N
N

N

HAL

open science

A formal approach for modeling high-level architectures

of complex systems aligned with requirement models

Racem Bougacha

» To cite this version:

Racem Bougacha. A formal approach for modeling high-level architectures of complex systems
aligned with requirement models. Other [cs.OH]. Centrale Lille Institut, 2023. English.

2023CLIL0014 . tel-04412845

HAL Id: tel-04412845
https://theses.hal.science/tel-04412845v1

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

NNT:

https://theses.hal.science/tel-04412845v1
https://hal.archives-ouvertes.fr

centralelille

CENTRALE LILLE
THESE

présentée en vue d’obtenir le grade de
DOCTEUR
en
Spécialité : Informatique et applications
par
Racem BOUGACHA
DOCTORAT DELIVRE PAR CENTRALE LILLE
Titre de la these :

Une approche formelle pour la modélisation
d’architectures de haut niveau de systémes
complexes alignées avec les modéles d’exigences

Soutenue le 7 Juillet 2023 devant le jury d’examen :

President: Sophie EBERSOLD, Professeure, Université de Toulouse

Examinateur: Akram IDANI, Maitre de conférences, Grenoble INP

Examinateur: Sana DEBBECH, Ingénieur de recherche, IRT Railenium

Rapporteur: Christian ATTIOGBE, Professeur, Université de Nantes

Rapporteur: Iulian OBER, Professeur, ISAE-SUPAERO

Directeur de thése: Simon COLLART-DUTILLEUL, Directeur de recherche, Université Gustave Eiffel

Co-Directeur de thése : Régine LALEAU, Professeure, Université Paris-Est Créteil

Thése préparée dans le Laboratoire d’Evaluation des Systémes de Transports

Automatisés et de leur Sécurité

COSYS/ESTAS, Université Gustave Eiffel, Villeneuve d’Ascq

Ecole Doctorale MADIS 631

[J - [
o _ Université LABORATOIRE ESTAS _ -—
ol Gust EVALUATION DES SYSTEMES l I
ustave DE TRANSPORTS AUTOMATISES -—
R

o~ " Eiffel

ETDE LEUR SECURITE

AIL RESEARCH & INNOVATION

Abstract

Complex systems are a collection of sub-systems linked together to form an integrated
whole. The sub-systems are generally heterogeneous in that they integrate various kinds
of components, as mechanical, electronic, or software components, working together to
perform missions. Therefore their design requires the collaboration of domain experts and
the use of a common language to communicate with each other and agree on the main
characteristics of the system to build. To achieve this, graphical models are generally
recommended to specify, view, understand, and document the system in a simple way.
However, when considering safety-critical systems where the consequences of a failure result
in loss of life, significant property or environmental damage, graphical languages are not
sufficient since they are only semi-formal and do not allow formal and rigorous reasoning
necessary for verifying safety and security properties. Nowadays, the usefulness of formal
verification and validation of system specifications is well established, at least for critical
systems. Lastly, the quality of a system depends on the degree to which it fulfills its
requirements. Requirements traceability is broadly recognized as a crucial element of any
rigorous system development process, especially for the design of critical complex systems.

To cope with these issues, the thesis aims to define an approach of alignment between
requirements models and high-level architecture models for safety-critical complex systems,
thus allowing to specify traceability links between these two entities and to guarantee that
high-architecture models fulfills required stakeholders needs. This is achieved by using for-
mal specifications to verify firstly the correctness and consistency of high-level architecture
models and secondly the consistency of the established alignment links. The idea behind
the first point is to combine SysML, well adapted to be validated by domain experts, and
the Event-B formal method for verification purposes. We propose to extend SysML with
safety relevant Event-B refinement and decomposition mechanisms to model high-level ar-
chitectures, and to define a set of rules enabling an automatic translation from SysML
diagrams to Event-B specifications. We focus on diagrams that facilitate high-level archi-
tecture design, namely package, block-definition, state-transition and sequence diagrams.
The second point aims to support traceability by defining several kinds of alignment links
between requirements models and high-level architecture models. Alignment links are first
graphically specified. Then they are translated into Event-B specifications. The main idea
is to use the formal refinement concept to prove their correctness. As the semantics of this

refinement is not the same as the standard Event-B refinement, we have defined new proof

obligations to express it, which can be discharged using AtelierB.
The proposed approach is supported by a set of tools and implemented in an Eclipse

IDE plug-in. It has been evaluated on various industrial-scale case studies.

Keywords: SysML, High-level architecture, Requirement, Alignment, SYsSML/KAOS,

Model Transformation, Formal Specification, EVENT-B Method.

II

Acknowledgment

First and foremost, I thank God for giving me strength, knowledge, ability and op-
portunity to undertake this research work and to continue and complete it satisfactorily.
Without his blessings, this achievement would not have been possible.

Many thanks go to my thesis reviewers and the defense jury committee. Pr. Christian
ATTIOGBE and Pr. ITulian OBER for accepting being my thesis reviewers and for their
attention and thoughtful comments. I also thank Dr. Sana DEBBECH, Dr. Akram IDANI
and Pr. Sophie EBERSOLD for accepting being my thesis examiners.

I would like to express my appreciation and gratitude to my supervisor Simon COLLART-
DUTILLEUL. His valuable advice, patience, enthusiasm and constant support all the time
of research allowed me to acquire new understandings and extend my experiences. Thank
you for your guidance, it has been a true pleasure and I deeply hope that we can continue
our collaboration.

A special gratitude is also due to my co-supervisor Pr. Régine LALEAU, for believing
in me long after I had lost belief in myself, for her great advices and her guidance. I
am thankful for the opportunities she provided, and for having faith in me. I am deeply
grateful for the great deal of time we spent discussing many technical details of our work
together.

my thanks goes to the institutes and companies that provided me all the support I
needed to accomplish this work: RAILENIUM and COSYS-ESTAS, Université Gustave
Eiffel. You gave me the financial, physical and intellectual support that was necessary
during the whole journey of this thesis. I am very thankful to you. A very big thank goes
to my colleagues and dear friends in RAILENTUM and COSYS-ESTAS lab. Thank you for
always providing me with a simulating, productive and welcoming environment to which I
have happily returned every day.

Similarly, I thank Dr. Slim Kallel, Associate Professor at the University of Sfax, Tunisia,
the professor who introduced me to the research and taught me some of the most important
basis I have. You are a strong reference in my life regarding organisation, honesty and
determination. I am thankful for the support he provided, for intellectual guidance, for
patient motivation, and for his good humour in my darkest hours.

I have been blessed with a very loving and supportive family. My parents, Raoudha
and Mohamed, have always stressed the importance of education, which has, in some

unconscious way, shaped my values and made me the person that I am today. I appreciate

v

all of the sacrifices that they have made for me. From my mom, I learned the art of working
around obstacles, and the importance to stand up for myself. From my dad, I learned to
work hard, and to be optimistic. I am grateful to the two of them for all that they have
taught me about what it means to be a good person. During these years, despite our time
together was brief, their contributions to my life will be felt forever. Your encouragement
made me go forward and made me want to succeed. I am also grateful to my brother and
sister Houssem and Wiem for being by my side through hard times. I cannot forget my
dear little nieces Eya and Emna who filled me with joy and love and who always encouraged
me in their innocent way.

I express my deepest gratitude to my soulmate and my loving fiancee Houda. As for you
Houda, I find it difficult to express my appreciation in some lines. Thank you for sharing
my wish to reach the goal of completing this thesis. I am grateful to her because she has
given up so much to make my career a priority in our lives and tried to compensate for my
stressful times. A tremendous help and endurance for a great number of years has helped
me to complete this endeavour. So it only seems right that I dedicate this dissertation
to her. My warm thanks to my parents-in-law, Rachid and Hedia for their support and
kindness.

Last but not least, a warm thank goes to all my friends. Unfortunately, I cannot list
everyone here. I do not want to miss anyone of you. However, it is a desire to extend my
special gratitude to some of my closest friends: Sana, Jihen, Achraf, Ameni, Aslam, Fatma,
Insaf, Mariem. I am grateful for all the encouragements, love, support and motivation I
have received over the years and I hope I can give something back to everyone. Friends are

everything.

Contents

INTRODUCTION 3
1 Context e 3

2 Problem statement and motivations 0oL 5

3 Objectives 7

4 Contributions L L e 8

5 Outline of the Thesis 10

6 Publications 11

I Literature Review 13
1 Introduction 16

2 Background 16
2.1 Systems Modeling Language SysML 16

2.1.1 Overview of SYSML diagrams 17

2.1.2 SysML usage 18

2.2 Requirements Engineeringo 18

2.2.1 SYSML/KAOS 20

2.2.1.1 Functional Requirements Modeling 22

2.2.1.2 Non-Functional Requirements Modeling 22

2.2.1.3 Domain Model Modeling 22

222 SYSML/KAOS to EVENT-B 23

2221 SYSML/KAOS functional goal formalization . . . 23

2.3

2.2.2.2 SYSML/KAOS non-functional goal formalization 24
2.2.2.3 From domain model to EVENT-B specification . . 24

2224 Formalization of SYSML/KAOS Goal Assignments

with EVENT-B Component Decompositions 25

Architecture Modeling o oo 25
2.3.1 Architecture Analysis and Design Language AADL 26
2.3.1.1 Components 27
2.3.1.2 AADL tools 28

2.3.1.3 AADL wusage 28

CONTENTS

24

2.3.2

2.3.3

Modeling and Analysis of Real-Time and Embedded sys-

tems MARTE profile.
2.3.2.1 MARTE architecture
2.3.2.2 MARTE usage

Combining architecture modeling languages
2.3.3.1 Combining SYsML with AADL
2.3.3.2 Combining SysML with MARTE

EVENT-B Formal Method

241
2.4.2
2.4.3
244
2.4.5
2.4.6

Machine
Context
EVENT-B refinement 0oL
EVENT-B model decomposition
EVENT-B Proof obligation

Tools Environments for EVENT-B

3 State of the art

3.1

3.2

3.1.1

Design Model and Formal Specification.

