNames US Gazetteer file

and Open Street Maps, and use the MSAs shape file from Manson et al. (2020). Third, we

obtain ownership of patents from two sources: Kogan et al. (2017) for patents owned by

firms listed in the US stock market and Patstat (Magerman et al. (2006)) for the remaining

unmatched patents.33

For the descriptives presented below and the posterior analysis we truncate and aggre-

gate the data in the following way. We drop patents that are owned by universities or

government organizations. To count patents that are classified into multiple technology

categories, we do a fractional count by assigning proportionally a part of the patent to each

category. Citations are counted as the multiplication of the technology weight of the citing

and cited patents. We drop patents (and their citations) that have inventors in multiple

MSAs34 and citations in which the citing owner is the same as the cited owner.35

We aggregate the patent data to 4 time periods of 5 years each, with the center of each

period being the year of travel time data collected. The periods are: 1951 (which contains

the years 1949-1953), 1956 (1954-1958), 1961 (1959-1963) and 1966 (1964-1968). We consider

only patents in MSAs that are matched to an airport in the four periods.36 The final dataset

contains 108 MSAs with patents and travel time.

5.1. Descriptive statistics: Patents

This section presents three facts about US patents over our sample period: First, initially

less innovative locations had a higher patenting growth rate. The average yearly growth

rate of locations in the lowest quartile of initial innovativeness was 7.2% while it was 1.9%

after 1968. Our underlying patent data actually covers a longer time period of filing years, which we need
for example to construct forward and backward citation lags. However, there are limitations to use the
geographic data in filing years 1971-1972. In Appendix B we show that during filing years 1971-1972 the rate
of unmatched patents to inventors’ location increases. This is probably due to Histpat and Fung data not
being a perfect continuation one of the other.

33Patent ownership in both datasets comes from the patent text, which is self declared by the patent
applicant. Particularly, Kogan et al. (2017) does not explicitly state if it takes into account firm-ownership
structure to determine the ultimate owner of a patent, neither does Patstat.

34Working with multi-MSA patents requires an assumption on how to compute distance and travel time
between the citing and cited patents, as it is not a single origin-destination location pair. We hence prefer to
abstract from multi-MSA patents. Nevertheless, collaboration of inventors located in different MSAs is an
interesting subject for further research.

35Incentives to self-cite may be different than to cite patents of other owners.
36We drop around 9% of patents that are in MSAs which are not matched to an airport in the four time

periods. Descriptive statistics including those patents are similar to the ones presented here.
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for those in the highest quartile. High growth locations were also primarily in the South

and the West of the US. The South and the West grew three times as fast as the Midwest

and the Northeast. Second, over time firms grew larger as measured by the amount of

MSAs in which they had research establishments. At the same time, the share of patents

filed by large multi-establishment firms increased. The amount of firms with research

establishments in more than 10 MSAs almost tripled over the time period and their share

of patents doubled. Third, the mass of citations shifted towards longer distances. While

the first quartile of citation distance remained relative stable over the time period, the third

quartile increased its distance by 39%. At the same time, the share of citations at more than

2,000km increased by 30%.

Below we present descriptive stastistics averaging across technologies. Technology-specific

descriptives are included in Appendix B.

Fact 1.a.: Initially less innovative locations had a higher patenting growth rate

In the period 1951 to 1966 we observe that the highest growth of patenting takes place

in locations that were initially less innovative. The differential growth rate implies a

convergence rate of 5.3% per year.

Figure 1.8 shows the geographic distribution of patenting in 1951. Darker colors refer to

a higher level of initial innovativeness, which is defined as the amount of patents filed by

inventors in the MSA in 1951.37 We observe that MSAs in the top quartile of patenting

are concentrated in the Northeast (which includes New York) and the Midwest (which

includes Chicago), with few additional MSAs in the West.38,39

Figure 1.9 shows the geographic distribution of patenting growth in 1951-1966.40 We

observe a striking pattern relative to Figure 1.8: high growth MSAs were those that were

37To compute the level of initial innovativeness we only use patents filed in 1951 (years 1949-1953). We
aggregate patents to the MSA-technology level and then compute the quantile-position of each MSA in the
technology. Lower values of quantile-position refers to lower amount of patents in the technology (relative
to other MSAs). Each MSA has a different value of quantile-position in each of the 6 technology categories.
To obtain the MSA level quantile we take the average quantile across technologies within the MSA. Finally
we classify MSAs into quartiles depending on whether the average quantile is higher or lower than the
thresholds 0.25, 0.50, 0.75.

38In Appendix B we show that the 1951 geographic distribution of patents looks similar across technology
categories.

39The top 5 patenting MSAs in 1951 were: New York City (25% of all patents), Chicago (11%), Los Angeles
(8%), Philadelphia (6%) and Boston (4%).

40We compute the growth rate of patenting in each technology within a MSA and then take the average
across technologies within the MSA.
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initially less innovative. High growth happens in initially less innovative locations in the

South and the West but also in the Northeast. We confirm this pattern in Figure 1.10, which

shows the MSA’s ranking of innovativeness in 1951 and its subsequent patenting growth

rate in 1951-1966. Figure 1.10 shows that MSAs that were initially more innovative (lower

values in the ranking) are those that saw lower values of subsequent patenting growth.41,42

We estimate a linear regression with an intercept and a slope, and find that the slope is

positive and statistically different from zero. At the mean, lowering initial innovativeness

by 10 positions in the ranking was associated with a subsequent 0.42 percentage points

higher yearly growth rate of patenting.

Figure 1.10 presents average growth rates across technologies within a MSA. We obtain

a result that goes in the same direction if we compute the average growth rates across

MSAs within a technology and quartile of initial innovativeness, and then take the average

across technologies. The average yearly growth rate of MSA-technologies in the lowest

quartile of initial innovativeness is 7.2% while it is 1.9% in the highest quartile.43 The

percentage point difference between the two growth rates implies that locations in the

lowest quartile converged towards locations in the highest quartile at a speed of 5.3% per

year.44 The convergence in patenting across MSAs is consistent with The Postwar Decline in

Concentration, 1945-1990 described in Andrews and Whalley (2021).

41Each dot in Figure 1.10 is an MSA. To compute the MSA ranking we need to double-rank MSAs. First
we rank all MSAs in each technology. Second we take the across-technology average ranking of each MSA.
Third we rank all MSA’s averages. To compute the MSA’s yearly growth rate we first take the 1951-1966
growth rate for each technology in the MSA. We then take the average across technology. Finally we obtain

the MSA’s yearly growth rate by computing: yearly growth rate = (1 + 19 year growth rate)(1/19) − 1 (the
1951 to 1966 period is a 20 year window, we take growth rates as being from the first year 1949 to the last one
1968, which is 19 year growth).

42In Appendix B we show replicate the plot differentiating geographic regions. MSAs that were initially
less innovative and had high subsequent growth were located in all four regions, although they were
primarily located in the South and the West.

43We first compute the 1951-1966 growth rate (19-year growth rate) for each MSA-technology. We then
take averages across MSAs within a quartile-technology, and after take averages across technologies within
a quartile. Finally, we convert the 19-year growth rate into an average yearly growth rate.

44We note that the aggregate growth of patents is much smaller than the across MSAs unweighted average,
and this is exactly because initially less innovative MSAs grew faster. If we compute the growth rate in
nationwide amount of patents in each of the technologies and then average across technologies we obtain a
yearly growth rate of 1.5%.
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Fig. 1.8. Geography of Patenting 1951 Fig. 1.9. Patent growth 1951-1966

Fig. 1.10. Patent growth rate by initial innovativeness ranking of MSA

Fact 1.b.: The South and the West of the US had a higher patenting growth rate

Figure 1.9 shows that MSAs located in the South and the West of the US had a higher

patenting growth rate in 1951-1966. We classify MSAs using Census Regions of the
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US (Midwest, Northeast, South and West)45 and aggregate patents within each region-

technology-year. Figures 1.11 and 1.12 present averages across technologies within a

region-year. Figure 1.11 shows that the share of patents filed by inventors located in the

Midwest and the Northeast decreased from 75% in 1951 to 68% in 1966, while the share of

patents filed in the South and the West increased from 25% to 32%. The opposite change

in the shares implies that the South and the West had a higher growth rate of patenting

relative to the Midwest and the Northeast.

Figure 1.12 shows that in the period 1951-1966 the South and the West increased their

amount of patenting by 80%, while the Midwest and the Northeast had a 22% growth.46

Translated into yearly growth rates, the South and the West grew three times as fast as the

Midwest and the Northeast (3.14% vs. 1.05% per year).47

Fig. 1.11. Share of patents by region Fig. 1.12. Patent growth by region

Fact 2: Multi-establishment firms expanded geographically and accounted for a higher share of

patents

Using all the patents of the same owner we identify all locations in which a patent owner

had inventors applying for patents. We label a patent owner a firm and assume that

a firm has a research establishment in the MSAs in which it has inventors applying for

patents. Combining all patents belonging to the same firm we know if a firm has research

45In Appendix C we present a map with the four Census Regions.
46Growth rates are computed by region-technology and then averaged across technologies within region.
473.14% = 1.80(1/19) × 100, 1.05% = 1.22(1/19) × 100
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establishments in multiple MSAs, if a firm expands over time and where it locates its

establishments.

In Table 1.1 we count the number of firms and compute their share of patents according

to whether the firm had 1, 2 to 5, 6 to 10, 11 to 20, or more than 20 establishments in

each respective year. As we can see, the vast majority of firms had one establishment

(95.8% in 1951), while very few had 11 or more establishments (0.1% in 1951). In 1951,

single-establishment firms accounted for 57% of all patents. At the same time, firms with

11 or more establishments (42 firms, 0.1% of all firms) accounted for 15% of all patents.

From 1951 to 1966, the amount of single establishment firms declined by 1% while the

amount of firms with 11 or more establishments increased by 283%. In other words,

the amount of firms with presence in 11 MSAs or more grew from 42 to 119 firms. At

the same time, the share of patents accounted by firms with 11 or more establishments

increased from 15% to 31%. Simultaneously, the share of patents of single-establishment

firms decreased from 57% to 46%. Hence, Table 1.1 illustrates that both the amount of

multi-establishment firms and their share of patents grew over time.48 In Appendix B

we show that multi-establishment firms increased their share of patents in all quartiles of

MSAs’ initial innovativeness, with a stronger increase in initially less innovative MSAs.

Table 1.1: Number of firms and share of patents by firm’s geographic coverage

Number of firms Share of patents

Year
N. estab.

1 2 to 5 6 to 10 11 to 20 +20 1 2 to 5 6 to 10 11 to 20 +20

1951 41,133 1,684 75 34 8 0.57 0.19 0.08 0.07 0.08
1956 42,590 1,927 111 60 12 0.52 0.19 0.09 0.11 0.08
1961 37,366 2,112 131 80 18 0.48 0.19 0.09 0.13 0.12
1966 40,711 2,086 132 89 30 0.46 0.15 0.09 0.14 0.17

Geographic coverage is computed as the amount of Metropolitan Statistical Areas (MSAs) in which the firm has inventors
applying for patents (research establishments) in a certain year. Bins of geographic coverage are 1 MSA, 2 to 5 MSAs, 6 to 10
MSAs, 11 to 20 MSAs, more than 20 MSAs. The maximum possible is 108 MSAs.

While we observe an increase in the number of multi-establishment firms, we also observe

an increase in the distance between establishments of the same firm. Figure 1.13 shows

48Within each year and bin of firm size, we compute the share of patents by technology and then take the
average across technologies. We have computed the across-firms Herfindahl index within technology (so it
shows the level of across-firm concentration within a technology) and we do not observe a clear pattern of
either concentration or deconcentration.
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that, for firms that have multiple establishments in the respective year, the average distance

across establishments within the firm increased over time.49

Fig. 1.13. Average distance across establishments within the firm

Fact 3: Distance of citations increased

In our analysis we use citations as a proxy for knowledge diffusion. According to Jaffe

et al. (1993) ”a citation of Patent X by Patent Y means that X represents a piece of previously

existing knowledge upon which Y builds.” (page 580).50 We compute the distance between

the citing inventor and the cited inventor. Figure 1.14 shows the evolution over time of

the first, second and third quartile of citation distance.51 We observe that 25% of citations

happened between inventors located less than 300km apart throughout our sample period.

For the middle 50% of citations we observe that over time inventors cited other inventors

located farther away. The third quartile of citation distance increased from 1,642km in 1951

to 2,284km in 1961, a 39% increase in the distance.52 In other words, the mass of citations

49The increase in distance across establishments within firms could well be the result of firms that are
growing and randomly producing new patents in different locations. However, in Section 8 we show that
the process firms’ geographic expansion was not random: firm’s expansion was directed towards locations
that got larger reductions in travel time to the firm’s headquarters.

50Jaffe et al. (1993) discusses the reasons why to cite and why not to cite. Using a survey of inventors, Jaffe
et al. (2000) find that there is communication among inventors and citations are a ”noisy signal of the presence
of spillovers.”

51We compute distance between MSA centroids.
52As a reference, the distance from New York City NY to other places is: Boston MA 300km, Chicago IL

1,140km, Dallas TX 2,200km, San Francisco CA 4,130km. The quantile 0.10 of was at 0km in every period,

50



shifted towards longer distances.

In Figure 1.15 we present the share of citations by distance range between the citing and

cited inventors.53 The distance cutoffs where chosen in order to have a balanced share of

citations in the initial time period, and considering the changes in travel time presented

in Section 4.1. The share of citations that happen between inventors located more than

2,000km apart grew from 21.5% in 1951 to 27.9% in 1966. The 6.4 percentage points increase

represents an increase of 30% of the share of citations at more than 2,000km.

Fig. 1.14. Quantiles of citation distance Fig. 1.15. Share of citations by distance

6. Diffusion of knowledge

In this section we show that the reduction in travel time led to an increase in knowledge dif-

fusion, especially over long distances. In doing so we estimate the parameter β highlighted

in equation (1.2): the elasticity of knowledge diffusion to travel time.

To perform the analysis we merge the air travel and patent datasets to obtain a final

dataset that contains for each patent owner-location pair, the amount of patents filed in a

implying that 10% of citations took place within MSA. The quantile 0.90 was around 3,611km to 3,789km
over the sample period.

53While Figure 1.14 shows how the distance of each quantile changes over time, Figure 1.15 shows the
mass of citations (and hence the quantile to which belongs) in a certain distance cutoff. For example, in 1951
the share of citations in the 0-300km range was 31.6%, which is equal to saying that the quantile 0.316 in 1951
was 300km.
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certain 5-year period and technology class, the amount of citations to other patents with

their respective owner identifier, location and technology class, and the travel time to

every location. We aggregate citations to the citing-cited establishment-technology within

each period. We assume that passengers take a return flight, hence we make travel times

symmetric.54

We estimate a gravity equation which relates citations between two establishments-

technologies with their pairwise travel time.55 We estimate the following regression:

citationsFiGjhkt = exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt (1.3)

where citationsFiGjhkt is the amount of citations from patents filed by the establishment of

firm F in location i, technology h and time period t, to patents filed by establishment of

firm G in location j and technology k. We call Fi the research establishment of firm F in

location i. travel timeijt is the air travel time (in minutes) between location i and j at time

period t. The parameter of interest in the regression is β, which represents the elasticity

of citations to travel time.56 If citations are affected negatively by travel time we would

expect a negative value of β.

Given the panel structure of our data, we can include the fixed effect FEFiGjhk that ab-

sorbs any time invariant citation behavior within the citing establishment-technology and

cited establishment-technology. This fixed effect flexibly controls for persistent relationships

within an establishment pair that would lead to relatively more (or less) citations. That in-

cludes characteristics like physical distance, but also pre-existing commercial relationships

between establishments. The fixed effects FEFiht and FEGjkt control for the time changing

general level of citations specific to each establishment and technology. For example FEFiht

controls for the fact that if Fih files more patents in a given period, it would mechanically

make more citations to every establishment. On the other hand, FEGjkt controls for Gjk

filing more patents or higher quality patents that would receive more citations from every

establishment.57

54travel timeijt = (travel time
original
ijt + travel time

original
jit )/2 where travel time

original
ijt stands for the travel

time between MSA i and j at time period t.
55For explanation and micro foundations of the gravity equation see Head and Mayer (2014) and references

thereof.
56A 1 percent increase in travel time has an effect of β percent increase (or decrease in the case of a negative

β) in citations.
57In the trade literature, the parallel of the fixed effects (simplified for exposition) would be: FEij country-

pair fixed effect, FEjt origin-time fixed effect and FEit destination-time fixed effect.
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The inclusion of FEFiGjhk implies that only variation across time within an establishment-

pair is used for identification. By additionally including the fixed effect FEFiht, the across-

time variation is compared only between citing-cited establishment-technology pairs

FiGjhk within a citing establishment-technology Fih in period t. As we also include

FEGjkt, the comparison is done while controlling for the size of the cited establishment-

technology Gjk in period t. Put differently and simplifying slightly, the identification of

β relies on changes in citations and travel time within an establishment-pair, relative to

another establishment-pair with the same citing establishment, conditional on the two

cited establishments’ sizes.

Following Silva and Tenreyro (2006), we estimate the gravity equation by Poisson Pseudo

Maximum Likelihood (PPML).58 This estimation methodology has two advantages over

a multiplicative model that is then log-linearized to obtain a log-log specification. First,

it only requires the conditional mean of the dependent variable to be correctly specified,

while the OLS estimation of the log-linearized model would lead to biased estimates in the

presence of heteroskedascity. Second, it allows to include zeros in the dependent variable,

which is especially relevant when using disaggregated data. One downside of estimating

PPML with the fixed effects that we include is that both coefficients and standard errors

have to be corrected due to the incidental parameter problem (Weidner and Zylkin (2021)).

We follow Weidner and Zylkin (2021) to use split-panel jackknife bias-correction on the

coefficients and Dhaene and Jochmans (2015) to bootstrap standard errors which we also

bias-correct with split-panel jackknife.59

Whenever FiGjhk has positive citations in at least one period and missing value in another,

we impute zero citations in the missing period.60 Travel time is set to one minute whenever

i = j.61

58We use the package fixest (Bergé (2018)) in R to estimate high dimensional fixed effects generalized linear
models feglm with Poisson link function.

59Details on the bias correction and bootstrap procedures are provided in Appendix D.
60We do not impute zeros in FiGjhk that are always zero, as those observations would be dropped due to

not being able to identify FEFiGjhk.
61We measure air travel time in minutes. In our sample 13% of citations happen within the same MSA.

The inclusion of those citations in the estimation increases the amount of observations available to identify
of FEFiht and FEGjkt, and hence keeping them increases the amount of FiGjhkt that remain in the effective
sample to identify β. In order to include them we then need to impute a within-location travel time.
We assume that within-location (air) travel time is not changing across time periods. Nonetheless, the
identification of β is not affected by the value chosen for the within-location (time invariant) travel time, as β
is identified by across time variation. In the appendix we show results using other values of (time invariant)
within MSA travel time and the coefficients remain equal.
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PPML IV PPML
Dep. variable: citations citatitionsFiGjhkt

(1) (2) (3) (4)
log(travel time) −0.083∗∗∗ −0.152∗∗∗

(0.019) (0.029)

log(travel time) × 0-300km 0.019 −0.076
(0.036) (0.221)

log(travel time) × 300-1,000km −0.089∗∗∗ −0.134∗∗∗
(0.023) (0.044)

log(travel time) × 1,000-2,000km −0.094∗∗∗ −0.112∗∗
(0.033) (0.047)

log(travel time) × +2,000km −0.169∗∗∗ −0.203∗∗∗
(0.039) (0.043)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.2: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm
F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and technology
k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1 when i = j.
When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero citations in the
missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin between the citing
establishment Fi and the cited establishment Gj. Column (3) and (4) show the result of two step instrumental variables

estimation, where log(travel timeijt) is instrumented with log(travel timefix routes
ijt ), the travel time that would have taken

place if routes were fixed to the ones observed in 1951 and in each year routes were operated with the average airplane of
the year. Bootstrap standard errors are presented in parentheses. The coefficients and standard errors in columns (1) and
(2) are jackknife bias-corrected. R2 is computed as the squared correlation between observed and fitted values.
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Column (1) in Table 1.2 presents the results of estimating equation (1.3). The value of the

elasticity of citations to travel time is estimated to be −0.083, statistically significant at

the 1% level. Given the average reduction in travel time of 31.4% in the full estimating

sample, the elasticity implies that citations increased on average 2.6% as consequence of

the reduction in travel time. If we consider the average decrease in travel time across all

MSAs in the baseline travel time data, the implied increase is 2.4%.62

The importance of air transport relative to other means of transport potentially depends

on the distance to travel. Also, we observed in section 4.1 that the improvements in air

travel time depended on the distance to travel, with a difference in jet adoption for travel

distances under and over 2,000km. Taking these two characteristics into account, we

estimate a variation of equation (1.3) in which we allow the elasticity of citations to travel

time to vary by distance interval between the locations of citing and cited establishments.63

Column (2) in Table 1.2 shows the result of this estimation.64 The estimated value of

the elasticity in absolute terms increases with distance, reaching −0.169 for distances of

more than 2,000km. Between 1951 and 1966 the average change in travel time in the full

estimating sample is 47.7% for a distance of more than 2,000km. The estimated elasticity

implies that citations between establishments at more than 2,000km apart increased by

8.1% due to the decrease in travel time. In total citations at more than 2,000km increased

by 21%, implying that the change in travel time can account for 38.2% of the observed

increase. If instead we consider the 40.8% average reduction in travel time across MSAs in

the raw data, the elasticity implies an increase in citations of 6.9%, accounting for 32.7% of

the total citation increase.

In Appendix B we investigate different heterogeneous effects. We study how travel

time affects the extensive margin of citations (whether an establishment cites another

establishment or not) and the intensive margin (conditional on citing, how much it cites).

We find the effect comes from both margins. We estimate an heterogeneous elasticity

depending on the level of spatial concentration of the citing technology and the cited

technology, we do not find a statistical difference. We also look at whether it is older patents

or younger patents that get diffused, finding some slight evidence that it is technologies

that take longer time to diffuse that increase more their diffusion with the reduction in

62These values come from the multiplication of the elasticity of citations to travel time 0.083 and the
average decrease in travel time between 1951 and 1966: 31.4% in the full estimating sample and 28.7% in the
raw data of travel time across MSAs.

63We compute distance between the geographical center of each MSA.
64The share of observations (citations) in each distance interval is: 0-300km 26.1% (28.5%), 300-1,000km

30.7% (28.5%), 1,000-2,000km 19.7% (23.4%), +2,000km 23.4% (19.6%).
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travel time. We study citations to and from government patents, and self citations, on the

whole we do not find a different pattern from the baseline. We also do not find a particular

pattern of the elasticity depending on the citing firm’s size as measured by the amount of

patents filed in 1949-1953. Finally, we estimate the elasticity by citing and cited technology

and most of the effect seems to come from when the citing and cited technologies are the

same.

There are two types of threats to identification in estimating equation (1.3): (i) the poten-

tially targeted changes in travel time, which could be due to the opening of new routes,

the allocation of jets across routes, or changes in scheduling, and (ii) time changes in

other variables at the MSA-pair level which also drive the diffusion of knowledge and are

correlated with the changes in travel time. In the remaining of this section we address the

first type of threat by estimating the model by instrumental variables. In the following

subsection we address the second type of threat by adding multiple controls. In both cases

we show that results do not change.

As mentioned in Section 4.2, we may be concerned that the timing and allocation of jets

to routes and that the opening/closure of routes were not random. In case there is an

omitted variable that drives both the change in travel time at the MSA pair level and the

change in citations across establishments within the same MSA, we would estimate biased

coefficients. In order to tackle the endogeneity concern due to omitted variables we do

an instrumental variables estimation using the instrument proposed in Section 4.2. To

implement the instrumental variables estimation we follow a control function approach

described in Wooldridge (2014). We proceed in two steps estimating the following two

equations:

log(travel time)FiGjhkt = λ2 log(travel timefix routes
FiGjhkt )

+ FEFiGjhk + FEFiht + FEGjkt + uFiGjhkt

(1.4)

citationsFiGjhkt = exp [β log(travel timeijt) + λ ûFiGjhkt

+ FEFiGjhk + FEFiht + FEGjkt] × vFiGjhkt

(1.5)

In a first step we estimate equation (1.4) and obtain estimated residuals ûFiGjhkt. In a

second step we use the estimated residuals as a regressor in equation (1.5) which controls

for the endogenous component of travel time. To perform inference we bootstrap standard
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errors.65 According to Wooldridge (2014), there would be evidence of endogeneity if the

parameter λ in equation (1.5) is estimated to be statistically different from zero.

Columns (3) and (4) of Table 1.2 show the results of the instrumental variables estimation. If

airlines were allocating jet airplanes to routes that would have witnessed a higher degree of

exchange of knowledge even in the absence of jets, then we would expect the instrumental

variables estimate to be smaller in absolute terms relative to the baseline coefficient. On the

other hand, if the regulator targeted the opening of new routes between places that were

in a lower trend of exchange of knowledge, we would expect the instrumented coefficient

to be larger in absolute terms. Column (3) estimates the elasticity to be -0.152, bigger in

absolute value compared to the non-instrumented estimate. The instrumental variables

corrects for a downward bias in absolute terms, which represents evidence in favor of the

regulator targeting the opening of new routes between places that had a lower degree of

exchange of knowledge.66,67

In column (4) of Table 1.2 we see the coefficients of the instrumental variable estimation by

distance between the citing and cited establishments. We observe the presence of a bias in

the same direction as in column (3), however the magnitude of the bias is smaller except

for the distance bin 0-300km, which is not precisely estimated. In particular, at more than

2,000km, the coefficient is relatively similar to the baseline estimation. In Appendix E we

show the regression including coefficients on the residual controls. If the coefficients on

controls are statistically significant, that is evidence of endogeneity. While the control is

statistically significant when using only one coefficient for all distances, none of them is

statistically significant when opening the coefficient by distance range. In other words, we

do not find evidence of endogeneity at long distances, especially at +2,000km.

The instrument used in the instrumental variables estimation is constructed using the

1951 flight network. We may be concerned that the 1951 flight network is correlated with

65Appendix D includes details on the bootstrap procedure.
66The incidental parameter problem is potential present also in the instrumental variables estimation (IV

PPML). However, there is currently no bias-correction procedure available for IV-PPML that we are aware
off. Hence, columns (3) and (4) in Table 1.2 are not bias-corrected. In column (2) of Table 1.3 we present the
PPML estimation not bias-corrected.

67The literature on weak instruments for non-linear instrumental variables is scarce. The rule of thumb of
Staiger and Stock (1997) based on the F statistic is constructed using the bias that a weak instrument generates
in a linear second stage (see Staiger and Stock (1997), Stock and Yogo (2005) and Sanderson and Windmeijer
(2016) for testing for weak instruments in linear IV regression). For informative purposes, in the first stage of
the model estimated in column (3) in Table 1.2 we obtain λ̂2 = 0.95 with a standard error 0.039 (clustered at
the non-directional location pair level, ij is the same location pair as ji), and a within R2 of 0.38 (the share of
residual variation explained by the instrument, after projecting out fixed effects).
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future changes of citations.68 In order to address this concern in Appendix E we estimate

equation (1.3) by restricting the sample to establishments in MSA-pairs that are always

indirectly connected. Results go in the same direction.

6.1. Diffusion of knowledge: Robustness

We may be concerned that there are other variables that could drive the diffusion of

knowledge and at the same time be correlated with the change in travel time. In order

to bias the coefficients, such omitted variables should be time-changing at the origin-

destination MSA pair and be systematically correlated with the change in MSA-pair

air travel time.69 We consider three potential variables that could bias our estimates:

improvements in highways, improvements in telephone communication and changes in

flight ticket prices. In Table 1.3 we show the results controlling for this variables separately,

while in Appendix E we include them simultaneously. Estimates are robust to including

these controls.

Columns (1) and (2) in Table 1.3 present the elasticity of citations to travel time by distance

bin. In column (1) the elasticity is bias-corrected while in column (2) it is not.70 We observe

that not doing the bias correction does not qualitatively affect the results. Columns (3) to

(6) include the additional controls and should be compared to column (2).

First, in 1947 the Congress published the official plan for the Interstate Highway System,

a nationwide infrastructure plan to improve existing highways and build new ones (see

Baum-Snow (2007), Michaels (2008), Jaworski and Kitchens (2019) and Herzog (2021)).

In case the change in travel time by air is correlated with the change in travel time by

highway, we would have an omitted variable bias if we include only one of them in the

estimation. Taylor Jaworski and Carl Kitchens have graciously shared with us data on

county-to-county highway travel time and travel costs for 1950, 1960 and 1970, which

we converted to MSA-to-MSA and linearly interpolated to convert to the same years of

our air travel data. Hence we have a MSA-to-MSA time-varying measure of travel time.

In Appendix E we show the correlation of MSA-to-MSA change in air travel time and

68We include a establishment pair fixed effect in the regressions, so a potential correlation between the
1951 flight network and the level of citations between research establishments does not affect our estimation.

69Variables that are not time changing or that are time changing at the MSA or establishment level do not
represent a threat to identification, as they are flexibly controlled for with the fixed effects.

70The jackknife bias-correction due to the incidental parameter problem is computationally intensive. Due
to the computational burden, we have still not bias-corrected all estimations. Columns (2) to (6) of Table 1.3
do not include bias-correction.
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highway travel time.

Second, other means of communication like telephone lines may have expanded or

changed their price during the period of analysis. Haines et al. (2010) contains infor-

mation on the share of households within each city with telephone lines in 1960. We

aggregate the variable to the MSA level. For each MSA-pair, we take the log of the mean

share of households with telephone lines.71 To include the variable as control we interact

it with a time dummy to make the measure time variant. The assumption behind the

interaction is that, if telephone lines expanded or changed their price over the time period,

this time-change specific to each year was proportional to the 1960 log mean share of the

MSA-pair.

Third, during the period of analysis ticket prices were set by the Civil Aeronautics Board,

so airlines could not set prices of their own tickets. Some airlines included a sample

of prices in the last page of their booklet of flight schedules, which we digitized. In

Appendix E we document multiple facts about prices. The relevant fact for this section

is that during 1962-1963 we observe a drop in prices of around 20% for routes of more

than 1,000km distance. We may be concerned that the change in flow of knowledge is

actually consequence of the change in prices, which happens to be correlated with the

change in travel time. Given that we do not have ticket prices for each route and year, we

use an estimated route price which is time varying. We obtain estimated prices by using

the sample of prices that we digitized and fitting, for each year, price on a third degree

polynomial of distance between origin and destination. We use log of estimated prices as

control.72

Column (3) to (5) of Table 1.3 include the described controls. Assuming the covariance

across coefficients is zero, none of the coefficients is statistically different from the baseline

coefficients either in column (1) or (2).73

Fourth, we control for a time-varying effect of distance on citations. We may believe that

71Data from the 1962 City Data Book which comes from the US Bureau of the Census. log(mean telephone
shareij = log((telephone sharei+telephone sharej)/2). We take the log of the mean share because the share is
a linear combination of origin MSA and destination MSA characteristics, hence perfectly explained by origin
and destination fixed effects. Taking the log prevents this.

72In order to perform inference we should adjust standard errors by the fact that we have a predicted
regressor as control variable.

73To perform a test of statistical difference across coefficients of different regressions we need to estimate
the covariance between them. We are currently doing a joint-bootstrap to obtain the covariance and perform
the test.
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other variables may have an effect on the diffusion of knowledge, and those variables

are related to the distance between the citing and cited establishments. In column (6)

we include as control log(distance) interacted with a time dummy. We observe that the

coefficients reduce in magnitude, potentially due to the fact that the change in travel time

is also correlated with distance, hence controlling for a time-varying effect of distance

absorbs part of the effect. In spite of that, the coefficient for distance of more than 2,000km

remains statistically significant at the 5%. This result shows that travel time and distance

are not equivalent measures. Hence, it highlights the importance of the origin-destination

time-varying travel time data when studying the impact of face to face interactions.

Finally, as we will see in section 8.2, the entry and exit of research establishments was not

uniform across locations during the sample period. We may then be concerned that the

change in diffusion of knowledge is only consequence of the change in the geographic

location of innovation. In Appendix E we re-estimate equation (1.3) with different samples:

first, using only citing establishments that were present in 1949-1953, and second using

only citing and cited establishments that were present in 1949-1953. We find the coefficient

at more than 2,000km remains comparable to the one in the baseline regression, statistically

significant at the 1%.

7. Creation of knowledge

In this section we show that the reduction in travel time to innovative locations led to

an increase in knowledge creation. We show that the effect on knowledge creation was

stronger in initially less innovative locations, leading to convergence across locations in

terms of innovation. Additionally, the reduction in travel time contributed to a change in

the geographic distribution of knowledge creation, increasing the relative importance of

locations in the South and the West of the United States.

We construct a measure of Knowledge Access by adapting equation (1.2) to an empirical

set up with multiple technology categories and time periods. The measure of Knowledge

Access (KAiht) shows how easy it is in time period t for research establishments in location i

and technology h to access knowledge created in other locations. We compute Knowledge

Access as follows:

KAiht = ∑
k

ωhk ∑
j, j ̸=i

Patent stockjk,t=1953 × travel time
β

ijt (1.6)
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PPML

bias-corrected

PPML

not bias-corrected

Dep. variable: citations citationsFiGjhkt

(1) (2) (3) (4) (5) (6)

log(travel time) × 0-300km 0.019 0.021 0.023 0.0198 0.025 0.032
(0.036) (0.039) (0.039) (0.039) (0.038) (0.040)

log(travel time) × 300-1,000km −0.089∗∗∗ −0.099∗∗∗ −0.096∗∗∗ −0.094∗∗∗ −0.102∗∗∗ −0.075∗∗

(0.023) (0.027) (0.028) (0.027) (0.027) (0.030)

log(travel time) × 1,000-2,000km −0.094∗∗∗ −0.093∗∗ −0.089∗∗ −0.071∗ −0.104∗∗ −0.040
(0.033) (0.042) (0.044) (0.042) (0.042) (0.052)

log(travel time) × +2,000km −0.169∗∗∗ −0.185∗∗∗ −0.180∗∗∗ −0.172∗∗∗ −0.196∗∗∗ −0.124∗∗

(0.039) (0.049) (0.050) (0.050) (0.049) (0.059)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010

R2 0.88 0.88 0.88 0.88 0.88 0.88

Controls:

log(highway time) - - Yes - - -

log(telephone share) × time - - - Yes - -

log(price) - - - - Yes -

log(distance) × time - - - - - Yes

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.3: Robustness: Elasticity of citations to travel time, Part 1
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd ✶{distanceij ∈ d} log(travel timeijt) +

∑d αd ✶{distanceij ∈ d}✶{XFiGjhkt} log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i,

technology h and time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel time in minutes between location i and

j at time period t, and it is set to 1 when i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. Column (1) presents jackknife

bias-corrected coefficients and bias-corrected bootstrap standard errors. Column (2) repeats column (1) without bias-correction. Relative to (2), columns (3) through (6)

contain additional controls. Column (3) controls for log highway time between i and j at period t. Column (4) controls for the log of the mean share of households with

telephone line in 1960 in ij pair interacted with a time dummy. Column (5) controls for log flight ticket price between i and j at period t. Column (6) controls for log

distance ij interacted with a time dummy. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero citations in the missing

period. Columns (2) through (6) present standard errors clustered at the non-directional location in parentheses (ij is the same non-directional location pair as ji). R2 is

computed as the squared correlation between observed and fitted values.
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where, from right to left, travel time
β
ijt is the travel time between locations i and j at

time period t, to the power of the elasticity of diffusion of knowledge to travel time.

Patent stockjk,t=1953 is the discounted sum of patents produced in location j and technology

k between 1941 and 1953.74 ωhk is the share of citations of technology h that go to technology

k at the aggregate level in 1949-1953, similar to an input-output weight.75 Then, KAiht is a

weighted sum of the patent stock in each other location and technology, where the weights

are how easy it is to access that patent stock (travel time
β
ijt) multiplied by how relevant

that knowledge is (ωhk).

In order to reduce concerns of potential endogeneity of accessing knowledge and creating

knowledge, we exclude the patent stock in the location itself from the sum (we only use

j ̸= i).76

The measure of Knowledge Access contains across-time variation within a location-technology

ih, and cross-sectional variation across technologies h within a location i. The across-time

variation is only due to the change in travel time between locations, every other component

of the measure is fixed to its 1949-1953 level. The cross-sectional variation comes from

a distribution of Patent stockjk,t=1953 within k that is not uniform across j, and from the

input-output weights ωhk. The joint across-time and cross-sectional variation means that if

travel time for ij reduces, there will be a differential change in Knowledge Access across h

within i which depends on the initial patent stock and input-output weights.

