
HAL Id: tel-04411632
https://theses.hal.science/tel-04411632v2

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale Modeling : from Electromagnetism to Grid
Fadi Khalil

To cite this version:
Fadi Khalil. Multi-scale Modeling : from Electromagnetism to Grid. Electromagnetism. Institut
National Polytechnique de Toulouse - INPT, 2009. English. �NNT : 2009INPT050H�. �tel-04411632v2�

https://theses.hal.science/tel-04411632v2
https://hal.archives-ouvertes.fr

TTHHÈÈSSEE

En vue de l'obtention du

DDOOCCTTOORRAATT DDEE LL’’UUNNIIVVEERRSSIITTÉÉ DDEE TTOOUULLOOUUSSEE

Délivré par l'INPT - ENSEEIHT (Ecole Nationale Supérieure d'Electrotechnique, d'Electronique,

d'Informatique, d'Hydraulique et des Telecommunications)
Discipline ou spécialité : Micro-ondes Electro-Magnétisme Opto-électronique (MEMO)

JURY

M. Hervé Aubert, M. Fabio Coccetti
M. Renaud Loison, M. Christian Perez

M. Michel Daydé, Président
M. Yves denneulin, examinateur
M. Thierry Monteil, examinateur

M. Luciano Tarricone, invité
M. Petr Lorenz, invité

Ecole doctorale : Génie Electrique, Electronique, Télécommunications (GEET)

Unité de recherche : Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS -- CNRS)
Directeur(s) de Thèse : M. Hervé Aubert et M. Fabio Coccetti

Rapporteurs : M. Renaud Loison et M. Christian Perez

Présentée et soutenue par Fadi KHALIL
Le 14 Décembre 2009

Titre : Modélisation Multi-échelles : de l'Electromagnétisme à la Grille

(Multi-scale Modeling: from Electromagnetism to Grid)

UNIVERSITY OF TOULOUSE

Doctoral School GEET
GENIE ELECTRIQUE ELECTRONQIUE

TELECOMMUNICATIONS

P H D T H E S I S
to obtain the title of

PhD of Science
of INPT - ENSEEIHT

Specialty : MicroOndes, ElectroMagnétisme et
Optoélectronique (MEMO)

Defended on December 14, 2009 by

Fadi KHALIL

Multi-scale Modeling : from
Electromagnetism to Grid

Thesis Advisors : Hervé Aubert and Fabio Coccetti
prepared at the Laboratory of Analysis and Architecture of

Systems (LAAS – CNRS, UPR 8001), MINC Team
Jury :

Reviewers : Renaud Loison - IETR-INSA Rennes
Christian Perez - LIP-ENS Lyon

Members : Hervé Aubert - University of Toulouse, LAAS, INPT-ENSEEIHT
Fabio Coccetti - University of Toulouse, Novamems, LAAS
Michel Daydé - University of Toulouse, IRIT, INPT-ENSEEIHT
Yves Denneulin - LIG-ENSIMAG Monbonnot
Thierry Monteil - University of Toulouse, INSA, LAAS, IRIT

Invited : Petr Lorenz - Lorenz Solutions
Luciano Tarricone - University of Lecce

Acknowledgments

First and foremost, to my thesis advisors, Prof. Hervé Aubert, and Dr. Fabio
Coccetti, for supporting this research and for providing an excellent working envi-
ronment, for dedicated help, inspiration and encouragement throughout my PhD,
for providing sound advice and lots of good ideas, and for good company within
and outside the laboratory.

My appreciation goes to my other committee members as well : Prof. Renaud
Loison, and Prof. Christian Perez, for having accepted to examine this work and
for having provided valuable insights and contributed to the improvement of the
quality of this thesis. Thanks are also due to Prof. Michel Daydé for chairing my
thesis committee, Prof. Yves Denneulin and Prof. Thierry Monteil.

I appreciate very much the presence, as member of committee, of Prof. Luciano
Tarricone and Dr. Petr Lorenz.

My gratitude to Prof. Robert Plana for all of his guidance, assistance, and subtle
sense of humor.

I would like to acknowledge the National Research Agency (ANR) for support
of MEG Project (ANR-06-BLAN-0006, 2006-2009), and the collaboration of Carlos-
Jaime Barrios-Hernandez, and Luis Melo from LIG Laboratory - ENSIMAG.

I firmly believe that the work environment makes the greater part of the learning
experience and for this I would like to thank my colleagues in the Laboratory of
Architecture and Analysis of Systems. Thank you especially to Bernard Miegemolle,
Rémi Sharrock, and Tom Guérout from MRS research group.

My thanks also to Aamir Rashid and Euloge Budet Tchikaya for having provided
me with the Scale-Changing Technique modeling codes used in this thesis on Grid
platform. I have had three office mates, Jinyu (jason) Ruan, Badreddine Ouagague
and Ali Kara Omar, all of them have freely shared their time, opinions and expertise.

In addition to my office mates, I would like to extend my gratitude to all MINC
research group members for their generous company.

I am grateful to the secretary Mrs. Brigitte Ducroq for helping the lab to run
smoothly and for assisting me in many different ways.

Out with the work setting, I would like to offer my fondest regards to my
friends : Phélomène Makhraz, Youssef El Rayess, Dalal Boutros, Joseph Chemaly,
Georges Khalil, Wissam Karam, Serge Karboyan, Issam Tawk, Florence Freyss,
Nancy Nehme, Rania Azar, Micheline Abbas and Hikmat Achkar.

Finally, I would like to mention my family. I wish to thank my parents who
raised me, supported me, taught me, and loved me. Many Thanks to my love Nadine
Makhraz. To them all I dedicate this thesis.

Multi-scale Modeling : from Electromagnetism to Grid

Abstract : The numerical electromagnetic tools for complex structures simulation,
i.e. multi-scale, are often limited by available computation resources. Nowadays,
Grid computing has emerged as an important new field, based on shared distributed
computing resources of Universities and laboratories.

Using these shared resources, this study is focusing on grid computing potential
for electromagnetic simulation of multi-scale structure. Since the numerical simula-
tions tools codes are not initially written for distributed environment, the first step
consists to adapt and deploy them in Grid computing environment. A performance
study is then realized in order to evaluate the efficiency of execution on the test-bed
infrastructure.

New approaches for distributing the electromagnetic computations on the grid
are presented and validated. These approaches allow a very remarkable simulation
time reduction for multi-scale structures and friendly-user interfaces.

Keywords : computational electromagnetics, Transmission Line Matrix
(TLM), Scale Changing Technique (SCT), Grid computing, distributed computing,
performance

Modélisation Multi-échelles : de l’électromagnétisme à la Grille

Résumé : Les performances des outils numériques de simulation électromagné-
tique de structures complexes, i.e., échelles multiples, sont souvent limitées par les
ressources informatiques disponibles. De nombreux méso-centres, fermes et grilles
de calcul, se créent actuellement sur les campus universitaires.

Utilisant ces ressources informatiques mutualisées, ce travail de thèse s’attache
à évaluer les potentialités du concept de grille de calcul (Grid Computing) pour
la simulation électromagnétique de structures multi-échelles. Les outils numériques
de simulation électromagnétique n’étant pas conçus pour être utilisés dans un en-
vironnement distribué, la première étape consistait donc à les modifier afin de les
déployer sur une grille de calcul. Une analyse approfondie a ensuite été menée pour
évaluer les performances des outils de simulation ainsi déployés sur l’infrastructure
informatique.

Des nouvelles approches pour le calcul électromagnétique distribué avec ces
outils sont présentées et validées. En particulier, ces approches permettent la
réalisation de simulation électromagnétique de structures à échelles multiples en
un temps record et avec une souplesse d’utilisation.

Mots Clés : modélisation électromagnétique, modélisation par lignes de trans-
mission (TLM), modélisation par changements d’échelles (SCT), grille de calcul,
calcul distribué, performance

1 Introduction 1
1.1 Numerical Techniques in CEM . 1
1.2 Objectives and Contribution presented in this Thesis 4
1.3 Organization of the Thesis . 6

2 Grid Computing 9
2.1 What is the Grid ? . 9
2.2 Grids Projects and Applications Area 11
2.3 Grid’5000 . 13

2.3.1 Testbed Description . 13
2.3.2 Grid’5000 Experimental Activities 15
2.3.3 Cluster Definition . 15
2.3.4 Software and Middleware . 16
2.3.5 Grid View . 16
2.3.6 Typical use case . 17
2.3.7 Deploying an Environment 19

2.4 Terminology . 20
2.5 Conclusion . 24

3 TLM Modeling Method in Grid Environment 27
3.1 Overview of the Transmission Line Matrix (TLM) Modeling Method 27
3.2 From the Huygens principle to TLM modeling 28
3.3 TLM Basics . 29
3.4 TLM Algorithm . 29
3.5 Implementation of TLM in Parallel computers 32
3.6 Distributed Parallel TLM Simulations in Grid Environment 34

3.6.1 Message Passing Interface (MPI) 35
3.6.2 MPI on Computing Grids . 35
3.6.3 Efficiency of using MPI for TLM 37

3.7 Distributed Parametric TLM Simulations in Grid Environment . . . 42
3.7.1 First Approach : Shell Scripts + YATPAC 43
3.7.2 Second Approach : TUNe + YATPAC 49
3.7.3 Third Approach : TUNe + emGine environment 66

3.8 Conclusion . 69

4 SCT Modeling Method in Grid Environment 71
4.1 Overview of the SCT Modeling Method 71
4.2 Distributed Parallel SCT Simulations in Grid Environment 74

4.2.1 Optimization of SCT Computing Codes 74
4.2.2 SCT Algorithm . 75

Contents

vi Table des matières

4.2.3 Parallel Model . 77
4.2.4 SCT deployment on Grid with MEG GUI 79
4.2.5 SCT deployment on Grid with TUNe-DIET 84

4.3 Distributed Parametric SCT Simulations in Grid Environment . . . 87
4.4 Conclusion . 88

5 Conclusions and Perspective 91

A YATPAC 95
A.1 The Ultimate Open Source TLM Simulation Package 95
A.2 Overview of the YATSIM Simulation Package 95

A.2.1 Preprocessing . 96
A.2.2 Simulation . 96
A.2.3 Postprocessing . 96

B emGine Environment 99

C Beam steering of planar arrays 101

D Acronyms 105

E Author Biography 107

F List of Publications 109

113Bibliography

Contents
1.1 Numerical Techniques in CEM 1
1.2 Objectives and Contribution presented in this Thesis 4
1.3 Organization of the Thesis . 6

1.1 Numerical Techniques in CEM

Modern microwave and radio frequency (RF) engineering is an exciting and dy-
namic field, due in large part to the symbiosis between recent advances in modern
electronic device technology and the current explosion in demand for voice, data,
and video communication capacity. Prior to this revolution in communications,
microwave technology was the nearly exclusive domain of the defense industry ;
the recent and dramatic increase in demand for communication systems for such
applications as wireless paging, mobile telephony, broadcast video, and computer
networks is revolutionizing the industry. These systems are being employed across
a broad range of environments including corporate offices, industrial and manufac-
turing facilities, and infrastructure for municipalities, as well as private homes.

Electromagnetic analysis, a discipline whereby one solves Maxwell’s equations
[1] - [3] to obtain better understanding of a complex system, is a critical part of
the microwave design cycle. One reason is that Maxwell’s theory is essential for
the manipulation of electricity and hence is indispensable. Another reason is that
Maxwell’s theory has proven to have strong predictive power. This strong predictive
power, together with the advent of computer technology, has changed the practice
of electrical engineering in recent years. A complete solution to Maxwell’s equations
can expedite many electrical engineering design properties.

Electromagnetic analysis methods can be classified by analytical, semi-analytical
and numerical methods. Closed-form solutions in terms of analytical functions can
only be found for a few special geometries (for example in rectangular, elliptical, and
spherical waveguides and resonators). In spite of their limited practical applicability,
analytical solutions are extremely useful for the purpose of validating numerical
methods since they provide error-free reference solutions.

Semi-analytical methods were developed before the advent of powerful compu-
ters. They involve extensive analytical processing of a field problem resulting in

Chapter 1

Introduction

2 Chapitre 1. Introduction

a complicated integral, an infinite series, a variational formula, an asymptotic ap-
proximation, in short, an expression that requires a final computational treatment
to yield a quantitative solution. The analytical preprocessing often leads to rather
fast and efficient computer algorithms, but the resulting programs are necessarily
specialized since specific types of boundary and material conditions have been in-
corporated in the formulation.

Several real-world electromagnetic problems like scattering, radiation, wavegui-
ding etc, are not analytically calculable, for the multitude of irregular geometries
designed and used. The inability to derive closed form solutions of Maxwell’s equa-
tions under various constitutive relations of media, and boundary conditions, is
overcome by computational numerical techniques. Numerical methods transform
the continuous integral or differential equations of Maxwell into an approximate
discrete formulation that requires either the inversion of a large matrix or an ite-
rative procedure. There exist many ways to discretize an electromagnetic problem,
ranging from very problem- specific to very general purpose approaches.

This makes computational electromagnetics (CEM), an important field in the
design, and modeling of antenna, radar, satellite and other such communication
systems, nanophotonic devices and high speed silicon electronics, medical imaging,
cell-phone antenna design, among other applications (see Figure 1.1).

Figure 1.1 – Impact of Electromagnetics.

Computer-based analysis is at the core of modern simulation tools, and it has
revolutionized engineering design, even more so in microwave engineering where
these tools allow us to "see" the electromagnetic field and its effects such as current
and charge distributions. It reflects the general trend in science and engineering to

1.1. Numerical Techniques in CEM 3

formulate laws of nature as computer algorithms and to simulate physical processes
on digitals computers.

Classification

The purpose of all numerical methods in electromagnetics is to find approxi-
mate solutions to Maxwell’s equations (or of equations derived from them) that
satisfy given boundary and initial conditions, formulating an electromagnetic pro-
blem amounts to specifying the properties that a solution must have in order to
qualify. These properties can be specified as local (differential) or global (integral)
properties, both in the field space and its boundaries.

When discussing the properties of the different methods, it is necessary to clas-
sify them. A major point of difference is the domain they are working in, which
is either time domain (TD) or frequency domain (FD). The perceived differences
between these two categories are better captured by the terms time-harmonic and
transient methods. However, in the formal sense, frequency domain formulations are
time domain formulations in which the time dimension has been subject to a Fourier
transform, thus reducing the number of independent variables by one. Expressed
in a simplistic way, frequency domain formulations are obtained by replacing the
time differential operator d/dt by jw, and the time integration operator by −j/w,
thus effectively transforming a time differentiation into a multiplication, and a time
integration into a division by jw.

Another way of categorizing both the numerical techniques and the computer
tools based on them relies on the number of independent space variables upon
which the field and source functions depend. In all categories we can again
distinguish between frequency domain and time domain formulations.

• 1D Methods : These are methods for solving problems where the field and
source functions depend on one space dimension only. Typical applications
are transmission line problems, uniform plane wave propagation, and sphe-
rically or cylindrically symmetrical problems with only radial dependence.
Transmission-line circuit solvers and the SPICE program are well-known
examples of 1D solvers.

• 2D Methods : These are methods for solving problems where the field and
source functions depend on two space dimensions. Typical applications
are crosssection problems in transmission lines and waveguides, TEn0
propagation in rectangular waveguide structures, coaxial TEM problems,
and spherical problems depending only on radius and azimuth or radius and
elevation.

• 2.5D Methods : These are methods for solving problems where the fields
depend on three space dimensions, while their sources (the currents) are
mainly confined planes with two space dimensions. Typical examples are

4 Chapitre 1. Introduction

planar structures such as microstrip circuits, co-planar circuits, patch
antennas, and general multilayer structures that contain planar conductor
pattern. The predominant solution method for such structures is the method
of moments in the space and spectral domains ; however, the method of lines
is also suitable for planar and quasi-planar structures.

• 3D Methods : These are methods for solving problems where both the
field and source functions depend on three space dimensions. This category
comprises all volumetric full-wave general-purpose formulations.

Hybrid formulations combining two or more different numerical techniques
have also been developed and implemented for particular applications.

Figure 1.2 shows main numerical modeling methods with respect to discretiza-
tion category, distinguishing between volumetric discretization methods and surface
discretization methods.

Figure 1.2 – Classification of main numerical methods in electromagnetics.

As we can see, there is a vast number of numerical methods one can use to solve
the electromagnetic problem. However, not every method is suitable for a particular
problem.

1.2 Objectives and Contribution presented in this The-
sis

The area of CEM has undergone a vast development in the past years - giving
rise to powerful electromagnetic simulation tools and techniques. The goal of all

1.2. Objectives and Contribution presented in this Thesis 5

these techniques is to determine and predict performances of RF and microwave
components, networks and machines in a very accurate and reliable way.

Recent advances in wireless and microwave communication systems (higher ope-
ration frequency bands, more compact topologies containing MMICs and MEMS)
have increased the necessity of fast and accurate numerical simulation techniques.

The advent of powerful computers and computer systems allows us to analyze
some large and complicated structures, with the numerical efficiency and accuracy
remaining at the focal point of today’s research interests. The amount of addressable
memory for 64-bit machines goes far beyond the memory addressing limit of 32-bit
machines. In theory, the emergence of the 64-bit architecture effectively increases the
memory ceiling to 264 addresses, equivalent to approximately 17.2 billion gigabytes.

However, this addressing capability is a theoretical number. The support of the
memory addressing is still limited by the bandwidth of the bus, the operating system
and other hardware and software issues. Most 64-bit microprocessors on the market
today have an artificial limit on the amount of memory they can address, because
physical constraints make it impossible to support the full 16.8 million terabyte
capacity.

Most of the modern full-wave CEM techniques require discretization of the whole
computational domain. In order to achieve numerically efficient computations with
the available computer memory, one must define a finite computational domain
enclosing the problem under analysis and rely on the ways to terminate the com-
putational domain at the boundaries.

Despite the recent hardware progress, the computational resources of today’s
computers seems to be very limited. It is often impossible to model large volumes
of space and/or multi-scale structures with high aspect ratio. The limits up to which
we are able to solve a problem are set by :
• memory requirements,
• time needed to process the information.
To get a better feeling for what are the memory requirements to solve an elec-

tromagnetic problem, let us take a look at the following example. There is given
a structure assumed to be perfect electric conductor (PEC) in air and we wish
to compute the scattered electromagnetic field. A three-dimensional computatio-
nal domain of 2000× 2000× 2000 TLM cells requires 6144000000000 bits 1 to hold
the information about the electromagnetic field. This amount of information means
715.25 GBytes of memory.

Increasing the spatial resolution just twice in every direction results in eight
times larger memory requirements. Furthermore, the time needed to process this
amount of information is inverse proportional to the speed of information processing.

The need for solving the CEM problem for ever increasing meshes leads to the
idea of running these applications in Grid environments. The example shows the
reasons why we are not able to discretize very large structures. Consequently, to

1. For the modeling of free-space we need 12 variables per TLM cell. We assume a TLM variable
to be represented by 64 bits (double precision). For more information, please refer to Chapter 3.

6 Chapitre 1. Introduction

overcome these problems, large scale computer systems, as Grid Computing, must
be used.

Grid computing is currently the subject of a lot of research activities world-
wide. Most of these activities aim at providing the necessary tools (for dealing
with aspects such as administration, security, performance simulation, discovery,
scheduling and volatility of resources, etc.) and programming methodologies. Some
studies are centred on applications.

In this thesis, a new methodology is presented for conducting complex mul-
tiscale numerical electromagnetic simulations. Technologies from several scientific
disciplines, including computational electromagnetics, and parallel computing, are
combined to form a simulation capability that is both versatile and practical.

In the process of creating this capability, work is accomplished to conduct first
a study designed to adapt the electromagnetic solvers to distributed computing,
and to provide an assessment of the applicability of Grid Computing to the field of
computational electromagnetics.

Two modeling methods which can be useful to be coupled in a hybrid method
have been chosen : the Transmission Line Matrix (TLM) modeling method (3D)
and the Scale Changing Technique (SCT) modeling method (2.5D). The efficiency of
the modern CEM software to analyze complex microwave structures in Grid Com-
puting environments are investigated with real life examples. Multiscale strutures,
i.e. planar reflectarrays, have been simulated and the radiation patterns plotted.
After a performance study, well adapted approaches are proposed and tested on
Grid nodes.

In order to keep the use of Grid Computing transparent to electronic engineer
that are not probably computer science specialists, friendly solutions as graphical
user interfaces (GUI) have been used.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 introduces the Grid Computing and
distributed systems, and a brief overview of Grid applications. Grid’5000, the test-
bed platform used to run all the experiments in this thesis, is also presented in
a way to show underlying hardware, network and software. This chapter is then
concluded by the definition of essential terms used the following chapters.

In Chapter 3, the Transmission Line Matrix (TLM) method is described. The
principles of the method are shown as well as the interconnection of TLM nodes
and their contributions in the algorithm. A quick overview of past works on pa-
rallel TLM shows different approaches that have been used. Then, both proposed
approaches (distributed parallel and parametric TLM computing) are investigated
and perfomance evaluated. Simulations of a coplanar phase-shifter based on MEMS
and reflectarrays are shown.

Chapter 4 is devoted to the Scale-Changing Technique (SCT) modeling method.
The distribution of the independant tasks are described in detail. Reflectarrays are

1.3. Organization of the Thesis 7

simulated in parallel on Grid’5000 nodes. Parametric analysis, for frequency sweep
and convergence, shows the efficiency of using large scale Grids.

Finally, the conclusions of the thesis are presented in Chapter 5. Appendix A
and Appendix B describes two electromagnetic tools based on TLM and used in
this thesis. The theory used in this thesis to design the array antennas with steered
beams is presented in Appendix C. Appendix D lists different acronyms used.

Contents
2.1 What is the Grid ? . 9
2.2 Grids Projects and Applications Area 11
2.3 Grid’5000 . 13

2.3.1 Testbed Description . 13
2.3.2 Grid’5000 Experimental Activities 15
2.3.3 Cluster Definition . 15
2.3.4 Software and Middleware . 16
2.3.5 Grid View . 16
2.3.6 Typical use case . 17
2.3.7 Deploying an Environment 19

2.4 Terminology . 20
2.5 Conclusion . 24

This chapter provides an overview of Grid Computing, its different applica-
tion domains and some related terminology. It presents also the testbed platform,
Grid’5000, used along this thesis to run computational electromagnetics experi-
ments.

2.1 What is the Grid ?

The popularity of the Internet as well as the availability of powerful computers and
high-speed network technologies as low-cost commodity components is changing
the way we use computers today. These technology opportunities have led to the
possibility of using distributed computers (nodes) as a single, unified computing re-
source, leading to what is popularly known as Grid computing (GC) [4] - [9]. Grid
Computing has emerged as an important new field, distinguished from conventio-
nal distributed computing by its focus on large-scale resource sharing 1, innovative
applications, and, in some cases, high-performance orientation.

The term "the Grid" was coined in the mid of 1999s 2 to denote a proposed
distributed computing infrastructure for advanced science and engineering. In 1997,
CPU scavenging and volunteer computing were popularized by distributed.net [10]

1. In Grid terms, a resource is any kind of software (a piece of application, a file, a database,
etc.) or hardware entity (an electrical device, a storage card, etc.) accessible through the network.

2. The name "Grid Computing" is inspired by the electrical grid.

Chapter 2

Grid Computing

10 Chapitre 2. Grid Computing

and later in 1999 by SETI@home [11] to harness the power of networked PCs
worldwide, in order to solve CPU-intensive research problems.

The ideas of the grid (including those from distributed computing, object-
oriented programming and Web services) were brought together by Ian Foster,
Carl Kesselman, and Steve Tuecke, widely regarded as the "fathers of the grid"
[5] - [9]. They led the effort to create the Globus Toolkit 3 incorporating not just
computation management but also storage management, security provisioning, data
movement, monitoring, and a toolkit for developing additional services based on the
same infrastructure, including agreement negotiation, notification mechanisms, trig-
ger services, and information aggregation [12]. While the Globus Toolkit remains
the de facto standard for building Grid solutions, a number of other tools have been
built that answer some subset of services needed to create an enterprise or global
Grid.

Computational Grids may span domains of different dimensions, starting from
local Grids, where the nodes belong to a single organization via a LAN connection,
to global Grids, where the nodes are owned by different organizations and linked
via Internet.