From Design Model to Formal Specification

3.1.1.1 UML-B

3.1.1.2 The B4MSecure Platform

3.1.1.3 The CHESS toolset
3.1.1.4 Coupling of formal methods for industrial systems

specification

3.1.2
3.1.3

3.1.1.5 SYSML to formal specification
3.1.1.6 Discussion oL oL
Refinement of design models
EVENT-B Model Decomposition
3.1.3.1 Shared Variables Decomposition
3.1.3.2 Shared Events Decomposition
3.1.3.3 SYsML/KAOS EVENT-B model decomposition
3.1.3.4 Discussion L.

Requirements and Architecture Alignment

3.2.1

SYSML relationships between requirements and SYsML el-

ements e e e

CONTENTS

5

3.2.2 The MeMVaTEx methodology: from requirements to mod-
els in automotive application design 49

3.2.3 KAOS: Connecting the goal model with other system views 50

3.2.4 UML, MARTE, SysML/Requirements Traceability 51
3.2.5 Generation and validation of traces between requirements
and architecture based on formal trace semantics 52

3.2.6 Traceability Between Restricted Natural Language Require-

ments and AADL Models 53

3.2.7 Discussion o 54
Synthesis 55
Conclusion 55

II Contribution: A methodology for high-level architecture modeling aligned

with requirements models 59
1 Methodology overview 61
2 ATO over ERTMS case study excerpt 65
3 High-level architecture modeling and formal verification 65

3.1 High-level architecture modeling 67

3.1.1 SYSML and EVENT-B refinement and decomposition mech-

anisms extensionso 68

3.1.1.1 Package diagram and its extensions 69

3.1.1.2 HLA restricted BDD 70

3.1.1.3 HLA restricted state-machine diagram 72

3.1.1.4 Sequence diagram and its extensions 73

3.1.2 SysML HLA modeling process architecture 7

3.2 SYSML to EVENT-B Translation 79
3.2.1 Model-to-Model transformation 79

3.2.1.1 EVENT-B meta-model 79

3.2.1.2 Translation Rules 81

3.2.2 Model-to-Text Translation 86

3.2.3 Example of application of the translation rules 86

3.24 HLA formal verification 90

3.3 Conclusion L 91

CONTENTS

4 Requirements & high-level architecture alignment 91
4.1 SYSML/KAOS modeling and formal verification 92
4.1.1 SYsML/KAOS Modeling 92

4.1.2 EVENT-B formalization of SYSML/KAOS Models 94

4.2 Graphical alignment oL oo 96

4.3 Formalization of graphical alignment links 98

4.4 Conclusion L 107

5 Mlustration of the methodology on a case study 107
5.1 Landing Gear System case study 107

5.2 SYsML /KAOS modeling and formalizing of the landing gear system

case study 108
5.2.1 SYsML/KAOS Goal modeling 109
5.2.2 SYsML/KAOS Goal model formalization 111
0.2.2.1 The Root Level 111
5.2.2.2 The First Refinement Level 112
5.2.2.3 The fourth refinement level 114
5.2.3 SYsML/KAOS Goal model decomposition 117

5.2.4 SYsML/KAOS model decomposition formalization using

Event-B 117

5.2.4.1 SYsML/KAOS Pilote SubSystem 119

5.2.4.2 SYsML/KAOS Mechanical SubSystem 120

5.2.5 Conclusion 123

5.3 High-level architecture modeling and formalizing of the landing gear

system case study L oL 125

5.3.1 The main system (Level 0) 125

5.3.2 Landing gear system HLA level 1. 127

5.3.3 Landing gear system HLA decomposition 132

5.3.4 The Pilote SubSystem HLA 134

5.3.5 Formal verification of the landing gear system HLA EVENT-B

specification L L Lo Lo 138
5.3.6 Conclusion 138
5.4 Requirements & high-level architecture alignment examples 139

X

CONTENTS

5.4.1 Example of alignment between landing gear system SYsML/KAOS
models and SYsML HLA models 139

5.4.2 Example of alignment between train control system SYsML /KAOS
models and SYsML HLA models 143

5.4.2.1 Train control system SYSML /KAOS requirements

5.4.2.2 Train control system SYSML HLA models. 145
5.4.2.3 Train control system SYsML/KAOS models and

SYSML HLA models alignment 147
5.4.3 Conclusion 150
6 Conclusion L 150
ITT Implementation 153
1 Preliminaries 154
1.1 Model Transformation 154
1.2 Query View Transformation (QVT) 155
2 Overview of the methodology implementation 156
2.1 Requirements specification and formalization part 156
2.1.1 Usage scenarioo 157
2.2 HLA modeling and formalization 158
2.2.1 Eclipse Modeling Framework (EMF) 159
2.2.2 Papyrus Modeling Environment Overview 160
2.2.3 UML profiles 161

2.2.4 SYsML extensions with EVENT-B refinement and decom-
position mechanisms profiles 162
2.2.5 HLA modeling usage scenario 163
2.2.6 HLA formalization into EVENT-B 164
2.2.6.1 EVENT-B meta-model 164

2.2.6.2 Extended SYsML to EVENT-B translation: model-

to-model transformation. 167

2.2.6.3 Extended SYsML to EVENT-B translation: model-

to-text translation. 172

XI

CONTENTS

2.2.6.4 Extended SYsML to EVENT-B translation: con-

clusion. oL 176
2.3 Requirements & high-level architecture alignment 177
3 Conclusion L 180
IV CONCLUSION AND PERSPECTIVES 183
CONCLUSION AND PERSPECTIVES 183
1 Summary of contributions Lo 183
2 Limitations and perspectives 185
V Résumé Etendu en Francais 189
1 Introduction 190
2 probléme et motivation L L 191
3 Contexte de recherche 192
4 Une approche formelle pour la modélisation d’architectures de haut niveau
de systémes complexes alignées avec les modéles d’exigences 193
4.1 Apercu de la méthodologie L. 193
4.2 Modélisation d’architecture de haut niveau et vérification formelle . 195
4.3 Alignement entre exigences & architecture de haut niveau 197
5 Conclusion L 200
Bibliography 203

XII

List of Figures

1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

Goal oriented RE frameworks use [Horkoff et al., 2016] 20
Meta-model of the extended SYSML [Laleau et al., 2010] 21
Overall architecture of MARTE 29

The relationship between SYsML, AADL, and the combined profile ExSAM.

[Behjati et al., 2011 32
EVENT-B components structure L. 34
Shared Variables Decomposition 46
Shared Events Decomposition 46
[Fotso et al., 2018¢c| EVENT-B model decomposition 47
Methodology overview 63
HLA modeling and formalization approach 66
Package diagram example 69
SYsML extended package diagram meta-model 70
Package diagram extension application example 71
SYsML BDD meta-model 72
BDD example 72
SYsML State-machine diagram meta-model 73
State-machine diagram example 0L 73
Sequence diagram example Lo 75
Extract of SYSML extended sequence diagram meta-model 76
Example of the sequence diagram extensions 76
SysML HLA modeling process architecture 78
EVENT-B meta-model oo 80
Association translation rule example, 82
Decomposition extension translation to EVENT-B 86
SYsML to EVENT-B translation rules application example 87
SYsML/KAOS models and SYsML HLA models alignment approach . . . 92
SYsML/KAOS specification process 93

Excerpt from the steam-boiler control system SYsML/KAOS goal model . 94

LIST OF FIGURES

2.21 Excerpt from the steam-boiler control system SYsSML/KAOS domain model 94

2.22 Alignment meta-model oo 98
2.23 Graphical alignment example 99
2.24 EVENT-B architecture of the proposed alignment 100
2.25 EVENT-B architecture of the proposed alignment 104
2.26 Landing gear system architecture 108
2.27 The landing gear system SYSML/KAOS goal diagram 110
2.28 SYSML/KAOS root level goal model and corresponding domain model . . 111

2.29 SYsML/KAOS first refinement level goal model and corresponding domain

model . . .o e 112
2.30 SYsML/KAOS root level goal model and corresponding domain model . . 114
2.31 SysML/KAOS PiloteSubSystem assigned goals 117

2.32 SysML/KAOS DigitalSubSystem and MechanicalSubSystem assigned goals 118
2.33 SYsML/KAOS MechanicalSubSystem goal model 118
2.34 SYsML/KAOS EVENT-B specification Architecture 124
2.35 Project Status for Landing Gear System SYSML/KAOS EVENT-B specifi-

cation 125
2.36 Landing gear system HLA main system package 126
2.37 Landing gear system HLA Level 1 package 128
2.38 Landing gear system HLA level 0 & 1 package refinement 129
2.39 Landing gear system decomposition L. 133
2.40 HLA Pilote SubSystem Level 1 136
2.41 Project Status for landing gear system HLA EVENT-B specification 138

