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Résumé: Les récents développements en
matière de matériel informatique et d’algorithmes
d’apprentissage profond, combinés à de vastes ensem-
bles de données, ont permis d’accomplir des progrès
impressionnants dans le domaine de l’intelligence
artificielle (IA) au cours des dernières années. Bien
qu’ils n’aient été que peu étudiés dans les colli-
sions de particules à haute énergie, les algorithmes
d’apprentissage profond ont déjà démontré leur ca-
pacité à classer les particules et les événements, à
estimer les variables cinématiques et à détecter des
anomalies. Ces capacités sont extrêmement utiles
pour l’analyse de la quantité sans précédent de col-
lisions proton-proton attendue lors des prochaines
phases de fonctionnement du Grand Collisionneur
de Hadrons (LHC) au CERN.

Le détecteur CMS fera l’objet d’améliorations ma-
jeures pour faire face au nombre croissant de collisions
supplémentaires par croisement du LHC ("pileup"),
en bénéficiant de détecteurs plus finement segmentés
et d’informations temporelles précises. L’un des su-
jets centraux de cette thèse est consacré au développe-
ment d’un logiciel d’acquisition de données polyvalent
pour le nouveau détecteur temporel de temps de pas-

sage des particules chargées (MIP timing detector ou
MTD).

Outre les améliorations matérielles, le succès de
ces mises à niveau dépendra fortement de techniques
de traitement et d’analyse des événements qui de-
vront être rapides, robustes, performantes et adap-
tatives. Par conséquent, la majorité des travaux
réalisés dans le cadre de cette thèse sont consacrés
au développement et au test de nouvelles méthodes
de reconstruction basées sur l’IA pour le calorimètre
électromagnétique de l’expérience CMS. Ces travaux
couvrent deux étapes de la chaîne complète de recon-
struction des objets électromagnétiques. La première
est l’évaluation des variables cinématiques à partir
des signatures énergétiques laissées par des partic-
ules uniques atteignant le calorimètre. La seconde
combine ces particules en un amas, appelé Super-
Cluster, qui permet une reconstruction précise de
l’énergie des particules électromagnétiques issues de
la collision. Les deux tâches sont développées séparé-
ment, et pour chacune d’entre elles, un modèle d’IA
dédié est créé et ses performances sont évaluées et
comparées à l’approche traditionnelle actuelle.

Title: Event reconstruction and analysis in CMS using artificial intelligence
Keywords: deep learning, artificial intelligence, computer vision, precise timing, CMS, LHC

Abstract: Recent developments in computer hard-
ware and deep-learning algorithms, combined with
large datasets, lead to impressive progress in artifi-
cial intelligence (AI) in the past few years. Although
only marginally studied in high-energy particle colli-
sions, deep-learning algorithms already demonstrated
the ability to perform particle and event classifica-
tion, estimation of kinematic variables, and anomaly
detection. Those abilities are extremely useful in
the analysis of the unprecedented amount of proton-
proton collisions expected in the next running phases
of the Large Hadron Collider (LHC) at CERN.

The CMS detector will undergo major upgrades
to deal with the increasing number of additional col-
lisions per LHC bunch crossing (pileup), benefiting
from more finely segmented detectors and precise
timing information, and one of the central subjects
of this thesis is dedicated to the development of versa-
tile data acquisition software for the new MIP Timing

Detector.
In addition to hardware improvements, the suc-

cess of these upgrades will heavily depend on fast,
robust, and adaptive event processing and analysis
techniques. Consequently, the majority of the work
performed for this thesis is dedicated to developing
and testing new AI-based reconstruction methods
for the electromagnetic calorimeter of the CMS ex-
periment. It covers two steps of the full chain of
electromagnetic object reconstruction. The first one
is the evaluation of the kinematic variables from
the energy signatures left by standalone particles
in the calorimeter. The second one combines these
standalone particles into a unified object known as
SuperCluster, which is crucial for accurate particle
energy reconstruction. Both of the tasks are devel-
oped separately, and for each of them, a dedicated
AI model is created and its performance is assessed
and compared with the current traditional approach.
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Résumé étendu en français

Avec la découverte du boson de Higgs en 2012 par les collaborations CMS et ATLAS, le
modèle standard (MS) est complet. Il s’agit de la théorie la plus achevée de la physique
des particules, capable à la fois d’expliquer les résultats expérimentaux existants et de
fournir des prédictions pour des phénomènes qui n’ont pas encore été observés.

La finalisation du modèle standard nous a donné un outil remarquable pour compren-
dre le monde subatomique, mais a également ouvert la voie à de nouvelles découvertes.
Malgré ses réalisations, de nombreux phénomènes ne s’inscrivent toujours pas dans le
contexte du modèle standard. Il s’agit notamment de l’origine de l’asymétrie matière-
antimatière, de l’abondance de la matière noire dans l’univers et des oscillations des
neutrinos. En outre, la masse du boson de Higgs pose elle-même un problème décon-
certant. Selon le modèle standard (MS), pour expliquer la masse mesurée du boson
de Higgs, des corrections quantiques importantes doivent s’annuler précisément, ce qui
semble hautement improbable. Ces problèmes, ainsi que d’autres problèmes inexpliqués,
amènent les physiciens à penser que le MS n’est qu’une réduction d’une théorie plus
vaste et plus englobante.

En conséquence, la physique expérimentale moderne des hautes énergies se concentre
sur deux aspects : 1) des mesures de précision pour mieux tester la théorie MS, et 2) la
recherche directe de physique au-delà du MS qui pourrait donner des indications sur de
nouveaux cadres théoriques.

L’un des projets les plus connus pour répondre à ces questions sans réponse est le
Grand collisionneur de hadrons (LHC), l’accélérateur le plus grand et le plus puissant
du monde. Il a été construit à la frontière entre la France et la Suisse et est exploité par
le CERN (Organisation européenne pour la recherche nucléaire). Le LHC est constitué
d’un anneau de 27 kilomètres, où les hadrons sont accélérés à des énergies élevées et
entrent ensuite en collision à quatre endroits. Chacun des points de collision est associé
à une expérience particulière : deux expériences générales, ATLAS (A Toroidal LHC
Apparatus) et CMS (Compact Muon Solenoid), et deux expériences dédiées aux ions
lourds et à la physique du méson B, ALICE (A Large Ion Collider Experiment) et LHCb
(Large Hadron Collider beauty), respectivement.

Les travaux présentés dans ce document sont réalisés à partir des données de
l’expérience CMS. Celle-ci est conçue pour capturer et identifier efficacement les par-
ticules produites lors des collisions, ainsi que leurs propriétés cinématiques. En 2012,
CMS a été l’une des deux expériences qui ont découvert le boson de Higgs. Actuellement,
l’expérience vise à résoudre plusieurs problèmes non résolus en physique des particules.
Son programme scientifique est donc très vaste et couvre différents domaines, tels que
la recherche de nouvelles particules et de nouveaux processus, ainsi que les mesures de
précision. La physique du boson de Higgs est l’un des points forts de l’expérience, qui
étudie rigoureusement la nature de cette particule récemment découverte.

Afin d’accroître encore le potentiel de découverte, des progrès constants sont réal-
isés pour améliorer les performances du Grand collisionneur de hadrons (LHC) et des
détecteurs, ainsi que pour créer de nouvelles méthodes de reconstruction et d’analyse
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Résumé étendu en français

des données utilisées dans le cadre de l’expérience CMS. Ces deux efforts progressent
en parallèle, s’alimentant et s’influençant mutuellement pour obtenir le système le plus
performant et le plus efficace possible.

Le travail présenté dans ce manuscrit est consacré à trois projets différents : “Data
Acquisition Software for the MIP Timing Detector”, qui est lié au premier effort, “Deep-
SuperCluster model” et “DeepCluster model”, dédiés à la reconstruction du calorimètre,
et donc au deuxième effort.

Logiciel d’acquisition de données pour le détecteur de temps MIP.
Afin d’améliorer et d’élargir le potentiel de découverte du LHC, celui-ci fait l’objet

d’une mise à niveau majeure qui aboutira au LHC à haute luminosité (HL-LHC), dont
le démarrage est prévu en 2029. L’objectif principal est d’augmenter la luminosité
instantanée d’un facteur 5 par rapport à la valeur de conception initiale (1034 cm−2s−1).
Il vise à fournir environ 3000 fb−1 de luminosité intégrée sur une période d’exploitation
de 10 ans.

Ce collisionneur vise à améliorer la précision des mesures des processus du modèle
standard en augmentant la quantité de données enregistrées, ainsi qu’à chercher des
processus nouveaux trop rares pour avoir pu être observés jusqu’à présent. Un programme
de mise à niveau est en cours pour préparer les sous-systèmes de l’expérience CMS aux
nouvelles conditions d’exploitation. Un aspect clé de cette mise à niveau implique l’ajout
d’un nouveau détecteur de temps MIP, capable de mesurer avec précision le temps
d’arrivée des particules chargées produites lors des collisions. Une partie du travail de
thèse est consacrée au développement et au test du logiciel d’acquisition de données
spécialement conçu pour ce détecteur.

Le MTD vise à atteindre une résolution de 30 ps au début de l’exploitation du
HL-LHC, qui se dégrade lentement jusqu’à 60 ps à la fin de l’exploitation en raison du
vieillissement du détecteur. Il se compose de deux parties : La couche tonneau (BTL)
- fine couche cylindrique entre le trajectographe et le calorimètre électromagnétique
(ECAL) couvrant la plage de pseudorapidité de |η| < 1,48 et une couche bouchon (ETL)
- système à deux disques entre le trajectographe et le calorimètre à haute granularité
(HGCAL) avec une couverture allant jusqu’à |η| = 3,0.

Le BTL a une surface de 38 m2 et est composé de cristaux scintillants LYSO:Ce
en forme de barre, associés à des photomultiplicateurs au silicium (SiPM) aux deux
extrémités. Dans le cas de l’ETL, chaque disque a une surface sensible de 7,9 m2.
L’ETL étant exposé à des doses de rayonnement nettement plus élevées que le BTL, les
détecteurs à avalanche à faible gain (LGAD) ont été choisis comme élément sensible, car
ils sont capables de résister à cet environnement difficile.

Pour chacune des couches, un système d’acquisition de données (DAQ) est utilisé
pour collecter les signaux des capteurs, reconstruire les informations temporelles et
envoyer les données pour construire les événements finaux. Il se compose de plusieurs
composants électroniques tolérants aux rayonnements dans la partie frontale et de cartes
électroniques basées sur des réseaux de portes programmables (FPGA) dans la partie
arrière du détecteur. Le composant clé de l’électronique frontale du BTL est la puce
de lecture TOFHIR. Elle doit être capable d’effectuer la numérisation du temps et de
l’énergie des MIP avec la précision requise.

Parallèlement aux composants matériels, un logiciel DAQ dédié est en cours de
développement pour permettre un traitement efficace des données et la reconstruction
des événements. Créé avec le langage de programmation Python, il est entièrement
modulaire et fournit un outil facile à utiliser pour les tests du système et les opérations
ultérieures.

Le travail effectué a été principalement consacré au développement du logiciel
d’acquisition de données. Les principales contributions ont été apportées aux différentes
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classes du code DAQ. De plus, l’implémentation du module de reconstruction temporelle,
construit sur le code C++ existant, a été entièrement réalisée dans le cadre de cette thèse.
Un autre aspect important de ce travail a été la participation active aux tests du système.
Au cours de ces tests, le système d’acquisition complet a été validé et une résolution
temporelle d’environ 23 ps a été obtenue, ce qui est bien en deçà de la résolution MTD
requise. Les données ont été analysées à l’aide du module de reconstruction temporelle,
mentionné précédemment.

Le cadre logiciel développé sera utilisé pendant les prochains faisceaux d’essai et
continuera à être utilisé pendant la phase de mise en service du détecteur. Il sera encore
développé et amélioré, y compris le composant pour la partie ETL, afin d’être utilisé
dans les opérations MTD finales pendant le HL-LHC.

Reconstruction d’objets électromagnétiques.
Le second projet se concentre sur l’exploration des méthodes d’apprentissage au-

tomatique de pointe pour la reconstruction de particules dans le détecteur et l’analyse
physique. Ces dernières années, le domaine de l’intelligence artificielle (IA) a connu
une croissance sans précédent et, dans le cadre de l’expérience CMS, plusieurs de ces
techniques ont déjà été utilisées avec succès pour diverses tâches. Au fur et à mesure que
des algorithmes d’IA plus sophistiqués deviennent disponibles, il est naturel d’explorer
leur application aux défis existants. Cela peut potentiellement apporter des avantages
pendant les opérations en cours du LHC et offrir des perspectives prometteuses pour le
futur HL-LHC.

La majeure partie du travail effectué dans le cadre de cette thèse est consacrée au
développement et au test de nouvelles méthodes de reconstruction basées sur l’IA pour
le calorimètre électromagnétique de l’expérience CMS. Il couvre deux étapes de la chaîne
complète de reconstruction d’objets électromagnétiques.

L’objectif principal de la reconstruction du calorimètre électromagnétique est de
pouvoir identifier et évaluer correctement les propriétés cinématiques des électrons
et des photons. Elles peuvent être récupérées à partir des dépots d’énergie laissés
dans le détecteur par ces particules. Le processus commence par la combinaison des
dépôts reconstruits (PFRechits) en grappes d’énergie (PFClusters), chacune d’entre
elles représentant une ou plusieurs particules qui se chevauchent. Une nouvelle méthode
de reconstruction basée sur l’apprentissage automatique, appelée DeepCluster, a été
entièrement développée dans le cadre de cette thèse.

Toutefois, avant d’atteindre le calorimètre, un électron ou un photon peut interagir
avec le matériau devant l’ECAL, ce qui entraîne la production de plusieurs particules.
Dans ce cas, un photon peut se convertir en une paire électron-positron tandis qu’un
électron peut émettre des photons de bremsstrahlung. Par conséquent, plusieurs amas
PFClusters, provenant d’une particule initiale, apparaîtront dans l’ECAL.

Pour reconstruire correctement l’énergie de l’électron primaire ou du photon, tous les
PFClusters produits doivent être combinés en un groupe appelé SuperCluster (SC). Une
partie du travail présenté dans ce manuscrit est consacrée au modèle DeepSC, dédié à la
reconstruction de ces SuperClusters.

Modèle DeepSC.
Dans l’expérience CMS, la reconstruction SuperClustering est réalisée à l’aide d’un

algorithme géométrique appelé "Mustache". Bien que cet algorithme ait montré de
bonnes performances pour la reconstruction actuelle de l’ECAL, il présente encore un
certain nombre de limitations, notamment en ce qui concerne le filtrage des interactions
de pile-up et du bruit. Ce problème deviendra plus important au cours du Run 3 et des
runs du HL-LHC en raison du vieillissement des détecteurs et de l’augmentation de la
luminosité. Pour y remédier, de nouvelles approches d’apprentissage automatique sont à
l’étude.
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Une nouvelle méthode d’apprentissage profond pour la reconstruction du SuperClus-
tering a été développée. Le réseau DeepSC effectue trois tâches différentes : 1) il crée
un SuperCluster optimisé en classant séparément les PFClusters ; 2) il prédit le facteur
d’étalonnage de l’énergie qui tient compte des pertes d’énergie dans l’ECAL ; 3) il effectue
une identification des particules pour chaque SuperCluster reconstruit, en indiquant si
elles proviennent d’un électron, d’un photon ou d’un hadron (jet).

La performance de la classification PFCluster peut être évaluée à partir de la résolution
énergétique en comparant l’énergie reconstruite avec DeepSC et l’énergie simulée de
la particule. La valeur reconstruite est estimée en additionnant toutes les énergies
des PFClusters sélectionnés par le réseau. Les résultats obtenus ont été comparés
à l’algorithme “Mustache”, actuellement utilisé dans CMS pour la reconstruction du
SuperClustering. Le réseau montre des performances supérieures, en particulier pour
les régions à faible énergie et à forte accumulation. Cela met en évidence les avantages
apparents du modèle DeepSC pour la reconstruction du SuperClustering, en particulier
pour la fin du Run 3 et l’ère HL-LHC.

Le modèle DeepSC sera testé plus avant dans le logiciel CMS pour estimer les
performances en termes de temps et d’efficacité de calcul. La comparaison entre le
modèle DeepSC et l’algorithme “Mustache” avec l’application de corrections énergétiques
est également étudiée. Séparément, des efforts supplémentaires seront déployés pour
développer la partie du réseau consacrée à la régression énergétique.

Cette thèse s’est concentrée sur la partie du modèle DeepSC relative à l’identification
des particules. Cette fonctionnalité a été entièrement développée dans le cadre de la
thèse, depuis son ajout dans le modèle initial (en utilisant l’apprentissage par transfert)
jusqu’à sa mise en œuvre dans le logiciel CMS global et la comparaison des résultats.

L’identification des particules a permis au modèle de prédire si le superamas re-
construit provenait d’un photon, d’un électron ou d’un hadron à partir des schémas
énergétiques de l’ECAL. Le modèle présente d’excellentes performances pour la dis-
crimination jet/photon, et parvient remarquablement à une certaine discrimination
électron/photon en utilisant uniquement les informations du calorimètre.

Les performances du modèle en matière d’identification des particules pour la classifi-
cation jet/photon ont été comparées à celles du réseau neuronal dense utilisé dans le
flux de particules. Pour une efficacité de bruit de fond de 10%, l’efficacité du signal est
améliorée avec le réseau de plus de 20%. Il s’agit d’un résultat important car l’approche
par flux de particules utilise des informations supplémentaires provenant du HCAL et
du tracker pour effectuer la discrimination.

Dans les perspectives d’avenir, il y a plusieurs choses qui peuvent être faites pour
l’identification des particules. Tout d’abord, il est possible d’étudier la possibilité
d’incorporer les données du trajectographe et du HCAL dans le modèle. Deuxièmement,
la sortie de l’identification des particules peut être testée comme l’une des variables
d’entrée du réseau neuronal dense du flux de particules. Dans ce cas, l’étude de validation
du concept a déjà été réalisée en ajoutant la sortie du modèle DeepSC à un classificateur
BDT supplémentaire, ce qui a permis d’améliorer de manière significative les résultats
de la discrimination jet/photon. Cette amélioration remarquable apportée par l’ajout de
la sortie DeepSC ID indique la capacité du modèle à apporter de nouvelles informations
à la chaîne de reconstruction. Troisièmement, l’utilisation de la discrimination électron
vs. photon peut être étudiée pour l’analyse lorsque les informations sur la trajectoire
sont perdues ou mal reconstruites.

Dans l’ensemble, le modèle DeepSC présente des résultats très prometteurs pour une
utilisation ultérieure dans le cadre de l’expérience CMS. Il ouvre de nouvelles possibilités
pour améliorer la résolution de la reconstruction des objets électromagnétiques et la
précision des analyses physiques.

4



Résumé étendu en français

Modèle DeepCluster.
Le processus de mesure des objets électromagnétiques (EM) dans l’ECAL implique

une série d’étapes sophistiquées, commençant par la reconstruction des dépôts d’énergie
dans le calorimètre et aboutissant à la formation de l’objet physique final à partir des
informations obtenues.

L’objectif de l’étape de regroupement est de déterminer les propriétés cinématiques
des photons et des électrons individuels entrant dans le calorimètre à partir des modèles
d’énergie qu’ils laissent dans le détecteur. Le fonctionnement actuel de CMS utilise
l’algorithme PFClustering, qui analyse la combinaison de cristaux calorimétriques voisins
(appelés cluster) pour évaluer à la fois l’énergie et le point d’entrée de la particule initiale.

Si l’approche traditionnelle s’est avérée efficace et fournit une excellente résolution
pour la reconstruction de l’énergie et de la position, sa capacité à distinguer avec précision
deux photons proches est limitée, ce qui peut poser plusieurs problèmes. Par exemple,
l’algorithme PFClustering peine à différencier les photons isolés (γ) des pions neutres
(π0), car ces derniers produisent deux photons qui imitent le schéma énergétique d’un γ
isolé dans le calorimètre. Un autre exemple est la recherche de la désintégration du boson
de Higgs exotique H → aa → 4γ [1], où a est une particule scalaire ou pseudoscalaire
légère. Dans ce cas, les deux photons sont souvent reconstruits comme une seule particule
dans le calorimètre.

L’objectif de ce travail est d’aborder la limitation discutée de l’algorithme PFCluster-
ing tout en améliorant la performance en termes d’énergie et de résolution de position.
Pour ce faire, nous avons développé un nouveau modèle d’apprentissage automatique,
appelé DeepCluster, qui exploite des techniques avancées d’apprentissage profond telles
que les réseaux neuronaux convolutifs (CNN) et les réseaux neuronaux graphiques (GNN).

Le modèle DeepCluster est une technique de reconstruction innovante conçue spéci-
fiquement pour les particules électromagnétiques dans l’ECAL. Il a été créé et entièrement
développé dans le cadre de cette thèse et représente la majorité du travail effectué.

Pour évaluer les méthodes développées et comparer les résultats avec l’approche
traditionnelle (PFClustering), une simulation simplifiée de l’ECAL a été créée. Trois
implémentations différentes du modèle DeepCluster sont testées. Une approche de réseau
en deux étapes basée sur des architectures convolutives et graphiques donne les résultats
les plus optimaux et surmonte toutes les difficultés rencontrées.

Le modèle optimisé final est testé sur les ensembles de données à un et deux photons
ainsi que sur l’ensemble de données électroniques à particules multiples. Dans tous
ces cas, le DeepCluster présente des performances supérieures à celles de la méthode
PFClustering en termes de résolution en position et en énergie, ainsi que de rejet du
bruit de fond et d’efficacité du signal. Plus particulièrement, l’efficacité du signal pour
l’ensemble de données à deux photons obtenue avec le modèle DeepCluster est de 97,0%
alors qu’elle n’est que de 82,0% avec la méthode PFClustering.

La principale limite de l’approche traditionnelle est sa difficulté inhérente à distinguer
les particules étroitement espacées, ce qui entraîne une dégradation des performances dans
l’identification des particules π0. En revanche, le modèle DeepCluster donne d’excellents
résultats en reconstruisant environ deux fois plus de particules π0. Ce résultat ouvre des
perspectives prometteuses pour l’application du modèle DeepCluster à la reconstruction
dans l’ECAL.

Au cours des étapes de développement suivantes, le modèle DeepCluster sera intégré
dans le logiciel global de l’expérience CMS afin d’être testé avec le vrai détecteur ECAL
dans des conditions de physique plus réalistes.
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Introduction

With the discovery of the Higgs boson in 2012 by the CMS and ATLAS collaborations, the
Standard Model (SM) was completed. Being the most successful Particle Physics theory,
it was able to both explain the existing experimental results and provide predictions for
the phenomena that were not yet observed.

The finalization of the SM gave us a remarkable tool for understanding the subatomic
world but also opened an opportunity for new discoveries. Despite its achievements,
there remain numerous phenomena that do not fit within the context of the SM. Among
the highlighted subjects are the origin of matter-antimatter asymmetry, the abundance
of dark matter in the Universe, and neutrino oscillations. Additionally, the mass of the
Higgs boson itself presents a puzzling problem. According to the SM, to account for the
measured mass of the Higgs, large quantum corrections have to precisely cancel each
other, a task that seems highly improbable. These and other unexplained problems lead
physicists to believe that the SM constitutes only a fraction of a larger more encompassing
theory. Consequently, the current scientific challenges lie in the field of physics Beyond
Standard Model (BSM), where research is motivated by open questions and observable
phenomena that can not be explained by SM.

The CMS experiment aims to address several of these unresolved problems. Currently,
it has a very broad scientific program covering various areas, such as the search for new
particles and processes and precision measurement of the SM. A significant focus of the
experiment is the Higgs boson physics, where the nature of this newly found particle is
being rigorously studied.

To further increase the potential for discoveries, continuous advancements are being
made in both boosting the performance of the Large Hadron Collider (LHC) and the
detectors; and the creation of novel data reconstruction and analysis methods employed
within the CMS experiment. These two efforts progress in parallel, mutually driving and
influencing each other to achieve the most high-performing and effective system possible.

The first effort resulted in the High-Luminosity LHC (HL-LHC) project, scheduled
to start in 2029. This improved collider aims to enhance the measurement precision of
the standard model processes by increasing the amount of recorded data. An associated
upgrade program is being carried out to prepare the sub-systems of the CMS experiment
for the new operating conditions. A key aspect of this upgrade involves the addition of a
novel MIP Timing Detector, capable of accurately measuring the arrival time of charged
particles produced during collisions. A portion of the thesis work is dedicated to the
development and testing of the data acquisition software specifically designed for this
detector.

The second endeavor focuses on the exploration of state-of-the-art machine-learning
methods for detector reconstruction and physics analysis. In recent years, the field of
artificial intelligence (AI) has experienced unprecedented growth, and within the CMS
experiment, several of these techniques have already been successfully employed for
various tasks. As more sophisticated AI algorithms become available, it is natural to
explore their application to existing challenges. This can potentially bring benefits during
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Introduction

the ongoing LHC operations and also offer promising prospects for future HL-LHC.
The majority of the work performed for this thesis is dedicated to developing and

testing new AI-based reconstruction methods for the electromagnetic calorimeter of
the CMS experiment. It covers two steps of the full chain of electromagnetic object
reconstruction. The first one is the evaluation of the kinematic variables from the energy
signatures left by standalone particles in the detector. The second one combines these
standalone particles into a unified object known as SuperCluster, which is crucial for
accurate particle energy reconstruction. Both of the tasks are developed separately, and
for each of them, a dedicated AI model is created and its performance is assessed and
compared with the current traditional approach.

This thesis is structured as follows. The overview of the Standard Model theory is
given in Chapter 1. Chapter 2 covers the description of the Large Hadron Collider and
the CMS experiment. The data acquisition software for the MIP Timing Detector is
detailed in Chapter 3. Chapter 4 discusses the field of Artificial Intelligence and models
relevant to the work performed during the thesis. SuperClustering reconstruction with
AI is presented in Chapter 5. Chapter 6 covers the standalone particle reconstruction in
the ECAL with deep learning. Finally, the conclusion and the outlook are discussed.
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1 The Standard Model and the Higgs
boson

The Standard Model of Particle Physics is an elegant theoretical framework describing
the known particles and their fundamental interactions (with the exception of gravity) [2].
It was developed through several stages in the second half of the 20th century and the
final constituent predicted by the SM – the Higgs boson — was discovered in 2012 [3],
[4].

Even though the SM has been successfully confirmed with multiple experiments (such
as the discovery of neutral currents in 1973, the discovery of the W and Z bosons in
1983, etc.), there is a number of remaining puzzles that still can not be explained in the
context of the SM [5]. Among the most prominent ones are:

• Matter-antimatter asymmetry. During the Big Bang, equal amounts of matter
and anti-matter should have been produced. However, currently, in the observable
Universe, matter largely prevails, and the reason for it is yet to be uncovered.

• Dark energy. From observational evidence (e.g. [6], [7], [8]), it is known that the
Universe expands with acceleration rather than at a constant rate. This effect can
only be theoretically explained by introducing a new form of energy, called “dark
energy”. Even though it represents approximately 68% of the mass-energy content
of the observable Universe, its nature still remains a mystery.

• Dark matter. Various astrophysical observations (e.g. gravitational lensing [9])
also indicate the presence of an alternative type of matter, called “dark matter”, in
the Universe. Unlike usual baryonic matter, it does not interact with light through
electromagnetic forces, and, thus, is hard to detect. According to the current
standard model of cosmology “lambda-CDM” [10], dark matter should account for
around 25% of all the energy-matter content in the observable Universe. However,
the SM does not contain any candidates for dark matter particles.

• The hierarchy problem. The discrepancy between the parameters of the weak
force and the gravity can not be explained by the SM as well. It is still unclear
why the mass of the Higgs boson (∼ 125 GeV) is so much smaller than the Planck
mass (∼ 1019 GeV). The measured mass of the Higgs can be explained within the
SM only if very precise fine-tuning cancellation between the quantum contributions
appears, which is theoretically highly unlikely.

Accordingly, modern experimental high-energy physics focuses on two aspects: 1)
precision measurements to further test the SM theory, and 2) searching directly for
physics beyond the SM that may indicate new theoretical frameworks.

In this Chapter, the SM and the Higgs boson are described. In Section 1.1 a general
overview of the SM is given. Section 1.2 examines theoretical aspects of the SM, including
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the Spontaneous Symmetry Breaking mechanism. Finally, in Section 1.3 studies of the
Higgs boson at the CMS experiment are presented, including a brief overview of two
analyses particularly relevant to the work presented further in this document.

1.1 Overview of the Standard Model
The Standard Model describes all known elementary particles and three fundamental
forces (electromagnetic, weak, and strong) [11]. The elementary particles are the ones
that, to our knowledge, do not have an internal structure. The overview of the particles
constituting the Standard Model and their properties (mass, electrical charge, spin) is
given in Fig. 1.1. In general, they can be divided into two groups: fermions and bosons.

Figure 1.1: Diagram representing particle content of the Standard Model [12].

Fermions

Fermions represent the building blocks of matter. They have a spin of 1/2 and can be
further classified into leptons (electron e, muon µ, tau-lepton τ , electron neutrino νe,
muon neutrino νµ, tau neutrino ντ and their anti-particles) and quarks (up u, down d,
strange s, charm c, top t, bottom b and their anti-particles). Fermions follow the Pauli
exclusion principle [13]: two or more identical particles with half-integer spins can not
occupy the same quantum state within a quantum system simultaneously.

The quarks along with electrons, muons, and tau-leptons possess electromagnetic
charge and, thus, can interact through electromagnetic interactions. All fermions can
participate in weak interactions as well.

Additionally, quarks possess another quantum number called color, on which the
strong interaction operates. It is denoted as qi and can be of three types: i = 1, 2, 3. The
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elementary quarks are confined in composite objects called hadrons. They are further
classified as baryons, usually consisting of three quarks (e.g. proton ∼ uud), and mesons,
usually made of a pair quark-antiquark (e.g. neutral pion π0 ∼ uū or ∼ dd̄). The hadrons
are colorless objects: for baryons, it is achieved with a combination of three different
colors, and for mesons with quark carrying color and anti-quark – anti-color.

Gauge Bosons

All the fundamental interactions within the SM are mediated by exchanging elementary
particles known as gauge bosons. They have a spin = 1 and are the following:

1. Photon γ for electromagnetic interactions. It is a massless particle with zero
electrical charge.

2. Three vector bosons W±, Z are the corresponding intermediate bosons of the
weak interactions. They are massive particles, W± bosons can carry a negative or
positive electrical charge and Z boson is electrically neutral.

3. Eight gluons gα mediate the strong interaction among quarks. They are massless,
electrically neutral, and carry color quantum numbers.

Fundamental interactions

The range and strength of three fundamental interactions are as follows:

1. Electromagnetic interaction has an infinite range as it is mediated by a massless
boson. The strength is governed by the fine structure constant α = 1

137 .

2. Weak interaction has a short range of 10−16 cm due to the massive intermediate
bosons. The strength is given by Fermi constant GF = 1.167 x 10−5 GeV−2.

3. Strong interaction does not have an infinite range even though the associated
bosons are massless. Due to the color confinement, it is 10−13 cm. The strength
is determined by the size of the strong coupling constant αs. The value of the
constant varies with energy from asymptotically large values ∼1 at E ∼ 1 GeV to
the vanishing asymptotic limit αs → 0 at E ≳ 1000 GeV. For the energy scale of
the Z boson mass αs(M2

Z) = 0.1181.

Above the unification energy limit (∼ 100 GeV), electromagnetic and weak interactions
are merged into a single electroweak force.

Higgs boson

In addition to the gauge bosons, there is another fundamental particle known as the
Higgs boson: it possesses a spin of 0 and does not carry any electric or color charge.
Unlike the gauge bosons, the Higgs boson does not mediate any fundamental force.

The Higgs boson is associated with a quantum field (the Higgs field), which permeates
all of space according to the SM. Fermions and W±, Z bosons acquire their masses
through this field. This process is further described in detail in Section 1.2.4.

1.2 Theoretical formulation
Mathematically, the Standard Model can be formulated as a quantum field theory that
is based on the gauge symmetry SU(3)C x SU(2)L x U(1)Y [14]. In this group, SU(3)C
represents the symmetry group of the strong interaction, and SU(2)L x U(1)Y is the
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symmetry group of the unified electroweak interaction. After electroweak symmetry
breaking, the group is broken into U(1)EM , the group of electromagnetism, residual
symmetry.

The gauge theory based on the U(1)EM is called Quantum Electrodynamics (QED),
the gauge theory based on SU(3)C is Quantum Chromodynamics (QCD), and the
Electroweak Theory corresponds to SU(2)L x U(1)Y .

Standard Model Lagrangian

The dynamics and the interactions of the elementary particles can be presented in the
form of the SM Lagrangian. In a compact version, it can be written as follows

LSM = − 1
4F

µνFµν (1.1)

+ iψ̄��Dψ + h.c (1.2)
+ ψiyijψjϕ+ h.c. (1.3)
+ |Dµϕ|2 − V (ϕ), (1.4)

where the 1st line represents the kinetic and self-interacting terms of the gauge bosons,
the 2nd line contains kinetic and interaction terms of fermions, the 3rd line describes
the interaction between the matter fields and the Higgs field, the 4th line relates to the
dynamic of the Higgs sector, and h.c. stands for Hermitian conjugates. In this Section,
all of the parts of the SM Lagrangian are deconstructed and discussed in detail.

