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CONTEXT 

Located in the heart of Beirut, Al HADI IVF Center stands as the leading 

fertility center in Lebanon since its establishment in 2005. With a commitment to 

providing the most advanced techniques in the region, the center offers state-of-the-

art services to its patients. Dr. Chadi Fakih, the founder of Al HADI IVF Center, 

brings a wealth of experience and exceptional education to the field, having 

successfully contributed to the conception of thousands of babies through the 

utilization of the latest assisted reproductive techniques. 

Medicine remains up-to-date with the latest advancements in assisted 

reproductive technology, ensuring that patients receive the most current and effective 

treatments available. Moreover, the clinicians emphasize honesty, professionalism, 

and unwavering support, offering hope to couples seeking to fulfill their dream of 

having a child. 

The motivation behind exploring the factors that influence IVF outcomes 

arises from the strong desire to enhance the success rates and overall effectiveness of 

the procedure. Given the complex and multifaceted nature of IVF, understanding and 

identifying these factors hold immense significance for both clinicians and 

researchers. This recognition has led to the idea of conducting systematic studies, 

thoroughly analyzing various parameters such as patient characteristics, hormone 

levels, embryo quality, and other relevant factors. Through these endeavors, the aim 

is to gain a deeper understanding of these parameters and develop strategies to 

optimize the success rates of IVF treatments. 

During his experience in the field of IVF, Dr. Chadi has observed a relationship 

between endometrium and myometrium 3D Power Doppler parameters and the 

outcomes of IVF treatments. The success of IVF treatment relies on the important 

roles played by the endometrium. The endometrium, which is the inner lining of the 

uterus, undergoes cyclic changes throughout the menstrual cycle. It thickens and 

prepares itself for the potential implantation of a fertilized embryo. In the context of 

IVF treatment, the receptivity and quality of the endometrium are critical factors in 

achieving successful implantation. Before the embryo transfer, the endometrium is 

carefully assessed for its thickness, texture, and hormonal responsiveness to ensure 

it is optimal for implantation. On the other hand, the myometrium refers to the 

middle layer of the uterine wall, composed of smooth muscle tissue. Its primary 

function is to contract during labor to facilitate childbirth. While there is limited 

research on the correlation between endometrial blood flow and the outcomes of IVF, 

it remains uncertain whether the same correlation exists for myometrium blood flow. 

However, in the laboratory of ALHADI, accurate information about endometrial blood 

flow and myometrium blood flow and its correlation with IVF outcomes is considered 

vital. Changes in treatment protocols, such as the addition of medications, may be 

influenced by this information. Ultimately, the decision-making process involving the 

couple is crucial in determining the appropriate course of action. 
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Choosing to conduct a thesis on predicting the outcome of IVF with the 

ALHADI center presents a valuable research opportunity with clinical relevance. It 

allows for the exploration of innovative methodologies, collaboration with experts, 

and a chance to enhance IVF outcomes and patient well-being. Access to extensive 

clinical data and IVF outcomes facilitates thorough and dependable analysis. The 

research findings hold the potential to greatly influence couples undergoing IVF 

treatments, enabling them to make informed decisions, effectively manage 

expectations, and alleviate associated stress. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

1.1 BACKGROUND 

Infertility is a medical condition characterized by the inability to achieve a clinical 

pregnancy after 12 months or more of regular unprotected sexual intercourse. The reported 

prevalence of infertility varies significantly due to different research methodologies. However, 

global estimates indicate that approximately 48.5 to 72.4 million couples worldwide experience 

infertility. Among couples of reproductive ages, the prevalence of infertility ranges from 12.6% to 

17.5% on a global scale, with higher rates observed in regions such as the Americas, Western 

Pacific, Africa, and Europe. These regional disparities in prevalence reflect variations in sexual 

and reproductive health, access to and quality of healthcare, and societal and cultural factors, which 

are further influenced by environmental conditions.  Infertility is not exclusively attributed to 

women; it can affect both men and women. Approximately one-third of infertility cases are caused 

by issues specific to women, while another one-third is attributed to male factors. The remaining 

cases involve a combination of male and female factors or have unidentified causes [1]. 

However, the global assisted reproductive technology (ART) market has experienced 

significant growth in terms of the number of clinics and procedures performed. The assisted 

reproductive services market was valued at approximately USD 26 billion in 2019 and is projected 

to reach USD 45 billion by 2025. Between 1997 and 2016, ART treatments saw a remarkable 

increase, with more than a fivefold increase in Europe, a 4.6-fold increase in North America, and 

a threefold increase in Australia and New Zealand [2]. 

The market solutions for enhancing the success rates of IVF encompass a range 

of strategies and advancements within the field of assisted reproductive technology 

(ART). ALHADI Laboratory, prioritizes the improvement of success rates.  

As shown below, the success rate of IVF cycles in Al HADI IVF Center is around 65% 

and increases to 85% in case of cumulative IVF cycles (two to three times repeat of the IVF cycle) 

also, this percentage increase in case of Preimplantation Genetic Screening (PGS), a screen embryo 

for chromosomal abnormalities to 70% since studying the genetic information prior to 

implantation increases the implantation. In addition, the success rate of cumulative PGS (two to 

three times repeat) increases to 90%. 

At this level, the main objective is to improve the success rate from 65% to 80% using a 

procedure or AI, we could then imagine approaching 100% for several cumulative IVF cycles, 

leading to a revolution in the field of IVF. 

Assisted reproductive technology (ART) is widely recognized as a crucial biomedical 

intervention for addressing infertility in couples or individuals worldwide. However, significant 

disparities exist in the availability, quality, and delivery of infertility care services. Despite ART 

being available for over four decades, it remains inaccessible or unavailable to the majority of 

individuals in resource-poor settings. In addition to being costly, ART procedures are often time-

consuming, physically and emotionally demanding, and offer no guarantees of success (see Figure 

1-1) [1]. 
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Success rates of assisted reproductive techniques (ART) can vary and are influenced by 

several factors such as the age of the partners, the cause of infertility, the expertise and experience 

of the clinic, different assisted reproductive procedures, the use of fresh or frozen eggs, and the 

use of fresh or frozen embryos.  

IVF and ICSI are two assisted reproductive methods employed to address infertility. In 

IVF, the process entails combining eggs and sperm in a laboratory dish, followed by the transfer 

of resulting embryos into the uterus for potential pregnancy. In contrast, ICSI is a modified version 

of IVF that involves the direct injection of a single sperm into an egg to assist with fertilization. 

ICSI has the potential to increase the likelihood of achieving a successful pregnancy. Due to this 

advantage, ALHADI Laboratory has incorporated ICSI as one of its preferred methods for 

assisting couples in their journey towards fertility. 

The success rate of IVF hinges primarily on the occurrence of a positive pregnancy test or 

the detection of a gestational sac within 21 days following the transfer of the embryo into the 

uterus. This represents the concluding stage of the IVF process. 

 

 

The Centers for Disease Control and Prevention (CDC) in the United States collect data on 

success rates of assisted reproductive techniques from certain fertility clinics [3]. A graph 

illustrating the average percentages of assisted reproductive cycles resulting in live births based 

on the mother's age is shown Figure 1-2. This study shows that the success rate decreases with the 

age of the woman. 

In many countries, such as Lebanon, infertility is often overlooked due to competing health 

priorities, relatively high fertility rates, and large family sizes, which can mask the prevalence of 

infertility within populations and discourage public funding for infertility treatment. As a result, 

publicly funded infertility treatments are either limited or nonexistent, and they are generally not 

covered by health insurance schemes, despite the heavy financial burden on patients. 

 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

IVF success rate per embryo transfer

Cumulative IVF success rate

PGS success rate per embryo transfer

Cumulative PGS success rate

IVF success rate in ALHADI Laboratory 

success rate

Figure 1–1: Average percentages of IVF success rate at Al Hadi Lab. 
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The lack of government capacity or commitment in addressing infertility means that many 

couples are forced to pay for their treatment out of pocket, making cost a significant barrier to 

accessing such treatment. However, the deep desire to have a child often compels couples to make 

substantial financial sacrifices and endure severe financial hardships in order to access infertility 

care. Although assisted reproduction can be costly and time-consuming, it has enabled many 

couples to conceive a child when they would have otherwise faced challenges. 

The success rate of this procedure can vary from country to country. Therefore, it is crucial 

to consider high success rates when choosing a facility to achieve your goal of having a baby. 

1.2 PROBLEM STATEMENT 

When a couple decides to undergo an IVF procedure, the physician begins by 

providing information about possible reasons for infertility and the selection criteria 

for IVF. A series of consultations then follow. The fertility specialist offers an initial 

consultation, during which they review medical history, conduct a physical 

examination, and gather relevant information. 

To ensure a favorable outcome, numerous tests, which can vary depending on 

individual circumstances, are typically necessary to assess the couple's fertility status 

and determine the most appropriate therapeutic approach. These various pre-IVF 

protocol tests are performed to evaluate fertility factors, some specifically designed 

for women and others for men. These tests include ovarian reserve and tubal patency 

testing, screening for infectious and genetic diseases, chlamydia screening, rubella 

immunity testing, and sperm quality evaluation, to name a few. 

Additionally, an ultrasound examination is performed to clearly examine the 

endometrium and myometrium, extracting qualitative and quantitative 

measurements through gray-scale image levels. Pulsed and color Doppler allow 

measurements of uterine and endometrial/myometrium perfusion through 

45%

28%

3%

12%

12%

Average percentages of ART cycles 
resulting in live births 

age < 35

35 < age < 37

38 <  age < 40

41 < age < 42

age > 42

Figure 1–2: Average percentages of ART cycles resulting in live births [3]. 



6 

receptivity factors such as the vascularization index (VI), flow index (FI), and 

vascularization flow index (VFI). 

Additional examinations may be recommended based on the individual's 

medical history and risk factors. Finally, couples may be required to attend 

counseling sessions to address the emotional, psychological, and ethical aspects 

associated with IVF treatment. 

After this series of consultations, if the couple agrees to follow the doctor's 

advice (complete smoking cessation, optimizing body mass index, maintaining a 

healthy lifestyle), the doctor can provide them with a prediction of the treatment 

success rate and advice. This prediction, based solely on the doctor's experience and 

available information, even if imperfect, represents an important milestone as it can 

be the starting point of the IVF process. 

The challenge we aim to address in this thesis is the establishment of 

an "automatic" prediction of IVF success rate. This new measure will assist 

and support the doctor in their own prediction of IVF success rate. The 

doctor can then advise the couple on the continuation of the protocol. 

If the couple decides to proceed with the IVF protocol, the prospective parents 

must sign a consent form, acknowledging that they understand and accept all the 

steps and risks associated with IVF. As you can see in Figure 1-3, the IVF/ICSI cycle 

continues with stimulation treatment, ovarian activation with gonadotropins, 

ultrasounds to monitor follicle development (following serum hormone injections), 

final oocyte maturation and Human Chorionic Gonadotropin test (HCG) 

administration, oocyte retrieval through transvaginal aspiration, artificial 

insemination, embryo transfer, and finally, pregnancy testing. 

 

Figure 1–3: The procedure of oocyte retrieval [4]. 
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1.3 STATE OF THE ART OF PREDICTION SYSTEMS FOR THE SUCCESS 

RATE OF IVF/ICSI  

One out of seven couples is affected by infertility. Therefore, assisted 

reproductive technology (ART), particularly in-vitro fertilization (IVF), is regarded as 

a common method for encouraging the birth of children among infertile people [4] [5]. 

IVF is a sophisticated assisted reproductive therapy that has advanced since the first 

pregnancy achieved with this technique in 1979.  The rates of pregnancy after IVF 

treatment range from 30 to 70%, depending on the female's age and other variables. 

The causes of successful pregnancies have been extensively investigated [6]. Age, 

body mass index (BMI), uterine and ovarian variables, the kind of stimulation 

protocol utilized, the stimulation dose, and the use of fresh or frozen protocols are all 

factors that can affect the outcome of ARTs [7] [8]. To help practitioners make 

informed decisions, machine learning algorithms have been suggested to automate 

the intricate modeling of the IVF procedure for result prediction and patient 

counseling. These models are capable of exploring and analyzing the population 

pattern in a sizable dataset and can aid in the extraction of the dataset’s latent 

knowledge. 

A variety of machine learning techniques are widely used for prediction [9], 

including Artificial Neural Networks (ANN), Support Vector Machines (SVM), 

Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), k-Nearest Neighbors 

(KNN), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Recursive 

Partitioning (RPART), Adaptive Boosting (AB), Light Gradient Boosting Machine 

(LGBM), Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Linear 

Discriminant Analysis (LDA), Hill Climbing Wrapper Algorithm (HCWA), 

Classification and Regression Trees (CART), and Conditional Inference Tree (CIT). 

Table A-1 in the appendix A summarizes the studies that predict the outcome of IVF 

using machine learning techniques. The table shows for each study the sample size, 

the machine learning technique used, the features selection technique, the selected 

features, and the performance.  Among these studies, Kaufmann et al. [10] used ANN 

to identify the most influential factors. They then used those as input features to 

train a neural network. Uyar et al. [11] looked into a variety of classifiers to predict 

the outcome of embryo implantation in IVF. They used the Receiver Operating 

Characteristics (ROC) curve to analyze the performance of the classifiers. Better 

results were obtained using the NB and RBF classifiers. In a further investigation 

conducted in 2015, these authors reduced the feature set by weighing each feature's 

relative relevance, and this resulted in a marginally improved performance by NB 

[12].  Moreover, Guh et al. [4] proposed a hybrid method that integrates both genetic 

algorithm (GA) and DT techniques to study 67 IVF attributes. The GA algorithm was 

used to identify the best set of features and the learning parameters of the DT model 

simultaneously. This integration of GA and DT reduced the number of significant 

features to twenty–eight. In addition, Durairaj & Kumar [13] used 14 male and 

female variables to predict the success rate of IVF treatment. Hafiz et al. [14]  

investigated five techniques to predict the success of IVF. They reported that the RF 

and RPART outperformed other methods. In 2019, Qui et al. [15] applied different 

variables to compare predictive performances based on the AUC. XGBoost and RF 
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algorithms achieved higher AUCs. Amini et al. [5] predicted the outcomes of 

Intracytoplasmic Sperm injection (ICSI) using male and female clinical attributes. In 

2020, Hassan et al. [16] proposed a Hill climbing wrapper algorithm to select the best 

subset of clinical features. SVM attained the highest accuracy.  Additionally, Liu et 

al. [17] used variables such as clinical female factors to predict ICSI success rates. 

Barreto et al. [18] used five techniques with male and female clinical factors and 

showed that RF achieved the best performance while Wen et al. [19] applied six 

classifiers and showed that XGBoost attained the best performance.  

As early as 2012, ultrasound assessment has been used and found to be useful 

in predicting outcomes in assisted reproduction patients [20] [21]. Indeed, Zhang et 

al. [22] demonstrated the benefit of adding new echo-Doppler parameters to clinical 

parameters. As a matter of fact, ultrasound examination of endometrial receptivity 

can detect a variety of combinations of imaging parameters. The prediction models 

used a variety of ultrasound features, including endometrial volume and endometrial 

vascularization index. This study was the only one that used subendometrial blood 

flow as measures to demonstrate the correlation with IVF. Nevertheless, 

myometrium receptivity has not been addressed in [22]. Based on Dr. Chadi's 

observations, this study will serve as our starting point in establishing our own 

prediction system. This is the first ingredient that will serve as the foundation 

for our proposed solution in this thesis. However, Zhang et al. [22] have 

developed simple nomograms combining clinical and Doppler parameters that predict 

early clinical outcomes in embryo transfer cycles using the parameters of age, birth 

BMI, type and number of embryos transferred, endometrial thickness, flow index (FI), 

resistivity index (RI), pulsatility index (PI) and the number of endometrial and 

subendometrial blood flows. In the training process, the AUC showed a value of 0.698, 

and similar results were shown in the subsequent validation cohort. Furthermore, 

none of the studies described above used machine learning approaches with 

endometrial and myometrium Doppler measurements. Therefore, machine 

learning approaches with endometrial and myometrium Doppler 

measurements were the second ingredient that served as the foundation for 

our proposed solution in this Thesis. 

1.4 OBJECTIVE OF THESIS  

The challenge we are tackling is to provide doctors with a "pre-IVF protocol" 

score for the success rate of IVF based on diverse data. To achieve this, we will 

develop a tool which we will refer to as SPIRL (System for Predicting the success Rate 

of IVF using machine Learning combining clinical and Doppler data). The SPIRL tool 

aims to revolutionize the prediction of IVF/ICSI success rates by combining machine 

learning techniques with clinical and Doppler data. The goal is to provide an 

automated tool capable of calculating the success rate of ICSI procedures based on 

various data. 

The primary purpose of the SPIRL tool is to assist doctors in their decision-

making process rather than replacing their expertise. It is a valuable aid that relies 

on advanced algorithms to analyze and interpret data and ultimately provide a 

prediction of the success rate. The current prediction of ICSI success rates depends 
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on the specific types of data used and the methods employed. With the SPIRL tool, 

the aim is to create a fully automated version in the long run that minimizes manual 

interventions as much as possible. The aim is to extract important measurements 

and features from Echo-Doppler images as automatically as possible. This involves 

automatically extracting Echo-Doppler images and their corresponding 

measurements and features. Three different approaches are considered for extracting 

biomarkers from Echo-Doppler images for analysis: manual, semi-automatic, and 

fully automatic segmentation independent of the operator. These approaches aim to 

minimize dependence on human operators and reduce potential variations or biases 

in the biomarker extraction process. 

By developing an automated tool like SPIRL, healthcare professionals can 

benefit from faster and more accurate forecasts of ICSI success rates. This 

information can help guide treatment decisions and improve the overall efficiency of 

the ICSI process. 

The proposed strategy for SPIRL includes the following steps: 

 State of the art 

 Collection of clinical parameters and power Doppler parameters. 

 Creation of three separate databases: one containing Doppler parameters, 

another containing clinical parameters, and a third combining both clinical 

and power Doppler parameters. 

 Use of different machine learning models to predict the outcome of ICSI for 

each database. 

 Comparison of the obtained results for each dataset to evaluate the impact of 

power Doppler parameters on the success rate. 

1.5 HYPOTHESIS OF THESIS  

The combination of established clinical parameters and new indicators aims to 

improve the success rate of ICSI. This approach involves the use of advanced 

techniques such as power Doppler ultrasound, which allows measurement of the 

volume and vascularization indices of the endometrium and myometrium, as well as 

the mean grayscale values of these uterine layers. 

The vascularization indices of the endometrium and myometrium are 

quantitative measures that assess the density, intensity of blood vessels and 

perfusion of blood flow in these uterine layers. These indices provide valuable insights 

into the overall vascularization of the uterus, which can influence the receptivity of 

the endometrium and myometrium and the success of embryo implantation. 

The mean grayscale values represent the intensity of pixels in the ultrasound 

image of the endometrium and myometrium. These values reflect tissue 

characteristics and can indicate the health and quality of these uterine layers. 

Deviations from normal mean grayscale values may indicate underlying issues that 

could impact the success of ICSI. 
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By combining these advanced measures with established clinical parameters, 

healthcare providers can obtain a more comprehensive and accurate assessment of 

the uterine environment. This information allows for personalized treatment 

planning, facilitating the identification of potential issues and the implementation of 

appropriate interventions to optimize the success rate of ICSI. 

By using various machine learning techniques and different feature selection 

methods, it is possible to identify key factors that influence the outcome of 

intracytoplasmic sperm injection (ICSI). In particular, the importance of Doppler 

parameters can be demonstrated, enabling the prediction of the success rate of ICSI 

outcomes. 

Virtual Organ Computer-aided Analysis (VOCAL software) measures the 

Power Doppler parameters.  The drawback of using the VOCAL software is that it 

can be time-consuming. The manual interaction and adjustments required during the 

segmentation process can prolong the analysis time, which may not be ideal in time-

sensitive clinical settings. So, it is important to explore automated segmentation 

methods that can achieve comparable or even superior accuracy while minimizing the 

time required for the process. Making a fully automated prediction of the outcome of 

ICSI is a challenge. 

1.6 THESIS OUTLINE 

The thesis is structured into five chapters, each serving a specific purpose. 

Chapter one begins by introducing the study. It presents background information, 

the objectives, and defines the scope of the work. Chapter two provides a preliminary 

work regarding the use of machine learning in predicting the success of IVF/ICSI 

procedure using clinical parameters. Chapter three presents a thorough analysis of 

the success of IVF/ICSI procedure using both clinical and Doppler parameters. 

Chapter four presents a detailed description and analysis of the segmentation 

techniques employed in the research work with the application and the results. And 

then explores the classification of the segmentation results. Chapter five concludes 

the thesis by summarizing the overall discoveries and contributions of the research 

work. Additionally, it highlights the areas for future research and potential avenues 

for further exploration. 
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CHAPTER 2 

 

CLASSIFICATION BASED ON CLINICAL DATA (SPIRL 

VERSION I) 

2.1 INTRODUCTION 

Our initial approach serves as a first draft for the SPIRL (System for 

Predicting the success Rate of IVF using machine Learning combining clinical and 

Doppler data) we propose, which aims to use machine learning to improve the 

estimation of the optimal endometrial implantation period. 

The functional diagram of our prediction system consists of several functions 

as illustrated in Figure 2-1. It integrates influential clinical attributes of IVF. Then, 

a preprocessing technique is a must for the management of the data. Through feature 

selection techniques, we identify the most significant factors that impact the outcome 

of IVF/ICSI. Our goal is to assist doctors in making informed decisions regarding the 

most appropriate treatment for each couple, aiming to achieve a 100% success rate in 

conceiving a baby. 

 

2.2 MATERIALS AND METHODS OF SPIRL VERSION I 

2.2.1 Flowchart 

The study's workflow is depicted in Figure 2-2. After gathering clinical 

parameters, the raw data underwent preprocessing using data classification tools 

before being inputted into the machine learning application. Missing values were 

handled, and data normalization was performed using Min-Max Scaling, a function 

from the Scikit-learn library. Categorical data, such as embryo quality (grade 0 for 

good quality and grades 1-3 for bad quality), was encoded into numerical 

representations using One Hot Encoding, also available in Scikit-Learn [23]. The data 

was then split into training and testing sets with an 80/20 ratio using the train-test-

Clinical Data 
collection 

Preprocessing 
techniques 

Feature 
Selection 

Classifiers
Prediction the 

outcome of 
ICSI 

Figure 2–1: A functional diagram for our SPIRL Version 1. 
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split function from Scikit-Learn. The training set, consisting of 80% of the data, was 

used for hyperparameter tuning, feature selection, and feature extraction. Stratified 

k-fold cross-validation was employed during training to ensure effective results. The 

remaining 20% of data was reserved for evaluating the final model's performance 

after hyperparameter tuning and feature engineering, allowing unbiased scoring of 

prediction results. 

Feature selection was employed to reduce the number of features in the 

dataset, enhancing the classifier's performance by selecting important features that 

maximize separation between classes. ANOVA was employed as the feature selection 

technique for each classifier in our initial version of SPIRL. The selection of this 

particular technique was based on its widespread use in the current state of the art 

for our specific data type. To determine the optimal values of hyperparameters, three 

different optimization algorithms (Grid Search, Bayesian Search, and Random 

Search) were compared for each classifier. These techniques differ in their search 

methods for finding the best hyperparameters. 

Machine learning algorithms, Artificial Neural Networks (ANN), Support 

Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), were used to 

automate the modeling of IVF procedures for result prediction and patient 

counseling. Tree-based classifiers, in particular, were chosen for their effectiveness, 

low cost, and interpretability compared to more complex algorithms. To predict 

pregnancy outcomes after ICSI, the performance of prediction models built using five 

classifiers (RF, LR, SVM, NB, KNN) was compared. The evaluation of each model's 

performance involved using different metrics, such as accuracy and AUC-ROC, to 

select the best model for predicting the outcome of ICSI. 

The calculations in this study were conducted using the Python programming 

language [23], utilizing various libraries suitable for machine learning tasks, 

including sklearn.metrics, model_selection, ensemble, Decomposition, Discriminant 

Analysis, and feature selection. Additionally, commonly used libraries such as 

NumPy, Matplotlib, and Skopt were employed. Classification accuracy is the most 

commonly used metric for evaluating classification models. It is preferred due to its 

simplicity in calculation and interpretation, providing a single number summarizing 

the model's performance. A higher AUC (Area Under the Curve) indicates better 

prediction of 0 (non-pregnant) and 1 (pregnant) class. 

