Keywords: SysML, High-level architecture, Requirement, Alignment, SysML/KAOS, Model Transformation, Formal Specification, Event-B Method. II

Complex systems are a collection of sub-systems linked together to form an integrated whole. The sub-systems are generally heterogeneous in that they integrate various kinds of components, as mechanical, electronic, or software components, working together to perform missions. Therefore their design requires the collaboration of domain experts and the use of a common language to communicate with each other and agree on the main characteristics of the system to build. To achieve this, graphical models are generally recommended to specify, view, understand, and document the system in a simple way.

However, when considering safety-critical systems where the consequences of a failure result in loss of life, significant property or environmental damage, graphical languages are not sufficient since they are only semi-formal and do not allow formal and rigorous reasoning necessary for verifying safety and security properties. Nowadays, the usefulness of formal verification and validation of system specifications is well established, at least for critical systems. Lastly, the quality of a system depends on the degree to which it fulfills its requirements. Requirements traceability is broadly recognized as a crucial element of any rigorous system development process, especially for the design of critical complex systems.

To cope with these issues, the thesis aims to define an approach of alignment between requirements models and high-level architecture models for safety-critical complex systems, thus allowing to specify traceability links between these two entities and to guarantee that high-architecture models fulfills required stakeholders needs. This is achieved by using formal specifications to verify firstly the correctness and consistency of high-level architecture models and secondly the consistency of the established alignment links. The idea behind the first point is to combine SysML, well adapted to be validated by domain experts, and the Event-B formal method for verification purposes. We propose to extend SysML with safety relevant Event-B refinement and decomposition mechanisms to model high-level architectures, and to define a set of rules enabling an automatic translation from SysML diagrams to Event-B specifications. We focus on diagrams that facilitate high-level architecture design, namely package, block-definition, state-transition and sequence diagrams.

The second point aims to support traceability by defining several kinds of alignment links between requirements models and high-level architecture models. Alignment links are first graphically specified. Then they are translated into Event-B specifications. The main idea is to use the formal refinement concept to prove their correctness. As the semantics of this refinement is not the same as the standard Event-B refinement, we have defined new proof I obligations to express it, which can be discharged using AtelierB.

The proposed approach is supported by a set of tools and implemented in an Eclipse IDE plug-in. It has been evaluated on various industrial-scale case studies.

Acknowledgment

First and foremost, I thank God for giving me strength, knowledge, ability and opportunity to undertake this research work and to continue and complete it satisfactorily.

Without his blessings, this achievement would not have been possible.

Many thanks go to my thesis reviewers and the defense jury committee. Pr. Christian ATTIOGBE and Pr. Iulian OBER for accepting being my thesis reviewers and for their attention and thoughtful comments. I also thank Dr. Sana DEBBECH, Dr. Akram IDANI and Pr. Sophie EBERSOLD for accepting being my thesis examiners.

I would like to express my appreciation and gratitude to my supervisor Simon COLLART-DUTILLEUL. His valuable advice, patience, enthusiasm and constant support all the time of research allowed me to acquire new understandings and extend my experiences. Thank you for your guidance, it has been a true pleasure and I deeply hope that we can continue our collaboration.

A special gratitude is also due to my co-supervisor Pr. Régine LALEAU, for believing in me long after I had lost belief in myself, for her great advices and her guidance. I am thankful for the opportunities she provided, and for having faith in me. I am deeply grateful for the great deal of time we spent discussing many technical details of our work together.

my thanks goes to the institutes and companies that provided me all the support I needed to accomplish this work: RAILENIUM and COSYS-ESTAS, Université Gustave Eiffel. You gave me the financial, physical and intellectual support that was necessary during the whole journey of this thesis. I am very thankful to you. A very big thank goes to my colleagues and dear friends in RAILENIUM and COSYS-ESTAS lab. Thank you for always providing me with a simulating, productive and welcoming environment to which I have happily returned every day.

Similarly, I thank Dr. Slim Kallel, Associate Professor at the University of Sfax, Tunisia, the professor who introduced me to the research and taught me some of the most important basis I have. You are a strong reference in my life regarding organisation, honesty and determination. I am thankful for the support he provided, for intellectual guidance, for patient motivation, and for his good humour in my darkest hours.

I have been blessed with a very loving and supportive family. My parents, Raoudha and Mohamed, have always stressed the importance of education, which has, in some unconscious way, shaped my values and made me the person that I am today. I appreciate IV all of the sacrifices that they have made for me. From my mom, I learned the art of working around obstacles, and the importance to stand up for myself. From my dad, I learned to work hard, and to be optimistic. I am grateful to the two of them for all that they have taught me about what it means to be a good person. During these years, despite our time together was brief, their contributions to my life will be felt forever. Your encouragement made me go forward and made me want to succeed. I am also grateful to my brother and sister Houssem and Wiem for being by my side through hard times. I cannot forget my dear little nieces Eya and Emna who filled me with joy and love and who always encouraged me in their innocent way.

I express my deepest gratitude to my soulmate and my loving fiancee Houda. As for you Houda, I find it difficult to express my appreciation in some lines. Thank you for sharing my wish to reach the goal of completing this thesis. I am grateful to her because she has given up so much to make my career a priority in our lives and tried to compensate for my stressful times. A tremendous help and endurance for a great number of years has helped me to complete this endeavour. So it only seems right that I dedicate this dissertation to her. My warm thanks to my parents-in-law, Rachid and Hedia for their support and kindness. 11 The first refinement level in Figure 2.29 Event-B specification context. . .

INTRODUCTION

12 The first refinement level of Figure 2.29 Event-B specification machine. . .

13 The fourth refinement level in Figure 2.30 Event-B specification context. .

14 The fourth refinement level of Figure Complex systems are a collection of sub-systems, which are independent enough to be identified. These sub-systems are generally heterogeneous in that they integrate various kinds of components, as mechanical, electronic, or software components, working together to perform a complex system mission. These systems are represented as composite systems, in the sense that the interaction between sub-systems is modeled by collaborating behaviors. Manipulation of these behaviors is the key to the resolution of composite system behavior. The goal of these manipulations is to reduce, as much as possible, the resolution of the original, composite system behavior, to the resolution of a sequence of sub-systems behaviors that can be solved independently. From literature, complex systems are a set of interconnected parts forming an integrated whole.

Nowadays, the importance of complex systems is increasing in the human life as the automation of essential tasks is taking place in the people routines. These systems may be responsible for such important tasks that their correct functioning is crucial in order to avoid severe repercussions. Complex systems are considered as safety-critical when the consequences of a failure result in loss of life, significant property or environmental damage.

INTRODUCTION

is one of the R&D and innovation programs of IRT Railenium2 , a test and applied research center for the rail industry in France, with the cooperation of several partners (SNCF, Alstom Transport, Hitachi Rail STS, Capgemini Engineering and Apsys). They target performance improvements of the system thanks to the implementation of autonomy in railway operations. This system is considered as a safety-critical complex system, where it depends more and more on effective solutions that can address heterogeneity and the interplay of physical and software elements. Also, the use of modern verification approaches may be the differentiating factor in order to guarantee the consistency of these systems. It should be noted that AFT with the objective of avoiding the occurrence of several problems like the loss of people lives, injuries, severe environmental damage and economical loss, for instance, must guarantee the consistency of systems functionalities.

Several specialized fields are involved in the design of a complex system, making it difficult to keep a unified vision of this system and to manage its design. This leads to important and difficult problems of integration, directly related to both the huge number of basic components integrated at multiple levels, and the important scientific and technological heterogeneity of such systems (generally involving software, hardware/physical and human/organizational parts).

When attempting to operate or design complex systems such as railway systems, the main challenge is, therefore, to take into account the interrelations between sub-systems, while never considering the problem of the whole system at once. High level architecture (HLA) is a system architecture specification that defines how to create a global system composed of interacting distributed parts. The intent of HLA is a structural design that allows the reuse of capabilities available in different parts ultimately reducing the cost and time required to create a synthetic environment for a new purpose, and the possibility of distributed collaborative development of complex parts applications [START_REF] Dahmann | Standards for simulation: As simple as possible but not simpler the high level architecture for simulation[END_REF] such as complex systems. HLA is widely applicable across a full range of parts application areas, representing entities at many levels of resolution.

In order to prove the consistency of a system HLA and support its design, formal methods may be used. Based on mathematical foundations, formal specification methods allow system HLA modeling as a way to define and prove system properties. A recent study of a literature review conducted on 114 scientific publications on formal methods and railways presented in the European project ASTRail [START_REF] Astrail | ASTRAIL European project D4.1 -Report on Analysis and on Ranking of Formal Methods[END_REF] claimed that "This analy-

INTRODUCTION

sis has shown a dominance of the UML modeling language for high-level representation of system models, and a large variety of formal tools used, with a dominance of the tools associated to the B family (ProB and Atelier B)". The CENELEC 50128 norm 3 in the railway domain clearly recommends the use of formal methods for developing critical systems.

Using formal methods, system properties and HLA correctness can be proved. In fact, the B formal method family has shown their successful application in several industrial railway projects [Behm et al., 1999, Lecomte et al., 2007].

Complex systems are generally made up heterogeneous sets of components and increasing in complexity which raises multiple problems relating to the completeness, consistency, non ambiguity and correctness of a design with respect to initial requirements. Their development process is most often challenging since it could be difficult to verify that stakeholders needs are satisfied, knowing that the consequence of a failure may be disastrous, especially for safety-critical systems. Beyond the fact that requirements models should be as precise as possible, it is necessary to verify that HLA models are aligned with them. In fact, requirement traceability is defined as ". . . the ability to describe and follow the life of a requirement, in both a forward and backward direction, i.e. from its origins, through its development and specification, to its subsequent deployment and use, and through periods of on-going refinement and iteration in any of these phases" [START_REF] Gotel | An analysis of the requirements traceability problem[END_REF].

Indeed, a good alignment helps ensuring return on investment, and is key to a coherent governance. Thus, validation and verification activities take part in this flow to ensure the correctness of the design with respect to the initially specified needs.

Problem statement and motivations

The design of safety-critical complex systems, such as AFT, depends on solutions that can address the interplay between their sub-systems. These sub-systems interact by exchanging information in order to perform the main goal of the global system. Therefore, a model of HLA supporting layered hierarchy of components is needed. Such HLA must enable the specification of the main functional elements of a system, together with their interfaces and interactions. It constitutes a framework common to all the domain experts involved in the design of the system. In the AFT project, graphical representations of system components are recommended to specify, view, understand, and document the system 3. The CENELEC 50128. https://standards.globalspec.com/std/2023439/afnor-nf-en-50128

INTRODUCTION

in a simple way. Such representations allow all the stakeholders to discuss and agree on the main characteristics of the system to build and allow to check if its HLA corresponds to their expected requirements. Whereas, railway norms for safety engineering assert that modeling railway systems using SysML allows to generate correct-by-construction components, which is a way to ensure that the needs fulfilled by the initial model will remain respected while it is supposed to be easily understood by railway experts. From this perspective, we formulate the following research question:

RQ1: Can we provide a common modeling language for high-level architectures that can support the interaction of sub-systems?

Complex systems complexity is increasing related to both the huge number of basic components integrated at multiple levels, and the important scientific and technological heterogeneity of such systems. This raises multiple problems relating to the completeness, consistency, non ambiguity and correctness of system design. However, when systems are complex, their structure cannot be described at a single level or with a single view; multiscale descriptions are needed to understand them. This comes from the fact that a complex system is a collection of sub-systems presented as an integrated whole working together to perform a main mission and besides, these sub-systems have their own life and can exist independently from their participation in the main mission. Based on these considerations, it is possible to formulate a second research question as:

RQ2: How can we master the complexity of these complex systems?

Generally complex system HLA graphical design is semi-formal and its semantics are given in natural language, which does not allow formal and rigorous reasoning necessary for critical systems for which safety and security are major concerns. In such circumstances, the industry needs an effective approach for the verification of the critical systems in order to guarantee their safety. In this context, the use of formal methods is strongly recommended for the specification of systems HLA during the development of railway systems for example.

Formal specification allows the proof of the system consistency by modeling its structure and behavior to be formally verified. Thus, it is possible to formulate the third research question as:

RQ3: How can we provide a formal specification of high-level architectures to verify their consistency?

Beyond the fact that complex systems HLA should be consistent and verified, it is necessary to verify that its models are aligned with system requirements which should be

INTRODUCTION

precise as much as possible too. Indeed, the HLA design is most often challenging since it could be difficult to verify that stakeholders needs are satisfied. That is why, while formal specification allows the proof of the system consistency, it is recommended also to prove the consistency of this alignment. Thus, validation and verification activities should take part to ensure the correctness of the design with respect to the initially specified needs.

From this context, a last research question can be formulated as:

RQ4: How can we establish and verify alignment links between high-level architectures and system requirements?

3 Objectives

In the light of the aforementioned shortcomings, the core interest of this thesis is to define a holistic methodology that supports a part of complex system life cycle from stakeholders requirements definition to HLA definitions with traceability respect between HLA and requirements.

To this endeavor, in the sequel, we present the objectives of this methodology:

• Proposing a modeling language for complex systems HLA which can hamper reasoning about system properties. This modeling language should allow to provide the full range required to deal effectively with the heterogeneity of complex systems HLA elements. Such a HLA model must enable the specification of the main functional elements of a system, together with its interfaces and interactions. It constitutes a framework common to all the domain experts involved in the design of the system.

• While complex systems are represented as an integrated whole of sub-systems collaborating together to perform a main task, the aim is to define a language to model this HLA as a layered hierarchy of sub-systems.

• Defining complexity mastering mechanisms which allow step-by-step design and detailing the parent system behavior by its sub-systems behaviors interplay. This is due to the huge number of sub-systems and components a complex system can encompass.

These sub-systems can also exist independently.

• Graphical representations give a simple manner to specify systems HLA and could be understood by stakeholders. However, they are less powerful, semi-formal and does not allow formal and rigorous reasoning necessary for critical systems. On the other hand, formal methods provide a formal and rigorous reasoning about system INTRODUCTION specification but it is not an easy practice for unfamiliar users of formal methods.

Therefore, we intend to define an end to end process from HLA graphical design until HLA formal specification which allows to guarantee the consistency and the completeness of the graphically designed HLA. This process is crucial for safetycritical systems.

• Proposing solutions and techniques which aim to establish alignment and traceability between HLA models and requirements. Thus, it allows to demonstrate that HLA elements are aligned with the stakeholders needs and participating in their satisfaction while the competitiveness of a system relies on the degree to which HLA models fulfill its requirements.

• Formalization of alignment links. We aim to provide a consistent and correct definition of this alignment between HLA and requirements, which involves the use of formal notation for this purpose.

Contributions

In this section we layout the contributions of the thesis to come up with a holistic methodology for HLA definitions with traceability respect vis-a-vis requirements. The proposed methodology realizes the set of objectives discussed in Section 3. This includes the following contributions:

-Overview on the existing researches in the field A survey of the current state of the art about SysML, RE, architecture modeling and specification approaches and Event-B formal method is elaborated. Furthermore, related work on requirements models and their formalization into formal specification, design models and their formal specification translation, models refinement and decomposition and finally requirements and architecture alignment are analyzed.

-High-level architecture modeling and formal specification

For HLA modeling and formal specification, a model-based approach enabling the design of HLA using SysML, answering the research question RQ1 and its translation into Event-B formal method answering research question RQ3 is outlined.

• High-level architecture modeling

The particularity of the proposed approach is that it provides systems/subsystems hierarchical modeling of HLA. In order to master complexity in HLA de-

INTRODUCTION

sign, the approach defines solutions and mechanisms to solve it. More precisely, we adopt Event-B refinement and decomposition mechanisms by proposing an extension for SysML to enable step-by-step design and complexity reduction.

This answers research question RQ2.

• High-level architecture formal specification

For a formal specification of HLA, an automatic translation from extended

SysML HLA models into Event-B formal specification is proposed. This translation is a two step process, model-to-model and model-to-text, and supports also the translation of the proposed refinement and decomposition mechanisms.

Using the generated formal model, we investigate a model checking and theorem proving based verification process that aims at ensuring HLA consistency and correctness.

This proposed approach is illustrated by the landing gear system case study [START_REF] Boniol | The landing gear system case study[END_REF] to verify and evaluate it.

-Requirements & high-level architecture alignment

It is necessary to verify that HLA models are aligned with requirements and to determine how HLA elements can contribute in the satisfaction of the requirements.

We have chosen to use SysML/KAOS to model requirements graphically and formally. We propose a model-based approach to define several kinds of alignment links between SysML/KAOS models and SYSML HLA models and their formalization into Event-B. This approach allows to answer research question RQ4.

• Requirements & high-level architecture graphical alignment

For establishing traceability, we have chosen to apply this alignment between leaf goals from requirements models and sequence diagram messages from HLA models. To this aim, different kinds of alignment links are proposed, each of them defines a specific semantics and process on how a goal in a requirements model could be satisfied by HLA elements.

• Requirements & high-level architecture alignment formalization

To prove the consistency of the proposed alignment links, an Event-B formalization is proposed. The main idea is to use the Event-B refinement concept to prove the correctness of alignment links. As the semantics of this refinement is not the same as the standard Event-B refinement, to achieve it, new sets

INTRODUCTION

of refinement proof obligations are specified, one for each kind of alignment.

Discharging these proof obligations allows to formally verify the satisfaction of a leaf goal by a set of HLA messages.

This proposed approach of alignment is illustrated by the landing gear system case study [START_REF] Boniol | The landing gear system case study[END_REF]] enhanced with a second example taken from the train control system case study presented in [Lamsweerde, 2008] to verify the consistency of the proposed alignment links.

-Implementation of the methodology

The methodology is implemented using a collaborating set of tools, frameworks and

Eclipse plug-ins. This combination of tools assists designers in specifying complex systems life cycle from requirements to HLA. Moreover, it enables to verify the consistency, correctness and completeness of requirements and HLA using an automatic mappings of SysML/KAOS models and HLA models to the formal language; Event-B. Adding to that, it provides mechanisms to establish graphically and formally alignment between HLA and requirements entities in order to prove the traceability between them. A subsequent formal verification using the AtelierB tools is conducted.

Outline of the Thesis

Following this introductory chapter, the thesis is organized in three chapters.

-Chapter I outlines the background of this work about RE, architecture modeling and Event-B formal method which is necessary for the remainder of the thesis.

Afterwards, existing researches are analyzed and a comparison is drawn. As a result of this analysis, we motivate and subsequently present the proposed methodology.

-Chapter II details the contributions of the high-level architecture modeling aligned with system requirements methodology. It consists in the application of SysML/KAOS approach, HLA modeling and its automatic translation into Event-B and we present our contribution about requirements and high-level architecture alignment. Finally, to evaluate our methodology, we illustrate it on the landing gear system case study.

-The implementation details of the methodology is discussed throughout Chapter III. This chapter presents a review of the implementation tools and mechanisms to perform each of the steps of the methodology. The main goal of this step is to support

INTRODUCTION

complex systems designers with a collaborating set of tools and plug-ins within an integrated development environment as Eclipse.

Finally, in chapter CONCLUSION AND PERSPECTIVES, we will summarize and conclude the thesis. A discussion will also be held to outline several directions for future work.

Publications

The contributions made while pursuing the research described in this thesis have been published in proceedings of conferences and journals. Some of the chapters of this thesis are partially based upon these published papers.

Background

Systems Modeling Language SysML

The Systems Modeling Language (SysML) [Holt andPerry, 2008, OMG, 2007] is a graphical modeling language supporting the analysis and specification of complex systems that may include hardware, software and human elements. Based on the unified modeling language (UML) [START_REF] Omg | OMG unified modeling language[END_REF] as a UML profile, SysML has been designed to be used in system engineering to satisfy the shortcomings of UML. UML was designed to be a common, semantically and syntactically rich visual modeling language. The UML profiles represent an integration of a light-weight mechanism in order to extend the languages based on the MOF (Meta Object Facility). In fact, profiles are used to customize UML for a specific domain through extension mechanisms that enrich the semantics and syntax of the language. However, the use of UML in system engineering applications has shown certain weaknesses that must be solved to provide an effective language for system engineers. As examples of shortcomings, we give:

-The need to describe the requirements directly in the model, and to ensure traceability to the architecture.

-The need to represent non-software elements and to specify their type (mechanical, circuit, hydraulic, wiring, sensor, etc.).

-The need to represent physical equations, constraints.

CHAPTER I. LITERATURE REVIEW

-The need to represent continuous flows (matter, energy, etc.).

-The need to represent logical/physical, structure/dynamic, etc. allocations.

Overview of SysML diagrams

SysML is composed of nine types of diagrams, each of which is dedicated to represent particular concepts in a system. It reuses some of the UML proposed 13 types of diagrams exactly as is, some have been modified and others have not been kept. These nine diagrams are classified in three categories:

- Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors of a block.

• Sequence Diagram: It describes the flow of control between actors and systems (blocks) or between parts of a system. It shows the vertical sequence of messages exchanged between elements (lifelines) in an interaction. This sequence of messages represents "Scenarios" which highlight pertinent aspects of a particular situation.

• State-Machine Diagram: It models the behavior during the lifetime of a block.

• Use Case Diagram: It describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is realized by the subject providing a set of services to selected actors.

CHAPTER I. LITERATURE REVIEW

-Transverse diagrams

• Requirements Diagram: It is intended to be used to represent system requirements and their relationships. A requirement may specify a function that a system must perform or a performance condition a system must achieve. SysML provides modeling constructs to represent text-based requirements and relate them to other modeling elements.

• Parametric Diagram: It enables constraints on system parameter values to be represented, such as performance, reliability and mass. A constraint is represented as a block that allows the definition of rules about the properties of a system or constraints that the system must obey.

SysML usage

SysML language is represented as a communication language between the different members of the development teams. It allows to unify the visual modeling principles using a set of diagrams, which makes it easy to learn, to use and to document. The introduction of SysML in this domain was not only for simplifying the modeling and the communication but also to offer the development community a good pillar to analyse the requirements of the system since it is the first steps of the development through a model driven process.Among the tools currently in use for SysML modeling, we can cite IBM/Rhapsody [IBM, 2013],

No Magic/MagicDraw [CATIA, 2011], Papyrus (open source) [START_REF] Papyrus | Eclipse Papyrus Modeling environment[END_REF]. These tools are used buy the AFT project partners.

Requirements Engineering

The quality of a software system is the main measure of its success, that depends on the degree to which it fulfills its requirements. Requirements definition is a careful evaluation of the need that a system should fulfill. It must describe why a system is needed, based on current or foreseen conditions, which may be internal operations or stemming from external markets. It presents system features which serve and satisfies the system context and defines how the system will be constructed [START_REF] Ross | Structured analysis for requirements definition[END_REF].

Thus, Requirements Engineering (RE) is defined as the branch of software engineering concerned with the real-world goals. It must address the contextual goals why a software is needed, the functionalities the software has to accomplish to achieve those goals, and the constraints restricting how the software accomplishing those functions is to be designed CHAPTER I. LITERATURE REVIEW and implemented. Such goals, functions and constraints have to be mapped to precise specifications of software behavior [Van Lamsweerde, 2000]. They cover different types of concerns: functional concerns associated with the services to be provided and nonfunctional concerns associated with quality of service [Van Lamsweerde, 2001]. Goals are very important in the RE process while they allow to achieve requirements completeness, avoid irrelevant requirements, explain requirements to stakeholders, etc.

Goals modeling is based firstly on the identification of these goals, which may be explicitly stated by stakeholders or in preliminary material available to requirements engineers.

Many other goals can be identified by refinement and by abstraction, just by asking HOW

and WHY questions about the goals-requirements already available, others are identified by resolving conflicts among goals or obstacles to goal achievement.

Several goal oriented RE approaches and frameworks have been presented such as:

-i* [Yu, 1997]: is an agent-oriented modeling framework that can be used for requirements engineering, business process reengineering, organizational impact analysis, and software process modeling. The i* framework is used to model the environment of the system-to-be. It facilitates the analysis of the domain by allowing the modeler to represent the stakeholders of the system, their objectives, and their relationships.

-The NFR Framework [START_REF] Chung | Nonfunctional requirements[END_REF]: focuses on the modeling and analysis of non-functional requirements. The goal of the framework is to put non-functional requirements foremost in the developer's mind.

-KAOS [START_REF] Dardenne | Goaldirected requirements acquisition[END_REF]: KAOS stands for Knowledge Acquisition in autOmated Specification, which is described as a multi-paradigm framework that allows to combine different levels of expression and reasoning: semi-formal for modeling and structuring goals, qualitative for selection among the alternatives, and formal, when needed, for more accurate reasoning.

Figure 1.1 presents the goal oriented RE frameworks used in 246 publications covered by the literature map of [START_REF] Horkoff | Goal-oriented requirements engineering: a systematic literature map[END_REF]. KAOS and i* appear in near to the same number of publications (13%), the most popular choice is to use goal modeling in general, without committing to a particular framework. It is also fairly common (7%) to significantly use multiple frameworks together.

CHAPTER I. LITERATURE REVIEW

Figure 1.1 -Goal oriented RE frameworks use [START_REF] Horkoff | Goal-oriented requirements engineering: a systematic literature map[END_REF] 2.2.1 SysML/KAOS SysML/KAOS [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF][START_REF] Gnaho | Modeling the impact of non-functional requirements on functional requirements[END_REF]] is a requirements engineering method that allows the modeling of functional and non-functional requirements of a system as goals to be achieved. The main idea is to extend SysML [START_REF] Omg | OMG systems modeling language, version 1.3[END_REF] with concepts from the goal model of the KAOS method [Van Lamsweerde, 2009]. The choice is on SysML/KAOS because it provides strong semantic expressiveness.

In fact, SysML is a modeling language for the analysis and specification of complex systems and it is well recommended by the AFT project partners. It is a UML profile that uses certain UML diagrams and also offers extensions such as modeling requirements.

Despite, the concepts provided by SysML to represent requirements, they are not as extensive as in the other requirements methods because their semantics are not always clearly defined. That is why, the first step of SysML/KAOS approach is to extend the SysML requirements with concepts of the KAOS goal model, since it is the most important aspect of KAOS.

The KAOS approach [Van Lamsweerde, 2009] is a framework for eliciting, specifying, and analysing goals, requirements, scenarios, and responsibility assignments. It defines a requirements modeling language for the representation of requirements to be satisfied by the system and of expectations with regards to the environment through a hierarchy of goals. KAOS is based on the decomposition and refinement of goals to support the entire requirements development and acquisition process. The choice of KAOS is motivated by, firstly, it permits the expression of several models (goal, agent, object, behavioral models)

CHAPTER I. LITERATURE REVIEW

and relationships between them. Secondly, KAOS provides a powerful and extensive set of concepts to specify goal models. This allows the design of goal hierarchies with a high level of expressiveness that can be considered at different levels of abstraction. The most principal element is the Goal model. It shows the system functional and nonfunctional goals that contribute to each other through AND/OR refinements links from most abstract system goal down to software requirements and environment assumptions represented by the leaf goals. Refinement and abstraction paths in a goal model are build once preliminary goals are identified by recursively asking HOW and WHY questions about available goals, respectively. Knowing that preliminary goals may be obtained by analysing the strategic business objectives of the system-as-is by identifying the domainspecific objectives to be preserved across system versions, and by addressing the reported problems and complains about the system-as-is. A system-as-is is a reference model of the current way in which a group of actors deal with a particular situation and how it exists before the machine is built into it [Van Lamsweerde, 2009]. CHAPTER I. LITERATURE REVIEW

Functional Requirements Modeling

A functional requirement describes an expected behavior of the system, upon the occurrence of a specific condition. The SysML/KAOS functional requirements modeling language combines the SysML requirement/elements traceability with the expressiveness of the KAOS requirements modeling language. It allows the representation of the functional requirements of a system and the expectations regarding the environment in the form of hierarchies of goals. This hierarchy is defined using three types of operators AND, OR and MILESTONE. The AND operator is used when the only condition for the achievement of a goal is the achievement of each of its sub-goals. When the necessary and sufficient condition for the achievement of a goal is limited to the achievement of one of its sub-goals, then the operator OR is used. The MILESTONE operator makes it possible to sequence a set of sub-goals whose the satisfaction of the parent goal requires their realisation in order. SysML/KAOS also considers the data refinement that occurs when goals appearing in one level of refinement are re-expressed, within a subsequent level of refinement, due to the refinement of some data elements involved in their specification.

To take into account the complexity of the systems, the SysML/KAOS method considers that the "first" constructed functional goal diagram, or diagram of the highest level, is that of the main system. The breakdown into sub-goals ends when a goal is no longer refined. Then, this goal can be either an elementary requirement which is placed under the responsibility of a system agent or an expectation which is placed under the responsibility of an agent of the system environment.

Non-Functional Requirements Modeling

Non-functional requirements capture the properties or constraints under which the system to be designed must operate, such as performance, quality or safety aspects. [START_REF] Gnaho | Une extension SysML pour l'ingénierie des exigences dirigée par les buts[END_REF], [START_REF] Matoussi | Une premiere approche de tracabilite entre modeles d'exigences non-fonctionnelles et specifications abstraites Event-B[END_REF] and [Gnaho et al., 2013a] propose solutions to define non-functional requirements and their impact on functional requirements

Domain Model Modeling

Modeling domain knowledge is one of the crucial factors to perform high quality requirements elicitation. SysML/KAOS goal model lacks of enough information to precisely describe the structural part of systems. Some research works such as KAOS use object CHAPTER I. LITERATURE REVIEW models to describe this part. [START_REF] Tueno | The SysML/KAOS Domain Modeling Approach[END_REF], Tueno et al., 2017c] propose a metamodel to represent the domain model. In fact, they present a complementary work to the [START_REF] Mammar | On the use of domain and system knowledge modeling in goal-based Event-B specifications[END_REF] works by modeling the domain using ontology. The ontology is defined as an explicit specification of a conceptualization.