The Gauge Principle

The gauge symmetry is a local symmetry, meaning that continuous parameters of the
transformation depend on the space-time coordinates [15]. This is an important aspect
for the SM formulation, as promoting a global symmetry to a local one transforms a free
theory (particles or fields do not interact with each other) into an interacting one. In
order to keep the symmetry under a local transformation, new vector boson fields, also
known as gauge fields, must be introduced.

The application of the described Gauge Principle will be further shown in the context
of building QED, QCD, and electroweak theories.

Dirac equation

For the mathematical formulation of the SM, it is also crucial to introduce the Dirac
equation, which describes free massive particles with spin 1/2 [15]. The Lagrangian for
such a particle using the Dirac spinors ψ (a 4-component column vector representing the
particle’s quantum state as a function of space-time coordinates) can be written as

L = ψ̄(x)(i�∂ −m)ψ(x), �∂ ≡ ∂µγ
µ, (1.5)

where m is the mass of a particle and γµ are the Dirac gamma matrices.
The corresponding equation of motion, also known as the Dirac equation, is

(i�∂ −m)ψ(x) = 0 (1.6)

1.2.1 Quantum Electrodynamics

QED is a quantum field theory that describes the interactions of charged particles with
the electromagnetic field. It is a gauge theory that can be built starting from the
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Lagrangian, described in Eq. (1.5), where ψ represents the field of charged fermions.
This Lagrangian is invariant under the global U(1) transformation:

ψ → eiQθψ, ψ̄ → ψ̄e−iQθ, ∂µψ → eiQθ∂µψ (1.7)

where θ is a continuous parameter and Q is a charge of the particle.
In order to include the QED interactions, first, the transformation must be promoted

to local:

ψ → eiQθ(x)ψ, ψ̄ → ψ̄e−iQθ(x) ∂µψ → eiQθ(x)∂µψ + iQ (∂µθ(x)) eiQθ(x)ψ (1.8)

Compared to Eq. (1.7), an extra term appears in the gauge transformation due to
∂µθ(x) ̸= 0. As a consequence, the considered Lagrangian is not invariant anymore.

To restore the invariance, a gauge vector boson field or a photon field Aµ(x) is intro-
duced. It interacts with the field ψ and transforms under the U(1) gauge transformations
as follows:

Aµ → Aµ − 1
e
∂µθ(x) (1.9)

Using this new field, the gauge-invariant Lagrangian can be built by replacing the
normal derivative ∂µ with a special so-called covariant derivative Dµ, defined as

Dµψ ≡ (∂µ − ieQAµ)ψ (1.10)

It can be shown that under the local U(1) transformation, it changes in the same
way as the field:

Dµψ → eiQθ(x)Dµψ (1.11)

Finally, in order to account for the photon field propagation, a kinetic term should
be added. It also must be gauge invariant and it is defined as

Fµν = ∂µAν − ∂νAµ (1.12)

The total Lagrangian of QED is

LQED = ψ(x)(i��D −m)ψ(x) − 1
4Fµν(x)Fµν(x) (1.13)

The interaction, representing the force mediation through photon, enters the La-
grangian as the following term within ψ̄i��Dψ:

ψ̄eQAµγ
µψ (1.14)

1.2.2 Quantum Chromodynamics

QCD is a gauge theory for strong interactions [16]. In this case, the gauge symmetry is
the local color transformations.

Quarks, denoted as qi with three different colors i = 1, 2, 3, form the fundamen-
tal representation of the corresponding SU(3)c group. Gluons, denoted ad gα with
α = 1, ... , 8, are the gauge boson particles. There are 8 of them, corresponding to the
number of generators of SU(3).

QCD can be built similarly to QED, starting from Lagrangian in Eq. (1.5), which
represents free quarks in this case. It must be slightly re-formed to include all possible
colors and, for a single flavour, it can be written as
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L =
3∑
i=1

qi (i�∂ −mq) qi, (1.15)

The global SU(3) transformation is

qi −→ q′
i = Uijqj , UU † = U †U = I, (1.16)

where the three-dimensional unitary matrix U with det U = 1 can be represented as:

U (εa) = e−i
∑8

a=1 εa
λa
2 , (1.17)

where εa are the parameters of the transformation and λa are so-called Gell-Mann
matrices that generate SU(3) rotations.

The theory is further promoted to a local one by demanding εa = εa(x). Following
the gauge principle, to achieve the invariance of the Lagrangian, eight vector gluon fields
Aαµ(x) must be introduced. The covariant derivative in this case is

Dµq ≡
(
∂µ − igs

(
λα
2

)
Aαµ

)
q, (1.18)

where

q =

 q1
q2
q3

 (1.19)

The final QCD Lagrangian, also containing the kinetic term for the gluon fields, is

LQCD =
∑
q

q̄(x) (i��D −mq) q(x) − 1
4F

α
µν(x)Fµνα (x) (1.20)

The gauge interactions among the quarks and gluons are contained in the q̄i��Dq term:

q̄gs
λα

2 Aαµγ
µq (1.21)

An important difference between QED and QCD is that the latter also allows the
self-interaction between its gauge bosons, the gluons.

1.2.3 Electroweak Theory

The electroweak theory is based on the gauge symmetry of the SU(2)L x U(1)Y group,
which unifies weak and electromagnetic interactions [17]. SU(2)L is the weak isospin
group that acts only on the left-handed component of the fermion field and U(1)Y is the
weak hypercharge group.

The handedness (left-handed or right-handed) of a particle is defined by means of
the chirality operator γ5 = iγ0γ1γ2γ3:

ψL = 1
2 (1 − γ5)ψ, ψR = 1

2 (1 + γ5)ψ (1.22)

The SU(2)L transformation is defined as

UL ≡ ei
σi
2 α

i (1.23)

The generator of SU(2)L group is the weak isospin Ti = σi
2 , where σi are the Pauli

13
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matrices. The corresponding gauge bosons are denoted as W i
µ, i = 1, 2, 3.

Usually, only the third component of T3 is considered. Left-handed fermions have
T3 = ±1

2 (by convention, the sign is the same as the electric charge), and right-handed
fermions have T3 = 0. In the case of the anti-fermions, the chirality and the sign of T3
are reversed.

Under SU(2)L transformation, the right-handed fermions transform as singlets and
the left-handed fermions transform as doublets:

ψR → ψR, ψL → ULψL (1.24)

In this notation, the electron-neutrino pair, for instance, can be introduced as

ψL(x) =
(
νe
e−

)
L

, ψR(x) = νeR, ψ′
R(x) = e−

R (1.25)

The weak hypercharge Y is the quantum number that relates the electrical charge Q
and the third component of weak isospin T3 through the formula:

Q = T3 + 1
2Y (1.26)

The corresponding gauge boson of U(1)Y is Bµ.
Building the electroweak theory at first follows the same steps as for QED and QCD.

The global symmetry is promoted to the local one, and the invariant Lagrangian is
achieved by using the covariant derivative:

Dµ = ∂µ − igT⃗ W⃗µ − ig′Y

2 Bµ (1.27)

where g is a constant, called weak isospin coupling, and g′ is a constant, called weak
hypercharge coupling.

Applied to the right- and left-handed fields, it takes the form:

DµψL =
(
∂µ − ig

σ⃗

2 · W⃗µ + ig′ 1
2Bµ

)
ψL; DµψR =

(
∂µ + ig′Bµ

)
ψR (1.28)

Accordingly, the interaction term of the resulting Lagrangian can be written as

Lf = ψ̄L(x)i��DψL(x) + ψ̄R(x)i��DψR(x) + ψ̄′
R(x)i��Dψ′

R(x) (1.29)

It can be further divided into two parts, representing charged- and neutral-current
interactions:

• Charged-current interaction. The charged-current interactions entering the
Eq. (1.29) can be described using the physical gauge bosons W±, which is defined
through gauge fields as

W±
µ = 1√

2

(
W 1
µ ∓ iW 2

µ

)
(1.30)

The associated charge-current Lagrangian term is

LCC = g

2
√

2

(
W+
µ ψLγ

µσ+ψL +W−
µ ψLγ

µσ−ψL
)
, (1.31)
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where the new Pauli matrices are defined as

σ± = 1√
2

(
σ1 ± iσ2

)
(1.32)

• Neutral-current interaction. Equation (1.29) also contains interaction with the
neutral gauge fields W 3

µ and Bµ.
The physical Zµ and Aµ fields, corresponding to the Z boson and the photon,
can be obtained from the neutral gauge fields by applying a rotation by the weak
mixing angle θW :

(
Aµ
Zµ

)
≡
(

cos θW sin θW
− sin θW cos θW

)(
Bµ
W 3
µ

)
(1.33)

The associated neutral current terms are

LZNC = ψLγ
µZµ

(
g
σ3
2 cos θw − g′Y

2 sin θw
)
ψL

LγNC = ψLγ
µAµ

(
g
σ3
2 sin θw + g′Y

2 cos θw
)
ψL

(1.34)

Finally, the kinetic term for the gauge fields can be added as

Lg = −1
4W

µν
a W a

µν − 1
4B

µνBµν , (1.35)

where the strength fields are defined as

W i
µν = ∂µW

i
ν − ∂νW

i
µ + gϵijkW j

µW
k
ν

Bµν = ∂µBν − ∂νBµ,
(1.36)

where ϵijk is the Levi-Civita tensor. This term also incorporates the self-interaction
among the gauge fields.

In this formulation, the mass term for the gauge bosons is forbidden as it breaks
the invariance of the Lagrangian. Fermionic masses are also not possible, because they
would communicate the right- and left-handed fields, which have different transformation
properties.

However, from the experimental evidence, it is known that the physical W± and
Z bosons, as well as fermions (such as electrons), are massive. In theory, they obtain
masses through the spontaneous symmetry-breaking mechanism, which is explained in
the following section.

1.2.4 Spontaneous Symmetry Breaking and the Higgs Mechanism

In order to include the required masses in the electroweak theory without spoiling the
gauge invariance, a Spontaneous Symmetry Breaking (SSB) is introduced.

The symmetry is said to be spontaneously broken if the Lagrangian describing the
system is invariant under these symmetry transformations, but the vacuum solution is
not.
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Goldstone bosons

In the context of the SM, the following complex scalar field with its Lagrangian is
considered:

L = ∂µϕ
†∂µϕ− V (ϕ), V (ϕ) = µ2ϕ†ϕ+ h

(
ϕ†ϕ

)2
(1.37)

The Lagrangian is invariant under the global transformation

ϕ(x) −→ ϕ′(x) ≡ eiθϕ(x) (1.38)

In the ground state (or vacuum) the potential can have two possibilities depending
on the sign of µ2:

1. µ2 > 0: The potential has only one trivial minimum ϕ = 0. It is a usual situation
with a single ground state. In this case, the potential describes a single scalar
particle with mass µ and coupling h.

2. µ2 < 0: The minimum of the potential is obtained when the following conditions
are satisfied

|ϕ0| =

√
−µ2

2h ≡ v√
2
> 0, V (ϕ0) = −h

4 v
4 (1.39)

The corresponding potential is shown in Fig. 1.2. The newly introduced parameter
v is also known as the vacuum expectation value (VEV). This scenario is more
interesting as it corresponds to the infinite number of states of minimum energy
ϕ0(x) = v√

2e
iθ, represented by the rim in Fig. 1.2. By choosing a particular ground

state, for example, θ = 0, the symmetry gets spontaneously broken.

Figure 1.2: A “Mexican hat” potential that leads to spontaneous symmetry breaking [18].

The complex scalar potential can be further parameterized as

ϕ(x) ≡ 1√
2

[v + φ1(x) + iφ2(x)] , (1.40)

where φ1(x) and φ2(x) are real fields. The potential in this case:

V (ϕ) = V (ϕ0) − µ2φ2
1 + hvφ1

(
φ2

1 + φ2
2

)
+ h

4
(
φ2

1 + φ2
2

)2
(1.41)

Thus, φ1 describes a state with mass m2 = −2µ2 and φ2 is massless. The latter is the
result of a Goldstone theorem: the spontaneous breaking of continuous global symmetry
is always accompanied by the appearance of one or more massless scalar particles, known
as Goldstone bosons.
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Higgs mechanism

The Higgs mechanism appears in the scenario of spontaneous symmetry-breaking in the
case of gauge invariance.

In order to maintain the invariance under SU(2)L x U(1)Y symmetry group, the
Lagrangian from Eq. (1.37) can be re-written as

LS = (Dµϕ)†Dµϕ− µ2ϕ†ϕ− h
(
ϕ†ϕ

)2 (
h > 0, µ2 < 0

)
, (1.42)

where
Dµϕ =

[
∂µ + igT⃗ W⃗µ + 1

2 ig
′Bµ

]
ϕ (1.43)

The SU(2)L doublet of complex scalar fields is presented as:

ϕ(x) ≡
(
ϕ(+)(x)
ϕ(0)(x)

)
(1.44)

Similarly to the global symmetry case, an infinite number of ground states can be
found and by choosing one of them, a gauge symmetry gets spontaneously broken. The
ground state can be chosen to be:

ϕ
(+)
0 = 0 ϕ

(0)
0 = v√

2
(1.45)

Taking this into account, the excitations around the ground state can be parameterized
as

ϕ(x) = ei
σi
2 θ

i(x) 1√
2

(
0

v +H(x)

)
, (1.46)

where θi are three real fields, representing the massless Goldstone bosons, and H(x)
is the Higgs field.

The field is invariant under the local transformation ϕ′ = eiα(x)ϕ. The parameter
α(x) can be chosen to be α(x) = e−iσi

2 θi. In this case, the massless Goldstone bosons
are eliminated and the scalar doublet becomes

ϕ(x) = 1√
2

(
0

v +H(x)

)
, (1.47)

Using Eq. (1.47), the covariant derivative can be written as

(Dµϕ)†Dµϕ
θi=0−→ 1

2∂µH∂
µH + (v +H)2

{
g2

4 W
†
µW

µ + 1
2
g2 + g′ 2

4 ZµZ
µ

}
(1.48)

As a result, the vacuum expectation value of the neutral scalar has generated quadratic
terms for the physical W± and Z bosons, or, in other words, these bosons have acquired
masses:

MZ =
√
g2 + g′2

2 v, MW = gv

2 = MZ cos θW (1.49)

Moreover, by inserting Eq. (1.47) into the Lagrangian from Eq. (1.42), it can be
shown that for the Higgs boson, the particle associated with the Higgs field, the mass is

MH =
√

−2µ2 =
√

2hv (1.50)
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Concerning the mass of the fermions, their mass term is defined as

−m
(
ψ̄LψR + ψ̄RψL

)
(1.51)

It could not be previously introduced as it would break the gauge invariance. However,
the mass can be generated by the Higgs field. The following gauge-invariant Yukawa
Lagrangian describes the interactions between the Higgs and the fermions:

LYW = −λe
v +H√

2
(ēReL + ēLeR) , (1.52)

where λe is the coupling constant between an electron and a Higgs boson.
Accordingly, the mass of the electron is

me = λe
v√
2

(1.53)

In a similar way, the masses of other fermions can be obtained.
Finally, the interaction terms of the Higgs sector also arise from Eqs. (1.42) and

(1.52), including the self-interaction terms of the Higgs boson. The interactions of Higgs
with fermions and gauge bosons are proportional to the gauge couplings and to the
corresponding particle masses:

Lint
H = −M2

H

2v H
3 − M2

H

8v2 H
4

−mψ

v
ψ̄Hψ

+M2
WW

+
µ W

µ−
(

1 + 2
v
H + 1

v2H
2
)

+1
2M

2
ZZµZ

µ
(

1 + 2
v
H + 1

v2H
2
)

(1.54)

The final Lagrangian of the electroweak theory can be written as the sum of
Eqs. (1.29), (1.35), (1.42), (1.52):

LEW = Lf + Lg + LS + LYW (1.55)

1.3 The Higgs boson at the CMS experiment
The investigation of the SM and the search for the physics beyond it are performed in
the CMS experiment that is situated at the Large Hadron Collider (LHC). This section
focuses on describing the Higgs boson at CMS, which is a key point of interest in the
experiment. The following Chapter 2 gives a more detailed description both of the LHC
and the CMS experiment.

1.3.1 Higgs production and decay channels

Production channels

The Higgs boson is produced through different channels in proton-proton collisions at
the LHC [19]. The Higgs production cross sections for mH = 125 GeV as a function of
the center-of-mass energy (

√
s) are shown in Fig. 1.3 (left).

The leading order Feynman diagrams contributing to the Higgs production are shown
in Fig. 1.4 and they are the following:
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Figure 1.3: On the left: the SM Higgs boson production cross sections as a function of the
center of mass energy,

√
s, for pp collisions for the Higgs boson mass of mH = 125 GeV.

On the right: The branching ratios for the main decays of the SM Higgs boson near
mH = 125 GeV [19].

1. The dominant one is the gluon fusion (ggH), presented in Fig. 1.4(a). It amounts
to 87% of the total production at

√
s = 13 TeV.

2. The second largest contribution comes from the Vector Boson Fusion (VBF), shown
in Fig. 1.4(b). It accounts for approximately 7% of the total production.

3. The third one is the associated production of a Higgs boson with a Vector boson
(VH) in Fig. 1.4(c). It represents 4% of the total production at

√
s = 13 TeV.

4. The fourth cross-section is the production of a Higgs boson with associated pair of
t-quarks (tt̄H). It accounts for 1% of the total production.

Decay channels

The Higgs boson has a short lifetime of about 1.6 x 10−22 s. It is not directly detected at
the CMS experiment but rather through its decay products. As it interacts with all the
massive elementary particles, there are several modes of decay; the branching ratios for
the dominant ones are shown in Fig. 1.3 (right) as a function of the Higgs boson mass.

Despite their small cross-section, the channels H → γγ and H → ZZ∗ → 4l have the
most significant sensitivity because they benefit from several advantages:

• the final state can be fully reconstructed,

• the mass can be measured with high precision (photons, electrons, and muons
being precisely measured in CMS),

• the backgrounds are moderate.

These production processes and the various possible decay channels result in different
final state signatures and can be used to study the Higgs boson couplings to different
particles.
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Figure 1.4: Generic Feynman diagrams contributing to the Higgs production in (a) gluon
fusion, (b) weak-boson fusion, (c) associated production with a gauge boson, and (d)
associated production with top quarks [20].

1.3.2 State of the art in CMS

The success of the SM was asserted with the discovery of a new particle with a mass
≈ 125 GeV announced on the 4th of July 2012 by the CMS [3] and ATLAS [4] collabo-
rations. The particle’s mass was precisely determined through the analysis of its decay
channels, specifically H → γγ and H → ZZ∗ → 4l.

The data used for the discovery was obtained during the operational period called
Run 1 (more details on the LHC operations can be found in Chapter 2). By the end of
Run 1, the different analyses of the potential couplings of this particle to fermions (e.g.
H → τ+τ−, H → b+b−) further provided consistent evidence for this particle to be an
SM Higgs boson.

The investigation of the Higgs boson continued with the data collected during Run 2
with the center-of-mass energy of 13 TeV. The significance of Run 2 regarding Higgs boson
physics is enormous. At present, all production modes have been observed, including
V H (e.g. [21]) and tt̄H (e.g. [22]) during Run 2. Moreover, many Higgs boson decay
modes have also been detected, such as ZZ, WW , γγ, ττ [23], and bb [24], the latter two
during Run 2. Additionally, measurements of differential cross sections and cross sections
in STXS kinematic bins [25] have been performed across all observed decay channels.

The signal strength parameters are further summarized in Fig. 1.5 for observed
production (left) and decay (right) channels [26]. The signal strength is proportional to
σiB

f , where σi is the production cross-section and Bf is the decay branching fraction.
Fits are performed under different assumptions: per production channel signal strengths
(µi = σi/σ

SM
i with Bf = BfSM), shown in Fig. 1.5 (left), and per decay mode signal

strengths (µf = Bf/BfSM, with σi = σSM
i ), presented in Fig. 1.5 (right). The plots are

obtained from the combination of results from available Run 2 analyses.
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Figure 1.5: The agreement with the SM predictions for production modes and decay
channels. Signal-strength parameters extracted for various production modes µi, assuming
Bf = (Bf )SM (left), and decay channels µf , assuming σi = (σi)SM (right) [26].

Concerning the diphoton decay channel, various physics analyses based on Run 2
data were performed leading to remarkable results. Some of them are

• The first observation of tt̄H production channel [22] and the measurement of its
CP properties [27].

• The most precise measurement of the Higgs boson mass [28]:

mH = 125.38 ± 0.11 (stat.) ± 0.08 (syst.) GeV (1.56)

• The inclusive and differential fiducial production cross sections measurement of
the Higgs boson [29]. The inclusive cross-section was measured to be

σfid = 73.4+6.1
−5.9 fb (1.57)

• The simplified template cross-section analysis [30].

• The search for Higgs boson pair production in the channel with two photons and
two b-quarks [31].

All the reported results have been consistent with the SM so far. However, the first
two runs only correspond to ≈ 5% of the full projected dataset of LHC. Currently, Run 3
is ongoing, which will be followed by the High-Luminosity LHC operations. The gathered
data will enable even more comprehensive and fundamental measurements to explore
new physics.

1.3.3 Example physics analyses

The work presented in this document is mostly dedicated to improving the electromagnetic
object reconstruction in the CMS experiment. It can benefit all of the physics analyses
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as the measurement of photons and electrons is ubiquitously important. As a result, the
performed work does not target any specific analysis but its potential can be underlined
for two selected ones:

• H → γγ.
The first one relates to precision measurements in the diphoton decay channel.
The two-photon decay channel is one of the most important channels for precision
measurements of the Higgs boson, as the two well-reconstructed photons in the
final state provide a narrow invariant mass peak (mass resolution ∼ 1%). The
main goals in this channel are measurements of production cross-sections in the
different production modes (inclusively and differentially), allowing, for example, to
constraint the Higgs boson couplings to other particles, but also the measurements
of its mass or its CP properties in production [30].
The possible improvements concern, first of all, the photons’ energy and position
resolutions, which affect the statistical precision of those measurements. Moreover,
a large part of the backgrounds in these measurements comes from jets misidentified
as photons (multi-jet and more importantly gamma+jet production). Currently,
an identification based on Boosted Decision Tree (BDT) using shower shapes
and isolation variables is used (described in Chapter 2), the distribution of the
discriminating variable for signal and the background [30] is shown in Fig. 1.6.
Further enhancing the photon/jet discrimination could also have an impact on the
precision of these results.
Chapter 5 presents a novel reconstruction algorithm based on Machine Learning
that can both improve the mass measurement of the diphoton pair and mitigate
the background coming from jets by introducing a particle ID feature. The output
of the model could be further used as an input to the BDT discriminator in order
to improve its results.
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Figure 1.6: The distribution of the diphoton BDT score in events with an invariant
mass in the range 100 < mγγ < 180 GeV, for data events passing the preselection (black
points), and for simulated background events (red band) [30].

• H → AA → 4γ. A second example is the search for the exotic Higgs decay
H → AA → 4γ, where A is a hypothetical new scalar particle decaying into two
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photons [1], [32]. This type of decay enters multiple extensions of the SM such as
minimal composite Higgs models, two-Higgs-doublet-like models, etc. Moreover,
it has a particular interest in searches for axion-like particles. When the A mass
decreases, the two photons from the A decay are closer and closer and can be
misreconstructed as a single photon-like object. The work presented in Chapter 6 is
specifically tailored to distinguish close-by photons, and, thus, can be particularly
valuable in the context of this analysis.
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2 The Large Hadron Collider and the CMS
experiment

The Large Hadron Collider (LHC) [33] is the largest and most powerful accelerator in
the world. It was built on the border between France and Switzerland and it is operated
by CERN (L’Organisation Européen pour la Recherche Nucléaire). The LHC consists of
a 27-kilometer ring, where hadrons are accelerated to high energies and subsequently
collided at four locations. Each of the collision points is associated with a particular
experiment: two general-purpose experiments, ATLAS (A Toroidal LHC Apparatus) and
CMS (Compact Muon Solenoid), and two experiments dedicated to heavy ions and B
meson physics, ALICE (A Large Ion Collider Experiment), and LHCb (Large Hadron
Collider beauty), respectively.

The CMS experiment [34] is a general-purpose particle detector. It is designed to
efficiently capture and identify the particles produced as a result of the collisions, along
with their associated kinematic properties. In 2012 CMS was one of the two experiments
that discovered the Higgs boson. Currently, the physics scope of CMS is to probe the
standard model of particle physics and search for physics beyond the standard model.

In this chapter, an overview of the LHC complex is provided in Section 2.1. After-
ward, Section 2.2 presents a general description of the CMS experiment and its main
components. Section 2.3 covers in detail one of the sub-detectors of the CMS experiment
– the electromagnetic calorimeter (ECAL). It is followed by a discussion of the offline
reconstruction of electromagnetic particles in Section 2.4. An emphasis in this Chapter
is placed on the ECAL reconstruction as it plays a crucial role in the subsequent work
presented in this document. Finally, in Section 2.5 the High-Luminosity upgrade of LHC
and a new MIP timing detector (MTD) are presented.

2.1 The Large Hadron Collider
The principal motivation for building the LHC collider was to investigate the nature
of electroweak symmetry breaking, which could be done by searching for the Higgs
boson [35]. Its discovery laid the foundation for a broad “Higgs program” at the LHC,
covering a wide range of measurements aimed at uncovering the properties of this elusive
particle [5]. Furthermore, the collider opens an opportunity to address other fundamental
questions in particle physics: it enables precision studies of Quantum Chromodynamics
(QCD), electroweak interactions, flavor physics, and the search for phenomena beyond
the Standard Model (BSM).

The accelerator lies in a tunnel with a circumference of 26.7 km, situated at a depth
ranging from 45 to 175 m, which was originally constructed for the Large Electron-
Positron (LEP) experiment. The LHC program is mainly carried out with proton-proton
collisions but it can also accelerate beams of heavy ions. The energy of the proton beams
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and the design luminosity (L = 1034 cm−2s−1) have been chosen in order to study physics
at the TeV energy scale.

The operation of LHC started in 2010 (first physics data) with the collisions at the
center-of-mass energy (

√
s) of 7 TeV. It marked the beginning of the first data-taking

period called Run 1 with maximum
√
s = 8 TeV. Following a Long Shutdown in 2013-2015,

the second operational Run 2 started, reaching
√
s = 13 TeV. Another Long Shutdown 2

was carried out between 2018 and 2022 to maintain and upgrade the accelerator complex.
On 22 April 2022, the LHC resumed operations, commencing the Run 3 data-taking
period with the center-of-mass energy of 13.6 TeV.

The LHC will run in the current configuration until the end of 2025. After this, a
Long Shutdown 3 (LS3) will start that will last for 3 years. During this time, the LHC
will undergo a major upgrade to start a new era — High-Luminosity (HL) LHC. The
full timeline of the collider is shown in Fig. 2.1.

Figure 2.1: The timeline of the current LHC and the following HL-LHC [36].

2.1.1 Operation details

The LHC machine is part of a large complex comprising multiple accelerators [35]. At
each step, the energy of the proton beam is gradually increased before it is injected into
the main accelerator. The complete chain is illustrated in Fig. 2.2 and the process is as
follows:

• Firstly, negative hydrogen ions (H−) are generated by feeding hydrogen gas into an
ion source. These H− ions are then injected into the Linear Accelerator (LINAC4),
where their energy is increased to 160 MeV.

• In the subsequent step, the electrons are stripped from hydrogen ions as they pass
through a thin carbon foil. This procedure leaves only nuclei containing a single
proton. The resulting proton beam is injected into the Proton Synchrotron Booster
(PSB), where it is further accelerated to 2 GeV.

• The proton beam is then passed to the Proton Synchrotron (PS), where its energy
is increased to 26 GeV.

• The final stage before injection into the LHC involves the Super Proton Synchrotron
(SPS), which pushes the energy of the beam to 450 GeV.

Within the LHC, protons are separated into two counter-rotating beams and further
accelerated to their peak energy, a process that takes approximately 20 minutes. It is
done using metallic chambers containing an electromagnetic field known as radiofrequency
cavities (RF). In total, there are 16 RF cavities located at 4 different points that give
an increase in proton energy of 0.5 MeV/turn. Under normal operation conditions, the
beams can circulate for several hours before they have to be re-filled.
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Figure 2.2: Scheme of the CERN accelerator complex [37].

In the accelerator, the proton beams travel inside two tubes kept at an ultrahigh
vacuum to mitigate unwanted collisions. They are guided by a powerful magnetic field
created by about 10 000 copper-clad niobium-titanium superconducting magnets. These
magnets include 1 232 dipole magnets, which bend the beam, and 392 quadrupole magnets,
which keep the particles focused in narrow beams. Additionally, other quadruples
compress the beams right before the interaction points, while magnets of higher multiple
orders correct minor imperfections in the magnetic field. The superconducting state is
achieved at a temperature of -271.3◦C; in order to provide such conditions, approximately
96 tonnes of superfluid helium-4 are used.

2.1.2 Beam parameters

Within the beams, protons are organized into bunches, with each bunch containing 1011

protons under nominal conditions. They are prepared along the injection chain and are
separated by a time interval of ∆τ ≈ 25 ns. This results in collisions occurring between
two beams at discrete intervals with a frequency of approximately 40 MHz. The gaps
between the bunches are used for synchronization, calibration data acquisition, and
providing resets to front-end electronics. Overall the LHC accommodates 2808 bunches
during each fill.

The number of events per second produced as a result of a collision for a given process
is determined by a cross-section (σ) of this process and instantaneous luminosity L:

Nevent = Lσevent (2.1)

The luminosity depends only on the beam parameters and for a Gaussian beam
distribution is calculated according to:

L = N2
b nbfrevγr
4πϵnβ∗

F, (2.2)
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where Nb is the number of particles per bunch, nb the number of bunches per beam, frev
the revolution frequency, γr the relativistic gamma factor, ϵn the normalized transverse
beam emittance, β∗ the beta function at the collision point, and F the geometric
luminosity reduction due to the crossing angle at the interaction point.

Along the fill, the instantaneous luminosity progressively decreases due to beam
losses during the collisions, necessitating re-filling. The total amount of data delivered at
the experiments is given by integrated luminosity over time (

∫ t
0 Ldt).

Luminosity is a crucial parameter of the LHC machine, and to maximize the potential
for new discoveries, it should be as high as possible. However, larger luminosity results
in multiple proton-proton collisions, where interesting high-energy collisions (hard) are
contaminated by additional unwanted interactions (soft) [38]. The latter is called pileup,
and it pollutes the final state of interest complicating the reconstruction process. In order
to mitigate pileup, special techniques are used, and several of them will be discussed
further in Chapter 3 and Chapter 5.

2.1.3 High-Luminosity LHC

Figure 2.3: Peak instantaneous luminosity (top) and total integrated luminosity (bottom)
delivered to CMS versus day during Run 1, Run 2, and Run 3 [39].

To enhance and expand the discovery potential of the LHC, it is undergoing a
major upgrade [40]. The primary objective is to increase the instantaneous luminosity
by a factor of 5 compared to the original design value (1034 cm−2s−1). It aims to
deliver approximately 3000 fb−1 of integrated luminosity over the operation period of 10
years. For comparison, the target value for Run 3 after 4 years is 450 fb−1. The peak
delivered luminosity and the integrated luminosity values for different periods of LHC
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operations are presented in Fig. 2.3. The upcoming collider era after the upgrade is
called High-Luminosity (HL) LHC.

While the upgrade enables new possibilities for discoveries and precision measurements,
it also presents unprecedented technical challenges for the experiments. One major
problem arises from the significant increase in the number of pileup events: from an
average of 30 interactions during Run 3 to ≈140-200 during the HL-LHC.

To address this issue, the CMS experiment has already undergone various upgrades
to its detectors during LS2 that will further continue during LS3 aimed to maintain or
improve the performance in this new environment. Additionally, novel detectors, such
as a MIP Timing Detector (MTD), are being developed with the goal to mitigate the
effects of pileup. Further details about HL-LHC upgrades and MTD can be found in
Section 2.5.

2.2 The CMS experiment

The Compact Muon Solenoid (CMS) experiment is a general-purpose detector situated
in an underground cavern in Cessy, France. It is associated with one of the largest
scientific collaborations worldwide, involving approximately 6,000 members from nearly
60 countries. The physics scope of CMS is to probe the standard model of particle physics
and search for physics beyond the standard model using proton-proton and lead-lead
collisions at center-of-mass energy ranging from 7 TeV (first collisions in 2010) to 13.6
TeV (collisions recorded since July 2022).

The CMS detector is relatively compact, measuring 28.7 meters in length, 15.0 meters
in width, and 15.0 meters in height, with a weight of approximately 14,000 tons. It
consists of various sub-detectors, arranged in cylindrical layers around the beam axis,
each serving a distinct purpose.

Starting from the interaction point, the produced particles first enter the tracker. The
CMS detector is immersed in a strong magnetic field of 3.8 T, which bends the trajectories
of charged particles and, as a result, enables the measurement of the electric charges
and momenta of these particles in the tracker. Electrons and photons are captured by
the electromagnetic calorimeter (ECAL), where their energies and directions can be
determined from electromagnetic showers. Both charged and neutral hadrons can also
initiate hadronic showers within the ECAL, which are subsequently absorbed in the
hadron calorimeter (HCAL). These showers are used to reconstruct the energies and
directions of the corresponding particles. Muons can traverse the detectors with little to
no interaction and are measured in the tracker and muon detectors, which represent the
final layer of the CMS experiment.