2.2.2 Data Collection 

Between January 2018 and May 2018, data was collected from all patients 

undergoing ICSI treatments at ALHADI IVF Center. The study involved the 

inclusion of all eligible patients who met the criteria for participation. Every patient 

approached willingly provided their consent and actively engaged in this study. The 

data exhibits a balanced distribution, making it well-suited for utilization in machine 

learning algorithms. For this retrospective study, a total of 94 patients who 

underwent ICSI were included. The inclusion criteria were women under the age of 

45 with at least one embryo of good morphology. Clinical parameters including age, 

embryo and oocyte characteristics such as the number of embryo transfers, retrieved 

oocytes, oocytes fertilized, 2PN (pronuclei) stage, utilization rate, retrieved embryos, 

embryo quality, and the day of transfer were extracted from the "TrakMD platform" 
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application, which was filled out by the embryologist at ALHADI IVF Center. The 

selection of these clinical parameters is founded upon an extensive review of 

numerous articles in the literature. These carefully chosen clinical parameters have 

demonstrated their significance in predicting the outcome of IVF and play a crucial 

role in determining its success. Additionally, the extensive availability of data on the 

platform and the low occurrence of missing values contribute to the selection of these 

clinical parameters. The abundance of data ensures a robust analysis, while the 

minimal missing values enhance the reliability and accuracy of the predictions in IVF 

outcomes. Table 2-1 presents the clinical parameters used in our study along with 

their respective definitions.  

Clinical Parameters Definition 

Age (Numerical) The age of the patient 

Number of the Embryo Transferred (ET) 

(Numerical) 

The number of embryos transferred into the 

uterus per ICSI cycle. 

Transfer day (Numerical) The day of transfer. 

Oocytes Retrieved (Numerical) 
The number of Oocytes retrieved during ICSI 

treatment. 

Oocytes Put in Fertilized (Numerical) 
The number of Oocytes put in fertilization 

during ICSI treatment. 

Embryos sampled (Numerical) The number of embryos chosen in the treatment 

Utilization rate (Numerical) The rate of live baby born per oocyte 

2 PN (Numerical) 

Normal fertilization of an oocyte is defined by 

observing two distinct pronuclei (2PN) and two 

polar bodies after insemination 

The quality of the Embryo (Categorical) 
The quality of transferred embryo determined by 

the embryologist based on morphology. 

 

2.2.3 Inclusion and Exclusion Criteria  

All medical procedures were conducted according to standard protocols, 

without any additional or unusual diagnostic or treatment procedures. Therefore, the 

recorded analysis in this case is retrospective research that does not have any direct 

impact on patient care. The inclusion and exclusion criteria play a crucial role in the 

study, as they allow for the selection of a specific study population. The exclusion of 

certain criteria serves multiple purposes. Firstly, by ensuring a homogeneous study 

population, we can derive more precise conclusions regarding the factors that 

influence IVF outcomes. This increases the likelihood of identifying the specific 

factors that impact the success of IVF. Additionally, the exclusion of certain criteria 

helps eliminate confounding effects that may arise due to unique characteristics of 

individuals. 

 

Table 2-1: The Clinical parameters with their definition. 
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Figure 2–2: Workflow of the SPIRL V1. 
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The inclusion and exclusion criteria for this study were as follows: 

 Inclusion Criteria:  

Women who had one or 2 good quality embryos. 

 Exclusion Criteria:    

1. Women over age 45;  

2. Poor responders; 

3. Inappropriate endometrium for implantation; 

4. Abnormal anatomy of uterine cavity; 

5. Patients with fibroids and previous myomectomy. 

 

For instance, individuals with uterine abnormalities and those who have 

undergone previous myomectomy may be at a higher risk of complications during 

IVF. By excluding such patients, we can focus on the specific factors affecting IVF 

outcomes without the potential confounding effects of these conditions. Similarly, 

poor responder patients may possess distinct characteristics that require different 

approaches. Including them in the study could complicate the analysis and 

potentially obscure the interpretation of results. Therefore, their exclusion allows for 

a more focused analysis of IVF outcomes. 

2.2.4 Data preprocessing  

During the data cleaning and preprocessing phase, various techniques are 

used to transform raw data into a suitable format that can be effectively utilized by 

machine learning algorithms. This involves performing typical steps to ensure data 

quality and prepare it for further analysis. Missing data can be problematic for 

machine learning models. Patients with more than one missing value, identified 

through a thorough search in TrakMD, will be excluded from the analysis. For 

patients with a single missing value, the missing value will be replaced using the 

Mean Imputation method for numerical features. However, in the case of missing 

values in the quality of the embryo feature, the patient will be removed from the 

dataset. This decision is based on the significance of this feature on the results and 

its categorical nature (0 or 1). All the factors were numerical, except for embryo 

quality, which was a categorical data type that needed to be encoded as numerical 

data. Normalizing the data is a process that aims to bring all features to a similar 

scale. 

Cross validation (CV) is the ability to estimate a model's accuracy or quality 

using new, previously unseen data throughout the training process. This means that 

even during the learning process, it is possible to forecast how the AI would perform 

in practice. During this phase, the data set is divided into two sections: training data 

and test data. The training data is used to learn and update the model's weights 

during model training. The test data is then used to independently confirm the 

model's correctness and validate how good it already is. Depending on the outcome, 

either a new training phase or the program is terminated [24]. 
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Among the available options, the two most suitable choices for our data are 

Stratified k-fold cross-validation and Repeated Stratified k-fold cross-validation. For 

each model, I perform both types of cross-validation and select the one that yields the 

highest performance. 

a. K-fold cross-validation 

With this technique, the entire dataset is partitioned into k equal-sized 

portions, and each partition is referred to as a fold. It is termed k-fold because it is 

divided into k pieces, where k can be any integer. The model is trained using the 

remaining K-1 folds and one-fold for validation. This technique is repeated k times 

until each fold is used once as a validation set and the remaining folds are used as a 

training set. Figure 2-3 illustrates the k-fold strategy. This validation strategy is not 

recommended for imbalanced datasets because the model will not be effectively 

trained due to the proper data ratio for each class. This validation strategy is used in 

the case of regression rather than classification [25]. 

b. Stratified k-fold cross-validation 

K-fold validation cannot be used for imbalanced datasets since data is 

separated into k-folds with a uniform probability distribution. This is not the case 

with stratified k-fold, a more advanced version of the k-fold cross-validation 

technique. Despite the fact that it, too, divides the dataset into k equal folds, each 

fold has the same proportion of target variable instances as the full dataset. This 

enables it to work flawlessly with uneven datasets but not with time-series data. The 

ratio of instances of the target variable is preserved in all folds in the stratified k-fold 

cross-validation procedure, which is an advantage [25]. 

c. Repeated stratified cross validation 

Model performance estimates based on k-fold cross-validation can be noisy. 

This means that a different k-fold split of the dataset can be implemented each time 

the technique is run, resulting in a different distribution of performance scores and a 

different mean estimate of model performance. The model employed and the dataset 

itself determine the degree of variation in projected performance from one run of k-

fold cross-validation to the next [25]. 
 

 

Figure 2–3: Principle of the k-fold algorithm [25].                              



17 

2.2.5 Feature selection techniques:  

There are three main approaches to feature selection: filter techniques, 

wrapper approaches, and embedded techniques. Figure 2-4 below explains the 

principle of each technique to select the features.  

 

Filter techniques determine the importance of features based solely on their 

inherent properties. They generate a feature relevance score and eliminate features 

with low values. Filter techniques are computationally simple and fast, can handle 

high-dimensional datasets, and are independent of the classification algorithm. Once 

feature selection is done, different classifiers can be evaluated using the selected 

features. 

Wrapper approaches combine the search for the best model hypothesis with 

the search for the optimal feature subset. They construct a search technique to 

generate and evaluate different feature subsets. This process is specific to a particular 

classification algorithm, as it trains and evaluates a unique subset of features using 

a specific model. Wrapper approaches allow for interaction between feature subset 

search and model selection, but they can be computationally intensive, especially if 

the classifier is expensive to construct. 

Embedded techniques incorporate the search for an ideal feature subset into 

the process of building the classifier. They search in the combined space of feature 

subsets and hypotheses. Embedded methods, like wrapper approaches, are tailored 

to a single learning algorithm. They offer the advantage of interacting with the 

classification model while being less computationally costly than wrapper approaches 

[26]. 

Figure 2–4: A comparative principle among feature selection techniques. 
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These categories vary in terms of how they approach feature selection, 

including whether it is treated as a separate step or integrated into the learning 

algorithm. They also differ in evaluation metrics, computational complexities, and 

their ability to identify redundancies and interactions among features. Each 

methodological category possesses its own set of advantages and limitations, making 

them more appropriate for specific use cases. Table 2-2 presents a comprehensive 

classification of feature selection approaches, highlighting the significant advantages 

and disadvantages of each methodology. Additionally, it provides examples of the 

most influential examples within each category. 

2.2.6 Why ANOVA from filter method in SPIRL V1? 

In this particular task, the objective is to develop a classification predictive 

model using numerical input variables. This type of classification problem is 

frequently encountered across different domains. Traditionally, correlation-based 

techniques are utilized to tackle such problems. However, in the present work, it is 

crucial to consider the categorical nature of the target variable when applying these 

techniques [27]. 

You can see in the below figure (Figure 2-5) that we have two common 

correlation coefficients used when I have numerical input and categorical output 

which are ANOVA and Kendall’s rank coefficient. 

It is important to note that Kendall's rank coefficient assumes that the 

categorical variable is ordinal, as mentioned in reference [27] and so the best filter 

technique for our data is ANOVA feature selection technique. 

In ANOVA, the selection of the optimal value for "k" is performed using 

GridsearchCV to maximize the mean accuracy with the best configuration. The aim 

is to identify the best subset of features that yields the highest performance. In 

ANOVA, the function “f_classify” is used in order to calculate the “F_test” feature 

importance. 

2.2.7 Model selection  

Machine learning algorithms can automate the intricate modeling of the IVF 

procedure for result prediction and patient counseling. Table A-2 in Appendix A 

presents various models used to predict the outcomes of IVF and ICSI. It is evident 

that no single model stands out as the best. Therefore, conducting experiments using 

different models on our data is necessary to achieve optimal results. 

So, to predict pregnancy outcomes after IVF, we compared the performance of 

prediction models built using logistic regression (LR), Support Vector Machine SVM 

(SVM), Naïve Bayes Classifier (NB), K-Nearest Neighbor (KNN) and Random Forest 

(RF). In Figure 2-6, you can gain a comprehensive understanding of the algorithm 

used for each classifier by examining the overall view. 
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Feature 

selection techniques 

Advantage  Disadvantage Examples  

Filter  

 Fast 

 Independent of the 

classifier 

 Generalization 

ability is good 

 No feature 

dependencies 

 No interaction 

with the classifier 

 Chi2  

 ANOVA 

 Fisher score  

 Gain information 

Wrapper 

 Simple 

 Feature 

dependencies 

 Interaction with 

the classifier 

 More expensive 

 More prone to 

overfitting  

 Classifier 

dependent 

selection  

 Boruta 

 Forward Feature 

Selection 

 Backward Feature 

selection  

 Recursive Feature 

Elimination 

 Exhaustive 

Feature selection   

Embedded 

 Feature 

dependencies 

 Interaction with 

the classifier 

 Lower 

computational cost 

than wrapper 

 Classifier 

dependent 

selection 

 Random Forest 

Importance 

 Extra Tree 

Importance 

 LASSO Regression  

 

 

 

Table 2-2: A thorough classification of feature selection approaches, outlining the 

notable benefits and drawbacks associated with each methodology. 

Figure 2–5: Choice the feature selection method based on the type of the data [27]. 
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Logistic Regression is a machine learning model used to establish the 

relationship between a dependent variable and one or more independent variables. It 

is primarily utilized for classification analysis as it predicts the probability of an 

event occurring. If the probability is above 0.5, it is assigned a value of 1; otherwise, 

it is assigned a value of 0. For instance, logistic regression can be used to predict 

whether a student will pass (1) or fail (0) an exam. 

Random Forest is a machine learning algorithm that operates similarly to a 

decision tree. The decision tree principle is describing in “Figure 2-6 (a)”. However, it 

employs multiple decision trees to make predictions, reducing the risk of overfitting 

as you can see in “Figure 2-6 (d)”.  The algorithm performs majority voting, where the 

class predicted by the majority of trees is assigned to an item. For example, if two 

trees predict a class of 0 and one tree predicts a class of 1, the item will be assigned 

a class of 0. 

K-Nearest Neighbor is another simple machine learning algorithm that 

classifies new cases based on the category or class of the nearest data points as shown 

in “Figure 2-6 (b). The number of neighbors considered is determined by the assigned 

value of K. For instance, if K is set to 10, the algorithm will examine the 10 nearest 

neighbors of the item. The nearest neighbors are determined by calculating distances, 

often using measures such as Euclidean distance, and selecting those with the 

shortest distance.  

Support Vector Machines divide data points using a hyperplane, which is a 

straight line as you can see in “Figure 2-6 (e)”. Points represented by blue diamond 

belong to one class on the left side of the plane, while points represented by green 

circles belong to another class on the right side. When predicting the class of a new 

point, its position relative to the hyperplane and within the margin is considered. If 

it lies on the left or right side of the hyperplane, its class can be determined. 

Naïve Bayes is a probabilistic machine learning model based on Bayes' 

theorem. It assumes that all features are independent of each other. Conditional 

probability refers to the probability of an outcome occurring given that another event 

has occurred. Naïve Bayes predicts the probability that an item belongs to a 

particular class and assigns it the class with the highest probability, This is shown 

in “Figure 2-6 (f)” [28]. 
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2.2.8 Hyper-parameter tuning techniques:  

To choose the best values of the hyper-parameters, we take 3 different types of 

optimization algorithm, and make a comparison between these three techniques for 

each classifier in order to obtain the best values for each classifier (Grid search, 

Bayesian search, and Random search). It is crucial to acknowledge that the efficacy 

of these methods may differ based on the particular problem, dataset, and 

hyperparameter space. Hence, it is advisable to experiment with various search 

techniques and assess their performance before reaching a final conclusion. A 

comparison is made between grid search, random search, and Bayesian search for 

each machine learning model. The choice of hyperparameter tuning techniques can 

be made by comparing the time taken in seconds and the corresponding scores. There 

are multiple hyperparameters associated with each classifier that I will incorporate 

into the search strategy to achieve the best possible outcomes [23].  

Figure 2–6: Machine learning algorithms [29]. 
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2.3 RESULTS  

The histogram presented in Figure 2-7 illustrates the performance of different 

models in predicting the outcome of ICSI using the ANOVA feature selection 

technique. It is evident that the Random Forest (RF) model outperforms the others, 

achieving an accuracy of 0.789 and an AUC of 0.8. On the other hand, the LR, SVM, 

KNN, and NB models show lower performance, with accuracies below 0.7. 

Based on these results, it becomes crucial to improve the SPIRL model in the 

second stage to achieve more accurate results and enhance the success rate of ICSI 

outcomes. This can be accomplished by introducing new parameters (Power Doppler), 

as suggested in the introduction of this thesis, and incorporating additional models 

with different feature selection techniques. By doing so, we can determine the 

importance of these new parameters and verify if they play a crucial role in predicting 

the success of ICSI. 

 

 

2.4 DISCUSSION 

Machine learning has the potential to play a significant role in predicting the 

outcome of Intracytoplasmic Sperm Injection (ICSI). Predicting the success or failure 

of ICSI can be valuable for both healthcare providers and patients, as it can help 

guide treatment decisions and manage expectations. 
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Figure 2–7: Accuracy and AUC for different machine learning models. 
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Machine learning algorithms can leverage historical data on various factors 

associated with ICSI outcomes, such as sperm quality, egg quality, maternal age, 

hormonal levels, and other relevant clinical parameters. By analyzing patterns and 

relationships within this data, machine learning models can learn to make 

predictions about the success or failure of ICSI for individual patients. 

The model can then be trained on the labeled data to identify patterns and 

develop prediction rules. Features such as sperm parameters, female reproductive 

health indicators, and treatment-related variables can be used to train the model. 

The features in SPIRL V1 was a clinical Data based on the women factors such as the 

age, tentative, the day of transfer, the number of embryo transfer and some 

characteristics of the oocytes in different stages. Researchers and clinicians 

consistently conduct studies on various factors that can enhance the success rate in 

their centers. In future endeavors, it is crucial to incorporate new parameters and 

examine their impact on the outcomes. This will shed light on the effectiveness of 

these additional factors and their influence on the results. 

However, it's important to note that the accuracy and reliability of the 

predictions depend on the quality and quantity of the available data. Sufficient and 

high-quality data, including a diverse range of cases, are crucial for training robust 

machine learning models. To enhance the performance and accuracy of the model, it 

is crucial to increase the sample size by including a larger number of patients in 

future studies. Furthermore, it is essential to explore various classifiers and employ 

different feature engineering techniques. By doing so, we can improve the model's 

performance and ensure more accurate predictions. Ensemble learning is a powerful 

technique that merges multiple models to enhance the accuracy and generalization 

of predictions. By utilizing diverse base learners, ensemble learning captures various 

facets of the data, leading to more resilient predictions. Ensemble methods have 

demonstrated effectiveness across diverse applications and hold a pivotal position in 

advancing the field of machine learning. So, it is important to show the effect of 

ensemble learning on our prediction. 

Overall, machine learning holds promise in predicting the outcome of ICSI, 

potentially assisting healthcare providers and patients in making informed decisions. 

However, further research, validation, and integration with clinical expertise are 

necessary to fully realize the potential of machine learning in this area. 

In the next chapter, we will focus on expanding the patient sample 

size, incorporating additional feature selection and feature extraction 

techniques, and integrating ensemble learning models to forecast the 

outcome of ICSI. 
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CHAPTER 3 

 

CLASSIFICATION BASED ON CLINICAL AND POWER 

DOPPLER DATA (SPIRL VERSION II) 

3.1 INTRODUCTION  

As mentioned earlier, to further improve the performance of the prediction 

system, we can include new data and test new classifiers (Gradient Boosting, Bagging 

Classifier, Radom forest, AdaBoost, Xtreme Gradient Boosting). Also, in this updated 

version of SPIRL, the Doppler parameters have been incorporated into the data 

entered into the classifiers. This addition aims to examine the impact of these Doppler 

parameters on the results and outcomes of the study. By including the Doppler 

parameters, the researchers can assess how these specific variables influence the 

performance of the classifiers and potentially provide valuable insights into their 

predictive capabilities. Figure 3-1 provides an overview of the SPIRL system, 

illustrating the sequential steps involved. Initially, data collection and parameter 

measurements are conducted as the first step. Subsequently, the collected data is 

organized into three separate files. The next phase involves the selection and analysis 

of the most significant features. Finally, the prediction of the outcome of ICSI is 

presented, providing couples with valuable information regarding the overall status 

of their treatment. This schematic representation showcases the systematic process 

followed by the SPIRL system, leading to informative predictions for the benefit of 

the couples undergoing ICSI treatment. 

Figure 3–1: A general view of SPIRL version II. 

3.2 MATERIALS AND METHODS 

3.2.1 Flowchart 

The workflow of this study is shown in Figure 3-2. After measuring 3D power 

Doppler parameters, raw data were preprocessed using data classification tools 

before being fed into the machine learning application. Handling missing values, 

normalization using Min-Max Scaling, a function from Scikit-learn. Also, in Scikit-

Learn, we used One Hot Encoding which is a function that allowed to encode the 

features-based categorical data into numerical ones, such as the quality of the embryo 
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transfer which was the dependent variable encode 0 for embryo with bad embryo 

quality (grade 1, grade 2, and grade 3) and 1 for embryo with good quality (grade 0). 

For training and testing, data was split to 80/20 using train-test-split function 

in Scikit-Learn. The remaining 80% of data was used solely for training, which 

includes the processes of hyper-parameter tuning, feature selection, and feature 

extraction procedures. To ensure an effective training result, stratified k-fold cross-

validation was performed in the process. The remaining 20% was set aside until the 

end of both hyperparameter tuning and feature engineering and was exclusively 

utilized to evaluate the performance of the final model. This strategy is a frequent 

method for evaluating a prediction's model performance during training since it 

ensures nonbiased scoring of the prediction results [29].  

Recall that the goal of feature extraction was to reduce the number of features in a 

dataset by producing new ones from existing ones. The new reduced set of features 

should then be able to summarize the majority of the information in the original set 

of features. Feature Selection was another method for reducing the number of 

features in a dataset [30]. So, the performance of the classifier can be enhanced 

through the selection of a combination of important features that represent the 

maximal separation between the classes. In this study, for each classifier, we applied 

ANOVA, RF Importance, Extra Tree Importance, Exhaustive Feature Selection 

(EFS) and Recursive Feature Elimination Cross-Validation (RFECV) as feature 

selection techniques and PCA, LDA, and ICA as feature extraction techniques. Then, 

to choose the best values of the hyper-parameters, we took 3 different types of 

optimization algorithms and made a comparison between these three techniques for 

each classifier in order to obtain the best values for each classifier (Grid search, 

Bayesian search, and Random search). These three types of tuning techniques differ 

from each other by the method of search using a grid search or using a Bayesian 

strategy or we can select a random search for the best hyperparameters. To help 

practitioners make informed decisions, machine learning algorithms can automate 

the intricate modeling of the IVF procedure for result prediction and patient 

counseling. The models are capable of exploring and analyzing the population pattern 

in a sizable dataset. These models also aid in the extraction of the dataset’s latent 

knowledge. A variety of machine learning techniques, including Artificial Neural 

Networks (ANN), SVM, DT, RF, and many other classifiers are widely used for 

prediction [9]. A tree-based classifier is one of the earliest and most widely used types 

of classifiers for prediction tasks due to its effectiveness and low cost, and it has been 

utilized for a variety of activities, including IVF. Tree-based classifiers have a lower 

computing cost than more contemporary techniques while yet providing adequate or 

even good performance. The foundation of tree-based classifiers is a set of rules that 

determines the value of a target attribute based on a set of if-else situations. This 

strategy is deceptively basic, but it has been shown to be useful in a wide range of 

situations. Another advantage is that the resulting set of rules is understandable, as 

opposed to the whole black-box function of other more complex algorithms [29]. So, to 

predict pregnancy outcomes after ICSI, we compared the performance of prediction 

models built using (i) 5 models’ tree-bases classifier such as Gradient Boosting (GB), 

Bagging Classifier (BC), RF, AdaBoost Classifier, and Extreme Gradient Boosting 

(XtremeGB), and (ii) 5 other models such as LR, SVM, NB, MLP, KNN).   
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Figure 3–2: The workflow of the SPIRL V2. 
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Finally, the evaluation of the performance of each model using different 

metrics, to select the best model in order to predict the outcome of ICSI, such as 

accuracy, confusion matrix, Precision-recall, F1 score, and AUC-ROC. The calculation 

for this study was carried out entirely in the Python programming language, which 

makes use of a variety of existing libraries that could be particularly suitable for 

machine learning tasks. The commonly utilized libraries include sklearn. metrics, 

model_selection, ensemble, Decomposition, Discriminant Analysis, and feature 

selection. Additionally, widely-used libraries such as Numpy, Matplotlib, and Skopt 

are frequently employed in these contexts, among others. 

In our work, we are interested in identifying all possible pregnant cases after 

treatment and so the recall, and also being sure that if we identify a pregnant case 

that one is actually a real pregnant case. Therefore, we have to focus on both precision 

and recall, that's why the F1 score was made for. The most commonly used parameter 

for evaluating classification models is classification accuracy. It is widely used 

because it is simple to calculate and explain, and it is a single number that 

summarizes the model's capacity. AUC represents the degree or measure of 

separability, while ROC is a probability curve. It indicates how well the model can 

distinguish between classes. The higher the AUC, the better the model predicts 0 

classes as no pregnant and 1 class as pregnant. 

3.2.2 Data Collection 

First, in order to perform other machine learning models and other feature 

engineering techniques, I take the data between January 2018 and May 2018, Data 

was acquired from all patients undergoing ICSI treatments at ALHADI IVF Center 

(Center of Treatment by Intra Cytoplasmic Sperm Injection in Lebanon, Beirut, 

Lebanon). All medical acts were carried out in a standard manner, with no additional 

or typical procedures for diagnosis or treatment. As a result, the recorded analysis, 

in this case, is retrospective research with no impact on patient care. Each ICSI cycle 

was recorded in the "TrakMD platform" database. In this investigation, 94 ICSI 

patients were used.  

Table 3-1 illustrates the 3D power Doppler parameters employed in our 

research, along with their corresponding definitions. Consequently, I conducted 

measurements of these parameters precisely as I detailed in Table A-2 in Appendix 

A. These parameters were added to the clinical parameters presented in Table 2-1. 

Then, we took the data between January 2018 and December 2021, this part 

of the work included 572 patients undergoing ICSI outcome. Here, I repeat all the 

work on this larger data to get more precise results. 

As you can see in Figure 3-3, in order to compare the results and show the 

importance of 3D Power Doppler parameters, we created three files with the same 

data patients. 3D Power Doppler and clinical parameters were included in the first 

and second files respectively. The third file included all Doppler and clinical 

parameters. For each file, I followed and repeated the steps described below. 
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3.2.3 Data Pre-Processing 

These steps involve converting raw data into an appropriate format that 

machine learning algorithms can effectively work with. Several typical techniques 

are employed during the cleaning and preprocessing phase. 

3D Power Doppler Parameters Definition 

Volume of the Endometrium (EV) 

(Numerical) 
The volume of the endometrium  

The Mean Grey of the Endometrium (Endo 

MG). (Numerical) 

The histogram of grey-level of the uterine- 

endometrium. 

Vascularization Index of the Endometrium 

(Endo VI) (Numerical) 

vascularization index which represents the 

vessel density in the endometrium. 