2.42 Example of graphical alignment links of the landing gear system case study 139

2.43 Train Control system goal and domain models 143
2.44 Extract from the Train Control system HLA model 145
2.45 Graphical alignment links of ProgressTrain Goal 148
2.46 Proof obligations table o 150
3.1 Transformation process [Hammoudi et al., 2008] 154
3.2 Methodology overview 156
3.3 SYSML/KAOS Goal modeling 158
3.4 Domain modeling L 158

LIST OF FIGURES

3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

5.1
5.2
5.3

ATELIERB EVENT-B specification, 159
ATELIERB interactive proof tool 160
ATELIERB proof status. 160

SysML extensions with EVENT-B refinement and decomposition mecha-

nisms profiles 162
New Papyrus project creation 163
Papyrus project type selection 163
SYSML extensions profiles application 164
The EMF Model of Event-B Meta-Model 165
EVENT-B Meta-Modelo 166
Model-to-model transformation architecture 167
Generated Event-B Model o 170
Model-to-text transformation architecture 173
SYsML/KAOS reproduction profile 178
Alignment profile 178
Methodology Apergu 193
HLA modeling and formalization approach 196

Approche d’alignement entre les modéles SYSML/KAOS et les modéles
SYSML HLA o 198

XV

List of Tables

1.1

2.1
2.2
2.3
2.4
2.5

Table summarizing the evaluation of related works 57
Translation rules for a package diagram 81
Translation rules for elements of a package 83
Translation rules application table 88
First four translation rules for alignment links 101

Alignment Formalisation rules application table 104

Listings

= W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Example of a translation rule for an association. 82
SYSML to EVENT-B translation rules application example context. 89
SYSML to EVENT-B translation rules application example context. 89

EVENT-B formalization of the SYSML/KAOS models example root level
presented in Figures 2.20 and 2.21. oo 95
An excerpt of the EVENT-B formalization of the SYSML/KAOS models

example first refinement level presented in Figures 2.20. 95
Extract from SYSML/KAOS OnBoard Interface. 105
Extract from HLA ATOoETCS GOA2System2 105

EVENT-B formalization of the goal MakeOnBoardForATODriving align-

ment link. L 105
The root level of Figure 2.28 EVENT-B specification context. 111
The root level of Figure 2.28 EVENT-B specification machine. 111
The first refinement level in Figure 2.29 EVENT-B specification context. . . 112
The first refinement level of Figure 2.29 EVENT-B specification machine. . . 113

The fourth refinement level in Figure 2.30 EVENT-B specification context. . 114

The fourth refinement level of Figure 2.30 EVENT-B specification machine. . 114

SYsML/KAOS Pilote SubSystem Interface. 119
SYsML/KAOS Mechanical SubSystem Level 1 context. 120
SYSML/KAOS Mechanical SubSystem Level 1 machine. 121
Landing gear system HLA main system EVENT-B specification context. . . 126
Landing gear system HLA main system EVENT-B specification machine. . . 126
Landing gear system HLA Level 1 EVENT-B specification context. 130
landing gear system HLA Level 1 EVENT-B specification machine. 131
PiloteSubSystem Interface. L 134
HLA PiloteSubSystem Level 1. 137
EvVENT-B formalization of the goal putHandleDown alignment link. 140
EVENT-B formalization of the goal putHandleUp alignment link. 142

Extract from the EVENT-B specification context of the Train Control system

SYSML/KAOS Level 3 requirements model. 143

LISTINGS

27

28

29

30
31
32
33
34
35
36
37
38
39

Extract from the EVENT-B specification machine of the Train Control sys-
tem SYSML/KAOS Level 3 requirements model. 144
Extract from the EVENT-B specification context of the Train Control sys-
tem HLA level 1. o 146
Extract from the EVENT-B specification machine of the Train Control sys-

tem HLA level 1. 146
EVENT-B formalization of the goal ProgressTrain alignment link. 148
QVT main module header 00 168
Model2EventBSpec() mapping rule implementation 169

Extract from the refinement SYsML extension mapping rule implementation 169

Extract from the refinement SYSML extension mapping rule implementation 171

Translation main template L 173
Context template 174
Machine template Lo 175
QVT Alignement module header 179
QVT Alignement module header 179

XX

Glossary

SYSML Systems Modeling Language. XIII, XV, XIX, XX, 6, 8, 9, 16-18, 20-22, 26,
31-33, 41-45, 49-51, 54, 55, 57, 62-64, 66-73, 76-79, 81, 83-85, 87, 89-92, 96-100,
133, 138, 139, 151, 154, 160-164, 167-170, 172, 177, 178, 183, 184, 191, 193-199

SYsML/KAOS . XIII-XV, 9, 10, 20-25, 46, 48, 55-57, 62-64, 91-94, 96, 97, 99, 100,
107-112, 114, 117, 118, 123-125, 177, 184, 185, 193, 194, 197-199

HLA High-Level Architecture. XITI-XV, 4-10, 26, 43, 44, 55-57, 61-71, 77-82, 86, 91,
92, 96-105, 107, 125-129, 136, 138-141, 145-148, 150, 151, 154, 156, 158, 159, 163,
164, 167, 170, 176-178, 180, 181, 183-186, 191-201

KAOS Knowledge Acquisition in autOmated Specification. 19-22, 50, 54, 57, 177

RE Requirements Engineering. XIII, 8, 10, 18-20, 48, 63, 92, 183, 193, 197, 200

INTRODUCTION

Contents

Context . . . v v v i i i e e e e e e e e e e e e e e e 3
Problem statement and motivations 5
Objectives . . . v v v v i i e 7
Contributions L e s e e 8

Outline of the Thesis i i i i i i i i e i e e et e e e 10

(=21 SRS R I VR

Publications v v v i v i e e e e e e e e e e e e e e e e e 11

1 Context

Complex systems are a collection of sub-systems, which are independent enough to be
identified. These sub-systems are generally heterogeneous in that they integrate various
kinds of components, as mechanical, electronic, or software components, working together
to perform a complex system mission. These systems are represented as composite sys-
tems, in the sense that the interaction between sub-systems is modeled by collaborating
behaviors. Manipulation of these behaviors is the key to the resolution of composite system
behavior. The goal of these manipulations is to reduce, as much as possible, the resolution
of the original, composite system behavior, to the resolution of a sequence of sub-systems
behaviors that can be solved independently. From literature, complex systems are a set of
interconnected parts forming an integrated whole.

Nowadays, the importance of complex systems is increasing in the human life as the
automation of essential tasks is taking place in the people routines. These systems may
be responsible for such important tasks that their correct functioning is crucial in order
to avoid severe repercussions. Complex systems are considered as safety-critical when the
consequences of a failure result in loss of life, significant property or environmental damage.
It requires advanced approaches for the verification of their correctness in order to avoid
hazardous situations [Knight, 2002]. Some examples of these systems are Aircraft Flight
Control, Railway, Medical Devices or Nuclear Systems.

The Autonomous Freight Train (AFT) project under the Autonomous Train program !

1. The Autonomous Train program https://railenium.eu/train-autonome/

https://railenium.eu/train-autonome/

INTRODUCTION

is one of the R&D and innovation programs of IRT Railenium 2, a test and applied research
center for the rail industry in France, with the cooperation of several partners (SNCF,
Alstom Transport, Hitachi Rail STS, Capgemini Engineering and Apsys). They target
performance improvements of the system thanks to the implementation of autonomy in
railway operations. This system is considered as a safety-critical complex system, where
it depends more and more on effective solutions that can address heterogeneity and the
interplay of physical and software elements. Also, the use of modern verification approaches
may be the differentiating factor in order to guarantee the consistency of these systems. It
should be noted that AFT with the objective of avoiding the occurrence of several problems
like the loss of people lives, injuries, severe environmental damage and economical loss, for
instance, must guarantee the consistency of systems functionalities.

Several specialized fields are involved in the design of a complex system, making it
difficult to keep a unified vision of this system and to manage its design. This leads to
important and difficult problems of integration, directly related to both the huge number
of basic components integrated at multiple levels, and the important scientific and techno-
logical heterogeneity of such systems (generally involving software, hardware /physical and
human /organizational parts).

When attempting to operate or design complex systems such as railway systems, the
main challenge is, therefore, to take into account the interrelations between sub-systems,
while never considering the problem of the whole system at once. High level architecture
(HLA) is a system architecture specification that defines how to create a global system
composed of interacting distributed parts. The intent of HLA is a structural design that
allows the reuse of capabilities available in different parts ultimately reducing the cost and
time required to create a synthetic environment for a new purpose, and the possibility of
distributed collaborative development of complex parts applications [Dahmann et al., 1998]
such as complex systems. HLA is widely applicable across a full range of parts application
areas, representing entities at many levels of resolution.

In order to prove the consistency of a system HLA and support its design, formal meth-
ods may be used. Based on mathematical foundations, formal specification methods allow
system HLA modeling as a way to define and prove system properties. A recent study of a
literature review conducted on 114 scientific publications on formal methods and railways

presented in the European project ASTRail [ASTRAIL, 2017] claimed that "This analy-

2. Railenium. http://railenium.eu/fr/

http://railenium.eu/fr/

INTRODUCTION

sis has shown a dominance of the UML modeling language for high-level representation
of system models, and a large variety of formal tools used, with a dominance of the tools
associated to the B family (ProB and Atelier B)". The CENELEC 50128 norm ? in the rail-
way domain clearly recommends the use of formal methods for developing critical systems.
Using formal methods, system properties and HLA correctness can be proved. In fact, the
B formal method family has shown their successful application in several industrial railway
projects [Behm et al., 1999, Lecomte et al., 2007].