2.2.1 Coordinate system

The coordinate system adopted by the CMS experiment is shown in Fig. 2.4. Its origin
is centered at the collision point, with the z-axis pointing along the beam direction, the
y-axis pointing vertically upward, and the x-axis pointing toward the center of the LHC.

Given the cylindrical shape of the detector, polar coordinates are also commonly
used. The azimuthal angle ϕ is measured from the x-axis in the x− y plane. The radial
coordinate in this plane is denoted as r. The polar angle θ is measured from the z-axis.
However, a more frequently used spatial coordinate is the pseudorapidity, which is defined
as follows:

η = − ln tan θ2 (2.3)

The pseudorapidity values η corresponding to different θ angles are shown in Fig. 2.5.
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Figure 2.4: The CMS coordinate system [41].

The reason to use pseudorapidity comes from the composite nature of the protons,
resulting in the interactions taking place at the level of their constituents (partons).
These colliding partons carry distinct longitudinal momentum fractions of the initial
protons causing their center-of-mass frames to have varying longitudinal boosts. The
difference in pseudorapidity is Lorentz invariant along longitudinal boosts. Hence, if the
emission angle of each particle is defined by (η, ϕ), the spatial separation between two
particles can be expressed as ∆R =

√
(∆η)2 + (∆ϕ)2 and is invariant with respect to

boosts along the beam axis.

Figure 2.5: Illustration of the relation between the pseudorapidity η and the polar angle
θ [41].

Similarly, due to the unknown fraction of the momenta of the partons, the transverse
momentum (pT ) and energy (ET) of the produced particles with respect to the beam
axis are preferred. For a particle with mass m and momentum p it can be estimated as
follows:

pT = p

cosh(η) (2.4)

ET =
√
m2 + p2

T (2.5)

Since the collisions occur along the beam axis, the final transverse momentum should
be zero. The imbalance of energy in the transverse plane is denoted by Emiss

T , which
represents the missing transverse energy.
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2.2.2 Detector structure

The structure of the CMS experiment is depicted in a schematic illustration in Fig. 2.6.
In this section, a brief description of each sub-system of the full detector is presented.

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

PRESHOWER
Silicon strips ~16 m2 ~137,000 channels

SILICON TRACKERS

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Pixel (100x150 μm2) ~1 m2 ~66M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

Figure 2.6: The CMS detector overview [42].

Solenoid magnet

The central feature of the CMS apparatus is the niobium-titanium superconducting
solenoid magnet with a length of 12.5 m and a radius of 3.15 m. It generates an axial
and uniform magnetic field of 3.8 T. To minimize the amount of material in front of
the calorimeters while accommodating the tracker inside, the magnet is positioned after
the HCAL. Outside the solenoid coil, the magnetic field is contained by a return yoke
consisting of three layers of steel interleaved with four muon detector planes.

Tracking system

The inner tracker system is a cylindrically-shaped detector placed directly around the
interaction point. It has an outer radius of 1.20 m and a length of 5.6 m, which covers
the pseudorapidity range up to |η| = 2.5. It is divided into two parts: the pixel tracker
and the silicon microstrip detector.

The pixel detector represents the innermost part of the tracking system [43], located
in a particularly harsh radiation environment. It is divided into 1,856 segmented sensor
modules, each consisting of 160 x 416 pixels. The total silicon area is 1.9 m2 and the
standard pixel size is 100 x 150 µm2.

The pixel tracker is surrounded by four layers consisting of 10 cm x 180 µm silicon
strips, followed by the six layers of 25 m x 180 µm strips [44].

The system provides robust charged-particle trajectories (tracks) and detailed location
of particle collision (vertex) reconstructions from the signals in the tracker. The fine
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granularity of the detector enables the separation of closely-spaced particle tracks. For a
high pT track, (100 GeV) the pT resolution is about 1-2% in the central region (|η| < 1.6)
and a bit worse in the endcaps due to the shorter lever arm of these tracks in the x− y
plane of the tracker [45].

The tracker represents a significant amount of material in front of the calorimeters.
At |η| ≈ 1.5, the probability for a photon to convert or for an electron to emit a
bremsstrahlung photon by interacting with this material is approximately 85%. Similarly,
a hadron can experience a nuclear interaction with a 20% probability before reaching
the ECAL. These complications must be considered in the final object reconstruction
process and are further discussed in this chapter for the case of electromagnetic particles.

Electromagnetic calorimeter (ECAL)

The ECAL detector is primarily designed to reconstruct the energy and direction of
electrons and photons. It is a homogeneous calorimeter made from PbWO4 scintillating
crystals. Its detailed characteristics are further described in Section 2.3.

Hadron calorimeter (HCAL)

The HCAL is designed to measure the energy deposited by hadrons. It is divided into 4
major parts [46]: HCAL Barrel (HB) with |η| < 1.3, HCAL Endcap (HE) covering 1.3
< η < 3.0, HCAL Outer (HO) placed outside the solenoid volume with |η| < 1.4, and
HCAL Forward (HF) extending the coverage up to |η| = 5.0.

The HB and HE detectors are sampling calorimeters with brass used as an absorber
and plastic scintillator as the active material. The HO calorimeter, which serves as a
“tail-catcher” for hadronic showers, uses the same active material, and the steel return
yoke and magnet material as an absorber. The HF is a Cherenkov calorimeter based on
a steel absorber and quartz fibers.

The combined (ECAL + HCAL) calorimeter energy resolution was measured in a
pion test beam with energy between 2 and 350 GeV [47] and is given by the formula:

∆E
E

= 84.7%√
E

⊕
7.4% (2.6)

Muon detectors

The muon gas-ionization chambers represent the outermost layer of the CMS detector,
their primary goal is to identify muons and measure their momenta. The muon planes
are placed outside the solenoid volume and consist of three components [48]: drift tube
(DT) chambers that cover the region |η| < 1.2, cathode strip chambers (CSC) detect
muons in the region 0.9 < |η| < 2.4, and a system of resistive plate chambers (RPC)
covering |η| < 1.9.

The muon momentum resolution varies with pseudorapidity, but overall muon mo-
mentum resolution of 5-8% at 10 GeV, 20-40% at 1 TeV is obtained when using only the
muon system. The numbers improve significantly to 1-1.5% at 10 GeV, 6-17% at 1 TeV
when the combination of the inner tracker and outer muon system is used [49].

2.2.3 Trigger and Data Acquisition system

A dedicated trigger and data acquisition system is used to select potentially interesting
events from the collisions, which are then stored for subsequent analysis. The triggering
process consists of two levels [50]:
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• Level 1 (L1) is a hardware trigger that uses information from the ECAL and
muon RPCs to determine the selection or rejection of events. At this level, the
event rate is decreased from 40 MHz to 100 kHz. Events that successfully pass
this trigger are forwarded to the Data Acquisition System, where information from
the 16 million channels in the CMS sub-detector systems is combined by the event
builder to form a single event.

• High-Level Trigger (HLT) is a software-based trigger that performs a more
advanced analysis based on a simplified version of the full event reconstruction.
It further reduces the event rate to approximately 1 kHz, enabling storage and
subsequent offline analysis of the data.

2.3 Electromagnetic calorimeter
The ECAL plays a vital role in the reconstruction of photons, electrons, and the
measurement of jet energies and missing transverse momentum [51]. It is a hermetic and
homogeneous calorimeter, consisting of two main parts:

• The barrel section (EB) covers the pseudorapidity region of 0 < |η| < 1.479
and has an inner radius of 129 cm. The barrel granularity is 360-fold in ϕ and
(2 x 85)-fold in η, resulting in 61,200 crystals. These crystals are arranged in 36
identical supermodules. To avoid acceptance gaps, the crystals are tilted by a small
angle of 3◦ with respect to the line from the nominal interaction vertex.

• The two endcaps (EE) cover the region of 1.479 < |η| < 3.0 and are placed at
a distance of 314 cm from the vertex. Each endcap is divided into two halves or
Dees, comprising 3,662 crystals. These crystals are arranged into 5x5 units called
supercrystals.

Figure 2.7: The ECAL detector layout [52].

In addition, a preshower detector with a much finer granularity is installed in front of
each endcap disk. The preshower is a sampling calorimeter made from SiPb. Originally,
its purpose was to discriminate prompt photons (coming directly from the interaction
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vertex) from those originating from π0 decays. However, the discriminative capabilities
of the detector can not be fully exploited due to the parasitic signals created by a large
number of π0 produced by hadron interactions in the tracker. Thus, in the reconstruction
algorithm, the energy deposited in the preshower is simply added to the objects detected
in the main parts of ECAL.

The schematic layout of the ECAL detector is shown in Fig. 2.7.

2.3.1 Electromagnetic showers

The energy and direction of the photons and electrons can be determined from the energy
patterns they leave within the calorimeter. When electromagnetic (EM) particles interact
with the detector, they generate a shower of secondary particles with progressively
decreasing energies [53]. Despite the complexity of shower development, the interactions
of electrons and photons with matter follow well-understood quantum electrodynamics
(QED) processes (shown in Fig. 2.8 for different energies), allowing the main parameters
of the showers to be parameterized [54].

Figure 2.8: Fractional energy lost per radiation length in lead by electrons and positrons
as a function of electron/positron energy (left) and photon interaction cross-section in
lead as a function of energy (right) [54].

In the case of high-energy particles (> 1 GeV), electrons primarily lose their energy
through bremsstrahlung, emitting secondary photons, while photons create an electron
and a positron through pair production. These secondary particles continue the creation
through the same mechanism, giving rise to a shower of particles with decreasing energies.
The process stops when the energy of the electron component reaches the critical energy
(Ec), which can be defined as the energy at which the electron ionization losses and
bremsstrahlung losses become equal. Below Ec, electrons dissipate their energy by
ionization rather than generating new shower particles.

The main parameters of an EM shower are its longitudinal and transverse sizes. The
first one can be characterized using the radiation length, which depends on the material
properties:

X0
(
g/cm2

)
≃ 716 g cm−2A

Z(Z + 1) ln(287/
√
Z)
, (2.7)

where Z and A are the atomic number and atomic molar mass of the material, respectively.
The radiation length represents the average distance that an electron needs to travel in
a material before its energy is reduced by 1/e of its initial values.

The transverse size of the EM shower comes from the multiple scattering of secondary
particles. It is characterized by the Molière radius:

RM
(
g/cm2

)
≃ 21 MeV X0

Ec(MeV) (2.8)
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It represents the radius of the cylinder that contains 90% of the shower energy deposition
on average.

2.3.2 Crystal parameters and photodetectors

The energy measurement in the ECAL relies on detecting the light produced by elec-
tromagnetic (EM) showers, which are recorded as energy deposits in the calorimeter
crystals. The choice of material for the ECAL is crucial to ensure that the majority of
the EM shower’s energy is contained within the detector.

In the CMS experiment, lead tungstate (PbWO4) scintillating crystals are used for
ECAL. The advantages of this material are:

1. Short radiation length (X0 = 0.89 cm) and Moliere radius (2.2 cm) allow for the
construction of a compact detector with high granularity, enabling precise energy
measurements and spatial resolution.

2. Fast signal production: Approximately 80% of the scintillation light is generated
within a time window of 25 ns, ensuring prompt and efficient signal detection.

3. Radiation hardness: The lead tungstate crystals exhibit resilience to radiation levels
of up to 10 Mrad, making them suitable for the challenging radiation environment
of the CMS experiment. However, the crystal transparency to light varies with
irradiation and has to be constantly monitored. The system is briefly discussed in
Section 2.3.4.

The parameters of the crystals used in different regions of the ECAL are the following:

• Barrel: each crystal covers a ∆η x ∆ϕ region of 0.0175 x 0.0175. It corresponds to
a crystal front face area of 22 x 22 mm2, which matches the Moliere radius. The
length of the crystal is 230 mm or about 25.8 X0, which is sufficient to contain up
to 98% of the shower produced by EM particles with energies up to 1 TeV.

• Endcaps: each crystal has a front face cross-section of 28.6 x 28.6 mm2 and a
length of 220 mm (24.7 X0).

Due to the relatively low light yield of lead tungstate crystals (30 photons/MeV), high-
gain photodetectors are employed to enhance the signal. In the barrel region, silicon
avalanche photodiodes (APDs) are used, while in the endcaps it is done by vacuum
phototriodes (VPTs). They are specifically designed to be resistant to the high radiation
levels and the strong magnetic field of CMS.

2.3.3 Performance

The ECAL resolution can be parametrized as follows [51]:(
σ

E

)2
=
(

a√
E

)2
+
(
σn
E

)2
+ c2, (2.9)

where

• a is the stochastic term. It incorporates the statistical fluctuations in shower
development and in its detection.

• σn is the noise term. It includes the contributions from the readout electronics.
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• c is the constant term, which covers the energy leakage from the back of the
calorimeter, non-uniformity of the longitudinal light collection, and imperfections
in channel-to-channel inter-calibrations.

These terms were initially estimated in the test beam with no magnetic field, no
dead material in front of the calorimeter, perfect inter-calibration, and stability of the
single-channel responses as described in Ref. [55]. The corresponding values were as
follows: a = 0.03 GeV− 1

2 , σn = 40 MeV per channel, and c = 0.0030.
However, the ECAL resolution degrades over time. The noise term increases due to

the rise in the dark current of the APD (VPT) caused by irradiation and the constant
term worsens due to increased transparency losses.

For the work presented in this document, the estimations of the parameters for
Eq. (2.9) are taken from the values in the barrel obtained during Run 2 and subsequent
previsions for Run 3. The constant term is chosen to be 0.0035 based on the estimation
for Run 2 (Fig. 2.9 (left)), which is also the value expected for Run 3. This plot is
obtained by fitting the Z → ee invariant mass, using an unbinned likelihood comparing
the invariant mll lineshape after reconstruction to the one from a parametrized model
with the energy scale and resolution of both electrons as parameters. The expected noise
level at the end of Run 3 operations at |η| ≈ 1 is taken, it is estimated from Fig. 2.9
(right) and equals to 167 MeV per channel. The stochastic term did not change.

Figure 2.9: On the left: residual miscalibration of the ECAL channel inter-calibration,
as a function of pseudorapidity with the dataset recorded during LHC Run 2 [56]. The
dashed line represents the end of the ECAL Barrel (|η| < 1.49), while the full line refers
to the end of the tracker acceptance (|η| < 2.5). On the right: ECAL average transverse
noise projection for Run 3 calculated in GeV as a function of the Barrel and Endcap
η [57].

2.3.4 Laser monitoring system

The ECAL crystals both lose the transparency with irradiation and recover it when there
are no collisions or when they are heated. The transparency losses occur due to the
creation of defects in the crystal structure when irradiated, known as color centers, that
further influence the scintillation light transmission in the crystals. In order to maintain
the excellent energy resolution performance of the ECAL, a dedicated laser monitoring
system is developed that tracks these losses.

The system works by injecting a laser signal into the crystals and in reference PN
diodes, and comparing their responses. More details can be found in Ref. [58]. To
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ensure the prompt reconstruction of data, it must operate in a quasi-online manner,
providing transparency corrections for each crystal at approximately 40-minute intervals
and completing the process within 48 hours.

2.4 Offline reconstruction of electromagnetic objects
Electrons and photons play a crucial role in the CMS experiment, and their reconstruction
is carried out with high precision and efficiency. These electromagnetic (EM) particles
deposit the majority of their energy within the ECAL and, in addition, electrons leave a
trace in the tracker. From this information, the energy and direction of electrons and
photons can be determined.

Particle Flow

The reconstruction of EM particles is fully integrated into the CMS global event descrip-
tion framework, called Particle Flow (PF) [59]. This approach aims to optimally combine
the information from the sub-detectors to identify and characterize all final-state particles,
including charged or neutral hadrons, photons, electrons, and muons. Each of these
particles leaves a distinct signature in the CMS experiment, schematically represented in
Fig. 2.10 and briefly discussed in Section 2.2.

Figure 2.10: Slice of CMS in the transverse view and experimental signature of particles
in the sub-detectors [59].

The basic elements of the PF framework are trajectories of the charged particles
reconstructed in the tracker and muon detectors, known as tracks, and the clusters of
energy deposited in ECAL and HCAL. These elements are associated with each other
by a geometrical connection (link) in the (η, ϕ) plane. Based on the characteristic
signatures of the different particles in the CMS experiment, a simplified description of
their identification is as follows:
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• Muons are identified through the presence of tracks in both the tracker and muon
detectors.

• Neutral hadrons are identified as clusters in HCAL and ECAL that are not associ-
ated with any tracks.

• Charged hadrons can have clusters in both the HCAL and ECAL with a linked
track.

• The presence of ECAL clusters without a link to a track indicates a photon. Photons
can also convert to electron-positron pair before reaching the ECAL, effectively
creating a signature in the tracker as well. This aspect is further discussed in more
detail.

• Electrons are identified by the presence of clusters in the ECAL that are connected
to a charged track. The reconstruction of electron tracks uses a tracking algorithm,
known as the Gaussian Sum Filter (GSF), which takes into account the change in
the trajectory due to the emission of the bremsstrahlung photons.

The PF framework produces a list of identified particles that can be used directly
to reconstruct higher-level objects such as jets and τ -leptons, calculate the missing
transverse momentum, and quantify the isolation of an energetic particle. An example
of jet reconstruction from its constituents is shown in Fig. 2.11. The presented jet has a
transverse momentum of 65 GeV and is made of five particles: two charged hadrons (a
π+ and a π−), two photons (from a π0 decay), and one neutral hadron (a K0

L). Track T1
is linked to the ECAL cluster E1 and to the HCAL clusters H1 and H2, while track T2 is
linked only to the HCAL clusters H2 and H1. These elements form two PF blocks: the
first one (T1, E1, H1) corresponds to π− and the second one (T2, H2) to π+. The other
three ECAL clusters are not linked to any tracks or clusters and each creates its own PF
block, corresponding to two photons and the neutral kaon.

Figure 2.11: Event display of a jet made of five particles in the (x, y) view (left) and
in the (η, ϕ) view on the ECAL surface (left) [59]. On the left plot, ECAL and HCAL
detectors are represented as circles centered around the interaction point. The K0

L,
the π−, and the two photons from π0 decay are detected as four well-separated ECAL
clusters denoted as E1,2,3,4. The π+ does not create a cluster in the ECAL. The two
charged pions are reconstructed as charged-particle tracks T1,2, appearing as vertical
solid lines in the (η, ϕ) views and circular arcs in the (x, y) view.
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Overview of the ECAL reconstruction

In more detail, the reconstruction of EM particles in ECAL is done through several
sequentially applied algorithms [60]:

1. The amount of energy deposited in each crystal of the calorimeter is reconstructed
as PFRechits, described in Section 2.4.1.

2. An energy cluster, called PFCluster, is formed by grouping together PFRechits
overpassing a pre-defined energy threshold. Each PFCluster represents either a
single particle or a combination of overlapping particles. Further described in
Section 2.4.2.

3. Due to the presence of material in front of the ECAL, electrons can undergo
bremsstrahlung, and photons can convert into electron-positron pairs before reach-
ing the calorimeter. In these cases, multiple electromagnetic showers and corre-
sponding PFClusters originating from a single initial particle will appear in the
ECAL. A specific algorithm (“Mustache”) is used to combine these PFClusters into
a single object, called SuperCluster. This step is necessary to correctly measure
the energy of the primary electron or photon. The details of the SuperClustering
are discussed in Section 2.4.3.

Furthermore, additional PFClusters can be recovered by using the tracking infor-
mation: dedicated algorithms are employed to identify PFClusters compatible with the
tracks coming from photon conversion or resulting from electron bremsstrahlung. The
new object called a “refined” SuperCluster, combines the Mustache SuperClusters, GSF
tracks, and additional tracks associated with electrons, as well as conversion tracks and
their associated PFClusters. It serves as a baseline for the formation of electron and
photon candidates.

To account for the energy losses due to shower leakage, dead channels, and intermodule
gaps, a multivariate technique, a semi-parametric Boosted Decision Tree, is further used
to estimate the energy corrections that should be applied to SuperClusters.

On the level of particle flow reconstruction, loose selection criteria are applied to the
EM object candidates to separate the prompt photons and electrons from the misidentified
hadrons and non-isolated e/γ. The objects passing these criteria that have an associated
GSF track are marked as electrons and without it as photons. The list of obtained EM
particles serves as a basis for the majority of the analysis. Further, tighter selection
criteria can be applied during the analysis to separate prompt e/γ from their background
sources.

2.4.1 PFRechits

The signals produced by the PbWO4 crystals and shaped by ECAL electronics can
extend over several hundred nanoseconds. Due to the fact that the timing gap between
two bunches is ≈ 25 ns, the signals from neighboring bunch crossings (BX) can overlap
with each other, which is known as out-of-time (OOT) pileup. It results in increased
electronic noise and degraded energy resolution of the calorimeter.

The length of the signal needs to be short enough to avoid integrating pileup and
long enough to capture as much scintillation signal (and its reflections in the crystal) as
possible. In the front-end electronics of the ECAL, 12-bit analog-to-digital converters
(ADCs) are employed to sample the analog signals from the detectors (APDs, VPTs) at
a rate of 40 MHz. For each trigger received, ten consecutive samples are stored, taken at
intervals of 25 ns.

38



Chapter 2. The Large Hadron Collider and the CMS experiment

In order to suppress OOT pileup a “multifit” algorithm is employed [61]. It uses a
template fit with NBX parameters, comprising one in-time (IT) and up to nine OOT
amplitudes (up to 5 occurring before IT pulse and up to 4 after IT pulse). The fit
minimizes χ2 defined as:

χ2 =

NBX∑
j=0

Aj p⃗j − S⃗

T C−1

NBX∑
j=0

Aj p⃗j − S⃗

 , (2.10)

where the vector S⃗ comprises the 10 readout samples, si, after having subtracted the
pedestal value, p⃗j are the pulse templates for each BX, and Aj , which are obtained by
the fit, are the signal pulse amplitudes in ten consecutive BXs, with A5 corresponding to
the IT BX. The total covariance matrix C includes the correlation of the noise and the
signal between the different time samples.

The χ2 is minimized iteratively for each crystal in the considered event. Examples of
fitted amplitude shapes are shown in Fig. 2.12.

Figure 2.12: Two examples of fitted pulses for simulated events with 20 average pileup
interactions and 25 ns bunch spacing. Signals from individual crystals are shown. They
arise from a pT = 10 GeV photon shower in the barrel (left) and in an endcap (right) [61].

2.4.2 PFClustering

The reconstructed PFRechits that pass a pre-defined energy threshold (Erechit
thr ) are

further combined together into PFClusters, from which the positions and the energies of
the corresponding particles can be evaluated [59].

The algorithm follows several steps. First, all the potential PFClusters have to be
formed:

1. The crystals with deposit exceeding a certain energy threshold (Eseed
thr ) and larger

than the energy of their adjacent cells (either sharing a side or a corner) are selected
as seeds. They serve as a starting point for growing one cluster.

2. Each chosen seed is combined with its eight neighboring cells to create a topological
cluster.

3. The topological clusters are grown by aggregating all the cells with at least a corner
or a side in common with a cell already in a cluster. For a crystal to be included in
a topological cluster, it must exceed another specified energy threshold (Egather

thr ).

One topological cluster may contain multiple seeds. That can potentially indicate
that the energy deposits coming from different particles are superimposed in the cells. To
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accurately reconstruct the kinematic properties of the original particles, it is necessary
to correctly attribute the energy proportions. A dedicated algorithm is used for this
purpose:

1. The algorithm goes through all topological clusters, which contain more than one
seed. Each seed will give rise to a PFCluster.

a) In the first iteration, the crystal center of each seed within the topological
cluster is taken as the initial position approximation of each PFCluster.

b) The expected energy fraction fji measured in the cell at position c⃗j arising
from the ith energy deposit (ith particle) is calculated according to Eq. (2.11).

fji = Eie−(c⃗j−µ⃗i)2/(2σ2
c)∑N

k=1Eke−(c⃗j−µ⃗k)2/(2σ2
c )
, (2.11)

where N is the total number of seeds within the topological cluster, Ei is the
energy amplitude for ith PFCluster, evaluated from Eq. (2.12) (for the first
estimation, a sum of all energy deposits in the topological cluster is taken),
µ⃗i is the estimated coordinates of the ith PFCluster, σc is a Gaussian width
(constant value for a specific calorimeter, estimated from simulation [59]), c⃗j
is the position of the jth cell.

c) The energy amplitudes (Ei) and PFCluster positions (µ⃗) are updated according
to Eqs. (2.12) and (2.13).

Ei =
M∑
j=1

fjiAj (2.12)

µ⃗i = 1
Ei

M∑
j=1

fjiAj c⃗j , (2.13)

where M is the total number of cells in a topological cluster, Aj is the deposited
energy in jth cell, c⃗j is the position of the jth cell.

2. Steps 1b and 1c are iteratively repeated with newly calculated parameters until
convergence, which is achieved when the difference ∆R between updated coordinates
and coordinates predicted at the previous step is < 10−8.

3. The final coordinates are evaluated according to Eq. (2.14), where the position of
the cells is additionally weighted by the logarithm of deposited energy to account for
the longitudinal and transverse spread of an EM shower. The energy is calculated
by summing all of the cells inside the topological cluster, taking into account
defined energy fractions for each identified PFCluster.

µ⃗i =
∑M
j=1wj c⃗j∑M
j=1wj

, wj = w0 + lnAj − ln
M∑
k=1

Ak, (2.14)

where w0 is a parameter of the calorimeter, Ai is deposited energy in ith cell, c⃗i is
the position of the ith cell.

These steps are schematically shown in Fig. 2.13.
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Figure 2.13: Schematic illustration of the PFClustering algorithm. a) The seeds are
identified as local maximums with energy deposits > Eseed

thr . b) From the seeds, topological
clusters are grown by combining the cells sharing a side or a corner with the crystals
already in the clusters and passing the threshold Egather

thr . c) Finally, PFClusters are
identified by assigning the energy fractions.

Parameters tuning for Run 3

The parameters of the PFClustering algorithm have been tuned in order to make the
algorithm robust to the increased noise during Run 3 [57]. The tuning was performed
on a simulated photon sample without including the tracker and pileup. The foreseen
conditions of the detector for the accumulated luminosity of 450 fb−1 were considered.

The obtained thresholds are η-dependent and for both Erechit
thr and Eseed

thr equal to 3σn
(4σn) for |η| ≤ 2.5 (|η| > 2.5) while the Egather

thr has been eliminated. In order to maintain
the resolution performance, the threshold parameters will be updated every year during
the Run 3 operation to account for the evolution of the noise σn.

Figure 2.14: Performance of the tuning PFClustering algorithm [57].

The performance of the tuned PFClustering algorithm is presented in Fig. 2.14.
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It shows the resolution, which is measured as the relative width of the ratio between
reconstructed and simulated energy, extracted from a maximum likelihood fit to a
double-sided crystal ball. No regression is applied to the reconstructed PFClusters.
The performance is compared to the reference thresholds, which correspond to Run 2
operations.

The remaining parameters of the PFClustering algorithm are estimated from the
simulation and equal to σc = 1.5 cm and w0 = 4.2.

2.4.3 “Mustache” SuperClustering

Both electron and photon have a high probability to start showering before reaching
the ECAL; the total thickness of the inner tracker material expressed in units of the
radiation lengths is shown in Fig. 2.15. As a result, the original object may consist of
several electrons and/or photons.

Figure 2.15: Total thickness t of the inner tracker material expressed in units of radiation
lengths X0 as a function of pseudorapidity. The acronyms TIB, TID, TOB, and TEC
stand for “tracker inner barrel”, “tracker inner disks”, “tracker outer barrel”, and “tracker
endcaps” respectively [62].

In order to account for photon conversion and bremsstrahlung losses, after all the
PFClusters are formed, they have to be combined in a SuperCluster (SC). A traditional
algorithm, called “Mustache”, is used for this purpose and it follows several steps:

1. The list of the reconstructed PFClusters in ECAL is ordered by transverse energy
ET.

2. At each iteration, a seed PFCluster is chosen as the one with the highest energy
that is still not assigned to any SC. It also must pass the threshold of ET >1 GeV.
The seed PFCluster serves as the basis to grow an SC.

3. All the PFClusters that fall in a specified geometric area (“window”) around the
seed PFCluster are considered as a part of the corresponding SC. This area has a
shape resembling a “mustache”: due to the presence of the solenoidal magnetic
field, the PFCluster spread is larger in the ϕ direction than in η. The size of the
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mustache region depends on ET of the seed PFCluster since the particles with
higher pT are less bent by the magnetic field. An example of a mustache SC is
presented in Fig. 2.16 for simulated electrons with 1 < Eseed

T < 10 GeV. In the
case of photons, the shape is similar.

These steps are iteratively repeated until there are no more available PFClusters with
ET > 1 GeV.

Figure 2.16: Distribution of ∆η = ηseed−cluster −ηcluster versus ∆ϕ = ϕseed−cluster −ϕcluster
for simulated electrons with 1 < Eseed

T < 10 GeV and 1.48 < ηseed < 1.75. The z-axis
represents the occupancy of the number of clusters matched with the simulation (requiring
to share at least 1% of the simulated electron energy) around the seed. The red line
contains approximately the set of clusters selected by the mustache algorithm [60].

The main advantage of this algorithm is its very high efficiency as it is able to capture
even low-energy clusters. However, there are multiple effects that degrade its performance
in terms of energy reconstruction:

• Energy lost before reaching the ECAL and in detector gaps;

• Energy leakage out of the back of the ECAL and in dead channels;

• The use of finite energy thresholds to suppress noise in the detector electronics;

• Energy deposited by pileup interactions.

To mitigate the effect of these issues, a multivariate regression technique is used to
define an energy correction. It is described in detail in the following section.

Parameters tuning for Run 3

The shapes of the parabolas for the “Mustache” algorithms are parameterized with 10
numbers. The optimization of these parameters for Run 3 operation was done such
that the area of the mustache encompasses at least 98% of the true EM energy. The
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evaluation was performed on a photon sample simulated with pileup and with detector
conditions corresponding to a total luminosity of 180 fb−1.

The obtained fit is shown in Fig. 2.17 along with the results previously used for
Run 2.

Figure 2.17: Mustache parameters fit for Run 3 operations compared to the ones used
during Run 2 [57].

2.4.4 Energy regression

The aim of energy regression is to account for the energy losses in the ECAL and achieve
the best prediction of the true energy. In order to do it, a correction factor denoted
as y is estimated and further applied to the energy predicted by the SuperClustering
algorithm. It is calculated by dividing the true energy (Etrue) by the reconstructed
energy (Ereco) as shown in Eq. (2.15).

y = Etrue
Ereco

(2.15)

The estimation of the energy correction for an SC is done through a machine learning
algorithm called Boosted Decision Tree (BDT), which is discussed in Chapter 4. The
implemented method not only predicts the required y coefficient but also estimates the
energy resolution of individual objects. Thirty input variables are used for regression, as
listed in Table 2.1. These variables include the number of PFClusters within the SC, the
energy reconstructed by the “Mustache” algorithm, the SC’s width in both the η and ϕ
directions, and various other parameters related to the energy deposits of crystals within
the seed PFCluster. The input vector is further denoted as x⃗.

During the training phase, the BDT algorithm splits the data samples into various final
leaves, and the energy correction distributions of these leaves are fitted to a probability
density function represented by a double-sided Crystal Ball (DSCB). It has a Gaussian
core with power law tails on both sides, its definition is presented in Eq. (2.16). The
fitting process allows the algorithm to estimate the energy resolution for each object by
analyzing the distribution of energy corrections for the corresponding leaf.

DSCB(y;µ, σ, αL, nL, αR, nR) = DSCB,

DSCB =


Ne− ξ(y)2

2 , if − αL ≤ ξ(y) ≤ αR

Ne−
a2

I
2
(
αL
nL

(
nL
αL

− αL − ξ(y)
))−nL

, if ξ(y) < −αL

Ne−
u2

R
2
(
αR
nR

(
nR
αR

− αR + ξ(y)
))−nR

, if ξ(y) > αR

(2.16)
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Parameter Description

ncl Number of PFClusters inside the SuperCluster.
Ereco Energy reconstructed by the “Mustache” algorithm.
ηwidth, ϕwidth Width in η and ϕ of the SuperCluster.
E3x3 The sum of energies in 3x3 matrix around the most energetic

crystal in the seed PFCluster.
Eseed Energy of the seed PFCluster.
Emax, E2nd Largest and second largest energy deposit in a crystal within

the seed PFCluster.
ELR The energy deposit difference between the left and the right

crystals in relation to the highest energy crystal in the seed
PFCluster.

ETB The energy deposit difference between the top and the bot-
tom crystals in relation to the highest energy crystal in the
seed PFCluster.

coviηiη, coviηiϕ, coviϕiϕ Covariance values between the PFRechits spread in the
SuperCluster in different directions. The covariance for two
variables X and Y, each with sample size N is defined as
cov(X,Y) = ∑N

i=1
(xi−x̄)(yi−ȳ)

N , where x̄ and ȳ are the mean
values of the variables.

nvertices Number of vertices.
∆Rmax

PFcluster The maximum distance between the seed PFCluster and the
PFClusters in the respective SuperCluster.

∆ϕmaxDR
PFCluster, ∆ηmaxDR

cluster The maximum distance in ϕ and η between the seed PFClus-
ter and the PFClusters in the respective SuperCluster.

EmaxDR
PFCluster The reconstructed energy of the PFCluster with the maxi-

mum distance from the seed PFCluster.
E1,2,3

PFCluster Three highest reconstructed energies of the PFClusters in
the SuperCluster.