Grid applications (typically multidisciplinary and large-scale processing appli-
cations) often couple resources that cannot be replicated at a single site, or which
may be globally located for other practical reasons, and belonging to multiple
individuals or organizations (known as multiple administrative domains), in a
flexible and secured environment. These are some of the driving forces behind
the foundation of global Grids. In this light, the Grid allows users to solve larger
or new problems by pooling together resources that could not be easily coupled
before. Hence, the Grid is not only a computing infrastructure, for large applica-
tions, it is a technology that can bond and unify remote and diverse distributed
resources ranging from meteorological sensors to data vaults, and from parallel
supercomputers to personal digital organizers.

A Grid could be characterized by four main aspects [13] :

• Multiple administrative domains and autonomy. Grid resources are
geographically distributed across multiple administrative domains and owned
by different organizations. The autonomy of resource owners needs to be
honored along with their local resource management and usage policies.

• Heterogeneity. A Grid involves a multiplicity of resources that are hetero-
geneous in nature and will encompass a vast range of technologies.

• Scalability. A Grid might grow from a few integrated resources to millions.
This raises the problem of potential performance degradation as the size
of Grids increases. Consequently, applications that require a large number

3. Globus Toolkit. http ://www.globus.org

2.2. Grids Projects and Applications Area 11

of geographically located resources must be designed to be latency and
bandwidth tolerant.

• Dynamicity or adaptability. In a Grid, resource failure is the rule rather
than the exception. In fact, with so many resources in a Grid, the probability
of some resource failing is high. Resource managers or applications must
tailor their behavior dynamically and use the available resources and services
efficiently and effectively.

Over the last decade, an increasing number of scientists have run their workloads
on large-scale distributed computing systems such as Grids. The concept of Grid
computing started as a project to link geographically dispersed supercomputers,
but now it has grown far beyond its original intent. The Grid infrastructure can
benefit many applications, including among others collaborative engineering, data
exploration, high-throughput computing, and distributed supercomputing.

2.2 Grids Projects and Applications Area

There are currently a large number of international projects and a diverse range of
new and emerging Grid developmental approaches being pursued worldwide. These
systems range from Grid frameworks to application testbeds, and from collabora-
tive environments to batch submission mechanisms (integrated Grid systems, core
middleware, user-level middleware, and applications/application driven efforts ...)
[14, 15].

Grid resources can be used to solve grand challenge problems in areas such as
biophysics, chemistry, biology, scientific instrumentation [16], drug design [17, 18],
tomography [19], high energy physics [20], data mining, financial analysis, nuclear
simulations, material science, chemical engineering, environmental studies, climate
modeling [21], weather prediction, molecular biology, neuroscience/brain activity
analysis [22], structural analysis, mechanical CAD/CAM, and astrophysics.

In the following, two applications of interest to NASA [23] are illustrated. Key
aspects of the design of a complete aircraft (airframe, wing, stabilizer, engine, lan-
ding gear and human factors) are depicted in Figure 2.1.

Each part could be the responsibility of a distinct, possibly geographically dis-
tributed, engineering team whose work is integrated together by a Grid realizing
the concept of concurrent engineering. Figure 2.2 depicts possible Grid controlling
satellites and the data streaming from them. Shown are a set of Web (OGSA [25])
services for satellite control, data acquisition, analysis, visualization and linkage
(assimilation) with simulations as well as two of the Web services broken up into
multiple constituent services.

Meanwhile, the community of electromagnetics (EM) research has been only
peripherally interested in Grid Computing (GC) until 2004 [26] 4. Few works in

4. A practical and comprehensive guidance needed to use the Grid.

12 Chapitre 2. Grid Computing

Figure 2.1 – A Grid for aerospace engineering showing linkage of geographically
separated subsystems needed by an aircraft [24].

Figure 2.2 – A possible Grid for satellite operation showing both spacecraft ope-
ration and data analysis. The system is built from Web services (WS) and it shows
how data analysis and simulation services are composed from smaller WS’s [24].

electromagnetics could be found.
In 2005, Cardiff University and the University of Wales, Swansea, have tea-

2.3. Grid’5000 13

med with Hewlett-Packard, BAE SYSTEMS and the Institute of High Performance
Computing in Singapore, to use Grid computing for the exploration of advanced,
collaborative simulation and visualization in aerospace and defense design [27].

One year after, Lumerical launches parallel FDTD solutions on the supercom-
puting infrastructure of WestGrid in Canada [28], even though their field of interest
is more in optical and quantum devices rather than in RF applications.

Another recent example of distributed computing using a code based on the
TLM (Transmission Line Matrix, defined in chapter 3) method has been demons-
trated in Germany [29].

In 2006, computer scientists from different french labs started the DiscoGrid
project [30]. It aims at studying and promoting a new paradigm for programming
non-embarrassingly parallel scientific computing applications on distributed, he-
terogeneous, computing platforms. The target applications require the numerical
resolution of systems of partial differential equations (PDEs) for computational
electromagnetism (CEM) [31] and computational fluid dynamics (CFD).

In [32], EM researchers can identify new and promising Information and Com-
munication Technologies (ICT) tools (already available, or to be consolidated in the
immediate future), expected to significantly improve their daily EM investigation.

Later, a Web-based, Grid-enabled environment for wideband code-division
multiple-access (WCDMA) system simulations, based on Monte Carlo methods, has
been implemented and evaluated on the production Grid infrastructure deployed
by the Enabling Grids for E-sciencE (EGEE) project [33].

2.3 Grid’5000

2.3.1 Testbed Description

Grid’5000 [34] is a research effort developing a large scale nationwide infrastructure
for large scale parallel and distributed computing research 5. It aims at providing
a highly reconfigurable, controllable and monitorable experimental platform to its
users [35]. The initial aim (circa 2003) was to reach 5000 processors in the platform.
It has been reframed at 5000 cores, and was reached during winter 2008-2009. For
the 2008-2012 period, engineers of ADT ALADDIN-G5K initiative are ensuring the
development and day to day support of the infrastructure.

The infrastructure of Grid’5000, which is a Multi-clusters Grid, is geographically
distributed on different sites hosting the instrument, initially 9 in France (17 Labo-
ratories). The current plans are to extend from the 9 initial sites each with 100 to
a thousand PCs, connected with a 10Gb/s link by the RENATER (v5) Education
and Research Network [36] to a bigger platform including a few sites outside France
not necessarily connected through a dedicated network connection. Porto Alegre, in
Brazil, is now officially becoming the 10th site and Luxembourg should join shortly.

5. Other testbeds for experiments : PLANETLAB (http ://www.planet-lab.org/),
Emulab (http ://www.emulab.net/), DAS-3 (http ://www.starplane.org/das3/), GENIE
(http ://www.genie.ac.uk/)

14 Chapitre 2. Grid Computing

Figure 2.3 shows the Grid’5000 backbone connecting the nine sites of this Grid
(Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia and Toulouse).
Each site is composed of a heterogeneous set of nodes and local networks (High
performance networks : Infiniband 10G (161 cards), Myrinet 2000 (222 cards), My-
rinet 10G (423 cards), Gigabit Ethernet 1 or 10 Gb/s). The "standard" architecture
is based on 10Gbit/s dark fibers and provides IP transit connectivity, intercon-
nection with GEANT-2 [37], overseas territories and the SFINX (Global Internet
exchange).

Figure 2.3 – Grid’5000 Backbone.

Grid’5000 clusters have been built mainly upon 64 bits bi-processors architec-
tures (AMD Opteron (78%) and Intel Xeon EMT64 (22%)), but a certain degree of
(desired) heterogeneity appears from cluster to cluster 6. The user of this architec-
ture can choose the CPU family in order to run its own experiments, which could
be MonoCore (41%), DualCore (46%), QuadCore (13%). All computing nodes have
local disks (generally 80 gigabytes IDE or SATA) that are all partitioned the same
way (for all clusters at all sites). The frontends (Figure 2.5) generally feature huge
storage space (0.5 or 1 terabyte) mainly for the home directories (note that these
homes are in general not backuped nor synchronized from cluster to cluster).

6. More informations on : https ://www.grid5000.fr/mediawiki/index.php/Special :G5KHardware

2.3. Grid’5000 15

2.3.2 Grid’5000 Experimental Activities

This platform is used for large research applicability Grid experiments 7 (see Figure
2.4) to address critical issues of Grid system/middleware (Programming, scalabi-
lity, fault tolerance, scheduling), of Grid networking (High performance transport
protocols, QoS), to gridify and test real life applications and investigate original
mechanisms (P2P resources discovery, desktop Grids).

Figure 2.4 – Grid’5000 Applications.

2.3.3 Cluster Definition

All computers from a given site (a geographical place where a set of computing
resources shares the same administration policy), which are connected to a given
network architecture, define a cluster. Every cluster basically consists of :
• one (or more) frontend machine(s), that serve(s) as resource allocation plat-
form(s), so that each user may request usage of whole or part of the other
nodes ;
– some of these frontends are accessible from the public internet domain,
generally through a firewall, depending on local security policies ;

• the computing nodes themselves that form the main cluster, the main com-
puting power ; each node may have several CPUs (and each CPU possibly
several cores) ; depending on the resource manager middleware configuration,
it is possible to request resource allocation at the node level or at the CPU
level ;

7. A summary of the domains of experiment which Grid’5000 is providing a research platform
for can be found on https ://www.grid5000.fr/mediawiki/index.php/Grid5000 :Experiments.

16 Chapitre 2. Grid Computing

• for security and/or redundancy reasons, there may be servers besides the
frontends to isolate critical software and services ;
– in principle, servers and frontends do not take part to the computing power
of the cluster and therefore are not counted as computing nodes in the
cluster hardware description ;

• the network architecture onto which all nodes, frontends and servers are phy-
sically connected ; it is in principle isolated from the public internet domain
(private IP addresses), but is interlinked with the other sites through a privi-
leged RENATER network.

2.3.4 Software and Middleware

The middleware is the software suite that performs the main tasks during computing
nodes usage. It mainly consists of a resource allocation manager involving :
• node(s) reservation for a given user and a given duration (with possible envi-
ronment customization) ;
• task(s) scheduling over reserved nodes (with possible results retrieval) ;
• resource deallocation after tasks completed to make them available again for
new tasks.

In the case of Grid’5000 8, job scheduling and resource allocation and dealloca-
tion is performed by OAR [38] at the cluster level.

Grid’5000 has also made the choice to allow users to customize their environ-
ment and even install their own preferred operating system on the reserved nodes.
This implies some preliminary work to build this kind of customized environment.
It is generally a hard work, but allows for optimum experiment conditions and
reproductability (as long as the hardware does not change).

However, a default Linux environment is available in case of experiments that do
not need customization. The KaTools (kadeploy, karun, kaenvironments, karecor-
denv) [39] have been designed in this purpose of custom environment deployment.

2.3.5 Grid View

The Grid architecture for Grid’5000 is achieved by the privileged interlinks existing
between the different clusters, using the local network architecture for clusters at a
given site, or provided by RENATER from site to site.

The Grid middleware layer consists of tools able to request resource allocation
on several clusters at the same time, using a simple synchronization mechanism to
associate what are basically separate resources. The privileged links between sites
formerly used 10 gigabit optic fibers technology (RENATER v5 network) dedicated
only to the Grid’5000 traffic.

To briefly summarize the common general security policy overall Grid’5000 net-
work, it is allowed to perform SSH connections inbound frontends (and not el-

8. Software mainly developed in Grid’5000 and available for its users :
https ://www.grid5000.fr/mediawiki/index.php/Grid5000 :Software

2.3. Grid’5000 17

sewhere) and outbound nowhere. In other words, intrusions are allowed through
narrow one-way windows, but the huge computing power from Grid’5000 may not
be used to attack any server on the public internet side (also known as the out-
side)... Local policies may differ about the inbound connections from the outside.
Internal connections from one site to another are completely free, either inbound or
outbound nodes as well as frontends.

The main internal network services (DNS directories for the machines, LDAP
directories for the users’ accounts...) are common and distributed among all sites
across this dedicated internal network (private IP addresses). External network
services (WiKi website, email lists manager...) are centralized on dedicated hosts
belonging to the outside (public IP addresses).

2.3.6 Typical use case

An experiment could be resumed in following six steps :
1. Connect to the platform on a site
2. Reserve some resources
3. Configure the resources (optional)
4. Run experiment
5. Grab the results
6. Free the resources
A Grid’5000 Experiment Workflow is sketched in Figure 2.6. In fact, when en-

tering a site, user is connected to its access frontend (Figure 2.5). Thus he is not on
its submission frontend. Some sites possess only one frontend to do external access
and job submission, but this is not the case everywhere and other sites possess one
frontend for external access and another one for job submission.

On each Grid’5000 site, user possesses a Grid-independent home directory. Thus
before submitting jobs over the Grid, user must be sure that code and configura-
tion are available on each used cluster. SSH publickey and configuration must be
synchronized.

OAR [38] is the resource manager (or batch scheduler for large clusters) used to
manage Grid’5000 platform’s resources which support KADEPLOY [39]. It allows
cluster users to submit or reserve nodes either in an interactive or a batch mode.

18 Chapitre 2. Grid Computing

Figure 2.5 – Grid’5000 access and job submissions.

OAR is an open source batch scheduler which provides a simple and flexible
exploitation of a cluster. It manages resources of clusters as a traditional batch
scheduler 9. It is flexible enough to be suitable for production clusters and research
experiments. It currently manages all the Grid’5000 nodes and has executed millions
of jobs. When making a reservation, one specifies which nodes to use. Nodes can be
chosen by the user, or automatically selected.

Note that for Grid experiment, a really simple tool named OARGRID was built
upon OAR to help you using distant resources. OARGRID is a Grid version of
OAR. It provides the capability of globally reserving nodes on the whole Grid’5000
platform (several sites at once). Oargridsub perform an OAR reservation on each
specified clusters. An identity number is given by OARGRID, so with it all reser-
vation information could be found. It returns a Grid job id to bind cluster jobs
together if the inherent cluster reservations succeed. If one of them did not succeed
then all previous reservations are canceled and also the global operation.

The reservations and submissions could be monitored by graphical tools Current
and scheduled jobs could be displayed by Monika [40] or by oarstat, a command-line
tool to view current or planned job submission (running or waiting). oarnodes is also

9. as PBS (http ://www.pbsgridworks.com/), Torque (http ://www.clusterresources.com/products/torque-
resource-manager.php), LSF (http ://www.platform.com/products/LSF/), SGE (http ://griden-
gine.sunsource.net/)

2.3. Grid’5000 19

Figure 2.6 – Grid’5000 Experiment Workflow.

a command-line tool. It shows cluster node properties (list states and informations
of all nodes). Among returned information there is current node state. This state
is generally free, job or Absent. When nodes are sick, their state is Suspected or
Dead.

DrawOARGantt displays past, current and scheduled OAR jobs, while Ganglia
[41] provides resources usage metrics (memory, cpu, jobs...) for individual sites or
the whole Grid.

To analyze standard output stdout and standard error output stderr of
the main node, where script is run, OAR puts theses output in files named
OAR.scriptname.IdJob.stdname.

In order to show who is using the platform, as well as the Number of usage hour
(per month per cluster or per month per site), Kaspied is a statistic tool provided.
Nagios [42] monitors critical Grid servers and services and automatically reports
incidents and failures.

Note that while using above mentioned tools, user can choose individual site or
cluster, or have a global view of the Grid.

2.3.7 Deploying an Environment

As mentioned in previous sections, KADEPLOY is the deployment system which is
used by Grid’5000. It is a fast and scalable deployment system towards cluster and
Grid computing. It provides a set of tools, for cloning, configure (post installation)
and manage a set of nodes. Currently it deploys successfully Linux, *BSD, Windows,
Solaris on x86 and 64 bits computers.

20 Chapitre 2. Grid Computing

Any user may deploy his own environment (see Figure 2.6), which actually means
any OS adapted by him to suit his experiments needs, on his reserved computational
nodes 10. This way, he has a full control over which software or library is used, what
kind of kernel or OS is running and how the system is configured for instance. Each
site maintains an environment library in the /grid5000/images directory of the
OAR node. To deploy an environment, by using a simple command kaenvironments
on the frontend, user can know its name as registered in the KADEPLOY database.

2.4 Terminology

In order to have a clearer understanding of the upcoming discussion, the following
terminology is introduced :

Virtual Organization

In grid computing, a Virtual Organization (VO) is a set of users working on
similar topics and whose resources requirements are quite comparable. The users
usually share their resources between them (data, software, CPU, storage space).
The collaborations involved in Grid computing lead to the emergence of multiple
organizations that function as one unit through the use of their shared competencies
and resources for the purpose of one or more identified goals.

A user needs to be a member of a VO before he is allowed to submit jobs to the
Grid. Moreover, a VO is usually defined by a name, and a scope which represents
a geographical location constraint.

Grid Application

A Grid application is a collection of work items to solve a certain problem or to
achieve desired results using a Grid infrastructure. For example, a Grid application
can be the simulation of electromagnetic structure, like a planar antenna, that
require a large amount of data as well as a high demand for computing resources in
order to calculate and handle the large number of variables and their effects. For
each set of parameters a complex calculation can be executed. The simulation of a
large scale scenario then consists of a larger number of such steps. In other words, a
Grid application may consist of a number of jobs that together fulfill the whole task.

Job

A job is considered as a single unit of work within a Grid application. It is
typically submitted for execution on the Grid, has defined input and output data,
and execution requirements in order to complete its task. A single job can launch

10. In this thesis, a customized environment called MEG, including an OS in addition to some
needed libraries and legacy files, is used to run TLM and SCT experiments. (see Chapter 3 and 4)

2.4. Terminology 21

one or many processes on a specified node. It can perform complex calculations on
large amounts of data or might be relatively simple in nature.

Parallel computing

The simultaneous execution of the same task (split up and specially adapted)
on multiple processors in order to obtain results faster. The idea is based on the
fact that the process of solving a problem usually can be divided into smaller tasks
(see Figure 2.7), which may be carried out simultaneously with some coordination.

Figure 2.7 – Parallel application flow.

To take advantage of parallel execution in a Grid, it is important to analyze
tasks within an application to determine whether they can be broken down into
individual and atomic units of work that can be run as individual jobs.

Serial or sequential Computing

In contrast to the parallel flow is the serial application flow. In this case there
is a single thread of job execution where each of the subsequent jobs has to wait
for its predecessor to end (see Figure 2.8) and deliver output data as input to
the next job. This means any job is a consumer of its predecessor, the data producer.

Figure 2.8 – Serial job flow.

In this case, the advantages of running in a Grid environment are not based on
access to multiple systems in parallel, but rather on the ability to use any of several

22 Chapitre 2. Grid Computing

appropriate and available resources. Note that each job does not necessarily have
to run on the same resource, so if a particular job requires specialized resources
that can be accommodated, while the other jobs may run on more standard and
inexpensive resources.

Parametric Computing

An application may consist of a large number of such calculations where the
start parameters are taken from a discrete set of values. Each resulting serial
application flow then could be launched in parallel on a Grid in order to utilize
more resources. The serial flow A through D in Figure 2.8 is then replicated to A’
through D’, A" through D", and so forth.

Distributed computing

Distributed computing is a field of computer science that studies distributed
systems, which consist of multiple autonomous computers (with onboard CPU, sto-
rage, power supply, network interface, etc.) that communicate through a computer
network. This is in contrast to the traditional notion of a supercomputer, which has
many processors connected by a local high-speed computer bus.

The computers interact with each other in order to achieve a common goal. A
computer program that runs in a distributed system is called a distributed program,
and distributed programming is the process of writing such programs.

Distributed computing also refers to the use of distributed systems to solve
computational problems. In distributed computing, a problem is divided into many
tasks, each of which is solved by one computer.

Speedup

There are always parts of a program that cannot run in parallel, where code
must run in serial. In parallel computing, speedup refers to how much a parallel
algorithm is faster than a corresponding sequential algorithm.

The serial parts of the program cannot be speedup by concurrency. Let p be the
fraction of the program’s code that can be made parallel (p is always a fraction less
than 1.0). The remaining fraction (1-p) of the code must run in serial. In practical
cases, p ranges from 0.2 to 0.99.

The potential speedup for a program is proportional to p divided by the CPUs
applied, plus the remaining serial part, 1-p.

As an equation, Amdahl’s law could be expressed as :

Speedup(N) = 1
p
N + (1− p) (2.1)

The maximum possible speedup (if applying an infinite number of CPUs) would

2.4. Terminology 23

be 1/(1-p). The fraction p has a strong effect on the possible speedup.
When the value of p could not be defined for a given problem, the following

equation could be used :

Speedup(N) = Ts

TN
(2.2)

where N is the number of processors, Ts is the execution time of the sequential
algorithm and TN is the execution time of the parallel algorithm with N processors.

Linear speedup or ideal speedup is obtained when Speedup(N) = N . When
running an algorithm with linear speedup, doubling the number of processors
doubles the speed. As this is ideal, it is considered very good scalability.

Granularity

Granularity is a measure of the size of the components (the size of the units
of code under consideration in some context), or descriptions of components, that
make up a system. Systems of, or description in terms of, large components are
called coarse-grained, and systems of small components are called fine-grained.
In parallel computing, granularity means the amount of computation in relation to
communication, i.e., the ratio of computation to the amount of communication.

Fine-grained, or "tightly coupled, parallelism" means individual tasks are re-
latively small in terms of code size and execution time. The data are transferred
among processors frequently in small amounts of messages.

Coarse-grained, or loosely coupled, is the opposite : data are communicated
infrequently, after larger amounts of computation.

Execution Time

The execution time of a parallel program is defined here as the time that elapses
from when the first processor starts executing on the problem to when the last
processor completes execution, while one job is assigned to one processor.

During execution, each processor is computing or communicating. The computa-
tion time of an algorithm (T icomp) is the time spent performing computation rather
than communicating, while the communication time of an algorithm (T icomm) is
the time that its tasks spend sending and receiving messages.

On the ith processor, T i = T icomp + T icomm.

Hence, to determine the total computation and communication performed by a
parallel algorithm rather than the time spent computing and communicating on in-
dividual processors, total execution time T can be defined as the biggest value of T i :

T = max (i=[0, N-1])(T icomp + T icomm), while N is the number of processors

24 Chapitre 2. Grid Computing

Both computation and communication times are specified explicitly in a parallel
algorithm ; hence, it is generally straightforward to determine their contribution to
execution time.

On the Grid, two distinct types of nodes communication will be distinguished :
internodes communication and intranode communication. In internodes communi-
cation, two communicating tasks are located on different Grid nodes. This will be
the case of distributed computing. In intranode communication, two communicating
tasks are located on the same Grid node (via local bus).

Note that only the internodes communication will be highlighted later in
the Grid experiments. This kind of communication could be established between
nodes from the same cluster, called intracluster communication (i.e. two nodes
of Pastel cluster in Grid’5000 Toulouse site), nodes from different clusters but in
the same Grid site, called intrasite communication (i.e. one node of Pastel cluster
and one node of Violette cluster in Grid’5000 Toulouse site), or nodes belonging
to geographically remote sites, called intersite communication (i.e. one node from
Toulouse site and another from Bordeaux site).

Bandwidth and Latency

Bandwidth in computer networking refers to the data rate (overall capacity of
the connection) supported by a network connection or interface. The greater the
capacity, the more likely that better performance will result.

Network bandwidth is not the only factor that contributes to the perceived
speed of a network. A lesser known but other key element of network performance
- latency - also plays an important role.

Latency could be defined as the delay between the initiation of a network trans-
mission by a sender and the receipt of that transmission by a receiver. In a two-way
communication, it may be measured as the time from the transmission of a re-
quest for a message, to the time when the message is successfully received by the
requester.

The basic formula used to estimate communication time is Tcomm = L + s/B,
where Tcomm is the elapsed time to finish the communication, L is the latency of
the network between the sender and the receiver, s is the size of the message and
B is the available bandwidth.

2.5 Conclusion

Grid computing offers a model for solving computational problems by making use
of resources (CPU cycles and/or disk storage) of large numbers of disparate com-
puters, treated as a virtual cluster embedded in a distributed telecommunications
infrastructure. Grid computing’s focus on the ability to support computation across
administrative domains sets it apart from traditional computer clusters or traditio-
nal distributed computing. This approach offers a way to solve Grand Challenge

2.5. Conclusion 25

problems like protein folding, financial modelling, earthquake simulation, and cli-
mate/weather modeling.

But the use the Grid means dealing with aspects such as performance simulation,
scheduling and volatility of resources, etc. An application that runs on a stand-alone
computer must be "gridified" before it can run on a Grid. In this work, the Grid is
used to run electromagnetic simulations of complex structures. Modeling methods
will be deployed on Grid’5000 nodes and the performance will be evaluated.