The degree with which changes in travel time are reflected in access to knowledge depend

on how important travel time is to get knowledge to diffuse, which is the elasticity of

knowledge diffusion to travel time that we estimated in Section 6. As the baseline we use

β = 0.185, which is the elasticity of citations to travel time at more than 2,000 km not bias

corrected. In robustness we use distance-specific β and in Appendix E we do sensitivity

analysis of the results to changing the value of β.

74Patent stockjk,t=1953 = ∑y∈[1941,1953] Patentsjky × (1 − depreciation rate)1953−y . We use a depreciation
rate of 5%, which is in the range of average depreciation rates of R&D found by De Rassenfosse and Jaffe
(2017). We decided to fix the patent stock and not to allow it to change over time, as changes in travel time
will potentially lead to changes in patent stock creating a dynamic reinforcing effect between knowledge
access and new knowledge. In this sense, we abstract from dynamic externalities that could be at play.

75ωhk = citationshk,t=[1949,1953]/citationsh,t=[1949,1953] is included to weight each source technology category
k by how important it is for the destination technology category h.

76The theory makes no distinction on whether the knowledge stock is in i or j, so in principle we would
like to include the patent stock of i in the knowledge access of i. However, this could lead to econometric
problems. First, we do not have exogenous variation of travel time within i. Second, if knowledge creation
in i is a persistent process, by including the patent stock of i we would introduce a mechanical relationship
between knowledge access and knowledge creation. Hence, our baseline measure of knowledge access of i
does not consider the patent stock of i. In Appendix E we show that the inclusion of i’s patent stock does not
affect the results.
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The measure of Knowledge Access allows us to translate changes in travel time between

pairs of MSAs into a single location-technology specific characteristic, and to represent it

on the same scale as patent growth in Figure 1.9. Figure 1.16 depicts the time change in log

Knowledge Access from 1951 to 1966, averaged across technologies within each MSA. Darker

colors represent higher growth in Knowledge Access. As with patent growth, we observe that

MSAs that had the strongest growth are generally located in the South and the West of the

United States, far from the knowledge centers of New York and Chicago. The reduction in

travel time was larger between locations far apart, implying that locations which happened

to be far from knowledge centers increased relatively more their Knowledge Access.

Fig. 1.16. Change in log Knowledge Access 1951 - 1966

With the measure of Knowledge Access we then adapt equation (1.1) to estimate:

PatentsFiht = exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht (1.7)

where PatentsFiht are patents applied by establishment of firm F in location i and tech-

nology h at time period t. The measure of knowledge access KAiht is at the iht location-

technology-time level, meaning that all establishments within an iht share the same level

of knowledge access. The parameter of interest ρ is the elasticity of (the creation of new)

patents to knowledge access. In the presence of knowledge spillovers as suggested in

section 2, we would expect ρ to be positive and statistically significant.

63



The fixed effect FEFih absorbs time invariant characteristics at the firm-location-technology

level, as for example the productivity of the establishment-technology. This fixed effect is

more fine grained than just a location-technology, which would absorb the comparative

advantage of a location in a certain technology. The fixed effect FEit absorbs characteristics

that are time variant at the location level. For example, changes in R&D subsidies that

are location specific and common across all technologies would be absorbed by this fixed

effect. Also, better flight connectivity could spur economic activity as shown in Campante

and Yanagizawa-Drott (2017), leading to an increase in patenting activity in the location. If

that increase is general across technologies within the location, then FEit would absorb it.

Finally, the fixed effect FEht absorbs characteristics that are time variant at the technology

level. If technologies had different time-trends at the national level, then the fixed effect

would control for these trends in a flexible way.

The inclusion of FEFih implies that only across-time variation within an establishment-

technology is used to identify ρ. The inclusion of FEit implies that only variation across-

technologies within a location-time is exploited, so across-time variation is compared

across establishments within a location, and not across locations. The inclusion of FEht

implies that the identifying across-time variation is conditional on aggregate trends of the

technology. In short, identification of ρ relies on across-time changes in the amount of

patents and knowledge access of an establishment, relative to other establishments in the

same location, conditional on aggregate technological trends.

Column (1) in Table 1.4 shows the result of estimating equation ((1.7)). The elasticity

of patents to knowledge access is estimated to be 10.14, significant at the one percent

level. The average change in knowledge access at the location-technology level77 is

9%, implying that on average the change in travel time predicts a 3.5% average yearly

growth rate of patents.78 The observed average yearly growth rate of new patents at the

location-technology is 4.4%.79 Comparing the predicted and observed growth rates, the

improvement in air travel time has the power to account for 79.5% of the observed average

77Due to entry, we cannot compute the growth rate at the establishment-technology level for 70% of
establishment-technology, given that they had 0 patents in the initial time period. In the case of location-
technology, 5% did not have patents in the initial period. We the prefer to interpret coefficients using
location-technology growth rates, which we compute using the remaining 95% of location-technologies that
had positive patents in the initial time period.

78The elasticity of 10.14 predicts an increase of 91.3% over the time period of 19 years (10.14 × 0.09 = 0.913),
which translates into a 3.5% average yearly growth rate ((1+0.913)1/19-1≈0.035).

79From the first time period (1949-1953) to the last time period (1964-1968) we observe an average growth
rate of new patents of 127%. We obtain 0.044 ≈ ((1 + 1.27)1/19 − 1
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PPML
PPML

q innovation
IV PPML

IV PPML
q innovation

Dependent Variable: Patents PatentsFiht

(1) (2) (3) (4)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 11.24∗ 10.26
(3.66) (3.69) (6.35) (6.38)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 2.32∗∗∗
(0.58) (0.66)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 4.21∗∗∗
(0.90) (0.84)

log(knowledge access) × 1st quartile 5.00∗∗∗ 5.77∗∗∗
(1.30) (1.11)

R2 0.85 0.85 0.85 0.85
N obs. effective 991,480 991,480 991,480 991,480
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.4: Effect of knowledge access on patents, by MSA innovativeness quartile
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, technol-
ogy h and time period t. KAiht is knowledge access of establishments in location i technology h and time period t. Column
(2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed using patents
filed in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference
category. Column (3) and (4) show the result of two step instrumental variables estimation, where KAiht is instrumented

with K̃Aiht, knowledge access computed using the counterfactual travel time that would have taken place if routes were
fixed to the ones in 1951 and each year routes were operated at the average aggregate flying speed of the year. Standard
errors are presented in parentheses. Column (1) and (2) present clustered at the location-technology ih. Column (3) and
(4) present bootstrap standard errors. R2 is computed as the squared correlation between observed and fitted values.
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yearly patent growth rate.80

We aggregate predicted changes in patent growth at the Census Region level. The change

in travel time predicts a yearly growth rate 0.74 percentage points higher in the South and

the West relative to the Midwest and Northeast. In the data we observe 2.1 percentage

points difference in the growth rate, implying that the change in travel time can account

for 35% of the observed differential growth rate.81

Section 5.1 showed that in the data, initially less innovative MSAs had a larger growth

rate of patenting. In column (2) in Table 1.4 we investigate if the increase in knowledge

access had an heterogeneous effect on the amount of new patents created depending on

the initial innovativeness of the location i in technology h. We compute the quartile of

innovativeness of location i in technology h in the time period 1949-1953 and interact it with

log(KAiht).
82 We use as reference category the highest quartile of initial innovativeness,

hence the coefficient on log(KAiht) without interaction is the elasticity for the highest

quartile. Coefficients on other quartiles should be interpreted relative to the highest

quartile.

We find that the coefficients on lower quartiles of initial innovativeness are positive and

statistically different from the coefficient in the highest quartile. Thus, knowledge access

had a greater effect on patenting for establishments that were located in initially less

innovative locations.83 Given the difference in the coefficients, the increase in knowledge

access predicts an average yearly growth of new patents of 4.5% for the initially lowest

quartile of innovativeness, while it predicts 3.4% for the highest quartile.84 The change

8079.5 = 3.5/4.4 × 100
81Using the coefficient of column (1) in Table 1.4, we compute the MSA-technology predicted level of

patents for 1966 and aggregate it at the Census region - technology level. Then, we compute yearly growth
rates within each region-technology and take averages across technologies. Next, we take the average
between S and W, and MW and NE, and finally compute the differential predicted growth. If we use the
quartile-specific coefficients of column (2) in Table 1.4 we obtain a predicted differential growth rate of
0.86 percentage points, which implies that the change in travel time can account for 41% of the observed
differential growth rate.

82We use the quartiles of innovativeness defined in section 5.1, computed using the amount of patents of
location i in technology h filed in the time period 1949-1953. Each location i has (potentially) a different value
quartile in each technology h. The 1st quartile refers to the 25% initially least innovative MSAs in technology
h.

83A given percentage change in knowledge access led to a stronger increase in patenting in initially less
innovative locations.

84The change in knowledge access for the lowest quartile is on average 9.1%, which multiplied by the
coefficient 14.36 (obtained by doing 9.36+5.00=14.36) gives a predicted growth of 131% over 19 years.

Translated into average yearly growth it is 4.5% = [(1 + 1.31)(1/19) − 1] × 100. For the highest quartile,
knowledge access changed on average 9.5%, which multiplied by the coefficient 9.36 predicts 89% growth
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in knowledge access predicts differential growth rate of 1.1 percentage points. In the

data we observe that the average yearly growth rate of patents in the lowest quartile is

5.3 percentage points higher than in the highest quartile. Comparing the predicted and

observed differential growth rates, the improvement in knowledge access as consequence

of the reduction in travel time explains 21% of the difference in growth rates of new patents

between locations in the lowest and highest quartile of innovativeness.85

As in Section 6, we may be concerned that decisions of the regulator or airlines which affect

travel time are endogenous to the diffusion of knowledge and consequently to knowledge

access. Therefore, we construct an instrument for knowledge access in which instead of

using observed travel time, we use the fictitious travel time presented in section 4.2 in

which routes are fixed to the ones in 1951 and each route is operated with the average

airplane of the year:

K̃Aiht = ∑
k

ωhk ∑
j, j ̸=i

Patent stockjk,t=1953 × (travel timefix routes
ijt ) β (1.8)

We then implement the instrumental variables estimation by control function as in Section

6. The results are presented in columns (3) and (4) in Table 1.4. The coefficients do not show

an important change and the convergence prediction obtained using non-instrumented

PPML remains valid.86,87

Figure 1.17 shows in the left panel the patent growth observed in the data (it replicates

Figure 1.9), while in the right panel it is the predicted patent growth. We compute the

prediction using the observed change in travel time and quartile specific elasticities of

column (2) in Table 1.4. Similarly to what is observed in the data, the change in travel

time predicts a larger patenting growth rate in the South and the West. At the same time,

the change in travel time predicts smaller growth rates in New York, Chicago and their

surroundings.

The result in column (2) implies that a given change in Knowledge Access had a stronger ef-

rate, which is 3.4% yearly growth rate.
8521% ≈ 1.2/5.1 × 100
86The first stage of the model estimated in column (3) of Table 1.4 gives a λ̂2 = 1.01 with standard error

0.03 (clustered at the location-technology level ih), and a within R2 of 0.53.
87Using IV estimates, the predicted yearly patent growth rate in the lowest quartile is 4.9% while it is 3.7%

in the highest quartile. The predicted differential growth rate is then 1.2 percentage points, meaning that the
change in knowledge access can explain (1.2/5.3) × 100 ≈ 23% of the observed differential growth rate.
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Fig. 1.17. Observed vs. predicted patent growth 1951 - 1966

fect on patenting growth in less innovative locations. In other words, knowledge spillovers

as an externality had a more predominant role in the production of knowledge in locations

that initially produced relatively fewer patents. Theoretically, this result implies that the

parameter ρ in equation ((1.1)) varies depending on the level of previous production of

knowledge of location i. Empirically the implication is that a given increase in knowledge

spillovers leads to innovation convergence across locations. As seen in section 5.1, during

1949-1968 we observe innovation-convergence across locations and that is exactly what

the estimated coefficients predict following a reduction in travel time.

In order to understand the convergence result and compare it with other findings in the

literature it is important to remember that commercial airplanes during 1950s and 1960s

were a means of transportation mainly for people. On the other hand, other transportation

improvements as those in water transport, railroads or highways also contain another

ingredient: they were used to carry goods. Hence, other means of transportation have a

simultaneous impact on face to face interactions and trade. Pascali (2017) finds that the

introduction of the steam engine vessels in the second half of the 19th century had an

impact on international trade that led to economic divergence between countries. Faber

(2014) finds that the expansion of the highway system in China led to a reduction of GDP

growth in peripheral counties, with evidence suggesting a trade channel due to reduction

in trade costs. In our setup, the introduction of jet airplanes represented a big shock

to the mobility of people while not affecting significantly the transport of merchandise.

Therefore, studying the introduction of jet airplanes allows us to focus on improved face
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to face interactions, while the trade channel would be a second order effect.

7.1. Creation of knowledge: Robustness

In this section we show that the effect of Knowledge Access on the creation of new patents

and the convergence effect remains after including different controls. Table 1.5 shows the

results.

Jaworski and Kitchens (2019) show that improvements in the Interstate Highway System

led to local increases in income through an increased market access. In our set up, if

the effect of market access affects innovation in the same way across technologies, then

it would be absorbed by the MSA-time fixed effect FEit in equation ((1.7)). However, if

the effect of market access on innovation varies across technologies, then it would be

a confounder. To control for this potential confounder, we compute market access by

highway and interact it with a technology dummy. We compute market access as:

Market Accessit = ∑
j

Populationj,t=1950 × τθ
ijt (1.9)

where Populationj,t=1950 is population in MSA j in 1950, τijt are the shipping costs provided

in the data of Taylor Jaworski and Carl Kitchens computed using each year’s highway

driving distance, highway travel time, petrol cost and truck driver’s wage. θ is the elasticity

of trade to trade costs which we set to -8.28, the preferred value of Eaton and Kortum

(2002) and in the range of many other estimates in the literature (Head and Mayer (2014),

Caliendo and Parro (2015), Donaldson and Hornbeck (2016)). Columns (3) and (4) of Table

1.5 show the results, we do not observe an important difference with the baseline estimates.

Campante and Yanagizawa-Drott (2017) shows that better connectivity by airplane leads to

an increase in economic activity as measured by satellite-measured night light. Söderlund

(2020) shows that an increase in business travel in the late 1980s and early 1990s led to an

increase in trade between countries. In a similar way to market access, we could think

that better connectivity by airplane could have led to an increase in market access due to a

reduction in information frictions, with goods being shipped by land. Similarly to highway

market access, if the effect of market access by airplane is common to all technology

categories the effect would be absorbed by the MSA-time fixed effect FEit. In order to

account for a technology-specific effect, we construct a measure of airplane market access

and interact it with a technology dummy. The measure of airplane market access is similar

to equation (1.9) where τ is the travel time by airplane and θ is set to -1,22, the elasticity of

69



trade to travel time from Söderlund (2020). The results are shown in columns (5) and (6)

of Table 1.5. While the coefficients in all quartiles are reduced, the estimated value of ρ is

positive and significant and the result on convergence remains.

Potential contemporaneous improvements in other means of communication, like tele-

phones, could have spurred the creation of new patents. In columns (7) and (8) we include

the log of the MSA’s share of households with telephones in 1960 and double-interact it

with a technology dummy and a time dummy. The results remain invariant with respect

to the baseline.

Another potential explanation for the increase of patenting could be that better connectivity

decreased technology-specific financial frictions. The potential reduction in financial

frictions, rather than a confounder, would be a mechanism through which airplanes

increased innovation. However, according to Jayaratne and Strahan (1996) during 1950s

and 1960s interstate lending and bank branching were limited. Prior to the 1970s, banks

and holdings were restricted in their geographic expansion within and across state borders.

Additionally, the Douglas Amendment to the Bank Holding Company Act prevented

holding companies from acquiring banks in other states. Therefore, it is unlikely that

interstate bank financing would be a driving force. Nonetheless, if other sector-specific

modes of financing like venture capital were active, it could be confounding the results.

In Appendix E we construct multiple measures of access to capital by using market

capitalization of patenting firms listed in the stock market. The results present suggestive

evidence that access to capital is not driving the results.

Finally, in Appendix E we include additional robustness checks. We compute different

versions of Knowledge Access: we use distance-specific β from section 6, we consider the

patent stock only of locations j far from i, we do sensitivity analysis using different values

of β. Also, we re estimate the effects by quartile of initial innovativeness using patents per

capita. Last, we re-do the baseline regression using OLS estimation. Results go in the same

direction: an increase in knowledge access leads to an increase in patenting and the effect

is stronger in initially less innovative locations.

8. Firms’ geographic expansion

In section 5.1 we showed that there was innovation-convergence across regions and this

happened simultaneously with an increase in the amount of multi-establishment firms.
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PPML

Dependent Variable: Patents PatentsFiht

(1) (2) (3) (4) (5) (6) (7) (8)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 9.28∗∗ 8.23∗∗ 6.22∗ 5.84 10.34∗∗∗ 9.25∗∗∗

(3.66) (3.69) (3.68) (3.69) (3.58) (3.60) (3.44) (3.43)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 2.16∗∗∗ 2.06∗∗∗ 2.23∗∗∗

(0.58) (0.57) (0.59) (0.57)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 3.89∗∗∗ 3.75∗∗∗ 3.93∗∗∗

(0.90) (0.89) (0.88) (0.91)

log(knowledge access) × 1st quartile 5.00∗∗∗ 5.13∗∗∗ 5.08∗∗∗ 5.18∗∗∗

(1.30) (1.30) (1.29) (1.32)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480

R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Controls:

log(Highway market access) × technology - - Yes Yes - - - -

log(Airplane market access) × technology - - - - Yes Yes - -

log(Telephone share) × technology × time - - - - - - Yes Yes

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.5: Elasticity of new patents to knowledge access, by MSA innovativeness quartile
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht = exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for

patents filed by establishment of firm F in location i, technology h and time period t. KAiht is knowledge access of establishments in location i technology h and

time period t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed using patents in 1949-1953. Higher

quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference category. Relative to columns (1) and (2), columns (3) and (4) control

for technology specific effect of log(highway market access), columns (5) and (6) control for technology specific effect of log(airplane market access), columns (7)

and (8) control for technology and time specific effect of log(telephone share). Standard errors clustered at the location-technology ih are presented in parentheses.

R2 is computed as the squared correlation between observed and fitted values.



In section 7 we showed that the reduction in travel time predicts innovation-convergence

across locations. In this section we uncover one of the mechanisms that led to innovation-

convergence: the geographic expansion of multi-establishment firms. We proceed in two

steps. First, we show that the increase in patenting is driven by two types of entry: entry

of establishments of new firms, and entry of establishments of pre-existing firms. The

second type of entry is due to the geographic expansion of firms. Second, we show that

the decrease in travel time led firms to expand geographically and this expansion was

stronger towards initially less innovative locations.

8.1. Entry of new establishments

We use all patents of the same firm to identify all locations in which the firm had research

establishments in each time period.88 Using patents applied during the first time period

(1949-1953), we classify all the research establishments that applied for patents in every

subsequent period. We classify research establishments into three mutually exclusive

categories: the establishment (and hence the firm) applied for patents in 1949-1953 (existing

firm and est), the establishment did not apply for patents but the firm had establishments

in other locations applying for patents in 1949-1953 (existing firm new est), neither the

establishment nor the firm applied for patents in 1949-1953 (new firm new est).89 The

dummies new firm new est and existing firm new est capture two types of entry margin. new

firm new est captures a new establishment of a new firm, while existing firm new est captures

entry due to the geographic expansion of firms. The dummy existing firm and est captures

jointly an intensive and exit margin.

We estimate a variation of equation ((1.7)) that includes interactions with dummies which

indicate the status of the establishment in 1949-1953:

PatentsFiht = exp [∑
e

ρe log(KAiht) × ✶{Fi ∈ e}+ FEFih + FEit + FEht] × νFiht (1.10)

where PatentsFiht are patents applied by establishment of firm F in location i and technol-

ogy h at time period t. KAiht is the knowledge access at the location-technology-time level.

✶{Fi ∈ e} is an indicator variable that takes value 1 of Fi is of the type e = {new firm new

88All our firm and research establishment information comes from the patent data. Hence, we only observe
an establishment in a certain time period if it applies for patents in that time period.

89We define if an establishment exists or not if it applied for patents in any technology h in 1949-1953.
We define the establishment at the Fi level (as opposed to Fih) as our object of interest a firm-location. An
interesting avenue of research is to study within-establishment changes in the technological composition of
patenting.
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est, existing firm new est, existing firm and est}. The results are displayed in column (2) of

Table 1.6. The results show that the effect of innovation access on the increase of patenting

happened through the two entry margins: entry of new establishments of new firms and

entry of new establishments of firms that previously existed in other locations.

Dependent Variable: Patents PatentsFiht

(1) (2)

log(knowledge access) 10.14∗∗∗
(3.66)

log(knowledge access) × new firm new est 23.71∗∗∗
(4.46)

log(knowledge access) × existing firm new est 23.79∗∗∗
(4.47)

log(knowledge access) × existing firm and est −0.28
(4.70)

R2 0.85 0.81
N obs. effective 991,480 991,480
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.6: Patents and knowledge access: Entry, exit and continuing firms
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, technol-
ogy h and time period t. KAiht is knowledge access of establishments in location i technology h and time period t. Column
(2) adds an interaction of log(KAiht) with e the type of establishment Fi in a classification on whether the establishment
and/or the firm existed in 1949-1953. Standard errors clustered at the location-technology ih are presented in parentheses.
R2 is computed as the squared correlation between observed and fitted values.

In Table 1.7 we open up the effect by including a double interaction of Fi establishment

type and location-technology ih quartile of initial innovativeness. We use the highest

quartile as the reference category. The two margins of entry are active in all quartiles of

initial innovativeness, with a stronger effect in lower quartiles. In the case of the entry of

establishments that belong to firms that already existed in other locations, the pattern is

more prominent. The intensive and exit margin does not appear active in any quartile of

innovativeness except for the last one. The combined effect of entry and intensive/exit

suggests that, in locations in the lowest quartile of initial innovativeness, the churn rate of

patenting firms is increased as consequence of the increase in knowledge access.

The results of Table 1.6 and Table 1.7 indicate that one part of the increase in patenting

is consequence of multi-establishment firms that expand across locations, and more so

in initially less innovative locations. Hence, multi-establishment firms contributed to

innovation-convergence across locations by expanding geographically.
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Quartile innovativeness

Establishment type New firm &
New est

Existing firm &
New est

Existing firm &
Existing est

log(knowledge access) 22.84∗∗∗ 22.00∗∗∗ −0.36
(4.40) (4.41) (4.67)

log(knowledge access) × 3rd quartile 3.40∗∗∗ 6.35∗∗∗ −1.33
(1.14) (1.44) (1.19)

log(knowledge access) × 2nd quartile 5.95∗∗∗ 6.74∗∗∗ −2.20
(1.48) (1.67) (2.33)

log(knowledge access) × 1st quartile 4.88∗∗ 10.98∗∗∗ −15.62∗∗∗

(1.97) (2.15) (3.25)

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.7: Patents and knowledge access: entry, exit and continuing firms
The table shows the results of one Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [∑e ρe log(KAiht) × ✶{Fi ∈ e} + ∑q∈{1,2,3},e ρq,e log(KAiht) × ✶{ih ∈ q} × ✶{Fi ∈ e} + FEFih + FEit + FEht] ×

νFiht, for patents filed by establishment of firm F in location i, technology h and time period t. KAikt is knowledge access

of establishments in location i technology h and time period t. q is the quartile of initial innovativeness of location i within

technology h, computed using patents filed in 1949-1953. Higher quartile indicates higher initial level of innovativeness.

The fourth quartile is used as reference category. e is the type of establishment Fi in a classification on whether the

establishment and/or the firm existed in 1949-1953. Standard errors clustered at the location-technology ih are presented

in parentheses. R2 is computed as the squared correlation between observed and fitted values. All columns and rows

belong to the same regression. The number of observations is 991,480.

8.2. Geographic expansion of multi-establishment firms

In this subsection we show that the decrease in travel time gave rise to the geographic

expansion of multi-establishment firms. We focus on all firms that patented in the initial

time period and follow their subsequent opening and closure of establishments. We find

that firms directed the opening (closure) of new establishments towards locations that got

larger (smaller) reductions in travel time to the firm’s headquarters.

We define the headquarters location q of firm F as the location in which the firm filed

the largest amount of patents in the period 1945-1953. If firm F did not file any patent

in 1945-1953, or there is no unique location with the maximum amount of patents (e.g.

two locations have the maximum amount of patents), then no headquarters is assigned.90

Firms with no headquarters assigned are dropped from the estimations that required

90Using patents applied in the period 1949-1953 does not significantly affect the results. We use 1945-1953
instead as it allows us to identify headquarters location for 7% more firms.
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headquarters location.

We compute the travel time of every firm F’s headquarters’s location q to each other

location j. We then estimate a linear probability model to study if the location decision of

establishments of a firm depend on travel time to a firm’s headquarters. We estimate the

following regression:

✶{establishmentFqjt} = γ log(travel timeqjt) + FEFqj + FEFqt + FEjt + ζFqjt (1.11)

where ✶{establishmentFqjt} is a dummy variable that takes value 1 if firm F with head-

quarters in location q has a research establishment in location j at time period t.91 The

coefficient γ is a semi-elasticity: γ/100 is the change in percentage points of the probability

that firm F has an establishment in location j when travel time increases by one percent. If

travel time has a negative impact on the probability then we would expect γ to be negative.

The inclusion of the fixed effect FEFqj implies that γ is identified only from changes in travel

time and opening and closure of research establishments across time.92 Fixed effects FEFqt

and FEjt control flexibly for changes in firm F expanding and the opening establishments

everywhere else, and j becoming more attractive for every firm.

Table 1.8 presents the results jointly with predicted and observed growth rate of the

probability. Column (1) presents the results of estimating equation (1.11). We find that

the probability of firm F having a subsidiary research establishment in location j increases

when the travel time between the firm’s headquarters’s location q and j decreases. The

coefficient is -0.0364, which if we multiply it by the average change in travel time between

headquarters’ location and every other potential location (-34.7%), the decrease in travel

time predicts an increase in the share of existing subsidiaries of 0.0126 percentage points.

The result goes in the same direction as Giroud (2013) who finds that a reduction in travel

time between a firm’s subsidiary and its headquarters leads to an increase in investment

in the subsidiary.

Column (2) of Table 1.8 estimates the semi-elasticity of the probability of having an

establishment to travel time by the quartile of innovativeness of location j in 1949-1953.

91
✶{establishmentFqjt} takes value 0 if firm F does not file patents in location j at time period t. The

headquarters location q remains fixed for all time periods.
92Opening refers from ✶{establishmentFqjt} switching from 0 to 1, while closure refers to the inverse.
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Baseline
Quartile receiving

location Initial
probability

Change
travel time

Predicted yearly
growth rate

Observed yearly
growth rateDependent Variable: ✶{establishmentFqjt}

(1) (2)

log(travel time) -0.0364∗∗∗ 0.000810 -34.7% 15.94% 1.50%
(0.0088)

log(travel time) × 4th quartile -0.0749∗∗∗ 0.001895 -36.0% 15.41% 0.98 %
(0.0187)

log(travel time) × 3rd quartile -0.0150∗∗∗ 0.000364 -33.4% 15.22% 3.03%
(0.0031)

log(travel time) × 2nd quartile -0.0102∗∗∗ 0.000145 -35.2% 18.67% 3.86%
(0.0028)

log(travel time) × 1st quartile -0.0079∗∗∗ 0.000068 -33.8% 21.40% 5.75%
(0.0025)

R2 0.49 0.50
N obs. effective 19,755,792 19,755,792
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.8: Subsidiaries’ location and travel time to headquarters
The table shows the estimation of a linear probability model. The left panel of the table shows estimation results while
the right panel shows observed and predicted growth rates of the probability. Column (1) presents the results of OLS
estimation of ✶{establishmentFqjt} = γ log(travel timeqjt) + FEFqj + FEFqt + FEjt + ζFqjt or firm F which has headquarters
in location qwhere ✶{establishmentFqjt} is a dummy that takes value one if firm F which has headquarters in location
q has an establishment open in location j at time period t. We define an establishment of firm F in location j at time
period t as open if F has inventors located in j that apply for patents at time period t. travel timeqjt is the travel time
in minutes between F’s headquarters location q and location j at time period t. Column (2) includes an interaction of
log(travel timeqjt) with the across-technology average quartile of initial level of innovativeness of j. j’s quantile of initial
innovativeness in technology h is computed using the level of patents of j in 1949-1953 in technology h. Standard errors at
the non-directional location pair are presented in parentheses (qj is the same non-directional location pair as jq). Predicted
growth rates are obtained using the estimated coefficient and the change in travel time, relative to the initial probability.

Yearly growth rates g are obtained by computing g = [(1 + nineteen year growth rate)(1/19) − 1]× 100, where 19 is the
amount of years between 1949 and 1968.
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We compute the quartile of innovativeness at the location level by taking the average

quantile across technologies within a location, only for those technologies in which the

location has positive patents in 1949-1953. To be able to compare the relative impact of

travel time on the growth rate of the probability, we need to relate the semi-elasticity to

the baseline probability. The semi-elasticity in the lowest quartile of initial innovativeness

is around 1/10th the one in the highest quartile. However, the initial probability in the

lowest quartile is around 1/30th of the one in the highest quartile. Therefore, a given

percentage change in travel time has an impact on the growth rate of the probability in

the lowest quartile that is around 3 times the one in the highest quartile.93 In other words,

given the very low initial probability of locations in the lowest quartile of innovativeness

to receive a subsidiary from a firm headquartered in another location, the small increase in

percentage points represents a big relative increase in the probability.

The yearly growth rate of subsidiaries implied by the change in travel time is 21.4% for the

lowest quartile while it is 15.4% for the highest quartile, implying a predicted difference

of 6 percentage points in the yearly growth rate.94 In the data we observe an average

yearly growth rate which is 4.8 percentage points higher for the lowest quartile relative to

the highest quartile.95 Hence, the reduction in travel time not only predicts a geographic

expansion of firms, but it also predicts that the geographic expansion is tilted towards

initially less innovative locations. This pattern of geographic expansion is in line with the

one observed in the data.

93These are approximate numbers. The precise computations: the ratio of coefficients is 0.106 =
(−0.0079)/(−0.0749), the ratio of initial probability is 0.036 = 0.000068/0.001895, the ratio of the growth
rate is 2.94 = (−0.0079/0.000068)/(−0.0749/0.001895). The initial probabilities are computed as the amount
of observed subsidiaries in 1949-1953 divided by the amount of (time invariant) potential subsidiaries. The
amount of potential subsidiaries is the amount of firms for which we identify headquarters multiplied by
the amount of locations other than headquarters location (we have 108 locations in the data, meaning that
each firm has 107 potential locations for subsidiaries).

94For the lowest quartile, the model predicts a 3,869% increase in the probability over 19 years (19 =
1968 − 1949), which translates into an average yearly growth rate of 21.4%. For the highest quartile the
predicted increase is 1,422%, an average yearly growth rate of 15.4%. Consistent with the computation of the
relative growth rate presented in the main text: 1, 422/3, 869 = 0.36 ≈ 0.34 × (33.8/36.0), where 0.34 has to
be adjusted by the fact that the average change in travel time is not the same across quartiles. The 19-year
growth rates are obtained by multiplying the change in travel time (-33.8% vs -36.0%) by the coefficient
(-0.0079 vs -0.0749) divided by 100, and finally dividing by the initial probability (0.000069 vs 0.001895) and
multiplying by 100. For the lowest quartile: 3, 869 = [(−33.8)× (−0.0079/100)/0.000069]× 100, and for the
highest quartile:[1, 422 = (−36.0)× (−0.0749/100)/0.001895]× 100. The average yearly growth rates are
computed as 21.4 ≈ [(1 + 38.69)1/19 − 1]× 100 and 15.4 ≈ [(1 + 14.22)1/19 − 1]× 100.

95The average yearly growth rate of the probability for the lowest quartile is 5.75% while it is 0.98% for the
highest quartile.
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9. Conclusion

This paper constructed a new dataset of the flight network in the United States during

the beginning of the Jet Age and studied the impact of improvements of air travel on the

creation and diffusion of knowledge. We found that the reduction in travel time led to

an increase in knowledge diffusion, especially between research establishments located

far apart. The reduction in travel time also led to an increase in the general access to

knowledge, which had positive spillovers for the creation of new knowledge. The effect in

the increase of creation of knowledge was stronger in locations initially less innovative,

generating a convergence force which goes in the same direction as what is observed in

the data. One of the drivers of the increase in the creation of knowledge and convergence

was the geographical expansion of firms.

We provide causal evidence of standing on the shoulders of giants: new knowledge builds

upon pre-existing knowledge. We do so by first estimating one new key parameter: the

elasticity of diffusion of knowledge to travel time. Second, extending a production function

of knowledge proposed in Carlino and Kerr (2015), we estimate the impact of knowledge

spillovers on the creation of new knowledge. Conditional on the pre-existing distribution

of knowledge, changes in travel time translate into changes in knowledge spillovers. The

results show that knowledge spillovers are important for the creation of new knowledge

and more so in locations which are initially less innovative.

Our novel dataset document a historical country wide event that dramatically changed

the way we see time and space. Our results provide new evidence of how the introduction

of jet airplanes changed the geography of innovation. Better connectivity to innovation

centers in the Midwest and the Northeast led to an increase in innovation in the South and

the West of the United States. In this way, jet airplanes were one of the contributing factors

in the shift of innovative activity towards the South and the West of the United States.

We would like to point to the limitations of the current analysis. The results found in

this paper are identified by exploiting differential time changes across establishments. As

consequence, we are able to identify differential impacts and not aggregate ones. The

results obtained could be consequence of a general increase in the amount of diffusion and

creation of knowledge, a relocation of previous diffusion and creation, or a mix of both. At

the same time, the potential relocation of resources resulting from the reduction in travel

time may have increased the allocative efficiency and thereby the amount of knowledge

produced.
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Appendix

A. Travel Time Data

A.1. Data Construction

We construct a dataset of travel times by plane between US MSAs for the years 1951, 1956,

1961, 1966. We get information of direct flights from airline flight schedules and feed this

information into an algorithm to allow for indirect flights. For each MSA pair with airports

served by at least one of the airlines in our dataset we compute the fastest travel time in

each of the four years.

Using images of flight schedules, we digitized the flight network for six major airlines:

American Airlines (AA), Eastern Air Lines (EA), Trans World Airlines (TWA), United

Airlines (UA), Braniff International Airways (BN) and Northwest Airlines (NW). Note that

the first four in this list were often referred to as the Big Four, highlighting their dominant

position in the market. They alone accounted for 74% of domestic trunk revenue passenger-

miles from February 1955 to January 1956. Together the six airlines accounted for 82% of

revenue passenger-miles in that same period, 77% from February 1960 to January 1961 and

78% from February 1965 to January 1966 (C.A.B., 1966). Our sample of airlines thus covers

a vast share of the domestic market for air transport. In addition, the airlines were chosen

to maximize geographic coverage.

In total we obtain a sample of 5,910 flights. These flights often have multiple stops. If we

count each origin-destination pair of these flights separately, our sample contains 17,469

legs.

Table 1.9 lists the exact dates of when flight schedules we digitized became effective. Due

to limited data availability not all flight schedules are drawn from the same part of the

year. As seasonality of the network seems limited and given the large market share of the

airlines we consider, our data is a good approximation of the network in a given year.
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Table 1.9: Date of Digitized Flight Schedules

Airline 1951 1956 1961 1966

AA September 30 April 29 April 30 April 24

EA August 1 October 28 April 1 April 24

TWA August 1 September 1 April 30 May 23

UA April 29 July 1 June 1 April 24

BN August August 15 April 30 April 24

NW April 29 April 29 May 28 March 1

PA June 1 July 1 August 1 August 1

Figure 1.18 shows two pages of the flight schedule published by American Airlines in

1961. Each column corresponds to one flight. As can be seen, one flight often has multiple

stops. Departure and arrival times in most flight schedules are indicated using the 12-hour

system. PM times can be distinguished from AM times by their bold print. In the process

of digitization we converted the flight schedules to the 24-hour system. Times in most

tables are in local time. We thus recorded the time zones that are indicated next to the city

name and converted them to Eastern Standard Time.
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Fig. 1.18. Flight Schedule American Airlines 1961.

To obtain exact geographical information on where airports are located, we match city

names to their IATA airport codes. We use the addresses of ticket offices that are indicated

on the last pages of the flight schedules. Most of the ticket offices were located directly

at the airport, allowing to infer the airport the airline was serving in a given year. For

some flight schedules we are missing these last pages and used information from adjacent

years in order to identify airports. We also manually verified the airport match using

various online sources. We then obtain geographical coordinates from a dataset provided

by https://ourairports.com/ (downloaded July 2020).

From the flight schedule we also collect information on the aircraft model, indicated next

to the flight number. Using various online sources, we manually identified aircraft models

that are powered by a jet engine. We thus know on which connections airlines were using

jet aircraft.

