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Abstract

Complex systems are a collection of sub-systems linked together to form an integrated

whole. The sub-systems are generally heterogeneous in that they integrate various kinds

of components, as mechanical, electronic, or software components, working together to

perform missions. Therefore their design requires the collaboration of domain experts and

the use of a common language to communicate with each other and agree on the main

characteristics of the system to build. To achieve this, graphical models are generally

recommended to specify, view, understand, and document the system in a simple way.

However, when considering safety-critical systems where the consequences of a failure result

in loss of life, significant property or environmental damage, graphical languages are not

sufficient since they are only semi-formal and do not allow formal and rigorous reasoning

necessary for verifying safety and security properties. Nowadays, the usefulness of formal

verification and validation of system specifications is well established, at least for critical

systems. Lastly, the quality of a system depends on the degree to which it fulfills its

requirements. Requirements traceability is broadly recognized as a crucial element of any

rigorous system development process, especially for the design of critical complex systems.

To cope with these issues, the thesis aims to define an approach of alignment between

requirements models and high-level architecture models for safety-critical complex systems,

thus allowing to specify traceability links between these two entities and to guarantee that

high-architecture models fulfills required stakeholders needs. This is achieved by using for-

mal specifications to verify firstly the correctness and consistency of high-level architecture

models and secondly the consistency of the established alignment links. The idea behind

the first point is to combine SysML, well adapted to be validated by domain experts, and

the Event-B formal method for verification purposes. We propose to extend SysML with

safety relevant Event-B refinement and decomposition mechanisms to model high-level ar-

chitectures, and to define a set of rules enabling an automatic translation from SysML

diagrams to Event-B specifications. We focus on diagrams that facilitate high-level archi-

tecture design, namely package, block-definition, state-transition and sequence diagrams.

The second point aims to support traceability by defining several kinds of alignment links

between requirements models and high-level architecture models. Alignment links are first

graphically specified. Then they are translated into Event-B specifications. The main idea

is to use the formal refinement concept to prove their correctness. As the semantics of this

refinement is not the same as the standard Event-B refinement, we have defined new proof
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obligations to express it, which can be discharged using AtelierB.

The proposed approach is supported by a set of tools and implemented in an Eclipse

IDE plug-in. It has been evaluated on various industrial-scale case studies.

Keywords: SysML, High-level architecture, Requirement, Alignment, SysML/KAOS,

Model Transformation, Formal Specification, Event-B Method.
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1 Context

Complex systems are a collection of sub-systems, which are independent enough to be

identified. These sub-systems are generally heterogeneous in that they integrate various

kinds of components, as mechanical, electronic, or software components, working together

to perform a complex system mission. These systems are represented as composite sys-

tems, in the sense that the interaction between sub-systems is modeled by collaborating

behaviors. Manipulation of these behaviors is the key to the resolution of composite system

behavior. The goal of these manipulations is to reduce, as much as possible, the resolution

of the original, composite system behavior, to the resolution of a sequence of sub-systems

behaviors that can be solved independently. From literature, complex systems are a set of

interconnected parts forming an integrated whole.

Nowadays, the importance of complex systems is increasing in the human life as the

automation of essential tasks is taking place in the people routines. These systems may

be responsible for such important tasks that their correct functioning is crucial in order

to avoid severe repercussions. Complex systems are considered as safety-critical when the

consequences of a failure result in loss of life, significant property or environmental damage.

It requires advanced approaches for the verification of their correctness in order to avoid

hazardous situations [Knight, 2002]. Some examples of these systems are Aircraft Flight

Control, Railway, Medical Devices or Nuclear Systems.

The Autonomous Freight Train (AFT) project under the Autonomous Train program 1

1. The Autonomous Train program https://railenium.eu/train-autonome/

https://railenium.eu/train-autonome/
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is one of the R&D and innovation programs of IRT Railenium 2, a test and applied research

center for the rail industry in France, with the cooperation of several partners (SNCF,

Alstom Transport, Hitachi Rail STS, Capgemini Engineering and Apsys). They target

performance improvements of the system thanks to the implementation of autonomy in

railway operations. This system is considered as a safety-critical complex system, where

it depends more and more on effective solutions that can address heterogeneity and the

interplay of physical and software elements. Also, the use of modern verification approaches

may be the differentiating factor in order to guarantee the consistency of these systems. It

should be noted that AFT with the objective of avoiding the occurrence of several problems

like the loss of people lives, injuries, severe environmental damage and economical loss, for

instance, must guarantee the consistency of systems functionalities.

Several specialized fields are involved in the design of a complex system, making it

difficult to keep a unified vision of this system and to manage its design. This leads to

important and difficult problems of integration, directly related to both the huge number

of basic components integrated at multiple levels, and the important scientific and techno-

logical heterogeneity of such systems (generally involving software, hardware/physical and

human/organizational parts).

When attempting to operate or design complex systems such as railway systems, the

main challenge is, therefore, to take into account the interrelations between sub-systems,

while never considering the problem of the whole system at once. High level architecture

(HLA) is a system architecture specification that defines how to create a global system

composed of interacting distributed parts. The intent of HLA is a structural design that

allows the reuse of capabilities available in different parts ultimately reducing the cost and

time required to create a synthetic environment for a new purpose, and the possibility of

distributed collaborative development of complex parts applications [Dahmann et al., 1998]

such as complex systems. HLA is widely applicable across a full range of parts application

areas, representing entities at many levels of resolution.

In order to prove the consistency of a system HLA and support its design, formal meth-

ods may be used. Based on mathematical foundations, formal specification methods allow

system HLA modeling as a way to define and prove system properties. A recent study of a

literature review conducted on 114 scientific publications on formal methods and railways

presented in the European project ASTRail [ASTRAIL, 2017] claimed that "This analy-

2. Railenium. http://railenium.eu/fr/

4
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sis has shown a dominance of the UML modeling language for high-level representation

of system models, and a large variety of formal tools used, with a dominance of the tools

associated to the B family (ProB and Atelier B)". The CENELEC 50128 norm 3 in the rail-

way domain clearly recommends the use of formal methods for developing critical systems.

Using formal methods, system properties and HLA correctness can be proved. In fact, the

B formal method family has shown their successful application in several industrial railway

projects [Behm et al., 1999, Lecomte et al., 2007].

Complex systems are generally made up heterogeneous sets of components and increas-

ing in complexity which raises multiple problems relating to the completeness, consistency,

non ambiguity and correctness of a design with respect to initial requirements. Their de-

velopment process is most often challenging since it could be difficult to verify that stake-

holders needs are satisfied, knowing that the consequence of a failure may be disastrous,

especially for safety-critical systems. Beyond the fact that requirements models should be

as precise as possible, it is necessary to verify that HLA models are aligned with them. In

fact, requirement traceability is defined as “. . . the ability to describe and follow the life of

a requirement, in both a forward and backward direction, i.e. from its origins, through its

development and specification, to its subsequent deployment and use, and through periods

of on-going refinement and iteration in any of these phases” [Gotel and Finkelstein, 1994].

Indeed, a good alignment helps ensuring return on investment, and is key to a coherent

governance. Thus, validation and verification activities take part in this flow to ensure the

correctness of the design with respect to the initially specified needs.

2 Problem statement and motivations

The design of safety-critical complex systems, such as AFT, depends on solutions that

can address the interplay between their sub-systems. These sub-systems interact by ex-

changing information in order to perform the main goal of the global system. Therefore,

a model of HLA supporting layered hierarchy of components is needed. Such HLA must

enable the specification of the main functional elements of a system, together with their

interfaces and interactions. It constitutes a framework common to all the domain experts

involved in the design of the system. In the AFT project, graphical representations of sys-

tem components are recommended to specify, view, understand, and document the system

3. The CENELEC 50128. https://standards.globalspec.com/std/2023439/afnor-nf-en-50128

5
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in a simple way. Such representations allow all the stakeholders to discuss and agree on

the main characteristics of the system to build and allow to check if its HLA corresponds

to their expected requirements. Whereas, railway norms for safety engineering assert that

modeling railway systems using SysML allows to generate correct-by-construction com-

ponents, which is a way to ensure that the needs fulfilled by the initial model will remain

respected while it is supposed to be easily understood by railway experts. From this per-

spective, we formulate the following research question:

RQ1: Can we provide a common modeling language for high-level architectures

that can support the interaction of sub-systems?

Complex systems complexity is increasing related to both the huge number of basic

components integrated at multiple levels, and the important scientific and technological

heterogeneity of such systems. This raises multiple problems relating to the completeness,

consistency, non ambiguity and correctness of system design. However, when systems are

complex, their structure cannot be described at a single level or with a single view; multi-

scale descriptions are needed to understand them. This comes from the fact that a complex

system is a collection of sub-systems presented as an integrated whole working together to

perform a main mission and besides, these sub-systems have their own life and can exist

independently from their participation in the main mission. Based on these considerations,

it is possible to formulate a second research question as:

RQ2: How can we master the complexity of these complex systems?

Generally complex system HLA graphical design is semi-formal and its semantics are

given in natural language, which does not allow formal and rigorous reasoning necessary for

critical systems for which safety and security are major concerns. In such circumstances, the

industry needs an effective approach for the verification of the critical systems in order to

guarantee their safety. In this context, the use of formal methods is strongly recommended

for the specification of systems HLA during the development of railway systems for example.

Formal specification allows the proof of the system consistency by modeling its structure

and behavior to be formally verified. Thus, it is possible to formulate the third research

question as:

RQ3: How can we provide a formal specification of high-level architectures to

verify their consistency?

Beyond the fact that complex systems HLA should be consistent and verified, it is

necessary to verify that its models are aligned with system requirements which should be

6
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precise as much as possible too. Indeed, the HLA design is most often challenging since it

could be difficult to verify that stakeholders needs are satisfied. That is why, while formal

specification allows the proof of the system consistency, it is recommended also to prove

the consistency of this alignment. Thus, validation and verification activities should take

part to ensure the correctness of the design with respect to the initially specified needs.

From this context, a last research question can be formulated as:

RQ4: How can we establish and verify alignment links between high-level ar-

chitectures and system requirements?

3 Objectives

In the light of the aforementioned shortcomings, the core interest of this thesis is to

define a holistic methodology that supports a part of complex system life cycle from stake-

holders requirements definition to HLA definitions with traceability respect between HLA

and requirements.

To this endeavor, in the sequel, we present the objectives of this methodology:

• Proposing a modeling language for complex systems HLA which can hamper reason-

ing about system properties. This modeling language should allow to provide the full

range required to deal effectively with the heterogeneity of complex systems HLA

elements. Such a HLA model must enable the specification of the main functional

elements of a system, together with its interfaces and interactions. It constitutes a

framework common to all the domain experts involved in the design of the system.

• While complex systems are represented as an integrated whole of sub-systems col-

laborating together to perform a main task, the aim is to define a language to model

this HLA as a layered hierarchy of sub-systems.

• Defining complexity mastering mechanisms which allow step-by-step design and de-

tailing the parent system behavior by its sub-systems behaviors interplay. This is due

to the huge number of sub-systems and components a complex system can encompass.

These sub-systems can also exist independently.

• Graphical representations give a simple manner to specify systems HLA and could

be understood by stakeholders. However, they are less powerful, semi-formal and

does not allow formal and rigorous reasoning necessary for critical systems. On the

other hand, formal methods provide a formal and rigorous reasoning about system

7
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specification but it is not an easy practice for unfamiliar users of formal methods.

Therefore, we intend to define an end to end process from HLA graphical design

until HLA formal specification which allows to guarantee the consistency and the

completeness of the graphically designed HLA. This process is crucial for safety-

critical systems.

• Proposing solutions and techniques which aim to establish alignment and traceability

between HLA models and requirements. Thus, it allows to demonstrate that HLA

elements are aligned with the stakeholders needs and participating in their satisfac-

tion while the competitiveness of a system relies on the degree to which HLA models

fulfill its requirements.

• Formalization of alignment links. We aim to provide a consistent and correct defi-

nition of this alignment between HLA and requirements, which involves the use of

formal notation for this purpose.

4 Contributions

In this section we layout the contributions of the thesis to come up with a holistic

methodology for HLA definitions with traceability respect vis-a-vis requirements. The

proposed methodology realizes the set of objectives discussed in Section 3. This includes

the following contributions:

— Overview on the existing researches in the field

A survey of the current state of the art about SysML, RE, architecture modeling and

specification approaches and Event-B formal method is elaborated. Furthermore,

related work on requirements models and their formalization into formal specifica-

tion, design models and their formal specification translation, models refinement and

decomposition and finally requirements and architecture alignment are analyzed.

— High-level architecture modeling and formal specification

For HLA modeling and formal specification, a model-based approach enabling the

design of HLA using SysML, answering the research question RQ1 and its translation

into Event-B formal method answering research question RQ3 is outlined.

• High-level architecture modeling

The particularity of the proposed approach is that it provides systems/sub-

systems hierarchical modeling of HLA. In order to master complexity in HLA de-

8
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sign, the approach defines solutions and mechanisms to solve it. More precisely,

we adopt Event-B refinement and decomposition mechanisms by proposing an

extension for SysML to enable step-by-step design and complexity reduction.

This answers research question RQ2.

• High-level architecture formal specification

For a formal specification of HLA, an automatic translation from extended

SysML HLA models into Event-B formal specification is proposed. This trans-

lation is a two step process, model-to-model and model-to-text, and supports

also the translation of the proposed refinement and decomposition mechanisms.

Using the generated formal model, we investigate a model checking and theorem

proving based verification process that aims at ensuring HLA consistency and

correctness.

This proposed approach is illustrated by the landing gear system case study [Boniol

and Wiels, 2014] to verify and evaluate it.

— Requirements & high-level architecture alignment

It is necessary to verify that HLA models are aligned with requirements and to de-

termine how HLA elements can contribute in the satisfaction of the requirements.

We have chosen to use SysML/KAOS to model requirements graphically and for-

mally. We propose a model-based approach to define several kinds of alignment links

between SysML/KAOS models and SYSML HLA models and their formalization

into Event-B. This approach allows to answer research question RQ4.

• Requirements & high-level architecture graphical alignment

For establishing traceability, we have chosen to apply this alignment between

leaf goals from requirements models and sequence diagram messages from HLA

models. To this aim, different kinds of alignment links are proposed, each of

them defines a specific semantics and process on how a goal in a requirements

model could be satisfied by HLA elements.

• Requirements & high-level architecture alignment formalization

To prove the consistency of the proposed alignment links, an Event-B formal-

ization is proposed. The main idea is to use the Event-B refinement concept

to prove the correctness of alignment links. As the semantics of this refinement

is not the same as the standard Event-B refinement, to achieve it, new sets

9
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of refinement proof obligations are specified, one for each kind of alignment.

Discharging these proof obligations allows to formally verify the satisfaction of

a leaf goal by a set of HLA messages.

This proposed approach of alignment is illustrated by the landing gear system case

study [Boniol and Wiels, 2014] enhanced with a second example taken from the train

control system case study presented in [Lamsweerde, 2008] to verify the consistency

of the proposed alignment links.

— Implementation of the methodology

The methodology is implemented using a collaborating set of tools, frameworks and

Eclipse plug-ins. This combination of tools assists designers in specifying complex

systems life cycle from requirements to HLA. Moreover, it enables to verify the

consistency, correctness and completeness of requirements and HLA using an au-

tomatic mappings of SysML/KAOS models and HLA models to the formal lan-

guage; Event-B. Adding to that, it provides mechanisms to establish graphically

and formally alignment between HLA and requirements entities in order to prove the

traceability between them. A subsequent formal verification using the AtelierB

tools is conducted.

5 Outline of the Thesis

Following this introductory chapter, the thesis is organized in three chapters.

— Chapter I outlines the background of this work about RE, architecture modeling

and Event-B formal method which is necessary for the remainder of the thesis.

Afterwards, existing researches are analyzed and a comparison is drawn. As a result

of this analysis, we motivate and subsequently present the proposed methodology.

— Chapter II details the contributions of the high-level architecture modeling aligned

with system requirements methodology. It consists in the application of SysML/KAOS

approach, HLA modeling and its automatic translation into Event-B and we present

our contribution about requirements and high-level architecture alignment. Finally,

to evaluate our methodology, we illustrate it on the landing gear system case study.

— The implementation details of the methodology is discussed throughout Chapter

III. This chapter presents a review of the implementation tools and mechanisms to

perform each of the steps of the methodology. The main goal of this step is to support
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complex systems designers with a collaborating set of tools and plug-ins within an

integrated development environment as Eclipse.

Finally, in chapter CONCLUSION AND PERSPECTIVES, we will summarize and

conclude the thesis. A discussion will also be held to outline several directions for future

work.
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CHAPTER I. LITERATURE REVIEW

1 Introduction

This chapter is dedicated to the presentation of background knowledge and the related

works about specifying and verifying requirements and architecture models. Furthermore,

research efforts on requirements and architecture alignment are outlined. Particularly, in

this chapter we give a broad overview about SysML, requirements engineering approaches,

architecture modeling approaches and Event-B formal method. Then, we analyze the

state of art in existing tools and methods about formal specification of requirements models,

design models and correspondent formal specifications and finally, we detail works dealing

with requirements and architecture alignment. We conclude this chapter with an evaluation

of the presented works and, based on these challenges, we propose a holistic methodology

which deals with alignment.

2 Background

2.1 Systems Modeling Language SysML

The Systems Modeling Language (SysML) [Holt and Perry, 2008, OMG, 2007] is a

graphical modeling language supporting the analysis and specification of complex systems

that may include hardware, software and human elements. Based on the unified modeling

language (UML) [OMG, 1997] as a UML profile, SysML has been designed to be used

in system engineering to satisfy the shortcomings of UML. UML was designed to be a

common, semantically and syntactically rich visual modeling language. The UML profiles

represent an integration of a light-weight mechanism in order to extend the languages based

on the MOF (Meta Object Facility). In fact, profiles are used to customize UML for a

specific domain through extension mechanisms that enrich the semantics and syntax of the

language. However, the use of UML in system engineering applications has shown certain

weaknesses that must be solved to provide an effective language for system engineers. As

examples of shortcomings, we give:

— The need to describe the requirements directly in the model, and to ensure traceability

to the architecture.

— The need to represent non-software elements and to specify their type (mechanical,

circuit, hydraulic, wiring, sensor, etc.).

— The need to represent physical equations, constraints.
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— The need to represent continuous flows (matter, energy, etc.).

— The need to represent logical/physical, structure/dynamic, etc. allocations.

2.1.1 Overview of SysML diagrams

SysML is composed of nine types of diagrams, each of which is dedicated to represent

particular concepts in a system. It reuses some of the UML proposed 13 types of diagrams

exactly as is, some have been modified and others have not been kept. These nine diagrams

are classified in three categories:

— Structural diagrams

• Block Definition Diagram (BDD): In SysML it defines features of blocks

and relationships between blocks such as associations, generalizations, and de-

pendencies. It captures the definition of blocks in terms of properties and op-

erations, and relationships such as a system hierarchy or a system classification

tree.

• Internal Block Diagram: It is based on the UML composite structure and

it specifies a structural aspect of the model. It is related to both the BDD and

the parametric diagram and describes the internal structure of a block.

— Behavioral diagrams

• Activity Diagram: It shows the flows of data and control between actions.

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for

coordinating other behaviors of a block.

• Sequence Diagram: It describes the flow of control between actors and sys-

tems (blocks) or between parts of a system. It shows the vertical sequence

of messages exchanged between elements (lifelines) in an interaction. This se-

quence of messages represents "Scenarios" which highlight pertinent aspects of

a particular situation.

• State-Machine Diagram: It models the behavior during the lifetime of a

block.

• Use Case Diagram: It describes the usage of a system (subject) by its actors

(environment) to achieve a goal, that is realized by the subject providing a set

of services to selected actors.
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— Transverse diagrams

• Requirements Diagram: It is intended to be used to represent system require-

ments and their relationships. A requirement may specify a function that a sys-

tem must perform or a performance condition a system must achieve. SysML

provides modeling constructs to represent text-based requirements and relate

them to other modeling elements.

• Parametric Diagram: It enables constraints on system parameter values to

be represented, such as performance, reliability and mass. A constraint is rep-

resented as a block that allows the definition of rules about the properties of a

system or constraints that the system must obey.

2.1.2 SysML usage

SysML language is represented as a communication language between the different

members of the development teams. It allows to unify the visual modeling principles using

a set of diagrams, which makes it easy to learn, to use and to document. The introduction

of SysML in this domain was not only for simplifying the modeling and the communication

but also to offer the development community a good pillar to analyse the requirements of the

system since it is the first steps of the development through a model driven process.Among

the tools currently in use for SysML modeling, we can cite IBM/Rhapsody [IBM, 2013],

No Magic/MagicDraw [CATIA, 2011], Papyrus (open source) [Papyrus, 2008]. These tools

are used buy the AFT project partners.

2.2 Requirements Engineering

The quality of a software system is the main measure of its success, that depends

on the degree to which it fulfills its requirements. Requirements definition is a careful

evaluation of the need that a system should fulfill. It must describe why a system is needed,

based on current or foreseen conditions, which may be internal operations or stemming

from external markets. It presents system features which serve and satisfies the system

context and defines how the system will be constructed [Ross and Schoman Jr, 1976].

Thus, Requirements Engineering (RE) is defined as the branch of software engineering

concerned with the real-world goals. It must address the contextual goals why a software

is needed, the functionalities the software has to accomplish to achieve those goals, and the

constraints restricting how the software accomplishing those functions is to be designed
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and implemented. Such goals, functions and constraints have to be mapped to precise

specifications of software behavior [Van Lamsweerde, 2000]. They cover different types

of concerns: functional concerns associated with the services to be provided and non-

functional concerns associated with quality of service [Van Lamsweerde, 2001]. Goals are

very important in the RE process while they allow to achieve requirements completeness,

avoid irrelevant requirements, explain requirements to stakeholders, etc.

Goals modeling is based firstly on the identification of these goals, which may be explic-

itly stated by stakeholders or in preliminary material available to requirements engineers.

Many other goals can be identified by refinement and by abstraction, just by asking HOW

and WHY questions about the goals-requirements already available, others are identified

by resolving conflicts among goals or obstacles to goal achievement.

Several goal oriented RE approaches and frameworks have been presented such as:

— i* [Yu, 1997]: is an agent-oriented modeling framework that can be used for require-

ments engineering, business process reengineering, organizational impact analysis,

and software process modeling. The i* framework is used to model the environment

of the system-to-be. It facilitates the analysis of the domain by allowing the modeler

to represent the stakeholders of the system, their objectives, and their relationships.

— The NFR Framework [Chung et al., 2000]: focuses on the modeling and analysis

of non-functional requirements. The goal of the framework is to put non-functional

requirements foremost in the developer’s mind.

— KAOS [Dardenne et al., 1993]: KAOS stands for Knowledge Acquisition in autO-

mated Specification, which is described as a multi-paradigm framework that allows to

combine different levels of expression and reasoning: semi-formal for modeling and

structuring goals, qualitative for selection among the alternatives, and formal, when

needed, for more accurate reasoning.

Figure 1.1 presents the goal oriented RE frameworks used in 246 publications covered by

the literature map of [Horkoff et al., 2016]. KAOS and i* appear in near to the same number

of publications (13%), the most popular choice is to use goal modeling in general, without

committing to a particular framework. It is also fairly common (7%) to significantly use

multiple frameworks together.
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Figure 1.1 – Goal oriented RE frameworks use [Horkoff et al., 2016]

2.2.1 SysML/KAOS

SysML/KAOS [Laleau et al., 2010, Gnaho et al., 2013b] is a requirements engineering

method that allows the modeling of functional and non-functional requirements of a system

as goals to be achieved. The main idea is to extend SysML [OMG, 2007] with concepts

from the goal model of the KAOS method [Van Lamsweerde, 2009]. The choice is on

SysML/KAOS because it provides strong semantic expressiveness.

In fact, SysML is a modeling language for the analysis and specification of complex

systems and it is well recommended by the AFT project partners. It is a UML profile

that uses certain UML diagrams and also offers extensions such as modeling requirements.

Despite, the concepts provided by SysML to represent requirements, they are not as

extensive as in the other requirements methods because their semantics are not always

clearly defined. That is why, the first step of SysML/KAOS approach is to extend the

SysML requirements with concepts of the KAOS goal model, since it is the most important

aspect of KAOS.

The KAOS approach [Van Lamsweerde, 2009] is a framework for eliciting, specifying,

and analysing goals, requirements, scenarios, and responsibility assignments. It defines a

requirements modeling language for the representation of requirements to be satisfied by

the system and of expectations with regards to the environment through a hierarchy of

goals. KAOS is based on the decomposition and refinement of goals to support the entire

requirements development and acquisition process. The choice of KAOS is motivated by,

firstly, it permits the expression of several models (goal, agent, object, behavioral models)

20



CHAPTER I. LITERATURE REVIEW

and relationships between them. Secondly, KAOS provides a powerful and extensive set

of concepts to specify goal models. This allows the design of goal hierarchies with a

high level of expressiveness that can be considered at different levels of abstraction. The

most principal element is the Goal model. It shows the system functional and non-

functional goals that contribute to each other through AND/OR refinements links from

most abstract system goal down to software requirements and environment assumptions

represented by the leaf goals. Refinement and abstraction paths in a goal model are build

once preliminary goals are identified by recursively asking HOW and WHY questions

about available goals, respectively. Knowing that preliminary goals may be obtained by

analysing the strategic business objectives of the system-as-is by identifying the domain-

specific objectives to be preserved across system versions, and by addressing the reported

problems and complains about the system-as-is. A system-as-is is a reference model of the

current way in which a group of actors deal with a particular situation and how it exists

before the machine is built into it [Van Lamsweerde, 2009].

Figure 1.2 presents the extensions of SysML. Grey boxes represent the initial SysML

concepts, while the white boxes represent the extended KAOS concepts. This figure

presents a meta-model of SysML/KAOS.

Figure 1.2 – Meta-model of the extended SysML [Laleau et al., 2010]
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2.2.1.1 Functional Requirements Modeling

A functional requirement describes an expected behavior of the system, upon the oc-

currence of a specific condition. The SysML/KAOS functional requirements modeling

language combines the SysML requirement/elements traceability with the expressiveness

of the KAOS requirements modeling language. It allows the representation of the func-

tional requirements of a system and the expectations regarding the environment in the

form of hierarchies of goals. This hierarchy is defined using three types of operators AND,

OR and MILESTONE. The AND operator is used when the only condition for the

achievement of a goal is the achievement of each of its sub-goals. When the necessary

and sufficient condition for the achievement of a goal is limited to the achievement of one

of its sub-goals, then the operator OR is used. The MILESTONE operator makes it

possible to sequence a set of sub-goals whose the satisfaction of the parent goal requires

their realisation in order. SysML/KAOS also considers the data refinement that occurs

when goals appearing in one level of refinement are re-expressed, within a subsequent level

of refinement, due to the refinement of some data elements involved in their specification.

To take into account the complexity of the systems, the SysML/KAOS method considers

that the "first" constructed functional goal diagram, or diagram of the highest level, is

that of the main system. The breakdown into sub-goals ends when a goal is no longer

refined. Then, this goal can be either an elementary requirement which is placed under the

responsibility of a system agent or an expectation which is placed under the responsibility

of an agent of the system environment.

2.2.1.2 Non-Functional Requirements Modeling

Non-functional requirements capture the properties or constraints under which the

system to be designed must operate, such as performance, quality or safety aspects. [Gnaho

and Semmak, 2010], [Matoussi et al., 2011b] and [Gnaho et al., 2013a] propose solutions

to define non-functional requirements and their impact on functional requirements

2.2.1.3 Domain Model Modeling

Modeling domain knowledge is one of the crucial factors to perform high quality re-

quirements elicitation. SysML/KAOS goal model lacks of enough information to precisely

describe the structural part of systems. Some research works such as KAOS use object
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models to describe this part. [Tueno et al., 2017b, Tueno et al., 2017c] propose a meta-

model to represent the domain model. In fact, they present a complementary work to the

[Mammar and Laleau, 2016] works by modeling the domain using ontology. The ontology

is defined as an explicit specification of a conceptualization.

2.2.2 SysML/KAOS to Event-B

A major remaining weakness in the development chain is the gap between textual or

semi-formal requirements and formal models. This gap becomes larger and most of the

approaches stop at requirement phase, so designers are obliged to use another method to

develop their systems. Therefore, it is difficult to validate specifications with regard to

requirements. SysML/KAOS combines requirements engineering methods with formal

methods and defines a mapping rules to create a B specification from goal models.

2.2.2.1 SysML/KAOS functional goal formalization

The formalization of SysML/KAOS functional goal models is presented in [Matoussi

et al., 2011a]. The proposed rules allow to generate an Event-B model whose structure

reflects the hierarchy of the model of functional goals: a component is associated with

each level of refinement of the hierarchy. This component defines the skeleton of an event

for each goal of the level of refinement. The Event-B transformation of refinement pat-

terns associated with goals is based on the classical set of inference rules from Event-B.

Systematic proof obligations were identified for each goal refinement pattern.

We give as an example, the transformation of the MILESTONE refinement pattern.

For an abstract event EvG and concrete events EvG1 and EvG2:

— THE MILESTONE GOAL REFINEMENT PATTERN: a syntactic extension of the

Event-B refinement proof rule is presented in order to provide a way to refine an

abstract event by a sequence of new events. For abstract event EvG, it is refined

as follows: (EvG1 ; EvG2) Refines EvG. In fact, in addition to the feasibility proof

obligation, this refinement pattern formalization requires to discharge these different

proof obligations:

• The ordering constraint expresses the ”milestone” characteristic between the

Event-B events.

G1-PostCond ⇒ G2-Guard (PO1).
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• The guard strengthening ensures that the concrete guard of the sequence (the

guard of the first event in the sequence) implies the abstract guard.

G1-Guard ⇒ G-Guard (PO2).

• The correct refinement ensures that the sequence (the action of the last event

in the sequence) transforms the concrete variables in a way which does not con-

tradict the abstract event.

G2-PostCond ⇒ G-PostCond (PO3).

These proof obligations are introduced in the AtelierB [AtelierB, 1990] tool by extend-

ing the ref keyword which represents the Event-B refinement mechanism. This extension

is stated as follows:

— MILESTONE refinement of an abstract event G by a sequence of concrete events

G1, G2,..., GN is denoted by the following notation:

G1 ref_milestone G ; G2 ref_milestone G;...; GN ref_milestone G.

More details about these proof obligations generation can be found in [Matoussi et al.,

2011a] and [ANR, 2014]. This work is carried out within the framework of the FOR-

MOSE project [ANR-14-CE28-0009, 2014] funded by the French National Research Agency

(ANR).

2.2.2.2 SysML/KAOS non-functional goal formalization

[Matoussi et al., 2011b] present a continuity of the work of [Gnaho and Semmak, 2010]

to translate non-functional goals and their impacts to Event-B in order to enrich the

formal specification created from functional requirements. They create a set of traceability

rules to facilitate the management of evolution of these goals with different Event-B

elements.

2.2.2.3 From domain model to Event-B specification

To provide a complete extraction of the structural part of the Event-B specification

obtained from SysML/KAOS goal models and the initialisation of state variables, [Fotso

et al., 2018d] proposes a set of rules to translate SysML/KAOS domain models (presented

in 2.2.1.3) into Event-B specifications. These rules have been defined with Event-B and

verified with RODIN [Abrial, 2010].
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New elements may appear in the Event-B specification obtained from SysML/KAOS

models when specifying the body of events and/or by using formal validation and/or ver-

ification tools. Moreover, modeling is often done through several backwards and forwards

between the Event-B specification and SysML/KAOS models. [Fotso et al., 2018a] de-

fines a set of rules allowing the back propagation, within domain models for every added

element in the structural part of the Event-B specification. In fact, they describe these

propagation rules and how they are specified in Event-B, proving their consistency using

the RODIN tool.

2.2.2.4 Formalization of SysML/KAOS Goal Assignments with Event-B Com-

ponent Decompositions

The use of formal methods for verification and validation of critical and complex systems

is important, but can be extremely tedious without modularisation mechanisms. Several

systems break down into sub-systems (enabling the distribution of work between several

agents: hardware, software and human). SysML/KAOS goal models allow the capture

of assignments of requirements to agents responsible for their achievement. Each agent is

associated with a sub-system. [Fotso et al., 2018c] propose an approach to ensure that a

requirement assigned to a sub-system is well achieved by the sub-system. This approach

uses formal decomposition mechanisms [Abrial and Hallerstede, 2007] to construct, from

the formal specification of a high-level system, the interface of each of its sub-systems. The

interface of a sub-system describes the requirements that the high-level system expects from

the sub-system. Proof obligations are defined to ensure that the invariants of each sub-

system are consistent with that of the high-level system. The approach thus ensures that

each sub-system achieves its expected goals with respect to constraints set by the high-level

system.

2.3 Architecture Modeling

An architecture is a description of elements within a product and the interactions

between them. These elements are grouped in a manner which fulfills some tasks that single

element can not fulfill individually. It designates also how communication and interaction

between elements is achieved.

System architecture is a conceptual model that describes the structure and behavior of

multiple components and sub-systems like multiple software applications, network devices,
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hardware, and even other machinery of a system. It is Architecture Description Language

(ADL) [Clements, 1996] which describes the entire system architecture.

Software architecture refers to the process of creating high level structure of a software

system. It is about the complete structure/architecture of the overall system means it con-

verts software characteristics like scalability, security, reusability, extensibility, modularity,

maintainability, etc. into structured solutions to meet the business requirement. High level

architecture (HLA) [Dahmann et al., 1997] is a standard software architecture specification

that defines how to create a global simulation composed of interacting distributed simu-

lations. It contains major functional elements, interfaces, and design rules, providing a

common framework within which specific system architectures can be defined.

Therefore, a system is generally understood to be an assemblage of components that

integrates various mechanical, electronic, and information technology parts. These sys-

tems are classified as complex systems that can address heterogeneity and the interplay of

physical and software elements. Several modeling languages have been proposed to reason

about heterogeneous properties, and to develop optimized system-level solutions by assess-

ing multidisciplinary design trade-offs. A number of these modeling languages have been

standardized, such as Systems Modeling Language (SysML) [OMG, 2007] which focuses on

the “big picture” architectural views, whereas others, such as Architecture Analysis and De-

sign Language (AADL) [Feiler et al., 2006a] addresses the more detailed platform-oriented

and physical aspects of such systems.

2.3.1 Architecture Analysis and Design Language AADL

Architecture Analysis & Design Language (AADL) [Feiler et al., 2006a, Feiler et al.,

2006b] is a textual and graphical language used to design and analyze the software and

hardware architecture of real-time systems and their performance-critical characteristics.

It is aimed at supporting the avionics, aerospace, and automotive industry. From these

experiments in avionics, flight control, and robotics applications, this language proved its

richness and it offers expressive capabilities that go beyond the domain of avionics and it

is extensible to other software and hardware systems. AADL can be expressed in text, in

XML, as well as a graphic representation. It can be used by many different tools due to

these representations, graphical or not. The development of profiles for UML also allows

to integrate AADL within UML modeling tools. AADL was created to facilitate the in-

teroperability of the various tools, this is why its reference syntax is textual. The XML
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representation makes it easier to create parsers for existing applications. The graphical

notation arises in addition to the textual notation, to facilitate the description of the archi-

tectures. It gives a better representation than text or XML, but it is less expressive. As an

architecture description language, AADL describes the components connected to each other

to form an architecture. An AADL description consists of a set of component declarations.

These declarations can be instantiated to form the modeling of an architecture.

2.3.1.1 Components

AADL components are defined in two parts: the interface and the implementations.

An AADL component has an interface (component type) to which correspond zero, one

or more implementations. The interface presents a specification of the component. This

specification is used by other system components to interact with the specified component.

The type of an AADL component consists of three parts: interface elements, flows and

properties. The implementation describes the internal structure of the component. Gen-

erally, a component is described as a set of sub-components. These sub-components are

instances of interfaces or implementations of other components. An implementation also

contains the connections that link the sub-components.

Component categories. AADL defines three components categories: (1) Hardware

components describe elements of the execution platform (processors, memories, buses,

etc.). (2) Software components describe the software entities that form an application

(processes, sub-program, data, etc.). Finally, (3) systems that allow to regroup different

components into logical entities to structure the architecture.