∆ϕ1,2,3
PFCluster The ϕ-position difference between the seed PFCluster and

the three PFClusters in the SuperCluster with the highest
reconstructed energies.

∆η1,2,3
PFCluster The η-position difference between the seed PFCluster and

the three clusters in the SuperCluster with the highest re-
constructed energies.

iηseed, iϕseed, ηseed iη, iϕ, η – positions of the seed PFCluster.

Table 2.1: The regression input variables for the SuperClustering energy correction.

where N is the normalization constant, ξ(y) = (y − µ)/σ, the variables µ and σ are
the parameters of the Gaussian core, and the αR (αL) and nR (nL) are parameters that
control the right (left) tails of the function.

For each SC, µ and σ are predicted by the regression algorithm, where µ is the
estimate of the energy correction coefficient and σ is the estimate of the per-object energy
resolution that includes the effect from imperfect crystal calibrations. Both µ and σ are
predicted as the functions of the input vector x⃗.
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The BDT model is optimized for photons and electrons. Moreover, in the case of
electrons, an additional step is performed to combine the information from the SC and
the track, resulting in the final energy correction estimation. A weighted combination of
the two independent measurements is:

Ereco
combined =

EECAL/σ
2
E + ptracker /σ

2
p

1/σ2
E + 1/σ2

p

, (2.17)

where EECAL and σE are the ECAL measurements of the energy and the energy resolution
of the SC of the electron corrected with the step 1 and 2 regressions, respectively, and
ptracker with σp are the momentum magnitude and momentum resolution measured by
the electron tracking algorithm. This step improves the energy of the electrons at low
ET. For the particles with ET > 200 GeV, only SC energy is used.

The effect of different regression steps for electrons is shown in Fig. 2.18, where the
ratio of the most probable true (or generated) energy to reconstructed energy Egen/Ereco
for different pT bins are presented.

Figure 2.18: Most probable value of the ratio of true to reconstructed electron energy, as
a function of electron pT with and without the regression corrections, evaluated using
2016 Monte-Carlo samples for barrel (left) and endcap (right) [59].

2.4.5 Electromagnetic object selection in particle flow

It is crucial to correctly separate prompt electrons and photons from hadrons and non-
isolated e/γ, which form jets. The misidentified objects can potentially degrade the
energy resolution of the reconstructed jets.

The primary sources of background for photons and electrons consist of the following:
• For prompt electrons, the background can originate from photon conversions,

hadrons misidentified as electrons, and secondary electrons from semileptonic
decays of b or c quarks.

• For prompt photons, the most important background arises from jets fragmenting
into light mesons (π0, η), which decay into two photons. For the high-energy
mesons, these secondary photons will be nearly collinear and, as a result, hard to
distinguish from a single photon in the calorimeter.

In the particle flow reconstruction, a loose identification selection is used for electrons
and photons. The algorithms use various inputs including:
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• Kinematic variables.

• Shower-shape variables.

• Energy deposits in the sub-detectors.

• Isolation energy sums. They are constructed from the sum of the reconstructed
energy in a cone (∆R =

√
∆ϕ2 + ∆η2 = 0.3) around electrons and photons in

ECAL and HCAL detectors.

• Hadronic over electromagnetic ratio. It is defined as the ratio between the energy
deposited in the HCAL in a coned with ∆R = 0.15 and the energy of EM object.

• Tracker variable, indicating whether a hit is present in the innermost layer of the
tracker.

For photons, a dedicated Dense Neural Network (DNN) is implemented while electrons
use a BDT. The basic elements of the objects that did not pass the selection criteria are
released and further considered in the formation of jets.

2.5 HL-LHC upgrade and MIP Timing Detector
The main goal of the HL-LHC upgrade is to significantly increase the amount of gathered
data in order to facilitate new physics searches, Higgs boson coupling measurements, and
other precision tests of the Standard Model (SM). The target is to achieve an integrated
luminosity of 3000 fb−1 over a period of 10 years, which is about 10 times larger compared
to the current data-taking operations.

The high-luminosity collider will present unprecedented challenges for the detectors
due to the increased levels of radiation and a higher pileup. Absorbed dose in the CMS
cavern after an integrated luminosity of 3000 fb−1 is presented in Fig. 2.19 and pileup
conditions are further discussed in Section 2.5.2. To effectively address both of these
issues, the CMS sub-systems will undergo major upgrades known as phase II upgrades.
The primary objective is to maintain the excellent performance of the CMS detector in
terms of efficiency, resolution, and background rejection in a high-luminosity environment.
The installation of the upgraded systems started during LS2 (phase I upgrades) and will
be completed during LS3.

2.5.1 Overview of the CMS phase II upgrades

To understand the effects of the harsh operating environment of HL-LHC on the detectors
and to outline the required upgrades, CMS has made a major effort in simulations. In
order to benchmark these simulations, the performance of the current detectors under
irradiation was estimated from test beam measurements and previously observed radiation
damages. In this section, a brief overview of the selected envisioned updates in the CMS
experiment is presented.

Tracker system

As the tracker is the closest detector to the interaction point, it will suffer major radiation
damage and it must be completely replaced during phase II upgrades [64]. Moreover, the
new detector is required to have a very high resolution to be able to correctly associate
the produced tracks to their vertices in order to handle the increased levels of pileup. It
will consist of two sub-detectors: the Outer Tracker (OT) made from silicon modules
and the Inner Tracker (IT) comprising silicon pixel modules. To maintain the track
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Figure 2.19: Absorbed dose in the CMS cavern after an integrated luminosity of 3000 fb−1.
R is the transverse distance from the beamline and Z is the distance along the beamline
from the Interaction Point at Z=0 [63].

reconstruction performance in the new conditions, the granularities of the outer tracker
and the pixel detector will be respectively increased by a factor of 4 and 6 compared to
the current operations. For the outer tracker, it will be done by shortening the length of
the silicon sensor strips, while for the pixel detector by using smaller pixels and thinner
sensors. The new system will extend to the forward region and will be able to reconstruct
the tracks up to approximately |η| = 4.

Calorimeter Barrel

In the ECAL Barrel (EB), the front-end electronics will be replaced, and for both ECAL
and HCAL Barrels (HB), the off-detector electronics will be changed as well [65]. It is
done in order to accommodate new Level-1 trigger requirements on increased latency
(from about 4 µs to a maximum of 12.5 µs) and data rate, provide timing measurements
with much better precision (from a resolution of about 120 ps currently to a resolution
of less than 50 ps), and help mitigate the increasing noise from the photodetectors.

New Endcap Calorimeter

Electromagnetic and hadronic endcaps will be significantly damaged by radiation during
the current operations as they are placed in the forward regions [66]. Consequently, both
of them will be replaced by a new detector called the High-Granularity Calorimeter
(HGCAL) or a new endcap calorimeter (EC). It will cover the pseudorapidity region of
1.5 < η < 3 and will provide excellent transverse and longitudinal segmentation.

The electromagnetic part (CE-E) of the HGCAL occupies 25 X0 and consists of
26 layers of Cu/CuW/Pb absorbers interleaved with silicon sensors used as an active
material. The hadronic part has 21 layers of steel absorbers interleaved with silicon
sensors in the more demanding radiation regions and scintillating tiles in the outer
regions. The schematic illustration of HGCAL is shown in Fig. 2.20.
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Figure 2.20: Schematic illustration of the High-Granularity Calorimeter (HGCAL) [67].

General

Extensive upgrades are also performed for the electronics of the detectors, as well as the
trigger, data acquisition, and luminosity measurement systems.

Moreover, an additional detector, called Minimum Ionizing Particle (MIP) Timing
Detector (MTD), is being developed for the HL-LHC phase. As its name suggests it
will enable the precise timing measurements of MIPs. More details regarding this new
detector are presented in the following section.

2.5.2 Precision timing and MIP Timing Detector

As previously mentioned, the significant increase in pileup during the HL-LHC era poses
a major challenge for the detectors. The hard interactions of interest to CMS, which
are dedicated to probing physics at the energies from a few GeV to several TeV, will
be accompanied by an average of 140-200 additional interactions [68]. The tracks and
energy deposits coming from these “soft” collisions will degrade the identification and
reconstruction of the interactions of interest.

The quality of the reconstruction of the final physics objects can be enhanced by
discarding the charged tracks and energy deposits in calorimeters that do not originate
from the primary vertex of interest (associated with the hard collision). Currently, the
procedure relies on spatial vertex separation and it will be further adapted to HL-LHC
by using a new high granularity tracker system.

However, the tracks in the detector can also arise from displaced sources, such as
secondary interactions, decays of particles in flight, and resolution tails. Simulation
studies indicate that a relatively large spatial window of 1 mm needs to be considered
to achieve optimal reconstruction, resulting in substantial contamination of tracks from
pileup into the primary vertex. This is demonstrated by the line density, which represents
the number of collision vertices per mm, shown in Fig. 2.21.

To mitigate this effect and attain the level of vertex purity achieved during Run 2,
timing measurements can be added to the reconstruction process. It is beneficial due to
the fact that the individual collisions in one bunch crossing do not happen simultaneously
as the beam has a longitudinal spread. They rather occur in the time interval with
a root mean square (RMS) extent of 180-200 ps within a 25 ns bunch crossing. By
introducing the fourth dimension, time, into the vertex reconstruction, the procedure
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Figure 2.21: Left: Distribution of the vertices along the beam direction at the LHC (Run 1
and early Run 2) with ≈30 pileup interactions and HL-LHC with 140 and 200 pileup
interactions. The solid (dashed) line refers to the start (end) of the fill. Adjustments in
the focusing of the beam cause the z distributions to become narrower at the end of the
fill. Right: Probability density functions of the line density along the beam axis for the
pileup of about 30 and for pileup 140 and 200. The modes of the three distributions are
0.3, 1.2, and 1.9 mm−1 and their means are 0.2, 0.9, and 1.4 mm−1, respectively [68].

can be significantly improved. This is illustrated in the event display in Fig. 2.22,
which presents simulated and reconstructed vertices in a bunch crossing with 200 pileup
interactions. According to simulation, instances of vertex merging are reduced from 15%
in space to 1% in space-time.

Figure 2.22: Simulated and reconstructed vertices in a bunch crossing with 200 pileup
interactions assuming an MTD detector with ≈30 ps timing resolution [68].

In the phase II upgrade of the CMS, the timing measurement for neutral particles will
be incorporated in calorimeters while for charged particles a new MIP Timing Detector
(MTD) is being developed. The upgraded barrel parts of the calorimeters, as well as the
new HGCAL detector, will be able to measure the time of arrival of the particles with a
resolution of the order of 30-50 ps. It will allow better pileup mitigation by associating
the particle showers with their primary vertices not only based on the spatial coordinates
but also using the timing information.
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The MTD will help to reconstruct the time at which the collision vertex occurred by
associating tracks from a vertex to hits and their corresponding times in the detector.
This process allows to eliminate other tracks that point approximately towards the vertex
but arrive at the wrong time, effectively disregarding their contribution to that specific
collision. As the name indicates, the new detector will be able to perform precise time of
arrival measurements even for minimum ionizing particles (MIPs), which are challenging
to reconstruct due to their low energy loss in the material. The goal is to achieve a timing
resolution of 30-40 ps at the start of HL-LHC, which will slowly degrade to 50-60 ps by
the end of operations due to the radiation damage. The reduction in the pileup using
the MTD detector is quantified in Fig. 2.23.

Figure 2.23: Left: number of pileup tracks incorrectly associated with the hard interaction
vertex as a function of the collision line density for different time resolutions. Right:
distribution of the number of incorrectly associated tracks [68].

The removal of pileup tracks significantly enhances the reconstruction of the final
objects. Notably, it improves the identification efficiency of isolated leptons and photons
by eliminating additional tracks within the isolation cones. The performance of b-jet
identification, which relies on vertex reconstruction, is enhanced as well. Moreover, the
reconstruction of other jets and missing transverse momentum is also improved. In
more detail, the impact of the MTD on the physics program in the CMS experiment is
discussed in Ref. [68].

In addition to maintaining the data quality, the MTD brings new capabilities to the
CMS experiment:

• Time-of-flight (TOF) measurements between the collisions and particle arrival
to the detector enable the search for long-lived particles (LLPs) by estimating
TOF-based particle ID.

• The timing information can also be used to differentiate between low-momentum
charged hadrons, such as pions, kaons, or protons, opening up possibilities for
unique flavour physics studies in heavy-ion collisions.

MIP Timing detector

The MTD is a hermetic detector that will be placed between the tracker and the
calorimeters. It is divided into barrel and endcap regions. The schematic layout of the
MTD is shown in Fig. 2.24.

• The Barrel Timing Layer (BTL) is a thin cylindrical detector that will cover
the pseudorapidity range of |η| < 1.48. It is made from LYSO:Ce scintillating
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Figure 2.24: A schematic layout of the MIP Timing Detector created in Geant4 [68].

crystals that are shaped in bars of about 5.7 cm in length (ϕ direction) and a width
of 3 mm (z direction). The thickness varies along the barrel length with 3.7 mm
for |η| < 0.7; 3.0 mm for 0.7 ≤ |η| ≤ 1.1; and 2.4 mm for |η| > 1.1 to maintain
the same slant depth crossed by particles coming from the primary vertex. Each
crystal is accompanied by two silicon photomultipliers (SiPMs) that provide the
readout of both ends of the bar. This is done in order to improve the resolution by
eliminating the time delay coming from the light traveling along the crystal.

• The Endcap Timing Layer (ETL) is a two-disk system that will be situated
between the tracker and the HGCAL. It will cover a pseudorapidity range of 1.48
< |η| < 3.0. For the readout, MIP-sensitive silicon devices are used, called Low-
Gain Avalanche Detectors (LGADs), as the SiPMs do not have sufficient radiation
tolerance for most of the pseudorapidity range.

Further details on the data acquisition system of the MTD are presented in Chapter 3.
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3 Data Acquisition Software for the MIP
Timing Detector

A new MIP timing detector (MTD) is planned to be included in the CMS experiment as
part of the phase II upgrades. It is designed to measure the time of arrival of minimum
ionizing particles (MIPs), providing a new dimension (time) for disentangling pileup
interactions. The detector also enables unique opportunities for Long-Lived Particle
(LLP) searches and flavor physics in heavy-ion collisions.

The MTD aims to achieve the resolution of 30 ps at the start of the HL-LHC, slowly
degrading to 60 ps at the end of operation due to the aging of the detector. It consists
of two parts: Barrel Timing Layer (BTL) – thin cylindrical layer between the tracker
and electromagnetic calorimeter (ECAL) covering the pseudorapidity range of |η| <
1.48 and an Endcap Timing Layer (ETL) – two-disk system between the tracker and
high-granularity calorimeter (HGCAL) with the coverage up to |η| = 3.0. More details
on the HL-LHC, phase II upgrades, and MTD can be found in Section 2.5.

The BTL has a surface area of 38 m2 and is composed of bar-shaped LYSO:Ce
scintillating crystals paired with silicon photomultipliers (SiPMs) at both ends. In the
case of the ETL, each disk has a sensitive area of 7.9 m2. As the ETL is exposed to
significantly higher radiation doses compared to the BTL, the Low Gain Avalanche
Detectors (LGAD) are chosen as the sensitive element because they are able to withstand
this harsh environment.

For each of the layers, a data acquisition (DAQ) system is employed that collects
signals from sensors, reconstructs timing information, and sends data to build final events.
It consists of multiple radiation-tolerant electronic components in the front-end, and
electronic boards based on Field Programmable Gate Arrays (FPGAs) in the back-end
of the detector. Along with the hardware components, a dedicated DAQ software is
currently being developed to enable efficient data handling and event reconstruction.

In this chapter, the DAQ software for the MTD is presented. In Section 3.1 overview
of the hardware components of the MTD DAQ system is given. Afterward, the MTD
DAQ software is discussed in Section 3.2. Only components related to the BTL layer
are presented as the ETL software is still in the early development stage. Finally,
Section 3.3 discusses the system tests performed with the described BTL DAQ hardware
and software.

3.1 An overview of the MTD DAQ system
For the BTL, a fundamental detecting element is a scintillating crystal bar with two
attached SiPMs. When a MIP traverses the crystal it produces a number of optical
photons along its track. This number is proportional to the crystal light yield (number
of photons generated per MeV of energy deposit). A fraction of the photons is detected
at each SiPMs that converts them to photoelectrons and further amplifies the electrical
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signal. From this signal, a measurement of the time at which the MIP crossed the
detector, called a time stamp, can be obtained. The time stamp is produced for each
SiPMs and to achieve the correct estimation of the time of arrival, an average value is
taken: tave = (tleft + tright)/2.

The signal is read out by the front-end electronics and sent to the back-end, where
the received data is processed and further passed to the event builder.

Figure 3.1: The data acquisition system (DAQ) of the MTD. The key part of the
front-end electronic is the TOFHIR chip (for BTL) or ETROC chip (for ETL) that read
out data from the sensors. The chips are organized into Readout Units (RU). The data
from the chips is passed to the back-end through two low-power Giga-Bit transceivers
(lpGBT) associated to two Versatile Link Plus (VTRx+). The information from the
back-end, such as trigger signals, and fast and slow control signals from the trigger
control distribution system (TCDS2), and detector control system (DCS), is transmitted
to the front-end through lpGBTs as well. The back-end electronics infrastructure is
based on advanced telecommunications architecture (ATCA). One central “hub” board
(DTH) is connected to all the “node” boards (MTD DAQ node), each hosting two Field
Programmable Gate Arrays (FPGAs). They process the acquired data and further sent
it to the event builder.

The basic building block of MTD front-end electronics is called Readout Unit (RU).
In the case of the BTL, one RU consists of 12 Front-End (FE) cards, each hosting
2 readout chips, called TOFHIR (Time-of-flight, High rate). One chip can read out
signals from 32 SiPMs. The FE cards are connected to the back-end system through two
low-power Giga-Bit transceivers (lpGBT) [69], placed on the Concentrator Card (CC).

For the ETL, LGADs are grouped in arrays of 16x32 sensors. Each module is read
out by two ASICs, called Endcap Timing Readout Chips (ETROCs). A dedicated
on-detector board called a service hybrid, provides power and readout services to the
modules.

The back-end DAQ boards, hosting two FPGAs, are connected to the CCs (for BTL)
or to service hybrids (for ETL) and are used to process the data and reconstruct the
timing measurements. The schematic illustration of the DAQ system from front-end to
back-end is shown in Fig. 3.1.

3.1.1 Front-end electronics

The key components of the front-end electronics are the TOFHIR readout chip for
the BTL and ETROC readout chip for the ETL. Their main purpose is to perform
digitization of passing MIPs with the required precision. The design of the TOFHIR
chip is derived from the one used in the TOF-PET applications [70] and further adapted
to the high signal rate and harsh radiation environment of HL-LHC.

The readout is performed upon receiving the trigger signal from other CMS sub-
systems. The front-end electronics is designed to receive these signals and transmit the
corresponding data from each readout chip to the back-end systems through high-speed
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optical links. The sampling clock with 40 MHz frequency is distributed to the readout
system in order to synchronize it with the LHC bunch frequency.

The data from readout chips is transmitted to the back-end via Versatile Links+
(VL+), consisting of radiation-tolerant multi-gigabit communication ASICs (lpGBT)
and radiation-tolerant optical transceivers (VTRx+ [71]) capable of handling the data
rate. Each lpGBT handles communication with 24 TOFHIR chips in the case of the
BTL or ETROC chips in the case of the ETL. The bidirectional links are chosen as the
lpGBTs must be also able to transmit information, such as trigger signals, and fast and
slow control signals from the trigger control distribution system (TCDS2), and detector
control system (DCS), to the front-end. Additionally, slow monitoring signals such as
temperature and voltage readings are collected from the on-detector electronics with
GBT-SCA chips (two on each CC).

3.1.2 Back-end electronics

The back-end electronics infrastructure is based on the advanced telecommunications
architecture (ATCA), centrally used in the CMS experimnet. The ATCA create can
host two central “hub” boards, connected to the “node” boards. One of the two central
hub slots is not used and is reserved for future development possibilities. Another one
is occupied by the data trigger hub (DTH400) board, which provides an interface to
the central TCDS and DAQ systems. A single DTH400 can transmit data at a rate of
400 Gb/s.

The MTD DAQ boards are placed in the “node” slots. They provide the unpacking
and processing of the data received from the front-end. For the MTD detector, a board
called Serenity [72] is chosen, which is developed within the CMS collaboration to handle
the increased data rates as part of the phase II upgrades. Serenity consists of three
elements: an ATCA-carrier card that provides common board services (power, clocking,
electrical interconnections, etc.), daughter cards that host data-processing elements
(FPGAs), and a framework of generic, flexible firmware and software. Serenity is capable
of carrying two high-speed, high-capacity FPGAs, enabling real-time data reconstruction
of the timing information, and 144 bidirectional links.

3.2 DAQ software
Dedicated DAQ software for MTD is currently being developed in order to efficiently
operate with the system described in Section 3.1. At the time of the presented document,
only the BTL electronics prototype components are advanced enough to be included in
the software framework.

3.2.1 TOFHIR

Overview

The TOFHIR ASIC (application-specific integrated circuit) must be capable of performing
the digitization of time and energy of the passing MIPs with the required precision and at
the required rate. It is designed to operate in the radiation environment up to 10 Mrad.
The chip also features a test pulse injector, which can be used to test and calibrate the
TOFHIR.

Following the ionization originating from a passing charged particle, photons arrive in
time following an exponential distribution with a decay time of 40 ns. The measurement
of the arrival time of the MIP signals is performed based on the rising edge of the
resulting photoelectron signal.
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The MIPs are defined as particles with an average energy deposit E > 1 MeV,
which are randomly distributed over the bunch crossing. All particles depositing energy
E < 1 MeV are considered to be background and should be rejected. In order to do so,
a minimum signal strength required to be classified as a MIP, called MIP threshold, is
set (trigger T2 ).

However, the most precise timing measurements are provided by the arrival of the first
photon. Another threshold, called timing threshold (trigger T1 ), is set that determines
the minimum signal strength required to trigger the timing measurement. It is typically
below the MIP threshold and ranges between 5 and 50 photoelectrons.

If the signal is identified as a MIP, the amplitude and two times (T1 and T2)
corresponding to the timing threshold and MIP threshold are recorded as a hit. The
processing of the input signals is performed within 25 ns, such that the chip is able to
detect particles from different bunch crossings.

Output data

TOFHIR chip consists of 32 channels, each containing independent amplifiers, discrimi-
nators, time-to-digital (TDC) converters, and charge-to-digital (QDC) converters. The
simplified description of obtaining the data from TOFHIR chips is presented in this
section. A more detailed overview can be found in [68].

In the input stage of the chip, the current signal (IIN ) from the SiPMs sensors is
transformed into low impedance input RIN and replicated into 3 branches: T , E, and Q.

The signals from the T and E branches are passed through two different TDCs,
providing the timing measurements. The signal from Q branch is passed to a QDC
that measures the integrated charge using the trigger Q (obtained from the input signal
information).

The TDC provides two values:

• A coarse counter, counting the number of cycles of the external 160 MHz reference
clock (LHC clock).

• A fine counter, providing fine timing measurements within one period of the
reference clock.

1. T1 measurement (branch T) The fine time measurements are evaluated as follows:
on the rising edge of trigger T1 it starts collecting the current ITAC. The integration
continues until a falling edge and a rising edge of the reference clock. The stored
voltage is digitized as t1fine. The coarse time estimation t1coarse is provided by
the global counter associated with the reference clock.
In the first approximation, the timing measurement T1 can be calculated as τ1 =
t1coarse - t1fine

ITAC
.

2. T2 measurement (branch E). The T2 measurements are performed identically to
T1 but using trigger T2.

3. Q measurement (branch Q). The signal integration is triggered by trigger Q and
closes either when trigger B (defines the end of the event) is zero and the minimum
integration time has been met or when the maximum integration time has been
reached.

A schematic illustration of the integration operations is shown in Fig. 3.2.
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Figure 3.2: TAC and QDC operation.

After the full procedure is performed, three measurements are obtained: time of
arrival (TOA) from T1; time over threshold (TOT), or the width of the pulse from T2 -
T1; and energy of the particle from Q.

The calibration of the signals is performed using a test pulse and an alternative DAQ
system called FEB-D [73] in order to obtain the final physics measurements: time of
arrival (TOA), time over threshold (TOT), and energy of the particles.

The TOT is used for time-walk corrections of the TOA measurement. Time walk
stands for the tendency of a threshold crossing time of a pulse to shift as a function of
its pulse height.

3.2.2 Software structure

The versatile framework for MTD DAQ Software is created with Python programming
language [74], it is fully modular and provides an easy user-friendly tool for system tests
and further operations.

The overview of the framework is shown in Fig. 3.3. For each of the chips described
in Section 3.1, a separate object is created. lpGBT, SCA, and VTRxp chips are defined
as classes that inherit functionality from a common chip object, which provides a
connection to the hardware (EMP FPGA). To enable simple user-friendly usage, an I2C
(Inter-Integrated Circuit) communication protocol is employed for the chips.

The chips provide the following functionality:

• lpGBT: enables communication between TOFHIR and the back-end.

• SCA: distributes control and monitoring signals to the on-detector front-end
electronics and performs monitoring operations.

• VTRxp: provides data transmission.

A dedicated object (ROC ) is created for the TOFHIR chip that is able to perform
chip configuration and calibration, and enables the data readout. Following the system,
the ROCs are organized in the readout unit, which provides an appropriate mapping,
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indicating the position of the TOFHIR chips on the boards. Finally, a conf parser object
supplies configuration files and allows connection to the global CMS DAQ system.

Figure 3.3: The overview of the DAQ software framework.

Timing reconstruction

A dedicated module has been developed to facilitate the full timing reconstruction using
data obtained from the TOFHIR chip. Building upon the existing C++ framework
for the TOF-PET chip, this module has been implemented in Python, ensuring easy
integration with the overall MTD DAQ Software. Notably, during the code development
process, certain errors of the basis code were detected and corrected, resulting in the
recovery of 7% of previously missing events.

3.3 DAQ system tests
The tests of the DAQ system, described in Section 3.1, are carried out with software
from Section 3.2. They have two main targets:

• Measure the timing resolution that can be achieved with the readout TOFHIR
chip.

• Validate the full data acquisition chain along with the developed software.

In this section, the test stand setup used for the tests is described along with the
obtained results.

3.3.1 Test stand setup

The test setup consists of two TOFHIR chips mounted on the FE board that is connected
to a CC. In these tests, an alternative back-end board, called KCU105, is used as the
DAQ software enabling the usage of the Serenity board is still under development. The
images of the test stand are shown in Fig. 3.4.

The measurements are performed with an ultraviolet (UV) laser that shines either
directly on naked SiPMs or on LYSO:CE crystals with attached SiPMs. The laser signal
is split using optical breakouts in order to provide a synchronized signal for two different
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Figure 3.4: 1 - Concentrator Card v1 2 - Front-end board with 2 TOFHIR ASICs 3 -
Back-end Board 4 - Clock generator 5 - Optical breakouts

SiPMs (or crystals) that are read out with two TOFHIR readout channels. The frequency
of the laser can be adjustable but it usually operates at 50 kHz with a period ∆T = 2 µs.
Overall, approximately 51,000 events are recorded.

The whole test setup is placed in a cold box that prevents external light contamination
and can be potentially cooled off to -30◦, which is the operating temperature of the
MTD.

The measurement involves determining the relative time difference between two
TOFHIR channels that are triggered with a synchronized signal. In this case, the channel-
to-channel timing resolution serves as an approximate estimation of how accurately the
chip can measure the difference between the TOAs of two separate particles.

3.3.2 Results

Figure 3.5: Time resolution results obtained with the TOFHIR chip during the test of
the system before time-walk corrections

The results obtained from the experimental setup described above are shown in
Fig. 3.5. The plot presents the timing resolution, obtained for the difference between
TOA measurements of two TOFHIR channels (ch 142 as a reference and ch 1230). This is
achieved by grouping together the events from different channels when they occur within
the same pre-defined timing window, which can be adjusted. In these measurements, the
timing window ∆τ = ∆T/4 = 500 ns is chosen.
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The timing resolution results are σ2
t = 26 ps for channel-to-channel measurements

and, accordingly, σ1
t = σ2

t /
√

2 =19 ps for one channel.
To mitigate the effects of time-walk, a correction is additionally applied. It is

estimated by plotting the mean timing resolution in bins of TOT ratio between two
channels versus this TOT ratio, illustrated in Fig. 3.6. Overall 50 bins are used over the
range [-0.05, 0.05]. 2nd-order polynomial fit is applied to the distribution in order to
obtain the correction values.

Figure 3.6: The distribution of the mean ∆TOA (dt) vs. TOT ratio between two channels
is presented, and a polynomial fit is applied in order to obtain the time-walk correction
parameters.

The final timing resolution is estimated from the corrected TOA distribution:

∆TOAcorr = ∆TOAuncorr − (aTOTratio
2 + bTOTratio + c), (3.1)

where parameters a, b, and c are estimated from the fit, ∆TOA is the TOA difference
between two channels, and TOTratio is the TOT ratio between two channels.

Figure 3.7: Time resolution results obtained with the TOFHIR chip during the test of
the system after the time-walk corrections.

The updated results are presented in Fig. 3.7. The final resolution for channel-to-
channel measurements is σ2

t = 23 ps and for single channel σ2
t = 16 ps, which is meeting

the precision requirements specified for the MTD.

60



Chapter 3. Data Acquisition Software for the MIP Timing Detector

3.4 Conclusion and perspectives
In conclusion, this Chapter has presented the DAQ system for the new MIP Timing
Detector and the DAQ software framework specifically designed for the Barrel Timing
Layer.

The performed work presented in this Chapter was mostly dedicated to the devel-
opment of the software. The major contributions were made especially to the creation
of chip, lpGBT, and SCA classes of the DAQ framework. The implementation of the
timing reconstruction module, built upon the existing C++ code, was fully performed
as part of this thesis. Another important aspect of this work was active participation
in the system tests. During these tests, the full acquisition system has been validated
and a timing resolution of approximately 23 ps has been achieved, which is well within
the required MTD resolution. The data was analyzed using the timing reconstruction
module, mentioned previously.

The developed software framework will be used during the upcoming test beams and
will continue to be employed for the detector’s commissioning phase. It will be further
developed and improved, including the component for the ETL part, in order to be used
in the final MTD operations during HL-LHC.
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4 Artificial Intelligence

The field of Artificial Intelligence (AI) has seen rapid growth in the last decade primarily
due to the increased accessibility and manageability of large-scale data and the adoption
of Graphics Processing Units (GPUs) [75]. This trend is clearly represented by the
number of AI papers published over the years: 120k articles in 2019, which is nearly 12
times more compared to 2000 [76]. Both academic and industrial communities have been
vastly applying innovative AI methods to their work due to the advantages that they
offer.

The goals outlined for Particle Physics in general and for the CMS experiment in
particular (see Chapter 2) require unprecedented performance for all the steps of the
physics analysis chain: from data reconstruction at the detector level to the evaluation
of the final physics objects. Adapting AI techniques for these applications presents
both challenges and immense opportunities. AI methods not only have the potential to
outperform traditional algorithms but also significantly reduce processing time.

Consequently, to facilitate the research, members of the CMS collaboration adopt
increasingly sophisticated AI algorithms for data reconstruction and analysis. For
instance, neural networks have already been broadly employed for the analysis of the
data collected during Run 2 (e.g. [30], [77]). However, with the availability of more
advanced algorithms that leverage low-level information (e.g. [78], [79]), there still remains
the possibility for improvement.

This chapter provides an overview of the AI (or Machine Learning (ML)) field. It
starts with an introduction to ML and covers fundamental concepts, such as model
training, loss functions, hyperparameters, etc. Specific ML models, including Boosted
Decision Trees, Convolutional and Graph Neural Networks, are explored in detail as they
play a crucial role in the work presented in this document. Additionally, widely used
ML techniques are discussed, such as Bayesian optimization and transfer learning, and
Self-Attention layers are briefly introduced.

4.1 Machine Learning overview

4.1.1 Types of Machine Learning algorithms

The main difference between the traditional algorithms and ML ones is the ability of
the latter to “self-learn”. Unlike traditional algorithms that rely on explicitly defined
instructions, ML models can autonomously uncover meaningful patterns in data, which
they can further use to solve specific problems [80].

Despite the existence of numerous different ML algorithms and their classification
methods, this section focuses on the most common approach to categorizing them. It is
primarily based on the way the algorithm learns the necessary information and the type
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of task it aims to solve.

Supervised, unsupervised, and reinforcement learning

The classification of ML algorithms is done by the way the data in the task is represented
and, consequently, how models learn from it [81]. There are three main groups in this
case: supervised, unsupervised, and reinforcement learning.

Figure 4.1: Types of Machine Learning algorithms [82].

1. Supervised learning.
For supervised learning, it is obligatory to have a labeled dataset, meaning each
of the samples (one entry to the dataset) has a specific target (label). The goal
of a model is to learn to predict this desired target (output Y) based on several
examples of feature vectors (inputs X). Essentially, a supervised algorithm aims
to implicitly infer a function f: X → Y in order to be able to accurately predict
outputs on the data that it has not seen before [81].
Supervised learning is widely used for such applications as image classification,
price prediction, spam detection, etc.

2. Unsupervised learning.
In contrast, unsupervised learning utilizes unlabelled datasets [81], [83]. From the
provided examples, the model aims to uncover similar hidden patterns or data
groupings. In this case, there is no pre-defined target as in supervised learning, and
the algorithm needs to solve the task without relying on human-created guidance.
Unsupervised learning is commonly used for anomaly detection, recommendation
systems, image generation, etc.