SysML/KAOS to Event-B

A major remaining weakness in the development chain is the gap between textual or semi-formal requirements and formal models. This gap becomes larger and most of the approaches stop at requirement phase, so designers are obliged to use another method to develop their systems. Therefore, it is difficult to validate specifications with regard to requirements. SysML/KAOS combines requirements engineering methods with formal methods and defines a mapping rules to create a B specification from goal models.

SysML/KAOS functional goal formalization

The formalization of SysML/KAOS functional goal models is presented in [Matoussi et al., 2011a]. Systematic proof obligations were identified for each goal refinement pattern. We give as an example, the transformation of the MILESTONE refinement pattern.

For an abstract event EvG and concrete events EvG1 and EvG2:

-THE MILESTONE GOAL REFINEMENT PATTERN: a syntactic extension of the

Event-B refinement proof rule is presented in order to provide a way to refine an abstract event by a sequence of new events. For abstract event EvG, it is refined as follows: (EvG1 ; EvG2) Refines EvG. In fact, in addition to the feasibility proof obligation, this refinement pattern formalization requires to discharge these different proof obligations:

• The ordering constraint expresses the "milestone" characteristic between the Event-B events.

G1-PostCond ⇒ G2-Guard (PO1).

CHAPTER I. LITERATURE REVIEW

• The guard strengthening ensures that the concrete guard of the sequence (the guard of the first event in the sequence) implies the abstract guard.

G1-Guard ⇒ G-Guard (PO2).

• The correct refinement ensures that the sequence (the action of the last event in the sequence) transforms the concrete variables in a way which does not contradict the abstract event.

G2-PostCond ⇒ G-PostCond (PO3).

These proof obligations are introduced in the AtelierB [START_REF] Atelierb | [END_REF] tool by extending the ref keyword which represents the Event-B refinement mechanism. This extension is stated as follows:

-MILESTONE refinement of an abstract event G by a sequence of concrete events G1, G2,..., GN is denoted by the following notation:

G1 ref_milestone G ; G2 ref_milestone G;...; GN ref_milestone G.

More details about these proof obligations generation can be found in [Matoussi et al., 2011a] and [ANR, 2014]. This work is carried out within the framework of the FOR-MOSE project [ANR-14-CE28-0009, 2014] funded by the French National Research Agency (ANR).

2.2.2.2

SysML/KAOS non-functional goal formalization [START_REF] Matoussi | Une premiere approche de tracabilite entre modeles d'exigences non-fonctionnelles et specifications abstraites Event-B[END_REF] present a continuity of the work of [START_REF] Gnaho | Une extension SysML pour l'ingénierie des exigences dirigée par les buts[END_REF] to translate non-functional goals and their impacts to Event-B in order to enrich the formal specification created from functional requirements. They create a set of traceability rules to facilitate the management of evolution of these goals with different Event-B elements.

From domain model to Event-B specification

To provide a complete extraction of the structural part of the Event-B specification obtained from SysML/KAOS goal models and the initialisation of state variables, [START_REF] Fotso | Event-B expression and verification of translation rules between SysML/KAOS domain models and B system specifications[END_REF] proposes a set of rules to translate SysML/KAOS domain models (presented in 2.2.1.3) into Event-B specifications. These rules have been defined with Event-B and verified with RODIN [Abrial, 2010].

CHAPTER I. LITERATURE REVIEW

New elements may appear in the Event-B specification obtained from SysML/KAOS models when specifying the body of events and/or by using formal validation and/or verification tools. Moreover, modeling is often done through several backwards and forwards between the Event-B specification and SysML/KAOS models. [Fotso et al., 2018a] defines a set of rules allowing the back propagation, within domain models for every added element in the structural part of the Event-B specification. In fact, they describe these propagation rules and how they are specified in Event-B, proving their consistency using the RODIN tool. The use of formal methods for verification and validation of critical and complex systems is important, but can be extremely tedious without modularisation mechanisms. Several systems break down into sub-systems (enabling the distribution of work between several agents: hardware, software and human). SysML/KAOS goal models allow the capture of assignments of requirements to agents responsible for their achievement. Each agent is associated with a sub-system. [START_REF] Fotso | Formalisation of SysML/KAOS goal assignments with B system component decompositions[END_REF] propose an approach to ensure that a requirement assigned to a sub-system is well achieved by the sub-system. This approach uses formal decomposition mechanisms [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models: Application to Event-B[END_REF] to construct, from the formal specification of a high-level system, the interface of each of its sub-systems. The interface of a sub-system describes the requirements that the high-level system expects from the sub-system. Proof obligations are defined to ensure that the invariants of each subsystem are consistent with that of the high-level system. The approach thus ensures that each sub-system achieves its expected goals with respect to constraints set by the high-level system.

Architecture Modeling

An architecture is a description of elements within a product and the interactions between them. These elements are grouped in a manner which fulfills some tasks that single element can not fulfill individually. It designates also how communication and interaction between elements is achieved.

System architecture is a conceptual model that describes the structure and behavior of multiple components and sub-systems like multiple software applications, network devices, CHAPTER I. LITERATURE REVIEW hardware, and even other machinery of a system. It is Architecture Description Language (ADL) [Clements, 1996] which describes the entire system architecture.

Software architecture refers to the process of creating high level structure of a software system. It is about the complete structure/architecture of the overall system means it converts software characteristics like scalability, security, reusability, extensibility, modularity, maintainability, etc. into structured solutions to meet the business requirement. High level architecture (HLA) [START_REF] Dahmann | The department of defense high level architecture[END_REF]] is a standard software architecture specification that defines how to create a global simulation composed of interacting distributed simulations. It contains major functional elements, interfaces, and design rules, providing a common framework within which specific system architectures can be defined. Therefore, a system is generally understood to be an assemblage of components that integrates various mechanical, electronic, and information technology parts. These systems are classified as complex systems that can address heterogeneity and the interplay of physical and software elements. Several modeling languages have been proposed to reason about heterogeneous properties, and to develop optimized system-level solutions by assessing multidisciplinary design trade-offs. A number of these modeling languages have been standardized, such as Systems Modeling Language (SysML) [START_REF] Omg | OMG systems modeling language, version 1.3[END_REF] which focuses on the "big picture" architectural views, whereas others, such as Architecture Analysis and Design Language (AADL) [Feiler et al., 2006a] addresses the more detailed platform-oriented and physical aspects of such systems.

Architecture Analysis and Design Language AADL

Architecture Analysis & Design Language (AADL) [Feiler et al., 2006a[START_REF] Feiler | The SAE Architecture Analysis & Design Language (AADL) a standard for engineering performance critical systems[END_REF]] is a textual and graphical language used to design and analyze the software and hardware architecture of real-time systems and their performance-critical characteristics.

It These declarations can be instantiated to form the modeling of an architecture.

Components

AADL components are defined in two parts: the interface and the implementations.

An AADL component has an interface (component type) to which correspond zero, one or more implementations. The interface presents a specification of the component. This specification is used by other system components to interact with the specified component.

The type of an AADL component consists of three parts: interface elements, flows and properties. The implementation describes the internal structure of the component. Generally, a component is described as a set of sub-components. These sub-components are instances of interfaces or implementations of other components. An implementation also contains the connections that link the sub-components.

Component categories. AADL defines three components categories: (1) Hardware components describe elements of the execution platform (processors, memories, buses, etc.). (2) Software components describe the software entities that form an application (processes, sub-program, data, etc.). Finally, [START_REF]our QVT model-to-model transformation is composed of 39 transformation[END_REF] systems that allow to regroup different components into logical entities to structure the architecture.

Interfaces and connections. An interface of a component provides "interface elements"

(communication ports, parameters, etc.). Components communicate with each other by connecting their respective interface elements. An interface element models a feature that is visible to other components. In AADL, these elements are named entities allowing a component to exchange data and signals with the outside.

Annexes and properties. Annexes are another way to associate information with elements of a description. They allow to incorporate elements written in a language other than AADL into the model of an application. The use of annexes allows to extend the standard AADL syntax in order to specify the behavior of components.

CHAPTER I. LITERATURE REVIEW

AADL introduces the notion of properties. Properties are characteristics associated with different entities (components, connections, interface elements, etc.). These are attributes which allow to specify characteristics or constraints applying to the architecture elements: frequency of a processor, worst execution time of a process, bandwidth of a bus... A set of standard properties is defined in the language; but it is possible to define properties specific to a given application.

AADL tools

OSATE the Open Source AADL Tool Environment [START_REF] Feiler | Plug-in Development for the Open Source AADL Tool Environment[END_REF] was developed by the Software Engineering Institute on the Eclipse platform and Eclipse Modeling Framework (EMF) [START_REF] Budinsky | Eclipse modeling framework: a developer's guide[END_REF]. It supports the full language standard, text and graphical editing, semantic checking, translation into the standardized XML for AADL. The graphical editing capability is provided through TOPCASED [Gaufillet, 2005].

It is available at http://www.aadl.info. Also, the UML profile allows UML tool vendors to provide support for the AADL. Current commercial design tools can also be modified and extended to support the AADL. Ellidiss (www.ellidiss.com) has extended their HOOD development environment to support modeling in AADL as well as HOOD and UML, and to import/export AADL models. A number of toolsets based on AADL are becoming available. Ocarina [Vergnaud, 2005] is a tool suite to manipulate AADL models and generate distributed applications by automatically producing Object Request Broker (ORB) based middleware based on AADL models of the distributed application. The Furness toolset [Sokolsky, 2005] uses AADL as a front-end for the Algebra of Communicating Shared Resources (ACSR) [START_REF] Clarke | VERSA: A tool for the specification and analysis of resource-bound real-time systems[END_REF] for formal analysis of concurrent resource utilization and scheduling. Cheddar [START_REF] Singhoff | Scheduling and memory requirements analysis with AADL[END_REF] is a real time scheduling tool designed for checking task temporal constraints of real time applications.

AADL usage

AADL allows to describe architectures with a very concrete approach. The language offers a set of component categories of three main types: software, hardware and systems.

AADL focuses on the architectural aspects: it allows the description of the components and their connections, but does not allow to represent their behavioral implementation, nor the semantics of the manipulated data. These aspects can be added using the annexe mechanism, or by associating external descriptions using properties. In the same way, the CHAPTER I. LITERATURE REVIEW various constraints applying to the system or the deployment of the applications on the hardware can be expressed by means of properties. which define a complementary cross-cutting modeling constructs, as well as a predefined model libraries that may be used by modelers to denote their real-time and embedded applications [START_REF] Kordon | Embedded systems: analysis and modeling with SysML, UML and AADL[END_REF], Mallet, 2015].

-MARTE Foundations. The foundation package is divided into five chapters:

• CoreElements define configurations and modes, which are key parameters for analysis.

• NonFunctionalProperties sub-profile allows to describe the quantitative as well as the qualitative aspects of properties.

• Time sub-profile defines the concept of time, which is of top priority for the embedded real-time systems.

• Generic Resource Modeling sub-profile provides annotations to satisfies platform modeling.

• Allocation gives a compatible way to make this deployment.

-MARTE design model. The design model package has four chapters:

• High level application modeling provides a set of extensions to the UML that allow to annotate the elements of a model

• Generic component modeling reviews the composite structures of UML and extends one of its sub-models in order to better address the domain-specific requirements in terms of component-based modeling.

• Software Resource Modeling (SRM), and Hardware Resource Modeling (HRM):

these two sub-profiles specialize the Generic Resource Modeling sub-profile in order to provide a basis for the modeling of software and hardware platforms.

-MARTE analysis model. The analysis model package also has a sub-profile that defines generic elements to perform model-driven analysis on real-time and embedded systems. This generic sub-profile is specialized to address schedulability analysis and performance analysis.

-MARTE annexes. The MARTE annexes integrate the set of extensions defined in the norm, the set of the libraries and the models. SysML and AADL are two standardized modeling languages specified for designing system architectures, but none of them provide the full range required to deal effectively with a specific kind of system architecture. [START_REF] Behjati | An AADL-based SysML profile for architecture level systems engineering: approach, metamodels, and experiments[END_REF] propose an approach to combine these two languages, since they are both widely used in industry with adequate tool support. In fact, as shown in Figure 1. The applicability and usefulness of ExSAM were investigated through two case studies.

One benchmark case study showed that ExSAM can fully cover all AADL aspects and one large-scale industrial case study, showed that ExSAM was sufficient to satisfy the modeling needs of industrial partners, while AADL and SysML alone were not.

CHAPTER I. LITERATURE REVIEW

Combining SysML with MARTE

The lack of a common design language between different disciplines hampers the reasoning about system properties. Designers of one part of the system may make wrong assumptions concerning some other parts that result of the increasing development costs due to long feedback cycles. [START_REF] Espinoza | Challenges in combining SysML and MARTE for model-based design of embedded systems[END_REF] investigate the possibility of combining these two languages, SysML and MARTE, since they are both widely used in industry.

SysML [START_REF] Omg | OMG systems modeling language, version 1.3[END_REF] provides constructs to specify traceable requirements, structure and behavior of system blocks, as well as a parametric formalism to specify equation-based analytical models. MARTE (modeling and Analysis Real-Time and Embedded systems) [START_REF] Omg | OMG, UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded systems[END_REF] deals with time-and resource-constrained aspects, and includes a detailed taxonomy of hardware and software patterns along with their non-functional attributes to enable state of the art quantitative analyses. The purpose of [START_REF] Espinoza | Challenges in combining SysML and MARTE for model-based design of embedded systems[END_REF] paper is to identify some scenarios in which the usage of the combination of the two profiles is of relevant added value in the embedded systems domain. SysML and MARTE consider characteristics of the embedded systems domain at different abstraction levels, architectural styles, and particularly for specific purposes or application areas.

Modeling capabilities of both SysML and MARTE are rich enough for a wide range of design approaches. In particular, SysML does not define any specific viewpoint, but it provides a means to specify how views are built, and to relate any user-specific view to a given viewpoint. Although MARTE does not provide any concrete model element to define viewpoints, it has an implicit conception of viewpoints rooted in its design rationale. Indeed, some of the MARTE constructs have been designed to define domain-specific viewpoints.

Therefore, SysML and MARTE can be used in a complementary way. While SysML provides means to create viewpoints in a general way, MARTE provides particular viewpoints. As an example for Requirements Management/Traceability, SysML requirements diagrams explicitly show the various kinds of relationships between different requirements.

On the other hand, MARTE offers key features to specify non-functional requirements in general and timing requirements in particular.

Integration strategies for combining the SysML and MARTE profiles were presented in [START_REF] Espinoza | Challenges in combining SysML and MARTE for model-based design of embedded systems[END_REF] work. Both provide essential ingredients to model embedded systems. The intent of this paper is to offer a better understanding of their conceptual domains, and to help in using both profiles in a single model by avoiding semantic and syntactical mismatches.

CHAPTER I. LITERATURE REVIEW

Event-B Formal Method

In software engineering, formal methods [Wing, 1990, Rodhe and[START_REF] Rodhe | [END_REF] are techniques that allow rigorous mathematical logic reasoning over computer programs or electronic devices to demonstrate their validity with respect to a certain specification.

Formal methods allow a complete check of the entire system states and the properties that can be proved in the system are valid for all possible inputs. When formal methods can not be used throughout the development process (due to system complexity, lack of tools or other reasons), they can still be used on parts of the system.

Event-B is a formal method introduced by Jean-Raymond Abrial [Abrial, 2010]

Machine

A machine is identified by a name and contains various clauses organized as follows:

-REFINES: a machine could be refined by another machine, this refinement is de-CHAPTER I. LITERATURE REVIEW fined in the clause REFINES and it is used to gradually introduce the details and complexity into a model.

-SEES: a machine can see one or several contexts thus by adding the name of the context in the clause SEES.

-VARIABLES: clause VARIABLES represents the state variable of the model. The changing of the variable values reflects the state in which the system is located.

-INVARIANTS: clause INVARIANTS lists the various predicates, which the variables must obey, at least, the typing of variables declared in the clause VARIABLES.

-THEOREMS: clause THEOREMS lists the various theorems, which have to be proved within the machine.

-VARIANT: The VARIANT clause appears in a machine containing some convergent events.

-EVENTS: clause EVENTS regroups events that specify the evolution of the state variables defined in the specification of the system. All variables should be initialized in the machine, a particular event called INITIALISATION is defined for this purpose.

Context

A context has an identifier, which must be distinct from all other component (machine or context) names within the same model. It contains various clauses organized as follows:

-EXTENDS: a context can extend optionally one or several other contexts by adding its name in the clause EXTENDS. This means that the present context can use all sets and constants of the extended contexts and of their extended contexts.

-SETS: clause SETS describes a set of abstract and enumerated types, which are the basic types of the specification.

-CONSTANTS: clause CONSTANTS represents the various constants introduced in the context.

-AXIOMS: clause AXIOMS contains all the properties of the constants and their types.

-THEOREMS: lists the various theorems, which have to be proved within the context.

CHAPTER I. LITERATURE REVIEW

A context could be seen by a machine in order to use its sets and constants to type the machine variables.

Event-B is based on two main mechanisms to master the complexity of a system which are refinement and model decomposition.

Event-B refinement

Event-B refinement is a process that allows to gradually introduce the different parts that constitute the system starting from an abstract model to a more concrete one. At each refinement level, system details are gradually added into the concrete model which must preserve the functionality and properties of the more abstract models. A machine refinement consists in adding new variables and/or replacing existing variables with new ones. A link between the abstract machine variables and the refinement machine variables is explicitly defined by gluing invariants. Events can be refined and new ones can be introduced. The refinement of an event has to verify that the guard of the refined event should be stronger than the guard of the abstract one and the effect of the refined action should be stronger than the effect of the abstract one. A context can also be extended with other contexts by adding new modeling elements (sets, constants and axioms).

The Event-B method is a state-based specification method. Event-B refinement ensures that specified state variables of the concrete specification are consistent with specified state variables in the abstract specification. In fact, event based specification refinement is expressed in a sequence of events accepted by the specification, while state-based specifications are expressed in terms of the effect of events on state variables. Here, two properties are verified : consistency and accessibility. The refinement consistency is verified if a sequence of events is accepted by the concrete specification and has an effect on state variables, then a corresponding sequence of events is accepted by the abstract specification and the effect of this sequence on variables states matches. The refinement accessibility consists of if an abstract event is allowed in a state, a corresponding concrete event must be allowed in a corresponding state.

Event-B model decomposition

Event-B model decomposition is a powerful mechanism to scale the complexity of the design of large and complex systems. An Event-B model can be decomposed into several simple sub-components which can be refined separately and more comfortably than CHAPTER I. LITERATURE REVIEW the whole. Many approaches allow to decompose an Event-B model, particularly, the shared-variable decomposition [Abrial, 2009] and the shared-event decomposition [Butler, 2009b]. Shared-variable decomposition is suitable for shared memory parallel systems, whereas shared-event decomposition is more suitable for distributed system development.

The shared-variable decomposition approach consists in distributing the events of a model over the selected sub-components. It allows the introduction of shared variables and external events. These ensure that the behavior of shared variables is preserved in all subcomponents. After that, further refinements then concentrate on how each sub-component processes shared state variables. The shared-event decomposition is a set of events that are synchronized and shared by sub-components. This approach defines a partial version of a global event in each sub-machine, when the variables of a global event are distributed between separate sub-machines. This is to simulate the action of the global event on the considered variables. The recomposition of the refined sub-components gives rise to a component which should refine the initial abstract component.

Event-B Proof obligation

The proof of the correctness of the Event-B models is one of the most important aspects of Event-B method. To ensure this correctness, a set of proof obligations (denoted PO) must be discharged. These proof obligations concern different aspects of the model such as the verification of the invariants properties of an Event-B machine or the proof of the correctness of a refinement. There is a different types of proof obligations.

-Invariant preservation: An invariant is a property that the system must always preserve while its evolution. For this, each triggering of any event must always verify this property preservation.

-Feasibility: Each event in an Event-B machine must always be feasible. Feasibility requires that a new value actually exists for each event having a substitution. This means, for a variable value before the triggering of an event, it should satisfy the guard of the event and satisfies the system invariant.

-Theorems: Recall that theorems in Event-B are formulas that can be useful for rewriting the invariant in a specific form or proving lemmas. The proof obligation consists in proving that these formulas are deduced from the invariant of the machine as well as the set of predicates in the AXIOMS and THEOREMS clauses of the context.

CHAPTER I. LITERATURE REVIEW

-Abstract event refinement: This proof obligation guarantees that the abstract event is correctly refined by the concrete event.

-Guard strengthening: The purpose of this proof obligation is to make sure that the concrete guards in a concrete event are stronger than the abstract ones in the abstract event. This ensures that when a concrete event is enabled, so is the corresponding abstract one.

-Well-definedness: This proof obligation rule ensures that a potentially ill-defined axiom, theorem, invariant, guard, action, variant, or witness is indeed well defined.

More details about proof obligations are found in [Abrial, 2010].

Tools Environments for Event-B

The Event-B modeling language is supported by the AtelierB [START_REF] Atelierb | [END_REF] environment, by the Rodin platform [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF] and by the ProB model checker and animator [START_REF] Prob | The ProB Animator and Model Checker[END_REF]. These environments provide facilities for editing machines, refinements, contexts and projects, for generating proof obligations corresponding to a given property, for proving proof obligations in an automatic or/and interactive process and for animating models. The internal prover is shared by AtelierB and Rodin and there are hints generated by the prover interface for helping the interactive proofs. However, the refinement process of machines should be progressive when adding new elements to a given current model and the goal is to distribute the complexity of proofs through the proofbased refinement. These tools are based on logical and semantical concepts of Event-B models (machines, contexts, refinement).

State of the art

This section gives an overview of state-of-the-art contributions for designing system models and their alignment with stakeholders needs. Particularly, we are interested in (i) design models and their formal specification, (ii) requirements and architecture alignment.

The first part presents works about architecture modeling and their translation into formal specification. These works present approaches using UML and its variants (SysML, MARTE, ...) which are aligned with our proposed methodology and the translation of graphical models into formal specifications, precisely Event-B, which is recommended for CHAPTER I. LITERATURE REVIEW critical systems. The second part presents research works dealing with alignment and traceability issue between design models and requirements. These works define relationships and traces established between UML, SysML, MARTE, ... design models and requirements presented as models or textual specifications.

3.1 Design Model and Formal Specification

From Design Model to Formal Specification

Formal methods are specifically used for complex systems and more precisely for safety critical systems because they need to be robust and reliable. Formalizing and abstracting functionalities through specifications, in a "mathematical" way, make the verification process easier to be applied in order to rigorously check the correctness of these systems. The use of formal methods is thus recommended and a recent study of technological efforts concerning the use of formal methods in railways performed in 2017 [START_REF] Astrail | ASTRAIL European project D4.1 -Report on Analysis and on Ranking of Formal Methods[END_REF] claims that "this analysis has shown a large variety of formal tools used, with a dominance of the tools associated to the B family". This is reaffirmed in [Bonvoisin, 2016]. However, using formal methods leads to complex models which may be difficult to read, understand and modify.

Graphical languages are used for visualizing, specifying, constructing and documenting software systems in a simpler way. [ASTRAIL, 2017] also concludes by claiming: "This analysis has shown a dominance of the UML modeling language for high-level representation of system models ...". However, the semantics of UML are given in natural language, which does not allow formal and rigorous reasoning necessary for critical systems for which safety and security are major concerns. So the complementarity between these two techniques and how to link them one to the other are the objective of several research works, methods and tools.

UML-B

UML provides graphical models that facilitate communication of ideas and system process understanding but lacks of formal semantics. The B method [START_REF] Abrial | The B-book: assigning programs to meanings[END_REF] allows rigorous formal verification and animation but requires significant effort in training to overcome the mathematical barrier that many practitioners perceive. To cope with these problems, [START_REF] Snook | UML-B: Formal modeling and design aided by UML[END_REF] propose a derivation of the B notations as

CHAPTER I. LITERATURE REVIEW
an action and constraint language for UML via the UML profiles mechanism and define the semantics of UML entities via a translation into B. UML-B profile provides specializations of UML entities to support model refinement. The result is a formally precise variant of UML that can be used for refinement based object-oriented behavioral modeling. The currently developed version of this profile uses the Event-B method and is integrated into

Rodin [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF].

This approach is based on UML class and state-machine diagrams. Class diagrams allow to specify structures of the system. Associations are translated into relationships between the sets and class methods are translated into events which allows to manage these sets.

State-machine diagrams define the system components behaviors. In Event-B, statemachine transitions are translated into events. state-machine states can be translated into constants, and a state variable which takes the value of the current state.

The integration of the tool supporting this approach in Rodin includes the UML drawing tools and a translator to generate Event-B models. This tool allows to automatically generate the corresponding Event-B models, every time a drawing is saved. The Event-B verification tools (syntax checker and prover) then run automatically.

The B4MSecure Platform

The B4MSecure platform [START_REF] Idani | B for modeling secure information systems[END_REF]] is a model-based approach which allows a graphical modeling and formal reasoning on both functional and security models of a system. This approach is based on UML for the functional description and SecureUML [START_REF] Lodderstedt | SecureUML: A UML-based modeling language for model-driven security[END_REF] for the access control rules. It generates B formal specification which allows rigorous verification of the system functional and security models. These models are firstly validated separately, and then integrated in order to verify their interactions and complementarity. The B4MSecure platform allows, on the one hand, the separation of concerns, and on the other hand, the identification of links between functional and security models. In fact, it allows a graphical modeling using UML class diagram customized with access control policy concepts introduced by a UML profile for RBAC (Role Based Access Control) inspired from SecureUML. Also, it assures the translation of both models into B specifications in order to formally verify them.

This platform produces one B model, from the functional UML class diagram, gathering its structural properties and all basic operations (constructors, destructors, getters and setters) and a second B model is produced from the UML class diagram customization with CHAPTER I. LITERATURE REVIEW RBAC concepts to represent the security applied on functional models. Also, additional invariants and user-defined operations can be added manually to take benefit of a proof tool like AtelierB in order to validate the consistency of the functional specification. The platform provides an annotation mechanism which allows the integration of B invariants and specification of operations in the graphical model. This functionality is useful to avoid inconsistent evolutions of the graphical and formal methods.

3.1.1.3

The CHESS toolset [START_REF] Cicchetti | CHESS: a model-driven engineering tool environment for aiding the development of complex industrial systems[END_REF] and [START_REF] Mazzini | CHESS: an Open Source Methodology and Toolset for the Development of Critical Systems[END_REF] present the CHESS toolset, a tooled MDE approach for cross-domain modeling of industrial complex systems. These works are based on an extension of UML, SysML and MARTE modeling languages which allow the specification of well-defined design views, each of them addresses a particular aspect of the problem. The CHESS toolset allows code generation toward multiple target languages and property description, verification, preservation and dependability using a dedicated UML profile. This methodology supports the separation of concerns principle, strictly separating the functional aspects of a component from the non-functional ones. In fact, this approach relies on SysML for the modeling of requirements and for the system level design, on UML for modeling software aspects of the system, and on MARTE for describing real-time aspects, staying as close as possible to the standard modeling languages. In particular a profile has been defined on top of UML to model failures definition and their intra/inter-components propagation, while SysML has been extended to offer support for contract-based design. MARTE has been used and extended to be able to model realtime properties such as schedulability, end-to-end response time and different scheduling algorithms for multicore deployments.

The CHESS methodology enables early verification, as possible inconsistencies and integration issues will be raised at the earliest stages of the process. It also supports systemsoftware co-engineering as a seamless process, by keeping traceability between system level entities and requirements on one side and the corresponding software and hardware level entities on the other side.

3.1.1.4 Coupling of formal methods for industrial systems specification [Fayolle, 2017] approach proposes to couple a formal graphical notation called Algebraic State Transition Diagrams (ASTD) with an Event-B specification in order to provide a CHAPTER I. LITERATURE REVIEW better representation of the software behavior. The behavior is captured by ASTDs, based on automata and process algebra operators, while the data model is described by means of an Event-B specification. A set of properties can be checked. For instance: if a transition can be executed according to the ASTD specification, then the corresponding event in the Event-B specification can be executed, or an Event-B machine corresponding to an ASTD must be able to execute all the sequences of events corresponding to the sequences of transitions of the ASTD.

3.1.1.5 SysML to formal specification [Mentré, 2016] present an approach to transform SysML diagrams into a B specification. This approach proposes the use a graphical design of the architecture of a B software using SysML model and automatically transforms this model into a B specification. This work focuses on the architecture of the system and its contained software. Therefore, it considers only Block Description Diagram (BDD) and Internal Block Diagram (IBD). This approach prototype was built upon the Eclipse environment, with Papyrus [START_REF] Papyrus | Eclipse Papyrus Modeling environment[END_REF] SysML editor and Acceleo [START_REF] Musset | Acceleo user guide[END_REF]] model transformation language.