Interfaces and connections. An interface of a component provides "interface elements"

(communication ports, parameters, etc.). Components communicate with each other by

connecting their respective interface elements. An interface element models a feature that

is visible to other components. In AADL, these elements are named entities allowing a

component to exchange data and signals with the outside.

Annexes and properties. Annexes are another way to associate information with el-

ements of a description. They allow to incorporate elements written in a language other

than AADL into the model of an application. The use of annexes allows to extend the

standard AADL syntax in order to specify the behavior of components.
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AADL introduces the notion of properties. Properties are characteristics associated

with different entities (components, connections, interface elements, etc.). These are at-

tributes which allow to specify characteristics or constraints applying to the architecture

elements: frequency of a processor, worst execution time of a process, bandwidth of a

bus... A set of standard properties is defined in the language; but it is possible to define

properties specific to a given application.

2.3.1.2 AADL tools

OSATE the Open Source AADL Tool Environment [Feiler and Greenhouse, 2005] was

developed by the Software Engineering Institute on the Eclipse platform and Eclipse Mod-

eling Framework (EMF) [Budinsky et al., 2004]. It supports the full language standard,

text and graphical editing, semantic checking, translation into the standardized XML for

AADL. The graphical editing capability is provided through TOPCASED [Gaufillet, 2005].

It is available at http://www.aadl.info. Also, the UML profile allows UML tool vendors

to provide support for the AADL. Current commercial design tools can also be modified

and extended to support the AADL. Ellidiss (www.ellidiss.com) has extended their HOOD

development environment to support modeling in AADL as well as HOOD and UML, and

to import/export AADL models. A number of toolsets based on AADL are becoming avail-

able. Ocarina [Vergnaud, 2005] is a tool suite to manipulate AADL models and generate

distributed applications by automatically producing Object Request Broker (ORB) based

middleware based on AADL models of the distributed application. The Furness toolset

[Sokolsky, 2005] uses AADL as a front-end for the Algebra of Communicating Shared Re-

sources (ACSR) [Clarke et al., 1993] for formal analysis of concurrent resource utilization

and scheduling. Cheddar [Singhoff et al., 2005] is a real time scheduling tool designed for

checking task temporal constraints of real time applications.

2.3.1.3 AADL usage

AADL allows to describe architectures with a very concrete approach. The language

offers a set of component categories of three main types: software, hardware and systems.

AADL focuses on the architectural aspects: it allows the description of the components

and their connections, but does not allow to represent their behavioral implementation,

nor the semantics of the manipulated data. These aspects can be added using the annexe

mechanism, or by associating external descriptions using properties. In the same way, the
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various constraints applying to the system or the deployment of the applications on the

hardware can be expressed by means of properties.

2.3.2 Modeling and Analysis of Real-Time and Embedded systems MARTE

profile

MARTE (Modeling and Analysis of Real-Time and Embedded systems) [OMG, 2008] is

an Object Management Group (OMG) standard UML profile, inspired by the uml profile

for Schedulability, Performance and Time [OMG, 2005]. The MARTE profile provides

constructs to accurately model non-functional properties, time, and resources. It allows to

model hardware and software execution platforms, and to allocate elements of a real-time

application embedded on these platforms. It also allows to apply quantitative analyzes

(scheduling or performance analysis) from these models, and validate the system design.

These extensions are generic and are not dedicated to any particular execution model,

analysis technique or implementation technology. MARTE is therefore applicable to a

wide variety of engineering methodologies and processes. It can be considered as being to

the field of embedded real time while UML is to the field of software.

2.3.2.1 MARTE architecture

Figure 1.3 – Overall architecture of MARTE

The profile is structured around two concerns, one to model the features of real-time

and embedded (RTE) systems and the other to annotate application models to support

analysis of system properties. Figure 1.3 presents the structure of this profile. The MARTE

design model package provides a domain-specific language for modeling phenomena specific
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to RTE systems. The MARTE analysis model package is a viewpoint-based sub-profile

suitable for model analysis. These two major parts share common concerns with describing

time and the use of concurrent resources, which are contained in the shared package called

MARTE foundations. A fourth package contains the annexes profiles defined in MARTE

which define a complementary cross-cutting modeling constructs, as well as a predefined

model libraries that may be used by modelers to denote their real-time and embedded

applications [Kordon et al., 2013, Mallet, 2015].

— MARTE Foundations. The foundation package is divided into five chapters:

• CoreElements define configurations and modes, which are key parameters for

analysis.

• NonFunctionalProperties sub-profile allows to describe the quantitative as well

as the qualitative aspects of properties.

• Time sub-profile defines the concept of time, which is of top priority for the

embedded real-time systems.

• Generic Resource Modeling sub-profile provides annotations to satisfies platform

modeling.

• Allocation gives a compatible way to make this deployment.

— MARTE design model. The design model package has four chapters:

• High level application modeling provides a set of extensions to the UML that

allow to annotate the elements of a model

• Generic component modeling reviews the composite structures of UML and

extends one of its sub-models in order to better address the domain-specific

requirements in terms of component-based modeling.

• Software Resource Modeling (SRM), and Hardware Resource Modeling (HRM):

these two sub-profiles specialize the Generic Resource Modeling sub-profile in

order to provide a basis for the modeling of software and hardware platforms.

— MARTE analysis model. The analysis model package also has a sub-profile that

defines generic elements to perform model-driven analysis on real-time and embedded

systems. This generic sub-profile is specialized to address schedulability analysis and

performance analysis.

— MARTE annexes. The MARTE annexes integrate the set of extensions defined in

the norm, the set of the libraries and the models. They propose an advanced textual
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editor of the value description language (VSL) and encompass two other sub-profiles:

the repetitive structure modeling (RSM) sub-profile and MARTE library sub-profile.

The RSM sub-profile allows to describe systems-on-chip of the massively parallel

computing type, such as systems that implement image processing algorithms. The

MARTE library sub-profile defines a model library that contains a set of primitive

types and structured types in a normative annex.

2.3.2.2 MARTE usage

MARTE supports different domains modeling and/or different analysis techniques while

its time model is rich and it combines physical and logical clocks. However, MARTE is

not expected to be used as a whole in a single specification. It is expected to be the base

of several complementary methodologies that cover different aspects of a system. This

chapter covers one aspect and proposes a partial usage to capture important features. It

is not intended to offer a comprehensive cover of all aspects. Several research works have

compared the MARTE profile with some popular existing profiles and standards such as

AADL, for example the [Faugere et al., 2007] work. Designers can use MARTE to model

their AADL applications at earlier design stages. Similarly, models can be conceived for

different views related to time properties, performance and scheduling. Once the appli-

cations have been developed, designers can take advantage of existing AADL validation

and verification techniques and tools. These validation/verification aspects would come

as a compliment to current MARTE aspects. MARTE has become the preferred defacto

industry standard for the modeling of RTE systems while it shares common concepts with

ADLs such as AADL, other standards and UML profiles.

2.3.3 Combining architecture modeling languages

2.3.3.1 Combining SysML with AADL

SysML and AADL are two standardized modeling languages specified for designing

system architectures, but none of them provide the full range required to deal effectively

with a specific kind of system architecture. [Behjati et al., 2011] propose an approach to

combine these two languages, since they are both widely used in industry with adequate tool

support. In fact, as shown in Figure 1.4, SysML and AADL are mutually complementary.

SysML supports requirements engineering, traceability, and precise modeling of diverse
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physical phenomena. On the other hand, AADL is oriented to model real-time embedded

systems. It provides a software to hardware bindings in such systems allowing analyses

of different system properties such as performance, timing, etc... The contribution behind

this approach is then to extend SysML using the UML profile extension mechanism to

cover all AADL concepts. This profile is called Extended SysML for Architecture

Analysis Modeling (ExSAM).

Figure 1.4 – The relationship between SysML, AADL, and the combined profile ExSAM.
[Behjati et al., 2011]

Figure 1.4, level 2 shows the overlapping concepts between these two languages. How-

ever, they have different meanings, usages or design rationales. That’s why this profile

should resolve inconsistencies or augment either side of the mappings with constraints

to account for semantic differences. The main idea of this profile is to satisfy SysML

limitations in order to address important AADL concepts.

AADL provides two mechanisms for declaring components: using the component type

construct or using the component implementation construct. SysML blocks are used to

model both AADL component types and AADL component implementations using two

newly defined stereotypes «ComponentType» and «ComponentImpl». In fact, using blocks

for modeling components allows to easily use other SysML constructs (e.g. parts and ports)

to model AADL constructs (e.g. subcomponents and ports) associated with a component.

AADL software component categories and AADL hardware component categories are-

defined as stereotypes with a set of attributes representing the properties of the corre-

sponding component category.

The applicability and usefulness of ExSAM were investigated through two case studies.

One benchmark case study showed that ExSAM can fully cover all AADL aspects and one

large-scale industrial case study, showed that ExSAM was sufficient to satisfy the modeling

needs of industrial partners, while AADL and SysML alone were not.
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2.3.3.2 Combining SysML with MARTE

The lack of a common design language between different disciplines hampers the rea-

soning about system properties. Designers of one part of the system may make wrong

assumptions concerning some other parts that result of the increasing development costs

due to long feedback cycles. [Espinoza et al., 2009] investigate the possibility of combining

these two languages, SysML and MARTE, since they are both widely used in industry.

SysML [OMG, 2007] provides constructs to specify traceable requirements, structure and

behavior of system blocks, as well as a parametric formalism to specify equation-based

analytical models. MARTE (modeling and Analysis Real-Time and Embedded systems)

[OMG, 2008] deals with time- and resource-constrained aspects, and includes a detailed

taxonomy of hardware and software patterns along with their non-functional attributes

to enable state of the art quantitative analyses. The purpose of [Espinoza et al., 2009]

paper is to identify some scenarios in which the usage of the combination of the two pro-

files is of relevant added value in the embedded systems domain. SysML and MARTE

consider characteristics of the embedded systems domain at different abstraction levels,

architectural styles, and particularly for specific purposes or application areas.

Modeling capabilities of both SysML and MARTE are rich enough for a wide range of

design approaches. In particular, SysML does not define any specific viewpoint, but it pro-

vides a means to specify how views are built, and to relate any user-specific view to a given

viewpoint. Although MARTE does not provide any concrete model element to define view-

points, it has an implicit conception of viewpoints rooted in its design rationale. Indeed,

some of the MARTE constructs have been designed to define domain-specific viewpoints.

Therefore, SysML and MARTE can be used in a complementary way. While SysML

provides means to create viewpoints in a general way, MARTE provides particular view-

points. As an example for Requirements Management/Traceability, SysML requirements

diagrams explicitly show the various kinds of relationships between different requirements.

On the other hand, MARTE offers key features to specify non-functional requirements in

general and timing requirements in particular.

Integration strategies for combining the SysML and MARTE profiles were presented

in [Espinoza et al., 2009] work. Both provide essential ingredients to model embedded

systems. The intent of this paper is to offer a better understanding of their conceptual

domains, and to help in using both profiles in a single model by avoiding semantic and

syntactical mismatches.
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2.4 Event-B Formal Method

In software engineering, formal methods [Wing, 1990, Rodhe and Karresand, 2015]

are techniques that allow rigorous mathematical logic reasoning over computer programs

or electronic devices to demonstrate their validity with respect to a certain specification.

Formal methods allow a complete check of the entire system states and the properties that

can be proved in the system are valid for all possible inputs. When formal methods can

not be used throughout the development process (due to system complexity, lack of tools

or other reasons), they can still be used on parts of the system.

Event-B is a formal method introduced by Jean-Raymond Abrial [Abrial, 2010] spe-

cialized in modeling dynamic systems, which has been used in safety-critical systems such

as the Paris Metro line. As an evolution of the B-Method (called Classical B) [Abrial

and Hoare, 1996], it specifies discrete systems based on mathematical notations, predicate

logic and set theory. It is used to model systems, which could contain different types of

components: software, hardware or humans, and to define the interactions between these

components. An Event-B specification is composed of a set of elements of two kinds: Ma-

chine and Context. The Machine represents the dynamic part of the model and it regroups

the behavioral properties of the system whereas the Context contains the static part of the

model. A model can contain machines only, or contexts only, or both.

Figure 1.5 – Event-B components structure

2.4.1 Machine

A machine is identified by a name and contains various clauses organized as follows:

— REFINES: a machine could be refined by another machine, this refinement is de-
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fined in the clause REFINES and it is used to gradually introduce the details and

complexity into a model.

— SEES: a machine can see one or several contexts thus by adding the name of the

context in the clause SEES.

— VARIABLES: clause VARIABLES represents the state variable of the model. The

changing of the variable values reflects the state in which the system is located.

— INVARIANTS: clause INVARIANTS lists the various predicates, which the variables

must obey, at least, the typing of variables declared in the clause VARIABLES.

— THEOREMS: clause THEOREMS lists the various theorems, which have to be

proved within the machine.

— VARIANT: The VARIANT clause appears in a machine containing some convergent

events.

— EVENTS: clause EVENTS regroups events that specify the evolution of the state

variables defined in the specification of the system. All variables should be initial-

ized in the machine, a particular event called INITIALISATION is defined for this

purpose.

2.4.2 Context

A context has an identifier, which must be distinct from all other component (machine

or context) names within the same model. It contains various clauses organized as follows:

— EXTENDS: a context can extend optionally one or several other contexts by adding

its name in the clause EXTENDS. This means that the present context can use all

sets and constants of the extended contexts and of their extended contexts.

— SETS: clause SETS describes a set of abstract and enumerated types, which are the

basic types of the specification.

— CONSTANTS: clause CONSTANTS represents the various constants introduced in

the context.

— AXIOMS: clause AXIOMS contains all the properties of the constants and their

types.

— THEOREMS: lists the various theorems, which have to be proved within the context.
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A context could be seen by a machine in order to use its sets and constants to type the

machine variables.

Event-B is based on two main mechanisms to master the complexity of a system which

are refinement and model decomposition.

2.4.3 Event-B refinement

Event-B refinement is a process that allows to gradually introduce the different parts

that constitute the system starting from an abstract model to a more concrete one. At

each refinement level, system details are gradually added into the concrete model which

must preserve the functionality and properties of the more abstract models. A machine

refinement consists in adding new variables and/or replacing existing variables with new

ones. A link between the abstract machine variables and the refinement machine variables

is explicitly defined by gluing invariants. Events can be refined and new ones can be

introduced. The refinement of an event has to verify that the guard of the refined event

should be stronger than the guard of the abstract one and the effect of the refined action

should be stronger than the effect of the abstract one. A context can also be extended

with other contexts by adding new modeling elements (sets, constants and axioms).

The Event-B method is a state-based specification method. Event-B refinement en-

sures that specified state variables of the concrete specification are consistent with specified

state variables in the abstract specification. In fact, event based specification refinement is

expressed in a sequence of events accepted by the specification, while state-based specifica-

tions are expressed in terms of the effect of events on state variables. Here, two properties

are verified : consistency and accessibility. The refinement consistency is verified if a

sequence of events is accepted by the concrete specification and has an effect on state

variables, then a corresponding sequence of events is accepted by the abstract specification

and the effect of this sequence on variables states matches. The refinement accessibility

consists of if an abstract event is allowed in a state, a corresponding concrete event must

be allowed in a corresponding state.

2.4.4 Event-B model decomposition

Event-B model decomposition is a powerful mechanism to scale the complexity of

the design of large and complex systems. An Event-B model can be decomposed into

several simple sub-components which can be refined separately and more comfortably than
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the whole. Many approaches allow to decompose an Event-B model, particularly, the

shared-variable decomposition [Abrial, 2009] and the shared-event decomposition [Butler,

2009b]. Shared-variable decomposition is suitable for shared memory parallel systems,

whereas shared-event decomposition is more suitable for distributed system development.

The shared-variable decomposition approach consists in distributing the events of a model

over the selected sub-components. It allows the introduction of shared variables and ex-

ternal events. These ensure that the behavior of shared variables is preserved in all sub-

components. After that, further refinements then concentrate on how each sub-component

processes shared state variables. The shared-event decomposition is a set of events that

are synchronized and shared by sub-components. This approach defines a partial version

of a global event in each sub-machine, when the variables of a global event are distributed

between separate sub-machines. This is to simulate the action of the global event on the

considered variables. The recomposition of the refined sub-components gives rise to a

component which should refine the initial abstract component.

2.4.5 Event-B Proof obligation

The proof of the correctness of the Event-B models is one of the most important

aspects of Event-B method. To ensure this correctness, a set of proof obligations (denoted

PO) must be discharged. These proof obligations concern different aspects of the model

such as the verification of the invariants properties of an Event-B machine or the proof

of the correctness of a refinement. There is a different types of proof obligations.

— Invariant preservation: An invariant is a property that the system must always pre-

serve while its evolution. For this, each triggering of any event must always verify

this property preservation.

— Feasibility: Each event in an Event-B machine must always be feasible. Feasibility

requires that a new value actually exists for each event having a substitution. This

means, for a variable value before the triggering of an event, it should satisfy the

guard of the event and satisfies the system invariant.

— Theorems: Recall that theorems in Event-B are formulas that can be useful for

rewriting the invariant in a specific form or proving lemmas. The proof obligation

consists in proving that these formulas are deduced from the invariant of the machine

as well as the set of predicates in the AXIOMS and THEOREMS clauses of the

context.
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— Abstract event refinement: This proof obligation guarantees that the abstract event

is correctly refined by the concrete event.

— Guard strengthening: The purpose of this proof obligation is to make sure that the

concrete guards in a concrete event are stronger than the abstract ones in the abstract

event. This ensures that when a concrete event is enabled, so is the corresponding

abstract one.

— Well-definedness: This proof obligation rule ensures that a potentially ill-defined

axiom, theorem, invariant, guard, action, variant, or witness is indeed well defined.

More details about proof obligations are found in [Abrial, 2010].

2.4.6 Tools Environments for Event-B

The Event-B modeling language is supported by the AtelierB [AtelierB, 1990] envi-

ronment, by the Rodin platform [Abrial et al., 2010] and by the ProB model checker and

animator [ProB, 2003]. These environments provide facilities for editing machines, refine-

ments, contexts and projects, for generating proof obligations corresponding to a given

property, for proving proof obligations in an automatic or/and interactive process and for

animating models. The internal prover is shared by AtelierB and Rodin and there are

hints generated by the prover interface for helping the interactive proofs. However, the

refinement process of machines should be progressive when adding new elements to a given

current model and the goal is to distribute the complexity of proofs through the proof-

based refinement. These tools are based on logical and semantical concepts of Event-B

models (machines, contexts, refinement).

3 State of the art

This section gives an overview of state-of-the-art contributions for designing system

models and their alignment with stakeholders needs. Particularly, we are interested in (i)

design models and their formal specification, (ii) requirements and architecture alignment.

The first part presents works about architecture modeling and their translation into for-

mal specification. These works present approaches using UML and its variants (SysML,

MARTE, ...) which are aligned with our proposed methodology and the translation of

graphical models into formal specifications, precisely Event-B, which is recommended for
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critical systems. The second part presents research works dealing with alignment and trace-

ability issue between design models and requirements. These works define relationships and

traces established between UML, SysML, MARTE, ... design models and requirements

presented as models or textual specifications.

3.1 Design Model and Formal Specification

3.1.1 From Design Model to Formal Specification

Formal methods are specifically used for complex systems and more precisely for safety

critical systems because they need to be robust and reliable. Formalizing and abstracting

functionalities through specifications, in a "mathematical" way, make the verification pro-

cess easier to be applied in order to rigorously check the correctness of these systems. The

use of formal methods is thus recommended and a recent study of technological efforts con-

cerning the use of formal methods in railways performed in 2017 [ASTRAIL, 2017] claims

that “this analysis has shown a large variety of formal tools used, with a dominance of the

tools associated to the B family”. This is reaffirmed in [Bonvoisin, 2016]. However, using

formal methods leads to complex models which may be difficult to read, understand and

modify.

Graphical languages are used for visualizing, specifying, constructing and documenting

software systems in a simpler way. [ASTRAIL, 2017] also concludes by claiming: “This

analysis has shown a dominance of the UML modeling language for high-level representa-

tion of system models ...". However, the semantics of UML are given in natural language,

which does not allow formal and rigorous reasoning necessary for critical systems for which

safety and security are major concerns. So the complementarity between these two tech-

niques and how to link them one to the other are the objective of several research works,

methods and tools.

3.1.1.1 UML-B

UML provides graphical models that facilitate communication of ideas and system

process understanding but lacks of formal semantics. The B method [Abrial and Hoare,

1996] allows rigorous formal verification and animation but requires significant effort in

training to overcome the mathematical barrier that many practitioners perceive. To cope

with these problems, [Snook and Butler, 2006] propose a derivation of the B notations as
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an action and constraint language for UML via the UML profiles mechanism and define the

semantics of UML entities via a translation into B. UML-B profile provides specializations

of UML entities to support model refinement. The result is a formally precise variant of

UML that can be used for refinement based object-oriented behavioral modeling. The

currently developed version of this profile uses the Event-B method and is integrated into

Rodin [Abrial et al., 2010].

This approach is based on UML class and state-machine diagrams. Class diagrams allow

to specify structures of the system. Associations are translated into relationships between

the sets and class methods are translated into events which allows to manage these sets.

State-machine diagrams define the system components behaviors. In Event-B, state-

machine transitions are translated into events. state-machine states can be translated into

constants, and a state variable which takes the value of the current state.

The integration of the tool supporting this approach in Rodin includes the UML drawing

tools and a translator to generate Event-B models. This tool allows to automatically

generate the corresponding Event-B models, every time a drawing is saved. The Event-B

verification tools (syntax checker and prover) then run automatically.

3.1.1.2 The B4MSecure Platform

The B4MSecure platform [Idani and Ledru, 2015] is a model-based approach which al-

lows a graphical modeling and formal reasoning on both functional and security models of

a system. This approach is based on UML for the functional description and SecureUML

[Lodderstedt et al., 2002] for the access control rules. It generates B formal specification

which allows rigorous verification of the system functional and security models. These mod-

els are firstly validated separately, and then integrated in order to verify their interactions

and complementarity. The B4MSecure platform allows, on the one hand, the separation of

concerns, and on the other hand, the identification of links between functional and security

models. In fact, it allows a graphical modeling using UML class diagram customized with

access control policy concepts introduced by a UML profile for RBAC (Role Based Access

Control) inspired from SecureUML. Also, it assures the translation of both models into B

specifications in order to formally verify them.

This platform produces one B model, from the functional UML class diagram, gathering

its structural properties and all basic operations (constructors, destructors, getters and

setters) and a second B model is produced from the UML class diagram customization with
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RBAC concepts to represent the security applied on functional models. Also, additional

invariants and user-defined operations can be added manually to take benefit of a proof

tool like AtelierB in order to validate the consistency of the functional specification. The

platform provides an annotation mechanism which allows the integration of B invariants

and specification of operations in the graphical model. This functionality is useful to avoid

inconsistent evolutions of the graphical and formal methods.

3.1.1.3 The CHESS toolset

[Cicchetti et al., 2012] and [Mazzini et al., 2016] present the CHESS toolset, a tooled

MDE approach for cross-domain modeling of industrial complex systems. These works are

based on an extension of UML, SysML and MARTE modeling languages which allow the

specification of well-defined design views, each of them addresses a particular aspect of

the problem. The CHESS toolset allows code generation toward multiple target languages

and property description, verification, preservation and dependability using a dedicated

UML profile. This methodology supports the separation of concerns principle, strictly

separating the functional aspects of a component from the non-functional ones. In fact,

this approach relies on SysML for the modeling of requirements and for the system level

design, on UML for modeling software aspects of the system, and on MARTE for describing

real-time aspects, staying as close as possible to the standard modeling languages. In

particular a profile has been defined on top of UML to model failures definition and their

intra/inter-components propagation, while SysML has been extended to offer support for

contract-based design. MARTE has been used and extended to be able to model real-

time properties such as schedulability, end-to-end response time and different scheduling

algorithms for multicore deployments.

The CHESS methodology enables early verification, as possible inconsistencies and

integration issues will be raised at the earliest stages of the process. It also supports system-

software co-engineering as a seamless process, by keeping traceability between system level

entities and requirements on one side and the corresponding software and hardware level

entities on the other side.

3.1.1.4 Coupling of formal methods for industrial systems specification

[Fayolle, 2017] approach proposes to couple a formal graphical notation called Algebraic

State Transition Diagrams (ASTD) with an Event-B specification in order to provide a
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better representation of the software behavior. The behavior is captured by ASTDs, based

on automata and process algebra operators, while the data model is described by means of

an Event-B specification. A set of properties can be checked. For instance: if a transition

can be executed according to the ASTD specification, then the corresponding event in

the Event-B specification can be executed, or an Event-B machine corresponding to an

ASTD must be able to execute all the sequences of events corresponding to the sequences

of transitions of the ASTD.

3.1.1.5 SysML to formal specification

[Mentré, 2016] present an approach to transform SysML diagrams into a B specifica-

tion. This approach proposes the use a graphical design of the architecture of a B software

using SysML model and automatically transforms this model into a B specification. This

work focuses on the architecture of the system and its contained software. Therefore, it

considers only Block Description Diagram (BDD) and Internal Block Diagram (IBD). This

approach prototype was built upon the Eclipse environment, with Papyrus [Papyrus, 2008]

SysML editor and Acceleo [Musset et al., 2006] model transformation language.

[Salunkhe et al., 2021] propose a transformation using Triple Graph Grammars (TGGs)

[Schürr, 1994] from SysML to Event-B. The aim is to identify the subset of the Event-B

language and SysML language, which is necessary and appropriate for the transformation,

then search for the semantic similarities between both constructs and finally define a trans-

formation from SysML to Event-B using MDE techniques. This work is an advancement

of the MBSE approach explained in [Berglehner et al., 2019]. In [Berglehner et al., 2019],

the SysML state-machines are transformed to equivalent UML-B state-machines using

UML-B plug-in [Snook and Butler, 2006]. Later, UML-B state-machines are used to gen-

erate Event-B code, and then the safety requirements are verified. The overall approach

is time-consuming and increases the overall life cycle cost. From these challenges the work

of [Salunkhe et al., 2021] is motivated. In fact, it proposes a methodology and tool-chain

to automate the transformation of SysML specification models into Event-B models.

Also, the traceability behind this transformation should be maintained between informal

requirements and the modeled system, specifically for the safety properties. The main

objective of this approach is to verify SysML models against such safety requirements us-

ing formal methods with some tool support and reduce the efforts involved in the manual

transformation of a SysML semi-formal model to an Event-B model. The implemented
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prototype is limited to the simple and most relevant concepts of SysML state-machines.

The transformation rules are defined using eMoflon-IBeX [Weidmann et al., 2019].

The work of [Poorhadi et al., 2022] proposes an integrated approach to combine SysML

graphical modeling with Event-B for formal specification and verification. The aim of

this approach is to reason about safety and security interactions at system modeling stage.

It also allows to visualize and formalize the analysis of the impact of security attacks on

system safety. The SysML subset used in this work contains block definition diagrams,

state-machine diagrams and sequence diagrams. The translation of these SysML elements

into Event-B aims at achieving two goals. Firstly, it checks the correctness of the SysML

diagrams and verify their consistency. Secondly, it analyzes the impact of cyber-attacks on

system safety. Safety properties are defined as invariants in the final model. Proofs should

be discharged without introducing any further assumptions.

3.1.1.6 Discussion

The UML-B and B4MSecure approaches propose a derivation of formal specification

from graphical modeling. These approaches are based on UML class and state-machine

diagrams and use UML profiles mechanisms to conduct the transformation into B notations.

However, these approaches reason about graphical design formally, but they require a basic

designer knowledge about the B notations to use correctly the UML-B profile and to add

safety invariants.

The CHESS toolset allows code generation toward multiple target languages and prop-

erty description, verification, preservation and dependability through a dedicated UML

profile. However, this approach do not allow system/sub-systems model decomposition

and refinement mechanisms which are particularly well suited to HLA modeling.

[Fayolle, 2017] proposes to link ASTDs with Event-B specifications in order to provide

a better representation of system behavior. However, the use of SysML rather than other

graphical modeling language is advantageous since SysML offers a set of concepts more

relevant to model systems. Moreover SysML is recommended by the AFT project partners.

The SysML to formal specification approaches presented in 3.1.1.5 provide a model

transformation into formal specifications (B and Event-B). Their aim is to reason about

safety and security interactions at system modeling stage. However these approaches lack

of system/sub-systems decomposition and refinement mechanisms which are particularly

recommended to HLA modeling. Furthermore they do not allow to demonstrate require-
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ments/HLA alignments and how HLA elements participate in satisfying stakeholders needs.

3.1.2 Refinement of design models

Refinement of design models can be used in a top down way in order to reduce system

complexity by gradually enriching abstract models with more details, while ensuring that

the detailed description preserves the original abstraction. Models refinement can also

be used in a bottom up way, to reverse engineer existing systems in order to enrich the

abstractions encoded in the concrete models.

Event-B refinement is used to relate system models at different abstraction levels.

These abstraction-refinement concepts can also be applied in UML models [Said et al.,

2009]. The notion of refined classes and inherited attributes in UML-B corresponds to the

variables refinement in Event-B. In UML-B refinement, a machine that refines a more

abstract machine may contain refined classes where each refined class refines a class of its

abstract machine. A refined class can inherit attributes of its abstract class and can drop

some of the attributes of its abstract class. A refined class can introduce new attributes.

State-machines are refined by building abstract states with nested sub-states. In UML-

B refinement, a machine can contain refined state-machines and refined states. The struc-

ture of a refined state-machine is an elaboration of the structure of its abstraction in two

possible ways: each transition is replaced by one or more transitions and an abstract state

can be refined by a nested state-machine. These nested state-machines are modeled in

state-machine diagrams different from their parent state-machine diagrams. In a nested

state-machine, a transition with an initial source state contains at most one incoming

transition to the super-state and a transition with a final target state contains at most one

outgoing transition from the super-state.

[Fayolle, 2017] uses two refinement mechanisms. The first one is to refine an ASTD

specification and the other one is to refine data specification in Event-B. ASTD refine-

ment [Frappier et al., 2014] is defined as follows: a concrete ASTD must preserve the traces

accepted by the refined ASTD. It allows the addition and removal of states and transitions.

The Event-B refinement in this approach is the classical one.

Papers [Lima et al., 2017] and [Miyazawa and Cavalcanti, 2014] propose a definition

of guidelines of usage for construction of meaningful SysML models and a semantics for

SysML models. This work focuses on a set of SysML diagrams which are block defini-

tion, internal block, state machine, activity, and sequence diagrams and refinement-based
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analysis and verification is supported by providing a semantics for these SysML elements.

Using these semantics, notions of refinement of complete SysML models are defined and

can be used to support refinement laws that support the transformation of diagrammatic

models.

Discussion Event-B refinement is an important mechanism to gradually introduce the

different parts that constitute a system starting from an abstract model to a more concrete

one. The refinement mechanisms allow to enrich models with more details but it does not

allow a decomposition between different models describing systems components. That is

why, a decomposition mechanism between a system and its corresponding sub-systems is

required to simulate the behavior of each sub-system independently of its parent system

and to manage the interplay of the sub-systems behaviors which satisfy the parent system

tasks.

3.1.3 Event-B Model Decomposition

Model decomposition is a powerful tool to scale the design of large and complex systems.

The main idea of the decomposition is to cut a model M into sub-models M1, ..., Mn, which

can be refined separately and more comfortably than the whole. Many approaches have

been proposed to deal with the Event-B decomposition issue: generic instantiation [Abrial

and Hallerstede, 2007], the shared variable decomposition [Abrial, 2009], the shared event

decomposition [Butler, 2009a], the modularization [Hoang et al., 2011], etc.

3.1.3.1 Shared Variables Decomposition

Abrial et al. [Abrial and Hallerstede, 2007, Abrial, 2009] present decomposition as a

part of the state information (variables) that is shared between sub-components. Further

refinements then concentrate on how each component processes shared state information.

This approach proposes to handle the variables shared between several events, using ex-

ternal variables and events.

3.1.3.2 Shared Events Decomposition

[Butler, 2009a] present a decomposition approach, using shared events. A shared-event

decomposition is a set of events that are synchronised and shared by sub-components
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Figure 1.6 – Shared Variables Decomposition

[Hoang et al., 2011]. This approach consists of defining a partial version of a global event

in each sub-machine, when the variables of a global event are distributed between separate

sub-machines, to simulate the action of the global event on the considered variables.

Figure 1.7 – Shared Events Decomposition

3.1.3.3 SysML/KAOS Event-B model decomposition

SysML/KAOS goal models allow the capture of assignments of requirements to agents

responsible for their achievement. Each agent is associated with a sub-system. [Fotso et al.,

2018c] propose the use of a formal decomposition strategy shown in Figure 1.8, applied

at the most concrete level of the Event-B specification of the high-level system (parent
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Figure 1.8 – [Fotso et al., 2018c] Event-B model decomposition

component), to build sub-systems interfaces. The definition of an Event-B components

called interfaces will bridge the gap between system and sub-systems specifications. This

interface defines events that correspond to the goals that the system assigns to the sub-

systems. It also defines variables involved in these events and their constraints. Invariant

predicates that define properties involved in sub-components also should be assigned to the

corresponding sub-component. To ensure that the sub-system specification conforms to the

interface specification, the most abstract level of the formal specification of a sub-system is

defined as a refinement of the sub-system interface. For an interface corresponding to the

agent, internal events of the interface are the correspondences goals assigned to the agent.

The variables of the interface are the ones involved in its internal events. If an interface

variable appears in another interface, then it is an external variable. Otherwise, it is

an internal variable. External events are defined in the interface, to emulate how external

variables are handled in other interfaces. Each external event is an abstraction of an internal

event defined in another interface. In this approach, [Fotso et al., 2018c] advocate also a

set of conditions that are necessary and sufficient to decompose the invariants involving

variables assigned to different interfaces.

This approach allows to avoid the difficulties lying in the definition of external events
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such as redundancy of the same behavior associated with an external variable in each

interface where the external variable appears and the partitioning of guards and actions of

an event to consider only the variables of the interface where the external event must be

defined. This is achieved by defining a link between sub-systems interfaces and the most

concrete component of the high-level system specification.

3.1.3.4 Discussion

These approaches allow to reduce the complexity of the final level of modeling critical

systems, which can lead to complex and voluminous models, using model decomposition

techniques. Although, the real difficulty lies in the determination of the refinement level

from which to introduce the decomposition. Regarding the shared event approach, it may

be difficult, once the distribution of variables has been done, to separate the guards and

actions of events in order to construct the partial events (a variable cannot appear in two

different sub-machines). Also, not all actions are accepted to be decomposed and variables

partitioning is not always possible. Regarding invariants, the user selects which invariant

predicate should be assigned to which sub-component. However, for the shared variable

decomposition, shared variables and external events must be present in the resulting sub-

components and cannot be refined when refining these sub-components. Adding to that,

these approaches are about only formal specifications and their decomposition with no

easy-way to give a simpler presentation for no formal specifications stakeholders such as

system graphical modeling and decomposition.

The approach of [Fotso et al., 2018c] focuses on ensuring that a requirement assigned to

a sub-system is well achieved by this sub-system. The approach uses a formal model decom-

position strategy and proof obligations to guarantee that sub-system goals are consistent

and meet system requirements expressed in SysML/KAOS models that are translated

into Event-B specifications. Although, this approach provides formal specifications and

graphical model decomposition but it is limited only to RE step and does not provide a

complete view about the software design process and more precisely about its architecture

modeling.

3.2 Requirements and Architecture Alignment

Requirements traceability is defined as the ability to follow the life of a requirement

in both backward and forward directions. A RE process should be defined, which allows
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to identify, control and monitor requirements and its changes in each project step. This

requirements tracing is based on relationships between requirements themselves or between

requirements and design artifacts. Several research works have proposed methodologies to

build these kinds of relationships.

3.2.1 SysML relationships between requirements and SysML elements

SysML [OMG, 2007] specifies a set of requirements relationships which allow to relate

requirements to other requirements or to other design model elements.

— «Copy» relationship is a dependency between a supplier requirement and a client

requirement that specifies that the text of the client requirement is a read-only copy

of the text of the supplier requirement.

— «DeriveReqt» relationship is a dependency between two requirements in which a

client requirement can be derived from the supplier requirement.