Flow Index of the Endometrium (Endo FI) 

(Numerical) 

flow index which represents the intensity of 

blood flow in the endometrium. 

Vascularization Flow Index of the 

Endometrium (Endo VFI) (Numerical) 

vascularization flow index which represents the 

endometrial perfusion. 

Volume of the Myometrium (MYO V) 

(Numerical) 
The volume of the Myometrium  

The Mean Grey of the Myometrium (MYO 

MG) (Numerical) 

The histogram of the grey-level of the uterine- 

myometrium.  

Vascularization Index of the Myometrium 

(MYO VI) (Numerical) 

vascularization index which represents the 

vessel density in the myometrium. 

Flow Index of the Myometrium (MYO FI) 

(Numerical) 

flow index which represents the intensity of 

blood flow in the myometrium. 

Vascularization Flow Index of the 

Myometrium (MYO VFI) (Numerical) 

vascularization flow index which represents the 

myometrium perfusion. 

To maintain the integrity of our results, we chose to remove patient data for 

any other parameters that had missing values. As a result, our dataset decreased 

from 1,080 patients to 572 patients. Additionally, we normalize the values to bring 

them to a standard scale, which facilitates data comparison and analysis. 

Normalization also reduces the influence of outliers while improving the accuracy 

and stability of statistical models [31]. It's important to note that since the "embryo" 

variable is categorical, it needs to be converted into numerical representations. 

Finally, since our data is balanced, there is no need to use techniques for imbalanced 

data. 

3.2.4 Feature Selection Technique 

Several studies have compared the predictive performance of the different 

feature selection methods.These comparative studies have resulted in the widely held 

opinion that there is no such thing as the “best method” that is fit for all problem 

settings [32]. 

No feature selection method can be considered as the definitive best method. 

This statement applies not only on a universal scale but also to machine learning 

algorithms and sets of input variables. Instead, to determine the most effective 

feature selection approach for a specific problem, we need to conduct careful and 

systematic experimentation. This involves trying out a variety of models on different 

subsets of features selected using various statistical measures. Through this process, 

Table 3-1: Doppler parameters with their definitions. 
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we can discover the approach that yields the best results for the particular problem 

at hand [27]. For this reason, this section aims to incorporate additional feature 

selection techniques into our updated version, SPIRL V2. 

 

 

So, different feature selection can be applied, as you can see in SPIRL V1 

ANOVA, is the best technique from filter method for our data. In wrapper method, 

RFE and especially with cross validation RFECV and Exhaustive feature selection 

method (EFS) are the most used technique for the classification. In embedded 

method, Random Forest Importance and Extra tree importance are the most used 

technique. You can see in the below section why I choose these four techniques for 

SPIRL V2.  

A. Why RFECV and EFS from Wrapper feature selection technique?  

Exhaustive feature selection and recursive feature elimination have distinct 

advantages compared to backward and forward feature selection techniques. You can 

see in Table 3-2 below that forward and backward feature selection may not always 

result in the best subset of features. Exhaustive feature selection ensures reliable 

outcomes and is well-suited for datasets with a limited number of features. 

Additionally, Recursive Feature Elimination (RFE) offers various advantages, 

including accurate feature identification, robustness against overfitting, and noise 

resistance. For these reasons, I choose EFS and RFECV (RFECV employs cross-

validation to assess the performance of various subsets of features, ensuring that the 

chosen features exhibit good generalization to unseen data and mitigating the 

potential for overfitting). 

Data: 94 patients
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Data 572 patients 
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Figure 3–3: Data decomposition employed in our study. 
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Wrapper Feature selection 

method 
Advantages  Disadvantages 

Forward Feature Selection 

[33] 

 Simple  

 Reduce the computational 

complexity  

 Prone to overfitting 

 Computationally expensive 

 Time-consuming 

 May not always result in 

the best subset of features 

Backward Feature 

Selection [34]  

 Simple 

 Can handle large feature 

sets 

 May not always result in 

the best subset of features 

Exhaustive Feature 

Selection [35] 

 Guarantees the optimal 

feature subset. 

 Suitable for small feature 

sets. 

 Time consuming  

Recursive Feature 

Elimination [36] 

 Can manage datasets with 

a large number of 

dimensions and accurately 

identify the crucial 

features. 

 Can handle relationships 

between different features, 

making it suitable for 

intricate datasets. 

 Can be utilized alongside 

any supervised learning 

algorithm. 

 Robust to noise and 

overfitting. 

 Could incur significant 

computational costs when 

dealing with sizable 

datasets. 

 May not be the optimal 

strategy for datasets 

containing correlated 

features. 

 Might not yield 

satisfactory results when 

confronted with noisy or 

irrelevant features. 

B. Why RF Importance and Extra Tree Importance from Embedded feature selection 

technique? 

You can see in Table 3-3 that LASSO regression encounter difficulties when 

dealing with correlated features and in general Tend to produce unstable estimates. 

RF Importance and Extra tree importance can be more accurate for our data. 

3.2.5 Feature Extraction Techniques 

The goal of feature extraction is to reduce the number of features in a dataset 

by producing new ones from existing ones (and subsequently discarding the original 

ones). The new reduced set of features should then be able to summarize the majority 

of the information in the original set of features. A summary version of the original 

features can thus be generated by combining the original set. Feature Selection is 

another method for reducing the number of features in a dataset. The distinction 

between Feature Selection and Feature Extraction is that Feature Selection seeks to 

rank the value of existing characteristics in the dataset and eliminate less significant 

ones (no new features are created) [37]. In 2021, [38] discusses popular feature 

extraction techniques in machine learning, focusing on PCA, ICA, and LDA. 

Table 3-2: A comprehensive categorization of wrapper feature selection methods, 

presenting a detailed overview of the significant advantages and disadvantages 

associated with each methodology. 
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“Yaameen” emphasizes the effectiveness of these feature extractors in capturing 

important features while minimizing any adverse impact on the overall performance. 

Here are the commonly used feature extraction techniques in machine learning. In 

[39], they employed PCA as a preprocessing step in combination with an Artificial 

Neural Network (ANN) as the classifier. The area under the receiver operating 

characteristic curve (AUC) ranged from 0.7670 to 0.9796. Additionally, in a study 

conducted by [40], PCA was utilized to analyze pregnancy data. The results showed 

that the classification accuracy of pregnancy varied between 61% and 80% across 

different groups analyzed in the obtained models. In a study conducted by [41], breast 

cancer classification was performed using an LDA feature extractor as a 

preprocessing step with an SVM classifier. The study reported an accuracy of 99.2%. 

Table 3-4 provides an extensive classification of feature extraction methods, offering 

a clear definition and an overview of the applications for each technique. In our work, 

I take the most used techniques in medical classification using machine learning 

techniques. So, for each model, I used PCA, LDA and ICA as some feature extractors 

in order to enhance the performance of the models. 

Embedded feature 

selection techniques 

Advantages Disadvantages 

RF Importance [42] 
 highly accurate. 

 generalize better 

 Feature ranking 

 Requires training a 

Random Forest model  

Extra Tree Importance [43] 

 Robust to noise and multi-

collinearity 

 Computational efficiency 

 Feature ranking 

 Requires training multiple 

decision tree models. 

LASSO Regression [44] 
 Automatic feature 

selection 

 Reduces overfitting 

 Struggle with correlated 

features. 

 Generally unstable 

estimates. 

In Figure 3-4, there are specific parameters associated with each feature 

selection and feature extraction technique. These parameters need to be adjusted in 

order to obtain optimal results. The figure illustrates the utilization of eight different 

feature selection and extraction techniques in machine learning models. The objective 

is to achieve optimal results by tuning the parameters associated with each 

technique. 

 In RFECV, we can use LR (Logistic Regression) and RF (Random Forest) as 

estimators in classification tasks. I then assess and compare the performance 

of RFECV with different parameter variations to determine the most effective 

estimator. We import RFECV from “sklearn. feature selection”. 

 In EFS, “mlxtend” package is used to provide the implantation of this feature 

selection technique. We change manually the number of minimum and 

Table 3-3: A comprehensive categorization of wrapper feature selection methods, 

presenting a detailed overview of the significant advantages and disadvantages 

associated with each methodology. 
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maximum features to obtain the best subsets. Min=1 and Max=5 gives the 

optimal number of subsets. 

 In RF and Extra Tree Importance, we manually adjust the threshold value 

to sequentially eliminate features, aiming to achieve the highest performance 

by retaining the most important features. 

 In PCA and ICA, to obtain the number of components we have to:  

 Standardize the range of continuous initial variables 

 Compute the covariance matrix to identify correlations 

 Compute the eigenvectors and eigenvalues of the covariance matrix to identify 

the principal components 

 Create a feature vector to decide which principal components to keep 

 Recast the data along the principal component’s axes 

Feature extraction 

techniques 
Definition Applications 

PCA [38] 

Statistical method used in 

modeling and data 

compression. 

Image Processing, Medical 

Data Correlation, Facial 

Recognition, Time Series 

Prediction, Analyzing text or 

particular metadata fields 

LDA [38] 

Maximizes class separability to 

find a lower-dimensional 

representation. 

for classification tasks. 

ICA [38] 

It is a technique for reducing 

the dimensionality of data by 

identifying a collection of 

statistically independent 

variable groups that 

collectively capture the 

maximum variability in the 

data. 

clustering, classification, 

regression, and outlier 

detection.  

So, as you can see in Figure 3-5 below for 572 patients with cut-off 95% of 

cumulative variance the number of components is 11.  

In LDA, using GridSearch, we can fine tune the hyper parameters and define 

the grid solver, then compare the mean accuracy and get the best result. For example, 

the highest mean accuracy is 0.702 with the Singular value decomposition ‘svd’ 

solver.  

 

Table 3-4: An extensive classification of feature extraction methods, offering a 

clear definition and an overview of the applications for each technique. 
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3.2.6 Model Selection 

Applying complex deep learning models with high accuracy in practical 

settings is challenging due to their lack of explainability and the requirement for 

large datasets. In our case, ensemble learning methods, strike a better balance 

between accuracy and complexity, making them more suitable for our problem. So, it 

is important for SPIRL V2 to add more models in order to obtain a highest 

performance in the prediction of the outcome of ICSI. Ensemble learning 

encompasses various types of ensemble models, with boosting and bagging being two 

popular approaches. Figure 3-6 illustrates the key features and the underlying 

principles of two distinct learning processes. 

Boosting involves training base models sequentially, with each subsequent 

model focusing on correcting the mistakes made by the previous models. It assigns 

greater weight to misclassified instances, enabling the ensemble to enhance its 

performance over iterations. Notable boosting algorithms include AdaBoost, Gradient 

Boosting, XGBoost, and LightGBM. Therefore, boosting: 

 Follows sequential model in sequential 

 Sequential weight, more weight is given to the model to better performance 

For each model 
in machine 

learning

Feature selection 
and feature 
extraction 

ANOVA Select best k

RFECV
Select the best 

Estimator

EFS

Change the min 
and the max 
number of 
features

RF Importance

Manually 
adjusting the 

threshold value to 
different values.

ET importance

PCA
Calculate the 

number of 
components

ICA

LDA
Select the best 

solver

Figure 3–4: The feature selection techniques employed in our study, showcasing 

the parameters that were subjected to tuning 
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 Reduce the bias. 

 It generates the ultimate forecast by averaging the predictions from multiple 

learners. 

 AdaBoost, Gradient Boosting, Extreme Gradient Boosting. 

 

 

 

Bagging, also known as Bootstrap Aggregating, entails training multiple base 

models independently on different subsets of the training data. These subsets are 

formed by randomly sampling the training data with replacement. The predictions of 

the base models are then combined, typically through majority voting (for 

Figure 3–5 : Selection of number of components in PCA. 

Figure 3–6: Algorithm comparison between Boosting and Bagging classifier. 
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classification) or averaging (for regression). Random Forest, a well-known bagging 

algorithm, employs decision trees as the base models. Therefore, bagging: 

 Follows multiple models in parallel  

 Equal weight is given to all model 

 Reduce the variance and solve the problem of overfitting 

 It gives the final prediction by taking average of the learners.  

Both boosting and bagging are robust ensemble techniques that endeavor to 

enhance the overall performance of machine learning models. They differ in their 

approaches to combining base models and handling errors, which can influence their 

performance across various datasets and problem domains. So, it is important to add 

Bagging classifier, AdaBoost, Gradient Boosting, XGBoost for the prediction of the 

outcome of ICSI in SPIRL Version 2.  

However, it should be mentioned that MLP classifier is used to predict the 

outcome of ICSI. The MLP is chosen due to its prominence in state-of-the-art 

approaches for ICSI outcome prediction. For further details and information, please 

refer to the table provided in the Appendix. 

3.2.7 Hyper-parameter tuning techniques  

To optimize the performance of each model, hyper-parameters need to be 

adjusted. As we mentioned in the SPIRL version 1, a comparison between Grid 

search, Random search and Bayesian search for each model is achieved. The objective 

is to find the combination of hyper-parameters that yields the highest score while 

minimizing the computational time required for the search process [23].  

3.3 RESULTS 

This part devoted to the principal results in the classification part, serves as a 

comprehensive summary that highlights the primary findings and outcomes derived 

from our research. It acts as a comprehensive overview, presenting the most 

significant and impactful results obtained throughout the study in a concise and 

focused manner. The chapter provides a clear account of the discoveries, analyses, 

and conclusions that significantly contribute to the overall objectives and goals of the 

thesis. 

Table 3-4 displays the outcomes of hyperparameter tuning strategies using 

Grid search, Random search, and Bayesian search for Bagging classifier. You can see 

that utilizing Bayesian search yields the greatest score "0.592" when compared to 

grid search "0.567" and Random search "0.486", but it also yields the most iterations 

to achieve the ideal parameters and thus takes the most time "106.7 s".  Grid search 

takes relatively little time ("2.218 s"), thus you can select it as an optimal result. 

3.3.1 Description of the innovated results for the final classification for 94 

patients: 

Table 3-5 specifically highlights the best feature selection and feature 

extraction approaches for 94 patients across the 10 models. In all models, RF 

Importance and Extra Tree Importance outperform other techniques. Only in 
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AdaBoost, RFECV also gives the same results with these two techniques.  BC, GB, 

RF, AdaBoost, and XGB give an accuracy higher than 0.8. The highest results were 

with BC with 0.894 as an accuracy, 0.822 as an AUC, the overall precision of 0.91, an 

overall recall of 0.9, and an overall F1 score of 0.895.  

 
Number of 

iterations 

Iteration number 

of optimal 

hyperparameters 

Score 
Time 

Elapsed (s) 

Grid Search 600 1 0.567 2.218 

Random Search 100 1 0.486 5.115 

Bayesian Search 50 27 0.592 106.7 

Experimental results (Figure 3-7) showed that Bagging Classifier Algorithm, 

with Extra Tree importance feature selection technique with 0.04 as a threshold, 

outperformed all other algorithms with all different feature selection and feature 

extraction techniques in terms of AUC-ROC (0.822) with as an accuracy 89.4 %, a 

sensitivity of 100%, and a specificity of 80% (red point). 

Table 3-4: Techniques of hyperparameter tuning search with respect to the 

number of iterations, the number of iterations in order to obtain the optimal 

hyperparameters, the score and the time elapsed in second. 

Table 3-5: The precision, recall. F1 score and the accuracy for all models for 94 

patients. 

Model Best FS or FE techniques Accuracy AUC 
Precision Recall F1score 

True          False True          False True          False 

LR 
Extra Tree Importance 

(0.04,0.035) 
0.736 0.788 0.64 1 1 0.5 0.78 0.67 

SVM Extra Tree Importance (0.035) 0.789 0.711 0.69 1 0 0.6 0.82 0.75 

KNN RF Importance (0.04) 0.789 0.81 0.62 0.83 0.89 0.5 0.73 0.62 

BC Extra Tree Importance (0.04) 0.894 0.822 0.82 1 1 0.8 0.9 0.89 

GB Extra Tree Importance (0.04) 0.842 0.799 0.75 1 1 0.7 0.86 0.82 

RF RF Importance (0.04, 0.05) 0.842 0.794 0.75 1 1 0.7 0.86 0.82 

NB 
RF Importance (0.04,0.05)/ Extra 

Tree Importance (0.045,0.05) 
0.736 0.833 0.64 1 1 0.5 0.78 0.67 

MLP RF Importance (0.05) 0.631 0.655 0.56 1 1 0.3 0.72 0.46 

AdaBoost 

RF Importance (0.03), Extra Tree 

Importance (0.035), RFECV (RF 

Estimator) 

0.842 0.844 0.75 1 1 0.7 0.86 0.82 

XGB Extra Tree Importance (0.05) 0.842 0.827 0.75 1 1 0.7 0.86 0.82 
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(a)                                                               (b) 

Figure 3–8 and 3-9, represent histograms that compare the accuracy and AUC 

for three files including 94 patients. The bars in dark grey color (in the below of both 

figures) represent the accuracy and AUC of file 1 that contains Doppler parameters.  

The bars in light grey color in the below both figures represent the accuracy and AUC 

of sheet 1 that contains Clinical parameters. The bars in middle grey color in the 

below both figures represent the accuracy and AUC of file 1 that contains the 

combination between Doppler and Clinical parameters. For all models, Doppler gives 

the lowest values of accuracy and AUC. It is very clear that when Doppler and clinical 

parameters are used together, the models give the highest performance with the 

highest accuracy and AUC. For the best classifier (BC), taking clinical and Doppler 

data into accounts leads to a 10-point gain in accuracy and a 4-point gain in AUC 

compared with clinical data alone. With MLP, the accuracy of clinical parameters was 

the same as with all parameters (Doppler and clinical) with a value of 0.526 but with 

higher AUC for the sheet combined Doppler and Clinical. The results demonstrated 

that combining Doppler and clinical parameters yielded a greater performance than 

with simply Doppler or clinical parameters. Therefore, the results of our study could 

be used to aid clinicians to assess the efficacy of ICSI treatment.  

3.3.2 Description of the innovated results for the final classification for 572 

patients: 

Table 3-6 provides a comprehensive overview of the best feature selection and 

feature extraction methods for 572 patients across the 10 models. The analysis 

reveals that, with this sample size, no single feature engineering technique emerges 

as the definitive best choice. However, LR with ANOVA feature selection stands out 

as the top performer among the feature selection methods. On the other hand, when 

combining SVM with RFECV using RF estimator, it achieves the highest accuracy of 

0.678. This combination proves to be particularly effective in maximizing predictive 

performance. When employing PCA feature extraction techniques, KNN, RF, and 

Figure 3–7 : (a) The ROC curve of all models, (b): The confusion matrix of the BC 

model (94 patients). 

(

a) 

(

b) 



38 

AdaBoost models deliver the highest performance. Specifically, KNN and RF achieve 

an accuracy of 0.721, while AdaBoost achieves an accuracy of 0.704. Moreover, GB, 

NB, MLP, and XGB models demonstrate the highest accuracy when combined with 

Extra Tree Importance with 0.695, 0.669,0.686 and 0.704 respectively. Finally, BC 

showcases superior performance among the considered models when utilizing RF 

Importance feature selection techniques with 0.05 as a threshold. It achieves an 

accuracy of 0.739, an AUC of 0.782, an overall precision of 0.8, an overall recall of 

0.63, and an overall F1 score of 0.71. These results highlight the exceptional 

performance of BC compared to the other models. Table 3-6 presents also a 

comprehensive analysis of the best feature selection and feature extraction methods 

across various models. It demonstrates that different techniques excel in different 

scenarios, and BC emerges as the top performer, showcasing excellent accuracy and 

overall performance. 
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Figure 3–8: Comparison of the accuracy between Doppler, clinical and the 

combination of Doppler and clinical (94 patients). 
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Figure 3-10 shows the analysis of the ROC curve results leads to the conclusion 

that Bagging classifier shows superior classification accuracy compared to other 

models. This judgment is based on the higher AUC value achieved by Bagging 

classifier (78.2%), which signifies its stronger discriminatory ability and overall 

predictive performance when compared to other models. Additionally, the curve 

shape of BC being closer to the top-left corner provides further evidence of its superior 

performance. Furthermore, examining the confusion matrix illustrated in Figure 3-

10 (b), we observe that the Bagging classifier achieves a sensitivity of 83% and a 

specificity of 61%, resulting in an overall accuracy rate of 74%. In summary, when 

evaluating these two models using the ROC curve, bagging classifier exhibits better 
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Model Best FS or FE techniques Accuracy AUC 
Precision Recall F1score 

True          False True          False True          False 

LR With ANOVA (k=8) 0.695 0.728 0.72 0.68 0.63 0.76 0.67 0.72 

SVM With RFECV (RF estimator) 0.678 0.732 0.69 0.67 0.63 0.72 0.66 0.69 

KNN With PCA (components=11) 0.721 0.757 0.76 0.7 0.65 0.79 0.7 0.74 

BC With RF Imp (threshold=0.05) 0.739 0.782 0.8 0.7 0.63 0.84 0.71 0.77 

GB With ET Imp (threshold=0.044) 0.695 0.76 0.75 0.66 0.58 0.81 0.65 0.73 

RF With PCA (components=11) 0.721 0.75 0.75 0.7 0.67 0.78 0.7 0.74 

NB With ET (threshold=0.044) 0.669 0.725 0.68 0.66 0.63 0.71 0.65 0.68 

MLP With ET (threshold=0.044) 0.686 0.705 0.7 0.68 0.65 0.72 0.7 0.67 

AdaBoost With PCA (components=11) 0.704 0.717 0.76 0.67 0.6 0.81 0.67 0.73 

XGB With ET (threshold=0.044) 0.704 0.752 0.76 0.67 0.6 0.81 0.67 0.73 

Table 3-6: Representation of the precision, recall. F1 score and the accuracy for 

all models for 572 patients. 

Figure 3–9: Comparison of the AUC between Doppler, clinical and the 

combination of Doppler and Clinical (94 patients). 
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classification performance by demonstrating higher accuracy in effectively 

distinguishing between positive and negative instances. 

 

 

 

(a)                                                                 (b) 

 

By analyzing the boxplot illustrating the cross-validation performance, you can 

gain insights into the distribution, variability, and relative performance of the 

evaluated models. Comparing the medians, box lengths, and presence of outliers 

allows for comparisons between the models. Models with higher median performance 

and shorter box lengths are generally preferred as they demonstrate greater 

consistency and reliability. In Figure 3-11, it can be observed that LR exhibits the 

highest median performance. Additionally, LR, BC, RF, and NB show the shortest 

box lengths and lack any outliers. These characteristics indicate strong model 

performance. Consequently, these four models exhibit high performance during the 

validation phase. The RF Importance method selected thirteen variables with varying 

rankings to build the model. Table 3-7 and Figure 3-12 provide insights into the 

selected variables, highlighting their importance in predicting the outcome of ICSI. 

Notably, variables such as myometrium VFI, volume of the endometrium, 

myometrium mean grey, myometrium FI, myometrium VI, endometrium mean grey, 

and endometrium FI were identified as significant factors in the prediction. 

Furthermore, it is worth noting that Doppler parameters, particularly those 

associated with the myometrium, ranked among the top features in terms of their 

importance for prediction. 

(

a) 

Figure 3–10: (a) The ROC curve of the 10 classifiers, (b) The confusion matrix 

for the highest model (572 patients). 
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Figures 3-13 and 3-14 represent histograms that compare the accuracy and 

AUC for three files including 572 patients. The bars in red color (in the below of both 

figures) represent the accuracy and AUC of file 1 that contains Doppler parameters.  

The bars in violet color in the below both figures represent the accuracy and AUC of 

sheet 1 that contains Clinical parameters. The bars in orange color in the below both 

figures represent the accuracy and AUC of file 1 that contains the combination 

between Doppler and Clinical parameters. For all models, Doppler gives the lowest 

values of accuracy and AUC. It is very clear that when Doppler and clinical 

parameters are used together, the models give the highest performance with the 

highest accuracy and AUC. Using LR, NB, AdaBoost, and XGB, the accuracy achieved 

when considering only clinical parameters was the same as when including both 

Doppler and clinical parameters, with a value of 0.669. However, the combined 

Doppler and clinical parameters showed higher AUC compared to using only clinical 

parameters, with a value of 0.731 instead of 0.712 in SVM. It yielded slightly higher 

accuracy, with 0.686 for clinical parameters and 0.678 for the combined clinical and 

Doppler parameters. Similarly, the AUC values were also greater for the combined 

file, indicating improved performance with the inclusion of Doppler parameters. 

These results indicate that combining Doppler and clinical parameters resulted in 

superior performance compared to using either Doppler or clinical parameters alone. 

Consequently, our study's findings can potentially support clinicians in assessing the 

effectiveness of ICSI treatment. 

 

 

Figure 3–11:The Boxplot of Model performance. 
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Figure 3–12: Feature ranking of the RF Importance feature selection technique. 