[[START_REF] Salunkhe | Automatic Transformation of SysML Model to Event-B Model for Railway CCS Application[END_REF] propose a transformation using Triple Graph Grammars (TGGs) [Schürr, 1994] from SysML to Event-B. The aim is to identify the subset of the Event-B language and SysML language, which is necessary and appropriate for the transformation, then search for the semantic similarities between both constructs and finally define a transformation from SysML to Event-B using MDE techniques. This work is an advancement of the MBSE approach explained in [START_REF] Berglehner | An approach to improve SysML railway specification using UML-B and EVENT-B. Poster presented at RSSRail[END_REF]. In [START_REF] Berglehner | An approach to improve SysML railway specification using UML-B and EVENT-B. Poster presented at RSSRail[END_REF],

the SysML state-machines are transformed to equivalent UML-B state-machines using UML-B plug-in [START_REF] Snook | UML-B: Formal modeling and design aided by UML[END_REF]. Later, UML-B state-machines are used to generate Event-B code, and then the safety requirements are verified. The overall approach is time-consuming and increases the overall life cycle cost. From these challenges the work of [START_REF] Salunkhe | Automatic Transformation of SysML Model to Event-B Model for Railway CCS Application[END_REF] is motivated. In fact, it proposes a methodology and tool-chain to automate the transformation of SysML specification models into Event-B models.

Also, the traceability behind this transformation should be maintained between informal requirements and the modeled system, specifically for the safety properties. The main objective of this approach is to verify SysML models against such safety requirements using formal methods with some tool support and reduce the efforts involved in the manual transformation of a SysML semi-formal model to an Event-B model. The implemented prototype is limited to the simple and most relevant concepts of SysML state-machines.

The transformation rules are defined using eMoflon-IBeX [START_REF] Weidmann | Incremental (unidirectional) model transformation with emoflon:: Ibex[END_REF].

The work of [START_REF] Poorhadi | Analysing the Impact of Security Attacks on Safety Using SysML and Event-B[END_REF] proposes an integrated approach to combine SysML graphical modeling with Event-B for formal specification and verification. The aim of this approach is to reason about safety and security interactions at system modeling stage.

It also allows to visualize and formalize the analysis of the impact of security attacks on system safety. The SysML subset used in this work contains block definition diagrams, state-machine diagrams and sequence diagrams. The translation of these SysML elements into Event-B aims at achieving two goals. Firstly, it checks the correctness of the SysML diagrams and verify their consistency. Secondly, it analyzes the impact of cyber-attacks on system safety. Safety properties are defined as invariants in the final model. Proofs should be discharged without introducing any further assumptions.

Discussion

The UML-B and B4MSecure approaches propose a derivation of formal specification from graphical modeling. These approaches are based on UML class and state-machine diagrams and use UML profiles mechanisms to conduct the transformation into B notations.

However, these approaches reason about graphical design formally, but they require a basic designer knowledge about the B notations to use correctly the UML-B profile and to add safety invariants.

The CHESS toolset allows code generation toward multiple target languages and property description, verification, preservation and dependability through a dedicated UML profile. However, this approach do not allow system/sub-systems model decomposition and refinement mechanisms which are particularly well suited to HLA modeling. [Fayolle, 2017] proposes to link ASTDs with Event-B specifications in order to provide a better representation of system behavior. However, the use of SysML rather than other graphical modeling language is advantageous since SysML offers a set of concepts more relevant to model systems. Moreover SysML is recommended by the AFT project partners.

The SysML to formal specification approaches presented in 3.1.1.5 provide a model transformation into formal specifications (B and Event-B). Their aim is to reason about safety and security interactions at system modeling stage. However these approaches lack of system/sub-systems decomposition and refinement mechanisms which are particularly recommended to HLA modeling. Furthermore they do not allow to demonstrate require-CHAPTER I. LITERATURE REVIEW ments/HLA alignments and how HLA elements participate in satisfying stakeholders needs.

Refinement of design models

Refinement of design models can be used in a top down way in order to reduce system complexity by gradually enriching abstract models with more details, while ensuring that the detailed description preserves the original abstraction. Models refinement can also be used in a bottom up way, to reverse engineer existing systems in order to enrich the abstractions encoded in the concrete models.

Event-B refinement is used to relate system models at different abstraction levels.

These abstraction-refinement concepts can also be applied in UML models [START_REF] Said | Language and tool support for class and state machine refinement in UML-B[END_REF]. The notion of refined classes and inherited attributes in UML-B corresponds to the variables refinement in Event-B. In UML-B refinement, a machine that refines a more abstract machine may contain refined classes where each refined class refines a class of its abstract machine. A refined class can inherit attributes of its abstract class and can drop some of the attributes of its abstract class. A refined class can introduce new attributes.

State-machines are refined by building abstract states with nested sub-states. In UML-B refinement, a machine can contain refined state-machines and refined states. The structure of a refined state-machine is an elaboration of the structure of its abstraction in two possible ways: each transition is replaced by one or more transitions and an abstract state can be refined by a nested state-machine. These nested state-machines are modeled in state-machine diagrams different from their parent state-machine diagrams. In a nested state-machine, a transition with an initial source state contains at most one incoming transition to the super-state and a transition with a final target state contains at most one outgoing transition from the super-state. [Fayolle, 2017] uses two refinement mechanisms. The first one is to refine an ASTD specification and the other one is to refine data specification in Event-B. ASTD refinement [START_REF] Frappier | Refinement patterns for ASTDs[END_REF] is defined as follows: a concrete ASTD must preserve the traces accepted by the refined ASTD. It allows the addition and removal of states and transitions.

The Event-B refinement in this approach is the classical one.

Papers [START_REF] Lima | An integrated semantics for reasoning about SysML design models using refinement[END_REF] and [START_REF] Miyazawa | Formal Refinement in SysML[END_REF] propose a definition of guidelines of usage for construction of meaningful SysML models and a semantics for SysML models. This work focuses on a set of SysML diagrams which are block definition, internal block, state machine, activity, and sequence diagrams and refinement-based

CHAPTER I. LITERATURE REVIEW
analysis and verification is supported by providing a semantics for these SysML elements.

Using these semantics, notions of refinement of complete SysML models are defined and can be used to support refinement laws that support the transformation of diagrammatic models.

Discussion Event-B refinement is an important mechanism to gradually introduce the different parts that constitute a system starting from an abstract model to a more concrete one. The refinement mechanisms allow to enrich models with more details but it does not allow a decomposition between different models describing systems components. That is why, a decomposition mechanism between a system and its corresponding sub-systems is required to simulate the behavior of each sub-system independently of its parent system and to manage the interplay of the sub-systems behaviors which satisfy the parent system tasks.

Event-B Model Decomposition

Model decomposition is a powerful tool to scale the design of large and complex systems.

The main idea of the decomposition is to cut a model M into sub-models M1, ..., Mn, which can be refined separately and more comfortably than the whole. Many approaches have been proposed to deal with the Event-B decomposition issue: generic instantiation [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models: Application to Event-B[END_REF], the shared variable decomposition [Abrial, 2009], the shared event decomposition [Butler, 2009a], the modularization [START_REF] Hoang | A survey on Event-B decomposition[END_REF], etc.

Shared Variables Decomposition

Abrial et al. [Abrial andHallerstede, 2007, Abrial, 2009] present decomposition as a part of the state information (variables) that is shared between sub-components. Further refinements then concentrate on how each component processes shared state information.

This approach proposes to handle the variables shared between several events, using external variables and events.

Shared

Events Decomposition [Butler, 2009a] present a decomposition approach, using shared events. A shared-event decomposition is a set of events that are synchronised and shared by sub-components CHAPTER I. LITERATURE REVIEW SysML/KAOS goal models allow the capture of assignments of requirements to agents responsible for their achievement. Each agent is associated with a sub-system. [START_REF] Fotso | Formalisation of SysML/KAOS goal assignments with B system component decompositions[END_REF] propose the use of a formal decomposition strategy shown in Figure 1.8, applied at the most concrete level of the Event-B specification of the high-level system (parent interface defines events that correspond to the goals that the system assigns to the subsystems. It also defines variables involved in these events and their constraints. Invariant predicates that define properties involved in sub-components also should be assigned to the corresponding sub-component. To ensure that the sub-system specification conforms to the interface specification, the most abstract level of the formal specification of a sub-system is defined as a refinement of the sub-system interface. For an interface corresponding to the agent, internal events of the interface are the correspondences goals assigned to the agent.

The variables of the interface are the ones involved in its internal events. If an interface variable appears in another interface, then it is an external variable. Otherwise, it is an internal variable. External events are defined in the interface, to emulate how external variables are handled in other interfaces. Each external event is an abstraction of an internal event defined in another interface. In this approach, [START_REF] Fotso | Formalisation of SysML/KAOS goal assignments with B system component decompositions[END_REF] advocate also a set of conditions that are necessary and sufficient to decompose the invariants involving variables assigned to different interfaces.

This approach allows to avoid the difficulties lying in the definition of external events CHAPTER I. LITERATURE REVIEW such as redundancy of the same behavior associated with an external variable in each interface where the external variable appears and the partitioning of guards and actions of an event to consider only the variables of the interface where the external event must be defined. This is achieved by defining a link between sub-systems interfaces and the most concrete component of the high-level system specification.

Discussion

These approaches allow to reduce the complexity of the final level of modeling critical systems, which can lead to complex and voluminous models, using model decomposition techniques. Although, the real difficulty lies in the determination of the refinement level from which to introduce the decomposition. Regarding the shared event approach, it may be difficult, once the distribution of variables has been done, to separate the guards and actions of events in order to construct the partial events (a variable cannot appear in two different sub-machines). Also, not all actions are accepted to be decomposed and variables partitioning is not always possible. Regarding invariants, the user selects which invariant predicate should be assigned to which sub-component. However, for the shared variable decomposition, shared variables and external events must be present in the resulting subcomponents and cannot be refined when refining these sub-components. Adding to that, these approaches are about only formal specifications and their decomposition with no easy-way to give a simpler presentation for no formal specifications stakeholders such as system graphical modeling and decomposition.

The approach of [START_REF] Fotso | Formalisation of SysML/KAOS goal assignments with B system component decompositions[END_REF] focuses on ensuring that a requirement assigned to a sub-system is well achieved by this sub-system. The approach uses a formal model decomposition strategy and proof obligations to guarantee that sub-system goals are consistent and meet system requirements expressed in SysML/KAOS models that are translated into Event-B specifications. Although, this approach provides formal specifications and graphical model decomposition but it is limited only to RE step and does not provide a complete view about the software design process and more precisely about its architecture modeling.

Requirements and Architecture Alignment

Requirements traceability is defined as the ability to follow the life of a requirement in both backward and forward directions. A RE process should be defined, which allows CHAPTER I. LITERATURE REVIEW to identify, control and monitor requirements and its changes in each project step. This requirements tracing is based on relationships between requirements themselves or between requirements and design artifacts. Several research works have proposed methodologies to build these kinds of relationships.

SysML relationships between requirements and SysML elements

SysML [START_REF] Omg | OMG systems modeling language, version 1.3[END_REF] specifies a set of requirements relationships which allow to relate requirements to other requirements or to other design model elements.

-«Copy» relationship is a dependency between a supplier requirement and a client requirement that specifies that the text of the client requirement is a read-only copy of the text of the supplier requirement.

-«DeriveReqt» relationship is a dependency between two requirements in which a client requirement can be derived from the supplier requirement.

-«Satisfy» relationship is a dependency between a requirement and a model element that fulfills the requirement.

-«Refine» relationship can be used to describe how a model element or set of elements can be used to further refine a requirement. For example, a use case or activity diagram may be used to refine a text-based functional requirement.

-«Verify» relationship. A Verify relationship is a dependency between a requirement and a test case or other model element that can determine whether a system fulfills the requirement.

The MeMVaTEx methodology: from requirements to models in automotive application design

Authors in [START_REF] Albinet | The MeMVa-TEx methodology: from requirements to models in automotive application design[END_REF] are used with the «copy» dependency relationship which is related to requirements that appear in a level and that are unchanged when considering the next EAST-ADL2 level. To relate requirements to other design elements, the «satisfy» dependency relationship is used between a requirement and a model element that fulfills this requirement. The «verify» relationship between a requirement and a test case that can determine whether a system fulfils the requirement.

KAOS: Connecting the goal model with other system views

The core of a KAOS goal model consists of an annotated refinement graph where potential conflicts may be indicated [Van Lamsweerde, 2009]. In addition to refinement and conflict links, the goal model shows interface links with other sub-models of the system model.

-The concern link presents an interface between the goal model and the KAOS object model. A goal concerns a conceptual object if its specification refers to this object.

However, a conceptual item referenced in a goal/property specification has been determined to be an object. This object should be an entity, an association, an agent, or an event.

-The responsibility link presents an interface between the goal model and the KAOS responsibility model. It relies on agent capabilities which are defined in terms of ability to monitor or control object attributes and associations defined in the object model. A goal assigned to some agent must be realizable by this agent in view of its CHAPTER I. LITERATURE REVIEW capabilities.

-Operationalization link refers to the process of mapping leaf goals, under responsibility of single agents, to operations ensuring them. Each such operation is performed by the responsible agent under restricted conditions for satisfaction of its underlying goals.

-coverage link relies on making a goal underline a positive scenario. A specific instance of agent behaviors is captured through scenarios and general class behaviors are captured through state machines. A sequence diagram illustrating typical interaction sequences among agent instances is in general more easily elaborated by focusing on pairwise interactions one agent pair after the other. When the goal underlying the scenario is an achieve goal and the scenario is sequentially composed of cohesive parts, the end of each part is considered as a milestone for reaching the goal target.

Generation and validation of traces between requirements and architec-

ture based on formal trace semantics [START_REF] Goknil | Generation and validation of traces between requirements and architecture based on formal trace semantics[END_REF] present an approach for automatic trace generation and validation between requirements and architecture. Requirements relations and architecture verification techniques are used. A trace meta-model is defined with commonly used trace types.

The semantics of traces and requirements relations are used for generating and validating traces with a tool support. The tool provides a generation and validation of traces by using requirements relations and/or verification of architecture and generation and validation of requirements relations by using traces. The tool is based on model transformation in ATL and term-rewriting logic in Maude [START_REF] Clavel | The maude 2.0 system[END_REF].

The aim of this approach is to improve the literature observed practices by providing a degree of automation that allows faster trace generation and improves the precision of traces by validating them. Two types of traces between requirements and architecture which are «satisfies» and «allocatedTo».

- -«allocatedTo» traces are usually assigned manually by the software architect. They express the expectation of the software architect that a certain set of architectural elements is responsible for fulfilling a given requirement. Since the «allocatedTo» traces are manually assigned, they may be invalid and/or incomplete.

CHAPTER I. LITERATURE REVIEW

The basic mechanisms of automatic generation of satisfies traces, trace validation, and inference based on requirements relations can be combined in various scenarios that the software architect can follow.

1. Generating traces by using verification of architecture.

2. Validating traces by using verification of architecture.

3. Generating/validating traces by using requirements relations.

4. Generating/Validating requirements relations by using traces between requirement and architecture.

To resume, this approach improves the process of collecting traceability information.

First, traces can be generated automatically by checking if a requirement is satisfied by the architecture. This makes the process of establishing traces faster and less error prone compared to manually assigning traces. Second, traces are validated by using verification techniques and constraints ensuring that requirements relations are reflected in the software architecture. This eliminates false positive traces and helps in identifying missed traces. As an additional result, the requirements model may be improved by detecting invalid requirements relations and discovering new relations. The process is generally semi-automatic and iterative since the software architect has to decide on the outcome of the supporting tools.

Traceability Between Restricted Natural Language Requirements and AADL Models

[[START_REF] Wang | An approach to generate the traceability between restricted natural language requirements and AADL models[END_REF] propose an approach to bridge the gap between natural language requirements (NLRs) and AADL models. First, this approach proposes a requirement modeling method based on the restricted natural language, which is named as RM-RNL.

Discussion

The proposed approaches provide solutions to assure requirements traceability vis-a-vis design model elements. However, not all of them can allow the formal verification of the requirements, the design and the traceability links. In fact, SysML, [START_REF] Albinet | The MeMVa-TEx methodology: from requirements to models in automotive application design[END_REF],

KAOS and [START_REF] Marques | Integrating UML, MARTE and SysML to improve requirements specification and traceability in the embedded domain[END_REF] approaches support requirements and/or architectural design modeling. They provide a mechanism to align requirements with design elements but they lack of formal verification techniques to prove the consistency of the different models and also of the alignment links. These approaches only use test cases associated with requirements to verify the alignment. The work of [START_REF] Goknil | Generation and validation of traces between requirements and architecture based on formal trace semantics[END_REF] presents an approach for automatic trace generation and validation between requirements and architecture. This approach is based on formal trace semantics, yet, it does not provide formal reasoning about architecture models and it provides only two types of generated links:

automatically «satisfies» and manually «allocatedTo». These links do not give semantics about the manner of how this satisfaction is applied or the order of architecture elements execution which assures the requirement satisfaction. The work of [START_REF] Wang | An approach to generate the traceability between restricted natural language requirements and AADL models[END_REF] produces AADL design model directly from requirements models, then alignment links exist CHAPTER I. LITERATURE REVIEW intuitively between the different models and there is no difficulties to identify them. Also, this approach takes as input only textual specification to model requirements and it does not support any other kind of artifacts which specify requirements. Finally, this approach also does not provide formal reasoning about requirements and architecture models.

Synthesis

While the quality of a system is the main measure of its success, which depends on the extent to which it meets its requirements. Also, in large complex system design, requirements engineering experts may be different of HLA design experts then two different kinds of models will be designed for the same system with no correspondence. In our work, the choice is on SysML/KAOS to model requirements and formally verify them while

SysML/KAOS provides strong semantic expressiveness, refinement and decomposition mechanisms well suited with Event-B. Then, the thesis focuses on HLA modeling with design model refinement and decomposition and its formal verification using Event-B.

The choice for this step is on SysML and Event-B formal method because SysML is aligned with SysML/KAOS, offering a set of concepts more relevant to model complex systems and it is recommended by the AFT project partners. Event-B, on the other hand, is recommended for critical systems. To reveal SysML extensions with refinement and decomposition mechanisms, a purpose to combine SysML and the Event-B is stemming from the need to master the complexity of such systems that allow a step-by-step design and make proofs easier. Afterward, alignment links are established between SysML/KAOS requirements models and SysML HLA models to display a traceable requirements satisfaction by HLA elements. Finally, the thesis proposes a plugin that supports these works, implemented using available free software and frameworks (EMF, Papyrus, AtelierB, etc.).

Conclusion

In this chapter, we have presented related works about requirements modeling and its formal specification and HLA modeling with its refinement and decomposition which are important mechanisms to manage HLA complexity. We have presented works dealing with the formalization of the HLA models into formal specifications. Finally, we have presented works that propose solutions for requirements and architecture alignment and the formal verification of these alignment links.

CHAPTER I. LITERATURE REVIEW

A summary of the similarities and differences between the studied approaches is presented in table 1.1. Most of the presented works deal with graphical requirements and/or HLA modeling. However, we can conclude from the table that most of these works do not formally verify requirements and HLA models to prove their correctness and consistency.

The works that allow requirements and HLA modeling at the same time define mechanisms to align requirements and architecture models in order to provide a traceability between them and demonstrate that the architecture corresponds to stakeholders needs. Although, these works, except [START_REF] Goknil | Generation and validation of traces between requirements and architecture based on formal trace semantics[END_REF], do not give a formalization of these alignments.

Model refinement and decomposition are two main mechanisms to master the complexity of complex systems. The table shows that only UML-B, [START_REF] Miyazawa | [END_REF]Cavalcanti, 2014, Lima et al., 2017] and [START_REF] Wang | An approach to generate the traceability between restricted natural language requirements and AADL models[END_REF], presents solutions to support model refinement. Refinement is a process that allows to gradually introduce the different parts that constitute complex systems and allows to define how sub-components interplay can satisfy parent system goals. Model decomposition is shown in the table as a mechanism presented in [Abrial, 2009, Butler, 2009a] and used in SysML/KAOS to decompose Event-B models into finer-grained models. Nevertheless, the presented approaches that support HLA graphical modeling do not provide a solution to decompose HLA into a system/sub-system hierarchy. Adding to that, HLA model decomposition into several sub-components allows a better management of large complex systems and more comfortably than the whole.

The work of [START_REF] Goknil | Generation and validation of traces between requirements and architecture based on formal trace semantics[END_REF] is the most complete work in the table evaluation criteria. In fact, it allows requirements modeling and its formal specification, HLA graphical modeling and it assures requirements and architecture alignment and its formal specification. However, in this approach, there is no model decomposition applied on HLA models to give system/sub-system hierarchy. HLA models are not formally verified. This approach defines only two types of alignment links. One of them is specified manually. Its process is generally semi-automatic and iterative since software architect has to decide on the outcome of the supporting tools, so it is not possible to guarantee the consistency of the outcomings.

Based on these remarks and limitations, the work of our thesis aims to propose a complementary approach to existing approaches. Indeed, they do not give a complete support for modeling complex systems from requirements to HLA with a formal verification behind the different steps and a formal traceability which verifies the satisfaction of the stakeholders requirements by the HLA elements. For this, our motivations are to provide a holistic ✓ ✓ [Abrial, 2009] & [Butler, 2009b] ✓ ✓ [START_REF] Goknil | Generation and validation of traces between requirements and architecture based on formal trace semantics[END_REF]] In this chapter, we propose a model-based methodology to prove the alignment of HLA models with stakeholders needs for the purpose of their satisfaction. This methodology allows, on one hand, to model requirements and HLA and formally verify them. On the other hand, it allows to formally verify traceability between these two parts. Results presented in this chapter are published in [Bougacha, 2020[START_REF] Bougacha ; Bougacha | The Landing Gear System case study[END_REF], Bougacha et al., 2022a, Bon et al., 2023, Bougacha et al., 2023] 1 Methodology overview

✓ ✓ ✓ ✓ ✓ [Wang et al., 2019] ✓ ✓ ✓ ✓ Table 1.1 -
Complex systems such as railway systems are composed of a large set of sub-systems.

They generally are heterogeneous in that they integrate various kinds of components as mechanical, electronic, or software. The design of these systems requires the collaboration of domain experts and the use of a common language to communicate with each other to build a consistent model. Moreover their design depends on solutions that can address the interplay between sub-systems. Therefore, high-level architectures of complex systems should be represented as a layered hierarchy of sub-systems. Such a HLA must enable the specification of the main functional elements of a system, together with its interfaces and interactions while each sub-system can function independently from its participation in the main system. It constitutes a framework common to all the domain experts involved in the design of the system.

The development process of this kind of systems becomes critical since it could not respond to stakeholders needs due to its complexity and the consequence of a failure in such systems may be serious [START_REF] Leveson | Engineering a safer world: Systems thinking applied to safety[END_REF]. The quality of such systems is the main measure of their success, that depends on the degree to which they fulfill their requirements. Requirements modeling is an important activity in the design process. The competitiveness of a system cannot be ensured unless its HLA is aligned with its requirements. Indeed, CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS alignment provides strong guarantees, and is key to a coherent governance and success of the system. Therefore, it is important to bring closer requirements and HLA modeling activities. In modern system development methods, analysts start the development process with an inception phase where they must acquire a deep knowledge of the system requirements. This phase is crucial since it prepares for requirements modeling, analysis and verification, which gives a global view on stakeholders needs.

Model-Driven Engineering (MDE) [Kent, 2002] is a software engineering approach which defines a generic framework to generate code using successive model transformations and allows to express separately each of the concerns of users, designers, architects, etc. In MDE, the crucial key point is the use of models as primary entities to process them automatically or half automatically. These models are abstract representations of a reality.

MDE is increasingly used to develop complex systems. However it is difficult to establish traceability links between requirements and design models in the context of MDE. There is a substantial gap between requirements descriptions and designs, because transformation from requirements to design models is not included in MDE, which starts from an analysis model (or design model) and ends with deployed code.

MDE gives a simple manner to represent systems for a better understanding while it can provide graphical models. However, nowadays, the usefulness of formal verification and validation of system specifications is industrially demonstrated [Bonvoisin, 2016], especially for critical systems which require a high level of safety.

To cope with these issues, we propose a model-based methodology, summarized in A methodology provides a logical and systematic means of proceeding with the design process as well as a set of guidelines for decision-making [Zhu, 2005]. A methodology provides a sequence of activities, methods and often uses a set of notations or diagrams.

A methodology is especially important for large complex projects where many designers are involved. Its use establishes a set of common communication channels for translating design to code and a set of common objectives. Methodology refers to the overarching strategy and rationale of a research project. It involves studying methods used in a field and theories or principles behind them, in order to develop an approach that matches required objectives. Methods are specific tools and procedures used to collect and analyze

data. ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

The aim of the proposed methodology is to model stakeholders requirements, to represent HLA in a layered hierarchy of system/sub-systems relationships and finally to align HLA elements with requirements to guarantee traceability between them.

Figure 2.1 -Methodology overview

SysML/KAOS Modeling [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF]: Consists of a RE phase in which requirements are modeled using SysML/KAOS goal models enriched with domain models. Afterwards, these requirements models are formalized using Event-B in order to be formally verified. We have chosen the SysML/KAOS approach for the following reasons:

✓ It provides strong semantic expressiveness.

✓ SysML is well recommended by the AFT project partners ✓ Event-B is specialized in modeling systems, and has been used in safety-critical system applications such as the Paris Metro lines [START_REF] Behm | A successful application of b in a large project[END_REF], Abrial, 2006] ✓ SysML/KAOS refinement and decomposition mechanisms are well suited with Event-B.

This phase is composed of two steps:

• First, a graphical modeling of system requirements as a hierarchy of goals is achieved using the SysML/KAOS modeling framework and refinement patterns. Then, these goal models are enriched with domain models that define the system structure and concepts used to define goals.

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

• Second, an Event-B formalization of these goal and domain models is carried out.

A formal verification step using Event-B provers, model checkers and animators is applied on the formalized specification to prove the correctness and consistency of system requirements.

SysML HLA Modeling: Corresponds to the definition of the HLA of critical complex systems that must be validated by domain experts and its translation into Event-B formal specification to prove its correctness and consistency.

To conduct this phase, a two step process is performed:

• First, a graphical modeling of HLA in a system/sub-system layered hierarchy is presented using SysML extension mechanisms that we have defined.

• Second, an automatic translation of HLA models into Event-B models is established.

The results presented in this phase have been published in [START_REF] Bougacha ; Bougacha | The Landing Gear System case study[END_REF], Bougacha et al., 2022a].

Alignment: Aims to provide alignment links between SysML/KAOS elements and HLA elements. These alignment links allow to guarantee traceability relationships between participating entities to assure that HLA elements satisfy the system goals hence they satisfy stakeholders needs.

The alignment process contains two steps:

• First, alignment links are graphically specified to be well understood, documented and validated by all the stakeholders.

• Second, a formalization of these alignment links is achieved to prove their consistency.

New proof obligations are generated in addition with existing proof obligations of type invariant preservation, feasibility of non-deterministic actions and well-definedness.

A formal verification step is performed to check the resulting Event-B specification. Discharging all proof obligations (existing and alignment proof obligations) allows to prove that system requirements are formally aligned with HLA elements.

This chapter is organized as follows. Section 2 presents an excerpt of a case study that we will use to exemplify our works. Section 3 gives a presentation of the proposed HLA SysML extensions and their translation to Event-B. This is followed by a requirements and HLA alignment approach in Section 4 in which we describe the SysML/KAOS requirements modeling approach and the process to generate Event-B formal specification CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS in Subsection 4.1. Section 5 presents an illustration of our methodology on use cases.

Finally, Section 6 reports our conclusions.

ATO over ERTMS case study excerpt

Throughout this section, we use an extract of a case study inspired from ATO over ERTMS system (Automatic Train Operation over European Railway Traffic Management System) [START_REF] Bon | ATO over ETCS: A system analysis[END_REF]. A railway system may be controlled using Automatic Train Operation (ATO): this is one of the challenging tasks of the railway industry. In railway, four different grades of automation (GoA) are used. With GoA2 traction and braking are automatic but the driver ensures the environment monitoring and is able to switch towards manual driving if necessary.

This subsystem is activated and deactivated by the driver, which implies the enabling/disabling of the Railway System. The driver is also responsible for switching driving mode between manual or automatic. The GoA2 is composed of two subsystems :

OnBoard and Track. The OnBoard subsystem is responsible for executing the driving mode chosen by the driver and updates the state of the Track subsystem with the current driving mode. The GoA2 subsystem functions in a global framework called ATO over ERTMS. The specification is based on a normative and prenormative documentation. The ATO itself is not specified and the studied system is only the context and interfaces of the ATO. The same phenomenon occurs with relationships with the track system: ERTMS specifies the OnBoard system and interfaces with the track. As a consequence, the track side is not specified as it is linked to national specific implementations.

3 High-level architecture modeling and formal verification

Complex systems are systems composed of many components which may interact with each other, such as air traffic management system, railway systems, smart grid, autonomous automobile systems, medical monitoring, industrial control systems, robotics systems, etc.

Their behavior is intrinsically difficult to model due to the dependencies, competitions, relationships, or other types of interactions between their parts or between a given system and its environment. In many cases, it is useful to represent such a system as a network where nodes represent components and links their interactions. Therefore, designing HLA of these systems depends on solutions that can address interplay between their sub-systems.

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

This HLA should be represented as a layered hierarchy of sub-systems. It must enable the specification of the main functional elements of the system, together with its interfaces and interactions.

For that, we propose to combine SysML and the Event-B formal method. The choice is on SysML rather than UML while it offers a set of concepts more relevant to model The refinement and decomposition mechanisms are interesting characteristics of Event-B that facilitate a step-by-step design and make proofs easier to discharge. Therefore, we propose to extend SysML with these relevant mechanisms to enable an automatic translation. These extensions are applied on two SysML diagrams, the package and sequence diagrams.

-The second step consists in translating SysML diagrams into Event-B models.

This model translation is implemented using three sets of rules: a set for elements related to a package; a set for the SysML refinement extensions; a set for the SysML decomposition extensions. This step is performed in two phases. 2003] to verify the consistency of the modeled HLA of the system and to be validated by domain experts through models animations.