— «Satisfy» relationship is a dependency between a requirement and a model element

that fulfills the requirement.

— «Refine» relationship can be used to describe how a model element or set of elements

can be used to further refine a requirement. For example, a use case or activity

diagram may be used to refine a text-based functional requirement.

— «Verify» relationship. A Verify relationship is a dependency between a requirement

and a test case or other model element that can determine whether a system fulfills

the requirement.

3.2.2 The MeMVaTEx methodology: from requirements to models in auto-

motive application design

Authors in [Albinet et al., 2008] present a model-based methodology named MeMVa-

tex for requirements expression, traceability and verification. The methodology relies on

the Electronic Architecture & Software Tools – Architecture Description Language (EAST-

ADL2) framework and two of the UML profiles: MARTE for real-time embedded systems

and SysML for system requirements modeling. The methodology defines the different

models used at each abstraction level of the process. The results are a requirement model

and a solution model which relates to the requirements. From the EAST-ADL2 framework,

a decomposition of the design process into abstraction levels is adopted. For each level,
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requirement models and solution models are separately built. The real-time aspects and

non functional constraints are modeled within the UML MARTE profile. V&V techniques

can then be connected to these models to express the satisfaction of the requirements by

the proposed solution. Traceability management mechanisms defined in this approach are

used for relating requirements of the same abstraction level, requirements through succes-

sive abstraction levels and requirements to other elements from solution models or V&V

means. Traceability links used in MeMVaTEx are those proposed by SysML, but they con-

cern MeMVaTEx requirement and design elements from SysML. In a same EAST-ADL2

level, requirements can only have «DeriveReqt» dependency relationship between require-

ments for a requirement A (the client) refined into a requirement B (the supplier) and the

requirement containment relationship for the decomposition of a parent requirement into

several ones. For considering requirements of different levels, the previous relationships

are used with the «copy» dependency relationship which is related to requirements that

appear in a level and that are unchanged when considering the next EAST-ADL2 level. To

relate requirements to other design elements, the «satisfy» dependency relationship is used

between a requirement and a model element that fulfills this requirement. The «verify»

relationship between a requirement and a test case that can determine whether a system

fulfils the requirement.

3.2.3 KAOS: Connecting the goal model with other system views

The core of a KAOS goal model consists of an annotated refinement graph where

potential conflicts may be indicated [Van Lamsweerde, 2009]. In addition to refinement

and conflict links, the goal model shows interface links with other sub-models of the system

model.

— The concern link presents an interface between the goal model and the KAOS object

model. A goal concerns a conceptual object if its specification refers to this object.

However, a conceptual item referenced in a goal/property specification has been

determined to be an object. This object should be an entity, an association, an

agent, or an event.

— The responsibility link presents an interface between the goal model and the KAOS

responsibility model. It relies on agent capabilities which are defined in terms of

ability to monitor or control object attributes and associations defined in the object

model. A goal assigned to some agent must be realizable by this agent in view of its
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capabilities.

— Operationalization link refers to the process of mapping leaf goals, under responsibil-

ity of single agents, to operations ensuring them. Each such operation is performed

by the responsible agent under restricted conditions for satisfaction of its underlying

goals.

— coverage link relies on making a goal underline a positive scenario. A specific instance

of agent behaviors is captured through scenarios and general class behaviors are

captured through state machines. A sequence diagram illustrating typical interaction

sequences among agent instances is in general more easily elaborated by focusing on

pairwise interactions one agent pair after the other. When the goal underlying the

scenario is an achieve goal and the scenario is sequentially composed of cohesive

parts, the end of each part is considered as a milestone for reaching the goal target.

3.2.4 UML, MARTE, SysML/Requirements Traceability

[Marques et al., 2014] present a model-driven requirement engineering approach for

the embedded software domain. It is based on an integrated set of UML, MARTE and

SysML standard notations in order to improve requirements specification and traceabil-

ity. This approach named MDEReq supports modeling and management of functional and

non-functional requirements also it gives for designers an effective control of requirement

changes, and its impacts on other requirements or design artifacts in the whole develop-

ment process. To represent requirements, SysML requirement diagram is used. It allows

to represent functional and non-functional requirements. It allows also to model require-

ments derivation and requirements hierarchy relationships using «derive» and «composite»

stereotypes. UML models are used to build a functional, structural and behavioral view of

the system, using respectively, use case, class and sequence diagrams. From the MARTE

Foundations, Time and Generic Resource Modeling (GRM) are used to indicate classes

that represent the interactions with external devices and to represent a clock and delay

aspects. From the MARTE design model, the high Level Application Modeling (HLAM)

sub-package is used to indicate that a class represents a concurrent unit and to detail

timing aspects into a sequence diagram.

These artifacts are related to the requirements using «satisfy» and «refine» SysML

relationship. «refine» is used to indicate that a requirement is detailed by a use case, while

«satisfy» identifies that an artifact must satisfy the associated requirement. A sequence
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diagram is used to satisfy a requirement behavior. During the validation activity, test cases

are defined and related to requirements through «verify» relationships. This approach

proposes three different matrixes, which allow tracing requirements in different abstraction

levels and in different design phases. During the elicitation activity, a traceability matrix

is generated in which relationships between two requirements can be traced according to

derive and composite relations. The matrix relating requirements to design artifacts is

generated during the analysis and specification activity through «refine» and «satisfy»

relationships. Finally, the tracing matrix built during the validation activity indicates

which test cases are used to verify each requirement. When a requirement changes, related

test cases should be checked.

3.2.5 Generation and validation of traces between requirements and architec-

ture based on formal trace semantics

[Goknil et al., 2014] present an approach for automatic trace generation and validation

between requirements and architecture. Requirements relations and architecture verifica-

tion techniques are used. A trace meta-model is defined with commonly used trace types.

The semantics of traces and requirements relations are used for generating and validating

traces with a tool support. The tool provides a generation and validation of traces by using

requirements relations and/or verification of architecture and generation and validation of

requirements relations by using traces. The tool is based on model transformation in ATL

and term-rewriting logic in Maude [Clavel et al., 2003].

The aim of this approach is to improve the literature observed practices by providing

a degree of automation that allows faster trace generation and improves the precision of

traces by validating them. Two types of traces between requirements and architecture

which are «satisfies» and «allocatedTo».

— «satisfies» traces are established automatically based on architecture verification and

reasoning over existing traces. It relates a set of architectural elements to a single

requirement. The «satisfies» traces are established after verifying the requirement

over the architectural model.

— «allocatedTo» traces are usually assigned manually by the software architect. They

express the expectation of the software architect that a certain set of architectural

elements is responsible for fulfilling a given requirement. Since the «allocatedTo»

traces are manually assigned, they may be invalid and/or incomplete.
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The basic mechanisms of automatic generation of satisfies traces, trace validation, and

inference based on requirements relations can be combined in various scenarios that the

software architect can follow.

1. Generating traces by using verification of architecture.

2. Validating traces by using verification of architecture.

3. Generating/validating traces by using requirements relations.

4. Generating/Validating requirements relations by using traces between requirement

and architecture.

To resume, this approach improves the process of collecting traceability information.

First, traces can be generated automatically by checking if a requirement is satisfied by

the architecture. This makes the process of establishing traces faster and less error prone

compared to manually assigning traces. Second, traces are validated by using verification

techniques and constraints ensuring that requirements relations are reflected in the software

architecture. This eliminates false positive traces and helps in identifying missed traces. As

an additional result, the requirements model may be improved by detecting invalid require-

ments relations and discovering new relations. The process is generally semi-automatic and

iterative since the software architect has to decide on the outcome of the supporting tools.

3.2.6 Traceability Between Restricted Natural Language Requirements and

AADL Models

[Wang et al., 2019] propose an approach to bridge the gap between natural language

requirements (NLRs) and AADL models. First, this approach proposes a requirement

modeling method based on the restricted natural language, which is named as RM-RNL.

The RM-RNL can eliminate the ambiguity of NLRs and barely change engineers habits

of requirement specification. Second, it presents a method to automatically generate the

initial AADL models from the RM-RNLs and to automatically establish traceability links

between the elements of the RM-RNL and the generated AADL models. Third, the ini-

tial AADL models are refined through patterns to achieve the change of requirements and

traceability links. This paper focuses on three traceability scenarios. The first traceability

scenario (TS-1) is based on the RM-RNL, which automatically generates the AADL mod-

els and requirement traceability links through model transformations. TS-2 describes the

requirement changes, that is, change the elements of the RM-RNL; therefore, the AADL
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models and the traceability links should be regenerated. TS-3 describes the refinement of

the AADL models. It should maintain the change of the requirements and the traceabil-

ity links at the same time. To establish these links, requirement traceability information

model called RAInterM is created. RAInterM defines a "TraceType" enumeration to spec-

ify links types, which are: «Generation automatically» which relates the component to a

requirement through model transformation. «ImplementedBy» relates requirement to sys-

tem fragments, implementation plans, code source, etc. «MappedTo» relates requirement

to a particular attribute, operation, state, or value of the artifact. «Satisfy» which relates

requirement to the component that fulfills it, «Refine» which relates a requirement to its

refined requirement and finally «Verify» which relates requirements to test cases.

In this approach the process of automatically generate the requirement traceability

links actually consists of three steps. First, Traceability links are established between the

RM-RNL and the RAInterM model. Then, Traceability links are established between a

RAInterM model and the AADL models. Finally, Traceability links are established between

the RM-RNL and the AADL models through merging the generated traceability links in

the former two steps.

3.2.7 Discussion

The proposed approaches provide solutions to assure requirements traceability vis-a-vis

design model elements. However, not all of them can allow the formal verification of the

requirements, the design and the traceability links. In fact, SysML, [Albinet et al., 2008],

KAOS and [Marques et al., 2014] approaches support requirements and/or architectural

design modeling. They provide a mechanism to align requirements with design elements

but they lack of formal verification techniques to prove the consistency of the different

models and also of the alignment links. These approaches only use test cases associated

with requirements to verify the alignment. The work of [Goknil et al., 2014] presents an

approach for automatic trace generation and validation between requirements and archi-

tecture. This approach is based on formal trace semantics, yet, it does not provide formal

reasoning about architecture models and it provides only two types of generated links:

automatically «satisfies» and manually «allocatedTo». These links do not give semantics

about the manner of how this satisfaction is applied or the order of architecture elements

execution which assures the requirement satisfaction. The work of [Wang et al., 2019] pro-

duces AADL design model directly from requirements models, then alignment links exist
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intuitively between the different models and there is no difficulties to identify them. Also,

this approach takes as input only textual specification to model requirements and it does

not support any other kind of artifacts which specify requirements. Finally, this approach

also does not provide formal reasoning about requirements and architecture models.

4 Synthesis

While the quality of a system is the main measure of its success, which depends on

the extent to which it meets its requirements. Also, in large complex system design, re-

quirements engineering experts may be different of HLA design experts then two different

kinds of models will be designed for the same system with no correspondence. In our work,

the choice is on SysML/KAOS to model requirements and formally verify them while

SysML/KAOS provides strong semantic expressiveness, refinement and decomposition

mechanisms well suited with Event-B. Then, the thesis focuses on HLA modeling with

design model refinement and decomposition and its formal verification using Event-B.

The choice for this step is on SysML and Event-B formal method because SysML is

aligned with SysML/KAOS, offering a set of concepts more relevant to model complex

systems and it is recommended by the AFT project partners. Event-B, on the other hand,

is recommended for critical systems. To reveal SysML extensions with refinement and de-

composition mechanisms, a purpose to combine SysML and the Event-B is stemming

from the need to master the complexity of such systems that allow a step-by-step design and

make proofs easier. Afterward, alignment links are established between SysML/KAOS

requirements models and SysML HLA models to display a traceable requirements satis-

faction by HLA elements. Finally, the thesis proposes a plugin that supports these works,

implemented using available free software and frameworks (EMF, Papyrus, AtelierB, etc.).

5 Conclusion

In this chapter, we have presented related works about requirements modeling and its

formal specification and HLA modeling with its refinement and decomposition which are

important mechanisms to manage HLA complexity. We have presented works dealing with

the formalization of the HLA models into formal specifications. Finally, we have presented

works that propose solutions for requirements and architecture alignment and the formal

verification of these alignment links.
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A summary of the similarities and differences between the studied approaches is pre-

sented in table 1.1. Most of the presented works deal with graphical requirements and/or

HLA modeling. However, we can conclude from the table that most of these works do not

formally verify requirements and HLA models to prove their correctness and consistency.

The works that allow requirements and HLA modeling at the same time define mechanisms

to align requirements and architecture models in order to provide a traceability between

them and demonstrate that the architecture corresponds to stakeholders needs. Although,

these works, except [Goknil et al., 2014], do not give a formalization of these alignments.

Model refinement and decomposition are two main mechanisms to master the complex-

ity of complex systems. The table shows that only UML-B, [Miyazawa and Cavalcanti,

2014, Lima et al., 2017] and [Wang et al., 2019], presents solutions to support model refine-

ment. Refinement is a process that allows to gradually introduce the different parts that

constitute complex systems and allows to define how sub-components interplay can satisfy

parent system goals. Model decomposition is shown in the table as a mechanism presented

in [Abrial, 2009, Butler, 2009a] and used in SysML/KAOS to decompose Event-B mod-

els into finer-grained models. Nevertheless, the presented approaches that support HLA

graphical modeling do not provide a solution to decompose HLA into a system/sub-system

hierarchy. Adding to that, HLA model decomposition into several sub-components allows

a better management of large complex systems and more comfortably than the whole.

The work of [Goknil et al., 2014] is the most complete work in the table evaluation cri-

teria. In fact, it allows requirements modeling and its formal specification, HLA graphical

modeling and it assures requirements and architecture alignment and its formal specifica-

tion. However, in this approach, there is no model decomposition applied on HLA models

to give system/sub-system hierarchy. HLA models are not formally verified. This ap-

proach defines only two types of alignment links. One of them is specified manually. Its

process is generally semi-automatic and iterative since software architect has to decide on

the outcome of the supporting tools, so it is not possible to guarantee the consistency of

the outcomings.

Based on these remarks and limitations, the work of our thesis aims to propose a com-

plementary approach to existing approaches. Indeed, they do not give a complete support

for modeling complex systems from requirements to HLA with a formal verification behind

the different steps and a formal traceability which verifies the satisfaction of the stakehold-

ers requirements by the HLA elements. For this, our motivations are to provide a holistic
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Related
works

Requirements
modeling

Requirements
formal

specification

HLA
graphical
modeling

Design
model

refinement

Model
decomposition

HLA
formal

specification

Requirements
&

Architecture
alignment

Alignment
formal

specification

SysML ✓ ✓ ✓

KAOS ✓ ✓

SysML/KAOS ✓ ✓ ✓

UML-B ✓ ✓ ✓

CHESS toolset ✓ ✓

[Salunkhe
et al., 2021]

✓ ✓

[Poorhadi
et al., 2022]

✓ ✓

[Lima et al.,
2017] &

[Miyazawa and
Cavalcanti,

2014]

✓ ✓

[Abrial, 2009]
& [Butler,

2009b]

✓ ✓

[Goknil et al.,
2014]

✓ ✓ ✓ ✓ ✓

[Wang et al.,
2019]

✓ ✓ ✓ ✓

Table 1.1 – Table summarizing the evaluation of related works

process which covers the conceptualization process of complex systems. More precisely, it

aims to support requirements modeling with its formal verification, HLA modeling with

its formal specification and the most principal necessity is to link HLA with requirements

in order to guarantee the traceability between these two entities.
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In this chapter, we propose a model-based methodology to prove the alignment of HLA

models with stakeholders needs for the purpose of their satisfaction. This methodology

allows, on one hand, to model requirements and HLA and formally verify them. On the

other hand, it allows to formally verify traceability between these two parts. Results pre-

sented in this chapter are published in [Bougacha, 2020, Bougacha et al., 2022b, Bougacha

et al., 2022a, Bon et al., 2023, Bougacha et al., 2023]

1 Methodology overview

Complex systems such as railway systems are composed of a large set of sub-systems.

They generally are heterogeneous in that they integrate various kinds of components as

mechanical, electronic, or software. The design of these systems requires the collaboration

of domain experts and the use of a common language to communicate with each other to

build a consistent model. Moreover their design depends on solutions that can address

the interplay between sub-systems. Therefore, high-level architectures of complex systems

should be represented as a layered hierarchy of sub-systems. Such a HLA must enable the

specification of the main functional elements of a system, together with its interfaces and

interactions while each sub-system can function independently from its participation in the

main system. It constitutes a framework common to all the domain experts involved in

the design of the system.

The development process of this kind of systems becomes critical since it could not re-

spond to stakeholders needs due to its complexity and the consequence of a failure in such

systems may be serious [Leveson, 2016]. The quality of such systems is the main measure

of their success, that depends on the degree to which they fulfill their requirements. Re-

quirements modeling is an important activity in the design process. The competitiveness

of a system cannot be ensured unless its HLA is aligned with its requirements. Indeed,
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alignment provides strong guarantees, and is key to a coherent governance and success of

the system. Therefore, it is important to bring closer requirements and HLA modeling

activities. In modern system development methods, analysts start the development pro-

cess with an inception phase where they must acquire a deep knowledge of the system

requirements. This phase is crucial since it prepares for requirements modeling, analysis

and verification, which gives a global view on stakeholders needs.

Model-Driven Engineering (MDE) [Kent, 2002] is a software engineering approach

which defines a generic framework to generate code using successive model transforma-

tions and allows to express separately each of the concerns of users, designers, architects,

etc. In MDE, the crucial key point is the use of models as primary entities to process them

automatically or half automatically. These models are abstract representations of a reality.

MDE is increasingly used to develop complex systems. However it is difficult to establish

traceability links between requirements and design models in the context of MDE. There is

a substantial gap between requirements descriptions and designs, because transformation

from requirements to design models is not included in MDE, which starts from an analysis

model (or design model) and ends with deployed code.

MDE gives a simple manner to represent systems for a better understanding while it

can provide graphical models. However, nowadays, the usefulness of formal verification and

validation of system specifications is industrially demonstrated [Bonvoisin, 2016], especially

for critical systems which require a high level of safety.

To cope with these issues, we propose a model-based methodology, summarized in

Figure 2.1, composed of three phases: (1) SysML/KAOS Modeling, (2) SysML HLA

Modeling and (3) Alignment.

A methodology provides a logical and systematic means of proceeding with the design

process as well as a set of guidelines for decision-making [Zhu, 2005]. A methodology

provides a sequence of activities, methods and often uses a set of notations or diagrams.

A methodology is especially important for large complex projects where many designers

are involved. Its use establishes a set of common communication channels for translating

design to code and a set of common objectives. Methodology refers to the overarching

strategy and rationale of a research project. It involves studying methods used in a field

and theories or principles behind them, in order to develop an approach that matches

required objectives. Methods are specific tools and procedures used to collect and analyze

data.
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The aim of the proposed methodology is to model stakeholders requirements, to rep-

resent HLA in a layered hierarchy of system/sub-systems relationships and finally to align

HLA elements with requirements to guarantee traceability between them.

Figure 2.1 – Methodology overview

SysML/KAOS Modeling [Laleau et al., 2010]: Consists of a RE phase in which

requirements are modeled using SysML/KAOS goal models enriched with domain mod-

els. Afterwards, these requirements models are formalized using Event-B in order to be

formally verified. We have chosen the SysML/KAOS approach for the following reasons:

✓ It provides strong semantic expressiveness.

✓ SysML is well recommended by the AFT project partners

✓ Event-B is specialized in modeling systems, and has been used in safety-critical

system applications such as the Paris Metro lines [Behm et al., 2003, Abrial, 2006]

✓ SysML/KAOS refinement and decomposition mechanisms are well suited with Event-B.

This phase is composed of two steps:

• First, a graphical modeling of system requirements as a hierarchy of goals is achieved

using the SysML/KAOS modeling framework and refinement patterns. Then, these

goal models are enriched with domain models that define the system structure and

concepts used to define goals.
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• Second, an Event-B formalization of these goal and domain models is carried out.

A formal verification step using Event-B provers, model checkers and animators is ap-

plied on the formalized specification to prove the correctness and consistency of system

requirements.

SysML HLA Modeling: Corresponds to the definition of the HLA of critical complex

systems that must be validated by domain experts and its translation into Event-B formal

specification to prove its correctness and consistency.

To conduct this phase, a two step process is performed:

• First, a graphical modeling of HLA in a system/sub-system layered hierarchy is

presented using SysML extension mechanisms that we have defined.

• Second, an automatic translation of HLA models into Event-B models is established.

The results presented in this phase have been published in [Bougacha et al., 2022b,

Bougacha et al., 2022a].

Alignment: Aims to provide alignment links between SysML/KAOS elements and

HLA elements. These alignment links allow to guarantee traceability relationships be-

tween participating entities to assure that HLA elements satisfy the system goals hence

they satisfy stakeholders needs.

The alignment process contains two steps:

• First, alignment links are graphically specified to be well understood, documented

and validated by all the stakeholders.

• Second, a formalization of these alignment links is achieved to prove their consistency.

New proof obligations are generated in addition with existing proof obligations of type

invariant preservation, feasibility of non-deterministic actions and well-definedness.

A formal verification step is performed to check the resulting Event-B specification. Dis-

charging all proof obligations (existing and alignment proof obligations) allows to prove

that system requirements are formally aligned with HLA elements.

This chapter is organized as follows. Section 2 presents an excerpt of a case study that

we will use to exemplify our works. Section 3 gives a presentation of the proposed HLA

SysML extensions and their translation to Event-B. This is followed by a requirements

and HLA alignment approach in Section 4 in which we describe the SysML/KAOS re-

quirements modeling approach and the process to generate Event-B formal specification
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in Subsection 4.1. Section 5 presents an illustration of our methodology on use cases.

Finally, Section 6 reports our conclusions.

2 ATO over ERTMS case study excerpt

Throughout this section, we use an extract of a case study inspired from ATO over

ERTMS system (Automatic Train Operation over European Railway Traffic Management

System)[Bon et al., 2022]. A railway system may be controlled using Automatic Train

Operation (ATO): this is one of the challenging tasks of the railway industry. In railway,

four different grades of automation (GoA) are used. With GoA2 traction and braking are

automatic but the driver ensures the environment monitoring and is able to switch towards

manual driving if necessary.

This subsystem is activated and deactivated by the driver, which implies the en-

abling/disabling of the Railway System. The driver is also responsible for switching

driving mode between manual or automatic. The GoA2 is composed of two subsystems :

OnBoard and Track. The OnBoard subsystem is responsible for executing the driving

mode chosen by the driver and updates the state of the Track subsystem with the current

driving mode. The GoA2 subsystem functions in a global framework called ATO over

ERTMS. The specification is based on a normative and prenormative documentation. The

ATO itself is not specified and the studied system is only the context and interfaces of the

ATO. The same phenomenon occurs with relationships with the track system: ERTMS

specifies the OnBoard system and interfaces with the track. As a consequence, the track

side is not specified as it is linked to national specific implementations.

3 High-level architecture modeling and formal verification

Complex systems are systems composed of many components which may interact with

each other, such as air traffic management system, railway systems, smart grid, autonomous

automobile systems, medical monitoring, industrial control systems, robotics systems, etc.

Their behavior is intrinsically difficult to model due to the dependencies, competitions,

relationships, or other types of interactions between their parts or between a given system

and its environment. In many cases, it is useful to represent such a system as a network

where nodes represent components and links their interactions. Therefore, designing HLA

of these systems depends on solutions that can address interplay between their sub-systems.
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This HLA should be represented as a layered hierarchy of sub-systems. It must enable the

specification of the main functional elements of the system, together with its interfaces and

interactions.

For that, we propose to combine SysML and the Event-B formal method. The choice

is on SysML rather than UML while it offers a set of concepts more relevant to model

systems and as previously presented, is recommended by the AFT project partners. In-

deed, the AFT project reuses the RailTopoModel 1 that contains a SysML-based functional

ontology of a railway infrastructure. Moreover, the European initiative EULYNX 2 has de-

fined a standard SysML-based model of railways signalling system components. Event-B

allows to specify systems rather than just software and it is already used in many safety-

critical systems [Lecomte et al., 2017]. Its use is also recommended in the ASTRAIL study

[ASTRAIL, 2017]

Figure 2.2 presents an overview of the process of modeling HLA and its formalization

into Event-B models.

Figure 2.2 – HLA modeling and formalization approach

This process is composed of two steps

— The first step consists in modeling high-level architectures using SysML diagrams.

1. http://www.railtopomodel.org/en/. It is a standard for the representation of railway infrastructure-
related data

2. https://www.eulynx.eu/
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Four kinds of SysML diagrams have been selected: package, block definition, state-

machine and sequence diagrams.

The refinement and decomposition mechanisms are interesting characteristics of Event-B

that facilitate a step-by-step design and make proofs easier to discharge. Therefore,

we propose to extend SysML with these relevant mechanisms to enable an automatic

translation. These extensions are applied on two SysML diagrams, the package and

sequence diagrams.

— The second step consists in translating SysML diagrams into Event-B models.

This model translation is implemented using three sets of rules: a set for elements

related to a package; a set for the SysML refinement extensions; a set for the SysML

decomposition extensions. This step is performed in two phases.

1. A model-to-model transformation to implement the above rules. It takes as

input the SysML extended meta-model and it produces as output an Event-B

model conform to the Event-B meta-model.

2. A model-to-text transformation to generate Event-B textual formal speci-

fications. This textual specification can be introduced into provers such as

AtelierB [AtelierB, 1990], model-checkers and animators such as ProB [ProB,

2003] to verify the consistency of the modeled HLA of the system and to be

validated by domain experts through models animations.

3.1 High-level architecture modeling

HLA is a layered hierarchy of sub-systems that collaborate together to satisfy parent

system goals and to represent interactions with environment entities. Moreover, a sub-

system can have its own life and can exist independently besides its contribution in parent

system life cycle.

We have chosen to represent HLA by four SysML diagrams: package, block definition,

state-machine and sequence diagrams. This choice is based on the description presented

in the SysML for systems engineering book [Holt and Perry, 2008]:

— Package diagram: Its main use is to show high-level relationships between groups of

things in a model. It is used to display the way a model is organized in the form of

a package containment hierarchy.

— Block Definition Diagram (BDD): It is the most widely used diagram in SysML for
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modeling the static structure of a system. It is also the richest diagram in terms

of the amount of syntax available to the modeler. It also allows to adopt design

techniques for creating extensible system HLA structures, a practice that masters

the complexity and to change the design as stakeholders needs evolve. As with all

SysML diagrams, it is not necessary to use every piece of syntax, as experience has

shown that 80 % of any modeling task can be achieved by using approximately 20 %

of block definition diagram syntax.

— State-machine diagram: it is one of the most widely used diagrams to describe state-

dependent behavior of an object. State-machine diagrams are usually applied to any

element that has behavior such as: actors, use cases, methods, subsystems, systems

etc. They are typically used in conjunction with sequence diagrams and have very

strong relationships with BDDs.

— Sequence diagram: it is an interaction diagram that details how operations are car-

ried out. It captures high-level interactions between users and the system, between

the system and other systems, or between sub-systems, suitable to represent HLA

systems/sub-systems interplay. Adding to that, sequence diagrams are very powerful

when used as a consistency check between various interacting objects that already

have their internal behavior defined with state-machine diagrams.

3.1.1 SysML and Event-B refinement and decomposition mechanisms exten-

sions

To model a HLA hierarchy, new packages are designed for each system (a parent system

or a sub-system). Each package is composed of a set of diagrams:

— a BDD represents systems (parent systems or sub-systems) as blocks and associations

which link sub-systems to their parent system and to environment entities.

— a state-machine diagram, one for each system of the BDD, specifies the behavior of

the system by a set of its different states and the transitions process between these

states.

— a sequence diagram represents the life cycle of the current system, the interactions

between its sub-systems and how they cooperate to satisfy the objectives of the parent

system.
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3.1.1.1 Package diagram and its extensions

Package diagram is a static structural diagram that shows the relationships among

packages and their contents. It allows to group the structures of a model and defines high

level relationships between these groupings. This diagram encompasses two main elements:

— A package represents a graphical node. It is made up of a number of packageable

elements. In SysML, almost any element can be enclosed within a package. In

HLA modeling, we are interested in block, state-machine and sequence diagrams as

packageable elements in the package. A package itself is also a packageable element

and thus can contain other packages.

— A dependency represents a graphical path that links different packages and how they

depend on each other. Note that the semantics of dependency is informal and can

be adapted for particular needs.

Figure 2.3 shows an example of package diagram that encompasses a set of packages

related between each other using a dependency relationship.

Figure 2.3 – Package diagram example

To model a system HLA in a layered hierarchy of sub-systems, two kinds of relationships

have been introduced.

— The first one is inspired from the refinement link of Event-B and is called HLA_refines.

It is defined between two packages and is used to detail the behavior of the parent

package. For this, new blocks and a new sequence diagram are introduced in the

child package. This new sequence diagram describes the interactions between blocks
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to satisfy the parent behavior.

— The second relationship, called HLA_decompose, comes from the fact that some

blocks of a package can be considered as sub-systems because they have their own

life and can exist independently of the other blocks. In this case, they become

new packages and the link with the parent package is HLA_decompose link. This

concept corresponds to the decomposition mechanism of Event-B, more precisely

the shared-event decomposition since the systems/sub-systems we consider behave

as distributed systems.

To represent these system/sub-systems relationships, the extract of SysML package

diagram meta-model used for our HLA modeling encompasses one or more packages re-

lated one to the other using a dependency relationship. This relationship is extended by

introducing new meta-classes, as described by the grey boxes in Figure 2.4 HLA_refines

and HLA_decompose, as sub-classes of the meta-class Dependency.

Figure 2.4 – SysML extended package diagram meta-model

Figure 2.5 illustrates the use of the proposed package diagram extensions. HLA_refines

extension is used between Packages 1 and 1.1 while Package 1.1 describes the sub-systems

interplay to satisfy the parent system behavior represented in the Package 1. Package

1.1 sub-systems can exist independently, therefore, HLA_decompose extension is used to

represent the system/sub-systems decomposition into Packages 2, 3 and 4. Each of these

packages describes a separate sub-system. Packages 2 and 4 represent sub-systems that

could behave as a parent system while it encompasses nested components and sub-systems.

Therefore, these two packages are HLA_refine into Packages 2.1 and 4.1 that describe the

interplay of their sub-systems.

3.1.1.2 HLA restricted BDD

A BDD is a structural diagram. As HLA is represented by a set of system/sub-systems

layered hierarchy we are only interested in basic modeling elements of this diagram. These
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Figure 2.5 – Package diagram extension application example

two basic elements are Block and Relationship.

— A Block defines a collection of features used to describe a system, sub-system, com-

ponent or other system elements.

— A Relationship relates together one or more blocks. It participates in describing the

structure of a system, sub-system or component. In SysML, block relationships

encompass many types of links. To model HLAs, we are interested in two types of

relationships: Association and Composition.

These concepts come from UML class diagrams, with the same semantics. The extract of

BDD meta-model, used for HLA modeling, is presented in Figure 2.6. It can encompass

one or more blocks related to each other using associations. Inheritance is expressed by the

reflexive association subBlock/superBlock. An association has two ends, also called roles,

represented by the AssociationEnd class and linked to a block by the characBlock associa-

tion. The Characteristic class groups the common characteristics of the Association End.

The characMultMin and characMaxMult attributes describe the minimum and maximum

multiplicities of a role or an association. An association Block is represented by a link of

the association assocBlock.

Figure 2.7 presents an example of the BDD diagram of the ATO over ERTMS case study

excerpt. Block ATOoETCS_GOA2System is the main system and is composed of two sub-

systems Track and OnBoard related to the main system with a composition association. A
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Figure 2.6 – SysML BDD meta-model

simple association interactsWith is presented between the OnBoard system and Pilot which

describes the control of the OnBoard system by the Pilot.

Figure 2.7 – BDD example

3.1.1.3 HLA restricted state-machine diagram

A state-machine diagram is used to model the behavior of a block. Such a diagram is

composed of two basic elements: states and transitions. It describes the state changes of a

block instance during its life cycle.

— A state is an abstraction of the attribute values and links of an object. Sets of

values are grouped together into a state according to properties that affect the gross

behavior of the object.

— A transition arrow depicts the movement from one state to another. These changes

are triggered by events associated to the transitions of the diagram. A system repre-

sented as transitions between states is very useful for describing complex behaviors.

We have extracted all the concepts of SysML state-machine diagrams that we need to

model HLAs. They are presented in the meta-model of Figure 2.8. It is composed of 0 or
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more states identified by a name and transitions represented by the triggering event name.

A state could be a source of an outgoing transition and a target of an incoming transition.

Figure 2.8 – SysML State-machine diagram meta-model

As an example of state-machine diagram, we give an extract of the state-machine dia-

gram that represent the behavior of the OnBoard system. This diagram is shown in Figure

2.9 and it describes the lifecycle of the system with two states BoardForAutomaticDriving

and BoardForManualDriving and two transitions SetBoardForManual and SetBoardForAuto-

matic.

Figure 2.9 – State-machine diagram example

3.1.1.4 Sequence diagram and its extensions

A sequence diagram is used to display the interactions between users, objects, systems

and entities within a system. It presents a dynamic view of a use case, a requirement, or a

system, a view that expresses sequences of behaviors and event occurrences over time. All

the concepts of SysML sequence diagrams that we need to model HLAs are presented in

the meta-model of Figure 2.11:

— An Interaction is a behavioral specification that comprises a sequence of communi-

cations exchanged among a set of instances within a collaboration to accomplish a

specific purpose, such as a parent system goal.
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— An object lifeline represents the existence of an object over some time. Objects that

exist throughout an interaction should appear at the top of the object dimension

with their lifelines drawn parallel to the time dimension.

— Messages specify communication from one object to another, with an expectation

that an activity will be performed by the recipient object.

— The intersection of a message arrow and a lifeline is represented by the element

MessageOccurenceSpecification.

— A GeneralOrdering represents a binary relation between two MessageOccurenceSpec-

ification, to describe that one MessageOccurenceSpecification must occur before the

other in a valid trace. This mechanism provides the ability to define partial orders

of MessageOccurenceSpecification that may otherwise not have a specified order.

— CombinedFragment is a logical grouping which contains the conditional structures

that affect the flow of messages. A combined fragment contains interaction operands

and is defined by the interaction operator. An interaction operator defines the se-

mantics of a combined fragment and determines how to use the interaction operands

in the combined fragment. An interactionOperand is a container that groups the

interaction fragments and messages that run if the guard condition is met. If there is

no guard condition, the block always runs. An interactionConstraint is a constraint

used in interactions to guard an operand in a combined fragment.

Figure 2.10 shows an example of a sequence diagram of the OnBoard system. It shows

the elements involved in a execution scenario namely Driver, ATOonBoard etc., as well as

the message exchanges between the system and actors, or between parts of the system or

subsystems, in a chronological manner.

The following constraints/extensions have been defined:

— Each message corresponds to a transition in the state-machine of the block associated

to the target lifeline. This association is established using the signature property of

the sequence diagram message.

— As we have introduced a refinement link between packages, we need to specify how this

refinement is elaborated between the refining package and the refined package. The

parent system main goal is produced through the interplay of its sub-systems. Each

one executes some behaviors to satisfy some whole system tasks. This sub-systems

interplay covers the whole system tasks and satisfies the main system goal. The
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Figure 2.10 – Sequence diagram example

main system life cycle and the sub-systems interplay are represented using sequence

diagrams. Therefore, to elaborate the refinement, we opt to refine a message from

the parent system sequence diagram with a message resulting from its sub-systems

interplay. The choice is on sequence diagram messages while it represents the system

life cycle activities. Thus, this is achieved by:

→ Adding a new meta-class in the meta-model, called Refines_Message, sub-class

of the meta-class Message that contains an attribute of type Message, called

Refined_Message.

→ Refines_Message used to associate the sequence diagram message resulted from

the sub-systems interplay with a message from parent system sequence diagram

defined in the Refined_Message attribute.

Figure 2.12 illustrates the use of the proposed sequence diagram extension applied on

ATO over ERTMS case study excerpt [Bougacha et al., 2022a]. Excerpt (1) describes

the sequence diagram of Component RS of type Railway System with Message EnableSys-

tem. Excerpt (2) shows Message (Activate) exchanged between Components Driver and
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Figure 2.11 – Extract of SysML extended sequence diagram meta-model

ATOoverETCSGoA2, sub-components of Railway System. In this system, the activation of

ATOoverETCSGoA2 components implies the enabling of the Railway System. Then, Message

Activate refines the parent system message EnableSystem, as precised in Excerpt (3).