Figure 3–13: Accuracy of the classifiers on three files for 572 patients. (Doppler, 

clinical and all parameters) 
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3.4 DISCUSSION  

This study showed the importance of the classifier and the feature selection 

technique that is based on the Tree learning algorithm. It showed that when the 

Extra Tree importance feature selection strategy was used to identify the significant 

features, the outcome of ICSI using the Bagging classifier can be predicted. This 

model outperformed all other tree-based learning algorithms and provided the best 

results for 94 patients. Additionally, when combined with RF importance feature 

selection techniques, the bagging classifier based on a tree learning algorithm 

surpassed the performance of all other models for the 572 patients. The significance 

of decision tree-based algorithms and ensemble learning, in comparison to other 

classifiers, can be attributed to various factors. Ensemble learning is highly valuable 

in scenarios where a single classifier may struggle to capture the intricate patterns 

within the data. By combining the predictions of multiple classifiers, ensemble 

methods enhance overall performance. They achieve better generalization and higher 

accuracy, mitigating the risk of overfitting and enhancing model robustness. On the 

other hand, decision tree-based algorithms provide interpretability by presenting a 

transparent decision-making process based on feature splits. This interpretability 

enables a better understanding of the decision-making mechanism of the model, 

facilitating the identification of important features and potential relationships among 

variables. 

Ultrasound-based imaging techniques can reveal a variety of physiological and 

pathological uterine abnormalities. Personalized prediction techniques that have 

been systematically developed and verified can be utilized to assist infertile patients 
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[22]. We assessed the prediction of ICSI outcome using simple clinical factors, 

ultrasound measurement parameters, and a combination of all parameters. All 

contributing elements must be considered in order to provide convenient advice 

regarding a given couple's case for pursuing ICSI therapy. One reason contributing 

to such a low success rate could be the lack of adequate procedures for predicting 

infertile couples. Researchers attempted to develop the finest decision-making 

algorithms using data from ICSI patient records. However, Doppler measures 

affected the results of the prediction of the outcome of ICSI and it should be taken 

into consideration by the professionals. The results were very satisfactory in 

accordance with our hypothesis to forecast and improve the success of ICSI using 

additional features with an accuracy of 89.4% where Doppler parameters enhanced 

the models of prediction. Because access to the information used in this particular 

study with this specific dataset was limited due to confidentiality and other ethical 

concerns, making direct comparisons between our work and other studies can be 

challenging. Out of the mentioned studies, only one considered the use of endometrial 

and subendometrial blood flow as measures to establish a correlation with IVF. 

However, in the study by Zhang et al. [22], endometrial mean grey and myometrium 

receptivity was not specifically addressed. In this particular study, the authors 

combined clinical and Doppler parameters, such as flow index (FI), resistivity index 

(RI), and pulsatility index (PI), for the endometrium to predict the outcomes in 

embryo transfer cycles. The area under the curve (AUC) obtained during the training 

procedure was 0.698. 

Indeed, by utilizing a Bagging classifier and a reduced feature set consisting of 

19 IVF attributes selected through the Extra tree feature selection technique, we 

achieved a prediction accuracy of 89.4% and an AUC of 82.2% for a dataset of 94 

patients. Furthermore, when expanding to a larger dataset of 572 patients, we 

obtained an accuracy of 74% and an AUC of 78.2% using a Bagging classifier with RF 

feature selection techniques. There is a noticeable decline in performance when 

comparing the results of 94 patients to those of 572 patients. This decline can be 

attributed to that with a very small number of patients, the classifier finds it easy to 

classify the features between pregnant and non-pregnant. However, as we increase 

the amount of data with more variations in features, it becomes more challenging for 

the classifiers to classify accurately. When we further increase the data, it will 

improve the performance since the classifier will have more training examples to 

learn from and improve its classification ability. The outcome of ICSI is notably 

influenced by Doppler parameters of the endometrium and myometrium, with a 

particular emphasis on the myometrium parameters. These Doppler parameters 

combined with clinical data play a significant role in determining the success of the 

ICSI procedure since they permit a 10-point gain compared with clinical data alone. 

The analysis of the selected variables from RF Importance feature selection technique 

in predicting the outcome of ICSI highlights the importance of various variables, 

including myometrium VFI, volume of the endometrium, myometrium mean grey, 

myometrium FI, myometrium VI, endometrium mean grey, and endometrium FI, in 

predicting the outcome of ICSI. Notably, Doppler parameters, particularly those 

related to the myometrium, emerged as influential features for prediction, ranking 

among the top variables in terms of their importance. The significance of 

myometrium and endometrium mean grey values lies in their capacity to provide 
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valuable insights into the characteristics and health of the uterus tissue. These 

variables play a crucial role in predicting the outcome of ICSI (intracytoplasmic 

sperm injection) and are considered relevant factors in this regard. The myometrium 

refers to the muscular layer of the uterus, while the endometrium is the inner lining 

of the uterus. The mean grey values associated with these tissues can indicate their 

composition, density, and overall condition. Deviations from the normal range of 

these values may suggest the presence of abnormalities or health issues that can 

impact the success of ICSI. 

The inclusion of myometrium and endometrium mean grey values as 

important factors in the prediction model implies that alterations in these variables 

may be linked to the likelihood of a favorable outcome in ICSI. The knowledge gained 

will help the medical practitioners to design treatment plans in order to increase the 

success rate for each infertile couple. 

Consequently, the 74% success rate achieved with SPIRL v2 compared with 

the 65% achieved at the Al Hadi center by the doctor without AI, leads us to believe 

that our strategy is paying off for assisting doctors in predicting ICSI treatment 

outcomes. The advantage of our study was the nature of the retrospective data 

collection to develop the prediction model, particularly the combination of Doppler 

measurements and clinical features. Doppler characteristics, particularly those 

linked to myometrium blood flow, and endometrium and myometrium mean grey 

were new parameters such as Myometrium VI, FI, VFI and mean grey as well as 

Endometrium VI, FI, VFI and mean grey used to build a prediction model based on 

machine learning techniques suited for the population receiving ICSI treatment. 

Therefore, it is important to increase the number of patients. Augmenting the patient 

sample size in a study offers numerous advantages. Firstly, a larger sample size 

enables more robust and dependable statistical analyses. By having a greater number 

of data points, researchers can derive more precise estimations of the associations 

between variables, thereby minimizing the potential influence of chance fluctuations 

and enhancing the overall applicability of the study findings. 

Typically, this work conducted thus far relies on parameters measured through 

manual analysis using VOCAL software, which assesses the endometrium and 

myometrium. Therefore, overall, SPIRL can be considered a semi-automatic 

predictive model. However, our next objective, as part of the thesis, is to enhance and 

transform this model into a fully automatic one by incorporating an automatic 

segmentation technique. Specifically, our next focus is on automating the 

segmentation process for the endometrium. This advancement aims to streamline the 

analysis and improve the efficiency of the model. 

 

Note that this chapter have been the subject of 2 articles, one in an 

international congress and the other submitted to IEEE Access. 
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CHAPTER 4 

 

CLASSIFICATION BASED ON CLINICAL DATA AND 

DOPPLER WITH AUTOMATIC AND SEMI-AUTOMATIC 

ULTRASOUND FEATURE EXTRACTION (SPIRL 

VERSION III) 

4.1 INTRODUCTION  

With the help of the VOCAL software, it was possible for us to manually extract 

morphological parameters (B-mode) and vascularization parameters (Doppler mode), 

this part is described in the “Appendix”. In this chapter, our objective is to investigate 

the automatic and semi-automatic extraction of morphological parameters, 

specifically focusing on parameters like endometrial volume. However, due to time 

constraints and limitations in extracting and working on 3D Power Doppler images, 

we will not address the extraction of vascularization parameters in Doppler mode. 

Image segmentation is a complex and captivating problem within computer 

vision, particularly in the realm of medical imaging. In the medical field, precise 

segmentation of medical images plays a pivotal role in providing valuable non-

invasive information about the structures within the human body. This process aids 

radiologists in visualizing and studying anatomy, simulating biological processes, 

pinpointing pathologies, monitoring disease progression, and evaluating the 

necessity of treatments such as radiotherapy or surgeries.  

Ultrasound images pose additional challenges due to factors like speckle noise, 

low contrast, a low signal-to-noise ratio (SNR), and artifacts. Moreover, there are 

notable variations in organ structures (such as the endometrium or breast) among 

patients, making it difficult to apply generalized anatomical knowledge. To overcome 

these challenges, researchers have developed and documented numerous 

segmentation techniques over the years. However, there is no one-size-fits-all 

approach that universally applies to all applications. Instead, a range of methods 

with varying levels of accuracy, speed, and complexity have been explored for each 

practical CAD problem. 

In the “Appendix”, It was noted that the use of VOCAL software enables 

accurate endometrium segmentation through manual selection of six slices. However, 

this manual process is time-consuming. The VOCAL software allows us to extract 

various endometrial characteristics, including endometrial volume and mean grey 

value. Therefore, it is crucial to explore an automated segmentation method that can 

achieve high accuracy and effectively extract the desired characteristics while 

minimizing the time required for the process[45]. Several research articles and 

papers have been published on the topic of image segmentation in various journals. 

However, it is worth noting that none of these publications specifically concentrate 
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on the segmentation of the endometrium. Our project primarily aims to automate the 

segmentation of the endometrium (the inner lining of the uterus) to facilitate the 

classification and prediction of treatment outcomes in ICSI (Intra-Cytoplasmic 

Sperm Injection). Consequently, the aim is to achieve a completely automated 

prediction of the outcome. 

Our first goal in this study is to extract relevant characteristics from 2D images 

that have been previously identified as influencing the outcome of IVF. These 

characteristics include endometrial volume, mean grey value of the endometrium, 

and the thickness of the endometrium, which have been extensively discussed in the 

existing literature. 

In our segmentation work, we adhere to a comprehensive framework in  Figure 

4-1 that involves the following general steps: Firstly, 2D ultrasound images are 

gathered, followed by the application of diverse preprocessing techniques. Once we 

conduct an analysis of the endometrium criteria, we can choose between two 

segmentation strategies: fully automated or semi-automatic segmentation. A 

sequence of post-processing steps is then executed to obtain the final segmentation 

result. Lastly, we assess the performance of the segmentation through evaluation. 

 

Collection of 2D 
ultrasound images 

Creation of the mask 
manually

Preprocessing techniques 

Study of the endometrium 
criteria
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Final segmentation 

Automatic measurements 
of the parameters and 
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Figure 4–1: A Flowchart for the segmentation of the endometrium. 
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4.2 STATE OF THE ART 

As previously mentioned, the IVF specialist utilizes uterine ultrasound and the 

VOCAL software to extract qualitative and quantitative information from the 

endometrium. This extraction process can be time-consuming, and an automated 

extraction method would be of great assistance, especially for aid in diagnosis and 

enhance objectivity and precision in assessments. Ultrasound imaging poses 

distinctive obstacles, including degraded image quality due to noise and artifacts, as 

well as heavy reliance on the experience of operators or diagnosticians. [46]. 

Advanced transvaginal ultrasound (TVUS) with high resolution and frequency is 

utilized to enhance the evaluation of endometrial receptivity in assisted reproductive 

treatment (ART) cycles. Various ultrasound measurements such as endometrial 

thickness, endometrial pattern, endometrial volume, Doppler analysis of uterine 

arteries, and assessment of endometrial blood flow are employed to evaluate the 

readiness of the endometrium for in vitro fertilization (IVF) procedures [47] [48] [49]. 

There are existing tools for analyzing images, such as the VOCAL Software, which 

can be used to estimate the volume of organs. Although the manual tracing and 

segmentation process in VOCAL software ensures accuracy, it is crucial to 

acknowledge that it can be a time-consuming task. The requirement to manually 

outline the boundaries of the endometrium on every ultrasound image demands 

careful attention and can consume a substantial amount of time, particularly when 

dealing with multiple images or conducting volumetric analysis on a sizable dataset. 

Adequate time and resources should be allocated when utilizing VOCAL software for 

precise measurements, as the manual approach can be more time-intensive in 

comparison to automated or semi-automated methods [50].   

Segmentation is a critical task in medical image analysis, and many medical 

imaging tasks employ similar segmentation approaches. However, when compared to 

other imaging modalities the segmentation of endometrium images poses significant 

challenges. This is primarily due to two reasons: 

1- Ultrasound images have inherently low quality due to factors such as speckle 

noise, low contrast, low signal-to-noise ratio (SNR), and the presence of 

artifacts. These characteristics make it particularly challenging to accurately 

segment the endometrium in ultrasound images. 

2- Endometrium structures exhibit substantial variations among patients, 

making it difficult to rely solely on anatomical knowledge or pre-existing 

models for segmentation. The diverse and patient-specific nature of these 

features complicates the task of endometrium image segmentation. 

In summary, the unique combination of poor image quality and patient-specific 

variations in endometrium structures makes the segmentation of endometrium 

images particularly challenging compared to other medical imaging modalities. 

The available approaches for segmentation can be divided into two groups 

based on the level of human involvement in the process: semi-automated and fully 

automated methods. Semi-automated methods require the radiologist to provide 

input, such as defining a region of interest (ROI) that includes the lesion, specifying 

a seed within the lesion, or providing an initial boundary. On the other hand, fully 
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automated segmentation approaches do not require any user intervention. Various 

segmentation techniques have been employed for different organs in both semi-

automated and fully automated approaches. When it comes to breast ultrasound 

imaging and segmentation, it poses a similar challenge to our images. In this study 

[51], they categorize breast cancer segmentation approaches into six main categories: 

graph-based approaches, deformable models, learning-based approaches, 

thresholding, region growing, and watershed.  This paper serves as a review focusing 

on the distribution of automatic approaches for breast ultrasound image 

segmentation. The highest number of publications in this field utilize deformable 

models as the primary automatic segmentation technique. In the Appendix, "Table 1" 

provides a description of several studies that employ various segmentation 

techniques. 

In the field of medical imaging, various techniques have been developed for the 

segmentation of different structures and organs. [52] applied a three-dimensional (3-

D) active contour model to segment breast tumors in a 3-D ultrasonic data file, 

achieving a segmentation match rate of 95%. [53] presented a level set-based method 

for segmenting sparse freehand ultrasound data of the ovary. Their method utilized 

a speed function composed of a surface reconstruction term, a regularization term, 

and an image term. It required a reliable initialization for accurate segmentation. 

Learning based algorithms use training data to uncover underlying patterns, built 

models and make predictions based on the best fit model. Transformation of 

biomedical big data into valuable knowledge has been one of the most important 

challenges in bioinformatics. In 2010, [54]  proposed a full-automatic learning-based 

approach for breast ultrasound (BUS) image segmentation. The approach consisted 

of two steps: ROI generation and ROI classification. The first step aimed to produce 

dependable regions of interest (ROIs) that closely covered the actual tumor regions, 

while the second step employed a robust feature extraction and classification strategy 

for accurate tumor classification. Then,  [55] introduced a novel Chan-Vese model 

enhanced with neighborhood information for ultrasonic image segmentation. This 

model effectively captured regional details by utilizing neighborhood information and 

computing similarity to guide the contour towards the target. Experimental results 

showed an accuracy of 94.2% for this method. Deep learning has evolved rapidly since 

the early 2000s. It is a branch of machine learning, and has recently emerged based 

on big data, the power of parallel and distributed computing and sophisticated 

algorithm [56].  Recent applications of deep learning in medical US analysis have 

involved various tasks, such as traditional diagnosis tasks including classification, 

segmentation, detection, registration, biometric measurements and quality 

assessment, as well as emerging tasks including image-guided interventions of 

therapy. Of these, classification, segmentation and detection are the three most basic 

tasks [57]. There are widely applied to different anatomical structures (organ or body 

location) in medical US analysis, such as lymph node [58], thyroid nodule [59], 

urinary bladder [60], cardiac [61], kidney [62], breast, uterine [63], endometrium [64], 

fetus [65], placenta [66] and many more.  [58]  demonstrated the superiority of the U-

net architecture, a deep learning-based approach for lymph node segmentation in 

ultrasound images. This method outperformed other state-of-the-art techniques 

when evaluated on a dataset of ultrasound images containing normal and diseased 

lymph nodes. Than [61] achieved automatic segmentation of the left ventricle on a 
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large ultrasound dataset using a deep convolutional neural network (CNN). The 

segmentation achieved a dice similarity coefficient of 0.86. Also, [67] proposed a fully 

automatic segmentation method for BUS images. The method was evaluated on a 

database with benign and malignant cases, and it exhibited higher accuracy and 

robustness compared to a recently published fully automatic method, with an APR 

(Area under the Precision-Recall curve) of 99.39%. Transfer learning has become 

integral to medical imaging, and  [68] highlighted its effectiveness. In a study by  [69], 

a segmentation network based on VGG16-UNet was developed for ultrasound artery 

scans, achieving good segmentation results with an average Jaccard index of 0.798. 

[70] obtained a 3D super-resolution reconstruction of the uterus using a tailored 

algorithm. Gabor filters were employed to enhance the discriminative power of 

statistical and GLCM features for placenta and vasculature segmentation, achieving 

Dice coefficients of 0.82 ± 0.02 and 0.81 ± 0.08, respectively. [71] developed a fully 

automatic system for breast tumor detection, segmentation, and classification. The 

system utilized texture and location characteristics for ROI generation and employed 

a modified Ncut algorithm for tumor segmentation. An unsupervised clustering 

algorithm based on morphological and texture features differentiated between 

malignant and benign tumors, achieving an accuracy of 93.8%. [72] proposed an 

ovarian follicles segmentation network that incorporated edge information. By 

adding an edge detection branch and considering edge detection results as one of the 

network's loss functions, accurate segmentation of ovarian follicles in ultrasound 

images was achieved, particularly along the edges. Deep learning algorithms demand 

a substantial amount of memory, primarily due to the extensive data used for 

training. Deep learning models typically demand powerful GPUs or dedicated 

hardware like TPUs. Training intricate models can be computationally demanding 

and time-consuming. Due to these factors, it is imperative to demonstrate the 

efficiency of alternative techniques other than deep learning. Based on this 

state-of-the-art and for our segmentation work, we follow the following 

steps: Firstly, we collect 2D ultrasound images, then we apply various 

preprocessing techniques. Next, we perform segmentation using the Chan-

Vese technique and the Split Bregman method with different strategies for 

automatic and semi-automatic performance. Finally, a series of post-

processing steps are carried out to obtain the final segmentation. You can 

see in next section the description of the methods in details. 

4.3 MATERIAL AND METHODS 

4.3.1 Data Set collection 

I gathered images captured by the "Samsung, Medison" (WS80A) ultrasound 

machine from January 2018 to May 2018. These images were obtained from patients 

who underwent ICSI treatments at ALHADI IVF Center in Beirut, Lebanon. We had 

a total of 172 images at our disposal. I removed 31 images with a gestational sac. 

Also, 14 had orientations other than sagittal, which required specific adjustments to 

their format during processing. Therefore, it was necessary to determine the image 

orientation beforehand in order to enhance the quality of the ultrasound. To maintain 

consistency, we decided to establish a standard and only considered images with a 
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sagittal orientation. Consequently, any images with orientations different from 

sagittal were excluded from the database. 

Furthermore, we conducted a visual inspection to confirm if the target we were 

searching for, specifically the endometrium, was clearly visible in the images. If there 

were significant variations in the location of the endometrium between individuals or 

if it was not discernible to the naked eye, it would be impossible for a computer to 

accurately detect it. Consequently, based on this criterion, we removed 29 images 

from the database. 

As a result of these selection criteria, our image bank now consists of 98 

ultrasounds images. In the ongoing process, it is crucial to generate a ground truth 

mask for each image. To accomplish this, I utilized GNU Image Manipulation Program 

(GIMP) software and personally selected the endometrium mask for each image as 

you can see in Figure 4-2. I underwent training with Dr. Fakih to ensure accurate 

visual selection of the endometrium. Subsequently, a binary conversion was applied 

to each mask, resulting in a black and white image. 

 

 (a)  (b) 

4.3.2 Preprocessing techniques  

Speckle noise is a common issue in ultrasound imaging due to the coherent 

illumination and Rayleigh scattering caused by microstructures within the tissue. 

This type of noise poses a significant challenge in accurately segmenting 

endometrium images because speckle artifacts are specific to the tissue being imaged 

and cannot be effectively modeled. Various methods have been used to address 

speckle noise, including the mean filter, Gaussian low-pass filter, speckle reducing 

anisotropic diffusion (SRAD), nonlinear coherence diffusion (NCD), sticks filter, 

bilateral filter, fractional subpixel diffusion, and nonlocal means-based speckle filter. 

[51].  

The study conducted by [73],  compared the effectiveness of three filtering 

techniques: the median filter, Wiener filter, and unsharp filter. Among these, the 

unsharp filter was found to produce the most favorable results. The study employed 

a segmentation technique for each filter and compared the segmented images. 

Notably, the unsharp filter demonstrated the best segmentation performance. Based 

Figure 4–2: (a) Selection of the important part of the image. (b) Manually mask of 

the endometrium using GIMP software. 
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on the analysis conducted by [74], another study revealed that among various filters 

used for ultrasound image denoising, the Gaussian Filter demonstrated superior 

performance in effectively eliminating Gaussian Noise compared to alternative 

filters. Additionally, the Mean Filter was identified as a suitable option for removing 

various types of noise, including Speckle Noise, Salt and Pepper Noise, and Poisson 

Noise. The study conducted by [75] aimed to optimize the denoising performance by 

analyzing and comparing different discrete wavelet transform (DWT) and filtering 

techniques. However, the results indicated that applying DWT and filtering 

techniques led to information loss and noise characteristics, and did not provide the 

most effective noise reduction performance. On the other hand, a technique for image 

fusion called Speckle Reduction Anisotropic Diffusion (SPRAD) was discovered to 

preserve crucial information from the original image while efficiently eliminating 

speckle noise. This approach demonstrated superior noise reduction capabilities 

compared to the DWT and filtering techniques analyzed in the study.  [76] conducted 

a research study aimed to compare the performance of the non-local means (NLM) 

filter. The study concluded that the NLM filtering algorithm effectively reduces noise 

while preserving the inherent characteristics of the image. 

It is evident from the findings that various filters can effectively reduce the 

noise present in ultrasound images. Table 4-1 highlights the key filters used in 

ultrasound imaging, each with its own set of advantages and limitations. Therefore, 

it is crucial to evaluate different filters to determine the most suitable option for 

enhancing the clarity of endometrium images, which can often be indistinct. 

Type of filters Advantages Disadvantages 

Gaussian filter [74] 
Effectively reduces noise and 

smoothed the image. 
 May blur fine details 

Median filter [73] [77] 

 Excellent at reducing 

impulsive noise. 

 It preserves edges while 

reducing noise 

 Increase the intensity value 

at a certain point in the 

image. 

 May cause blurring in 

uniform regions. 

Mean filter [74]  Effective and Simple  Can blur details 

Anisotropic diffusion [77] 

[75] 
 Preserves edges 

 Requires carefully 

parameters 

Unsharp filter [73] [77] 
 Increase the contrast of the 

image 

 Enhancing high-frequency 

components in an image, 

this can amplify noise. 

Non-Local mean filter  Effectively reduces noise 
 Computationally intensive, 

especially for large images. 

The study encompassed the application of various filters both individually and 

in combinations, with the objective of determining the most suitable filter or 

combination of filters for our specific set of images. The primary goal was to evaluate 

how each filter performed in terms of reducing noise and enhancing the quality of the 

Table 4-1: The most popular filters to eliminate noise from ultrasound images 
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endometrium images. Furthermore, the study aimed to identify any potential 

synergies that could be achieved by combining two or three filters together. 

The evaluation of filters involves the use of performance metrics such as PSNR, 

SNR, and MSE. These metrics provide quantitative measures to assess the 

effectiveness of speckle noise reduction and overall image quality. It is important to 

note that higher PSNR and SNR and lower MSE values correspond to better image 

quality. Table 4-2 displays the results of applying various filters to endometrium 

ultrasound images. The NLM filter exhibits the highest PSNR value of 44.93 but also 

has a higher standard deviation of 36.05. On the other hand, the Gaussian and 

median filters achieve the highest PSNR and SNR values while having the lowest 

standard deviation for both PSNR and SNR. Additionally, the median and Gaussian 

filters yield the lowest MSE values of 8.84 and 9.56, respectively. It is important to 

mention that the specific preprocessing steps required may vary depending on the 

chosen segmentation technique. 

Filter PSNR MSE SNR 

Mean Std Dev Mean Std Dev Mean Std Dev 

Gaussian filter 

(Kernel=3) 

40.03 1.15 9.56 4.2 22.32 1.23 

Mean filter (Kernel=3) 38.16 1.12 15.22 10.8 20.31 1.27 

Median filter 

(Kernel=3) 

40.25 1.22 8.84 5.61 22.72 2.72 

Unsharp filter 

(Radius-3) 

33.3 135 64.09 178.91 14.2 1.36 

SPRAD filter (number 

of iterations =3) 

38.04 2.08 10.72 9.69 22.08 2.78 

NLM filter (H=1.15) 44.93 36.05 13.31 1348.63 28.96 33.62 

 

4.3.3 Measurement of all features for the segmentation part. 

Initially, we examined the endometrium in the available images with the aim 

of streamlining the segmentation process and identifying distinct markers or specific 

characteristics of this tissue. 

Subsequently, we performed our analysis using MATLAB software on the 

images. Here are the findings: 

 The average thickness of the endometrium is 12.2 mm. 

 The endometrial profile is mainly uniform throughout. 

 The average surface area of the endometrium is 3.90E+04 pixels. 

 The average grayscale level for each endometrium is 77.2. 