High-level architecture modeling

HLA is a layered hierarchy of sub-systems that collaborate together to satisfy parent system goals and to represent interactions with environment entities. Moreover, a subsystem can have its own life and can exist independently besides its contribution in parent system life cycle.

We -Sequence diagram: it is an interaction diagram that details how operations are carried out. It captures high-level interactions between users and the system, between the system and other systems, or between sub-systems, suitable to represent HLA systems/sub-systems interplay. Adding to that, sequence diagrams are very powerful when used as a consistency check between various interacting objects that already have their internal behavior defined with state-machine diagrams.

SysML and Event-B refinement and decomposition mechanisms extensions

To model a HLA hierarchy, new packages are designed for each system (a parent system or a sub-system). Each package is composed of a set of diagrams:

-a BDD represents systems (parent systems or sub-systems) as blocks and associations which link sub-systems to their parent system and to environment entities.

-a state-machine diagram, one for each system of the BDD, specifies the behavior of the system by a set of its different states and the transitions process between these states.

-a sequence diagram represents the life cycle of the current system, the interactions between its sub-systems and how they cooperate to satisfy the objectives of the parent system. -A package represents a graphical node. It is made up of a number of packageable elements. In SysML, almost any element can be enclosed within a package. In HLA modeling, we are interested in block, state-machine and sequence diagrams as packageable elements in the package. A package itself is also a packageable element and thus can contain other packages.

-A dependency represents a graphical path that links different packages and how they depend on each other. Note that the semantics of dependency is informal and can be adapted for particular needs. -A Block defines a collection of features used to describe a system, sub-system, component or other system elements.

- -A transition arrow depicts the movement from one state to another. These changes are triggered by events associated to the transitions of the diagram. A system represented as transitions between states is very useful for describing complex behaviors.

We have extracted all the concepts of SysML state-machine diagrams that we need to model HLAs. They are presented in the meta-model of A state could be a source of an outgoing transition and a target of an incoming transition. -An Interaction is a behavioral specification that comprises a sequence of communications exchanged among a set of instances within a collaboration to accomplish a specific purpose, such as a parent system goal.

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

-An object lifeline represents the existence of an object over some time. Objects that exist throughout an interaction should appear at the top of the object dimension with their lifelines drawn parallel to the time dimension.

-Messages specify communication from one object to another, with an expectation that an activity will be performed by the recipient object.

-The intersection of a message arrow and a lifeline is represented by the element MessageOccurenceSpecification.

-A GeneralOrdering represents a binary relation between two MessageOccurenceSpecification, to describe that one MessageOccurenceSpecification must occur before the other in a valid trace. This mechanism provides the ability to define partial orders of MessageOccurenceSpecification that may otherwise not have a specified order.

-CombinedFragment is a logical grouping which contains the conditional structures that affect the flow of messages. A combined fragment contains interaction operands and is defined by the interaction operator. An interaction operator defines the semantics of a combined fragment and determines how to use the interaction operands in the combined fragment. An interactionOperand is a container that groups the interaction fragments and messages that run if the guard condition is met. If there is no guard condition, the block always runs. An interactionConstraint is a constraint used in interactions to guard an operand in a combined fragment. the message exchanges between the system and actors, or between parts of the system or subsystems, in a chronological manner.

The following constraints/extensions have been defined:

-Each message corresponds to a transition in the state-machine of the block associated to the target lifeline. This association is established using the signature property of the sequence diagram message.

-As we have introduced a refinement link between packages, we need to specify how this refinement is elaborated between the refining package and the refined package. The parent system main goal is produced through the interplay of its sub-systems. Each one executes some behaviors to satisfy some whole system tasks. This sub-systems interplay covers the whole system tasks and satisfies the main system goal. The ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

Model-to-Model transformation

Model-to-model transformation is a model-driven process that enables to derive a target model from a source model that are conform to a source and a target meta-models, and create one or more mapping declarations that define relationships between these two metamodels. To this end, this translation requires source models which are, in our work, HLA models that are conform to the extended SysML meta-models presented in the previous subsection and target models that are Event-B models conform to Event-B meta-model.

However, a standardized meta-model for Event-B is still not available. The one proposed in the Rodin Platform [Abrial, 2010] is of high complexity and cannot cover our needs.

Therefore, to conduct this model-to-model transformation we propose an Event-B metamodel conform to the Event-B notation used in AtelierB and restricted to the concepts that are relevant to our use. -A CONTEXT describes the static part of a system, it is composed of:

• Zero or more CONSTANTS and SETS;

• zero or more AXIOMS mandatory to define constant types and properties;

• A context can be extended with zero or more contexts and it can be seen with zero or more machines. • One or more EVENTS that represents the list of the various events related to the model. It is composed of a set of guards and actions. Events can be refined and new ones can be introduced. The refinement of an event has to verify that the guard of the refined event is stronger than the guard of the abstract one and the effect of the refined action is stronger than the effect of the abstract one.

• A machine can refine or be refined by another machine and it can see zero or more contexts.

• A machine can be decomposed into one or more sub-machines following the shared-event decomposition approach. The shared-event decomposition is a set of events that are synchronized and shared by sub-components. This approach defines a partial version of a global event in each sub-machine, when the variables of a global event are distributed between separate sub-machines. This is to simulate the action of the global event on the considered variables. We have adopted the shared-event decomposition approach for our HLA modeling as we can consider that a system composed of sub-systems acts as a distributed system Some Event-B concepts presented in section 2.4 are not supported in this meta-model because they are not relevant to our use. We give as an example the use of THEOREMS, in CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS our HLA we don't model any type of these theorems. Also VARIANTS, in our translation events are created from sequence diagram message in a specific scenario. Then, these events cannot be convergent. Events parameters are not supported in our meta-model because the proposed translation is an end-to-end translation and all defined elements in the HLA have corresponding element in the Event-B specification.

Translation Rules

Three sets of rules have been defined.

-The first one considers elements related to a package.

-The second one deals with the SysML refinement extensions.

-The last one deals with SysML decomposition extensions.

Translation of package elements. It should be noted that in these two tables, E_X designates the result of the translation of Element X.

Rule 1 of Rule 7 needs to be more precisely defined. An Event-B event E_M obtained from the translation of a message M is of the form:

SELECT G_M THEN A_M END
where G_M are the guards and A_M are the actions. G_M and A_M are obtained as follows.

-Let SQ be a sequence diagram.

-Let CB be a combined fragment in the sequence diagram that contains an interaction operand IO.

-A message M is defined between two lifelines in SQ, L 1 , its origin, and L 2 , its destination (L 1 and L 2 are not necessary different).

-L 1 (L 2 , resp.) is associated to block B 1 (B 2 , resp.).

-Let SM 1 (SM 2 , resp.) be the state-machine associated to B 1 (B 2 , resp.). -Let SS 2 be the source state of T and T S 2 be the target state of T .

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

Note that Rule 5 gives E_SS i (E_T S i , resp.) as the Event-B elements associated to SS i (T S i , resp.). Rule 6 gives E_L i C and E_L i V as the Event-B elements associated

to L i . • Calculation of A_M A_M ≜ E_L 2 V (E_L 2 C) := E_T S 2
The current state of E_L 2 C corresponding to the lifeline L 2 is the target state of the transition T .

• Calculation of G_M

-If M is the first message of SQ then G_M ≜ E_L 2 V (E_L 2 C) = E_SS 2 -If M is encompassed in IO constrained by the interaction constraint G_IC then G_M ≜ G_IC ∧ E_L 2 V (E_L 2 C) = E_SS 2
We precise that G_IC is defined using a lifeline L associated to a block from CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS the parent system and its current state CS L . Then G_IC ≜ E_LV (E_LC) = E_CS L -Else, let P rev_M be the message of SQ that precedes M . Its lifeline destination is necessary L 1 and P rev_M corresponds to a transition T ′ of SM 1 whose source state is SS 1 and target state T S 1 .

G_M ≜ E_L 1 V (E_L 1 C) = E_T S 1 ∧ E_L 2 V (E_L 2 C) = E_SS 2
This means that M is triggered after P rev_M (i.e. the current state of E_L 1 C

is the target state of the transition T ′ and the current state of E_L 2 C is the source state of T).

It should be noted that this ordering between messages M and P rev_M is defined by the GeneralOrdering meta-class of the sequence diagram meta-model.

Translating SysML refinement extensions to Event-B. Two rules are defined to translate the two SysML package and sequence diagram refinement extensions.

-Machine Refinement Rule is defined as follows: Let P 1 and P 2 two SysML packages such that P 2 HLA_refines P 1 . P 1 and P 2 are translated into Event-B according to Rule 2 and give E_P 1 _M and E_P 2 _M machines.

In E_P 2 _M, two clauses are added to express the SysML package refinement:

-

E_P 2 _M REFINES E_P 1 _M -E_P 2 _M SEES E_P 1 _CONT -E_P 1 _M variables are copied in E_P 2 _M -E_P 1 _M variables initialisation is copied in E_P 2 _M
-Event Refinement Rule is defined as follows:

Let P 1 and P 2 two SysML packages such that P 2 HLA_refines P 1 . P 1 and P 2 are translated into Event-B according to Rule 2 and Machine Refinement Rule. This

gives E_P 1 _M and E_P 2 _M machines such that E_P 2 _M refines E_P 1 _M.

Let M 1 (M 2 , resp.) a SysML message of the sequence diagram of P 1 (2 , resp.) such that M 2 Refines_Message M 1 . M 1 is translated according to Rule 7:

E_M 1 ≜ SELECT G_M 1 THEN A_M 1 END
Then M 2 is translated by:

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS E_M 2 ref E_M 1 ≜ SELECT G_M 1 ∧ E_LV M 2 (E_LCM 2) = E_SSM 2 THEN A_M 1 ∥ E_LV M 2 (E_LCM 2) := E_T SM 2 END
Translating SysML decomposition extensions to Event-B. As already stated, we use the shared-event decomposition approach [Butler, 2009b] of Event-B to translate the SysML package decomposition extension.

-First a new Event-B machine called Interface that corresponds to each of the decomposed machines representing sub-systems is created.

-Then all the variables of the machine to be decomposed are assigned to one of these decomposed machines.

-The elements from the machine to be decomposed linked to a variable assigned to an interface are also assigned in this interface.

Following the shared-event decomposition mechanism, all the variables of the machine to be decomposed must be assigned to one of the decomposed machines. However, if the machine to be decomposed is a refinement machine that refines an abstract one then it contains also the redefinition of abstract variables coming from refinement. We recall also that after decomposition each sub-system can function independently from its participation in the main system. Therefore, the interface that represents each sub-system encompasses only elements related to this sub-system with no relationship with the parent system. That is why, we have created a supplementary new Event-B machine called Re-finement_Interface that will get from the decomposed machine all abstract variables and their associated elements coming from refinement.

The Machine Decomposition Rule is illustrated in Figure 2.16 and defined as follows.

Let P, P 1 and P 2 three SysML packages such that P is HLA_decompose into P 1 and P 2 . we recall that P 1 and P 2 are sub-systems of P and then corresponds to the blocks B 1 and B 2 in P. P is translated into Event-B according to Rule 2 and give E_P_M machine.

-E_P_M machine is shared-event decomposed into two machines called E_P 1 _Interface and E_P 2 _Interface that correspond to P 1 and P 2 .

-Each E_P i _Interface contains the elements of E_P_M linked to the B i block: SEES clause, variables, invariant and the events that read or modify these variables.

-If E_P_M is a refinement machine then a new interface called E_P_Refinement_Interface is created. It contains the elements of E_P_M coming from the refinement (abstract variables and their related elements). ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS -E_P i _Interface is refined by a machine called E_P i _M that contains the translation of the elements of P i (blocks, sequence diagram, state-machines). Event-B models of the previous step using Acceleo [START_REF] Musset | Acceleo user guide[END_REF]. Acceleo is a template based technology allowing to automatically produce any kind of source code from any data source available in EMF format. This textual specification can be introduced into provers such as AtelierB [START_REF] Atelierb | [END_REF], model-checkers and animators such as ProB [START_REF] Prob | The ProB Animator and Model Checker[END_REF] to verify the consistency of the modeled system. In this way, design errors can be detected and invariant violation can be discovered.

Example of application of the translation rules

To give a better understanding of this translation, we present here an application example of these rules on an extract of HLA models. This extract is taken from the ATO over ERTMS case study presented in [Bougacha et al., 2022a]. Figure 2.17 shows the package ATOoverETCSGoA2 that includes a BDD describing the ATOoverETCSGoA2 system and its sub-systems Track and OnBoard. State-machine diagrams are created for each sub-system to specify their behaviors and a sequence diagram describing the subsystems interplay to satisfy the parent system behavior is designed.

Listings 2 and 3 show the generated Event-B specification that represents the structural and dynamic parts from this HLA excerpt after application of the rules described in 2.3) -The ATOoverETCSGoA2 system is a sub-system that corresponds to a parent system.

The decomposition of the machine created from the parent system package allows to create a set of interfaces each of which corresponds to a sub-system (see Sections (rule 4 in Table 2. (rule 5 in Table 2.3) -Once the variables created their typing invariants and initialisation are generated.

For example the typing invariant of Variable onboardState is:

onboardState ∈ OnBoard → OnBoardStates. (rule 6 in Table 2.

HLA formal verification

This verification generates automatically a set of proof obligations corresponding to the modeled functional properties without any non-functional properties integration, and proof obligations from the application of model decomposition. These proofs are of type invariant preservation, non-deterministic action feasibility and well-definedness. The verification step is of paramount importance. It provides a theorem proving method for process verification to detect probable invariants violations during the verification using model checking.

The verification process also goes far beyond the simple verification of the structural properties of the model. Precisely, it enables the verification of the advanced decomposition and refinement aspects and system behavior of different states achieved from the initial

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

state after execution process. The formal verification step checks the correctness of the designed HLA of railway system specification thanks to ProB [START_REF] Prob | The ProB Animator and Model Checker[END_REF] model checker and animator which is used to discover some errors and invariant violation during the model animation from different execution scenarios or during the verification using model checking. Therefore, our approach provides a reliable HLA of complex system with a high level of integrity.

Conclusion

In this section, we have proposed a set of extensions on SysML to be aligned with

Event-B refinement and decomposition mechanisms. These extensions allow to automatically translate SysML models of HLA into Event-B specifications. Two SysML parts are extended. The first part is about package diagrams which are customized to represent the decomposition of system/sub-systems hierarchies and the refinement of a system by its sub-systems interplay. The second part consists in customizing sequence diagrams with stereotypes applied on messages to refine the parent system behavior by the collaboration of its sub-systems processes. We have also defined a set of translation rules to translate SysML models into Event-B specifications in order to formally verify them using

AtelierB.

Contributions about this section are published in [START_REF] Bougacha ; Bougacha | The Landing Gear System case study[END_REF].

Requirements & high-level architecture alignment

The quality of a complex system is the main measure of its success, that depends on the degree to which it fulfills its requirements. To this end, alignment links between requirements models and HLA models need to be established. These semantic links can be the support to prove the compliance of HLA specification with the expression of system requirements. The third part of our work aims to propose a model-based approach to establish alignment links graphically between SysML/KAOS models and HLA models and then the translation of these links into Event-B formal specification and their formal verification (see Figure 2.18).

The process is composed of two steps:

-The first step consists in graphically modeling alignment links between leaf goals and sequence diagram messages. This graphical modeling step is a simple manner to CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS Figure 2.18 -SysML/KAOS models and SysML HLA models alignment approach establish alignment links and to validate them by system stakeholders.

-The second step aims to formalize these alignment links into Event-B specification in order to be integrated in AtelierB for formal verification purposes. To perform this formalization, a set of translation rules is defined.

SysML/KAOS modeling and formal verification

As already introduced in 2.2.1, SysML/KAOS [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF][START_REF] Gnaho | Modeling the impact of non-functional requirements on functional requirements[END_REF] is a RE method that allows the modeling of functional and non-functional requirements and the domain of a system. This approach aims to derive an Event-B specification directly from the SysML/KAOS models. Figure 2.19 presents an overview of the SysML/KOAS approach [Fotso et al., 2018a].

SysML/KAOS Modeling

As shown in this Figure 2.19, the first step of this process is to build goal models enriched with domain models. In our work, we are interested, for now, with functional goals knowing that a functional SysML/KAOS is called an "Achieve" goal. The functional goals hierarchy is built through a succession of refinements using the three types of refinement patterns AND, OR and MILESTONE.

Domain models are described by ontologies expressed using the SysML/KAOS domain modeling language [Tueno et al., 2017c[START_REF] Fotso | The Generic SysML/KAOS Domain Metamodel[END_REF], based on OWL [START_REF] Sengupta | Web Ontology Lan-BIBLIOGRAPHY guage (OWL)[END_REF] and PLIB [Pierra, 2006]. Each refinement level in the functional goal model is ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS To achieve this purpose, the system must first, initiate the OnBoard system to be driven by ATO (goal MakeOnBoardForATODriving) and second, initiate the Track system that the Onboard is initiated to be driven by ATO (goal MakeTrackForATODriving). Two agents are defined: Onboard and Track, each of which is associated to a leaf goal that it is responsible for.

Graphical alignment

To process the first step, we note that the requirements side is represented by a

SysML/KAOS goal model enriched with a domain model for each goal model level and the architecture side is represented by a SysML HLA model.

To specify graphical alignment links between these two sides, we have chosen to establish links between concepts from each side:

-leaf goals from SysML/KAOS goal model because they are the most concrete goals of a goal model. A leaf goal is assigned to an agent (environment, software or subsystem agent) responsible for the goal satisfaction.

-Sequence diagram messages while they represent running interactions between system components. Each message corresponds to a transition in the state-machine of the block associated to the target component.

We propose three kinds of alignment links to satisfy leaf goals assigned to a sub-system (an agent).

-The first alignment kind is called Satisfy. It is defined to represent an alignment link when one message can satisfy one goal.

-The second kind is called And_Satisfy. It is defined when a goal is satisfied by a set of messages, i.e. the execution of all of them, in any order, is needed to satisfy the

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

goal.

-The last alignment kind is called Milestone_Satisfy. It is defined when a sequential execution of a set of messages in a specific order is needed to satisfy a goal.

These alignment links definitions are inspired from two concepts:

-First, the SysML requirement diagram Satisfy relationship, a dependency between a requirement and a model element that fulfills the requirement. This relationship direction points from the satisfying (client) model element to the (supplier) requirement that is satisfied.

-Second, The SysML/KAOS refinement operators AND, OR and MILESTONE which represents the goal model hierarchy where higher-level goals can be refined into lower-level sub-goals and the set of sub-goals satisfy the higher-level goal. We recall that, when a goal is AND-refined into sub-goals, all of them must be satisfied for the parent goal to be satisfied. The MILESTONE refinement consists in identifying milestone states that must be sequentially satisfied for the parent goal to be satisfied. Finally, when a goal is OR-refined, the satisfaction of one its sub-goals is sufficient for the satisfaction of the parent goal.

Therefore, to create alignment links, we have merged these two concepts to adapt the SysML Satisfy relationship between requirements and model elements and enrich it with the goal/sub-goals satisfaction semantics.

Figure 2.22 shows the alignment meta-model, in which these three alignment kinds are represented as subclasses of the meta-class Dependency. Two binary associations are then defined. The first one is to link a leaf goal to a dependency and the second is to link a dependency to a set of messages of a sequence diagram. Note that a message can be linked to several dependencies. The kind of alignment link is specified by a stereotype on the arrows between messages and leaf goals. Let us note that, for a Milestone_Satisfy alignment link, the order of the messages must be given by numbering the relevant arrows.

Graphical alignment example

To give a simple representation of these graphical alignment links, we have applied the proposed alignment process on example from the ATO over ERTMS case study excerpt.

Shown in Figure 2.23, the right hand model presents the SysML/KAOS goal model of the ATO over ETCS GOA2 whereas the left hand model presents its associated HLA package taken from HLA models [Bougacha et al., 2022a]. The SysML/KAOS goal model contains More details and illustrations about the graphical alignment modeling will be presented in Section 5.4.

Formalization of graphical alignment links

To formalize graphical alignment links using Event-B, a set of translation rules has been defined.

Recall that the Event-B formalization of the SysML/KAOS models is described in [Matoussi et al., 2011a, Tueno Fotso et al., 2018] and the Event-B formalization of the SysML HLA models is presented in 3.2.1.2. Each goal, including leaf goals, is transformed to an event in the Event-B specification of requirements models and each sequence diagram message is transformed to an event in the HLA model Event-B specification.

The main idea is to define an alignment link between a set of messages and a leaf goal as a refinement relationship between the corresponding Event-B events. There are many reasons why it is not possible to use the standard Event-B refinement namely:

-The semantics of the Event-B refinement do not correspond to our alignment semantics. Indeed, Event-B refinement process allows to gradually enrich the differ- -The messages that satisfy a leaf goal can belong to distinct Event-B machines whereas in Event-B it is not possible to specify that a set of machines refines one machine.

However, as the formalization of SysML/KAOS models and SysML HLA models is carried out in Event-B, we think that it would be more appropriate to formalize alignment with Event-B. The proposed solution is to build a new Event-B machine for each alignment link. New sets of refinement proof obligations are specified, one for each kind of alignment. Discharging these proof obligations allows to formally verify the satisfaction of a leaf goal by a set of HLA messages. -The top right machine, called E_A_M, is the HLA Event-B machine that contains the events E_M 1 and E_M 2 corresponding to the messages M 1 and M 2 . In this example, let us assume that M 1 and M 2 belong to the same machine.

-the new machine, called E_LG_Goal_Satisfaction_Interface, is the alignment machine. This machine refines E_G_M and imports the events E_M 1 and E_M 2 from the HLA machine E_A_M.

j ∈ [1..p] k ∈ [1..q]
E_va j,k are the variables involved in E_M j INV_A_M j (E_va j,1 , ...,E_va j,q) is the part of E_A_M j invariant related to the E_va j,k variables events. These messages can belong to several sequence diagrams, consequently the corresponding events can belong to several Event-B machines E_A_M j . Each E_M j is copied from E_A_M j in the E_LG_Goal_Satisfaction_Interface and this machine will also SEES E_A_M j CONTEXTS.

E_va j,k , j ∈ [1..p] k ∈ [1..q] E_va j,k ∈ VARIABLES INV_A_M j (E_va j,1 , ..., E_va j,q) ∈ INVARIANTS Table 2.
-Rule 4. Each event E_M j (j ∈ [1..p]) uses a set of variables E_va j,k (k ∈ [1..q]) coming from the HLA model. Rule 4 aims at copying these variables in the alignment machine E_LG_Goal_Satisfaction_Interface. INV_A_M j (E_va j,1 , ...,E_va j,q), the part of E_A_M j invariant related to the E_va j,k variables, is also copied in the machine E_LG_Goal_Satisfaction_Interface.

Rule 5 consists in constructing the gluing invariant in the machine E_LG_Goal_Satisfaction _Interface. These invariants link variables of the HLA Event-B machines E_A_M j to variables of the SysML/KAOS Event-B machine E_G_M. Recall that, as presented in [Tueno Fotso et al., 2018], each leaf goal LG is associated to one or more elements of the Event-B machines E_A_M j . Thus, the gluing invariant comes to establish links between elements of the domain model and elements of the BDD. This can only be a creative activity from the designer that cannot be automatized.

To formalize the semantics of the proposed alignment links between goals and messages, we propose a set of new refinement proof obligations, different from the proof obligations generated for the Event-B standard refinement. They will depend on the satisfaction relationship used. These proof obligations are inspired by the proof obligations defined for the formalization of refinement links between goals [Matoussi et al., 2011a] to establish that a set of sub-goals satisfies a parent goal. We have adapted them to establish that one or more messages can satisfy a goal.

Let LG be a leaf goal and M 1 , M 2 two messages. Let E_LG be the event associated

to LG and E_M 1 , E_M 2 the two events associated to M 1 and M 2 . Each event E is of the

form: E = SELECT E_Guard THEN E_Post.
Rule 6 is composed of three sub-rules that depend on the used satisfaction relationship.

-Rule 6.1: Satisfy relationship. Define that LG is satisfied by M 1 , then:

E_M 1 ref E_LG
where ref is the standard Event-B refinement.

This proof obligation ensures that the satisfaction of E_LG depends on the execution of E_M 1 .

-Rule 6. without any specific order implies the satisfaction of E_LG.

-Rule 6.3: Milestone_Satisfy relationship. Assume that LG is satisfied by the sequential execution of M 1 and M 2 , then:

E_M 1 ref_milestone E_LG E_M 2 ref_milestone E_LG
New proof obligations are generated:

-

E_M 1 _Guard ⇒ E_LG_Guard -E_M 1 _Post ⇒ E_M 2 _Guard -E_M 2 _Post⇒ E_LG_Post
These proof obligations ensure firstly that E_M 1 _Guard should never contradict

E_LG_Guard. Secondly the scheduling constraint should be respected with E_M 1 _Post implies E_M 2 _Guard and finally the execution of E_M 1 followed by the execution of E_M 2 implies the satisfaction of E_LG Note that these new proof obligations can be automatically generated by the proof obligation generator of AtelierB.

An advantage of our approach is that we can use all the support tools of AtelierB to discharge proof obligations, but also its animator to simulate the specification, and then to validate and verify it.

Formalization of graphical alignment example

To formalize the alignment links presented in Figure 2.23, we present an application example of the proposed formalization rule. Therefore, we give the formalisation process of this example as follows: 2.5).

-Variables involved in the event MakeOnBoardForATODriving to satisfy which are on-boardState are copied in MakeOnBoardForATODriving_Goal_Satisfaction_Interface.

(rule 2 in Table 2.5).

-The goal MakeOnBoardForATODriving is Satisfy with the message SetBoardForAutomatic (framed in green in Figure 2.25), then the corresponding event is copied from the HLA Event-B specification machine ATOoETCS_GOA2System2 with the involved variable onboardHLAState and its associated typing invariant (rule 3 and 4 in Table 2.5).

-The gluing invariant must be manually defined where the variables onboard, from More details and illustrations about the graphical alignment modeling and formalization will be presented in Section 5.4.

Conclusion

In this section, we have proposed a model-based approach to align complex systems HLA models with SysML/KAOS requirements models. This approach is twofold. First, graphical which allows to specify the alignment of a leaf goal with HLA elements responsible for its satisfaction. For this purpose, three kinds of alignment links are defined and a new alignment meta-model is proposed. Second, formal which consists in formalizing the alignment links in Event-B in order to be verified. To produce this Event-B specification, we have proposed a set of translation rules. The semantics of the alignments links are

given by these rules and new proof obligations were defined that can be discharged using

AtelierB.

The contributions behind this alignment work were published in [START_REF] Bougacha | Formal alignment of requirements models with high-level architecture models[END_REF].

Illustration of the methodology on a case study

In this section, we present an illustration of the proposed methodology on a case study.

This illustration will give a better understanding and explanation of the methodology based on examples and allows to evaluate its strengths and weaknesses with regard to existing methods. It also allows to test the proposed alignment between the requirements models and the HLA models To this end, we illustrate this methodology on an excerpt of the landing gear system case study [START_REF] Boniol | The landing gear system case study[END_REF].

Landing Gear System case study

The landing gear system case study [START_REF] Boniol | The landing gear system case study[END_REF] was proposed in the 4th edition of the ABZ conference (ASM, Alloy, B, TLA, VDM, Z). The goal of this case study is to specify the system responsible for extending and retracting the landing gear of an aircraft. The landing system is in charge of maneuvering landing gears and associated doors. This system is composed of 3 landing sets: front, left and right. Each landing set contains a door, a landing-gear and associated hydraulic cylinders. 5.2 SysML/KAOS modeling and formalizing of the landing gear system case study

The SysML/KAOS method allows the progressive construction of system requirements from the refinement of stakeholder needs. We have chosen to consider that the general objective that the system must fulfil is to control the movements of the landing gear. The

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

most abstract level of the formal specification that has been built is a translation of this general objective. Its concrete refinement levels are representations of the choices allowing the achievement of the objective named maneuverLandingGear. The specification includes four refinement levels explicitly related to stakeholder needs through SysML/KAOS models. The SysML/KAOS method allows to trace the source and justify the need for each formal component and its contents. The formal specification is devoted to the formalisation of system functional goals and in their verification with regard to domain properties and safety invariants. The environment behavior is left nondeterministic with respect to domain constraints modeled in SysML/KAOS domain models.

SysML/KAOS Goal modeling

Figure 2.27 presents the SysML/KAOS functional goal diagram focused on the main system purpose which is to control the movements of the landing gear (maneuverLandingGear).

To achieve it:

-As already presented the system ensures the extending (maneuverLGforLanding) and retracting (maneuverLGforTakingOff) of the landing gear.

-The second refinement level of the SysML/KAOS goal diagram focuses on the extension and retraction processes. The extension process starts when the decision to extend is stemming (decideToExtend). Afterthat, the landing gears are extended (makeLGExtended). Same for the retraction process which starts by making the decision (decideToTakeOff) and retracts the landing gears (makeLGRetracted).

-The decision to extend (respectively to retract) is triggered when the pilot switch the handle to Down (respectively to Up) (putHandleDown (respectively putHandleUp)).

Then, an extension (respectively retraction) order is communicated to the digital entity (communicateExtensionOrder (respectively communicateRetractionOrder)).

- -To open the doors, first the door opening electro-valve should be stimulated (stimulateDoorOpeningEv) then doors will be opened (OpenDoors). The hierarchy of this Event-B specification goes from the abstract goal to the concrete ones called leaf goals. LG is modeled as an instance of an individual named LG individual of LandingGearSystem.