Flight Schedules also contain information on connecting flights. For example, the second

column in figure 1.18 indicates a departure from Boston leaving at 12.00 local time. A

footnote is added to the departure time indicating that this departure is a connection via

New York. It is thus not operated by flight 287 otherwise described in column 2, but it is
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just supplementary information for the passenger. As we are interested in the speed of

aircraft and the actual travel time on a given link, this information on connecting flights

would pollute our data and we thus delete this supplementary information.

As outlined above, the digitization requires human input. It is thus prone error-prone. The

travel time calculation relies on each link in the network, and if one important connection

has a miscoded flight, it might potentially distort the travel time between many MSA pairs.

We thus implement an elaborate method to detect mistakes in the digitization process. In

particular, after the initial transcription, we regress the observed duration of the flight on a

set of explanatory variables: the full interaction of distance, a set of airline indicators, a set

of year indicators and a dummy variable indicating whether the aircraft is powered by a jet

engine or not. This linear model yields an R2 above 95%. We then compute the predicted

duration of each flight and obtain the relative deviation from the observed duration. If the

deviation is above 50%, we manually check whether the transcribed information is correct.

If we find a mistake, we correct the raw data, rerun the regression and recompute relative

deviations, until all the observations with more than 50% deviation have been manually

verified.

For 15 connections, the information was correctly transcribed from the flight schedule, but

the flight time differed a lot from other flights with similar distances that used the same

aircraft. The implied aircraft speed for these cases is either unrealistically high or low, in

one case the implied flight time is even negative. These cases seem to be typos introduced

when the flight schedule was created (e.g. a ”2” becomes a ”3”). Instead of inferring what

the true flight schedule was which is not always obvious, we drop these cases. Table 1.10

lists all 15 cases.
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Table 1.10: Dropped Connections

Airline Year Origin Destination Departure Time Arrival Time

0 UA 66 TYS DCA 1940 2036

1 UA 66 LAX BWI 2150 1715

2 UA 66 CHA TYS 1635 1909

3 PA 66 SFO LAX 2105 1850

4 PA 66 SEA PDX 705 935

5 PA 56 PAP SDQ 830 835

6 PA 51 HAV MIA 800 903

7 PA 51 SJU SDQ 825 830

8 NW 66 HND OKA 655 1135

9 EA 66 ORD MSP 2340 2340

10 EA 56 SDF MDW 1352 1418

11 EA 56 GSO RIC 2207 2204

12 AA 56 PHX TUS 1630 1655

13 PA 51 STR FRA 1320 1540

14 EA 66 TPA JFK 1330 1548

As our analysis is at the MSA level, we match airports to 1950 MSA boundaries. Each

airport is matched to all MSAs for which it lies inside the MSA boundary or at most

15km away from the MSA boundary. If we focus only on airports contained within MSA

boundaries, we would, for example, drop Atlanta’s airport. Of 275 US airports, 156 airports

are matched to at least one MSA. 18 of these are matched to two MSAs and Harrisburg

International Airport is matched to three MSAs: Harrisburg, Lancaster and York. Out of

168 MSAs, 142 are at some point connected to the flight network in our dataset. In table

1.11 we present the 168 MSAs, the ones that are connected at least once, and the ones that

are connected in the four years.
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Fig. 1.19. Airports matched to MSAs.

Next, we compute the shortest travel time for every airport pair, and then take the mini-

mum to obtain shortest travel time at the MSA pair level. In particular, we apply Dijkstra’s

algorithm to compute shortest paths (?). We adjust this algorithm to take into account the

exact timing of the flight schedules. We consider a possible departure time t from origin

city o and then compute the shortest path to destination city d at this time of the day. If

getting to d requires switching flights, we account for the required time at the location of

the layover. We repeat this procedure for every possible departure time t at origin city o

and then take the minimum that gives us the fastest travel time from o to d, τod.

The flight schedule format requires us to make one assumption. In particular, the flight

schedule for a multi-stop flight may either indicate the arrival time or the departure time

for a particular stop. If the flight schedule only lists the departure time, we need to infer

the arrival time and vice versa. We allow for five minutes between arrival and departure.

This is relatively low, but still in the range of observed difference between departure and

arrival for cases where we observe both. As correspondences may have been ensured by

airlines in reality, i.e. one aircraft waiting with departure until other aircraft arrive, we
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opted for the lower end of the observed range of stopping times.

Finally, since the shortest travel time measure may not capture the benefits of a highly

frequented hub, we also calculate the daily average of the shortest travel time. In particular,

we compute the shortest travel time at every full hour of the day and take the average.

This measure thus captures the benefits of being located near an airport where flights

depart many times per day.

To conclude, we end up with a set of four origin-destination matrices indicating the fastest

travel time (and another set with the average daily travel time) between US MSAs in 1951,

1956, 1961 and 1966.

A.2. Descriptive Statistics

Table 1.12 shows the number of non-stop connections between MSAs by year and airline.

It underlines the dominant position of the Big Four (AA, EA, TW, UA) which were much

bigger than their competitors (BN and NW). The growth of the airline industry is also

apparent. All airlines had the lowest number of connections in 1951 and subsequently

extended their network. At the same time the average distance of the connections gradually

increased over time. Part of this may have been due to jet technology allowing for longer

aircraft range. We thus analyze a period where more and longer flights are introduced.
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Table 1.12: Domestic Non-Stop Connections by Airline and Year

Airline Year Number of

connections

Jet Share

(connections)

Jet Share

(km)

Mean

Distance (in

km)

AA 1951 258 0.00 0.00 515.32

AA 1956 367 0.00 0.00 889.66

AA 1961 325 22.15 50.50 768.24

AA 1966 282 73.40 89.52 1020.36

BN 1951 96 0.00 0.00 317.90

BN 1956 210 0.00 0.00 380.60

BN 1961 176 8.52 18.84 460.41

BN 1966 150 72.00 76.64 553.09

EA 1951 345 0.00 0.00 319.87

EA 1956 479 0.00 0.00 412.60

EA 1961 595 3.70 13.28 441.42

EA 1966 492 54.47 75.46 569.01

NW 1951 77 0.00 0.00 521.70

NW 1956 95 0.00 0.00 724.77

NW 1961 127 11.02 32.43 824.59

NW 1966 136 77.94 90.86 945.81

TW 1951 210 0.00 0.00 503.69

TW 1956 253 0.00 0.00 711.78

TW 1961 240 28.75 54.63 807.72

TW 1966 265 86.42 96.05 1143.30

UA 1951 291 0.00 0.00 492.88

UA 1956 361 0.00 0.00 714.39

UA 1961 323 31.89 65.32 803.49

UA 1966 533 49.91 79.54 781.38

While these changes in the network are remarkable, airlines were constrained by the

regulator in opening new routes. Accordingly, table 1.13 shows that the network remains

relatively stable over time with more than three quarters of connections remaining intact
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within a five-year window. Interestingly, during the beginning of the jet age (i.e. 1956 to

1961), the network appears to have been especially stable, with only 11% of connections

either disappearing or newly being added. Thus, the rise of jet aircraft did not lead to a

vast reshaping of the network. Given the very different technology, this may be surprising,

but may partly be due to heavy regulation.

The table also shows that newly introduced routes were over long distances whereas those

discontinued were operating on shorter distances. When changes in the network took

place, they thus seemed to improve the network for places further apart.

Table 1.13: Network Changes (weighted by frequency)

Period Remain connected Newly connected Disconnected

Share of Non-stop Connections (%)

1951 to 1956 78.47 16.79 4.74

1956 to 1961 88.96 6.43 4.6

1961 to 1966 80.64 12.37 6.99

Mean distance (km)

1951 to 1956 411 1075 337

1956 to 1961 524 914 972

1961 to 1966 568 769 450
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Table 1.14: Network Changes

Period Remain connected Newly connected Disconnected

Connected MSAs

1951 to 1956 119 7 8

1956 to 1961 122 0 4

1961 to 1966 114 7 8

Non-stop Connections

1951 to 1956 721 357 124

1956 to 1961 908 231 170

1961 to 1966 912 331 227

Changes in the number of connected MSAs and connections among them. A MSA is connected if in our data

it appears as having at least one incoming and one outgoing flight. A non-stop connection refers to a pair of

origin MSA-destination MSA between which a non-stop flight operates.

Figure 1.20 shows all non-stop connections in our data weighted by the (log) frequency.

Initially, the network was concentrated in the Eastern states and transcontinental routes

were not yet established, due to technological limitations. In contrast, in the 1960s, after

the jet is introduced, intercontinental routes quickly emerge and are operated at a high

frequency. Similarly, direct connections from the Northeast to Florida intensify. The figure

echos the findings from table 1.14 which illustrates that the overall number of MSA pairs

with a direct connection increases over time.
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Fig. 1.20. Flight Network by Year. Weighted by log weekly frequency.

Airlines differed in their speed of adoption of the newly arrived jet aircraft. Table 1.12

shows that, in 1961, 65% of UA’s connections between MSAs were flown using a jet aircraft

(weighted by distance), whereas this was only true for 13% of EA’s connections. While

adoption was heterogeneous across airlines, adoption was fast. By 1966, all airlines were

operating 75% of their connections with jet aircraft (weighted by distance).

Figure 1.21 show the average speed of jet and propeller aircraft by distance. Generally,

jet aircraft were substantially faster, but especially so on long-distance flights, where they

could be up to twice as fast as propeller-driven aircraft. This particularly stark difference

in speed for long-haul flights is also reflected by adoption. Figure 1.22 shows that jet

aircraft were first introduced on long-haul flights. Only 50% of MSA pairs at around 1,500

km distance had at least one jet aircraft operating, whereas 100% of pairs above 3,000 km.

Then, in the late 1960s, they were also gradually introduced on shorter distances. In fact,

for all pairs above 2,000 km there was at least one jet engine-powered flight.
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Fig. 1.21. Speed by Aircraft Type. Pooling all Years.

Fig. 1.22. Jet Adoption
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Figure 1.23 shows on which routes jets were operating. In the early days of the jet age it

was mainly the transcontinental corridor between New York and California that benefited.

In 1966 propeller aircraft were already being phased out and only operating in the dense

Eastern part of the US where distances between cities are relatively small.

Fig. 1.23. Jet Adoption by Year

The increase in speed due to jet aircraft caused a dramatic reduction in travel times between

US cities. When looking at the full origin-destination matrix, i.e. including indirect flights,

a network-wide reduction in travel time becomes apparent. Figure 1.24 shows travel times

between US MSAs. While the figure shows a gradual decline in travel time from 1951 to

1966, it also illustrates that conditional on distance and year a large amount of variation in

travel time remains, as only a small fraction of all MSA pairs were connected via a direct

flight (around 8.5% in 1966).
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Fig. 1.24. Travel Times between US MSAs.

Figure 1.25 that the change in travel time is accompanied by a reduction of the amount of

legs needed to connect two MSAs at every distance. This reduction is specially marked

between 1951 and 1956, and 1961 and 1966. In Figure 1.26 we open up the change in travel

time by the way an MSA pair was connected in 1951 and 1966: either directly (non-stop

flight) or indirectly (connecting flight). We observe that much of the increase in travel

time for MSA pairs less than 250km apart comes from routes that were operated non-stop

and then it needed a connecting flight. Interestingly, for MSA-pairs more than 2,000km

apart travel time reduced on average 42% for those pairs that were connected indirectly

in both periods, and 51% for those that switched from indirect to direct. This fact shows

the relevance of improvements in flight technology even for MSAs not directly connected.

It could be the case that a reduction in the amount of legs or an increase in frequency of

flights reduces layover time. In Figure 1.28 we compare the change in travel time from

1951 to 1966 with a fictitious change in travel time in which we eliminate layover time in
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both time periods. We observe that the average change in travel time is stronger at every

distance if we disregard layover time. This implies that the relative importance of layover

time over total travel time increases between 1951 and 1966, preventing total travel time to

decrease proportionally to the change of in-flight travel time.

Fig. 1.25. Average amount of legs per route
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Fig. 1.26. Change in US travel time 1951 to 1966: connections
96
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Fig. 1.27. Change in US travel time 1951 to 1966: connections, discarding layover time
97
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Fig. 1.28. Change in US travel time 1951 to 1966: layover time

In figure 1.29 we show the average change in travel time in three counterfactual flight

networks. The first counterfactual fixes the flight routes98 and allows aircraft speed to

evolve. The second counterfactual fixes aircraft speed and allows flight routes to evolve.

The third counterfactual allows both flight routes and aircraft speed to evolve. We obtain

that around 90% of the change in travel time is due to the change in speed of aircrafts,

while around 10% of the change is due to the change in the flight routes. In the figure 1.30

in the appendix we show that the proportion is relatively constant for all distances. This

confirms that most of the observed changes in the network are due to improvements in the

flight technology.

98Fixes the origin-destination airports that are connected with a non-stop flight
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Fig. 1.29. Counterfactual change in travel time
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Fig. 1.30. Counterfactual change in travel time 1951-1966

In addition to the changes over time in the network leading to faster travel times, another

feature of the US airline industry becomes salient in the data: airlines’ regional special-

ization. As figure 1.31 shows, while there was competition among the airlines in our

dataset on the major routes (Lower West Coast to the Midwest and Upper East Coast to the

Midwest), some airlines are very specialized and face no competition from any of the other

five airlines on certain routes. In particular, NW controls the routes connecting Seattle

to the Midwest and EA controls much of the connections from Florida to New York and

surroundings.
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Fig. 1.31. Flight Network in 1956 by Airline (weighted by log frequency).

B. Patent data

In this appendix we describe facts that we observe in the US patent data, for patents

filed99 between 1945 and 1975. US patents data containing citations and filing year have

99Filing year, also called application year, is the closest date to the date of invention that is present in
the data and it represent the date of the first administrative event in order to obtain a patent. In the other
hand, publishing or also called granting year, is the later year in which the patent is granted. The difference
between filing and granting year depends on diverse non-innovation related factors (as capacity of the
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been downloaded from Google Patents. Then, it was merged with multiple datasets (see

Appendix Patent Data Construction for more details):

• Technology classification: NBER patent database.

• Geographic location of inventors: Histpat and Histpat International for patents

published until 1975, Fung Institute for patents published after 1975. Both matched

to 1950s Metropolitan Statistical Areas (MSAs).

• Ownership: Kogan et al. (2017) for patents owned by firms listed in the US stock

market, Patstat for the remaining patents not matched to Kogan et al. (2017).

We highlight two details from the matching process: 1. During filing years 1971-1972 the

rate of non-geocoded patents increases, possibly due to Histpat and Fung data not being

a perfect continuation one of the other. 2. Kogan et al. (2017) seems to use a matching

method based on the patent owner declared in the patent text, as Patstat does. Specially,

Kogan et al. (2017) does not explicitly say if it takes into account firm-ownership structure

to determine patent ownership, neither does Patstat.

For the analysis presented in this appendix we will use the resulting dataset from the

matching procedure, where unless evident or noticed, we will use only patents that

have inventors within MSAs. We discard patents that have inventors in multiple MSAs

and patents that belong to government organizations or universities. We assign patents

to technology categories using fractional count: if a patent is listed in two technology

categories, then we assign half a patent to each category. We discard self citations (citations

in which the citing patent owner is the same as the cited patent owner) because self-

citations may be due to different incentives.

B.1. Matching patents to locations

In figure 1.32 we observe that the matching rate decreases from around 95% before 1970,

to around 80% in 1971 and 1972, and then it stabilizes around 99% after 1975. Hence, geog-

prahical results during years 1970-1975 will contain an increased amount of measurement

error.

patent office to revise applications) and changes over time. Hence filing year is the date in our data that
approximates the best to the date of invention.
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Fig. 1.32. Non-matching rate HistPat, HistPat International and Fung

Figure 1.33 shows the share of patents that have inventors inside MSAs, and figure 1.34

displays the same by technology category.100

100Technologies are aggregated to six big groups, as explained in HJT 2002
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Fig. 1.33. Share patents in Metropolitan Statistical Areas

Fig. 1.34. Share patents in Metropolitan Statistical Areas
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B.2. Input-Output of patents

In the same spirit as how Input-Output tables of industries are constructed, we can use

citations as a reflection of sourced (input) knowledge. In this case, we interpret the cited

patent as being a source of knowledge, and the citing patent as being a destination. In Fig-

ure 1.35 we aggregate citations by citing-cited technology category in the years 1949-1953.

Rows represent the source technology and columns the destination technology. Columns

should sum to 1 (round errors may exist). We highlight in bold those IO coefficients that

are higher than 0.1. We observe that the diagonal has coefficients greater than 0.5, implying

that technologies rely on themselves to create new knowledge. At the same time, we

observe the importance of Electrical to create Communication technologies, and the small

relevance of Drugs for every other technology.

Fig. 1.35. Input-Output of technologies 1949-1953

B.3. General Electric research establishments

Using the patent owner identifier we can display the geographical distribution of research

establishments for a selected firm. Figure 1.36 shows the research establishments of General

Electric in the period 1945-1953. We say that a firm F had a research establishment in

location i in time period t if firm F filed at least one patent in time period t with inventors

located in location i. The headquarters location q of firm F is defined as the location in

which the firm filed the largest amount of patents in the period 1945-1953. General Electric

had research establishments in 62 MSAs in the period 1945-1953, and the MSA with the

largest amount of patents was Schenectady, New York. Figure 1.37 shows the location of

patents cited by patents filed by General Electric with inventors in Fort Wayne, Indiana, in

the period 1949-1953. Figure 1.38 shows the research establishments of General Electric

during periods 1949-1953 and 1964-1968. General Electric had research establishments in

51 MSAs in 1949-1953 and in 76 MSAs in 1964-1968. 42 out of them appear in both time

periods.
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Table 1.11: Connected MSAs

MSA fips MSA name <=3 periods 4 periods MSA fips MSA name <=3 periods 4 periods

80 Akron, OH SMA X X 4680 Macon, GA SMA X X
160 Albany-Schenectady-Troy, NY SMA X X 4720 Madison, WI SMA X X
200 Albuquerque, NM SMA X X 4760 Manchester, NH SMA
240 Allentown-Bethlehem-Easton, PA-NJ SMA X X 4920 Memphis, TN SMA X X
280 Altoona, PA SMA 5000 Miami, FL SMA X X
320 Amarillo, TX SMA X X 5080 Milwaukee, WI SMA X X
480 Asheville, NC SMA X 5120 Minneapolis-St. Paul, MN SMA X X
520 Atlanta, GA SMA X X 5160 Mobile, AL SMA X X
560 Atlantic City, NJ SMA X 5240 Montgomery, AL SMA X X
600 Augusta, GA-SC SMA X X 5280 Muncie, IN SMA
640 Austin, TX SMA X X 5360 Nashville, TN SMA X X
720 Baltimore, MD SMA X X 5400 New Bedford, MA SMA
760 Baton Rouge, LA SMA X 5440 New Britain-Bristol, CT SMA
800 Bay City, MI SMA X 5480 New Haven, CT SMA X X
840 Beaumont-Port Arthur, TX SMA X 5560 New Orleans, LA SMA X X
960 Binghamton, NY SMA X 5600 New York-Northeastern NJ, NY-NJ SMA X X

1000 Birmingham, AL SMA X X 5720 Norfolk-Portsmouth, VA SMA X
1120 Boston, MA SMA X X 5840 Ogden, UT SMA X
1160 Bridgeport, CT SMA X X 5880 Oklahoma City, OK SMA X X
1200 Brockton, MA SMA 5920 Omaha, NE-IA SMA X X
1280 Buffalo, NY SMA X X 5960 Orlando, FL SMA X X
1320 Canton, OH SMA X X 6120 Peoria, IL SMA X
1360 Cedar Rapids, IA SMA X X 6160 Philadelphia, PA-NJ SMA X X
1440 Charleston, SC SMA X X 6200 Phoenix, AZ SMA X X
1480 Charleston, WV SMA X X 6280 Pittsburgh, PA SMA X X
1520 Charlotte, NC SMA X X 6320 Pittsfield, MA SMA
1560 Chattanooga, TN-GA SMA X X 6400 Portland, ME SMA
1600 Chicago, IL-IN SMA X X 6440 Portland, OR-WA SMA X X
1640 Cincinnati, OH-KY SMA X X 6480 Providence, RI SMA X X
1680 Cleveland, OH SMA X X 6560 Pueblo, CO SMA X
1760 Columbia, SC SMA X X 6600 Racine, WI SMA X X
1800 Columbus, GA-AL SMA X X 6640 Raleigh, NC SMA X X
1840 Columbus, OH SMA X X 6680 Reading, PA SMA X X
1880 Corpus Christi, TX SMA X X 6760 Richmond, VA SMA X X
1920 Dallas, TX SMA X X 6800 Roanoke, VA SMA X X
1960 Davenport-Rock Island-Moline, IA-IL SMA X X 6840 Rochester, NY SMA X X
2000 Dayton, OH SMA X X 6880 Rockford, IL SMA
2040 Decatur, IL SMA 6920 Sacramento, CA SMA X X
2080 Denver, CO SMA X X 6960 Saginaw, MI SMA X
2120 Des Moines, IA SMA X X 7000 St. Joseph, MO SMA X
2160 Detroit, MI SMA X X 7040 St. Louis, MO-IL SMA X X
2240 Duluth-Superior, MN-WI SMA X 7160 Salt Lake City, UT SMA X X
2280 Durham, NC SMA X X 7200 San Angelo, TX SMA
2320 El Paso, TX SMA X X 7240 San Antonio, TX SMA X X
2360 Erie, PA SMA X 7280 San Bernardino, CA SMA
2440 Evansville, IN SMA X X 7320 San Diego, CA SMA X X
2480 Fall River, MA-RI SMA X X 7360 San Francisco-Oakland, CA SMA X X
2640 Flint, MI SMA X 7400 San Jose, CA SMA
2760 Fort Wayne, IN SMA X X 7520 Savannah, GA SMA X
2800 Fort Worth, TX SMA X X 7560 Scranton, PA SMA X X
2840 Fresno, CA SMA X X 7600 Seattle, WA SMA X X
2880 Gadsden, AL SMA 7680 Shreveport, LA SMA X
2920 Galveston, TX SMA X X 7720 Sioux City, IA SMA X
3000 Grand Rapids, MI SMA X 7760 Sioux Falls, SD SMA X
3080 Green Bay, WI SMA 7800 South Bend, IN SMA X X
3120 Greensboro-High Point, NC SMA X X 7840 Spokane, WA SMA X X
3160 Greenville, SC SMA X X 7880 Springfield, IL SMA X
3200 Hamilton-Middletown, OH SMA 7920 Springfield, MO SMA X
3240 Harrisburg, PA SMA X X 7960 Springfield, OH SMA
3280 Hartford, CT SMA X X 8000 Springfield-Holyoke, MA-CT SMA X X
3360 Houston, TX SMA X X 8040 Stamford-Norwalk, CT SMA X
3400 Huntington-Ashland, WV-KY-OH SMA X 8120 Stockton, CA SMA X X
3480 Indianapolis, IN SMA X X 8160 Syracuse, NY SMA X X
3520 Jackson, MI SMA X 8200 Tacoma, WA SMA
3560 Jackson, MS SMA 8280 Tampa-St. Petersburg, FL SMA X X
3600 Jacksonville, FL SMA X X 8320 Terre Haute, IN SMA X X
3680 Johnstown, PA SMA 8400 Toledo, OH-MI SMA X X
3720 Kalamazoo, MI SMA X 8440 Topeka, KS SMA X
3760 Kansas City, MO-KS SMA X X 8480 Trenton, NJ SMA
3800 Kenosha, WI SMA 8560 Tulsa, OK SMA X X
3840 Knoxville, TN SMA X X 8680 Utica-Rome, NY SMA
4000 Lancaster, PA SMA X X 8800 Waco, TX SMA X
4040 Lansing, MI SMA X 8840 Washington, DC-MD-VA SMA X X
4080 Laredo, TX SMA X 8880 Waterbury, CT SMA
4160 Lawrence, MA SMA 8920 Waterloo, IA SMA X
4280 Lexington, KY SMA X X 9000 Wheeling-Steubenville, WV-OH SMA X
4320 Lima, OH SMA 9040 Wichita, KS SMA X X
4360 Lincoln, NE SMA X X 9080 Wichita Falls, TX SMA X X
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Fig. 1.36. Research establishments of General Electric 1949-1953

Fig. 1.37. Citations General Electric at Fort Wayne IN 1949-1953

Fig. 1.38. Change location research establishments of General Electric between
1949-1953 and 1964-1968
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B.4. Descriptive statistics

Fig. 1.39. Patents per capita in 1951
Quantiles of patents per capita are computed in each technology and then averaged across technologies.

Population is from 1950 Census.

Fig. 1.40. Patent growth by initial innovativeness ranking of MSA
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Fig. 1.42. Geography of patenting 1951
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Fig. 1.43. Patents per capita in 1951
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Fig. 1.44. Patent growth rate 1951-1966
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B.4.1. Descriptive statistics by technology

Fig. 1.41. Share of patents by region
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Fig. 1.45. Patent growth rate by region
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Number of firms Share of patents

Technology
Year

N. estab.
1 2 to 5 6 to 10 11 to 20 +20 1 2 to 5 6 to 10 11 to 20 +20

Chemical

1951 6,773 892 72 34 8 0.39 0.25 0.13 0.18 0.06
1956 7,196 953 108 60 12 0.38 0.22 0.11 0.19 0.10
1961 6,728 1067 125 80 18 0.32 0.21 0.15 0.15 0.17
1966 7,092 1120 125 89 30 0.29 0.17 0.13 0.19 0.22

Communication

1951 1,956 270 43 24 8 0.42 0.18 0.18 0.04 0.18
1956 2,292 337 56 43 11 0.36 0.19 0.15 0.18 0.12
1961 2,413 441 62 63 15 0.34 0.16 0.09 0.20 0.20
1966 2,320 414 75 66 29 0.32 0.14 0.08 0.17 0.29

Drugs

1,951 1675 163 20 21 5 0.76 0.19 0.02 0.04 0.00
1956 1,706 198 40 35 9 0.66 0.18 0.07 0.06 0.02
1961 1,705 247 57 45 16 0.62 0.19 0.09 0.07 0.04
1966 2,115 251 49 53 24 0.62 0.13 0.08 0.11 0.06

Electrical

1,951 7394 789 73 33 8 0.47 0.20 0.08 0.08 0.18
1956 8,182 962 97 59 12 0.44 0.19 0.10 0.12 0.15
1961 8,077 1,092 123 80 18 0.40 0.19 0.07 0.17 0.17
1966 7,885 1,006 126 87 30 0.37 0.16 0.09 0.16 0.23

Mechanical

1951 18,509 1,348 75 34 8 0.64 0.20 0.06 0.05 0.04
1956 18,735 1,498 109 60 12 0.59 0.20 0.06 0.08 0.06
1961 16,873 1,703 130 80 18 0.54 0.21 0.07 0.10 0.08
1966 17,856 1,669 132 89 30 0.52 0.17 0.09 0.11 0.11

Others

1951 24,994 1,343 75 34 8 0.76 0.15 0.04 0.03 0.02
1956 24,650 1,527 110 60 12 0.71 0.16 0.05 0.05 0.03
1961 20,914 1,683 131 80 18 0.65 0.16 0.06 0.08 0.05
1966 22,982 1,625 132 89 30 0.63 0.15 0.05 0.08 0.08

Table 1.15: Number of firms and share of patents by firm’s geographic coverage
Geographic coverage is computed as the amount of Metropolitan Statistical Areas (MSAs) in which the firm has inventors
applying for patents (research establishments) in a certain year. Research establishments are defined irrespective of the
technology in which technology it patents. Hence a firm applying for patents in technology h in one establishment and
technology k in another establishment is defined as having two establishments, and counts as a two-establishment firm
both in technology h and technology k. Bins of geographic coverage are 1 MSA, 2 to 5 MSAs, 6 to 10 MSAs, 11 to 20 MSAs,
more than 20 MSAs. The maximum possible is 108 MSAs.
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Fig. 1.46. Quantiles of citation distance
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Fig. 1.47. Share of citations by distance
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C. US Census Regions

Fig. 1.48. US Census Regions
Source: US Census Bureau

D. Bias Correction and IV estimation

D.1. Split-panel jackknife bias correction

Weidner and Zylkin (2021) show that PPML estimation of gravity equations with three-way
fixed effects (origin-time, destination-time, origin-destination) is consistent but asymp-
totically biased. In their words: ”the asymptotic distribution of the estimates is not centered
at the truth as N → ∞” (page 2). The asymptotic bias concerns both point estimates and
standard errors. In order to correct the bias we apply their suggested split-panel jackknife
bias correction of section 3.4.1 to both point estimates and bootstrap standard errors. The
idea of the jackknife bias correction is to estimate the model in many subsamples and then
subtract the average coefficients of the subsamples from (twice) the original coefficient.

As suggested in Weidner and Zylkin (2021) when using real world data (as opposite to
simulated data), we estimate the bias correction repeatedly. We modify equation (14) in
Weidner and Zylkin (2021) to define the bias corrected coefficient as:

β̃
J
N := 2 × β̂ −

1

Z ∑
z

∑
p

β̂(p,z)

4
(1.12)
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where p is a random subsample of size 1/4th of the original sample, and Z is the amount
of times to subsample.

The procedure to estimate bias corrected point estimate β̃
J
N is as follows:

1. Estimate β̂: the not-bias-corrected estimate of equation ((1.3))
2. Randomly allocate all citing establishment-technology Fih into two equally sized

groups (groups are time-invariant). Call them citing groups a and b.
3. Randomly allocate all cited establishment-technology Gjk into two equally sized

groups (groups are time-invariant). Call them cited groups a and b.
4. Create four p subsamples of the original data: (a,a), (a,b), (b,a), (b,b). Subsamples

keep the same granularity as the original data FiGjhkt.
5. Estimate equation ((1.3)) (gravity equation of the main text) in each of the subsamples

from the previous step to obtain β̂(p,z).
101 Store the four estimated coefficients.

6. Repeat Z times steps 2 to 5.
7. Compute equation (1.12)

To compute bias-corrected bootstrap standard errors we need to bias-correct the point

estimate β̃
J
m of each bootstrap iteration m. The procedure to estimate bias corrected standard

errors is as follows:

1. Sample establishment-technology-pairs FiGjhk with replacement such that we obtain
a re-sampled data of the same size as the original data (hence, some FiGjhk will
be repeated in the re-sampled data). Sampled FiGjhk are kept for all time periods
in order to keep the source of identification of β: across time variation within a
establishment pair. Label this new dataset datam.

2. Using datam, estimate equation ((1.3)) to obtain β̂m (this is a point estimate of the
specific datam)

3. Using datam, repeat ZM times steps 2 to 5 of the procedure to estimate bias corrected
point estimate. This step provides ZM × 4 point estimates β̂(p,m,zM)

4. Compute the bias corrected point estimate of bootstrap m β̃
J
m = 2 × β̂m − 1

ZM
∑zM

∑p

β̂(p,m,zM)

4 .

5. Store the bias corrected point estimate of bootstrap m

6. Repeat steps 1 to 5 M times to obtain M bias corrected bootstrap point estimates β̃
J
m

7. Compute the variance-covariance matrix of bias corrected bootstrap coefficients β̃
J
m

and use it to compute standard errors of β̃
J
N

The bias correction of point estimates and bias correction of bootstrap standard errors
implies estimating Z × 4 + ZM × M × 4 models. This is a computationally demanding
task. To estimate columns (1) and (2) of Table 1.2 we set Z = 100, ZM = 5 and M = 200,
adding up to 1, 100 models to estimate for each column.

101Given that we require to identify the fixed effects, the effective subsample in all four p estimations does
not have the same amount of observations. However, in our estimations the effective subsample size across p
subsamples does not differ by more than 5%.
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As recommended in Hansen (2021), in the Table 1.16 we repeat Table 1.2 but reporting
0.025 and 0.975 quantile values of bootstrap estimates (bias corrected for columns (1) and
(2)) instead of standard errors:

PPML IV PPML
Dep. variable: citations citFiGjhkt citFiGjhkt

(1) (2) (3) (4)
log(travel time) −0.083 −0.152

(−0.129;−0.056) (−0.210;−0.097)

log(travel time) × 0-300km 0.019 −0.076
(−0.054; 0.082) (−0.542; 0.384)

log(travel time) × 300-1,000km −0.089 −0.134
(−0.141;−0.052) (−0.246;−0.066)

log(travel time) × 1,000-2,000km −0.094 −0.112
(−0.156;−0.022) (−0.192;−0.022)

log(travel time) × +2,000km −0.169 −0.203
(−0.277;−0.105) (−0.311;−0.136)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88

Table 1.16: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =
exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm
F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and technology
k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1 when i = j.
When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero citations in the
missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin between the citing
establishment Fi and the cited establishment Gj. Column (3) and (4) show the result of two step instrumental variables

estimation, where log(travel timeijt) is instrumented with log(travel timefix routes
ijt ), the travel time that would have taken

place if routes were fixed to the ones observed in 1951 and in each year routes were operated with the average airplane
of the year. 0.025 and 0.975 quantile bootstrap estimates are presented in parentheses. The coefficients and bootstrap
estimates in columns (1) and (2) are jackknife bias-corrected. R2 is computed as the squared correlation between observed
and fitted values.

D.2. Instrumental variables PPML

To implement the instrumental variables of Poisson estimation we follow the control
function approach described in Wooldridge (2014). We explain the procedure using the
estimation of the elasticity of citations to travel time. The procedure is similar for the
elasticity of (new) patents to knowledge access. We proceed in two steps estimating the
following two equations:

log(travel time)FiGjhkt = λ2 log(travel timefix routes
FiGjhkt )

+ FEFiGjhk + FEFiht + FEGjkt + uFiGjhkt

(1.13)
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citationsFiGjhkt = exp [β log(travel timeijt) + λ ûFiGjhkt

+ FEFiGjhk + FEFiht + FEGjkt] × vFiGjhkt

(1.14)

In a first step we estimate equation ((1.13)) and obtain estimated residuals ûFiGjhkt. In a
second step we use the estimated residuals as a regressor in equation ((1.14)) which controls
for the endogenous component of travel time.

To perform inference we bootstrap standard errors in the following way:

1. Sample establishment-technology-pairs FiGjhk with replacement such that we obtain
a re-sampled data of the same size as the original data (hence, some FiGjhk will
be repeated in the re-sampled data). Sampled FiGjhk are kept for all time periods
in order to keep the source of identification of β: across time variation within a
establishment pair. Label this new dataset datam

2. Using datam, estimate equations ((1.13)) and ((1.14)) to obtain the bootstrap estimate
β̂m. Store β̂m.

3. Repeat M times steps 1 and 2.
4. Compute the variance-covariance matrix of β̂m and use it to compute standard errors

of β̂

For columns (3) and (4) of Table 1.2, and columns (3) and (4) of Table 1.4 we set M = 200.

E. Additional results

E.1. Diffusion of knowledge

E.1.1. Heterogeneous effects

First, we perform an intensive margin/extensive margin decomposition of the effect of
travel time on citations. We find that the effect is coming from both margins. In the
instrumental variables approach, the intensive margin is only statistically different from
zero for distance greater than 2,000km, while for the extensive margin it is for distance
greater than 300km. Results for the baseline analysis are shown in Table 1.17 and for the
IV estimation in Table 1.18.

Second, we investigate if the elasticity varies by the degree of concentration of patents
across establishments in the citing technology or cited technology, we find no statistically
significant heterogeneous effect. Results are shown in columns (1) and (2) of Table 1.20.

Third, we check if the elasticity varies by the median forward and backward citation
lags of the cited and citing technologies. We find that the elasticity of citations to travel
time is more negative both for technologies that accumulate citations during a longer time
period and for technologies that cite older patents. To be able to precisely show if it is
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newer or older technologies that diffuse better as consequence of the jet requires an analysis
with the citation level forward and backward lag, and not using the median lag in the
technology. Nonetheless, the results seem to suggest that jets improved the diffusion of
older technologies. Results are shown in columns (3) and (4) of Table 1.20.

Fourth, we extend the sample of patents to include patents with a patent owner identified
as a government organization or university. Column (5) of Table 1.20 opens the elasticity of
citations to travel time by whether the citing patent belongs to a government organization
of university. Column (6) includes a dummy for whether the cited patent belongs to a
government organization or university. We do not observe a particular change in the
pattern of the elasticity of citations to travel time.

Sixth, we extend the sample to include self citations (citations in which the citing and
cited patents belong to the same patent owner F). Column (7) of Table 1.20 shows that the
elasticity is not statistically different for self citations.

Seventh, we check if the elasticity varies with the level of innovativeness of the citing firm.
It may be the case that those firms that actually have the -time and monetary- budget to
take a plane are only the most innovative ones. We rank firms F in technology h according
to the amount of patents filed by F in technology h at the initial time period 1949-1953. We
define quantile 0.00 as all those firms that did not file patents in 1949-1953, while quantile
0.01 is assigned to those that filed patents but not as many as to be in the quantile 0.25 or
higher. Results are shown in Table 1.19. We do not find a particular pattern related to the
initial innovativeness.