3. Reinforcement learning.
For reinforcement learning, the dataset does not have to be labeled as well. The
learning process employs a trial-and-error approach: good or correct actions are
rewarded while negative behavior is punished. The goal of the learner is to find
the best set of actions that yields the highest cumulative reward [84].
Reinforcement learning is used for natural language processing, self-driving cars,
gaming, etc.
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In this document, only supervised learning algorithms are used.

Regression vs. classification tasks

Supervised learning models can be further categorized based on the type of task they
aim to solve: classification or regression [81], [85].

• Classification problems require a model to predict to which category (can be two
or more) each sample in the dataset belongs based on the input vector of features.
The output in this case is usually a probability distribution over all possible classes,
indicating the likelihood of each sample to belong to a particular category.

• In case of a regression problem, an ML model aims to predict a continuous
numerical output (Y ) from an input value (X).

4.1.2 Machine Learning model pipeline

In order to solve any task with an ML model, it is necessary to follow a series of steps.
The initial and imperative step involves outlining the conditions of the problem. More
explicitly, the desired output, as well as the metrics measuring the performance, must
be defined in advance. Once the goal of the algorithm is clear the following stages are
usually employed: 1) data preparation, 2) model creation, 3) model training, validation,
and test.

Data preparation

Firstly, a suitable dataset needs to be prepared. It is a critical step for any ML
development because the performance of the model directly depends on the quality of
the data it is trained on. Once the relevant data is gathered, several preprocessing
procedures can be applied to further enhance its impact on the training.

Common preprocessing techniques include data cleaning, which involves deleting
missing or erroneous data, removing duplicates or irrelevant samples, and excluding
outliers where possible. Another useful technique is data normalization, which means
scaling the values of features to a similar range. This can bring further advantages in
terms of performance and training stability [86].

Model creation

The second step is choosing an appropriate algorithm for a given problem. There are no
explicit rules for selecting a suitable ML model, and it usually requires experience and
creativity. However, there are a couple of factors that must be considered before making
the final choice. Some important factors include:

• Size of the dataset. For example, neural networks tend to perform well on large
datasets, but if the amount of training data is limited, simpler algorithms (e.g.
K-nearest neighbors or decision trees) may be more advantageous.

• Training and evaluation times. Before selecting a model, it is essential to consider
the time required for training as well as running the model in a production
environment.
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Model training, validation, and test

Finally, the training and evaluation of the model is performed. To ensure the robustness
of the algorithm, the initial data is divided into three different datasets, each serving a
specific purpose:

• A training dataset is used for the model to learn from. The goal of the model
is to learn as much useful information from the data as possible. However, ML
algorithms can suffer from a problem that is called “overfitting”. In this case, a
model learns the specific features of the training dataset that helps to correctly
predict the target but it is not able to generalize, resulting in a poor performance
on new data.

• A validation dataset is used to mitigate overfitting. It contains data that the model
has not seen during the training, and, thus, can serve to impartially evaluate the
performance at the development stage. Even though the validation dataset can
not directly impact the training process, it can influence the choice of the inner
parameters of the model. As a result, it still introduces bias as the set of these
parameters can be selected in a way to achieve the best performance specifically
on the validation (and training) dataset.

• A test dataset is used for final performance estimation. Once the model development
is complete, it is evaluated using the test dataset, which does not contain samples
used during training or validation. The reported performance of any ML algorithm
is usually the one obtained during the testing stage.

It is also necessary to introduce the concept of loss function as it plays an important
role in a lot of ML models both for training (e.g. neural networks), validation, and test
stages. The loss function evaluates how well the model can predict the data, it quantifies
the difference between the predicted and the target values. These functions can be also
separated into the ones used for classification and regression tasks. The loss functions
employed for the work presented in this document are:

1. Classficitaion tasks.

• Cross-entropy loss

L = − 1
n

n∑
i=1

k∑
j=1

tj log(pj), (4.1)

where n is the number of data points, k is the number of classes, tj is the
truth label, and pj is the predicted likelihood for a considered sample.
In the case where j = 2, the loss is called binary cross-entropy:

L = − 1
n

n∑
i=1

[t log(p) + (1 − t) log(1 − p)] (4.2)

• Focal loss
A modification of a standard cross-entropy loss can be used in case of a
class imbalance (different classes have significantly varying statistics) in the
dataset [87]. The focal loss is defined as:

L = − 1
n

n∑
i=1

(1 − p)γ log(p) (4.3)
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Adding a modulating factor (1 − p)γ enables the model to focus on hard,
misclassified examples.

2. Regression tasks.

• Mean Squared Error (MSE) loss

L = 1
n

n∑
i=1

(y − ŷ)2, (4.4)

where n is the number of data points, y is the predicted values, and ŷ is the
target values.

• Mean Absolute Error (MAE) loss

L = 1
n

n∑
i=1

|y − ŷ|, (4.5)

where n is the number of data points, y is the predicted values, and ŷ is the
target values.

4.2 Boosted Decision Trees

4.2.1 Decision trees

A decision tree is a common supervised learning algorithm used both for regression and
classification [88]. It has a structure of a tree with root, decision, and leaf nodes as
illustrated in Fig. 4.2. The goal of the algorithm is to predict the target value (y) by
learning simple cut-based decision rules inferred from the input feature vector (x). At
each decision node, the data is split into two sub-sets based on one of the features and
pre-defined criteria. The process is consecutively repeated until a particular stopping
condition is reached.

Figure 4.2: Schematic illustration of a decision tree [89].
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Splitting criteria

In order to grow a tree, the selection of a specific feature and its splitting criteria is
required at each decision node [90], [88]. This feature is used to divide the data into
two daughter nodes. It is done by minimizing a function that evaluates how well each
test condition can separate the samples into classes (for classification tasks). Among the
most commonly used functions are:

1. Classification criteria

• Information gain. The information gain is defined as the difference in entropy
before and after performing a data split. The formula for entropy for a given
dataset is defined in Eq. 4.6.

H(Qm) = −
∑
k

pmk log(pmk), (4.6)

where Qm is data at a defined node m and pmk is the proportion of class k
observations in node m and it is defined in Eq. 4.7.

pmk = 1
nm

∑
y∈Qm

I(y = k), (4.7)

where nm is the number of samples at node m and the function I(y = k)
returns 1 if the predicted label y matches the true class value k; otherwise, it
returns 0.
If all the samples in a node belong to the same class, the entropy will equal
zero. Thus, the feature and the criteria that give the lowest amount of entropy
after the splitting or, in other words, the highest information gain will be
used.

• Gini impurity. Gini impurity represents the probability to misclassify a
randomly selected sample within a given node, assuming it is labeled based
on the node class distribution. The formula to calculate the Gini impurity is
given in Eq. 4.8.

H(Qm) =
∑
k

pmk(1 − pmk), (4.8)

Similar to the entropy, if the classification is perfect in the node, the Gini
impurity will be zero. Thus, the feature is selected in a way to minimize this
criterion.

2. Regression criteria

• Mean Squared Error (MSE). For the continuous values, the MSE is one of the
most common criteria. It is defined as follows:

H(Qm) = 1
nm

∑
y∈Qm

(y − ym)2, (4.9)

where Qm is data at a defined node m with nm samples and ym is the mean
value at the given node. In this case, the predicted value of the leaf node will
be the mean value of all the samples in it (ym).

• Mean Absolute Error (MAE). The MAE is similar to MSE but instead of
the mean value, the predicted estimate for each node will be the median(y)m.
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The error is defined as follows:

H(Qm) = 1
nm

∑
y∈Qm

|y − median(y)m|, (4.10)

where Qm is data at a defined node m with nm samples.

Stopping criteria

Another important condition for a decision tree is a stopping criteria. If the tree is
allowed to grow indefinitely, the splitting can continue until there is only one sample at
each leaf node. Clearly, such a tree is overfitted and has no use. Thus, the criteria to be
satisfied in order to stop the splitting and declare the node to be terminal have to be
defined. They can include:

• minimum leaf size — the minimum amount of samples required to be in each
daughter node after the splitting.

• maximum tree depth — the maximum number of layers that a tree can have.

• minimum samples leaf — the minimum amount of samples the node should have
to continue its splitting.

Advantages and disadvantages

Decision trees are commonly used for different applications in ML because of their
advantages. Among the main ones is the fact that they are easily interpretable and
require little data preparation. However, as mentioned earlier, decision trees can suffer
from overfitting. Even when the stopping criteria are employed, the algorithm can still
create an over-complex tree that is not able to generalize to the new data. Different
techniques can be used to mitigate the overfitting, such as pruning [91], for example. In
this document, I will focus on another technique, known as the ensemble method called
Boosted Decision Tree.

4.2.2 Gradient Boosting

Gradient-boosted decision trees are ML models that combine multiple weak learners
(decision trees) into a new better-performing algorithm (strong model) [92], [93]. In this
case, decision trees are added sequentially, with each subsequent algorithm attempting
to minimize the error of the previous one. In order to do so, when a new tree is added,
it fits on the gradient (or error) obtained as a result of the precedent model.

Formally, a strong model F can be considered that tries to solve a regression task
using MSE loss. Fk is the model at step k that should be improved at the next iteration.
It can be done by adding a weak learner hk such that:

Fk+1 = Fk + hk = ŷ, (4.11)

where ŷ is the target value. The formula can be re-written in the following way:

hk = ŷ − Fk (4.12)

Now, the subsequent decision tree would be trained on the residual hk instead of ŷ.
Taking into account Eq. 4.4 with y = F (xi), it can be shown that the residuals for a
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given model are proportional to negative gradients:

−∂LMSE

∂F (xi)
= 2
n

n∑
i

(ŷi − F (xi)) = 2
n
hk(xi) (4.13)

Thus, the method can be generalized by taking an appropriate loss function for the
task and performing the subsequent training on the obtained gradients.

Figure 4.3: Schematic illustration of a gradient-boosted decision tree [94].

Hyperparameters

Apart from the hyperparameters described for the decision tree, for this model, there are
two extra values:

• Learning rate. To further mitigate overfitting, a learning rate parameter can be
introduced, which controls how fast the strong model learns. The decision tree is
multiplied by a small value (α, typically of the order of 0.1) before adding it to the
strong model. In other words, Eq. 4.11 is changed as follows:

Fk+1 = Fk + αhk, (4.14)

• Number of estimators. A maximum number of trees allowed in the ensemble.

The final algorithm aggregates the results from each step. Such an approach creates a
stable and highly efficient model. Gradient-boosted decision trees are especially popular
ML algorithms in high-energy physics.

4.3 Neural networks

A neural network (NN) is a type of ML algorithm that was inspired by connections of
biological neurons in the brain [95]. They are used ubiquitously both for regression and
classification tasks due to their outstanding performance, especially in applications to
image recognition, speech recognition, and language processing.

The first and simplest type of NN that was developed is a feedforward neural network
(FNN). It consists of three parts: an input layer, one or more hidden layers, and an
output layer. Unlike in other types of networks (such as recurrent NN), in this case, the
information flows only in one direction: from the input through the hidden layers to the
output. Each layer is comprised of artificial neurons as illustrated in Fig. 4.4. They can
take one or more inputs and produce a single or multiple outputs.

The learning process of the network consists of two stages:
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Figure 4.4: Schematic illustration of a feedforward neural network with an input layer,
two hidden layers, and an output layer [96].

1. Forward pass — a step, where the information from the input layer traverses hidden
layers to obtain the required output.

2. Backpropagation — a method to update the parameters of the NN to make
predictions of the output layer more accurate.

In this section, all the mentioned concepts will be discussed in more detail taking an
FNN as a basic example. Moreover, the methods to further optimize the performance of
NN will be described along with a commonly used technique called “transfer learning”
that is further used in the work presented in this document.

4.3.1 Forward pass

Artificial neuron

To understand how forward pass is executed, first, a single artificial neuron can be
considered. Its inner structure is illustrated in Fig. 4.5.

Figure 4.5: Schematic illustration of an artificial neuron. It takes one or more inputs,
calculates their weighted sum, and applies an activation function [97].
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The neuron executes three steps:

1. Each input is multiplied by a specific weight:

x1 → w1 · x1
x2 → w2 · x2

· · ·
(4.15)

A weight is a real number that represents the importance of a respective input to
the output.

2. The weighted inputs are summed up and an extra parameter – bias – is added:

N∑
i

(xi · wi) + b (4.16)

The weights and biases are the trainable parameters of the network.

3. Finally, a special function (σ) called “activation function” is applied to introduce
non-linearity between inputs and outputs and to adjust the output to fit into the
necessary scale:

σ

(
N∑
i

(xi · wi) + b

)
(4.17)

Activation functions

Figure 4.6: Most commonly used activation functions for neural networks [98].

The activation functions are chosen based on their performance and the particular
task the NN is trying to solve. Among the most commonly employed ones are [99]:

• Sigmoid. It is usually used in applications where a probability is required as an
output because the function exists between (0,1). Its mathematical representation
and distribution are shown in Fig. 4.6 (a).
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• Hyperbolic tangent (tanh). It has a similar shape to a sigmoid function but the
range is between (-1,1). It is represented in Fig. 4.6 (b).

• Rectified Linear Unit (ReLU). ReLU is the most commonly used activation function
for NNs. It is more computationally efficient compared to sigmoid and tanh as only
a certain number of neurons will have a non-zero output. It is shown in Fig. 4.6 (c).

• Leaky ReLU. ReLU activation function can suffer from a so-called “dying ReLU
problem”: if one of the nodes reaches a negative value it will stay at zero for the
whole training, which can significantly degrade the performance. To mitigate this
issue, a Leaky ReLU can be used that is depicted in Fig. 4.6 (d).

Feedforward network

A feedforward network has several artificial neurons connected together. The input layer
consists of a feature vector (for example, it can be the intensities of image pixels) that is
processed by hidden layers that aim to uncover underlying structures and connections
to predict the most accurate output. Each new hidden layer takes the output of the
previous one, effectively increasing the level of abstraction of the decision-making.

Formally, the process can be described with the following equation:

hl+1 = σ(W Thl + b), (4.18)

where hl is the output vector of a hidden layer l, W is a weight matrix, b is a vector of
biases, and σ is an activation function. It is repeated until the output layer is reached.

The most notable feature of a neural network is that it can automatically devise the
weights and the biases that will result in the best performance using backpropagation
and gradient descent.

4.3.2 Backpropagation and gradient descent

After the forward pass is executed, the output of the network is compared to the target
value using an appropriate loss function. The goal of the network training is to minimize
this loss function by adjusting the weights and biases of the model. In order to see how
this process is done, a simple example of an FNN shown in Fig. 4.7 can be considered.

x1

x2

h1

h2

h3

 y

w11

w21

w12

w13

w22

w23

w4

w5

w6

b1

b2

b3

b4

Figure 4.7: Example of a simple feedforward neural network.
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In this case, the loss is a function of all trainable parameters of the network:

L(w11, w12, w13, w21, w22, w23, w4, w5, w6, b1, b2, b3, b4) (4.19)

To evaluate how the loss function evolves with the change of weight w11, a partial
derivative ( ∂L

∂w11
) needs to be calculated. It can be done using the chain rule:

∂L
∂w11

= ∂L
∂y

· ∂y

∂w11
(4.20)

The output y can be also represented as a multivariable function:

y = f(w4h1 + w5h2 + w6h3 + b4) (4.21)

Accordingly its partial derivative with respect to w11 is:

∂y

∂w11
=

3∑
i=1

∂y

∂hi
· ∂hi
w11

(4.22)

As only h1 depends on w11, it can be simplified as:

∂y

∂w11
= ∂y

∂h1
· ∂h1
w11

(4.23)

And the loss function partial derivative can be re-written as:

∂L
∂w11

= ∂L
∂y

· ∂y
∂h1

· ∂h1
∂w11

(4.24)

The required derivatives ∂y
∂h1

and ∂h1
∂w11

are calculated according to the formulas:

∂y

∂h1
= w4 · f ′(w4h1 + w5h2 + w6h3 + b4), (4.25)

∂h1
∂w11

= x1 · f ′(w11x1 + w12x2 + b1), (4.26)

where f ′ is the derivative of the activation function.
This process is called backpropagation. In a similar way, the partial derivatives can

be calculated for all the weights and biases of the model and further extrapolated to
more complex networks.

After the relation between the change in the weight and loss function is derived, a
gradient descent can be applied. The goal is to find the minimum of the loss function by
adjusting the weight in the direction opposite to the gradient as illustrated in Fig. 4.8.

Mathematically, for the considered case it can be represented as follows:

wnew
11 = w11 − α

∂L
∂w11

, (4.27)

where wnew
11 is the new updated weight and α is a parameter called “learning rate” that

controls how fast the learning is performed.
In a more general case, the equation is written as:

Wnew = Wprevious − α∇WL, (4.28)

where Wnew,Wprevious are updated and old trainable parameters respectively and ∇WL
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Figure 4.8: Schematic illustration of a gradient descent, which aims to find the minimum
of the loss (cost) function.

is a vector of partial derivatives.
In the previous equations, L is represented as an average loss function on all of the

training data samples:
L = 1

n

∑
x

Lx, (4.29)

where x represents one data sample and n is the overall number of samples.
However, the datasets used to train neural networks can be extremely large. Thus,

calculating the gradient for the whole dataset before updating the weight can be inefficient
and computationally exhaustive. In order to mitigate this problem, a technique called
mini-batch gradient descent can be used. In this case, the parameters of the model are
updated on a small random subset of a training dataset called a “batch”.

In the context of this document, other extended versions of the gradient descent
optimization algorithm are used:

• Adaptive momentum estimation (Adam) [100]. This algorithm also uses subsets to
perform the training. The difference is that the Adam optimizer adapts the learning
rate to each trainable parameter of the model instead of keeping it constant. It is
one of the most commonly used algorithms in deep learning.

• LAMB [101]. This optimization algorithm was specifically designed to train the
data on very large batch sizes.

4.3.3 Optimization techniques

Hyperparameters

The training process described above is dedicated to finding the best possible set of
trainable parameters of the model. However, there is another type of internal variable,
called “hyperparameters” that can not be inferred by the model itself. These values are
used to control the learning process and have to be selected with human input.

Hyperparameters play a crucial role in neural networks: they affect model performance,
training and inference times, and computational cost. They can be divided into two
groups: 1) parameters determining the structure of the network and 2) parameters
controlling how the network is trained.

1. Structure of the model.
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• Number of hidden layers and nodes. These are one of the most important
hyperparameters determining the final performance of the network. The
balance has to be found between using too many layers and nodes, which
can result in overfitting, and not using enough, which leads to sub-optimal
performance.

2. Network training.

• Learning rate. This parameter has already been mentioned when discussing
gradient descent in relation to Eqs. (4.27) and (4.28). It controls how fast the
training is performed. If the learning rate is too small, the training will take
a long time. On the other hand, if it is too high, the minimum of the loss
function might not be achieved.

• Number of epochs. This parameter defines how many times all the samples
of the training dataset went through the model. A number of epochs is chosen
based on the validation loss: when it is not improving for several epochs, the
training is stopped.

• Batch size. This parameter has also been mentioned before when discussing
the gradient descent. It controls how many samples the model processes
before updating weights and biases. The large batch size can cause problems
in terms of computational cost and memory limits, while the small batch size
takes a longer time to train and can introduce more noise in the gradient
calculation, thus, preventing the network to reach the optimal minimum.

• Dropout rate. It is one of the regularization techniques that helps to mitigate
overfitting [102]. The idea is that each individual node of the model can be
excluded from a training cycle with a probability (1-p), where p is a dropout
rate.

The best set of hyperparameters is usually inferred from the performance estimated
on the validation dataset. As mentioned earlier, to avoid the associated bias, the final
results for the models are presented on a separate test dataset.

Bayesian optimization

There are various methods that can be used to find the optimal hyperparameters, such as
manual search or random grid search. In the work presented in this document, Bayesian
hyperparameter optimization [103] is chosen as the preferred approach.

It is an automatic technique, where the algorithm aims to construct a probabilistic
model that establishes a relationship between hyperparameters and the loss function
evaluated on the validation dataset. By doing so, the Bayesian algorithm can identify
the promising regions within the hyperparameter space that are worth exploring. As the
algorithm refines its prediction with each training iteration, it progressively improves the
selection of hyperparameters, leading to the best model performance.

4.3.4 Transfer learning

Transfer learning (TL) is another widely-used technique for neural networks. Its key
concept involves leveraging knowledge gained from solving a specific broad problem to
tackle a different but related task. It can be especially useful in applications where the
amount of data for a more narrowly focused problem is limited.

Within the context of this document, TL is employed to introduce a new target value
into the model while maintaining excellent performance achieved for already existing
targets (see Chapter 5). For this purpose, the following steps are executed:
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1. A model is trained and optimized on a large dataset to predict specific targets that
are relevant to the final problem.

2. The weights and biases that are associated with the components of the model
that are unrelated to the final problem are “frozen”, meaning they will not change
during the subsequent training.

3. The model is then trained on the new dataset that is specifically tailored to address
the final problem, enabling it to adapt and solve the task effectively.

4.4 Selected types of Neural Networks
In this section two types of neural networks will be discussed: convolutional neural
networks (CNNs), which are primarily used for image recognition tasks, and graph
neural networks (GNNs), which can operate on graph-structured data. Additionally, a
brief introduction to the Self-Attention layers is given. These algorithms are further
implemented in Chapters 5 and 6 for calorimeter reconstruction.

4.4.1 Convolutional Neural Networks

CNN is a type of artificial neural network that is specifically designed to process data
that has a grid-like structure (e.g. an image) [104]. It is dominantly used for various
applications in computer vision, like medical image analysis, recommender systems,
image segmentation and classification, etc.

The immense popularity of CNNs is explained by their superior ability to identify
complex patterns in images and make predictions based on them. A CNN architecture
typically consists of three main building blocks, each dedicated to a specific task: 1)
convolutional layer, 2) pooling layer, and 3) fully-connected layer. The first two perform
the feature extraction while the last one is used to obtain the final output (classification
or regression target). Multiple convolutional and pooling layers are usually stacked
together followed by one or several fully connected layers to achieve the final architecture.
An example of a basic CNN for image classification is presented in Fig. 4.9.

Figure 4.9: Schematic illustration of a convolutional neural network architecture used
for image classification [105].
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Convolutional layer

A convolutional layer is an essential component of any CNN architecture. Its purpose is
to extract valuable features from an image using a linear operation known as convolution.

A convolutional layer takes an image as input and performs a dot product between
its local field and a special matrix with trainable parameters called a “kernel” or “filter”.
The size of a kernel is a hyperparameter and it usually varies from 3x3 to 7x7. After one
region of an image has been processed, a kernel moves to the next area. The distance
between two successive kernel positions is also a hyperparameter of the layer known
as a “stride”. The values of the stride are usually kept small at one or two pixels. As
the kernel progresses, it processes different regions of the image, creating a feature map
that indicates the presence of specific features. This process is illustrated in Fig. 4.10.
Following the convolution, an activation function is applied to introduce non-linearity.

Figure 4.10: Schematic illustration of a convolution operation between an image and a
kernel [106].

The key aspect of a convolutional layer is weight sharing, where the same kernel is
used across all positions of the image. This approach enables the network to efficiently
search for a specific feature within the input. By employing multiple different kernels,
feature maps are generated to represent various characteristics of the image. The overall
number of kernels is another hyperparameter of a convolutional layer.

Furthermore, several convolutional layers can be stacked on top of each other. In
this case, as one layer feeds its output to the next one the model progressively captures
increasingly complex and abstract features of the input image.

Pooling layer

A pooling layer provides a downsampling operation to reduce the dimensionality of
the feature maps created after the convolution. A pooling operation involves sliding
a two-dimensional window over the feature map and summarising the features falling
within the area covered by the window. There are no learnable parameters in the pooling
layer, as the size of the window and the stride are hyperparameters. There are two types
of pooling operations:

1. Max Pooling. The maximum element is chosen from the area of the feature map
covered by the pooling window.

2. Average Pooling. Computes the average of the elements of the feature map
covered by the pooling window.

An example of a pooling layer is presented in Fig. 4.11.
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Figure 4.11: An illustration of a pooling operation performed with Max and Average
pooling [107].

The main benefits of using a pooling layer are: it reduces the number of trainable
parameters and it makes the model more robust to small variations in the feature
positions in the image as it produces a summary of each processed region.

Fully-connected layer

The output of the final convolutional or pooling layer is typically flattened in a one-
dimensional vector (sometimes called a vector of latent features) and passed through a
single or several fully-connected (or dense) layers. These layers were already previously
discussed in the context of an FNN: each input is connected with an output by a learnable
weight.

The final dense layer is constructed in a way that fits the desired target. For example,
for a binary classification task, the final dense layer consists of one node with a sigmoid
activation function. In this case, a binary cross-entropy loss function should be used.
The training of a CNN is done in a similar way as for an FNN using backpropagation
and gradient descent to obtain the learnable parameters of the convolutional and dense
layers.

4.4.2 Graph Neural Networks

The Graph Neural Network (GNN) is a relatively new but rapidly evolving model
designed to operate and analyze graph-structured data [108]. The key distinctive feature
of GNN is the message-passing (MP) technique, enabling the exchange of information
among network inputs, as schematically shown in Fig. 4.12.

Figure 4.12: Illustration of message-passing procedure [109].

GNNs recently gained significant popularity in high-energy physics applications
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(e.g. [110], [111]) due to the following factors :

• GNNs can effectively handle sparse data coming from complex detector geometries.

• They can be applied to non-Euclidean data with variable input sizes.

Definitions

Before exploring how GNN operates, it is essential to define a graph and related concepts.

Figure 4.13: Schematic representation of a graph [112].

A graph is a mathematical structure consisting of nodes that contain object features
and edges that reflect the relationships between the nodes. Mathematically, a graph
can be represented by a N × D feature matrix X, where N is the number of nodes
and D is the number of features. The relationship between nodes can be given by an
adjacency matrix (A) — a square matrix with elements indicating whether the pairs of
nodes are connected in the graph. An adjacency matrix can also incorporate additional
information, such as the distance between the nodes instead of only the presence of the
edge.

Architecture

The main goal of a GNN is to extract information from the input graph and provide
predictions for individual nodes, edges, or the entire graph. Multiple architecture choices
exist for graph representation, depending on the specific problem and data characteristics.
One of the widely used models is the Graph Convolutional Network (GCN) [113]. In
this case, to incorporate the message-passing feature, the forward pass from Eq. 4.18
should be modified to account for the adjacency matrix as follows:

f(H(l), A) = σ(AH(l)W (l)) (4.30)

Introducing the adjacency matrix to the equation means that all the features of neigh-
boring and connected nodes are aggregated. However, in this formulation, the features
of the graph node in consideration are not directly involved. To address this, a self-loop
is included by adding an identity matrix (I) to A. Furthermore, the adjacency matrix
should be normalized to ensure the preservation of the scale of the feature vectors. In
GCN, it is done using the following equation:

D− 1
2 ÂD− 1

2 , (4.31)

where Â = A+ I and D is the diagonal node degree matrix of Â.
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Taking these adjustments into account, the final propagation rule becomes:

f(H(l), A) = σ(D− 1
2 ÂD− 1

2H(l)W (l)) (4.32)

With each message-passing layer, the network expands its knowledge of the nodes,
effectively enabling information sharing between more distant neighbors.

In other implementations of graph neural networks, different variants of message-
passing can be introduced, such as summing, averaging, or concatenating the neighboring
features.

Graph Highway Network

GCNs are effective and efficient models used for graph-structured data. However, they
suffer from a so-called “over-smoothing” problem, when after stacking multiple GCN
layers (e.g. 2 or 3 layers), the learned latent features from different graph nodes converge
to alike vectors as a result of learning the information about the neighbors.

In order to mitigate this issue, a modified version of GCN, called Graph Highway
Network (GHN) is introduced. It uses gating units to automatically balance the trade-off
between maintaining the specifications of a selected node and aggregating the knowledge
about the neighbors. Such type of architecture allows to use deep (multiple layers) neural
networks on graphs without degrading the performance. A detailed description of a GHN
can be found in Ref. [114].

4.4.3 Self-Attention layers

Self-Attention (SA) layers, initially developed for language modeling tasks, are another
neural network architecture that recently gained popularity. The key feature of these
layers is the ability to help the network to focus more on specific parts of the input that
are most correlated with the desired output.

A simplified description of the self-attention mechanism for a task with multiple (n)
input vectors is as follows:

1. Three distinct matrices called key, query, and value are created. The weights of
these matrices are learnable parameters of the network.

2. For each input vector, representations for the key (Q), query (K), and value (V )
are obtained by multiplying the vector with the corresponding matrix.

3. For each input vector:

• Attention scores are evaluated as a dot product between the key representation
Q of the considered vector and query representations K of each of the input
vectors i (including itself) and further passed through a softmax function:

Attentioni(Q,Ki) = softmax
(
QKT

i

)
(4.33)

• The values representation V of the input vectors are multiplied by the respec-
tive attention scores, and the resulting vectors are summed up:

n∑
i

Vi · Attentioni(Q,Ki)i (4.34)

4. The procedure is repeated for each of the input vectors, and the output of the
Self-Attention layer is the updated weighted vectors.
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A detailed description of Self-Attention layers can be found in Ref. [115]. Self-
Attention layers are beneficial because they allow neural networks to put more importance
on relevant parts of the input, emphasizing key relationships, and, as a result, improving
their ability to capture complex patterns in various tasks.
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5 SuperClustering reconstruction in the
ECAL with Deep Learning

The main purpose of the ECAL reconstruction is to be able to identify and correctly
evaluate the kinematic properties of electrons and photons. They can be retrieved
from the energy patterns left in the detector by these particles. The process starts by
combining the reconstructed deposits (PFRechits) into clusters of energy (PFClusters),
each of them representing single or multiple overlapping particles. A detailed description
of the current algorithm is presented in Chapter 2, and a DeepCluster model created for
this task is introduced in Chapter 6.

Figure 5.1: Schematic illustration of an elec-
tron emitting a bremsstrahlung photon be-
fore entering the calorimeter [116].

However, before reaching the calorime-
ter, an electron or photon may interact
with the material in front of the ECAL,
resulting in the production of multiple par-
ticles. In this case, a photon may convert
to an electron-positron pair while an elec-
tron may emit bremsstrahlung photons.
As a result, multiple PFClusters, originat-
ing from one initial particle, will appear
in the ECAL (more details in Chapter 2).

To correctly reconstruct the energy of
the primary electron or photon, all the
produced PFClusters must be combined
into a group called a SuperCluster (SC).
In the CMS experiment, it is done using a
geometrical algorithm called “Mustache”,
described in Chapter 2.

Even though this algorithm has shown
good performance for the current ECAL
reconstruction, it still has a number of

limitations, particularly, in filtering pileup interactions and noise. This issue will become
more significant during Run 3 and subsequent HL-LHC due to the aging of the detectors
and increased luminosity. In order to address it, novel Machine Learning approaches are
being explored.

In this chapter, I will present an innovative DeepSC model, developed for SuperClus-
tering reconstruction in ECAL. It is primarily based on Graph Neural Networks (GNNs)
and Self-Attention (SA) layers. In the first section, the details of the model development
and training are presented, including the dataset that is used and the architecture of
the DeepSC network. The performance of the model in terms of energy resolution along
with a comparison to the “Mustache” algorithm is presented in Section 5.2. Additionally,
DeepSC network is able to predict whether the reconstructed SC originated from a
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photon, electron, or jet. This new feature is referred to as particle identification (ID)
and its development, associated model training, and obtained results are presented in
Section 5.3.

5.1 DeepSC model and datasets description
The significant drawback of the “Mustache” algorithm comes from the fact that it is an
entirely geometrical approach, meaning that all PFClusters within a specified area are
aggregated to form an SC. It results in the contamination of energy of the final object
with noise and pileup. As discussed in Chapter 2, an ML technique (Boosted Decision
Tree) has been already implemented in order to improve energy resolution. However,
leveraging more advanced Deep Learning methods, specifically operating on low-level
information such as PFRechits, can provide additional benefits.

In particular, GNNs are considered for the SuperClustering reconstruction. Their
main advantages for the presented task are:

• GNNs can easily process varying input sizes, which is important as the number of
PFClusters, determining the input size for the model, is different for each SC.

• GNNs enable communication between different PFClusters through message-
passing, providing additional information to the network and improving overall
performance.

Another widespread technique used in the DeepSC development is Self-Attention (SA)
layer. It helps the network to focus on the most important information.

The DeepSC model takes the features of all PFClusters within a predefined area
as input. Unlike the “Mustache” algorithm, the network performs a selection of the
PFClusters in order to create an optimal SC. One of the outputs of the model is the
PFCluster score, indicating the likelihood for each PFCluster to belong to the SC.

Furthermore, the model can perform additional tasks such as energy correction
prediction, which can be used instead of applying a BDT on top of the created SC.
This aspect is not considered in the work presented in this document as it is still under
development.

Another output of the model corresponds to the particle ID. It aims to classify the
reconstructed SCs into one of the following groups: originated from prompt photons,
prompt electrons, or hadrons forming jets. Even though, the DeepSC model does not
specifically target jet reconstruction, the identification of PFClusters coming from it can
significantly reduce the background for prompt photons and electrons.

In this section, the dataset used for training and evaluation of the model is described,
including details about the initial data characteristics and the specific input format for
the model. After it, the model architecture is presented, with each component of the
network thoroughly discussed.