The Root Level

The Event-B translation of the root level of the goal diagram and the associated domain model presented in Figure 2.28 is shown in Listings 9 and 10. The domain model gives rise to sets, constants, properties, variables and invariants of the formal specification.

The root goal is translated into an event for which the body has been manually specified:

the control of the landing gear movement states between lg_extended and lg_retracted. of the first refinement level presented in Figure 2.29. Each goal in this refinement level is translated into an event for which the body has been manually specified: if the actual state of the landing gear system is lg_extended then the current produced maneuver is landing (event maneuverLGforLanding) else the current produced maneuver is taking_off (event maneuverLGforTakingOff). The AND refinement operator between the root level and the first refinement level is formalized with a set of proof obligations defined with the keyword ref_and to be proved. These proof obligations will express that maneuverLGforLanding and maneuverLGforTakingOff are both responsible for maneuverLandingGear. ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS For the fourth refinement level presented in Figure 2.30, the translation to Event-B introduces sets, constants, properties, variables and invariants raised from the domain model associated with this level which is a refinement of the third refinement level domain model. Also, 9 events are obtained from the translation of goals and the milestone refinement operators (MLS operator) presented between this refinement level goals and their corresponding parent goals are formalized with a set of proof obligations defined with the keyword ref_milestone to be proved. The Event-B specification associated to this level is presented in Listings 13 and 14.

The First Refinement Level

The fourth refinement level

DRSofDO_EV = { DO_EV → DRS } ∧ GE_EV ∈ ELECTRO_VALVES ∧ GRSofGE_EV ∈ ELECTRO_VALVES ↠ Gears ∧ GRSofGE_EV = { GE_EV → GRS } ∧ DC_EV ∈ ELECTRO_VALVES ∧ DRSofDC_EV ∈ ELECTRO_VALVES ↠ Doors ∧ DRSofDC_EV = { DC_EV → DRS } ∧ G_EV ̸ = DO_EV ∧ DO_EV ̸ = GE_EV ∧ G_EV ̸ = GE_EV ∧ GE_EV ̸ = DC_EV ∧ DO_EV ̸ = DC_EV ∧ DC_EV ̸ = G_EV ∧ ELECTRO_VALVES = { G_EV
CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

SysML/KAOS Goal model decomposition

SysML/KAOS goal models allow the capture of assignments of requirements to agents responsible for their achievement. Each agent is associated with a sub-system. To ensure the distribution of work between several agents and a better maintenability, reusability and scalability of the system, SysML/KAOS allows its partitioning into sub-systems (presented in 3.1.3.3): a goal diagram models the main system and further goal diagrams are built for sub-systems. Actually, each sub-system is associated with an agent that is responsible for achieving its requirements.

In Figure 2.27, leaf goals are assigned to three sub-systems PiloteSubSystem, Mechani-calSubSystem and DigitalSubSystem.

-The PiloteSubSystem is responsible for goals putHandleDown and putHandleUp, shown in Figure 2.31. -The MechanicalSubSystem is responsible for goals OpenDoors, ExtendGears and Close-Doors, shown in Figure 2.32 (Framed in green).

After decomposition we give as example the goal model associated to the mechanical subsystem shown in Figure 2.33.

SysML/KAOS model decomposition formalization using Event-B

For the landing gear system, the decomposition must be introduced in the third refine-

Doors ∧ DRSofLD = { leftD → DRS } ∧ rightD ∈ SIDES_DOORS ∧ DRSofRD ∈ SIDES_DOORS ↠ Doors ∧ DRSofRD = { rightD → DRS } ∧ CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS frontD ∈ SIDES_DOORS ∧ DRSofFD ∈ SIDES_DOORS ↠ Doors ∧ DRSofFD = { frontD → DRS } ∧ leftD ̸ = rightD ∧ rightD ̸ = frontD ∧ leftD ̸ = frontD ∧ SIDES_DOORS ={ leftD , rightD , frontD } ∧ leftG ∈ SIDES_GEARS ∧ GRSofLG ∈ SIDES_GEARS ↠ Gears ∧ GRSofLG = { leftG → GRS } ∧ rightG ∈ SIDES_GEARS ∧ GRSofRG∈ SIDES_GEARS ↠ Gears ∧ GRSofRG = { rightG → GRS } ∧ frontG ∈ SIDES_GEARS ∧ GRSofFG ∈ SIDES_GEARS ↠ Gears ∧ GRSofFG = { frontG → GRS } ∧ leftG ̸ = rightG ∧ rightG ̸ = frontG ∧ leftG ̸ = frontG ∧ SIDES_GEARS ={ leftG ,

Conclusion

In this section, we have presented the use of the SysML/KAOS method for the modeling of system requirements and associated domain models related to the landing gear system [START_REF] Boniol | The landing gear system case study[END_REF]. The Event-B formalization of the SysML/KAOS models presented in [Matoussi et al., 2011a, Tueno et al., 2017a] [START_REF] Atelierb | [END_REF] has been used to verify and validate the formal specification, especially to prove the consistency of system requirements and the refinement logic, after the completion of the body of events. The formal verification step for the Event-B specification of the landing gear system SysML/KAOS required to discharge 114 proof obligations. Figure 2.35 summarises the status of the AtelierB project corresponding to the generated Event-B specification. These proofs are of type invariant preservation, non-deterministic action feasibility and well-definedness enriched with proof obligations that represent the goal model refinement patterns. They were all automatically and interactively proved (100%). The columns of the table are: TC, for "type checking", to indicate that formal model components are well defined, GOP, for "generation of proof obligations", to indicate that proof obligations are well generated. PO, for "proof obligations", presents the number of generated proof obligations for every formal model component. UN for "unproved" presents the number of unproved proof obligations of each element. Finally, the column PR presents the percentage of discharged proof obligations

The full specification of this landing gear system case study can be found in [START_REF] Bougacha ; Bougacha | The Landing Gear System case study[END_REF]. In this section, we give an illustration of the HLA modeling approach presented in Section 3 applied on the landing gear system case study.

The main system (Level 0)

To model the HLA hierarchy, we start the modeling process by creating a new package diagram that represents the HLA hierarchy levels as a set of packages. Each package contains a BDD, a state-machine diagram and a sequence diagram.

The first package to be modeled in this hierarchy is LandingGearSystemL0 that describes the main system. This package shown in Figure 2.36 is composed of:

-A unique block called Landing Gear System which describes the main system.

-A state-machine diagram called Landing Gear System States which describes the behavior of the main system.

-A sequence diagram that shows the main functionalities and the life cycle of a landing gear system, that is to extend and retract a landing gear. To process in the HLA hierarchy, we create a second package called LandingGearSys-temL1 which encompasses the different entities and the composition relationship with their parent system.

The package LandingGearSystemL1 shown in Figure 2.37 contains the BDD describing the sub-systems, the state-machine diagrams for all the sub-systems (Pilote, Digital and Mechanical SubSystems) and the sequence diagram, an extract of it is shown (the full version can be found in [START_REF] Bougacha ; Bougacha | The Landing Gear System case study[END_REF]) which defines the Pilot/sub-systems process that refines the main system process.

To represent the main system behavior satisfaction by the sub-systems behaviors interplay, we use the HLA_refines link, presented in 3.1.1.1, between LandingGearSystemL0 and LandingGearSystemL1 to express that LandingGearSystemL1 refines LandingGearSystemL0 is decomposed and a new package is created for each sub-system and a HLA_decompose link is established between these new packages and the parent system package. Therefore, LandingGearSystemL1 is HLA_decompose into PiloteSubSystem, DigitalSubSystem and

MechanicalSubSystem. This hierarchy is represented in Figure 2.39. Each of the packages can then be described by a BDD, representing its structure and in particular its possible sub-systems, the state-machines associated to some blocks and a sequence diagram. -The PiloteSubSystem_Interface related to the Pilote SubSystem.

-The DigitalSubSystem_Interface related to the Digital SubSystem.

-The MechanicalSubSystem_Interface related to the Mechanical SubSystem.

-LandingGearSystemL1 is a refinement machine then LandingGearSystemL1_Refinement_Interface is created. This interface includes abstract variables coming from refining Land-ingGearSystemL0 which is lgState and its associated elements (INVARIANTS, INITIAL-ISATION, EVENTS, etc.).

Listing 22 shows the PiloteSubSystem_Interface which contains the variable pssState coming from LandingGearSystemL1 and representing the Pilote SubSystem and its asso- They were all automatically proved (100%).

Figure 2.41 -Project Status for landing gear system HLA Event-B specification

Conclusion

In this section, we have proposed the use of SysML extensions to be aligned with

Event-B refinement and decomposition mechanisms on the landing gear system case study in order to automatically translate SysML models of HLA to Event-B specifications.

The full specification of this landing gear system case study can be found in [START_REF] Bougacha ; Bougacha | The Landing Gear System case study[END_REF].

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

Requirements & high-level architecture alignment examples

In this section, we give an example of illustration of requirements & HLA alignment approach presented in Section 4 applied on the landing gear system case study. However, requirement & HLA alignment approach applied on the landing gear system case study is quite simple since each leaf goal is satisfied by only one message from HLA which does not give a sufficient explanation about how to use alignment kinds when a leaf goal is satisfied by more than one message from HLA. That is why, we enhance the landing gear example with a second example taken from the train control system case study presented in [Lamsweerde, 2008].

5.4.1

Example of alignment between landing gear system SysML/KAOS models and SysML HLA models

In this example we are interested to align the leaf goals putHandleDown and putHandleUp with messages of the HLA model. -First, a new Event-B machine called putHandleDown_Goal_Satisfaction_Interface is created.

-putHandleDown_Goal_Satisfaction_Interface refines PiloteSS_Interface machine presented in Listing 15 that contains the event putHandleDown.

-putHandleDown_Goal_Satisfaction_Interface gets from PiloteSS_Interface machine all variables involved in event putHandleDown (Rule 2 in Table 2.4).

-The goal putHandleDown is Satisfy with the message SwitchHandleDown, then the corresponding event are copied from the HLA Event-B specification machine Pi-loteSubSystemL1 presented in Listing 23 with the involved variable (hdState) and its associated typing invariants (Rules 3 and 4 in Table 2.4).

-The gluing invariant must be manually defined (Rule 5). The variables handleState, from the goal machine, and hdState, from the HLA machine, are linked since they represent the same entities but with a different viewpoint (goal or architecture).

-Event SwitchHandleDown refine with a ref keyword the event putHandleDown (Rule 6.1).

Listing 24 presents the Event-B specification of the putHandleDown_Goal_Satisfaction_Interface machine responsible for the satisfaction of the leaf goal putHandleDown. For the goal putHandleUp aligned with the message SwitchHandleUp, a second Event-B machine called putHandleUp_Goal_Satisfaction_Interface is created (Rule 1 in Table 2.4) as shown in Listing 25. The machine is defined as follows:

-putHandleUp_Goal_Satisfaction_Interface refines PiloteSS_Interface machine presented in Listing 15 that contains the event putHandleUp.

-putHandleUp_Goal_Satisfaction_Interface gets from PiloteSS_Interface machine all variables involved in event putHandleUp (Rule 2 in Table 2.4).

-putHandleUp is Satisfy with the message SwitchHandleUp. Therefore, we get from the HLA Event-B this event with all involved variables (hdState) and their associated typing invariant. (Rules 3 and 4 in Table 2.1)

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS -The gluing invariant is the same as in the previous case.

-Event SwitchHandleUp refines with a ref keyword the event putHandleUp (Rule 6.1). An extract of the Event-B formalization of the SysML/KAOS models of Figure 2.43 is shown in Listings 26 and 27. Following the formalization approaches presented in [Matoussi et al., 2011a, Tueno Fotso et al., 2018], the goal model is composed of many Recall that the execution order is determined by the numbers associated to the arrow.

REFINEMENT p u t

The Event-B formalization of these alignment links follows the defined rules in Section 4.3. To align the goal ProgressTrain with the HLA sequence diagram messages UpdateS-ignalToGo and MakeTrainProgress, we proceed as follows:

-First, a new Event-B machine called ProgressTrain_Goal_Satisfaction_Interface is 2.4).

-Then, ProgressTrain_Goal_Satisfaction_Interface refines TrainControllerL3 machine that contains the event ProgressTrain.

-ProgressTrain_Goal_Satisfaction_Interface gets from TrainControllerL3 machine (see Listing 27) all variables involved in event ProgressTrain (Rule 2 in Table 2.4).

-As the goal ProgressTrain is Milestone_Satisfy with the messages UpdateSignalToGo and MakeTrainProgress, the corresponding events are copied from the HLA Event-B specification (see Listing 29) with all the involved variables (signalState, TrainMouve-mentState) and their associated typing invariants (Rules 3 and 4 in Table 2.1).

-The gluing invariant must be manually defined (Rule 5). It is used to link the variables trainState, from the goal machine, and trainMouvementState, from the HLA machine, since they represent the same entities but with a different viewpoint (goal or architecture).

-Events UpdateSignalToGo and MakeTrainProgress refine with a ref_milestone keyword the event ProgressTrain (Rule 6.3).

Listing 30 presents the Event-B specification of the ProgressTrain_Goal_Satisfaction_Interface machine responsible for the satisfaction of the leaf goal ProgressTrain.

Conclusion

In this section, we have presented the use of the proposed model-based approach to align complex systems HLA models with SysML/KAOS requirements models on two extracts of case studies. The first example is taken from the landing gear system case study in which the use of alignment kind Satisfy is described between two leaf goals from the SysML/KAOS goal model each of which is aligned with only one HLA sequence diagram message. The second example is about an extract from the train control system case study where a presented leaf goal requires the sequential execution in a specific order of more than one HLA sequence diagram message. This implies the use of Milestone_Satisfy alignment kind. The Event-B formalization of these alignment links is produced following the defined rules. The semantics of the alignments links are given by these rules and the definition of new proof obligations can be discharged using AtelierB.

Conclusion

This chapter describes the methodology we propose that consists of a holistic process to define system HLA aligned with system requirements. First, we have presented the SysML/KAOS approach dealing with requirements modeling and their formal represen-

The previous chapter describes the high-level architecture modeling aligned with system requirements methodology, which is a three-steps methodology including the modeling and CHAPTER III. IMPLEMENTATION formal verification of system requirements, the process of modeling HLA using SysML extensions and its formalization into Event-B specification and finally the alignment method between HLA elements with system requirements. This chapter elaborates on the implementation of this methodology which is based essentially model-driven engineering and specifically model transformation technologies.

The remainder of this chapter is organized as follows: Section 1 describes some preliminaries required to the implementation of our methodology. Section 2 gives an overview about the implementation of the methodology. Finally, Section 3 presents our conclusion.

1 Preliminaries

Model Transformation

Model transformations are at the heart of the Model-Driven Engineering approach.

However there is still no consensus on how to define and implement a transformation.

In the literature, multiple approaches are proposed. is defined by a transformation engine that executes a set of transformation rules conforms to an transformation language which allows to transform a source model (conforming to its source meta-model) into a target model (conforming to its target meta-model).

Several transformation languages have been proposed for performing model transformations using the meta-modeling approach, including the MOF2.0 QVT 4 standard, the Kermeta language [START_REF] Muller | Weaving executability into object-oriented meta-languages[END_REF] and the ATL language [Bézivin et al., 2003, Bézivin et al., 2005]. In this thesis, we chose the QVT language. Indeed, Query View Transformation (QVT) is a defacto standard specification for model transformation standard published by OMG [Barendrecht, 2010]. Particularly, we focus on QVT-Operational (QVTo), introduced as part of the MOF (Meta Object Facility) standard (OMG, 2011).

Query View Transformation (QVT)

This transformation language, presented in [Barendrecht, 2010], is used to transform models. The name of the language suggests a three-part structure. The first part is named

Query because queries can be applied to a source model, an instance of the source metamodel. The second is the View, which is a description of how the target model should look like. The third part is the Transformation, which is the part where the results of the queries are projected on the view, and thereby creating the target model.

The QVT specification is based on MOF [START_REF] Omg | Meta Object Facility (MOF) 2.0 Core Specification[END_REF] and OCL (Object Constraint Language) [START_REF] Omg | THE OBJECT CONSTRAINT LANGUAGE SPECIFICA-TION VERSION 2[END_REF]. OCL is a formal language originally used to describe constraints in UML models. Nowadays, it can be used with any MOF meta-model. ization of these models is established using AtelierB [START_REF] Atelierb | [END_REF] which is an industrial tool that allows for the operational use of the B Method to develop defect-free proven software (formal software).

We limit our use of FORMOD tool only on SysML/KAOS goal model construction because it gives a good representation of goals and their hierarchy. However, this tool is not very stable yet and more complicated to use for modeling domain models and the translation into B system. We use OWLGrEd editor to define domain models associated with the goal models in order to give a better understanding about entities and concepts that participate in elaborating goals.

Usage scenario

The use of the methodology is applied on the case study that we presented in section 5.1. The user starts by designing the SysML/KAOS functional goal model, using the SysML/KAOS FORMOD tool. he should proceed as follows:

-First, the user should create the system goal model according to the SysML/KAOS goal modeling language. verLGforTakingOff). More details about the use of FORMOD can be found in [Tueno Fotso, 2019].

-Second, after modeling the SysML/KAOS goal model, the user can use OWLGrEd to define the domain models associated with each goal model level. LG is modeled as an instance of an individual named

LG individual of LandingGearSystem.

-Finally, once the goal model and its corresponding domain models are designed, the user can formalize these models into Event-B using the AtelierB tool.

HLA modeling and formalization

The second step of this methodology is about modeling HLA and its formalization into Event-B. First a HLA modeling of the corresponding system should be produced and then [START_REF] Eclipse | Eclipse ide. Website www. eclipse[END_REF] in which we integrated Papyrus Modeling Environment [START_REF] Papyrus | Eclipse Papyrus Modeling environment[END_REF] that provides a graphical editing tool and extension mechanisms. We used also Eclipse Modeling Framework (EMF) [START_REF] Steinberg | EMF: eclipse modeling framework[END_REF] to create meta-models. Finally, the HLA models translation into Event-B is implemented using the QVT transformation language.

Eclipse Modeling Framework (EMF)

The EMF project is a modeling framework and code generation facility for building tools. Using MDE, it allows to develop and manage the whole application life cycle based on the transformation of models which are conformed to meta-models. Then, the model is used to generate software artifacts, which will implement the real system. From a model specification described in XMI 1 , EMF provides tools and runtime support to produce a set of Java classes for the model, a set of adapter classes that enable viewing and commandbased editing of the model, and a basic editor.

Its fundamental concepts are:

-EMF Core: The core EMF framework includes a meta-model (Ecore) that describes 1. XMI, XML-based Metadata Interchange, is an interchange format for metadata defined in terms of the MOF standard. In addition to supporting the exchange of complete models, XMI supports the exchange of models in differential form -EMF.Edit: the EMF.Edit framework includes generic reusable classes for building editors for EMF models. It provides content and label provider classes, property source support, and other convenience classes that allow EMF models to be displayed using standard desktop viewers and property sheets.

-EMF.Codegen: The EMF code generation facility is capable to generate everything needed to build a complete editor for an EMF model. It includes a user guide interface from which generation options can be specified, and generators can be invoked.

The generation facility leverages the JDT (Java Development Tooling) component of Eclipse.

The most advantage of using EMF is that it is free and open source. It can generate efficient, and easy implementation code from a model specification. Besides, models in EMF can be defined in different ways, for example, Java Interfaces, the UML Class Diagram, the XML Schema, etc...

Papyrus Modeling Environment Overview

Papyrus [START_REF] Papyrus | Eclipse Papyrus Modeling environment[END_REF] is an environment for editing any kind of EMF models, particularly supporting UML 2 (Unified Modeling Language (UML) version 2.4.1) [START_REF] Omg | OMG unified modeling language[END_REF] and related modeling languages such as SysML [START_REF] Omg | OMG systems modeling language, version 1.3[END_REF] and MARTE [OMG, CHAPTER III. IMPLEMENTATION 2008]. Papyrus also offers very advanced support for UML profiles that enables users to define editors for DSLs (Domain Specific Languages) based on the UML 2 standard.

Papyrus is a collection of plug-ins and features on top of the Eclipse Modeling Framework that allow to provide several techniques:

-UML: Papyrus is a graphical editing tool for UML 2 as defined by the OMG.

-SysML: Papyrus supports also SysML in order to enable model-based system engineering.

-Model execution: Papyrus can execute models using a rich and extensible animation and simulation framework with MOKA [START_REF] Papyrus | Papyrus[END_REF].

All Papyrus modeling features are designed to be customizable and to maximize reuse. Therefore, it is possible to adapt the standard Papyrus configuration for a specific domain, modeling practice, notation, use the powerful customization mechanisms of Papyrus to adapt the Papyrus modeling environment to satisfy different needs.

UML profiles

The UML profiles [START_REF] Fuentes-Fernández | An introduction to UML profiles[END_REF]

CHAPTER III. IMPLEMENTATION

the stereotype Refines_Message to be distinguished as a refinement message and this stereotype has an attribute called Refined_Message of type Message to which we will associate the refined message to the Refines_Message one.

HLA modeling usage scenario

To graphically model HLA of the case study the user should proceed as follows:

-First, the user should create a new Papyrus project (see Figure 3.9) and give it the type SysML 1.6 (see Figure 3.10).

-Then the user should add the SysML extensions profiles to the applied profiles of the project (see Figure 3.11).

-After that, the user should model the HLA step by step as illustrated in Section 5.3 by creating the first package and its components then the packages associated to the sub-systems and establish refinement and decomposition customization link between different packages. EMF is driven by meta-models which can be specified in different formats: Ecore model, Rose .mdl model, XSD Schema, MOF, etc. In our work, we use Ecore models to specify our meta-models. To create our meta-model, we start by creating the new EMF Model File (Ecore File). For that, we need to define the Name and the Namespace URI relative to the model, which is used to identify it. This is done in the properties view. Then we add a new Child Element of type Class into the model with the name Event-B_SPEC.

As shown in Figure 3.12, Event-B_SPEC presents the root element with a composition link with all other classes. A total of 17 classes with associated relationships with other classes were defined in this meta-model to represent the Event-B notations. After the graphical modeling of the system HLA using the extended SysML, the verification and the detection of design errors and the correctness of this HLA are crucial. Consequently, we need to transform extended SysML diagrams used for HLA into Event-B model containing concepts that could generate elements of Event-B notation supported by AtelierB.

To this end, the mapping suggested proposes, at a first step, a model-to-model transformation between SysML meta-model, enriched with refinement and decomposition mechanisms, and the proposed Event-B meta-model. Therefore, our approach opts for modelto-model transformation implemented using QVT transformation language.

To perform this transformation, at first, we need to collect the two meta-models which are based on EMF and contain the meta-classes required for drawing this transformation.

Then, we can proceed to define the model-to-model transformation. In the following, we will give an overview on how we implemented our mapping rules. Figure 3.14 presents the transformation architecture of our implementation. It is composed of a main module and three communicating sub-modules dedicated to transform contexts, machines and associated decomposition. Note that, the main module is responsible for the stimulation of the sub-modules. Listing 32 -Model2EventBSpec() mapping rule implementation

Listing 33 presents an extract of the implementation of the mapping rule responsible for the transformation of the refinement SysML extension following these steps:

-First of all, this part of code selects all messages with an applied Refines_Message stereotype (Lines 1 and 2).

-Then, for each selected message, it gets the Refined_Message attribute value of the stereotype and affect it to a temporary variable that we called mess. (see Lines 3 to 8).

Note that, for this part of implementation, refinement between machines is already established.

-After that, we associate the event related to the selected message (message) from the machine called mac with the event associated to Refined_Message attribute value (mess) from the refined machine mac._refines. (see Lines 10 to 12) -Finally, once the refinement between the two events is established, the event associated to the selected message gets from the refined event each of their actions. (see < machines name =" Lan di ng Gea rS ys tem L 1" sees ="// @contexts .0 // @contexts .6" refines ="// @machines .1" Shared _ Event _ Decomp _ Components ="// @machines .7 // @machines .10 // @machines .12" > < variables name =" dssState " associatedTo ="// @machines .0/ @invariant .0"/ > < variables name =" mssState " associatedTo ="// @machines .0/ @invariant .1"/ > < variables name =" pssState " associatedTo ="// @machines .0/ @invariant .

Requirements & high-level architecture alignment

The final step of this methodology aims to align requirements models with HLA models in order to establish traceability between these two entities. It also intents to give a formal specification of these alignment links. We recall that in our methodology, for the In our methodology, we have opted for the second solution while already our HLA modeling is based on SysML and its proposed extensions and also, SysML/KAOS is based on SysML extended with KAOS concepts. Adding to that, the second solution is more light-weight solution than the first one because there is no need to upload all the FOR-MOD project while we don't need all its proposed features. We are, only interested in SysML/KAOS goal model. Figure 3.17 and it takes the root of the Event-B model of type "EventB_Spec" as a parameter.

-Listing 39 presents an extract of the implementation of the mapping rule called Model2SatisfactionMachine (spec) responsible for the transformation of alignment links. First of all, this part of code selects all Abstraction links with an ap-the life cycle of complex systems from requirements to HLA. The integration with the Eclipse Platform allows indeed the exploitation of all features offered by the Eclipse Java IDE.

CHAPTER IV. CONCLUSION AND PERSPECTIVES

Eclipse environment allowing designers to easily manage requirements modeling, HLA modeling and formal specification generation and mainly establishing alignment between these entities. More precisely, it enables to verify the consistency and correctness and gives a formal and rigorous reasoning of requirements and HLA using an automatic mappings of SysML/KAOS models and HLA models to Event-B formal specification. After that, mechanisms to establish graphically and formally alignment between HLA and requirements entities in order to prove the traceability between them is implemented. This implementation is presented as an Eclipse plugin which allows graphical modeling and the formalization of these models. However, this implementation lacks of formal basis about the used meta-models and applied

transformations.

An illustration of this methodology was applied on the landing gear system case study enhanced with a second example taken from the train control system case study. Through this work, new problems have been emerged leaving wide horizon for other researches.

Limitations and perspectives

The experience that has been gained from the proposed methodology helps us to direct the further research in HLA specification, formal verification and traceability. Therefore, we present some directions for future work:

-This work only considers functional properties of requirements and HLA. In particular we do not consider non-functional properties of systems. For the sake of completeness, an extension of our methodology would be to investigate these non-functional properties integration. This integration process should follow the methodology steps which consists in graphically modeling these properties in the requirements and HLA models and formalizing them.

-The proposed mappings from HLA models to Event-B formal specifications are only in this direction. Consequently, this translation supports only HLA modeling updates to be propagated on the Event-B specification. However, when updates are produced directly on the Event-B specification they are not propagated to the HLA models. To deal with this issue, defining bidirectional translation would be beneficent to propagate updates in the two directions. This bidirectional process provides traceability between HLA models and Event-B specifications and allows

CHAPTER IV. CONCLUSION AND PERSPECTIVES

to identify errors on the original HLA models and vice versa.

-Our methodology proposes models translation steps that are described using QVT and Acceleo model transformation languages. However, these languages are not formal whereas a formal context is crucial in the scope of safety-critical system. Therefore, formally defining the rules in Event-B and discharging the associated proof obligations allows to prove their consistency, to animate them using ProB which

shows the one to one mapping and to reveal several constraints that were missing when designing the rules informally or when specifying the meta-models. Another solution could be to use EB4EB, an Event-B based modelling framework allowing to manipulate Event-B features explicitly based on meta-modelling concepts.

It preserves the core logical foundation, including semantics, of original Event-B models. [START_REF] Riviere | EB4EB: A framework for reflexive Event-B[END_REF].

-HLA and requirements alignment is discussed and proposed in the methodology with three kinds of satisfaction links. This traceability allows only to link requirements to HLA elements responsible for their satisfaction, however, the impact of updates on requirements models and/or HLA models on other models and on established alignment links is not yet supported by our methodology.

-Our proposed methodology is limited to the requirements and HLA stages. However, supporting other software development life cycle stages has also been a prominent area of research for ensuring correctness of all systems artefacts. It is well known that not all desired requirements and properties of a system may be verified only at the requirements and HLA stages. We therefore propose, as future work, to support all system development life cycle stages such as other levels of the architecture, development, testing, deployment etc... and their formal specification.

-A digital twin [IBM, 2019] is a virtual representation of an object or system that covers its life cycle and allows to understand and predict its performance characteristics.

It is updated from real-time data and uses simulation, machine learning and reasoning to aid decision-making and early errors prediction. Digital twins can show the impact of design changes, usage scenarios, environmental conditions, and countless other variables. This eliminates the need for physical prototypes, reducing development time and improving the quality of the final product or process. Digital twins could be a beneficial solution for safety-critical systems which require a high level of integrity and strong risks management guarantees while it allows to predict risks on

Introduction

Les systèmes complexes sont un ensemble de sous-systèmes reliés entre eux de manière significative pour représenter un tout intégré. La conception de l'architecture de haut niveau de tels systèmes devrait tenir compte des interrelations entre les sous-systèmes.

Les systèmes complexes sont considérés comme critiques pour la sécurité. Cependant, les outils traditionnels de conception graphique sont semi-formels, ce qui ne permet pas le ✓ SysML est bien recommandé par les partenaires du projet TFA ✓ Event-B est spécialisé dans la modélisation de systèmes et a été utilisé dans des applications de systèmes critiques pour la sureté telles que les lignes du métro parisien [START_REF] Behm | A successful application of b in a large project[END_REF], Abrial, 2006] ✓ Les mécanismes de raffinement et de décomposition de SysML/KAOS sont bien adaptés à Event-B.