Eighth, we check if the elasticity varies with the citing technology, cited technology and
citing-cited technology pair. Results are shown in Table 1.21 and Table 1.24. We find that
the elasticity is negative and significant mainly when the citing and cited technology are
the same. In Appendix B we show that most citations happen within a technology, so most
identification power would be when citing and cited technologies are the same.
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PPML log-log linear probability

Dep. variable: citations citFiGjhkt log(citFiGjhkt) citFiGjhkt > 0

(1) (2) (3) (4) (5) (6)

log(travel time) −0.083∗∗∗ −0.071 -0.013∗∗∗

(0.019) (0.098) (0.003)

log(travel time):0-300km 0.019 0.318∗∗ −0.0045
(0.036) (0.152) (0.005)

log(travel time):300-1000km −0.089∗∗∗ −0.265∗ −0.008∗∗∗

(0.023) (0.145) (0.003)

log(travel time):1000-2000km −0.094∗∗∗ −0.231 −0.013∗∗∗

(0.032) (0.209) (0.003)

log(travel time):+2000km −0.169∗∗∗ −0.424∗∗ −0.024∗∗∗

(0.039) (0.192) (0.005)

N obs. effective 4, 703, 010 4, 703, 010 16, 412 16, 412 10, 106, 940 10, 106, 940

R2 0.88 0.88 0.86 0.86 0.70 0.70

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.17: Elasticity of citations to travel time: intensive and extensive margin
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm

F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and tech-

nology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1

when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute

zero citations in the missing period. Column (3) shows the result of an OLS estimation of log(citationsFiGjhkt) =

α log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + εFiGjhkt, with a sample of establishment-technology pairs (FiGjhk) that

have positive citations in all periods. Column (5) shows the result of an OLS estimation of ✶{citationsFiGjhkt > 0} =

γ log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + εFiGjhkt, with the same sample as (1). Column (2), (4) and (6) open,

respectively, the coefficients β, α, γ by distance between the citing establishment Fi and the cited establishment Gj.

Standard errors are presented in parentheses. Columns (1) and (2) present coefficients and bootstrap standard errors

jackknife bias corrected. Columns (3) through (6) present standard errors clustered at the non-directional location pair (ij

is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted

values.
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IV PPML IV log-log IV linear probability

Dep. variable: citations citFiGjhkt log(citFiGjhkt) citFiGjhkt > 0

(1) (2) (3) (4) (5) (6)

log(travel time) −0.152∗∗∗ -0.396∗∗ -0.027∗∗∗

(0.029) (0.175) (0.004)

log(travel time):0-300km -0.076 1.324 -0.028
(0.221) (1.680) (0.036)

log(travel time):300-1000km −0.134∗∗∗ -0.148 -0.022∗∗∗

(0.044) (0.378) (0.007)

log(travel time):1000-2000km −0.112∗∗ -0.314 -0.021∗∗∗

(0.047) (0.200) (0.005)

log(travel time):+2000km −0.203∗∗∗ -0.388∗∗ -0.032∗∗∗

(0.043) (0.185) (0.005)

N obs. effective 4, 703, 010 4, 703, 010 16, 412 16, 412 10, 106, 940 10, 106, 940

R2 0.88 0.88 0.86 0.86 0.70 0.70

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.18: Elasticity of citations to travel time: IV estimation intensive and extensive
margin

Column (1) shows the result of Instrumental Variables Poisson estimation of citationsFiGjhkt = exp [β log(travel timeijt) +

λ ûFiGjhkt + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i,

technology h and time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is

the travel time in minutes between location i and j at time period t, and it is set to 1 when i = j. The variable ûFiGjhkt is

constructed as ûFiGjhkt = travel timeFiGjhkt − λ̂2 travel timefix network
FiGjhkt . When FiGjhk has positive citations in at least one

period and no citations in another, we attribute zero citations in the missing period. Column (3) shows the result of an

IV-2SLS estimation of log(citationsFiGjhkt) = α log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + εFiGjhkt, with a sample

of establishment-technology pairs (FiGjhk) that have positive citations in all periods. Column (5) shows the result of

an IV-2SLS estimation of ✶{citationsFiGjhkt > 0} = γ log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + εFiGjhkt, with the

same sample as (1). Columns (3) and (5) use travel timefix network
ijt as an instrument for travel timeijt. Column (2), (4) and

(6) open, respectively, the coefficients β, α, γ by distance between the citing establishment Fi and the cited establishment

Gj. Standard errors are presented in parenthesis. In Columns (1) and (2) standard errors are bootstrapped. In Columns (3)

to (6) standard errors clustered at the non-directional location pair (ij is the same non-directional location pair as ji). R2 is

computed as the squared correlation between observed and fitted values.
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Concentration

citing

Concentration

cited

Cited lag

forward

Citing lag

backward

Citing

govnt & uni

Cited

govnt & univ

Self

citation

Dep. variable: citations citFiGjhkt

(1) (2) (3) (4) (5) (6) (7)

log(travel time):0-300km 0.103 0.160 −0.045 0.1907 0.021 0.018 0.002
(0.121) (0.114) (0.472) (0.538) (0.038) (0.038) (0.039)

log(travel time):300-1000km −0.105 −0.039 −0.546 −0.145 −0.102∗∗∗ −0.099∗∗∗ −0.077∗∗∗

(0.084) (0.095) (0.364) (0.366) (0.027) (0.027) (0.029)

log(travel time):1000-2000km −0.138 −0.117 0.086 0.101 −0.094∗∗ −0.093∗∗ −0.094∗∗

(0.105) (0.116) (0.480) (0.498) (0.042) (0.041) (0.040)

log(travel time):+2000km −0.287∗∗∗ −0.268∗∗∗ 0.720∗∗ 0.560 −0.185∗∗∗ −0.188∗∗∗ −0.153∗∗∗

(0.105) (0.090) (0.344) (0.472) (0.049) (0.048) (0.040)

log(travel time):0-300km × X −1.180 −2.013 0.028 −0.066 −0.125 0.481 0.038
(1.843) (1.712) (0.185) (0.211) (0.367) (0.543) (0.252)

log(travel time):300-1000km × X 0.079 −0.880 0.178 0.018 −0.088 −0.609∗ 0.077
(1.188) (1.366) (0.144) (0.145) (0.265) (0.330) (0.127)

log(travel time):1000-2000km × X 0.634 0.341 −0.073 −0.078 −0.282 −0.370 0.082
(1.412) (1.606) (0.191) (0.197) (0.366) (0.385) (0.210)

log(travel time):+2000km × X 1.436 1.157 −0.366∗∗∗ −0.299 −0.328 0.015 −0.073
(1.456) (1.136) (0.137) (0.188) (0.410) (0.295) (0.170)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 800, 144 4, 800, 144 4, 835, 001

R2 0.88 0.88 0.88 0.88 0.88 0.88 0.94

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.20: Elasticity of citations to travel time: Heterogeneity (part 1)
Result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd ✶{distanceij ∈ d} log(travel timeijt) + ∑d αd ✶{distanceij ∈

d}✶{XFiGjhkt} log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and time pe-

riod t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to

1 when i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. The variable X takes different value depending on the column: in

column (1) it is the across-MSA Herfindahl index of the citing technology, in column (2) it is the across-MSA Herfindahl index of the cited technology, in column (3) it is median

forward citation lag of the cited technology, in column (4) it is median backward citation lag of the citing technology. In column (5) and (6) the sample includes government and

university patents, in column (5) X is a dummy that takes value one if the citing patent belongs to a university or government organisation, in column (6) it is a dummy that

takes value one if the cited patent belongs to a university or government organisation. In column (7) the sample includes self citations, the variable X is a dummy that takes

value one if the citing firm F cited firm G are the same. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero citations in the

missing period. Standard errors clustered at the non-directional location pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as

the squared correlation between observed and fitted values.



Citing quantile Cited quantile

Dep. variable: citations citFiGjhkt

(1) (2)

log(travel time) × quantile 0.00 -0.151∗∗∗ -0.111∗∗∗

(0.058) (0.039)

log(travel time) × quantile 0.01 -0.078 -0.084
(0.114) (0.101)

log(travel time) × quantile 0.25 -0.081 -0.159∗

(0.103) (0.093)

log(travel time) × quantile 0.50 -0.139 -0.063
(0.091) (0.083)

log(travel time) × quantile 0.75 -0.262∗∗∗ -0.033
(0.079) (0.068)

log(travel time) × quantile 0.90 -0.029 -0.127∗∗

(0.066) (0.057)

log(travel time) × quantile 0.95 -0.001 -0.123∗∗∗

(0.037) (0.038)

log(travel time) × quantile 0.99 -0.130∗∗∗ -0.066∗

(0.035) (0.039)

log(travel time) × quantile 0.999 -0.070 -0.070
(0.045) (0.045)

N obs. effective 4, 703, 010 4, 703, 010

R2 0.88 0.88

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.19: Elasticity of citations to travel time: Heterogeneity (part 2)
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑q βq log(travel timeijt)✶{quantileFh ∈ q} + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed

by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G in

location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is

set to 1 when i = j. quantileFh is the quantile of firm F in the distribution of firms within technology h, using patents

applied by F in h in the time period 1949-1953. Column (2) repeats the analysis using the quantile of the cited firm G

in technology k. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero

citations in the missing period. When FiGjhk has positive citations in at least one period and no citations in another, we

attribute zero citations in the missing period. Standard errors clustered at the non-directional location in parentheses (ij

is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted

values.



PPML

Citing technology Cited technology

Dep. variable: citations citFiGjhkt

(1) (2)

log(travel time) × Chemical −0.066 −0.093∗∗

(0.045) (0.045)

log(travel time) × Computers & Communications −0.100 −0.140∗

(0.079) (0.077)

log(travel time) × Drugs & Medical −0.053 −0.005
(0.162) (0.181)

log(travel time) × Electrical & Electronic −0.070 −0.054
(0.048) (0.046)

log(travel time) × Mechanical −0.080∗∗ −0.087∗∗∗

(0.031) (0.032)

log(travel time) × Others −0.147∗∗∗ −0.113∗∗

(0.045) (0.044)

N obs. effective 4, 703, 010 4, 703, 010

R2 0.88 0.88

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.21: Elasticity of citations to travel time by citing and cited technology
Part 1

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑tech βh ✶{tech = h} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by

establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G located in

j, in technology k. ✶{tech = h} is a dummy variable that takes value 1 when the citing technology h is equal to technology

tech. In column (2) the dummy is modified to ✶{tech = k} such that it takes value 1 when the cited technology k is equal

to technology tech. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to

1 when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero

citations in the missing period. Standard errors clustered at the non-directional location pair are presented in parenthesis

(ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted

values.

E.1.2. IV PPML: first and second stage estimation
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First stage
OLS

Second stage
PPML

Dep. variable: log(travel time) citFiGjhkt

(1) (2)
log(travel time fix routes) 0.951∗∗∗

(0.039)

log(travel time) −0.152∗∗∗
(0.029)

residual 0.094∗∗∗
(0.035)

N obs. effective 10, 106, 940 4, 703, 010
R2 0.99 0.88
Within R2 0.38
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.22: Elasticity of citations to travel time: first and second stage IV PPML

OLS First stage
0-300km

OLS First stage
300-1,000km

OLS First stage
1,000-2,000km

OLS First stage
+2,000km

Second stage
PPML

Dep. variable: log(travel time) citFiGjhkt

(1) (2) (3) (4) (5)
log(travel time fix routes) × 0-300km 0.278∗∗ 0.073 0.024 0.040∗

(0.122) (0.057) (0.026) (0.022)

log(travel time fix routes) × 300-1,000km −0.103∗∗∗ 1.113∗∗∗ −0.013 0.010
(0.032) (0.041) (0.011) (0.011)

log(travel time fix routes) × 1,000-2,000km −0.064∗∗∗ −0.052∗∗∗ 1.059∗∗∗ 0.017∗
(0.024) (0.020) (0.044) (0.009)

log(travel time fix routes) × +2,000km −0.058∗∗∗ −0.046∗∗∗ −0.020∗∗ 1.097∗∗∗
(0.022) (0.017) (0.010) (0.018)

log(travel time) × 0-300km −0.076
(0.221)

log(travel time) × 300-1,000km −0.134∗∗∗
(0.044)

log(travel time) × 1,000-2,000km −0.112∗∗
(0.047)

log(travel time) × +2,000km −0.203∗∗∗
(0.043)

residual × 0-300km 0.100
(0.196)

residual × 300-1,000km 0.045
(0.053)

residual × 1,000-2,000km 0.026
(0.069)

residual × +2,000km 0.043
(0.078)

N obs. effective 10, 106, 940 10, 106, 940 10, 106, 940 10, 106, 940 4, 703, 010
R2 0.99 0.99 0.99 0.99 0.88
Within R2 0.04 0.46 0.80 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.23: Elasticity of citations to travel time: first and second stage IV PPML
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Cited

Citing
Chemical

Computers &
Communications

Drugs &
Medical

Electrical &
Electronic

Mechanical Others

Chemical −0.092∗∗ 0.219 0.113 −0.299∗∗∗ −0.025 −0.070
(0.052) (0.262) (0.199) (0.094) (0.071) (0.068)

Computers & Communications −0.089 −0.306∗∗∗ −0.657 0.107 0.122 0.095
(0.259) (0.095) (0.976) (0.090) (0.149) (0.169)

Drugs & Medical 0.224 0.567 −0.278 −0.230 −0.334 0.358
(0.239) (1.205) (0.268) (0.561) (0.362) (0.323)

Electrical & Electronic 0.233∗∗ 0.171∗ −0.224 −0.102∗∗ 0.087 −0.063
(0.093) (0.096) (0.634) (0.056) (0.070) (0.079)

Mechanical −0.060 0.151 −0.152 0.106 −0.129∗∗∗ −0.032
(0.076) (0.145) (0.402) (0.082) (0.035) (0.056)

Others 0.042 0.173 0.204 0.052 0.019 −0.209∗∗∗

(0.074) (0.169) (0.274) (0.072) (0.053) (0.054)

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.24: Elasticity of citations to travel time by citing and cited technology
Part 2

Column (1) shows the result of one single Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑tech pair βhk ✶{tech pair = hk} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents

filed by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G

located in j, in technology k. ✶{tech pair = hk} is a dummy variable that takes value 1 when the citing technology h is

equal to technology tech. In column (2) the dummy is modified to ✶{tech = k} such that it takes value 1 when the cited

technology k is equal to technology tech. travel timeijt is the travel time in minutes between location i and j at time period

t, and it is set to 1 when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we

attribute zero citations in the missing period. Standard errors clustered at the non-directional location pair are presented

in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between

observed and fitted values. The amount of observation in the effective sample is 4,703,010.

E.1.3. Robustness

Sample of establishments

During the time period there was entry and exit of research establishments that was not
uniform across locations. We may then think that the change in diffusion of knowledge
is only consequence of the change in the geographical location of innovation. To test this
possibility, in Table 1.25 we estimate the baseline regression (1.3) with different samples.
In column (1) we include the baseline results.102 In column (2) we use only citing estab-
lishments Fi that filed patents during the initial time period 1949-1953. In column (3) we
further restrict the sample to both citing establishments Fi and cited establishments Gj that

102Coefficients are not bias corrected.
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filed patents in 1949-1953.103 We find that the coefficient at more than 2,000km remains
comparable to the one in the baseline regression, statistically significant at the 1%.

103We require Fi and Gj to have positive amount of patents applied during 1949-1953. However, those
establishments need not to have cited each other.
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All
Citing

establishment
Citing & Cited
establishment

Dep. variable: citations citFiGjhkt

(1) (2) (3)
log(travel time) × 0-300km 0.021 0.020 0.028

(0.039) (0.043) (0.043)

log(travel time) × 300-1,000km −0.099∗∗∗ −0.095∗∗∗ −0.095∗∗∗
(0.027) (0.029) (0.030)

log(travel time) × 1,000-2,000km −0.093∗∗ −0.092∗∗ −0.062
(0.042) (0.047) (0.050)

log(travel time) × +2,000km −0.185∗∗∗ −0.155∗∗∗ −0.179∗∗∗
(0.049) (0.052) (0.052)

N obs. effective 4, 703, 010 3, 109, 285 1, 960, 851
R2 0.88 0.88 0.89
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.25: Elasticity of citations to travel time: Fix sample of establishments
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd ×
✶{distanceij ∈ d} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establish-
ment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1 when
i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. Column (2) truncates
the sample keeping only citing establishments Fi that where present in the initial time period 1949 − 1953. Column (3)
truncates the sample keeping only citing establishments Fi and cited establishments Gj that where present in the initial
time period. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero
citations in the missing period. Standard errors clustered at the non-directional location pair are presented in parenthesis
(ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted
values.

Ticket prices

During the period of analysis ticket prices were set by the Civil Aeronautics Board, so
airlines could not set prices of their own tickets. Some airlines included a sample of prices
in the last page of their booklet of flight schedules a sample of prices, which we digitized.
We have digitized American Airlines 1951, 1961, 1966; TWA 1951 and United Airlines
1956 and 1961.104. The sample includes prices for 11,590 directional airport pair years. We
document multiple facts about prices.

First, prices were set in the form of an intercept plus a variable increment depending on
distance between origin and destination (until 1962-1963). A linear regression with an
intercept and a slope estimated separately for each year (including 1966), service class
(first class or coach service), and aircraft type (propeller or jet) gives a R2 of 0.98 or higher
in each regression, with an average R2 of 0.993.

Second, all airlines operating within the same route charged exactly the same price. In
1951, in our digitized price data we have 432 airport pairs in which both American Airlines
and TWA were operating and reported the price for first class service. 94% of those airport
pairs had exactly the same price in both airlines.

Third, ticket prices of flights operated by jet airplanes had a surcharge of around 6% on

104The sample of prices digitized was limited due to data availability.
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top of the one operated by propeller airplanes.

Fourth, the change in prices over time had a similar pattern until 1961: a stronger increase
in short distances (probably due to an increase in fixed costs of take-off and landing,
although not reflected in the intercept of the linear regressions), and a relatively constant
increase for flights between airports more than 1,000 km apart. In the period 1961 to 1966
we observe a drop in prices of around 20% for routes of more than 1,000km distance,
breaking the linearity of prices in distance previously observed. We had visually inspected
price tables and detected that the drop in prices happened in 1962-1963.

Figure 1.49 shows prices for first class service by year and aircraft type, deflated by the
consumer price index to 1951 values. Figure 1.50 presents the percentage change in deflated
prices of first class service. Both figures show the previous facts: prices are generally linear
in distance until 1966 in which we observe a break after 1,000 km.

Fig. 1.49. Flight ticket prices, deflated by CPI Fig. 1.50. Change flight ticket prices, deflated by CPI

We convert our sample of prices at the airport-pair level to prices of the population of
MSA-pairs as follows: first, we obtain a pricing function that can flexibly approximate
prices by regressing deflated prices on a cubic polynomial of distance separately for each
year. We use prices of first class service for all years, propeller aircraft for 1951 and 1956
and jet aircraft for 1961 and 1966. Second, we predict prices for each MSA-pair and year
using the MSA-pair distance and the year’s estimated regression.

Highway travel time

Taylor Jaworski and Carl Kitchens have graciously shared with us data on county-to-
county highway travel time and nominal travel costs for 1950, 1960 and 1970. Travel time
is constructed using maximum speed limit in each highway segment and year. Travel
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costs uses, for each year, travel time, highway distance, truck driver’s wage and petrol
costs. See Jaworski and Kitchens (2019) for details. The dataset is constructed using
2010 county boundaries and contains county centroids. We converted it to MSA-to-MSA
by matching counties’ centroids to 1950 MSAs using the shape file from Manson et al.
(2020). We take the minimum travel time and minimum travel costs among all county
pairs that belong to the same MSA pair. We convert nominal travel costs to 1950 real
travel costs deflating by the consumer price index. We convert 1950, 1960 and 1970
travel times and travel costs to 1951, 1956, 1961 and 1966 by linearly interpolating (e.g.
travel timeij,1951 = travel timeij,1950 ×

1960−1951
10 + travel timeij,1960 ×

1951−1950
10 ).

The within MSA-pair correlation of the 1951-1966 change in travel time by highway
and airplane is 0.068 for all MSA-pairs, and -0.011 for MSA-pairs more than 2,000 km
apart. Figure 1.51 presents the MSA-pair 1951-1966 change in travel time by highway and
airplane, where for exposition we only present MSA-pairs that had a reduction in travel
time by both means of transport. Estimating a linear regression of change in air travel
time on the change in highway travel time gives a slope of -0.02 not statistically different
from zero, with a R2 of 0.00005.105 Figure 1.52 repeats the exercise where MSA-pairs are
weighted by the amount of establishment-technology pairs used to estimate the elasticity
of citations to travel time (equation ((1.3))). In this case the estimated regression has a slope
of 0.73 statistically significant at the 1% level and a R2 of 0.09.106

In Tables 1.5 and 1.26 we present the results of adding highway travel time as control. The
low correlation between the change in travel time by highway and airplane implies that
the estimated elasticity of citations to air travel time remains almost unchanged, relative to
the baseline estimation.107

1058.7% of MSA-pairs had an increase in travel time either by highway or by airplane. The regression with
all MSA-pairs has a slope of 0.60 significant at the 1% level. However, the R2 of the regression remains very
low: 0.0046.

106With all MSA-pairs the slope is 1.01 statistically significant at the 1% level and the R2 is 0.04.
107In order to perform a test of statistical difference of coefficients we would need to compute the covariance

between the two regressions. Assuming the covariance is zero, in columns (1) and (2) 1.26 the coefficients of
air travel time at +2,000km are not significantly different.
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Fig. 1.51. Change travel time by airplane and high-
way 1951-1966

Fig. 1.52. Change travel time by airplane and high-
way 1951-1966, weighted
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PPML

Dep. variable: citations citFiGjhkt

(1) (2) (3) (4) (5) (6) (7) (8)

log(travel time) × 0-300km 0.0213 0.0276 0.0198 0.0318 0.0252 0.0349 0.0283 0.0313
(0.0388) (0.0385) (0.0391) (0.0393) (0.0389) (0.0391) (0.0396) (0.0393)

log(travel time) × 300-1,000km -0.0990∗∗∗ -0.1040∗∗∗ -0.0935∗∗∗ -0.0745∗∗ -0.1014∗∗∗ -0.0857∗∗∗ -0.0748∗∗ -0.0861∗∗∗

(0.0269) (0.0292) (0.0265) (0.0303) (0.0290) (0.0312) (0.0303) (0.0312)

log(travel time) × 1000-2,000km -0.0928∗∗ -0.1155∗∗ -0.0710∗ -0.0395 -0.0948∗ -0.0498 -0.0318 -0.0435
(0.0418) (0.0485) (0.0423) (0.0523) (0.0502) (0.0573) (0.0520) (0.0576)

log(travel time) × +2,000km -0.1848∗∗∗ -0.1761∗∗∗ -0.1724∗∗∗ -0.1238∗∗ -0.1658∗∗∗ -0.1052∗ -0.1236∗∗ -0.1041∗

(0.0492) (0.0531) (0.0498) (0.0587) (0.0542) (0.0607) (0.0590) (0.0609)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010

R2 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

Controls:

log(highway time) - Yes - - Yes Yes - Yes

log(telephone share) × time - - Yes - Yes - Yes Yes

log(distance) × time - - - Yes - Yes Yes Yes

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.26: Elasticity of citations to travel time: additional controls
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑d βd ✶{distanceij ∈ d} log(travel timeijt) + ∑d αd ✶{distanceij ∈ d}✶{XFiGjhkt} log(travel timeijt) + FEFiGjhk +

FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and

time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel

time in minutes between location i and j at time period t, and it is set to 1 when i = j. d are distance intervals:

[0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. Relative to (1), columns (2) to (8) contain additional

controls. Log highway time between i and j changes in every time period t. The log mean share of households with

telephone line in ij pair interacted in 1960 is interacted with a time dummy. Log distance ij is interacted with a time

dummy. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero citations in

the missing period. Standard errors clustered at the non-directional location in parentheses (ij is the same non-directional

location pair as ji). R2 is computed as the squared correlation between observed and fitted values.

Frequency adjusted travel time

The frequency of flights may have changed simultaneously with the introduction of jet
airplanes. The change in travel time could then be consequence of higher frequency rather
than changes in airplanes’ speed. Given that some MSA pairs are connected indirectly
(with connecting flights), accounting for frequency is not straight forward: the frequency
of each leg of the flight route matters (actually, it is not only frequency of each leg but
also the synchronization among all potential legs). In order to take into account potential
changes in the frequency of flights we computed the daily average travel time. This travel
time is the average across all fastest travel times if the passenger was to depart at each
full hour (1am, 2am, ..., 1pm, 2pm, etc.). The computation of this travel time includes the

137



waiting time that is affected by frequency: the time until first departure and layover time
of each connecting flight. Hence, the daily average travel time is a frequency-adjusted
travel time: changes in the daily average travel time that are larger than in the fastest travel
time denote that frequency of flights increased and therefore there is less waiting time. If
we observe the reverse that means that frequency did not improve as much as the speed of
airplanes.

Figure 1.53 shows the within MSA-pair decrease in the fastest travel time and the daily
average travel time.108 Both measures of travel time follow a similar pattern: slight
decrease in 1956, a stronger decrease in 1961 especially for long distance routes, and a
further decline in 1966. However, we observe that the decrease of the fastest travel time is
on average larger than the one of the daily average travel time: the frequency of flights, if
any, attenuated the potential decrease in travel time from the improvements in airplanes’
speed. This observation is also in line with a comparison of the fastest travel time with and
without layover time (Figure 28 in the Appendix of the paper): layover time attenuated
the change in travel time.

In table 1.27 we estimated the elasticity of citations to travel time using first the fastest
travel time (baseline, columns 1 and 2) and the daily average travel time (columns 3 and
4). The estimated elasticity is similar using both measures, which gives confidence that
our results are not driven by changes in the frequency of flights.

108The within MSA-pair correlation of the (1951-1966) change in fastest travel time and the change daily
average travel time is 0.60.
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Fig. 1.53. Change in MSAs travel time: fastest travel time and daily average travel time
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PPML

not bias-corrected

Dep. variable: citations citFiGjhkt

(1) (2) (3) (4)

log(travel time) −0.088∗∗∗

(0.024)

log(travel time) × 0-300km 0.021
(0.039)

log(travel time) × 300-1,000km −0.099∗∗

(0.027)

log(travel time) × 1000-2,000km −0.093∗∗

(0.042)

log(travel time) × +2,000km −0.185∗∗∗

(0.049)

log(travel time daily avg) −0.100∗∗∗

(0.039)

log(travel time daily avg) × 0-300km 0.034
(0.037)

log(travel time daily avg) × 300-1,000km −0.142∗∗∗

(0.047)

log(travel time daily avg) × 1000-2,000km −0.170∗∗∗

(0.072)

log(travel time daily avg) × +2,000km −0.236∗∗∗

(0.064)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010

R2 0.88 0.88 0.88 0.88

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.27: Elasticity of citations to travel time: daily average travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm

F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and technology

k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1 when i = j.

When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero citations in the

missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin between the citing

establishment Fi and the cited establishment Gj. Column (3) and (4) use the daily average travel time, which is computed

as the average of the fastest travel time departing at every full hour (the average across all 24 potential departing times).

Standard errors clustered at the non-directional location are presented between parentheses (ij is the same non-directional

location pair as ji). R2 is computed as the squared correlation between observed and fitted values.
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E.2. Creation of knowledge

E.2.1. IV PPML: first and second stage estimation

First stage
OLS

Second stage
PPML

Dep. variable: log(knowledge access) PatentscitFiht

(1) (2)
log(knowledge access fix routes) 1.01∗∗∗

(0.032)

log(knowledge access) 11.24∗
(6.35)

residual −2.31
(7.20)

N obs. effective 991, 480 91, 480
R2 0.99 0.85
Within R2 0.53
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.28: Elasticity of patents to knowledge access: first and second stage IV PPML
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OLS First stage
reference quartile

OLS First stage
3rd quartile

OLS First stage
2nd quartile

OLS First stage
3rd quartile

Second stage
PPML

Dep. variable: log(knowledge access) PatentsFiht

(1) (2) (3) (4) (5)
log(knowledge access time fix routes) 1.00∗∗∗ 0.01 0.03 0.00

(0.03) (0.06) (0.03) (0.01)

log(knowledge access fix routes) × 3rd quartile 0.01∗ 1.11∗∗∗ −0.00 −0.00
(0.004) (0.03) (0.00) (0.00)

log(knowledge access fix routes) × 2nd quartile 0.00 −0.01 1.11∗∗∗ −0.00
(0.01) (0.04) (0.03) (0.00)

log(knowledge access fix routes) × 1st quartile 0.01 −0.00 −0.04 1.15∗∗∗
(0.01) (0.04) (0.04) (0.04)

log(knowledge access) 10.26
(6.38)

log(knowledge access) × 3rd quartile 2.32∗∗∗
(0.66)

log(knowledge access) × 2nd quartile 4.21∗∗∗
(0.84)

log(knowledge access) × 1st quartile 5.77∗∗∗
(1.11)

residual −2.25
(7.27)

residual × 3rd quartile −2.55
(1.59)

residual × 2nd quartile −4.32∗∗
(1.97)

residual × 1st quartile −8.27∗∗
(3.28)

N obs. effective 991, 480 991, 480 991, 480 991, 480 991, 480
R2 1.00 1.00 1.00 1.00 0.85
Within R2 0.53 0.89 0.90 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.29: Elasticity of patents to knowledge access: first and second stage IV PPML
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E.2.2. Robustness

Baseline
Quartile
absolute

Quartile
per capita

Dependent Variable: Patents PatentsFiht

(1) (2) (3)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 7.77∗∗
(3.66) (3.69) (3.70)

log(knowledge access) × quartile 0.50 2.05∗∗∗ 0.75∗∗
(0.58) (0.34)

log(knowledge access) × quartile 0.25 3.80∗∗∗ 1.58∗∗∗
(0.90) (0.50)

log(knowledge access) × quartile 0.00 5.00∗∗∗ 4.03∗∗∗
(1.30) (0.77)

N obs. effective 991,480 991,480 991,480
R2 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.30: Elasticity of new patents to knowledge access: absolute and per capita MSA
innovativeness

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, technol-
ogy h and time period t. KAiht is knowledge access of establishments in location i technology h and time period t.
Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed within
technology using the absolute level of patents in the MSA-technology in 1949-1953. Column (3) computes the quartile
of innovativeness using patents per capita in the MSA-technology in 1949-1953 using 1950 population. Higher quartile
indicates higher initial level of innovativeness. The fourth quartile is used as reference category. Standard errors clustered
at the location-technology ih are presented in parentheses. R2 is computed as the squared correlation between observed
and fitted values.
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PPML
β

by distance
+300km +1,000km +2,000km

Dependent Variable: Patents PatentsFiht

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 18.17∗∗∗ 16.50∗∗ 10.09∗∗ 8.70∗ 18.82∗∗∗ 19.08∗∗∗ 12.70 10.26
(3.66) (3.69) (4.63) (4.76) (4.66) (4.67) (5.82) (5.74) (8.18) (7.92)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 2.70∗∗∗ 2.12∗∗∗ 2.08∗∗∗ 1.94∗∗∗
(0.58) (0.84) (0.58) (0.53) (0.49)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 5.96∗∗∗ 4.19∗∗∗ 3.97∗∗∗ 3.64∗∗∗
(0.90) (1.42) (0.88) (0.81) (0.73)

log(knowledge access) × 1st quartile 5.00∗∗∗ 8.94∗∗∗ 5.49∗∗∗ 5.28∗∗∗ 4.68∗∗∗
(1.30) (1.97) (1.25) (1.23) (1.07)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.31: Elasticity of new patents to knowledge access, varying beta or distance.
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, technol-
ogy h and time period t. KAiht is knowledge access of establishments in location i technology h and time period t. Column
(2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed using patents
in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference
category. Relative to columns (1) and (2), columns (3) and (4) compute Knowledge Access using four distance-specific β
parameter according to distance bins between i and j. The bins are [0km, 300km], (300km, 1000km], (1000km, 2000km],
+2,000km. Columns (5) to (10) use the same β as column (1) and (2), but computing Knowledge Access with a truncated
sample of j that are further than a certain distance threshold from i. Standard errors clustered at the location-technology
ih are presented in parentheses. R2 is computed as the squared correlation between observed and fitted values.
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PPML OLS
Dependent Variable: Patents PatentsFiht log(PatentsFiht)

(1) (2) (3) (4)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 6.83∗ 6.27∗
(3.66) (3.69) (3.19) (3.20)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 0.92∗
(0.58) (0.51)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 2.64∗∗
(0.90) (1.03)

log(knowledge access) × 1st quartile 5.00∗∗∗ 3.82∗∗
(1.30) (1.79)

N obs. effective 991,480 991,480 300,539 300,539
R2 0.85 0.85 0.87 0.87
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.32: Elasticity of new patents to knowledge access: PPML and OLS
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, technol-
ogy h and time period t. KAiht is knowledge access of establishments in location i technology h and time period t. Column
(3) estimates log(Patents)Fiht = ρ log(KAiht) + FEFih + FEit + FEht + ξFiht. Columns (2) and (4) open the coefficient ρ
by the quartile of innovativeness of location i within technology h, computed within technology using the absolute level
of patents in the MSA-technology in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth
quartile is used as reference category. Difference in amount of observations is due to dropping zeros in columns (3) and
(4). Standard errors clustered at the location-technology ih are presented in parentheses. R2 is computed as the squared
correlation between observed and fitted values.

Access to capital

We construct four measures of access to capital using 1949-1953 market capitalization of
firms listed in the stock market. The four measures are similar in their essence but differ in
the computation of a firm’s technology and the firm’s location. The measure is computed
as follows:

capital accessiht = ∑
k

ψhk ∑
j, j ̸=i

Capital stockjk,t=1951 × travel time
ξ
ijt (1.15)

where Capital stockjk,t=1951 is a proxy for the capital which is specific to technology k

located in j at the initial time period 1951. ψhk is an input-output weight of capital flows
and ξ is the elasticity of capital flows between to travel time. As a proxy for capital we use
market capitalization of firms.

We construct four measures of capital accessiht which differ on: (i) the way we define the
allocation of the firm’s capital to each location (either using all inventors’ locations or only
the assigned headquarters), and (ii) the way we allocate a firm’s capital across technologies
(using the share of a technology within the firm, or relative to the national share of that
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technology). We use COMPUSTAT as our source of data for market capitalization.

We proceed as follows:

1. Use share’s market price at closure calendar year multiplied by the number shares
outstanding. We use the variables prcc c and csho to maximize coverage of firms
given that other variables have missing value for many firms.

2. Take the yearly average market capitalization to maximize coverage (many firms
have missing in a certain year). This step potentially introduces measurement error
due to changes in total stock market capitalization but allows us to increase the
amount of firms included in the sample.

3. Determine a firm’s MSA using patent inventor location. Two ways to determine the
location, 1. only HQ location, 2. all locations where the firm had inventors applying
for patents in 1949-1953

4. Determine the share of each technology firm’s technology using patent technology.
Two ways to determine the share oftechnology: 1. the share of each tech within firm
+ share within firm relative to national share

5. In the absence of data on a capital input-output weight, assume it is the same as the
technology input-output weight, i.e. ψhk = ωhk

6. In the absence of data on the elasticity of capital flows to travel time assume ξ = −1

The four measures of access to capital are as follows:

1. Attribute all capital to headquarters and use the absolute share of each technology in
the firm

2. Attribute all capital to headquarters and use the share of each technology in the firm
relative to the national share

3. Attribute capital to establishments using their pat share and use the absolute share
of each technology in the firm

4. Attribute capital to establishments using their pat share and use the share of each
technology in the firm relative to the national share

Table 1.33 shows the results of estimating the elasticity of new patents to knowledge access
while at the same time controlling for capital access.

Sensitivity to β

Indirectly connected MSAs

If the 1951 flight network was constructed in order to connect city pairs that would see
future growth in citations, we can alleviate this endogeneity concern by focusing only on
indirectly connected pairs.

Table 1.34 presents PPML regressions not bias-corrected. Columns (1) and (2) are the
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Dependent Variable: Patents PatentsFiht

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(knowledge access) 10.14∗∗∗ 9.96∗∗ 11.29∗∗∗ 10.67∗∗ 12.90∗∗∗
(3.66) (4.50) (4.32) (4.70) (4.43)

log(finance access hq) 0.54∗∗ 0.02
(0.26) (0.30)

log(finance access hq rel) 0.40 -0.14
(0.25) (0.28)

log(finance access est) 0.56∗ -0.07
(0.31) (0.39)

log(finance access est rel) 0.31 -0.39
(0.30) (0.38)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.33: Elasticity of new patents to knowledge access and finance access
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =
exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, technol-
ogy h and time period t. KAiht is knowledge access of establishments in location i technology h and time period t. Column
(2) to (5) use as regressor the finance access of establishments in location i technology h and time period t, where the
measure of finance access changes across columns. Columns (6) to (9) estimate the regression using both knowledge
access and finance access. Standard errors clustered at the location-technology ih are presented in parentheses. R2 is
computed as the squared correlation between observed and fitted values.