Contents
3.1 Overview of the Transmission Line Matrix (TLM) Mode-

ling Method . 27
3.2 From the Huygens principle to TLM modeling 28
3.3 TLM Basics . 29
3.4 TLM Algorithm . 29
3.5 Implementation of TLM in Parallel computers 32
3.6 Distributed Parallel TLM Simulations in Grid Environment 34

3.6.1 Message Passing Interface (MPI) 35
3.6.2 MPI on Computing Grids . 35
3.6.3 Efficiency of using MPI for TLM 37

3.7 Distributed Parametric TLM Simulations in Grid Environ-
ment . 42

3.7.1 First Approach : Shell Scripts + YATPAC 43
3.7.2 Second Approach : TUNe + YATPAC 49
3.7.3 Third Approach : TUNe + emGine environment 66

3.8 Conclusion . 69

The Transmission Line Matrix (TLM) method, a flexible method used to model
arbitrary and complex electromagnetic structures, is introduced in this chapter. The
"gridification" of this method is then discussed and experiments presented.

3.1 Overview of the Transmission Line Matrix (TLM)
Modeling Method

The TLM method is a key numerical method in computational electromagnetics.
It is based on the equivalence between Maxwell’s equations and the equations for
voltages and currents on a mesh of continuous two-wire transmission lines.

This method is based on the analogy between the electromagnetic field and a
mesh of transmission lines [43]. As a network model of Maxwell’s equations for-
mulated in terms of the scattering of impulses, it possesses exceptional versatility,
numerical stability, robustness and isotropic wave properties.

Chapter 3

TLM Modeling Method in Grid

Environment

28 Chapitre 3. TLM Modeling Method in Grid Environment

The main feature of this method is the simplicity of formulation and program-
ming for a wide range of applications [44, 45]. As compared to the lumped network
model, the transmission line model is more general and performs better at high fre-
quencies where transmission and reflection properties of geometrical discontinuities
cannot be regarded as lumped [46].

The TLM was originally used for modeling electromagnetic wave propagation
[44], [47], [48] but since it is based on Huygens principle it could be used for modeling
any phenomena which obeys this principle. Researchers showed that TLM can be
used to solve the following problems : Diffusion problem [49], Vibration [50], Heat
transfer [51], Radar [52], Electromagnetic compatibility [53].

Figure 3.1 – Huygens Principle.

3.2 From the Huygens principle to TLM modeling

Two distinct models describing the phenomenon of light were developed in the
seventeenth century : the corpuscular model by Isaac Newton and the wave
model by Christian Huygens. At the time of their conception, these models were
considered incompatible. However, modern quantum physics has demonstrated
that light in particular, and electromagnetic (EM) radiation in general, posses both
granular (photon) and wave properties. These aspects are complementary, and one
or the other dominates, depending on the phenomenon under study.

3.3. TLM Basics 29

TLM modeling is based on the Huygens principle which is [54] - [56] :

All points on a wave front serve as point sources of spherical
secondary wavelets. After a time T the new position of the wave front

will be the surface of tangency to these secondary wavelets

This principle is shown in Fig 3.1. At time 0 the central point scatters a wave.
The wave front at time t1 is shown in Figure 3.1(b). At this time (time = t1) we
can assume that all points on the wave front are acting as a point sources (shown
in Figure 3.1(c)) and the wave front at any time later (for example t2) is the wave
front from these secondary point sources (Figure 3.1(d)).

In order to implement Huygens’s model on a digital computer, one must formu-
late it in discretized form.

3.3 TLM Basics

Johns and Beurle [47] modeled this principle in 1971 by sampling the space and
representing it with a mesh of passive transmission line components. The wave
propagation was modeled as voltage and current travelling in this mesh. Time was
also sampled and the relationship between ∆t, the sample interval and ∆l, the
sample space, is :

∆l = ∆t.c

where c is the wave speed in the medium.
In Figure 3.2 wave propagation in a two dimensional TLM mesh is shown.

Assume that at time zero, an impulse is incident to the middle node (Figure 3.2(a)).
This node scatters the wave to its 4 neighboring nodes. The scattered wave reaches
the neighboring nodes at time = ∆t (Figure 3.2(b)). Now these 4 nodes scatter
waves to their neighboring nodes (Figure 3.2(c)). At time = 2∆t the wave front can
be found by finding waves scattered from points in Figure 3.2(b) as shown in Fiure
3.2(d). At each time step, each node receives an incident wave from its neighbors
and scatters it to its neighbors. By repeating the above calculation for each node,
the wave distribution on the medium can be calculated. Subsequent papers by
Johns and Akhtarzad [57] - [63] extended the method to three dimensions and
included the effect of dielectric loading and losses. Building upon the groundwork
laid by these original authors, other researchers [64] - [87] added various features
and improvements such as variable mesh size, simplified nodes, error correction
techniques, and extension to anisotropic media.

3.4 TLM Algorithm

As explained above, the TLM method, like other numerical techniques, is a discre-
tization process. Unlike other methods such as finite difference and finite element

30 Chapitre 3. TLM Modeling Method in Grid Environment

Figure 3.2 – Wave propagation in a two dimensional TLM mesh.

methods, which are mathematical discretization approaches, the TLM is a physical
discretization approach.

For example, consider the structure to simulate in Figure 3.3. The TLM method
involves dividing the solution region into a rectangular mesh of transmission lines.
Junctions are formed where the lines cross forming the impedance discontinuities.

A comparison between the transmission line equations and Maxwell’s equations
allows equivalences to be drawn between voltages and currents on the lines and
electromagnetic fields in the solution region.

When all sections of a medium have the same properties, the medium is referred
as homogeneous. For modeling homogeneous media it does not need to consider the
medium properties and hence it is possible to use the simple mesh.

The relationship between the incident wave (voltage in transmission line) and
the scattered wave is :

3.4. TLM Algorithm 31

Figure 3.3 – Entire space is discretized. On each face of each cell (cuboïd) the field
is decomposed in the two polarization components (i stand for incident, s stands for
scattered). The cubic cell is modeled by the three-dimensional symmetrical conden-
sed (SCN) TLM node proposed by P. B. Johns in 1986.

V s
k = S . V i

k ; V i
k+1 = C . V s

k

In this figure, V i represents the incident wave (voltage in the transmission line)
and V s represents the scattered wave. S is the impulsive scattering matrix of the
node, and C is a connection matrix describing the topology of the TLM mesh. k
and k+1 are arbitrary consecutive time steps separated by the sample interval ∆t.
Based on this equation, if the magnitude of the wave (voltage in the TLM modeling)
is known at any time k. ∆t then the magnitude of wave in the mesh could be found
at time (k+1). ∆t. By repeating this for each time step, wave propagation could
be modeled.

In the case of square cell (uniform mesh) and loss-free propagation wave, the
scattering matrix S is a 12x12 sparse matrix.

When modeling a non homogeneous medium, one should consider the properties
of the medium in the model. For this reason a new model for a node is created by
adding a capacity [57], [58]. This model is valid when the medium is lossless. When
there are some losses in the medium, there is a resistor in parallel to the capacitor
to model the loss [61].

In case of non uniform mesh (cell with ∆x 6= ∆y 6= ∆z) where stub are
introduced to compensate line delay in the scattering, the resulting is a scattering
matrix S of 18x18. If it is completely equipped with permittivity, permeability,

32 Chapitre 3. TLM Modeling Method in Grid Environment

and loss stubs, the matrix goes up to 30x30.

Thus, the TLM method involves two basic steps [88] :
- Replacing the field problem by the equivalent network and deriving the analogy
between the field and network quantities.
- Solving the equivalent network by iterative methods.

Figure 3.4 – TLM Algorithm.

3.5 Implementation of TLM in Parallel computers

Since TLM is a numerical model, it should be implemented in software and executed
in digital computers. Since TLM requires that the entire computational domain be
gridded, and the grid spatial discretization must be sufficiently fine to resolve both
the smallest electromagnetic wavelength and the smallest geometrical feature in
the model, very large computational domains can be developed, which results in
very long solution times (which is also the case of the Finite-difference time-domain
(FDTD)). Thus it needs a large amount of memory and CPU power to model wave
propagation, and consequently it is hard to model a real wave propagation problem
with normal computers.

Since the TLM algorithm is based on local operations at neighboring mesh
nodes only, the TLM method seems to be adapted for parallel computing. Clearly,
to have a single processor working though the computations for each node in turn
is therefore a suboptimal solution. Furthermore, since a speed increase is required,
parallel processing is a logical step even if the communication is a critical point.

There are a number of different models of parallelism that has been conside-
red. Past work on parallel TLM has often used special hardware. A number of
papers discuss using Transputers (Transistor Computer). In [89], Transputers have

3.5. Implementation of TLM in Parallel computers 33

been used for parallel simulation of a multistage power electronic circuit. In [90],
a distributed array processor (SIMD - AMT DAP 510 machine) has been used to
reduce computational time when solving a two-dimensional TLM electromagnetic
field formulation.

Massively parallel computers (MPP) have been used in [91] - [95]. These com-
puters all have a large number (8 to 32K) of CPUs ; each CPU is used to model a
TLM node. In order to take advantage of these massively parallel computers, the
scattering and transfer operations must be implemented using parallel languages
designed for those computers.

Since, these computers were expensive and not widely available for general use,
another approach [96] based on multithreading has been tested with multi-processor
computers (8-processor IBM RS/6000 SMP).

In [91] - [96] a fine grain approach (ref. Chapter 2) was proposed. It demands
specialized computer hardware employing thousands of processing units. Moreover
a high communication bandwidth is required.

In [97] a coarse grain approach (ref. Chapter 2) was introduced, featuring in-
terconnected standard RISC workstations. This approach needs only small com-
munication bandwidth and makes best use of the available resources. As a parallel
computing environment, the Parallel Virtual Machine (PVM) was used [98]. Wi-
thin the PVM the processing units interchange their information by message pas-
sing techniques, which can be implemented into TLM. A static load balancing was
achieved by an optimum segmentation of the mesh based on an initial guess of the
available computer power at the particular machines and with respect to minimum
communication traffic between the computing nodes. Up to six HP-715 and HP-720
workstations were used.

In [99] and [100], for the simulation of microwave circuits, interconnected works-
tations as well as an IBM-SP2 parallel computer consisting of 56 computing nodes
were employed using PVM. As a result of the synchronization required throughout
the mesh after each TLM time step, each working client has to await the comple-
tion of the scattering and propagation processes at the adjacent sub meshes. The
access mode in commonly used Ethernet-LANs limits the throughput within the
PVM, and thus, the suitable number of computing nodes within a loosely coupled
network. The time required for the communication between all adjacent, clients is
considerable larger than the accumulated communication time between each two
clients operating on adjacent sub meshes.

In [101] an approach has been investigated using the Ruby programming lan-
guage [102].

A Grid-enabled time-domain transmission line matrix (TLM-G) system for full-
wave analysis of complex electromagnetic (EM) structures is presented in [29]. The
system has been tested on 7 computers network for the computation of the input
impedance of bowtie antenna.

All these applications mentioned above are executed in parallel computers or
supercomputers, which mean that most of these cases are based on shared memory
parallelism. Besides, the cases of distributed computing shown have been executed

34 Chapitre 3. TLM Modeling Method in Grid Environment

on tight coupled computing nodes interconnected by local network.
The purpose now is to estimate the efficiency of implementing the TLM method

in Grid Computing Environment, on (geographically) distributed computing nodes
belonging to different Grid clusters.

3.6 Distributed Parallel TLM Simulations in Grid En-
vironment

Grids differ from traditional parallel production environments (PPEs) in both struc-
ture and typical use. While a PPE consists of a single (large) tightly coupled su-
percomputer or a well-interconnected cluster, a Grid consists of multiple sites, each
of which in the type of Grids we consider typically comprising a commodity cluster
with a more common network.

Distributed computing techniques (ref. Chapter 2) offer the potential to signifi-
cantly reduce the run time of TLM calculations. To get better performance by using
more resources, users may want to execute their applications, written for clusters,
on Grids.

Today, clusters are often interconnected by long distance networks within Grids
to offer a huge number of available resources to a range of users. It is therefore very
important to test the influence of network on the performance of TLM computation
when tested on such platform.

Consider a simple air-filled cavity of size ∆x * ∆y * ∆z = 400 mm * 400 mm *
10 mm. This cavity is discretized using a three-dimensional TLM cartesian uniform
mesh of dl = 0.5 mm.

Figure 3.5 – The three-dimensional medium modeled with TLM method.

If the speed in the medium is considered equal to 3 ∗ 108 m/s and the wave
frequency 12.5 GHz then :

Wavelength = Speed / Frequency = 24 mm
and Number of TLM nodes = (∆x/dl) * (∆y/dl) * (∆z/dl) = 12 800 000

3.6. Distributed Parallel TLM Simulations in Grid Environment 35

nodes.

If for storing each data we use 8 bytes (double precision) then each node needs
12 * 8 bytes of memory. Consequently, the memory needed for modeling the entire
medium is tens of Gigabytes for fine mesh.

The use of MPI to distribute the TLM computations on Grids nodes will be
investigated in next sections since MPI remains the dominant model used in high-
performance computing today.

3.6.1 Message Passing Interface (MPI)

MPI is proposed as a standard to write parallel applications by a broadly based
committee of vendors, implementers, and users. MPI is a specification for an appli-
cation programming interface (API) that allows many computers to communicate
with one another by message-passing 1. Each node has its local memory to be used
for computation.

Before MPI, PVM [98] was the reference on message passing environment, but
with a stronger focus on resources/process management, dynamicity, the idea of a
virtual parallel machine and transparency.

On the other side, MPI focus in performance, a clear interface featuring a power-
ful support to collective communication and different parallel machine architectures,
from shared-memory multiprocessor machines to clusters. Also, the support to fast
interconnection networks has being one of the main keystones.

Most MPI implementations consist of a specific set of routines (i.e., an API)
callable from Fortran, C, C++ or Java and from any language capable of interfa-
cing with such routine libraries. The advantages of MPI over older message passing
libraries are portability (because MPI has been implemented on almost every distri-
buted memory architecture) and speed (because each implementation is in principle
optimized for the hardware on which it runs).

MPI implementations are initially written for high performance on both massi-
vely parallel machines and on workstation clusters and do not consider the specifi-
cities of Grid interconnections. The main feature of Grid, which is the long distance
networks, raises the question of MPI efficiency in Grids.

3.6.2 MPI on Computing Grids

The Grid raises mainly three problems to execute MPI applications. First, MPI im-
plementations have to manage efficiently the long-distance between sites. Actually,
the high latency between sites is very costly, especially for little messages. Inter-
sites communications take more time than intra-sites ones. In a Grid, inter-sites
links may offer higher capacities than cluster links.

1. more informations could be found on : https ://computing.llnl.gov/tutorials/mpi/ by Blaise
Barney, Lawrence Livermore National Laboratory.

36 Chapitre 3. TLM Modeling Method in Grid Environment

Several MPI implementations are taking some characteristics of Grids into ac-
count, to offer better execution of MPI applications on Grids. The MPICH2 [103],
GridMPI [104], MPICH-Madeleine [105], OpenMPI [106], MPICH-G2 [107] imple-
mentations can be used on a Grid but are not similarly optimized to this specific
context.

In order to identify which ones are efficient on a real Grid and in which condi-
tions, how to best configure these implementations to achieve good performance
on the Grid, and to have a better view of which communication patterns better fit
Grid context, in [108] experiments in Grid’5000 have been conducted. The paper
details the tuning required on each implementation to get the best performances.

Since this study has been performed on the actual Grid’5000 architecture and
network, there no need to re-validate the results (bandwidth and latency of MPI
implementations) and they can be used in this thesis.

The comparison is based on the execution of pingpong between two nodes. The
results within a cluster are done between two nodes of the Rennes cluster (intra-site
/ one cluster) corresponding to PR1 and PR2 on Figure 3.6. The experiments in the
Grid (inter-sites) are done between PR1 and PN1.

Figure 3.6 – Configuration used.

Table 3.1 shows the latency comparison between the different MPI implemen-
tations in the Rennes cluster or in the Grid (between Rennes and Nancy).

Cluster : Rennes Grid : Rennes-Nancy
TCP 41 5812

MPICH-2 46(+5) 5818(+6)
GridMPI 46(+5) 5819(+7)

MPICH-Madeleine 62(+21) 5826(+14)
OpenMPI 46(+5) 5820(+8)

Table 3.1 – Comparison of latency in a cluster and in a Grid (in µs).

The bandwidth obtained on a cluster (Intra-site) and on Grid (Inter-sites :
Rennes-Nancy) are shown respectively in Figure 3.7 and Figure 3.8.

Using these results on network communications, the TLM parallel application
efficiency will be investigated.

3.6. Distributed Parallel TLM Simulations in Grid Environment 37

Figure 3.7 – Comparison of MPI bandwidth of the different MPI implementations
on a local network (cluster).

Figure 3.8 – Comparison of MPI bandwidth of the different MPI implementations
on a distant network (Grid).

3.6.3 Efficiency of using MPI for TLM

The method is limited by the amount of memory storage required, which depends
on the complexity of the structure and the non uniformity of fields set up in it. In
general, the smallest feature in the structure should at least contain three nodes
for good resolution. The total storage requirement for a given computation can be
determined by considering that each basic three-dimensional node requires twelve
number locations ; if it is equipped with permittivity, permeability, and loss stubs,

38 Chapitre 3. TLM Modeling Method in Grid Environment

the required number of stores will increase. Again, one real number must be stored
per output function and per iteration. The number of iterations required varies bet-
ween several hundred and several thousand, depending on the size and complexity
of the TLM mesh.

3.6.3.1 Division of the TLM medium in sub-media

For modeling in parallel, the medium is divided on some regions (Figure 3.9)
and then each region is processed on one Grid computing node. These processes
should be communicating (Send and Receive) with each other computer in use.

If N Grid computing nodes available, medium shall be divided into N sections.
Each computing node models only one sub-medium. At the boundary (Figure 3.10),
it is necessary to exchange data between sub-media (incidence and scattering for
each iteration (ref. TLM algorithm)). Each TLM node at the boundary interface
exchanges two values. Figure 3.9(a) shows two sub-media on two computing nodes
that communicate via one boundary.

Figure 3.9 – Division of the medium to sub-media in one direction on a (a) two
and (b) three Grid computing nodes.

When the medium is subdivided to three, the number of nodes on the boundary
does not change comparing to the case of two sub-media, but in this case two
boundaries are considered (Figure 3.9(b)). A Grid node in charge of a border area
communicates only with the Grid node running the one of the center. Meanwhile,
the Grid node in charge of the center process must communicate with both other
Grid nodes.

When N, the number of used computing nodes, increases, the number of boun-
daries increases also (Figure 3.11). The sub-medium represented in black is the most
communicating one since it has an iterface boundary with six neighbours.

TLM algorithms are iterative and the time loop (see Figure 3.4) is essential.
Before beginning a new (next) iteration, the values of the TLM node must be
computed and ready to be communicated. Synchronism is critical in such cases.
Note that some areas consuming more communication time than others, i.e. the
medium in the center in figure 3.11, block the others (which are faster).

3.6. Distributed Parallel TLM Simulations in Grid Environment 39

Figure 3.10 – Two TLM nodes exchanging at the boundary of the sub-media.

Figure 3.11 – Division of the medium to sub-media in all directions. The sub-
medium represented in black communicates with six neighbours.

In the following, a full duplex system will be considered (optimal case). The
sub-medium is supposed to send and receive messages at the same time.

3.6.3.2 Performance

As defined in previous chapter, the execution time is the sum of computation
time (T icomp) and communication time (T icomm). To find the relation between
the computation time and the computing volume (number of TLM nodes), the TLM
solver of YATPAC (Appendix A) has been used with different structures and mesh

40 Chapitre 3. TLM Modeling Method in Grid Environment

grids 2.

Based on curves in Figure 3.7 and in Figure 3.8, the latency and bandwidth
could be deduced and used in equations defined in the last section of chapter 2 to
calculate the communication time for a specific weight of message. The number of
TLM nodes on the communication interface defines the size of the message (s).

Figure 3.12 shows the estimated speedup when distributing the computing on
the same cluster nodes and the speedup when using computing nodes from different
Grid site, compared to the optimal linear speedup.

Figure 3.12 – Estimated speedup when dividing the medium to sub-media in one
direction.

The speedup has been also estimated in the other partitionning case (Figure
3.13) while considering the same division coefficient for the three dimensions.

2. The method of least squares has been used as a method of fitting data.

3.6. Distributed Parallel TLM Simulations in Grid Environment 41

Figure 3.13 – Estimated speedup when dividing the medium to sub-media in three
directions.

The speedup reaches a stable state rapidly in both cases. Even if the cluster
speedup is little bit better than the Grid one, it remains too low. When the number
of TLM nodes increases (finer mesh of the same cavity (dl = 0.1 mm) or bigger
struture), bigger speedup can be noticed for the division in one direction (Figure
3.14) and for the division in all directions(Figure 3.15).

Figure 3.14 – Estimated speedup when dividing the medium to sub-media in one
direction.

42 Chapitre 3. TLM Modeling Method in Grid Environment

Figure 3.15 – Estimated speedup when dividing the medium to sub-media in three
directions.

3.7 Distributed Parametric TLM Simulations in Grid
Environment

This section discusses much simpler parallel applications, known as "parametric"
or "embarrassingly parallel", which do not request data transfer during executions.
This kind of computer programs involves execution of the same code with different
input parameters. Some typical examples include frequency sweeps for antenna
characterization, or design of optimal antenna geometries.

Since parametric problems are the simplest kind of parallel distributed applica-
tions, there is no need to face the complexity and restrictions of traditional network
computing libraries for developing an execution framework. On the other hand,
novel network technologies greatly simplify the deployment of highly scalable dis-
tributed systems at relatively small bandwidth and computing cost.

Parametric distributed study application is a good candidate to execute in a
Grid environment [32]. In distributed parametric TLM simulations, a wide range of
design parameters are evaluated in a single analysis run with the goal of exploring
the entire design space and selecting the optimized design without need for the
normal iterative process (Figure 3.16).

This Grid-based electromagnetic approach, exploits the availability of compu-
ting node at disposal through the Grid to face the demand of arbitrary large si-
mulations by allocating a corresponding amount of resources hence minimizing the
overall elapse time.

Full-wave electromagnetic solvers based on the Transmission Line Matrix Me-
thod have been deployed on Grid test-bed.

Different approaches to run distributed parametric experiments have been used

3.7. Distributed Parametric TLM Simulations in Grid Environment 43

Figure 3.16 – Distributed parametric computing.

along this thesis. The first one was the simplest with bash scripts and YATPAC
(Appendix A) 3. Since the difficulty for non expert in computer science to run
those applications on high number of computing nodes discourages them, a second
approach is based on the deployment and management of the electromagnetic solver
yatsim by using the TUNe 4 autonomic middleware. The last presented approach
is the most developed one. It is based on TUNe that deploys emGine environment
(Appendix B) on the Grid’5000 nodes with a graphical user interface (GUI).

In order to deploy YATPAC on Grid’5000 nodes (with shell scripts and TUNe),
a customized Linux OS environment, called MEG was prepared for KADEPLOY.
It should be mentionned that the generation of MEG was not an easy step and took
a considerable time because of problems with YATPAC tools installation.

Usually, to create such environment, user reserves a Grid node, deploy an exi-
sisting basic OS (Fedora, Debian, Ubuntu, ...), add needed software by installing
them, and save this customized environment to be used later (see section 2.3.6 of
chapter 2). In fact, YATPAC presents lot of libraries dependencies (atlas, bison,
blas, fftw, lesstif, mesa, zlib, gcc, ...) and the makefiles could not make the job
easily (problems of path, ...).

Note that, in addition to TLM solver and software, MEG also contains the
libraries and codes necessary for SCT simulations on the Grid (see chapter 4).

3.7.1 First Approach : Shell Scripts + YATPAC

The methodology proposed is experimented on a coplanar 6-bits phase-shifter based
on MicroElectroMechanical switches (MEMS) 5. The circuit design proposed here

3. An easy deployment system, MEG GUI, based on Taktuk has also has been developed and
tested. It can launch TLM (with YATPAC) and SCT experiments, and could be found in Chapter
4.