Cette phase est composée de deux étapes :

• Tout d'abord, une modélisation graphique des exigences du système sous la forme d'une hiérarchie de buts est réalisée en utilisant la modélisation SysML/KAOS et des modèles de raffinement. Ensuite, ces modèles de buts sont enrichis par des modèles de domaine qui définissent la structure du système et les concepts utilisés pour définir les buts.

• Deuxièmement, une formalisation en Event-B de ces modèles de but et de domaine est effectuée.

Une étape de vérification formelle utilisant des démonstrateurs Event-B, des vérificateurs de modèles et des animateurs est appliquée sur la spécification formalisée pour prouver l'exactitude et la cohérence des exigences du système.

La Modélisation de HLA en SysML: Correspond à la définition du HLA des systèmes complexes critiques qui doit être validée par des experts du domaine et sa traduction en

Event-B spécification formelle pour prouver sa correction et cohérence.

Pour mener à bien cette phase, un processus en deux étapes est effectué:

• Tout d'abord, une modélisation graphique de HLA dans une hiérarchie système/soussystème en couches est présentée en utilisant les mécanismes d'extension de SysML que nous avons définis.

• Deuxièmement, une traduction automatique des modèles HLA en modèles Event-B est établie.

Les résultats présentés dans cette phase ont été publiés dans [START_REF] Bougacha ; Bougacha | The Landing Gear System case study[END_REF], Bougacha et al., 2022a]. -La deuxième étape consiste à traduire les diagrammes SysML en modèles Event-B.

Alignment

Cette traduction de modèle est mise en oeuvre à l'aide de trois ensembles de règles:

un ensemble pour les éléments liés à un package; un ensemble pour les extensions de raffinement SysML; un ensemble pour les extensions de décomposition SysML.

Cette étape se déroule en deux phases.

-Une transformation de modèle à modèle pour implémenter les règles ci-dessus.

Il prend en entrée le méta-modèle étendu de SysML et produit en sortie un modèle Event-B conforme au méta-modèle de Event-B.

- Le processus est composé de deux étapes : -La modélisation de l'architecture de haut niveau. (répondre à une partie de la question de recherche QR1 traitant la partie fonctionnel de la modélisation de HLA).

-La proposition de mécanismes de raffinement et de décomposition pour maîtriser la complexité des modèles de HLA (répondre à la question de recherche QR2).

-Formalisation de l'architecture de haut niveau avec Event-B (répondre à la question de recherche QR3).

-Alignement de l'architecture de haut niveau avec les exigences systèmes (répondre à la question de recherche QR4).

-Implémentions de la méthodologie.

Une illustration de cette méthodologie a été appliquée sur l'étude de cas du système de train d'atterrissage enrichi d'un deuxième exemple de l'étude de cas du système ferroviaire.

Figure 2 .

 2 28 Event-B specification context. 10 The root level of Figure 2.28 Event-B specification machine.

•

 Structural diagrams • Block Definition Diagram (BDD): In SysML it defines features of blocks and relationships between blocks such as associations, generalizations, and dependencies. It captures the definition of blocks in terms of properties and operations, and relationships such as a system hierarchy or a system classification tree. Internal Block Diagram: It is based on the UML composite structure and it specifies a structural aspect of the model. It is related to both the BDD and the parametric diagram and describes the internal structure of a block. -Behavioral diagrams • Activity Diagram: It shows the flows of data and control between actions.

Figure 1 .

 1 Figure 1.2 presents the extensions of SysML. Grey boxes represent the initial SysML concepts, while the white boxes represent the extended KAOS concepts. This figure presents a meta-model of SysML/KAOS.

Figure 1 . 2 -

 12 Figure 1.2 -Meta-model of the extended SysML[START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF]

 The proposed rules allow to generate an Event-B model whose structure reflects the hierarchy of the model of functional goals: a component is associated with each level of refinement of the hierarchy. This component defines the skeleton of an event for each goal of the level of refinement. The Event-B transformation of refinement patterns associated with goals is based on the classical set of inference rules from Event-B.

 specialized in modeling dynamic systems, which has been used in safety-critical systems such as the Paris Metro line. As an evolution of the B-Method (called Classical B) [Abrial and Hoare, 1996], it specifies discrete systems based on mathematical notations, predicate logic and set theory. It is used to model systems, which could contain different types of components: software, hardware or humans, and to define the interactions between these components. An Event-B specification is composed of a set of elements of two kinds: Machine and Context. The Machine represents the dynamic part of the model and it regroups the behavioral properties of the system whereas the Context contains the static part of the model. A model can contain machines only, or contexts only, or both.

Figure 1 . 5 -

 15 Figure 1.5 -Event-B components structure

Figure 1

 1 Figure 1.6 -Shared Variables Decomposition

Figure 3

 3 Figure 1.7 -Shared Events Decomposition

Figure 1

 1 Figure 1.8 -[Fotso et al., 2018c] Event-B model decomposition

 present a model-based methodology named MeMVatex for requirements expression, traceability and verification. The methodology relies on the Electronic Architecture & Software Tools -Architecture Description Language (EAST-ADL2) framework and two of the UML profiles: MARTE for real-time embedded systems and SysML for system requirements modeling. The methodology defines the different models used at each abstraction level of the process. The results are a requirement model and a solution model which relates to the requirements. From the EAST-ADL2 framework, a decomposition of the design process into abstraction levels is adopted. For each level, requirement models and solution models are separately built. The real-time aspects and non functional constraints are modeled within the UML MARTE profile. V&V techniques can then be connected to these models to express the satisfaction of the requirements by the proposed solution. Traceability management mechanisms defined in this approach are used for relating requirements of the same abstraction level, requirements through successive abstraction levels and requirements to other elements from solution models or V&V means. Traceability links used in MeMVaTEx are those proposed by SysML, but they concern MeMVaTEx requirement and design elements from SysML. In a same EAST-ADL2 level, requirements can only have «DeriveReqt» dependency relationship between requirements for a requirement A (the client) refined into a requirement B (the supplier) and the requirement containment relationship for the decomposition of a parent requirement into several ones. For considering requirements of different levels, the previous relationships

 «satisfies» traces are established automatically based on architecture verification and reasoning over existing traces. It relates a set of architectural elements to a single requirement. The «satisfies» traces are established after verifying the requirement over the architectural model.

 The RM-RNL can eliminate the ambiguity of NLRs and barely change engineers habits of requirement specification. Second, it presents a method to automatically generate the initial AADL models from the RM-RNLs and to automatically establish traceability links between the elements of the RM-RNL and the generated AADL models. Third, the initial AADL models are refined through patterns to achieve the change of requirements and traceability links. This paper focuses on three traceability scenarios. The first traceability scenario (TS-1) is based on the RM-RNL, which automatically generates the AADL models and requirement traceability links through model transformations. TS-2 describes the requirement changes, that is, change the elements of the RM-RNL; therefore, the AADL CHAPTER I. LITERATURE REVIEW models and the traceability links should be regenerated. TS-3 describes the refinement of the AADL models. It should maintain the change of the requirements and the traceability links at the same time. To establish these links, requirement traceability information model called RAInterM is created. RAInterM defines a "TraceType" enumeration to specify links types, which are: «Generation automatically» which relates the component to a requirement through model transformation. «ImplementedBy» relates requirement to system fragments, implementation plans, code source, etc. «MappedTo» relates requirement to a particular attribute, operation, state, or value of the artifact. «Satisfy» which relates requirement to the component that fulfills it, «Refine» which relates a requirement to its refined requirement and finally «Verify» which relates requirements to test cases.In this approach the process of automatically generate the requirement traceability links actually consists of three steps. First, Traceability links are established between the RM-RNL and the RAInterM model. Then, Traceability links are established between a RAInterM model and the AADL models. Finally, Traceability links are established between the RM-RNL and the AADL models through merging the generated traceability links in the former two steps.

Figure 2 .

 2 Figure 2.1, composed of three phases: (1) SysML/KAOS Modeling, (2) SysML HLA Modeling and (3) Alignment.

 Figure 2.2 presents an overview of the process of modeling HLA and its formalization into Event-B models.

Figure 2 . 2 -

 22 Figure 2.2 -HLA modeling and formalization approach

 1. A model-to-model transformation to implement the above rules. It takes as input the SysML extended meta-model and it produces as output an Event-B model conform to the Event-B meta-model.2. A model-to-text transformation to generate Event-B textual formal specifications. This textual specification can be introduced into provers such as AtelierB [AtelierB, 1990], model-checkers and animators such as ProB [ProB,

 have chosen to represent HLA by four SysML diagrams: package, block definition, state-machine and sequence diagrams. This choice is based on the description presented in the SysML for systems engineering book [Holt and Perry, 2008]: -Package diagram: Its main use is to show high-level relationships between groups of things in a model. It is used to display the way a model is organized in the form of a package containment hierarchy. -Block Definition Diagram (BDD): It is the most widely used diagram in SysML for CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS modeling the static structure of a system. It is also the richest diagram in terms of the amount of syntax available to the modeler. It also allows to adopt design techniques for creating extensible system HLA structures, a practice that masters the complexity and to change the design as stakeholders needs evolve. As with all SysML diagrams, it is not necessary to use every piece of syntax, as experience has shown that 80 % of any modeling task can be achieved by using approximately 20 % of block definition diagram syntax. -State-machine diagram: it is one of the most widely used diagrams to describe statedependent behavior of an object. State-machine diagrams are usually applied to any element that has behavior such as: actors, use cases, methods, subsystems, systems etc. They are typically used in conjunction with sequence diagrams and have very strong relationships with BDDs.

 CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS 3.1.1.1 Package diagram and its extensions Package diagram is a static structural diagram that shows the relationships among packages and their contents. It allows to group the structures of a model and defines high level relationships between these groupings. This diagram encompasses two main elements:

Figure 2 .

 2 Figure 2.3 shows an example of package diagram that encompasses a set of packages related between each other using a dependency relationship.

Figure 2 . 3 -

 23 Figure 2.3 -Package diagram example

Figure 2 . 4 -

 24 Figure 2.4 -SysML extended package diagram meta-model

A

 Relationship relates together one or more blocks. It participates in describing the structure of a system, sub-system or component. In SysML, block relationships encompass many types of links. To model HLAs, we are interested in two types of relationships: Association and Composition. These concepts come from UML class diagrams, with the same semantics. The extract of BDD meta-model, used for HLA modeling, is presented in Figure 2.6. It can encompass one or more blocks related to each other using associations. Inheritance is expressed by the reflexive association subBlock/superBlock. An association has two ends, also called roles, represented by the AssociationEnd class and linked to a block by the characBlock association. The Characteristic class groups the common characteristics of the Association End. The characMultMin and characMaxMult attributes describe the minimum and maximum multiplicities of a role or an association. An association Block is represented by a link of the association assocBlock.

Figure 2 .

 2 Figure 2.7 presents an example of the BDD diagram of the ATO over ERTMS case study excerpt. Block ATOoETCS_GOA2System is the main system and is composed of two subsystems Track and OnBoard related to the main system with a composition association. A

Figure 2 .

 2 Figure 2.7 -BDD example

 Figure 2.8. It is composed of 0 or CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS more states identified by a name and transitions represented by the triggering event name.

Figure 2 . 8 -

 28 Figure 2.8 -SysML State-machine diagram meta-model

Figure 2 .

 2 Figure 2.9 -State-machine diagram example

Figure 2 .

 2 Figure 2.10 shows an example of a sequence diagram of the OnBoard system. It shows the elements involved in a execution scenario namely Driver, ATOonBoard etc., as well as

Figure 2 .→

 2 Figure 2.10 -Sequence diagram example

Figure 2 .

 2 Figure 2.12 illustrates the use of the proposed sequence diagram extension applied on ATO over ERTMS case study excerpt [Bougacha et al., 2022a]. Excerpt (1) describes the sequence diagram of Component RS of type Railway System with Message EnableSystem. Excerpt (2) shows Message (Activate) exchanged between Components Driver and

Figure 2 .

 2 Figure 2.11 -Extract of SysML extended sequence diagram meta-model

Figure 2 . 2

 22 Figure 2.12 -Example of the sequence diagram extensions

3. 2

 2 .1.1 Event-B meta-model Our proposed Event-B meta-model is shown in Figure 2.14. It presents EventB_SPEC as the root meta-class. This meta-class defines an Event-B specification. It is composed of zero or more CONTEXT and zero or more MACHINE.

Figure 2 .

 2 Figure 2.14 -Event-B meta-model

Tables 2 .

 2 1 and 2.2 summarized the rules that translate all the elements of a package, which includes package diagram, BDD, state-machine diagram, sequence diagram elements.

Figure 2 .

 2 Figure 2.15 shows an example of the translation of an association called interactsWith between the Pilot and the OnBoard subsystem. The Event-B formalization of this association shown in Listing 1 is presented as a bijective function between the sets PILOT and OnBoard created from the corresponding elements of HLA.

Figure 2 .

 2 Figure 2.15 -Association translation rule example SYSTEM A T O o E T C S _ G O A 2 S y s t e m L 1 _ C O N T SETS ...; OnBoard ; PILOT CONSTANTS pilot , onboard , interactsWith , ... PROPERTIES interactsWith ∈ PILOT → OnBoard ... END Listing 1 -Example of a translation rule for an association.

Figure 2 .

 2 Figure 2.16 -Decomposition extension translation to Event-B

Section 3 . 2 . 1 . 2 .

 3212 Figure 2.17 -SysML to Event-B translation rules application example

3)-

 3 States of the state-machine diagrams (framed in pink), such as orderOnBoardForATO-Driving from the state-machine diagram OnBoard States, are mapped into constants orderOnBoardForATODriving such that orderOnBoardForATODriving ∈ OnBoardStates.

3)-Listing 2 -Listing 3 -

 323 Variable atooveretcsgoa2State comes from the refined machine ATOoETCSGoA2_Interface. (Machine refinement rule in Section 3.2.1.2) -Sequence diagram messages (framed in purple) related to state-machine diagram transitions such as SetTrackForATODriving are mapped to events such as SetTrackFo-rATODriving in the machine. (rule 7 in Table 2.3) -The guard and action of the event are related to the source and target states of the transition associated to the sequence diagram message. We give for example the guard: CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS trackState(track) = orderTrackForManualDrinving and the action: trackState(track) := orderTrackForATODriving. (Guards and actions calculation rules in Section 3.2.1.2). -The guard of the event is related to sequence diagram combined fragment constraints and to the message that precedes the current message (see Section 3.2.1.2). The guard associated to the event SetTrackForATODriving is: onboardState(onboard)=orderOnBoardForATODriving. (Guards and actions calculation rules in Section 3.2.1.2). -As shown in the sequence diagram, the message SetOnBoardForATODriving Refines_Message the message SetATO from the parent system sequence diagram. Therefore, this is translated in the Event-B specification by: SetOnBoardForATODriving ref SetATO. The event SetOnBoardForATODriving redefines from event SetATO all its guards and actions. (Event refinement rule in Section 3e r T r a c k F o r A T O D r i v in g PROPERTIES onboard ∈ OnBoard ∧ track ∈ Track ∧ ... o r d e r O n B o a r d F o r A T O D r i v i n g ∈ OnBoardStates∧ o r d e r T r a c k F o r A T O D r i v in g ∈ TrackStates∧ END SysML to Event-B translation rules application example context. REFINEMENT ATOoverETCSGoA2 REFINES A T O o v e r E T C S G o A 2 _ I n t e r f a c e SEES A T O o ve r E T C S G o A 2 _ C O N T , RailwaysSystemL1_CONT , R a i l w a y s S y s t e m L 0 _ C O N T VARIABLES onboardState , trackState , a to o v e r e t c s g o a 2 S t a t e INVARIANT onboardState ∈ OnBoard → OnBoardStates ∧ trackState ∈ Track → TrackStates INITIALISATION onboardState :∈ { onboard } → OnBoardStates ∥ trackState :∈ { track } → TrackStates ∥ a t o o v e r e t c s go a 2 S t a t e :∈ { atooveretcsgoa2 } → A T O o v e r E T C S G o A 2 S t a t e s EVENTS S e t T r a c k F o r A T O D r i v i n g = SELECT onboardState (onboard) = o r d e r O n B o a r d F o r A T O D r i v i n g ∧ trackState (track) = o r d e r T r a c k F o r M a n u a l D r i n v i n g THEN trackState (track) := o r d e r T r a c k F o r A T O D r i v i n g END ; S e t O n B o a r d F o r A T O D r i v i n g ref SetATO = SELECT onboardState (onboard) = o r d e r O n B o a r d F o r M a n u a l D r i v i n g ∧ a t o o v e r e t c s go a 2 S t a t e (atooveretcsgoa2)= manualDriving THEN onboardState (onboard) := o r d e r O n B o a r d F o r A T O D r i v i n g ∥ a t o o v e r e t c s go a 2 S t a t e (atooveretcsgoa2):= ATODriving END END SysML to Event-B translation rules application example context.

Figure 2 .Figure 2 .

 22 Figure 2.19 -SysML/KAOS specification process

Figure 2 .

 2 Figure 2.21 represents the SysML/KAOS domain model associated with the root level of the goal diagram (Figure 2.20). The ATOoETCS_GOA2 entity is modeled as a concept named ATOoETCS_GOA2System. The possible states of a ATOoETCS_GOA2 are modeled as an instances of attribute named ATOoETCS_GOA2SystemStates, which contains two instances of DataValue of type STRING: manualDriving and automaticDriving. atooetcs_goa2 is modeled as an instance of an individual named atooetcs_goa2 individual of ATOoETCS_GOA2System.

Figure 2 .Listing 4 -Listing 5 -

 245 Figure 2.20 -Excerpt from the steam-boiler control system SysML/KAOS goal model

 .

Figure 2 .

 2 Figure 2.22 -Alignment meta-model

 Figure 2.23 -Graphical alignment example

Figure 2 .Figure 2 .

 22 Figure 2.24 illustrates how this new machine is built for a leaf goal LG which is

4 -

 4 First four translation rules for alignment links -Rule 2. This rule aims at copying the variables E_vg i (i ∈ [1..n]), involved in the event E_LG corresponding to the leaf goal LG to satisfy from the machine E_G_M, in the alignment machine of LG called E_LG_Goal_Satisfaction_Interface. -Rule 3. M j (j ∈ [1..p]) are the messages of the HLA model responsible for the satisfaction of the leaf goal LG. E_M j (j ∈ [1..p]) are the corresponding Event-B

 CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS the domain model. They give the structural part (CONTEXTS, VARIABLES and IN-VARIANTS) of the Event-B machine E_G_M. Likewise, in the HLA model translation presented in 3.2.1.2, the source and the target lifelines of a sequence diagram message are associated to blocks in the BDD. They give the VARIABLES and INVARIANTS part of

Figure 2 .

 2 25 shows the alignment of the events MakeOnBoardForATODriving and MakeTrackForATODriving respectively by the sequence diagram messages SetBoardForAutomatic and SetTrackForAutomatic. In this example, we are interested to formalise the alignment of the leaf goal MakeOnBoardForATODriving into Event-B. To aim, this formalisation, we give the Listing 6 which gives the Event-B machine that contains the leaf goal OnBoard_Interface to satisfy and Listing 7 which gives the Event-B machine that contains the message from HLA that satisfies the leaf goal called ATOoETCS_GOA2System2. Listing 8 shows the generated Event-B specification of the alignment through the application of rules described in Section 4.3 and presented in Table 2.5.

Figure 2 .

 2 Figure 2.25 -Event-B architecture of the proposed alignment

 CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS the goal machine Onboard_Interface, and onboardHLAState, from the HLA machine ATOoETCS_GOA2System2, are linked since they represent the same entities but with a different viewpoint (goal or architecture). (rule 5 presented in Section 4.3).-Event SetBoardForAutomatic refines with a ref keyword the event MakeOnBoardFo-rATODriving (Rule 6.1 presented inSection 4.3).SYSTEM OnBoard _Interfa ce SEES ATOoETCS_GOA2SystemL1_CONT , A T O o E T C S _ G O A 2 S y s t e m L 0 _ C O N T AB ST RA CT_ VA RI ABL ES onboardState , ... EVENTS M a k e O n B o a r d F o r A T O D r i v i n g ref_milestone MoveTrainOnGOA2 B o a r d F o rA u t o m a t i c = SELECT onboardState (onboard)= B o a r d F o r M a n u a l D r i v i n g THEN onboardState (onboard):= B o a r d F o r A u t o m a t i c D r i v i from HLA ATOoETCS_GOA2System2 REFINEMENT M a k e O n B o a r d F o r A T O D r i v i n g _ G o a l _ S a t i s f a c t i o n _ I n t er f a c e REFINES OnBoar d_Interf ace CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS SEES ATOoETCS_GOA2SystemL1_CONT , ATOoETCS_GOA2SystemL0_CONT , ATOoETCS_GOA2SystemL1HLA_CONT , A T O o E T C S _ G O A 2 S y s t e m L 0 H L A _ C O N T AB ST RA CT_ VA RI ABL ES onboardState , onboardHLAState INVARIANT onboardState ∈ OnBoard → OnBoardStates /**** From goal specification ****/ ∧ OnBoardHLAStates ∈ OnBoardStates → OnBoardStates /**** From HLA specification ****/ ∧ OnBoardHLAStates [OnBoard]= B o a r d F o r A u t o m a t i c D r i v i n g ⇒ onboardState [OnBoard]= B o a r d F o r A u t o m a t i c D r i v i n g // gluing Invariant . ∧ OnBoardHLAStates [OnBoard]= B o a r d F o r M a n u a l D r i v i n g ⇒ onboardState [OnBoard]= B o a r d F o r M a n u a l D r i v i n g // gluing Invariant . INITIALISATION OnBoardHLAStates , OnBoardStates :(onboardState ∈ OnBoard → OnBoardStates /**** From goal specification ****/ ∧ OnBoardHLAStates ∈ OnBoardStates → OnBoardStates /**** From HLA specification ****/ ∧ OnBoardHLAStates [OnBoard]= B o a r d F o r A u t o m a t i c D r i v i n g ⇒ onboardState [OnBoard]= B o a r d F o r A u t o m a t i c D r i v i n g // gluing Invariant . ∧ OnBoardHLAStates [OnBoard]= B o a r d F o r M a n u a l D r i v i n g ⇒ onboardState [OnBoard]= B o a r d F o r M a n u a l D r i v i n g // gluing Invariant . EVENTS S e t B o a r d F o r Au t o m a t i c ref M a k e O n B o a r d F o r A T O D r i v i n g = SELECT onboardState (onboard)= B o a r d F o r M a n u a l D r i v i n g THEN onboardState (onboard):= B o a r d F o r A u t o m a t i c D r i v i n g END END Listing 8 -Event-B formalization of the goal MakeOnBoardForATODriving alignment link.

 The landing sequence proceeds as follows: open the doors of the landing gear boxes, extend the landing gears and close the doors. After taking off, the retraction sequence to be performed is: open the doors, retract the landing gears and close the doors. The landing gear system architecture is composed of three parts: CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS -The pilot interface. It is used to command the retraction and outgoing of gears. An Up/Down handle is provided to the pilot. When the handle is switched to Up the retracting landing gear sequence is executed, when the handle is switched to Down the extending landing gear sequence is executed. -The mechanical part. It is composed of three landing sets: front, left and right sets. Each set is composed of a landing gear uplock box, and a door with two latching boxes in the closed position. The landing gears and doors motion is performed by a set of actuating cylinders. The cylinder position corresponds to the door or landing gear position (when a door is open, the corresponding cylinder is extended). These cylinders perform using hydraulic power provided by a set of electro-valves. -The digital part. It is composed of two identical computing modules. Each one executes in parallel the same control software. This software is in charge of controlling gears and doors.

Figure 2 .Figure 2 .

 22 Figure 2.26 -Landing gear system architecture

 The landing and retraction sequences proceed as follows: stimulate the general electro-valve (StimulateGeneral_Ev), open the doors of the landing gear boxes (makeDoorsOpen, extend/retract the landing gears (makeGearsExtend/ makeGearsRetract) and close the doors (makeDoorsClose) and finally stop the stimulation of the general electro-valve (StopGeneral_EvStimulation).

Figure 2 .

 2 Figure 2.27 -The landing gear system SysML/KAOS goal diagram

Figure 2 .∧

 2 Figure 2.28 -SysML/KAOS root level goal model and corresponding domain model

Figure 2 .

 2 Figure 2.28 represents the root level of the landing gear system goal model and its associated domain model. The landing gear system entity is modeled as an instance of concept

Figure 2 .

 2 Figure 2.29 -SysML/KAOS first refinement level goal model and corresponding domain model

Figure 2 .

 2 Figure 2.30 -SysML/KAOS root level goal model and corresponding domain model

 , DO_EV , GE_EV , DC_EV } END Listing 13 -The fourth refinement level in Figure 2.30 Event-B specification context. REFINEMENT L a n d i n g _ G e a r _ S y s t e m _ L 4 REFINES L a n d i n g _ G e a r _ S y s t e m _ L 3 SEES LandingGearSystem_CONTEXT , LandingGearSystem_CONTEXT_L1 , LandingGearSystem_CONTEXT_L2 , LandingGearSystem_CONTEXT_L3 , CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS L a n d i n g G e a r S y s t e m _ C O N T E X T _ L 4 AB ST RA CT_ VA RI ABL ES currentManeuver , lgState , decision , handleState , extensionOrder , GEVstate , doorsState , gearsState , DO_EVstate , GE_EVstate , DC_EVstate INVARIANT DO_EVstate ∈ ELECTRO_VALVES → EV_States ∧ GE_EVstate ∈ ELECTRO_VALVES → EV_States ∧ DC_EVstate ∈ ELECTRO_VALVES → EV_States INITIALISATION lgState :∈ Landi ngGearSy stem → LG_STATES ∥ currentManeuver :∈ Landi ngGearSy stem → MANEUVER_TYPES ∥ decision :∈ Landi ngGearSy stem → Actions ∥ handleState :∈ Handle → HANDLE_STATES ∥ doorsState :∈ Doors → Doors_States ∥ gearsState :∈ Gears → Gears_States ∥ extensionOrder :∈ Landi ngGearSy stem → BOOL ∥ GEVstate :∈ ELECTRO_VALVES → EV_States ∥ DO_EVstate :∈ ELECTRO_VALVES → EV_States ∥ GE_EVstate :∈ ELECTRO_VALVES → EV_States ∥ DC_EVstate :∈ ELECTRO_VALVES → EV_States EVENTS s t i m u l a t e D o o r O p e n i n g EV ref_milestone makeDoorsOpen = SELECT GEVstate (lgOfG_EV ~(LG)) = stimulated THEN DO_EVstate (DRSofDO_EV ~(DRS)) GRSofGE_EV ~(GRS)) = stimulated THEN gearsState (lgOfGRS ~(LG)) := extended END ; CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS s t o p G e a r E x t en s i o n _ E V ref_milestone makeGearsExtend = SELECT gearsState (lgOfGRS ~(LG)) DRSofDC_EV ~(DRS)) = stimulated THEN doorsState (lgOfDRS ~(LG)) := close END ; st op Do orC lo su re_ EV ref_milestone makeDoorsClose = SELECT doorsState (lgOfDRS ~(LG)) = close THEN DC_EVstate (DRSofDC_EV ~(DRS)) := stopped END END Listing 14 -The fourth refinement level of Figure 2.30 Event-B specification machine.

Figure 2 .

 2 Figure 2.31 -SysML/KAOS PiloteSubSystem assigned goals

3 SETS

 3 Figure 2.33. As introduced in this goal diagram, to satisfy the goal OpenDoors, the left, right and front doors should be opened. This is represented by the AND refinement operator. To formalize this refinement, events makeRightDoorOpen, makeFrontDoorOpen and makeLeftDoorOpen associated to the level 1 of the MechanicalSubSystem goal diagram ref_and the interface event OpenDoors.

 d i n g G e a r S y s t e m _ M e c h a n i c a l S S _ C O N T E X T AB ST RA CT_ VA RI ABL ES DO_EVstate , GE_EVstate , DC_EVstate , doorsState , gearsState , sides_doorState , sides_gearStateINVARIANT sides_doorState ∈ SIDES_DOORS → Doors_States ∧ sides_gearState ∈ SIDES_GEARS → Gears_States ∧ (sides_doorState [SIDES_DOORS]={ open } ⇒ doorsState [Doors]={ open }) ∧ (sides_doorState [SIDES_DOORS]={ close } ⇒ doorsState [Doors]={ close }) ∧ (sides_gearState [SIDES_GEARS]={ extended } ⇒ CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS gearsState [Gears]={ extended }) INITIALISATION DO_EVstate :∈ ELECTRO_VALVES → EV_States ∥ GE_EVstate :∈ ELECTRO_VALVES → EV_States ∥ DC_EVstate :∈ ELECTRO_VALVES → EV_States ∥ doorsState , sides_doorState ∈ ((sides_doorState [SIDES_DOORS]={ open } ⇒ doorsState [Doors]={ open }) ∧ (sides_doorState [SIDES_DOORS]={ close } ⇒ doorsState [Doors]={ close }) ∧ (doorsState ∈ Doors → Doors_States) ∧ (sides_doorState ∈ SIDES_DOORS → Doors_States)) ∥ gearsState , sides_gearState ∈ ((sides_gearState [SIDES_GEARS]={ extended } ⇒ gearsState [Gears]={ extended }) ∧ (gearsState ∈ Gears → Gears_States) ∧ (sides_gearState ∈ SIDES_GEARS → Gears_States)e R i g h t Ge a r E x t e n d e d ref_and ExtendGears = SELECT GE_EVstate (GRSofGE_EV ~(GRS))= stimulated THEN sides_gearState (GRSofRG ~(GRS)):= extended END ; CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS m a k e L e f t G e ar E x t e n d e d ref_and ExtendGears = SELECT GE_EVstate (GRSofGE_EV ~(GRS))= stimulated THEN sides_gearState (GRSofLG ~(GRS)):= extended END ; m a k e F r o n t G e a r E x t e n d e d ref_and ExtendGears = SELECT GE_EVstate (GRSofGE_EV ~(GRS))= stimulated THEN sides_gearState (GRSofFG ~(GRS)):= extended END ; ma ke Ri ght Do or Clo se ref_and closeDoors = SELECT DC_EVstate (DRSofDC_EV ~(DRS)) = stimulated THEN sides_doorState (DRSofRD ~(DRS)):= close END ; make LeftDoor Close ref_and closeDoors = SELECT DC_EVstate (DRSofDC_EV ~(DRS)) = stimulated THEN sides_doorState (DRSofLD ~(DRS)):= close END ; ma ke Fr ont Do or Clo se ref_and closeDoors = SELECT DC_EVstate (DRSofDC_EV ~(DRS)) = stimulated THEN sides_doorState (DRSofFD ~(DRS)):= close END END Listing 17 -SysML/KAOS Mechanical SubSystem Level 1 machine.