β ρ β × ρ
Predicted yearly

growth p.p.

Share yearly

growth explained

Predicted yearly

growth differential p.p.

Share yearly growth

differential explained

-0.186 10.14 -1.89 3.47 0.78 1.1 0.21

-0.1 19.35 -1.94 3.5 0.78 1.07 0.2

-0.2 9.4 -1.88 3.47 0.78 1.1 0.21

-0.3 6.1 -1.83 3.45 0.77 1.14 0.22

-0.4 4.48 -1.79 3.44 0.77 1.16 0.22

-0.5 3.52 -1.76 3.44 0.77 1.19 0.23

-0.6 2.91 -1.74 3.45 0.77 1.2 0.23

-0.7 2.48 -1.73 3.47 0.78 1.22 0.23

-0.8 2.17 -1.73 3.5 0.78 1.22 0.23

-0.9 1.93 -1.73 3.52 0.79 1.24 0.24

-1 1.72 -1.72 3.51 0.79 1.28 0.24

-2 0.58 -1.16 2.8 0.63 1.55 0.3

-5 0.04 -0.19 1.19 0.27 3.65 0.7

-8 0.09 -0.76 8.22 1.84 6.96 1.33

-10 0.11 -1.08 15.16 3.4 8.19 1.56

-20 0.13 -2.63 69.8 15.65 21.66 4.14

-50 0.16 -8.22 531.34 119.16 219.49 41.94

-100 0.12 -12.33 5428.85 1217.49 2971.74 567.91

Table 1.35: Effect of knowledge access on new patents: varying the value of elasticity of
knowledge diffusion
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baseline regressions (all MSA-pairs), columns (3) and (4) drop MSA-pairs that are ever
connected with one leg (a non-stop flight), and columns (5) and (6) drop MSA-pairs that
are ever connected with one flight number. The difference between non-stop and one flight
number is that one flight number could serve multiple MSAs by making intermediate
stops.109 The estimated coefficients are in the ballpark of the initial estimates, especially
for +2,000km, providing evidence that it is reasonable to use the pre-existing network as
the baseline to construct the instrument.

PPML

not bias-corrected

Dep. variable: citations citFiGjhkt

(1) (2) (3) (4) (5) (6)

log(travel time) −0.088∗∗∗ −0.202∗∗∗ −0.241∗∗∗

(0.024) (0.051) (0.061)

log(travel time) × 0-300km 0.021 −0.237∗∗∗ −0.410∗∗

(0.039) (0.116) (0.165)

log(travel time) × 300-1,000km −0.099∗∗ −0.147∗ −0.210∗∗

(0.027) (0.081) (0.095)

log(travel time) × 1000-2,000km −0.093∗∗ −0.157∗ −0.216∗∗

(0.042) (0.092) (0.109)

log(travel time) × +2,000km −0.185∗∗∗ −0.297∗∗∗ −0.242∗∗∗

(0.049) (0.085) (0.090)

N obs. effective 4, 703, 010 4, 703, 010 1, 735, 427 1, 735, 427 1, 396, 393 1, 396, 393

R2 0.88 0.88 0.94 0.94 0.94 0.94

Observation selection:

All X X

Discard one leg X X

Discard one flight number X X

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1.34: Elasticity of citations to travel time: dropping directly connected MSA pairs
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm

F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and technology

k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1 when i = j.

When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero citations in

the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin between the

citing establishment Fi and the cited establishment Gj. Column (3) and (4) discards all ij that are ever connected with

one leg (non-stop flight), while columns (5) and (6) discard all ij that are ever connected with one flight number. The

difference between non-stop and one flight number is that one flight number could serve multiple MSAs by making

intermediate stops. Standard errors clustered at the non-directional location are presented between parentheses (ij is the

same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted values.

109For example, in 1951 NYC-LA was connected with one flight number that included one stop in Chicago,
that is two legs but only one flight number: passengers did not have to change airplanes).
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Chapter 2

Time after Time: Communication Costs

and Inventor Collaboration in the

Multinational Firm

This chapter is co-authored with Çağatay Bircan (EBRD & UCL) and Beata Javorcik (EBRD &

Oxford).

Abstract

We show that knowledge creation, as measured by patents, is increasingly conducted in

cross-border collaborative teams of inventors. We document the importance of cross-border

communication costs by showing that a higher overlap in business hours is associated

with increased cross-border collaboration. This effect is distinct from the effect of physical

distance, which matters as well. It is stronger for technology classes where lab experi-

ments are involved and thus more frequent interactions may be required. Episodes of

telecommunications liberalization (and the resulting decline in the cost of international

calls) lead to an increase in cross-border collaboration, particularly when the business hour

overlap between the headquarters and a subsidiary is larger. This effect is stronger for

experiment-based technology classes. Less successful inventors respond more than their

most successful peers.

JEL Classification: F14, F23, L23, O32, O33

Keywords: FDI; Patents; Collaboration; Knowledge Diffusion; Time Zones
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1. Introduction

Knowledge creation and diffusion are the pillars of modern growth theory. Multinational

enterprises (MNEs) play a central role in both the creation and diffusion of knowledge

across international borders. According to conservative estimates of UNCTAD (2005),

MNEs account for close to half of all global R&D expenditures and at least two-thirds of

business R&D expenditures.1

Despite the importance of R&D efforts undertaken by MNEs, there is little micro evidence

on this subject. Where do MNEs create knowledge? Is knowledge creation within a

multinational firm becoming more concentrated in a few geographic locations, or is there

more collaboration taking place across borders? What are the impediments to knowledge

creation inside the boundaries of the firm?

Due to its very nature, knowledge creation is difficult to measure. We use data on patents

and cross-border collaboration in inventor teams to capture the incidence of knowledge

creation. We follow Kerr and Kerr (2018) in defining “global collaborative patents”. These

are innovations that involve at least one inventor located in the MNE home country and

at least one inventor located in another country. Our data cover the 1980-2014 period

and include geographic location of individual inventors within a team that obtained a

patent. Matching patent data with the Orbis database, we are able to observe links between

various establishments within a multinational firm.

In our analysis, we focus on three drivers of knowledge creation within an MNE: (i) time

zone differences that lead to heterogeneity in the business hour overlap, (ii) episodes of

telecom sector liberalization, which in the 1990s and the early 2000s resulted in a sudden

and substantial decline in the price of international calls, and (iii) the interaction between

the two.

Why should time zones matter for repeated interaction beyond the role of physical dis-

tance? Although much of physical production can be fragmented into individual stages

and carried out relatively independently, innovative activity involves exchange of knowl-

edge that is both tacit and strategic to firms. Sociological studies suggest that work practices

in multinational organisations that involve knowledge work have evolved to demand

1The European Commission estimates that, in 2007, foreign-owned firms accounted for 15% of all business
R&D in the United States; 20-25% in France, Germany, and Spain; 30%-50% in Canada, Hungary, Portugal,
the Slovak Republic, Sweden, and the United Kingdom (UK); and more than 50% in Austria, Belgium, the
Czech Republic, Malta, and Ireland (Dachs et al., 2012).
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greater hours, commitment, and flexibility from their employees.2 In economics, Chauvin

et al. (2020) show that temporal distance stemming from time zone differences reduce

synchronous and impromptu communication from first-best levels within a multinational

organisation, presenting costly frictions especially for the multinational’s knowledge-

intensive work. Time zones differences have been shown to be a barrier to women sharing

in the benefits of activities by firms engaged in international trade (Bøler et al., 2018).

The last few decades have witnessed a dramatic decline in the price of international calls

(see Figure 2.10). This was largely driven by the liberalization of telecommunications

markets, a process that started in 1984 in the US with the UK, Japan and New Zealand

following suit shortly and the reforms gaining speed in Europe in the 1990s. Lower prices

of international calls were accompanied by an increase in the volume of international calls,

which in turn facilitated cross-border cooperation, including cooperation in R&D.

In this study, we hypothesize that a decline in communicating costs facilitated cross-border

knowledge production between MNE establishments in home and host countries, particu-

larly when the time zone differential was not too large. Moreover, we hypothesize that

these factors were more important for experiment-based technology classes where more

frequent communications between inventors may be required. Finally, we explore the

heterogeneous impact on inventors with different patenting histories. On the one hand,

inventors with lesser track records may stand to benefit more from international collabo-

rations and thus may be willing to incur the high costs of international communication

and the inconvenience of time zone differential. On the other hand, the presence of such

costs, which must be partially born by their collaborators located in HQ, makes them less

attractive as team members. Thus, it is ambiguous a priori whether inventors with a lesser

or with a stronger track records would be affected more by a decline in communication

costs.

In our core analysis, the outcome of interest is the share of patents produced by inven-

tors in a particular foreign affiliate of an MNE that involved cooperation with one or

more inventors from HQ. Our variables of interest include bilateral telecom liberalization

between the MNE home and host country and the interaction of liberalization with the

business hour overlap between the affiliate and the HQ. We define liberalization as both

the home and the host country having liberalized their markets, or explicitly focus on the

cost of international calls between the two countries. By considering the share of global

2For instance, Kvande (2009) discusses evidence from multinational law and computing firms that require
employees to adjust working hours to collaborate with international business partners.
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collaborative patents in all patents linked to a given foreign affiliate in a given time period,

we are implicitly controlling for all factors that drive the volume of innovative activity

in each location. By controlling for affiliate-HQ-technology fixed effects, we exploit the

variation over time and thus abstract from the possibly endogenous decision of where to

locate a foreign subsidiary. We also control for unobservable host-country-year hetoro-

geneity, and hence take into account factors that may have driven liberalization as well

as variation in the supply of potential inventors that can be hired by an MNE in a given

host country in a given year. Inclusion of these fixed effects means that our identification

comes from comparing the impact of liberalization on affiliates located in the same host

country but differing in terms of business hours overlap vis a vis their parent firm’s HQ.

Finally, technology-specific shocks are accounted for by technology-year fixed effects.

We extend the baseline analysis in three dimensions: (i) an event study focusing on

telecom liberalization episodes and comparing affiliates with high versus low time zone

differential vis a vis HQ; (ii) an examination of whether the size of inventor teams was

affected by telecom liberalization and time zone differential; and (iii) an inventor-level

analysis allowing for heterogeneous effects on inventors with different patenting histories.

Our econometric analysis produces three main sets of findings. First, in a simple cross-

sectional setting, we find that a greater overlap in business hours between MNE HQ and

affiliates leads to a higher incidence of inventor collaboration. For instance, an increase in

business hour overlap by eight hours is associated with a 39% increase in the probability

that a patent filed by inventors located in foreign affiliates involves HQ. In other words,

an inventor working for a Polish subsidiary of a German MNE is 33% more likely than an

inventor located in its Japanese subsidiary to collaborate on a patent with colleagues at

the firm’s HQ. The business hour overlap matters beyond the effect of physical distance,

which itself reduces the likelihood of cross-border collaboration (by 8% when comparing a

Japanese and a Polish subsidiary of a German MNE). It is also stronger for experimental

technology classes, where more frequent interactions are likely to be required.

Second, we show that episodes of telecom sector liberalization have led to an increase

in cross-border collaboration, particularly when the business hour overlap between the

HQ and a subsidiary was larger. The results are robust to using an indicator variable

for liberalization episodes or the cost of international calls between the two countries.

Again we show that the impact is stronger for experiment-based technology classes. These

conclusions are confirmed by event studies following the methodology by Borusyak et al.
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(2021) and comparing the impact of telecom liberalization episodes on affiliate-HQ pairs

with a large versus small business hour overlap. Let’s stick with our example of a German

MNE with a Polish and a Japanese subsidiary to illustrate the magnitudes. Our results

suggest that after telecom liberalization, the share of patents based on collaboration with

HQ filed by inventors located in the Polish subsidiary will increase by 6.4pp (22%). In

contrast, collaborative patents in the Japanese subsidiary will go up by only 2.6pp (10%).

Third, one may expect to observe an increase in the inventor team size as the communica-

tion frictions decline. This is indeed what we find. We show that the number of inventors

listed on a patent increases after telecom liberalization, particularly in affiliates having a

larger business hours overlap with HQ. The effect is driven by inventors from HQs and

not by inventors located in affiliates.

Finally, our inventor-level analysis confirms the earlier conclusions. It also indicates that

the impact of telecom liberalization in affiliates with high business hour overlap vis a

vis HQ is larger for inventors with lesser track records than for their colleagues. This is

suggestive of high costs of working across time zones. It is consistent with the scenario

where high monetary and inconvenience costs of working across time zones must be

compensated by high expected benefits of collaboration and thus favor collaboration with

inventor with a proven track record. Only when such costs decline, collaboration becomes

worthwhile with inventors from foreign affiliates who have less of a track record.

We contribute to several strands of literature. First, we contribute evidence to the literature

on where and how knowledge work is conducted within the multinational firm. Canonical

models of foreign direct investment (FDI) posit a distance-concentration trade-off, which

focus on trade in goods and do not take into account knowledge transfer (Helpman et al.,

2004). Recent studies differ on how R&D and knowledge production are incorporated

into models of FDI. Bilir and Morales (2020) model knowledge creation as concentrated in

the HQ country and exploited abroad. In Keller and Yeaple (2013), a distance-knowledge

trade-off emerges because it is more costly to transfer knowledge by direct communication

than by trading intermediates. Similarly, Gumpert (2018) models how communication

costs limit the ability of a firm’s establishments to access knowledge at the headquarters.

Our findings support the existence of substantial knowledge transfer costs, both due to time

zone differences and physical distance. They also show that multinationals increasingly

conduct their R&D operations outside their home countries and in collaborative teams of

inventors located in multiple countries. As such, the evidence is reminiscent of a vertical
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model of FDI as in Antràs et al. (2006), who study the formation of cross-country teams in

production. It is also in line with a theory of the multinational firm as an organization that

specializes in the creation and transfer of knowledge across borders (Kogut and Zander,

1993).

Second, we contribute to the body of evidence documenting the importance of communica-

tion costs and time zone differences on multinational firm organization. Stein and Daude

(2007) find that differences in time zones negatively affect FDI, while Oldenski (2012)

finds that activities requiring complex within firm communication are more likely to occur

at MNE HQ. Closest to our study is Bahar (2020), who presents evidence of a trade-off

between distance to the HQ and knowledge intensity of the affiliates’ industry. We extend

this literature by explicitly showing that a decline in international communication costs

has differential effects depending on the business hour overlap between the HQ and a

foreign affiliate.3

Third, we add to the literature on cross-border collaboration in knowledge work. Kerr

and Kerr (2018) find, in a sample of publicly listed companies from the United States (US),

that global collaborative patents are frequently observed when a firm enters a new foreign

region for innovative work, especially where intellectual property protection is weak. They

also find that collaborative patents are higher quality than patents produced by inventor

teams located only in the US, and employment of ethnic inventors at home is related

to cross-border collaboration.4 Catalini et al. (2020) show that travel costs constitute an

important friction to collaboration between inventors, especially for high-quality scientists.

Similarly, using the introduction of the jet engine to civil aviation in the 1950s as an

exogenous reduction in travel time, Pauly and Stipanicic (2021) find that a decrease in

travel time between two cities lead to an increase in patent citations between them. Our

inventor-level analysis extends this literature by pointing out how the interaction between

a drop in communication costs and the time zone differential affect collaborations of

inventors with different track records. We show that a decline in communication frictions

tends to benefit inventors with lesser track records more.

3One proposed reason for the negative relationship between distance (both physical and cultural) and
FDI is the difficulty of a parent firm to monitor the activities of its affiliates abroad (Blonigen et al., 2020).
Monitoring costs can be especially high in the context of innovative activity, where parent firms have an
incentive to protect the leakage of proprietary technology. Our results suggest that business hour overlap
may contribute to the difficulty of monitoring.

4Related, Foley and Kerr (2013) find that increases in the share of a US multinational’s innovation
performed by inventors of a particular ethnicity at home are associated with increases in the share of that
firm’s affiliate activity in countries related to that ethnicity.
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Recent research suggests that ideas are getting harder to find (Bloom et al., 2020). Patents

increasingly involve large research teams and evidence shows that interactions with better

inventors are strongly correlated with subsequent productivity (Akcigit et al., 2018).5 This

increases the importance of collaboration across borders and ability of large teams of

inventors to work together, often facilitated by within-firm mobility. Our work sheds new

light on the determinants of cross-border collaboration.

Fourth, our paper adds to the literature on FDI and the geographic diffusion of knowledge

and technology (Keller, 2004). Keller (2002) finds that productivity effects of R&D are

declining in distance, while Bilir and Morales (2020) show that parent and affiliate R&D

activities are complementary. We contribute to this literature by documenting that a

decline in communication frictions lead to more R&D collaboration between HQ and MNE

affiliates, thus increasing their complementarity.

The remainder of this paper is structured as follows. We describe our data in Section

2. The subsequent section presents stylised facts. Section 4 contains our results on the

determinants of global collaborative patenting activity. Section 5 focuses on the telecom

liberalization episodes at the level of the establishment, while in section 6 we disaggregate

the analysis further down to the inventor level. Concluding remarks appear in Section 7.

2. Data

2.1. Patents

The main patent dataset underlying our analysis comes from USPTO’s (United States

Patent and Trademark Office) PatentsView project. PatensView covers the universe of US

patents. Crucially, it contains inventor identifiers resulting from a disambiguation exercise

and information on inventor location (at the city level). Inventor location allows us to

pinpoint where knowledge creation takes place, while the inclusion of identifiers allows

us to track inventors across time and space.

We combine the USPTO data with EPO’s PATSTAT (Spring 2021 edition) using publication

numbers. PATSTAT is an effort to collect data on patent filings from all over the world.

5Akcigit et al. (2018) introduce an endogenous growth model with knowledge diffusion in which inventors
learn from each other via collaboration. They quantify the importance of interactions for growth by studying
the effects of reducing interaction costs, such as IT or infrastructure, on inventors’ learning and knowledge
accumulation.
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Importantly, this provides us with patent filings at EPO and JPO, two important patent

offices other than the USPTO.

We focus on patent families, where a patent family is defined as a collection of patents

concerning the same invention in potentially multiple patent offices around the world. In

this way, we count a single invention only once and consider the date of its first filing as

the relevant date. Our analysis focuses on triadic patent families, which include patents

granted at all three of the patent offices mentioned earliers (USPTO, EPO, JPO).6 These

patent families capture the most important inventions relevant at a global level.7

2.2. Building our data set

The purpose of our analysis is to understand drivers of cross-border collaboration in

innovation within a multinational firm. This requires several ingredients.

First, we need to be able to match patents to a firm. A firm can register legal ownership of a

patent in a subsidiary that is located in a country different to the firm’s HQ, different to the

location where the underlying technology was created (i.e. where inventors reside), and

different to the location where the intellectual property will be applied (Griffith et al., 2014).

Therefore, it is crucial that we accurately identify the firm that is the ultimate owner of a

patent and understand where exactly the invention was created. This requires assigning

patents to firms. To do so, we use the Orbis Intellectual Property (IP) database, provided

by Bureau van Dijk. Orbis IP sources its patents data from Lexis Nexis and maps the

assignee (or patent owner) names indicated on the patent to Orbis firm identifiers based

on a textual matching algorithm and extensive manual checks (see appendix A).

We then use Orbis’s data on ownership links to identify the global ultimate owner (GUO)

of the assignee. In the analysis below a GUO is our definition of a firm. The ownership

links were extracted in September 2020 and they reflect the state of the world at that point

in time. As we combine the data on ownership links with historical patent data, we may

attribute some patents and inventors to a firm that at the time of the patent filing were

not part of it, but that the firm subsequently acquired. We would then be confounding

6Note that triadic patents are sometimes defined as patent families granted in the US and filed, but not
necessarily published, at EPO and JPO. We instead require the patent family to include a publication in all
three offices. This ensures a reasonable sample coverage.

7Note that EPO uses two different definitions of patent families: the simple (DOCDB) and the extended
(INPADOC) definition. We use the extended definition here which groups together all applications that have
at least one priority in common. In what follows, we use the terms ”patent” and ”invention” interchangeably,
both of which refer to the relevant patent family.
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an effect that operates through acquisition with an effect operating in a fixed network

of establishments. Our robustness check focusing only on foreign affiliates that already

existed in the 1980s alleviates this concern.

Second, we need to know where the innovative activity actually took place. We obtain

this information from the patent data, which give us the location of each inventor who

contributed to the patent.

Third, we need to define what we mean by cross-border collaboration within an MNE.

We focus on collaboration between inventors located in the MNE HQ country and those

located in its foreign affiliates. While we could potentially consider collaboration between

all pairs of entities within an MNE, this would result in a very large and sparse matrix. In

addition, innovation is likely to follow a hub-and-spoke model, i.e., most collaboration

takes place between an R&D hub in the home country and individual subsidiaries. We

thus restrict our analysis to HQ-subsidiary collaboration.8

Fourth, we need to decide which MNE establishments to consider. Given the nature of the

research question, we want to consider only establishments engaged in R&D, which in our

case means establishments where at least one inventor listed on a patent belonging to an

MNE was located. We define establishments based on patent data, using the information

on the inventors’ location of residence to identify the country and time zone where they

are located.9 Our definition of establishment comprises all inventors working for a given

firm while located in a particular country and time zone. This implies that countries with a

single time zone will have at most one establishment of a given firm, while countries with

multiple time zones can have multiple establishments belonging to the same MNE. In other

words, our approach amounts to pooling together patents for multiple establishments

belonging to a single MNE and located in the same time zone of a single country. But it

also implies that an MNE may have more than one establishment in its HQ country if the

country has multiple time zones.

Figure 1 below illustrates our approach in the context of Pfizer. Pfizer’s R&D HQ country

is the United States, where the company has establishments in each of the four time zones.

8In our estimation sample of patents with at least one inventor based at a foreign affiliate, around 7.7% of
patents are affiliate-affiliate collaborations without HQ-involvement. 29.8% of patents are in collaboration
with HQ inventors (40.9% weighted by citations). Thus, collaboration indeed seems to follow a hub-and-
spoke model, especially for the patents of highest quality. Nevertheless, affiliate-affiliate collaborations are
also present in the data and should be studied further in future work.

9We use the R package lutz to infer the time zone from inventor locations.
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Thus when we consider cross-border collaboration between the US and Canada within

Pfizer, we will consider 12 cases of possible cooperation (4 Pfizer locations in the US x

3 Pfizer locations in Canada). We further consider collaborations between each of the 4

Pfizer locations in the US and all other countries where Pfizer has foreign affiliates.

Fig. 2.1. Pfizer’s establishments

Our final dataset includes 509,884 patent families that are matched to a firm. It accounts

for 83% of all granted triadic patents over the period 1980-2014 (or 84% when weighting

by citations). For more details, see appendix Sample Coverage.

2.3. Variable Definitions

The following variables are used in our analysis.

• Collaboration: this is our outcome variable of interest. It captures the share of patents

obtained by inventors located in a given establishment that involve at least one

inventor based in the HQ country of the firm.

• Business Hour Overlap: We take the the difference in time zone between the HQ

location and the foreign establishment location. The maximum difference is 12 hours.

Then we define business hour overlap as 8 hours minus the time zone difference,

setting negative values to 0, so that our overlap variable ranges from 0 to 8 hours.
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• Distance: The establishment location is defined as the centroid of the country-time

zone pair. The distance is the geodesic (or straight-line) distance between the two

establishment locations.

• Technology: Our definition of a technology corresponds to a 4-digit IPC class. There

are around 650 such classes.

• The year of liberalization of the market for international calls in a given country

comes from Table 1 in Boylaud and Nicoletti (2000).

• Bilateral data on prices of international calls were collected from OECD reports for

the years 1990, 1998 and 2003 (see OECD (1994), OECD (1999) and OECD (2003)).

These contain bilateral rates for international phone calls from country A to country

B at the peak hour. We convert these rates to a per-minute rate in 1990 US dollars.

The rates pertaining to calls from A to B and from B to A are typically not the same,

we consider the average or the minimum of the two in our analysis.

• Star inventors: We measure inventors’ initial productivity by computing the number

of all patents they filed prior to 1990, regardless of the firm filing the patent.10 We

then define as stars the top 25% of all inventors working in foreign establishments of

a given firm. In a robustness exercise, we also use the top 10% or the (log) number

of patents filed by an individual inventor before 1990. In yet another definition, we

weight the number of patents by citations received before 1990 and recompute the

top 25%.

2.4. Experiment-Intensive Technologies

In order to identify technologies that rely on high-intensity communication, we perform

analysis on patent texts. We focus on the brief summary text provided by PatentsView

for all patent applications filed at the USPTO in the year 2000 and search for the words

“experiment” and “trial”. We compute the share of patents containing at least one of these

terms within each technology class and define a technology as experiment-intensive if

this share is higher than 35.7% (the median share in the regression sample). For around

5% of observations, we are not able to classify the technology class using the procedure

outlined above, as these technologies are not present in the sample of US patents we use

for classification.

To get a sense of the broad fields in which our experiment-intensive technologies are con-

centrated, table 2.8 shows the share of experiment-intensive technologies (4-digit) within

10We capture any patent that appears in the USPTO’s PatentsView data. This dataset contains patents
granted from 1976 onwards.
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each more aggregate technology grouping (1-digit). Among these technology groupings,

chemistry patents involve the most experimentation and electricity and fixed constructions

patents the least. Table 2.9 displays the 15 most common 4-digit technology classes in our

sample and how they are classified. Again we see chemistry-related technology classes

having the largest share of experimental patents.

In figure 2.9, we correlate the share of experimental patents by technology with other patent

classifications. We show that experimental technologies tend to be more process-intensive

(based on data from Ganglmair et al. (2022)) and more scientific (based on data from

Marx and Fuegi (2020)). We will show below that experimental technologies nevertheless

capture something distinct that matters for communication frictions.

3. Stylized Facts

This section contains a few stylized facts to motivate our analysis.

A large share of patenting activity takes place outside of MNE HQ countries and is

driven by inventors located in foreign affiliates. Table 2.1 lists the top 10 HQ countries

in our sample in terms of the number of patent families attributed to MNEs. The most

innovative country in the sample, Japan, is the least collaborative: only around 11% of

patents filed by Japanese MNEs involved also inventors located outside of Japan. In

contrast, around 39% of all inventions filed by US MNEs involved at least one inventor

from a foreign affiliate. European MNEs stand out when it comes to patenting innovations

created outside HQ countries and the incidence of HQ-affiliate collaboration. In German

MNEs, 28% of patents involved global collaboration. MNEs from the Netherlands and

Switzerland have notably high levels of innovative activities abroad.
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Table 2.1: Patent Families and Collaboration Patterns by Country

HQ Country Number of

patent families

Only HQ inven-

tors (in %)

Only foreign af-

filiate inventors

(in %)

HQ-affiliate

collaboration (in

%)

JP 110277 88.71 5.82 5.47

US 76772 60.60 16.33 23.06

DE 34077 58.63 12.92 28.45

FR 17353 50.81 24.91 24.28

KR 13555 77.29 6.54 16.17

GB 7031 34.79 32.20 33.01

SE 6384 48.29 26.10 25.61

IT 5311 55.71 13.22 31.07

NL 4796 8.42 48.81 42.76

CH 4571 5.73 55.83 38.44

Liberalization of the telecom sector has led to a rapid decline in the cost of international

calls and an exponential increase in the call volume. Table 2.10 presents the results of

regressing call prices between country pairs on a binary variable that equals 1 if telecom

sectors in both countries are liberalized. We find that telecom prices declined between

30% and 40% after liberalization11. Figure 2.11 shows the sharply increasing call volumes

during the liberalization period12.

Collaboration of affiliate-based inventors with HQ has been on the rise, especially in

affiliates with a high overlap in business hours vis a vis the HQ. The share of cross-

border collaboration in patenting has doubled from 13.5% in 1980 to around 27.3% in 2014

for establishment pairs with a high overlap in business hours (see figure 2.2). For affiliates

located further away in terms of time zones, the increase in collaborations has been less

impressive, as such collaborations went from from 8.7% in 1980 to 13.4% in 2014. Thus the

temporal distance is alive and well, with the importance of time zone differences being

exacerbated by improved communication technology.

11In figure 2.10 we plot a histogram of bilateral price changes between 1990 to 2003.
12We do not have data on the bilateral volume of calls and can thus not rerun the price regression with call

volumes.
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Fig. 2.2. Cross-border Collaboration over Time

Notes: This figure shows the share of patents filed by affiliate inventors that involve at least one HQ inventor.
High overlap contains affiliates having more than 4 business hours overlap with HQ.

The rise in cross-border collaboration has been stronger in experimental technology

classes. Inventors, located in affiliates with a high business hours overlap vis a vis

MNE HQ, increased collaboration with HQ-based inventors, particularly in experimental

technology classes. Their share of collaborative patents has tripled, increasing from

11.4% in 1980 to 36.4% in 2014. A much less pronounced rise has been registered in non-

experimental technology classes or in affiliates with with a greater temporal distance to

HQ (see figure 2.3).

162



Fig. 2.3. Cross-border Collaboration over Time by Technology

Notes: This figure shows the share of patents filed by affiliate inventors that involve at least one HQ
inventor. High overlap contains affiliates having more than 4 business hours overlap with HQ. Experimental
technology classes are defined as in section 2.4.

The rise in cross-border collaborations has been driven by less experienced inventors in

affiliates with greater business hour overlap with the HQ. Figure 2.4 shows a growing

share of collaborative patents involving affiliate inventors with lesser temporal distance

to HQs. This rise is particularly pronounced for non-star inventors, i.e., inventors with a

lesser track record.
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Fig. 2.4. Cross-border Collaboration over Time by Inventor Type

Notes: This figure shows the share of patents filed by affiliate inventors that involve at least one HQ inventor.
High overlap contains affiliates having more than 4 business hours overlap with HQ. Star inventors are
the top 25% inventors that had filed the most patents in USPTO data up to the year 1989 (see section 2 for
details).

Patents filed by foreign-based inventors are of higher quality when collaborating with

HQ. In table 2.11 we regress the number of forward citations on a binary variable which

equals 1 if there is at least one HQ inventor on the patent. Even after controlling for firm,

inventor, country-technology fixed effects and the (log) number of inventors collaborative

patents receive around 10% more citations (significant at the 1% level). This motivates our

focus on HQ collaboration.

4. Cross-border Collaboration and Time Zones

In the first pass at the data, we abstract from the telecom liberalization and examine the

drivers of cross-border collaboration in a cross-sectional setting. We estimate the following

equation:
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Collaborationaht = α1Overlapah + α1Overlapah ×Experimentalt +FEc(a)t +FE f (a)+ ϵaht

(2.1)

where Collaborationaht is the share of patents filed by inventors in foreign affiliate a in

technology t that are in collaboration with inventors located in HQ establishment h of the

same MNE.13 Focusing on the share of patents as our outcome variable implicitly controls

for all factors that may determine the scale of R&D activity in affiliate a or the likelihood

of R&D outputs being converted into patents.

The explanatory variables of interest are the overlap in business hours between the time

zone in which affiliate a is located and the time zone of the MNE’s HQ establishment

h (Overlapah) and its interaction with an indicator for experimental technology classes.

The affiliate country-technology fixed effect captures unobservable heterogeneity related

to innovative prowess of the host country. Thus our identification relies on variation in

business hour overlap between foreign affiliates operating in country c and technology

t and their parent companies in various home countries. The MNE fixed effect captures

the possibility of different firms having different willingness to engage in cross-border

collaboration in innovative activity. Standard errors are clustered at the location pair-

technology level.14

We hypothesize that a high overlap in business hours reduces communication frictions

and thus increases collaboration (α1 > 1). In addition, we expect technology classes that

require a high frequency of interactions to be more sensitive to time zone differences.

We thus interact our main independent variable with an indicator variable that captures

whether t is an experimental technology class (Experimentalt) and expect α2 > 0.

The results presented in Table 2.2 confirm our hypothesis that business hour overlap

facilitates cross-border collaboration. In all specifications, the coefficient on the business

hour overlap is positive and statistically significant at the 1 percent level. Inventors in

experimental technology classes benefit more from higher overlap in business hours,

with the effect statistically significant at the 1 and the 5 percent level in columns 2 and 4,

13In the case of countries spanning multiple time zones, establishments located in different time zones will
enter the sample as separate observations.

14The results are robust to clustering at the firm level.
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respectively.

The magnitude of the estimated effects is economically meaningful. Column 1 implies that

an increase in business hour overlap by eight hours is associated with a 39% increase in

the probability of a patent involving HQ for inventors located at foreign affiliates. In other

words, an inventor working for a Polish subsidiary of a German multinational is 39% more

likely than an inventor located in its Japanese subsidiary to collaborate on a patent with

colleagues at the firm’s HQ.

There are several threats to our interpretation of the results. First, there may be other

variables correlated with business hour overlap. In particular, geographical distance

may be both correlated with temporal distance and important for collaboration patterns,

e.g. because of increased travel time. In columns 3 and 4, we show that controlling for

geographical distance barely changes our estimated coefficients. As previous studies

we find a negative effect of geographical distance on collaboration. While an important

determinant of collaboration, we find that physical distance matters less than temporal

distance. Inventors based in Tokyo collaborate 8% less with their Berlin HQ than their col-

leagues in Warsaw. Finally, we find no evidence that the effect of physical distance matters

more for experimental technologies, suggesting that business hours overlap captures a

distinct friction to communication especially relevant for projects with a high frequency of

interactions.

A second concern is that experimental technologies might feature other characteristics that

make collaboration difficult when temporal distance is high. In a robustness check (not

shown to save space), we classify technology classes by how much they rely on scientific

articles and by how process- rather than product-intensive they are. Controlling for the

interaction of these technology characteristics and business hour overlap barely affects

the baseline results. In addition, using a continuous measure of the share of experimental

patents by technology class yields a highly significant effect.

The cross-sectional analysis presented thus far provides suggestive evidence of a sub-

stantial effect of business hour overlap on collaboration patterns. Nonetheless, a causal

interpretation of the results remains difficult. Firms may anticipate the difficulty caused by

temporal distance and adapt the nature of investments they make. For example, a German

MNC may strategically locate tasks or personnel in Japan requiring little collaboration

whereas placing those with a high need for interaction in its Polish subsidiary. The follow-

ing section addresses this concern by exploiting exogenous variation in communication
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costs stemming from the liberalization of telecommunication sectors. By relying on tempo-

ral variation with affiliate-HQ-technology cell, it abstracts from concerns about location of

new subsidiaries responding to telecom liberalization.

Table 2.2: Collaboration, Business Hour Overlap and Distance

Share Collaboration

(1) (2) (3) (4)

Overlap 0.0646∗∗∗ 0.0593∗∗∗ 0.0582∗∗∗ 0.0526∗∗∗

(0.0019) (0.0020) (0.0033) (0.0034)

× Experimental 0.0111∗∗∗ 0.0120∗∗

(0.0028) (0.0059)

log(distance) -0.0100∗∗∗ -0.0103∗∗∗

(0.0034) (0.0035)

× Experimental 0.0014

(0.0050)

Observations 316,875 316,875 316,875 316,875

R2 0.47 0.47 0.47 0.47

Dependent variable mean 0.36 0.36 0.36 0.36

Fixed Effects

GUO ✓ ✓ ✓ ✓

Host Country-Technology ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2.1. Standard errors are clustered at the location
pair-technology level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

5. Liberalization of Telecommunication Markets

The next step in our analysis takes advantage of the temporal variation in the timing of

telecom liberalization episodes across countries. The underlying intuition is that liber-

alization of a telecom market brings competition and leads to a decline in the price of

international calls, which in turn boosts communications between affiliates and HQ and

facilitates cross-border cooperation. We hypothesize that the impact of liberalization will

be increasing in the business hour overlap between the affiliate and HQ. Put differently, we

conjecture that if a large time difference makes communications very inconvenient, a drop
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in the price of international calls is not going to compensate fully for this inconvenience.

Table 2.13 shows the year of telecom liberalization for OECD countries. Among them, only

the US, UK and Japan liberalized in the 1980s, followed by other Commonwealth countries

and Sweden in the early 1990s and Western Europe in 1998. Our empirical approach

exploits this staggered pattern of liberalization.

5.1. Baseline

To test our hypothesis we estimate the following equation:

Collaborationahty = β1 ×Liberalizationc(a)c(h)y + β2 × Liberalizationc(a)c(h)y × Overlapah+

+ FEaht + FEc(a)y + FEty + ϵahty (2.2)

where Collaborationahty is the share of patents filed by inventors in foreign affiliate a in

technology t in year y that are in collaboration with inventors located in HQ establishment

h of the same MNE. Liberalizationc(a)c(h)y measures whether markets for international calls

have been liberalized in both the affiliate country c(a) and the HQ country c(h) in year y.

Because of the so called termination fees, the liberalization status of both markets matters.