Complex systems are generally made up heterogeneous sets of components and increas-
ing in complexity which raises multiple problems relating to the completeness, consistency,
non ambiguity and correctness of a design with respect to initial requirements. Their de-
velopment process is most often challenging since it could be difficult to verify that stake-
holders needs are satisfied, knowing that the consequence of a failure may be disastrous,
especially for safety-critical systems. Beyond the fact that requirements models should be
as precise as possible, it is necessary to verify that HLA models are aligned with them. In
fact, requirement traceability is defined as “...the ability to describe and follow the life of
a requirement, in both a forward and backward direction, i.e. from its origins, through its
development and specification, to its subsequent deployment and use, and through periods
of on-going refinement and iteration in any of these phases” [Gotel and Finkelstein, 1994].
Indeed, a good alignment helps ensuring return on investment, and is key to a coherent
governance. Thus, validation and verification activities take part in this flow to ensure the

correctness of the design with respect to the initially specified needs.

2 Problem statement and motivations

The design of safety-critical complex systems, such as AFT, depends on solutions that
can address the interplay between their sub-systems. These sub-systems interact by ex-
changing information in order to perform the main goal of the global system. Therefore,
a model of HLA supporting layered hierarchy of components is needed. Such HLA must
enable the specification of the main functional elements of a system, together with their
interfaces and interactions. It constitutes a framework common to all the domain experts
involved in the design of the system. In the AFT project, graphical representations of sys-

tem components are recommended to specify, view, understand, and document the system

3. The CENELEC 50128. https://standards.globalspec.com/std/2023439/afnor-nf-en-50128

https://standards.globalspec.com/std/2023439/afnor-nf-en-50128

INTRODUCTION

in a simple way. Such representations allow all the stakeholders to discuss and agree on
the main characteristics of the system to build and allow to check if its HLA corresponds
to their expected requirements. Whereas, railway norms for safety engineering assert that
modeling railway systems using SYSML allows to generate correct-by-construction com-
ponents, which is a way to ensure that the needs fulfilled by the initial model will remain
respected while it is supposed to be easily understood by railway experts. From this per-
spective, we formulate the following research question:

RQ1: Can we provide a common modeling language for high-level architectures

that can support the interaction of sub-systems?

Complex systems complexity is increasing related to both the huge number of basic
components integrated at multiple levels, and the important scientific and technological
heterogeneity of such systems. This raises multiple problems relating to the completeness,
consistency, non ambiguity and correctness of system design. However, when systems are
complex, their structure cannot be described at a single level or with a single view; multi-
scale descriptions are needed to understand them. This comes from the fact that a complex
system is a collection of sub-systems presented as an integrated whole working together to
perform a main mission and besides, these sub-systems have their own life and can exist
independently from their participation in the main mission. Based on these considerations,
it is possible to formulate a second research question as:

RQ2: How can we master the complexity of these complex systems?

Generally complex system HLA graphical design is semi-formal and its semantics are
given in natural language, which does not allow formal and rigorous reasoning necessary for
critical systems for which safety and security are major concerns. In such circumstances, the
industry needs an effective approach for the verification of the critical systems in order to
guarantee their safety. In this context, the use of formal methods is strongly recommended
for the specification of systems HLA during the development of railway systems for example.
Formal specification allows the proof of the system consistency by modeling its structure
and behavior to be formally verified. Thus, it is possible to formulate the third research
question as:

RQ3: How can we provide a formal specification of high-level architectures to

verify their consistency?

Beyond the fact that complex systems HLA should be consistent and verified, it is

necessary to verify that its models are aligned with system requirements which should be

INTRODUCTION

precise as much as possible too. Indeed, the HLA design is most often challenging since it
could be difficult to verify that stakeholders needs are satisfied. That is why, while formal
specification allows the proof of the system consistency, it is recommended also to prove
the consistency of this alignment. Thus, validation and verification activities should take
part to ensure the correctness of the design with respect to the initially specified needs.
From this context, a last research question can be formulated as:

RQ4: How can we establish and verify alignment links between high-level ar-

chitectures and system requirements?

3 Objectives

In the light of the aforementioned shortcomings, the core interest of this thesis is to
define a holistic methodology that supports a part of complex system life cycle from stake-
holders requirements definition to HLA definitions with traceability respect between HLA
and requirements.

To this endeavor, in the sequel, we present the objectives of this methodology:

e Proposing a modeling language for complex systems HLA which can hamper reason-
ing about system properties. This modeling language should allow to provide the full
range required to deal effectively with the heterogeneity of complex systems HLA
elements. Such a HLA model must enable the specification of the main functional
elements of a system, together with its interfaces and interactions. It constitutes a

framework common to all the domain experts involved in the design of the system.

e While complex systems are represented as an integrated whole of sub-systems col-
laborating together to perform a main task, the aim is to define a language to model

this HLA as a layered hierarchy of sub-systems.

e Defining complexity mastering mechanisms which allow step-by-step design and de-
tailing the parent system behavior by its sub-systems behaviors interplay. This is due
to the huge number of sub-systems and components a complex system can encompass.

These sub-systems can also exist independently.

e Graphical representations give a simple manner to specify systems HLA and could
be understood by stakeholders. However, they are less powerful, semi-formal and
does not allow formal and rigorous reasoning necessary for critical systems. On the

other hand, formal methods provide a formal and rigorous reasoning about system

INTRODUCTION

specification but it is not an easy practice for unfamiliar users of formal methods.
Therefore, we intend to define an end to end process from HLA graphical design
until HLA formal specification which allows to guarantee the consistency and the
completeness of the graphically designed HLA. This process is crucial for safety-

critical systems.

e Proposing solutions and techniques which aim to establish alignment and traceability
between HLA models and requirements. Thus, it allows to demonstrate that HLA
elements are aligned with the stakeholders needs and participating in their satisfac-
tion while the competitiveness of a system relies on the degree to which HLA models

fulfill its requirements.

e Formalization of alignment links. We aim to provide a consistent and correct defi-
nition of this alignment between HLA and requirements, which involves the use of

formal notation for this purpose.

4 Contributions

In this section we layout the contributions of the thesis to come up with a holistic
methodology for HLA definitions with traceability respect vis-a-vis requirements. The
proposed methodology realizes the set of objectives discussed in Section 3. This includes

the following contributions:

— Overview on the existing researches in the field
A survey of the current state of the art about SYsSML, RE, architecture modeling and
specification approaches and EVENT-B formal method is elaborated. Furthermore,
related work on requirements models and their formalization into formal specifica-
tion, design models and their formal specification translation, models refinement and

decomposition and finally requirements and architecture alignment are analyzed.

— High-level architecture modeling and formal specification
For HLA modeling and formal specification, a model-based approach enabling the
design of HLA using SYSML, answering the research question RQ1 and its translation
into Event-B formal method answering research question RQ3 is outlined.
e High-level architecture modeling
The particularity of the proposed approach is that it provides systems/sub-

systems hierarchical modeling of HLA. In order to master complexity in HLA de-

INTRODUCTION

sign, the approach defines solutions and mechanisms to solve it. More precisely,
we adopt EVENT-B refinement and decomposition mechanisms by proposing an
extension for SYSML to enable step-by-step design and complexity reduction.

This answers research question RQ2.

e High-level architecture formal specification
For a formal specification of HLA, an automatic translation from extended
SysML HLA models into EVENT-B formal specification is proposed. This trans-
lation is a two step process, model-to-model and model-to-text, and supports
also the translation of the proposed refinement and decomposition mechanisms.
Using the generated formal model, we investigate a model checking and theorem
proving based verification process that aims at ensuring HLA consistency and

correctness.

This proposed approach is illustrated by the landing gear system case study [Boniol

and Wiels, 2014] to verify and evaluate it.

— Requirements & high-level architecture alignment
It is necessary to verify that HLA models are aligned with requirements and to de-
termine how HLA elements can contribute in the satisfaction of the requirements.
We have chosen to use SYSML/KAOS to model requirements graphically and for-
mally. We propose a model-based approach to define several kinds of alignment links
between SYSML/KAOS models and SYSML HLA models and their formalization

into EVENT-B. This approach allows to answer research question RQ4.

e Requirements & high-level architecture graphical alignment
For establishing traceability, we have chosen to apply this alignment between
leaf goals from requirements models and sequence diagram messages from HLA
models. To this aim, different kinds of alignment links are proposed, each of
them defines a specific semantics and process on how a goal in a requirements

model could be satisfied by HLA elements.

¢ Requirements & high-level architecture alignment formalization
To prove the consistency of the proposed alignment links, an EVENT-B formal-
ization is proposed. The main idea is to use the EVENT-B refinement concept
to prove the correctness of alignment links. As the semantics of this refinement

is not the same as the standard EVENT-B refinement, to achieve it, new sets

INTRODUCTION

of refinement proof obligations are specified, one for each kind of alignment.
Discharging these proof obligations allows to formally verify the satisfaction of

a leaf goal by a set of HLA messages.

This proposed approach of alignment is illustrated by the landing gear system case
study [Boniol and Wiels, 2014] enhanced with a second example taken from the train
control system case study presented in [Lamsweerde, 2008] to verify the consistency

of the proposed alignment links.