5.1.1 Parameters of the datasets

To train the DeepSC model and test its performance, several dedicated datasets are
generated.

The first one is created to target the SC reconstruction. Electrons and photons are
simulated using a full CMS Monte Carlo simulation at 14 TeV. They are generated
uniformly in pseudorapidity and transverse momentum pT = [1, 500] GeV, the corre-
sponding distributions are shown in Fig. 5.2. Pileup is simulated by adding secondary
interactions uniformly distributed in the range 55 to 75 as presented in Fig. 5.3.
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Figure 5.2: Distribution of ET (left) and η position (right) for electrons and photons in
the simulated dataset produced for the DeepSC model. Events are created using a full
CMS Monte Carlo simulation at 14 TeV.

Figure 5.3: Distribution of the number of pileup vertices in the simulated dataset
produced for the DeepSC model. Events are created using a full CMS Monte Carlo
simulation at 14 TeV.

The second dataset is created specifically to develop and test the particle ID feature of
the DeepSC model. The samples of this dataset consist of jets, generated by using quarks
and gluons as initial simulated particles, the occurrence of different parton flavours is
shown in Fig. 5.4. The t-quarks are intentionally removed as the main goal is the light
jet versus photon discrimination.

The jet dataset is also created using a full CMS Monte Carlo simulation at 14 TeV.
The transverse momentum for the generated partons ranges from 1 to 500 GeV, its
distribution is shown in Fig. 5.5 (left). Initially, two different datasets are created: the
first one pT = [1, 100] GeV and the second with pT = [1, 500] GeV. They are combined
together to obtain larger statistics, which explains the distribution shape in Fig 5.5 (left).
The parton pT does not play a crucial role in the model development and testing, a more
important variable is the resulting hadron ET, shown in Fig 5.5 (right). During the
hadronization process, hadrons with low energies are produced more often, which can be
seen from their ET distribution. The pileup levels are the same as for the e/γ dataset:
from 55 to 75 additional interactions. To be able to test the discrimination between
prompt photons and non-isolated ones, every sample in the jet dataset is required to
have at least one photon pair coming from a π0.

The simulated transverse energy distributions for photon, electron and jet datasets
are shown in Fig. 5.5 (right) as well. The discrepancies between photon, electron, and
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Figure 5.4: Distribution of the flavours of the generated partons in the jet dataset.

hadron ET spectra are further addressed in Section 5.3.

Figure 5.5: On the left: pT distribution of the simulated partons for the jet dataset. On
the right: distribution of simulated transverse energy ET for hadrons in the jet dataset
and for electrons and photons in the expanded e/γ dataset.

The truth definition

The DeepSC model, being a supervised machine learning algorithm, requires accurate
identification of the ground truth information. In the case of an SC, it means correctly
associating all the PFClusters in the ECAL to the particle they originated from (it can
be an electron, photon, or hadron), while excluding the ones representing noise and
pileup. It is a non-trivial task as energy deposits coming from different particles can
potentially overlap within the same PFCluster.

The first step is to develop a procedure to associate each PFCluster with a generated
particle. The goal is to achieve the best possible resolution between energy, evaluated
by summing up all the associated PFClusters, and simulated energy of the generated
particle.

To perform this association, a new object called a CaloParticle is introduced [117].
CaloParticle is defined for electron, photon, hadron, and also out-of-time pileup particle.
It tracks the EM shower produced from the simulated particles and records the information
about the energy deposits (simEnergy) in each ECAL crystal in the form of simHits.
This information allows precise matching between PFClusters and their corresponding
CaloParticles.

Each CaloParticle can produce multiple PFClusters and, consequently, be matched
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to several of them, while in this method each PFCluster can only have one associated
CaloParticle, even if it contains overlapping energy deposits.

The matching is performed as follows:

• For each PFCluster:

1. For each CaloParticle k containing at least one simHit in a PFCluster, a special
matching variable called simFraction is calculated according to Eq. (5.1). It
represents the energy fraction left by the CaloParticle k in the considered
PFCluster.

simFractionk =
∑
nE

simHit
k

Etotal
k

, (5.1)

where n is the total number of simHits from CaloParticle k in a considered
PFCluster, EsimHit

k is the amount of energy deposited by CaloParticle k in the
crystal n, Etotal

k is the total energy deposited in the calorimeter by CaloParticle
k.

2. The CaloParticles are sorted based on the simFraction.
3. The PFCluster is associated to the CaloParticle with the highest simFraction.

• For each CaloParticle:

1. The list of the associated PFClusters based on the criteria previously described
is kept. All non-assigned PFClusters are considered to be noise.

2. The PFClusters are sorted by simFraction.
3. The PFCluster with the highest simFraction is called caloSeed.

As a result of the association procedure, each PFCluster is assigned to a specific
CaloParticle, and, in turn, for each CaloParticle a caloSeed is defined. The caloSeed and
all the PFClusters associated to the same CaloParticle form an object. The PFClusters
that did not pass a pre-defined simFraction threshold are excluded from it. This is done
in order to eliminate PFClusters with most of the energy coming from PU or noise. The
threshold depends on the energy and position of the caloSeed and is optimized based on
a collection of 1M caloSeeds.

From this constructed object the energy of the initial simulated particle can be
evaluated by summing up the energies of the included PFClusters. The achieved estimate
is compared with the simulated particle energy in order to estimate the ideal resolution.

These results are further compared with the raw energy resolution obtained from
Mustache SuperClustering in Fig. 5.6. The estimations performed with the truth-matched
PFClusters represent the maximum improvement in the resolution that the DeepSC
model can possibly achieve with the described truth definition.

The training dataset

After the truth definition has been established, a training dataset can be created.
Supplying the full ECAL calorimeter as an input to the model will be inefficient and
computationally exhaustive, Instead, each input to the DeepSC consists of a caloSeed
and PFClusters that fall in the defined rectangular window around it. The dimensions
of this window are always chosen to be larger than the area used for the “Mustache”
algorithm.

The size of the window depends on the position of the caloSeed in the η coordinate.
The distributions of |∆η|, |∆ϕ|, the distance from the caloSeed to the window border, are
presented in Fig. 5.7. These parameters are defined from the truth-generated information.

The truth labeling of each sample of this dataset proceeds as follows:
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Figure 5.6: The best possible energy resolution that can be obtained with the truth
matching compared to the uncorrected energy prediction of the Mustache algorithm for
electron (left) and photon (right). Shown in bins of the energy of the generated particle
(EGen

T ) [117].

• The list of all PFClusters is ordered by ET.

• The iteration is performed on all the possible caloSeeds (PFClusters with ET >
1 GeV):

– If the considered PFCluster is associated with a CaloParticle with at least 1%
SimFraction, then it is saved as matched to the CaloParticle and discarded
otherwise. The PFCluster is also excluded if it already belongs to a window
defined by another caloSeed.

– If the PFCluster passes the previous criterion, it is considered as a caloSeed
and a new window is created around it.

– All the PFClusters falling inside this window are saved.

• For each PFCluster in the window a truth association is done:

– If the PFCluster is not associated to the same CaloParticle, it is labeled as
out-the-SC.

– Otherwise, if the PFCluster passes the simFraction threshold, it is labeled as
in-the-SC.

For each training sample, the parameters of the caloSeed and all the PFClusters
falling in the associated window represent input to the network:

• PFCluster information:

– energy: E, transverse energy: ET, coordinates in the ECAL: (η, ϕ, z), number
of crystals, caloSeed flag.

– Information relative to the seed: ∆η, ∆ϕ,∆E, ∆ET

– List of PFRechits for each PFCluster, including their position and deposited
energy.

• Summary window features: the minimum, maximum and average values of
ET, E, ∆η, ∆ϕ, ∆E, ∆ET of all the PFClusters in the window.
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Figure 5.7: Parameters defining the detector window dimensions used to select PFClusters
around a seed: |∆η| (on the left) and |∆ϕ| (on the right) depending on the η-position of
the seed [117]

5.1.2 Model architecture

The DeepSC model is the first ML method developed for SuperClustering reconstruction
in CMS. The goal of the network is threefold:

1. Identify which PFClusters should be grouped together to form an optimal SC.
Represented by PFCluster classification output in the model.

2. Simultaneously predict the energy correction coefficient in order to improve the
resolution. Represented by energy calibration output in the model.

3. Perform particle ID for the reconstructed SC. Represented by window classification
output in the model.

In this document, the focus is on the 1st and the 3rd tasks as the energy correction
prediction is still being investigated.

To accomplish these goals, a complex network architecture is developed based on
GNNs and SA layers. The full architecture is presented in Fig. 5.8. In order to better
understand the role of each of its components, a detailed decoupling of the parts of the
model is discussed further:

1. PFRechits encoding. All the PFRechits in the input window are processed by a
Graph Convolutional Network (GCN) layer, which creates PFRechits summary
vectors. One vector is made for each of the PFClusters and it represents the
encoded information about PFRechits. The GCN is used in this case to enable
communication between PFRechits from close-by PFClusters.

2. PFCluster features encoding. PFRechits summary vectors from the 1st step are
combined with input PFCluster features and passed through a simple Dense Neural
Network (DNN). The resulting vector represents encoded summary information
about each of the PFCluster in the window.

3. Graph building and message-passing. The next step is to enable information sharing
between neighboring PFClusters in the window through message passing. In order
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to do this, a graph has to be introduced or, more specifically, its nodes and edges
must be defined.
In this model, the nodes of the graph are PFClutsters and the edges (or connections
between the nodes) are decoded in the adjacency matrix, which is constructed from
the Euclidean distance between PFClusters. The message passing is performed by
Graph Highway Network (GHN) and the SA layer that process the created graph.
As a result, the PFCluster summary vectors are updated to include information
about the neighboring graph nodes.

4. PFCluster classification output. To obtain the final output for each of the PFClus-
ters, the updated PFCluster summary vectors from step 3 are passed through a
DNN.
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5. Window classification output. For the window classification, the updated PFCluster
summary vectors from step 3 are additionally passed through another SA layer
in order to encode information from all the PFClusters in the window in a single
vector. It is further combined with the input window summary features and passed
through a DNN.

6. Energy calibration factor. For energy calibration output, the updated PFCluster
summary vectors are combined with the PFRechits summary vector from step 1
and cluster classification output and passed through another SA layer and a DNN.

In this kind of architecture every part of the model has a specific and dedicated role:

• Dense layers are used to find the patterns in the data and extract the summary
vectors or to provide the necessary output dimensions

• SA layers help the network to combine information from multiple close-by nodes in
one vector by focusing on the most important features.

• GCN and GHN are used to enable message-passing between the close-by PFClusters.

The final outputs of the model are 1) for each PFCluster in the input window:
a probability score to belong to an SC, which is compared to the true labeled information
(out-the-SC or in-the-SC); 2) for each window: energy calibration factor and window
score indicating from which type of caloParticle an SC has originated from.
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Figure 5.8: DeepSC model architecture. The input to the network consists of selected
features and rechits of the clusters that fall into a predefined geometrical window. Using
dense layers the latent features are extracted from the initial input, they are processed
and combined together by different types of graph architectures: Graph Convolutional
Network (GCN) and Graph Highway Network (GHN). Self-Attention layers are used as
well to help the network with focusing on the most important features/inputs. The final
outputs are the following: information on whether each of the clusters belongs to the
SuperCluster (cluster classification), the type of particle from which the SuperCluster
originated (window classification), and energy correction (energy calibration factor) [117].

5.2 Performance for the energy resolution
The primary objective of the new model is to accurately identify clusters belonging to the
SC while effectively filtering out noise and PU. The dataset used for this task comprises
2M electron samples and 2M photon samples. They are divided into training, validation,
and test sets, with proportions of 50%, 30%, and 20% respectively. The network is
trained using Adam optimizer with a batch size of 512. The binary cross-entropy loss for
the PFCluster classification and the categorical cross-entropy for window classification
are used. As the jet dataset is not used in this training, the window classification is
performed between photon, electron, and noise. The training and validation losses are
shown in Fig. 5.9.

Figure 5.9: Training and validation losses for the DeepSC model [117].
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The performance of the model in terms of energy resolution is compared to the
“Mustache” algorithm. The evaluation is done using raw energy results, without any
additional energy corrections applied to either of the algorithms.

The resolution is calculated by analyzing the distribution of the ratio between the
summed energies of all PFClusters selected by the algorithm and the simulated particle
energy. The resolution is determined by σ = [quantile(0.84) − quantile(0.16)]/2. The
results are presented in bins of ET of the generated particle and η in Fig 5.10 and in bins
of EGen

T and number of PFClusters in the window in Fig. 5.11 for both electrons and
photons. Across all the presented results, the DeepSC model consistently outperforms the
“Mustache” algorithm. The advantage is the clearest for low energies, where “Mustache”
reconstruction is contaminated by PU and noise.

Figure 5.10: Energy resolution comparison between the DeepSC and “Mustache” algo-
rithms in bins of generated particle energy EGen

T and η for electrons (right) and photons
(left) [117].

Figure 5.11: Energy resolution comparison between the DeepSC and “Mustache” al-
gorithms in bins of generated particle energy EGen

T and number of PFClusters in the
window for electrons (right) and photons (left) [117].
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Furthermore, the results are also shown for various simulated PU levels, as presented
in Fig. 5.12. The DeepSC algorithm achieves greater robustness to the PU, particularly
at low energies.

Figure 5.12: Energy resolution comparison between the DeepSC and “Mustache” al-
gorithms in bins of the number of pileup vertices for electrons (right) and photons
(left) [117].

5.3 Particle flavour identification
After the excellent results for the energy resolution with the DeepSC model were achieved,
the network was further developed to include particle ID, classifying SCs between photons,
electrons, and jets.

As discussed in Chapter 2, current e/γ selection in particle flow is done based on
various ML methods: a BDT for electrons and a DNN for photons. Both of these models
use high-level information such as the final object pT, its shower spreads, its energy
deposits in different detectors, etc.

In the DeepSC model, the particle ID is performed using low-level information such
as PFRechits. Moreover, the classification of the objects is performed only based on their
signatures in the ECAL without taking into account other detectors (tracker, HCAL).

Two primary objectives drive the development of the particle ID in the DeepSC:

1. Identification of PFClusters originating from jets. The SuperClustering
algorithms are specifically designed for reconstructing electrons and photons and
are not applied to jets. However, hadrons can deposit energy in the ECAL, serving
as a background for prompt photons and electrons (discussed in more detail in
Chapter 2). The DeepSC model aims to help mitigate this background with the
new feature.

2. Discrimination between photons and electrons. The presence of a distinct
track signature in the pixel tracker serves as the main indicator for discriminating
between photons and electrons as discussed in Chapter 2. The DeepSC model does
not aim to substitute this approach but rather provides additional information. It
can be especially beneficial for cases where the track information is absent or not
reconstructed properly.
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5.3.1 Training details

For the particle ID development, the model uses the jet dataset and high-energy e/γ
dataset with equal proportions between all three flavours. Overall, the samples are
distributed as 900k/200k/100k for the training, validation, and test datasets respectively.

The input windows are created in the same way as discussed in Section 5.1.1, where
hadrons represent caloParticles for the jet dataset. The model target for particle ID is
a hot-encoded vector of size 3 ([1, 0, 0] for jet, [0, 1, 0] for electrons, and [0, 0, 1] for
photon). The output of the model in this case is called window classification and, in
accordance with the target, it is a vector of size 3 as well, where each entry evaluates a
window score, indicating the likelihood of an SC to originate from a hadron (jet score),
electron (electron score), and photon (photon score), respectively. Each of these values
can vary from 0 to 1 and they sum up to 1.

As the DeepSC model has been previously optimized on the e/γ, the transfer learning
technique (see Chapter 4) is used for particle ID training. In this way, the energy
resolution performance for EM particles is not degraded while adding the new feature.
This process is carried out in three steps:

1. PFClustering classification training. The model is only trained on the e/γ
samples as described in the previous section. In this way, the optimal network
weights for the PFCluster classification are obtained.

2. Freezing the weights. The weights corresponding to the network components
responsible for PFCluster classification and energy regression are frozen. This
means that they will remain unchanged during subsequent training stages.

3. Particle ID training. The second training phase is performed using the combined
dataset comprising photons, electrons, and jets. During this training, only the
network weights directly related to window classification are optimized. This
approach results in the best performance for energy resolution and particle ID.

Table 5.1 shows a comprehensive overview of the model’s architecture, the number of
parameters in each layer, and whether they are trainable for particle ID.

Layer Nweights Trainable

GCN (1) + DNN (2) + SA-layer (3) 30,775 no

GHN (3) 33,344 no

DNN (4) 12,481 no

SA-layer (5) 41,344 yes

DNN (5) 3,427 yes

SA-layer (6) + DNN (6) 47,349 no

Table 5.1: The overview of the layers in the DeepSC model. Numbers of weights for
each layer are given and whether they are trainable for particle ID. The numbers in the
parentheses after the name of the layer indicate the step of the model description from
Section 5.1.2.

The model is trained for 10 epochs using Adam optimizer (learning rate = 0.001) and
a batch size of 512. It does not require a lot of epochs as it has been already optimized
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and only a small amount of network weights changes. Categorical cross-entropy is used
as a loss function for the window classification.

The results of the model training are presented in Fig. 5.13. These plots illustrate
the distribution of the window scores output for different flavors: jet scores for e, γ, and
jet datasets (left); and photon scores for e, γ datasets (right).

Figure 5.13: Jet (photon) likelihood score distributions obtained by the DeepSC model
applied on the photon, electron, and jet (photon and electron) datasets presented on the
right (left).

Figure 5.14: ROC curves obtained from the classification of the SuperClusters originated
from photon against jet performed with DeepSC model. The discrimination variable is
chosen to be the jet score. The ROC curves are shown in bins of the transverse energy
ET of the caloParticle (photon or hadron).

The discrimination capabilities of the DeepSC model are quantified using Receiver
Operating Characteristic (ROC) curves [118]. They represent the true positive rate
(TPR, rate of correctly identified samples or signal efficiency) against the false positive
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rate (FPR, rate of misidentified samples or fake rate) at different thresholds set on the
predicted window scores. The area under the ROC curve (AUC) provides an evaluation
of performance along all the possible thresholds. For the perfect classifier AUC = 1
or 100%. The ROC curves for photon vs. jet discrimination in different caloSeed ET
bins are presented in Fig. 5.14, where the jet score is used as a discriminating variable.
Similarly, the ROC curves for photon vs. electron discrimination are shown in Fig. 5.15,
where the photon score is used as a discriminating variable.

Figure 5.15: ROC curves obtained from the classification of the SuperClusters originated
from photon against electron performed with DeepSC model. The discrimination variable
is chosen to be the photon score. The ROC curves are shown in bins of the transverse
energy ET of the caloParticle (photon or electron).

The DeepSC model shows excellent performance for photon vs. jet discrimination:
AUC > 95% for all energy bins between 1 and 100 GeV with the maximum value at 98%
for ET = [50, 75] GeV. Distinguishing between electrons and photons is more challenging
for the model considering that only information from the ECAL is taken into account.
Nevertheless, the DeepSC network still demonstrates noteworthy discrimination in this
case: AUC > 56% for all energy bins between 1 and 100 GeV with the maximum value
at 64% for ET = [50, 75] GeV.

5.3.2 Dataset energy re-weighting

One potential problem for the particle ID that has to be addressed is the difference in
the ET spectra between e/γ and jet datasets. The hadron ET distribution in Fig. 5.5
(right) is skewed to the low energies, while for photons and electrons, the distribution is
flat.

This discrepancy will further translate into the total energy of the input, calculated as
the sum of energies of all PFClusters in the selected input window, as shown in Fig. 5.16
(left). Consequently, the network may take into account this information when making
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Figure 5.16: The distributions of the transverse energy sum (Etot
T ) of PFClusters in input

windows for the DeepSC model. They are shown for photon, electron, and jet samples
without (left) and with (right) re-weighting coefficients applied on the jet dataset.

a decision about the particle ID, and for any low-energy SC, it will be more likely to
assign a higher jet score.

Figure 5.17: ROC curves obtained from the classification of the SuperClusters originated
from photon against jet performed with DeepSC model. The jet dataset is re-weighted
for the training based on the ET of the caloSeed. The discrimination variable is chosen
to be the jet score. The ROC curves are shown in bins of the transverse energy ET of
the caloParticle (photon or hadron).

In order to avoid this bias and create a robust network, the re-weighting coefficients
for jet samples are calculated in bins of the caloSeed ET. For a specific energy range ∆,
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the coefficient is estimated as follows:

w∆ = N ele
∆

N jet
∆
, (5.2)

where N ele
∆ , N jet

∆ are the numbers of samples with caloSeed energy falling in ∆ in the
electron and jet datasets, respectively.

The re-weighted dataset obtained by applying the appropriate coefficients from
Eq. (5.2) on the samples is shown in Fig. 5.16 (right). The new Etot

T distributions are
similar for all three flavours.

Figure 5.18: ROC curves obtained from the classification of the SuperClusters originated
from photon against electron performed with DeepSC model. The jet dataset is re-
weighted for the training based on the ET of the caloSeed. The discrimination variable
is chosen to be the photon score. The ROC curves are shown in bins of the transverse
energy ET of the caloParticle (photon or electron).

These coefficients are incorporated into the model as the weights of the loss function
for each of the jet data samples. The model is subsequently re-trained. The obtained
ROC curves are shown in Fig. 5.17 for jets vs. photons and in Fig. 5.18 for photons
vs. electrons. The performance slightly differs compared to the baseline non-weighted
training: for electron vs. photon it is improved with weights by 7%, 1.5%, 3% and 0.5%
for ET < 25 GeV, ET = [25, 50] GeV, ET = [50, 75] GeV and ET = [75, 100] GeV
respectively. The discrepancy for the jet vs. photon discrimination is less than 1% for
all energy bins.

5.3.3 Comparison with particle flow selection

The final DeepSC model trained for particle ID is incorporated into the software of
the CMS experiment and further compared to the currently used DNN for photon vs.
jet discrimination (discussed in Section 2.4.5). Both models are evaluated on the two
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additional datasets (consisting of photons and jets), in which particles are generated
with pT = [1, 100] GeV, and the pileup levels are from 55 to 75. The samples undergo
the full chain of reconstruction in the CMS software. The ROC curves for both models
in bins of the reconstructed particle pT are presented in Fig. 5.19.

Figure 5.19: ROC curves obtained from the classification of the SuperClusters originated
from photon against jet performed with DeepSC model and particle flow DNN. The
discrimination variable for the DeepSC model is chosen to be the jet score. The ROC
curves are shown in bins of the transverse momentum pT of the caloParticle (photon or
hadron).

The DeepSC model slightly outperforms DNN in three energy bins: by 5%, 0.3%,
and 0.3% for pT < 25 GeV, pT = [25, 50] GeV, and pT = [75, 100] GeV, respectively.
For pT = [50, 75] GeV the classification obtained from the DeepSC model is worse by
2%. It is an outstanding result as the DNN of particle flow additionally uses information
from the tracker and HCAL, unlike the DeepSC model.

The window scores of the DeepSC can be further used as one of the input variables
for the selection algorithms either at the level of particle flow reconstruction or physics
analysis. In order to demonstrate the potential of this approach, three additional
BDTs are trained for particle classification. They use a common set of input variables
(similar to the particle flow DNN as discussed in Section 2.4.5): ϕ, η, hadronic over
electromagnetic ratio, isolation variables, and shower shapes. Each of them incorporates
different additional inputs:

1. BDT with PFDNN : the output of the particle flow DNN classification.

2. BDT with DeepSC ID: the window scores from DeepSC.

3. BDT with both: both particle flow DNN variable and window scores from DeepSC.

The results are presented in Fig. 5.20. The obtained AUC values are the following:
86.7% for BDT with PFDNN, 90.7% for BDT with DeepSC ID, and 91.1% for BDT with
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both. For a background efficiency of 10%, the signal efficiency is improved by more than
20%. A remarkable improvement brought by adding the DeepSC ID output indicates
the ability of the model to bring new information to the reconstruction chain.

Figure 5.20: ROC curves obtained from three BDTs classifying of photons against jets.
The BDTs are trained with a common set of input parameters and, additionally, the
output of the particle flow DNN classification (BDT with PFDNN), the window scores
from DeepSC (BDT with DeepSC IDs), both of these variables (BDT with both).

5.4 Conclusion and perspectives
A novel deep learning method for SuperClustering reconstruction has been developed. The
DeepSC network performs three different tasks: 1) it creates an optimized SuperCluster by
separately classifying PFClusters; 2) it predicts the energy calibration factor that accounts
for the energy losses in the ECAL; 3) it performs a particle ID for each reconstructed
SuperCluster, indicating whether it has originated from an electron, photon or jet.

The performance of the PFCluster classification can be evaluated from the energy
resolution between the energy reconstructed with DeepSC and the simulated energy
of the particle. The reconstructed value is estimated by summing all the energies of
the PFClusters selected by the network. The obtained results were compared with
the “Mustache” algorithm, currently used in CMS for SuperClustering reconstruction.
The network shows superior performance, especially for the low-energy and high-pileup
regions. It highlights the apparent benefits of the DeepSC model for SuperClustering
reconstruction, especially for the end of Run 3 and HL-LHC era.

The DeepSC model will be further tested inside the CMS software to estimate the
performance in terms of timing and computing efficiency. The comparison between the
DeepSC model and the “Mustache” algorithm with the application of energy corrections
is being investigated as well. Separately, additional effort will be put into developing the
energy regression part of the network.

The focus of this thesis was on the particle ID part of the DeepSC model. This
feature was fully developed as part of the thesis, starting from its addition into the initial
model (using transfer learning) to its implementation in the global CMS software and
comparison of the results.

The particle ID allowed the model to predict whether the reconstructed SuperCluster
resulted from a photon, electron, or hadron from the energy patterns in the ECAL. The
model shows excellent performance for jet vs. photon discrimination, and remarkably
achieves some discrimination for electron vs. photon using only calorimeter information.

The particle ID performance of the model for jet/photon classification was compared
with the dense neural network used in particle flow. The DeepSC shows compatible
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performance. This is a remarkable result as the particle flow approach uses additional
information from the HCAL and tracker to make the discrimination.

In future prospects, there are multiple things that can be done for particle ID.
Firstly, incorporating the data from the tracker and HCAL in the model can be explored.
Secondly, the output of the particle ID can be tested as one of the input variables for
the dense neural network of particle flow. In this case, the proof-of-concept study was
already performed by adding the DeepSC model output to an additional BDT classifier,
which resulted in significantly improved jet versus photon discrimination results. Thirdly,
the usage of electron vs. photon discrimination can be investigated for the analysis where
track information is lost or not properly reconstructed.

Overall, the DeepSC model shows very promising results for further usage within the
CMS experiment. It opens new possibilities for improving the resolution of electromag-
netic object reconstruction and the precision of physics analyses.
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6 Clustering reconstruction for standalone
particles in the ECAL with Deep Learning

The process of measuring electromagnetic (EM) objects in ECAL involves a series of
sophisticated steps, beginning with the reconstruction of energy deposits in the calorimeter
and resulting in the formation of the final physical object from the obtained information.
A detailed description of the offline reconstruction procedure can be found in Chapter 2.

The focus of this Chapter is the intermediate step called clustering. It aims to
determine the kinematic properties of individual photons and electrons entering the
calorimeter from the energy patterns they leave in the detector. The current CMS
operation uses the PFClustering algorithm, which analyzes the combination of neighboring
calorimeter crystals (called a cluster) to evaluate both the energy and the entry point of
the initial particle.

While the traditional approach is proven to be efficient and provides excellent
resolution for energy and position reconstruction, it has a limited ability to accurately
distinguish two close-by photons, which can result in several issues. For example, the
PFClustering algorithm struggles to differentiate isolated photons (γ) from neutral pions
(π0), as the latter produce two photons that mimic the energy pattern of an isolated
γ in the calorimeter. Another example is the search for exotic Higgs boson decay
H → aa → 4γ [1], where a is a light scalar or pseudoscalar particle. In this case, the two
photons are often reconstructed as a single particle in the calorimeter as well.

The aim of this work is to address the discussed limitation of the PFClustering
algorithm while also improving the performance in terms of energy and position resolution.
This is achieved by developing a novel machine learning (ML) model, called DeepCluster,
that leverages advanced deep learning techniques such as convolutional (CNNs) and
graph (GNNs) neural networks (described in Chapter 4).

The first part of this Chapter introduces a simulation of a simplified calorimeter that
is used in the subsequent work. Section 6.2 presents the performance of the PFClustering
algorithm on the datasets simulated with this detector. The implementation of the first
version of the DeepCluster model (one-shot CNN), along with encountered setbacks,
is described in Section 6.3. To cope with these setbacks, an improved DeepCluster
model (two-step net), containing two consecutively applied networks, is introduced in
Section 6.4 and the detailed development process is presented. First, for both of these
underlying networks, CNNs are used and later the second one is changed to GNN in
order to mitigate the energy overestimation. Sect ion 6.5 discusses the optimization
techniques implemented to achieve the best-performing model. Finally, a comparison of
the results between the DeepCluster model and the PFClustering algorithm is provided
in the last section, including analysis of photon, electron, and pion datasets.
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6.1 Dataset simulation
To develop a new reconstruction method, a dedicated simulation of a simplified ECAL
detector, called a toy calorimeter, is used. It is created with Geant4 software [119] that
provides access to all the necessary information, such as energy deposits per crystal, and
enables easy control over kinematic properties (energy, direction) and particle type of
the generated objects.

The detailed characteristics of the toy calorimeter are presented in Table 6.1, including
the comparison to the barrel part of the ECAL. The complex cylindrical geometry of the
actual detector is simplified to a rectangular shape, while the material and the size of
the crystals stay identical. The toy calorimeter consists of 51 x 51 crystals that do not
have any tilt.

Description Value (toy calorimeter) Value (ECAL barrel)

Material PbWO4 PbWO4

Crystal size 2.2 x 2.2 x 23 cm3 2.2 x 2.2 x 23 cm3

Detector size 51 x 51 crystals 360 x 170 crystals

Shape Rectangular Cylindrical

Magnetic field None 3.8 T

Material before detector Air ECAL tracker (silicon)

Table 6.1: Description of the toy calorimeter characteristics and comparison to the ECAL
barrel.

In this document, the term dataset refers to the simulated data. One entry to
the dataset is called a sample. Each sample consists of individual events, representing
instances of the simulated EM objects. For example, a photon dataset can consist of
several samples, each of them containing two particles or two events.

Using the toy calorimeter, first, a dataset with only one photon per sample is created.
In this dataset, photons (γ) are simulated perpendicularly to the detector surface. Their
energies are uniformly distributed within the range of 1–100 GeV. The position at which
the particle enters the calorimeter is chosen randomly, only avoiding the edges of the
detector (the central part is used: 80% of the toy calorimeter). This ensures that the
majority of the deposited energy remains within the detector. An event display of the
Geant4 simulation is presented in Fig. 6.1, showing two different simulated photons in
(z, x) plane on the left and (x, y) plane on the right.

In order to train and test the DeepCluster model, in the post-processing phase
(using pandas [120] and numpy [121] libraries from Python programming language), two
separate datasets are created from this original set, targeting different purposes:

1. Single-photon dataset.
Each entry of the dataset consists of one photon. It is used both for training and
as a primary check of DeepCluster performance regarding coordinate and energy
resolution. It corresponds to the case of isolated particles in the calorimeter.

2. Two-photon dataset.
Each entry is created by superimposing two different samples from the original
set. This represents two separate photons in the calorimeter. In this dataset, only
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Figure 6.1: Event displays (side view (z, x) on the left and front view (x, y) on the
right) of particle simulation done with Geant4 software. The toy calorimeter consists of
51 x 51 PbWO4 crystals with a size of 2.2 x 2.2 x 23 cm3. The particles are directed
perpendicularly to the surface of the calorimeter. The displays show two simulated
photons.

particles with positions located within a maximum distance (∆R =
√

∆x2 + ∆y2)
of 3 calorimeter crystals from each other are intentionally selected (signature
mimicking π0 decay). It is also used for training and to estimate the ability of the
DeepCluster network to separate two close-by photons.

As discussed in Chapter 4, in order to avoid overfitting, three different sets should
be created. In this work, the training set consists of randomly chosen and mixed 600k
samples of the 1st dataset and 300k samples of the 2nd one. The validation set has 200k
entries from the 1st dataset and 100k entries from the 2nd. The test set is separate for
each of the cases: 100k samples for the 1st one and 50k for the 2nd one.

Moreover, to have a thorough understanding of the performance of the algorithms
for various practical uses, additional datasets, only used during the evaluation stage, are
created:

1. Single-electron dataset.
The dataset is created in the same way as the single-photon dataset but using
electrons instead.

2. Two-electron dataset.
The dataset is created in the same way as the two-photon dataset but using
electrons instead.

3. Multiple-particle electron dataset.
Each entry is created by superimposing up to 6 electrons. Each particle has energy
in the range of E = [1, 100] GeV. Overall consists of 30k samples.

4. Pion dataset.
To create this dataset, π0 particles with E = [1, 100] GeV, shot perpendicularly at
the toy calorimeter from a distance of 130 cm (≈ distance between the interaction
point and ECAL inner surface) are used. Overall consists of 180k samples.

Further in this chapter, the performance of the DeepCluster model on the described
additional datasets is shown, even though it is not specifically trained on them.