Figure 2.12 – Example of the sequence diagram extensions
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3.1.2 SysML HLA modeling process architecture

Figure 2.13 presents the SysML HLA modeling process architecture. As we have al-

ready presented, a package diagram is created to design an HLA. This diagram describes

the layered hierarchy of system/sub-systems relationships and encompasses a set of pack-

ages each of them corresponds to a component of this hierarchy (a system or a sub-system).

The packages are presented as follows:

1. The first package Package 1 describes the main system in a BDD and its associated

state-machine diagram which defines the system behavior and a sequence diagram

that represents its life cycle. Sequence diagram messages are associated with the

state-machine diagram transitions.

2. The main system represented by Package 1 is a parent system composed of a set

of sub-systems that collaborate to satisfy the parent system main goal. From this

end, the second package Package 1.1 is created and it refines Package 1 using the

HLA_refines stereotype. The parent system to sub-systems composition relationship

is designed in the BDD. A state-machine diagram is found and associated to each

sub-system behavior. A sequence diagram is created to define the life cycle of the

sub-systems interplay for the purpose to satisfy the parent system goal. The result

of this interplay is represented by a sequence diagram message that refines, using

theRefines_Message stereotype, a message from the parent system sequence diagram.

3. Sub-systems can be considered as independent systems that can exist by their own

besides their participation in the main system life cycle. To this aim, a decomposition

mechanism using HLA_decompose stereotype is applied on the parent system and a

new package is created for each sub-system (Package 2, Package 3, Package 4). This

decomposition is applied on the package Package 1.1 because it is the refinement

package of Package 1 in which we have introduced the interplay of the parent system

corresponding sub-systems.

4. From step 3, If one of these sub-systems is a parent system that is composed of other

sub-systems then these steps should be re-executed from step 1 until we arrive to a

package with no encompassed sub-systems such as Package 3.
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Figure 2.13 – SysML HLA modeling process architecture
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3.2 SysML to Event-B Translation

HLA modeling with SysML diagrams is a designer easy practice to define graphical

views of critical systems which give a better understanding. However, it may lead to

some design errors due to the lack of precise semantics. So, a formal notation is required

to rigorously check the correctness of such systems and guarantee the validation and the

verification of their specification. In this subsection, we present the translation rules that

enable an automatic translation of Event-B specification from HLA models enriched with

safety relevant Event-B mechanisms. This step is performed in two phases: model-to-

model transformation and model-to-text transformation.

3.2.1 Model-to-Model transformation

Model-to-model transformation is a model-driven process that enables to derive a target

model from a source model that are conform to a source and a target meta-models, and

create one or more mapping declarations that define relationships between these two meta-

models. To this end, this translation requires source models which are, in our work, HLA

models that are conform to the extended SysML meta-models presented in the previous

subsection and target models that are Event-B models conform to Event-B meta-model.

However, a standardized meta-model for Event-B is still not available. The one proposed

in the Rodin Platform [Abrial, 2010] is of high complexity and cannot cover our needs.

Therefore, to conduct this model-to-model transformation we propose an Event-B meta-

model conform to the Event-B notation used in AtelierB and restricted to the concepts

that are relevant to our use.

3.2.1.1 Event-B meta-model

Our proposed Event-B meta-model is shown in Figure 2.14. It presents EventB_SPEC

as the root meta-class. This meta-class defines an Event-B specification. It is composed

of zero or more CONTEXT and zero or more MACHINE.

— A CONTEXT describes the static part of a system, it is composed of:

• Zero or more CONSTANTS and SETS;

• zero or more AXIOMS mandatory to define constant types and properties;

• A context can be extended with zero or more contexts and it can be seen with

zero or more machines.
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Figure 2.14 – Event-B meta-model

— A MACHINE describes the dynamic part of a system, it is composed of:

• One or more VARIABLES which represents the list of state variables of the

model;

• One or more INVARIANTS which represents the typing predicates of the var-

ious variables and the predicates that the variables should obey;

• One or more EVENTS that represents the list of the various events related

to the model. It is composed of a set of guards and actions. Events can

be refined and new ones can be introduced. The refinement of an event has

to verify that the guard of the refined event is stronger than the guard of the

abstract one and the effect of the refined action is stronger than the effect of

the abstract one.

• A machine can refine or be refined by another machine and it can see zero or

more contexts.

• A machine can be decomposed into one or more sub-machines following the

shared-event decomposition approach. The shared-event decomposition is a set

of events that are synchronized and shared by sub-components. This approach

defines a partial version of a global event in each sub-machine, when the variables

of a global event are distributed between separate sub-machines. This is to

simulate the action of the global event on the considered variables. We have

adopted the shared-event decomposition approach for our HLA modeling as we

can consider that a system composed of sub-systems acts as a distributed system

Some Event-B concepts presented in section 2.4 are not supported in this meta-model

because they are not relevant to our use. We give as an example the use of THEOREMS, in
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our HLA we don’t model any type of these theorems. Also VARIANTS, in our translation

events are created from sequence diagram message in a specific scenario. Then, these events

cannot be convergent. Events parameters are not supported in our meta-model because

the proposed translation is an end-to-end translation and all defined elements in the HLA

have corresponding element in the Event-B specification.

3.2.1.2 Translation Rules

Three sets of rules have been defined.

— The first one considers elements related to a package.

— The second one deals with the SysML refinement extensions.

— The last one deals with SysML decomposition extensions.

Translation of package elements.

Tables 2.1 and 2.2 summarized the rules that translate all the elements of a package,

which includes package diagram, BDD, state-machine diagram, sequence diagram elements.

It should be noted that in these two tables, E_X designates the result of the translation

of Element X.

Rule 1 of Table 2.1: a package diagram gives an Event-B project containing the HLA

Event-B specification.

Rule 2 of Table 2.1: a package, inside a package diagram, that is not a decomposed

package gives an Event-B machine and an Event-B context.

SysML concepts Event-B concepts

Rule Translation of Element Constraint Element Constraint

1 Package Diagram PD PD is a Package Diagram E_PD E_PD ∈ EventB_Spec

2 Package that is
not a decomposed
package

P P ∈ SysML_Package
P /∈ ran(HLA_decompose)

E_P_M
E_P_CONT

E_P_M ∈ MACHINE
E_P_CONT ∈ CONTEXT
E_P_M SEES E_P_CONT

Table 2.1 – Translation rules for a package diagram

The rules of Table 2.2 are applied for the elements of a given package. Note that the

translation rules of elements of the BDD meta-model (Figure 2.6), in particular Block,

Association, AssociationEnd and Characteristic are the same as those used for translating

the equivalent concepts in class diagrams [Laleau and Mammar, 2000]. Mainly, an asso-

ciation between two blocks is modeled as a relation between two constants representing
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these blocks instances. The relation become a function, an injection,... depending on the

multiplicity of the association.

Figure 2.15 shows an example of the translation of an association called interactsWith

between the Pilot and the OnBoard subsystem. The Event-B formalization of this asso-

ciation shown in Listing 1 is presented as a bijective function between the sets PILOT and

OnBoard created from the corresponding elements of HLA.

Figure 2.15 – Association translation rule ex-
ample

SYSTEM ATOoETCS_GOA2SystemL1_CONT
SETS

...; OnBoard; PILOT
CONSTANTS

pilot , onboard , interactsWith ,
...

PROPERTIES
interactsWith ∈ PILOT 7→
OnBoard
...

END

Listing 1 – Example of a translation rule for
an association.

The first three rules in Table 2.2 are rather straightforward. Rule 6 expresses that

a lifeline L associated to a block B is translated by a constant E_LC, instance of the

abstract set E_B_S associated to B, and a variable E_LV that represents the current

state of E_LC in the state-machine associated to B.

Rule 7 needs to be more precisely defined. An Event-B event E_M obtained from

the translation of a message M is of the form:

SELECT G_M THEN A_M END

where G_M are the guards and A_M are the actions. G_M and A_M are obtained as

follows.

— Let SQ be a sequence diagram.

— Let CB be a combined fragment in the sequence diagram that contains an interaction

operand IO.

— A message M is defined between two lifelines in SQ, L1, its origin, and L2, its

destination (L1 and L2 are not necessary different).

— L1 (L2, resp.) is associated to block B1 (B2, resp.).

— Let SM1 (SM2, resp.) be the state-machine associated to B1 (B2, resp.).
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SysML concepts Event-B concepts

Rule Translation of Element Constraint Element Constraint

3 Block B B ∈ SysML_Block E_B_S E_B_S ∈ SETS

4 State-machine of a
block

SM, B SM ∈ SysML_State-machine
SM is associated to B

E_SM E_SM ∈ SETS

5 State-machine
states

S1,S2,
. . . Sn

SM

Si ∈ SysML_States
SM ∈ SysML_State-machine
Si is a state of SM

E_S1,E_S2,
. . . E_Sn

E_Si ∈ CONSTANTS
E_SM={E_S1,E_S2,. . . E_Sn}

6 Lifeline of a
sequence diagram
associated to a
block

L,B, SM L ∈ SysML_Lifeline
L is an instance of block B,
SM is the state diagram
associated to B
B and SM have already been
translated

E_LC,
E_LV

E_LC ∈ CONSTANTS
E_LC ∈ E_B_S
E_LV ∈ VARIABLES
(E_LV ∈ {E_LC} → E_SM)
∈ INVARIANTS
(E_LV :∈ {E_LC} →
E_SM) ∈ INITIALISATION

7 Sequence diagram
message that is not
a refined message

M M ∈ SysML_Message E_M E_M ∈ EVENTS

Table 2.2 – Translation rules for elements of a package

— M is associated to a transition T of SM2.

— Let SS2 be the source state of T and TS2 be the target state of T .

Note that Rule 5 gives E_SSi (E_TSi, resp.) as the Event-B elements associated to

SSi (TSi, resp.). Rule 6 gives E_LiC and E_LiV as the Event-B elements associated

to Li.

• Calculation of A_M

A_M ≜ E_L2V (E_L2C) := E_TS2

The current state of E_L2C corresponding to the lifeline L2 is the target state of

the transition T .

• Calculation of G_M

— If M is the first message of SQ then

G_M ≜ E_L2V (E_L2C) = E_SS2

— If M is encompassed in IO constrained by the interaction constraint G_IC then

G_M ≜ G_IC ∧ E_L2V (E_L2C) = E_SS2

We precise that G_IC is defined using a lifeline L associated to a block from
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the parent system and its current state CSL. Then

G_IC ≜ E_LV (E_LC) = E_CSL

— Else, let Prev_M be the message of SQ that precedes M . Its lifeline destina-

tion is necessary L1 and Prev_M corresponds to a transition T ′ of SM1 whose

source state is SS1 and target state TS1.

G_M ≜ E_L1V (E_L1C) = E_TS1 ∧ E_L2V (E_L2C) = E_SS2

This means that M is triggered after Prev_M (i.e. the current state of E_L1C

is the target state of the transition T ′ and the current state of E_L2C is the

source state of T ).

It should be noted that this ordering between messages M and Prev_M is de-

fined by the GeneralOrdering meta-class of the sequence diagram meta-model.

Translating SysML refinement extensions to Event-B. Two rules are defined to

translate the two SysML package and sequence diagram refinement extensions.

— Machine Refinement Rule is defined as follows: Let P1 and P2 two SysML

packages such that P2 HLA_refines P1. P1 and P2 are translated into Event-B

according to Rule 2 and give E_P1_M and E_P2_M machines.

In E_P2_M, two clauses are added to express the SysML package refinement:

— E_P2_M REFINES E_P1_M

— E_P2_M SEES E_P1_CONT

— E_P1_M variables are copied in E_P2_M

— E_P1_M variables initialisation is copied in E_P2_M

— Event Refinement Rule is defined as follows:

Let P1 and P2 two SysML packages such that P2 HLA_refines P1. P1 and P2 are

translated into Event-B according to Rule 2 and Machine Refinement Rule. This

gives E_P1_M and E_P2_M machines such that E_P2_M refines E_P1_M.

Let M1 (M2, resp.) a SysML message of the sequence diagram of P1 (2, resp.) such

that M2 Refines_Message M1. M1 is translated according to Rule 7:

E_M1 ≜ SELECT G_M1 THEN A_M1 END

Then M2 is translated by:
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E_M2 ref E_M1 ≜ SELECT G_M1∧ E_LVM2(E_LCM2) = E_SSM2

THEN A_M1 ∥ E_LVM2(E_LCM2) := E_TSM2 END

Translating SysML decomposition extensions to Event-B. As already stated, we

use the shared-event decomposition approach [Butler, 2009b] of Event-B to translate the

SysML package decomposition extension.

— First a new Event-B machine called Interface that corresponds to each of the

decomposed machines representing sub-systems is created.

— Then all the variables of the machine to be decomposed are assigned to one of these

decomposed machines.

— The elements from the machine to be decomposed linked to a variable assigned to an

interface are also assigned in this interface.

Following the shared-event decomposition mechanism, all the variables of the machine

to be decomposed must be assigned to one of the decomposed machines. However, if

the machine to be decomposed is a refinement machine that refines an abstract one then

it contains also the redefinition of abstract variables coming from refinement. We recall

also that after decomposition each sub-system can function independently from its par-

ticipation in the main system. Therefore, the interface that represents each sub-system

encompasses only elements related to this sub-system with no relationship with the parent

system. That is why, we have created a supplementary new Event-B machine called Re-

finement_Interface that will get from the decomposed machine all abstract variables

and their associated elements coming from refinement.

The Machine Decomposition Rule is illustrated in Figure 2.16 and defined as follows.

Let P, P1 and P2 three SysML packages such that P is HLA_decompose into P1 and

P2. we recall that P1 and P2 are sub-systems of P and then corresponds to the blocks B1

and B2 in P. P is translated into Event-B according to Rule 2 and give E_P_M machine.

— E_P_M machine is shared-event decomposed into two machines called E_P1_Interface

and E_P2_Interface that correspond to P1 and P2.

— Each E_Pi_Interface contains the elements of E_P_M linked to the Bi block: SEES

clause, variables, invariant and the events that read or modify these variables.

— If E_P_M is a refinement machine then a new interface called E_P_Refinement_Interface

is created. It contains the elements of E_P_M coming from the refinement (abstract

variables and their related elements).
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— E_Pi_Interface is refined by a machine called E_Pi_M that contains the translation

of the elements of Pi (blocks, sequence diagram, state-machines).

Figure 2.16 – Decomposition extension translation to Event-B

3.2.2 Model-to-Text Translation

This step generates automatically an Event-B textual specification from the resulting

Event-B models of the previous step using Acceleo [Musset et al., 2006]. Acceleo is a

template based technology allowing to automatically produce any kind of source code from

any data source available in EMF format. This textual specification can be introduced

into provers such as AtelierB [AtelierB, 1990], model-checkers and animators such as ProB

[ProB, 2003] to verify the consistency of the modeled system. In this way, design errors

can be detected and invariant violation can be discovered.

3.2.3 Example of application of the translation rules

To give a better understanding of this translation, we present here an application

example of these rules on an extract of HLA models. This extract is taken from the

ATO over ERTMS case study presented in [Bougacha et al., 2022a]. Figure 2.17 shows

the package ATOoverETCSGoA2 that includes a BDD describing the ATOoverETCSGoA2

system and its sub-systems Track and OnBoard. State-machine diagrams are created for

each sub-system to specify their behaviors and a sequence diagram describing the sub-

systems interplay to satisfy the parent system behavior is designed.

Listings 2 and 3 show the generated Event-B specification that represents the struc-

tural and dynamic parts from this HLA excerpt after application of the rules described in

Section 3.2.1.2. Listing 2 presents the context ATOoverETCSGoA2_CONT which defines

the structural part and the machine ATOoverETCSGoA2 shown in Listing 3 which defines

the dynamic part.

86



CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

Figure 2.17 – SysML to Event-B translation rules application example

Therefore, the steps of the translation process for the example are:

— First, the package ATOoverETCSGoA2 (framed in yellow) is transformed into a con-

text ATOoverETCSGoA2_CONT and a machine ATOoverETCSGoA2 that sees the

created context. (rule 2 in Table 2.3)

— The ATOoverETCSGoA2 system is a sub-system that corresponds to a parent system.

The decomposition of the machine created from the parent system package allows

to create a set of interfaces each of which corresponds to a sub-system (see Sections

3.1.1.1 and 3.2.1.2). Therefore, the machine ATOoverETCSGoA2 refines ATOoverETC-

SGoA2_Interface. It gets from this interface all its seen context, variables and their

initialisations. (Machine refinement rule in Section 3.2.1.2)

— BDD blocks Track and OnBoard (framed in blue) are transformed into two sets Track

and OnBoard. (rule 3 in Table 2.3)

— Sequence diagram lifelines onboard and track are translated into two constants: on-

board such that onboard ∈ OnBoard

and track such that track ∈ Track. (rule 6 in Table 2.3)

— Two variables onboardState and trackState are created from the sequence diagram

lifelines onboard and track. (rule 6 in Table 2.3)
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Table 2.3 – Translation rules application table

— State-machine diagrams OnBoard States and Track States (framed in green) defining

sub-systems behaviors are transformed into two sets OnBoardStates and TrackStates.

(rule 4 in Table 2.3)

— States of the state-machine diagrams (framed in pink), such as orderOnBoardForATO-

Driving from the state-machine diagram OnBoard States, are mapped into constants

orderOnBoardForATODriving such that orderOnBoardForATODriving ∈ OnBoardStates.

(rule 5 in Table 2.3)

— Once the variables created their typing invariants and initialisation are generated.

For example the typing invariant of Variable onboardState is:

onboardState ∈ OnBoard → OnBoardStates. (rule 6 in Table 2.3)

— Variable atooveretcsgoa2State comes from the refined machine ATOoETCSGoA2_Interface.

(Machine refinement rule in Section 3.2.1.2)

— Sequence diagram messages (framed in purple) related to state-machine diagram

transitions such as SetTrackForATODriving are mapped to events such as SetTrackFo-

rATODriving in the machine. (rule 7 in Table 2.3)

— The guard and action of the event are related to the source and target states of the

transition associated to the sequence diagram message. We give for example the

guard:
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trackState(track) = orderTrackForManualDrinving

and the action:

trackState(track) := orderTrackForATODriving. (Guards and actions calculation rules

in Section 3.2.1.2).

— The guard of the event is related to sequence diagram combined fragment constraints

and to the message that precedes the current message (see Section 3.2.1.2). The guard

associated to the event SetTrackForATODriving is:

onboardState(onboard)=orderOnBoardForATODriving. (Guards and actions calcula-

tion rules in Section 3.2.1.2).

— As shown in the sequence diagram, the message SetOnBoardForATODriving Refines_Message

the message SetATO from the parent system sequence diagram. Therefore, this is

translated in the Event-B specification by:

SetOnBoardForATODriving ref SetATO.

The event SetOnBoardForATODriving redefines from event SetATO all its guards and

actions. (Event refinement rule in Section 3.2.1.2)

SYSTEM ATOoverETCSGoA2_CONT

SETS OnBoard; Track; TrackStates; OnBoardStates

CONSTANTS onboard , track, orderOnBoardForATODriving ,

orderTrackForManualDrinving , orderOnBoardForManualDriving ,

orderTrackForATODriving

PROPERTIES

onboard ∈ OnBoard ∧ track ∈ Track ∧

...

orderOnBoardForATODriving ∈ OnBoardStates∧

orderTrackForATODriving ∈ TrackStates∧

END

Listing 2 – SysML to Event-B translation rules application example context.

REFINEMENT ATOoverETCSGoA2

REFINES ATOoverETCSGoA2_Interface

SEES ATOoverETCSGoA2_CONT , RailwaysSystemL1_CONT ,

RailwaysSystemL0_CONT

VARIABLES onboardState , trackState , atooveretcsgoa2State
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INVARIANT

onboardState ∈ OnBoard → OnBoardStates ∧

trackState ∈ Track → TrackStates

INITIALISATION

onboardState :∈ {onboard} → OnBoardStates ∥

trackState :∈ {track} → TrackStates ∥

atooveretcsgoa2State :∈ {atooveretcsgoa2} →

ATOoverETCSGoA2States

EVENTS

SetTrackForATODriving=

SELECT onboardState(onboard)= orderOnBoardForATODriving ∧

trackState(track)= orderTrackForManualDrinving THEN

trackState(track):= orderTrackForATODriving

END ;

SetOnBoardForATODriving ref SetATO=

SELECT onboardState(onboard)=orderOnBoardForManualDriving ∧

atooveretcsgoa2State(atooveretcsgoa2 )= manualDriving THEN

onboardState(onboard):= orderOnBoardForATODriving ∥

atooveretcsgoa2State(atooveretcsgoa2 ):= ATODriving

END

END

Listing 3 – SysML to Event-B translation rules application example context.

3.2.4 HLA formal verification

This verification generates automatically a set of proof obligations corresponding to the

modeled functional properties without any non-functional properties integration, and proof

obligations from the application of model decomposition. These proofs are of type invari-

ant preservation, non-deterministic action feasibility and well-definedness. The verification

step is of paramount importance. It provides a theorem proving method for process verifi-

cation to detect probable invariants violations during the verification using model checking.

The verification process also goes far beyond the simple verification of the structural prop-

erties of the model. Precisely, it enables the verification of the advanced decomposition

and refinement aspects and system behavior of different states achieved from the initial
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state after execution process. The formal verification step checks the correctness of the

designed HLA of railway system specification thanks to ProB [ProB, 2003] model checker

and animator which is used to discover some errors and invariant violation during the

model animation from different execution scenarios or during the verification using model

checking. Therefore, our approach provides a reliable HLA of complex system with a high

level of integrity.

3.3 Conclusion

In this section, we have proposed a set of extensions on SysML to be aligned with

Event-B refinement and decomposition mechanisms. These extensions allow to automat-

ically translate SysML models of HLA into Event-B specifications. Two SysML parts

are extended. The first part is about package diagrams which are customized to represent

the decomposition of system/sub-systems hierarchies and the refinement of a system by

its sub-systems interplay. The second part consists in customizing sequence diagrams with

stereotypes applied on messages to refine the parent system behavior by the collaboration

of its sub-systems processes. We have also defined a set of translation rules to trans-

late SysML models into Event-B specifications in order to formally verify them using

AtelierB.

Contributions about this section are published in [Bougacha et al., 2022b].

4 Requirements & high-level architecture alignment

The quality of a complex system is the main measure of its success, that depends

on the degree to which it fulfills its requirements. To this end, alignment links between

requirements models and HLA models need to be established. These semantic links can

be the support to prove the compliance of HLA specification with the expression of system

requirements. The third part of our work aims to propose a model-based approach to

establish alignment links graphically between SysML/KAOS models and HLA models

and then the translation of these links into Event-B formal specification and their formal

verification (see Figure 2.18).

The process is composed of two steps:

— The first step consists in graphically modeling alignment links between leaf goals

and sequence diagram messages. This graphical modeling step is a simple manner to
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Figure 2.18 – SysML/KAOS models and SysML HLA models alignment approach

establish alignment links and to validate them by system stakeholders.

— The second step aims to formalize these alignment links into Event-B specification

in order to be integrated in AtelierB for formal verification purposes. To perform

this formalization, a set of translation rules is defined.

4.1 SysML/KAOS modeling and formal verification

As already introduced in 2.2.1, SysML/KAOS [Laleau et al., 2010, Gnaho et al., 2013b]

is a RE method that allows the modeling of functional and non-functional requirements and

the domain of a system. This approach aims to derive an Event-B specification directly

from the SysML/KAOS models. Figure 2.19 presents an overview of the SysML/KOAS

approach [Fotso et al., 2018a].

4.1.1 SysML/KAOS Modeling

As shown in this Figure 2.19, the first step of this process is to build goal models

enriched with domain models. In our work, we are interested, for now, with functional goals

knowing that a functional SysML/KAOS is called an "Achieve" goal. The functional goals

hierarchy is built through a succession of refinements using the three types of refinement

patterns AND, OR and MILESTONE.

Domain models are described by ontologies expressed using the SysML/KAOS domain

modeling language [Tueno et al., 2017c, Fotso et al., 2018b], based on OWL [Sengupta and

Hitzler, 2014] and PLIB [Pierra, 2006]. Each refinement level in the functional goal model is
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Figure 2.19 – SysML/KAOS specification process

enriched with a domain model. Domain models can be linked together to form a hierarchy.

Concepts, as elements of domain model, designate collections of individuals with common

properties.

SysML/KAOS models example

Figure 2.20 shows an excerpt from the SysML/KAOS goal model that represents the

functional goals of the ATO over ERTMS case study. The main purpose is to move the

train on GOA2 (goal MoveTrainOnGOA2). To achieve this purpose, the system must first,

initiate the OnBoard system to be driven by ATO (goal MakeOnBoardForATODriving) and

second, initiate the Track system that the Onboard is initiated to be driven by ATO (goal

MakeTrackForATODriving). Two agents are defined: Onboard and Track, each of which is

associated to a leaf goal that it is responsible for.

Figure 2.21 represents the SysML/KAOS domain model associated with the root level

of the goal diagram (Figure 2.20). The ATOoETCS_GOA2 entity is modeled as a con-

cept named ATOoETCS_GOA2System. The possible states of a ATOoETCS_GOA2 are

modeled as an instances of attribute named ATOoETCS_GOA2SystemStates, which con-

tains two instances of DataValue of type STRING: manualDriving and automaticDriving.

atooetcs_goa2 is modeled as an instance of an individual named atooetcs_goa2 individual

of ATOoETCS_GOA2System.
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Figure 2.20 – Excerpt from the steam-boiler
control system SysML/KAOS goal model

Figure 2.21 – Excerpt from the steam-
boiler control system SysML/KAOS domain
model

4.1.2 Event-B formalization of SysML/KAOS Models

The second step shown in Figure 2.19 is a B System 3 formalization of SysML/KAOS

models. Goal models provide the behavioral part (events) of the specification while domain

models provide its structural part (sets, constant and their properties, variables and their

invariant) and the initialisation of state variables. It remains to manually specify the body

of events and to formally verify and validate the specification with AtelierB tools.

As the semantics of the refinement between goals is different from that of the refinement

between Event-B components, proof obligations for goal refinement are generated as

presented in 2.2.2. They depend on the goal refinement operator used and complete the

Event-B proof obligations for invariant preservation and for event feasibility.

Event-B formalization of SysML/KAOS models example

For the Event-B formalization of SysML/KAOS models, we recall that each goal

model level is represented as a machine in the Event-B specification. Listing 4 rep-

resents the root level of the Event-B specification of the ATO over ETCS GOA2 sys-

tem. The concept ATOoETCS_GOA2System, of the domain model, gives a set and its

individual atooetcs_goa2 gives a constant typed with a property as an element of set

ATOoETCS_GOA2System and a variable atooetcs_goa2State gives a total function from

ATOoETCS_GOA2System to ATOoETCS_GOA2SystemStates and initialised in the INI-

TIALISATION clause. At this level, event MoveTrainOnGOA2 allows to change the driving

from manual to automatic.

Each refinement level of the Event-B specification is the result of the translation of

3. B System designates a syntactic variant of Event-B offered within the AtelierB tool.
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goal model refinement level. Listing 5 represents an excerpt of the Event-B formalization

of the first refinement level of the goal diagram presented in Figure 2.20 with its associated

domain models. This level defines an Event-B component containing 3 variables, 3 in-

variants and 2 events MakeOnBoardForATODriving, MakeTrackForATODriving. These events

MILESTONE refine the parent goal MoveTrainOnGOA2. Therefore, the Event-B for-

malization of this refinement pattern is produced using the keyword ref_milestone.

SYSTEM ATOoETCS_GOA2System

SETS ATOoETCS_GOA2System , ATOoETCS_GOA2SystemStates

CONSTANTS atooetcs_goa2 , manualDriving , automaticDriving

PROPERTIES

...

atooetcs_goa2 ∈ ATOoETCS_GOA2System ∧

ATOoETCS_GOA2SystemStates = {automaticDriving , manualdriving}

VARIABLES atooetcs_goa2State

INVARIANT

atooetcs_goa2State ∈ ATOoETCS_GOA2System →

ATOoETCS_GOA2SystemStates

INITIALISATION

atooetcs_goa2State : ∈ {atooetcs_goa2} →

ATOoETCS_GOA2SystemStates

EVENTS

MoveTrainOnGOA2 =

SELECT atooetcs_goa2State(atooetcs_goa2)= manualdriving THEN

atooetcs_goa2State(atooetcs_goa2 ):= automaticDriving

END

END

Listing 4 – Event-B formalization of the SysML/KAOS models example root level pre-

sented in Figures 2.20 and 2.21.

SYSTEM ATOoETCS_GOA2System2

REFINES ATOoETCS_GOA2System

...

VARIABLES atooetcs_goa2State , onboardState , trackState ,

INVARIANT

...
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INITIALISATION

...

EVENTS

MakeOnBoardForATODriving ref_milestone MoveTrainOnGOA2 =

...

END;

MakeTrackForATODriving ref_milestone MoveTrainOnGOA2 =

...

END

END

Listing 5 – An excerpt of the Event-B formalization of the SysML/KAOS models ex-

ample first refinement level presented in Figures 2.20.

4.2 Graphical alignment

To process the first step, we note that the requirements side is represented by a

SysML/KAOS goal model enriched with a domain model for each goal model level and

the architecture side is represented by a SysML HLA model.

To specify graphical alignment links between these two sides, we have chosen to establish

links between concepts from each side:

— leaf goals from SysML/KAOS goal model because they are the most concrete goals

of a goal model. A leaf goal is assigned to an agent (environment, software or sub-

system agent) responsible for the goal satisfaction.

— Sequence diagram messages while they represent running interactions between system

components. Each message corresponds to a transition in the state-machine of the

block associated to the target component.

We propose three kinds of alignment links to satisfy leaf goals assigned to a sub-system

(an agent).

— The first alignment kind is called Satisfy . It is defined to represent an alignment link

when one message can satisfy one goal.

— The second kind is called And_Satisfy . It is defined when a goal is satisfied by a set

of messages, i.e. the execution of all of them, in any order, is needed to satisfy the
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goal.

— The last alignment kind is called Milestone_Satisfy . It is defined when a sequential

execution of a set of messages in a specific order is needed to satisfy a goal.

These alignment links definitions are inspired from two concepts:

— First, the SysML requirement diagram Satisfy relationship, a dependency between a

requirement and a model element that fulfills the requirement. This relationship di-

rection points from the satisfying (client) model element to the (supplier) requirement

that is satisfied.

— Second, The SysML/KAOS refinement operators AND, OR and MILESTONE

which represents the goal model hierarchy where higher-level goals can be refined

into lower-level sub-goals and the set of sub-goals satisfy the higher-level goal. We

recall that, when a goal is AND-refined into sub-goals, all of them must be satisfied

for the parent goal to be satisfied. The MILESTONE refinement consists in identi-

fying milestone states that must be sequentially satisfied for the parent goal to be

satisfied. Finally, when a goal is OR-refined, the satisfaction of one its sub-goals is

sufficient for the satisfaction of the parent goal.

Therefore, to create alignment links, we have merged these two concepts to adapt the

SysML Satisfy relationship between requirements and model elements and enrich it with

the goal/sub-goals satisfaction semantics.

Figure 2.22 shows the alignment meta-model, in which these three alignment kinds are

represented as subclasses of the meta-class Dependency. Two binary associations are then

defined. The first one is to link a leaf goal to a dependency and the second is to link

a dependency to a set of messages of a sequence diagram. Note that a message can be

linked to several dependencies. The kind of alignment link is specified by a stereotype on

the arrows between messages and leaf goals. Let us note that, for a Milestone_Satisfy

alignment link, the order of the messages must be given by numbering the relevant arrows.

Graphical alignment example

To give a simple representation of these graphical alignment links, we have applied the

proposed alignment process on example from the ATO over ERTMS case study excerpt.

Shown in Figure 2.23, the right hand model presents the SysML/KAOS goal model of the

ATO over ETCS GOA2 whereas the left hand model presents its associated HLA package

taken from HLA models [Bougacha et al., 2022a]. The SysML/KAOS goal model contains
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Figure 2.22 – Alignment meta-model

two leaf goals MakeOnBoardForATODriving and MakeTrackForATODriving. These two leaf

goals are satisfied respectively by the sequence diagram messages SetBoardforAutomatic

and SetTrackforAutomatic. Then, two alignment links are created of kind Satisfy , from the

sequence diagram messages to the leaf goals to represent that the satisfaction of one leaf

goal is established with the related sequence diagram message.

More details and illustrations about the graphical alignment modeling will be presented

in Section 5.4.

4.3 Formalization of graphical alignment links

To formalize graphical alignment links using Event-B, a set of translation rules has

been defined.

Recall that the Event-B formalization of the SysML/KAOS models is described in

[Matoussi et al., 2011a, Tueno Fotso et al., 2018] and the Event-B formalization of the

SysML HLA models is presented in 3.2.1.2. Each goal, including leaf goals, is transformed

to an event in the Event-B specification of requirements models and each sequence dia-

gram message is transformed to an event in the HLA model Event-B specification.

The main idea is to define an alignment link between a set of messages and a leaf goal

as a refinement relationship between the corresponding Event-B events. There are many

reasons why it is not possible to use the standard Event-B refinement namely:

— The semantics of the Event-B refinement do not correspond to our alignment se-

mantics. Indeed, Event-B refinement process allows to gradually enrich the differ-
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Figure 2.23 – Graphical alignment example

ent parts that constitute the system with more functional, safety, etc details, starting

from an abstract model to a more concrete one.

— The messages that satisfy a leaf goal can belong to distinct Event-B machines

whereas in Event-B it is not possible to specify that a set of machines refines one

machine.

However, as the formalization of SysML/KAOS models and SysML HLA models is car-

ried out in Event-B, we think that it would be more appropriate to formalize alignment

with Event-B. The proposed solution is to build a new Event-B machine for each align-

ment link. New sets of refinement proof obligations are specified, one for each kind of

alignment. Discharging these proof obligations allows to formally verify the satisfaction of

a leaf goal by a set of HLA messages.

Figure 2.24 illustrates how this new machine is built for a leaf goal LG which is
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And_Satisfy by the HLA sequence diagram messages M1 and M2:

Figure 2.24 – Event-B architecture of the proposed alignment

— The top left machine, called E_G_M, is the SysML/KAOS Event-B machine that

contains the event E_LG corresponding to the leaf goal LG.

— The top right machine, called E_A_M, is the HLA Event-B machine that contains

the events E_M1 and E_M2 corresponding to the messages M1 and M2. In this

example, let us assume that M1 and M2 belong to the same machine.

— the new machine, called E_LG_Goal_Satisfaction_Interface, is the alignment ma-

chine. This machine refines E_G_M and imports the events E_M1 and E_M2 from

the HLA machine E_A_M.

Table 2.4 presents the first four translation rules that allows to obtain the elements

of the Event-B alignment machines. The two columns of Source concepts describe the

elements related to the SysML/KAOS models and the SysML HLA models needed for

defining alignment links. The two columns of Target concepts describe the elements of the

Event-B alignment machine obtained from translating the Source concepts.