— Implementation of the methodology
The methodology is implemented using a collaborating set of tools, frameworks and
Eclipse plug-ins. This combination of tools assists designers in specifying complex
systems life cycle from requirements to HLA. Moreover, it enables to verify the
consistency, correctness and completeness of requirements and HLA using an au-
tomatic mappings of SYSML/KAOS models and HLA models to the formal lan-
guage; EVENT-B. Adding to that, it provides mechanisms to establish graphically
and formally alignment between HLA and requirements entities in order to prove the
traceability between them. A subsequent formal verification using the ATELIERB

tools is conducted.

5 OQOutline of the Thesis

Following this introductory chapter, the thesis is organized in three chapters.

— Chapter I outlines the background of this work about RE, architecture modeling
and EVENT-B formal method which is necessary for the remainder of the thesis.
Afterwards, existing researches are analyzed and a comparison is drawn. As a result

of this analysis, we motivate and subsequently present the proposed methodology.

— Chapter II details the contributions of the high-level architecture modeling aligned
with system requirements methodology. It consists in the application of SYsML /KAOS
approach, HLA modeling and its automatic translation into EVENT-B and we present
our contribution about requirements and high-level architecture alignment. Finally,

to evaluate our methodology, we illustrate it on the landing gear system case study.

— The implementation details of the methodology is discussed throughout Chapter
ITI. This chapter presents a review of the implementation tools and mechanisms to

perform each of the steps of the methodology. The main goal of this step is to support

10

INTRODUCTION

complex systems designers with a collaborating set of tools and plug-ins within an
integrated development environment as Eclipse.

Finally, in chapter CONCLUSION AND PERSPECTIVES, we will summarize and

conclude the thesis. A discussion will also be held to outline several directions for future

work.

6 Publications

The contributions made while pursuing the research described in this thesis have been
published in proceedings of conferences and journals. Some of the chapters of this thesis

are partially based upon these published papers. They are respectively listed below:

1. BOUGACHA, Racem, LALEAU, Régine et COLLART-DUTILLEUL, Simon. For-
mal alignment of requirements models with high-level architecture models. In: 27th
International Conference on Engineering of Complex Computer Systems (ICECCS
2023). 1IEEE, 2023.

2. COLLART-DUTILLEUL, Simon, BON, Philippe, BOUGACHA, Racem et LALEAU,
Régine. MODEL ENGINEERING FOR CRITICAL SYSTEMS: THE ATO OVER
ETCS FOR FREIGHT TRAINS USE CASE. In : International Journal of Transport
Development and Integration. To be published.

3. BOUGACHA, Racem, LALEAU, Régine, BON, Philippe, et al. Modeling train sys-
tems: from high-level architecture graphical models to formal specifications. In :
CRISIS2022: 17th International Conference on Risks and Security of Internet and

Systems. Springer, To be published.

4. BON, Philippe, COLLART-DUTILLEUL, Simon, et BOUGACHA, Racem. ATO
OVER ETCS: A SYSTEM ANALYSIS FOR FREIGHT TRAINS. Computers in
Railways XVIII: Railway Engineering Design and Operation, 2022, vol. 213, p. 37.

5. BOUGACHA, Racem, LALEAU, Régine, COLLART-DUTILLEUL, Simon, et al.
Extending SysML with Refinement and Decomposition Mechanisms to Generate
Event-B Specifications. In : Theoretical Aspects of Software Engineering: 16th In-
ternational Symposium, TASE 2022, Cluj-Napoca, Romania, July §-10, 2022, Pro-
ceedings. Cham : Springer International Publishing, 2022. p. 256-273.

6. Bougacha, Racem. A Formal Approach for the Modeling of High-Level Architectures
Aligned with System Requirements. In: Raschke, A., Méry, D., Houdek, F. (eds)

11

INTRODUCTION

Rigorous State-Based Methods. ABZ 2020. Lecture Notes in Computer Science, vol
12071. Springer, Cham. https://doi.org/10.1007/978-3-030-48077-6 33

12

CHAPTER 1

Literature Review

Contents

1 Introduction o o el e 16
2 Background L e e e e 16
2.1 Systems Modeling Language SYSML 16
2.1.1 Overview of SYsML diagrams 17
2.1.2 SYSML usage i 18
2.2 Requirements Engineering oo 18
2.2.1 SYSML/KAOS 20
2.2.1.1 Functional Requirements Modeling 22
2.2.1.2 Non-Functional Requirements Modeling 22
2.2.1.3 Domain Model Modeling 22
2.2.2 SYsML/KAOS to EVENT-B 23
2221 SysML/KAOS functional goal formalization 23
2.2.2.2 SysML/KAOS non-functional goal formalization . 24
2.2.2.3 From domain model to EVENT-B specification . . . 24

2224 Formalization of SYSML/KAOS Goal Assignments
with EVENT-B Component Decompositions 25
2.3 Architecture Modeling oo o 25
2.3.1 Architecture Analysis and Design Language AADL 26
2.3.1.1 Components 27
2.3.1.2 AADL tools o 28
2.3.1.3 AADL usage o e 28

2.3.2 Modeling and Analysis of Real-Time and Embedded systems
MARTE profile. 29
2.3.2.1 MARTE architecture, 29
2.3.2.2 MARTE usage 31
2.3.3 Combining architecture modeling languages 31

CHAPTER I. LITERATURE REVIEW

2.3.3.1 Combining SYsSML with AADL 31
2.3.3.2 Combining SYSML with MARTE 33
24 EVENT-B Formal Method 34
24.1 Machine. Lo 34
2.4.2 Context 35
2.4.3 EVENT-B refinemento 36
2.4.4 EVENT-B model decomposition 36
2.4.5 EVENT-B Proof obligation 37
2.4.6 Tools Environments for EVENT-B 38
3 Stateoftheart o oo e 38
3.1 Design Model and Formal Specification 39
3.1.1 From Design Model to Formal Specification 39
3.1.1.1 UML-B o 39
3.1.1.2 The B4MSecure Platform 40
3.1.1.3 The CHESS toolset 41
3.1.14 Coupling of formal methods for industrial systems
specification L 41
3.1.1.5 SYSML to formal specification 42
3.1.1.6 Discussion 0oL 43
3.1.2 Refinement of design models 44
3.1.3 EVENT-B Model Decomposition 45
3.1.3.1 Shared Variables Decomposition 45
3.1.3.2 Shared Events Decomposition 45

3.1.3.3 SYsML/KAOS EVENT-B model decomposition . . 46
3.1.3.4 Discussion 0oL 48
3.2 Requirements and Architecture Alignment 48

3.2.1 SYSML relationships between requirements and SYSML el-

ementsS e e e 49

3.2.2 The MeMVaTEx methodology: from requirements to models

in automotive application design 49

3.2.3 KAOS: Connecting the goal model with other system views . 50

3.24 UML, MARTE, SysML /Requirements Traceability 51
3.2.5 Generation and validation of traces between requirements
and architecture based on formal trace semantics 52

14

CHAPTER I. LITERATURE REVIEW

3.2.6 Traceability Between Restricted Natural Language Require-

ments and AADL Models 53

3.2.7 Discussion oo 54

4 Synthesis o o v i i i e e e e e e e e e e 55
5 Conclusion ittt e 55

15

CHAPTER I. LITERATURE REVIEW

1 Introduction

This chapter is dedicated to the presentation of background knowledge and the related
works about specifying and verifying requirements and architecture models. Furthermore,
research efforts on requirements and architecture alignment are outlined. Particularly, in
this chapter we give a broad overview about SYSML, requirements engineering approaches,
architecture modeling approaches and EVENT-B formal method. Then, we analyze the
state of art in existing tools and methods about formal specification of requirements models,
design models and correspondent formal specifications and finally, we detail works dealing
with requirements and architecture alignment. We conclude this chapter with an evaluation
of the presented works and, based on these challenges, we propose a holistic methodology

which deals with alignment.

2 Background

2.1 Systems Modeling Language SYsML

The Systems Modeling Language (SysML) [Holt and Perry, 2008, OMG, 2007| is a
graphical modeling language supporting the analysis and specification of complex systems
that may include hardware, software and human elements. Based on the unified modeling
language (UML) [OMG, 1997] as a UML profile, SYSML has been designed to be used
in system engineering to satisfy the shortcomings of UML. UML was designed to be a
common, semantically and syntactically rich visual modeling language. The UML profiles
represent an integration of a light-weight mechanism in order to extend the languages based
on the MOF (Meta Object Facility). In fact, profiles are used to customize UML for a
specific domain through extension mechanisms that enrich the semantics and syntax of the
language. However, the use of UML in system engineering applications has shown certain
weaknesses that must be solved to provide an effective language for system engineers. As

examples of shortcomings, we give:

— The need to describe the requirements directly in the model, and to ensure traceability

to the architecture.

— The need to represent non-software elements and to specify their type (mechanical,

circuit, hydraulic, wiring, sensor, etc.).

— The need to represent physical equations, constraints.

16

CHAPTER I. LITERATURE REVIEW

— The need to represent continuous flows (matter, energy, etc.).

— The need to represent logical /physical, structure/dynamic, etc. allocations.