4. Toulouse University Network. http ://hagimont.perso.enseeiht.fr/transp-jte/hagimont.pdf#
5

5. The phase shifter was designed by VTT (Finland) and realized by FHG-ISIT (Germany) in
the framework of the first AMICOM multi project wafer.

44 Chapitre 3. TLM Modeling Method in Grid Environment

is based on a truetime delay phase shifter which consists of a coplanar waveguide
(CPW) transmission line loaded periodically with several shunt MEMS capacitors
(Figure 3.17).

Figure 3.17 – RF MEMS planar phase-shifter cross section.

Thus the circuit can be considered as a synthetic transmission line whose phase
velocity can be varied by switching the MEMS capacitive switches up and down
[109].

For illustration purposes, this structure has been used in a parametric design
sweep, and the phase shift of each configuration have be simulated.

As mentioned in appendix A, in the preprocessing step, the engineered structure
and the discretization of each model must be prepared. To generate automatically
the different prototypes with its proper specification, a C++ code has been imple-
mented. This generator needs to be run once, and all the simulator input files are
ready-to-use.

Figure 3.18 – Simulation workflow.

Simulation steps take long computational time, and must be repeated for each
generated input file. Using a Grid infrastructure enables to parallelize this work
(Figure 3.18) by reducing the number of simulations treated by each node.

Once all of the models are analyzed, response data are automatically collected
for the postprocessing step. The simulation executions on the Grid will be detailed
in the following.

3.7. Distributed Parametric TLM Simulations in Grid Environment 45

In order to test the behaviour of the infrastructure, an experiment composed
of 192 TLM heteregeneous simulations will be executed several times, for different
numbers of computational nodes to use. The number of nodes used will be increased
gradually, in order to measure the impact of this metric on the performance of each
step of the simulations.

The experiments use up to 3 clusters (the ones of Nancy, Toulouse and Sophia-
Antipolis), with a maximum of 64 nodes per cluster. The cluster characteristics are
the following :
• Cluster of Nancy : Intel Xeon 5110, 1.6GHz
• Cluster of Toulouse : AMD Opteron 2218, 2.6GHz
• Cluster of Sophia-Antipolis : AMD Opteron 2218, 2.6GHz
The number of nodes used is gradually increased. First, 4 nodes of the cluster in

Nancy are used. When the number of nodes reaches 64, a second cluster is used (the
one of Toulouse) ; the 64 nodes of the first cluster are still used, and the number of
nodes used on the second cluster is gradually increased to reach 64 as well. Finally,
the third cluster (Nancy one) is included when more than 128 nodes are required.

The simulations were divided into 5 main parts, namely : Initialization (i.e.
Generation of the Simulations Input Files), Deployment of a Customized Linux
operating system that bundles YATPAC Simulation Package, Deployment of the
Input Files over the Computational Nodes, Execution of the Simulations, and Re-
sults Recovery.

3.7.1.1 Initialization Phase.

During this phase, the simulation input files are generated on each Grid’5000
sites, using the C++ prototypes generator (Figure 3.18), and then stored in the
local NFS server. The generated files (PS.laydef files), particularly their number
and their content, depend on the simulations that have to be performed. This is
done independently but simultaneously on each site.

This phase occurs at the beginning of the experiments. It is executed on one
host per cluster (typically the OAR server node), and generated files are stored on
the NFS server of each cluster. When several clusters are used, the execution on
each cluster is done in parallel at the same time. Thus, the duration of this phase
is almost constant, and depends not on the number of nodes used, but only on the
load of OAR server, NFS server and network. The experiments show that this phase
lasts between 1.5 and 2 seconds.

3.7.1.2 Deployment of the Customized Linux Image.

The KADEPLOY tool is used to reboot all the computational nodes in order
to run MEG, the operating system that bundles the YATPAC Simulation Package
(see section 2.3.6 of chapter 2). This operation is done for all nodes used during the
experiment. Note that, since there is no file sharing between the different sites of
Grid’5000, a copy of the Linux image is stored in each local NFS server of each of
them, in order to be used by KADEPLOY.

46 Chapitre 3. TLM Modeling Method in Grid Environment

Before launching the simulations, the Linux image that contains YATPAC is
deployed over the different nodes. Figure 3.19 shows the duration of this phase for
the different numbers of nodes used.

Figure 3.19 – Duration of MEG deployment phase.

The duration of this phase is between 12 and 18 minutes, but it is not accurately
predictable. The deployment is performed in parallel on each node, so that the
number of nodes used would not affect the performances of the system during this
phase. Actually, this is not so simple because the Linux image to deploy is stored
in the NFS server, and the performances may depend on the number of requests,
and thus on the number of nodes used. The activity of other Grid users can also
have an impact on the performances of the NFS server, and so on the duration of
the deployment of the image.

3.7.1.3 Deployment of the Simulation Input Files.

When all computational nodes have been rebooted with MEG image that
contains YATPAC, the simulation input files generated in first step and stored
in the local file servers, must be deployed on each of them. Indeed, even if these files
are accessible from every node on the NFS server, it is better to make a local copy of
them in order to optimize their access during the simulations, avoiding simulation
slowdowns due to multiple networking accesses. The files that are transferred to
a computational node are filtered in order to copy only the files corresponding to
the simulations that will be run on this node. Two files are required to perform a
simulation : PS.laydef (specific to each simulation) and the corresponding PS.gds.
The duration of this phase is represented by Figure 3.20.

The profile of the measured performance points out two different cases. First,
when only one cluster is used, the duration of this phase depends directly on the
number of nodes used, in a linear way. The copy of the input files is performed by
the OAR server node, which sends these files to each computational node. Thus,
the duration of this phase increase with the number of nodes used. Note that both
network load and NFS server performances have an impact on this duration.

3.7. Distributed Parametric TLM Simulations in Grid Environment 47

Figure 3.20 – Duration of the input files deployment phase.

If several clusters are used, this assertion is not verified anymore. In the case of
two clusters, the number of used nodes is gradually increased. When 64 nodes are
used on the first cluster, the nodes of second cluster is then used. Thus, in this case,
there is a cluster for which the deployment of the input files must be performed for
64 nodes. The duration of this period is almost constant, and corresponds to the
time needed for the copy of the input files on the 64 computational nodes of the
cluster.

So when the number of hosts increases, it is interesting to distribute them over
different sites, in order to bound the duration of this phase.

3.7.1.4 Execution of the Simulations.

All simulations are executed on the computational nodes. Each node executes
a subset of simulations, corresponding to a limited number of input files. All
nodes execute the same number of simulations, since spreading them equally
over the nodes leads to optimize the duration of this phase. The simulations are
independent, so they can be run in parallel. They use the input files generated in
previous steps, and produce new result files. The following commands enable to
run the simulation using YATPAC :

yatpre -t t -i PS.laydef PS.gds I3D.Temp
yatsim Temp
yatpre -t ref -i PS.laydef PS.gds I3D.Ref
yatsim Ref
yatpre -t C -i PS.laydef PS.gds I3D.Dev
yatsim Dev
yatpre -t C -i PS.laydef -M PS.gds TLMSTRUCT
yatspar -v -h 8.1 -l 3e-6 -f 25e7 -N 200 2:EH.Ref 8:EH.Dev S_Parameters_PS.dat

This phase is the longest one, since it corresponds to the execution of the YAT-
PAC tools, mainly the yatsim the simulator, in order to explore all possible confi-
gurations of the simulated problem.

The duration profile of this phase (Figure 3.21) presents a good regularity. The
execution time of the simulations depends on the number of nodes that are used,
or more precisely on the number of simulations that are executed on each node.

48 Chapitre 3. TLM Modeling Method in Grid Environment

Figure 3.21 – Duration of the simulation execution phase.

Moreover, the experiments have been designed in order to obtain an homogeneous
distribution of the simulations over the computational nodes.

Since the experiments are composed of 192 simulations, the mean number of
simulations per node is : 192

Number of nodes . This expression matches the hyperbolic
appearance of the measured execution times. For example, if only 4 nodes are used,
each of them executes 48 simulations. More than 10 hours are then needed to
complete this phase. If 192 nodes are used (1 simulation per node), the execution
of the simulations only takes 34 minutes.

This result points out the benefit from using a large number of computational
nodes for running TLM simulations.

3.7.1.5 Retrieval of Result Files.

The generated result files (S_Parameters_PS.dat), present on each computa-
tional node, must be retrieved and stored on the NFS servers. Indeed, when the
experiments end, all nodes are rebooted to run a default operating system, so that
other users are enabled to use them for their own experiments ; this operation deletes
all files stored on each node.

The last step of the experiments is to retrieve the results from the computa-
tional nodes and to store them on the local NFS servers. The two-port scattering
parameters of the circuit were recorded up to 40GHz (Figure 3.22). From 30 GHz
to 40GHz the structure could cover almost an entire interval of 360̊ .

Figure 3.23 shows that the duration of this phase decrease with the number of
nodes used. Some irregularities are present, since the performance of the results
recovery depends on the NFS servers and the network load, and so on the other
users activities.

Note that the MEG OS environment, to deploy with KADEPLOY on Grid
computing nodes in order to run TLM simulations, could be used more easily with
MEG GUI, presented later in chapter 4.

3.7. Distributed Parametric TLM Simulations in Grid Environment 49

Figure 3.22 – Simulated phase shift of the MEMS phase shifter versus frequency.

Figure 3.23 – Duration of the result recovery phase.

3.7.2 Second Approach : TUNe + YATPAC

For the sake of demonstration, a reflectarray made of various rectangular microstrip
patches loaded with slots, proposed in [110], is simulated in the band of interest
namely the Ku Band (Figure 3.24). Reflectarrays combines key features of large
reflectors and phased array elements to generate a collimated beam as required in
high gain antennas [111].

Here, the presented non-uniform planar array is illuminated by a normally and
linearly polarized incident plane wave (In [110], the primary source is a 12-18 GHz
feed horn). The patches are printed on one side of a single dielectric slab of 4
mm thickness with relative permittivity of ε = 2.17. The other side of the slab is
completely metalized. The elementary cell is a 16.8 mm x 16.8 mm square containing
rectangular metallic patch loaded with a centered slot. The center-to-center distance

50 Chapitre 3. TLM Modeling Method in Grid Environment

between elements is 0.7λ. The dimensions of the reflectarray are 7λ x 7λ where λ
is the freespace wavelength.

Figure 3.24 – Non-uniform reflectarray antenna illuminated by a normally and
linearly polarized incident plane wave (Φ = Azimuth angle/+ or - rotation away
from the x-axis ; Θ = Elevation Angle/+ or - rotation away from the zaxis).

Since the slot aperture lengthens the path of the electric currents on the metal-
lic patch of the array cell, a phase shift is introduced locally for the reflected wave
and the main-lobe direction of the backscattered field is then controlled. In order
to choose the slot and patch dimensions, and consequently adjust the phase distri-
bution, parametric simulations of the reflectarray can be performed in the design
process.

The TLM Method developed here for the full-wave electromagnetic simulation
of such reflectarray uses a uniform mesh grid cell dimensions of ∆x= ∆y= ∆z= 0.5
mm. Absorbing boundary conditions are assigned to a large box 7λ x 7λ x λ that
artificially encloses the structure.

Parametric studies are used here on geometrical dimensions as well as frequency
points of interest to help the designer choosing the most appropriate elementary cell
dimensions.

3.7.2.1 TUNe Principle

TUNe is a project that aims to give a solution to the increasing complexity
in the domain of distributed software execution management. It is based on the
concept of autonomous computing [112]. TUNe can be used in different domains :
web architecture, middleware architecture [113], Grid computing. Users give an
abstraction of the platform execution (hardware) and application (software). A
subset of UML graphical language is used to describe the global view in a high level

3.7. Distributed Parametric TLM Simulations in Grid Environment 51

of abstraction. The main idea is then to automatically create a representation based
on fractal components [114] of the real system, with :
• Application components, also called legacy components because they can

wrap legacy software pieces.

• Running platform components, each one representing a node on which the
legacy software piece can run.

The application components are connected to the real system with a wrapping
language based on XML, describing methods that are reflected on the real system by
making action commands. The global dynamic behavior of the system is expressed
with UML state charts or activity diagrams, some steps of these diagrams referring
to the methods in the wrapping XML files.

3.7.2.2 Platform description

The platform (hardware) is described with a UML class diagram (see Figure
3.25). Each class represents a family of nodes (called host-family). The difference
between the families is up to the user level, so different users could have different
families. For example, a user can specify with one class one powerful local machine
in its network that is not managed (directly accessible without asking a resource
scheduler), or one local cluster (a set of directly accessible machines) in the same
way. One class can also specify Grid platforms (managed resources, thus they are
not directly accessible) which use a resource scheduler to access the machines. Each
family has different parameters which specify its particularities on how to get re-
sources, or how to access them. For Grid utilization, the following parameters are
useful :
• type : this parameter is used in Grid environments. It makes the relation

with the batch scheduler. For example with Grid’5000, the oargrid tool is
used for multi-clusters on multi-sites reservations, but the OAR tool could
also be used for multi-clusters on one geographical site. On the diagram 3.25,
the allsites class represents a Grid-level reservation using the oargrid tool,
and the toulouse class represents a site-level reservation of the nodes for the
city of Toulouse using the OAR tool.

• sites : is a specific parameter for the batch scheduler, representing the sites
(city names) and the number of nodes to reserve for each site. An automatic
way is actually sought to calculate the best number of nodes for each site
based on profiling applications and analyzing their logs.

• walltime : is the duration of the nodes reservation, here 2 hours.

• user : allows to have different login on different families.

52 Chapitre 3. TLM Modeling Method in Grid Environment

• keypath : facilitates the remote login with ssh keys on the Grid to avoid
password typing.

• javahome : is the directory where java is located for this family. This is the
only necessary software to make TUNe work.

• dirlocal : is the working directory for the application (where it will be
installed and started).

• protocole : allows to have different remote protocol connections (local
commands, ssh, via oarsh specific to Grid’5000).

Figure 3.25 – Platform description.

With the actual version of TUNe, the javahome property has to be defined
on each class of the Grid diagram. Java is indeed needed on each node for the
RMI process (java’s remote procedure calls) to send events to the TUNe manager
eventually from every computing node. If java is not present on the node, TUNe
will consider this node in a special deploy error state and will not try to redeploy
it. There is an ongoing work on this issue and will use the following steps :
• 1 : use of the javahome property defined in the class of the Grid diagram to
find the java binary
• 2 : if the java binary is not present, TUNe will use the JAVA_HOME envi-
ronment variable of the node
• 3 : if this variable is not set, TUNe will use the first java binary found in the
PATH environment variable of the node
• 4 : if the java binary cannot be found in any of these steps, TUNe will engage
a java runtime environment copy. The difficult part is to define where and
how TUNe will get the good java version for the good architecture.

3.7. Distributed Parametric TLM Simulations in Grid Environment 53

Anyway, any java runtime version with support of RMI is acceptable for TUNe
(for instance any java version superior to 1.4.2).

Altought this concept is not presented here, the user would be capable of des-
cribing if he is a member of a Virtual Organization (see Chapter 2). Within the
platform description diagram, a VO could be represented by a class. Indeed, the
name of the VO would be the name of the class, and the geographical constraints
would be represented as for the sites locations for Grid’5000. Furthermore, this dia-
gram could also be extended to take into account specific VO policies constraints.
Each constraint would be expressed with a property of the class. These properties
could then be used to dynamically generate commands to communicate with par-
ticular schedulers to get the resources. This set of specific commands would finally
describe a specialized protocol to get the resources, connect to them, as for the
specific OAR tools on Grid’5000.

Finally, if the user wanted to target production Grids like EGEE 6, he would have
to define a specialized protocol by extending the generic protocol java class within
TUNe and write the different commands to get and to connect to the resources
(like the specialized protocols for OAR tools on Grid’5000). TUNe is also able to
read a set of nodes from the "nodefile". In this case, the user has to construct this
file by hand by manually getting the resources from the specific scheduler. Another
option is again to describe the reservation mechanism specifying which commands
have to be launched and where to get the resources, by extending the generic node
java class within TUNe.

For now, the platform description diagram is used to construct the reservation
commands ; therefore it includes an exhaustive description of the resources allocated
by the resource manager. This allows the user to fix a maximum limit for the
reservation process and if the application needs more resources, it forces TUNe to
aggregate some of the processes on same nodes. An evolution of these diagrams
is under development : an improved application description diagram will be used
with more specific QoS constraints and the platform diagram will permit a more
precise description of the hardware architecture. The purpose is to define the way to
calculate the best fit between the application demands and the actual availabilities
of the resources.

3.7.2.3 Application description

The goal of this diagram is to describe what should be the running distributed
application at its best (with no failures). As for the platform description, it is also
based on a UML class diagram. The user has to create the different families of its
program. Two kinds of programs can be distinguished :
• the architecture and information specific to its application. This part requires

an abstraction work for the user.

6. Enabling Grids for E-sciencE (EGEE). http ://www.eu-egee.org/

54 Chapitre 3. TLM Modeling Method in Grid Environment

Figure 3.26 – Application description.

• the probing system which senses the state of the application and therefore
can asks TUNe to change the behavior of the application during its execution
by sending events. TUNe provides a set of different probes (to check if a PID
is alive, a node is alive) but the users can create their own programs (that
will also be automatically deployed by TUNe) to observe specific values of
their applications and send events to the TUNe manager in a very simple
way : they only have to write into a pipe.

In diagram 3.26, three families of program are described : yatsim, yatpre and a
probe that can observe these two programs.
Each class contains TUNe specific parameters or legacy specific parameters. A mi-
nimum of parameters for the yatpac simulation are :
• legacyFile : is an archive of all necessary files to execute this program.

• initial : is an integer which represents the desired number of running processes
of this program.

• host-family or host : represents how TUNe maps the software component with
the platform component. It can be a family in the Platform description (see
Figure 3.25) or a specific host in the family. Those values can be estimated
by using the batch scheduler or by taking the host name of another running
process. Note that the yatpre program should be on the same node than the
yatsim program that it is linked to. The yatsim node is therefore chosen by
the scheduler and the linked instance of yatpre will also take the same node
to execute itself.

• wrapper is the name of the wrapping XML file which contains all the methods
that can be called for the legacy, and will be explain further.

3.7. Distributed Parametric TLM Simulations in Grid Environment 55

The user should also create relations between program parts by creating links
between them. Those links can also be named, and are useful for two main reasons.
First, it allows a component to get some information (value of parameters, value of
TUNe variables) about the components it is connected to. Secondly, it also creates
a cardinality between the different programs. In Figure 3.26, it is expressed that
when TUNe creates a yatsim program, a yatpre program should also be created and
reciprocally (cardinality 1-1). For the probe, it limits for one instance of the probe
program the number of observed components. Here there is a maximum limit of 60
yatpre and 60 yatsim for one probe.

3.7.2.4 Behavior description

Figure 3.27 – Start behavior description.

Two types of diagram are used to express the behavior of the application : state
chart diagrams and activity diagrams. Activity diagrams are still under development
and allows to create more sophisticated reactions. The minimal number of state
chart diagrams needed to start and stop the application are presented here :
• The startchart : describes what should be done to start the distributed
application, shown by Figure 3.27.

• The stopchart : gives the different actions to stop the distributed application.

The user can also create some other state chart diagrams which are run when
the TUNe manager receives an event from the probe for example. In this case, the
name of the diagram is the name of the received event. That is the case in Figure
3.28 for the state chart "repair", which makes TUNe sensible to the event "repair".
This diagram is started when a probe detects a yatpre or a yatsim failed execution.
A state chart begins at the initial node and finishes when it arrives at an ending

56 Chapitre 3. TLM Modeling Method in Grid Environment

node. Some of the actions can be executed in parallel with the use of fork junctions.
The join junctions wait for the different forked paths to arrive before the execution
of the diagram can be continued.
State charts use a language to manipulate the components and to call the methods
in the wrapping XML file. The first part of a command represents one component or
a set of components. For instance, it can be a family name (in Figure 3.27 "yatpre"),
a variable defined by TUNe (in Figure 3.28 "arg" which is an argument passed to
the state chart) or by the user (in Figure 3.28 "new" represents the last component
created by the user). The second part of a command is the action to be executed
on these components. It can be a TUNe operator (like "−−" in Figure 3.28) or a
call to a method defined in the wrapping XML file (in Figure 3.27 "sendresults").
A more detailed execution is presented in the Experiments section.

Figure 3.28 – Example of dynamic behavior description.

3.7.2.5 Wrapping files

One of the most promising approaches with TUNe is the encapsulation mecha-
nism of legacy software into generic wrappers. This permits any legacy software to
be wrapped without modifying any line of its code. The user simply has to describe
the wrapper using a simple XML syntax. However this limits the controls on the
component : basic controls are starting the component, stopping it and dynamically
generate configuration files. Other available controls of the legacy can be described,
but TUNe does not offer a controller API to integrate to the codes of the legacies.
First, the wrapper is associated to a class with the "wrapper" parameter of the ap-

3.7. Distributed Parametric TLM Simulations in Grid Environment 57

plication diagram. All the methods are listed and the commands to run effectively
on the nodes, including their parameters, are described. The character $ allows to
get the different values from component instances of the class diagram, or from
internal variables of TUNe.

example of wrapping file :

<wrapper name=’yatsim’>
.....
<method name="sendresults"
key="extension.GenericCommands"
method="start" >

<param value="./sendresults.sh"/>
<param value="\$dirLocal"/>
<param value="\$node.user"/>
<param value="\$node.keypath"/>
<param value="\$nodeName"/>

</method>

<method name="start"
key="extension.GenericCommands"
method="start" >
<param value="./yatsim Temp"/>
<param value="\$dirLocal"/>
<param value="\$node.user"/>
<param value="\$node.keypath"/>
<param value="\$nodeName"/>
<param value="LD_LIBRARY_PATH

=\$dirLocal"/>
</method>

......
</wrapper>

3.7.2.6 Experiments

Experiment conditions

In this section, a short review of all the steps that the end user has to
achieve in order to launch effectively a yatpac simulation with TUNe. These
steps include :

• Preparing locally the simulation : First of all, the user has to create
compressed archives (tgz) containing the legacy binary files and all the
libraries they use. A recursive ldd script copies all the libraries used by
a binary, including libraries used by libraries, and creates the archive.

58 Chapitre 3. TLM Modeling Method in Grid Environment

The generic probe.tgz to detect the presence of the pid process has been
chosen in the following simulations. The user also has to prepare all the
necessary input files for its simulation and number them.

• Describing the application for TUNe : the user creates the three types
of diagrams for TUNe : platform description (Figure 3.25), application
description (Figure 3.26), and behavior description (Figures 3.27 and
3.28) using a graphical UML editor like Eclipse or Topcased. He
then writes the wrapping files to describe what commands should be
launched by the behavior description diagrams.

• Launching TUNe : The user has to send all the files (application files,
TUNe software and the UML file containing the diagrams) to the
Grid, for instance the frontnode of its site on Grid’5000. TUNe can
then be launched manually and it prompts the user for the commands
interactively, or it can be launched in remote control mode. In this case,
it can be controlled using telnet or writing into a pipe. To deploy and
start the application, one simple command is given to TUNe : deploy
<path to application files> <uml file>.

Two experiments were conducted with different numbers of sites and nodes
as shown by table 3.2. The first experiment is a small scale deployment, concer-
ning 8 sites and 20 nodes on each site. The second experiment is a large scale
deployment, concerning 6 sites and between 30 to 110 nodes on each site. For
these experiments, the purpose is to show how fast TUNe can deploy and start
the simulation on all nodes, and also how fast it can undeploy everything. To
do this, the sites are gradually added one by one, relaunching TUNe everytime
a new site is added in order to always mesure the global times. Thus, the first
step will concern only one site, the second step two sites etc. On the following
figures 3.29, 3.30 and 3.31, the first point of an experiment represents the first
step (deployment on one site) and the last point represents the last step (de-
ployment on all sites). To choose which sites are concerned, there is only need
to modify for each step the platform description diagram, adding one site to
the list of sites (Figure 3.25), and changing the initial parameter values of the
application diagram to the total number of nodes. This is a very simple way
to add or remove one site without touching any other file or configuration.

Exp Rennes Nancy Nice Toulouse Lyon Lille
exp 1 20 20 20 20 20 20
exp 2 100 110 90 63 30 70

Table 3.2 – Nodes and location

Note that the sites of Paris and Bordeaux are also used with 20 nodes in

3.7. Distributed Parametric TLM Simulations in Grid Environment 59

the experiment 1.

Deployment

Figure 3.29 – Creation of system representation.