A. Endometrial Thickness: 

The process of measuring the endometrial thickness involved manual analysis 

for each image. As Figure 4-3 shows, a line was manually drawn between two 

Table 4-2: The values of PSNR, MSE and SNR for each filter applied on our data. 
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echogenic borders of the endometrium, and the resulting measurement was obtained 

in pixels. Since the images had a resolution of 300x300 pixels per inch (ppi), it was 

straightforward to convert the measured thickness from pixels to millimeters.  

B. Endometrial Pattern: 

The endometrium generally presents itself in two distinct "forms": 

1. The "triple-line" appearance, characterized by a hypoechoic endometrium with 

a hyperechoic line surrounding it. 

2. The homogeneous appearance. 

Therefore, we had to examine each image in the image database to determine 

the endometrial profile of each endometrium in the study. 

 

 

C. Endometrial surface: 

Endometrial surface measurement was a crucial aspect of our study. Since 

determining the volume was not feasible, we focused on obtaining the surface area of 

the endometrium. To achieve this, we employed the manual masks makes using 

GIMP Software. Utilizing the surface calculation functions in MATLAB we were able 

to easily determine the surface area of each endometrium. In the ultrasound image 

below (Figure 4-4), you can see the manual mask overlaid on the image. The shaded 

blue area represents the surface area of our endometrium. 

Figure 4–3: Measurement of endometrial thickness. 
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D. Mean grey of the endometrium: 

We also examined the average gray level of the endometrium. Our objective 

was to identify a distinct value that could be utilized to enhance our images and 

effectively highlight the endometrial region of interest. The gray level values varied 

between 135 and 38, but they were primarily concentrated around the range of 80-

100. To determine the average gray level, we employed Matlab, which automatically 

computed the gray levels and generated a histogram, as depicted below (Figure 4-5). 

By calculating the mean value of these levels, we obtained the average gray level of 

the endometrium. 

 

 

4.3.4 Segmentation  

In recent ultrasound image segmentation literature, various commonly used 

techniques have emerged. These methods can be classified into different categories, 

and we present an overview of some methods within each category such as: (1) Graph-

Figure 4–4: Measurement of endometrial surface area. 

Figure 4–5: Measurement of gray levels of the endometrium. 
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Based approaches, (2) Deformable models, (3) Learning-Based approaches, (4) 

Thresholding, (5) Region Growing, and (6) Other approaches. However, it is 

important to note that there is no universally superior technique that can be applied 

to all types of images. Each technique has its own strengths and limitations and is 

suitable for specific types of images and applications [78].  

Table 4-3 compares the techniques of medical image segmentation with their 

Characteristics, advantages, and limitations. The selection of a segmentation 

technique relies on the unique attributes of the ultrasound images and the organ 

being targeted. It is advantageous to explore diverse techniques and adjust their 

parameters to optimize outcomes in a specific application. Each method in the table 

exhibits distinct advantages and limitations. However, considering the irregular 

shape and intensity of our organ structure, as well as the absence of a uniform criteria 

applicable to all patients, both deformable models and learning-based approaches 

have been extensively researched and proven to achieve precise segmentation. 

Deformable model is a flexible segmentation technique for different shape and size. 

Learning based approach can classify the organ based on a feature selected from each 

image. 

Also, due to the similarity in challenges faced in segmenting breast ultrasound 

images and the endometrium, it can be beneficial to draw insights from research 

conducted on breast segmentation techniques. While there may be limited studies 

specifically focusing on endometrium segmentation using deep learning techniques, 

exploring the techniques employed in breast segmentation research can provide 

valuable guidance and inspiration for developing endometrium segmentation 

methods. The study [78] discusses the segmentation techniques employed in breast 

ultrasound (BUS) imaging. Figure 4-6 presents the distribution of BUS segmentation 

techniques based on their application frequency. The chart indicates that the 

prevailing techniques primarily rely on deformable models. 

The active contour model, also known as Snake is one of the deformable model 

methods. It has gained popularity as a segmentation method for ultrasound images. 

However, these ACM methods are sensitive to noise and heavily rely on accurately 

defining the initial object contours. Traditional active contour models, such as snakes, 

primarily rely on edge-function and image gradients to detect objects. However, these 

models can only detect objects with gradient-defined edges, which can lead to the 

curve passing through boundaries, especially in ultrasound images with high noise 

levels. To address this issue, level sets approach (LS) integrates statistical 

information, boundary information, gradient information, phase information, and 

other factors [81]. 

The Chan-Vese Model (CVM) is an active contour model that does not require 

a stopping edge-function based on image gradients. Instead, it utilizes Mumford-Shah 

segmentation techniques for the stopping process. This model is capable of detecting 

objects with very smooth boundaries or even discontinuous boundaries, regardless of 

the presence or absence of a gradient [81]. The CVM is topologically flexible, less 

sensitive to noise and the initial position of the shape model and can segment 

structures with weak boundaries. The objective of the CVM is to divide an image into 

distinct regions by considering the similarity of intensity within each region. This 



58 

characteristic makes it well-suited for segmenting ultrasound images, enabling the 

identification of various anatomical structures or areas of interest within the images. 

However, one of the key limitations of the CVM is its high computational cost [82]. 

So, for these reasons you can see that CVM can be a good choice for our nature of the 

endometrium image segmentation. 

 

Segmentation 

technique 

Characteristics Advantages  Disadvantages  

Graph-Based 

approaches [79] 

 Graph-based 

approaches have the 

capability to derive 

significant features 

from the graph 

structure and node 

attributes.  

 An efficient and 

widely accepted 

method. 

 Can attain globally 

optimal results for the 

energy function.  

 

 Constraints in memory 

and CPU time can pose 

limitations. 

Segmenting thin and 

elongated structures can 

be challenging; they may 

struggle with segmenting 

highly complex or 

irregular structures in 

ultrasound images. 

 Difficulty in handling 

topological changes. 

Deformable 

models [51] [79] 

 It utilizes energy or 

cost functions to 

optimize their 

shape, 

incorporating 

image-derived 

information like 

gradients or 

intensity values.  

 It has the ability to 

eliminate noise. 

 Ability to adapt to 

differences in shape, 

size, and appearance, 

enabling them to 

effectively segment 

intricate structures in 

ultrasound images.  

 Computational 

complexity 

Learning Based 

approaches [80] 

[51] 

 The decision-

making process is 

based on simulating 

a learning process. 

 Robust to noise  
 Takes time for training  

 Memory consuming  

Thresholding 

[80] 

 Determines 

threshold values by 

analyzing the peaks 

in an image's 

histogram. 

 Simple and efficient. 

 Influenced by the 

presence of noise and 

unclear boundaries. 

 Perform well for images 

that have distinct and 

well-defined edges. 

Region Based 

approaches [80] 

 Segments an image 

into regions that 

exhibit 

homogeneity. 

 Performs effectively in 

situations where 

defining the similarity 

criteria is easy. 

 Time and memory 

consuming. 

 Challenges arise when 

dealing with intricate or 

complicated boundaries. 

 

Table 4-3: The segmentation techniques with their characteristics, advantages 

and disadvantages. 
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Different studies talk about the use of split-Bregman to the CVM in order to 

obtain a segmentation more efficient and a model more robust to noise [83] [84]. Also, 
the use of the split Bregman method accelerates the minimization process of our model 
by reducing the computation time and iterative times [85]. This method that caught our 

attention which enables rapid minimization of 𝑙1-regularized functionals. Originally, 

regularization is a concept used in the context of learning. It serves to prevent 

overfitting by, for example, limiting the model's capacity. Its purpose is to 

intentionally stop the algorithm when the system shows signs of overfitting. 

Therefore, training is halted when the error starts to increase. This notion can be 

visualized in Figure 4-7 where the training set is represented in blue and the 

validation set in red. At the dashed line, it is advisable to stop the training since the 

error ceases to decrease and begins to increase again. 

 

 

Thus, 𝑙1 regularization aims to minimize the sum of absolute differences 

between real values and predicted values. In our model, it will reduce the number of 

iterations and consequently decrease the computation time for the contour evolution. 

The Split-Bregman method is highly efficient and has fewer parameters compared to 

standard methods. The algorithm requires no initialization and converges rapidly. 

The l1 regularization not only speeds up computation times but also makes the final 

contour independent of the initially chosen level, which generally leads to a good 

segmentation result [83]. There are primary parameters employed in the Split 

Figure 4–6: Distribution of automatic BUS image segmentation approaches [78]. 

Figure 4–7: Demonstration of the principle of regularization. 
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Bregman algorithm such as “max_iter” that denotes the maximum number of 

iterations to achieve convergence. This parameter establishes the stopping criterion 

for the segmentation process (200). Also “lambda”, it represents the regularization 

parameter that influences the balance between data fidelity and the total variation 

regularization term. Larger values of lambda yield smoother segmentations, while 

smaller values enable more detailed boundaries (0.01). “mu” serves as the augmented 

Lagrangian parameter, determining the trade-off between the data fidelity term and 

the total variation regularization term (0.0001). 

4.3.5 Segmentation using Chan Vese with Split-Bregman method and 

selection. 

In order to carry out the segmentation, we initiated the process by selecting 

the specific area of interest. This initial selection is performed manually and plays a 

vital role in initializing our segmentation procedure. To determine the starting area, 

we opted for a shape that aligns well with the morphology of the endometrium. 

Through an examination of their unique characteristics, we determined that a 

polygon shape is the most appropriate choice, as it effectively encapsulates the 

majority of endometrium shapes. The actual drawing of the shape is accomplished 

using MATLAB's "drawrectangle" function. So, the blue rectangle is the first output 

in Figure 4-8. 

 

The second step of our algorithm involves processing the selected area of 

interest. processing involves the application of a series of image processing 

techniques. The primary objective of these techniques is to improve the quality of the 

original image, making it better suited for the subsequent segmentation process. 

Without this crucial preprocessing phase, the segmentation results would be 

suboptimal. Therefore, we modify the image's contrast, brightness, and sharpness. 

Additionally, we employ Median and Gaussian filters, which were selected based on 

previous section evaluating their effectiveness on our images. Figure 4-9 represents 

Figure 4–8: Selection of the area of interest. 
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the original image with the last image after the successive treatments applied to the 

area of interest. 

 

After applying image processing techniques, we employ the Split-Bregman 

method to perform segmentation on our endometrium. The code we utilize for this 

purpose has been developed by Ander Biguri [86].  As evident from our research 

sources, this method relies on l1 regularization, which effectively showcases the 

attainment of the desired outcome. 

Subsequently, we acquire an initial outline of the endometrium contours. 

However, many other small shapes have been detected.  To address this, we will 

undertake a two-step process to eliminate them. The initial step involves employing 

the "imerode" function in MATLAB, which facilitates erosion as a means to remove 

the smaller shapes “Figure 4.10 (a)”. The second stage involves the selection and 

preservation of the largest identified shape. To accomplish this, we utilize the 

"activecontour" function in MATLAB to extract the contours of our shapes. 

Subsequently, we assign labels to the connected components of these contours. After 

labeling, we determine the most frequently occurring label. The figure below 

illustrates the labeling process, providing a visual representation of the colors 

associated with each label. Notably, the predominant label is green, distinguishing it 

from cyan, yellow, or pink “Figure 4.10 (b)” Following that, we remove the labels that 

appear less frequently, assuming that the largest detected shape corresponds to our 

endometrium. Once we have correctly identified the shape, we carry out a dilation 

operation to fill in any remaining voids or openings within the shape (Figure4-10). 

After making these selections and utilizing the described techniques, it is 

evident that the detected endometrium contour, depicted in green in Figure 4-11, 

closely resembles the manually generated blue mask overlaid on the image. This 

similarity allows us to accurately determine the characteristics of the detected shape. 

 

 

 

Figure 4–9: Successive treatments applied to the area of interest. The image on 

the left represents the original image, while the image on the right depicts the 

final preprocessed image. 
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4.3.6 Segmentation using the Chan-Vese model without any specific 

selection. 

To segment our images without prior selection, we initially process the images 

through several steps. 

Firstly, we resize the ultrasound image as typical ultrasound images contain 

irrelevant black borders and patient information. We focus on selecting the largest 

area that solely contains the ultrasound image. Next, we calculate the average gray 

level of the image, providing clarity information. This enables us to eliminate the 

black areas from the ultrasound image. We aim to remove any dark spots that could 

potentially mislead our algorithm. Following this, we apply histogram equalization 

and a median filter to the image. Additionally, we utilize K-means clustering, a 

commonly used technique in image segmentation. This algorithm is known as one of 

the most straightforward and widely used unsupervised methods. It iteratively 

assigns 'n' datasets to k clusters. By calculating the mean intensity for each cluster, 

Figure 4–10: (a) Erosion applied to our detection., (b) Labeling of the detected 

shape, (c) Dilation applied to our detection. 

Figure 4–11: Segmentation using the Split-Bregman method with the 

endometrium selected in green and visualized alongside the manual mask 

represented in blue. 
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the algorithm classifies pixels based on their proximity to the closest mean values. 

The K-means clustering approach aims to minimize the number of clusters and 

cluster variability. It finds application in medical image segmentation, particularly 

in MRI images [87]. A Sobel filter is applied, followed by dilation. This initial 

processing phase enhances the visibility of the endometrium significantly 

(highlighted intentionally in red in the final image), as depicted in Figure 4-12. 

This initial processing allows us to create a composite image from the treated 

images, which serves as a basis for the second stage of processing. The second stage 

(Figure 4-13) begins with the removal of gray areas. As seen in the first image, which 

is the result of combining the previous images, there is a grayish background. We 

eliminate this background to avoid its influence on subsequent processing techniques. 

After removing the background, we eliminate the bright structures associated with 

the image borders, preserving the central areas of the ultrasound image. We conclude 

the image processing by increasing the brightness to binarize the image while 

retaining the highlighted patterns. 

After completing the processing, we examine the resulting image. In certain 

cases, this processing can lead to the loss of all ultrasound information, leaving us 

with only a few white pixels visible. In such instances, we already know that 

segmentation is not possible. Consequently, we categorize the image as part of the 

folder for images that cannot be segmented using the automatic algorithm. 

If the processing appears suitable, we proceed with executing the algorithm. 

We utilize the "activecontour" function in MATLAB, similar to the segmentation 

method that involves prior selection of the endometrium. This enables us to obtain 

the selection of all the contours present in the image. To organize these shapes, we 

initially remove any shapes with fewer than 100 pixels since an endometrium is 

inherently larger. Subsequently, we perform a dilation operation on the identified 

shapes. 

 

 

Figure 4–12: First stage of image processing in the context of segmentation using 

the Chan-Vese model without prior selection. The left image is the initial image, 

the middle image is the cropped image and the image in the right is the final 

image after 
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To determine which shape corresponds to the endometrium, we start from the 

center of the image and search for a shape larger than 1000 pixels within a circle of 

radius 150 pixels, centered at the middle of the image. Given that the endometrium 

should be distinguishable following the processing, we have observed that it is 

typically the largest centrally positioned shape that represents the endometrium. To 

identify this shape, we employ connected component labeling, similar to the previous 

method. This assists us in detecting the most prevalent label and retaining it. If this 

shape is smaller than 1000 pixels, we gradually increase the circle's radius until we 

find a shape exceeding the threshold of 1000 pixels. This threshold was determined 

through a thorough examination of the database, where we observed that an 

endometrium typically consists of a minimum of 1000 pixels. 

If we detect a shape meeting this criterion, we can select it and remove the 

other shapes. However, it is crucial to verify whether the circle has intersected the 

chosen shape. 

Let's illustrate this using the image below. As depicted, the centered circle does 

not encompass the shapes entirely, with some portions being contained within it. 

Consequently, if the algorithm detects a shape larger than 1000 pixels inside the 

circle, it will retain only the portion inside and disregard the rest of the shape. 

To address this issue, we create an index that records each pixel's association 

with each shape. Hence, when the algorithm identifies a shape comprising more than 

1000 pixels, it will determine the initial shape stored in the index to which these 

Figure 4–13: Second stage of image processing in the context of segmentation 

using the Chan-Vese model without prior selection. 
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pixels belong. This allows us to select the complete shape. In case no shape larger 

than 1000 pixels is found, we opt for the largest shape, assuming it to be the 

endometrium. This situation arises when the processing has significantly reduced the 

image information but not to the extent of being classified as unsegmentable. Once 

the shape is chosen, we perform dilation and hole filling operations. 

After this selection, we check if the circularity of the chosen shape is not too 

low. Indeed, according to our observations in the database, endometrium shapes tend 

to have a high circularity. Therefore, if any of the selected shapes appear too linear, 

we go back to the initial segmentation before shape selection and choose the largest 

shape found as you can see in Figure 4-14. 

Once we have found our final shape, we again examine its topology and check 

for any holes. The example in Figure 4-15 allows us to visualize that the shape is not 

closed. To obtain a closed shape, we perform the skeletonization of our shape and 

gradually remove small branches until we obtain the overall contour and two 

endpoints. 

 

 

After identifying the two points, we record their coordinates and determine the 

distance between each x-coordinate and y-coordinate. This allows us to calculate 

intermediate points along the line connecting the two endpoints, effectively closing 

the shape (red line in Figure 4-15). The resulting line can be observed in the leftmost 

image of the figure provided. By examining the skeleton of the shape and the 

inclusion of the line, it becomes apparent that the shape is now closed. To complete 

the process, we apply morphological closing, which fills the entirety of the shape that 

has been identified. 

Figure 4–14: Selection of the shape after segmentation. 
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As a result of applying this function, we can see that the boundary of the 

detected endometrium, depicted as the green contour in Figure 4-16, bears a strong 

resemblance to the manually annotated mask represented in blue on the image. 

4.3.7 Segmentation using Chan-Vese with Split-Bregman method and 

without selection. 

The Split-Bregman method is an alternative technique that employs the level-

set approach. It offers greater efficiency and time savings compared to the Chan-Vese 

model, which is why we found it intriguing. To implement this method, we utilized 

the codes developed by Ander Biguri, which are based on the method described in the 

article "Geometric Applications of the Split Bregman Method: Segmentation and 

Surface Reconstruction" by Tom Goldstein, Xavier Bresson, and Stanley Osher [86]. 

As a result, I won't delve further into the details of this particular aspect of our 

algorithm.  

 

Similar to the Chan-Vese model, this function initiates with preprocessing the 

original image. We begin by reducing its resolution, akin to the previous function. 

However, we employ distinct treatments based on our observations during the 

development of our methods. We have noticed that preprocessing plays a crucial role 

in the segmentation's efficacy, and each method necessitates specific treatments for 

Figure 4–15: Closing the contours of the shape. 

Figure 4–16: Segmentation with the Chan-Vese model without endometrium 

selection, visualized in green, compared to the manual mask in blue. 
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optimal performance. Hence, we manipulate factors such as brightness, sharpness, 

and employ various filters within the scope of this method. The complete list of 

treatments is presented below (Figure 4-17). 

 

After applying image preprocessing, we proceed with the execution of Ander 

Biguri's code, enabling us to achieve image segmentation using the Split-Bregman 

method. As mentioned in the referenced literature, we have the capability to visualize 

the l1 regularization of the set of levels, providing insight into the ultimate outcome 

of the method. 

The outcome, adjusted onto our initial image, is displayed in the leftmost image 

of the figure below (Figure 4-18). Numerous contours, including the one representing 

the endometrium, have been identified. Now, the goal is to inform the algorithm about 

the specific contour corresponding to the endometrium. To accomplish this, we apply 

an erosion operation to eliminate smaller structures and present the resulting binary 

visualization in the rightmost image. 

In order to select the appropriate shape, we utilize the same techniques 

employed in the Chan-Vese model. Initially, we employ a circle with a radius of 150 

pixels, positioned at the center of the image. Our objective is to identify a shape that 

covers an area of more than 1000 pixels. As mentioned previously, if a shape meeting 

these criteria is found, we determine which initial form it corresponds to. However, if 

no suitable shape is identified, we opt for the largest shape initially detected. 

 

Figure 4–17: Preprocessing of images before segmentation using the Split-

Bregman method. 

Figure 4–18: Shape selection and contour closure (identical to the Chan-Vese 

model). 
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Afterward, we apply the same technique discussed in the section covering 

segmentation with the Chan-Vese model without selection to close the shape. For 

detailed information on shape selection and the process of closing its contours, please 

refer to “Section V.3.d.ii” specifically addressing segmentation according to the Chan-

Vese model without selection. 

Upon executing this function, we can witness the outcome portrayed in Figure 

4-19. It showcases the superimposition of a green contour onto the manually 

delineated blue mask. 

4.3.8 Comparison of segmentation methods 

At this point, we have two distinct segmentation methods with different 

functionalities. One method automatically segments the endometrium by processing 

the entire ultrasound image, while the other method focuses on segmenting only the 

user-selected region of interest. 

In this section, our objective is to independently analyze the results obtained 

from both algorithms across the entire database. The aim is to identify a way to 

combine these methods effectively to optimize the performance of our code. To 

compare the segmentation methods, we will utilize the Jaccard index. 

 

To put it simply, the Jaccard index is a statistical metric used to measure the 

similarity between two samples. For our project, we consider a Jaccard index greater 

than 0.5 as an indication of good segmentation quality. 

Initially, we will assess the performance of the automatic algorithm using all 

98 images from the database, which corresponds to 57% of the initial image repository 

consisting of 172 images. 

This automatic algorithm is only partially effective. Specifically, 25 images, 

which accounts for 26% of the database, are not processed. Additionally, in addition 

to the 26%, 33% of the Jaccard indices are below 0.5. Figure 4-20 is significant 

because it implies that for nearly two-thirds of the segmented ultrasounds, the result 

Figure 4–19: Segmentation of the endometrium using the Split-Bregman method, 

visualized in green, overlaid with the manual mask in blue. 
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is unreliable or even unusable. Next, we will analyze the semi-automatic algorithm 

on all 98 ultrasounds. 

 

 

 

 

 

In 

this case, we observe that the semi-automatic algorithm successfully processes the 

entire database without encountering any Jaccard indices equal to 0. Furthermore, 

it's worth mentioning that 65 images, which make up 66% of the segmented images, 

achieve a Jaccard index greater than 0.5 (Figure 4-21). 

 

 

At first glance, this segmentation technique appears to be more effective than 

the previous one. However, contrary to initial expectations, the semi-automatic 

segmentation method does not outperform the automatic method. In fact, the 

accuracy of endometrium segmentation using the semi-automatic approach is 

66%

34%

Jacquard indices>=0.5 Jacquard indices<0.5

26%

41%

33%

Jacquard indices=0 Jacquard indices>=0.5

Jacquard indices<0.5

57%

43%

Images processed automatically Untreated images

57%

43%

Images processed semi- automatic Untreated images

Figure 4–20: Results obtained for automatic segmentation.  

Figure 4–21: Results obtained for semi-automatic segmentation. 
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significantly lower. Only 18% of the images exhibit an increase in their Jaccard index 

when using the semi-automatic segmentation among the 41 images where the 

Jaccard index in the automatic method is greater than or equal to 0.5. Consequently, 

82% of the images experience a decrease or unchanged Jaccard index. 

Conversely, among the 32 images where the Jaccard index in the automatic 

method is less than 0.5, 63% of them demonstrate an increase in their Jaccard index 

with the semi-automatic segmentation. As a result, 37% of the images experience a 

decrease or unchanged Jaccard index. 

Lastly, among the 25 images where the Jaccard index in the automatic method 

is zero, all of them are processed using the semi-automatic method. Among these 

images, 64% achieve a Jaccard index greater than or equal to 0.5. 

To improve the results, it is necessary to combine both methods only for images 

where the Jaccard index is less than 0.5 and for images where the segmentation is 

not satisfactory at the endometrium level, resulting in a Jaccard index of zero. 

To achieve this, it is necessary to establish one or more criteria to determine 

the quality and level of confidence regarding the segmentation performed, similar to 

the Jaccard index. As shown in the graph below, the ideal outcome for the 57% of 

images studied would be: no image with a Jaccard index equal to zero, 73% of images 

with a Jaccard index greater than or equal to 0.5, and 27% of images with a Jaccard 

index less than 0.5 (Figure 4-22). 

 

 

 

4.4 AUTOMATION 

4.4.1 Automatic Algorithm 

Segmenting images manually is a time-consuming and tedious task, which is 

why automation is crucial for the successful completion of the project. Automation 

enables the processing of a large number of images without requiring any manual 

57%

43%

Images processed semi- automatic Untreated images

73%

27%

Jacquard indices>=0.5 Jacquard indices<0.5

Figure 4–22 : Ideal results obtained by summing the two methods. 
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intervention. To begin with, we need to retrieve the images we want to process. In 

Matlab, we utilize the “uigetdir” function, which opens a dialog box allowing the 

selection of the folder containing the images to be segmented. The chosen folder's 

path is displayed in the dialog box and stored in a variable. To offer the user the 

flexibility to change the folder, we also employ the “questdlg” function. This function 

prompts the user to confirm the folder selection. If the response is negative, the 

“uigetdir” function is called again to enable the user to select a different folder, and 

the “questdlg” function intervenes once more. If the dialog box is closed, the code stops 

and needs to be restarted. 