Rules 2, 3 and 4 need to be more precisely defined.
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Source concepts Target concepts

Rule Translation of Element Constraint Element Constraint

1 Leaf goal to satisfy LG
E_LG

LG is the leaf goal
E_LG is the event related to
LG
E_G_M is the Event-B
machine that contains E_LG

E_LG_Goal_
Satisfac-
tion_Interface

E_LG_Goal_Satisfaction_Interface
∈ MACHINE;
E_LG_Goal_Satisfaction_Interface
REFINES E_G_M;
E_LG_Goal_Satisfaction_Interface
SEES E_G_M CONTEXTS;

2 Variables involved
in E_LG

E_vgi,
i ∈ [1..n]

E_vgi are the variables of
E_G_M involved in E_LG

E_vgi,
i ∈ [1..n]

E_vgi, ∈ VARIABLES

3 Messages
responsible for the
satisfaction of the
leaf goal LG

Mj

E_Mj

j ∈ [1..p]

M1, ... Mp are messages
E_Mj is the event related to
message Mj ;
E_A_Mj is the Event-B
machine that contains E_Mj

E_Mj

j ∈ [1..p]
E_Mj ∈ EVENTS
E_LG_Goal_Satisfaction_Interface
SEES E_A_Mj CONTEXTS

4 Variables involved
in E_Mj events

E_vaj,k
j ∈ [1..p]
k ∈ [1..q]

E_vaj,k are the variables
involved in E_Mj

INV_A_Mj(E_vaj,1,
...,E_vaj,q) is the part of
E_A_Mj invariant related to
the E_vaj,k variables

E_vaj,k,
j ∈ [1..p]
k ∈ [1..q]

E_vaj,k ∈ VARIABLES
INV_A_Mj(E_vaj,1, ..., E_vaj,q) ∈
INVARIANTS

Table 2.4 – First four translation rules for alignment links

— Rule 2. This rule aims at copying the variables E_vgi (i ∈ [1..n]), involved in the

event E_LG corresponding to the leaf goal LG to satisfy from the machine E_G_M,

in the alignment machine of LG called E_LG_Goal_Satisfaction_Interface.

— Rule 3. Mj (j ∈ [1..p]) are the messages of the HLA model responsible for the

satisfaction of the leaf goal LG. E_Mj (j ∈ [1..p]) are the corresponding Event-B

events. These messages can belong to several sequence diagrams, consequently the

corresponding events can belong to several Event-B machines E_A_Mj . Each

E_Mj is copied from E_A_Mj in the E_LG_Goal_Satisfaction_Interface and this

machine will also SEES E_A_Mj CONTEXTS.

— Rule 4. Each event E_Mj (j ∈ [1..p]) uses a set of variables E_vaj,k (k ∈ [1..q]) com-

ing from the HLA model. Rule 4 aims at copying these variables in the alignment ma-

chine E_LG_Goal_Satisfaction_Interface. INV_A_Mj(E_vaj,1, ...,E_vaj,q), the

part of E_A_Mj invariant related to the E_vaj,k variables, is also copied in the

machine E_LG_Goal_Satisfaction_Interface.

Rule 5 consists in constructing the gluing invariant in the machine E_LG_Goal_Satisfaction

_Interface. These invariants link variables of the HLA Event-B machines E_A_Mj to

variables of the SysML/KAOS Event-B machine E_G_M. Recall that, as presented

in [Tueno Fotso et al., 2018], each leaf goal LG is associated to one or more elements of
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the domain model. They give the structural part (CONTEXTS, VARIABLES and IN-

VARIANTS) of the Event-B machine E_G_M. Likewise, in the HLA model translation

presented in 3.2.1.2, the source and the target lifelines of a sequence diagram message are

associated to blocks in the BDD. They give the VARIABLES and INVARIANTS part of

the Event-B machines E_A_Mj . Thus, the gluing invariant comes to establish links be-

tween elements of the domain model and elements of the BDD. This can only be a creative

activity from the designer that cannot be automatized.

To formalize the semantics of the proposed alignment links between goals and messages,

we propose a set of new refinement proof obligations, different from the proof obligations

generated for the Event-B standard refinement. They will depend on the satisfaction

relationship used. These proof obligations are inspired by the proof obligations defined for

the formalization of refinement links between goals [Matoussi et al., 2011a] to establish

that a set of sub-goals satisfies a parent goal. We have adapted them to establish that one

or more messages can satisfy a goal.

Let LG be a leaf goal and M1, M2 two messages. Let E_LG be the event associated

to LG and E_M1, E_M2 the two events associated to M1 and M2. Each event E is of the

form: E = SELECT E_Guard THEN E_Post.

Rule 6 is composed of three sub-rules that depend on the used satisfaction relationship.

— Rule 6.1: Satisfy relationship. Define that LG is satisfied by M1, then:

E_M1 ref E_LG

where ref is the standard Event-B refinement.

This proof obligation ensures that the satisfaction of E_LG depends on the execution

of E_M1.

— Rule 6.2: And_Satisfy relationship. Assume that LG is satisfied by M1 and M2,

then:

E_M1 ref_and E_LG

E_M2 ref_and E_LG

New proof obligations are generated:

— E_M1_Guard ⇒ E_LG_Guard

— E_M2_Guard ⇒ E_LG_Guard

— (E_M1_Post ∧ E_M2_Post) ⇒ E_LG_Post

These proof obligations ensure firstly that E_M1_Guard and E_M2_Guard should
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never contradict E_LG_Guard and secondly the execution of E_M1 and E_M2

without any specific order implies the satisfaction of E_LG.

— Rule 6.3: Milestone_Satisfy relationship. Assume that LG is satisfied by the se-

quential execution of M1 and M2, then:

E_M1 ref_milestone E_LG

E_M2 ref_milestone E_LG

New proof obligations are generated:

— E_M1_Guard ⇒ E_LG_Guard

— E_M1_Post ⇒ E_M2_Guard

— E_M2_Post⇒ E_LG_Post

These proof obligations ensure firstly that E_M1_Guard should never contradict

E_LG_Guard. Secondly the scheduling constraint should be respected with E_M1_Post

implies E_M2_Guard and finally the execution of E_M1 followed by the execution

of E_M2 implies the satisfaction of E_LG

Note that these new proof obligations can be automatically generated by the proof obliga-

tion generator of AtelierB.

An advantage of our approach is that we can use all the support tools of AtelierB to

discharge proof obligations, but also its animator to simulate the specification, and then

to validate and verify it.

Formalization of graphical alignment example

To formalize the alignment links presented in Figure 2.23, we present an application

example of the proposed formalization rule. Figure 2.25 shows the alignment of the events

MakeOnBoardForATODriving and MakeTrackForATODriving respectively by the sequence

diagram messages SetBoardForAutomatic and SetTrackForAutomatic. In this example, we

are interested to formalise the alignment of the leaf goal MakeOnBoardForATODriving into

Event-B. To aim, this formalisation, we give the Listing 6 which gives the Event-B

machine that contains the leaf goal OnBoard_Interface to satisfy and Listing 7 which gives

the Event-B machine that contains the message from HLA that satisfies the leaf goal

called ATOoETCS_GOA2System2. Listing 8 shows the generated Event-B specification

of the alignment through the application of rules described in Section 4.3 and presented in

Table 2.5.

Therefore, we give the formalisation process of this example as follows:
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Figure 2.25 – Event-B architecture of the proposed alignment

Table 2.5 – Alignment Formalisation rules application table

— First, a new Event-B machine called MakeOnBoardForATODriving_Goal_Satisfaction_Interface

from the leaf goal MakeOnBoardForATODriving (framed in green in Figure 2.25) is cre-

ated. It refines OnBoard_Interface and gets all its seen context. (rule 1 in Table

2.5).

— Variables involved in the event MakeOnBoardForATODriving to satisfy which are on-

boardState are copied in MakeOnBoardForATODriving_Goal_Satisfaction_Interface.

(rule 2 in Table 2.5).

— The goal MakeOnBoardForATODriving is Satisfy with the message SetBoardForAuto-

matic (framed in green in Figure 2.25), then the corresponding event is copied from

the HLA Event-B specification machine ATOoETCS_GOA2System2 with the in-

volved variable onboardHLAState and its associated typing invariant (rule 3 and 4

in Table 2.5).

— The gluing invariant must be manually defined where the variables onboard, from
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the goal machine Onboard_Interface, and onboardHLAState, from the HLA machine

ATOoETCS_GOA2System2, are linked since they represent the same entities but with

a different viewpoint (goal or architecture). (rule 5 presented in Section 4.3).

— Event SetBoardForAutomatic refines with a ref keyword the event MakeOnBoardFo-

rATODriving (Rule 6.1 presented in Section 4.3).

SYSTEM OnBoard_Interface

SEES ATOoETCS_GOA2SystemL1_CONT , ATOoETCS_GOA2SystemL0_CONT

ABSTRACT_VARIABLES onboardState ,

...

EVENTS

MakeOnBoardForATODriving ref_milestone MoveTrainOnGOA2 =

...

END;

...

END

Listing 6 – Extract from SysML/KAOS OnBoard Interface.

REFINEMENT ATOoETCS_GOA2System2

REFINES ATOoETCS_GOA2System

SEES ATOoETCS_GOA2SystemL1HLA_CONT , ATOoETCS_GOA2SystemL0HLA_CONT

VARIABLES atooetcs_goa2State , onboardHLAState , trackState ,

...

EVENTS

SetBoardForAutomatic =

SELECT onboardState(onboard )= BoardForManualDriving THEN

onboardState(onboard ):= BoardForAutomaticDriving

END;

...

END

Listing 7 – Extract from HLA ATOoETCS_GOA2System2

REFINEMENT MakeOnBoardForATODriving_Goal_Satisfaction_Interface

REFINES OnBoard_Interface
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SEES ATOoETCS_GOA2SystemL1_CONT , ATOoETCS_GOA2SystemL0_CONT ,

ATOoETCS_GOA2SystemL1HLA_CONT , ATOoETCS_GOA2SystemL0HLA_CONT

ABSTRACT_VARIABLES onboardState , onboardHLAState

INVARIANT

onboardState ∈ OnBoard → OnBoardStates

/**** From goal specification ****/ ∧

OnBoardHLAStates ∈ OnBoardStates → OnBoardStates

/**** From HLA specification ****/ ∧

OnBoardHLAStates[OnBoard ]= BoardForAutomaticDriving ⇒

onboardState [OnBoard ]= BoardForAutomaticDriving

// gluing Invariant. ∧

OnBoardHLAStates[OnBoard ]= BoardForManualDriving ⇒

onboardState [OnBoard ]= BoardForManualDriving // gluing Invariant.

INITIALISATION

OnBoardHLAStates , OnBoardStates :(

onboardState ∈ OnBoard → OnBoardStates

/**** From goal specification ****/ ∧

OnBoardHLAStates ∈ OnBoardStates → OnBoardStates

/**** From HLA specification ****/ ∧

OnBoardHLAStates[OnBoard ]= BoardForAutomaticDriving ⇒

onboardState [OnBoard ]= BoardForAutomaticDriving

// gluing Invariant. ∧

OnBoardHLAStates[OnBoard ]= BoardForManualDriving ⇒

onboardState [OnBoard ]= BoardForManualDriving // gluing Invariant.

EVENTS

SetBoardForAutomatic ref MakeOnBoardForATODriving =

SELECT onboardState(onboard )= BoardForManualDriving THEN

onboardState(onboard ):= BoardForAutomaticDriving

END

END

Listing 8 – Event-B formalization of the goal MakeOnBoardForATODriving alignment

link.

More details and illustrations about the graphical alignment modeling and formalization

will be presented in Section 5.4.
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4.4 Conclusion

In this section, we have proposed a model-based approach to align complex systems

HLA models with SysML/KAOS requirements models. This approach is twofold. First,

graphical which allows to specify the alignment of a leaf goal with HLA elements responsible

for its satisfaction. For this purpose, three kinds of alignment links are defined and a

new alignment meta-model is proposed. Second, formal which consists in formalizing the

alignment links in Event-B in order to be verified. To produce this Event-B specification,

we have proposed a set of translation rules. The semantics of the alignments links are

given by these rules and new proof obligations were defined that can be discharged using

AtelierB.

The contributions behind this alignment work were published in [Bougacha et al., 2023].

5 Illustration of the methodology on a case study

In this section, we present an illustration of the proposed methodology on a case study.

This illustration will give a better understanding and explanation of the methodology based

on examples and allows to evaluate its strengths and weaknesses with regard to existing

methods. It also allows to test the proposed alignment between the requirements models

and the HLA models To this end, we illustrate this methodology on an excerpt of the

landing gear system case study [Boniol and Wiels, 2014].

5.1 Landing Gear System case study

The landing gear system case study [Boniol and Wiels, 2014] was proposed in the 4th

edition of the ABZ conference (ASM, Alloy, B, TLA, VDM, Z). The goal of this case study

is to specify the system responsible for extending and retracting the landing gear of an

aircraft. The landing system is in charge of maneuvering landing gears and associated

doors. This system is composed of 3 landing sets: front, left and right. Each landing set

contains a door, a landing-gear and associated hydraulic cylinders.

The landing sequence proceeds as follows: open the doors of the landing gear boxes,

extend the landing gears and close the doors. After taking off, the retraction sequence to

be performed is: open the doors, retract the landing gears and close the doors.

The landing gear system architecture is composed of three parts:
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— The pilot interface. It is used to command the retraction and outgoing of gears. An

Up/Down handle is provided to the pilot. When the handle is switched to Up the

retracting landing gear sequence is executed, when the handle is switched to Down

the extending landing gear sequence is executed.

— The mechanical part. It is composed of three landing sets: front, left and right sets.

Each set is composed of a landing gear uplock box, and a door with two latching

boxes in the closed position. The landing gears and doors motion is performed by a

set of actuating cylinders. The cylinder position corresponds to the door or landing

gear position (when a door is open, the corresponding cylinder is extended). These

cylinders perform using hydraulic power provided by a set of electro-valves.

— The digital part. It is composed of two identical computing modules. Each one

executes in parallel the same control software. This software is in charge of controlling

gears and doors.

Figure 2.26 – Landing gear system architecture

Figure 2.26 shows the architecture of the landing gear system and the constituting parts

which collaborate together to extend or retract the landing gears.

5.2 SysML/KAOS modeling and formalizing of the landing gear system

case study

The SysML/KAOS method allows the progressive construction of system requirements

from the refinement of stakeholder needs. We have chosen to consider that the general ob-

jective that the system must fulfil is to control the movements of the landing gear. The
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most abstract level of the formal specification that has been built is a translation of this

general objective. Its concrete refinement levels are representations of the choices allowing

the achievement of the objective named maneuverLandingGear. The specification includes

four refinement levels explicitly related to stakeholder needs through SysML/KAOS mod-

els. The SysML/KAOS method allows to trace the source and justify the need for each

formal component and its contents. The formal specification is devoted to the formalisa-

tion of system functional goals and in their verification with regard to domain properties

and safety invariants. The environment behavior is left nondeterministic with respect to

domain constraints modeled in SysML/KAOS domain models.

5.2.1 SysML/KAOS Goal modeling

Figure 2.27 presents the SysML/KAOS functional goal diagram focused on the main

system purpose which is to control the movements of the landing gear (maneuverLandingGear).

To achieve it:

— As already presented the system ensures the extending (maneuverLGforLanding) and

retracting (maneuverLGforTakingOff) of the landing gear.

— The second refinement level of the SysML/KAOS goal diagram focuses on the ex-

tension and retraction processes. The extension process starts when the decision

to extend is stemming (decideToExtend). Afterthat, the landing gears are extended

(makeLGExtended). Same for the retraction process which starts by making the de-

cision (decideToTakeOff) and retracts the landing gears (makeLGRetracted).

— The decision to extend (respectively to retract) is triggered when the pilot switch the

handle to Down (respectively to Up) (putHandleDown (respectively putHandleUp)).

Then, an extension (respectively retraction) order is communicated to the digital

entity (communicateExtensionOrder (respectively communicateRetractionOrder)).

— The landing and retraction sequences proceed as follows: stimulate the general

electro-valve (StimulateGeneral_Ev), open the doors of the landing gear boxes (makeDoorsOpen,

extend/retract the landing gears (makeGearsExtend/ makeGearsRetract) and close the

doors (makeDoorsClose) and finally stop the stimulation of the general electro-valve

(StopGeneral_EvStimulation).

— To open the doors, first the door opening electro-valve should be stimulated (stimulateDoorOpeningEv)

then doors will be opened (OpenDoors).
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Figure 2.27 – The landing gear system SysML/KAOS goal diagram

— Afterthat, to extend/retract the gears, gear extension/retraction electro-valve should

be stimulated (stimulateGearExtension_EV) and then the gears will be extended/re-

tracted and finally gear extension/retraction electro-valve stimulation should be stopped

(stopGearExtension_ EVstimulation.

— To close the doors, door opening electro-valve should be stopped (stopDoorOpening

_EVstimulation), stimulate the door closure electo-valve (stimulateDoorClosure_EV),

then doors should be closed (CloseDoors) and finally door closure electro-valve stim-

ulation is stopped (stopDoorClosure_EVStimulation).
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5.2.2 SysML/KAOS Goal model formalization

From the goal model, we distinguish five levels which are translated into five Event-B.

The hierarchy of this Event-B specification goes from the abstract goal to the concrete

ones called leaf goals.

5.2.2.1 The Root Level

Figure 2.28 – SysML/KAOS root level goal model and corresponding domain model

SYSTEM LandingGearSystem_CONTEXT

SETS LandingGearSystem ;

LG_STATES

CONSTANTS LG, lg_extended ,

lg_retracted

PROPERTIES

LG ∈ LandingGearSystem

∧ LandingGearSystem = { LG }

∧ lg_extended ∈ LG_STATES

∧ lg_retracted ∈ LG_STATES

∧ LG_STATES ={ lg_extended ,

lg_retracted}

∧ lg_extended ̸= lg_retracted

END

Listing 9 – The root level of Figure 2.28

Event-B specification context.

SYSTEM Landing_Gear_System

SEES LandingGearSystem_CONTEXT

ABSTRACT_VARIABLES lgState

INVARIANT

lgState ∈ LandingGearSystem

→ LG_STATES

INITIALISATION

lgState:∈ LandingGearSystem

→ LG_STATES

EVENTS

maneuverLandingGear =

ANY state WHERE

state ∈ LG_STATES THEN

lgState ( LG ) := state

END

END

Listing 10 – The root level of Figure 2.28

Event-B specification machine.

Figure 2.28 represents the root level of the landing gear system goal model and its asso-

ciated domain model. The landing gear system entity is modeled as an instance of concept
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named LandingGearSystem. The possible states of a landing gear system are modeled as an

instances of attribute named LG_STATES, which contains two instances of DataValue of

type STRING: lg_extended for the extended state and lg_retracted for the retracted state.

LG is modeled as an instance of an individual named LG individual of LandingGearSystem.

The Event-B translation of the root level of the goal diagram and the associated

domain model presented in Figure 2.28 is shown in Listings 9 and 10. The domain model

gives rise to sets, constants, properties, variables and invariants of the formal specification.

The root goal is translated into an event for which the body has been manually specified:

the control of the landing gear movement states between lg_extended and lg_retracted.

5.2.2.2 The First Refinement Level

Figure 2.29 – SysML/KAOS first refinement level goal model and corresponding domain
model

SYSTEM

LandingGearSystem_CONTEXT_L1

SETS MANEUVER_TYPES

CONSTANTS taking_off , landing

PROPERTIES

taking_off ∈ MANEUVER_TYPES

∧ landing ∈ MANEUVER_TYPES

∧ MANEUVER_TYPES ={ taking_off , landing}

∧ taking_off ̸= landing

END

Listing 11 – The first refinement level in Figure 2.29 Event-B specification context.

The first refinement level of the goal model and its associated domain model is shown

in Figure 2.29. This level refines the root level by the possible maneuvers the landing gear

could perform to achieve the root goal. More precisely, goals maneuverLGforLanding and
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maneuverLGforTakingOff refine maneuverLandingGear using AND refinement operator. The

domain model associated to this level refines the one with the root level by adding a new

DataType called MANEUVER_TYPES to precise the possible maneuvers of the landing

gear. It instantiates two STRING DataValues taking_off and landing.

REFINEMENT Landing_Gear_System_L1

REFINES Landing_Gear_System

SEES LandingGearSystem_CONTEXT , LandingGearSystem_CONTEXT_L1

ABSTRACT_VARIABLES currentManeuver , lgState

INVARIANT

currentManeuver ∈ LandingGearSystem → MANEUVER_TYPES

INITIALISATION

lgState :∈ LandingGearSystem → LG_STATES ∥

currentManeuver :∈ LandingGearSystem → MANEUVER_TYPES

EVENTS

maneuverLGforLanding ref_and maneuverLandingGear =

BEGIN

lgState(LG):= lg_extended ∥ currentManeuver(LG):= landing

END ;

maneuverLGforTakingOff ref_and maneuverLandingGear =

BEGIN

lgState(LG):= lg_retracted ∥ currentManeuver(LG):= taking_off

END

END

Listing 12 – The first refinement level of Figure 2.29 Event-B specification machine.

Listings 11 and 12 shows the Event-B specification obtained from the translation

of the first refinement level presented in Figure 2.29. Each goal in this refinement level is

translated into an event for which the body has been manually specified: if the actual state

of the landing gear system is lg_extended then the current produced maneuver is landing

(event maneuverLGforLanding) else the current produced maneuver is taking_off (event

maneuverLGforTakingOff). The AND refinement operator between the root level and the

first refinement level is formalized with a set of proof obligations defined with the keyword

ref_and to be proved. These proof obligations will express that maneuverLGforLanding and

maneuverLGforTakingOff are both responsible for maneuverLandingGear.
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5.2.2.3 The fourth refinement level

Figure 2.30 – SysML/KAOS root level goal model and corresponding domain model

SYSTEM LandingGearSystem_CONTEXT_L4

SEES LandingGearSystem_CONTEXT_L3

CONSTANTS DO_EV , DRSofDO_EV , GE_EV , GRSofGE_EV , DC_EV , DRSofDC_EV

PROPERTIES

DO_EV ∈ ELECTRO_VALVES ∧

DRSofDO_EV ∈ ELECTRO_VALVES ↠ Doors ∧

DRSofDO_EV = { DO_EV 7→ DRS } ∧

GE_EV ∈ ELECTRO_VALVES ∧

GRSofGE_EV ∈ ELECTRO_VALVES ↠ Gears ∧

GRSofGE_EV = { GE_EV 7→ GRS } ∧

DC_EV ∈ ELECTRO_VALVES ∧

DRSofDC_EV ∈ ELECTRO_VALVES ↠ Doors ∧

DRSofDC_EV = { DC_EV 7→ DRS } ∧

G_EV ̸= DO_EV ∧ DO_EV ̸= GE_EV ∧ G_EV ̸= GE_EV ∧

GE_EV ̸= DC_EV ∧ DO_EV ̸= DC_EV ∧ DC_EV ̸= G_EV ∧

ELECTRO_VALVES = { G_EV , DO_EV , GE_EV , DC_EV }

END

Listing 13 – The fourth refinement level in Figure 2.30 Event-B specification context.

REFINEMENT Landing_Gear_System_L4

REFINES Landing_Gear_System_L3

SEES LandingGearSystem_CONTEXT , LandingGearSystem_CONTEXT_L1 ,

LandingGearSystem_CONTEXT_L2 , LandingGearSystem_CONTEXT_L3 ,
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LandingGearSystem_CONTEXT_L4

ABSTRACT_VARIABLES currentManeuver , lgState , decision , handleState ,

extensionOrder , GEVstate , doorsState , gearsState , DO_EVstate ,

GE_EVstate , DC_EVstate

INVARIANT

DO_EVstate ∈ ELECTRO_VALVES → EV_States ∧

GE_EVstate ∈ ELECTRO_VALVES → EV_States ∧

DC_EVstate ∈ ELECTRO_VALVES → EV_States

INITIALISATION

lgState :∈ LandingGearSystem → LG_STATES ∥

currentManeuver :∈ LandingGearSystem → MANEUVER_TYPES ∥

decision :∈ LandingGearSystem → Actions ∥

handleState :∈ Handle → HANDLE_STATES ∥

doorsState :∈ Doors → Doors_States ∥

gearsState :∈ Gears → Gears_States ∥

extensionOrder :∈ LandingGearSystem → BOOL ∥

GEVstate :∈ ELECTRO_VALVES → EV_States ∥

DO_EVstate :∈ ELECTRO_VALVES → EV_States ∥

GE_EVstate :∈ ELECTRO_VALVES → EV_States ∥

DC_EVstate :∈ ELECTRO_VALVES → EV_States

EVENTS

stimulateDoorOpeningEV ref_milestone makeDoorsOpen =

SELECT GEVstate ( lgOfG_EV ~ ( LG ) ) = stimulated THEN

DO_EVstate ( DRSofDO_EV ~ ( DRS ) ) := stimulated

END ;

OpenDoors ref_milestone makeDoorsOpen =

SELECT DO_EVstate ( DRSofDO_EV ~ ( DRS ) ) = stimulated THEN

doorsState ( lgOfDRS ~ ( LG ) ) := open

END ;

stimulateGearExtension_EV ref_milestone makeGearsExtend =

SELECT doorsState ( lgOfDRS ~ ( LG ) ) = open THEN

GE_EVstate ( GRSofGE_EV ~ ( GRS ) ) := stimulated

END ;

ExtendGears ref_milestone makeGearsExtend =

SELECT GE_EVstate ( GRSofGE_EV ~ ( GRS ) ) = stimulated THEN

gearsState ( lgOfGRS ~ ( LG ) ) := extended

END ;
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stopGearExtension_EV ref_milestone makeGearsExtend =

SELECT gearsState ( lgOfGRS ~ ( LG ) ) = extended THEN

GE_EVstate ( GRSofGE_EV ~ ( GRS ) ) := stopped

END ;

stopDoorOpeningEV ref_milestone makeDoorsClose =

SELECT gearsState ( lgOfGRS ~ ( LG ) ) = extended THEN

DO_EVstate ( DRSofDO_EV ~ ( DRS ) ) := stopped

END ;

stimulateDoorClosure_EV ref_milestone makeDoorsClose =

SELECT DO_EVstate ( DRSofDO_EV ~ ( DRS ) ) = stopped THEN

DC_EVstate ( DRSofDC_EV ~ ( DRS ) ) := stimulated

END ;

closeDoors ref_milestone makeDoorsClose =

SELECT DC_EVstate ( DRSofDC_EV ~ ( DRS ) ) = stimulated THEN

doorsState ( lgOfDRS ~ ( LG ) ) := close

END ;

stopDoorClosure_EV ref_milestone makeDoorsClose =

SELECT doorsState ( lgOfDRS ~ ( LG ) ) = close THEN

DC_EVstate ( DRSofDC_EV ~ ( DRS ) ) := stopped

END

END

Listing 14 – The fourth refinement level of Figure 2.30 Event-B specification machine.

For the fourth refinement level presented in Figure 2.30, the translation to Event-B

introduces sets, constants, properties, variables and invariants raised from the domain

model associated with this level which is a refinement of the third refinement level domain

model. Also, 9 events are obtained from the translation of goals and the milestone refine-

ment operators (MLS operator) presented between this refinement level goals and their

corresponding parent goals are formalized with a set of proof obligations defined with the

keyword ref_milestone to be proved. The Event-B specification associated to this level

is presented in Listings 13 and 14.
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5.2.3 SysML/KAOS Goal model decomposition

SysML/KAOS goal models allow the capture of assignments of requirements to agents

responsible for their achievement. Each agent is associated with a sub-system. To ensure

the distribution of work between several agents and a better maintenability, reusability

and scalability of the system, SysML/KAOS allows its partitioning into sub-systems

(presented in 3.1.3.3): a goal diagram models the main system and further goal diagrams

are built for sub-systems. Actually, each sub-system is associated with an agent that is

responsible for achieving its requirements.

In Figure 2.27, leaf goals are assigned to three sub-systems PiloteSubSystem, Mechani-

calSubSystem and DigitalSubSystem.

— The PiloteSubSystem is responsible for goals putHandleDown and putHandleUp, shown

in Figure 2.31.

Figure 2.31 – SysML/KAOS PiloteSubSystem assigned goals

— The DigitalSubSystem is responsible for goals communicateExtensionOrder, Stimu-

lateGeneral_EV, StimulateDoorOpeningEV, StimulateGearExtension_EV, StopGearEx-

tension_EVStimuation, StopDoorOpening_EVStimulation, StimulateDoorClosure_EV,

StopDoorClosure_EV Stimulation and StopGeneral_EVStimulation, shown in Figure

2.32 (Framed in red).

— The MechanicalSubSystem is responsible for goals OpenDoors, ExtendGears and Close-

Doors, shown in Figure 2.32 (Framed in green).

After decomposition we give as example the goal model associated to the mechanical sub-

system shown in Figure 2.33.

5.2.4 SysML/KAOS model decomposition formalization using Event-B

For the landing gear system, the decomposition must be introduced in the third refine-

ment level because it contains leaf goals associated to PiloteSubSystem and DigitalSubSystem
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Figure 2.32 – SysML/KAOS DigitalSubSystem and MechanicalSubSystem assigned goals

Figure 2.33 – SysML/KAOS MechanicalSubSystem goal model

and in the fourth refinement level because it contains leaf goals associated to DigitalSub-

System and mechanicalSubSystem. For instance, an interface is defined for each subsystem.

Precisely, each SysML/KAOS agent gives an interface.
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5.2.4.1 SysML/KAOS Pilote SubSystem

Here, we give as example the PiloteSubSystem interface presented in Listing 15. This

interface is obtained from the decomposition of Landing_Gear_System_L3 along with vari-

ables and events corresponding to the PiloteSubSystem. Variable handleState is defined as

a shared variable while it is updated by the PiloteSubSystem interface and read by Dig-

italSubSystem. Variables extensionOrder and decision are also considered as shared vari-

able while they are updated in DigitalSS_Interface and read in PiloteSS_Interface. Events

putHandleDown and putHandleUp are internal events in PiloteSS_Interface, whereas event

communicateExtensionOrder is an external event. This event simulates the behavior of in-

ternal event communicateExtensionOrder, defined in interface DigitalSS_Interface because it

uses the variable handleState.

SYSTEM PiloteSS_Interface

SEES LandingGearSystem_CONTEXT , LandingGearSystem_CONTEXT_L3

ABSTRACT_VARIABLES

/**** Shared variable used in DigitalSS_Interface ****/

handleState ,

// updated in PiloteSS_Interface and read in DigitalSS_Interface.

extensionOrder ,

// updated in DigitalSS_Interface and read in PiloteSS_Interface.

decision ,

// updated in DigitalSS_Interface and read in PiloteSS_Interface.

INVARIANT

handleState ∈ Handle → HANDLE_STATES ∧

decision ∈ LandingGearSystem → Actions ∧

extensionOrder ∈ LandingGearSystem → BOOL

INITIALISATION

handleState :∈ Handle → HANDLE_STATES ∥

decision :∈ LandingGearSystem → Actions ∥

extensionOrder :∈ LandingGearSystem → BOOL

EVENTS

putHandleDown =

BEGIN

handleState(LgOfHd ~(LG)):= down

END;

putHandleUp =

119



CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

BEGIN

handleState(LgOfHd ~(LG)):=up

END

/**** ********* Shared Events of DigitalSS_Interface ************* ****/

communicateExtensionOrder =

SELECT handleState(LgOfHd ~(LG))= down THEN

extensionOrder(LG) :=TRUE || decision(LG):= Extension

END;

/**** ********************************************************** ****/

END

Listing 15 – SysML/KAOS Pilote SubSystem Interface.

5.2.4.2 SysML/KAOS Mechanical SubSystem

Listings 16 and 17 present an overview of the first refinement level Event-B of the

sub-system associated to the agent MechanicalSubSystem. It is a refinement of the interface

MechanicalSS_Interface. This specification corresponds to the goal diagram presented in

Figure 2.33. As introduced in this goal diagram, to satisfy the goal OpenDoors, the left,

right and front doors should be opened. This is represented by the AND refinement

operator. To formalize this refinement, events makeRightDoorOpen, makeFrontDoorOpen

and makeLeftDoorOpen associated to the level 1 of the MechanicalSubSystem goal diagram

ref_and the interface event OpenDoors.

SYSTEM LandingGearSystem_MechanicalSS_CONTEXT

SEES LandingGearSystem_CONTEXT_L3

SETS SIDES_DOORS; SIDES_GEARS

CONSTANTS

leftD , DRSofLD , rightD , DRSofRD , frontD , DRSofFD ,

leftG , GRSofLG , rightG , GRSofRG , frontG , GRSofFG

PROPERTIES

leftD ∈ SIDES_DOORS ∧ DRSofLD ∈ SIDES_DOORS ↠

Doors ∧ DRSofLD = {leftD 7→ DRS} ∧

rightD ∈ SIDES_DOORS ∧ DRSofRD ∈ SIDES_DOORS ↠

Doors ∧ DRSofRD = {rightD 7→ DRS} ∧
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frontD ∈ SIDES_DOORS ∧ DRSofFD ∈ SIDES_DOORS ↠

Doors ∧ DRSofFD = {frontD 7→ DRS} ∧

leftD ̸= rightD ∧ rightD ̸= frontD ∧ leftD ̸= frontD ∧

SIDES_DOORS ={leftD ,rightD ,frontD} ∧

leftG ∈ SIDES_GEARS ∧ GRSofLG ∈ SIDES_GEARS ↠

Gears ∧ GRSofLG = {leftG 7→ GRS} ∧

rightG ∈ SIDES_GEARS ∧ GRSofRG∈ SIDES_GEARS ↠

Gears ∧ GRSofRG = {rightG 7→ GRS} ∧

frontG ∈ SIDES_GEARS ∧ GRSofFG ∈ SIDES_GEARS ↠

Gears ∧ GRSofFG = {frontG 7→ GRS} ∧

leftG ̸= rightG ∧ rightG ̸= frontG ∧ leftG ̸= frontG ∧

SIDES_GEARS ={leftG ,rightG ,frontG}

END

Listing 16 – SysML/KAOS Mechanical SubSystem Level 1 context.

REFINEMENT MechanicalSS_L1

REFINES MechanicalSS_Interface

SEES LandingGearSystem_CONTEXT , LandingGearSystem_CONTEXT_L3 ,

LandingGearSystem_CONTEXT_L4 ,

LandingGearSystem_MechanicalSS_CONTEXT

ABSTRACT_VARIABLES DO_EVstate , GE_EVstate , DC_EVstate , doorsState ,

gearsState , sides_doorState , sides_gearState

INVARIANT

sides_doorState ∈ SIDES_DOORS → Doors_States ∧

sides_gearState ∈ SIDES_GEARS → Gears_States ∧

(sides_doorState[SIDES_DOORS ]={ open} ⇒

doorsState[Doors ]={ open}) ∧

(sides_doorState[SIDES_DOORS ]={ close} ⇒

doorsState[Doors ]={ close}) ∧

(sides_gearState[SIDES_GEARS ]={ extended} ⇒
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gearsState[Gears ]={ extended })

INITIALISATION

DO_EVstate :∈ ELECTRO_VALVES → EV_States ∥

GE_EVstate :∈ ELECTRO_VALVES → EV_States ∥

DC_EVstate :∈ ELECTRO_VALVES → EV_States ∥

doorsState , sides_doorState ∈ (

(sides_doorState[SIDES_DOORS ]={ open} ⇒

doorsState[Doors ]={ open}) ∧

(sides_doorState[SIDES_DOORS ]={ close} ⇒

doorsState[Doors ]={ close}) ∧

(doorsState ∈ Doors →

Doors_States) ∧

(sides_doorState ∈ SIDES_DOORS → Doors_States )) ∥

gearsState , sides_gearState ∈ (

(sides_gearState[SIDES_GEARS ]={ extended} ⇒

gearsState[Gears ]={ extended }) ∧

(gearsState ∈ Gears → Gears_States) ∧

(sides_gearState ∈ SIDES_GEARS → Gears_States ))

EVENTS

makeRightDoorOpen ref_and OpenDoors =

SELECT DO_EVstate(DRSofDO_EV ~(DRS)) = stimulated THEN

sides_doorState(DRSofRD ~(DRS )):= open

END;

makeLeftDoorOpen ref_and OpenDoors =

SELECT DO_EVstate(DRSofDO_EV ~(DRS)) = stimulated THEN

sides_doorState(DRSofLD ~(DRS )):= open

END;

makeFrontDoorOpen ref_and OpenDoors =

SELECT DO_EVstate(DRSofDO_EV ~(DRS)) = stimulated THEN

sides_doorState(DRSofFD ~(DRS )):= open

END;

makeRightGearExtended ref_and ExtendGears =

SELECT GE_EVstate(GRSofGE_EV ~(GRS))= stimulated THEN

sides_gearState(GRSofRG ~(GRS )):= extended

END;

122



CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

makeLeftGearExtended ref_and ExtendGears =

SELECT GE_EVstate(GRSofGE_EV ~(GRS))= stimulated THEN

sides_gearState(GRSofLG ~(GRS )):= extended

END;

makeFrontGearExtended ref_and ExtendGears =

SELECT GE_EVstate(GRSofGE_EV ~(GRS))= stimulated THEN

sides_gearState(GRSofFG ~(GRS )):= extended

END;

makeRightDoorClose ref_and closeDoors =

SELECT DC_EVstate(DRSofDC_EV ~(DRS)) = stimulated THEN

sides_doorState(DRSofRD ~(DRS )):= close

END;

makeLeftDoorClose ref_and closeDoors =

SELECT DC_EVstate(DRSofDC_EV ~(DRS)) = stimulated THEN

sides_doorState(DRSofLD ~(DRS )):= close

END;

makeFrontDoorClose ref_and closeDoors =

SELECT DC_EVstate(DRSofDC_EV ~(DRS)) = stimulated THEN

sides_doorState(DRSofFD ~(DRS )):= close

END

END

Listing 17 – SysML/KAOS Mechanical SubSystem Level 1 machine.