To study whether the impact of liberalization varies with the type of communication

required, we estimate equation 2.2 for the full sample, and separately for experimental

and other technology classes.

We include several sets of fixed effects. First, all our specifications include establishment-

pair-technology fixed effects (aht), meaning a fixed effect for firm f ’s affiliates in a particular

time zone of host country c(a) and a particular time zone of home country c(h). This

implicitly requires firm f ’s presence in a particular time zone of country c both before and

after the two-sided liberalization of the telecom markets, thus eliminating the possibility

that our results are driven purely by entry of MNEs into a new location. This also elimi-

nates any other time-invariant factors that may drive research collaboration between two

establishments, such as a common language or historical ties.

Second, we control alternatively for affiliate-country-time (c(a)y) or HQ-country-time

(c(h)y) fixed effects. The former allow us to take into account unobservable affiliate-
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country-time heterogeneity (that may be driving affiliate country liberalization) and use

variation in geographic location of HQ to identify the effects of interest. Thus differences

in timing of liberalization across pairs of countries and differences in time zones across

host countries are the source of identifying variation. Alternatively, we account for un-

observable HQ-country-time heterogeneity and use variation across affiliate countries of

MNEs.

Third, we include technology-time fixed effects (ty), capturing any technology-specific

changes in collaboration patterns. For example, as industries mature and products become

more complex, innovation may require increasingly larger teams.

The results, presented in Table 2.3 are supportive of our hypothesis. The impact of telecom

liberalization on cross-border R&D collaboration increases in the business hour overlap

between the affiliate and the HQ. In most specifications, no statistically significant impact

is present if there is no overlap in business hours. In addition to the continuous variable

capturing overlap in business hours, we estimate a variation of equation 2.2, dividing the

liberalization variable into two-hour intervals of business hour overlap (columns 4 to 6).

We find that telecom liberalization has its biggest impact when temporal distance is lowest,

i.e. a business hour overlap of at least 6 hours.

The liberalization impact is generally larger and varies more with business hour overlap

for experimental technology classes, confirming our earlier results that communication

frictions are more relevant in technology classes that plausibly require more exchange

between inventors.
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Table 2.3: Telecom Liberalization and Collaboration

Share Collaboration

Full Sample Experimental Non-experim. Full Sample Experimental Non-experim.

(1) (2) (3) (4) (5) (6)

Liberalization 0.0154 0.0234 0.0050

(0.0143) (0.0167) (0.0209)

× Overlap 0.0208∗∗∗ 0.0258∗∗∗ 0.0124∗∗

(0.0059) (0.0081) (0.0052)

× 0-2 hours 0.0260∗ 0.0384∗∗ 0.0081

(0.0141) (0.0149) (0.0212)

× 2-4 hours 0.0422 0.0372 0.0548∗∗

(0.0345) (0.0474) (0.0213)

× 4-6 hours 0.0446∗∗ 0.0452∗ 0.0561∗∗

(0.0201) (0.0251) (0.0236)

× 6-8 hours 0.0639∗∗∗ 0.0858∗∗∗ 0.0306∗

(0.0140) (0.0176) (0.0182)

Observations 575,780 293,241 282,539 575,780 293,241 282,539

R2 0.84 0.81 0.87 0.84 0.81 0.87

Dependent var. mean 0.27 0.28 0.26 0.27 0.28 0.26

Fixed Effects

Est. Pair-Technology ✓ ✓ ✓ ✓ ✓ ✓

Year-Host Country ✓ ✓ ✓ ✓ ✓ ✓

Year-Technology ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2.2. Standard errors are clustered at the country-
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

To better understand the magnitude of the result, take the estimates in column 4 of table

2.3 and consider a German MNE with a Polish and a Japanese subsidiary with 8 and 0

hour business hour overlap, respectively. After telecom liberalization, the share of patents

in collaboration with HQ filed by inventors located in the Polish subsidiary will increase

by 6.4pp (22%). In contract, collaborative patents in the Japanese subsidiary will increase

by 2.6pp (10%).15 Thus, the effect of telecom liberalization on collaboration is more than

twice as large for the Polish affiliate, both in absolute and relative terms.

Table 2.14 shows that the result is robust to focusing on affiliates that already existed

in the 1980s. This further alleviatates concerncs about telecom liberalization triggering

FDI, thereby leading to creation of new establishments. Table 2.15 in the appendix shows

that results are robust to using the variation coming from affiliate-country liberalization

15The relative effect is computed using the pre-treatment mean for each interval of business hour overlap.
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by including HQ-country-year fixed effects. Finally, instead of splitting the sample, we

interact our liberalization and overlap variables with the indicator capturing experimental

technologies. Table 2.16 shows that this triple interaction term yields a statistically sig-

nificant coefficient, again supporting our conjecture that experimental technologies are

affected more.

5.2. Event Study

The panel nature of our data allow us to conduct event studies. Specifically, we test whether

collaboration patterns were already on the rise prior to telecom liberalization in country

pairs with high business hour overlap relative to those with low business hour overlap.

This test also allows us to document how telecom liberalization affects collaboration over

time. For the event study, we estimate:

Collaborationahty =
d=15

∑
d=−10
d ̸=−1

β1,d✶{y = d + y0c(a)c(h)}+

+
d=15

∑
d=−10
d ̸=−1

β2,d✶{y = d + y0c(a)c(h)} × Overlapah + FEaht + FEc(a)y + FEty + ϵahty (2.3)

This specification resembles equation 2.2, but we allow for a time-varying impact of

liberalization rather than relying on a simple pre- versus post-liberalization comparison.

y0c(a)c(h) denotes the first year where both the affiliate country and HQ country have

liberalized their telecom markets. Again, we estimate this model on the full sample and

the two subsamples of technology types separately.

Figure 2.5 shows our estimates for β2. We do not detect any changing collaboration

patterns by business hour overlap prior to telecom liberalization. This lends support to the

assumption that, in the absence of telecom liberalization, cross-border collaboration would

have followed similar patterns in all country pairs regardless of business hour overlap.

Panel b shows that the effect is more pronounced for experimental technologies. It takes

around five years for the effect to kick in. This is to be expected as it takes time to start

new collaborations and develop new patentable ideas.

171



Fig. 2.5. Event Study of the Impact of Telecom Liberalization on Collaboration

(a) Full Sample

(b) Split by Technology

Notes: This figure reports the results of estimating equation 2.3. Standard errors are clustered at the
country-pair level. 90% confidence intervals are shown.
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A recent set of methodological papers on difference-in-differences shows that traditional

two-way fixed effects may produce misleading estimates when the treatment effect is

heterogeneous between groups or over time.16 Although these studies propose alternative

estimators that are robust to such heterogeneity, they do not deal with cases as in our

baseline equation (2.2), where the treatment variable, Liberalizationc(a)c(h)y, is interacted

with a continuous term, Overlapah.

We therefore modify our event study specification in equation (2.3) to present results

from one of these alternative estimators. Specifically, we redefine our treatment variable

to equal 1 for affiliate and HQ country pairs that both liberalize their telecom markets

and that have a business hour overlap of greater than four hours. We then employ the

imputation estimator of Borusyak et al. (2021) to estimate the treatment effect in the

ten years before and fifteen years after the liberalization episode.17 Figure 2.12 in the

Appendix confirms the lack of pre-trend effects prior to liberalization and corroborates the

finding that cross-border collaboration has increased by around 5 percentage points in the

decade following it (panel a). As in our baseline estimates, these effects are stronger for

experimental technology classes (panel b) and statistically indistinguishable from zero for

non-experimental technologies (panel c).

5.3. International Call Prices

An alternative (and a more direct) way of capturing telecom price liberalization is to focus

on the actual price of international calls. Figure 2.10 shows a histogram of call rate changes

from 1990 to 2003. As visible in the figure, prices of international calls declined over this

period for essentially all country pairs, though with substantial heterogeneity. The average

rate declined by around 160%. Whereas the US generally saw a low decline in international

call rates over this period, the European liberalization of telecommunication markets in

the late 1990s resulted in a large drop in rates for those countries.

Thus next, we exploit heterogeneity in changes of international call prices across country

pairs and estimate the following equation:

16See Roth et al. (2022) for an overview of this literature.
17To achieve the imputation estimates, we can only include unit (affilitate and HQ country pair) and time

(filing year) fixed effects in this revised specification.
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Collaborationahty = β1 × log(Call Pricec(a)c(h)y)+ β2 × log(Call Pricec(a)c(h)y)× Overlapah+

+ FEaht + FEc(a)y + FEty + ϵahty (2.4)

This equation is very similar to our previous specification in equation 2.2, but there are two

differences. First, the indicator variable for the liberalization episodes has been replaced

with Call Pricec(a)c(h)y. This variable is defined as the per-minute price for an international

phone call between the affiliate and the MNE’s HQ country.18 Second, because the data

on call prices are available only for 1990, 1998 and 2003, y now represents 5-year periods

(1990-1994, 1998-2002 and 2003-2007) instead of annual observations.

The results, presented in table 2.4 below, provide further support for our hypothesis. A

decline in call prices, i.e. communications costs, boosts the share of cross-border collab-

orative patents only in the presence of some overlap in the business hours between HQ

and affiliates. The mean reduction in minimum call prices between 1990 and 2003 in

the regression sample is around 2.19 log points. This would translate to an increase in

collaboration of around 7.8 percentage points for the German-owned Polish subsidiary

and no statistically significant effect for the Japanese affiliate of the same firm.

18As call prices are not necessarily symmetric, i.e. calling from country A to B can be less/more expensive
than vice versa, we take the minimum of both prices.
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Table 2.4: International Call Prices and Collaboration

Share Collaboration

Full Sample Experimental Non-experim. Full Sample Experimental Non-experim.

(1) (2) (3) (4) (5) (6)

log(Minimum Call Price) 0.0008 -0.0055 0.0101

(0.0124) (0.0149) (0.0120)

× Overlap -0.0131∗∗∗ -0.0136∗∗∗ -0.0127∗∗∗

(0.0027) (0.0037) (0.0037)

× 0-2 hours -0.0079 -0.0152 0.0022

(0.0127) (0.0149) (0.0119)

× 2-4 hours -0.0268∗ -0.0118 -0.0549∗∗∗

(0.0154) (0.0181) (0.0192)

× 4-6 hours -0.0306 -0.0448 -0.0153

(0.0198) (0.0436) (0.0318)

× 6-8 hours -0.0355∗∗∗ -0.0430∗∗ -0.0255∗∗

(0.0131) (0.0167) (0.0117)

Observations 232,577 114,138 118,439 232,577 114,138 118,439

R2 0.95 0.94 0.96 0.95 0.94 0.96

Dependent var. mean 0.31 0.33 0.30 0.31 0.33 0.30

Fixed Effects

Est. Pair-Technology ✓ ✓ ✓ ✓ ✓ ✓

Period-Host Country ✓ ✓ ✓ ✓ ✓ ✓

Period-Technology ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2.4. Standard errors are clustered at the country-
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

5.4. Team Size

A decline in communication costs may be expected to an increase in the size of inventor

teams. This is the question we turn to in this subsection and estimate the following

specification:

log(Team Size)ahty = β1 ×Liberalizationc(a)c(h)y + β2 × Liberalizationc(a)c(h)y × Overlapah+

+ FEaht + FEc(a)y + FEty + ϵahty (2.5)

where the dependent variable now captures the average number of inventors listed on all

collaborative patents involving foreign affiliate a and HQ establishment h in technology
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class t in year y. The right-hand-side of the equation remains as before. We take logs of the

dependent variable, since the size of inventor teams is right-skewed19.

The results, presented in column 1 of table 2.5 mirror our earlier findings and confirm our

priors. As anticipated, telecom liberalization leads to an increase in the size of inventor

teams but only when there is a substantial business hour overlap between a foreign affiliate

and HQ. To unpack these results, we disaggregate the dependent variable to measure the

number of inventors involved based in a foreign affiliate (column 2) and in HQ (column 3).

Greater response of HQ-based inventors seems to be driving the results.

Table 2.5: Liberalization and Team Size

log(Team Size)

Inventors Located in HQ or Affiliate Affiliate HQ

(1) (2) (3)

Liberalization -0.0216 -0.0271 0.0056

(0.0212) (0.0229) (0.0257)

× Overlap 0.0226∗∗ -0.0039 0.0358∗∗∗

(0.0091) (0.0099) (0.0082)

Observations 575,780 575,780 575,780

R2 0.79 0.73 0.88

Dependent variable mean 0.94 0.62 0.40

Fixed Effects

Establishment Pair-Technology ✓ ✓ ✓

Year-Host Country ✓ ✓ ✓

Technology-Year ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2.5. Standard errors are clustered at the country-
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

6. Inventor-level Analysis

So far, the focal point of our analysis has been a foreign affiliate of an MNE. In a final step

of our study, we further exploit the granularity of patent data by conducting inventor-level

19When we focus on HQ inventors only, we use a log(1 + x) transformation instead, since the HQ team
size can be zero.
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analyses. This allows us to study whether the effects of communication frictions vary with

inventor characteristics. In particular, guided by the existing literature, we distinguish

between established or star inventors and their peers with a lesser track record.

6.1. Baseline

We start by estimating the following equation:

Collaborationiahy =β1 × Liberalizationc(a)c(h)y+ (2.6)

+β2 × Liberalizationc(a)c(h)y × Overlapah+

+FEah + FEc(a)y + FEi + ϵiahy

This equation is similar to our baseline establishment-level specification (equation 2.2)

but to simplify the analysis we drop the technology dimension. This leaves us with

an establishment-pair fixed effect (ah) and an affiliate-country-time fixed effect (c(a)y).

In some specifications, we also include an inventor fixed effect (i), controlling for any

time-invariant inventor characteristics.

The inventor-level analysis confirms the findings of the affiliate-level analysis. The esti-

mates in table 2.6 show that liberalization matters for cross-border collaboration when the

overlap in business hours is high. Importantly, the results remain similar after including

inventor fixed effects. This implies that our earlier results were not driven by a change in

the composition of employees at the establishment level around liberalization episodes,

but rather that individual inventors start collaborating more with HQ after liberalization.
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Table 2.6: Telecom Liberalization and Collaboration - Inventor Level

Share Collaboration

(1) (2) (3) (4)

Liberalization 0.0030 -0.0202

(0.0195) (0.0147)

× Overlap 0.0242∗∗∗ 0.0220∗∗∗

(0.0041) (0.0034)

× 0-2 hours 0.0182 -0.0101

(0.0217) (0.0156)

× 2-4 hours 0.0340 0.0205

(0.0298) (0.0326)

× 4-6 hours 0.0255 0.0007

(0.0254) (0.0246)

× 6-8 hours 0.0514∗∗ 0.0338∗∗

(0.0199) (0.0165)

Observations 526,808 526,808 526,808 526,808

R2 0.54 0.77 0.54 0.77

Dependent var. mean 0.16 0.16 0.16 0.16

Fixed Effects

Establishment Pair ✓ ✓ ✓ ✓

Year-Host Country ✓ ✓ ✓ ✓

Inventor ✓ ✓

Notes: This table reports the results of estimating equation 2.6. Standard errors are clustered at the country
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

6.2. Star Inventors

In the final part of our study, we explore heterogeneous impacts on inventors with different

patenting histories. As discussed in the introduction, a priori the effects on star inventors

versus their less successful peers are ambiguous. On the one hand, inventors with lesser

track records may stand to benefit more from international collaborations and thus may

be willing to incur the high costs of international communication and the inconvenience

of time zone differential. On the other hand, the presence of such costs, which must be
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partially born by their collaborators located in HQ, makes them less attractive as team

members.

To examine these differential impacts we estimate the following equation:

Collaborationiahy =β1 × Liberalizationc(a)c(h)y+ (2.7)

+β2 × Liberalizationc(a)c(h)y × Overlapah+

+β3 × Liberalizationc(a)c(h)y × Stari+

+β4 × Liberalizationc(a)c(h)y × Overlapah × Stari+

+β5 × Stari+

+β6 × Overlapah × Stari + FEah + FEc(a)y + ϵiahy

This equation is akin to the previous equation , the only difference being that we introduce

an inventor-level indicator for being highly productive (Stari) and all interaction terms that

are not captured by fixed effects. Note that we estimate this specification with a reduced

sample, since our definition of Stari requires an inventor to be present in the 1980s. The

coefficient of interest, β4, captures whether the increase in collaboration for inventors in

high-overlap affiliates differs according to their initial track record.

We find a negative estimate for β4 which is significant at the 5 percent level. This is

independent of the way we define star inventors and is robust to including inventor fixed

effects, controlling for any time-invariant differences between inventors. This means that

less experienced inventors are more sensitive to an exogenous change in communication

frictions. We also find some evidence that star inventors a priori collaborate more (β̂5 > 0).
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Table 2.7: Telecom Liberalization and Collaboration - Inventor Heteregoneity

Share Collaboration

Star Inventor Definition Top 25% Top 10% Continuous Top 25% Cited

(1) (2) (3) (4) (5) (6)

Liberalization -0.0133 -0.0139 -0.0233 -0.0129 -0.0151 -0.0132

(0.0127) (0.0125) (0.0150) (0.0129) (0.0128) (0.0128)

× Overlap 0.0168∗∗∗ 0.0189∗∗∗ 0.0204∗∗∗ 0.0179∗∗∗ 0.0205∗∗∗ 0.0184∗∗∗

(0.0044) (0.0050) (0.0037) (0.0042) (0.0051) (0.0047)

× Star Inventor 0.0026 0.0104 -0.0024 0.0015 0.0005

(0.0052) (0.0104) (0.0042) (0.0018) (0.0042)

× Overlap × Star Inventor -0.0096∗∗ -0.0146∗∗ -0.0125∗∗ -0.0033∗∗ -0.0073∗∗

(0.0042) (0.0064) (0.0051) (0.0015) (0.0035)

Star Inventor 0.0036∗ 0.0076∗∗∗ 0.0009 0.0050∗

(0.0019) (0.0018) (0.0012) (0.0026)

× Overlap 0.0010 0.0030 0.0018 0.0008 0.0003

(0.0022) (0.0054) (0.0038) (0.0010) (0.0027)

Observations 149,609 149,609 149,609 149,609 149,609 149,609

R2 0.58 0.58 0.78 0.58 0.58 0.58

Dependent var. mean 0.13 0.13 0.13 0.13 0.13 0.13

Fixed Effects

Establishment Pair ✓ ✓ ✓ ✓ ✓ ✓

Year-Host Country ✓ ✓ ✓ ✓ ✓ ✓

Inventor ✓

Notes: This table reports the results of estimating equation 2.7. Standard errors are clustered at the country
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

7. Conclusion

Using a newly constructed dataset, this paper studies innovation inside multinational

firms, which frequently involves inventors based outside the HQ country. We analyze

communication frictions that affect cross-border inventor collaboration and thereby the

diffusion of knowledge inside the firm.

We first show that business hour overlap is crucial for collaboration between affiliate

and HQ-based inventors. Inventors in technology classes involving experimentation,

potentially requiring a higher frequency of communication, are most sensitive to this

communication cost.
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In addition to this cross-sectional observation, we study the evolution of collaboration

across time. We focus on the liberalization of the telecom sector during the 1980s and 1990s.

The price of international phone calls decreased drastically as a consequence, leading to

an increase of cross-border communication. We find that affiliate-based inventors start

collaborating with HQ alongside, especially in experimental technologies at affiliates which

are temporally close to HQ. This finding shows that while cheap communication matters,

it cannot overcome underlying geographic features. Recent technological advances such

as video calls using Zoom and other platforms are likely subject to the same limitations.

Finally, we show that reducing frictions to cross-border knowledge creation inside multina-

tionals is less important for star inventors than for others. This may indicate that reducing

communication frictions benefits a broad set of less experienced inventors in FDI host

countries, potentially reducing the knowledge gap between them and star inventors.
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Appendix

A. Details on Orbis IP (matching patents to firms)

We provide details on the matching of patents to firms in this appendix section.

Orbis IP sources its patent information from LexisNexis. At the time of our access to

Orbis IP in October-November 2020, the database had approximately 110 million patent

documents, covering information from patent offices in 109 countries. Bureau van Dijk

(BvD) describes their procedure of matching patents to firms as follows.

At BvD, the matching process begins with processing xml documents to extract the assignee

details and company details from BvD’s global company database to be matched to include

the following fields:

• Company name

• Local name

• Street (not to match but to detect duplicates)

• Postal Code (not to match but to detect duplicates)

• City (important for the matching when given by the IP

• Region in country (not to match but to detect duplicates)

• Country ISO Code

• Email/Website (as a confirmation)

• Category of company

• Listed/delisted

• Status (active/inactive)

• Company ID (for duplicates)

• Source

• BvD ID

• Activity description

The above data to be matched follows the below process first through automated fuzzy

logic-based matching and then through manual matching:
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Fig. 2.6. Orbis IP procedure for matching patents to firms

Source: Orbis IP / Bureau van Dijk.

A.1. Automated Matching Tool (Fuzzy Logic)

BvD’s fuzzy matching takes place in three steps:

1. Normalisation: transforms the original query to match the database candidates as far

as possible.

2. Candidate selection: retrieves the best potential candidates from the normalised

query.

3. Candidate evaluation: evaluates the distance of each candidate from the normalised

query, and filters the candidates to select the best matches.

These three steps are explained in more detail below.

1. Normalisation

The goal of the normalisation process is to reduce the differences between the original

query and the database entities to a minimum. When entities are added to the database,

they are normalised with the same process that is used to normalise the query, ensuring

minimal differences.

Different normalisation processes take place (lowercase, remove diacritics, etc). Some are

specific to the type of entity: for companies, the legal form will be normalised (i.e. Limited

becomes ltd) and for individuals the first name will be normalised using hypocorism.
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Note that the normalisation process for one entity can lead to multiple searches: consider

a single query to retrieve Thierry Henry (French football player). Thierry and Henry are

both French first names and last names, so as part of the normalisation process it performs

two distinct searches: a) one for first name Thierry, last name Henry b) and one for first

name Henry, last name Thierry.

2. Candidate selection

The goal of the selection step is to retrieve - as quickly as possible - all potential candidates

in the database. When handling a large quantity of data it isn’t possible to check every

entity of the database in order to retrieve only the best candidates, therefore a fuzzy

algorithm is used in order to locate within the database only those candidates that “should

be” the best ones, and to evaluate only those candidates.

All such algorithms come at a cost: there is a trade-off to be made between the “recall”

and the “precision”. Globally, the recall will measure the fact that the selected candidates

always contain the true match, while the precision will measure the fact that the proposed

candidate are valid matches, and will limit false positives in the results. No algorithm will

guarantee a 100% recall, except if you evaluate all the candidates present in the database

one by one, which isn’t possible when handling a large quantity of data.

The algorithm implemented for the candidate selection is based on the N-Gram algorithm,

where a query is split into different blocks of letters (or grams) of a given size (N=3). The

potential candidates are then those candidates that share as much N-Gram as possible with

the normalised query. This algorithm is language agnostic. For example, if you misspell

“Bureau van Dijk” and query the system for “Buro van Dijk”, the decomposition in N-Gram

of both names (N=3) would give:

BUR URO VAN DIJ IJK

BUR URE REA EAU VAN DIJ IJK

and would retrieve BUR, VAN, DIJ, IJK in common to both queries, leading to the selection

of the candidate.

Note that the major flaw of the N-Gram algorithm is working with “small” words, indeed

making a mistake in a three-letter word using 3 as the gram size would never select
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the correct three-letter candidate as no gram will be common (i.e. if one were to type

BNW intending to retrieve BMW). Therefore, small words are handled differently and the

applicable method uses an algorithm based on the edit distance.

3. Candidate evaluation

In the last step of the process, the goal is to sort and reduce the candidates to the distance

threshold value specified by the user. The computed similarity is based on the edit distance.

A.2. Manual Matching Software

The BvD Matching Software application is designed to supplement the automatic matching

functionality that is typically used to correlate records found in the patent databases to

records in BvD’s company database. Records that cannot be matched automatically are

presented to BvD Matching Software users so that they can accept or reject possible matches

manually. The likelihood of a match is declared for each record in the application’s interface.

The final purpose of the matching process is to link patent records to an appropriate BvD

identification number.

BvD uses the following fields to calculate a matching score between patent and BvD

company databases: Assignee name, Street, City, Postal code, Country (or ISO code). The

registered/legal address of the companies is used. BvD takes into consideration the current

name of the companies, alongside their previous names and ’also known as’ names. There

is no limit in the number of characters for a name (or any other field).

1. Normalisation To identify similarities and enable high scoring matches, the matching

system uses n-gram indexes, normalisation rules, and data dictionaries. The system can

handle spelling mistakes, typos, word orders, special characters, context of words as it

relates to a specific field/country, etc.

Specific normalisation rules are defined for each possible matching data field, and for

each country. The normalisation rules are applied on BvD records (in the Orbis database)

and patent records, hence the normalised values are taken into account for compari-

son/matching. For example, punctuation marks are replaced by blanks, legal forms are

standardized, non-relevant words are ignored, synonyms are converted to a simple form,

accented characters are converted into non-accented characters.
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BvD Matching Software is Unicode compliant. It supports local characters such as Chinese,

Cyrillic, Hungarian, German, Polish, Arabic, etc., and for some specific languages BvD

uses transliteration to transform local characters into common and comparable characters

enabling cross-alphabet matching.

2. Calculation After the data have been normalised, the match score is calculated using

an algorithm based on the following principle. For each field of a given record, calculate

the % of accuracy of the match between the BvD and patent records by using proximity

calculations. Then, take a weighted average of all the % of proximities. Weights are

calculated automatically; they are not fixed. The weight of a criterion is based on the

probability of finding a company in the BvD database corresponding to the criterion being

searched. This means the weight of each criterion depends on the number of occurrences

in the BvD database and therefore, may differ from one release to another. The more

occurrences that are found, the less the field is significant.

The automated process produces a matching score for each record. A quality indicator

uses the following scoring criteria:

Fig. 2.7. Orbis IP patent-to-firm matching score indicator

Source: Orbis IP / Bureau van Dijk.

The higher the score, the better the data match. Candidates with a poor matching quality

(E) may be irrelevant. Any match with less than a 70% score is pushed into the manual

matching pipeline.

B. Sample Coverage

This section of the appendix provides details on the sample coverage of our dataset.

To determine the sample coverage, we first need to calculate the relevant total number

of granted triadic patents. We focus on patents that are present in both PATSTAT and
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PatentsView. There are some differences in what these two datasets contain. Noteably,

PATSTAT includes design patents only after 2001. Since we cannot use PATSTAT to

determine the members of the extended patent family for these early design patents, they

are not considered in the relevant total number of patents we try to match.

The most relevant variables for our analysis are the Orbis firm identifier and the inventor

location (at the city level) from PatentsView. We focus on inventor location rather than as-

signee location to capture where innovation takes place physically. Both the firm identifier

and the inventor location can be missing.

One patent often lists multiple inventors and sometimes also multiple assignees. When

we compute sample coverage at the patent level we flag a patent as covered if the patent is

matched to at least one assignee and one inventor location. Based on this methodology

we find a coverage of around 83% (or 84% when weighting by forward citations). The

coverage is slightly lower with 79% when we look at patents that are granted in the US

and filed but not necessarily granted at EPO and JPO. In figure 2.8 we plot the sample

coverage for granted triadic patents by year. It remains relatively stable between 75% and

85% with the lowest coverage at the beginning and the end of the sample.

Fig. 2.8. Sample Coverage

Notes: This figure shows the yearly share of granted triadic patents that our sample covers.
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C. Additional Figures

Fig. 2.9. Experimental Technology Classes vs other Classifications

Notes: Each dot represents a technology class. The x-axis captures our measure of experimental technology
class, i.e. the share mentioning experiments or trials. In panel A, the y-axis plots the share of patents
containing a process claim (based on data from Ganglmair et al. (2022)) and in panel B the y-axis depicts the
share of patents citing a scientific article (based on data from Marx and Fuegi (2020).)
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Fig. 2.10. Rate Change

Source: OECD.

Fig. 2.11. Volume of international calls

Notes: This picture is taken from a 2009 Telegeography report. It shows the rise of international call volumnes
during our sample period.
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Fig. 2.12. Event Study of the Impact of Telecom Liberalization on Collaboration - Borusyak
et al. (2021) estimates

(a) Full sample

(b) Experimental (c) Non-Experimental

Notes: This figure reports the results of estimating equation 2.3, including unit and time fixed effects only.
Standard errors are clustered at the country-pair level. 95% confidence intervals are shown.
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D. Additional Tables

Table 2.8: Share of experiment-intensive Technologies

IPC Class Share Experimental Patent Count

Chemistry, Metallurgy 0.98 242455

Human Necessities 0.63 172939

Electricity 0.00 122025

Performing Operations, Trans-

porting

0.34 120374

Physics 0.28 120271

Mechanical Engineering, Light-

ing, Heating, Weapons, Blasting

0.12 42462

Textiles, Paper 0.76 13287

Fixed Constructions 0.00 6159
Notes: This table shows the share of experimental (4-digit) technology classes by the more aggregate 1-digit
IPC classes.
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Table 2.9: Classification of Top-15 Technologies

Technology Code Technology Share Men-

tioning Experi-

ment/Trial

Classified

as Experi-

mental

Patent

Count

C07D heterocyclic compounds 0.48 Yes 28121

C07C acyclic or carbocyclic com-

pounds

0.47 Yes 14001

A61P therapeutic activity of chemical

compounds or medicinal prepa-

rations

0.43 Yes 37235

C12N micro-organisms or enzymes;

compositions thereof; propagat-

ing, preserving, or maintaining

micro-organisms; mutation or ge-

netic engineering; culture media

0.39 Yes 18183

C08G macromolecular compounds ob-

tained otherwise than by reac-

tions only involving carbon-to-

carbon unsaturated bonds

0.37 Yes 11627

A61K preparations for medical, dental,

or toilet purposes

0.36 Yes 49856

C08L compositions of macromolecular

compounds

0.36 Yes 16546

C07K peptides 0.36 Yes 15852

G01N investigating or analysing mate-

rials by determining their chemi-

cal or physical properties

0.22 Yes 21043

A61B diagnosis; surgery; identification 0.11 No 15806

A61F filters implantable into blood ves-

sels; prostheses; devices provid-

ing patency to, or preventing

collapsing of, tubular structures

of the body, e.g. stents; or-

thopaedic, nursing or contracep-

tive devices; fomentation; treat-

ment or protection of eyes or

ears; bandages, dressings or ab-

sorbent pads; first-aid kits

0.09 No 10962

H04L transmission of digital informa-

tion, e.g. telegraphic communi-

cation

0.06 No 17932

G06F electric digital data processing 0.05 No 17506

H01L semiconductor devices; electric

solid state devices not otherwise

provided for

0.05 No 13193

Notes: This table shows our classification of experimental technology classes for the 15 most frequent.
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Table 2.10: Liberalization and Call Prices

HQ Country Number of

patent families

Only HQ inven-

tors (in %)

Only foreign af-

filiate inventors

(in %)

HQ-affiliate

collaboration (in

%)

JP 110277 88.71 5.82 5.47

US 76772 60.60 16.33 23.06

DE 34077 58.63 12.92 28.45

FR 17353 50.81 24.91 24.28

KR 13555 77.29 6.54 16.17

GB 7031 34.79 32.20 33.01

SE 6384 48.29 26.10 25.61

IT 5311 55.71 13.22 31.07

NL 4796 8.42 48.81 42.76

CH 4571 5.73 55.83 38.44

Table 2.11: Collaboration increases Patent Quality

log(1+Citations) Cites Scientific Paper

(1) (2) (3) (4)

Collaboration with HQ country 1.189∗∗∗ 0.1008∗∗∗ 0.1939∗∗∗ 0.0330∗∗∗

(0.1307) (0.0216) (0.0084) (0.0072)

log(Inventors) 0.6491∗∗∗ 0.0811∗∗∗

(0.0341) (0.0106)

Observations 1,314,466 1,314,466 1,314,466 1,314,466

R2 0.32 0.95 0.07 0.84

Dependent variable mean 3.7 3.7 0.69 0.69

Fixed Effects

Filing Year ✓ ✓ ✓ ✓

Inventor ✓ ✓

GUO ✓ ✓

Country-Technology ✓ ✓

Notes: This table regresses the number of forward citations (log(1 + x)-transformed) on a binary variable
indicating whether a patent is filed in collaboration with HQ inventors, controlling for a variety of fixed
effects. In columns 2 and 4 we also control for the number of inventors (log-transformed).
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Table 2.12: Collaboration and Business Hour Overlap

Share Collaboration

(1) (2) (3) (4)

Overlap 0.0646∗∗∗ 0.0593∗∗∗ 0.0557∗∗∗ 0.0584∗∗∗

(0.0019) (0.0020) (0.0023) (0.0021)

× Experimental 0.0111∗∗∗ 0.0117∗∗∗

(0.0028) (0.0032)

× Share Experimental 0.0446∗∗∗

(0.0098)

× Cites Science -0.0042

(0.0034)

× Process 0.0053∗

(0.0029)

Observations 316,875 316,875 316,875 316,875

R2 0.47 0.47 0.47 0.47

Dependent var. mean 0.36 0.36 0.36 0.36

Fixed Effects

GUO ✓ ✓ ✓ ✓

Host Country-Technology ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2.1. Standard errors are clustered at the location
pair-technology level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.13: Year of Liberalization of International Calls

Year of Country

Liberalization

1984 United States

1986 United Kingdom

1987 Japan

1990 New Zealand

1991 Australia

1992 Canada, Sweden

1993 Finland

1996 Denmark, Korea, Mexico

1997 Netherlands

1998 Austria, Belgium, France, Germany, Ireland

Italy, Luxembourg, Norway, Spain, Switzerland

2000 Czech Republic, Portugal

2001 Greece

2002 Hungary

2006 Turkey

Notes: This table shows the year of liberalization of the telecommunication sector, as reported in Boylaud
and Nicoletti (2000).
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Table 2.14: Liberalization - 1980s Establishments

Share Collaboration

Full Sample Experimental Non-experim. Full Sample Experimental Non-experim.

(1) (2) (3) (4) (5) (6)

Liberalization 0.0112 0.0166 0.0046

(0.0167) (0.0191) (0.0220)

× Overlap 0.0245∗∗∗ 0.0316∗∗∗ 0.0118∗∗

(0.0069) (0.0092) (0.0056)

× 0-2 hours 0.0261 0.0367∗∗ 0.0094

(0.0158) (0.0168) (0.0218)

× 2-4 hours 0.0417 0.0359 0.0562∗∗

(0.0340) (0.0468) (0.0221)

× 4-6 hours 0.0312 0.0243 0.0455∗

(0.0199) (0.0218) (0.0232)

× 6-8 hours 0.0623∗∗∗ 0.0888∗∗∗ 0.0180

(0.0156) (0.0187) (0.0190)

Observations 316,967 170,235 146,732 316,967 170,235 146,732

R2 0.74 0.69 0.80 0.74 0.69 0.80

Dependent var. mean 0.19 0.20 0.16 0.19 0.20 0.16

Fixed Effects

Est. Pair-Technology ✓ ✓ ✓ ✓ ✓ ✓

Year-Host Country ✓ ✓ ✓ ✓ ✓ ✓

Year-Technology ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2.2, keeping only affiliates that already existed in
the 1980s. Standard errors are clustered at the country pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at
the 1%, 5% and 10% levels, respectively.
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Table 2.15: Liberalization - Source Country-Time Fixed Effect

Share Collaboration

Full Sample Experimental Non-experim. Full Sample Experimental Non-experim.

(1) (2) (3) (4) (5) (6)

Liberalization -0.0072 -0.0081 -0.0049

(0.0072) (0.0081) (0.0121)

× Overlap 0.0176∗∗∗ 0.0263∗∗∗ 0.0004

(0.0055) (0.0071) (0.0057)

× 0-2 hours -0.0015 0.0013 -0.0064

(0.0064) (0.0070) (0.0113)

× 2-4 hours 0.0261 0.0356 0.0135

(0.0308) (0.0406) (0.0167)

× 4-6 hours 0.0217 0.0294 0.0083

(0.0180) (0.0211) (0.0198)

× 6-8 hours 0.0380∗∗∗ 0.0560∗∗∗ 0.0007

(0.0097) (0.0125) (0.0147)

Observations 575,780 293,241 282,539 575,780 293,241 282,539

R2 0.84 0.81 0.87 0.84 0.81 0.87

Dependent var. mean 0.27 0.28 0.26 0.27 0.28 0.26

Fixed Effects

Est. Pair-Technology ✓ ✓ ✓ ✓ ✓ ✓

Year-Source Country ✓ ✓ ✓ ✓ ✓ ✓

Year-Technology ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2.2. Standard errors are clustered at the country
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.16: Liberalization - Triple Interactions

Share Collaboration

(1) (2)

Liberalization 0.0099

(0.0175)

× Experimental 0.0083 0.0078

(0.0142) (0.0156)

× Overlap 0.0103∗

(0.0058)

× Experimental × Overlap 0.0167∗∗ 0.0233∗∗∗

(0.0072) (0.0070)

Observations 575,780 575,780

R2 0.84 0.86

Dependent variable mean 0.27 0.27

Fixed Effects

Establishment Pair-Technology ✓ ✓

Year-Host Country ✓

Year-Technology ✓ ✓

Year-Location Pair ✓

Notes: This table reports the results of estimating equation 2.2. Standard errors are clustered at the country
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Chapter 3

Traders in Trouble on the Road to

Mandalay

Abstract

This paper studies the effect of uncertainty in trade costs on exporting. By combining data

on armed conflict with trade transaction data from Myanmar, I show that conflicts close

to highways have a significant impact on trade flows. Firm-level export transactions via

a route becoming risky because of conflict drop by around 50%. In addition, prices for

export goods in Yangon’s retail markets, itself far away from conflict areas, drop when

conflicts put foreign market access in jeopardy by around 5%. This pass-through to local

prices suggests that traders have few export alternatives and sell domestically instead.