104



Chapter 6. Clustering reconstruction for standalone particles in the ECAL with Deep
Learning

Simulation validation

To validate the simulation of the toy calorimeter, the energy deposit profile is investigated
and compared to the simulation of the actual ECAL. In order to do it, 1,000 electrons at
100 GeV are shot at the center of the detector, and the average deposited energy in each
cell of the 5x5 crystal matrix around the central crystal is calculated. The results are
shown in Fig. 6.2 (left) and they are compared to the ones achieved with the real ECAL
simulation presented in Fig. 6.2 (right).

Figure 6.2: Energy deposit profiles from the toy calorimeter (left) and from Geant4
simulation of ECAL (right) [122]. The profiles are obtained with an electron beam.

The obtained results are comparable: the average ratio of energy deposits of initial
electrons in the central crystal (E1), 3x3 matrix (E3), and 5x5 (E5) matrix around it
are approximately 78%, 94%, 97% for toy calorimeter and 79%, 95%, 98% for ECAL
simulation [122], respectively. This demonstrates that the toy calorimeter can be used as
a proxy for the real ECAL.

The asymmetry in the energy deposition around the central crystal is not present for
the toy calorimeter (unlike in the ECAL simulation) as it does not include crystal tilt.

6.1.1 Energy resolution

As the Geant4 simulation does not include a readout chain, the true deposited energy
in each crystal is smeared to mimic the performance of the real detector using the
parameterization of the ECAL energy resolution discussed in Chapter 2 and presented
by Eq. (2.9).

Eventually, the energy of each crystal is given by:

Extal = Etrue
xtal × N (Etrue

xtal , σ
2), (6.1)

where N is the Gaussian distribution function, σ is the standard deviation taken from
Eq. (2.9) with the parameters corresponding to Run 3 operation, Etrue

xtal is true energy
deposits in crystals.

A cut at 50 MeV is applied on the smeared energy to mitigate the noise.

6.2 Performance of the PFClustering algorithm
The ECAL reconstruction must be very efficient and provide excellent resolution both
for energy and position measurements of the standalone particles. To achieve this, a
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dedicated PFClustering algorithm is used in the CMS experiment. It is designed to
maintain high efficiency even for low-energy photons and electrons and distinguish closely
spaced particles. A detailed description of all the steps of the PFClustering algorithm is
presented in Chapter 2.

In order to perform a fair comparison with the DeepCluster model, the PFClustering
algorithm is independently implemented outside of the general CMS software framework
and is applied to the simulated datasets described in Section 6.1. The results for the
position and energy reconstruction are shown in Figs. 6.3 and 6.4, respectively. Each
plot demonstrates the difference between the value reconstructed with the PFClustering
algorithm (reco) and the value generated in the simulation (gen). The energy distribution
is presented in bins of the energy of the generated photon. The resolution is determined
from these distributions as σ = [quantile(0.84) - quantile(0.16)]/2.

Figure 6.3: Difference between the reconstructed position (xreco on the left, yreco on the
right) and the generated position of the particle (xgen on the left, ygen on the right). The
results are obtained by applying the PFClustering (PF) algorithm on the single-photon
test dataset. The resolutions and mean values evaluated from these distributions are
reported on the plots.

6.2.1 Energy corrections

Energy losses can occur in a real calorimeter because of a variety of factors such as
lateral and longitudinal shower leakage, intermodule gaps, and dead channels. In order
to accurately determine the initial energy of the particle, correction coefficients must
be applied to the raw energy predicted by PFClustering. Even though the described
simulation can only account for the longitudinal shower leakage, the energy resolution is
still significantly degraded due to this leakage and energy smearing as can be seen in
Fig. 6.4.

In the particle flow framework, energy corrections are typically applied after the
formation of final EM objects (as discussed in Chapter 2). It is done using a multivariate
technique, called Boosted Decision Trees (BDT), discussed in Chapter 4.

To achieve a fair comparison of energy reconstruction performance between PF-
Clustering and the DeepCluster model, a modified version of the particle-flow BDT
is implemented (using scikit-learn [123]). The primary changes involve adjusting the
input of the algorithm. This includes removing variables that are only defined for a
SuperCluster and not for a PFCluster, such as the energy of the caloSeed, and adding
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Figure 6.4: Difference between the reconstructed energy Ereco and the generated energy
of the particle Egen. The results are obtained by applying the PFClustering algorithm
on the single-photon test dataset. The distributions are presented in four bins of the
generated photon energy Egen: [1, 10] GeV, [10, 20] GeV, [20, 60] GeV, and [60, 100] GeV.
The resolutions and mean values evaluated from these distributions are reported on the
plots.
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extra observables specific to the PFClustering step. A comprehensive list of all inputs
with their brief descriptions is presented in Table 6.2, the list of input variables used in
particle-flow BDT is given in Table 2.1. The output of the BDT is a correction value
that needs to be applied to the raw PFClustering energy prediction.

Parameter Description

Ereco Energy predicted by the PFClustering algo-
rithm

xreco, yreco Particle position predicted by the PFCluster-
ing algorithm

Emax, E2nd Largest and second largest energy deposits in
the crystals within the processed PFCluster.

ELR The energy deposit difference between the left
and right crystals in relation to the seed crys-
tal.

ETB The energy deposit difference between the top
and bottom crystals in relation to the seed
crystal.

cov(X,X), cov(X,Y ), cov(Y, Y ) Covariance values between the PFCluster
spread in different directions.

E3x3 The sum of energies in a 3x3 matrix around
the seed crystal.

Table 6.2: Input variables to the PFClustering energy regression BDT.

The BDT is trained on a single-photon dataset with flat energy distribution between
1 and 250 GeV. The internal parameters of the model (see Chapter 4), such as learning
rate, number of estimators, minimum split, minimum leaf, and maximum depth, are
optimized to achieve the best performance using a random grid search. In this procedure,
a BDT is trained with a randomly selected set of internal parameters, and the results
are compared. The performance metric is a regression score (R2

score):

R2
score = 1 − u

v
, u =

n∑
k=1

(Egen − Ereco)2, v =
n∑
k=1

(Egen − Ēgen)2, (6.2)

where n is the number of data samples, Egen is the true energy of the generated
particle, Ēgen is its mean estimation, and Ereco is the reconstructed energy after the BDT
correction. The model with a higher value of R2

score is superior, and the best possible
R2

score is 1.
The resulting regression scores for 20 different sets of parameters are calculated. The

full summary of optimization is presented in Table 6.3 and parameters corresponding to
the highest R2

score (trial 10) are selected based on these results.
The performance in terms of energy for the final optimized model is shown in Fig. 6.5

along with the comparison to the raw PFClustering prediction. With the BDT correction,
the energy resolution is drastically improved compared to the raw results: by 35%, 36%,
43%, and 26% for the energies of generated particles Egen = [1, 10] GeV, Egen = [10,
20] GeV, Egen = [20, 60] GeV, and Egen = [60, 100] GeV, respectively. Moreover,
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trial learning
rate

number of
estimators

minimum
split

minimum
leaf

maximum
depth

score

1 0.20 100 20 5 20 0.7799

2 0.05 300 10 10 2 0.7676

3 0.20 300 10 5 10 0.7815

4 0.05 300 20 2 2 0.7756

5 0.20 300 2 10 5 0.7886

6 0.05 500 4 5 20 0.7797

7 0.20 100 10 2 10 0.7952

8 0.05 100 20 2 5 0.7874

9 0.20 500 20 2 5 0.7947

10 0.10 100 2 2 10 0.7953

11 0.20 300 10 2 10 0.7887

12 0.10 300 2 10 2 0.7754

13 0.10 300 4 10 10 0.7850

14 0.20 300 2 10 10 0.7782

15 0.20 500 20 2 2 0.7913

16 0.05 100 2 5 10 0.7913

17 0.10 300 4 5 5 0.7951

18 0.10 500 20 10 10 0.7828

19 0.20 300 4 10 10 0.7782

20 0.05 300 2 2 5 0.7952

Table 6.3: Results for the BDT hyperparameter optimization. The algorithm is applied
on the single-photon validation dataset, and the regression score measures its performance.
The parameters of the 10th trial are chosen as optimal as they correspond to the highest
value of the regression score.
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the corrected energy distributions are centered around zero, unlike the ones obtained
only from the PFClustering algorithm. The presented results are comparable with
the estimated performance of the PFClustering reconstruction during Run 3, shown
previously in Fig. 2.14.

Figure 6.5: Difference between the reconstructed energy Ereco and the generated energy
of the particle Egen. The results are obtained by applying the PFClustering algorithm
(raw) and the PFClustering algorithm with additional energy regression (corrected)
on the single-photon test dataset. The distributions are presented in four bins of the
generated photon energy Egen: [1, 10] GeV, [10, 20] GeV, [20, 60] GeV, and [60, 100] GeV.
The resolutions evaluated from these distributions are reported on the plots.

6.2.2 Conclusion

The standalone version of the PFClustering algorithm is implemented for the toy calorime-
ter.

Despite its excellent performance, the PFClustering algorithm still has significant
limitations:

1. As previously mentioned, it struggles to correctly differentiate between an isolated
photon (γ) and a neutral pion (π0). π0 is an unstable particle (mean lifetime
≈ 8.3 · 10−17 s [124]) that most likely decays into two γ. When originating from a
high-energy π0, the opening angle between the momenta of these two particles is
small. In this case, their energy deposits overlap in the calorimeter, mimicking the
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energy pattern of a single γ. A sketch of a neutral pion decay and its signature in
the calorimeter is shown in Fig. 6.6.

2. The algorithm also produces a high background rate (misidentification of noise as
a real particle) at low energies (< 1 GeV). Due to the increased noise and aging
of the detectors in the coming LHC operations, the performance is expected to
further deteriorate.

Figure 6.6: A sketch of π0 decay to two
photons and its signature in the calorime-
ter [125].

Currently, ML algorithms are widely
used in particle physics experiments both
for object reconstruction (e.g. [126]) and
physics analysis (e.g. [77]) because of their
often better performance compared to tra-
ditional algorithms. The goal of this work
is to demonstrate that ML models and,
more specifically, deep neural networks can
be used for standalone particle reconstruc-
tion in ECAL. With these new techniques,
the limitations of the PFClustering algo-
rithm can be overcome and, furthermore,
the position and energy resolutions can be
potentially improved.

6.3 DeepCluster model: one-shot network
The first implementation of the DeepCluster model for the task of the standalone particle
reconstruction is a one-shot CNN. This particular type of deep neural network is chosen
based on the fact that the deposits in the crystals of the calorimeter can be represented
as pixel intensities of an image, and CNNs are widely used to process the information
from images.

The label “one-shot” in the name indicates that this CNN processes the full toy
calorimeter at once. In order to do it, the network takes a matrix with a size of 51 x
51 (called toy calorimeter window) as an input, where each value represents an energy
deposit in each particular crystal. From this information, the model aims to predict the
positions and energies of all the generated particles in a given sample. An example of
one input sample to the one-shot network is presented in Fig. 6.7, and the associated
target values (truth information) are listed in Table 6.7.

6.3.1 Network architecture

The one-shot network uses a typical CNN architecture [127], where multiple convolutional
layers are used followed by several dense layers, as discussed in Chapter 4. Specific
parameters of this model are chosen to minimize the number of trainable weights while
maintaining good performance. In the work presented in this document all the networks
are implemented using TensorFlow [128] framework.

The model architecture consists of nine different convolutional layers with gradually
growing filter numbers and kernel sizes. The convolutional layers extract patterns from
the input image, and the resulting information is combined into one flattened vector,
representing the summary features of this input. This vector is then passed through a
chain of dense layers, separated into two branches: one leading to the prediction of the
positions of the generated particles and another to the prediction of the energies of the
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x coordinate y coordinate Energy [GeV]

38.34 33.0 81.6

32.9 40.6 30.9

31.6 32.2 44.3

23.5 34.4 71.4

6.4 22.6 38.0

Figure 6.7: On the left: an example of a toy calorimeter window, displaying a sample
with five generated photons, serving as an input to a one-shot network. On the right: a
table listing the generated position and energy values of the five photons in the sample,
serving as the target output for a one-shot network.

generated particles. More details on the convolutional layers and their parameters can
be found in Section 4.4.1 and for the dense layers in Section 4.3 of Chapter 4.

Both convolutional and dense layers use ReLU as an activation function except for
the final layer, where sigmoid and tanh are chosen for position and energy, respectively.
This is done in order to match the target output values, which are rescaled to [0, 1] for
position and [-1, 1] for energy. A dropout of 1% is applied at each layer to mitigate
overfitting. The full one-shot network architecture is shown in Fig. 6.8.

Convolutional layers

Dense layers

Input

Input shape: 51 x 51 x 1

Shape: (2 x n) 
Activation: sigmoid

Position
output

Number of filters: 32→32→64
Kernel shape: 3→3→5
Activation function: ReLU
Dropout: 0.01 flatten

Nodes: 4000
Activation: ReLU

Number of filters: 64→64→128
Kernel shape: 5→5→7 
Activation function: ReLU
Dropout: 0.01

Number of filters: 128→128→256  
Kernel shape: 7→7→9
Activation function: ReLU
Dropout: 0.01

Energy
output

Shape: (1 x n) 
Activation: tanh

Nodes: 
2000→500

Nodes: 
1000→500

Figure 6.8: One-shot network architecture. The toy calorimeter window is passed as
an input and is processed by multiple convolutional layers, resulting in one vector
representing the summary features of the sample. This vector is further passed through
a chain of dense layers, separated into two branches: one leading to the prediction of the
positions of the generated particles and another to the prediction of the energies of the
generated particles. n represents the number of reconstructed particles.

The network is trained for 300 epochs with a batch size of 64, using an ADAM
optimizer with a learning rate = 0.0001. Mean absolute error is chosen as the loss
function both for position and energy predictions. The training parameters are discussed
in detail in Section 4.3. The activation functions used in this work are shown in Fig. 4.6,
and the description of the loss functions can be found in Section 4.1.2.

Various hyperparameter values are tested for this network, including the number of
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kernels, their shapes, and the number of nodes in the dense layers. The results are shown
for the ones providing the best performance.

6.3.2 Results

The performance of the DeepCluster model for position reconstruction is shown in Fig. 6.9
along with the comparison to the PFClustering algorithm. The plot demonstrates the
difference between the reconstructed (reco) and the generated (gen) x-(on the right) and y-
positions (on the left). The position resolution obtained with the network reconstruction is
= 0.10 crystal, which is considerably higher than the one achieved with the PFClustering
(0.04 crystal).

Figure 6.9: Difference between the reconstructed position (xreco on the left, yreco on the
right) and the generated position of the particle (xgen on the left, ygen on the right).
The results are obtained by applying the PFClustering (PF) algorithm and one-shot
(OS) network on the single-photon test dataset. The resolutions evaluated from these
distributions are reported on the plots.

6.3.3 Conclusion

The performance of the first implementation of the DeepCluster model, presented in
Fig. 6.3, shows promising results. The network is able to roughly identify the positions
of the generated particles, indicating that it is a viable approach.

However, the obtained resolution is significantly worse compared to the PFCluster-
ing algorithm. After multiple attempts at improving the model, the two main issues
preventing the network from performing better are:

1. Ordering problem. To enable a neural network to predict the positions and
energies of multiple particles in a single sample, it is essential to arrange the target
values in a specific order during the training process. If these values are supplied
randomly, the network is unable to learn, as it needs a structured approach to
predict the output and optimize the loss functions effectively. While in general, it
can be done with simple sorting on x positions, this type of sorting still creates
confusion between associate y positions when two particles are too close to each
other in the x coordinate.
To better understand the issue, a simplified example can be considered. Figure 6.10
schematically shows two energy clusters green and yellow, produced by two gen-
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erated photons with positions (x1, y1) and (x2, y2), respectively. The generated
positions of the photons are very close to each other in terms of their x-coordinate:
|x1 − x2| < 0.05 crystals. When the network encounters this sample for the first
time, it predicts two positions: (x̄1, ȳ1) denoted as red and (x̄2, ȳ2) denoted as
blue in Fig. 6.10 (a). From the majority of the available data samples, where the
positions of different particles are well-separated in both directions, the model
can easily learn that the target values are ordered based on x. Consequently, for
the loss function, the network will associate the red prediction (lower x) to the
first photon (represented with the green energy cluster) and the blue — to the
second (represented with the yellow energy cluster). However, due to the extremely
small ∆x between two photons, when the network processes this sample again, it
may randomly make predictions where x̄2 < x̄1 as illustrated in Fig. 6.10 (b). In
this case, the loss function receives the red prediction (x̄1, ȳ1) associated with the
second photon (yellow energy cluster) and blue prediction (x̄2, ȳ2) associated with
the first photon (green energy cluster). Finally, after trying to optimize for both of
these cases, the network ends up predicting the coordinates that lie somewhere in
between the positions of two generated photons, as shown in Fig. 6.10 (c).

y
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y1

x1

y2

x2

a) The first prediction.

y

x

y1

x1

y2
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b) The second prediction.

y

x

y1

x1

y2

x2

c) The prediction after con-
vergence.

Figure 6.10: Schematic illustration of the ordering problem.

2. Sparsity problem. Most of the pixels in the sample do not carry any valuable
information, as the crystals are empty or contain only noise. However, as the
full toy calorimeter window is passed as input to the network, the model still has
to process all crystals. It leads to a very large number of trainable parameters
and, as a result, the performance is degraded. Moreover, this type of network is
not scalable to the real ECAL detector, which is much larger (360 x 170 crystals)
compared to the toy calorimeter (51 x 51 crystals).

6.4 DeepCluster model: two-step network
The second development stage of the DeepCluster model aims to overcome the difficulties
encountered with the one-shot CNN. In order to do it, a new approach is introduced:
instead of using the full toy calorimeter window as input, it is pre-processed into smaller
seed windows around the energetic crystals (> 0.5 GeV). Each of these seed windows
either contains a cluster of energy deposits from a generated particle (further referred to
as energy cluster) or just noise. In this approach, the standalone particle reconstruction
task is divided into two consecutive steps:
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1. Select seed windows containing energy clusters from all the generated particles and
discard the ones with only noise.

2. For each selected window predict the kinematic properties of the corresponding
generated particle.

These steps are performed by two separate dedicated models. The first one is called
seed-finder NN and the second is center-finder NN.

This approach solves both ordering and sparsity problems encountered for one-shot
architecture. As the seed windows are passed separately from each other, the network
has to process only a small matrix as input at each iteration, which drastically reduces
the number of trainable weights and removes the need to analyze irrelevant areas of the
toy calorimeter. The windows can also be transmitted in random order, since they are
independent of each other, which does not require any sorting rule.

In this section, a detailed description of seed-finder and center-finder networks is
presented, along with the development steps and obtained performances.

6.4.1 Input and truth association

The input for the networks of the two-step approach is obtained from the toy calorimeter
window for each data sample as follows:

1. All the crystals in the toy calorimeter window with energy deposits > 0.5 GeV
are defined as potential seed crystals. The threshold value of 0.5 GeV is chosen to
be approximately equal to Eseed

thr tuned for the PFClustering algorithm for Run 3
operations.
This definition of the seed crystal is slightly different from the one introduced
for the PFClustering algorithm in Section 2.4.2, as it does not require the local
maximum condition. Nevertheless, the naming is decided to be left identical as
in this Chapter only seed crystals in relation to the DeepCluster network are
mentioned and, thus, should not create confusion.

2. For each potential seed crystal a seed window is created. It represents a matrix of
the size of 7x7 crystals, containing energy deposits of the seed crystal (the center
of the matrix) and the crystals around it. An example of a seed window is shown
in Fig. 6.11.

From one simulated toy calorimeter sample, multiple seed windows are created. Each
seed window can contain single and overlapping energy clusters from generated particles
or only noise.

In order to perform the training of the networks, the association between the seed
windows and the generated particles and subsequent truth labeling has to be defined. In
this work, for each seed window it is done as follows:

1. Check if the position of any generated particle in the considered sample lies within
the boundaries of the seed crystal. In case such a particle is found, associate it
with the seed window.

2. If the seed window is associated with a particle, it is labeled as true seed window
and assigned three kinematic variables of the respective particle: generated position
(xgen, ygen) and energy (Egen). Otherwise, it is labeled as background, and no
values are assigned to it.

3. The local position of the particle inside the seed window (xlocal
gen , ylocal

gen ) is calculated
by subtracting the position of the window center (xwindow, ywindow) from the global
particle positions inside the toy calorimeter (xgen, ygen).
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6.4.2 Seed-finder NN

The seed-finder NN is the first network in the two-step DeepCluster model. It is
implemented as a CNN and its goal is to find the true seed windows and discard
everything else (noise and not associated windows).

Figure 6.11: Example of a seed window
around the possible seed crystal (> 0.5 GeV).

The network separately takes all the
created windows as input and for each of
them predicts a seed-finder score (PseedSF),
indicating the likelihood to be a true seed
window. A threshold value (P thr

seedSF) is de-
fined and in the evaluation phase, only the
windows with PseedSF > P thr

seedSF are passed
to the center-finder NN. The optimization
of this threshold is further presented in
Section 6.5.

The network architecture consists of
two convolutional and two dense layers.
LeakyReLU is chosen as the activation
function and a dropout of 10% is applied
after the first convolutions. For the output
of the seed-finder NN, the sigmoid activa-
tion function is used. A detailed descrip-
tion of the model architecture is presented
in Fig. 6.12.

The model is trained using Adam opti-
mizer with a learning rate = 0.0001 and a

batch size of 64. The early stopping is implemented for this network, where the training
ends if there is no improvement in validation loss during 30 epochs. Using this technique,
the network is trained for 94 epochs with epoch 64 yielding the best result. The loss
function is binary cross entropy and its evolution with respect to epoch number is shown
in Fig. 6.13 (left). The training parameters are discussed in detail in Section 4.3, the
activation functions used in this work are shown in Fig. 4.6, and the description of the
loss functions can be found in Section 4.1.2.

The distributions of the predicted seed-finder scores both for true seed windows and
background evaluated on the single-photon test dataset are presented in Fig. 6.13 (right).

The main advantages that seed-finder NN brings compared to the PFClustering
algorithm are:

• As the condition for the seed to be a local maximum is removed, the seed-finder
NN provides a better possibility to reconstruct close-by photons.

• Seed-finder NN performs a refined seed window selection that helps to significantly
eliminate the low-energy background.

6.4.3 Center-finder NN – Convolutional Neural Network

The center-finder NN is the second step of the DeepCluster model. The task of this
network is to predict kinematics variables xlocal

gen , ylocal
gen , Egen of the generated particles

from the associated seed window. The global coordinates of the particle can be further
easily reconstructed from (xlocal

gen , ylocal
gen ) and the position of the seed window (xwindow,

ywindow).
For the first center-finder NN development, it is also implemented as a CNN. Similarly

to the seed-finder NN, it takes seed windows as input. All the inputs are processed
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Initial input Input pre-processing: 
7x7 matrices around all the seeds (> 0.5 GeV) 

…

Filter: 128 
Kernel: 3x3 
+ LeakyReLu
+ Dropout (0.1)

Filter: 256
Kernel: 3x3 
+ LeakyReLu

+ Flatten
Dense: 2400
+ LeakyReLu

Dense: 500
+ LeakyReLu

Dense: 1
+ Sigmoid

Figure 6.12: Seed-finder NN architecture. 7x7 seed windows are first selected around all
possible seeds (>0.5 GeV) from the full toy calorimeter window. They are separately
passed as input to the seed-finder NN. The input is processed by two convolutional layers
until the vector of summary features is extracted. This vector is further passed to two
dense layers, resulting in the network output: seed-finder score PseedSF. It represents the
likelihood of the input to be a true seed window. Detailed information on the number of
nodes at each layer is presented in the figure.

independently from each other. In the training phase, the input consists only of the
true seed windows, as only they are associated with a generated particle and, thus,
have assigned kinematic variables. During the evaluation, however, the center-finder
NN processes all the windows with the seed-finder scores passing P thr

seed. It is further
discussed in the next Section. The output of the center-finder NN is the prediction of
three kinematic variables of the generated particle.

The architecture of the center-finder NN is fairly similar to the seed-finder NN: it
consists of multiple convolutional layers, followed by dense layers that are divided into
two parts: one resulting in coordinate prediction and another in energy prediction. ReLU
activation function is applied everywhere except the output layer, where tanh and sigmoid
are used for position and energy predictions, respectively. The dropout level is set to
10% everywhere except the last energy prediction layer, where it is set to 30%. The
full network architecture with precise details on the number of nodes is presented in
Fig. 6.14.

The network is trained for 1000 epochs with a batch size of 64 samples. For both
of the outputs mean absolute error loss is used. The training is performed using Adam
optimizer with a learning rate of 0.0001. The evolution of the loss function with respect
to the epoch number is shown in Fig. 6.15. Epoch 974 is chosen as providing the best
performance on the validation dataset. The training parameters are discussed in detail
in Section 4.3. The activation functions used in this work are shown in Fig. 4.6, and the
description of the loss functions can be found in Section 4.1.2.
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Figure 6.13: On the left: loss function evolution with respect to epoch number for the
seed-finder NN training. On the right: distributions of seed-finder scores predicted by
the network for true seed windows and background.

Filter: 128 
Kernel: 3x3 
+ LeakyReLU
+ BatchNormalization Filter: 256

Kernel: 3x3 
+ LeakyReLU
+ BatchNormalization

+ Flatten
Dense: 2400
+ Dropout (0.1)

Dense: 500
+ LeakyReLU
+ Dropout (0.1)
Dense: 2
+ tanh

Coordinate 
output

Dense: 250
+ LeakyReLU
+ Dropout (0.3)
Dense: 1
+ sigmoid

Energy
output

Figure 6.14: Center-finder NN architecture. The seed windows are passed independently
as input to the network. The input is processed by two convolutional layers until the
vector of summary features is extracted. This vector is passed through one dense layer
and further sent separately to two different branches (coordinate and energy prediction).
In each branch, it passes through two additional dense layers. Detailed information on
the number of nodes at each layer is presented in the figure.
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Figure 6.15: Loss function evolution with respect to epoch number for the center-finder
NN training.

6.4.4 Evaluation and results

After both of the networks of the DeepCluster are trained, the resulting combined model
is applied on the single- and two-photon test datasets to evaluate the performance.

The full reconstruction process is done according to several steps:

1. The initial samples of the test datasets are pre-processed in order to create seed
windows according to the procedure from Section 6.4.1.

2. The seed windows are passed to the seed-finder NN and for each of them a seed-
finder score is extracted.

3. The seed windows with PseedSF > P thr
seedSF are passed to the center-finder NN.

4. The center-finder NN predicts the local coordinates (xlocal
reco , ylocal

reco ) and the energy
Ereco of the potential particle from the selected seed windows.

5. The global positions in the toy calorimeter (xreco, yreco), are evaluated by summing
predicted local positions (xlocal

reco , ylocal
reco ) and positions of the corresponding seed

windows (xwindow, ywindow).

As a result of these steps, for each selected seed window, a reconstructed object
(reco-object) is created, which is defined by predicted kinematic values: xreco, yreco, and
Ereco. It also possesses a seed-finder score PseedSF. Every reco-object represents one
potential particle.

To be able to evaluate the performance, a matching procedure that links the reco-
objects with the true generated particles is also developed. The links inside each sample
are created as follows:

• Equation (6.3) is used to calculate a “matching” variable rmatch. It represents a
normalized distance between the predicted values of the reco-objects and generated
values of the particle in (x, y, E) space.

rmatch =

√(
Rreco −Rgen

R

)2
+
(
Ereco − Egen

E

)2
, (6.3)
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where Rreco =
√

(xreco)2 + (yreco)2 is the position of the reconstructed object,
Ereco is the energy of the reconstructed object, Rgen =

√
(xgen)2 + (ygen)2 is the

generated position of the particle, Egen is the generated energy of the particle, R is
the mean value of (Rreco - Rgen) distribution, E is the mean value of (Ereco - Egen)
distribution. These values are obtained from a preliminary truth association based
only on the position.
For each reco-object in the sample:

– A matching variable is estimated between the considered reco-object and all
the generated particles.

– A link between a reco-object and a particle with the minimum matching
variable is created.

– Additional criteria on the Euclidian distance between the reco-object and
generated particle (∆R =

√
(xreco − xgen)2 + (yreco − ygen)2) has to be satis-

fied. If ∆R > 1.5 crystal, the link is removed. And the reco-object is further
considered as background.

Each of the reco-objects is linked to only one generated particle, while the particle
can be linked to multiple reco-objects, which is further referred to as splitting.

The same matching procedure is applied for the objects reconstructed by the Deep-
Cluster model and PFClustering algorithm. The presented results for position and energy
predictions include only pairs of linked reco-objects/generated particles. To further
investigate the performance, additional variables are defined that represent the ability
of the algorithm to correctly predict the properties of each sample: signal efficiency,
background yield, splitting yield. Their description is given in Table 6.4.

Name Description

Signal efficiency The number of linked reco-objects divided by the number of
generated particles.

Splitting yield The number of events where one particle was linked to two
different reco-objects.

Background yield The number of reco-objects that are not linked.

Table 6.4: Description of the variables used for evaluation of the algorithms.

Results

The results of the DeepCluster model and PFClutsering algorithms are evaluated on the
single- and two-photon test datasets and compared with each other. For the seed-finer
NN, a loose threshold of P thr

seedSF = 0.3 is chosen for this evaluation as it enables high
signal efficiency. A more rigorous threshold selection is done for the final DeepCluster
model and it is further discussed in Section 6.5.

Performance for position reconstruction is presented in Fig. 6.16 for the single-photon
dataset on the left and for the two-photon dataset on the right. Each plot demonstrates
the difference between the reconstructed (xreco) and generated (xgen) x-coordinates.
The results for the y-coordinate are omitted as they are similar to the x-coordinate
due to the spatial symmetry of the toy calorimeter. With the new two-step approach,
the DeepCluster network significantly outperforms the PFClustering algorithm. The
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coordinate resolution (evaluated as σ = [quantile(0.84) - quantile(0.16)]/2) for the two-
step network (TS) is 0.02 crystal compared to 0.04 crystal for the PFClustering (PF)
algorithm for the single-photon dataset and 0.03 crystal versus 0.08 crystal for the
two-photon dataset.

The position reconstruction for the two-photon dataset is a more difficult task than
for the single-photon as the overlapping energy clusters can lead to a non-ideal evaluation
of the energy proportions for close-by generated particles and, as a result, can bias
the prediction. This explains the discrepancy between the reported results for the two
datasets.

Figure 6.16: Difference between the reconstructed position xreco and the generated
position of the particle xgen. The results are obtained by applying the PFClustering (PF)
algorithm, one-shot (OS) network, and two-step (TS) network on the single-photon (left)
and two-photons (right) test datasets. The resolutions evaluated from these distributions
are reported on the plots.

Performance for energy reconstruction is presented in Fig. 6.17 for the single-photon
dataset and Fig. 6.18 for the two-photon dataset. Similarly to the coordinate, each
plot demonstrates the difference between the reconstructed (Ereco) and generated (Egen)
energies. The results are presented in bins of the energy of the generated particle (Egen).
For both of the datasets the performance in the first two energy bins Egen = [1, 10] GeV
and Egen = [10, 20] GeV is similar for the DeepCluster model and the PFClustering
algorithm. For Egen = [20, 60] GeV and Egen = [60, 100] GeV the two-step network
achieves slightly better results in the case of single-photons: σTS = 0.52 GeV versus
σPF = 0.56 GeV and σTS = 0.80 GeV versus σPF = 0.83 GeV, respectively. In the case
of two photons, it remarkably outperforms the PFClustering: σTS = 0.82 GeV versus
σPF = 2.59 GeV and σTS = 1.13 GeV versus σPF = 17.70 GeV, respectively for the same
energy ranges.

The same reason as discussed for the coordinate prediction explains the difference
between the results for the two datasets. Moreover, the poor energy resolution obtained
with the PFClustering algorithm for the two-photon dataset comes from the fact that
the PFClustering energy regression is trained only on the single-photon dataset (as done
in the CMS particle flow).

Finally, the signal efficiency, splitting yield, and background yield results for the
DeepCluster model and the PFClustering algorithm are shown in Fig. 6.19 for the
single-photon dataset on the left and for the two-photon dataset on the right. The results
are presented versus the energy of the generated particle Egen for the signal efficiency
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Figure 6.17: Difference between the reconstructed energy Ereco and the generated
energy of the particle Egen. The results are obtained by applying the PFClustering (PF)
algorithm and two-step (TS) network on the single-photon test dataset. The distributions
are presented in four bins of the generated photon energy Egen: [1, 10] GeV, [10, 20] GeV,
[20, 60] GeV, and [60, 100] GeV. The resolutions evaluated from these distributions are
reported on the plots.
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Figure 6.18: Difference between the reconstructed energy Ereco and the generated energy
of the particle Egen. The results are obtained by applying the PFClustering (PF)
algorithm and two-step (TS) network on the two-photon test dataset. The distributions
are presented in four bins of the generated photon energy Egen: [1, 10] GeV, [10, 20] GeV,
[20, 60] GeV, and [60, 100] GeV. The resolutions evaluated from these distributions are
reported on the plots.
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Figure 6.19: Signal efficiency (top), splitting yield (middle), and background yield
(bottom) values. The results are obtained by applying the PFClustering (PF) algorithm
and two-step (TS) network on the single-photon (left) and two-photon (right) test
datasets.
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and splitting yield, and versus the energy of the seed crystal Eseed for the background
yield.