 

Once the selected folder choice is confirmed, the algorithm initiates. The 

number of ultrasound images in the folder is recorded in a variable called 'k,' which 

is used to process all the images. The processing time varies depending on the number 

of images to be processed. Ultimately, the segmented ultrasound images are saved in 

a subfolder within the previously selected folder containing the images for processing. 

The results are saved as JPEG images. These images consist of four areas that 

illustrate different aspects of the segmentation result. 

Figure 4-23 provides visualization of these areas, (a) displays the original 

unmodified ultrasound image on the right, while in the middle area (b), it exhibits 

the contours of the segmentation on the original image, enabling a clearer view of the 

endometrial contours, which can be compared with the original image situated above. 

On the right side (c), the original image is displayed with a violet mask representing 

the obtained segmentation, facilitating the visualization of the endometrial surface. 

 

During the entire process, the algorithm will apply specific exclusion criteria 

to the segmented ultrasound images. If the images meet these criteria, they will be 

saved in the folder where the segmentations are stored. However, if the obtained 

result is abnormal, the images will be separated and placed in a different folder. 

These abnormal images will undergo further processing using the semi-automatic 

algorithm, which will be explained in “section V.4.c”. The steps of the automatic 

algorithm can be observed in the activity diagram provided (Figure 4-24). 

Figure 4–23: Format of the saved results. 
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4.4.2 Exclusion criteria 

After running the automatic algorithm on the image database, we noticed that 

some images had inaccurate segmentation results. These anomalies occurred when 

the detected surface area of the endometrium was significantly larger than the 

reference values or when the localization of the endometrium didn't align with our 

expectations. To address this issue, we created a list of characteristics that indicated 

these aberrant results, with the intention of excluding them from the algorithm's 

processing.  Our goal was to categorize these images separately so that users could 

later segment them using an alternative algorithm. 

As I mentioned earlier, the endometrium is an organ that is relatively new in 

terms of segmentation, so initially, there is a lack of existing literature on the criteria 

for its segmentation. Additionally, the endometrium is a unique organ for each 

woman, which necessitates the empirical identification of criteria that can be 

reasonably applicable to all patients. 

The first criterion we used to exclude images was related to the image 

processing itself. As mentioned earlier, the applied processing sometimes resulted in 

substantial loss of information, rendering the image unusable. Therefore, we 

established a threshold: if the processing produced a binary image with fewer than 

12,000 white pixels, we would exclude that image from further processing. We also 

observed that this was particularly true for images with a low average gray level 

(below 40). 

To find additional criteria, we focused on evaluating the homogeneity of the 

endometrium by examining the standard deviation. The standard deviation indicates 

the extent to which data points deviate from the mean. A high standard deviation 

suggests a wide dispersion of values, while a low standard deviation implies that the 

values are closely clustered around the average. Based on the values derived from 

the database, the average standard deviation for an endometrium was approximately 

27. Consequently, we decided to exclude segmentations with standard deviations that 

deviated significantly from this average, whether too high or too low. Thus, we 

excluded images in which the detected endometrium had a standard deviation 

greater than 38 or less than 15.5. 

However, we observed that when the standard deviations fell between 30 and 

25, many segmentations were inaccurate. To avoid excluding a large number of 

images, we realized that additional criteria needed to be considered in conjunction 

with the standard deviation. Consequently, we examined circularity, surface area, 

and average gray level. 

When the standard deviation exceeded 30 and the detected surface area was 

excessively large, we excluded the image because the resulting endometrium 

appeared aberrant. The endometrium was disproportionately large and exhibited 

highly dispersed pixel values, which contradicted our expectations of homogeneity. 

Similarly, when the standard deviation was high and the circularity was low, we 

deduced that the detected endometrium was false since it lacked roundness and 

displayed heterogeneity. 
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In such cases, we suspected over-detection. The same concept applied to 

smaller standard deviations (≤ 23) in terms of under-detection. Additionally, in 

instances where a high standard deviation indicated strong heterogeneity, we 

observed that a high average gray level resulted in an endometrium that appeared 

excessively "white," which was logically unsound. For cases where the endometrium 

exhibited a smaller standard deviation (≤ 23) and therefore greater homogeneity, we 

encountered a similar issue. However, since the values were less dispersed, we 

excluded those with lower average gray levels. 

Figure 4–24: Workflow diagram of the automatic algorithm. 
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Lastly, we established a criterion based on the average gray level. Throughout 

the entire database, we observed that the calculated average gray levels generally 

seemed reasonable. However, values above 100 raised concerns given that the 

database mean was 74. After conducting further investigation, we discovered that 

some endometria could indeed have high average gray levels. Nonetheless, we set a 

threshold to filter out excessively high values as they would be considered aberrant. 

No observed endometrium was completely "white," so we established a high threshold 

that would still exclude detections with hyperintensity. 

A summary of all the chosen criteria, including the number of excluded images 

for each criterion, is presented in Table 4-4. It's important to note that these 

exclusions may encompass images that could have been automatically segmented. 

However, as previously mentioned, we prioritized criteria that indicated aberrations. 

It's possible for certain endometria to fall into a category that would be considered 

aberrant under normal circumstances. Therefore, the criteria outlined above are not 

entirely reliable but serve as a guideline based on our analyses and observations. 

Therefore, all these criteria are subjective and should be approached with caution. 

Chosen exclusion criteria  

Number of excluded 

images that couldn't have 

been segmented by the 

automatic algorithm 

Number of excluded 

images that could have 

been segmented by the 

automatic algorithm 

Image processing yields fewer than 12,000 white 

pixels and the calculated average gray level is below 

40 

 

3 

 

- 

Detected 

endometrium's 

standard 

deviation is 

greater than or 

equal to 30 pixels 

Detected endometrium 

surface area is greater than 

25,000 

  

4 - 

  

Detected endometrium's 

circularity is less than 0.29 

 

3 

 

- 

Detected endometrium's 

average gray level is above 

105 

 

1 

 

1 

Detected 

endometrium's 

standard 

deviation is less 

than or equal to 

23 

The circularity of the 

detected endometrium is less 

than 0.29 

 

4 

 

1 

  

Detected endometrium's 

average gray level is above 70 

and below 90 

  

  

4 8 

  

Detected endometrium's standard deviation is less 

than 15.5 or greater than 38 

 

7 

 

- 

Detected endometrium's average gray level is above 

140 

 

1 

 

- 

Table 4-4: Exclusion criteria chosen in the segmentation. 
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4.4.3 Semi-automatic algorithm 

The semi-automatic algorithm is utilized only if the automatic algorithm has 

been executed beforehand. As explained in sections V.4.a (Automatic Algorithm) and 

V.4.b (Exclusion Criteria), the images that were excluded by the automatic algorithm 

based on the specified criteria are stored in a separate folder. This folder is the one 

processed by the semi-automatic algorithm. Similar to the automatic algorithm, the 

semi-automatic algorithm prompts the user to select a folder. Specifically, the user 

needs to choose the folder containing the images that were not processed by the 

automatic algorithm, which is typically named "no segmented images" by default. 

Once the folder is selected, the algorithm presents a pop-up window to the user, 

allowing them to confirm their choice or, if desired, change the selected folder. Upon 

confirming the folder selection, the image processing begins. Unlike the automatic 

algorithm, the semi-automatic algorithm involves user interaction. For each image, 

the algorithm requests the user to manually select a region where they believe the 

endometrium is located. After the user makes this selection, the segmentation process 

takes place. Once the result is saved, the user repeats this selection procedure for the 

subsequent image and continues until all the images in the folder have been 

processed. 

The activity diagram below (Figure 4-25) provides a visual representation of 

the various steps involved in the semi-automatic algorithm. 

4.5 FINAL RESULTS  

The analysis of our automated or semi-automated segmentation relies on 

several key metrics. Initially, we utilized the Jaccard index, which is a statistical 

metric used to compare the similarity between two samples. We also examined two 

other metrics represented as percentages: sensitivity and specificity. Sensitivity 

evaluates the ability to produce a positive outcome when a hypothesis is confirmed, 

while specificity assesses the ability to generate a negative outcome when the 

hypothesis is not confirmed. 

We collected a range of numerical values required to compute sensitivity and 

specificity, as outlined below: 

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
,   

𝑇𝑁

(𝑇𝑁+𝐹𝑃)
 

Indeed, it was crucial to gather counts for false negatives (FN), false positives 

(FP), true negatives (TN), and true positives (TP) in order to perform our calculations. 

Each of these terms was defined within the context of our specific case study in the 

part of the segmentation: 

 False negatives represent the number of pixels that should have been detected 

by the segmentation algorithm but were missed, as they are part of the manual 

mask. 

 True negatives represent the number of pixels correctly classified by the 

segmentation algorithm as not belonging to the endometrium, based on the 

manual mask. 
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 False positives represent the number of pixels incorrectly identified by the 

segmentation algorithm as belonging to the endometrium, despite not being 

part of the manual mask. 

 True positives represent the number of pixels correctly classified by the 

segmentation algorithm as belonging to the endometrium, according to the 

manual mask. 

These metrics enable us to evaluate the performance of our segmentation 

algorithms for each image and determine the reliability of the developed 

segmentation. Now, let's visualize this information across multiple processed images 

using both algorithms and delve into the results. 

As indicated in Table 4-5, we can observe three different scenarios. The first 

scenario occurs when both segmentations produce nearly identical outcomes. In the 

initial row of the table, it is evident that the semi-automatic and automatic 

algorithms yield a Jaccard index of approximately 0.80. This signifies a significant 

similarity between the two sets. The figures accompanying the table illustrate this, 

with the blue region representing the overlapping area between our segmentation 

and the manual mask. The red pixels correspond to areas that our algorithm failed 

to detect, although they are part of the endometrium. Additionally, the green pixels 

indicate falsely detected areas. 

Consequently, we can determine the sensitivity and specificity, both of which 

are relatively high for this image. It is important to note that the automatic algorithm 

exhibits a greater precision in segmentation compared to the semi-automatic 

algorithm, as explained in “Section IV.3.8”, Comparison of Segmentation Methods. 

This scenario perfectly exemplifies that point. 

The second scenario arises when the automatic algorithm completely fails to 

detect the endometrium and erroneously locates it in an unrelated area. Conversely, 

the semi-automatic algorithm, with the assistance of user initialization, achieves a 

relatively accurate detection. Consequently, we obtain a Jaccard index of 0 for the 

automatic algorithm and a Jaccard index of 0.72 for the semi-automatic algorithm. 

Similar to the first scenario, we visualize the outcomes using the same color scheme 

and subsequently derive the values of sensitivity and specificity. 

It is worth noting that, since sensitivity depends on true positives, which are 

absent in the case of the automatic algorithm, it is logical to obtain a sensitivity value 

of 0. The same logic applies to specificity, as it relies on the number of true negatives. 

However, in the case of automatic segmentation, numerous pixels that should not 

have been detected are missed, despite the presence of green regions. Hence, 

obtaining a specificity value of 0.97 for this scenario is considered normal. 
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Figure 4–25: Activity diagram of the semi-automatic algorithm. 
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The final scenario occurs when the automatic algorithm achieves a more 

precise segmentation than the semi-automatic algorithm. We can observe the 

disparity in the Jaccard index between the two segmentation results, along with the 

resulting sensitivity and specificity values. Based on these findings, we favor a lower 

sensitivity (0.85 in the automatic algorithm) over a higher sensitivity (0.99 with the 

semi-automatic algorithm) because the segmentation obtained in the second case is 

less "faithful" compared to the first case. Although the semi-automatic algorithm 

yields a greater number of true positives, it also produces more false positives. 

Therefore, in this scenario, the outcome and similarity to the manual mask are more 

favorable with the automatic algorithm. 

4.5.1 Analysis of the Results 

The bank of ultrasound images must first be processed by the automatic 

algorithm, which excludes a certain number of images based on established criteria. 

These images will be segmented in a second step using the semi-automatic code. In 

this section, we will analyze the results obtained step by step. 

Initially, we had 98 images to segment. 37 of them are excluded by our 

algorithm according to the established criteria. This corresponds to 37.75% of the 

Figure 4-26. Therefore, we are left with 61 images to process. 

 

Table 4-5: The final results of the semi-automatic and automatic segmentation 
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Among these, 37 ultimately have a Jaccard index greater than or equal to 0.5. 

This indicates a relatively reliable segmentation based on the previous explanations 

of the metric. This represents 61% of the 61 images processed by the automatic 

algorithm. The remaining 24 are all segmented but have a Jaccard index lower than 

0.5. Figure 4-27 represents a more detailed distribution of the Jaccard indices for 

automatic segmentation. 

 

Following the execution of the automatic algorithm, we move forward with the 

semi-automatic segmentation of the 37 excluded images. Out of these images, 23 

achieve a Jaccard index of 0.5 or higher, accounting for 62% of our total of 37 images. 

Conversely, 14 images obtain a Jaccard index below 0.5 (Figure 4-28). 
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Figure 4–27: Distribution of Jaccard indices for automatic segmentation. 
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Figure 4–26: Results obtained for automatic segmentation. 
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Once again, Figure 4-29 provides a comprehensive breakdown of the Jaccard 

indices specifically for the semi-automatic segmentation. 

The graph illustrates that the vast majority of images have a Jaccard index 

above 0.3, indicating that the semi-automatic segmentation is quite reliable. Taking 

into account the combined results of both algorithms on the initial set of 98 images, 

we can conclude that the segmentation process has been successful overall. 

To begin with, it is noteworthy that all 98 images from the initial database 

have been processed. This achievement is significant as it ensures a plausible 

segmentation regardless of the specific outcome. Among the 98 ultrasounds, 60 of 

them ultimately exhibit a Jaccard index greater than or equal to 0.5, indicating a 

high-quality segmentation. This accounts for 61% of our initial database. The 

remaining 38 images are all segmented but have a Jaccard index lower than 0.5, 

suggesting a slightly less reliable segmentation. However, it is important to consider 

that during the analysis of manual masks, certain images obtained Jaccard indices 

lower than 0.3 despite being manually created. Therefore, these results can be put 

into perspective, and we can conclude that they are generally highly satisfactory. This 

result is described in Figure 5-30. 
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Figure 4–29: Distribution of Jaccard indices for semi-automatic segmentation. 
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Figure 4–28: Results obtained for semi-automatic segmentation 
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4.6 DISCUSSION FOR THE SEGMENTATION PART 

The segmentation of the endometrium, which involves extracting the specific 

region in an ultrasound (US) image, is a critical step in an Assisted Reproductive 

Technology (ART) cycle. The segmentation results are used to calculate quantitative 

features that describe the endometrial volume, size, echo pattern, thickness, and 

more. These features are then input into a classifier to determine the outcome of the 

treatment. Hence, the accuracy of the segmentation directly impacts the performance 

of the quantitative analysis and diagnosis of the treatment. Over the course of the 

segmentation work, we have developed two solutions for segmenting the 

endometrium in ultrasound images in order to calculate these parameters accurately 

and reliably. Obtaining precise segmentation was crucial to ensure the accurate 

calculation of endometrial characteristics. The first solution we implemented is an 

automated algorithm that performs an initial segmentation of the endometrium in 

each ultrasound image from a given dataset. Based on predetermined criteria 

established through the study of endometrial ultrasounds, the segmentation 

produced by this first solution is validated or rejected. In cases of rejection, the second 

solution comes into play, allowing for a result to be obtained. This second solution is 

semi-automatic, where the user manually selects the region of interest believed to 

contain the endometrium. The segmentation and calculation of endometrial 

characteristics remain automated. By combining these two solutions, we achieve a 

perfect compromise, as all the ultrasound images in our database are segmented. The 

results obtained thus far are highly promising for the future of the project. 61% of the 

endometrial segmentations are reliable, and even the remaining 39% are accurate in 

terms of endometrial localization, despite incomplete segmentation. Therefore, in the 

first case, the calculated endometrial characteristics are usable, while in the second 

case, these results may be distorted and cannot be relied upon by a physician for a 

definitive diagnosis. 

 
 

Figure 4–30: Final Results. 
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4.7 CLASSIFICATION USING OUR SEGMENTED MEASUREMENTS 

Within this part, we enhance SPIRL Version II by transitioning it into a fully 

automated method as you can see in Figure 4-31. This is achieved by utilizing 

measurements obtained through automatic endometrium segmentation and 

inputting them into a classifier that predicts the outcome of ICSI without manual 

intervention. 

 

4.8 MATERIAL AND METHODS  

4.8.1 Data collection and preparation: 

In this study, data was gathered from a total of 61 patients undergoing ICSI. 

The images used for analysis were those that had been fully segmented in the 

previous chapter. The measurements of endometrial surface, thickness, and mean 

grey values were automatically obtained from the segmentation model. These 

characteristics were then combined with other features directly extracted from 

"TrakMD platform”. In this case, a combination of Doppler parameters (measured 

ones) and clinical parameters are utilized as features to be inputted into the classifier. 

The choice of clinical parameters combined to our measurement parameters in this 

case is influenced by the absence of missing values in this small dataset (61 patients). 

Two files were prepared: the first file contained the actual measurements obtained 

using the Ultrasound machine, while the second file contained the features measured 

using our segmentation technique. 

Eight features are tacked into consideration in each file. Table 4-6 presents the 

features along with their corresponding numbers: age, tentative, day of transfer, 

number of embryo transfers, surface in mm, endometrial thickness, and endometrial 

Mean Grey.  

 

Figure 4–31: The Complete scheme of SPIRL Version III. 
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Number of features Definition of Parameters 

Feature 0 Age of the patient  

Feature 1 Tentative which is the number of ICSI trials 

Feature 2 The number of the Embryo transferred to the uterus  

Feature 3 Transfer day  

Feature 4 Endometrial Thickness (mm) 

Feature 5 Site of embryo (cm), which is the distance between the 

spot of the embryo and the fundus of the uterus. 

Feature 6 Surface of the endometrium(mm) 

Feature 7 Endometrium Mean Grey  

4.8.2  Model Selection 

The feature selection technique employed in this study is Extra Tree 

importance, which was selected as the optimal technique based on the SPIRL Version 

II chapter. Random Forest was chosen as the predictive model for determining the 

outcome of ICSI, considering it performed better in SPIRL Version I due to its reduced 

computational time compared with Bagging classifier the one he gives the highest 

performance in SPIRL Version II.  

4.9 RESULTS  

In this section, to compare SPIRL VERSION II and SPIRL VERSION III, it is 

crucial to perform classification on the measurements obtained using VOCAL 

software (following the same steps as in SPIRL VERSION II) and the measurements 

obtained through our segmentation technique. The identical clinical features are 

utilized, combined with the three measurement features from both VOCAL software 

(manual) and our segmentation technique. Subsequently, the same feature selection 

technique and classifier are employed, leading us to our results. 

In Figure 4-32, you can observe that certain factors, namely age, tentative, 

embryo transfer, and transfer day, hold a similar level of importance. Age 

consistently remains the most crucial factor, as emphasized in the initial chapter. It 

is evident that there is no variation in relation to this factor between the two 

situations. Figure 6 in Page 18, shows that age is the most important parameter, 

confirming studies showing that the success rate decreases with female age. The 3 

most important parameters are our 3 measurements derived from the segmentation 

(manual or automatic) of ultrasound images (blue colors). The values are fairly close, 

whether obtained manually or automatically. This is reassuring in view of the use of 

SPIRL V3 in real-life conditions. The orange bars in both histograms represent the 

same factors, namely the number of embryos transferred, tentative, site of the embryo 

and the transfer day. In other words, there is no a significant difference between the 

ranking of features for the real measurement compared with the SPIRL Version III. 

Figure 4-33 displays the accuracy results for predicting the outcome of ICSI 

using features obtained directly from the ultrasound machine (semi-automated 

Table 4-6: The selected features with their number. 



84 

machine) and the fully automated SPIRL Version III. For the semi-automated 

machine, the accuracy is 0.555, while for SPIRL Version III, the accuracy is 0.518. 

Additionally, the AUC is 0.5 for SPIRL Version III, compared to 0.561 for the semi-

automated machine. Overall, it can be observed that there is not a significant 

difference between the two techniques. 
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4.10 DISCUSSION  

The chapter aims to enhance the prediction of the outcome of Intracytoplasmic 

Sperm Injection (ICSI) by combining the classification and segmentation components. 

The process involves utilizing a 2D ultrasound machine to measure various 

parameters. These parameters are then combined with additional features to predict 

the outcome of ICSI. 

One of the advantages of this approach is its ability to provide accurate results 

without consuming excessive time for clinicians. By integrating the measured 

parameters with other relevant features, the prediction process becomes automatic, 

more efficient and less time-consuming.  

Interestingly, the chapter compares the accuracy of predictions using two 

different methods: real measurements and a fully automated segmentation 

technique. The accuracy of the predictions based on real measurements is reported to 

be 0.55. On the other hand, when employing the fully automated segmentation 

technique, the accuracy slightly decreases to 0.51. Furthermore, when examining the 

ranking of features overall, it is evident that the most important factor remains 

unchanged, while the least three factors also remain the same. There is a slight 

variation in the order of surface, endometrial thickness, site of the embryo, and 

endometrial mean grey. However, the overall ranking of features is quite similar 

between the two files. 

Despite the slight drop in accuracy, it is important to note that the difference 

between the prediction outcomes using real features and those obtained through the 

segmentation method is not significant. This suggests that the segmentation 

technique is a viable alternative, as it provides comparable results to the more time-

consuming process of manually measuring the features. 

However, it's crucial to consider the limitations of the study. The reported 

results are based on a relatively small dataset of only 61 images. To obtain more 

precise and reliable results, it is recommended to gather a larger and more diverse 

dataset. Increasing the sample size would likely improve the accuracy and 

generalizability of the predictions. 

In summary, this chapter presents a promising approach to predict the 

outcome of ICSI by combining classification and segmentation techniques. The 

integration of parameters measured from a 2D ultrasound machine with additional 

features allows for efficient and accurate predictions. Although the fully automated 

segmentation technique shows a slightly lower accuracy compared to real 

measurements, the difference is not substantial. To achieve more precise results, 

future studies should focus on expanding the dataset to enhance the reliability of the 

predictions. 

This particular aspect of the study is absent in the existing literature, 

primarily because of the originality of endometrial segmentation and its recent 

application. Previous studies have primarily focused on utilizing clinical features for 

both males and females, as well as some Doppler parameters, to predict the outcome 

of ICSI without incorporating segmentation into their research. 
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CHAPTER 5 

 

GENERAL DISCUSSION, FUTURE WORK AND SOCIAL 

IMPACT 

5.1 GENERAL DISCUSSION 

IVF therapy is a complex and demanding process for both female and male 

patients. It involves the administration of various hormones and medications to 

stimulate follicle growth and prepare the uterus for embryo implantation. The 

treatment can be physically and emotionally challenging, and the success rates may 

vary depending on several factors such as age, underlying fertility issues, and overall 

health. The decision to undergo IVF treatment is not taken lightly by couples. The 

procedure is expensive, time-consuming, and emotionally taxing. Before embarking 

on the treatment, couples often consider the chances of success based on various 

factors, such as their medical history, age, and the underlying cause of infertility. If 

the chances of success are low, some couples may decide not to proceed with the 

treatment. In the context of IVF, machine learning techniques can be applied to 

analyze data and provide insights that can aid physicians and infertile couples in 

making informed decisions. By leveraging machine learning algorithms, researchers 

can identify patterns, relationships, and predictive factors that contribute to 

successful clinical pregnancy outcomes. This information can help physicians tailor 

treatment plans and provide couples with realistic expectations The goal of this work 

was to employ machine learning algorithms to analyze new Doppler factors 

influencing clinical pregnancy outcomes, which could be important information for 

physicians and infertile couples. The real-world implementation of common machine 

learning necessitates careful examination of the input data and method employed. 

Choosing the most relevant pre-processing tasks improves performance. Our analysis 

showed that Bagging Classifier with Extra Tree Importance for feature selection as 

a pre-processing technique outperformed other models when predicting the outcome 

of the ICSI procedure with an accuracy of 89% and an AUC of 0.82 for 94 patients. 

Same model utilizing RF importance as a feature selection technique surpassed other 

models by achieving an accuracy of 74% and an AUC of 78.2% when applied to a 

dataset of 572 patients. The comparison between Doppler, clinical, and all 

parameters showed that the accuracy and the AUC of the classification with all 

parameters are higher than the classification with Doppler or Clinical parameters. 

Furthermore, a future study would require a substantial amount of data to 

comprehensively evaluate the significance of Doppler parameters with a better 

performance. Power Doppler parameters related to the endometrium and 

myometrium play a crucial role in the treatment. These parameters are currently 

measured manually using VOCAL software, which is a time-consuming process as it 

requires calculations based on six slices of the endometrium. we aimed to 

automatically segment the endometrium to calculate its volume, thickness, Doppler 
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parameters, and other relevant features. In the initial part of the study, we employed 

automatic and semi-automatic segmentation techniques, specifically the Chan-Vese 

and Split-Bregman techniques. Out of the 98 ultrasound images, 60 achieved a 

Jaccard index greater than or equal to 0.5, indicating high-quality segmentation. This 

accounted for 61% of our initial database. The remaining 38 images were segmented 

but had a Jaccard index below 0.5, suggesting slightly less reliable segmentation. Our 

overall goal had two main components. Initially, we aimed to segment the 

endometrium using an automated technique. Subsequently, our objective was to 

predict the outcome of ICSI using machine learning techniques based on the 

parameters obtained from our segmentation. This represents the final stage of our 

work, where we observed positive results as there was no significant difference in 

accuracy and AUC between the classification using RF for two sets of data. One set 

consisted of real measurements obtained using an ultrasound machine, while the 

other set involved parameters measured through fully automated segmentation. 