2.1.1 Overview of SYysML diagrams

SYSML is composed of nine types of diagrams, each of which is dedicated to represent
particular concepts in a system. It reuses some of the UML proposed 13 types of diagrams
exactly as is, some have been modified and others have not been kept. These nine diagrams

are classified in three categories:
— Structural diagrams

e Block Definition Diagram (BDD): In SysML it defines features of blocks
and relationships between blocks such as associations, generalizations, and de-
pendencies. It captures the definition of blocks in terms of properties and op-
erations, and relationships such as a system hierarchy or a system classification

tree.

e Internal Block Diagram: It is based on the UML composite structure and
it specifies a structural aspect of the model. It is related to both the BDD and

the parametric diagram and describes the internal structure of a block.
— Behavioral diagrams

e Activity Diagram: It shows the flows of data and control between actions.
Activity modeling emphasizes the inputs, outputs, sequences, and conditions for

coordinating other behaviors of a block.

e Sequence Diagram: It describes the flow of control between actors and sys-
tems (blocks) or between parts of a system. It shows the vertical sequence
of messages exchanged between elements (lifelines) in an interaction. This se-
quence of messages represents "Scenarios" which highlight pertinent aspects of

a particular situation.

e State-Machine Diagram: It models the behavior during the lifetime of a

block.

e Use Case Diagram: It describes the usage of a system (subject) by its actors
(environment) to achieve a goal, that is realized by the subject providing a set

of services to selected actors.

17

CHAPTER I. LITERATURE REVIEW

— Transverse diagrams

e Requirements Diagram: It is intended to be used to represent system require-
ments and their relationships. A requirement may specify a function that a sys-
tem must perform or a performance condition a system must achieve. SYSML
provides modeling constructs to represent text-based requirements and relate

them to other modeling elements.

e Parametric Diagram: It enables constraints on system parameter values to
be represented, such as performance, reliability and mass. A constraint is rep-
resented as a block that allows the definition of rules about the properties of a

system or constraints that the system must obey.

2.1.2 SysML usage

SYSML language is represented as a communication language between the different
members of the development teams. It allows to unify the visual modeling principles using
a set of diagrams, which makes it easy to learn, to use and to document. The introduction
of SYSML in this domain was not only for simplifying the modeling and the communication
but also to offer the development community a good pillar to analyse the requirements of the
system since it is the first steps of the development through a model driven process.Among
the tools currently in use for SYSML modeling, we can cite IBM/Rhapsody [IBM, 2013],
No Magic/MagicDraw [CATIA, 2011], Papyrus (open source) [Papyrus, 2008]. These tools

are used buy the AFT project partners.

2.2 Requirements Engineering

The quality of a software system is the main measure of its success, that depends
on the degree to which it fulfills its requirements. Requirements definition is a careful
evaluation of the need that a system should fulfill. It must describe why a system is needed,
based on current or foreseen conditions, which may be internal operations or stemming
from external markets. It presents system features which serve and satisfies the system
context and defines how the system will be constructed |[Ross and Schoman Jr, 1976|.
Thus, Requirements Engineering (RE) is defined as the branch of software engineering
concerned with the real-world goals. It must address the contextual goals why a software
is needed, the functionalities the software has to accomplish to achieve those goals, and the

constraints restricting how the software accomplishing those functions is to be designed

18

CHAPTER I. LITERATURE REVIEW

and implemented. Such goals, functions and constraints have to be mapped to precise
specifications of software behavior [Van Lamsweerde, 2000|. They cover different types
of concerns: functional concerns associated with the services to be provided and non-
functional concerns associated with quality of service [Van Lamsweerde, 2001|. Goals are
very important in the RE process while they allow to achieve requirements completeness,

avoid irrelevant requirements, explain requirements to stakeholders, etc.

Goals modeling is based firstly on the identification of these goals, which may be explic-
itly stated by stakeholders or in preliminary material available to requirements engineers.
Many other goals can be identified by refinement and by abstraction, just by asking HOW
and WHY questions about the goals-requirements already available, others are identified

by resolving conflicts among goals or obstacles to goal achievement.

Several goal oriented RE approaches and frameworks have been presented such as:

— 1* [Yu, 1997]: is an agent-oriented modeling framework that can be used for require-
ments engineering, business process reengineering, organizational impact analysis,
and software process modeling. The i* framework is used to model the environment
of the system-to-be. It facilitates the analysis of the domain by allowing the modeler

to represent the stakeholders of the system, their objectives, and their relationships.

— The NFR Framework [Chung et al., 2000]: focuses on the modeling and analysis
of non-functional requirements. The goal of the framework is to put non-functional

requirements foremost in the developer’s mind.

— KAOS [Dardenne et al., 1993]: KAOS stands for Knowledge Acquisition in autO-
mated Specification, which is described as a multi-paradigm framework that allows to
combine different levels of expression and reasoning: semi-formal for modeling and
structuring goals, qualitative for selection among the alternatives, and formal, when

needed, for more accurate reasoning.

Figure 1.1 presents the goal oriented RE frameworks used in 246 publications covered by
the literature map of [Horkoff et al., 2016]. KAOS and i* appear in near to the same number
of publications (13%), the most popular choice is to use goal modeling in general, without
committing to a particular framework. It is also fairly common (7%) to significantly use

multiple frameworks together.

19

CHAPTER I. LITERATURE REVIEW

GRL, 2.44% URN, 2.44%
| =

Tropos,
5.28%

NFR, 5.69% .

Multiple,
7.32%

Figure 1.1 — Goal oriented RE frameworks use [Horkoff et al., 2016]

2.2.1 SysML/KAOS

SYsML/KAOS [Laleau et al., 2010, Gnaho et al., 2013b] is a requirements engineering
method that allows the modeling of functional and non-functional requirements of a system
as goals to be achieved. The main idea is to extend SYsML [OMG, 2007] with concepts
from the goal model of the KAOS method [Van Lamsweerde, 2009]. The choice is on
SYsML/KAOS because it provides strong semantic expressiveness.

In fact, SYSML is a modeling language for the analysis and specification of complex
systems and it is well recommended by the AFT project partners. It is a UML profile
that uses certain UML diagrams and also offers extensions such as modeling requirements.
Despite, the concepts provided by SysML to represent requirements, they are not as
extensive as in the other requirements methods because their semantics are not always
clearly defined. That is why, the first step of SYSML/KAOS approach is to extend the
SYSML requirements with concepts of the KAOS goal model, since it is the most important
aspect of KAOS.

The KAOS approach [Van Lamsweerde, 2009] is a framework for eliciting, specifying,
and analysing goals, requirements, scenarios, and responsibility assignments. It defines a
requirements modeling language for the representation of requirements to be satisfied by
the system and of expectations with regards to the environment through a hierarchy of
goals. KAOS is based on the decomposition and refinement of goals to support the entire
requirements development and acquisition process. The choice of KAOS is motivated by,

firstly, it permits the expression of several models (goal, agent, object, behavioral models)

20

CHAPTER I. LITERATURE REVIEW

and relationships between them. Secondly, KAOS provides a powerful and extensive set
of concepts to specify goal models. This allows the design of goal hierarchies with a
high level of expressiveness that can be considered at different levels of abstraction. The
most principal element is the Goal model. It shows the system functional and non-
functional goals that contribute to each other through AND /OR refinements links from
most abstract system goal down to software requirements and environment assumptions
represented by the leaf goals. Refinement and abstraction paths in a goal model are build
once preliminary goals are identified by recursively asking HOW and WHY questions
about available goals, respectively. Knowing that preliminary goals may be obtained by
analysing the strategic business objectives of the system-as-is by identifying the domain-
specific objectives to be preserved across system versions, and by addressing the reported
problems and complains about the system-as-is. A system-as-is is a reference model of the
current way in which a group of actors deal with a particular situation and how it exists
before the machine is built into it [Van Lamsweerde, 2009].

Figure 1.2 presents the extensions of SYSML. Grey boxes represent the initial SYsSML

concepts, while the white boxes represent the extended KAOS concepts. This figure
presents a meta-model of SYsSML/KAOS.

source

Towas
. | Requirement
DesignElement satisfy x :LdaF::SReq

verifyBy

. | +textReq
refine
ModelElement | * Z}
Goal
correspond

. /1’74 +TypeGoal
Domain property [o » - ﬁ
Contains Copy
Requisite |Abstract Goal }‘

iv\ |And Relationship‘ |0r Relationship‘

m ‘ Soft. agent EIementaryReqmrement Expectatlon
AndMilestone

1
Responsibility /

Responsibility

Figure 1.2 — Meta-model of the extended SYsML [Laleau et al., 2010]

21

CHAPTER I. LITERATURE REVIEW

2.2.1.1 Functional Requirements Modeling

A functional requirement describes an expected behavior of the system, upon the oc-
currence of a specific condition. The SYsML/KAOS functional requirements modeling
language combines the SYSML requirement/elements traceability with the expressiveness
of the KAOS requirements modeling language. It allows the representation of the func-
tional requirements of a system and the expectations regarding the environment in the
form of hierarchies of goals. This hierarchy is defined using three types of operators AND,
OR and MILESTONE. The AND operator is used when the only condition for the
achievement of a goal is the achievement of each of its sub-goals. When the necessary
and sufficient condition for the achievement of a goal is limited to the achievement of one
of its sub-goals, then the operator OR is used. The MILESTONE operator makes it
possible to sequence a set of sub-goals whose the satisfaction of the parent goal requires
their realisation in order. SYSML/KAOS also considers the data refinement that occurs
when goals appearing in one level of refinement are re-expressed, within a subsequent level
of refinement, due to the refinement of some data elements involved in their specification.
To take into account the complexity of the systems, the SYSML/KAOS method considers
that the "first" constructed functional goal diagram, or diagram of the highest level, is
that of the main system. The breakdown into sub-goals ends when a goal is no longer
refined. Then, this goal can be either an elementary requirement which is placed under the
responsibility of a system agent or an expectation which is placed under the responsibility

of an agent of the system environment.