Figure 2.34 shows the Event-B specification architecture created from the formal-

ization of the SysML/KAOS models. In this architecture, blue arrows show the SEES

relationship between a machine and a context and black arrows present the refinement

between two machines. Finally, green arrows present the SysML/KAOS model decompo-

sition Event-B formalization.

5.2.5 Conclusion

In this section, we have presented the use of the SysML/KAOS method for the model-

ing of system requirements and associated domain models related to the landing gear sys-

tem [Boniol and Wiels, 2014]. The Event-B formalization of the SysML/KAOS models

presented in [Matoussi et al., 2011a, Tueno et al., 2017a] has then been applied to obtain a
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Figure 2.34 – SysML/KAOS Event-B specification Architecture

formal specification containing the system structure and the skeleton of events. AtelierB

[AtelierB, 1990] has been used to verify and validate the formal specification, especially to

prove the consistency of system requirements and the refinement logic, after the comple-

tion of the body of events. The formal verification step for the Event-B specification of the

landing gear system SysML/KAOS required to discharge 114 proof obligations. Figure

2.35 summarises the status of the AtelierB project corresponding to the generated Event-B

specification. These proofs are of type invariant preservation, non-deterministic action fea-

sibility and well-definedness enriched with proof obligations that represent the goal model

refinement patterns. They were all automatically and interactively proved (100%). The

columns of the table are: TC, for “type checking", to indicate that formal model compo-

nents are well defined, GOP, for “generation of proof obligations", to indicate that proof

obligations are well generated. PO, for “proof obligations", presents the number of gener-

ated proof obligations for every formal model component. UN for “unproved" presents the

number of unproved proof obligations of each element. Finally, the column PR presents

the percentage of discharged proof obligations

The full specification of this landing gear system case study can be found in [Bougacha,

2022b].
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Figure 2.35 – Project Status for Landing Gear System SysML/KAOS Event-B specifi-
cation

5.3 High-level architecture modeling and formalizing of the landing gear

system case study

In this section, we give an illustration of the HLA modeling approach presented in

Section 3 applied on the landing gear system case study.

5.3.1 The main system (Level 0)

To model the HLA hierarchy, we start the modeling process by creating a new package

diagram that represents the HLA hierarchy levels as a set of packages. Each package

contains a BDD, a state-machine diagram and a sequence diagram.

The first package to be modeled in this hierarchy is LandingGearSystemL0 that describes

the main system. This package shown in Figure 2.36 is composed of:

— A unique block called Landing Gear System which describes the main system.

— A state-machine diagram called Landing Gear System States which describes the be-

havior of the main system.

— A sequence diagram that shows the main functionalities and the life cycle of a landing

gear system, that is to extend and retract a landing gear.
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Figure 2.36 – Landing gear system HLA main system package

SYSTEM LandingGearSystemL0_CONT

SETS LandingGearSystem;

LandingGearSystemStates

CONSTANTS lg, Extended ,

Retracted

PROPERTIES

lg ∈ LandingGearSystem ∧

LandingGearSystem ={lg} ∧

Retracted ∈

LandingGearSystemStates ∧

Extended ∈

LandingGearSystemStates ∧

Retracted ̸= Extended ∧

LandingGearSystemStates =

{Extended , Retracted}

END

Listing 18 – Landing gear system HLA

main system Event-B specification con-

text.

SYSTEM LandingGearSystemL0

SEES LandingGearSystemL0_CONT

VARIABLES lgState

INVARIANT

lgState ∈ LandingGearSystem

→ LandingGearSystemStates

INITIALISATION

lgState :∈ {lg} →

LandingGearSystemStates

EVENTS

RetractsLGS =

SELECT lgState(lg)= Extended

THEN

lgState(lg):= Retracted

END;

ExtendsLGS =

SELECT lgState(lg)= Retracted

THEN

lgState(lg):= Extended

END

END

Listing 19 – Landing gear system HLA

main system Event-B specification ma-

chine.
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The Event-B formalization of the landing gear system HLA main system package

presented in Figure 2.36 is shown in Listings 18 and 19. The BDD and state-machine

diagrams give rise to sets, constants and properties. Variables and typing invariants are

generated from sequence diagram lifelines associated to BDD blocks. The sequence diagram

messages ExtendsLGS and RetractsLGS are translated into Event-B events representing the

life cycle of system states from extended to retracted. Recall that the sequence diagrams

messages are associated to transitions of the state-machine diagram. Thus, the guard of

the event comes from the source state of the transition and its action is the target state.

5.3.2 Landing gear system HLA level 1

The landing gear system is composed of three sub-systems (Pilote SubSystem, Digital

SubSystem and Mechanical SubSystem) and a Pilot to command the extension and retrac-

tion of the gear. Thus, the behavior of the main system (landing gear system) is satisfied

by the result of these entities interplay.
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Figure 2.37 – Landing gear system HLA Level 1 package
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To process in the HLA hierarchy, we create a second package called LandingGearSys-

temL1 which encompasses the different entities and the composition relationship with their

parent system.

The package LandingGearSystemL1 shown in Figure 2.37 contains the BDD describing

the sub-systems, the state-machine diagrams for all the sub-systems (Pilote, Digital and

Mechanical SubSystems) and the sequence diagram, an extract of it is shown (the full

version can be found in [Bougacha, 2022b]) which defines the Pilot/sub-systems process

that refines the main system process.

To represent the main system behavior satisfaction by the sub-systems behaviors inter-

play, we use the HLA_refines link, presented in 3.1.1.1, between LandingGearSystemL0 and

LandingGearSystemL1 to express that LandingGearSystemL1 refines LandingGearSystemL0

(see Figure 2.38). More precisely, the LandingGearSystemL1 sequence diagram message Ex-

tendsLG allows the extension of the landing gear system after the sub-systems processes

interplay. Therefore, it is a refinement of the message ExtendsLGS of the sequence diagram

of the LandingGearSystemL0, specified by the Refines_Message stereotype (see Figure 2.37).

Figure 2.38 – Landing gear system HLA level 0 & 1 package refinement

Listings 20 and 21 shows the Event-B specification obtained from the translation of

LandingGearSystemL1 package presented in Figure 2.37. Each sequence diagram message is

translated into an event. The created set of events represents the collaboration scenario be-

tween participating sub-systems in order to satisfy the parent system behavior. As already

mentioned, LandingGearSystemL0 HLA_refines LandingGearSystemL1 and the sub-systems

behaviors interplay allow the extending of the landing gear represented by the message

ExtendsLG. This message refines the message ExtendsLGS from LandingGearSystemL0 using

the stereotype Refines_Message. To formalize this refinement in Event-B, the machine
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created from the first package LandingGearSystemL0 is refined by the machine created from

LandingGearSystemL1 (the clause REFINES in Listing 21) and the event ExtendsLG from

LandingGearSystemL1 refines the event ExtendsLGS from LandingGearSystemL0 (the use of

ref between the two events). Same for the retraction scenario where the event RetractsLG

LandingGearSystemL1 refines the event RetractsLGS from LandingGearSystemL0.

SYSTEM LandingGearSystemL1_CONT

SETS DigitalSubSystem; MechanicalSubSystem; PiloteSubSystem;

DigitalSubSystemStates; PiloteSubSystemStates;

MechanicalSubSystemStates; PILOT

CONSTANTS mss , dss , pss , pilot ,

orderedForExtensionPiloteSS , orderedForRetractionPiloteSS ,

orderedForExtensionDigitalSS , orderedForRetractionDigitalSS ,

orderedForExtensionMechanicalSS , orderedForRetractionMechanicalSS ,

commandsExtension , commandsRetraction

PROPERTIES

mss ∈ MechanicalSubSystem ∧ dss ∈ DigitalSubSystem ∧

pss ∈ PiloteSubSystem ∧ pilot ∈ PILOT ∧ PILOT={ pilot} ∧

PiloteSubSystem ={pss} ∧ MechanicalSubSystem ={mss} ∧

DigitalSubSystem ={dss} ∧

orderedForRetractionPiloteSS ∈ PiloteSubSystemStates ∧

orderedForExtensionPiloteSS ∈ PiloteSubSystemStates ∧

orderedForExtensionPiloteSS ̸= orderedForRetractionPiloteSS ∧

orderedForRetractionDigitalSS ∈ DigitalSubSystemStates ∧

orderedForExtensionDigitalSS ∈ DigitalSubSystemStates ∧

orderedForExtensionDigitalSS ̸= orderedForRetractionDigitalSS ∧

orderedForExtensionMechanicalSS ∈ MechanicalSubSystemStates ∧

orderedForRetractionMechanicalSS ∈ MechanicalSubSystemStates ∧

orderedForRetractionMechanicalSS ̸=

orderedForExtensionMechanicalSS ∧

DigitalSubSystemStates ={ orderedForRetractionDigitalSS ,

orderedForExtensionDigitalSS} ∧

PiloteSubSystemStates ={ orderedForRetractionPiloteSS ,
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orderedForExtensionPiloteSS} ∧

MechanicalSubSystemStates ={ orderedForExtensionMechanicalSS ,

orderedForRetractionMechanicalSS} ∧

commandsExtension ∈ {pilot} 7→ {pss} ∧

commandsRetraction ∈ {pilot} 7→ {pss}

END

Listing 20 – Landing gear system HLA Level 1 Event-B specification context.

REFINEMENT LandingGearSystemL1

REFINES LandingGearSystemL0

SEES LandingGearSystemL1_CONT , LandingGearSystemL0_CONT

VARIABLES dssState , mssState , pssState , lgState

INVARIANT

dssState ∈ DigitalSubSystem → DigitalSubSystemStates ∧

mssState ∈ MechanicalSubSystem → MechanicalSubSystemStates ∧

pssState ∈ PiloteSubSystem → PiloteSubSystemStates

INITIALISATION

dssState :∈ {dss} → DigitalSubSystemStates ∥

mssState :∈ {mss} → MechanicalSubSystemStates ∥

pssState :∈ {pss} → PiloteSubSystemStates ∥

lgState :∈ {lg} → LandingGearSystemStates

EVENTS

commandsMechanicalSSForRetraction =

SELECT dssState(dss)= orderedForRetractionDigitalSS ∧

mssState(mss)= orderedForExtensionMechanicalSS THEN

mssState(mss ):= orderedForRetractionMechanicalSS

END;

ExtendsLG ref ExtendsLGS=

SELECT lgState(lg)= Retracted ∧

mssState(mss)= orderedForExtensionMechanicalSS THEN

lgState(lg):= Extended

END;

commandsMechanicalSSForExtension =

SELECT dssState(dss)= orderedForExtensionDigitalSS ∧

mssState(mss)= orderedForRetractionMechanicalSS THEN
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mssState(mss ):= orderedForExtensionMechanicalSS

END;

RetractsLG ref RetractsLGS=

SELECT lgState(lg)= Extended ∧

mssState(mss)= orderedForRetractionMechanicalSS THEN

lgState(lg):= Retracted

END;

commandsDigitalSSForRetraction =

SELECT pssState(pss)= orderedForRetractionPiloteSS ∧

dssState(dss)= orderedForExtensionDigitalSS THEN

dssState(dss ):= orderedForRetractionDigitalSS

END;

commandsPiloteSSForExtension =

SELECT lgState(lg)= Retracted ∧

pssState(pss)= orderedForRetractionPiloteSS THEN

pssState(pss ):= orderedForExtensionPiloteSS

END;

commandsDigitalSSForExtension =

SELECT pssState(pss)= orderedForExtensionPiloteSS ∧

dssState(dss)= orderedForRetractionDigitalSS THEN

dssState(dss ):= orderedForExtensionDigitalSS

END;

commandsPiloteSSForRetraction =

SELECT lgState(lg)= Extended ∧

pssState(pss)= orderedForExtensionPiloteSS THEN

pssState(pss ):= orderedForRetractionPiloteSS

END

END

Listing 21 – landing gear system HLA Level 1 Event-B specification machine.

5.3.3 Landing gear system HLA decomposition

The landing gear system is composed of three sub-systems PiloteSubSystem, DigitalSub-

System and MechanicalSubSystem as presented in the BDD of the package LandingGearSys-

temL1 shown in Figure 2.37. Each of these sub-systems has its own life and can exist
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independently of the other blocks. As denoted in Section 3.1.1.1, LandingGearSystemL1

is decomposed and a new package is created for each sub-system and a HLA_decompose

link is established between these new packages and the parent system package. There-

fore, LandingGearSystemL1 is HLA_decompose into PiloteSubSystem, DigitalSubSystem and

MechanicalSubSystem. This hierarchy is represented in Figure 2.39. Each of the packages

can then be described by a BDD, representing its structure and in particular its possible

sub-systems, the state-machines associated to some blocks and a sequence diagram.

Figure 2.39 – Landing gear system decomposition

The Event-B translation of the SysML decomposition extension applied on the ma-

chine LandingGearSystemL1 give rise to four interfaces following the translation rules pre-

sented in Section 3.2.1.2. These interfaces are:

— The PiloteSubSystem_Interface related to the Pilote SubSystem.

— The DigitalSubSystem_Interface related to the Digital SubSystem.

— The MechanicalSubSystem_Interface related to the Mechanical SubSystem.

— LandingGearSystemL1 is a refinement machine then LandingGearSystemL1_Refinement_Interface

is created. This interface includes abstract variables coming from refining Land-

ingGearSystemL0 which is lgState and its associated elements (INVARIANTS, INITIAL-

ISATION, EVENTS, etc.).

Listing 22 shows the PiloteSubSystem_Interface which contains the variable pssState

coming from LandingGearSystemL1 and representing the Pilote SubSystem and its asso-

ciated elements. The associated elements to pssState from LandingGearSystemL1 are the

typing INVARIANTS, its INITIALISATION and EVENTS: commandsPiloteSSForExtension and

commandsPiloteSSForRetraction. EVENTS commandsDigitalSSForExtension and commands-
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DigitalSSForRetraction are also associated to the variable pssState while they use its different

states as guards to execute their actions.

SYSTEM PiloteSubSystem_Interface

SEES LandingGearSystemL1_CONT , LandingGearSystemL0_CONT

VARIABLES pssState

INVARIANT

pssState ∈ PiloteSubSystem → PiloteSubSystemStates

INITIALISATION

pssState :∈ {pss} → PiloteSubSystemStates

EVENTS

commandsDigitalSSForRetraction =

SELECT pssState(pss)= orderedForRetractionPiloteSS THEN

skip

END;

commandsPiloteSSForExtension =

SELECT pssState(pss)= orderedForRetractionPiloteSS THEN

pssState(pss ):= orderedForExtensionPiloteSS

END;

commandsDigitalSSForExtension =

SELECT pssState(pss)= orderedForExtensionPiloteSS THEN

skip

END;

commandsPiloteSSForRetraction =

SELECT pssState(pss)= orderedForExtensionPiloteSS THEN

pssState(pss ):= orderedForRetractionPiloteSS

END

END

Listing 22 – PiloteSubSystem Interface.

5.3.4 The Pilote SubSystem HLA

After decomposition, The Pilote SubSystem behaves independently from its participa-

tion in the landing gear system. It is represented with a package and can then be described

by a BDD, representing its structure and in particular its sub-components, a Handle for this

sub-system, the state-machine diagram associated to the Handle and a sequence diagram.
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The PiloteSubSystemL1 package is represented in Figure 2.40 and it refines the Pilote-

SubSystem package created from LandingGearSystemL1 decomposition. This refinement is

established between messages of sequence diagram of PiloteSubSystemL1 and messages of

sequence diagram of PiloteSubSystem.
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Figure 2.40 – HLA Pilote SubSystem Level 1
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The Event-B translation of PiloteSubSystemL1 package is shown in Listing 23. A

new machine called PiloteSubSystemL1 is created that refines PiloteSubSystem_Interface.

Sequence diagram message SwitchHandleUp (resp. SwitchHandleDown) is translated into

an event that refines the event commandsPiloteSSForRetraction (resp. commandsPiloteSS-

ForExtension) from PiloteSubSystem_Interface.

REFINEMENT PiloteSubSystemL1

REFINES PiloteSubSystem_Interface

SEES PiloteSubSystem_CONT , LandingGearSystemL1_CONT ,

LandingGearSystemL0_CONT

VARIABLES hdState , pssState

INVARIANT

hdState ∈ Handle → HandleSTATES

INITIALISATION

hdState :∈ {hd} → HandleSTATES ∥

pssState :∈ {pss} → PiloteSubSystemStates

EVENTS

SwitchHandleUp ref commandsPiloteSSForRetraction=

SELECT hdState(hd)=down ∧

pssState(pss)= orderedForExtensionPiloteSS THEN

hdState(hd):=up ∥

pssState(pss ):= orderedForRetractionPiloteSS

END;

SwitchHandleDown ref commandsPiloteSSForExtension=

SELECT hdState(hd)=up ∧

pssState(pss)= orderedForRetractionPiloteSS THEN

hdState(hd):= down ∥

pssState(pss ):= orderedForExtensionPiloteSS

END

END

Listing 23 – HLA PiloteSubSystem Level 1
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5.3.5 Formal verification of the landing gear system HLA Event-B specifica-

tion

The formal verification step for the Event-B specification of the landing gear system

HLA required to discharge 136 proof obligations. Figure 2.41 summarises the status of the

AtelierB project corresponding to the generated Event-B specification. These proofs

are of type invariant preservation, non-deterministic action feasibility and well-definedness.

They were all automatically proved (100%).

Figure 2.41 – Project Status for landing gear system HLA Event-B specification

5.3.6 Conclusion

In this section, we have proposed the use of SysML extensions to be aligned with

Event-B refinement and decomposition mechanisms on the landing gear system case study

in order to automatically translate SysML models of HLA to Event-B specifications.

The full specification of this landing gear system case study can be found in [Bougacha,

2022b].
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5.4 Requirements & high-level architecture alignment examples

In this section, we give an example of illustration of requirements & HLA alignment

approach presented in Section 4 applied on the landing gear system case study. However,

requirement & HLA alignment approach applied on the landing gear system case study is

quite simple since each leaf goal is satisfied by only one message from HLA which does

not give a sufficient explanation about how to use alignment kinds when a leaf goal is

satisfied by more than one message from HLA. That is why, we enhance the landing gear

example with a second example taken from the train control system case study presented

in [Lamsweerde, 2008].

5.4.1 Example of alignment between landing gear system SysML/KAOS mod-

els and SysML HLA models

In this example we are interested to align the leaf goals putHandleDown and putHandleUp

with messages of the HLA model. Figure 2.42 describes the two alignment links. As pre-

sented in Section 4, we have the HLA sequence diagram message SwitchHandleDown which

satisfies the goal putHandleDown and the HLA sequence diagram message SwitchHandleUp

which satisfies the goal putHandleUp. The arrows from the messages to the goals are la-

belled by the stereotype Satisfy. We have used this kind of alignment because each one of

these leaf goals requires only one HLA message to be satisfied.

Figure 2.42 – Example of graphical alignment links of the landing gear system case study

The Event-B formalization of these alignment links presented in Section 4.3 is pro-

cessed after generating the Event-B specifications of the SysML/KAOS models and of

the SysML HLA models.

The formalization of the goal putHandleDown alignment with the message SwitchHan-
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dleDown is established as follows:

— First, a new Event-B machine called putHandleDown_Goal_Satisfaction_Interface

is created.

— putHandleDown_Goal_Satisfaction_Interface refines PiloteSS_Interface machine pre-

sented in Listing 15 that contains the event putHandleDown.

— putHandleDown_Goal_Satisfaction_Interface gets from PiloteSS_Interface machine all

variables involved in event putHandleDown (Rule 2 in Table 2.4).

— The goal putHandleDown is Satisfy with the message SwitchHandleDown, then the

corresponding event are copied from the HLA Event-B specification machine Pi-

loteSubSystemL1 presented in Listing 23 with the involved variable (hdState) and its

associated typing invariants (Rules 3 and 4 in Table 2.4).

— The gluing invariant must be manually defined (Rule 5). The variables handleState,

from the goal machine, and hdState, from the HLA machine, are linked since they

represent the same entities but with a different viewpoint (goal or architecture).

— Event SwitchHandleDown refine with a ref keyword the event putHandleDown (Rule

6.1).

Listing 24 presents the Event-B specification of the putHandleDown_Goal_Satisfaction_Interface

machine responsible for the satisfaction of the leaf goal putHandleDown.

REFINEMENT putHandleDown_Goal_Satisfaction_Interface

REFINES PiloteSS_Interface

SEES LandingGearSystem_CONTEXT , LandingGearSystem_CONTEXT_L3 ,

PiloteSubSystem_CONT , LandingGearSystemL1_CONT ,

LandingGearSystemL0_CONT

ABSTRACT_VARIABLES handleState , hdState , pssState

INVARIANT

handleState ∈ Handle → HANDLE_STATES

/**** From goal specification ****/ ∧

hdState ∈ Handle → HandleSTATES

/**** From HLA specification ****/ ∧

pssState ∈ {pss} → PiloteSubSystemStates

/**** From goal specification ****/ ∧

hdState[HANDLE ]=down ⇒ handleState [HANDLE ]=down

// gluing Invariant. ∧

hdState[HANDLE ]=up ⇒ handleState [HANDLE ]=up
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// gluing Invariant.

INITIALISATION

hdState , handleState :(

handleState ∈ Handle → HANDLE_STATES

/**** From goal specification ****/ ∧

hdState ∈ { hd } → HandleSTATES

/**** From HLA specification ****/ ∧

hdState[HANDLE ]=down ⇒ handleState [HANDLE ]=down

// gluing Invariant. ∧

hdState[HANDLE ]=up ⇒ handleState [HANDLE ]=up

// gluing Invariant.) ∧

pssState :∈ {pss} → PiloteSubSystemStates

/**** From goal specification ****/

EVENTS

SwitchHandleDown ref putHandleDown =

SELECT hdState ( hd )= up ∧

pssState ( pss )= orderedForRetractionPiloteSS THEN

hdState ( hd ):= down ∥

pssState ( pss ):= orderedForExtensionPiloteSS ∥

handleState ( LgOfHd ~( LG )):= down

END

END

Listing 24 – Event-B formalization of the goal putHandleDown alignment link.

For the goal putHandleUp aligned with the message SwitchHandleUp, a second Event-B

machine called putHandleUp_Goal_Satisfaction_Interface is created (Rule 1 in Table 2.4)

as shown in Listing 25. The machine is defined as follows:

— putHandleUp_Goal_Satisfaction_Interface refines PiloteSS_Interface machine presented

in Listing 15 that contains the event putHandleUp.

— putHandleUp_Goal_Satisfaction_Interface gets from PiloteSS_Interface machine all

variables involved in event putHandleUp (Rule 2 in Table 2.4).

— putHandleUp is Satisfy with the message SwitchHandleUp. Therefore, we get from the

HLA Event-B this event with all involved variables (hdState) and their associated

typing invariant. (Rules 3 and 4 in Table 2.1)
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— The gluing invariant is the same as in the previous case.

— Event SwitchHandleUp refines with a ref keyword the event putHandleUp (Rule 6.1).

REFINEMENT putHandleUp_Goal_Satisfaction_Interface

REFINES PiloteSS_Interface

SEES LandingGearSystem_CONTEXT , LandingGearSystem_CONTEXT_L3 ,

PiloteSubSystem_CONT , LandingGearSystemL1_CONT ,

LandingGearSystemL0_CONT

ABSTRACT_VARIABLES handleState , hdState , pssState

INVARIANT

handleState ∈ Handle → HANDLE_STATES

/**** From goal specification ****/ ∧

hdState ∈ Handle → HandleSTATES

/**** From HLA specification ****/ ∧

pssState ∈ {pss} → PiloteSubSystemStates

/**** From goal specification ****/ ∧

hdState[HANDLE ]=down ⇒ handleState [HANDLE ]=down

// gluing Invariant. ∧

hdState[HANDLE ]=up ⇒ handleState [HANDLE ]=up

// gluing Invariant.

INITIALISATION

hdState , handleState :(

handleState ∈ Handle → HANDLE_STATES

/**** From goal specification ****/ ∧

hdState ∈ { hd } → HandleSTATES

/**** From HLA specification ****/ ∧

hdState[HANDLE ]=down ⇒ handleState [HANDLE ]=down

// gluing Invariant. ∧

hdState[HANDLE ]=up ⇒ handleState [HANDLE ]=up

// gluing Invariant.) ∧

pssState :∈ {pss} → PiloteSubSystemStates

/**** From goal specification ****/

EVENTS

SwitchHandleUp ref putHandleUp =

SELECT hdState ( hd )= down ∧

pssState ( pss )= orderedForExtensionPiloteSS THEN

hdState ( hd ):= up ∥

pssState ( pss ):= orderedForRetractionPiloteSS ∥
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handleState ( LgOfHd ~( LG )):= up

END

END

Listing 25 – Event-B formalization of the goal putHandleUp alignment link.

5.4.2 Example of alignment between train control system SysML/KAOS mod-

els and SysML HLA models

5.4.2.1 Train control system SysML/KAOS requirements model

Figure 2.43 – Train Control system goal and domain models

In this example, we present an extract of the goal model of the case study with the

domain model corresponding to Level 3 shown in Figure 2.43. The main goal is Effec-

tivePassengersTransportation which is the high level system objective. This goal is refined

with a milestone into TransportPassengersToTheDestination and other goals. Goal Start-

TrainEngine corresponds to starting the train engines. The goal ProgressTrain aims to set

the train mode to moving. The goal TrainMoving is responsible for moving the train and

StopTrain aims to stop the train. The goal UpdateTransportationState allows to update

information corresponding to the transportation mission. These goals refine with a mile-

stone TransportPassengersToTheDestination. In this example we are just dealing with the

leaf goal: ProgressTrain.

SYSTEM TrainControllerL3_CONT

SETS DESTINATIONS; TRAIN_ENGINE_STATES; TRAIN_STATES;

CONSTANTS progressing , moving , stopped , ...

PROPERTIES

...
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TRAIN_STATES ={ progressing , moving , stopped}

END

Listing 26 – Extract from the Event-B specification context of the Train Control system

SYSML/KAOS Level 3 requirements model.

REFINEMENT TrainControllerL3

REFINES TrainControllerL2

SEES TrainControllerL1_CONT , TrainControllerL2_CONT ,

TrainControllerL3_CONT

ABSTRACT_VARIABLES trainState , ...

INVARIANT

trainState ∈ TRAIN → TRAIN_STATES ∧

...

INITIALISATION

trainState :∈ TRAIN → {stopped} ∥ ...

EVENTS

...

ProgressTrain ref_milestone TransportPassengersToTheDestination =

SELECT trainState(tr) = stopped THEN

trainState(tr) := progressing

END;

...

StopTrain ref_milestone TransportPassengersToTheDestination =

SELECT trainState(tr) = moving THEN

trainState(tr) := stopped

END

END

Listing 27 – Extract from the Event-B specification machine of the Train Control system

SYSML/KAOS Level 3 requirements model.

An extract of the Event-B formalization of the SysML/KAOS models of Figure

2.43 is shown in Listings 26 and 27. Following the formalization approaches presented in

[Matoussi et al., 2011a, Tueno Fotso et al., 2018], the goal model is composed of many
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levels. Each level is transformed into a machine in the Event-B specification of the

SysML/KAOS models. Listings 26 and 27 show an extract of the translation of level

3 of the goal model into an Event-B specification. CONTEXTs, VARIABLES and IN-

VARIANTS representing the structural part of this specification are obtained from the

SysML/KAOS domain model, TRAIN, TRAIN_STATES, etc. Each goal of this level

(StartTrainEngine, ProgressTrain, TrainMoving, StopTrain and UpdateTransportationState) is

formalized into an Event-B event which defines the dynamic part of the system. The

milestone refinement link between the previously presented goals and their parent goal

TransportPassengersToTheDestination is represented in the Event-B specification by the

ref_milestone keyword that replaces the Event-B ref keyword.

5.4.2.2 Train control system SysML HLA models

Figure 2.44 – Extract from the Train Control system HLA model

An extract of the HLA model level 1 of the train control system case study is presented

in Figure 2.44. The main system TrainControlSystem is composed of two components Signal

and Train described in the BDD. The behavior of each component is described by a state-

machine diagram. The sequence diagram describes the interplay between the components.

In this sequence diagram, the process begins when the signal passes from stop to go. Then

the train starts progressing. After progressing, the train moves by proceeding in a cycle of
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acceleration and deceleration movements (not shown in the figure). When the train arrives

at destination, the signal passes from go to stop and the train should be stopped.

The Event-B formalization of this extract of the train control system HLA model is

represented in Listings 28 and 29. As already presented in Section 3.2, each package is

translated into an Event-B machine and a context seen by the machine. In our example,

the package TrainControlSystemL1 is translated into the TrainControlSystemL1 machine and

the TrainControlSystemL1_CONT context that contains sets (TRAINS, SIGNAL_STATES,

etc.) created from the BDD blocks and their associated state-machine diagrams. The

TrainControlSystemL1 machine refines TrainControlSystemL0 machine and sees all its con-

texts. States of the state diagrams are represented as Event-B constants in the context.

Sequence diagram lifelines are translated into Event-B constants, variables and invariants.

Finally, sequence diagrams messages are translated into events in the Event-B machine.

SYSTEM TrainControlSystemL1_CONT

SETS TRAINS; SIGNAL_STATES; TRAIN_MOUVEMENTS

CONSTANTS stop , go, ..., movingtr , progressingtr , stoppedtr

PROPERTIES

...

SIGNAL_STATES = {stop , go} ∧

TRAIN_MOUVEMENTS = { movingtr , progressingtr , stoppedtr}

END

Listing 28 – Extract from the EVENT-B specification context of the Train Control system

HLA level 1.

REFINEMENT TrainControlSystemL1

REFINES TrainControlSystemL0

SEES TrainControlSystemL1_CONT , TrainControlSystemL0_CONT

ABSTRACT_VARIABLES signalState , trainMouvementState

INVARIANT

signalState ∈ SIGNAL_STATES ∧

trainMouvementState ∈ TRAINS → TRAIN_MOUVEMENTS

INITIALISATION

signalState :∈ {stop} ∥

trainMouvementState :∈ TRAINS → {stoppedtr}

EVENTS
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UpdateSignalToGo =

SELECT signalState = stop ∧

trainMouvementState(train)= stoppedtr THEN

signalState := go

END;

MakeTrainProgress =

SELECT signalState = go ∧

trainMouvementState(train)= stoppedtr THEN

trainMouvementState(train ):= progressingtr

END;

...

MakeTrainStop =

SELECT signalState = stop ∧

trainMouvementState(train)= movingtr THEN

trainMouvementState(train ):= stoppedtr

END;

...

END

Listing 29 – Extract from the EVENT-B specification machine of the Train Control system

HLA level 1.

5.4.2.3 Train control system SysML/KAOS models and SysML HLA models

alignment

Here, we are interested to align the goal ProgressTrain from goal diagram presented in

Figure 2.43 with messages of the HLA model presented in Figure 2.44. Figure 2.45 describes

the two alignment links. To satisfy the goal ProgressTrain, the sequential execution of the

two sequence diagram messages UpdateSignalToGo and MakeTrainProgress is required. The

arrows from the messages to the goal are labelled by the stereotype Milestone_Satisfy.

Recall that the execution order is determined by the numbers associated to the arrow.

The Event-B formalization of these alignment links follows the defined rules in Section

4.3. To align the goal ProgressTrain with the HLA sequence diagram messages UpdateS-

ignalToGo and MakeTrainProgress, we proceed as follows:

— First, a new Event-B machine called ProgressTrain_Goal_Satisfaction_Interface is
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Figure 2.45 – Graphical alignment links of ProgressTrain Goal

created. (Rule 1 in Table 2.4).

— Then, ProgressTrain_Goal_Satisfaction_Interface refines TrainControllerL3 machine

that contains the event ProgressTrain.

— ProgressTrain_Goal_Satisfaction_Interface gets from TrainControllerL3 machine (see

Listing 27) all variables involved in event ProgressTrain (Rule 2 in Table 2.4).

— As the goal ProgressTrain is Milestone_Satisfy with the messages UpdateSignalToGo

and MakeTrainProgress, the corresponding events are copied from the HLA Event-B

specification (see Listing 29) with all the involved variables (signalState, TrainMouve-

mentState) and their associated typing invariants (Rules 3 and 4 in Table 2.1).

— The gluing invariant must be manually defined (Rule 5). It is used to link the

variables trainState, from the goal machine, and trainMouvementState, from the HLA

machine, since they represent the same entities but with a different viewpoint (goal

or architecture).

— Events UpdateSignalToGo and MakeTrainProgress refine with a ref_milestone keyword

the event ProgressTrain (Rule 6.3).

Listing 30 presents the Event-B specification of the ProgressTrain_Goal_Satisfaction_Interface

machine responsible for the satisfaction of the leaf goal ProgressTrain.

REFINEMENT ProgressTrain_Goal_Satisfaction_Interface

REFINES TrainControllerL3

SEES TrainControllerL1_CONT , TrainControllerL2_CONT ,

TrainControllerL3_CONT , TrainControlSystemL1_CONT

ABSTRACT_VARIABLES ..., trainState , signalState , trainMouvementState

INVARIANT
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signalState ∈ SIGNAL_STATES ∧

trainMouvementState ∈ TRAINS → TRAIN_MOUVEMENTS ∧

(trainMouvementState[TRAINS] ={ stoppedtr} ⇒

trainState[TRAIN ]={ stopped }) /**** gluing invariant ****/ ∧

(trainMouvementState[TRAINS] ={ progressingtr} ⇒

trainState[TRAIN ]={ progressing }) /**** gluing invariant ****/ ∧

(trainMouvementState[TRAINS] ={movingtr} ⇒

trainState[TRAIN ]={moving}) /**** gluing invariant ****/

INITIALISATION

...

signalState :∈ {stop} ∥

trainState , trainMouvementState : (

(trainState ∈ TRAIN → {stopped }) ∧

(trainMouvementState :∈ TRAINS → {stoppedtr }) ∧

(trainMouvementState[TRAINS] ={ stoppedtr} ⇒

trainState[TRAIN ]={ stopped }) /**** gluing invariant ****/ ∧

(trainMouvementState[TRAINS] ={ progressingtr} ⇒

trainState[TRAIN ]={ progressing }) /**** gluing invariant ****/ ∧

(trainMouvementState[TRAINS] ={ movingtr} ⇒

trainState[TRAIN ]={ moving }) /**** gluing invariant ****/

)

EVENTS

UpdateSignalToGo ref_milestone ProgressTrain =

SELECT signalState = stop ∧

trainMouvementState(train)= stoppedtr ∧

trainState(tr)= stopped THEN

signalState := go

END;

MakeTrainProgress ref_milestone ProgressTrain =

SELECT signalState = go ∧

trainMouvementState(train)= stoppedtr THEN

trainMouvementState(train ):= progressingtr ∥

trainState(tr):= progressing

END

END
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Listing 30 – EVENT-B formalization of the goal ProgressTrain alignment link.

The ProgressTrain_Goal_Satisfaction_Interface machine was introduced in AtelierB

to be formally verified and in ProB to animate the execution scenarios. All the proof

obligations have been automatically discharged, including the refinement, invariant preser-

vation, non-deterministic action feasibility and well-definedness proof obligations. Pro-

gressTrain_Goal_Satisfaction_Interface required to discharge 11 proof obligations. Figure

2.46 summarizes the proof activity, where PO means generated proof obligations, UN is

for unproved proofs and PR for the proved ones.