Additionally, the disparity in the importance ranking of features between the two 

sets is minimal. In summary, this section concludes that our automatic segmentation 

method performs well and provides the necessary measurements to accurately 

predict the outcome of ICSI. 

However, it is evident that acquiring more data is necessary because our last 

phase of analysis was conducted using a limited sample of only 61 images. To ensure 

the reliability and applicability of our machine learning model's predictions, it is 

crucial to expand the dataset. By including a larger and more diverse range of data, 

we can better capture variations and improve the overall validity of our results. 

The ability to predict the outcome of ICSI with a reasonable accuracy of 74% 

and an AUC of 78.2% has significant implications for stakeholders in the medical 

field and patients. ALHADI Laboratory, as a dedicated center for improving success 

rates in the market of ART, prioritizes advancements in this area. Our results 

empower healthcare providers to make more informed decisions about treatment 

options for couples undergoing ICSI, enabling them to assess the chances of success 

and customize treatment plans accordingly. Additionally, the inclusion of 

Myometrium Doppler parameters as important features in our analysis provides 

valuable information for clinicians, potentially improving success rates at our center. 

For patients, knowing the predicted outcome of ICSI is crucial in managing 

expectations and making informed choices regarding their fertility journey. It allows 

healthcare providers to offer appropriate counseling and support, addressing 

emotional well-being and reducing stress associated with the uncertainty of the 

treatment process. Furthermore, predictive models can assist patients in making 

financial decisions by estimating the likelihood of success. This knowledge helps 

individuals and couples determine the number of treatment cycles they are willing to 

undergo, potentially reducing financial burden and facilitating better financial 

planning. 

Overall, our objective of improving success rates in ICSI was achieved with 

satisfactory performance. 
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5.2 FUTURE WORK   

The segmentation of organs and other substructures in medical images plays 

a crucial role in enabling quantitative analysis of clinical parameters such as volume 

and shape. This analysis is particularly important in fields like cardiac and brain 

analysis. Among the applications of deep learning in medical imaging, segmentation 

has received significant attention, resulting in a wide range of methodologies being 

proposed. 

One of the most prominent and well-known convolutional neural network 

(CNN) architectures for medical image analysis is U-net, which was introduced by 

Ronneberger [88] U-net was specifically developed for biomedical image 

segmentation, with the aim of predicting the class for each pixel in the image. It is an 

extension of the Fully Convolutional Network architecture, modified to improve 

segmentation performance in medical imaging applications [89]. In a study 

referenced as [90] , an automatic segmentation technique achieved a dice similarity 

coefficient of 0.86 specifically for left ventricle segmentation on a large ultrasound 

dataset. Additionally, in the task of lymph node segmentation, the U-net architecture 

demonstrated superior performance compared to other state-of-the-art deep learning 

methods, as mentioned in  [91]. With the rise of deep learning, transfer learning has 

become a crucial component in various applications, particularly in medical imaging. 

The current standard practice involves utilizing existing architectures designed for 

natural image datasets like ImageNet, along with their pretrained weights, and fine-

tuning the models using medical imaging data  [92]. In this study, the authors 

explored the effectiveness of Convolutional Neural Networks, including U-Net, 

combined with VGG16 encoder for segmenting ultrasound scans of arteries [93] . In 

order to facilitate the work of physicians and achieve accurate measurements, it is 

crucial to perform segmentation of the endometrium and myometrium on both 2D 

and 3D images. This can be accomplished by employing U-Net and transfer learning 

techniques. By accurately segmenting these regions, physicians can benefit from 

enhanced visualization and precise measurements, ultimately improving the overall 

diagnostic and treatment process. Once a segmentation is achieved, which closely 

matches the manual segmentation obtained using VOCAL software with an accuracy 

of over 90%, automated measurements can be performed using Python or MATLAB. 

This enables quick classification using machine learning techniques to determine 

whether the patient is likely to have a successful or unsuccessful Intracytoplasmic 

Sperm Injection (ICSI) procedure. The combination of accurate segmentation and 

automated measurements, followed by machine learning-based classification, allows 

for efficient and timely decision-making in assessing the potential outcome of ICSI 

for each patient. Due to the significant memory requirements of deep learning 

algorithms, our work faces a limitation in terms of memory resources. To address this 

issue, we initially focused on segmenting the endometrium using U-net and other 

deep learning architectures, but we were only able to work with a limited dataset of 

20 images. The results of Deep learning segmentation are presented in the 

“Appendix” section. As a future endeavor, we intend to continue this work and explore 

ways to overcome the memory constraints, allowing for a larger dataset to be utilized 

in our segmentation process and continue our SPIRL Version III to enhance overall 
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performance. Furthermore, it is crucial to extend the prediction capabilities to include 

the forecast of live birth outcomes resulting from ICSI, rather than solely focusing on 

predicting pregnancy outcomes. 

5.3 SOCIAL IMPACT  

The market solutions for enhancing the success rates of IVF encompass a range 

of strategies and advancements within the field of ART. ALHADI Laboratory, as a 

center dedicated to improving the market, prioritizes the improvement of success 

rates.  It is the first and only center in Lebanon that owns the techniques that permit 

to test the genetic information of the embryos before implantation. This innovative 

approach enables the examination of all chromosomes on-site, facilitating the 

identification of abnormalities, aneuploidy, and even gender determination, this test 

ameliorates the success rate of IVF as you can see in Figure 1-1. Also, 
Cryopreservation techniques have advanced the success rates of FET cycles. Embryos 

can be frozen and stored for future use, allowing for better synchronization with the 

woman's natural menstrual cycle and optimizing the chances of successful 

implantation. This technique is used in the Center.  The clinicians in ALHADI 

laboratory continuously engage in research and exploration to identify new 

parameters or factors that can impact the success rate of treatments. This is our goal 

to discover additional variables that can assist in tailoring the treatment protocols 

for individual couples. By actively seeking out and studying these factors, clinicians 

strive to enhance the effectiveness of their treatment approaches and improve the 

chances of success for each couple.  

In summary, the societal implications of utilizing machine learning to predict 

the outcome of ICSI are far-reaching. These include the potential to enhance success 

rates, reduce financial stress, offer individualized treatment approaches and improve 

emotional well-being, surrounding assisted reproductive technologies. 
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APPENDIX A  

A.1 THE STATE OF THE ART ON IVF 

References  Year 
Number of 

images/cases  
Segmentation techniques  Additional comments  

[52] 2003       - Active contour model (snake) 

Breast tumor segmentation is 

satisfied with 95% average 

match rate. 

[53] 2008         - Level set based method  

Segmentation and 

reconstruction of the ovarian 

follicle, they discovered that 

both the computer-based 

measurement and the clinical 

measurement consistently 

underestimated the volume of 

follicular aspirate due to a 

clinical misinterpretation of the 

follicular boundary.   

[94] 2010 112 images   SVM  

Breast ultrasound 

segmentation with an 

accuracy = 93.75% 

[55] 2016        - Chan-Vese 
Capture regional details from 

ultrasonic images  

[58] 2016 80 images  Unet 
lymph node segmentation 

(IoU=0.798) 

[61] 2017 80 images  CNN 

automatic segmentation to the 

left ventricle (Dice similarity= 

0.86) 

[67] 2018 180 cases Active contour and level sets  

Segmentation of ultrasound 

images of breast cancer (TPR= 

92.78%) 

[69] 2018 326 test images Unet, VGG16-Unet 
segment ultrasound scans of 

arteries (jaccard index = 0.798) 

[70] 2019 44 images 

SVM (Learning based 

segmentation) and Region 

growing  

Classify the placenta then 

reconstruct the blood vessels 

with Dice coefficient=0.82 

[71] 2019 132 cases  
Normalized Cut (Ncut) 

algorithm and AP clustering  

Breast tumor detection, 

segmentation and classification 

(Accuracy=93.8) 

[72] 2022 1050 images Unet with canny edge  

Automatic segmentation of the 

ovarian follicle (jacquard index 

=0.679) 

Table 5-1: Some studies for the segmentation of an organ from ultrasound 

images 
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A.2 STUDIES ON THE CLASSIFICATION AND PREDICTION THE 

OUTCOME OF IVF AND ICSI USING MACHINE LEARNING 

TECHNIQUES 

Authors 
Sample 

Size 

Machine 

learning 

techniqu

e 

Features 

selection 

technique 

Selected features Findings 

[10] 
455 

patients 
ANN T-test  

Age, Previous live births, Previous 

abortions, Duration of infertility, 

Diagnosis, Sperm motility, Number of 

eggs recovered, Number of viable eggs, 

Proportion of viable eggs, Proportion of 

fertilized eggs, proportion of embryo 

cleaved, Number of embryos transferred, 

Freezing. 

Accuracy = 

59% 

 

[11] 

2275 

case 

study 

NB  

No feature 

selection 

technique  

Woman age, infertility factor, treatment 

protocol, Follicular stimulating hormone 

dosage, Peak estradiol level, early cleavage 

morphology, early cleavage time, number 

of cells, Nucleus characteristic, 

Fragmentation rate, Equality of 

blastomeres, Appearance of cytoplasm, 

transfer day, Physician performing embryo 

transfer, Difficulty of transfer.  

Sensitivity = 

64.4% 

Specificity = 

30.6% 

[95] 
1445 

patients 

RF, 

SVM, K-

fold cross 

validatio

n 

No feature 

selection 

technique 

108 clinical features. 

Highest 

accuracy with 

RF = 79%. 

(SVM= 71.4%) 

[96] 
250 

patients 
ANN 

No feature 

selection  

Endometriosis, tubal factors, and follicles 

in the ovaries, and the physiological factors 

(27 attributes) 

Accuracy = 

73% 

[97] 
1456 

patients  

SERA, 

NB, RF 

No feature 

selection 

64 independent features => 52 for female 

and 12 for male (table) 

SERA 

(Accuracy=0.8

44) 

NB 

(Accuracy=0.7

83) 

RF (Accuracy 

=0.792) 

[98] 
610 

patients 

DA 

 

No feature 

selection 

Female age, number of follicles before 

retrieval, number and maturity of retrieved 

oocytes (GV, MI, MII, MII*), number and 

quality of embryos (2PN, NEF 2PB, 

non2PN, cleavage on day3, >=7 cells on 

Sensitivity= 

0.512 

Specificity= 

0.74 

 TABLE A-2: Studies on the classification and prediction the outcome of 

IVF and ICSI using machine learning techniques. 
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day3, number blastocysts on day5 and 

day6), number of transferred embryos, and 

number of pregnancies. 

[12] 

2453 

embryos 

transferr

ed using 

ICSI 

NB, 

SVM, 

DT, 

KNN, 

RBF, 

MLP 

Informatio

n gain 

feature 

weighting 

and 

forward 

feature 

selection 

methods 

18 clinical features women and man 

factors/ Age of women, gravidity, 

infertility factor, treatment protocol, 

utilized sperm, duration of stimulation, 

FSH amount, Peak E2 level, Endometrium 

thickness, Early cleavage inspection time, 

Early cleavage morphology, Number of 

cells, Nucleus characteristics, 

Fragmentation rate, Equality of 

blastomers, Appearance of cytoplasm, 

Thickness of zona pellucida, Transfer Day. 

NB: Accuracy 

=- 80.4% 

Sensitivity = 

63.7% 

[99] 
1995 

patients  

 PCA-

ANN, 

ANN  

Chi square 

Age, number of cells and embryos at 

various development stages, and sperm 

characteristic, the type of IVF method, 

causes of infertility and type of applied 

ovulation stimulation. 

ANN : AUC = 

0.663 

ANN+PCA : 

AUC = 0.666 

[14] 

486 

patients 

  

SVM, 

RPART, 

RF, 

Adaptive 

Boosting, 

1NN 

No Feature 

selection  

 

Age of woman, Age of  man, Body mass 

index, Secondary, fertility, Tubal factor, 

Pelvic factor, Ovulatory factor, Uterine 

factor, Male factor, Infertility duration, 

Experience of IVF treatment, Sperm count, 

Sperm morphology, Sperm motility , 

Follicle stimulating hormone, Anti-

mullerian hormone, Antral follicle counts, 

Number of gonadotropin ampoules, 

Number of follicles in ultrasound, Serum 

E2 level on the day of hCG administration, 

Number of retrieved oocytes , 

Number of oocytes of GV quality,  

Number of oocytes of MI quality, Number 

of oocytes of MII quality, Type of 

treatment, Embryo grade, Number of 

developed embryos, Embryo transfer day, 

Number of transferred embryos  

RF and RPART 

outperform the 

other 

comparable 

methods. AUC-

ROC = 84.23 

and 82.05%, 

respectively. 

[16] 
1048 

patients   

MMLP, 

SVM, 

CART, 

RF. 

Hill 

climbing 

wrapper 

algorithm 

to select 

the best 

subset of 

features 

25 attributes  

Age, indication of fertility factor, Antral 

follicle counts, NbreM2, method of sperm 

collection, chamotte, Fertilization rate in 

vitro, Follicles on day 14, and Embryo 

transfer day. 

SVM: 

Accuracy = 

98.38% 

[17] 
401 

patients 

LR, RF, 

SVM  

 

Pearson’s 

correlation  

 

age, body mass index (BMI), endometrial 

thickness (EMT) on the day of 

progesterone treatment, good-quality 

embryo rate (GQR), and type of infertility 

(primary or secondary), serum estradiol 

level (E2) on the day of embryo transfer, 

and serum progesterone level (P) on the 

day of embryo transfer. 

RF: Accuracy = 

0.61. 
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[5] 
6071 

cycles 

SVM, 

XGBoost

, LR, RF, 

NB, LDA  

No feature 

selection  

The collected demographic and clinical 

variables comprised women’s ages, source 

of infertility (female factor, male factor, 

combined male-female factor infertility, 

unexplained), infertility type (primary, 

secondary), body mass index (BMI), 

infertility duration (years), number of 

previous abortions, polycystic ovary 

syndrome (PCOS), number of previous 

IVF attempts, total number of retrieved 

oocyte, number of injected oocytes, 

number of embryos, number of transferred 

embryos, spermogram, fertilization rate 

after intracytoplasmic sperm injection 

(ICSI), number of two-pronuclear embryos 

to number of metaphase II (MII) oocytes 

(2PN/MII ratio), and data on embryo 

quality (number of compact, blastocysts, 

grade A, grade AB, early blastocysts, A 

compact, and AB compact), as well as the 

day of the embryo transfer (ET) 

RF: Accuracy = 

0.81 

[18] 
771 

patients 

LR, RF, 

XG 

BOOST, 

SVM   

No feature 

selection 

Age of the women and the man, Number of 

embryos with classification A, B and C, 

total number of viable cleavage stage 

embryos, number of blastocysts, total of 

fertilized pro-nuclei, Antral follicle count, 

sperm source, Number of follicles greater 

than 17 mm, Number of MII oocyte, 

indication for IVF, Number of type A 

embryos transferred, Number of oocytes, 

total dose of gonadotropins, Number of 

embryos transferred, Number of IF 

oocytes, Catheter model used for embryo 

transfer. 

RF: AUC= 0.73  

[6] 
17,288 

cycles  
LR & RF  T-test  

Male age, women age, duration of 

infertility, number of IVF cycles 

performed, Number of oocytes retrieved, 

number of embryo transferred, the total 

number of embryo of frozen embryos, 

cause of infertility, Fertilization method, 

Micromanipulation technique, source of 

sperm and oocytes, the use of fresh/freeze-

thaw, ovarian hyperstimulation syndrome, 

ovarian stimulation protocole. 

RF: AUC=0.72 

Accuracy = 

64.7% 

[100] 
 45,921 

cycles 

RF, 

GBDT, 

AdaBoos

t, MLP  

 

No feature 

selection  

44 features/ age, date of the last pregnancy, 

type of infertility, cause of infertility, 

stimulation used. Specific treatment type, 

elective single embryo transfer, fresh 

cycle, frozen cycle, eggs thawed, fresh 

eggs collected, fresh eggs stored, total eggs 

mixed, eggs mixed with partner sperm, 

total embryos created, eggs micro-injected, 

embryos from eggs micro-injected, total 

embryo thawed, embryos transferred from 

eggs micro-injected, embryos stored for 

Single Embryo 

Transfer => 

GBDT with 

85.06% 

Double Embryo 

Transfer => 

AdaBoost with 

76.16% 
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use by patient, date of eggs collection, date 

of egg thawing, date of egg mixing, date of 

embryo thawing, date of embryo transfer. 

[22] 
2457 

cycles  

LR, 

Nomogra

m  

 

Female age, BMI, type of embryo 

transferred, number of embryos 

transferred, number of sub endometrial 

blood flow, RI, PI,  

level of baseline FSH, The level of AMH, 

proportion of blastocyst, endometrial 

thickness on transplantation day, VI, FI 

and the number of blood flow branches of 

endometrial and sub-endometrial blood  

AUC=0.699 

[29] 

4.570 

IVF 

cycle 

 

 

DT, RF, 

GB  

Genetic 

Algorithm 

42 variables/ 

Age, stimulation method, number of 

previous failed  IVF, type of infertility , 

duration of infertility, history of 

miscarriage, Female BMI,  IVF indication 

(male and female factors), Female 

prognosis, Basal FSH, Basal LH, Basal 

estradiol, Basal progesterone, AMH, AFC, 

estradiol level on trigger day, Progesterone 

level on trigger day, Type of ganodropine, 

starting dose of ganodropine, type of 

suppression drug, type of maturation 

trigger drugs, Number of oocyte(s) 

retrieved Number of mature oocyte(s) 

following injection, 

Maturation rate (%)- Sperm quality, 

Number of fertilization(s), Number of 

cleavage(s) Number of top-quality 

cleavage(s), Number of blastocyst(s), 

Number of top-quality blastocyst(s), Day 

of embryo transfer, Number of top-quality 

ET(s), 337Total number of embryo(s) 

transferred, All top-quality, Mix quality 

ET, Female smoking status, Male smoking 

status, Male alcohol drinking history,  

Both the 

decision tree 

and random 

forest showed 

similar 

performance 

that was much 

better than the 

gradient boost.  

Accuracy= 0.62 

[101] 
37062 

cycles 
GBDT  

Variables 

were 

selected 

through 

the 

significanc

e of 1-way 

analysis 

between 

the clinical 

pregnant 

group and 

the non-

pregnant 

group. 

Age, number of 2 PN, Number of oocytes 

retrieved, Endometrial thickness, Basal 

AMH, Number of embryo transfer, 

stimulation days, LH on day HCG, 

Fertilization procedure, Embryo culture 

time, Duration of infertility, Age of man, 

Blastulation, BMI, History of ART, Basal 

LH, AFC, E2 before gonadropine, 

Treatment strategy, Basal E2. 

AUC = 0.704 
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A.3 ULTRASOUND MEASUREMENTS  

Basically, the high resolution of ultrasound machine (WS80A) from 

“Samsung, Medison” enables us to examine clearly the different implantation 

aspects: endometrial/ myometrium volume and endometrial/ myometrium 

mean grey. Pulsed and color Doppler is used to indicate different variables of 

uterine and endometrial/ myometrium perfusion which is VI, FI, VFI that are 

also used as receptivity factors. The parameters are measured by utilizing 

three sections.: coronal, sagittal and transverse of 3D sonography. A shell 

histogram was computed and displayed the gray value distribution of an 

object's 2D and Power Doppler pictures for which VOCAL was executed. The 

shell histogram allowed to compute Mean Gray (MG), Vascularization Index 

(VI), FI, and Vascularization Flow Index (VFI). The measurements of this part 

is done for the classification work.  

 

 

 

 

 

 

 

Figure 5A-5–1 : Image of 3D ultrasound 
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Endometrial volume: the best method used to calculate the endometrial 

volume is the Virtual Organ Computer-aided Analysis (VOCAL) by applying 

the rotational techniques with 30 ᵒ axes and take 6 endometrial slices if the 

measurement is manual.  

 

Figure A-5–2: Image of pulsed and color Doppler 

Figure A-5–3: Image shown the measurement of endometrial 

volume and the endometrial mean grey. 
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Endometrial Mean Grey: After the measurement of the endometrial volume, 

we can display the histogram of the endometrial mean grey. 

 

Endometrial thickness: is measured from echogenic border to echogenic 

border across the endometrial cavity on a sagittal midline image. 

 

Endometrial pattern: endometrial pattern is defined as the relative 

echogenicity of the endometrium as demonstrated on a longitudinal ultrasound 

axis. Two types of echogenicity exist: triple line and homogeneous. The triple 

line configuration means that the endometrium contains a hyperechoic 

(usually displayed as light) line in the middle surrounded by two more 

hyperechoic (darker) lines.  

 

Figure A-5–4: This image represents the measurement of endometrial 

power Doppler indexes. 

Figure. A -5–5: Measurement of endometrial thickness 
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Myometrium volume: Furthermore, the VOCAL technique can also be used 

to measure the volume of the myometrium. In this case, six slices are taken for 

the myometrium using VOCAL manual. 

Myometrium mean grey: Similar to how the mean grey of the endometrium 

can be represented, we have the capability to visualize the histogram of the 

mean grey values of the myometrium. 

 

Myometrium VI, FI and VFI: These indexes represent the vascularization 

indexes, flow indexes, and volume flow indexes respectively, but in this case 

Figure A-5–6: A triple line endometrium represents in this image. 

Figure A -5–7: Image shown the measurement of myometrium volume and 

the myometrium mean grey. 
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we represent the power Doppler indexes for the myometrium. To measure the 

three indexes, we take 3D Doppler image and repeat the measurement of 

volume, then VOCAL software should calculate the index of vascularization. 

 

A.4 SEGMENTATION USING LEARNING BASED APPROACHES: 

A.4.1 Segmentation using classical machine learning techniques:  

Image segmentation can be seen as a classification task, where the goal 

is to categorize pixels or superpixels into distinct categories. As a result, it is 

common to utilize machine learning methods for image segmentation purposes 

[102]. As you can see” Table 1” in the Appendix, various medical image 

segmentation techniques have utilized learning-based approaches. Deep 

learning, a subset of machine learning, is regarded as a representation 

learning method capable of directly processing and autonomously acquiring 

mid-level and high-level abstract features from raw data, such as ultrasound 

(US) images. It has the capability to automate US image analysis tasks, 

including lesion/nodule classification, organ segmentation, and object 

detection [56]. Following the utilization of SVM, RF, and NN, along with Gray-

Level Co-occurrence Matrix (GLCM) as feature extractors for endometrium 

segmentation, the obtained results were found to be unsatisfactory. Although 

the precision for endometrium ranges between 0.634 and 0.872, the F1 and 

Recall scores for endometrium classification were extremely low, ranging from 

0.02 to 0.066. As a result, it becomes necessary to employ deep learning 

techniques for more accurate segmentation results. 

Figure A-5–8: Image represents the measurement of myometrium power 

Doppler indexes. 
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A.4.2 Segmentation using deep Learning approaches: 

Deep learning methods typically require a large database, but in this 

case, the available database is not extensive, making deep learning methods 

seemingly unsuitable at first glance. Although it is possible to use simulation 

models to generate artificial data for training, the results are likely to be 

subpar due to the high variability in ultrasound images. It could have been 

interesting to explore GAN (Generative Adversarial Network) generators, but 

time constraints prevented us from doing so. Nonetheless, we did experiment 

with a deep learning method, specifically U-Net, using a Field II generator. As 

expected, the results were not satisfactory. 

The segmentation of organs and other substructures in medical images 

plays a crucial role in enabling quantitative analysis of clinical parameters 

such as volume and shape. This analysis is particularly important in fields like 

cardiac and brain analysis. Among the applications of deep learning in medical 

imaging, segmentation has received significant attention, resulting in a wide 

range of methodologies being proposed. One of the most prominent and well-

known convolutional neural network (CNN) architectures for medical image 

analysis is U-net, which was introduced by Ronneberger [103] . U-net was 

specifically developed for biomedical image segmentation, with the aim of 

predicting the class for each pixel in the image. It is an extension of the Fully 

Convolutional Network architecture, modified to improve segmentation 

performance in medical imaging applications [89] . 

U-net offers several advantages, including: 

 Integration of Location and Context: U-net effectively combines location 

information and features obtained from the down-sampling path with 

contextual information from the up-sampling path. This integration 

enables the model to capture both localized details and contextual 

understanding, which are crucial for generating accurate segmentation 

maps. 

 Flexibility in Input Image Sizes: Unlike architectures that rely on dense 

layers, U-net does not have this restriction. Consequently, images of 

various sizes can be used as input, as the learning parameters in the 

convolution layers are only the kernel weights, which are independent 

of the image size. 

 Effective Data Augmentation: In domains like biomedical segmentation, 

where the availability of annotated samples is often limited, U-net 

leverages the use of extensive data augmentation techniques. By 

augmenting the existing data, the model can learn from a larger and 

more diverse dataset, enhancing its ability to generalize and perform 

well on unseen data. 