In addition, I observe that exporters of non-perishable goods lump transactions together,

reducing the negative impact of conflict. Among exporters of perishable and thus riskier

products, large and politically connected firms are the most resilient.

JEL codes: D22, D74, D80, F14, O12

Keywords: Trade, Uncertainty, Conflict, Development
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1. Introduction

Recent events such as the Covid-19 pandemic or the Russian invasion of Ukraine have put a

spotlight on the functioning of global trade networks. Sudden rises of infections in China’s

port cities have repeatedly disrupted container shipping, armed conflict around Ukraine’s

ports has made it difficult to ship crucial wheat exports to its customers. Especially in

developing countries disruptions of trade routes and delays are not new phenomena. The

lack of modern infrastructure makes travel time and trade costs uncertain. Unexpected

landslides or heavy rain can cause road closures, insecurity can make it dangerous to

travel parts of the territory and make market access unreliable.

Disruptions of trade routes can cause large losses, especially if the delivery of goods is

time-sensitive as is the case for perishable goods. Insurance markets are often absent,

implying that traders themselves bear the burden. How are firms affected by an increase

in the risk of disruption? Are they sufficiently diversified so that they start selling to other

markets? Are some firms better equipped to handle risk?

This paper studies a setting where market access is frequently disrupted. In particular, I

look at exports leaving Myanmar via its land borders. Exports via Burmese land borders

accounted for around 32% of total export revenue in 2014.1 The value of exports in 2014

leaving Myanmar via Muse alone, which is the most important border crossing with China,

was around one billion US dollars (or around 1.7% of GDP).

At the same time Myanmar is faced with recurring ethnic conflicts. These occur mainly

in the border regions with China, Thailand and Bangladesh. This is precisely where the

shipments going to the border need to pass through. To illustrate this point, the map in

figure 3.1 shows the fastest route from central Yangon, the commercial capital and home

to many exporters, to all border stations. In addition, the figure shows where armed

conflicts took place in the 2010s. It becomes apparent that many conflicts happen close to

the important trade corridors. Trucks can get stuck due to road closures or drivers refuse

to pass the conflict-ridden areas. These delays can result in losses for exporters.

Relying on detailed customs data on exports and geocoded data on conflict, I show that

firms decrease the number of monthly export transactions via a border station by around

50% when conflicts occur close to roads that lead there. This decline in the frequency of

1This figure is somewhat higher when including oil and gas which are transported via pipelines that also
cross the land borders.
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Fig. 3.1. Routes from Yangon to Myanmar’s border stations and Conflict
Notes: The figure shows the fastest routes from central Yangon to each of Myanmar’s border stations. I also
plot the conflicts that occurred between 2010 and 2020. See section 3 for a detailed description of the data.
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trade due to insecurity is accompanied by a drop in local retail prices for export goods of

around 5% in Yangon, which is itself not affected by conflicts. Hence, these disruptions

have an impact far beyond where they take place and lead exporters to sell their goods on

domestic markets, depressing prices for these goods and leading to substantial economic

losses.

I then show that instead of selling on the domestic market, some exporters seem to stockpile

and lump together transactions. In particular, while all exporters reduce the number of

shipments during months of turmoil, the average shipment size of non-perishable products

increases. This implies that firms delay shipments and compensate partly for disruptions to

market access. However, many exports are perishable and cannot easily delay transactions.

I use this differential impact of conflict depending on the perishability of products to

identify firm characteristics that make firms more resilient against risk.

First, I show that large firms are more likely to continue exporting in spite of conflict, with

the differential being larger in riskier sectors. Thus, large firms are better able to handle

the risk of losing shipments. This skews the exporter size distribution towards larger firms

during conflict periods.

Second, I exploit information on political connections. Firm registry data matched with

sanction lists allows identifying firms connected to the military which is a party to most

conflicts in Myanmar. I show that firms which sell risky products and are connected to the

military keep exporting during conflict. These firms are thus shielded from the increased

risk of doing business during turmoil.

Related Literature. This paper relates to several strands of the literature. First, this study

contributes to the nascent literature on how the economic impact of conflict spreads along

production networks. Korovkin and Makarin (2021) show how the Russian invasion of

the Donbas region in Ukraine led to the sudden removal of some firms from Ukranian

supply chains. Using railway transaction data, they show how this shock propagated

along the network. Similarly, Ksoll et al. (2021) study the impact of electoral violence in

Kenya affected the floriculture industry. They focus on direct disruptions to supply caused

by worker absence. Finally, Couttenier et al. (2022) develop a structural model to study

how shocks to firms in conflict-affected areas propagate along the production network.

While this literature exclusively focuses on direct disruptions to supply and how these

propagate along supply chains, this paper is to the best of my knowledge the first to show

that conflict has an additional effect by making trade routes insecure to pass and thereby
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disrupting market access.

More generally, there is a growing literature on supply chain disruptions and how they

propagate along production networks (see e.g. Barrot and Sauvagnat (2016), Boehm et al.

(2019) or Lafrogne-Joussier et al. (2021) for a recent contribution). These papers typically

use shocks that directly affect supply, e.g. by destroying physical capital. In addition, these

papers typically rely on evidence from industrialized economies. In contrast, this paper

studies disruptions in a developing country setting to trade networks that affect the links

(transport routes) rather than the nodes (firms).

Second, this paper relates to a literature that studies trade costs in developing countries.

Atkin and Donaldson (2015) show that domestic trade costs in Ethiopia and Nigeria is

four to five times larger than in the US. I contribute to this literature by highlighting

conflict as one barrier to trade in a fragile country like Myanmar. Similarly, Chiovelli et al.

(2018) study the effect of land mines on economic development. Their analysis shows that

removing landmines located close to transport routes in Mozambique increased economic

growth in regions that depend on these routes for access to markets. Their paper studies

how in a post-conflict environment landmines can make roads unusable for a sustained

period of time, while I focus on how short-run disruptions affect trade and access to foreign

markets while the conflict is ongoing.

Third, this paper contributes to the study of uncertainty in trade. In particular, it relates to

the literature on trade policy uncertainty (TPU).2 Most prominently, Handley and Limão

(2017) study how China’s WTO accession resulted in a reduction in uncertainty about

future tariff hikes. This lead to an increase in Chinese exports to the US. While they analyze

a reduction of uncertainty of long-run tariff policies, I study short-run disruptions of trade

routes in a developing country context.

Structure. The structure of the paper is as follows. Section 2 gives a brief overview

of Myanmar’s ethnic conflicts and the structure of its exports. Section 3 introduces the

data. In section 4 I show the direct impact of conflict on trade flows. Section 5 uses the

perishability of products to identify risky products and studies the differential reaction by

firms to this risk. Section 6 concludes.

2See Handley and Limão (2022) for a comprehensive overview of this literature.
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2. Context

This section first describes the nature of Myanmar’s land border exports and then gives a

brief overview of ethnic conflicts that can disrupt these trading activities.

2.1. Myanmar’s Exports

To study exporting under risk, the analysis will focus on exports leaving Myanmar via its

land borders. To give an example which illustrates the context, a typical seafood exporter

buys produce in Yangon, then processes the goods and ships to a border city (see the map

in figure 3.1 for the location of border cities). Buyers cross the border from the neighboring

country to inspect the products and agreements are usually made on the spot.3

An important feature of this setting is that exporters typically transact via just one border

station. Figure 3.2 shows the share of export transactions via an exporter’s top border city

over the full time interval of the data from 2011 to 2017 for a particular product. More than

80% of firms export a product via just one border city. Note that the share of product-firm

pairs is weighted by the number of transactions. The stylized fact is thus not driven by a

lot of small exporters.4

3The exact export procedure varies by product, but most exports follow a similar trajectory where the
produce first needs to get to a border city via Mandalay or Yangon, and is then sold to foreign buyers, often
in auctions.

4This suggests that there are entry costs associates with border stations. See, for example, https://www.
mmtimes.com/business/23878-muse-offensive-closes-border-trading.html. U Khin Maung Lwin of
the ministry of commerce notes that moving to other export routes during conflicts is made difficult by a
lack of familiar trade connections.
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Fig. 3.2. Lack of Diversification

Notes: This figures plots the share of export transactions for each product product leaving Myanmar via an
exporter’s most important border city.

In addition to this lack of diversification, shipments are not insured. If the shipment loses

in value on the way, e.g. because delays cause part of the products to rot, the exporter

faces large losses of revenue. A localized disruption of the transport network can thus

have large implications for firms and the economy as a whole.

Indeed land border exports are important for the Burmese economy. Overall, land border

exports accounted for 35% of export revenue in 2014 (excluding oil and gas, since it is

transported via pipelines). They thus account for a substantial fraction of overall exports.

These consist mainly of primary commodities. Focusing on exports leaving Myanmar via

its land borders, table 3.8 shows the top 10 export products in 2014, ranked by the number

of transactions (again dropping oil and gas). Seafood and agricultural products are clearly

dominant. Perishable goods are thus an important part of Myanmar’s exports and are at

the same time especially vulnerable to disruptions.

Table 3.1 shows the number of transactions and the value of products passing through

the different border stations. Trade with China is heavily concentrated in Muse which is
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a large border town in Northern Shan State that largely lives off the cross-border trade.

It is connected to the main commercial center, Yangon, via the Mandalay-Muse highway.

This highway section is crucial for Myanmar’s exporters and at the same time frequently

subject to disruption. Trade with Thailand is less concentrated across border stations and

exporters mainly trade via three different border stations: Kawthaung, Myawaddy and

Myeik. Trade with Bangladesh and India only accounts for a small fraction of Myanmar’s

land-border exports.

Table 3.1: Myanmar’s Border Stations in 2014

Destination Country Border Station Transactions Value (mln USD)

Bangladesh SITTWE 1006 7.29

Bangladesh MAUNG DAW 363 7.85

China MUSE 22710 1066.54

China CHIN SHWEHAW 1396 247.13

China LWEJEL 345 59.34

China KYAING TONG 186 4.76

China KANPITETEE 123 8.72

India TAMU 1828 26.13

India RHI 508 9.82

Thailand KAWTHAUNG 6646 35.94

Thailand MYAWADDY 4618 30.48

Thailand MYEIK 2140 91.06

Thailand TARCHILEIK 371 8.64

Thailand NABULAE/HTEE KHEE 38 0.32

Myanmar’s exporters are concentrated in the main business centers. Around 50% of export

transactions originate in Yangon, followed by Mandalay with 16%. Both of these cities are

located in the central, more peaceful part of the country. Most firms are thus themselves

located in an area that is usually not directly affected by conflicts but as I will show below

suffer from frequent disruptions of trade routes and thus loss of market access. The map

in figure 3.5 shows the spatial distribution of exporters across Myanmar.
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Table 3.2: Myanmar’s Land Exporters in 2014

Variable N Minimum Median Mean Max SD

# Transaction 459 1.00 12.00 92.11 2199.00 233.25

# HS6 Products 459 1.00 2.00 5.30 44.00 7.61

# Border Stations 459 1.00 1.00 1.43 6.00 0.90

# Destination Countries 459 1.00 1.00 1.24 3.00 0.52

Total Export Revenue (in thsd USD) 459 0.88 400.01 3494.59 64695.47 8578.38

In 2014, there were 459 firms exporting via the land border (see table 3.2). The firm size

distribution has a few very large firms which account for a large share of transactions and

many small firms. The median firm recorded 12 export transactions in 2014, exported 2

HS6 products to one destination country using one border station. The median shipment

value in 2014 was around USD 10,900.

2.2. Ethnic Conflict in Myanmar

Myanmar is a multi-ethnic nation. It counts 135 distinct ethnic groups that are officially

recognized (usually assigned to one of eight major ethnic groups5). Myanmar’s different

ethnicities are largely separated geographically. While the Bamar majority (around 68% of

the population) mostly lives in the central valleys surrounding the Irrawaddy river, the

minorities are clustered in Myanmar’s border regions (see the map in figure 3.3).

5These eight groups are: Bamar, Chin, Kachin, Kayah, Kayin, Mon, Rakhine and Shan.
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Fig. 3.3. Map of Myanmar’s Ethnicities

Notes: This map shows the homeland of Myanmar’s major ethnicities as reprinted on the following page:
https://reliefweb.int/map/myanmar/myanmar-major-ethnic-groups-burma. Retrieved on February 17,
2021.

212

https://reliefweb.int/map/myanmar/myanmar-major-ethnic-groups-burma


Myanmar’s ethnic fractionalization is also reflected in Myanmar’s current political system.

Ethnic minorities are mostly represented by their own political organisations. These often

have an armed wing, the so-called Ethnic Armed Organisations (EAOs). While until the

late 2000s ceasefire agreements helped to avoid open confrontations between the military

(often called Tatmadaw) and EAOs, in the wake of political reforms that opened the country

to the outside world ceasefires broke down and open conflict erupted.

Figure 3.4 shows the number of deaths by months recorded by the Uppsala Conflict Data

Program (UCDP) from January 2000 to January 2021. As outlined above, the early 2000s

were a relatively peaceful period, whereas violence surrounded the heavily contested

elections of 2010 and the ensuing democratic transition. The figure also illustrates a large

variation from month to month with conflicts suddenly erupting and then cooling down

again. This points to the high degree of political uncertainty in Myanmar.

Fig. 3.4. Conflict over Time
Notes: This figure plots the number of deaths recorded by the Uppsala Conflict Data Program between
January 2000 and January 2021 in Myanmar. The shaded area corresponds to the sample period used in the
analysis below.

While the temporal variation in conflict is high, it is also unevenly distributed across space.

Figure 3.1 shows that deadly conflicts are concentrated in Myanmar’s borderlands, where
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a large part of ethnic minorities live. In the following I will describe three of these localized

conflicts that were important during the 2010s and thus my period of analysis.

Northern Kachin state saw a large increase in violence in the early 2010s. In this conflict the

Tatmadaw and the Kachin Independence Organization (KIO) fought mostly over the control

of lucrative jade mines. Christensen et al. (2019) argue that the increased territorial presence

in resource-rich areas was driven by the Tatmadaw’s fear that the civilian government would

tighten control over the distribution of the rents generated by resources.

Also in the early 2010s conflict between the Tatmadaw with the Karen National Uninon

(KNU) and the DKBA-5 erupted in Karen state which borders Thailand.6 This conflict,

which is part of a decades-long struggle for independence of the Karen people, were

ignited by electoral violence surrounding the 2010 elections.

Shan state in the East with the most important trade routes to China has been continuously

affected by armed conflict, with a major escalation during the Kokang offensive in February

2015. These were clashes between the Tatmadaw and the Myanmar National Democratic

Alliance Army (MNDAA), an EAO of ethnic Kokang people, over control of the Kokang

self-administered zone (SAZ). The fighting went on until May 2015, resulting in around

200 casualties and over 50,000 displaced civilians. The Kokang SAZ remained under the

Tatmadaw’s control.7

In summary, Myanmar’s ethnic conflicts are part of long struggles for independence

of its ethnic minorities. These conflicts are often intertwined with disagreements on

the distribution of economic rents of which there are plenty in Myanmar’s borderlands.

Importantly for the analysis below, there is little evidence that conflicts are a function of

short-run fluctuations in trade flows. Instead conflicts generates negative spillovers for

Myanmar’s formal trade.

6DKBA-5 (which stands for Democratic Karen Buddhist Army - Brigade 5) is a splinter group of the now
dissolved DKBA which was aligned with the Tatmadaw.

7Figure 3.4 also reveals the unprecedentedly high death toll witnessed during the Rohingya genocide,
beginning in October 2016 and entering an even more severe phase in August 2017. These tragic events will
not play a major role in this analysis as exports to Bangladesh are only of minor importance when compared
with China and Thailand.
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3. Data

To study how conflict affects firms’ exports, I combine customs transaction data on inter-

national trade with geocoded data on conflict.

3.1. Transactions

The transaction trade data is collected by Myanmar’s Ministry of Commerce. For the period

from April 2011 to March 2017 it includes all international trade transactions recorded

by customs. Each transaction includes information on the firm, the product (HS10), the

value and quantity, the trading partner (country). Crucially, for cross-border trade the data

includes the border station at which the transaction was recorded. The transaction level

data was then matched to the firm registry (DICA) which allows linking firms to officers

and to an address. I then extract the township from this address.

For the period from April 2014 to March 2017, the data includes the exact date of when

the transaction was entered into Myanmar’s customs registry. For the earlier period the

date is entered at the monthly level. Due to this constraint, the analysis below focuses on

transactions aggregated to the monthly level.

Time-sensitive Goods. In order to identify goods which are especially affected by dis-

ruptions due to conflict, I divide products into seafood and non-seafood based on their HS

classification. Seafood is a major export good of Myanmar and the most perishable, as it

typically requires a cold chain. It can thus not be stored and delays have a large impact on

the value of a shipment. 30% of transactions are in the seafood sector.

To make sure that the effects are not purely driven by factors specific to the seafood sector,

I introduce a second way of identifying especially perishable products. In particular, I

search the raw product description in the transaction data for the words ”alive”, ”fresh”

and ”frozen”. Then, I compute the share of transactions containing these words at the

HS6-level, the definition of a product used below. I classify a product as fresh if the share

is above 1%. According to this definition, 25% of transactions are perishable goods. In

addition to seafood, this definition contains fresh fruit such as mangoes and also animal

products such as meat.
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3.2. Routes

I compute the fastest route from each township centroid to each border station. I use

the Open Source Routing Machine (OSRM) based on Open Street Map (OSM) data. My

computations are based on the OSM dataset for Myanmar obtained via GeoFabrik on

November 1, 2021. Figure 3.1 shows the fastest routes to Myanmar’s border stations for a

firm located in central Yangon. I then compute the distance between each conflict event

and the highways used by the fastest route.

3.3. Conflict

There are two main conflict datasets containing precise geographical information on

conflicts used in the literature: Uppsala Conflict Data Program (UCDP) and the Armed Conflict

Location and Event Data Project (ACLED). Besides the the conflict location, both datasets

include the actors involved and the number of fatalities associated with a particular conflict.

I focus on the former dataset, as the entries in UCDP have been shown to be more accurate

and more suitable for subnational analysis of conflict (Eck, 2012). See appendix D for a

discussion of the two conflict datasets in the Myanmar context.

For mapping conflicts to roads, it is crucial to measure the event location precisely. The

sample is thus restricted to include events where the precision of the information is high.8

In the period after 2010 this subsample corresponds to 31% of events and 49% of deaths in

the UCDP data.

In addition to the choice of dataset, it is unclear which events should be counted when

considering the impact on trade flows. Below I mostly consider events that happen within

10km of the highway. In particular, I define conflict as at least five deaths resulting from

armed conflict within 10km of a particular route on a given day. This measure picks

up large disruptions only, likely leading to underestimating the total effect. Still, in the

six-year period of the transaction data (April 2011-March 2017), there are 22 months where

access to some border station is blocked for at least some firms.

Figures 3.6 shows the share of affected firm-product-station triplets which are affected by

conflict in a given month by border station. We see that a variety of border stations are

affected by conflict over the period and conflict is not temporally clustered, i.e. the effects

8For UCDP I include events where the locations is measured with precision 1 or 2. The UCDP codebook
defines precision level 1 as the exact location of the event and level 2 as the event occurring within a 25 km
radius around a known point.
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are not identified by one conflict going over several months. Large escalations are rather

one-off and short-term events. In addition to these large disruptions, I present results that

instead use measures of conflict intensity, using either the number of conflict days in a

given months or the total number of conflict-related deaths.

3.4. Political Connections

Since some of the actors in Myanmar’s conflicts are invested in the export business, this

may create strategic interactions between the timing of conflicts and trade flows. It is thus

important to account for this firm-level heterogeneity. The mapping of firms to the firm

registry which contains names of firm directors allows doing this.

First, the military is an important player both in Myanmar’s economy and in its conflicts.

Western sanctions initially imposed during the 1990s were targeted at members of the mili-

tary regime. Governments published lists naming both firms and individuals connected to

the military. These can be matched to the transaction data based on the name of the firms,

as well as the names of firm directors.9

Second, though clearly to a lesser extent than the military, some EAOs may have business

interests in the formal economy. Hence, with the help of Burmese natives, I classified firm

director names according to Myanmar’s main ethnicities.10 This is largely relying on the

fact that many names in Myanmar include ethnicity-specific honorific titles. However,

some honorifics are not specific to just one ethnicity and not all Burmese names contain

honorifics. I thus relied on multiple native Burmese research assistants for these less

clear-cut cases (see appendix C for a more detailed discussion). This procedure allows me

to identify firms with non-Bamar directors which I classify as ethnic minority firms.

In the analysis below, I will adopt a broad definition of connectedness to the conflict actors.

In particular, all firms with ties to either the military or an ethnic minority are defined as

connected. For ethnic minorities this definition will include some firms that have ethnic

minority directors but are not necessarily linked to EAOs.11

9This measure was developed in unpublished work by Felix Forster, Amit Khandelwal, Rocco Macchi-
avello and Matthieu Teachout which they kindly shared with me. They rely on sanctions lists from the US,
the EU and Australia. In addition, they partnered up with a local research company to ensure the accuracy
of their matching exercise. Sanctions lists were amended over time and they consider individuals or firms
as sanctioned if they ever appear on these lists. Following the previously mentioned authors, state-owned
enterprises are also defined as connected to the military.

10The main ethnicities are Chin, Shan, Kachin, Kayin, Kayah, Bamar, Rakhine and Mon.
11Doing a more precise mapping of firms to EAOs might in theory be possible, but would require
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3.5. Retail Prices

Myanmar’s Central Statistical Office collects monthly data on local retail prices in all of

Myanmar’s regions. I obtained this data for the period from January 2010 to October 2020.

The basket of products changed in September 2016. I was able to identify 116 products

present in both sets of products. I manually classify products as tradeable (100 out of 116).

In addition, I identify export products when they are present in the raw transaction export

data. Table 3.9 contains a list of all products included in the analysis. I end up comparing

29 export products with 71 domestically sold products.

4. Does Conflict Disrupt Trade Flows?

This section shows how conflicts close to trade routes disrupt exports to Myanmar’s

neighbors and discusses the resulting impact on the local economy.

4.1. Export Transactions

The first empirical exercise in this paper tests whether trade flows along a route are lower

during a month with armed conflict. To test this I run the following regression

Transactionsijpt = exp
[
β × Conflictijt + FEpd(j)t + FEijp

]
× ϵijpt (3.1)

where Transactionsijpt is the number of transactions of firm i via border station j of product

p at time t. Conflictijt captures armed conflict at time t along the route from the location of

firm i to border station j. The coefficient of interest is β which we expect to be negative if

conflict lowers trade flows.

The specification includes fixed effects at the firm-station-product level, accounting for

time-invariant determinants of exports of that firm and product via a particular border sta-

tion and at the product-destination-time level, controlling for destination-specific demand

shocks as well as nationwide supply shocks specific to a certain product.12 Below I show

additional variations where firm-time fixed effects are included, essentially controlling for

substantial support from local research companies which is hard to obtain given the current political
circumstances.

12Note that one destination country d can have multiple border stations j, but a border station maps to just
one destination country.
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firm-specific demand and supply shocks.

As is common in the trade literature, I use Poisson Pseudo Maximum Likelihood (PPML) to

estimate equation 3.1 to address potential bias stemming from both zeros in the dependent

variable and heteroskedasticity (Silva and Tenreyro, 2006). In addition, I present results

using ordinary least squares. Standard errors are clustered at the township-station pair, i.e.

at the route level.

Table 3.3: Conflict and Transactions

# Transactions Any Transaction

(1) (2) (3) (4) (5) (6)

Poisson Poisson Poisson OLS OLS OLS

Conflict -0.5082∗∗ -0.4344∗∗∗ -1.142∗∗∗ -0.0101∗∗∗ -0.0154∗∗∗ -0.0158∗∗∗

(0.2095) (0.1422) (0.2073) (0.0031) (0.0040) (0.0056)

Observations 727,560 446,194 133,977 727,560 727,560 727,560

R2 0.25 0.75 0.98 0.13 0.24 0.49

Dependent variable mean 0.44 0.71 2.4 0.06 0.06 0.06

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓

Month-Product-Destination ✓ ✓ ✓ ✓

Month-Firm ✓ ✓

Notes: This table reports the results of estimating equation 3.1. Standard errors are clustered at the route
level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

Table 3.3 presents the results of estimating equation 3.1. Conflict has a large impact on the

number of transactions passing through the affected route. The coefficient in the second

column shows that a major conflict leads to an average drop in transactions of 43%. The

extensive margin results using OLS presented in the last three columns of the table confirm

a large and robust effect of conflict on export flows. Column 5 indicates that during a

month with conflict the probability of observing a conflict drops by 1.5 percentage points.

The inclusion of a firm-time fixed effect roughly doubles the PPML estimate. The negative

effect of conflict on exports is thus not driven by conflict affecting the production of firms

directly. A larger coefficient (in absolute terms) may be driven by substitution across export

routes by firms, as now identification comes from changes in the relative use of export
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routes by the same firm, depending on whether these routes are currently affected by

conflict, whereas previously identification was coming from the differential use of export

routes to the same destination for one product, both across and within firms. Note that the

inclusion of firm-time effects excludes firms that export only using one border city and

thus the effective sample reduces to a few, large firms.

Endogeneity Concerns. In order to obtain an unbiased estimator when estimating equa-

tion 3.1, the expectation of the error term conditional on regressors needs to be zero. The

most relevant threat to this assumption in this paper is reverse causality. In particular,

more trade along a given route could raise the gains of controlling it, e.g. because of

taxation, and hence the likelihood of observing conflict.

First, notice that this reverse causality would likely lead to an upward bias in the estimated

coefficient. Thus, if anything, the results presented here would underestimate the true

negative effect of conflict on trade. Nonetheless, I argue below that this mechanism is

unlikely to be at play, at least in the short time window that I am considering here.13

Second, the main definition of conflicts I use happens to only include killings of civilians

by the military because these typically result in a larger number of deaths than standoffs

between EAOs and the military. The nature of these conflicts is thus based on longer

standing conflicts between ethnic minorities and the military. As described in section 2,

the military often wants to drive ethnic minorities from resource-rich pieces of land. The

motives behind these atrocities are thus not driven by short-run fluctuations in trade.

Third, if taxing goods passing through were a driver of conflict, we would expect a different

coefficient for more valuable goods, as they would likely result in higher tax revenue.

I compute the average price and shipment value for each product and then estimate

equation 3.1 interacting the conflict variable with these values. The results presented in

table 3.10 show that there is no differential effect for higher value products.

Some of the parties to the conflict are closely linked to trading firms. In particular, the

military is both present in many sectors of the economy as well as actor in the majority of

conflicts. Another threat to identification could thus come from the fact that the parties

involved in the conflict simultaneously decide on when to do business and when to engage

13In general, control of trade routes in the long run is a likely driver of conflict. Rebel groups sometimes
generate a substantial share of their income from taxing trade. Studying how increases in trade can cause
turf wars is an interesting path for future research. Dell (2015) shows that drug trade can increase violence
along trafficking routes in Mexico.
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in heavy fighting. Reassuringly, when I drop firms directly connected to the conflict parties,

I find very similar coefficients (see column 4 of table 3.11). As I show below, if anything,

firms connected to the military actually export more during conflict periods.

In addition, I use a lagged version of the explanatory variable. If trade and conflict are

determined simultaneously, lagging the explanatory alleviates this concern. Column

3 of table 3.11 shows that the lagged conflict variable leads to a very similar estimate,

indicating that conflict is not strategically halted when trade occurs, but rather that it

creates an environment of insecurity where firms restrict their exports even one month

later.

To add to this, I estimate a fully dynamic specification.14 The results in figure 3.7 show that

there is no anticipation of conflicts and that they still have an effect in the following period.

Finally, there is some evidence of a catching-up three months later. In the case of attacks

coordinated with firms, one would expect some frontloading of transactions, which does

not seem to be the case in the data.

Conflict Definition. To further ensure the validity of these results, I use different defini-

tions of conflict (see table 3.12). First, I use a different conflict dataset (ACLED).15 I continue

to find a strong and precisely estimated negative effect of conflict on trade. The magnitude

of the coefficient in column 2 is lower which is in line with the ACLED data including a

wider set of conflict events which comes at the cost of introducing measurement error.

Second, I use two measures of conflict intensity, the number of conflict days and the total

number of deaths related to these conflicts. Columns 4 and 5 show that both of these

measures result in a precisely estimated negative coefficient. Column 5 suggests, for

example, that a 10% increase in conflict deaths decreases exports by 0.6%.

Aggregation. So far the analysis has been at the firm-route-product level. To further

underline the aggregate implications of conflict, I instead estimate equation 3.1 at the

destination country-product level. I focus on disruptions along the most important trade

route between Yangon and Muse. The highway section between Mandalay and Muse is

both a crucial artery for trade as well as frequently disrupted by conflict in Shan State.

14To do this, I create a full vector of observations for each firm-product-route and treatment date. I then
estimate coefficients relative to two rather than one baseline period, as recommended by Borusyak and
Jaravel (2017) to avoid multicollinearity. Note that other recent methods as developed by De Chaisemartin
and d’Haultfoeuille (2020) are not suitable when using a non-linear PPML estimator.

15See section 3 for a discussion on conflict data

221



Table 3.13 shows that conflict along this highway has an overall negative impact on export

transactions to China. In the first column of this table I focus on exports to China and

rely purely on the variation across time, controlling for seasonality of exports. The second

column includes exports to other countries, which allows controlling for time fixed effects

and thus exploiting variation across destination countries. This implies that localized

disruptions lead to more aggregate effects and substitution across routes or firms does not

offset the negative effect caused by the disruptions.

4.2. Pass-through to Local Prices

To further study the aggregate impact of the disruptions to market access, I look at how

local prices for export goods change during conflict periods. Anecdotal evidence suggests

that firms who usually export are forced to sell part of their production domestically when

there is conflict along the routes to neighboring countries. To test this, I use the data on

retail prices. I focus on the Yangon region which is itself not affected by armed conflict

and is the main trade hub of Myanmar. I run the following regression

log(pricept) = β × Conflictt × Exportp + FEp + FEt + ϵpt (3.2)

where pricept is the retail price of product p in month t in the Yangon region, Conflictt

captures armed conflict along the major trade route to China (the Mandalay-Muse highway)

and Exportp is a dummy indicating whether product p is exported to China.16 The

specification includes product and time fixed effects. Below I also estimate equation

3.2 with product-calendar month fixed effects, accounting for seasonality patterns and

product-specific linear trends. The sample consists of all tradeable products in the retail

price data, but I present additional results where I include non-tradeables. Standard errors

are clustered at the product level.

If some of the production destined for export has to be sold on the domestic market, the

coefficient of interest β should be negative. As table 3.4 shows, this is indeed the case.

When there is conflict along the major highway to China, the retail price in Yangon of

export goods relative to goods only sold domestically drops by around 5%. This suggests

that at least some producers choose to sell on the domestic market rather than export when

16I focus on the Mandalay-Muse highway to keep the analysis simple. As table 3.1 shows, Muse is, by far,
the most important border city and alone accounts for more than one billion US dollars in exports.
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there is conflict along the Mandalay-Muse highway, resulting in potentially substantial

economic losses.

Table 3.4: Pass-Through to Local Prices

Retail Price in Yangon (logs)

Period: 1/2010-10/2020 04/2011-03/2017

(1) (2) (3) (4)

Conflict M-M Highway × Export Good -0.0532∗∗ -0.0494∗ -0.0418∗∗∗ -0.0549∗∗

(0.0238) (0.0251) (0.0152) (0.0224)

Observations 11,035 11,035 11,035 6,864

R2 0.97 0.97 0.99 0.99

Fixed Effects

Product ✓

Month ✓ ✓ ✓ ✓

Calendar Month-Product ✓ ✓ ✓

Linear Trend

Month × Product ✓ ✓

Notes: This table reports the results of estimating equation 3.2. Standard errors are clustered at the product
level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

Robustness. The result is robust to the inclusion of calendar month-product fixed effects,

accounting for seasonality. In addition, including a product-level linear trend does not

change the result, capturing any long-run price trends at the product level that could

be correlated with conflict incidence. Finally, restricting the estimation window to the

period of the trade transaction data does not change the main finding that prices of export

products drop in times of closed trade routes.

Finally, I have so far omitted non-tradeables from the control group of non-exported goods.

As shown in table 3.14, including them increases the estimated magnitude. This might be

due to a higher degree of substitutability among tradeable goods, compared to tradeable

versus non-tradeables.
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4.3. Discussion

These results suggest that conflicts have a substantial direct negative effect on trade flows.

Taking the probability of a firm-product-station triplet being affected by conflict in the full

sample (3.2%), the results imply that in this setting conflict reduces export transactions by

around 1.4% over the sample period. If we use the alternative conflict data from ACLED,

the much higher baseline probability (19.5%) leads to an estimated reduction in export

transactions of 5.4%. This captures only the largest conflicts and their direct impact. The

total effect of conflict is likely larger.

The results on retail prices imply that traders lose access to foreign markets and switch to

selling domestically, indicating that withstanding disruptions and continuing to export

is difficult. Prices drop by 5% when the major trade route with China is disrupted, again

suggesting substantial losses, potentially spilling over to purely domestically active firms.

This finding demonstrates the interdependence between exports and the domestic markets.

In canonical trade models this interdependence is typically assumed away and firms

decide whether to enter and how much to sell independently for each market. In a

recent exception Almunia et al. (2021) describe how firms compensate a negative domestic

demand shock by exporting more, a phenomenon the authors label venting out. I add to

this nascent literature by showing evidence for firms venting in in the face of disruptions to

foreign market access.

Overall, the results suggest that conflicts have an economic impact in locations that are

far away from where violent conflict occurs. This adds to the literature that tries to

estimate the economic impact of war and conflict. While Korovkin and Makarin (2021) and

Couttenier et al. (2022) show that conflict can disrupt supply chains and thereby lead to

spillovers along the production network, I add to this by providing evidence that conflict

and insecurity can substantially increase trade costs and hurt trade relationships.

The question arises why exporters cannot switch export routes and simply continue trading.

The specific nature of trade relationships in this context makes this difficult. First, the

market structure is such that coordinating ex ante with buyers is not common. Many of

the agricultural commodities are actually sold on the spot. An exporter transports the

goods to one of the border cities. Then, she sells her goods in a marketplace to buyers that

cross the border from the neighboring country. This market structure makes it difficult to

contract ex-ante and to deliver the goods via a different border city.
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Second, the road network in Myanmar is sparse. Reaching a border city via a different

route and thereby circumventing the conflict-affected section is often not possible. The

few roads that cross Myanmar’s mountainous borderlands, such as the Mandalay-Muse

highway, are often crucial infrastructure bottlenecks.

Third, for many of these products using different transport modes is difficult. Switching

e.g. to maritime trade requires complying with different regulations and would typically

require interacting with different buyers since at least the buyers on the Chinese border

are located far away from the next port. Only a small fraction of firms is active both in

maritime and land border trade.

5. Using Perishability to Identify Risk

In order to identify how the risk of exporting during conflict periods affects firms and

products differentially, I rely on product characteristics. In particular, I separate the seafood

sector from other products. Seafood is highly perishable and due to the lack of a reliable

cold chain subject to high losses when shipments are delayed. First, I show that exporters

can generally substitute shipments intertemporally, but not in the seafood sector. Second, I

look at what types of firms are more resilient to the increased risk, using the seafood sector

to identify highly risky transactions.

5.1. Intertemporal Substitution

Disruptions of trade routes caused by conflict are only temporary and typically last a

few days. This means exporters can potentially delay earlier shipments and lump them

together with later ones. If there is intertemporal substitution in demand and producers

can store products, we would thus expect exporters to adjust upwards the shipment size

once trade routes are open again to compensate for the missing transactions. To test this I

run the following specification

log(Transaction Sizeijpt) = β × Conflictijt + FEpd(j)t + FEijp + ϵijpt (3.3)

where Transaction Sizeijpt is the average value of a transaction by firm i via border station

j of product p at time t. The explanatory variables and the clustering of standard errors are

as in equation 3.1. The estimation is done using ordinary least squares. Since the average
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transaction size is highly skewed, I use the log of transaction size as dependent variable.