The signal efficiency for the PFClustering algorithm is 100% for the single-photon
case in the considered energy range by construction (at least one PFCluster is always
reconstructed around the crystals with energy deposit > Ethrseed). The DeepCluster network
achieves identical performance starting from Egen = 3 GeV. In the case of two close-by
photons, the signal efficiency is considerably higher for the DeepCluster model compared
to the PFClustering: starting from 64% at Egen = [1, 2] GeV and gradually improving
to 100% for Egen = [80, 100] GeV while the corresponding values for the PFClustring
are 40% and 96%.

For the low-energy background yield, the two-step network only incorrectly identifies
Nbkg

TS = 150 events for single-photon dataset and Nbkg
TS = 75 events for two-photon dataset

while the PFClustering reconstruction results in Nbkg
PF ≈ 350k events and Nbkg

PF ≈ 165k
events, respectively. The results are reported on 100k samples for the single-photon
dataset and 50k samples for the two-photon dataset.

Considering the splitting yield, the performance of the DeepCluster model is inferior
to PFClustering. By construction, the PFClustering algorithm merges two very close
energy deposits and, consequently, the splitting can not appear. However, this feature
also prevents the algorithm to separate true energy deposits, which is crucial for π0

reconstruction.
The aim of the subsequent DeepCluster model development is to mitigate the splitting

yield while maintaining the excellent results achieved for signal efficiency. The splitting
is also related to a problem called “double-counting”, where energy is overestimated due
to the incorrect reconstruction. It is described in the following section.

Double-counting problem

After the full reconstruction chain of the DeepCluster model and the subsequent linking
process, one generated particle can be incorrectly reconstructed as two reco-objects
(splitting) as discussed in Section 6.4.4.

This issue arises as a result of the construction of the seed windows. As the local
maximum condition is omitted for the seed crystal, two (or more) neighboring crystals
with high energies (> 0.5 GeV) are both selected as seeds and give rise to two separate
seed windows. In the majority of cases, where the energy deposit difference between
these two neighbors is large, the seed-finder NN is able to internally identify the local
maximum itself and predict a high seed-finder score PseedSF for the corresponding seed
window (in which the local maximum is the central crystal) and a low score for its
neighbor.

However, as can be seen from the splitting yield in Fig 6.19, there still occur several
events, where seed-finder NN fails to correctly select between the neighboring seed
windows. An especially drastic problem appears in the subset of these events, where the
position of the particle is generated close to the edge of a crystal. In this case, a particle
deposits large and almost equal energies in the neighboring crystals, and both of them
give rise to a separate seed window. An example of created seed windows is shown in
Fig. 6.20, obtained from a sample with a single generated particle with Egen = 97.7 GeV.
The seed-finder NN predicts high seed scores for both of them P 1

seedNN = 0.94 and
P 2

seedNN = 0.93.
Following the reconstruction chain, these windows are separately passed to the center-

finder NN. The network predicts two reco-objects with similar coordinates and energies:
(E1

reco, x1
reco, y1

reco) = (84.0 GeV, 19.22, 26.04) and (E2
reco, x2

reco, y2
reco) = (87.0 GeV, 19.28,

25.97).
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Figure 6.20: Example of the two seed windows created for a particle with a generated
position close to the crystal border.

Consequently, the total energy reconstructed by the DeepCluster model for one
sample (Etot

reco), which is evaluated as the sum of the reconstructed energies Ereco of
all the reco-objects in the considered sample, can be significantly overestimated. This
can be seen from Fig. 6.21 (left), where the distribution of the ratio between the total
reconstructed energy Etot

reco and total generated energy Etot
gen (sum of the energies of all

the simulated particles) for single-photon dataset is presented. The plot clearly shows an
additional peak around two that comes from “double-counting”.

6.4.5 Center-finder NN – Graph Neural Network

The DeepCluster model with a two-step approach shows excellent results and outperforms
the PFClustering algorithm in the coordinate and energy resolution, signal efficiency,
and background rejection. However, unlike PFClustering, the model can also create
two reconstructed objects for one generated particle. The associated problem called
“double-counting” leads to a considerable overestimation of the total reconstructed energy,
the details are described in Section 6.4.4. The next development of the DeepCluster
network addresses this issue by modifying the center-finder NN.

The splitting partially arises due to the lack of information about the input seed
windows from the same sample inside the model, as each of them is processed indepen-
dently. For example, in the sample described in Section 6.4.4, when one of the seed
windows (illustrated in Fig. 6.20) is passed through the center-finder NN, the network
is not “aware” that another, neighboring seed window exists and is also going to be
processed. As a result, the center-finder NN predicts almost identical values from both
of them, not knowing that the same particle is effectively being reconstructed twice.

The solution to this problem is to add a way of “communicating” between different
input windows inside the network. This can be done by using GNNs as they provide a
message-passing feature enabling information sharing between the inputs. The details
about this type of neural network can be found in Chapter 4.

In this section, the center-finder NN, implemented as a graph neural network, is
discussed, including the architecture of the model and the obtained results.
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Figure 6.21: The distribution of the ratio between the total reconstructed energy Etot
reco and

the total generated energy Etot
gen. The results are obtained by applying the PFClustering

algorithm and two-step network on the single-photon test dataset. They are shown in
log (left) and linear (right) scales. Due to the double-counting problem, the second peak
around two arises for the DeepCluster model.

Network architecture and concept of message-passing

In order to enable the information sharing between the inputs, in the new implementation
of the center-finder NN, the neighboring seed windows are no longer passed independently
to the network. Instead, the input is created as follows:

1. The seed crystals and associated seed windows are constructed in the same way as
discussed in Section 6.4.1 and a list containing pairs of seed crystal - seed window
is created.

2. This list is ordered based on the energy of the seed crystal Eseed.

3. The list is processed until it becomes empty, starting from the entry with the
highest Eseed:

• The new input is initialized by the considered seed window. The current shape
of the input is (1, 7, 7).

• The distance (∆R =
√

∆x2 + ∆y2) between the considered seed crystal and
the remaining seed crystals in the list is evaluated.

• The seed windows with ∆R < 3 crystal are added to the input as well. This
step changes the input shape to (i, 7, 7), where i is the number of added seed
windows.

• All of the seed windows that make part of the input are removed from the list.

Each sample of the dataset is processed in the described way. The maximum value
of i is chosen to be four as two and four reco-objects can be potentially created for the
samples with single and two generated photons, respectively. The maximum value of
variable i can be easily adjusted to higher values as well. If the seed window has <
3 neighbors, the input is completed with 7x7 matrices of 0 values in order to have a
constant input shape.
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The four potential seed windows of the input represent the nodes of the graph. In the
center-finder NN, each window j is first separately processed by a chain of convolutional
layers (same as for CNN implementation) in order to extract the vector of summary
features vj . The message-passing is implemented as the concatenation (or appending) of
these vectors. It results in 4 updated vectors v̄j : , each of them containing information
about their neighbors:

v̄1 =


v1
v2
v3
v4

 , v̄2 =


v2
v1
v3
v4

 v̄3 =


v3
v1
v2
v4

 v̄4 =


v4
v1
v2
v3

 (6.4)

The combined vectors v̄j are then passed independently to a set of dense layers until
the final output is extracted.

The center-finder NN in this implementation predicts 4 values for each seed window:
kinematic variables (xjreco, yjreco, Ejreco) and a new seed score PseedCF, indicating the
likelihood to be a true seed window.

In this version of the DeepCluster model, the seed-finder NN remains unchanged. It
serves as an initial filter, separating signal from background, while the updated center-
finder has to correct the predictions of reco-objects that potentially occur as a result
of splitting. The reconstruction and evaluation procedure follows the same steps as
discussed in Section 6.4.4. An extra condition is added at the end on the final reco-object:
only objects with PseedCF > P thr

seedCF are selected. The threshold optimization procedure
is presented further in Section 6.5. The full DeepCluster model architecture is presented
in Fig 6.22.

Input to 
center finder

seed 
finder

7x7 window
(> 0.5 GeV)

Initial input 

One by one
No connection 
between clusters

Take only windows that 
pass threshold (0.3)

input - all the clusters 
that passed threshold 

from one event (window)

Apply CNN independently on 
each input windowSeed finder

Vector of latent 
features

(x, y), en, p

(x, y), en, p

(x, y), en, p

Dense layers 
(applied separately) 

Final output

Dataset simulated 
with Geant4

Message passing
(learning about the 

neighbors)

Double pass for dr < 0.3 

Center finder

Figure 6.22: Flow chart of the DeepCluster model. 7x7 seed windows are first selected
around all possible seeds (>0.5 GeV) from the full toy calorimeter window. They are
separately passed as input to the seed-finder NN. The network predicts a seed-finder
score PseedSF for each input. The selected seed windows with PseedSF > P thr

seedSF are
combined into groups of 4 with their neighbors and passed to center-finder NN. The
network processes predicts coordinates xreco, yreco, energy Ereco and a new seed score
PseedCF for each window.

Results

In the GNN implementation of the center-finder NN, the model receives information
about all the neighboring seed windows simultaneously, instead of processing them
independently. With this adjustment, the network is able to make a more informed
decision of which seed windows shall receive a high seed score PseedCF and additionally
better attribute energy fractions for different reco-objects. As a result, even if the particle
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Figure 6.23: The distribution of the ratio between the total reconstructed energy Etot
reco and

the total generated energy Etot
gen. The results are obtained by applying the PFClustering

algorithm, DeepCluster model with center-finder CNN (CF CNN) and center-finder GNN
(CF GNN) on the single-photon test dataset. They are shown in log (left) and linear
(right) scales. Due to the double-counting problem, the second peak around 2 arises for
the CF CNN, while it is completely eliminated with CF GNN.

is reconstructed as two reco-objects, their energy predictions sum up to the generated
energy, which mitigates Etot

reco overestimation.
This improvement is shown in Fig. 6.23, where the distribution of the ratio between the

total reconstructed energy Etot
reco and total generated energy Etot

gen (sum of the energies of
all the simulated particles) for single-photon dataset is presented. With the center-finder
GNN (CF GNN) the overestimation peak around 2, which indicates double-counting, is
removed.

The mitigation of the underestimation of energy with CF GNN that can be seen in
these plots is further discussed in Section 6.5 – double pass.

6.5 Network optimization

The final version of the DeepCluster model (two-step network with center-finder GNN)
is further optimized in order to achieve the best possible performance.

In this section, the selection of the loss function coefficients and P thr
seedSF, P thr

seedCF
thresholds are presented. It is followed by a discussion of an additional implemented
technique called “double-pass” that improves energy reconstruction. Finally, the hyper-
parameter tuning of the model is presented.

6.5.1 Loss function weights

The output of the center-finder GNN consists of four different values: coordinates xreco,
yreco, energy Ereco and seed-score PseedCF, as discussed in Section 6.4.5.

The loss function in this case has three components (the coordinates are combined in
one term): position loss implemented as mean absolute error, energy loss implemented
as mean absolute error as well, and seed loss implemented as focal cross-entropy loss.
The details on the loss functions can be found in Section 4.1.2. Each of these terms can
be additionally weighted by a special coefficient (weight) in order to reduce/increase its
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importance in the learning process.
Equations (6.5) show the total loss function for each input along with its constituents

used to train the center-finder GNN.

Lposition = 1
2 · 4

4∑
i=1

(
|xireco − xigen| + |yireco − yigen|

)
,

Lenergy = 1
4

4∑
i=1

|Eireco − Eigen|,

Lseed = −1
4

4∑
i=1

α(1 − P iseedCF)γ log(P iseedCF),

Ltotal = kp · Lposition + ke · Lenergy + ks · Lseed,

(6.5)

where xireco, yireco, Eireco are the reconstructed coordinates and energy for the seed
window i; xigen, yigen, Eigen are the generated coordinates and energy of the associated
particle; P iseedCF is the predicted seed score; γ, α are parameters of the focal loss, chosen
to be γ = 2, α = 0.25; and kp, ke, ks are the weights attributed to the loss associated
with the position loss, energy loss, and seed loss, respectively. They are further referred
to as position weight, energy weight, and seed weight.

The goal of the selection of the loss weights is to find an optimal value that leads
to the best performance by achieving convergence of all three loss terms. During the
training, the position and energy validation losses are observed to always reach a relative
plateau, while the validation seed loss indicates overfitting. This can be seen from
Fig. 6.25, where the loss evolution versus epoch for different seed weights ks is presented
both for training (left) and validation (right). Due to this reasoning, the loss weight
optimization only focuses on ks, while kp = 1 and ke = 1.

Figure 6.24: Summary values obtained for different seed weights ks for single-photon
(left) and two-photon (right) datasets.

The optimal values are chosen by monitoring the loss function and comparing the
performance achieved with different loss weights ks. The summary results for various
important performance metrics, such as position (σx) and energy (σE) resolutions, overall
signal efficiency (ϵ), the overall number of background events (Nbkg), and the overall
number of splitted events (Nsplit), combined over the whole generated energy range
Egen, are shown in Fig. 6.24 both for single-photon and two-photon datasets. They are
evaluated on the best-performing model for each ks, meaning the results are estimated
on the model taken at the end of the epoch with the lowest validation loss.

As can be seen from Fig. 6.24, the performance of the networks for different ks
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Figure 6.25: The loss functions evolution versus epoch, presented for different seed
coefficients (ks). The position, energy, seed, and total training losses are shown on the
left, while the corresponding validation losses are shown on the right.
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differs only marginally. The value ks = 0.05 is selected for the seed weight based on the
energy resolution results as it is the only statistically significant metric in this case. The
best-performing model (lowest validation loss) for the chosen seed weight is achieved at
epoch n = 321. At this point, all three loss terms are converged.

6.5.2 Seed-score thresholds

In the final DeepCluster model implementation, the seed-finder NN and the center-finder
NN predict two different seed scores: PseedSF, PseedCF. They are both used in the
evaluation phase to create an optimal collection of reco-objects by applying the respective
thresholds P thr

seedSF and P thr
seedCF on them. These thresholds are optimized in order to

achieve excellent resolution and high signal efficiency (ϵ) while minimizing background
(Nbkg) and splitting (Nsplit) yields.

The optimization is done on a single-photon dataset and the following performance
metrics are monitored: position (σx) and energy (σE) resolutions, overall signal efficiency
(ϵ), the overall number of background events (Nbkg), and the overall number of splitted
events (Nsplit), combined over the whole generated energy range Egen. The results
achieved with different P thr

seedSF and P thr
seedCF (the values are taken from 0 to 1 with a step

of 0.1) are shown in Fig. 6.26.
According to these results, P thr

seedSF = 0.3 and P thr
seedCF = 0.4 are selected as they ensure

excellent performance in terms of resolution (σ(0.3,0.4)
x = 0.02 crystal, σ(0.3,0.4)

E = 0.56 GeV)
and high signal efficiency (ϵ(0.3,0.4) = 99.5%). Although the background yield (N (0.3,0.4)

bkg = 153)
is more significant for the chosen thresholds compared to larger values, it is still ≈2000
times lower than those of the PFClustering method.

The splitting performance can be recovered using another optimization procedure
called “double pass”, which is described in the next section.

6.5.3 Double pass

The main goal of the DeepCluster model is to be able to reconstruct two close-by
particles. The performance for this case can be estimated from the signal efficiency
results for the two-photon dataset (Fig. 6.19), where the DeepCluster network achieves
significantly higher efficiencies compared to PFClustering. Both for the model and the
PFClustering the closer particles are to each other, the harder it is to disentangle them
in the reconstruction process.

A limit on the distance between the two photons can be evaluated, indicating the
minimal spatial separation when both of them can still be correctly reconstructed with
the model. Figure 6.27 helps to explore this limit in more detail. It shows two different
values estimated on the two different datasets:

• Distance between generated particles. For this value, the two-photon dataset
is considered. The plot shows the distribution of generated ∆R between two
particles. Only particles that are correctly reconstructed (meaning both of them
have a link to a reco-object) are considered. For ∆R < 0.3 crystal the amount of
particles that still can be separated by the network is negligible.

• Distance between reco-objects. For this value, the single-photon dataset is
considered. The plot shows the distribution of reconstructed ∆R between two
reco-objects that are linked to the same generated particle (the case of splitted
events). The majority of the events appear for ∆R < 0.3.

In order to further mitigate the splitting yield while maintaining high signal efficiency
for two close-by photons, a dedicated procedure called “double-pass” is implemented.
For each sample, it follows several steps:
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Figure 6.26: The results for performance metrics are shown for different seed-score
threshold values P thr

seedCF, and P thr
centerCF. On the left: position σx (top), σy (middle),

and energy σE (bottom) resolutions are presented. On the right: signal efficiency
(top), splitting yield (middle), and background yield (bottom) are presented. The red
rectangular indicates the results for the selected threshold values P thr

seedCF = 0.3 and
P thr

centerCF = 0.4.
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Figure 6.27: Distributions of ∆R between two generated particles in the two-photon
dataset (generated particle) and ∆R between two reco-objects constructed from the
single-photon dataset (reco-object).

1. All the groups of reco-objects with a distance ∆R < 0.3 crystal are selected.

2. From these pairs, the reco-object with the highest reconstructed energy is chosen.
The remaining reco-objects in the group are discarded.

3. The seed window associated with the chosen reco-object is passed for the second
time through the center-finder NN.

In the double-pass procedure, the neighbors that are too close to each other are
eliminated. It leads to an improved prediction on the single-photon dataset, as, in
this case, the network only processes a single seed window without neighbors, and, by
construction can not predict more than one reco-object. As previously discussed, the
performance for the two-photon dataset is not significantly degraded by adding the
double-pass technique, as the amount of samples for the chosen limit (∆R = 0.3 crystal)
is small.

ϵ Nsplit

Without Double Pass single-photon 99.49 605
two-photon 97.59 824

With Double Pass single-photon 99.47 34
two-photon 96.98 345

Table 6.5: Result for signal efficiency (ϵ) and splitting yield (Nsplit) for the DeepCluster
model with and without a double pass (DS) for single- and two-photon datasets.

The effect of adding this method can be seen in Fig. 6.28, which shows the comparison
of signal efficiency and splitting yield between the DeepCluster models with and without
the double pass. The obtained values integrated over the full energy range Egen are
summarised in Table 6.5. Including the double pass method largely reduces the splitting
yield while only slightly affecting the signal efficiency.

The improvement in performance with the double pass can also be seen in Fig 6.29,
where the distribution of the ratio between the total reconstructed energy Etot

reco and
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Figure 6.28: Signal efficiency (top) and splitting yield (bottom) values. The results are
obtained by applying the DeepCluster model with and without the double pass technique
on the single-photon (left) and two-photon (right) test datasets.

Figure 6.29: The distribution of the ratio between the total reconstructed energy Etot
reco and

the total generated energy Etot
gen. The results are obtained by applying the DeepCluster

model with and without the double pass (DP) technique on the single-photon test dataset.
They are shown in log (left) and linear (right) scales.

total generated energy Etot
gen (sum of the energies of all the simulated particles) with and

without the double pass for single-photon dataset is presented. It shows that the energy
underestimation is reduced with the double pass.

The effect is explained by the specifics of the DeepCluster model reconstruction.
When one photon gives rise to two reco-objects, the generated energy is distributed
between them. In the evaluation phase, after the center-finder score threshold P thr

seedCF is
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applied, one of these reco-objects can be potentially removed, resulting in the energy
underestimation, as shown in Fig 6.29. With the double pass, however, only one reco-
object is produced without any energy sharing, which leads to better energy prediction.

6.5.4 Hyperparameter optimization

The final optimization procedure applied to the DeepCluster model is the tuning of
its internal parameters (or hyperparameters) in order to achieve the best possible
performance. This procedure is done using Bayesian optimization, which is discussed in
detail in Section 4.3.3. The hyperparameters that are optimized and their considered
ranges are presented in Table 6.6.

Parameter Value

1st convolutional layer number of filters: [16, 32, 48, 64, 80, 96,
112, 128], kernel size: [1, 3]

2nd convolutional layer number of filters: [16, 32, 48, 64, 80, 96,
112, 128], kernel size: [1, 3]

Common dense layers nodes: [500, 700, 900, 1100]

Center dense layer nodes: [250, 500, 750]

Energy dense layer nodes: [50, 100, 150, 200, 250, 300]

Seed dense layer nodes: [50, 100, 150, 200, 250, 300]

Dropout [0.1, 0.3, 0.5]

Table 6.6: The hyperparameters of the DeepCluster model and their considered ranges
used by the Bayesian hyperparameter optimization.

The final chosen hyperparameters are:

• 1st convolutional layer: 128 filters with kernel size 3, batch normalization is applied.

• 2nd convolutional layer: 112 filters with kernel size 1, batch normalization is applied.

• Common dense layer: 1100 nodes, 0.1 dropout is applied.

• Center dense layer: 500 nodes, 0.3 dropout is applied.

• Energy dense layer: 100 nodes, 0.1 dropout is applied.

• Seed dense layer: 250 nodes, 0.3 dropout is applied.

• Batch size: 512.

• Learning rate: 0.0001.

The effect of the hyperparameter optimization is shown in Fig. 6.30, where the difference
between Egen and Ereco obtained with the DeepCluster model before (basis) and after
(optimized) optimization for single-photon dataset is shown. With the optimization, the
energy resolution is improved by 17%.

The final model is trained using LAMB optimizer [101]. The loss function is presented
in Eq. 6.5. The model at epoch=321 is taken as it achieves the lowest value of the
validation loss.

136



Chapter 6. Clustering reconstruction for standalone particles in the ECAL with Deep
Learning

Figure 6.30: Difference between the reconstructed energy Ereco and the generated energy
of the particle Egen. The results are obtained by applying the DeepCluster model before
(basis) and after (optimized) hyperparameter optimization. The resolutions evaluated
from these distributions are reported on the plots.

6.6 Results
In this section, the results obtained with the final optimized DeepCluster model are
presented along with a comparison to the PFClustering algorithm.

6.6.1 Photons

All results are presented for single-photon and two-photon test datasets. The resolutions
are evaluated as σ = [quantile(0.84) - quantile(0.16)]/2.

Performance for position reconstruction is presented in Fig. 6.31 for the single-
photon dataset and in Fig. 6.32 for the two-photon dataset. Performance for energy
reconstruction is presented in Fig. 6.33 for the single-photon dataset and Fig. 6.34 for the
two-photon dataset. Each plot demonstrates the difference between the reconstructed
and generated values. The results are presented in bins of the energy of the generated
particle (Egen).

The signal efficiency, splitting yield, and background yield results for the DeepCluster
model and the PFClustering algorithm are presented in Fig. 6.35 for the single-photon
dataset on the left and for the two-photon dataset on the right. The results are presented
versus the energy of the generated particle Egen for the signal efficiency and splitting
yield, and versus the energy of the seed crystal Eseed for the background yield.

The performance summary is presented in Table 6.7. The DeepCluster model
outperforms the PFClustering algorithm in terms of position resolution across the full
energy range both for the single- and two-photon cases. The energy reconstruction is
improved with the model as well, apart from Egen = [1, 10] GeV and Egen = [10, 20] GeV
for two photons, where it achieves slightly worse results compared to PFClustering.

Most notably, the signal efficiency for the two-photon dataset obtained with the
DeepCluster model is 97.0% while with PFClustering it is only 82.0%.

In a more realistic scenario, with larger numbers of particles per sample, the perfor-
mance will not be significantly degraded, as can be observed from the multiple-particle
electron dataset, presented in the next section. As the network does not process the
whole calorimeter window, but only separated 7x7 windows, the scalability for the full

137



Chapter 6. Clustering reconstruction for standalone particles in the ECAL with Deep
Learning

Figure 6.31: Difference between the reconstructed position xreco and the generated
position of the particle xgen. The results are obtained by applying the PFClustering (PF)
algorithm and DeepCluster model on the single-photon test dataset. The distributions
are presented in four bins of the generated photon energy Egen: [1, 10] GeV, [10, 20] GeV,
[20, 60] GeV, and [60, 100] GeV. The resolutions evaluated from these distributions are
reported on the plots.

Single-Photon Two-Photon

PFClustering DeepCluster PFClustering DeepCluster

σx [crystal] 0.04 ± 0.00 0.02 ± 0.00 0.08 ± 0.00 0.03 ± 0.00

σE [GeV] 0.61 ± 0.00 0.55 ± 0.00 6.24 ± 0.01 0.92 ± 0.00

ϵ 99.8 ± 0.3 % 99.5 ± 0.3% 82.0 ± 0.3% 97.0 ± 0.3%

Nsplit/100k photons 0 34 ± 6 17 ± 4 345 ± 19

Nbkg/100k toy samples 350k ± 19k 153 ± 12 320k ± 18k 146 ± 12

Table 6.7: Performance comparison for position and energy resolutions, signal efficiency,
splitting yield for 100k photons, and background yield for 100k toy simulation between
PFClustering and DeepCluster algorithms for single- and two-photon datasets.
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Figure 6.32: Difference between the reconstructed position xreco and the generated
position of the particle xgen. The results are obtained by applying the PFClustering (PF)
algorithm and DeepCluster model on the two-photon test dataset. The distributions are
presented in four bins of the generated photon energy Egen: [1, 10] GeV, [10, 20] GeV,
[20, 60] GeV, and [60, 100] GeV. The resolutions evaluated from these distributions are
reported on the plots.
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Figure 6.33: Difference between the reconstructed energy Ereco and the generated
energy of the particle Egen. The results are obtained by applying the PFClustering
(PF) algorithm and the DeepCluster model on the single-photon test dataset. The
distributions are presented in four bins of the generated photon energy Egen: [1, 10] GeV,
[10, 20] GeV, [20, 60] GeV, and [60, 100] GeV. The resolutions evaluated from these
distributions are reported on the plots.
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Figure 6.34: Difference between the reconstructed energy Ereco and the generated energy
of the particle Egen. The results are obtained by applying the PFClustering (PF)
algorithm and DeepCluster model on the two-photon test dataset. The distributions are
presented in four bins of the generated photon energy Egen: [1, 10] GeV, [10, 20] GeV,
[20, 60] GeV, and [60, 100] GeV. The resolutions evaluated from these distributions are
reported on the plots.
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Figure 6.35: Signal efficiency (top), splitting yield (middle), and background yield
(bottom) values. The results are obtained by applying the PFClustering and DeepCluster
model on the single-photon (left) and two-photon (right) test datasets.
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ECAL will not pose a problem as well. In this case, the particles are either far apart in
the calorimeter (single-photon dataset) or in close proximity (two-photon dataset), both
of which are covered during the model training.
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Figure 6.36: Signal efficiency (top), splitting yield (middle), and background yield
(bottom) values. The results are obtained by applying the PFClustering and DeepCluster
model on the single-electron (left) and two-electron (right) test datasets.

6.6.2 Electrons

The DeepCluster model performance on the single- and two-electron datasets is identical
to the photon ones, underlining the robustness of the model. Figure 6.36 presents the
results for signal efficiency, splitting yield, and background yield for the single-electron
dataset on the left and the two-electron dataset on the right. The position and energy
results are also very similar to the ones achieved on the photon dataset and are omitted
for brevity.

The DeepCluster model is also tested on the multiple-particle electron dataset, where
each sample contains up to six particles.

Performance for position and energy reconstruction is shown in Fig. 6.37. Each plot
demonstrates the difference between the reconstructed and generated values.

The signal efficiency, splitting yield, and background yield results for the DeepCluster
model and the PFClustering algorithm are presented in Fig. 6.38.

Even though the network is not specifically trained on the electron dataset, it still
shows excellent performance, which is competitive with PFClustering. The position
and energy resolution with DeepCluster reconstruction is improved by 50% and 6%,
respectively. Overall (evaluated along all energy bins) signal efficiency is similar for both
algorithms: 70.8% for the DeepCluster and 70.6% for the PFClustering. The splitting
yield is higher for the model: 539 versus 5 for the PFClustering. The background yield
is significantly reduced: 100 for the DeepCluster versus 100k for the PFClustering.
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Figure 6.37: On the left: the difference between the reconstructed position xreco and
the generated position of the particle xgen. On the right: the difference between the
reconstructed energy Ereco and the generated energy of the particle Egen. The results are
obtained by applying the PFClustering (PF) algorithm and the DeepCluster model on
the multiple-particle electron dataset. The resolutions evaluated from these distributions
are reported on the plots.

6.6.3 Pions

Finally, the results achieved on the π0 sample (described in Section 6) are presented. In
this case, the reconstruction algorithms have to detect both of the photons produced as
the result of π0 decay and correctly define their energy. With this information, the mass
of π0 can be reconstructed as:

mπ0 =
√

2E1
recoE

2
reco (1 − cos(θ)), (6.6)

where E1
reco, E2

reco are the reconstructed energies of two photons and θ is the decay
angle between them.

π0 mass distributions reconstructed with the DeepCluster model and PFClustering
are presented in Fig. 6.39. The results are shown in bins of the generated momentum pgen
of π0. The model achieves excellent results, outperforming the PFClustering π0 detection
efficiency by a factor of more than 2. Moreover, the mass resolution is significantly better
with the model, which can be seen from the presented plots.

Examples of event displays are presented in Fig. 6.40 (left), where both algorithms
only reconstruct one particle, Fig. 6.40 (right), where both photons are reconstructed by
the network and PFClustering and Fig. 6.41, where only DeepCluster model is able to
correctly identify both particles.

As in the case of electrons, the model is not specifically trained on the π0 dataset.
Moreover, the photons coming from the decay enter the toy calorimeter under different
angles and not perpendicularly as in the training sample, which additionally indicates
the robustness of the network.
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Figure 6.38: Signal efficiency (top), splitting yield (middle), and background yield
(bottom) values. The results are obtained by applying the PFClustering and DeepCluster
model on the multiple-particle electron dataset.
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Figure 6.39: π0 mass distribution reconstructed with DeepCluster model and PFCluster-
ing algorithm. The results are shown in bins of the generated momentum p of π0.

6.7 Conclusion and perspectives
This chapter focuses on the DeepCluster model, an innovative reconstruction technique
designed specifically for standalone electromagnetic particles in the ECAL. It was created
and fully developed as part of this thesis and represents the majority of the performed
work.

To evaluate the developed methods and compare results with the traditional approach
(PFClustering), a dedicated simplified simulation of the ECAL is created. Three different
implementations of the DeepCluster model are tested. A two-step network approach
based on convolutional and graph architectures yields the most optimal results and
overcomes all encountered difficulties.

The final optimized model is tested on the single- and two-photon datasets as well as
the multiple-particle electron dataset. In all of the cases, the DeepCluster shows superior
performance compared to the PFClustering method in coordinate and energy resolutions,
as well as background rejection and signal efficiency.

The main limitation of the traditional approach is its inherent difficulty in distin-
guishing between closely spaced particles, which leads to degraded performance in π0

particle identification. In contrast, the DeepCluster model demonstrates excellent results
by reconstructing approximately twice as many π0 particles. This result holds promising
prospects for the application of the DeepCluster model for ECAL reconstruction.

In subsequent development stages, the DeepCluster model will be integrated into the
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Figure 6.40: Two event displays for π0-decay in the toy calorimeter. On the left: a case
where both PFClustering and DeepCluster model can only reconstruct one particle. On
the right: a case where both of the algorithms correctly reconstruct two photons.

global software of the CMS experiment to undergo testing with the real ECAL detector
under more realistic physics conditions.
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Figure 6.41: Two event displays for π0-decay in the toy calorimeter. In these cases, only
the DeepCluster model can correctly reconstruct two photons.
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Conclusion

The work performed during this thesis was dedicated to three different topics. All of
them were carried out within the context of the CMS experiment and have a strong
potential to benefit the further performance of the detectors and physics analysis.

The first subject was the development of the data acquisition system for the new
MIP Timing Detector (MTD). Specifically, the focus was on the development of the
DAQ software framework and a module used to reconstruct physical variables (time,
charge) from the signal of the readout TOFHIR chip. During the subsequent system
tests, the created software was validated and the timing resolution of 23 ps was achieved,
which is within the bounds of the MTD requirements.

The MTD DAQ software is currently under continuous development with the target
of including all the necessary features to operate with both the barrel and endcap parts
of the detector. It will be further examined during the test beams and used for the
detector commissioning.

The second subject was the SuperClustering reconstruction in the electromagnetic
calorimeter (ECAL) of CMS. A new DeepSC model was created based on Graph Neural
Networks and Self-Attention layers. The focus of this thesis was on the development of
the particle identification feature — a novel approach to distinguishing electromagnetic
objects and background using only ECAL information at the reconstruction step. A
proof-of-concept study was performed, showing that using this extra information improves
the signal efficiency of the current algorithm used in CMS particle flow by 20% for a
background efficiency of 10%.

The further steps for the DeepSC and, in particular, the particle identification part
may include adding it to the general reconstruction flow as an additional discriminating
variable and testing its performance on real data (using Z boson decaying to electrons)
and its impact for analyses which might strongly benefit from it (e.g. H → γγ).

Finally, the majority of the work performed during the thesis was dedicated to the
standalone electromagnetic object reconstruction in ECAL. The DeepCluster model was
developed in order to overcome the limitations of the current PFClustering algorithm
used for this task. It was based both on Graph and Convolutional Neural Networks.
The full study from simulating a simplified calorimeter to comparing the results on
π0 samples was carried out. The new approach outperforms the PFClustering both in
coordinate and energy resolution but, most importantly, in signal efficiency evaluated for
two close-by photons: 97% for the DeepCluster model versus 82% for the PFClustering.
It is particularly valuable for the cases with two close-by photons, as in π0 decay or
H → AA → 4γ analysis as discussed in Chapter 1.

The outlook for this project includes implementing the DeepCluster model in the
general software of the CMS experiment in order to test it in the real detector condition
and, potentially, in application to physics analyses.
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