In a study referenced as [90] , an automatic segmentation technique 

achieved a dice similarity coefficient of 0.86 specifically for left ventricle 

segmentation on a large ultrasound dataset. Additionally, in the task of lymph 
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node segmentation, the U-net architecture demonstrated superior 

performance compared to other state-of-the-art deep learning methods, as 

mentioned in  [91]. With the rise of deep learning, transfer learning has become 

a crucial component in various applications, particularly in medical imaging. 

The current standard practice involves utilizing existing architectures 

designed for natural image datasets like ImageNet, along with their pretrained 

weights, and fine-tuning the models using medical imaging data  [92]. In this 

study, the authors explored the effectiveness of Convolutional Neural 

Networks, including U-Net, combined with VGG16 encoder for segmenting 

ultrasound scans of arteries [93] . 

Model Mean IoU Loss 

Unet 0.47327 0.0145 

VGG16-Unet 0.55265 0.0029 

ResNet50-Unet 0.68787 0.0023 

SegNet 0.61169 0.0016 

 

As it is shown in the figures 3 to 7, ResNet50_Unet which is a 

combination between U-net model and ResNet50 in the encoder part. This 

model gives the best segmentation of endometrium comparing to the mask and 

comparing to other models like simple U-net, the combination between VGG16 

and Unet, and finally the SegNet model. 

  

  

Table A-3: Accuracy and the Mean IoU between different models in 

segmentation 
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Figure A-9: Initial Image. Figure A-10: Mask using GIMP software. 

  

Figure A-112: Output of SeeNet. Figure A-12: Output of vgg16_Unet. 

  

Figure A-13: Output of Unet. Figure A-14: Output of ResNet50-Unet. 
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APPENDIX B  

 

GLOSSARY  

Terms Definition 

Accuracy 

 

Accuracy simply evaluates how often the classifier guesses 

accurately. Accuracy can be defined as the ratio of the number 

of correct predictions to the total number of predictions [104]. 

ANOVA The ANOVA method is a sort of F-statistic known as an 

ANOVA f-test in this context. It is a univariate statistical test 

that compares each feature to the target feature to determine 

whether or not there is a statistically significant link between 

them [105]  

 Artificial Neural Network (ANN) ANN is an information processing paradigm that is inspired by 

the way biological nervous systems, such as the brain, process 

information. The key element of this paradigm is the novel 

structure of the information processing system. Artificial 

neural network is a computing system made up of a number of 

simple, highly interconnected processing elements, which 

process information by their dynamic state response to external 

inputs. The main characteristics of neural networks are that 

they have the ability to learn complex nonlinear input output 

relationships, use sequential training procedures, and adapt 

themselves to the data. Although the mathematics involved 

with neural networking is not simple, a user can rather easily 

gain at least an operational understanding of their structure 

and function.   NNs can extract regularities and recognize 

patterns in sets of data. They can learn by example, and are 

able to capture the knowledge contained within a training data 

set and apply it to other data sets [106]. 

Adaptive Boosting (AdaBoost) AdaBoost, also known as Adaptive Boosting, is a Machine 

Learning technique that is utilized as an Ensemble Method. 

AdaBoost's most commonly used estimator is decision trees 

with one level, which is decision trees with only one split. These 

trees are often referred to as Decision Stumps. This algorithm 

constructs a model and assigns equal weights to all data points. 

It then applies higher weights to incorrectly categorized points. 

In the following model, all points with greater weights are 

given more weight. It will continue to train models until a 

smaller error is received [107].  
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AUC-ROC  

 

 The Receiver Operator Characteristic (ROC) is a probability 

curve that plots the TPR (True Positive Rate) against the FPR 

(False Positive Rate) at various threshold values and separates 

the ‘signal’ from the ‘noise’. The Area Under the Curve 

(AUC) is the measure of the ability of a classifier to distinguish 

between classes. From the graph, we simply say the area of the 

curve ABDE and the X and Y-axis [104]. 

Bayesian optimization Bayesian optimization, which involves tuning 

hyperparameters with Bayesian logic, aids in reducing the time 

required to get an ideal parameter set. It increases test set 

generalization task performance. It operates by taking past 

hyperparameter combinations into account when deciding the 

next set of hyperparameters to assess [107]. 

Bagging Classifier (BC) A BC is an ensemble meta-estimator that fits base classifiers 

on random subsets of the original dataset, then aggregates 

their individual predictions (through voting or averaging) to 

generate a final prediction. A meta-estimator of this type is 

often used to reduce the variance of a black-box estimator (for 

example, a decision tree) by introducing randomization into its 

building mechanism and then constructing an ensemble from 

it. Bagging, also known as Bootstrap aggregation, is an 

ensemble learning technique that helps machine learning 

algorithms increase their performance and accuracy. It is used 

to cope with bias-variance trade-offs and reduces a prediction 

model's variance. Bagging prevents data overfitting and is 

utilized in both regression and classification models, 

particularly decision tree techniques [108]. 

Chan-Vese Model 

 

This model was initially proposed by Tony Chan and Luminita 

Veste in 1999. It is based on level sets and involves partitioning 

the image, where the interior region of the contour represents 

the object to be segmented, while the exterior region represents 

the background. These two regions are assumed to be 

homogeneous and distinguishable. They are described by 

statistical moments, parameters, or probability density. These 

features, known as region descriptors, are used to define an 

energy functional. The objective of this model is to minimize 

this energy functional in order to evolve the contour. Thus, we 

can express this energy functional as follows: 

𝛿𝛤 ((𝐼 −  𝜇𝑖𝑛𝑡)² − (𝐼 −  𝜇𝑒𝑥𝑡)²)𝑁 

Here, 𝜇𝑖𝑛𝑡 and μext represent the mean values of the interior 

and exterior regions, respectively, and 𝐼 represents the narrow 

band around the contour 𝛤. 

The figure below illustrates the working principle of the model. 
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Figure represents a demonstration of the principle of 

evolution in the Chan-Vese model. 

In the case of the Chan-Vese model, we focus on the force 

applied at each point of the contour. Taking point, 𝐴 as an 

example, it has an intensity similar to that of 𝜇𝑖𝑛𝑡 and is 

opposite to the normal vector 𝑁. Conversely, at point 𝐵, we 

observe the opposite behavior. As a result, in the next iteration, 

we will see an expansion of the curve around point 𝐴 and a 

contraction around point 𝐵. 

This concept is based on the principle that the curve seeks to 

position the contour point in the region that is closest to it in 

terms of mean values. 

The model calculates the means at each iteration and evolves 

the curve until it no longer changes. The only drawback of this 

model is that it falls under variational models, which can be 

relatively slow in terms of computations. Thus, we have 

explored whether there are optimization methods available for 

these models. 
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Confusion Matrix Confusion Matrix is a performance metric for machine learning 

classification tasks with two or more classes as output. It is a 

table that contains a mix of predicted and actual data. 

The confusion matrix, as shown in the Table below, is defined 

as a table that is frequently used to explain the performance of 

a classification model on a set of test data for which the true 

values are known [104]. 

Table Shows a confusion matrix and their components 

[104] 

 

 

Predicted 

Values 

 Actual Values  

  Positive (1) Negative (0) 

Positive (1) TP FP 

Negative (0) FN TN 

True Positive: We predicted positive and it’s true. In the 

image, we predicted that a woman is pregnant and she actually 

is. 

True Negative: We predicted negative and it’s true. In the 

image, we predicted that a woman is not pregnant and she’s 

actually not pregnant. 

False Positive (Type 1 Error) - We predicted positive and it’s 

false. In the image, we predicted that a woman is pregnant but 

she’s actually not pregnant. 

False Negative (Type 2 Error) - We predicted negative and 

it’s false. In the image, we predicted that a woman is not 

pregnant but she actually is pregnant [104]. 

Exhaustive Feature Selection (EFS) It is the most straightforward approach for feature selection is 

an exhaustive search: one can go over all possible feature 
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combinations and pick up the model with the highest accuracy 

[109]. 

Extra Tree Importance The Extra Tree Classifier is an ensemble technique that seeds 

many tree models built at random from the training dataset 

and sorts out the most voted-for features. Rather than a 

bootstrap replica, it fits each decision tree to the entire dataset 

and chooses a split point at random to separate the nodes. The 

constituent tree models determine the split that results in the 

most homogeneous sub-child based on all factors available in 

the dataset. This reduces variance and makes the model less 

susceptible to overfitting [110]. 

Extreme Gradient Boosting 

(XGBoost) 

XGBoost is a more regularized version of Gradient Boosting. 

XGBoost employs sophisticated regularization (L1 & L2) to 

increase model generalization. When compared to Gradient 

Boosting, XGBoost provides superior performance. It has a very 

rapid training time and can be parallelized across clusters. 

F1 Score  It gives a combined idea about Precision and Recall metrics. It 

is maximum when Precision is equal to Recall. F1 Score is the 

harmonic mean of precision and recall [104]. 

Gradient boosting Algorithm (GB) GB is a machine learning boosting method in which a 

prediction model is generated by combining weaker prediction 

models. The gradient boosting algorithm is made up of three 

parts. The loss function varies depending on the situation at 

hand, as do weak learners used for prediction and the additive 

model, which combines trees via a gradient descent process. By 

merging the next model with the prior ones, the approach 

predicts the best possible model while minimizing error [111]. 

Grid Search Grid search is the most basic hyperparameter tuning approach. 

Essentially, we partition the hyperparameter domain into a 

discrete grid. Then, using cross-validation, we try every 

possible combination of values from this grid, determining 

various performance measures. The best combination of values 

for the hyperparameters is the grid point that maximizes the 

average value in cross-validation. Grid search is an exhaustive 

method that searches all possible combinations to locate the 

best point in the domain. The main disadvantage is that it is 

quite slow. Checking every combination of the space takes a lot 

of time, which isn't always available. Remember that every 

point in the grid requires k-fold cross-validation, which 

necessitates k training steps. As a result, tuning a model's 

hyperparameters in this manner can be quite complex and 

costly. Grid search, on the other hand, is a great way to find the 

optimal combination of hyperparameter values [112]. 

Incremental Component Analysis 

(ICA)  

ICA is a linear dimensionality reduction method that takes a 

mixture of independent components as input data and attempts 



121 

to accurately identify each of them (removing any extraneous 

noise). Two input features are said to be independent if their 

linear and nonlinear dependences are both equal to zero [113]. 

Intersection over Union (IoU) The Intersection-Over-Union (IoU), also known as the Jaccard 

Index, is one of the most commonly used metrics in semantic 

segmentation and for good reason. The IoU is a very 

straightforward metric that’s extremely effective. This metric 

ranges from 0–1 (0–100%) with 0 signifying no overlap and 1 

signifying perfectly overlapping segmentation [114]. 

Level-set algorithms This algorithm, developed in the late 1980s, is based on an 

intrinsic and Eulerian representation of the evolving curve. 

The evolution of this closed curve 𝛤 is governed by a partial 

differential equation. 

𝛿Γ(s)

𝛿𝑡
= 𝐹(𝑠). 𝑁 

It relies on 𝑁, which represents the inward normal to the closed 

curve, and 𝐹, a velocity function based on geometric quantities 

that are independent of the curve's parameterization. 

 

Demonstration of the initialization of the level-set algorithm. 

The curve 𝛤 is regarded as the level set 0 line of a function, 

typically referred to as the signed distance function 𝜑. This 

function effectively assigns negative values to the region inside 

the curve Ω𝑖𝑛𝑡 and positive values to the region outside the 

curve Ω𝑒𝑥𝑡. 

In this case, the geometric quantities in the evolution equation 

can be expressed in terms of the signed distance function. 

Furthermore, by differentiating the relation 𝜑(𝛤)  =  0, we 

obtain the following evolution equation: 

 
𝛿𝜙 =  𝐹 |𝛻𝜙| 

The objective of the level-set algorithm is to construct the 

signed map based on the initial curve corresponding to level 0 

and evolve it using the above equation until convergence, 

ultimately extracting the level 0 curve. 
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Linear Discriminant Analysis 

(LDA) 

LDA aims to maximize the distance between the mean of each 

class and minimize the spreading within the class itself. LDA 

uses therefore within classes and between classes as measures. 

This is a good choice because maximizing the distance between 

the means of each class when projecting the data in a lower-

dimensional space can lead to better classification results [115] 

Logistic regression (LR) It analyzes the relationship between multiple independent 

variables and a categorical dependent variable, and estimates 

the probability of occurrence of an event by fitting data to a 

logistic curve [116]. 

Mean Squared Error (MSE) MSE quantifies the overall differences between the original 

image and the denoised image. It is widely employed to 

measure the total amount of variation between the two images. 

Higher MSE values indicate larger differences, while lower 

values suggest smaller discrepancies between the original and 

filtered images. Identical images yield an MSE of zero [74]. 

Multi-Layer Perceptron (MLP) A fully connected multi-layer neural network is called MLP. 

Naïve Bayes Classifier (NB) A Naive Bayes Classifier is an algorithm that uses Bayes' 

theorem to classify objects. Naive Bayes classifiers assume 

strong, or naive, independence between attributes of data 

points. These classifiers are widely used for machine learning 

because they are simple to implement [117]. 

Peak Signal-to-Noise Ratio (PSNR) PSNR measures the performance of speckle noise reduction by 

comparing the maximum possible power of the signal to the 

noise in the image. Higher PSNR values indicate better 

filtering performance and improved image quality as a general 

guideline, a higher PSNR value (e.g., above 30 dB) is often 

considered indicative of good image quality [74]. 

Principle Component Analysis 

(PCA) 

PCA is one of the most used linear dimensionality reduction 

techniques. When using PCA, we take as input our original 

data and try to find a combination of the input features which 

can best summarize the original data distribution to reduce its 

original dimensions. PCA is able to do this by maximizing 

variances and minimizing the reconstruction error by looking 

at pair wised distances. In PCA, our original data is projected 

into a set of orthogonal axes and each of the axes gets ranked 

in order of importance. 

PCA is an unsupervised learning algorithm, therefore it doesn’t 

care about the data labels but only about variation. This can 

lead in some cases to misclassification of data. The problem 

with the PCA method is that it does not preserve the original 

features which is sometimes necessary. In order to preserve 

features numerous methods based on swarm intelligence 

algorithms were proposed as it was described in the previous 

section. Besides selecting the appropriate feature set, 

classification accuracy depends on the classifier. Each 

classification method has some parameters that affect the 

accuracy of the created model [118]. 
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Precision  Precision explains how many of the correctly predicted cases 

actually turned out to be positive. Precision is useful in the 

cases where False Positive is a higher concern than False 

Negatives. Precision for a label is defined as the number of true 

positives divided by the number of predicted positives [104]. 

Random Forest Importance  Random forests are made up of 4 to 12 hundred decision trees, 

each of which is constructed using a random extraction of 

observations from the dataset and a random extraction of 

features. Because not every tree sees all of the features or all of 

the data, the trees are de-correlated and hence less prone to 

over-fitting. Each tree is also a series of yes-no questions based 

on one or more attributes. The three separates the dataset into 

two buckets at each node, each of which contains observations 

that are more similar among themselves and dissimilar from 

those in the other bucket. As a result, the significance of each 

attribute is determined by how "pure" each of the buckets is 

[119]. 

Random Forest (RF) Random forest is a supervised learning algorithm. The 

"forest" it builds, is an ensemble of decision trees, usually 

trained with the “bagging” method. The general idea of 

the bagging method is that a combination of learning models 

increases the overall result. 

Put simply: random forest builds multiple decision trees and 

merges them together to get a more accurate and stable 

prediction. One big advantage of random forest is that it can be 

used for both classification and regression problems, which 

form the majority of current machine learning systems [120]. 

Random search Random search is similar to grid search in that it tests a 

randomly selected fraction of the grid's points rather than all of 

them. The faster but less precise the optimization, the smaller 

this subgroup. The richer the dataset, the more precise the 

optimization, but the closer it is to a grid search. When you 

have numerous hyperparameters with a fine-grained grid of 

values, random search is a great solution. We can generate a 

relatively excellent set of hyperparameter values by using a 

subset of 5-100 randomly picked points. It is unlikely to be the 

optimal point, but it may be a decent group of values that leads 

to a good model [112]. 

Recall (Sensitivity)  Recall explains how many of the actual positive cases we were 

able to predict correctly with our model. It is a useful metric in 

cases where False Negative is of higher concern than False 

Positive. Recall for a label is defined as the number of true 

positives divided by the total number of actual positives [104]. 

Recursive Feature Elimination 

Cross-Validation (RFECV) 

The algorithm employed at this stage is Recursive Feature 

Elimination with Cross-Validation (RFECV). The RFECV 

algorithm will eliminate redundant and insignificant features 

that have minimal impact on classification outcomes. Along 

with retaining strong independent attributes to increase model 

https://builtin.com/data-science/supervised-learning-python
https://builtin.com/data-science/tour-top-10-algorithms-machine-learning-newbies


124 

performance. To rank qualities, this technique uses an iterative 

procedure. This algorithm begins by creating a model of all the 

attributes in the dataset. It ranks the attributes according to 

their impact on the classification. In addition, the RFECV 

algorithm will delete the attribute with the least correlation to 

the classification results and repeat this step to recalculate the 

attribute ranking. The RFECV algorithm's main goal is to pick 

the best number of characteristics via automatic cross-

validation. This algorithm is an enhancement to the RFE 

algorithm [121].  

Signal-to-Noise Ratio (SNR):  SNR is commonly used to evaluate speckle reduction in the 

presence of multiplicative noise. It calculates the ratio between 

the original image and the denoised image. Higher SNR values 

indicate a stronger filtering effect and higher quality of the 

filtered image. A higher SNR value (e.g., above 20 dB) is 

typically desired for high-quality images [74]. 

Support vector Machine (SVM) SVM is most powerful classification algorithms in terms of 

predictive accuracy. They are based on strong mathematical 

foundations and statistical learning theory. They can classify 

both linear and nonlinear data. SVMs were initially designed 

for two-class problems but later used for multi-class problem 

also. The basic principle of SVM is to find an optimal hyper 

plane with a maximum distance to the closest point of the two 

classes. A set of tuples that is closest to the optimal hyperplane 

is called a support vector. SVM uses these support vectors to 

find the optimal hyperplane. Finding the optimal hyperplane 

provides a linear classifier, whereas to classify nonlinear data, 

the original training data is transformed into higher dimension 

using nonlinear kernel functions such as polynomial, radial, 

Gaussian, sigmoid etc. SVM works on the principal that data 

points are classified using a hyper plane which maximizes the 

separation between data points and the hyper plane is 

constructed with the help of support vectors. SVMs can be 

applied for numeric prediction as well as classification [122].  
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Titre : Prédire le résultat de l'injection intracytoplasmique de spermatozoïdes chez les femmes en 
utilisant l'apprentissage automatique combinant les données Doppler et cliniques 

Mots clés :  FIV, ICSI, apprentissage automatique, paramètres Power Doppler, Chan-Vese, Split-
Bregman. 

Résumé : La fécondation in vitro (FIV) est désormais 
largement utilisée dans le traitement de l'infertilité et 
son succès est la principale préoccupation des 
patients. Il est difficile pour les praticiens d’identifier 
les éléments qui pourraient conduire à une grossesse 
réussie par FIV en l'absence de technologies 
automatisées.  Le développement d’une technique 
fiable pour estimer les chances de succès des couples 
reste un défi ouvert que nous allons tenter de relever 
en proposant notre nouvel outils SPIRL (System for 
Predicting the success Rate of IVF using machine 
Learning combining clinical and Doppler data). De 
nombreux facteurs contribuant à une grossesse 
réussie ont fait l'objet de recherches approfondies. 
Basées sur l’expérience du centre Al Hadi de 
Beyrouth, l’hypothèse de ce travail repose sur la prise 
en compte des paramètres écho-Doppler de 
l'endomètre et du myomètre. Un premier sous-objectif 
vise alors à explorer l'impact de ces paramètres 
Doppler sur le succès de la FIV. Pour ce faire, nous 
avons évalué les capacités prédictives de dix modèles 
d'apprentissage automatique différents. Ces modèles 
ont été entraînés à l'aide d'une combinaison de 
paramètres Doppler et cliniques. Parmi les techniques 
explorées la méthode de Bagging combinée à la 
sélection des caractéristiques d'importance Extra 
Tree a obtenu les meilleures performances (sensibilité 
de 100 %, spécificité de 80 % et précision de 89,4 %) 
pour 94 patients. Ensuite, pour 572 patients, le 

classifieur Bagging combiné au paramètre 
d’'importance de la forêt aléatoire a présenté la plus 
grande AUC de 78,2 %. Les résultats obtenus par 
l’outils SPIRL soulignent l'importance des paramètres 
écho-Doppler dans le taux de réussite de la FIV. 
D’autre part, les mesures échographiques de 
l’endomètres à partir de l’outils VOCAL étant très 
chronophage et opérateur-dépendant, le second 
objectif visé est la segmentation automatiquement 
l'endomètre. En combinant les techniques 
d'apprentissage automatique et de segmentation 
automatique et semi-automatique (techniques de 
Chan-Vese et de Split-Bregman) nous obtenons un 
indice de Jaccard supérieur ou égal à 0,5 pour plus de 
60% des images traitées. Enfin, le troisième objectif 
était la version entièrement automatisée de SPIRL 
utilisant notre technique de segmentation entièrement 
automatisée, qui mesure la surface de l'endomètre, la 
moyenne de gris de l'endomètre et l'épaisseur de 
l'endomètre, combinée à d'autres caractéristiques 
cliniques. Ensuite, il classe et prédit le résultat de 
l'ICSI. Les résultats sont étroitement alignés avec la 
prédiction du résultat de l'ICSI en utilisant les mêmes 
caractéristiques mesurées par des cliniciens à l'aide 
d'échographes. 
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Abstract: In-Vitro Fertilization (IVF) and Intra-
Cytoplasmic Sperm Injection (ICSI) are now widely 
used in the treatment of infertility. Patients' primary 
concern is the success of an IVF treatment, which is 
dependent on a variety of influencing factors. It is 
difficult for practitioners to detect any influencing trend 
of the characteristics and elements that may lead to a 
successful IVF pregnancy in the absence of 
automated technology. The goal was to develop a 
reliable technique for estimating the likelihood of 
success for couples seeking to conceive: the SPIRL 
tool (System for Predicting the success Rate of IVF 
using machine Learning combining clinical and 
Doppler data). Several factors that contribute to an 
accomplished pregnancy have been extensively 
researched. Based on the experience in Al Hadi 
Centre, the assumption of this work leads on that 
Power Doppler parameters related to the 
endometrium and myometrium play a crucial role in 
the treatment. The first aimed to explore the impact of 
Doppler parameters, specifically those related to 
endometrial and myometrium ultrasonography 
measures, on the success of IVF. The goal was to 
develop a reliable technique for estimating the 
likelihood of success for couples seeking to conceive. 
To achieve this, we evaluated the predictive 
capabilities of ten different machine learning models, 
including Logistic Regression, K-Nearest Neighbor, 
Multilayer Perceptron, Support Vector Machines, 
Naive Bayes, Bagging Classifier, Gradient Boosting, 
Extreme Gradient Boosting, AdaBoost Classifier, and 
Random Forest. These models were trained using a 
combination of Doppler and clinical parameters. 
Initially, among the techniques explored for predicting 
the outcomes of IVF using machine learning, the 
Bagging method combined with Extra Tree 
Importance Feature selection demonstrated superior 
performance for 94 patients. It achieved a sensitivity 
of 100%, specificity of 80%, and an accuracy of 
89.4%. Subsequently, for 572 patients, the Bagging 
classifier combined with RF importance exhibited 

the highest AUC of 78.2%. Importantly, several 

variables, such as myometrium VFI, volume of the 

endometrium, myometrium mean grey, myometrium 

FI, myometrium VI, endometrium mean grey, and 

endometrium FI, were identified as significant factors 

in the prediction process. These findings underscore 

the importance of ultrasound measurement 

parameters, particularly Doppler parameters, in 

influencing the outcomes of IVF and ICSI. The 

developed technique provides valuable insights for 

estimating the success rates of these assisted 

reproduction procedures. However, these parameters 

of endometrium and myometrium are currently 

measured manually using VOCAL software, which is 

a time-consuming process as it requires calculations 

based on six slices of the endometrium. The second 

objective of the work aimed to automatically segment 

the endometrium to calculate its surface, thickness 

and endometrial mean grey.  Then, we predict the 

outcome of ICSI using machine learning techniques 

with the new value. First, we employed automatic and 

semi-automatic segmentation techniques, specifically 

the Chan-Vese and Split-Bregman techniques. Out of 

the 98 ultrasound images, 60 achieved a Jaccard 

index greater than or equal to 0.5, indicating high-

quality segmentation. This accounted for 61% of our 

initial database. Finally, the third goal was the fully 

automated version of SPIRL taking our fully 

automated segmentation technique, which measures 

the endometrium surface, endometrium mean grey, 

and endometrium thickness, combined with other 

clinical features, then classify and predict the outcome 

of ICSI. the results are closely aligning with the 

prediction of ICSI outcome using the same features 

measured by clinicians through ultrasound machines. 
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