Figure 2 .

 2 Figure 2.34 shows the Event-B specification architecture created from the formalization of the SysML/KAOS models. In this architecture, blue arrows show the SEES relationship between a machine and a context and black arrows present the refinement between two machines. Finally, green arrows present the SysML/KAOS model decomposition Event-B formalization.

 Figure 2.34 -SysML/KAOS Event-B specification Architecture

Figure 2 .

 2 Figure 2.35 -Project Status for Landing Gear System SysML/KAOS Event-B specification

 Figure 2.36 -Landing gear system HLA main system package

(

 see Figure 2.38). More precisely, the LandingGearSystemL1 sequence diagram message Ex-tendsLG allows the extension of the landing gear system after the sub-systems processes interplay. Therefore, it is a refinement of the message ExtendsLGS of the sequence diagram of the LandingGearSystemL0, specified by the Refines_Message stereotype (see Figure 2.37).

Figure 2 .

 2 Figure 2.38 -Landing gear system HLA level 0 & 1 package refinement

Figure 2 .

 2 Figure 2.39 -Landing gear system decomposition

 ciated elements. The associated elements to pssState from LandingGearSystemL1 are the typing INVARIANTS, its INITIALISATION and EVENTS: commandsPiloteSSForExtension and commandsPiloteSSForRetraction. EVENTS commandsDigitalSSForExtension and commands-CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS DigitalSSForRetraction are also associated to the variable pssState while they use its different states as guards to execute their actions. SYSTEM P i l o t e S u b S y s t e m _ I n t e r f a c e SEES LandingGearSystemL1_CONT , L a n d i n g G e a r S y s t e m L 0 _ C O N T VARIABLES pssState INVARIANT pssState ∈ PiloteSubSystem → P i l o t e S u b S y s t e m S t a t e s INITIALISATION pssState :∈ { pss } → P i l o t e S u b S y s t e m S t a t e s EVENTS c o m m a n d s D i g i t a l S S F o r R e t r a c t i o n = SELECT pssState (pss)= o r d e r e d F o r R e t r a c t i o n P i l o t e S S THEN skip END ; c o m m a n d s P i l o t e S S F o r E x t e n s i o n = SELECT pssState (pss)= o r d e r e d F o r R e t r a c t i o n P i l o t e S S THEN pssState (pss):= o r d e r e d F o r E x t e n s i o n P i l o t e S S END ; c o m m a n d s D i g i t a l S S F o r E x t e n s i o n = SELECT pssState (pss)= o r d e r e d F o r E x t e n s i o n P i l o t e S S THEN skip END ; c o m m a n d s P i l o t e S S F o r R e t r a c t i o n = SELECT pssState (pss)= o r d e r e d F o r E x t e n s i o n P i l o t e S S THEN pssState (pss):= o r d e r e d F o r R e t r a c t i o n P i l o t e Pilote SubSystem behaves independently from its participation in the landing gear system. It is represented with a package and can then be described by a BDD, representing its structure and in particular its sub-components, a Handle for this sub-system, the state-machine diagram associated to the Handle and a sequence diagram. The Event-B translation of PiloteSubSystemL1 package is shown in Listing 23. A new machine called PiloteSubSystemL1 is created that refines PiloteSubSystem_Interface. Sequence diagram message SwitchHandleUp (resp. SwitchHandleDown) is translated into an event that refines the event commandsPiloteSSForRetraction (resp. commandsPiloteSS-ForExtension) from PiloteSubSystem_Interface. REFINEMENT Pil oteSubSys temL1 REFINES P i l o t e S u b S y s t e m _ I n t e r f a c e SEES PiloteSubSystem_CONT , LandingGearSystemL1_CONT , L a n d i n g G e a r S y s t e m L 0 _ C O N T VARIABLES hdState , pssState INVARIANT hdState ∈ Handle → HandleSTATES INITIALISATION hdState :∈ { hd } → HandleSTATES ∥ pssState :∈ { pss } → P i l o t e S u b S y s t e m S t a t e s EVENTS SwitchHandleUp ref c o m m a n d s P i l o t e S S F o r R e t r a c t i o n = SELECT hdState (hd)= down ∧ pssState (pss)= o r d e r e d F o r E x t e n s i o n P i l o t e S S THEN hdState (hd):= up ∥ pssState (pss):= o r d e r e d F o r R e t r a c t i o n P i l o t e S S END ; SwitchHandleDown ref c o m m a n d s P i l o t e S S F o r E x t e n s i o n = SELECT hdState (hd)= up ∧ pssState (pss)= o r d e r e d F o r R e t r a c t i o n P i l o t e S S THEN hdState (hd):= down ∥ pssState (pss):= o r d e r e d F o r E x t e n s i o n P i l o t e S S END END Listing 23 -HLA PiloteSubSystem Level 1 5.3.5 Formal verification of the landing gear system HLA Event-B specification The formal verification step for the Event-B specification of the landing gear system HLA required to discharge 136 proof obligations. Figure 2.41 summarises the status of the AtelierB project corresponding to the generated Event-B specification. These proofs are of type invariant preservation, non-deterministic action feasibility and well-definedness.

Figure 2 .

 2 42 describes the two alignment links. As presented in Section 4, we have the HLA sequence diagram message SwitchHandleDown which satisfies the goal putHandleDown and the HLA sequence diagram message SwitchHandleUp which satisfies the goal putHandleUp. The arrows from the messages to the goals are labelled by the stereotype Satisfy. We have used this kind of alignment because each one of these leaf goals requires only one HLA message to be satisfied.

Figure 2 .

 2 Figure 2.42 -Example of graphical alignment links of the landing gear system case study

 REFINEMENT p u t H a n d l e D o w n _ G o a l _ S a t i s f a c t i o n _ I n t e r f a c e REFINES Pilo te SS _In te rf ace SEES L a n d i n g G e a r S y s t e m _ C O N T E X T , LandingGearSystem_CONTEXT_L3 , PiloteSubSystem_CONT , LandingGearSystemL1_CONT , L a n d i n g G e a r S y s t e m L 0 _ C O N T AB ST RA CT_ VA RI ABL ES handleState , hdState , pssState INVARIANT handleState ∈ Handle → HANDLE_STATES /**** From goal specification ****/ ∧ hdState ∈ Handle → HandleSTATES /**** From HLA specification ****/ ∧ pssState ∈ { pss } → P i l o t e S u b S y s t e m S t a t e s /**** From goal specification ****/ ∧ hdState [HANDLE]= down ⇒ handleState [HANDLE]= down // gluing Invariant . ∧ hdState [HANDLE]= up ⇒ handleState [HANDLE]= up CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS // gluing Invariant . INITIALISATION hdState , handleState :(handleState ∈ Handle → HANDLE_STATES /**** From goal specification ****/ ∧ hdState ∈ { hd } → HandleSTATES /**** From HLA specification ****/ ∧ hdState [HANDLE]= down ⇒ handleState [HANDLE]= down // gluing Invariant . ∧ hdState [HANDLE]= up ⇒ handleState [HANDLE]= up // gluing Invariant .) ∧ pssState :∈ { pss } → P i l o t e S u b S y s t e m S t a t e s /**** From goal specification ****/ EVENTS SwitchHandleDown ref putHandleDown = SELECT hdState (hd)= up ∧ pssState (pss)= o r d e r e d F o r R e t r a c t i o n P i l o t e S S THEN hdState (hd):= down ∥ pssState (pss):= o r d e r e d F o r E x t e n s i o n P i l o t e S S ∥ handleState (LgOfHd ~(LG)):= down END END Listing 24 -Event-B formalization of the goal putHandleDown alignment link.

 Figure 2.43 -Train Control system goal and domain models

Figure 2 .

 2 Figure 2.43 with messages of the HLA model presented in Figure 2.44. Figure 2.45 describes the two alignment links. To satisfy the goal ProgressTrain, the sequential execution of the two sequence diagram messages UpdateSignalToGo and MakeTrainProgress is required. The arrows from the messages to the goal are labelled by the stereotype Milestone_Satisfy.

Figure 2 .

 2 Figure 2.45 -Graphical alignment links of ProgressTrain Goal

 REFINEMENT P r o g r e s s T r a i n _ G o a l _ S a t i s f a c t i o n _ I n t e r f a c e REFINES TrainC ontrolle rL3 SEES TrainControllerL1_CONT , TrainControllerL2_CONT , TrainControllerL3_CONT , T r a i n C o n t r o l S y s t e m L 1 _ C O N T AB ST RA CT_ VA RI ABL ES ... , trainState , signalState , tr a in M o uv e me n t St a te INVARIANT CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS signalState ∈ SIGNAL_STATES ∧ t ra i n Mo u ve m en t S ta t e ∈ TRAINS → TRAIN_MOUVEMENTS ∧ (t r ai n Mo u v em e nt S ta t e [TRAINS] ={ stoppedtr } ⇒ trainState [TRAIN]={ stopped }) /**** gluing invariant ****/ ∧ (t r ai n Mo u v em e nt S ta t e [TRAINS] ={ progressingtr } ⇒ trainState [TRAIN]={ progressing }) /**** gluing invariant ****/ ∧ (t r ai n Mo u v em e nt S ta t e [TRAINS] ={movingtr} ⇒ trainState [TRAIN]={moving}) /**** gluing invariant ****/ INITIALISATION ... signalState :∈ {stop} ∥ trainState , tr a in M o uv e me n t St a te : ((trainState ∈ TRAIN → { stopped }) ∧ (t r ai n Mo u v em e nt S ta t e :∈ TRAINS → { stoppedtr }) ∧ (t r ai n Mo u v em e nt S ta t e [TRAINS] ={ stoppedtr } ⇒ trainState [TRAIN]={ stopped }) /**** gluing invariant ****/ ∧ (t r ai n Mo u v em e nt S ta t e [TRAINS] ={ progressingtr } ⇒ trainState [TRAIN]={ progressing }) /**** gluing invariant ****/ ∧ (t r ai n Mo u v em e nt S ta t e [TRAINS] ={ movingtr } ⇒ trainState [TRAIN]={ moving }) /**** gluing invariant ****/) EVENTS UpdateSignalToGo ref_milestone ProgressTrain = SELECT signalState = stop ∧ t ra i n Mo u ve m en t S ta t e (train)= stoppedtr ∧ n Mo u ve m en t S ta t e (train)= stoppedtr THEN t ra i n Mo u ve m en t S ta t e (train):= progressingtr ∥ trainState (tr):= progressing END END CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS Listing 30 -EVENT-B formalization of the goal ProgressTrain alignment link. The ProgressTrain_Goal_Satisfaction_Interface machine was introduced in AtelierB to be formally verified and in ProB to animate the execution scenarios. All the proof obligations have been automatically discharged, including the refinement, invariant preservation, non-deterministic action feasibility and well-definedness proof obligations. Pro-gressTrain_Goal_Satisfaction_Interface required to discharge 11 proof obligations.Figure2.46 summarizes the proof activity, where PO means generated proof obligations, UN is for unproved proofs and PR for the proved ones.

Figure 2 .

 2 Figure 2.46 -Proof obligations table

 To perform model transformations, it should be expressed in a certain modeling language or meta-model. Starting from the source and target meta-models involved in the transformation, two types of transformations can be distinguished: endogenous and exogenous transformations. A transformation is called endogenous if the models involved are conformed to the same meta-model. When the source and target models are of different meta-models, the transformation is said exogenous or even translation.

Figure 3 .

 3 Figure 3.1 -Transformation process[START_REF] Hammoudi | Towards a Semi-Automatic Transformation Process in MDA -Architecture and Methodology[END_REF]

Figure 3 .

 3 Figure 3.3 shows the goal model defined with two levels of refinement: the root level Level 0 which introduces the main goal maneuverLandingGear and the Level 1 level which describes the refinement of the main goal in two sub-goals (maneuverLGforLanding and maneu-

Figure 3 .

 3 Figure 3.4 shows the domain model associated to the root level of the goal diagram shown in Figure 3.3. This domain model represents the landing gear system entity modeled as an instance of the concept named LandingGearSystem. The possible states of a landing gear system are modeled as an instances of the attribute named LG_STATES, which contains two instances of DataValue of type STRING: lg_extended for the extended state and lg_retracted for the retracted state. LG is modeled as an instance of an individual named

Figure 3 . 3 -

 33 Figure 3.3 -SysML/KAOS Goal modeling

Figure 3 . 5 -

 35 Figure 3.5 -AtelierB Event-B specification

Figure 3 . 6 -

 36 Figure 3.6 -AtelierB interactive proof tool

 represent the integration of the light-weight mechanism in order to extend the languages based on the MOF. More specifically, profiles are used to customize UML for a specific domain through extension mechanisms that enrich the semantics and syntax of the language. It allows the specification of a MOF model to deal with the specific concepts and notation required in particular application domains (e.g., real-time, business process modeling, finance, etc.) or implementation technologies (such as .NET, J2EE, or CORBA). A profile-based model can be created and manipulated by any tool that supports standard UML. A stereotype represents the basic functionality to extend UML. It can be considered as a specialization of an existing concept in UML and which offers the possibility of having concepts for the modeling of a specific domain. Stereotypes can have attributes (also called tagged values) and can be associated with other existing stereotypes or other UML concepts. From a notational point of view, stereotypes can give a different graphical symbol for the elements of the UML model. For example, a class stereotyped Clock might use an image instead of the format of the regular class. In addition, stereotypes can also be influenced by restrictions expressed by constraints. The definition of constraints in MOF-based languages is OCL.

Figure 3 .

 3 Figure 3.9 -New Papyrus project creation

Figure 3 .

 3 Figure 3.13 exhibits a graphical representation of the EMF model that represents the Event-B meta-model which supports the Event-B notation concepts relevant for specifying HLA such as the shared event decomposition strategy applied on machines.

Figure 3 .

 3 Figure 3.14 -Model-to-model transformation architecture

 mapping UML :: Model :: Model2EventBSpec () : EventB :: EventB_Spec { name := self . name ; contexts += self . al l Su b o bj e ct s Of T y pe (Package) -> map Context () ; machines += self . al l Su b o bj e ct s Of T y pe (Package) -> map Machine () ;

Figure 3 .

 3 Figure 3.15 -Generated Event-B Model

 Figure 3.16 -Model-to-text transformation architecture

 requirements modeling we use the Openflexo FORMOD tool environment and for the HLA modeling we use Eclipse development environment IDE with Papyrus. Therefore, to establish alignment links we should bring together all models in the same environment or establish communication between them. To this end, we decided to include the FORMOD SysML/KAOS goals modeling mechanisms into Eclipse development IDE. Two ways to do this: -The first solution: the FORMOD tool project is available as a MAVEN project in a git repository. This project could be uploaded in Eclipse and SysML/KAOS goal models could be imported in the Eclipse IDE. Note: Maven is an open-source build tool developed by the Apache Foundation. It facilitates and automates certain tasks of managing a Java project. -The second solution: We reproduce the SysML/KAOS goal model meta-model used in the FORMOD tool within Eclipse and import the designed goal models from the FORMOD tool into Eclipse IDE. This reproduction could be performed using The EMF models and the UML profiles mechanisms.

 Figure 3.17 -SysML/KAOS reproduction profile

 raisonnement formel et rigoureux nécessaire aux systèmes critiques pour lesquels la sûreté et la sécurité sont des préoccupations majeures.Le projet Train de Fret Autonome (TFA) du programme Train Autonome 1 est l'un des programmes de R&D et d'innovation de l'IRT Railenium 2 , un centre d'essais et de recherche appliquée pour l'industrie ferroviaire en France, avec la coopération de plusieurs partenaires(SNCF, Alstom Transport, Hitachi Rail STS, Capgemini Engineering et Apsys). Ils visent l'amélioration des performances du système grâce à la mise en place de l'autonomie dans l'exploitation ferroviaire. Ce système est considéré comme un système complexe critique pour la sûreté, où il dépend de plus en plus de solutions efficaces qui peuvent répondre à l'hétérogénéité et à l'interaction des éléments physiques et logiciels. De plus, l'utilisation d'approches de vérification modernes peut être le facteur de différenciation afin de garantir la cohérence de ces systèmes. Il convient de noter que le TFA, dans le but d'éviter l'apparition de plusieurs problèmes tels que la perte de vies humaines, les blessures, les dommages environnementaux graves et les pertes économiques, par exemple, doit garantir la cohérence des fonctionnalités des systèmes.De plus, la qualité d'un système dépend du degré de performance qu'il atteint dans la réponse à ses exigences. La traçabilité des exigences est largement reconnue comme un élément crucial de tout processus de développement de système rigoureux, en particulier pour la conception de systèmes complexes critiques.Comme la conception graphique ne permet pas le raisonnement formel et rigoureux nécessaire aux systèmes critiques, l'utilisation de méthodes formelles est fortement recommandée pour la spécification de système. Cependant, l'un des principaux obstacles à leur adoption réside dans l'obtention de la spécification formelle du système.La conception de systèmes complexes critiques pour la sureté, tels que le TFA, dépend de solutions qui permettent l'interaction entre leurs sous-systèmes. Ces sous-systèmes interagissent en échangeant des informations afin d'accomplir l'objectif principal du système global. Par conséquent, un modèle d'architecture de haut niveau HLA prenant en charge la hiérarchie en couches des composants est nécessaire. Dans le projet AFT, des représentations graphiques des composants du système sont recommandées pour spécifier, visualiser, comprendre et documenter le système de manière simple. De telles représentations permettent à toutes les parties prenantes de discuter et de s'accorder sur les principales caractéristiques du système à construire et permettent de vérifier si son HLA correspond à leurs besoins attendus. Alors que les normes ferroviaires d'ingénierie de la sécurité affirment que la modélisation des systèmes ferroviaires à l'aide de SysML permet de générer des composants corrects par construction, ce qui est un moyen de s'assurer que les besoins remplis par le modèle initial resteront respectés alors qu'il est censé être facilement compris par les experts ferroviaires. Dans cette perspective, nous formulons la question de recherche suivante: QR1: Pouvons-nous fournir un langage de modélisation commun pour les architectures de haut niveau pouvant prendre en charge l'interaction des soussystèmes? La complexité de ces systèmes augmente en raison à la fois du grand nombre de composants de base intégrés à plusieurs niveaux et de l'importante hétérogénéité scientifique et technologique de ces systèmes. Cela soulève de multiples problèmes liés à l'exhaustivité, la cohérence, l'absence d'ambiguïté et l'exactitude de la conception du système. Cependant, lorsque les systèmes sont complexes, leur structure ne peut être décrite à un seul niveau ou avec une seule vue; des descriptions multi-niveau sont nécessaires pour les comprendre. Leur comportement émergent, dérivé des relations entre leurs éléments et avec l'environnement, via des boucles de rétroaction internes et externes, qui peuvent ne pas être compris ou prédits. Cela vient du fait qu'un système complexe est un ensemble de soussystèmes présentés comme un tout intégré travaillant ensemble pour réaliser une mission principale et de plus, ces sous-systèmes ont leur propre vie et peuvent exister indépendamment de leur participation à la mission principale. Sur la base de ces considérations, il est possible de formuler une deuxième question de recherche: QR2: Comment maîtriser la complexité de ces systèmes complexes? Généralement, la conception graphique des systèmes complexes HLA est semi-formelle et sa sémantique est donnée en langage naturel, ce qui ne permet pas le raisonnement formel et rigoureux nécessaire aux systèmes critiques. D'ou, l'industrie a besoin d'une approche efficace pour la vérification des systèmes critiques afin de garantir leur consustance. Dans ce contexte, l'utilisation de méthodes formelles est fortement recommandée pour la spécification de la HLA des systèmes lors du développement de systèmes ferroviaires par exemple. La spécification formelle permet de vérifier formellement la preuve de la cohérence du système en modélisant sa structure et son comportement. Ainsi, il est possible de formuler la troisième question de recherche ainsi: QR3: Comment fournir une spécification formelle des architectures de haut niveau pour vérifier leur cohérence? Au-delà du fait que la HLA des systèmes complexes doivent être cohérents et vérifiés, il est nécessaire de vérifier que ses modèles sont alignés avec les exigences système qui doivent être aussi précises que possible. En effet, la conception de HLA est le plus souvent difficile car il peut être difficile de vérifier que les besoins des parties prenantes sont satisfaits. C'est pourquoi, si la spécification formelle permet de prouver la cohérence du système, il est recommandé de prouver également la cohérence de cet alignement. Ainsi, des activités de validation et de vérification doivent participer pour assurer l'exactitude de la conception par rapport aux besoins initialement spécifiés. Dans ce contexte, une dernière question de recherche peut être formulée comme suit: QR4: Comment établir et vérifier les liens d'alignement entre les architectures de haut niveau et les exigences système? 3 Contexte de recherche Pour repondre à ces questions de recherche, cette thèse propose une définition d'une méthodologie d'alignement entre les modèles d'exigences et les modèles d'architectures de haut niveau permettant de définir une traçabilité entre ces deux entités et de garantir ainsi que les modèles d'architectures de haut niveau répondent aux besoins des parties prenantes. C'est réalisé grâce à un couplage avec des spécifications formelles qui vérifient, d'une part, l'exactitude et la cohérence des modèles d'architectures de haut niveau requis pour les systèmes critiques et, d'autre part, la cohérence des liens d'alignement établis.

4

 Une approche formelle pour la modélisation d'architectures de haut niveau de systèmes complexes alignées avec les modèles d'exigences 4.1 Aperçu de la méthodologie La méthodologie proposée est basée sur les modèles. Elle est résumée dans la figure 5.1, composée de trois phases: (1) SysML/KAOS, (2) Modélisation de HLA en SysML et (3) Alignement.

Figure 5 .

 5 Figure 5.1 -Methodology Aperçu

:

 Vise à définir des liens d'alignement entre les éléments de SysML/KAOS et les éléments de HLA. Ces liens d'alignement permettent de garantir des relations de CHAPTER V. RÉSUMÉ ÉTENDU EN FRANÇAIS traçabilité entre les entités participantes pour garantir que les éléments de HLA satisfont les objectifs du système et donc satisfont les besoins des parties prenantes. Le processus d'alignement comprend deux étapes: • Tout d'abord, les liens d'alignement sont spécifiés graphiquement afin d'être bien compris, documenté et validé par toutes les parties prenantes. Pour implémenter ces graphes, trois types de relations de satisfaction ont été proposées dans le méta-modèle d'alignement que nous avons défini. • Dans un second temps, une formalisation de ces liens d'alignement est réalisée pour prouver leurs cohérences. Cette formalisation permet de générer une spécification en Event-B adaptée à l'alignement proposé à l'aide d'un ensemble de règles de traduction. De nouvelles obligations de preuve sont générées en plus des obligations de preuve existantes de type préservation d'invariant, de faisabilité d'actions non déterministes etc. Une étape de vérification formelle est effectuée pour vérifier la spécification en Event-B résultante. Le déchargement de toutes les obligations de preuve (obligations de preuve existantes et d'alignement) permet de prouver que les exigences du système sont formellement alignées avec les éléments de HLA.

4. 2

 2 Modélisation d'architecture de haut niveau et vérification formelle Les systèmes complexes sont des systèmes composés de nombreux composants qui peuvent interagir entre eux, tels que le système de gestion du trafic aérien, les systèmes ferroviaires, le réseau intelligent, les systèmes automobiles autonomes, la surveillance médicale, les systèmes de contrôle industriel, les systèmes robotiques, etc. Leur comportement est difficile à modéliser due aux dépendances, compétitions, relations ou autres types d'interactions entre leurs parties ou entre un système donné et son environnement. Dans de nombreux cas, il est utile de représenter un tel système comme une hiérarchie où les noeuds représentent les composants relié par leurs interactions. Par conséquent, la conception de HLA de ces systèmes dépend de solutions qui peuvent traiter l'interaction entre leurs sous-systèmes. Ce HLA doit être représenté comme une hiérarchie en couches de sous-systèmes. Il doit permettre de spécifier les principaux éléments fonctionnels du système, ainsi que ses interfaces et interactions. Pour cela, nous proposons de combiner SysML et la méthode formelle Event-B. Le choix se porte sur SysML plutôt que sur UML alors qu'il propose un ensemble de con-CHAPTER V. RÉSUMÉ ÉTENDU EN FRANÇAIS cepts plus pertinents pour modéliser les systèmes et comme présenté précédemment, est recommandé par les partenaires du projet TFA. En effet, le projet TFA réutilise le Rail-TopoModel 3 qui contient une ontologie fonctionnelle basée sur SysML d'une infrastructure ferroviaire. De plus, l'initiative européenne EULYNX 4 a défini un modèle standard basé sur SysML des composants du système de signalisation ferroviaire. Event-B permet de spécifier des systèmes plutôt que simplement des logiciels et il est déjà utilisé dans de nombreux systèmes critiques pour la sécurité [Lecomte et al., 2017]. Son utilisation est également préconisée dans l'étude de ASTRAIL [ASTRAIL, 2017] La figure 5.2 présente un aperçu du processus de modélisation de HLA et de sa formalisation en modèles Event-B.

Figure 5 . 2 -

 52 Figure 5.2 -HLA modeling and formalization approach

4 . 3

 43 Une transformation modèle-texte pour générer Event-B des spécifications formelles textuelles. Cette spécification textuelle peut être introduite dans des prouveurs tels que AtelierB [AtelierB, 1990], des model-checkers et des animateurs tels que ProB [ProB, 2003] pour vérifier la cohérence des modèles de HLA du système et être validés par des experts du domaine à travers des animations de modèles. Alignement entre exigences & architecture de haut niveau La qualité d'un système est la principale mesure de son succès, qui dépend de la mesure dans laquelle il répond à ses exigences. D'où, des liens d'alignement entre les modèles d'exigences et les modèles de HLA doivent être établis. Ces liens sémantiques peuvent être le support pour prouver la conformité de la spécification de HLA avec l'expression des exigences système. La troisième partie de notre travail vise à proposer une approche basée sur les modèles pour établir graphiquement des liens d'alignement entre les modèles SysML/KAOS et les modèles de HLA puis la traduction de ces liens en spécification formelle en Event-B pour les vérifier formellement (voir Figure 5.3). SysML/KAOS[START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF][START_REF] Gnaho | Modeling the impact of non-functional requirements on functional requirements[END_REF] est une méthode de l'ingénierie des exigences RE qui permet la modélisation des exigences fonctionnelles et non fonctionnelles et le modele de domaine domaine d'un système. Cette approche vise à dériver une spécification Event-B directement des modèles SysML/KAOS.

Figure 5 . 3 -

 53 Figure 5.3 -Approche d'alignement entre les modèles SysML/KAOS et les modèles SysML HLA

À

 travers ce travail, de nouveaux problèmes sont apparus laissant un large horizon pour d'autres recherches. Dans ce contexte, notre travail ne considère que les propriétés fonctionnelles des exigences et de HLA. En particulier, une extension de notre méthodologie serait d'étudier ces non-fonctionnels intégration des propriétés. Aussi, Les transformations proposés des modèles de HLA aux spécifications formelles en Event-B sont uniquement dans ce sens. Par conséquent, cette traduction ne prend en charge que les mises à jour de la modélisation de HLA à propager sur la spécification Event-B. Cependant, lorsque les mises à jour sont produits directement sur la spécification Event-B ils ne sont pas propagés aux modèles de HLA. Pour résoudre ce problème, une autre perspective est envisagé. Il consiste à définir une traduction bidirectionnelle qui serait bénéfique pour propager les mises à jour dans les deux sens ce qui permet d'assure la traçabilité entre les modèles de HLA et les spécifications Event-B et d'identifier les erreurs sur les modèles de HLA originaux et vice versa. Une autre perspective est de formaliser les règles de transformation en Event-B tandis que notre méthodologie propose des étapes de traduction de modèles décrites à l'aide des langages de transformation de modèles non formels comme QVT et Acceleo alors qu'un contexte formel est crucial dans le cadre d'un système critique. Par conséquent, définir formellement les règles en Event-B et de décharger les obligations de preuve associées permet de prouver leur cohérence, de les animer à l'aide de ProB qui révéle plusieurs contraintes qui manquaient lors de la conception informelle des règles ou lors de la spécification des méta-modèles. L'alignement entre HLA et les exigences est discuté et proposé dans la méthodologie avec trois types de liens. Cette traçabilité permet uniquement de lier les exigences aux éléments de HLA responsables de leur satisfaction, cependant, l'impact des mises à jour des modèles d'exigences et/ou des modèles de HLA sur les autres modèles et sur les liens d'alignement établis n'est pas encore supporté par notre méthodologie. D'où, une nouvelle perspective est envisagé. Une dernière perspective intéressante pour notre travail est la prise en charge d'autres étapes du cycle de vie du développement logiciel. Ce cycle de vie est également un domaine de recherche important pour garantir l'exactitude de tous les artefacts du système tandis que notre méthodologie proposée se limite aux étapes d'exigences et de HLA.