The deployment consists of three phases :
• The creation of the internal system represention of TUNe : illustrated
by Figure 3.29.

• The deployment of the application on the nodes : shown in Figure 3.30.

• The initialisation of the software components : shown in Figure 3.31.

Initialization of the deployment

When TUNe receives the "deploy" command, it parses the UML file and
eventually sends a request to the resource scheduler of the Grid if the resources
are not directly listed in a nodefile. For this experiment, the Grid’5000 OAR
resource scheduler has been actually used, that’s why on Figure 3.25 the type
is equal to oargrid. This means that TUNe will get the resources needed using
the oargrid tool. Note that the time spent by the oargrid tool to achieve
TUNe’s request has not been measured. Indeed, depending on the tool used
to schedule the Grid resources and depending on TUNe’s demand, the time
can vary a lot and the purpose is to show TUNe performances. The time was
measured as soon as all the resources needed are taken.

Moreover, the TLM simulations deployed include time range and time
step parameters that can vary from one simulation to the other. For instance,
the user can specify a less time precision for some area of the electronic
circuit. He can therefore focus on some interesting parts of the electronic
circuit and ask for a very precise time step and time range on a specific area.

60 Chapitre 3. TLM Modeling Method in Grid Environment

Depending on these parameters, the running time for one simulation can vary
from 5 minutes to a few hours.

Figure 3.30 – Deployment of application (Table 3.2.

Creation of the internal system represention of TUNe

Figure 3.29 shows how much time TUNe spends in creating its internal
representation of the global system to be deployed. This represents the time
needed by TUNe to create an instanciation of the application description
diagram (Figure 3.26) mapped to the platform description diagram (Figure
3.25). For each instance of the classes in the application desciption diagram,
TUNe creates a fractal component. All components are then linked in
accordance with the links between the classes and their cardinalities. The
same goes for each node, TUNe creates the fractal components in accordance
with the result of the oargrid resource scheduler. All node components are
then linked to software components depending on the host-family or the host
parameter of the classes. Figure 3.29 clearly shows that the time needed by
this process varies in a linear manner depending on the number of nodes
involved, starting at 400 ms for 20 nodes on one site up to 820 ms for 160
nodes on 8 sites (experiment 1) or from 650 ms for 110 nodes on one site
up to 1700 ms for 460 nodes on 6 sites (experiment 2). Note that the nodes
could be monocore or multicore (dual, quad).

Deployment of the application on the nodes

Figure 3.30 shows the time needed by TUNe to deploy the application
without launching it. This includes : the time to create the remote working
directory (very fast), the RMI communication sockets (java’s remote proce-
dure call system) in order to communicate between the node and TUNe, the
archive copy and decompression.

3.7. Distributed Parametric TLM Simulations in Grid Environment 61

The two latters share their time usage depending on the archive size and
the decompression speed on the node. Around 80% are observed for the crea-
tion of the TUNe communication system and 20% for the archives copy and
decompression if the total archives sizes were less than 1Mb (which was the
case for these experiments with a total of 750k). This time sharing can go up
to 95% for the copy and decompression of big archives (100Mb and up) on
the Grid’5000 network (10Gb/s links between most nodes).

On Figure 3.30, notice that the total time for the deployment on 20 nodes
on 1 site is 5500 ms and goes up to 30800 ms for 160 nodes on 8 sites (ex-
periment 1). This time is 16800 ms for 100 nodes on 1 site and 237500 ms
(4 minutes) for 463 nodes on 6 sites (experiment 2). It can be also observed
that the two experiments stick together between 100 and 160 nodes and that
in average, the deployment time increased in an exponential way. This is due
to the fact that the deployment is multithreaded and multiple archives copies
(using scp) are performed in parallel, as well as multiple tcp sockets initiations.

Note that for a massive deployment, the node on which TUNe is working
has to have a high limit for maximum tcp concurrent connections (this can be
configured in the OS kernel and must be higher than the number of nodes to be
deployed). Note also that this node must have an increased tcp timeout value
to overpass the possible congestion when a large amount of tcp connections are
initiated in parallel. One possible way to improve TUNe’s performance would
be to automatically find the best number of parallel copies to maximize the
throughput, or even better, to use multiple nodes as sources for the copy of
files.

It could be possible to integrate a more scalable copy tool like taktuk [115]
to broadcast the files on the nodes from multiple nodes. The first way to use
taktuk with TUNe would be to launch one kanif command instead of launching
multiple scp commands. One other possible way to use taktuk or kanif within
TUNe would be to define a class in the application description diagram with
this tool. This tool would be encapsulated in a generic component and could
even be deployed on Grids without it installed. The starting diagram would
then first use this tool to deploy the entire system and continue normally.
Thus, the deploying tasks and their burden would be given to this tool.

Notice that depending on the simulation parameters, their times can vary
from 5 minutes to a few hours. Given these times and the deployment times
leads to conclude that if all the deployed simulations have a minimum running
time of 5 minutes, TUNe will add a significant overhead if all the nodes are
used (45% of the global simulation time is used by TUNe to deploy it on
463 nodes). In this case, the user is recommanded to aggregate some of the
simulations on some nodes. Indeed, it is possible to limit the number of nodes
in the Grid diagram while the number of simulations is kept unchanged. This
forces TUNe to copy the simulation program one time on one node and to

62 Chapitre 3. TLM Modeling Method in Grid Environment

copy multiple input files on that node. Therefore, the global simulation time
would increase (because of the aggregation) but the deployment time would
decrease, and as a result the overhead induces by TUNe would also globally
drop. Still given these times, it can concluded that if all the simulations have
a maximum running time of 6 hours, TUNe do not add a significant overhead
if all the nodes are used (1, 1% of the global simulation time is used by TUNe
to deploy it on 463 nodes).

In section 3.7.1, a script was created to deploy quite similar simulations
with identical inputs. The deploying times were a little bit shorter but very
comparable to those measured with TUNe. However, the large benefit of
using TUNe comes from the ease of use with UML diagrams and automatic
repair of crashed nodes.

Figure 3.31 – Starting application.

Initialization of the software components

Figure 3.31 shows how much time TUNe spends in sending which com-
mands to execute on which nodes to start the application. This includes the
time needed by TUNe to generate the commands from the wrapping files
(including the time to interpret the variables with their dynamic values), to
generate the configuration files, to connect to the nodes, write the configura-
tion files and launch the commands. Note that the electromagnetic simulation
times or other times spent by the legagy applications are not included, but
only the times spent by the TUNe processes to launch the commands. This
time goes from 1500 ms for 20 nodes on 1 site to an average of 5000 ms if the
number of nodes is greater than 60 on any number of sites. This means that
this time does not increase dramatically with the number of nodes involved,
unlike the time of deployment. It can however be observed that for the same
number of nodes the starting time is lower when the nodes are concentrated
on a lower number of sites. For example, with 100 nodes on 1 site (first point

3.7. Distributed Parametric TLM Simulations in Grid Environment 63

of experiment 2), the starting time is 3760 ms whereas with 100 nodes on 5
sites (fifth point of experiment 1) the starting time is 5440 ms.

Undeploying times

Figure 3.32 shows the time needed by TUNe to undeploy completely the
application. This includes the time to clean working directories and cleanly
stop all the network connections. This figure shows that this time increases
with the number of nodes involved, starting from 349 ms with 20 nodes on
1 site to 7845 ms with 160 nodes on 8 sites for the experiment 1, and from
2863 ms with 100 nodes on 1 site to 32568 ms with 463 nodes on 6 sites for
experiment 2. As for the deployment, an important number of tcp connections
are initiated during this phase.

Note again that the time to retreive the simulation results is not taken
into account as it can vary a lot depending on the output files size created
by the application deployed. With TUNe, it is possible to use pulling or
pushing for the result retrieval. In the pushing case, and using the application
description diagram, it is possible for the user to define a different target for
a set of nodes. For example, the 50 first simulations can push the results on
a certain node, the 50 next on another node etc. It is also possible to define
a single target for each site, and the nodes from that site would push the
results to that particular node. Taktuk could again be use for a more scalable
copy.

Figure 3.32 – Undeployment of application.

Simulations results

Parametric studies are used here on geometrical dimensions as well as
frequency points of interest to help the designer choosing the most appropriate
elementary cell dimensions. In this section, an example of numerical results

64 Chapitre 3. TLM Modeling Method in Grid Environment

obtained using the Grid-based approach for electromagnetic simulations of the
reflectarrays in Figure 3.24 is presented.

The E-phi and E-theta simulated components of the backscattered electric
field are used to visualize the radiation pattern.

Note that the calculation of near field values and the near field-to-far field
transformation are not delivered in the YATPAC installation source. These
features have been adapted and validated during the thesis due to the colla-
boration of Dr. Petr Lorenz (one of the developers of the Yatsim codes).

Figure 3.33 shows the radiation patterns in the case of the non-uniform
reflectarrays shown in Figure 3.24 simulated at a single point of frequency.

These reflectarrays have different patch dimensions configurations, 13.5
mm in x-direction, 2 mm to 12 mm in y-direction, while varying slot dimension
in x-direction from 2 mm to 12 mm and keeping on 1 mm in y-direction. The
design of such arrays used to steer the main reflectarray beam in a specified
direction is detailed in Appendix C.

Figure 3.33 – The simulated radiation patterns in H-plane for two non-uniform
reflectarrays at 12.5 GHz.

The results of Yatsim are found to be in good agreement with HFSS [116]
simulation results. The radiation patterns of Figure 3.33 show that the main

3.7. Distributed Parametric TLM Simulations in Grid Environment 65

beam position steers toward 5̊ and 10̊ (Φ =0̊ cut).

Repair

It has been shown that TUNe is a software that can be used to deploy and
configure applications in a distributed environment. It can also monitor the
environment and react to events such as failures or overloads and reconfigure
applications accordingly and autonomously. Management solutions for legacy
systems are usually proposed as ad-hoc solutions that are tied to particular
legacy system implementations.

This unfortunately reduces reusability and requires autonomic manage-
ment procedures to be re-implemented each time a legacy system is taken
into account in a particular context. Moreover, the architecture of managed
systems is often very complex (e.g. multi-tier architectures), which requires
advanced support for its management. Still to propose a high level interface, a
UML profile for specifying reconfiguration policies is used. The main benefit of
this approach is to provide a higher level interface to the software environment
administrator to autonomously manage its distributed applications.

Indeed, when deploying on a large amount of nodes a yatpac simulation
that can run for hours, it often happens that some of the nodes crash or some
of the processes hang. In the experiments presented above, it is possible to
restart one simulation with the same input files in case of failure because the
simulation tasks do not communicate between them and all the input files are
not collerated. In certain conditions, TUNe is able to restart communicative
tasks (for web services architectures for example).

In order to detect these failures, the monitoring system consisting of a
number of generic probes given by default by TUNe was used. These probes
regularly connect to the nodes they are in charge and scan for the PID of the
processes to see if they are alive and not in a blocked state. When a simulation
finishies successfully and the results have been sent back, the monitoring is
stopped by unregistering its PID. When such failures occurs, a repair event
is sent to TUNe with the name of the component involved in the failure, and
the corresponding state chart being executed. For instance if a yatsim process
is dead, the probe sends the repair event to TUNe with the instance name
of the yatsim process involved, and the state chart shown in Figure 3.28 is
executed. Following this chart, it could be noticed that TUNe tries to stop
the failed process ($arg.stop) and tries to stop the process connected by the
sim link on the class diagram ($arg.sim.stop, the sim link is shown on Figure
3.26). Indeed, if a yatpre failure occurs, then the yatsim will fail anyway so
it’s better not to start the yatsim process in this case. Then TUNe tries to
undeploy the yatpre and yatsim files ($arg−− and $arg.sim−−), as well as
cleaning completely the node. Anyway if it was a node failure, all of that

66 Chapitre 3. TLM Modeling Method in Grid Environment

would have no consequence and the statechart would continue normally.
After the join junction, the next action is yatpre++, that creates and de-

ploys a new yatpre component and also creates and deploys a new yatsim
component because they are connected with a 1-1 cardinality. New.getfiles
gets the input files for the newly created simulation and new.start is the equi-
valent for yatpre.start in the startchart diagram (Figure 3.31). The same goes
for new.sim.start that is the equivalent of yatsim.start and new.sim.sendresults
that is the equivalent of yatsim.sendresults.

Different time measurements for a repair process in real conditions are
presented in table 3.3. To get these values, a probe was modified to commu-
nicate with it during the execution process and simulated a node failure by
forcing the event node failure by hand. However, there is regularly a diffe-
rence between the number of nodes asked to the scheduler and the number
of nodes actually ready to receive the simulation binaries and input files. For
instance, during the experiments, when TUNe asked for 105 nodes, it received
100 ready nodes. The same went when TUNe asked for 480 nodes and received
463 ready nodes. In that case, TUNe continued the deployment normally but
the probes would eventually detect those failures and TUNe would redeploy
the failed parts on new nodes. On the other hand, process hangs were very
rare cases (1 of 463 nodes on long simulations running times) and often related
to hardware overloads. The oargrid request time is also consider here in order
to get an idea of the global repair time in real conditions. The average total
time measured for one repair process is around 12 seconds.

action time (ms)
undeploying 683

component removals 126
oargrid request 4904

component creation 167
deployment 4525

start 1855
Table 3.3 – Time measurement for repairing the application for the given expe-
riment.

3.7.3 Third Approach : TUNe + emGine environment

emGine environment (Appendix B), based on TLM modeling method, present
more advantages than YATPAC. Among these, the most important is that it
have a friendly-user interface that allow user to build the model and visua-
lize the results of time-domain simulations in the GUI in real time. Besides,
tlmGine exists in 32-bit and 64-bit versions (while yatsim could only be com-
piled on 32-bit computer) which is suitable with the heterogeneity of Grids.

3.7. Distributed Parametric TLM Simulations in Grid Environment 67

Note that YATPAC is not maintained or updated since 2006 while emGine
environment is under continuous devlopment.

Using emGine with TUNe gives the user a very powerful tool for electro-
magnetic simulations in Grid computing environment but at the same time
too easy to use. In fact, from the use point of view, the user does not feel the
difference between local simulations and remote simulations. The simulation
flow (described in Appendix B) is the same for distributed simulations : pre-
pare EMM file, simulate with tlmGine, and visualize the time domain signals
with the GUI.

In order to control TUNe (defined in previous sections), a folder named
emCluster is placed in the Grid’5000 user home directory (see Figure 3.34).
The main component is emServer which is the entry point for the user (it
defines a base class emServer). The emServer is command line driven. The
user can start/stop and watch progress of tlmGine simulations.

Figure 3.34 – Architecture of the proposed approach.

First user prepares the model he wants to analyze (EMM file) with em-
Gine GUI on local machine. To launch the simulation on Grid nodes, "remote
simulations" has to be chosen in the menu instead of local one (see Figure
3.35).

Figure 3.35 – Distributed computing menu.

User enters its Grid’5000 login informations into specific fields (Figure
3.36). Three simple lines are only needed to specify the Grid’5000 front-end

68 Chapitre 3. TLM Modeling Method in Grid Environment

(that contains user home directory and emCluster files), login and the path
to its public key file 7.

Figure 3.36 – Grid’5000 Autentication.

Before clicking on the execution button, user has the possibility to check
the network connection between its local computer (where emGine GUI is
running) and the Grid (see Figure 3.37).

Figure 3.37 – Test of the network connection between local computer (where em-
Gine GUI is being used) and the Grid.

The TLM simulations executing on Grid’5000 nodes can be monitored on
user local computer screen in real time (see Figure 3.38).

The TDS files (SIMID.tds in Figure 3.34) are redirected to the local em-
Gine GUI in order to visualize the voltages, S-parameters and other simulated

7. The user must have an ssh access to the front-node configured with a public/private key
without password, so that emServer can be called without entering a password each time.

3.8. Conclusion 69

Figure 3.38 – Progress visualization of remote simulations on local GUI.

data. User needs only to click the button of S-Parameters of the concerned
SIMID simulation.

The parallel execution of tlmGine is based on "Startchart" and "Stopchart"
diagrams which are very simple. Once the nodes are reserved, "Startchart"
copies TUNe and tlmGine on the nodes, and launches the execution. A special
deamon monitors the execution and progess. When the execution is finished,
this deamon start the "Stopchart" that copies all the needed output results
in the user directory before the node is liberated (the restart on default OS
cleans all the folders).

3.8 Conclusion

In this chapter, the use of TLM modeling method in Grid environment has
been discussed. Powerful developed tools for distributing parametric TLM
applications on Grid’5000 nodes have been presented. The efficiency of these
tools, with friendly interfaces, have been demonstrated in the simulation of
real life electromagnetic structures. Using a large number of nodes enables
to decrease significantly the execution time of the simulations. Distributing
the simulations on several sites does not have an impact on the simulations
execution time, since simulations are independent and do not communicate
between each other. However, it enables to optimize the input files deployment
by decreasing the network bandwidth consumption and file server requests for
each site.

Due to the nature of computations, TLM algorithm is not trivially pa-
rallelizable, as data dependency inside the meshes implies communication. To
avoid time losses in communications, it would be better to split the TLM com-
putational region into big subregions, to perform the TLM algorithm inside

70 Chapitre 3. TLM Modeling Method in Grid Environment

each subregion independently of other subregions and to exchange the values
on the boundaries common to the subregions.

Contents
4.1 Overview of the SCT Modeling Method 71
4.2 Distributed Parallel SCT Simulations in Grid Environment 74

4.2.1 Optimization of SCT Computing Codes 74
4.2.2 SCT Algorithm . 75
4.2.3 Parallel Model . 77
4.2.4 SCT deployment on Grid with MEG GUI 79
4.2.5 SCT deployment on Grid with TUNe-DIET 84

4.3 Distributed Parametric SCT Simulations in Grid Environ-
ment . 87

4.4 Conclusion . 88

The Scale Changing Technique (SCT) [117] is an efficient monolithic
(unique) formulation for the electromagnetic modeling of complex (multi-
scale) structures i.e., structures that exhibit multiple metallic patterns whose
sizes cover a large range of scales.

The SCT Method will be briefly introduced in the following section. After
that, the algorithm and the decomposition of SCT programs will be detailed.
The deployement of a SCT application on Grid’5000 nodes shows then the
different proposed distributed computing approaches.

4.1 Overview of the SCT Modeling Method

Nowadays global electromagnetic simulators are essential for accurate pre-
dictions of the overall electromagnetic performances of radiofrequency sys-
tems. With the increase demand of miniaturization of systems, complex struc-
tures involving both large structures (in terms of wavelength) and fine de-
tails could be found in most of modern designs. The complexity of the pro-
blem depends usually on the ratio between the biggest scale and the smallest
scale. Well-known examples of complex structures are provided by multi-band
frequency-selective surfaces, finite-size arrays of non-identical cells and fractal
planar objects.

Chapter 4

SCT Modeling Method in Grid

Environment

72 Chapitre 4. SCT Modeling Method in Grid Environment

SCT consists of interconnecting Scale-Changing Networks (SCN) (Figure
4.1), each network models the electromagnetic coupling between adjacent scale
levels [117]. The cascade of Scale Changing Networks allows the global electro-
magnetic simulation of multi-scale structures, from the smallest to the highest
scale.

Figure 4.1 – The Scale-Changing Network modeling the electromagnetic coupling
between the scales s and s− 1.

Consider a Frequency Selective Surface (FSS) consisting of non-uniform
rectangular apertures or waveguides perforating a perfectly conducting and
thick metallic plate (see Figure 4.2), illuminated by a normal incident plane
wave. The frequency selective surfaces play a key role in many antenna systems
for modern fixed and mobile communication services. As mentioned in [118,
119] applications include radomes, frequency separation in quasi-optical beam
splitters, Cassegrain reflectors, and phase screens for beam steering. FSS are
used in various applications to act as spatial filters, allowing transmission at
certain frequencies and reflection at others.

Figure 4.2 – FSS consisting of non-uniform rectangular waveguides perforating a
thick metallic plate.

4.1. Overview of the SCT Modeling Method 73

The SCT is applied here to calculate the transmission and reflection coef-
ficients of this finite size non-uniform FSS.

In such structures, a high scale ratio exists between the highest and the
smallest dimensions in the discontinuity plane. The starting point of the pro-
posed approach consists of the coarse partitioning of this (complex) disconti-
nuity plane into large-scale (called scale level smax) sub-domains of arbitrary
shape ; in each sub-domain a second partitioning is then performed by intro-
ducing smaller sub-domains at scale level smax−1 ; again, in each sub-domain
introduced at scale level smax − 1 a third partitioning is performed by intro-
ducing smaller sub-domains at scale level smax − 2 ; and so on ...

Such hierarchical domain-decomposition, which allows to focus rapidly on
increasing detail in the discontinuity plane, is stopped when the finest parti-
tioning (scale level s=0) is reached.

Figure 4.3 – Partitioning into multiple scale levels of the discontinuity plane.

An illustration of the partitioning of a metallic grid of 16 cells is sketched
in Figure 4.3. Three different scale levels exist when cells are grouped by four.

Boundary conditions are artificially introduced at the contour of all the
sub-domains generated by the partitioning process. The physics of the problem
may be incorporated into the choice of these conditions in order to avoid
perturbation of the actual electromagnetic field.

In practice a type of boundary conditions (e.g., perfect electric or magnetic
conducting condition) has to be tried on the contour of each sub-domains and
the quality in terms of accuracy, execution time, numerical convergence of the
numerical solution has to be checked a posteriori (see section 4.3).

Multi-modal sources, called Scale-Changing Sources, are artificially incor-
porated at all scale levels for the derivation of the network. When the com-
plex surface presents both large regions and fine details - but no structures at
intermediary scale levels-, mono-modal sources are able to model the electro-
magnetic coupling between the disparate scale levels [120] - [122].

However, for objects involving multiple structures whose size covers a large
range of scale, mono-modal sources fail to provide accurate numerical results
while the Scale-Changing Sources allow the modeling of the scale crossing

74 Chapitre 4. SCT Modeling Method in Grid Environment

from the smallest to the highest scale (the number of modes in these sources
can be derived from numerical convergence criteria).

The global electromagnetic simulation of multi-scale structures via the cas-
cade of Scale Changing Networks has been applied with success to the design
and electromagnetic simulation of specific planar structures such as reconfigu-
rable phase-shifters [123, 124], multi-frequency selective surfaces [125], discrete
self-similar (pre-fractal) scatterers [126, 127] and patch antennas [128, 129].
This Scale-Changing technique is a very fast technique and this makes it a
very powerful investigation, design and optimization tool for engineers who
design complex circuits (see, e.g., [130] - [132]).

4.2 Distributed Parallel SCT Simulations in Grid En-
vironment

Distributed parallel and parametric SCT applications based on arrays [133]
- [135] and multi-frequency FSSs [136] have been presented. The SCT appli-
cation shown here consists of a planar array of 256 (16x16) non-uniform cells
illuminated by a normally and linearly polarized incident plane wave. This
structure is almost the same presented in chapter 3, but the elementary cell
here is a 16.8 mm x 16.8 mm square containing rectangular metallic patch
(with no slots). The center-to-center distance between elements is 0.7λ. The
radiation patterns of this structure will be simulated with the SCT method.

4.2.1 Optimization of SCT Computing Codes

In order to parallelize the SCT applications, the programs must be analyzed
to localize parts of codes that can be run in parallel (in other words identify
the SCT modules), and others that must be run in serial. During this phase
of analyze, an optimization of serial codes have been done.

The SCT was implemented on digital computers as MATLAB [137] in-
house codes 1. Since these programs were focused on the "translation" of ma-
thematical equations and physical problems, they were not optimized to run
efficiently even in sequential (serial) execution on a single computer.

These programs often have several layers which might be calling other
time-consuming functions that can be several layers down in the code. In
this case it is important to determine which functions are responsible for
such calls. Besides, because memory performance is not increased at the same
rate as CPU performance, code today is often "memory-bound", its overall
performance limited by the time it takes to access memory.

In order to debug and optimize the SCT programs, a profile operation have
been realized to track their execution time. For each function and subfunction

1. developed actually by LAAS-CNRS PhD students Aamir Rashid and Euloge B. Tchikaya.

4.2. Distributed Parallel SCT Simulations in Grid Environment 75

in the code, information about execution time, number of calls, parent func-
tions, child functions, code line hit count, and code line execution time have
been recorded.

Once identifying which functions are consuming the most time, the reason
of calling them is determined and possible ways to minimize their use and
thus improve performance were sought.