Table 3.5 shows that transaction size increases by around 20% during months with conflict.

While exporters decrease the amount of export transactions the average size increases,

compensating for the disruption. As expected, the intertemporal substituability of trade

transactions strongly depends on product characteristics. In particular, perishable goods

can only be stored for a certain amount of time, potentially subject to high costs, e.g.

refrigeration. Accordingly, I find that only producers of non-seafood exports increase

average transaction size and are thus able to shift their transactions across time. In contrast,

exporters of seafood see no increase in transaction size. This suggests that delaying

transactions is a feasible adjustment strategy for less time-sensitive products, limiting the

economic cost from disruptions.

Table 3.15 shows that the results are robust to using a linear dependent variable and table

3.16 uses a different definition of perishability (see section 3).

Table 3.5: Conflict and Transaction Size

Avg. Transaction Value (logs)

Full Sample Seafood Non-Seafood Full Sample Seafood Non-Seafood

(1) (2) (3) (4) (5) (6)

Conflict 0.1011∗∗ 0.0473 0.1461∗∗∗ 0.2047∗∗∗ 0.0567 0.2279∗∗∗

(0.0402) (0.0567) (0.0552) (0.0670) (0.1530) (0.0790)

Observations 42,033 10,592 31,441 42,033 10,592 31,441

R2 0.85 0.83 0.85 0.92 0.91 0.92

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓ ✓

Month-Product-Destination ✓ ✓ ✓

Notes: This table reports the results of estimating equation 3.3. Standard errors are clustered at the route
level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

5.2. Firm Heterogeneity

In order to study heterogeneity across firms, I estimate the following variation of equation

3.1
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Transactionsijpt = exp
[
β × Conflictijt + γ × Conflictijt × Xi + FEpd(j)t + FEijp

]
× ϵijpt

(3.4)

where Xi is a characteristic of the firm. Other variable definitions and the estimation

strategy is as in equation 3.1. To study decision-making under risk, I divide the sample

into seafood and other exports. As the previous analysis has shown, firms cannot intertem-

porally substitute shipments of seafood products, making handling them riskier for firms.

We thus expect a larger differential between more and less risk-averse firms in the seafood

sector relative to other products.

5.2.1. Firm Size

First, I look at whether firm size is related to how firms deal with risk. Large firms have

many potential advantages during conflict periods. For example, they may face a lower

probability of bankruptcy when losing a shipment. They can thus continue exporting even

when it becomes risky. Small and financially constraint firms no longer find it optimal to

trade.

I thus estimate equation 3.4, defining Xi as firm size. I measure firm size by the value of all

transactions in non-conflict periods and then define a large firm as being in the top quartile.

Table 3.6 shows the results. In general, large firms are more likely to continue exporting

during conflict periods. The differential between small and large firms is especially

pronounced in the seafood sector, with the large firm premium being at least twice as large.
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Table 3.6: Conflict and Firm Size

# Transactions

Seafood Non-Seafood

(1) (2) (3) (4) (5) (6)

Conflict -0.4686∗∗ -1.581∗∗∗ -1.514∗∗∗ -0.4156∗ -0.5192∗∗ -0.7741∗∗∗

(0.2284) (0.4300) (0.4814) (0.2174) (0.2171) (0.1667)

Conflict × Large Firm 1.159∗∗∗ 1.068∗∗ 0.1282 0.4111∗∗

(0.4411) (0.4498) (0.1918) (0.1667)

Observations 156,456 156,456 109,531 571,104 571,104 336,663

R2 0.19 0.19 0.31 0.32 0.32 0.78

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓ ✓ ✓

Month-Destination-Product ✓ ✓

Notes: This table reports the results of estimating equation 3.4 with Xi defined as firm size. Standard
errors are clustered at the route level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels,
respectively.

Robustness. The results are robust to different ways of defining firm size. First, I use

the value of firm exports until the end of 2012 to define initial firm size and then use only

transactions in the estimation sample from after 2012. This approach has the disadvantage

of reducing the sample size substantially since there was substantial export entry during

the period of analysis. Table 3.17 shows the results are nevertheless robust to this reduced

estimation sample.

Second, I measure firm size continuously. Table 3.17 shows that the sign of the interaction

between conflict and (log) firm size is positive and statistically significant and thus in line

with the previous results.

Third, I use a different definition of the perishable sector (see section 3 for a description).

Table 3.19 shows that the firm size differential is again larger for the more perishable

products.

228



5.2.2. Connections to the Military

While the military was formally not in power during the sample period, political connec-

tions to the military are still believed to have been important. The Tatmadaw are a conflict

party in a vast majority of conflicts. In order to test whether connected firms enjoy better

protection from conflict risk, I estimate equation 3.4 defining Xi as connected. The results in

table 3.7 show that connected seafood exporters are more resilient during conflict periods

than their non-connected counterparts. In contrast, there is no statistically significant

difference in the effect for non-seafood exporters. This result is robust to controlling for

a time-varying effect of being connected to the military. This is important in case the

probability of conflict is correlated with general political turmoil that affects connected

firms differentially. In addition, I show that using a different definition of perishable

products does not qualitatively change the results (see table 3.20).

Table 3.7: Conflict and Political Connections

# Transactions

Seafood Non-Seafood

(1) (2) (3) (4) (5) (6)

Conflict -0.5253∗∗ -0.5265 -0.5205∗∗ -0.4109∗ -0.4102∗∗∗ -0.4117∗

(0.2438) (0.3814) (0.2444) (0.2187) (0.1283) (0.2189)

Conflict × Connected 0.7423∗∗∗ 0.6601∗ 0.5773∗ -0.2781 -0.3678 -0.5788

(0.2357) (0.3380) (0.3459) (0.6739) (0.6228) (1.101)

Observations 156,456 109,531 156,224 571,104 336,663 570,509

R2 0.19 0.31 0.19 0.32 0.78 0.32

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓

Month-Destination-Product ✓ ✓

Month-Connected ✓ ✓

Notes: This table reports the results of estimating equation 3.4 with Xi defined as a dummy variable
indicating whether a firm is connected to the military. Standard errors are clustered at the route level. ∗∗∗, ∗∗,
∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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5.3. Discussion

The analysis shows that exporting seafood is risky because of its perishability. In contrast

to less perishable products, it does not allow for intertemporal substitution. Expectedly,

this suggests that stockpiling is a major safeguard against short-run disruptions of market

access. While there is evidence that stockpiling inputs can shield firms from global supply

chain disruptions (Lafrogne-Joussier et al., 2022), this analysis shows that suppliers can

also make use of this and shift transactions into the future.

I show that large firms are more resilient during periods of increased risk, especially in the

more risky seafood sector. This suggests that trade cost uncertainty may skew the firm

size distribution towards larger firms. In line with this I show in figure 3.8 that seafood

accounts for a larger share of exports in the upper tail of the firm size distribution.

In addition, I show that firms connected to the military may enjoy better protection and can

continue to export during conflict periods. This finding highlights how being connected

to powerful actors can become more important during periods of turmoil. To the best of

my knowledge this finding is new to the literature on how firms can benefit from political

connections in developing countries.17

6. Conclusion

This paper studies the effects of sudden, unanticipated disruptions of trade routes on

exports in a developing country context. In particular, the analysis reveals that ethnic

conflicts along trade routes in Myanmar lead firms to decrease their exports along these

routes. Especially, exporters of perishable and thus time-sensitive products are affected

which face potentially high losses when their shipments are delayed. Local prices for export

goods drop, suggesting that producers sell some of their produce on domestic markets.

Firms with connections to the military and large exporters are the most resilient and are

more likely than their competitors to keep exporting perishable, more risky products.

Understanding the challenges faced by exporters in developing countries is key to de-

signing policies that increase participation in international trade networks. In Myanmar,

localized disruptions to road networks can have large consequences because firms are not

sufficiently diversified in terms of markets they serve. Reducing entry barriers to foreign

17In a recent survey of the literature Atkin et al. (2022) point to connections to the military as an area
unexplored in the literature on the nexus of trade and development.

230



markets and a strong domestic market allows firms to shift sales and become more resilient.

In addition, a denser road network could reduce the importance of particular bottlenecks.

For the economic outlook of Myanmar these results are troubling. If the military regime

stays in power, Western sanctions will further increase the country’s dependence on trade

with China. At the same time, after the coup d’état, conflict between the Tatmadaw and

EAOs has increased in the Burmese border regions. In addition to the human tragedy this

causes, levels of trade will remain low for some time to come and impede the economic

development of Myanmar.18

18In fact, recent numbers suggest that exports via the land border have dropped sig-
nificantly. This is likely due in part to the ongoing conflicts in Myanmar’s border re-
gions (see e.g. https://www.thestar.com.my/aseanplus/aseanplus-news/2022/02/24/

myanmar039s-sea-trade-surges-in-interim-budget-period).
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Appendix

A. Additional Tables

Table 3.8: Myanmar’s Main Exports via Land Border in 2014

HS Code Product Description Transactions Value (mln USD)

0302 Fish; fresh or chilled, excluding

fish fillets and other fish meat of

heading 0304

6109 83.40

0301 Fish; live 5917 50.12

1006 Rice 4422 401.95

0306 Crustaceans; in shell or not,

live, fresh, chilled, frozen, dried,

salted or in brine; smoked,

cooked or not before or during

smoking; in shell, steamed or

boiled, whether or not chilled,

frozen, dried, salted or in brine;

edible flours, meals, pellets

3725 76.70

0807 Melons (including watermelons)

and papaws (papayas); fresh

2134 100.58

1005 Maize (corn) 2050 285.41

0713 Vegetables, leguminous; shelled,

whether or not skinned or split,

dried

1937 102.25

0802 Nuts (excluding coconuts,

Brazils and cashew nuts); fresh

or dried, whether or not shelled

or peeled

1327 26.31

0305 Fish, dried, salted or in brine;

smoked fish, whether or not

cooked before or during the

smoking process; flours, meals

and pellets of fish, fit for human

consumption

1103 14.63

1211 Plants and parts of plants (in-

cluding seeds and fruits), used

primarily in perfumery, phar-

macy; for insecticidal, fungici-

dal or similar purposes, fresh or

dried, whether or not crushed or

powdered

950 8.84
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Table 3.9: List of Products in Retail Price Data

Export Good Non-Export Good Non-Export Good (cont.) Non-Export Good (cont.)

Banana Bicycle Gourd Taste powder (50gm)

Beef Bread Groundnut Oil Tetron

Beer (Mandalay) Bricks Horlicks (1lb) Thanakha

Betel leaves Brinjal Long bean Timber(Hard wood)

Betel nut Bulb Long cloth(white) Tooth paste(Pepsodent)

Cabbages Candles Milk powder (2 1/2lb) Towel

Cane jaggery Casette-Radio Mutton Umbrella(Foreign)

Coconut Cement(50 kg) Nail Vegetable Oil

Condensed Milk (local) Ceramic Ware Bowl Ngabokechauk Vest(1/30 cord)

Dried chillies (short) Ceramic Ware Plate Ngagyi Washing soap(Shwewa)

Fish ngapi Charcoal Ngagyichauk Wheat Flour

Garlic (single) Cheroots Ngagyin Woman’s cloth

Gram Chicken Ngakhu Zinc(32 gate)

Lemon Chicken Eggs Ngakunshutchauk

Lime Cigarette (Duya) Ngayan

Ngamoke Cigarette (Foreign) Ngayanchauk

Ngamyitchin Coconut oil Ovaltine (1lb)

Onions (big) Coffee mix / Tea mix Palm Oil

Papaya Condensed Milk (Foreign) Palm jaggery

Pegyi Dhani(Laputta) Penilay

Pork Diecel Petrol

Potatoes Dried Prawns Radish

Rice(Emata) Duck Salt

Roselle leaf Duck Eggs Salted fish

Sadawpe Electric Iron Shampoo (Tayaw)

Seamum Oil Exercise book,80 pages Shrimp nganpyaye

Sugar Fire wood Slipper(Foreign)

Tomatoes Fish nganpyaye Slipper(Leather)

Vermicelli (rice) Fresh Milk Sport-shirt
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Table 3.10: Conflict and Transactions - Heterogeneity by Value

# Transactions

(1) (2) (3) (4) (5)

Conflict -0.4344∗∗∗ -0.4331 -0.4334∗∗∗ -0.4148∗∗ -0.4974∗∗∗

(0.1422) (0.5623) (0.1612) (0.1662) (0.1547)

Conflict × High Transaction Value -0.0014

(0.5576)

Conflict × Transaction Value (HS6 Average) −1.33 × 10−8

(4.27 × 10−7)

Conflict × High Price -0.0326

(0.2391)

Conflict × Price (HS6 Average) 5.02 × 10−5

(0.0001)

Observations 446,194 446,194 446,194 446,194 446,194

R2 0.75 0.75 0.75 0.75 0.75

Fixed Effects

Month-Destination-Product ✓ ✓ ✓ ✓ ✓

Firm-Route-Product ✓ ✓ ✓ ✓ ✓

Table 3.11: Conflict and Transactions - Robustness

# Transactions

Baseline Drop Connected Lagged

(1) (2) (3)

Conflict -0.4344∗∗∗ -0.5441∗∗∗

(0.1422) (0.1367)

Conflict (lagged) -0.3966∗∗

(0.1549)

Observations 446,194 343,032 435,879

R2 0.75 0.61 0.75

Fixed Effects

Firm-Route-Product ✓ ✓ ✓

Month-Product-Destination ✓ ✓ ✓
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Table 3.12: Conflict and Transactions - Different Conflict Definitions

# Transactions

Baseline ACLED ACLED (Civilians) Conflict Intensity

(1) (2) (3) (4) (5)

Conflict -0.4344∗∗∗

(0.1422)

Conflict (ACLED) -0.2778∗∗

(0.1148)

Conflict (ACLED, Civilians) -0.4279∗∗

(0.2066)

IHS(Conflict Days) -0.1914∗∗∗

(0.0649)

IHS(Deaths in 50km) -0.0634∗∗

(0.0294)

Observations 446,194 446,194 446,194 446,194 446,194

R2 0.75 0.74 0.75 0.75 0.75

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓

Month-Product-Destination ✓ ✓ ✓ ✓ ✓

Table 3.13: Conflict and Transactions - Aggregate Impact

# Transactions

China Only All Destinations

(1) (2)

Conflict M-M Highway -0.4927∗∗∗ -0.3868∗∗

(0.1644) (0.1668)

Observations 24,552 67,392

R2 0.20 0.43

Fixed Effects

Destination-Product ✓ ✓

Calendar Month ✓

Month ✓
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Table 3.14: Retail Prices and Conflict - Including Non-tradeables

Retail Price in Yangon (logs)

Period: 1/2010-10/2020 04/2011-03/2017

(1) (2) (3) (4)

Conflict along M-M Highway × Export Good -0.0915∗∗∗ -0.0934∗∗∗ -0.0609∗∗∗ -0.0810∗∗∗

(0.0296) (0.0320) (0.0161) (0.0238)

Observations 12,915 12,915 12,915 7,988

R2 0.94 0.94 0.98 0.99

Fixed Effects

Product ✓

Month ✓ ✓ ✓ ✓

Calendar Month-Product ✓ ✓ ✓

Month × Product ✓ ✓

Table 3.15: Conflict and Transaction Size - Linear Dependent Variable

Avg. Transaction Value

Full Sample Seafood Non-Seafood Full Sample Seafood Non-Seafood

(1) (2) (3) (4) (5) (6)

Conflict 12,436.2∗ 1,381.9 17,631.5∗∗ 24,632.1∗∗∗ -3,176.7 28,990.1∗∗∗

(6,587.8) (1,797.1) (8,828.7) (7,025.6) (6,994.4) (8,122.5)

Observations 42,033 10,592 31,441 42,033 10,592 31,441

R2 0.69 0.71 0.69 0.88 0.82 0.88

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓ ✓

Month-Product-Destination ✓ ✓ ✓

238



Table 3.16: Conflict and Transaction Size - Different Split

Avg. Transaction Value (logs)

Full Sample Fresh Non-Fresh Full Sample Fresh Non-Fresh

(1) (2) (3) (4) (5) (6)

Conflict 0.1011∗∗ 0.0599 0.1194∗∗ 0.2047∗∗∗ 0.0436 0.2311∗∗∗

(0.0402) (0.0623) (0.0485) (0.0670) (0.1498) (0.0751)

Observations 42,033 9,204 32,829 42,033 9,204 32,829

R2 0.85 0.84 0.85 0.92 0.93 0.92

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓ ✓

Month-Product-Destination ✓ ✓ ✓

Table 3.17: Conflict and Initial Firm Size

# Transactions

Seafood Non-Seafood

(1) (2) (3) (4)

Conflict -1.088∗∗ -1.417∗∗ -0.1404 -0.4428∗∗

(0.4356) (0.5563) (0.1621) (0.1834)

Conflict × Large Firm 1.199∗∗ 1.134∗∗∗ 0.5200∗∗∗ 0.6804∗∗∗

(0.4720) (0.3454) (0.1878) (0.2019)

Observations 46,818 32,808 103,377 57,507

R2 0.28 0.42 0.40 0.80

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓

Month ✓ ✓

Month-Destination-Product ✓ ✓
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Table 3.18: Conflict and Continuous Firm Size

# Transactions

Seafood Non-Seafood

(1) (2) (3) (4)

Conflict -4.084∗∗ -4.863∗∗∗ -3.582∗∗∗ -4.476∗∗∗

(1.776) (1.856) (1.146) (0.9236)

Conflict × log(Firm Size) 0.2132∗∗ 0.2588∗∗ 0.1897∗∗∗ 0.2390∗∗∗

(0.1003) (0.1063) (0.0707) (0.0553)

Observations 156,384 109,459 570,816 336,439

R2 0.19 0.31 0.32 0.78

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓

Month ✓ ✓

Month-Destination-Product ✓ ✓

Table 3.19: Conflict and Firm Size - Different Split

# Transactions

Fresh Non-Fresh

(1) (2) (3) (4) (5) (6)

Conflict -0.6847∗∗∗ -1.769∗∗∗ -1.243∗∗∗ -0.4574∗∗ -0.6247∗∗∗ -0.8313∗∗∗

(0.2640) (0.4221) (0.4302) (0.2275) (0.2290) (0.1684)

Conflict × Large Firm 1.145∗∗∗ 0.7504∗∗ 0.2013 0.4897∗∗∗

(0.4270) (0.3710) (0.1933) (0.1692)

Observations 147,672 147,672 88,650 579,888 579,888 357,544

R2 0.32 0.32 0.90 0.37 0.37 0.69

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓ ✓ ✓

Month-Destination-Product ✓ ✓
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Table 3.20: Conflict and Political Connections - Different Split

# Transactions

Fresh Non-Fresh

(1) (2) (3) (4) (5) (6)

Conflict -0.7644∗∗∗ -0.5733 -0.7619∗∗∗ -0.4520∗∗ -0.3970∗∗∗ -0.4516∗∗

(0.2795) (0.3622) (0.2849) (0.2299) (0.1302) (0.2304)

Conflict × Connected 1.013∗∗∗ 0.7008∗∗ 0.8888∗∗ -0.2683 -0.2467 -0.5496

(0.3158) (0.3568) (0.4032) (0.6306) (0.5758) (0.7735)

Observations 147,672 88,650 147,588 579,888 357,544 579,753

R2 0.32 0.90 0.34 0.37 0.69 0.37

Fixed Effects

Firm-Route-Product ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓

Month-Destination-Product ✓ ✓

Month-Connected ✓ ✓
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B. Additional Figures

Fig. 3.5. Map of Myanmar’s Exporters
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Fig. 3.6. Conflicts Blocking Trade Routes

Fig. 3.7. Dynamic Specification
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Fig. 3.8. Firm Size and Seafood Exports

C. Mapping Names to Ethnicities

The Burmese naming conventions are very unique, as they do not follow patronymic or

matronymic conventions. Hence, there is no family name, only a given name. Burmese

names also vary in the number of components/words. For example, ”Soe Mya” and

”Thin Thaw Tar Hnin” are both Burmese names. A further complication lies in the lack

of convention on how to romanize Burmese names. Importantly for this classification

exercise, names often contain honorific titles. These are often specific to just one ethnicity.

For classifying firm directors according to their ethnicity, I start with a sample of 8,660

unique director names. To classify names by ethnicity, I recruited multiple native Burmese

research assistants (RAs) on Upwork, an online platform to hire freelancers. In a first round,

I asked three RAs to classify a random sample of 1000 names by the eight major ethnicities

in Myanmar: Chin, Shan, Kachin, Kayin, Kayah, Bamar, Rakhine and Mon. Some directors

have foreign names. I thus also include a category ”Foreign”.

The majority of names in the dataset is Bamar. To identify and drop Bamar names in the

wider dataset, I took names of this initial sample where all three RAs agreed that the name

is Bamar. I then split these Bamar names into their components and identify names in the
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larger sample where all components belong to these set of Bamar name components. I

then drop these names identified as Bamar, which amounts to 58% of the sample.

I pass the remaining part of the sample to a set of three new RAs. If at least two RAs

agree on the ethnicity, I keep this ethnicity. This leaves me with 97.3% of names being

matched to an ethnicity or classified as foreign. As table 3.21 shows, 71% of firm directors

are Bamar. The largest minority group is the Shan ethnicity making up 6% of the sample.

There are no reliable estimates of the population share of the different ethnicities. While

this information was recorded in the 2014 census, it was never released due to the political

sensitivity of these numbers.19 The CIA Factbook gives the following estimate: Bamar

68%, Shan 9%, Karen/Kayin 7%, Rakhine 4%, Chinese 3%, Indian 2%, Mon 2%, other 5%.

The share of the Bamar majority is very similar in this population estimate and in the list of

directors. Also, the Shan and the Karen minority appear as first and second largest ethnic

minority in both. As expected, the Rakhine/Rohingya minority is vastly underrepresented

in firm directors which is consistent with the discrimination they face in Burmese society.

Table 3.21: Number of Director Names by Ethnicity

Ethnicity Count Share

Bamar 6137 0.71

Foreign 1546 0.18

Shan 517 0.06

233 0.03

Kayin 136 0.02

Kachin 54 0.01

Chin 32 0.00

Mon 4 0.00

Rakhine 1 0.00

D. Comparing Conflict Datasets

As mentioned in section 3, there are two main datasets capturing information on conflict at

a high temporal and spatial resolution. In particular, Uppsala Conflict Data Program (UCDP)

and the Armed Conflict Location and Event Data Project (ACLED) exist. The latter captures a

wider variety of events. In particular, the former includes all violent events resulting in

at least one death of state-based, non-state-based or one-sided violence conflicts which

19See Ferguson (2015) for a discussion on the controversy surrounding the 2014 census.
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Fig. 3.9. Deaths in UCDP and ACLED datasets
The figure shows the (inverse hyperbolic sine of) cumulative deaths for Myanmar as recorded in the UCDP
and ACLED datasets.

themselves lead to at least 25 battle deaths per year. ACLED imposes no such fatality

requirement for the inclusion in the database. In Myanmar, this means that relatively

minor skirmishes between actors that do not clash repeatedly are only recorded by ACLED.

ACLED also records non-violent political events such as peaceful protests.

Overall, ACLED is thought of as being somewhat more extensive at the expense of con-

taining more noise. Most relevant for my analysis, Eck (2012) argue that UCDP has higher

geographic precision and should thus be preferred when doing subnational analysis. Be-

low I show the differences between the two datasets in both the temporal and spatial

dimension in the context of Myanmar.

To assess the correlation of both datasets, I aggregate the number of conflict fatalities to

the monthly level. Figure 3.9 shows that the two datasets track each other closely.

Then, I divide Myanmar into a grid and count the number of fatalities occurring in each

grid cell for both datasets over the same time period as above. I compute the correlation

across grid cells, indicating the degree of spatial correlation among the datasets. Table
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3.22 shows the correlation coefficient between the inverse hyperbolic sine of fatalities

for different grid cell sizes. For relatively small grid cells, 0.25×0.25 degrees (roughly

25×25km) the correlation is 0.32. Even for large grid cells of 1×1 degree the correlation

is only 0.71. This indicates substantial spatial differences between the two datasets. As

depicted in the third column of the table, when focusing on locations with precisely coded

location in both datasets (precision 1 or 2), the correlation coefficient increases especially

for smaller grid cells, but remains below 0.75 for all levels of aggregation20.

Table 3.22: UCDP vs ACLED - Spatial Correlation

Grid Cell Size (in Degrees) Correlation Correlation (precisely coded location)

0.25 0.32 0.45

0.33 0.39 0.49

0.50 0.54 0.59

1.00 0.71 0.74

20The correlation coefficients are similar when focusing only on the most precisely coded locations
(precision 1).
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ÉCOLE DOCTORALE DE SCIENCES PO

Programme doctoral en économie
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Résumé

À partir de la fin des années 1980, avec le début de la littérature sur la croissance endogène,

les économistes ont reconnu le rôle important du progrès technologique pour une crois-

sance économique soutenue. Dans un article important Romer (1990) modélise le progrès

technologique en fonction d’un investissement délibéré en capital humain dans un bien

non rival et partiellement excluable. La non-rivalité des idées, une caractéristique clé

du modèle de Romer, implique que les nouvelles idées créent des externalités positives.

Les spillovers de connaissances sont également reconnus depuis longtemps comme une

externalité clé des agglomérations (Marshal, 1920). Pourtant, malgré leur importance

perçue, les spillovers de connaissances sont difficiles à mesurer de manière empirique.

Jaffe et al. (1993) ont fait un pas important dans cette direction en introduisant l’utilisation

de données sur les brevets dans la littérature économique. Ils utilisent les citations

de brevets pour étudier la localisation géographique des spillovers de connaissances.

S’appuyant sur ces premiers travaux et sur la littérature subséquente, les deux premiers

chapitres de cette thèse utilisent les données sur les brevets pour suivre de près la manière

dont les inventeurs collaborent et s’inspirent des idées des autres. En particulier, les

données sur les brevets contiennent des informations précises sur la localisation des

équipes d’inventeurs, les connaissances préexistantes qu’ils citent et sur lesquelles ils

s’appuient, et les entreprises qui déposent le brevet.

Le premier chapitre de cette thèse, co-écrit avec Fernando Stipanicic, étudie comment

une augmentation de la mobilité humaine peut conduire à une plus grande diffusion

des connaissances entre les différentes localités. Nous étudions ensuite comment ces

transferts de connaissances se traduisent par la création de nouvelles idées. Cela permet

d’identifier les paramètres clés de la fonction de production des idées que les premiers

travaux théoriques n’ont pas été en mesure de déterminer en raison d’un manque de

données détaillées. En outre, nous montrons que les villes initialement moins innovantes
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sont celles qui bénéficient le plus d’une augmentation des spillovers de connaissances, ce

qui entraı̂ne une convergence.

Plutôt que d’étudier les spillovers de connaissances et ses effets au niveau géographique,

une littérature récente décrit la production de la connaissance au sein de l’entreprise.

Avec l’essor des entreprises multinationales, la production est de plus en plus dispersée

entre les pays au sein d’une même entreprise, et ces entreprises sont responsables d’une

grande partie de la création de connaissance. Le deuxième chapitre, qui est co-écrit

avec Çagatay Bircan et Beata Javorcik, étudie comment les frictions de communication

peuvent affecter la collaboration entre les inventeurs situés dans une filiale étrangère et

ceux situés au siège de l’entreprise. Il s’agit d’un point crucial, car une grande partie des

connaissances des entreprises est détenue par les inventeurs basés au siège et, comme

nous le montrons, les inventeurs des filiales étrangères déposent des brevets de meilleure

qualité s’ils collaborent avec le siège. Alors que le premier chapitre traite des transferts de

connaissances entre entreprises, le deuxième chapitre s’intéresse aux déterminants de la

diffusion des connaissances à l’intérieur de l’entreprise.

Comparé à la diffusion des connaissances et à l’échange d’idées, l’échange de biens est

depuis longtemps reconnu comme un moteur essentiel de la croissance économique

moderne. Une multitude d’articles étudie l’interaction entre les frictions bilatérales au

commerce, l’échange de biens et ses effets sur le bien-être et la croissance. Alors qu’une

grande partie de cette littérature se concentre sur les frictions commerciales de longue

durée, telles que les tarifs ou la géographie, peu d’études se concentrent sur la manière

dont les interruptions fréquentes et imprévisibles de l’accès au marché affectent la façon

dont les entreprises échangent. Cette question est particulièrement pertinente dans les

pays en développement où l’infrastructure peut être peu fiable et où le commerce est

souvent dominé par des entreprises informelles et peu résilientes. Dans mon troisième

chapitre, j’étudie la manière dont les entreprises du Myanmar gèrent la perte répétée

d’accès aux marchés des pays voisins, causée par des conflits ethniques le long des routes

principales. Je constate que les entreprises compensent partiellement les pertes en vendant

sur le marché intérieur et en retardant les exportations. La taille de l’entreprise et les liens

avec l’armée rendent les entreprises plus résistantes.
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Chapitre 1: La création et la diffusion des connaissances:

L’expérience de l’ère du jet

Dans le premier chapitre, co-écrit avec Fernando Stipanicic, nous examinons comment

la mobilité des personnes influe sur la diffusion des idées. Nous étudions une avancée

technologique majeure qui a facilité les déplacements de personnes: Dans les années 1950,

le moteur à réaction a été introduit dans l’aviation civile, ce qui a permis de créer des

avions plus rapides et avec un rayon d’action plus long. À l’époque, le réseau aérien était

fortement réglementé, ce qui contraignait les compagnies aériennes à réoptimiser leurs

itinéraires. Cela nous permet d’affirmer que les améliorations technologiques ont entraı̂né

un choc exogène plausible sur le réseau existant.

Pour étudier cette période historique, nous numérisons les horaires de vol des principales

compagnies aériennes de l’époque. Cela nous permet de calculer le temps de trajet exact

par avion, avant et après l’arrivée des avions à réaction. Nous constatons que la durée

des trajets entre les villes principales américaines a diminué d’un tiers entre 1951 et 1966.

Nous combinons ces données avec celles relatives aux brevets attribués aux entreprises et

à la localisation des inventeurs. Cela nous donne une image complète des brevets déposés

par une entreprise, y compris le lieu où les connaissances ont été produites et les idées

antérieures qui ont été citées.

Nous constatons que la forte augmentation de la mobilité s’est traduite par une circulation

accrue des idées, en particulier sur les longues distances géographiques. Les citations de

brevets entre établissements distants de plus de 2000 km augmentent de 8% en raison de

la réduction du temps de déplacement, ce qui correspond à 38% de l’augmentation globale

pour cet intervalle de distance.

L’augmentation de la diffusion des connaissances a également conduit à la création de

nouvelles connaissances. En utilisant l’élasticité de la diffusion des connaissances par

rapport au temps de déplacement estimée dans la première étape, nous construisons une

mesure de l’accès aux connaissances. Nous montrons que le nombre de brevets augmente

quand un secteur dans un lieu particulier accède à des nouvelles connaissances grâce à la

réduction des temps de déplacement. En outre, les résultats montrent que cet effet est plus

important pour les sites initialement moins innovants, ce qui implique une convergence

entre les sites.
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En résumé, cet épisode historique nous permet d’établir un lien de causalité entre la durée

des trajets et la diffusion des connaissances. L’abaissement des frictions de mobilité aug-

mente la circulation des idées. Nous montrons qu’une diffusion accrue des connaissances

est cruciale pour les nouvelles innovations, en particulier pour les inventeurs situés en

dehors des grands centres d’innovation.

Chapitre 2: Time after Time: les coûts de communication

et la collaboration entre inventeurs au sein de l’entreprise

multinationale

Dans le deuxième chapitre, qui est un travail conjoint avec Çağatay Bircan et Beata Javorcik,

nous examinons la production de connaissances au sein des entreprises multinationales.

Pour étudier les activités globales de recherche et développement des entreprises, nous

combinons les données sur les brevets avec les liens de propriété des entreprises, ce qui

nous permet d’attribuer chaque brevet à son propriétaire final et à son lieu de production

grâce aux informations sur le lieu de résidence des inventeurs.

Nous constatons tout d’abord qu’une grande partie des activités de R&D des entreprises

se déroulent en dehors du pays du siège. Par exemple, seulement 61% des brevets les

plus précieux déposés par des entreprises américaines sont produits par des équipes

d’inventeurs exclusivement basées aux États-Unis. En nous concentrant sur les brevets

impliquant une filiale étrangère, nous montrons que les inventions sont de meilleure

qualité si elles sont créées en collaboration avec le siège. Cela suggère que l’accès aux

connaissances du siège peut rendre les inventeurs basés dans les filiales plus productifs, et

cela souligne l’importance des frictions dans cette diffusion des connaissances.

Nous constatons que des différences de fuseau horaire plus importantes entre une filiale et

le siège rendent les collaborations moins probables. Un doublement du chevauchement des

heures d’ouverture augmente la probabilité de collaboration de 5 points de pourcentage,

et ce d’autant plus dans les catégories technologiques expérimentales qui nécessitent

probablement une fréquence élevée d’interactions. L’effet reste relativement stable après

l’inclusion de la distance physique comme variable de contrôle. L’ensemble de ces résultats

suggère que les différences de fuseaux horaires constituent une entrave à la communication,

distincte des frais de déplacement.
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Motivés par l’augmentation de la part des brevets en collaboration transfrontalière et

pour fournir des preuves causales du rôle des frictions de communication, nous étudions

les épisodes de libéralisation du secteur des télécommunications dans les années 1980

et 1990. Cette déréglementation a entraı̂né une baisse significative du prix des appels

internationaux. En rassemblant des données sur les dates de libéralisation et les prix des

appels bilatéraux, nous montrons que les collaborations entre les filiales étrangères et les

sièges sociaux augmentent lorsque les marchés des télécommunications sont libéralisés

dans les deux pays et que les prix des appels chutent. Nous montrons ensuite que l’effet

des appels internationaux moins chers se concentre sur les paires de sites où les heures

d’ouverture sont similaires et sur les technologies expérimentales, ce qui est cohérent

avec nos résultats transversaux. Enfin, nous montrons que l’effet est concentré sur les

inventeurs moins expérimentés.

En résumé, nous montrons que les différences de fuseaux horaires constituent un obstacle

à la diffusion des connaissances au sein des entreprises multinationales. Si l’amélioration

des technologies de communication peut faciliter la collaboration transfrontalière des

inventeurs, les fuseaux horaires continueront à jouer un rôle important. Nous montrons

que cela est particulièrement vrai pour les technologies qui nécessitent une fréquence de

communication élevée et pour les inventeurs moins expérimentés.

Chapitre 3 : Des commerçants en difficulté sur la route de

Mandalay

Enfin, dans un troisième article, j’étudie la manière dont l’incertitude vis-à-vis des frictions

commerciales affecte l’échange de biens. Je combine des données commerciales au niveau

des transactions en Birmanie avec des données sur les conflits. La Birmanie a une longue

histoire de conflits ethniques qui se concentrent dans ses régions frontalières. Mais il

dépend fortement des exportations vers ses voisins (la Chine et la Thaı̈lande, en particulier),

dont une partie emprunte la voie terrestre et traverse donc les zones touchées par le conflit.

En traitant l’émergence d’insurrections dans les régions frontalières comme des chocs

soudains et inattendus sur les coûts commerciaux, je confirme les preuves anecdotiques

que les conflits affectent négativement le commerce de transit.

Ensuite, je montre que les exportations des entreprises transitent généralement par une

seule ville frontalière. Ce manque de diversification rend les entreprises vulnérables aux

perturbations causées par les conflits le long d’une seule route. En conséquence, les prix
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locaux des produits d’exportation chutent lorsque des routes importantes sont perturbées,

ce qui suggère que les entreprises cessent d’exporter et vendent plutôt une partie de leur

produits sur les marchés locaux. Le commerce diminue davantage pour les produits

périssables qui sont plus risqués à exporter lorsque la durée du trajet jusqu’à la frontière

est incertaine. Pour les produits durables, j’observe que les entreprises regroupent leurs

expéditions et augmentent la taille moyenne de leurs envois, ce qui les protège des pertes.

En utilisant la périssabilité des produits pour identifier la manière dont les différentes

entreprises opèrent dans l’incertitude, je constate que les grandes entreprises sont plus

susceptibles de continuer à exporter. En outre, les liens avec l’armée, un acteur puissant en

Birmanie, sont particulièrement précieux en période de conflit et pour les entreprises qui

commercialisent des produits périssables.

En résumé, ce projet montre que la combinaison d’un manque de diversification des

marchés d’exportation et de perturbations fréquentes pèse lourdement sur les gains à

l’exportation, affectant les entreprises et les secteurs de manière hétérogène. Alors que

la fin des conflits ethniques en Birmanie n’est pas en vue, la réduction des barrières à

l’entrée vers de nouvelles routes d’exportation et un marché intérieur fort augmenteraient

de manière significative la résilience des entreprises.
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