1

 Context . 2 Problem statement and motivations . 3 Objectives . AtelierB Event-B specification . 3.6 AtelierB interactive proof tool . 3.7 AtelierB proof status . 3.8 SysML extensions with Event-B refinement and decomposition mechanisms profiles . 3.9 New Papyrus project creation . 3.10 Papyrus project type selection . 3.11 SysML extensions profiles application . 3.12 The EMF Model of Event-B Meta-Model . 3.13 Event-B Meta-Model . Table summarizing the evaluation of related works 2.1 Translation rules for a package diagram . 2.2 Translation rules for elements of a package 2.3 Translation rules application table . 2.4 First four translation rules for alignment links 2.5 Alignment Formalisation rules application table SysML to Event-B translation rules application example context. 4 Event-B formalization of the SysML/KAOS models example root level presented in Figures 2.20 and 2.21. 5 An excerpt of the Event-B formalization of the SysML/KAOS models example first refinement level presented in Figures 2.20.

	LIST OF FIGURES
	3.5 List of Tables 1.1 Listings 1 Example of a translation rule for an association.
	2	SysML to Event-B translation rules application example context.
	3	

3.14 Model-to-model transformation architecture 3.15 Generated Event-B Model . 3.16 Model-to-text transformation architecture 3.17 SysML/KAOS reproduction profile . 3.18 Alignment profile . 5.1 Methodology Aperçu . 5.2 HLA modeling and formalization approach 5.3 Approche d'alignement entre les modèles SysML/KAOS et les modèles SysML HLA . 6 Extract from SysML/KAOS OnBoard Interface. 7 Extract from HLA ATOoETCS_GOA2System2 8 Event-B formalization of the goal MakeOnBoardForATODriving alignment link. .

9

The root level of

 Event-B specification machine. 22 PiloteSubSystem Interface. 23 HLA PiloteSubSystem Level 1 . 24 Event-B formalization of the goal putHandleDown alignment link. 25 Event-B formalization of the goal putHandleUp alignment link. LISTINGS 27 Extract from the Event-B specification machine of the Train Control system SYSML/KAOS Level 3 requirements model. 28 Extract from the EVENT-B specification context of the Train Control system HLA level 1. 29 Extract from the EVENT-B specification machine of the Train Control system HLA level 1. 30 EVENT-B formalization of the goal ProgressTrain alignment link. 31 QVT main module header . 32 Model2EventBSpec() mapping rule implementation 33 Extract from the refinement SysML extension mapping rule implementation 34 Extract from the refinement SysML extension mapping rule implementation 35 Translation main template . Context . 3 2 Problem statement and motivations 5 3 Objectives . 7 4 Contributions . 8 5 Outline of the Thesis . 10 6 Publications . 11

	1 Context

2.30 Event-B specification machine. . 15 SysML/KAOS Pilote SubSystem Interface. 16 SysML/KAOS Mechanical SubSystem Level 1 context. 17 SysML/KAOS Mechanical SubSystem Level 1 machine. 18 Landing gear system HLA main system Event-B specification context. . . 19 Landing gear system HLA main system Event-B specification machine. . . 20 Landing gear system HLA Level 1 Event-B specification context. 21 landing gear system HLA Level 1 26 Extract from the Event-B specification context of the Train Control system SYSML/KAOS Level 3 requirements model. 36 Context template . 37 Machine template . 38 QVT Alignement module header . 39 QVT Alignement module header . XX INTRODUCTION Contents 1

 Introduction . 2 Background . Formal Method . Proof obligation 2.4.6 Tools Environments for Event-B 3 State of the art . ments and AADL Models . 3.2.7 Discussion . This chapter is dedicated to the presentation of background knowledge and the related works about specifying and verifying requirements and architecture models. Furthermore, research efforts on requirements and architecture alignment are outlined. Particularly, in this chapter we give a broad overview about SysML, requirements engineering approaches, architecture modeling approaches and Event-B formal method. Then, we analyze the state of art in existing tools and methods about formal specification of requirements models, design models and correspondent formal specifications and finally, we detail works dealing with requirements and architecture alignment. We conclude this chapter with an evaluation of the presented works and, based on these challenges, we propose a holistic methodology which deals with alignment.

	INTRODUCTION CHAPTER I. LITERATURE REVIEW CHAPTER I. LITERATURE REVIEW
	Rigorous State-Based Methods. ABZ 2020. Lecture Notes in Computer Science, vol Chapter I 2.3.3.1 Combining SysML with AADL 3.2.6 Traceability Between Restricted Natural Language Require-
	12071. Springer, Cham. https://doi.org/10.1007/978-3-030-48077-6_33 2.3.3.2 Combining SysML with MARTE
	Literature Review 2.4 Event-B 2.4.1 Machine .
	2.4.2	Context .
	2.4.3	Event-B refinement .
	2.4.4	Event-B model decomposition
	Extending SysML with Refinement and Decomposition Mechanisms to Generate Contents 1 2.3.1.3 AADL usage . 2.4.5 Event-B 3.2.2 The MeMVaTEx methodology: from requirements to models
	Event-B Specifications. In : Theoretical Aspects of Software Engineering: 16th In-2.3.2 Modeling and Analysis of Real-Time and Embedded systems in automotive application design
	ternational Symposium, TASE 2022, Cluj-Napoca, Romania, July 8-10, 2022, Pro-3.2.3 KAOS: Connecting the goal model with other system views .
	ceedings. Cham : Springer International Publishing, 2022. p. 256-273.

They are respectively listed below: 1. BOUGACHA, Racem, LALEAU, Régine et COLLART-DUTILLEUL, Simon. Formal alignment of requirements models with high-level architecture models. In : 27th International Conference on Engineering of Complex Computer Systems (ICECCS 2023). IEEE, 2023. 2. COLLART-DUTILLEUL, Simon, BON, Philippe, BOUGACHA, Racem et LALEAU, Régine. MODEL ENGINEERING FOR CRITICAL SYSTEMS: THE ATO OVER ETCS FOR FREIGHT TRAINS USE CASE. In : International Journal of Transport Development and Integration. To be published. 3. BOUGACHA, Racem, LALEAU, Régine, BON, Philippe, et al. Modeling train systems: from high-level architecture graphical models to formal specifications. In : CRISIS2022: 17th International Conference on Risks and Security of Internet and Systems. Springer, To be published. 4. BON, Philippe, COLLART-DUTILLEUL, Simon, et BOUGACHA, Racem. ATO OVER ETCS: A SYSTEM ANALYSIS FOR FREIGHT TRAINS. Computers in Railways XVIII: Railway Engineering Design and Operation, 2022, vol. 213, p. 37. 5. BOUGACHA, Racem, LALEAU, Régine, COLLART-DUTILLEUL, Simon, et al. 6. Bougacha, Racem. A Formal Approach for the Modeling of High-Level Architectures Aligned with System Requirements. In: Raschke, A., Méry, D., Houdek, F. (eds)

2.1 Systems Modeling Language SysML 2.1.1 Overview of SysML diagrams 2.1.2 SysML usage . 2.2 Requirements Engineering . 2.2.1 SysML/KAOS . 2.2.1.1 Functional Requirements Modeling 2.2.1.2 Non-Functional Requirements Modeling 2.2.1.3 Domain Model Modeling 2.2.2 SysML/KAOS to Event-B 2.2.2.1 SysML/KAOS functional goal formalization 2.2.2.2 SysML/KAOS non-functional goal formalization . 2.2.2.3 From domain model to Event-B specification . . . 2.2.2.4 Formalization of SysML/KAOS Goal Assignments with Event-B Component Decompositions 2.3 Architecture Modeling . 2.3.1 Architecture Analysis and Design Language AADL 2.3.1.1 Components . 2.3.1.2 AADL tools . MARTE profile . 2.3.2.1 MARTE architecture 2.3.2.2 MARTE usage . 2.3.3 Combining architecture modeling languages 3.1 Design Model and Formal Specification 3.1.1 From Design Model to Formal Specification 3.1.1.1 UML-B . 3.1.1.2 The B4MSecure Platform 3.1.1.3 The CHESS toolset 3.1.1.4 Coupling of formal methods for industrial systems specification . 3.1.1.5 SysML to formal specification 3.1.1.6 Discussion . 3.1.2 Refinement of design models 3.1.3 Event-B Model Decomposition 3.1.3.1 Shared Variables Decomposition 3.1.3.2 Shared Events Decomposition 3.1.3.3 SysML/KAOS Event-B model decomposition . . 3.1.3.4 Discussion . 3.2 Requirements and Architecture Alignment 3.2.1 SysML relationships between requirements and SysML elements . 3.2.4 UML, MARTE, SysML/Requirements Traceability 3.2.5 Generation and validation of traces between requirements and architecture based on formal trace semantics 4 Synthesis . 5 Conclusion . 1 Introduction

 4, SysML and AADL are mutually complementary. On the other hand, AADL is oriented to model real-time embedded systems. It provides a software to hardware bindings in such systems allowing analyses of different system properties such as performance, timing, etc... The contribution behind this approach is then to extend SysML using the UML profile extension mechanism to cover all AADL concepts. This profile is called Extended SysML for Architecture Figure 1.4 -The relationship between SysML, AADL, and the combined profile ExSAM.

	CHAPTER I. LITERATURE REVIEW
	physical phenomena. Analysis Modeling (ExSAM).
	should resolve inconsistencies or augment either side of the mappings with constraints
	to account for semantic differences. The main idea of this profile is to satisfy SysML
	limitations in order to address important AADL concepts.
	AADL provides two mechanisms for declaring components: using the component type
	construct or using the component implementation construct. SysML blocks are used to
	model both AADL component types and AADL component implementations using two
	newly defined stereotypes «ComponentType» and «ComponentImpl». In fact, using blocks
	for modeling components allows to easily use other SysML constructs (e.g. parts and ports)
	to model AADL constructs (e.g. subcomponents and ports) associated with a component.
	AADL software component categories and AADL hardware component categories are-
	defined as stereotypes with a set of attributes representing the properties of the corre-
	sponding component category.
	SysML supports requirements engineering, traceability, and precise modeling of diverse

[START_REF] Behjati | An AADL-based SysML profile for architecture level systems engineering: approach, metamodels, and experiments[END_REF]

Figure

1

.4, level 2 shows the overlapping concepts between these two languages. However, they have different meanings, usages or design rationales. That's why this profile

 Conclusion . 150 6 Conclusion . 150

	CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
	ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS
	Chapter II	5.4.2.1	Train control system SysML/KAOS requirements
			model . 143
	Contribution: A methodology for 5.4.2.2 Train control system SysML HLA models 145
		5.4.2.3	Train control system SysML/KAOS models and
	SysML HLA models alignment 147 high-level architecture modeling 5.4.3
	aligned with requirements models
		3.2.1.2	Translation Rules
	3.2.2	Model-to-Text Translation
	3.2.3	Example of application of the translation rules
	3.2.4	HLA formal verification .

Table summarizing the evaluation of related works

process which covers the conceptualization process of complex systems. More precisely, it aims to support requirements modeling with its formal verification, HLA modeling with its formal specification and the most principal necessity is to link HLA with requirements in order to guarantee the traceability between these two entities. Contents 1 Methodology overview . 2 ATO over ERTMS case study excerpt 3 High-level architecture modeling and formal verification 3.1 High-level architecture modeling . 3.1.1 SysML and Event-B refinement and decomposition mechanisms extensions . 3.1.1.1 Package diagram and its extensions 3.1.1.2 HLA restricted BDD 3.1.1.3 HLA restricted state-machine diagram 3.1.1.4 Sequence diagram and its extensions 3.1.2 SysML HLA modeling process architecture 3.2 SysML to Event-B Translation . 3.2.1 Model-to-Model transformation 3.2.1.1 Event-B meta-model 3.3 Conclusion . 4 Requirements & high-level architecture alignment 4.1 SysML/KAOS modeling and formal verification

 CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELSFour kinds of SysML diagrams have been selected: package, block definition, statemachine and sequence diagrams.

1. http://www.railtopomodel.org/en/. It is a standard for the representation of railway infrastructurerelated data 2. https://www.eulynx.eu/

Table 2

 2

				SysML concepts	Event-B concepts
	Rule Translation of	Element Constraint	Element	Constraint
	1	Package Diagram	PD	PD is a Package Diagram	E_PD	E_PD ∈ EventB_Spec
	2	Package that is	P	P ∈ SysML_Package	E_P_M	E_P_M ∈ MACHINE
		not a decomposed		P / ∈ ran(HLA_decompose)	E_P_CONT	E_P_CONT ∈ CONTEXT
		package				E_P_M SEES E_P_CONT

.1: a package diagram gives an Event-B project containing the HLA Event-B specification. Rule 2 of Table 2.1: a package, inside a package diagram, that is not a decomposed package gives an Event-B machine and an Event-B context.

Table 2 .

 2 1 -Translation rules for a package diagramThe rules of Table2.2 are applied for the elements of a given package. Note that the translation rules of elements of the BDD meta-model (Figure2.6), in particular Block, Association, AssociationEnd and Characteristic are the same as those used for translating the equivalent concepts in class diagrams[START_REF] Laleau | An Overview of a Method and Its Support Tool for Generating B Specifications from UML Notations[END_REF]. Mainly, an association between two blocks is modeled as a relation between two constants representing CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS these blocks instances. The relation become a function, an injection,... depending on the multiplicity of the association.

Table 2 . 2

 22

			SysML concepts	Event-B concepts
	Rule Translation of	Element	Constraint	Element	Constraint
	3	Block	B	B ∈ SysML_Block	E_B_S	E_B_S ∈ SETS
	4	State-machine of a	SM, B	SM ∈ SysML_State-machine	E_SM	E_SM ∈ SETS
		block		SM is associated to B		
	5	State-machine	S 1 ,S 2 ,	S i ∈ SysML_States	E_S 1 ,E_S 2 ,	E_S i ∈ CONSTANTS
		states	. . . Sn	SM ∈ SysML_State-machine	. . . E_Sn	E_SM={E_S 1 ,E_S 2 ,. . . E_Sn}
			SM	S i is a state of SM		
	6	Lifeline of a	L,B, SM	L ∈ SysML_Lifeline	E_LC,	E_LC ∈ CONSTANTS
		sequence diagram		L is an instance of block B,	E_LV	E_LC ∈ E_B_S
		associated to a		SM is the state diagram		E_LV ∈ VARIABLES
		block		associated to B		(E_LV ∈ {E_LC} → E_SM)
				B and SM have already been		∈ INVARIANTS
				translated		(E_LV :∈ {E_LC} →
						E_SM) ∈ INITIALISATION
	7	Sequence diagram	M	M ∈ SysML_Message	E_M	E_M ∈ EVENTS
		message that is not				
		a refined message				

-Translation rules for elements of a package -M is associated to a transition T of SM 2 .

Table 2 .

 2 4 presents the first four translation rules that allows to obtain the elements of the Event-B alignment machines. The two columns of Source concepts describe the elements related to the SysML/KAOS models and the SysML HLA models needed for defining alignment links. The two columns of Target concepts describe the elements of the Event-B alignment machine obtained from translating the Source concepts.

	Rules 2, 3 and 4 need to be more precisely defined.

2 :

 2 And_Satisfy relationship. Assume that LG is satisfied by M 1 and M 2 , CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS never contradict E_LG_Guard and secondly the execution of E_M 1 and E_M 2

	then:
	E_M 1 ref_and E_LG
	E_M 2 ref_and E_LG
	New proof obligations are generated:
	-E_M 1 _Guard ⇒ E_LG_Guard
	-E_M 2 _Guard ⇒ E_LG_Guard

-(E_M 1 _Post ∧ E_M 2 _Post) ⇒ E_LG_Post

These proof obligations ensure firstly that E_M 1 _Guard and E_M 2 _Guard should

 Listing 36 presents the context template that shows the structure of the context specification that we would like to be generated. We precise that the main template, shown in Listing 35, invokes this template main operation called CONTEXT which takes as a parameter a context (see Line 4 in Listing 36).The structure of the machine to be generated follows the notation presented in Listing 37 while this template generates the machine with the different Event-B notation clauses

			ref ') , false , 'UTF -8 ')]]
		[aMac . MACHINE () /] [aprop . name /][/ for]
		[/ file] END
		[/ if]	[/ template]
		[/ for]
		[/ template]	Listing 36 -Context template
				Listing 35 -Translation main template
			[comment encoding = UTF -8 /]
			[module MACHINE (' http :// www . example . org / EventB_MetaModel ')]
			[template public MACHINE (aMachine : MACHINE)]
			[if (aMachine . refines -> isEmpty ())]
			SYSTEM
				[aMachine . name . replaceAll (' ' , ' ') /][/ if]
			[if (aMachine . refines -> notEmpty ())]
			REFINEMENT
				[aMachine . name . replaceAll (' ' , ' ') /]
			REFINES
				[for (aMac : MACHINE | aMachine . refines) separator (' ;\ n ') after ('\ n ')]
				[aMac . name /][/ for]
	3 [import M2TEventB :: main :: CONTEXT /] 1 [comment encoding = UTF -8 /] [/ if]
	4 [import M2TEventB :: main :: MACHINE /] 2 [module CONTEXT (' http :// www . example . org / EventB_MetaModel ')] SEES
	3	5		[for (ac : CONTEXT | aMachine . sees) separator (' ,\ n ') after ('\ n ')]
	6 [template public generateElement (anEventB_Spec : EventB_Spec)] 4 [template public CONTEXT (aCONTEXT : CONTEXT)] [ac . name /][/ for]
	7 [comment @main /] 5 SYSTEM VARIABLES
	6	8 [for (aCont : CONTEXT | anEventB_Spec . contexts)] [aCONTEXT . name . replaceAll (' ' , ' ') /] [for (av : VARIABLE | aMachine . variables) separator (' ,\ n ') after ('\ n ')]
	9 [file (anEventB_Spec . name . concat ('/ '+ aCont . name . replaceAll (' ' , ' ') 7 [if (aCONTEXT . extends -> notEmpty ())] [av . name /][/ for]
	+ '. sys ') , false , 'UTF -8 ')] INVARIANT 8 EXTENDS
	9	[aCont . CONTEXT () /] [for (a : CONTEXT | aCONTEXT . extends) separator (' ;\ n ') after ('\ n ')] [for (ai : Invariant | aMachine . invariant) separator (' &\ n ') after ('\ n ')]
			[/ file] [a . name /][/ for] [ai . name /][/ for]
		[/ if]	[/ for] [for (ae : EVENTS | aMachine . events ->
		SETS	[for (aMac : MACHINE | anEventB_Spec . machines)] select (e | e . name . equalsIgnoreCase (' INITIALISATION '))) separator (' \ n ')
		[if (aMac . refines -> isEmpty ())] [for (aset : SETS | aCONTEXT . sets) separator (' ;\ n ') after ('\ n ')] after ('\ n ')]
			[file (anEventB_Spec . name . concat ('/ '+ aMac . name . replaceAll (' ' , ' ') [aset . name /][/ for] INITIALISATION
		CONSTANTS	+ '. sys ') , false , 'UTF -8 ')] [for (a : ACTIONS | ae . actions) separator (' ||\ n ') after ('\ n ')]
		[aMac . MACHINE () /] [for (acons : CONSTANTS | aCONTEXT . constants) separator (' ,\ n ') after ([a . name /][/ for]
			[/ file] '\ n ')] [/ for]
			[/ if] [acons . name /][/ for]
		PROPERTIES
		[for (aprop : AXIOMS | aCONTEXT . axioms) separator (' &\ n ') after ('\ n ')

1 [comment encoding = UTF -8 /] 2 [module generate (' http :// www . example . org / EventB_MetaModel ')] [if (aMac . refines -> notEmpty ())] [file (anEventB_Spec . name . concat ('/ '+ aMac . name . replaceAll (' ' , ' ') + '. namely: SEES, VARIABLES, INVARIANT, EVENTS, etc. The main template, shown in Listing 35, invokes this template main operation called MACHINE which takes as a parameter a machine (see Line 4 in Listing 37). [if (aMachine . events -> notEmpty ())] EVENTS [for (ae : EVENTS | aMachine . events -> reject (e | e . name . equalsIgnoreCase CHAPTER III. IMPLEMENTATION

Railenium. http://railenium.eu/fr/

B System designates a syntactic variant of Event-B offered within the AtelierB tool.

Conclusion .

http://www.railtopomodel.org/en/. Il s'agit d'un standard pour la représentation des données liées à l'infrastructure ferroviaire

https://www.eulynx.eu/

The Autonomous Freight Train (AFT) project under

The Autonomous Train program

ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS 3.1.2 SysML HLA modeling process architecture Figure 2.13 presents the SysML HLA modeling process architecture. As we have already presented, a package diagram is created to design an HLA. This diagram describes the layered hierarchy of system/sub-systems relationships and encompasses a set of packages each of them corresponds to a component of this hierarchy (a system or a sub-system).

The packages are presented as follows:

1. The first package Package 1 describes the main system in a BDD and its associated state-machine diagram which defines the system behavior and a sequence diagram that represents its life cycle. Sequence diagram messages are associated with the state-machine diagram transitions.

2. The main system represented by Package 1 is a parent system composed of a set of sub-systems that collaborate to satisfy the parent system main goal. From this end, the second package Package 1.1 is created and it refines Package 1 using the HLA_refines stereotype. The parent system to sub-systems composition relationship is designed in the BDD. A state-machine diagram is found and associated to each sub-system behavior. A sequence diagram is created to define the life cycle of the sub-systems interplay for the purpose to satisfy the parent system goal. The result of this interplay is represented by a sequence diagram message that refines, using theRefines_Message stereotype, a message from the parent system sequence diagram.

3. Sub-systems can be considered as independent systems that can exist by their own besides their participation in the main system life cycle. To this aim, a decomposition mechanism using HLA_decompose stereotype is applied on the parent system and a new package is created for each sub-system (Package 2, Package 3, Package 4). This decomposition is applied on the package Package 1.1 because it is the refinement package of Package 1 in which we have introduced the interplay of the parent system corresponding sub-systems.

4. From step 3, If one of these sub-systems is a parent system that is composed of other sub-systems then these steps should be re-executed from step 1 until we arrive to a package with no encompassed sub-systems such as Package 3. ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS The Event-B formalization of the landing gear system HLA main system package presented in Figure 2.36 is shown in Listings 18 and 19. The BDD and state-machine diagrams give rise to sets, constants and properties. Variables and typing invariants are generated from sequence diagram lifelines associated to BDD blocks. The sequence diagram messages ExtendsLGS and RetractsLGS are translated into Event-B events representing the life cycle of system states from extended to retracted. Recall that the sequence diagrams messages are associated to transitions of the state-machine diagram. Thus, the guard of the event comes from the source state of the transition and its action is the target state.

Landing gear system HLA level 1

The landing gear system is composed of three sub-systems (Pilote SubSystem, Digital SubSystem and Mechanical SubSystem) and a Pilot to command the extension and retraction of the gear. Thus, the behavior of the main system (landing gear system) is satisfied by the result of these entities interplay. and its formalization, HLA models and their translation into formal specification and traceability establishing between these two parts. In fact our methodology specification process is composed of three parts: requirements, HLA and alignment parts.

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

Chapter III

Requirements specification and formalization part

The first step that a user of our methodology should start with, is to specify requirements by defining functional goals and corresponding domain models. After that, an

Event-B formalization is produced from requirements models. To this end, we use the Formose tool [START_REF] Openflexo | Openflexo SysML/KAOS Tool[END_REF] which is an Openflexo open-source platform that federates all the models involved in the SysML/KAOS requirements engineering method. OWL-GrEd [START_REF] Bārzdin | UML style graphical notation and editor for OWL 2[END_REF] is a visual editor for OWL 2.0 [START_REF] Sengupta | Web Ontology Lan-BIBLIOGRAPHY guage (OWL)[END_REF] ontologies The second step suggests, a translation between the Event-B model generated from the first step and a textual specification accepted by the AtelierB tool. This step allows to generate formal specifications for the purpose to be verified. To perform this model-totext transformation, we implement transformation rules with Acceleo [START_REF] Musset | Acceleo user guide[END_REF] transformation language. Acceleo is a template based technology allowing to automatically produce any kind of source code from any data source available in EMF format (XMI).

To perform this transformation, we need to collect the XMI file generated from the previous step (Listing 34). Then, we can proceed to define the model-to-text translation. In the following, we will give an overview on how we implemented our translation rules. Figure

Conclusion

In this chapter we described the implementation concepts of the proposed methodology. they are considered as a framework for modeling requirements and HLA of complex systems and their formal verification. Adding to that, this framework gives a formally verifiable alignment between requirements and HLA models to guarantee the traceability between them.

This framework is implemented using a set of Plug-ins and tools that can be integrated in the Eclipse Platform. This choice allows to develop a complete environment to manage Chapter IV

CONCLUSION AND PERSPECTIVES

This final chapter concludes the thesis and exhibits the contributions presented in this work. We first provide a summary and draw some conclusions; we discuss some limitations of our work and propose some perspectives to overcome them and to go further.

Summary of contributions

The aim of the thesis is to propose a methodology for high-level architecture modeling aligned with system requirements.

In the first part, an overview of the existing approaches on RE, architecture modeling and Event-B formal specification is conducted. To show the usefulness of our proposed methodology, we presented a rich evaluation and discussion which emphasizes the limitations of existing research works. The primitive support for traceability between HLA and requirements has been recognized as one of the most significant limitations of current complex systems. similarly to the fact that the formal reasoning behind the safety-critical complex systems HLA and requirements is crucial.

The contributions presented in this thesis are manifold. The central contribution is to propose a holistic process to define system HLA aligned with system requirements. The approach places a great deal of emphasis on HLA complexity mastering, rigorous and formal reasoning, and traceability vis-a-vis stakeholders needs. To sum up, the main results and contributions of this thesis are:

• High-level architecture modeling

We proposed first, a model based approach which enables HLA modeling using SysML diagrams. Four kinds of SysML diagrams have been used: package, block definition, state machine and sequence diagrams. These models allow to represent CHAPTER IV. CONCLUSION AND PERSPECTIVES HLA as a hierarchy of systems/sub-systems levels and answering a part of research question RQ1 dealing with the functional of the HLA. The second part of the research question RQ1 is about the non-functional part of HLA modeling which raises the first perspective of this thesis. SysML extensions were proposed to be aligned with Event-B refinement and decomposition mechanisms in order to automatically translate SysML models of HLA to Event-B specifications. These extensions are applied on two SysML parts: package diagrams are customized to represent the decomposition of system/sub-systems hierarchies and the refinement of a system by its sub-systems interplay; Sequence diagrams are extended with stereotypes applied on messages to refine a parent system task by the collaboration of its sub-systems processes. These extensions allow to answer research question RQ2.

• High-level architecture formalization with Event-B With the aim of ensuring the correctness of HLA models, a set of translation rules is defined to translate SysML models into Event-B specifications in order to formally verify them using AtelierB. This translation is conducted using QVT and Acceleo transformation language and comprises three sets of rules: translating package elements, translating SysML refinement extension to Event-B and translating SysML decomposition extension to Event-B. These translations take meta-models as input (extended SysML meta-models) and output (Event-B meta-model). This formalization allows to answer research question RQ3.

• Requirements & high-level architecture alignment In the context of traceability between HLA and system requirements, a model-based approach is defined to align complex systems HLA models with SysML/KAOS requirements models. This approach encompasses two steps. First, it allows graphical specification of the alignment of a leaf goal with HLA elements responsible for its satisfaction. For this purpose, three kinds of alignment links are defined and a new alignment meta-model is proposed. Second, it formalizes the alignment links in Event-B in order to be verified. To produce this Event-B specification, a set of transformation rules is proposed. The semantics of the alignments links are given by these rules and the definition of new proof obligations that can be discharged using AtelierB. This proposed graphical and formal alignment allows to satisfy research question RQ4.

• Implementation of the methodology

We implemented the methodology with the help of the Eclipse IDE, which is an the virtual representation before its production on the physical system. Therefore, the use of digital twins is well suitable for safety-critical complex systems such as railway systems. A formal approach for modeling high-level architectures of complex systems aligned with requirement models

Chapter V

Résumé Étendu en Français

Abstract : Complex systems are a collection of sub-systems linked together to represent an integrated whole. The design of such systems should represent the interactions between their sub-systems. To achieve this, graphical models are generally recommended to specify, view, understand, and document the system in a simple way. However, when considering safety-critical systems where the consequences of a failure result in loss of life, significant property or environmental damage, graphical languages are not sufficient since they are only semi-formal and do not allow formal and rigorous reasoning necessary for verifying safety and security properties. Lastly, the quality of a system depends on the degree to which it fulfills its requirements.

Requirements traceability is broadly recognized as a crucial element of any rigorous system development process, especially for the design of critical complex systems.

To cope with these issues, the thesis aims to define an approach of alignment between requirements models and high-level architecture models for safety-critical complex systems, thus allowing to specify traceability links between these two entities and to guarantee that high-architecture models fulfills required stakeholders needs. This is achieved by using formal specifications to verify firstly the correctness and consistency of high-level architecture models and secondly the consistency of the established alignment links.

Keywords : High level architecture, Requirement, Alignment, SysML/KAOS, SysML, Model transformation, Formal specification, Event-B Method.