Figure 2.46 – Proof obligations table

5.4.3 Conclusion

In this section, we have presented the use of the proposed model-based approach to

align complex systems HLA models with SysML/KAOS requirements models on two

extracts of case studies. The first example is taken from the landing gear system case

study in which the use of alignment kind Satisfy is described between two leaf goals from

the SysML/KAOS goal model each of which is aligned with only one HLA sequence

diagram message. The second example is about an extract from the train control system

case study where a presented leaf goal requires the sequential execution in a specific order of

more than one HLA sequence diagram message. This implies the use of Milestone_Satisfy

alignment kind. The Event-B formalization of these alignment links is produced following

the defined rules. The semantics of the alignments links are given by these rules and the

definition of new proof obligations can be discharged using AtelierB.

6 Conclusion

This chapter describes the methodology we propose that consists of a holistic process

to define system HLA aligned with system requirements. First, we have presented the

SysML/KAOS approach dealing with requirements modeling and their formal represen-
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tation to give a consistent stakeholders goals definition. Second, a HLA modeling approach

is proposed based on SysML extensions with safety relevant Event-B mechanisms which

are refinement and decomposition mechanisms. These extensions enable an automatic

translation from SysML HLA models to Event-B specifications for the purpose to for-

mally verify the consistency of the modeled HLA. Third, we have proposed a model-based

approach that defines alignment links between SysML/KAOS models and SysML HLA

models and their formalization into Event-B specification. Finally, an illustration of these

works is presented based on two case studies, the landing gear system and the train control

system

The next chapter gives more details on the implementation of the proposed methodol-

ogy.
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formal verification of system requirements, the process of modeling HLA using SysML

extensions and its formalization into Event-B specification and finally the alignment

method between HLA elements with system requirements. This chapter elaborates on the

implementation of this methodology which is based essentially model-driven engineering

and specifically model transformation technologies.

The remainder of this chapter is organized as follows: Section 1 describes some prelim-

inaries required to the implementation of our methodology. Section 2 gives an overview

about the implementation of the methodology. Finally, Section 3 presents our conclusion.

1 Preliminaries

1.1 Model Transformation

Model transformations are at the heart of the Model-Driven Engineering approach.

However there is still no consensus on how to define and implement a transformation.

In the literature, multiple approaches are proposed. To perform model transformations, it

should be expressed in a certain modeling language or meta-model. Starting from the source

and target meta-models involved in the transformation, two types of transformations can

be distinguished: endogenous and exogenous transformations. A transformation is called

endogenous if the models involved are conformed to the same meta-model. When the source

and target models are of different meta-models, the transformation is said exogenous or

even translation.

Figure 3.1 – Transformation process [Hammoudi et al., 2008]

Figure 3.1 shows the model transformation process. As shown a model transformation
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is defined by a transformation engine that executes a set of transformation rules conforms

to an transformation language which allows to transform a source model (conforming to

its source meta-model) into a target model (conforming to its target meta-model).

Several transformation languages have been proposed for performing model transfor-

mations using the meta-modeling approach, including the MOF2.0 QVT 4 standard, the

Kermeta language [Muller et al., 2005] and the ATL language [Bézivin et al., 2003, Bézivin

et al., 2005]. In this thesis, we chose the QVT language. Indeed, Query View Transforma-

tion (QVT) is a defacto standard specification for model transformation standard published

by OMG [Barendrecht, 2010]. Particularly, we focus on QVT-Operational (QVTo), intro-

duced as part of the MOF (Meta Object Facility) standard (OMG, 2011).

1.2 Query View Transformation (QVT)

This transformation language, presented in [Barendrecht, 2010], is used to transform

models. The name of the language suggests a three-part structure. The first part is named

Query because queries can be applied to a source model, an instance of the source meta-

model. The second is the View, which is a description of how the target model should

look like. The third part is the Transformation, which is the part where the results of the

queries are projected on the view, and thereby creating the target model.

The QVT specification is based on MOF [OMG., 2006] and OCL (Object Constraint

Language) [OMG, 2014]. OCL is a formal language originally used to describe constraints

in UML models. Nowadays, it can be used with any MOF meta-model.

Transformation techniques can be of three types: declarative, imperative and hybrid

(both declarative and imperative). In this thesis, we are interested in the imperative

approach, since it is close to programming languages. It consists of going through the

source model in a certain order and generating the target model during this course. QVTo

- Operational Mappings Language is specified as a standard way to provide imperative

implementations. It provides OCL extensions with side effects that allow a more procedural

style, and a concrete syntax that looks familiar to imperative programmers. Mappings

Operations can be used to implement one or more relations when it is difficult to provide a

purely declarative specification of how a relation is to be populated. Mappings Operations

can also invokes other Mappings Operations to create the correspondence between source

and target model elements. A transformation entirely written using Mapping Operations

is called an operational transformation.
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2 Overview of the methodology implementation

Figure 3.2 – Methodology overview

Our methodology shown in Figure 3.2 is implemented following a set of steps that al-

low the formal alignment between system requirements and HLA models. As we already

presented, this methodology is model-based then we present its implementation as a collab-

oration of a set of tools and Eclipse plugins that allows the representation of requirements

and its formalization, HLA models and their translation into formal specification and trace-

ability establishing between these two parts. In fact our methodology specification process

is composed of three parts: requirements, HLA and alignment parts.

2.1 Requirements specification and formalization part

The first step that a user of our methodology should start with, is to specify require-

ments by defining functional goals and corresponding domain models. After that, an

Event-B formalization is produced from requirements models. To this end, we use the

Formose tool [Openflexo, 2019] which is an Openflexo open-source platform that federates

all the models involved in the SysML/KAOS requirements engineering method. OWL-

GrEd [Bārzdin, š et al., 2010] is a visual editor for OWL 2.0 [Sengupta and Hitzler, 2014]

ontologies that combines UML class diagram notation and textual OWL expressions. They

are used to define domain models associated to goal models. Finally, an Event-B formal-

156



CHAPTER III. IMPLEMENTATION

ization of these models is established using AtelierB [AtelierB, 1990] which is an indus-

trial tool that allows for the operational use of the B Method to develop defect-free proven

software (formal software).

We limit our use of FORMOD tool only on SysML/KAOS goal model construction

because it gives a good representation of goals and their hierarchy. However, this tool

is not very stable yet and more complicated to use for modeling domain models and the

translation into B system. We use OWLGrEd editor to define domain models associated

with the goal models in order to give a better understanding about entities and concepts

that participate in elaborating goals.

2.1.1 Usage scenario

The use of the methodology is applied on the case study that we presented in section

5.1. The user starts by designing the SysML/KAOS functional goal model, using the

SysML/KAOS FORMOD tool. he should proceed as follows:

— First, the user should create the system goal model according to the SysML/KAOS

goal modeling language.

Figure 3.3 shows the goal model defined with two levels of refinement: the root level

Level 0 which introduces the main goal maneuverLandingGear and the Level 1 level which de-

scribes the refinement of the main goal in two sub-goals (maneuverLGforLanding and maneu-

verLGforTakingOff). More details about the use of FORMOD can be found in [Tueno Fotso,

2019].

— Second, after modeling the SysML/KAOS goal model, the user can use OWLGrEd

to define the domain models associated with each goal model level.

Figure 3.4 shows the domain model associated to the root level of the goal diagram

shown in Figure 3.3. This domain model represents the landing gear system entity modeled

as an instance of the concept named LandingGearSystem. The possible states of a landing

gear system are modeled as an instances of the attribute named LG_STATES, which con-

tains two instances of DataValue of type STRING: lg_extended for the extended state and

lg_retracted for the retracted state. LG is modeled as an instance of an individual named

LG individual of LandingGearSystem.

— Finally, once the goal model and its corresponding domain models are designed, the

user can formalize these models into Event-B using the AtelierB tool.
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Figure 3.3 – SysML/KAOS Goal modeling

Figure 3.4 – Domain modeling

Figure 3.5 presents the Event-B specification machine corresponding to the root level

of the goal model and its seen Event-B specification context corresponding to domain

model (shown in Figure 3.4). Once the Event-B specification is completed, a set of proof

obligations is generated and the user can discharge them. The discharging of these proof

obligations is established using the interactive proof tool of AtelierB shown in Figure

3.6. The user can also check the proof obligations status and their percentages as shown

in Figure 3.7.

2.2 HLA modeling and formalization

The second step of this methodology is about modeling HLA and its formalization into

Event-B. First a HLA modeling of the corresponding system should be produced and then
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Figure 3.5 – AtelierB Event-B specification

an automatic Event-B translation of these models is executed. To this end, we used the

Eclipse development IDE (Integrated Development Environment) [Eclipse, 2009] in which

we integrated Papyrus Modeling Environment [Papyrus, 2008] that provides a graphical

editing tool and extension mechanisms. We used also Eclipse Modeling Framework (EMF)

[Steinberg et al., 2008] to create meta-models. Finally, the HLA models translation into

Event-B is implemented using the QVT transformation language.

2.2.1 Eclipse Modeling Framework (EMF)

The EMF project is a modeling framework and code generation facility for building

tools. Using MDE, it allows to develop and manage the whole application life cycle based

on the transformation of models which are conformed to meta-models. Then, the model is

used to generate software artifacts, which will implement the real system. From a model

specification described in XMI 1, EMF provides tools and runtime support to produce a set

of Java classes for the model, a set of adapter classes that enable viewing and command-

based editing of the model, and a basic editor.

Its fundamental concepts are:

— EMF Core: The core EMF framework includes a meta-model (Ecore) that describes

1. XMI, XML-based Metadata Interchange, is an interchange format for metadata defined in terms
of the MOF standard. In addition to supporting the exchange of complete models, XMI supports the
exchange of models in differential form
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Figure 3.6 – AtelierB interactive proof tool

Figure 3.7 – AtelierB proof status

models and runtime support for the models including change notification, persis-

tence support with default XMI serialization, and a very efficient reflective API for

manipulating EMF objects generically.

— EMF.Edit: the EMF.Edit framework includes generic reusable classes for building

editors for EMF models. It provides content and label provider classes, property

source support, and other convenience classes that allow EMF models to be displayed

using standard desktop viewers and property sheets.

— EMF.Codegen: The EMF code generation facility is capable to generate everything

needed to build a complete editor for an EMF model. It includes a user guide inter-

face from which generation options can be specified, and generators can be invoked.

The generation facility leverages the JDT (Java Development Tooling) component of

Eclipse.

The most advantage of using EMF is that it is free and open source. It can generate

efficient, and easy implementation code from a model specification. Besides, models in EMF

can be defined in different ways, for example, Java Interfaces, the UML Class Diagram,

the XML Schema, etc...

2.2.2 Papyrus Modeling Environment Overview

Papyrus [Papyrus, 2008] is an environment for editing any kind of EMF models,

particularly supporting UML 2 (Unified Modeling Language (UML) version 2.4.1) [OMG,

1997] and related modeling languages such as SysML [OMG, 2007] and MARTE [OMG,
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2008]. Papyrus also offers very advanced support for UML profiles that enables users to

define editors for DSLs (Domain Specific Languages) based on the UML 2 standard.

Papyrus is a collection of plug-ins and features on top of the Eclipse Modeling Frame-

work that allow to provide several techniques:

— UML: Papyrus is a graphical editing tool for UML 2 as defined by the OMG.

— SysML: Papyrus supports also SysML in order to enable model-based system en-

gineering.

— Model execution: Papyrus can execute models using a rich and extensible anima-

tion and simulation framework with MOKA [Papyrus, 2016].

All Papyrus modeling features are designed to be customizable and to maximize reuse.

Therefore, it is possible to adapt the standard Papyrus configuration for a specific domain,

modeling practice, notation, use the powerful customization mechanisms of Papyrus to

adapt the Papyrus modeling environment to satisfy different needs.

2.2.3 UML profiles

The UML profiles [Fuentes-Fernández and Vallecillo-Moreno, 2004] represent the in-

tegration of the light-weight mechanism in order to extend the languages based on the

MOF. More specifically, profiles are used to customize UML for a specific domain through

extension mechanisms that enrich the semantics and syntax of the language. It allows the

specification of a MOF model to deal with the specific concepts and notation required in

particular application domains (e.g., real-time, business process modeling, finance, etc.)

or implementation technologies (such as .NET, J2EE, or CORBA). A profile-based model

can be created and manipulated by any tool that supports standard UML.

A stereotype represents the basic functionality to extend UML. It can be considered as

a specialization of an existing concept in UML and which offers the possibility of having

concepts for the modeling of a specific domain. Stereotypes can have attributes (also

called tagged values) and can be associated with other existing stereotypes or other UML

concepts. From a notational point of view, stereotypes can give a different graphical

symbol for the elements of the UML model. For example, a class stereotyped Clock might

use an image instead of the format of the regular class. In addition, stereotypes can also

be influenced by restrictions expressed by constraints. The definition of constraints in

MOF-based languages is OCL.
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Papyrus aims to provide an easy-to-use integrated environment for editing EMF type

models, in particular it supports UML and related modeling languages such as SysML and

MARTE. Papyrus also offers very advanced support for UML profiles which allows users

to define editors for DSLs (Domain Specific Language) based on the UML 2 standard.

2.2.4 SysML extensions with Event-B refinement and decomposition mecha-

nisms profiles

SysML extensions proposed in Section 3 support the Event-B refinement and de-

composition mechanisms. These extensions are applied on two SysML diagrams which

are the package and sequence diagrams. The package diagram is extended with two

concepts: HLA_refines which define the refinement relationship between two packages

and HLA_decompose which defines the system/sub-systems decomposition relationship

between packages. The sequence diagram is extended with the concept Refines_Message

which represent the refinement relationship between a sequence diagram and the parent

system sequence diagram.

Figure 3.8 – SysML extensions with Event-B refinement and decomposition mechanisms
profiles

In our work, we use Papyrus to specify these mechanisms as profiles applied on the

package diagram and sequence diagram meta-models. The extensions concepts are defined

as stereotypes applied on meta-model meta-classes in order to specialize and enrich them

with semantics related to the Event-B refinement and decomposition mechanisms. In

fact, these profiles are represented in Figure 3.8. The meta-class Dependency is customized

with two stereotypes HLA_refines and HLA_decompose to support the package diagram

proposed extensions. In the same way, the sequence diagram message is customized with
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the stereotype Refines_Message to be distinguished as a refinement message and this

stereotype has an attribute called Refined_Message of type Message to which we will

associate the refined message to the Refines_Message one.

2.2.5 HLA modeling usage scenario

To graphically model HLA of the case study the user should proceed as follows:

— First, the user should create a new Papyrus project (see Figure 3.9) and give it the

type SysML 1.6 (see Figure 3.10).

— Then the user should add the SysML extensions profiles to the applied profiles of

the project (see Figure 3.11).

— After that, the user should model the HLA step by step as illustrated in Section 5.3

by creating the first package and its components then the packages associated to the

sub-systems and establish refinement and decomposition customization link between

different packages.

Figure 3.9 – New Papyrus project creation

Figure 3.10 – Papyrus project type selection
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Figure 3.11 – SysML extensions profiles application

2.2.6 HLA formalization into Event-B

2.2.6.1 Event-B meta-model

As already mentioned, model translation is a model-driven process that enables to

derive a target model from a source model that are conform to a source and a target meta-

models. However, a standardized meta-model for Event-B is still not available. Therefore,

to conduct this translation we propose an Event-B meta-model conform to the Event-B

notation used in AtelierB and restricted to the presented concepts that are relevant to

our use.

EMF is driven by meta-models which can be specified in different formats: Ecore model,

Rose .mdl model, XSD Schema, MOF, etc. In our work, we use Ecore models to specify

our meta-models. To create our meta-model, we start by creating the new EMF Model

File (Ecore File). For that, we need to define the Name and the Namespace URI relative

to the model, which is used to identify it. This is done in the properties view. Then we

add a new Child Element of type Class into the model with the name Event-B_SPEC.

As shown in Figure 3.12, Event-B_SPEC presents the root element with a composition

link with all other classes. A total of 17 classes with associated relationships with other

classes were defined in this meta-model to represent the Event-B notations.

Figure 3.13 exhibits a graphical representation of the EMF model that represents the

Event-B meta-model which supports the Event-B notation concepts relevant for speci-

fying HLA such as the shared event decomposition strategy applied on machines.

164



CHAPTER III. IMPLEMENTATION

Figure 3.12 – The EMF Model of Event-B Meta-Model
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Figure 3.13 – Event-B Meta-Model
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2.2.6.2 Extended SysML to Event-B translation: model-to-model transforma-

tion.

After the graphical modeling of the system HLA using the extended SysML, the verifi-

cation and the detection of design errors and the correctness of this HLA are crucial. Con-

sequently, we need to transform extended SysML diagrams used for HLA into Event-B

model containing concepts that could generate elements of Event-B notation supported

by AtelierB.

To this end, the mapping suggested proposes, at a first step, a model-to-model transfor-

mation between SysML meta-model, enriched with refinement and decomposition mecha-

nisms, and the proposed Event-B meta-model. Therefore, our approach opts for model-

to-model transformation implemented using QVT transformation language.

To perform this transformation, at first, we need to collect the two meta-models which

are based on EMF and contain the meta-classes required for drawing this transformation.

Then, we can proceed to define the model-to-model transformation. In the following, we

will give an overview on how we implemented our mapping rules. Figure 3.14 presents the

transformation architecture of our implementation. It is composed of a main module and

three communicating sub-modules dedicated to transform contexts, machines and associ-

ated decomposition. Note that, the main module is responsible for the stimulation of the

sub-modules.

Figure 3.14 – Model-to-model transformation architecture

Listing 31 shows the QVT module header. SysML is a UML profile although it does
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not include all of its elements. The part of UML that is reused by SysML is called

UML4SysML. As our extended SysML source meta-model inherits from the UML meta-

model, we have exploited the principle of multiple pattern matching offered by QVT and

which allows several source meta-models entrance. Thus, Line 1 of Listing 31 gives the

UML meta-model and Lines 2 and 3 give the root of the extended SysML meta-model.

These meta-models are uploaded as source meta-models in the main module. Lines 4 and

5 depict the target meta-model which is for this transformation the proposed Event-B

meta-model. Lines 7 and 8 define the signature of the transformation which declares

the transformation name and the source and target meta-models. in and out keywords

indicate source and target model variables. Lines 10 to 13 presents the Entry point while

the execution of the transformation starts here by executing the instructions in the body

of the main operation. In our case, the main operations are called Model2EventBSpec().

1 modeltype UML "strict" uses "http ://www.eclipse.org/uml2 /5.0.0/ UML";

2 modeltype SYSML "strict" uses

3 BDD_MetaModel(’http ://www.example.org/BDD_MetaModel ’);

4 modeltype EventB "strict" uses

5 EventB_MetaModel(’http :// www.example.org/EventB_MetaModel ’);

6

7 transformation SysML2EventB( in uml : UML ,

8 in sysml : SYSML , out eventb: EventB );

9

10 main ()

11 {

12 uml.rootObjects ()[ Model] -> map Model2EventBSpec ();

13 }

Listing 31 – QVT main module header

Recall that the mapping rules are automatically applied by the QVT transformation

engine. Each rule is specified by a name, a set of source patterns mapped to the source

elements, a set of target patterns representing the elements created in the target model.

A mapping rule is applied once and only once for each source element (match) found in

the source models. Listing 32 shows an extract of the implementation of the mapping

rule Model2EventBSpec(). This rule takes as input a UML root object of type Model and
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allows to create that creates the an Event-B_Spec (see Line 1 of the Listing). It attributes

the name of the source element Model to the created target element Event-B_Spec from

the Event-B meta-model (see Line 2). Model2EventBSpec() also invokes the contexts

and machines implementation modules (see lines 3 and 4).

1 mapping UML:: Model:: Model2EventBSpec () : EventB :: EventB_Spec {

2 name := self.name;

3 contexts += self.allSubobjectsOfType(Package)-> map Context () ;

4 machines += self.allSubobjectsOfType(Package)-> map Machine ();

Listing 32 – Model2EventBSpec() mapping rule implementation

Listing 33 presents an extract of the implementation of the mapping rule responsible

for the transformation of the refinement SysML extension following these steps:

— First of all, this part of code selects all messages with an applied Refines_Message

stereotype (Lines 1 and 2).

— Then, for each selected message, it gets the Refined_Message attribute value of the

stereotype and affect it to a temporary variable that we called mess. (see Lines 3 to

8).

Note that, for this part of implementation, refinement between machines is already

established.

— After that, we associate the event related to the selected message (message) from the

machine called mac with the event associated to Refined_Message attribute value

(mess) from the refined machine mac._refines. (see Lines 10 to 12)

— Finally, once the refinement between the two events is established, the event associ-

ated to the selected message gets from the refined event each of their actions. (see

Lines 13 to 19).

1 self.allSubobjectsOfType(Message)

2 ->select(me|me.getAppliedStereotypes ()->notEmpty ())

3 ->forEach(message ){

4 var mess: Message;

5 mess=message.getValue(message.getAppliedStereotype

6 (’Sequence_Diagram_Refinement_Profile :: Refines_Message ’),

7 ’Refined_Message ’)->selectByType(Message)
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8 ->selectOne(m|m->notEmpty ());

9

10 mac.events ->selectOne(e|e.name.equalsIgnoreCase(message.name )).

11 _refines := mac._refines.events

12 ->select(e|e.name.equalsIgnoreCase(mess.name ));

13 mac.events

14 ->selectOne(e|e.name.equalsIgnoreCase(message.name )).

15 _refines.actions ->forEach(ra){

16 mac.events

17 ->selectOne(e|e.name.equalsIgnoreCase(message.name )). actions +=

18 ra ->map ActionsAbs2 ()};

19 }

Listing 33 – Extract from the refinement SysML extension mapping rule implementation

Figure 3.15 – Generated Event-B Model

After running these transformation rules, an Event-B model conform to the Event-B

notation defined by the proposed Event-B meta-model is generated. It is shown in Fig-

ure 3.15. This Event-B model shows the different machines and contexts generated from

HLA and the refinement of the event ExtendsLGS by the event ExtendsLG. We recall that
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event ExtendsLG belongs to LandingGearSystemL1 machine which refines LandingGearSys-

temL0 machine that encompasses the event ExtendsLGS. The model specification behind

this graphical representation of Event-B model (in Figure 3.15) is described in XMI meta-

data. An extract of this XMI file is presented in Listing 34. This file will be used as an

input for the model-to-text translation step.

<?xml version ="1.0" encoding ="UTF -8"?>

<EventB_MetaModel:EventB_Spec xmi:version ="2.0"

xmlns:xmi="http ://www.omg.org/XMI"

xmlns:EventB_MetaModel ="http :// www.example.org/EventB_MetaModel"

name=" Landing Gear System">

<machines name=" LandingGearSystemL 1"

sees ="// @contexts .0 // @contexts .6"

refines ="// @machines .1"

Shared_Event_Decomp_Components ="// @machines .7 // @machines .10

// @machines .12">

<variables name=" dssState"

associatedTo ="// @machines .0/ @invariant .0"/>

<variables name=" mssState"

associatedTo ="// @machines .0/ @invariant .1"/>

<variables name=" pssState"

associatedTo ="// @machines .0/ @invariant .2"/>

<variables name=" lgState"/>

<events name=" INITIALISATION">

<actions

name=" dssState :: {dss} -->DigitalSubSystemStates"

body=" dssState :: {dss} -->DigitalSubSystemStates "/>

<actions

name=" mssState :: {mss} -->MechanicalSubSystemStates"

body=" mssState :: {mss} -->MechanicalSubSystemStates "/>

<actions

name=" pssState :: {pss} -->PiloteSubSystemStates"

body=" pssState :: {pss} -->PiloteSubSystemStates "/>

<actions name=" lgState :: {lg} -->LandingGearSystemStates"

body=" lgState :: {lg} -->LandingGearSystemStates "/>

</events >

<events name=" commandsPiloteSSForExtension">
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<guards name=" lgState(lg)= Retracted"/>

<guards body=" pssState(pss)= orderedForRetractionPiloteSS"

name=" pssState(pss)= orderedForRetractionPiloteSS "/>

<actions name=" pssState(pss):= orderedForExtensionPiloteSS"

body=" pssState(pss ):= orderedForExtensionPiloteSS "/>

</events >

Listing 34 – Extract from the refinement SysML extension mapping rule implementation

2.2.6.3 Extended SysML to Event-B translation: model-to-text translation.

The second step suggests, a translation between the Event-B model generated from

the first step and a textual specification accepted by the AtelierB tool. This step allows

to generate formal specifications for the purpose to be verified. To perform this model-to-

text transformation, we implement transformation rules with Acceleo [Musset et al., 2006]

transformation language. Acceleo is a template based technology allowing to automatically

produce any kind of source code from any data source available in EMF format (XMI).

To perform this transformation, we need to collect the XMI file generated from the

previous step (Listing 34). Then, we can proceed to define the model-to-text translation. In

the following, we will give an overview on how we implemented our translation rules. Figure

3.16 presents the architecture of the translation composed of three Acceleo templates. The

first one is the main template which initiates the translation between Event-B model and

Event-B code and invokes contexts and machines creation templates. The CONTEXT

Translation template is responsible for creating textual specifications for contexts whereas

the MACHINE Translation template is responsible for creating textual specifications for

machines.

Listing 35 presents the translation main template that starts by the declaration of the

Event-B meta-model to be used for interpreting the source model (see Line 2). We import

the contexts and machines creation templates to invoke the creation operations (Lines 3

and 4). This translation creates a new file with .sys extension supported by AtelierB for

each founded context in the Event-B model (Lines 8 to 10). After that, it invokes the

context creation responsible operation from the context template. Selected context from

Event-B model is given as parameter for the operation aCont.CONTEXT() (Line 11). In
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Figure 3.16 – Model-to-text transformation architecture

the same way, not refinement machines are created (Lines 14 to 19). For the refinement

ones, the extension supported by AtelierB is .ref (Lines 21 to 27).

1 [comment encoding = UTF -8 /]

2 [module generate(’http :// www.example.org/EventB_MetaModel ’)]

3 [import M2TEventB ::main:: CONTEXT /]

4 [import M2TEventB ::main:: MACHINE /]

5

6 [template public generateElement(anEventB_Spec : EventB_Spec)]

7 [comment @main /]

8 [for (aCont : CONTEXT | anEventB_Spec.contexts)]

9 [file (anEventB_Spec.name.concat(’/’+aCont.name.replaceAll(’ ’, ’’)

10 +’.sys’), false , ’UTF -8’)]

11 [aCont.CONTEXT ()/]

12 [/file]

13 [/for]

14 [for (aMac : MACHINE | anEventB_Spec.machines)]

15 [if (aMac.refines ->isEmpty ())]

16 [file (anEventB_Spec.name.concat(’/’+aMac.name.replaceAll(’ ’, ’’)

17 +’.sys’), false , ’UTF -8’)]

18 [aMac.MACHINE ()/]

19 [/file]

20 [/if]

21 [if (aMac.refines ->notEmpty ())]

22 [file (anEventB_Spec.name.concat(’/’+aMac.name.replaceAll(’ ’, ’’)
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23 +’.ref’), false , ’UTF -8’)]

24 [aMac.MACHINE ()/]

25 [/file]

26 [/if]

27 [/for]

28 [/ template]

Listing 35 – Translation main template

Listing 36 presents the context template that shows the structure of the context spec-

ification that we would like to be generated. We precise that the main template, shown

in Listing 35, invokes this template main operation called CONTEXT which takes as a

parameter a context (see Line 4 in Listing 36).

The structure of the machine to be generated follows the notation presented in Listing

37 while this template generates the machine with the different Event-B notation clauses

namely: SEES, VARIABLES, INVARIANT, EVENTS, etc. The main template, shown

in Listing 35, invokes this template main operation called MACHINE which takes as a

parameter a machine (see Line 4 in Listing 37).

1 [comment encoding = UTF -8 /]

2 [module CONTEXT(’http ://www.example.org/EventB_MetaModel ’)]

3

4 [template public CONTEXT(aCONTEXT : CONTEXT)]

5 SYSTEM

6 [aCONTEXT.name.replaceAll(’ ’, ’’)/]

7 [if (aCONTEXT.extends ->notEmpty ())]

8 EXTENDS

9 [for(a : CONTEXT | aCONTEXT.extends) separator (’;\n’) after(’\n’)]

10 [a.name /][/ for]

11 [/if]

12 SETS

13 [for(aset : SETS | aCONTEXT.sets) separator (’;\n’) after(’\n’)]

14 [aset.name /][/ for]

15 CONSTANTS

16 [for(acons : CONSTANTS | aCONTEXT.constants) separator (’,\n’)after(

’\n’)]

17 [acons.name /][/ for]

18 PROPERTIES

19 [for(aprop : AXIOMS | aCONTEXT.axioms) separator (’ &\n’)after(’\n’)
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]

20 [aprop.name /][/ for]

21 END

22 [/ template]

Listing 36 – Context template

1 [comment encoding = UTF -8 /]

2 [module MACHINE(’http ://www.example.org/EventB_MetaModel ’)]

3

4 [template public MACHINE(aMachine : MACHINE)]

5 [if (aMachine.refines ->isEmpty ())]

6 SYSTEM

7 [aMachine.name.replaceAll(’ ’, ’’)/][/if]

8 [if (aMachine.refines ->notEmpty ())]

9 REFINEMENT

10 [aMachine.name.replaceAll(’ ’, ’’)/]

11 REFINES

12 [for(aMac : MACHINE | aMachine.refines) separator(’;\n’)after(’\n’)]

13 [aMac.name /][/ for]

14 [/if]

15 SEES

16 [for(ac : CONTEXT | aMachine.sees) separator(’,\n’)after(’\n’)]

17 [ac.name /][/ for]

18 VARIABLES

19 [for(av : VARIABLE | aMachine.variables)separator(’,\n’)after(’\n’)]

20 [av.name /][/ for]

21 INVARIANT

22 [for(ai :Invariant |aMachine.invariant)separator(’ &\n’)after(’\n’)]

23 [ai.name /][/ for]

24 [for(ae : EVENTS | aMachine.events ->

25 select(e|e.name.equalsIgnoreCase(’INITIALISATION ’))) separator (’ \n’)

after(’\n’)]

26 INITIALISATION

27 [for(a : ACTIONS | ae.actions) separator (’ ||\n’) after(’\n’)]

28 [a.name /][/ for]

29 [/for]

30 [if(aMachine.events ->notEmpty ())]

31 EVENTS

32 [for(ae : EVENTS | aMachine.events ->reject(e|e.name.equalsIgnoreCase
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(’INITIALISATION ’))) separator (’ ;\n’) ]

33 [ae.name/] [if(ae.refines ->notEmpty ())]ref

34 [for(er : EVENTS | ae.refines) separator (’ ,\n’)]

35 [er.name /][/ for ][/if]=

36 [if(ae.guards ->notEmpty ())] SELECT

37 [for(g : GUARDS | ae.guards) separator (’ &\n’) after(’\n’)]

38 [g.name /][/ for]

39 [else] BEGIN

40 [/if]

41 [if(ae.guards ->notEmpty ())] THEN

42 [if (ae.actions ->notEmpty ())]

43 [for(a : ACTIONS | ae.actions) separator (’ ||\n’) after(’\n’)]

44 [a.name /][/ for][else] skip [/if]

45 [/if]

46 END

47 [/for]

48 [/if]

49 END

50

51 [/ template]

Listing 37 – Machine template

2.2.6.4 Extended SysML to Event-B translation: conclusion.

In quantitative terms, our QVT model-to-model transformation is composed of 39

transformation rules (i.e. approximately 600 lines of QVT code) whereas our Acceleo

model-to-text translation is about approximately 100 lines of Acceleo code.

As a consistent manner to validate the application of the proposed translations and to

verify the correctness of the generated results, we have applied these rules on a set of case

studies presented in different publications, i.e. railway systems case studies presented in

[Bougacha et al., 2022a], the landing gear system case study presented in [Bougacha et al.,

2022b] and the ATO OVER ETCS case study published in [Bon et al., 2022, Bon et al.,

2023]. The full Event-B specification resulted from applying the proposed translation

on the HLA models of these case studies is presented in [Bougacha, 2022b, Bougacha,

2022a, Bougacha, 2023]. After that, the generated specification is introduced in AtelierB

to be formally verified and in ProB to animate the execution scenarios.
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2.3 Requirements & high-level architecture alignment

The final step of this methodology aims to align requirements models with HLA models

in order to establish traceability between these two entities. It also intents to give a

formal specification of these alignment links. We recall that in our methodology, for the

requirements modeling we use the Openflexo FORMOD tool environment and for the

HLA modeling we use Eclipse development environment IDE with Papyrus. Therefore, to

establish alignment links we should bring together all models in the same environment or

establish communication between them. To this end, we decided to include the FORMOD

SysML/KAOS goals modeling mechanisms into Eclipse development IDE. Two ways to

do this:

— The first solution: the FORMOD tool project is available as a MAVEN project in a

git repository. This project could be uploaded in Eclipse and SysML/KAOS goal

models could be imported in the Eclipse IDE.

Note: Maven is an open-source build tool developed by the Apache Foundation. It

facilitates and automates certain tasks of managing a Java project.

— The second solution: We reproduce the SysML/KAOS goal model meta-model used

in the FORMOD tool within Eclipse and import the designed goal models from the

FORMOD tool into Eclipse IDE. This reproduction could be performed using The

EMF models and the UML profiles mechanisms.

In our methodology, we have opted for the second solution while already our HLA mod-

eling is based on SysML and its proposed extensions and also, SysML/KAOS is based

on SysML extended with KAOS concepts. Adding to that, the second solution is more

light-weight solution than the first one because there is no need to upload all the FOR-

MOD project while we don’t need all its proposed features. We are, only interested in

SysML/KAOS goal model. Figure 3.17 shows an extract of the SysML/KAOS repro-

duction profile.

The graphical alignment mechanism presented in Section 4.2 of Chapter II supports

three kinds of alignment Satisfy , And_Satisfy and Milestone_Satisfy . To specify these

alignment links we have used Papyrus. The extensions concepts are defined as stereo-

types applied on the meta-class Dependency which is customized to support the Satisfy ,

And_Satisfy and Milestone_Satisfy links. This profile is shown in Figure 3.18.

The Event-B formalization of these alignment links follows the translation rules pre-
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Figure 3.17 – SysML/KAOS reproduction
profile

Figure 3.18 – Alignment profile

sented in Section 4.3 of Chapter II. This formalization is performed using the AtelierB

tool as described is the usage scenario 2.1.1. It should be noted that, to conduct this trans-

lation Event-B specification issued from SysML/KAOS models and Event-B specifica-

tion generated automatically from HLA models should be included in the same AtelierB

project. This is to allow the alignment and communication between the two Event-B

specification components.

The formalization rules presented in Section 4.3 which allows the automatic generation

of the Event-B specification of the alignment links are performed as follows:

— Listing 38 shows the QVT alignment module header. Thus, this transformation

takes as input meta-models the UML, the extended SysML and the Event-B. The

Event-B meta-model is used as a source and a target meta-model. Lines 7 and 8

define the signature of the transformation which declares the transformation name

and the source and target meta-models. in and inout keywords indicate source and

target model variables. Lines 10 to 15 presents the Entry point while the execution of

the transformation starts here by executing the instructions in the body of the main

operation. In our case, the main operation is called Model2SatisfactionMachine(spec)

and it takes the root of the Event-B model of type "EventB_Spec" as a parameter.

— Listing 39 presents an extract of the implementation of the mapping rule called

Model2SatisfactionMachine (spec) responsible for the transformation of alignment

links. First of all, this part of code selects all Abstraction links with an ap-
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plied ’SysML_KAOS::Satisfy’ stereotype and calls the AlignMachine(spec)

mapping rule responsible of establishing alignment Event-B machine (Lines 4 to

16). If Abstraction link is stereotyped with ’SysM_KAOS::AND_Satisfy’ or

’SysML_KAOS::Milestone_Satisfy’, the operation AligAND_MLSMachine(spec)

is called (Lines 17 to 36).