This profile step helped to uncover performance problems that it can solve
by avoiding unnecessary computation (which can arise from oversight), re-
computation by storing results for future use, and to change the algorithm to
avoid costly functions. Storing and accessing the data in columns helps also
to improve the speed of the execution.

After some modifications (i.e. pre-allocating arrays before accessing them
within loops, avoiding creating unnecessary variables), the code was optimized
as much as expected, and the execution time of the same program was reduced
by 7% (compared to original one executed on same workstation).

4.2.2 SCT Algorithm

First, the dimensions of the studied structure, frequency of work, number of
modes calculated in convergence study must be defined. After this initializa-
tion phase, the different SCNs are computed independently. They are repre-
sented by the computing modules M1, M2, ..., M64, M65, M66 and M67 in
Figure 4.4.

Once these modules are computed, the global electromagnetic simulation
of multi-scale structures is done via the cascade represented by C1, C2, ...,
C20 and C21. C1, ..., C16 are executed at the first level, C17, ..., C20 at
the next level and C21 at the final one. The number of cascades and SCNs
depends on the partitioning of the problem and chosen sub-domains defined
by user.

SCT program serial execution :

Initialization
M1
M2
:
:
M67
C1
:
C21
postprocess (optional)

76 Chapitre 4. SCT Modeling Method in Grid Environment

Figure 4.4 – The Equivalent computing modules representing SCNs and the cas-
cades.

4.2. Distributed Parallel SCT Simulations in Grid Environment 77

4.2.3 Parallel Model

One of the first steps in designing a parallel program is to break the pro-
blem into discrete "chunks" of work that can be distributed. This is known as
decomposition or partitioning. A basic way to partition computational work
among parallel tasks is the functional decomposition (Figure 4.5). In this ap-
proach, the focus is on the computation that is to be performed rather than
on the data manipulated by the computation.

Figure 4.5 – Example of functional decomposition where the problem is decompo-
sed to four tasks.

The computing modules M1, M2, ..., M64, M65, M66 and M67 represent
individual tasks and are totally independent, and therefore can be potentially
run simultaneously (in parallel) on different nodes. The cascade modules, since
they present inter-dependencies, represent for the moment the serial part of
SCT program.

Several programming paradigms are commonly used to develop parallel
programs on distributed architectures. In this case, the master-worker model
may be a suited programming paradigm. The Master-Worker paradigm (also
known as task farming) is especially attractive because it can be easily adapted
to run on a Grid platform.

The Master-Worker paradigm consists of two entities : a master and mul-
tiple workers (Figure 4.6). The master is responsible for initializations, de-
composing the problem into small tasks (and distributes these tasks among a
farm of worker processes), as well as for gathering the partial results in order
to produce the final result of the computation. The worker processes execute
in a very simple cycle : receive a message from the master with the next task,
process the task, and send back the result to the master.

Usually, the communication takes place only between the master and the
workers at the beginning and at the end of the processing of each task. This
means that, master-worker applications usually exhibit a weak synchroniza-

78 Chapitre 4. SCT Modeling Method in Grid Environment

tion between the master and the workers, they are not communication inten-
sive and they can be run without significant loss of performance in a Grid
environment.

Figure 4.6 – Master-worker model. The master is responsible for partitioning the
domain and distributing subdomains to workers. Workers elaborate in parallel the
subdomain they have been assigned and return results to the master, which elabo-
rates the returned results in a form acceptable for the end-user.

Due to these characteristics, this paradigm can respond quite well to an op-
portunistic environment like the Grid. The number of workers can be adapted
dynamically to the number of available resources so that, if new resources ap-
pear they are incorporated as new workers in the application. When a resource
is reclaimed by its owner, the task that was computed by the corresponding
worker may be reallocated to another worker.

A Grid application must be portable and license-free in order to be de-
ployed on the nodes. As mentioned before, the SCT code is written with
MATLAB (a registered trade mark of The MathWorks Inc.). In order to be
installed and used, this software needs once license per computer. When the
SCT independent parts (modules representing the SCNs) are well defined,
they are packaged in separate compiled standalone executables that could be
used on any computer even if it does not have MATLAB installed.

The modules M1, M2, ..., M64 are based on the same computing module
but each one takes different input parameters. Thus they will be replaced in
the parallel SCT by exe1. Same for M65, M66, and M67 that will be replaced
by exe2. exe3 represent the 21 cascade executed in serial.

4.2. Distributed Parallel SCT Simulations in Grid Environment 79

WorkerTasks



exe1
exe1
exe1
:
:
:
exe1
exe2
exe2
exe2

MasterTasks



exe3
exe3
:
:
:
exe3

This SCT parallel application has been deployed with two different deve-
loped tools, MEG GUI and TUNe-DIET, both of them designed to make the
use of the Grid transparent.

4.2.4 SCT deployment on Grid with MEG GUI

The purpose of this collection of scripts is to hide the complexity of using
the Grid by a non expert in computer science and minimize entering com-
mand lines. It can be used for SCT and TLM simulations since the MEG
environment is built with all the needed libraries and legacy files for both of
them.

The user prepares its SCT experiment locally on its personal computer or
laptop (that contains the folder of SCT scripts) which is connected to internet.
To launch the procedure, user opens a (shell) terminal and execute a script
called start.sh. Consequently, a friendly user interface opens and asks the user
to enter its own personal Grid’5000 login informations.

After the authentication step, two kinds of scripts could be executed 2 to
have a reservation "screen" :

• Cluster scripts : dedicated to launch experiments on a specified cluster,

2. execution based on expect tool (programmed dialogue with interactive programs) [138]

80 Chapitre 4. SCT Modeling Method in Grid Environment

Figure 4.7 – External access to Grid’5000 from local computer.

• Grid scripts : dedicated to launch experiments on the entire Grid with
its sites and clusters.

Figure 4.8 – Interface for active or passive reservation on Clusters.

To reserve computing nodes, the user defines few parameters : Interac-
tive or Passive mode (see OAR user manual), number of nodes on which the
experiments will run, and an estimated needed time.

Figure 4.9 – Define number of nodes and estimated needed time.

If passive mode has been chosen by user, a script called
ClusterDeployment.sh will be executed to deploy the MEG environ-
ment on the reserved nodes. This step could take several minutes, since it
installs a complete OS on reserved nodes.

4.2. Distributed Parallel SCT Simulations in Grid Environment 81

Figure 4.10 – Confirmation of the reservation of nodes.

When interactive mode is chosen, the user must launch this procedure
manually as seen in figures 4.10 and 4.11.

Figure 4.11 – Deployment of MEG environment.

For reservation on several Grid’5000 sites, it is almost the same procedure
(Figure 4.12).

Figure 4.12 – Choosing reservation mode on the Grid.

But in this case, user must choose on which cluster(s) the experiments will
run (Figure 4.13).

82 Chapitre 4. SCT Modeling Method in Grid Environment

Figure 4.13 – User input for Grid experiments.

The clusters names belonging to the Grid’5000 sites will be listed in order
to choose (Figure 4.14).

After deploying MEG on the nodes, the user will be redirected automati-
cally by an ssh connection to the first reserved node, where all the needed files
and scripts to run SCT simulation have been copied. The parallel execution
of SCT is launched with Taktuk [115]. During this, the user has to do nothing
else waiting the final results.

A Master process passes a description (input) of the task to each Worker
process in order to solve it. Upon the completion of a task, the Worker passes
the result (output) of the task back to the Master.

When executed, the Taktuk engine establishes a logical interconnection
network between remote hosts. It is a tool for deploying parallel remote exe-
cutions of commands to a potentially large set of remote nodes. It spreads
itself using an adaptive algorithm and sets up an interconnection network to
transport commands and perform I/Os multiplexing/demultiplexing.

Figure 4.15 shows the speedup calculated for the SCT application with
respect to the number of nodes used in the analysis. It can be seen that is
bounded because of the serial part of the cascade. The speedup could be en-
hanced in the future by parallelizing the cascades at each level and optimizing
the scheduling and execution of the SCT application.

4.2. Distributed Parallel SCT Simulations in Grid Environment 83

Figure 4.14 – List of Grid’5000 clusters.

Figure 4.15 – The Speedup of parallel distributed SCT.

84 Chapitre 4. SCT Modeling Method in Grid Environment

4.2.5 SCT deployment on Grid with TUNe-DIET

Among existing grid middleware approaches, one simple, powerful, and flexible
approach consists of using servers available in different administrative domains
through the classic client-server or Remote Procedure Call (RPC) paradigm 3.
Network Enabled Servers (NES) implement this model also called Grid-RPC
[139]. Clients submit computation requests to a scheduler whose goal is to find
a server available on the grid.

In order to simplify the distribution of the different SCT modules on
Grid’5000 nodes, TUNe will be applied to DIET 4, an Application Service
Provider (ASP) platform providing remote execution of computational pro-
blems on distributed, heterogeneous resources.

4.2.5.1 DIET

The Distributed Interactive Engineering Toolbox (DIET) project is focused
on the development of scalable middleware by distributing the scheduling
problem across multiple agents.

Several approaches exist for porting applications to grid platforms ;
examples include classic message-passing, batch processing, web portals, and
Grid-RPC systems. This last approach implements a grid version of the classic
Remote Procedure Call (RPC) model.

DIET consists of a set of elements that can be used together to build
applications using the GridRPC paradigm [139]. This middleware is able to
find an appropriate server according to the information given in the client’s re-
quest (problem to be solved, size of the data involved), the performance of the
target platform (server load, available memory, communication performance)
and the local availability of data stored during previous computations.

The scheduler is distributed using several collaborating hierarchies connec-
ted either statically or dynamically (in a peer-to-peer fashion). Data mana-
gement is provided to allow persistent data to stay within the system for
future re-use. This feature avoids unnecessary communication when depen-
dences exist between different requests. The DIET architecture is based on a
hierarchical approach to provide scalability. The architecture is flexible and
can be adapted to diverse environments including heterogeneous network hie-
rarchies.

DIET is implemented in Corba [140] and thus benefits from the many stan-
dardized, stable services provided by freely-available and high performance
Corba implementations.

DIET is based on several components. A Client is an application that uses

3. Remote Procedure Call (RPC) is a technique for constrcuting distributed, client-server ap-
plications.

4. DIET. http ://graal.ens-lyon.fr/ diet/

4.2. Distributed Parallel SCT Simulations in Grid Environment 85

DIET to solve problems using an RPC approach. Users can access DIET via
different kinds of client interfaces : web portals, PSEs such as Scilab 5, or from
programs written in C or C++.

A SeD, or server daemon, provides the interface to computational servers
and can offer any number of application specific computational services. A
SeD can serve as the interface and execution mechanism for a stand-alone
interactive machine, or it can serve as the interface to a parallel supercomputer
by providing submission services to a batch scheduler.

Agents provide higher-level services such as scheduling and data manage-
ment. These services are made scalable by distributing them across a hierarchy
of agents composed of a single Master Agent (MA), several Agents (A), and
Local Agents (LA). Figure 4.16 shows an example of a DIET hierarchy trea-
ting a SCT simulation.

Figure 4.16 – Executables distribution architecture to DIET hierarchical organi-
zation.

A Master Agent is the entry point of the environment. In order to access
DIET scheduling services, clients only need a string-based name for the MA
(e.g. "MA1") they wish to access ; this MA name is matched with a Corba
identifier object via a standard Corba naming service.

Clients submit requests for a specific computational service to the MA.
The MA then forwards the request in the DIET hierarchy and the child
agents, if any exist, forward the request onwards until the request reaches
the SeDs. The SeDs then evaluate their own capacity to perform the re-

5. Scilab Home page. http ://www.scilab.org/

86 Chapitre 4. SCT Modeling Method in Grid Environment

quested service ; capacity can be measured in a variety of ways including an
application-specific performance prediction, general server load, or local avai-
lability of data-sets specifically needed by the application. The SeDs forward
their responses back up the agent hierarchy. The agents perform a distributed
collation and reduction of server responses until finally the MA returns to
the client a list of possible server choices sorted using an objective function
(computation cost, communication cost, machine load, ...). The client pro-
gram may then submit the request directly to any of the proposed servers,
though typically the first server will be preferred as it is predicted to be the
most appropriate server.

Figure 4.17 – DIET deployment with TUNe.

The primary interest of the DIET scheduling approach lies in its distribu-
tion, both in terms of collaborative decision making and in terms of distri-
bution of information important to the scheduling decision. When the MA
receives a client request, it (1) verifies that the service requested exists in the
hierarchy, (2) collects a list of its children that are thought to offer the service,
and (3) forwards the request on those subtrees. Local agents use the same ap-
proach for forwarding the request to their children, whether the children are
other agents or SeDs. Agents obtain information on services available in sub-
trees during the deployment process. When a SeD or agent starts up, it joins
the DIET hierarchy by contacting its parent agent (located by a string-based
name in a naming service). The parent adds the new child to its list of children
and records which services are available via that child. The parent need not
track whether the service is provided directly by the child (if the child is a
server) or by another server in the child’s subtree (if the child is an agent) ;
it suffices to know the service is available via the child. Thus if an agent has
N children and the DIET hierarchy offers a total of M services, the most
hierarchy information any agent in the tree will store is N*M service/child
mappings.

When an agent forwards a request to its children, it sets a timer restricting
the amount of time to wait for child responses. This avoids a deadlock in the
hierarchy based on one failed or slow-to-respond server. Eventually, a child
will be forgotten if it is unresponsive for long enough.

SeDs are responsible for collecting and storing all of their own performance

4.3. Distributed Parametric SCT Simulations in Grid Environment 87

and status data. Specifically, the SeD stores a list of problems that can be
solved on it, a list of any persistent data that are available locally to the server,
and status information such as the number of requests currently running on
the SeD and the amount of time elapsed since the last request. When a request
arrives at a SeD, the SeD creates a response object containing both status
information and performance data.

4.2.5.2 Simulation workflow

TUNe is responsible of deploying DIET on the Grid. This step is done
after the expression of global dynamic behavior of the system with UML state
charts or activity diagrams on local machine 6. Once DIET is deployed on the
Grid, the diet− sct.uml is used.

The DIET client (written in C++) calls Server1 sixty four (64) times in
order to execute exe1 and Server2 three (3) times to execute exe2. Usually the
server launches the executables directly, but in this case, a shell script makes
the relation between the server and the executable (Figure 4.17). This script
is used in order to initialize environment variables that are necessary for the
application, and then launch the simualtion.

It can be noticed in Figure 4.3 that the cascade at each level can also run in
parallel. For the moment this feature is not implemented since it needs a high
level of synchronism. Consider N1 executions of exe1 and N2 executions of
exe2, exe3 will have to wait the N1+N2 output files in order to be generated.
The synchronism needs a special activity diagram for TUNe.

4.3 Distributed Parametric SCT Simulations in Grid
Environment

As mentioned at the beginning of this chapter, a convergence study should fix
the appropriate number of modes (active and passive) expressing each domain.

Since this study generates lot of computing cases, it is ideal to run in
distributed environments where a high of computing nodes are available. In the
case of the reflectarray (of 256 non-uniform cells), a remarkable time reduction
is reached while distributing the independent simulations on Grid’5000 nodes.
In fact, the ideal case is to run one simulation per node. Thus the global time
needed in order to have final results is equal to the longest simulation time.
Consider M simulations with the same execution time t, if distributed on N
computing nodes, the global time T is expressed by T = M * t / N . when M
= N , the global time T will be equal to t 7.

6. See Chapter 3 for more details.
7. Tasks are independent and no network losses

88 Chapitre 4. SCT Modeling Method in Grid Environment

The results helps the user to fix the number of modes. Figure 4.18 shows
an example of the different curves calculated in the distributed simulations.
When increasing the number of modes, the different curves will converge to
some point where the difference is too small between them (∆ «). In Figure
4.18, clearly not all the curves/colors can be identified. At this moment, the
correspondant number of modes is chosen.

Figure 4.18 – Example of convergence study where nMb2 is the number of modes.

While using this technique to fix the number of modes, SCT resuls are
found to be in good agreement with simulation results of electromagnetic
software HFSS [116] and IE3D [141] (Figure 4.19).

In addition to the utility shown in convergence studies, the distributed
parametric approach applied in chapter 3 on design dimensions and frequency
sweep could be applied also for SCT applications.

4.4 Conclusion

The Scale Changing Technique modeling method was deployed on Grid’5000
nodes. Two different approaches of distributed computing have been tested in
the case of electromagnetic simulation of a planar array antenna. The SCT
shows a good intrinsic scalabilty. The fact of partitioning the electromagnetic
simulation based on multiscale modeling generates independent jobs that can
run in parallel in distributed environments. An acceptable speedup has been

4.4. Conclusion 89

Figure 4.19 – The radiation pattern in E-Plane of the array simulated by SCT
(considering convergence study) in comparison to HFSS and IE3D results.

calculated while keeping on the accuracy of results. The performance is boun-
ded due to the serial part of the algorithm consisting of the cascade phase.
The speedup could be enhanced in the future by parallelizing the cascade
operations at each level.

To provide transparent access to a pool of computational servers at a very
large scale and run the SCT computing modules in parallel, TUNe was used
here to submit computation requests to DIET scheduler whose goal is to find
a server available on the grid.

The parallel case with TUNe and DIET presented in this chapter is a
preliminary study of the distribution of SCT jobs. This approach has proved
to be simple, powerful, and flexible. While deploying DIET with TUNe, a small
overhead is added to the parallel application (explained in previous chapter).
Eventhough, this approach seems so atractive. A graphical interface of TUNe
is under development and will be used in the near future to deploy DIET on
the Grid nodes more transparently.

On the other hand, the parametric distributed computing is very useful for
SCT convergence studies and for design parametric sweeps (i.e. frequency).

In computational electromagnetics, the ever increasing need for more precision
and larger meshes raises the natural question whether it is worth porting
algorithms to computer grids and the way to use such infrastructures.

The scope of the present work is to define an environment and tools for the
electromagnetic simulation of future radio frequency systems. This objective
is pursued by formulating an adaptive use of the distributed architecture.
Friendly-user solutions as graphical user interfaces (GUIs)have been used in
order to keep the use of Grid Computing transparent to electronic engineers
that are not probably computer science specialists. Distributed simulations of
modern electromagnetic structures (i.e. large planar reflectarrays and phase
shifters based on MEMS switches) have been presented. The efficiency of the
different proposed approaches has been evaluated.

In fact, Grid computing is not a "silver bullet". It offers a great opportunity
for scientists to access a large amount of shared resources, but at the same time
distributed software on a large scale environment are increasingly complex and
difficult to manage. Besides, the (hardware and software) heterogeneity of the
Grid is sometimes a disadvantage. For example, the user must change the used
compilers and libraries when using AMD architecture or INTEL architecture,
or re-write parts of a programm code or script beacause of the upgrade of an
installed software.

The Grid offers availability of a high number of computing nodes but re-
source managers must tailor their behavior dynamically and use the available
resources and services efficiently and effectively.

To address these issues, a promising approach based on autonomic compu-
ting has been used. TUNe middleware has simplified the use of electromagnetic
solvers. It has also increased the robustness of the application execution by
automatically restarting parts of the simulation that failed and redeploying
them on new nodes.

Due to the nature of computations, TLM algorithm is not trivially paral-
lelizable, as data dependency inside the meshes implies communication. Since
adopted communication strategy depend on network, in the case of TLM
computing, it would be better to send a few large messages. Applications that
require a large number of geographically located resources must be designed
to be latency and bandwidth tolerant.

Chapter 5

Conclusions and Perspective

92 Chapitre 5. Conclusions and Perspective

The TLM method deployed on the Grid’5000 nodes has shown good spee-
dup and scalability. The memory problem has been solved by using a high
number of computing nodes having normal hardware characteristics, i.e. 2GB
of RAM.

An hybrid parallel programming model could be the most adapted for TLM
in distributed environments, i.e. a threaded programming on multiprocessor
nodes (based on OpenMP [142]) for each sub-region independently of other
sub-regions with message passing on the boundaries (common to sub-regions)
between Grid nodes (based on MPI [107]).

Meanwhile, the distributed computing, parallel and parametric applica-
tions, of Scale Changing Technique in Grid environments seems to be very
promising. Accurate and fast electromagnetic simulation results have been re-
ported. The good speedup shown here could be enhanced by parallelizing the
cascade operations at each level.

Based on the SCT, the modeling of more complex structures are being
developed actually requiring more computational resources. Using the pro-
posed approaches with these future applications is so easy, since the tools
developed in this thesis have been adapted to the methodology of the SCT
method and they do not only treat specific problems.

To provide transparent access to a pool of computational servers at a very
large scale and run the SCT computing modules in parallel, TUNe was used
here to submit computation requests to DIET scheduler whose goal is to find
a server available on the grid. The Diet component architecture is structu-
red hierarchically for improved scalability. Such an architecture is fexible and
can be adapted to diverse environments, including arbitrary heterogeneous
computing platforms.

The DIET middleware represents an interesting example for the TUNe
autonomic management environment, since it brings together many of the
challenges addressed by TUNe :

• the management of a distributed organization of legacy software (MA,
LA and SeD).

• distributed configuration, since DIET requires the configuration of these
software (through a set of configuration files) to implement a consistent
hierarchical structure.

• self-repair : due to several reasons (hardware or software), a server
may stop functioning. The goal is to detect the failure and repair it
automatically.

93

Moreover, using the TUNe GUI to deploy DIET (Autonomic administra-
tion of DIET with TUNe) and distribute the SCT jobs on Grid nodes renders
the tasks of user so easy.

In addition to these solutions, it could be very useful to combine the SCT
method with the TLM method in hybrid simulations in the case of electro-
magnetic strutures combing at the same time planar components (ideal to
simulate with SCT i.e. small front-end antennas) with complex circuits (to be
used with fullwave 3D TLM method, i.e. circuits containing MEMS switches
and CMOS integrated circuits). This feature could be realized with emGine
environment since it support imported electromagnetic data and will support
soon genetic optimizations.

Implementing distributed genetic algorithms for CEM applications is a
very active research area, especially in Computer-Aided Engineering (CAE)
for antenna design and simulations. In this context, the case of distributed
Genetic Search Optimisation (Figure 5.1) with emGine environment is being
actually developped. The theory of genetic algorithms is based upon evalua-
tions of the quality (fitness) of multiple potential solutions and mixing of input
parameters for the production of new solutions, following the laws of natural
evolution (survival of the fittest).

Figure 5.1 – Genetic surfaces in emGine environment.

A genetic algorithm performs a guided, intelligent random search in the
multi-dimensional space of optimization parameters, for the global optimum.
The genetic algorithm finds tentative solutions (called chromosomes or indi-
viduals) and classifies their quality according to a fitness function, defined
according to the desired characteristics. The optimization parameter values
are produced by combining the simulation of the survival-of-the-fittest natural
mechanisms (crossover, mating, mutation, population decimation) with ran-

94 Chapitre 5. Conclusions and Perspective

dom processes. It must be noted that the estimation of the fitness function
is usually a complex and resource-demanding task, since it typically involves
large-scale electromagnetic field calculations.

The distributed genetic algorithms practically provides scalability to
the classic genetic algorithms by dividing the costly fitness evaluations into
several interconnected processing nodes.

On another hand, exciting opportunities arise from new hardware architec-
tures including graphics processing units (GPUs). This kind of computing is
known as GPU Computing or GPGPU 1. Graphics Processing Units (GPUs)
are high-performance many-core processors that can be used to accelerate a
wide range of applications. Such systems, originally designed for gaming and
graphics processing, comprise hundreds and even thousands stream processors
in a single envelope at a very low cost. GPU systems offer the power of a CPU
based cluster but at a cost of a simple desktop computer. Moreover, the recent
introduction of the CUDA extension of the C programming language [143] al-
lowed writing general purpose high-level codes without considering specifics
of a particular graphics processor.

Since the fundamental idea behind using GPUs for TLM and SCT elec-
tromagnetic numerical techniques is parallelization. The parallelization of the
program is done by launching execution threads simultaneously. A batch of
fixed number of threads executed on a multiprocessor are labeled as a thread
block. Threads within the same block can be synchronized at run time and
can cooperate with each other via GPU’s shared memory, which can be as fast
as registers. Each thread is identified via its thread ID and thus can access dif-
ferent parts of the memory. However, certain requirements have to be met to
achieve high efficiency due to the hardware architecture of GPU. Understan-
ding how to map algorithms appropriately to the GPU is of vital importance
to achieving the maximum gains in speed.