2.2.1.2 Non-Functional Requirements Modeling

Non-functional requirements capture the properties or constraints under which the
system to be designed must operate, such as performance, quality or safety aspects. [Gnaho
and Semmak, 2010], [Matoussi et al., 2011b] and [Gnaho et al., 2013a] propose solutions

to define non-functional requirements and their impact on functional requirements

2.2.1.3 Domain Model Modeling

Modeling domain knowledge is one of the crucial factors to perform high quality re-
quirements elicitation. SYSML/KAOS goal model lacks of enough information to precisely

describe the structural part of systems. Some research works such as KAOS use object

22

CHAPTER I. LITERATURE REVIEW

models to describe this part. [Tueno et al., 2017b, Tueno et al., 2017c| propose a meta-
model to represent the domain model. In fact, they present a complementary work to the
[Mammar and Laleau, 2016] works by modeling the domain using ontology. The ontology

is defined as an explicit specification of a conceptualization.

2.2.2 SysML/KAOS to EVENT-B

A major remaining weakness in the development chain is the gap between textual or
semi-formal requirements and formal models. This gap becomes larger and most of the
approaches stop at requirement phase, so designers are obliged to use another method to
develop their systems. Therefore, it is difficult to validate specifications with regard to
requirements. SYSML/KAOS combines requirements engineering methods with formal

methods and defines a mapping rules to create a B specification from goal models.

2.2.2.1 SysML/KAOS functional goal formalization

The formalization of SYSML/KAOS functional goal models is presented in [Matoussi
et al., 2011a|. The proposed rules allow to generate an EVENT-B model whose structure
reflects the hierarchy of the model of functional goals: a component is associated with
each level of refinement of the hierarchy. This component defines the skeleton of an event
for each goal of the level of refinement. The EVENT-B transformation of refinement pat-
terns associated with goals is based on the classical set of inference rules from EVENT-B.
Systematic proof obligations were identified for each goal refinement pattern.

We give as an example, the transformation of the MILESTONE refinement pattern.

For an abstract event EvG and concrete events EvG1 and EvG2:

— THE MILESTONE GOAL REFINEMENT PATTERN: a syntactic extension of the
EVENT-B refinement proof rule is presented in order to provide a way to refine an
abstract event by a sequence of new events. For abstract event EvG, it is refined
as follows: (EvG1 ; EvG2) Refines EvG. In fact, in addition to the feasibility proof
obligation, this refinement pattern formalization requires to discharge these different

proof obligations:

e The ordering constraint expresses the “milestone” characteristic between the
EVENT-B events.

G1-PostCond = G2-Guard (PO1).

23

CHAPTER I. LITERATURE REVIEW

e The guard strengthening ensures that the concrete guard of the sequence (the
guard of the first event in the sequence) implies the abstract guard.

G1-Guard = G-Guard (PO2).

e The correct refinement ensures that the sequence (the action of the last event
in the sequence) transforms the concrete variables in a way which does not con-
tradict the abstract event.

G2-PostCond = G-PostCond (PO3).

These proof obligations are introduced in the ATELIERB [AtelierB, 1990] tool by extend-
ing the ref keyword which represents the EVENT-B refinement mechanism. This extension

is stated as follows:

— MILESTONE refinement of an abstract event G by a sequence of concrete events
G1, G2,..., GN is denoted by the following notation:

G1 ref milestone G ; G2 ref milestone G;...; GN ref milestone G.

More details about these proof obligations generation can be found in [Matoussi et al.,
2011a| and [ANR, 2014]. This work is carried out within the framework of the FOR-
MOSE project [ANR-14-CE28-0009, 2014] funded by the French National Research Agency
(ANR).

2.2.2.2 SysML/KAOS non-functional goal formalization

[Matoussi et al., 2011b| present a continuity of the work of [Gnaho and Semmak, 2010]
to translate non-functional goals and their impacts to EVENT-B in order to enrich the
formal specification created from functional requirements. They create a set of traceability
rules to facilitate the management of evolution of these goals with different EVENT-B

elements.

2.2.2.3 From domain model to EVENT-B specification

To provide a complete extraction of the structural part of the EVENT-B specification
obtained from SYSML/KAOS goal models and the initialisation of state variables, |Fotso
et al., 2018d| proposes a set of rules to translate SYSML/KAOS domain models (presented
in 2.2.1.3) into EVENT-B specifications. These rules have been defined with EVENT-B and

verified with RODIN [Abrial, 2010].

24

CHAPTER I. LITERATURE REVIEW

New elements may appear in the EVENT-B specification obtained from SysML/KAOS
models when specifying the body of events and/or by using formal validation and/or ver-
ification tools. Moreover, modeling is often done through several backwards and forwards
between the EVENT-B specification and SYsSML/KAOS models. |Fotso et al., 2018a] de-
fines a set of rules allowing the back propagation, within domain models for every added
element in the structural part of the EVENT-B specification. In fact, they describe these
propagation rules and how they are specified in EVENT-B, proving their consistency using

the RODIN tool.

2.2.2.4 Formalization of SYSML/KAOS Goal Assignments with EVENT-B Com-

ponent Decompositions

The use of formal methods for verification and validation of critical and complex systems
is important, but can be extremely tedious without modularisation mechanisms. Several
systems break down into sub-systems (enabling the distribution of work between several
agents: hardware, software and human). SysML/KAOS goal models allow the capture
of assignments of requirements to agents responsible for their achievement. Each agent is
associated with a sub-system. [Fotso et al., 2018c| propose an approach to ensure that a
requirement assigned to a sub-system is well achieved by the sub-system. This approach
uses formal decomposition mechanisms [Abrial and Hallerstede, 2007] to construct, from
the formal specification of a high-level system, the interface of each of its sub-systems. The
interface of a sub-system describes the requirements that the high-level system expects from
the sub-system. Proof obligations are defined to ensure that the invariants of each sub-
system are consistent with that of the high-level system. The approach thus ensures that
each sub-system achieves its expected goals with respect to constraints set by the high-level

system.

2.3 Architecture Modeling

An architecture is a description of elements within a product and the interactions
between them. These elements are grouped in a manner which fulfills some tasks that single
element can not fulfill individually. It designates also how communication and interaction
between elements is achieved.

System architecture is a conceptual model that describes the structure and behavior of

multiple components and sub-systems like multiple software applications, network devices,

25

CHAPTER I. LITERATURE REVIEW

hardware, and even other machinery of a system. It is Architecture Description Language
(ADL) |Clements, 1996] which describes the entire system architecture.

Software architecture refers to the process of creating high level structure of a software
system. It is about the complete structure/architecture of the overall system means it con-
verts software characteristics like scalability, security, reusability, extensibility, modularity,
maintainability, etc. into structured solutions to meet the business requirement. High level
architecture (HLA) [Dahmann et al., 1997] is a standard software architecture specification
that defines how to create a global simulation composed of interacting distributed simu-
lations. It contains major functional elements, interfaces, and design rules, providing a
common framework within which specific system architectures can be defined.

Therefore, a system is generally understood to be an assemblage of components that
integrates various mechanical, electronic, and information technology parts. These sys-
tems are classified as complex systems that can address heterogeneity and the interplay of
physical and software elements. Several modeling languages have been proposed to reason
about heterogeneous properties, and to develop optimized system-level solutions by assess-
ing multidisciplinary design trade-offs. A number of these modeling languages have been
standardized, such as Systems Modeling Language (SYsML) [OMG, 2007]| which focuses on
the “big picture” architectural views, whereas others, such as Architecture Analysis and De-
sign Language (AADL) [Feiler et al., 2006a] addresses the more detailed platform-oriented

and physical aspects of such systems.

2.3.1 Architecture Analysis and Design Language AADL

Architecture Analysis & Design Language (AADL) [Feiler et al., 2006a, Feiler et al.,
2006b| is a textual and graphical language used to design and analyze the software and
hardware architecture of real-time systems and their performance-critical characteristics.
It is aimed at supporting the avionics, aerospace, and automotive industry. From these
experiments in avionics, flight control, and robotics applications, this language proved its
richness and it offers expressive capabilities that go beyond the domain of avionics and it
is extensible to other software and hardware systems. AADL can be expressed in text, in
XML, as well as a graphic representation. It can be used by many different tools due to
these representations, graphical or not. The development of profiles for UML also allows
to integrate AADL within UML modeling tools. AADL was created to facilitate the in-

teroperability of the various tools, this is why its reference syntax is textual. The XML

26

CHAPTER I. LITERATURE REVIEW

representation makes it easier to create parsers for existing applications. The graphical
notation arises in addition to the textual notation, to facilitate the description of the archi-
tectures. It gives a better representation than text or XML, but it is less expressive. As an
architecture description language, AADL describes the components connected to each other
to form an architecture. An AADL description consists of a set of component declarations.

These declarations can be instantiated to form the modeling of an architecture.

2.3.1.1 Components

AADL components are defined in two parts: the interface and the implementations.
An AADL component has an interface (component type) to which correspond zero, one
or more implementations. The interface presents a specification of the component. This
specification is used by other system components to interact with the specified component.
The type of an AADL component consists of three parts: interface elements, flows and
properties. The implementation describes the internal structure of the component. Gen-
erally, a component is described as a set of sub-components. These sub-components are
instances of interfaces or implementations of other components. An implementation also

contains the connections that link the sub-components.

Component categories. AADL defines three components categories: (1) Hardware
components describe elements of the execution platform (processors, memories, buses,
etc.). (2) Software components describe the software entities that form an application
(processes, sub-program, data, etc.). Finally, (3) systems that allow to regroup different

components into logical entities to structure the architecture.