1 modeltype UML "strict" uses "http ://www.eclipse.org/uml2 /5.0.0/ UML";

2 modeltype SYSML "strict" uses

3 BDD_MetaModel(’http ://www.example.org/BDD_MetaModel ’);

4 modeltype EventB "strict" uses

5 EventB_MetaModel(’http :// www.example.org/EventB_MetaModel ’);

6

7 transformation Alignement2EventB( in uml : UML ,

8 in sysml : SYSML , inout eventb: EventB );

9

10 main()

11 {

12 var spec : EventB :: EventB_Spec=

13 eventb.objectsOfType(EventB_Spec)->selectOne(a|a->notEmpty ());

14 uml.rootObjects ()[ Model] -> map Model2SatisfactionMachine(spec);

15 }

Listing 38 – QVT Alignement module header

1 mapping UML:: Model:: Model2SatisfactionMachine(

2 inout spec : EventB :: EventB_Spec) {

3

4 self.allSubobjectsOfType(Abstraction)->

5 select(s| s.getAppliedStereotype(’SysML_KAOS ::Satisfy ’)->notEmpty ())

6 ->forEach(i)

7 {

8 if(i.supplier ->selectOne(a|a->notEmpty () and spec.machines

9 ->select(m|m.name.equalsIgnoreCase

10 (a.name+" _Goal_Satisfaction_Interface"))->isEmpty ())

11 ->notEmpty ()) then

12 {

13 spec.machines += i->map AlignMachine(spec) ;
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14 }

15 endif;

16 };

17 self.allSubobjectsOfType(Abstraction)

18 ->select(s|s.getAppliedStereotype(’SysML_KAOS :: AND_Satisfy ’)

19 ->notEmpty () or

20 s.getAppliedStereotype(’SysML_KAOS :: Milestone_Satisfy ’)->notEmpty ())

21 ->forEach(i)

22 {

23 if(i.supplier ->selectOne(a|a->notEmpty () and spec.machines

24 ->select(m|m.name.equalsIgnoreCase

25 (a.name+"_Goal_Satisfaction_Interface"))->isEmpty ())

26 ->notEmpty ()) then

27 {

28 spec.machines += i->map AligAND_MLSMachine(spec) ;

29 }

30 else

31 {

32 spec.machines += i->map AligAND_MLSMachine2(spec) ;

33 }

34 endif;

35 };

36 }

Listing 39 – QVT Alignement module header

3 Conclusion

In this chapter we described the implementation concepts of the proposed methodology.

they are considered as a framework for modeling requirements and HLA of complex systems

and their formal verification. Adding to that, this framework gives a formally verifiable

alignment between requirements and HLA models to guarantee the traceability between

them.

This framework is implemented using a set of Plug-ins and tools that can be integrated

in the Eclipse Platform. This choice allows to develop a complete environment to manage
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the life cycle of complex systems from requirements to HLA. The integration with the

Eclipse Platform allows indeed the exploitation of all features offered by the Eclipse Java

IDE.
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Chapter IV

CONCLUSION AND

PERSPECTIVES

This final chapter concludes the thesis and exhibits the contributions presented in this

work. We first provide a summary and draw some conclusions; we discuss some limitations

of our work and propose some perspectives to overcome them and to go further.

1 Summary of contributions

The aim of the thesis is to propose a methodology for high-level architecture modeling

aligned with system requirements.

In the first part, an overview of the existing approaches on RE, architecture modeling

and Event-B formal specification is conducted. To show the usefulness of our proposed

methodology, we presented a rich evaluation and discussion which emphasizes the limi-

tations of existing research works. The primitive support for traceability between HLA

and requirements has been recognized as one of the most significant limitations of current

complex systems. similarly to the fact that the formal reasoning behind the safety-critical

complex systems HLA and requirements is crucial.

The contributions presented in this thesis are manifold. The central contribution is to

propose a holistic process to define system HLA aligned with system requirements. The

approach places a great deal of emphasis on HLA complexity mastering, rigorous and formal

reasoning, and traceability vis-a-vis stakeholders needs. To sum up, the main results and

contributions of this thesis are:

• High-level architecture modeling

We proposed first, a model based approach which enables HLA modeling using

SysML diagrams. Four kinds of SysML diagrams have been used: package, block

definition, state machine and sequence diagrams. These models allow to represent
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HLA as a hierarchy of systems/sub-systems levels and answering a part of research

question RQ1 dealing with the functional of the HLA. The second part of the re-

search question RQ1 is about the non-functional part of HLA modeling which raises

the first perspective of this thesis. SysML extensions were proposed to be aligned

with Event-B refinement and decomposition mechanisms in order to automatically

translate SysML models of HLA to Event-B specifications. These extensions are

applied on two SysML parts: package diagrams are customized to represent the

decomposition of system/sub-systems hierarchies and the refinement of a system by

its sub-systems interplay; Sequence diagrams are extended with stereotypes applied

on messages to refine a parent system task by the collaboration of its sub-systems

processes. These extensions allow to answer research question RQ2.

• High-level architecture formalization with Event-B

With the aim of ensuring the correctness of HLA models, a set of translation rules

is defined to translate SysML models into Event-B specifications in order to for-

mally verify them using AtelierB. This translation is conducted using QVT and

Acceleo transformation language and comprises three sets of rules: translating pack-

age elements, translating SysML refinement extension to Event-B and translating

SysML decomposition extension to Event-B. These translations take meta-models

as input (extended SysML meta-models) and output (Event-B meta-model). This

formalization allows to answer research question RQ3.

• Requirements & high-level architecture alignment In the context of trace-

ability between HLA and system requirements, a model-based approach is defined

to align complex systems HLA models with SysML/KAOS requirements models.

This approach encompasses two steps. First, it allows graphical specification of the

alignment of a leaf goal with HLA elements responsible for its satisfaction. For this

purpose, three kinds of alignment links are defined and a new alignment meta-model

is proposed. Second, it formalizes the alignment links in Event-B in order to be

verified. To produce this Event-B specification, a set of transformation rules is

proposed. The semantics of the alignments links are given by these rules and the

definition of new proof obligations that can be discharged using AtelierB. This

proposed graphical and formal alignment allows to satisfy research question RQ4.

• Implementation of the methodology

We implemented the methodology with the help of the Eclipse IDE, which is an
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Eclipse environment allowing designers to easily manage requirements modeling,

HLA modeling and formal specification generation and mainly establishing align-

ment between these entities. More precisely, it enables to verify the consistency and

correctness and gives a formal and rigorous reasoning of requirements and HLA us-

ing an automatic mappings of SysML/KAOS models and HLA models to Event-B

formal specification. After that, mechanisms to establish graphically and formally

alignment between HLA and requirements entities in order to prove the traceability

between them is implemented. This implementation is presented as an Eclipse plu-

gin which allows graphical modeling and the formalization of these models. However,

this implementation lacks of formal basis about the used meta-models and applied

transformations.

An illustration of this methodology was applied on the landing gear system case study

enhanced with a second example taken from the train control system case study. Through

this work, new problems have been emerged leaving wide horizon for other researches.

2 Limitations and perspectives

The experience that has been gained from the proposed methodology helps us to direct

the further research in HLA specification, formal verification and traceability. Therefore,

we present some directions for future work:

— This work only considers functional properties of requirements and HLA. In particular

we do not consider non-functional properties of systems. For the sake of complete-

ness, an extension of our methodology would be to investigate these non-functional

properties integration. This integration process should follow the methodology steps

which consists in graphically modeling these properties in the requirements and HLA

models and formalizing them.

— The proposed mappings from HLA models to Event-B formal specifications are

only in this direction. Consequently, this translation supports only HLA modeling

updates to be propagated on the Event-B specification. However, when updates

are produced directly on the Event-B specification they are not propagated to the

HLA models. To deal with this issue, defining bidirectional translation would be

beneficent to propagate updates in the two directions. This bidirectional process

provides traceability between HLA models and Event-B specifications and allows
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to identify errors on the original HLA models and vice versa.

— Our methodology proposes models translation steps that are described using QVT

and Acceleo model transformation languages. However, these languages are not for-

mal whereas a formal context is crucial in the scope of safety-critical system. There-

fore, formally defining the rules in Event-B and discharging the associated proof

obligations allows to prove their consistency, to animate them using ProB which

shows the one to one mapping and to reveal several constraints that were missing

when designing the rules informally or when specifying the meta-models. Another

solution could be to use EB4EB, an Event-B based modelling framework allow-

ing to manipulate Event-B features explicitly based on meta-modelling concepts.

It preserves the core logical foundation, including semantics, of original Event-B

models. [Riviere et al., 2022].

— HLA and requirements alignment is discussed and proposed in the methodology with

three kinds of satisfaction links. This traceability allows only to link requirements

to HLA elements responsible for their satisfaction, however, the impact of updates

on requirements models and/or HLA models on other models and on established

alignment links is not yet supported by our methodology.

— Our proposed methodology is limited to the requirements and HLA stages. However,

supporting other software development life cycle stages has also been a prominent

area of research for ensuring correctness of all systems artefacts. It is well known

that not all desired requirements and properties of a system may be verified only

at the requirements and HLA stages. We therefore propose, as future work, to sup-

port all system development life cycle stages such as other levels of the architecture,

development, testing, deployment etc... and their formal specification.

— A digital twin [IBM, 2019] is a virtual representation of an object or system that cov-

ers its life cycle and allows to understand and predict its performance characteristics.

It is updated from real-time data and uses simulation, machine learning and reason-

ing to aid decision-making and early errors prediction. Digital twins can show the

impact of design changes, usage scenarios, environmental conditions, and countless

other variables. This eliminates the need for physical prototypes, reducing develop-

ment time and improving the quality of the final product or process. Digital twins

could be a beneficial solution for safety-critical systems which require a high level of

integrity and strong risks management guarantees while it allows to predict risks on
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the virtual representation before its production on the physical system. Therefore,

the use of digital twins is well suitable for safety-critical complex systems such as

railway systems.
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1 Introduction

Les systèmes complexes sont un ensemble de sous-systèmes reliés entre eux de manière

significative pour représenter un tout intégré. La conception de l’architecture de haut

niveau de tels systèmes devrait tenir compte des interrelations entre les sous-systèmes.

Les systèmes complexes sont considérés comme critiques pour la sécurité. Cependant,

les outils traditionnels de conception graphique sont semi-formels, ce qui ne permet pas le

raisonnement formel et rigoureux nécessaire aux systèmes critiques pour lesquels la sûreté

et la sécurité sont des préoccupations majeures.

Le projet Train de Fret Autonome (TFA) du programme Train Autonome 1 est l’un

des programmes de R&D et d’innovation de l’IRT Railenium 2, un centre d’essais et de

recherche appliquée pour l’industrie ferroviaire en France, avec la coopération de plusieurs

partenaires (SNCF, Alstom Transport, Hitachi Rail STS, Capgemini Engineering et Ap-

sys). Ils visent l’amélioration des performances du système grâce à la mise en place de

l’autonomie dans l’exploitation ferroviaire. Ce système est considéré comme un système

complexe critique pour la sûreté, où il dépend de plus en plus de solutions efficaces qui

peuvent répondre à l’hétérogénéité et à l’interaction des éléments physiques et logiciels. De

plus, l’utilisation d’approches de vérification modernes peut être le facteur de différencia-

tion afin de garantir la cohérence de ces systèmes. Il convient de noter que le TFA, dans

le but d’éviter l’apparition de plusieurs problèmes tels que la perte de vies humaines, les

blessures, les dommages environnementaux graves et les pertes économiques, par exemple,

doit garantir la cohérence des fonctionnalités des systèmes.

De plus, la qualité d’un système dépend du degré de performance qu’il atteint dans

la réponse à ses exigences. La traçabilité des exigences est largement reconnue comme un

élément crucial de tout processus de développement de système rigoureux, en particulier

pour la conception de systèmes complexes critiques.

Comme la conception graphique ne permet pas le raisonnement formel et rigoureux

nécessaire aux systèmes critiques, l’utilisation de méthodes formelles est fortement recom-

mandée pour la spécification de système. Cependant, l’un des principaux obstacles à leur

adoption réside dans l’obtention de la spécification formelle du système.

1. Le programme Autonomous Train https://railenium.eu/train-autonome/
2. Railenium. http://railenium.eu/fr/
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2 problème et motivation

La conception de systèmes complexes critiques pour la sureté, tels que le TFA, dépend

de solutions qui permettent l’interaction entre leurs sous-systèmes. Ces sous-systèmes in-

teragissent en échangeant des informations afin d’accomplir l’objectif principal du système

global. Par conséquent, un modèle d’architecture de haut niveau HLA prenant en charge la

hiérarchie en couches des composants est nécessaire. Dans le projet AFT, des représenta-

tions graphiques des composants du système sont recommandées pour spécifier, visualiser,

comprendre et documenter le système de manière simple. De telles représentations perme-

ttent à toutes les parties prenantes de discuter et de s’accorder sur les principales carac-

téristiques du système à construire et permettent de vérifier si son HLA correspond à leurs

besoins attendus. Alors que les normes ferroviaires d’ingénierie de la sécurité affirment que

la modélisation des systèmes ferroviaires à l’aide de SysML permet de générer des com-

posants corrects par construction, ce qui est un moyen de s’assurer que les besoins remplis

par le modèle initial resteront respectés alors qu’il est censé être facilement compris par

les experts ferroviaires. Dans cette perspective, nous formulons la question de recherche

suivante:

QR1: Pouvons-nous fournir un langage de modélisation commun pour les ar-

chitectures de haut niveau pouvant prendre en charge l’interaction des sous-

systèmes?

La complexité de ces systèmes augmente en raison à la fois du grand nombre de com-

posants de base intégrés à plusieurs niveaux et de l’importante hétérogénéité scientifique

et technologique de ces systèmes. Cela soulève de multiples problèmes liés à l’exhaustivité,

la cohérence, l’absence d’ambiguïté et l’exactitude de la conception du système. Cepen-

dant, lorsque les systèmes sont complexes, leur structure ne peut être décrite à un seul

niveau ou avec une seule vue; des descriptions multi-niveau sont nécessaires pour les com-

prendre. Leur comportement émergent, dérivé des relations entre leurs éléments et avec

l’environnement, via des boucles de rétroaction internes et externes, qui peuvent ne pas être

compris ou prédits. Cela vient du fait qu’un système complexe est un ensemble de sous-

systèmes présentés comme un tout intégré travaillant ensemble pour réaliser une mission

principale et de plus, ces sous-systèmes ont leur propre vie et peuvent exister indépendam-

ment de leur participation à la mission principale. Sur la base de ces considérations, il est

possible de formuler une deuxième question de recherche:
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QR2: Comment maîtriser la complexité de ces systèmes complexes?

Généralement, la conception graphique des systèmes complexes HLA est semi-formelle

et sa sémantique est donnée en langage naturel, ce qui ne permet pas le raisonnement

formel et rigoureux nécessaire aux systèmes critiques. D’ou, l’industrie a besoin d’une

approche efficace pour la vérification des systèmes critiques afin de garantir leur consus-

tance. Dans ce contexte, l’utilisation de méthodes formelles est fortement recommandée

pour la spécification de la HLA des systèmes lors du développement de systèmes ferrovi-

aires par exemple. La spécification formelle permet de vérifier formellement la preuve de

la cohérence du système en modélisant sa structure et son comportement. Ainsi, il est

possible de formuler la troisième question de recherche ainsi:

QR3: Comment fournir une spécification formelle des architectures de haut

niveau pour vérifier leur cohérence?

Au-delà du fait que la HLA des systèmes complexes doivent être cohérents et vérifiés, il

est nécessaire de vérifier que ses modèles sont alignés avec les exigences système qui doivent

être aussi précises que possible. En effet, la conception de HLA est le plus souvent difficile

car il peut être difficile de vérifier que les besoins des parties prenantes sont satisfaits.

C’est pourquoi, si la spécification formelle permet de prouver la cohérence du système, il

est recommandé de prouver également la cohérence de cet alignement. Ainsi, des activités

de validation et de vérification doivent participer pour assurer l’exactitude de la conception

par rapport aux besoins initialement spécifiés. Dans ce contexte, une dernière question de

recherche peut être formulée comme suit:

QR4: Comment établir et vérifier les liens d’alignement entre les architectures

de haut niveau et les exigences système?

3 Contexte de recherche

Pour repondre à ces questions de recherche, cette thèse propose une définition d’une

méthodologie d’alignement entre les modèles d’exigences et les modèles d’architectures de

haut niveau permettant de définir une traçabilité entre ces deux entités et de garantir

ainsi que les modèles d’architectures de haut niveau répondent aux besoins des parties

prenantes. C’est réalisé grâce à un couplage avec des spécifications formelles qui vérifient,

d’une part, l’exactitude et la cohérence des modèles d’architectures de haut niveau requis

pour les systèmes critiques et, d’autre part, la cohérence des liens d’alignement établis.
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4 Une approche formelle pour la modélisation d’architectures

de haut niveau de systèmes complexes alignées avec les

modèles d’exigences

4.1 Aperçu de la méthodologie

La méthodologie proposée est basée sur les modèles. Elle est résumée dans la figure

5.1, composée de trois phases: (1) SysML/KAOS, (2) Modélisation de HLA en SysML

et (3) Alignement.

Figure 5.1 – Methodology Aperçu

Le but de cette méthodologie est de modéliser les exigences des parties prenantes, de

représenter HLA dans une hiérarchie en couches de relations système/sous-systèmes et

enfin d’aligner les éléments de HLA avec les exigences pour garantir la traçabilité entre

eux.

La Modélisation en SysML/KAOS [Laleau et al., 2010]: Consiste en une phase de

RE dans laquelle les exigences sont modélisées à l’aide de modèles de buts SysML/KAOS

enrichis par des modèles de domaine. Ensuite, ces modèles d’exigences sont formal-

isés à l’aide de Event-B afin d’être formellement vérifiés. Nous avons choisi l’approche

SysML/KAOS pour les raisons suivantes:
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✓ Il fournit une forte expressivité sémantique.

✓ SysML est bien recommandé par les partenaires du projet TFA

✓ Event-B est spécialisé dans la modélisation de systèmes et a été utilisé dans des

applications de systèmes critiques pour la sureté telles que les lignes du métro parisien

[Behm et al., 2003, Abrial, 2006]

✓ Les mécanismes de raffinement et de décomposition de SysML/KAOS sont bien

adaptés à Event-B.

Cette phase est composée de deux étapes :

• Tout d’abord, une modélisation graphique des exigences du système sous la forme

d’une hiérarchie de buts est réalisée en utilisant la modélisation SysML/KAOS

et des modèles de raffinement. Ensuite, ces modèles de buts sont enrichis par des

modèles de domaine qui définissent la structure du système et les concepts utilisés

pour définir les buts.

• Deuxièmement, une formalisation en Event-B de ces modèles de but et de domaine

est effectuée.

Une étape de vérification formelle utilisant des démonstrateurs Event-B, des vérificateurs

de modèles et des animateurs est appliquée sur la spécification formalisée pour prouver

l’exactitude et la cohérence des exigences du système.

La Modélisation de HLA en SysML: Correspond à la définition du HLA des systèmes

complexes critiques qui doit être validée par des experts du domaine et sa traduction en

Event-B spécification formelle pour prouver sa correction et cohérence.

Pour mener à bien cette phase, un processus en deux étapes est effectué:

• Tout d’abord, une modélisation graphique de HLA dans une hiérarchie système/sous-

système en couches est présentée en utilisant les mécanismes d’extension de SysML

que nous avons définis.

• Deuxièmement, une traduction automatique des modèles HLA en modèles Event-B

est établie.

Les résultats présentés dans cette phase ont été publiés dans [Bougacha et al., 2022b,

Bougacha et al., 2022a].

Alignment: Vise à définir des liens d’alignement entre les éléments de SysML/KAOS

et les éléments de HLA. Ces liens d’alignement permettent de garantir des relations de
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traçabilité entre les entités participantes pour garantir que les éléments de HLA satisfont

les objectifs du système et donc satisfont les besoins des parties prenantes.

Le processus d’alignement comprend deux étapes:

• Tout d’abord, les liens d’alignement sont spécifiés graphiquement afin d’être bien

compris, documenté et validé par toutes les parties prenantes. Pour implémenter ces

graphes, trois types de relations de satisfaction ont été proposées dans le méta-modèle

d’alignement que nous avons défini.

• Dans un second temps, une formalisation de ces liens d’alignement est réalisée pour

prouver leurs cohérences. Cette formalisation permet de générer une spécification

en Event-B adaptée à l’alignement proposé à l’aide d’un ensemble de règles de

traduction. De nouvelles obligations de preuve sont générées en plus des obligations

de preuve existantes de type préservation d’invariant, de faisabilité d’actions non

déterministes etc.

Une étape de vérification formelle est effectuée pour vérifier la spécification en Event-B

résultante. Le déchargement de toutes les obligations de preuve (obligations de preuve exis-

tantes et d’alignement) permet de prouver que les exigences du système sont formellement

alignées avec les éléments de HLA.

4.2 Modélisation d’architecture de haut niveau et vérification formelle

Les systèmes complexes sont des systèmes composés de nombreux composants qui peu-

vent interagir entre eux, tels que le système de gestion du trafic aérien, les systèmes ferrovi-

aires, le réseau intelligent, les systèmes automobiles autonomes, la surveillance médicale, les

systèmes de contrôle industriel, les systèmes robotiques, etc. Leur comportement est diffi-

cile à modéliser due aux dépendances, compétitions, relations ou autres types d’interactions

entre leurs parties ou entre un système donné et son environnement. Dans de nombreux cas,

il est utile de représenter un tel système comme une hiérarchie où les nœuds représentent

les composants relié par leurs interactions. Par conséquent, la conception de HLA de ces

systèmes dépend de solutions qui peuvent traiter l’interaction entre leurs sous-systèmes. Ce

HLA doit être représenté comme une hiérarchie en couches de sous-systèmes. Il doit per-

mettre de spécifier les principaux éléments fonctionnels du système, ainsi que ses interfaces

et interactions.

Pour cela, nous proposons de combiner SysML et la méthode formelle Event-B. Le

choix se porte sur SysML plutôt que sur UML alors qu’il propose un ensemble de con-
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cepts plus pertinents pour modéliser les systèmes et comme présenté précédemment, est

recommandé par les partenaires du projet TFA. En effet, le projet TFA réutilise le Rail-

TopoModel 3 qui contient une ontologie fonctionnelle basée sur SysML d’une infrastructure

ferroviaire. De plus, l’initiative européenne EULYNX 4 a défini un modèle standard basé

sur SysML des composants du système de signalisation ferroviaire. Event-B permet de

spécifier des systèmes plutôt que simplement des logiciels et il est déjà utilisé dans de

nombreux systèmes critiques pour la sécurité [Lecomte et al., 2017]. Son utilisation est

également préconisée dans l’étude de ASTRAIL [ASTRAIL, 2017]

La figure 5.2 présente un aperçu du processus de modélisation de HLA et de sa formal-

isation en modèles Event-B.

Figure 5.2 – HLA modeling and formalization approach

Ce processus est composé de deux étapes

— La première étape consiste à modéliser des architectures de haut niveau à l’aide

de diagrammes SysML. Quatre types de diagrammes SysML ont été sélectionnés:

package, définition de bloc, état-transition et diagrammes de séquence.

Les mécanismes de raffinement et de décomposition sont des caractéristiques intéres-

santes de Event-B qui facilitent une conception pas à pas et font des preuves plus

3. http://www.railtopomodel.org/en/. Il s’agit d’un standard pour la représentation des données liées
à l’infrastructure ferroviaire

4. https://www.eulynx.eu/
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facile à décharger. Cela permet de maîtriser la complexité des systèmes complexes.

Par conséquent, nous proposons d’étendre SysML avec ces mécanismes pertinents

pour permettre une traduction automatique. Ces extensions sont appliquées sur deux

diagrammes SysML, les diagrammes de package et de séquence.

— La deuxième étape consiste à traduire les diagrammes SysML en modèles Event-B.

Cette traduction de modèle est mise en œuvre à l’aide de trois ensembles de règles:

un ensemble pour les éléments liés à un package; un ensemble pour les extensions de

raffinement SysML; un ensemble pour les extensions de décomposition SysML.

Cette étape se déroule en deux phases.

— Une transformation de modèle à modèle pour implémenter les règles ci-dessus.

Il prend en entrée le méta-modèle étendu de SysML et produit en sortie un

modèle Event-B conforme au méta-modèle de Event-B.

— Une transformation modèle-texte pour générer Event-B des spécifications formelles

textuelles. Cette spécification textuelle peut être introduite dans des prouveurs

tels que AtelierB [AtelierB, 1990], des model-checkers et des animateurs tels

que ProB [ProB, 2003] pour vérifier la cohérence des modèles de HLA du sys-

tème et être validés par des experts du domaine à travers des animations de

modèles.

4.3 Alignement entre exigences & architecture de haut niveau

La qualité d’un système est la principale mesure de son succès, qui dépend de la mesure

dans laquelle il répond à ses exigences. D’où, des liens d’alignement entre les modèles

d’exigences et les modèles de HLA doivent être établis. Ces liens sémantiques peuvent

être le support pour prouver la conformité de la spécification de HLA avec l’expression

des exigences système. La troisième partie de notre travail vise à proposer une approche

basée sur les modèles pour établir graphiquement des liens d’alignement entre les modèles

SysML/KAOS et les modèles de HLA puis la traduction de ces liens en spécification

formelle en Event-B pour les vérifier formellement (voir Figure 5.3). SysML/KAOS

[Laleau et al., 2010, Gnaho et al., 2013b] est une méthode de l’ingénierie des exigences RE

qui permet la modélisation des exigences fonctionnelles et non fonctionnelles et le modele de

domaine domaine d’un système. Cette approche vise à dériver une spécification Event-B

directement des modèles SysML/KAOS.

Le processus est composé de deux étapes :
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Figure 5.3 – Approche d’alignement entre les modèles SysML/KAOS et les modèles
SysML HLA

— Alignement graphique: La première étape consiste à modéliser graphiquement les

liens d’alignement entre les buts feuilles et les messages du diagramme de séquence.

Cette étape de modélisation graphique est une manière simple d’établir des liens

d’alignement et de les valider par les acteurs du système. Pour élaborer cette étape,

la partie des exigences est représenté par un modèle de but SysML/KAOS enrichi

par un modèle de domaine et la partie de l’architecture est représenté par un modèle

de HLA en SysML étendu.

Pour spécifier les liens d’alignement entre ces deux parties, le choix se porte sur les

buts feuilles car ils sont les objectifs les plus concrets d’un modèle de buts. Un

but feuille est affecté à un agent (environnement, logiciel ou sous-système agent)

responsable de la satisfaction des but. les messages d’un diagramme de séquence

représentent les interactions entre les composants. Chaque message correspond à une

transition dans le digramme d’état-transition du bloc associé au composant cible. Un

lien d’alignement est défini pour chaque but feuille attribué à un sous-système. Trois

types de liens ont été proposés :

• Le premier type est appelé Satisfy . Il est défini pour représenter un lien d’alignement

lorsqu’un message peut satisfaire un but.

• Le deuxième type est appelé And_Satisfy . Il représente une lien d’alignement

lorsqu’un but est satisfait par un ensemble de messages, c’est-à-dire l’exécution

de tous les messages, dans n’importe quel ordre, est nécessaire pour la satisfac-

tion du but.
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• Le dernier type est appelé Milestone_Satisfy . Ce lien représente le fait qu’une

exécution séquentielle d’un ensemble de messages dans un ordre spécifique est

nécessaire pour satisfaire un but.

— Formalisation des liens d’alignement graphique: La deuxième étape consiste

à formaliser ces liens d’alignement en une spécification Event-B afin d’être inté-

grés dans AtelierB pour étre vérifier formellement. Pour effectuer cette formalisa-

tion, un ensemble de règles de traduction est défini. La formalisation des modèles

SysML/KAOS en Event-B est décrite dans [Matoussi et al., 2011a, Tueno Fotso

et al., 2018] et la formalisation des modèles HLA en SysML étendu est présentée dans

[Bougacha et al., 2022b]. Chaque but, y compris les buts feuilles, est transformé en

événement dans la spécification Event-B des modèles d’exigences et chaque message

du diagramme de séquence est également transformé en événement dans la spécifica-

tion Event-B de modèles HLA.

L’idée principale est de définir un lien d’alignement entre un ensemble de messages

et un but feuille comme un lien de raffinement entre les événements Event-B cor-

respondants. Il existe de nombreuses raisons pour lesquelles il n’est pas possible

d’utiliser le raffinement Event-B standard.

• Premièrement, la sémantique du raffinement de Event-B ne correspond pas

à notre sémantique d’alignement. En effet, le processus de raffinement de

Event-B permet d’enrichir progressivement les différentes parties qui con-

stituent le système avec plus de détails fonctionnels, de sécurité, etc., en partant

d’un modèle abstrait vers un modèle plus concret.

• Deuxièmement, les messages peuvent appartenir à des machines Event-B dis-

tinctes alors que dans Event-B il n’est pas possible de spécifier qu’un ensemble

de machines raffine une machine.

• De plus, comme la formalisation des modèles SysML/KAOS et des modèles de

HLA en SysML étendu est effectuée dans Event-B, nous pensons qu’il serait

plus approprié de formaliser l’alignement avec Event-B.

Notre solution est donc de construire une nouvelle machine Event-B pour chaque

lien d’alignement. De nouveaux ensembles d’obligations de preuve de raffinement

sont ensuite spécifiés, un pour chaque type d’alignement. Le déchargement de ces

obligations de preuve permet de vérifier formellement la satisfaction d’un but feuille

par un ensemble de messages de HLA.
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5 Conclusion

L’objectif de la thèse est de proposer une méthodologie de modélisation d’architecture

de haut niveau alignée avec les exigences système.

Dans la première partie, un aperçu des approches existantes sur les RE, la modélisation

d’architecture et la spécification formelle en Event-B est réalisé. Pour montrer l’utilité de

notre méthodologie proposée, nous avons présenté une évaluation et une discussion riches

qui soulignent les limites des travaux de recherche existants. La prise en charge primitive

de la traçabilité entre HLA et les exigences a été reconnue comme l’une des limitations les

plus importantes des systèmes complexes actuels. Aussi, le raisonnement formel derrière

les modèles de HLA et des exigences des systèmes complexes critiques est crucial.

Les contributions présentées dans cette thèse sont multiples. La contribution centrale

est de proposer un processus holistique pour définir le HLA aligné avec les exigences du

système. L’approche accorde une grande importance à la maîtrise de la complexité HLA,

au raisonnement rigoureux et formel, et à la traçabilité vis-à-vis des besoins des parties

prenantes. En résumé, les principaux résultats et contributions de cette thèse sont:

— La modélisation de l’architecture de haut niveau. (répondre à une partie de la ques-

tion de recherche QR1 traitant la partie fonctionnel de la modélisation de HLA).

— La proposition de mécanismes de raffinement et de décomposition pour maîtriser la

complexité des modèles de HLA (répondre à la question de recherche QR2).

— Formalisation de l’architecture de haut niveau avec Event-B (répondre à la question

de recherche QR3).

— Alignement de l’architecture de haut niveau avec les exigences systèmes (répondre à

la question de recherche QR4).

— Implémentions de la méthodologie.

Une illustration de cette méthodologie a été appliquée sur l’étude de cas du système de

train d’atterrissage enrichi d’un deuxième exemple de l’étude de cas du système ferroviaire.

À travers ce travail, de nouveaux problèmes sont apparus laissant un large horizon pour

d’autres recherches.

Dans ce contexte, notre travail ne considère que les propriétés fonctionnelles des ex-

igences et de HLA. En particulier, une extension de notre méthodologie serait d’étudier

ces non-fonctionnels intégration des propriétés. Aussi, Les transformations proposés des

modèles de HLA aux spécifications formelles en Event-B sont uniquement dans ce sens.
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Par conséquent, cette traduction ne prend en charge que les mises à jour de la modélisation

de HLA à propager sur la spécification Event-B. Cependant, lorsque les mises à jour sont

produits directement sur la spécification Event-B ils ne sont pas propagés aux modèles de

HLA. Pour résoudre ce problème, une autre perspective est envisagé. Il consiste à définir

une traduction bidirectionnelle qui serait bénéfique pour propager les mises à jour dans les

deux sens ce qui permet d’assure la traçabilité entre les modèles de HLA et les spécifications

Event-B et d’identifier les erreurs sur les modèles de HLA originaux et vice versa.

Une autre perspective est de formaliser les règles de transformation en Event-B tandis

que notre méthodologie propose des étapes de traduction de modèles décrites à l’aide des

langages de transformation de modèles non formels comme QVT et Acceleo alors qu’un

contexte formel est crucial dans le cadre d’un système critique. Par conséquent, définir

formellement les règles en Event-B et de décharger les obligations de preuve associées

permet de prouver leur cohérence, de les animer à l’aide de ProB qui révéle plusieurs con-

traintes qui manquaient lors de la conception informelle des règles ou lors de la spécification

des méta-modèles.

L’alignement entre HLA et les exigences est discuté et proposé dans la méthodologie

avec trois types de liens. Cette traçabilité permet uniquement de lier les exigences aux

éléments de HLA responsables de leur satisfaction, cependant, l’impact des mises à jour

des modèles d’exigences et/ou des modèles de HLA sur les autres modèles et sur les liens

d’alignement établis n’est pas encore supporté par notre méthodologie. D’où, une nouvelle

perspective est envisagé.

Une dernière perspective intéressante pour notre travail est la prise en charge d’autres

étapes du cycle de vie du développement logiciel. Ce cycle de vie est également un domaine

de recherche important pour garantir l’exactitude de tous les artefacts du système tandis

que notre méthodologie proposée se limite aux étapes d’exigences et de HLA.
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Une approche formelle pour la modélisation d’architectures de haut niveau de

systèmes complexes alignées avec les modèles d’exigences

Résumé : Les systèmes complexes sont un ensemble de sous-systèmes reliés entre eux pour représenter un

tout intégré. La conception de ces systèmes devrait représenter les interactions entre leurs sous-systèmes.

Pour y parvenir, des modèles graphiques sont généralement recommandés pour spécifier, visualiser,

comprendre et documenter le système de manière simple. Cependant, lorsqu’on considère des systèmes

critiques pour la sureté où les conséquences d’une défaillance entraînent des pertes de vie, des dommages

matériels ou environnementaux importants, les langages graphiques ne sont pas suffisants car ils ne sont

que semi-formels et ne permettent pas un raisonnement formel et rigoureux nécessaires pour vérifier les

propriétés de sûreté et de sécurité. Enfin, la qualité d’un système dépend de la mesure dans laquelle il

répond à ses exigences. La traçabilité des exigences est largement reconnue comme un élément crucial

de tout processus de développement de système rigoureux, en particulier pour la conception de systèmes

complexes critiques.

Pour répondre à ces enjeux, la thèse vise à définir une approche d’alignement entre les modèles d’exigences

et les modèles d’architecture de haut niveau pour les systèmes complexes critiques, permettant ainsi de

spécifier des liens de traçabilité entre ces deux entités et de garantir que les modèles d’architecture de haut

niveau satisfont les besoins requis des parties prenantes. Ceci est réalisé en utilisant des spécifications

formelles pour vérifier d’une part l’exactitude et la cohérence des modèles d’architecture de haut niveau et

d’autre part la cohérence des liens d’alignement établis.

Mots clés : Architecture de haut niveau, Exigence, Alignement, SysML/KAOS, SysML, Transformation

de modèles, Spécification formelle, Méthode Event-B.

A formal approach for modeling high-level architectures of complex systems

aligned with requirement models

Abstract : Complex systems are a collection of sub-systems linked together to represent an integrated

whole. The design of such systems should represent the interactions between their sub-systems. To achieve

this, graphical models are generally recommended to specify, view, understand, and document the system in

a simple way. However, when considering safety-critical systems where the consequences of a failure result

in loss of life, significant property or environmental damage, graphical languages are not sufficient since

they are only semi-formal and do not allow formal and rigorous reasoning necessary for verifying safety and

security properties. Lastly, the quality of a system depends on the degree to which it fulfills its requirements.

Requirements traceability is broadly recognized as a crucial element of any rigorous system development

process, especially for the design of critical complex systems.

To cope with these issues, the thesis aims to define an approach of alignment between requirements models

and high-level architecture models for safety-critical complex systems, thus allowing to specify traceability

links between these two entities and to guarantee that high-architecture models fulfills required stakeholders

needs. This is achieved by using formal specifications to verify firstly the correctness and consistency of

high-level architecture models and secondly the consistency of the established alignment links.

Keywords : High level architecture, Requirement, Alignment, SysML/KAOS, SysML, Model transfor-

mation, Formal specification, Event-B Method.
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