Finally, it would be interesting in the future to test bigger deployments
on the Grid with more scalable tools, i.e. Taktuk [115], instead of scp (secure
copy), and to detect bottleneck simulations, interrupt them and migrate them
to faster computing nodes in order to enhance the actual performance.

1. GPGPU stands for General-Purpose computation on Graphics Processing Units.
http ://gpgpu.org/about is a central resource for GPGPU news and information.

A.1 The Ultimate Open Source TLM Simulation Pa-
ckage

YATPAC (Yet Another TLM Package) 1 is a free (open source project licensed
under the GNU General Public License) TLM-based full-wave electromagnetic
simulation package developed at the Institute for High-Frequency Engineering
of the Technische Universitat Munchen in Germany. The equation solver of
the electrostatic field solver was developed by the Weierstrass Institute for
applied analysis and stochastics in Berlin and is licensed to use it for free in
YATSIM.

With YATPAC various electromagnetic structures can be characterized
in time-domain like hollow waveguides, transmission lines, planar microwave
circuits and antennas. It is best suited for layer oriented MMIC structures and
people, who want to know, what the software is doing in the background.

Perhaps YATPAC may not be the best for people who want to click every
action, but compared with commercial software tools one of the best in time
domain with excellent results.

A.2 Overview of the YATSIM Simulation Package

The YATSIM package combines various UNIX/Linux based programs deve-
loped and used for solving three dimensional field problems using the TLM
method.

The most important YATPAC’s components are :
• yatpre - the preprocessor

• yatsim (Yet Another TLM Simulator) - the core computational engine

• yati2of - the visualization component of the TLM model file

• yatvis5d - the visualization component of the computed electromagne-
tic field

1. YATPAC Homepage. http ://www.yatpac.org/

Appendix A

YATPAC

96 Annexe A. YATPAC

• yatspar - the calculation of S-Parameters

A simulation is performed by three steps : preprocessing, simulation, and
postprocessing. The next sections should give a short overview about the
different programs, which are used for performing these three steps.

A.2.1 Preprocessing

At this step, the design of the structure is prepared for the simulator kernel.
The preprocessing with yatpre consists of two steps. First, the preparation
of the layout file, containing the information of the engineered HF structure,
in GDSII file format, using KIC (free layout editor distributed by Whiteley
Research Inc.), ADS (Advanced Design System commercialised by Agilent)
or CleWin (commercialised by PhoeniX) or any other software supporting
the GDSII file format. This file must have the extension ".gds".

Second, the preparation of the laydef file (an ASCII file with a C++ like
syntax containing informations on the discretization of the simulation object),
using any editor, like Kwrite, Vi or Emacs. This file must have the extension
".laydef".

Than, an I3D model file, named I3D.outfname must be generated from
the two input files, by calling yatpre with his specific command (yatpre -i
fname.laydef fname.gds I3D.outfname). This ASCII output file contains all
needed input datas for the simulator yatsim in a lower language format.

A.2.2 Simulation

yatsim represents the simulator itself. As input, the I3D-file is used. As out-
put three files are generated. The first, VIXY01.<name>.v5d contains all
6 field components of each cell in the simulation area at every time step.

The second file, EH.<name>, contains certain current and voltage-signals
in time domain, computed by integral paths over E- and H-field in defined
planes in the laydef file. In an additional <name>.logfile, performance infor-
mation and other datas concerning the simulation run are saved.

The third file, NF_<structure>.m contains the computed nearfields of
the simulated structure.

The simulation of an I3D model file I3D.outfname with yatsim can be
started using the command yatsim outfname.

A.2.3 Postprocessing

The visualization of the discretized structure is done withGeomview (written
at the Geometry Center at the University of Minnesota).

A.2. Overview of the YATSIM Simulation Package 97

The computed time-domain signals in EH-file (ASCII code) or calculated
S-Parameters can be regarded and processed by tools like Grace freeware
graph plotting program (developed by Grace Development Team), which can
be called by a simple command : xmgrace -nxy EH.outfname , or math
computing programs like Octave or MATLAB.

The visualization of the computed electromagnetic field is done with the
yatvis5d component. It is derived from the great vis5d visualization soft-
ware (originally developed by the University of Wisconsin-Madison for meteo-
rological applications). As input, the v5d-file is used (command : yatvis5d
VIXY01.outfname.v5d). Isoclines, vector plots, intensity plots and field lines
can be plotted time continuously. Features to create movies for presentations
are possible too.

Figure A.1 – Overview of all programs and files in the simulation flow of Yatsim.

A.2.3.1 S-Parameters

The S-Parameters in frequency-domain can be obtained by using the program
yatspar. They are computed from the current and voltage time domain si-
gnals in the EH-files generated by the simulator kernel. During the program
run, different inputs have to be stated via a terminal user interface. They refer
to settings, placed in the laydef-file. The output is an ASCII file in touchs-
tone sNp format (N is the port number of the device), which contains the
S-Parameters in magnitude and phase. The sNp format can be easily impor-
ted to the ADS data display module or grace for printing and presenting
results.

98 Annexe A. YATPAC

A.2.3.2 Far Fields

The far fields at a defined frequency can be obtained by a near field-to-
far field transformation (NFFFT) from near field values (saved in the file
NF_<structure>.m) using MATLAB or octave, and different components
of the field (Ephi, Etheta ...) could be plotted for a desired angle.

Figure A.1 shows a flow chart of the simulation process and the different
connections between files and programs.

The emGine Environment 1 is a time-domain full-wave 3-D electromagnetic
simulator based on the transmission line matrix (TLM) method. It is used for
the modeling of high-frequency electromagnetic field in microwave circuits,
antennas, resonators, hollow waveguides, etc.

The emGine Environment is provided free for non-commercial purposes
(see the licenses for more details) and consists of the following components :
• emGine GUI : open source Graphical User Interface (written in
Python) for the input, pre-processing and post-processing of electroma-
gnetic models

• tlmGine : time-domain full-wave 3D electromagnetic simulator (writ-
ten in C++)

Figure B.1 – emGine Environment simulation flow.

The development of the emGine Environment is focused to have following
features :
• Accuracy, Speed, and support for multi-core computations

• Portability - the emGine Environment is running on multiple platforms
(Windows, Linux, MacOS X)

• Open standards and interoperability, e.g., Open Source GUI, XML-
based EMM specification

1. http ://www.petr-lorenz.com/emgine/

Appendix B

emGine Environment

100 Annexe B. emGine Environment

• User-friendly handling

The reflectarray concept is based on the scattering properties of microstrip
patches. Each array element printed onto the reflecting surface is designed
to reradiate the incident field with a phase delay suitable to steer the main
reflectarray beam in a specified direction [144].

Figure C.1 – Rectangular planar array geometry.

To design a microstrip reflectarray, the scattering properties of each patch
have to be accurately estimated so that the desired phase distribution over
the whole array surface can be achieved.

Here, the relationship between the reflection phase and the patch configu-
ration has been obtained through extensive simulations. To estimate the phase
of the reflected field versus patch and slot length, a variable-sized microstrip
antenna element has been analyzed.

A set of isolated microstrip patches (loaded by slots) printed on a 16.8 mm
x 16.8 mm grounded dielectric slab of 3.175 mm height and with εr = 2.17

Appendix C

Beam steering of planar arrays

102 Annexe C. Beam steering of planar arrays

has been simulated at 12.5 GHz (Figure C.2), illuminated by a normally and
linearly polarized incident plane wave.

Figure C.2 – Individual array cell.

In Figure C.3, the simulated curves that relate the phase of the field scat-
tered by the isolated patch and the antenna size are presented.

Figure C.3 – Phase of the field reradiated by reflectarray samples versus slot length
for different patches size (x-patch = 13.5 mm and a = 1 mm).

If it is desired to have only one main beam that is directed along Θ = Θ0
and φ = φ0, the progressive phase shift between the elements in the x- and
y-directions must be equal to

103

βx = -k.dx.sinΘ0.cosφ0 ; βy = -k.dy.sinΘ0.sinφ0

where k is wave number of free space (k = 2π/λ).

By controlling the progressive phase difference between the elements, βx

and βy, the maximum radiation can be squinted in any desired direction to
form a scanning array.

In the case of the array used in chapter 3 and 4, the inter-elements space is :
dx = dy = d = 0.7λ. To change the direction of the main lobe of the radiation
pattern 5̊ in the φ = 0̊ cut, βx is equal to −21.96̊ while βy is equal to zero.
After checking the desired phase of each element of the array represented in
Figure C.1, the dimensions could be defined from the curves of Figure C.3.

3D Three Dimensional
API Application Programming Interface
ASP Application Service Provider
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CEM Computational ElectroMagnetics
CFD Computational Fluid Dynamics
CPU Central Processing Unit
DIET Distributed Interactive Engineering Toolbox project
DNS Domain Name System
EGEE Enabling Grids for E-sciencE
EM ElectroMagnetic
EMM ElectroMagnetic Model
FD Frequency Domain
FDTD Finite-Difference Time-Domain
FSS Frequency Selective Surface
GC Grid Computing
GNU GPL General Public License
GPU Graphical Processing Unit
GPGPU General-Purpose computation on Graphics Processing Units
GUI Graphical User Interface
IP Internet Protocol
IDE Integrated Development Environment
LA Local Agent
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
MA Master Agent
MEMS Micro-Electro-Mechanical Systems
MPI Message Passing Interface
MPP Massive Parallel Processing
NES Network Enabled Servers
OGSA Open Grid Services Architecture
OS Operating System
P2P Peer-to-Peer
PDE Partial Differential Equation

Appendix D

Acronyms

106 Annexe D. Acronyms

PEC Perfect Electric Condition
PID Process Identifier
PPE Parallel Production Environments
PVM Parallel Virtual Machine
QoS Quality of Service
RENATER Réseau National de télécommunications pour la Technologie
l’Enseignement et la Recherche
RF Radio Frequency
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call paradigm
RMI Remote Method Invocation
SATA Serial Advanced Technology Attachment
SCP Secure Copy Protocol
SCN Scale Changing Network
SCT Scale Changing Technique
SeD Server Daemon
SIMD Single Instruction Multiple Data
SIMID SIMulation ID
TCP Transmission Control Protocol
TD Time Domain
TLM Transmission Line Matrix
TUNe Toulouse University Network
UML Unified Modeling Language
XML eXtensible Markup Language
YATPAC Yet Another Tlm simulation PACkage

Fadi Khalil was born in Beirut, Lebanon, on March 1983. He received his
BS degree in Electrical Engineering from the Lebanese University, Lebanon
in 2005, and the MS degree in Modelling, Information and Systems, in 2006
from Université Paul Sabatier, Toulouse, France.

From November 2006 to November 2009, Fadi was working toward the PhD
degree in Micro and Nanosystem for wireless Communications Research Group
at the Laboratoire d’Analyse et d’Architectures des Systèmes at the Centre
National de la Recherche Scientifique (LAAS-CNRS) in Toulouse, France.

His research interests include Computational Electromagnetics, modelling
of complex (multi-scale) structures and reconfigurable circuits for RF and
microwave applications, High Performance Computing and Grid Computing.

During the thesis, author was affiliated to IEEE MTT (Microwave Theory
and Techniques) Society and the IEEE AP (Antennas and Propagation), and
was an ACES (Applied Computational Electromagnetics Society) fellow. He
is a reviewer of CLCAR 2009 conference and CLCAR 2010 conference, and
a regular reviewer for the International Journal of Computer Science Issues
(IJSCI).

To send an e-mail : fadi.khalil@yahoo.fr
Web page : http ://fadi.khalil.perso.sfr.fr

Appendix E

Author Biography

Journals

- F. Khalil, H. Aubert, F. Coccetti, P. Lorenz, and R. Plana, "Grid- Based
Global Electromagnetic Simulation Tool for Parametric Distributed Analysis
of Array Antennas," Progress In Electromagnetics Research M, Vol. 10, 1-12,
2009.

- F. Khalil, C. J. Barrios-Hernandez, A. Rashid, H. Aubert, Y. Denneulin,
F. Coccetti, and R. Plana, "Parallelization of the Scale Changing Technique
in Grid Computing environment for the Electromagnetic Simulation of Multi-
scale Structures," International Journal of Numrical Modeling : Electronic
Networks, Devices And Fields, John Wiley & Sons, 2010.

- F. Khalil, "Young Professional and Graduate in Actual Global Financial
Crisis," IEEE GOLDRush 2009 Newsletter (Under Review).

International Conferences

- F. Khalil, H. Aubert, F. Coccetti, R. Plana, Y. Deunneulin, B. Mie-
gemolle, T. Monteil, and H. Legay, "Electromagnetic Simulation of MEMS-
Controlled Reflectarrays based on SCT in Grid Environment," IEEE Interna-
tional Symposium on Antennas and Propagation, Honolulu, Hawaii, USA, pp.
49-52, June 10-15, 2007.

- F. Khalil, H. Aubert, F. Coccetti, R. Plana, T. Vaha-Heikkila, and T.
Lisec, "Distributed Parametric Simulation of Complex Electromagnetic Struc-
tures in Grid Computing Environment," 8th International Symposium on RF
MEMS and RF Microsystems MEMSWAVE, Barcelona, Spain, pp. 215-218,
June 26-29, 2007.

- F. Khalil, C. J. Barrios-Hernandez, H. Aubert, Y. Denneulin, F. Coccetti,
and R. Plana, "Multiscale modeling : from Electromagnetism to the GRID,"
European Project Showcase, IEEE CCGrid 2008, Lyon, France, May 19-22,
2008.

- F. Khalil, B. Miegemolle, T. Monteil, H. Aubert, F. Coccetti, and R.
Plana, "Simulation of Micro Electro-Mechanical Systems (MEMS) on Grid,"
8th International Meeting High Performance Computing for Computational
Science (VECPAR’08), Toulouse, France, pp. 614-627, June 24-27, 2008.

- F. Khalil, C. J. Barrios-Hernandez, H. Aubert, Y. Denneulin, F. Coccetti,

Appendix F

List of Publications

110 Annexe F. List of Publications

and R. Plana, "Electromagnetic Simulations via Parallel Computing : an Ap-
plication Using Scale Changing Technique for Modeling of Passive Planar
Reflectarrays in Grid Environment," 2008 IEEE International Symposium on
Antennas and Propagation and the 2008 USNC/URSI National Radio Science
meeting, San Diego, California, July 5-12, 2008.

- R. Sharrock, F. Khalil, T. Monteil, H. Aubert, F. Coccetti, P. Stolf, L.
Broto, and R. Plana, "Deployment and management of large planar reflectar-
ray antennas simulation on grid," International Symposium on High Perfor-
mance Distributed Computing, CLADE 2009, Munich, Germany, June 11-13,
2009.

- F. Khalil, A. Rashid, H. Aubert, F. Coccetti, R. Plana, C.-J. Barrios-
Hernandez, and Y. Denneulin, "Application of scale changing technique-
grid computing to the electromagnetic simulation of reflectarrays," 2009
IEEE International Symposium on Antennas and Propagation and the 2009
USNC/URSI National Radio Science meeting, Charleston, South Carolina,
June 1-7, 2009.

- C. J. Barrios-Hernandez, F. Khalil, Y. Denneulin, H. Aubert, F. Coccetti,
and R. Plana, "Deployment of CEM Applications On Large Scale Architec-
tures," Latin American Conference on High Performance Computing CLCAR
2009, Merida state, Venezuela, September 21-25, 2009.

- E. B. Tchikaya, A. Rashid, F. Khalil, H. Aubert, H. Legay, and N. J.G.
Fonseca, "Multi-scale Approach for the Electromagnetic Modeling of Metallic
FSS Grids of Finite Thickness with Non-uniform Cells," 2009 Asia-Pacific
Microwave Conference (APMC 2009), Singapore, December 7-10, 2009.

- F. Khalil, R. Sharrock, H. Aubert, F. Coccetti, R. Plana, T. Monteil
and Y. Denneulin, "Distributed Electromagnetic Analysis of Reflectarrays,"
The 2010 annual conference of the Applied Computational Electromagnetics
Society (ACES), Tampere, Finland, April 26-29, 2010.

National Conferences

- F. Khalil, F. Coccetti, H. Aubert, R. Plana, Y. Denneulin, B. Miegemolle,
and T. Monteil, "Etude des potentialités du concept de Grille de Calcul pour la
Simulation Electromagnetique de Micro-Systèmes Complexes," 15èmes Jour-
nées Nationales Micro-ondes, Toulouse, France, pp. 92, May 23-24-25, 2007.

- F. Khalil, C. J. Barrios-Hernandez, H. Aubert, Y. Denneulin, F. Coccetti,
and R. Plana, " Simulations électromagnetiques distribuées sur une grille de
calcul," 16èmes Journées Nationales Micro-ondes, Grenoble, France, May 25-
28, 2009.

- F. Khalil, "Modélisation électromagnetique des Antennes à Réseaux
Réflecteurs," Smart Engineering Simulation ANSYS 2009, Paris, France,

111

October 14-15, 2009.

Miscellaneous

- F. Khalil, "Coupling bi- and tri-dimensional electromagnetic modeling
methods with computing grid," LAAS Report (06263), September 2006, 56
pages.

- F. Khalil, "Transmission line matrix modeling method," LAAS Report
(07820), August 2007, 40 pages.

- F. Khalil, "Modélisation multi-échelles : de l’électromagnétisme à la
grille," Journée doctorale GEET, Mars 2009.

- P. Lorenz and F. Khalil, User Manual of Electromagnetic Modeling Soft-
ware emGine Environment v0.8.0.

- F. Khalil, H. Aubert, "La puissance d’une infrastructure virtuelle pour
la résolution de problèmes électromagnétique dans le monde réel," Cahier N̊ 3
de l’ANR, Calcul Haute Performance : une technologie clé pour des multiples
applications.

[1] R. E. Collins. Foundations of Microwave Engineering. New York :
McGraw-Hill, 1966.

[2] J. A. Kong. Electromagnetic Wave Theory. New York : John Wiley and
Sons, 1986.

[3] F. El Dabaghi. Approximations and Numerical Methods for the Solution
of Maxwell Equations. Oxford University Press, November 1997.

[4] M. Chetty and R. Buyya. Weaving computational grids : How analogous
are they with electrical grids ? J. R. Statistical Society, July - August,
2001.

[5] I. Foster and C. Kesselman. The Grid 2 : Blueprint for a computing
Infrastructure. Morgan Kaufmann : San Fransisco, 2003.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid :
Enabling scalable virtual organizations. International Journal of Super-
computer Applications, 2001.

[7] I. Foster, C. Kesselman, J. Nick, and Tuecke S. The physiology of the
grid : An open grid services architecture for distributed systems inte-
gration. WG, Global Grid Forum, June 22, 2002.

[8] I. Foster. What is the grid ? a three point checklist. Grid Today, 12002.
[9] I. Foster. The grid : A new infrastructure for 21st century science.

Physics Today, 55(2) :42–47, 2002.
[10] Distributed.net. http://www.distributed.net/.
[11] Seti@home. http://setiathome.ssl.berekley.edu/.
[12] L. Ferreira, V. Berstis, J. Armstrong, M. Kendziersky, A. Noeukotter,

M. Takagi, R. Bing-Wo, A. Amir, R. Mukarakawa, O. Hernandez, J. Ma-
gowan, and N. Bierberstein. Introduction to the grid computing with
globus. IBM Redbook, 2002.

[13] V. Berstis. Fundamentals of grid computing. IBM Redbooks paper, 2002.
[14] M. Baker, R. Buyya, and Laforenza D. Grids and grid technologies for

wide-area distributed computing. Soft. Pract. Exper., 2002.
[15] An introduction to grid computing from cern. http://www.gridcafe.

org/grid-powered-project.html.
[16] D. Abramson, J. Giddy, and L. Kotler. High performance parametric

modeling with nimrod/g : Killer application for the global grid ? Inter-
national Parallel and distributed Processing Symposium (IPDPS). IEEE
Computer Society Press : Los Alamitos, CA, 2000.

Bibliography

http://www.distributed.net/
http://setiathome.ssl.berekley.edu/
http://www.gridcafe.org/grid-powered-project.html
http://www.gridcafe.org/grid-powered-project.html

114 Bibliographie

[17] R. Buyya. The virtual laboratory project : Molecular modeling for drug
design on grid (http ://www.buyya.com/vlab/). IEEE Distributed Sys-
tems Online, 5(2), 2001.

[18] R. Buyya, K. Branson, J. Griddy, and D. Abramson. The virtual la-
boratory : A toolset to enable distributed molecular modeling of drug
design on the world-wide grid. Concurrency and Computation : Practice
and Experience 2002, 2002.

[19] S. Smallen et al. Combining workstations and supercomputers to sup-
port grid applications : The parallel tomography experience. The 9th He-
teregeneous Computing Workshop (HW 2000, IPDPS), Cancun, Mexico,
61(2) :479–482, April 2000.

[20] K. Holtman. Cms datagrid system overview and requirements. The com-
pact Muon Solenoid (CMS) Experiment Note 2001/037, CERN, Swit-
zerland, 2001.

[21] B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman, C. Kes-
selman, J. Lee, A. Sim, A. Shoshani, B. Drach, and D. Williams. High-
performance remote access to climate simulation data : A challenge pro-
blem for data grid technologies. proceedings od SC2001 conference, den-
ver, CO, November 2001.

[22] S. Date and R. Buyya. Economic and on demand brain activity analysis
on the grid. The 2nd Pacific Rim Application and Grid Middleware
Assembly Workshop, Seoul, Korea, July 2002.

[23] Nasa information power grid. http://www.ipg.nasa.gov/.
[24] F. Berman, G. Fox, and T. Hey. Grid computing : Making the global

infrastructure a reality. Wiley, chapter1, march2003.
[25] The open grid services architecture (ogsa). http://www.globus.org/

ogsa/.
[26] L. Tarricone and A. Esposito. Grid computing for electromagnetics.

Artech House, September 2004.
[27] Gecem - electromagnetic compatibility in aerospace design. http://

www.wesc.ac.uk/projectsite/gecem/.
[28] The lumerical/westgrid partnership. http://www.westgrid.ca/files/

webfm/-aboutdocs/Lumerical7.pdf.
[29] P. Lorenz, J. Vagner Vital, B. Biscontini, and P. Russer. Tlm-g : A grid-

enabled time-domain transmission-line-matrix system for the analysis of
complex electromagnetic structures. IEEE Transactions on Microwave
Theory and Techniques, 53(11) :3631–3637, 2005.

[30] Discogrid. http://www-sop.inria.fr/nachos/teammembers/
Stephane.Lanteri/DiscoGrid/.

(
http://www.ipg.nasa.gov/
http://www.globus.org/ogsa/
http://www.globus.org/ogsa/
http://www.wesc.ac.uk/projectsite/gecem/
http://www.wesc.ac.uk/projectsite/gecem/
http://www.westgrid.ca/files/webfm/-about docs/Lumerical7.pdf
http://www.westgrid.ca/files/webfm/-about docs/Lumerical7.pdf
http://www-sop.inria.fr/nachos/teammembers/Stephane.Lanteri/DiscoGrid/
http://www-sop.inria.fr/nachos/teammembers/Stephane.Lanteri/DiscoGrid/

Bibliographie 115

[31] E. Caron, C. Klein, and C. Perez. Efficient grid resource selection for
a cem application. RenPar’19, SympA’13, CFSE’7, Toulouse, France,
Sept. 2009.

[32] L. Tarricone and A. Esposito. Advances in information technologies for
electromagnetics. Springer Publishers, September 2006.

[33] T. E. Athanaileas, P. K. Gkonis, G. E. Athanasiadou, F G. V. Tsou-
los, and D. L. Kaklamani. Implementation and evaluation of a web-
based grid-enabled environment for wcdma multibeam system simula-
tions. IEEE Antennas and Propagation Magazine, 50(3), 2008.

[34] Grid’5000 homepage. http://www.grid5000.fr/.
[35] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou,

S. Lanteri, J. Leduc, M. Nouredine, G. Mornet, R. Namyst, P. Primet,
and O. Richard. Grid’5000 : a large scale, reconfigurable, controlable
and monitorable grid platform. Grid’2005 Workshop, Seattle, USA, No-
vember 13-14, 2005.

[36] National telecommunication network for technology, education and re-
search. http://www.renater.fr/.

[37] European high-bandwidth, academic internet geant2. http://www.
geant2.net/.

[38] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mou-
nie, P. Neyron, and O. Richard. A batch scheduler with high level
components. Proceedings of IEEE International Symposium on Cluster
Computing and the Grid, 2005, CCGrid 2005, Cardiff, United Kingdom,
pages 776–783, 2005.

[39] Y. Georgiou, J. Leduc, B. Videau, J. Peyrard, and O. Richard. A tool for
environment deployment in clusters and light grids. 20th International
Parallel and Distributed Processing Symposium (IPDPS 2006), 25-29
April 2006.

[40] Monika. http://oar.imag.fr/.
[41] Ganglia. http://ganglia.info/.
[42] Nagios. http://nagios.org/.
[43] G. Kron. Equivalent circuit of the field equations of maxwell i. Proc.

IRE, 32 :289–290, May 1944.
[44] W. J. R. Hoefer. The transmission-line matrix methodtheory and ap-

plications. IEEE Trans. Microwave Theory Tech., MTT-33(10), Oct.
1985.

[45] C. Christopoulos. The Transmission-Line Modeling Method (TLM).
New York : IEEE Press, 1995.

http://www.grid5000.fr/
http://www.renater.fr/
http://www.geant2.net/
http://www.geant2.net/
http://oar.imag.fr/
http://ganglia.info/
http://nagios.org/

116 Bibliographie

[46] N. Marcovitz and J. Schwinger. On the reproduction of the electric and
magnetic fields produced by currents and discontinuities in wave guides,
i. J. Appl. Phys., 22(6) :806–819, June 1951.

[47] P. B. Johns and R. L. Beurle. Numerical solution of 2-dimensionnal
scattering problems using transmission line matrix. Proc. IEEE,
118(9) :1203–1208, Sept. 1971.

[48] W. J. Hoefer. Huygens and the computer - a powerful alliance in nume-
rical electromagnetic. Proceeding of the IEEE, 79 :1459–1471, October
1991.

[49] P. B. Johns. A simple explicit and unconditionally stable numerical
routine for the solution of the diffusion equation. Int. J. Num. Meth.
Eng., 11 :1307–1328, 1977.

[50] GJ. Partridge, C. Christopoulos, and P.B. Johns. Transmission line
modelling of shaft dynamic systems. Proceedings of the institute of me-
chanical engineers, 201 :271–278, 1987.

[51] V. Trenkic, C. Christopoulos, and J.G.P. Binner. The application of
the transmission line modelling (tlm) method in combined thermal and
electromagnetic problem. Proceedings of the international conference on
numerical methods for thermal problems, pages 1263–1274, 1993.

[52] F. J. German, G. K. Gothard, L. S. Riggs, and P. M. Goggans. The
calculation of radar crosssection (rcs) using the tlm method. Int. J.
Numerical Modeling, 2 :267– 278, 1989.

[53] K. Umashankar and A. Taflove. A novel method to analyze electroma-
gnetic scattering of complex objects. IEEE transactions on electroma-
gnetic compatibility, EMC-24 :397–405, November 1982.

[54] C. Huygens. Traité de la lumière. Leiden, 1690.
[55] D. Halliday and R. Resnick. Fundamental of physics. John Wiley and

Sons, third ed., 77, 1988.
[56] E. H. Barton. Huygence principle. ch. 2, pages 71–74, 1963.
[57] P. B. Johns. Application of the transmission-line matrix method to

homogeneous waveguides of arbitrary cross-section. Proc. Inst. Elec.
Eng., 119(8) :1086–1091, Aug. 1972.

[58] P. B. Johns. The solution of inhomogeneous waveguide problems using a
transmission-line matrix. IEEE Trans. Microwave Theory Tech., MTT-
22 :209–215, Mar. 1974.

[59] S. Akhtarzad and P. B. Johns. Numerical solution of lossy waveguides :
T.l.m. computer program. Electron. Lett., 10(15) :309311, July 25, 1974.

[60] P. B. Johns. A new mathematical model to describe the physics of
propagation. Radio Electron. Eng., 44(12) :657–666, Dec. 1974.

Bibliographie 117

[61] S. Akhtarzad. Analysis of lossy microwave structures and microstrip
resonators by the tlm method. Ph.D dissertation, Univ. of Nottingham,
England, July 1975.

[62] S. Akhtarzad and P. B. Johns. Solution of maxwell’s equations in three
space dimensions and time by the t.l.m. method of analysis. Proc. Inst.
Elec. Eng., 112(12) :13441348, Dec. 1975.

[63] S. Akhtarzad and P. B. Johns. Generalized elements for t.l.m. method
of numerical analysis. Proc. Inst. Elec. Eng., 112(12) :13481352, Dec.
1975.

[64] G. E. Mariki. Analysis of microstrip lines on homogeneous anisotro-
pic substrates by the tlm numerical technique. Ph.D. thesis, Univ. of
California, Los Angeles, June 1978.

[65] W. J. R. Hoefer and A. Ros. Fin line parameters calculated with the
tlm method. IEEE MTT Int. Microwave Symp. Dig. (Orlando, FL),
Apr. 28-May 2, 1979.

[66] N. Yoshida, L. Fukai, and J. Fukuoka. Transient analysis of two-
dimensional maxwell’s equations by bergeron’s method. Trans. IECE
Japan, J62B :511518, June 1979.

[67] P. Saguet and E. Pie. An improvement for the tlm method. Electron.
Lett., 16(7) :247–248, Mar, 27, 1980.

[68] Y.-C. Shih, W. J. R. Hoefer, and A. Ros. Cutoff frequencies in fin
lines calculated with a two-dimensional tlm-program. IEEE MTT Int.
microwave Symp. Dig. (Washington, DC), pages 261–263, June 1980.

[69] W. J R. Hoefer and Y.-C. Shih. Field configuration of fundamental and
higher order modes in fin lines obtained with the tlm method. URSI
and Int. IEEE-AP Symp., Quebec, Canada, June 2-6, 1980.

[70] N. Yoshida, I. Fukai, and J. Fukuoka. Transient analysis of three-
dimensional electromagnetic fields by nodal equations. Trans. IECE
Japan, J63B :876–883, Sept. 1980.

[71] A. Ros, Y.-C. Shih, and W. J. R. Hoefer. Application of an accelerated
tlm method to microwave systems. 10fh Eur. Microwave Conf. Dig.
(Warszawa, Poland), pages 382–388, Sept. 8-11, 1980.

[72] Y.-C. Shih and W. J. R. Hoefer. Dominant and second-order mode cutoff
frequencies in fin lines calculated with a two-dimensional tlm program.
IEEE Trans. Microwave Theory Tech., MTT-28 :14431448, Dec. 1980.

[73] Y.-C. Shih. The analysis of fin lines using transmission line matrix
and transverse resonance methods. M. A. SC. thesis, Univ. of Ottawa,
Canada, 1980.

[74] D. Al-Mukhtar. A transmission line matrix with irregularly graded
space. Ph.D. thesis, Univ. of Sheffield, England, Aug. 1980.

118 Bibliographie

[75] P. Saguet and E. Pie. Le maillage rectangulaire et le changement
de maille dans la méthode tlm en deux dimensions. Electron. Lett.,
17(7) :277278, Apr. 23 1981.

[76] D. A. Al-Mukhtar and J. E. Sitch. Transmission-line matrix method
with irregularly graded space. Proc. Inst. Elec. Eng., 128(6) :299305,
Dec. 1981.

[77] N. Yoshida, I. Fukai, and J. Fukuoka. Application of bergeron’s method
to anisotropic media. Trans. IECE Japan, J64B :12421249, Nov. 1981.

[78] P. Saguet and E. Pie. Utilisation d’un nouveau type de noeud dans la
méthode tlm en 3 dimensions. Electron. Lett., 18(11) :478–480, May
1982.

[79] P. Saguet. Le maillage parallélipipédique et le changement de maille
dans la méthode tlm en trois dimensions. Electron. Lett., 20(5) :222224,
Mar. 15, 1984.

[80] N. Yoshida and I. Fukai. Transient analysis of a strip line having a corner
in three-dimensional space. IEEE Tran. Microwave Theory Tech., MTT-
32 :491–498, May 1984.

[81] D. H. Choi and W. J. R. Hoefer. The simulation of three-dimensional
wave propagation by a scalar tlm model. in IEEE MTT Int. Microwave
Symp. Dig. (San Francisco), May 1984.

[82] S. Lindenmeier, L. Pierantoni, and P. Russer. Hybrid space discretizing
integral equation methods for numerical modeling of transient interfe-
rence. IEEE Transactions on Electromagnetic Compatibility, 41(4) :425–
430, November 1999.

[83] L. Pierantoni, G. Cerri, S. Lindenmeier, and P. Russer. Theoretical and
numerical aspects of the hybrid mom-fdtd, tlm-ie and arb methods for
the efficient modeling of emc problems. Proc. 29th European Microwave
Conference, Munich, Germany, 1999.

[84] P. Lorenz and P. Russer. Characterization of complex 2d surface ob-
jects using the 3d transmission line matrix (tlm) method with a high-
resolution mesh. Proc. AP-S/URSI Symp., Washington D.C., USA, July
3-8, 2005.

[85] P. Russer and U. Siart. Time domain methods in electrodynamics : A
tribute to wolfgang j. r. hoefer. New York : Springer-Verlag, Oct. 2008.

[86] N. Fichtner and P. Russer. A total-field/scattered-field technique applied
for the tlm-integral equation method. IEEE MTT-S Int. Microwave
Symp. Dig, Boston, USA, pages 325–328, June 2009.

[87] P. Russer. Electromagnetic field computation by network methods. Proc.
of the 25th Annual Review of Progress in Applied Computational Elec-
tromagnetics ACES, Monterey, California USA, March 2009.

Bibliographie 119

[88] M. N. O. Sadiku and L. C. Agba. A simple introduction to the transmis-
sion line modeling. IEEE Trans. Cir. Sys., CAS-37(8) :991–999, Aug.
1990.

[89] KK. Fung, SYR. Hui, and C. Christopoulos. Concurrent programming
and simulation of decoupled power electronic circuits. IEE Proceedings
Science Measurement and Technology, 49 :1–13, 1996.

[90] C. C. Tan and V. F. Fusco. Tlm modeling using an simd computer.
International journal of numerical modeling, 6 :299–304, 1993.

[91] P.P.M. So, C. Eswarappa, and W.J.R. Hoefer. Transmission line matrix
on massively parallel processor computers. 9th Annual Review of Pro-
gress in Applied Computational Electromagnetics Monterey, California
USA, pages 467–474, March 1993.

[92] P.P.M. So, C. Eswarappa, andW.J.R. Hoefer. Distributed computing for
transmission line matrix. Second International Workshop on Time Do-
main Modeling of Field and Networks, Berlin Germany, October 1993.

[93] P.P.M. So, C. Eswarappa, and W.J.R. Hoefer. Optimization of micro-
wave structures using a parallel tlm module. 10th Annual Review of
Progress in Applied Computational Electromagnetics Digest, Monterey,
California USA, pages 546–553, March 1994.

[94] P.P.M. So, C. Eswarappa, andW.J.R. Hoefer. Massively parallel and dis-
tributed computing and digital signal processing for tlm electromagnetic
field modeling. IEEE APS, Seattle, Washnigton USA, pages 546–553,
June 1994.

[95] P.P.M. So, C. Eswarappa, and W.J.R. Hoefer. Distributed parallel tlm
computation and signal processing for electromagnetic field modeling.
Invited Paper, International journal of numerical modeling : Electronic
network, device and fields, John Wiley and Sons Inc, 8(3/4) :169–185,
August 1995.

[96] P.P.M. So and W.J.R. Hoefer. A multi-threaded time domain tlm algo-
rithm for symmetric multi-processing computers. IEEE MTT-S, Phoe-
nix, Arizona USA, pages 2007– 2010, May 2001.

[97] B. Isele, J. Schmoller, and P. Russer. Simulation of coplanar resona-
tors with tlm method in a parallel computing environment. PIERS 95
Seattle, page 733, July 1995.

[98] Parallel virtual machine (pvm). http://www.csm.ornl.gov/pvm/pvm_
home.html.

[99] B. Isele and P. Russer. Tlm modelng of microwave circuits by distributed
computing. PIERS 96 Innsbruck, 145, July 1996.

[100] B. Isele and P. Russer. The modeling of coplanar circuits in a parallel
computing environment. MTT-Symposium San Francisco, 2 :1035–1038,
June 1996.

http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.csm.ornl.gov/pvm/pvm_home.html

120 Bibliographie

[101] H.G. Sasse and A.P. Duffy. Implementation of a parallel distributed
tlm solver. Fifth IEEE International Conference on Computation in
Electromagnetics, pages 29 –30, 2004.

[102] D. Thomas and A. Hunt. Programming Ruby : The Pragmatic Program-
mer’s Guide. Addison Wesley, 2001.

[103] W. Gropp. Mpich2 : A new start for mpi implementations. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface :
9th European PVM/MPI Users Group Meeting, Linz, Austria, October
2002.

[104] Gridmpi project. http://www.gridmpi.org/gridmpi.jsp.
[105] O. Aumage and G. Mercier. Mpich/madiii : a cluster of clusters enabled

mpi implementation. Proceedings of 3rd International Symposium on
Cluster Computing and the Grid (CCGrid), Tokyo, Japan, 2003.

[106] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, Ra. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open mpi :
Goals, concept, and design of a next generation mpi implementation. In
Proceedings, 11th European PVM/MPI Users Group Meeting, Budapest,
Hungary, pages 97–104, September 2004.

[107] I. Foster, N. Karonis, and B. Toonen. Mpich-g2 : A grid-enabled im-
plementation of the message passing interface. Journal of Parallel and
Distributed Computing, pages 551–563, 2003.

[108] L. Hablot, O. Gluck, J-C. Mignot, and P. Vicat-Blanc Primet. Etude
d’implémentations mpi pour une grille de calcul. RenPar’18, Sym-
pA’2008, CFSE’6, Fribourg, Suisse, 11-13 Feb. 2008.

[109] G. M. Rebeiz. RF MEMS : Theory, Design, and Technology. New York :
J. Wiley and Sons, 2003.

[110] D. Cadoret, A. Laisne, R. Gillard, and H. Legay. Design and measure-
ment of new reflectarray antenna using microstrip patches loaded with
slots. Electronic Letters, 41(11) :623–624, May 2005.

[111] J. Huang. Microstrip reflectarray. IEEE APS, Ontario, Canada, 1991.
[112] J. Kephart and D. Chess. The vision of autonomic computing.

IEEE Computer (http: // www. research. ibm. com/ autonomic/
research/ papers/ ACVisionComputerJan2003. pdf), 3(1) :41–50,
2003.

[113] L. Broto, D. Hagimont, P. Stolf, N. Depalma, and S. Temate. Autonomic
management policy specification in tune. 23rd Annual ACM Symposium
on Applied Computing, Fortaleza, Brazil, 1March 2008.

http://www.gridmpi.org/gridmpi.jsp
http://www.research.ibm.com/autonomic/research/papers/AC Vision Computer Jan 2003.pdf
http://www.research.ibm.com/autonomic/research/papers/AC Vision Computer Jan 2003.pdf

Bibliographie 121

[114] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.B. Stefani.
An open component model and its support in java. Proceedings of the
7th International Symposium on Component-Based Software Enginee-
ring (CBSE-7). Lecture Notes in Computer Science, Springer (2004),
3054(2) :7–24, 2004.

[115] G. Huard and C. Martin. Taktuk. http://taktuk.gforge.inria.fr/.
[116] Ansoft hfss homepage. http://www.ansoft.com/products/hf/hfss/.
[117] H. Aubert. The concept of scale-changing network in the gobal electro-

magnetic simulation of complex structures. Progress Electromagnetics
Research B, 16 :127–154, 2009.

[118] B. A. Munk. Frequency Selective Surfaces : Theory and Design. First
Edition, Wiley, New York, 2000.

[119] W.L. Ko and R. Mittra. Implementation of floquet boundary condition
in fdte for fss analysis. IEEE APS, Int. Symp.Dig., June28-july 2 1993.

[120] M. Nadarassin, H. Aubert, and H. Baudrand. Analysis of planar struc-
tures by an integral multi-scale approach. IEEE MTT-S International
Microwave Symposium, Orlando, Florida, USA, 2 :653–656, May 14-19,
1995.

[121] H. Baudrand and S. Wane. Circuits multi-échelles : Utilisation des
sources auxiliaires. Modélisation Caractérisation et Mesures de Circuits
Intégrés Passifs R.F, Hermès, 3 :75–108, 2003.

[122] H. Baudrand. study of coupling between active and passive circuits.
Microwave and Optoelectronics Conference, 1 :143–152, 1997.

[123] E. Perret, H. Aubert, and H. Legay. Scale-changing technique for
the electromagnetic modeling of mems-controlled planar phase-shifters.
IEEE Trans. Microwave Theory and Tech., 54(9) :3594–3601, Sept. 2006.

[124] E. Perret, N. Raveu, H. Aubert, and H. Legay. Scale-changing technique
for mems-controlled phase-shifters. 36th European Microwave Week,
Manchester, United Kingdom, pages 866–869, Sep. 10-15, 2006.

[125] D. Voyer, H. Aubert, and J. David. Scale-changing technique for the
electromagnetic modeling of planar self-similar structures. IEEE Trans.
Antennas Propagat., 54(6) :2783–2789, Oct. 2006.

[126] D. Voyer, H. Aubert, and J. David. Radar cross section of discrete
self-similar objects using a recursive electromagnetic analysis. IEEE
Antennas and Propagation Society International Symposium, Monterey,
California, USA, 4 :4260–4263, Jun. 20-26, 2004.

[127] D. Voyer, H. Aubert, and J. David. Electronics letters. Radar cross
section of self-similar targets, 41(4) :215–217, Feb. 17, 2005.

http://taktuk.gforge.inria.fr/
http://www.ansoft.com/products/hf/hfss/

122 Bibliographie

[128] E. Perret and H. Aubert. A multi-scale technique for the electroma-
gnetic modeling of active antennas. IEEE Antennas and Propagation
Society International Symposium, Monterey, California, USA, 4 :3923–
3926, Jun. 20-25, 2004.

[129] E. Perret and H. Aubert. Scale-changing technique for the computation
of the input impedance of active patch antennas. IEEE Antennas and
Wireless Propagation Letters, 4 :326–328, 2005.

[130] N. Raveu, G. Prigent, H. Aubert, P. Pons, and H. Legay. Scale-changing
technique design and optimization tool for active reflect-arrays cell. 37th
European Microwave Conference, Munchen, Germany, pages 736–739,
Oct. 9-12, 2007.

[131] N. Raveu, E. Perret, H. Aubert, and H. Legay. Design of mems controlled
phase shifter using sct. PIERS Online, 3(2) :230–232, Mar. 26-30, 2007.

[132] N. Raveu, E. Perret, H. Aubert, and H. Legay. Scale-changing technique :
A design tool for reflectarrays active cells. Proceedings of the European
Microwave Association, 4(2) :163–168, Jun. 2008.

[133] F. Khalil, H. Aubert, F. Coccetti, R. Plana, Y. Deunneulin, B. Miege-
molle, T. Monteil, and H. Legay. Electromagnetic simulation of mems-
controlled reflectarrays based on sct in grid environment. IEEE Inter-
national Symposium on Antennas and Propagation, Honolulu, Hawaii,
USA, June 10-15, 2007.

[134] F. Khalil, C. J. Barrios-Hernandez, H. Aubert, Y. Denneulin, F. Coc-
cetti, and R. Plana. Electromagnetic simulations via parallel compu-
ting : an application using scale changing technique for modeling of
passive planar reflectarrays in grid environment. 2008 IEEE Internatio-
nal Symposium on Antennas and Propagation and the 2008 USNC/URSI
National Radio Science meeting, San Diego, California, July 5-12, 2008.

[135] F. Khalil, A. Rashid, H. Aubert, F. Coccetti, R. Plana, C.-J. Barrios-
Hernandez, and Y. Denneulin. Application of scale changing technique-
grid computing to the electromagnetic simulation of reflectarrays. 2009
IEEE International Symposium on Antennas and Propagation and the
2009 USNC/URSI National Radio Science meeting, Charleston, South
Carolina, June 1-7, 2009.

[136] E. B. Tchikaya, A. Rashid, F. Khalil, H. Aubert, H. Legay, and N. J.G.
Fonseca. Multi-scale approach for the electromagnetic modeling of me-
tallic fss grids of finite thickness with non-uniform cells. 2009 Asia-
Pacific Microwave Conference (APMC 2009), Singapore, Dec. 7-10,
2009.

[137] Matlab. mathworks inc. internet site. http://www.mathworks.com/.
[138] V. Saladino. Automating tasks with expect. LinuxJournal, October 1st,

1998.

http://www.mathworks.com/

Bibliographie 123

[139] K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka. The
end-user and middleware apis for gridrpc. Workshop on Grid Appli-
cation Programming Interfaces, In conjunction with GGF12, Brussels,
Belgium, Sep. 2004.

[140] M. Henning and S. Vinoski. Advanced CORBA(R) Programming with
C++. Addison-Wesley Pub Co, 1999.

[141] Ie3d-zeland software. http://www.zeland.com/ie3d.htm.
[142] The official site of openmp. http://openmp.org/wp/.
[143] NVIDIA CUDA. Compute Unified Device Architecture Programming

Guide. NVIDIA Corp., 2008.
[144] C. Balanis. Antenna Theory : Analysis and Design. John wiley and

sons, 2005.

http://www.zeland.com/ie3d.htm
http://openmp.org/wp/

	Acknowledgments
	Abstract
	Résumé
	Contents
	Chapter 1 -
Introduction
	1.1
Numerical Techniques in CEM
	1.2
Objectives and Contribution presented in this Thesis
	1.3
Organization of the Thesis

	Chapter 2 -
Grid Computing
	2.1
What is the Grid?
	2.2
Grids Projects and Applications Area
	2.3
Grid'5000
	2.3.1
Testbed Description
	2.3.2
Grid'5000 Experimental Activities
	2.3.3
Cluster Definition
	2.3.4
Software and Middleware
	2.3.5
Grid View
	2.3.6
Typical use case
	2.3.7
Deploying an Environment

	2.4
Terminology
	2.5
Conclusion

	Chapter 3 -
TLM Modeling Method in Grid Environment
	3.1
Overview of the Transmission Line Matrix (TLM) Modeling Method
	3.2
From the Huygens principle to TLM modeling
	3.3
TLM Basics
	3.4
TLM Algorithm
	3.5
Implementation of TLM in Parallel computers
	3.6
Distributed Parallel TLM Simulations in Grid Environment
	3.6.1
Message Passing Interface (MPI)
	3.6.2
MPI on Computing Grids
	3.6.3
Efficiency of using MPI for TLM
	3.6.3.1 Division of the TLM medium in sub-media
	3.6.3.2 Performance

	3.7
Distributed Parametric TLM Simulations in Grid Environment
	3.7.1
First Approach: Shell Scripts + YATPAC
	3.7.1.1 Initialization Phase
	3.7.1.2 Deployment of the Customized Linux Image
	3.7.1.3 Deployment of the Simulation Input Files
	3.7.1.4 Execution of the Simulations
	3.7.1.5 Retrieval of Result Files

	3.7.2
Second Approach: TUNe + YATPAC
	3.7.2.1 TUNe Principle
	3.7.2.2 Platform description
	3.7.2.3 Application description
	3.7.2.4 Behavior description
	3.7.2.5 Wrapping files
	3.7.2.6 Experiments

	3.7.3
Third Approach: TUNe + emGine environment

	3.8
Conclusion

	Chapter 4 -
SCT Modeling Method in Grid Environment
	4.1
Overview of the SCT Modeling Method
	4.2
Distributed Parallel SCT Simulations in Grid Environment
	4.2.1
Optimization of SCT Computing Codes
	4.2.2
SCT Algorithm
	4.2.3
Parallel Model
	4.2.4
SCT deployment on Grid with MEG GUI
	4.2.5
SCT deployment on Grid with TUNe-DIET
	4.2.5.1 DIET
	4.2.5.2 Simulation workflow

	4.3
Distributed Parametric SCT Simulations in Grid Environment
	4.4
Conclusion

	Chapter 5 -
Conclusions and Perspective
	Appendix A -
YATPAC
	A.1
The Ultimate Open Source TLM Simulation Package
	A.2
Overview of the YATSIM Simulation Package
	A.2.1
Preprocessing
	A.2.2
Simulation
	A.2.3
Postprocessing

	Appendix B -
emGine Environment
	Appendix C -
Beam steering of planar arrays
	Appendix D -
Acronyms
	Appendix E -
Author Biography
	Appendix F -
List of Publications
	Bibliography