Interfaces and connections. An interface of a component provides "interface elements"
(communication ports, parameters, etc.). Components communicate with each other by
connecting their respective interface elements. An interface element models a feature that
is visible to other components. In AADL, these elements are named entities allowing a

component to exchange data and signals with the outside.

Annexes and properties. Annexes are another way to associate information with el-
ements of a description. They allow to incorporate elements written in a language other
than AADL into the model of an application. The use of annexes allows to extend the

standard AADL syntax in order to specify the behavior of components.

27

CHAPTER I. LITERATURE REVIEW

AADL introduces the notion of properties. Properties are characteristics associated
with different entities (components, connections, interface elements, etc.). These are at-
tributes which allow to specify characteristics or constraints applying to the architecture
elements: frequency of a processor, worst execution time of a process, bandwidth of a
bus... A set of standard properties is defined in the language; but it is possible to define

properties specific to a given application.

2.3.1.2 AADL tools

OSATE the Open Source AADL Tool Environment [Feiler and Greenhouse, 2005] was
developed by the Software Engineering Institute on the Eclipse platform and Eclipse Mod-
eling Framework (EMF) [Budinsky et al., 2004]. It supports the full language standard,
text and graphical editing, semantic checking, translation into the standardized XML for
AADL. The graphical editing capability is provided through TOPCASED [Gaufillet, 2005].
It is available at http://www.aadl.info. Also, the UML profile allows UML tool vendors
to provide support for the AADL. Current commercial design tools can also be modified
and extended to support the AADL. Ellidiss (www.ellidiss.com) has extended their HOOD
development environment to support modeling in AADL as well as HOOD and UML, and
to import /export AADL models. A number of toolsets based on AADL are becoming avail-
able. Ocarina [Vergnaud, 2005] is a tool suite to manipulate AADL models and generate
distributed applications by automatically producing Object Request Broker (ORB) based
middleware based on AADL models of the distributed application. The Furness toolset
[Sokolsky, 2005] uses AADL as a front-end for the Algebra of Communicating Shared Re-
sources (ACSR) [Clarke et al., 1993| for formal analysis of concurrent resource utilization
and scheduling. Cheddar [Singhoff et al., 2005] is a real time scheduling tool designed for

checking task temporal constraints of real time applications.

2.3.1.3 AADL usage

AADL allows to describe architectures with a very concrete approach. The language
offers a set of component categories of three main types: software, hardware and systems.
AADL focuses on the architectural aspects: it allows the description of the components
and their connections, but does not allow to represent their behavioral implementation,
nor the semantics of the manipulated data. These aspects can be added using the annexe

mechanism, or by associating external descriptions using properties. In the same way, the

28

CHAPTER I. LITERATURE REVIEW

various constraints applying to the system or the deployment of the applications on the

hardware can be expressed by means of properties.

2.3.2 Modeling and Analysis of Real-Time and Embedded systems MARTE

profile

MARTE (Modeling and Analysis of Real-Time and Embedded systems) [OMG, 2008| is
an Object Management Group (OMG) standard UML profile, inspired by the uml profile
for Schedulability, Performance and Time [OMG, 2005]. The MARTE profile provides
constructs to accurately model non-functional properties, time, and resources. It allows to
model hardware and software execution platforms, and to allocate elements of a real-time
application embedded on these platforms. It also allows to apply quantitative analyzes
(scheduling or performance analysis) from these models, and validate the system design.
These extensions are generic and are not dedicated to any particular execution model,
analysis technique or implementation technology. MARTE is therefore applicable to a
wide variety of engineering methodologies and processes. It can be considered as being to

the field of embedded real time while UML is to the field of software.

2.3.2.1 MARTE architecture

« profile »
MARTE
—
MARTE foundations ;
e W E
- N -1
MARTE desigh model |«---- MARTE analysis model MARTE annexes

Figure 1.3 — Overall architecture of MARTE

The profile is structured around two concerns, one to model the features of real-time
and embedded (RTE) systems and the other to annotate application models to support
analysis of system properties. Figure 1.3 presents the structure of this profile. The MARTE

design model package provides a domain-specific language for modeling phenomena specific

29

CHAPTER I. LITERATURE REVIEW

to RTE systems. The MARTE analysis model package is a viewpoint-based sub-profile
suitable for model analysis. These two major parts share common concerns with describing
time and the use of concurrent resources, which are contained in the shared package called
MARTE foundations. A fourth package contains the annexes profiles defined in MARTE
which define a complementary cross-cutting modeling constructs, as well as a predefined
model libraries that may be used by modelers to denote their real-time and embedded
applications [Kordon et al., 2013, Mallet, 2015].
— MARTE Foundations. The foundation package is divided into five chapters:

e CoreElements define configurations and modes, which are key parameters for
analysis.

e NonFunctionalProperties sub-profile allows to describe the quantitative as well
as the qualitative aspects of properties.

e Time sub-profile defines the concept of time, which is of top priority for the
embedded real-time systems.

e Generic Resource Modeling sub-profile provides annotations to satisfies platform
modeling.

e Allocation gives a compatible way to make this deployment.

— MARTE design model. The design model package has four chapters:

e High level application modeling provides a set of extensions to the UML that
allow to annotate the elements of a model

e Generic component modeling reviews the composite structures of UML and
extends one of its sub-models in order to better address the domain-specific
requirements in terms of component-based modeling.

e Software Resource Modeling (SRM), and Hardware Resource Modeling (HRM):
these two sub-profiles specialize the Generic Resource Modeling sub-profile in
order to provide a basis for the modeling of software and hardware platforms.

— MARTE analysis model. The analysis model package also has a sub-profile that
defines generic elements to perform model-driven analysis on real-time and embedded
systems. This generic sub-profile is specialized to address schedulability analysis and
performance analysis.

— MARTE annexes. The MARTE annexes integrate the set of extensions defined in

the norm, the set of the libraries and the models. They propose an advanced textual

30

CHAPTER I. LITERATURE REVIEW

editor of the value description language (VSL) and encompass two other sub-profiles:
the repetitive structure modeling (RSM) sub-profile and MARTE library sub-profile.
The RSM sub-profile allows to describe systems-on-chip of the massively parallel
computing type, such as systems that implement image processing algorithms. The
MARTE library sub-profile defines a model library that contains a set of primitive

types and structured types in a normative annex.

2.3.2.2 MARTE usage

MARTE supports different domains modeling and /or different analysis techniques while
its time model is rich and it combines physical and logical clocks. However, MARTE is
not expected to be used as a whole in a single specification. It is expected to be the base
of several complementary methodologies that cover different aspects of a system. This
chapter covers one aspect and proposes a partial usage to capture important features. It
is not intended to offer a comprehensive cover of all aspects. Several research works have
compared the MARTE profile with some popular existing profiles and standards such as
AADL, for example the |[Faugere et al., 2007] work. Designers can use MARTE to model
their AADL applications at earlier design stages. Similarly, models can be conceived for
different views related to time properties, performance and scheduling. Once the appli-
cations have been developed, designers can take advantage of existing AADL validation
and verification techniques and tools. These validation/verification aspects would come
as a compliment to current MARTE aspects. MARTE has become the preferred defacto
industry standard for the modeling of RTE systems while it shares common concepts with

ADLs such as AADL, other standards and UML profiles.

2.3.3 Combining architecture modeling languages
2.3.3.1 Combining SysML with AADL

SysML and AADL are two standardized modeling languages specified for designing
system architectures, but none of them provide the full range required to deal effectively
with a specific kind of system architecture. |Behjati et al., 2011 propose an approach to
combine these two languages, since they are both widely used in industry with adequate tool
support. In fact, as shown in Figure 1.4, SYsML and AADL are mutually complementary.

SYSML supports requirements engineering, traceability, and precise modeling of diverse

31

CHAPTER I. LITERATURE REVIEW

physical phenomena. On the other hand, AADL is oriented to model real-time embedded
systems. It provides a software to hardware bindings in such systems allowing analyses
of different system properties such as performance, timing, etc... The contribution behind
this approach is then to extend SYSML using the UML profile extension mechanism to
cover all AADL concepts. This profile is called Extended SysML for Architecture
Analysis Modeling (ExSAM).

Requirements, Traceability, @
Parametric models, Interactions

Modes/State Machines, @ SysML
Components/System Blocks,
Component Interactions/Block Flows ExSAM

AADL cED GH GI GD GD Gb Gb G G G G G @ G @ o

Quantitative Analysis,
Hardware-Software Component Categories,
Software to Hardware Binding

Figure 1.4 — The relationship between SYSML, AADL, and the combined profile ExSAM.
[Behjati et al., 2011]

Figure 1.4, level 2 shows the overlapping concepts between these two languages. How-
ever, they have different meanings, usages or design rationales. That’s why this profile
should resolve inconsistencies or augment either side of the mappings with constraints
to account for semantic differences. The main idea of this profile is to satisfy SysML
limitations in order to address important AADL concepts.

AADL provides two mechanisms for declaring components: using the component type
construct or using the component implementation construct. SYsML blocks are used to
model both AADL component types and AADL component implementations using two
newly defined stereotypes «ComponentTypes and «ComponentImply. In fact, using blocks
for modeling components allows to easily use other SYSML constructs (e.g. parts and ports)
to model AADL constructs (e.g. subcomponents and ports) associated with a component.

AADL software component categories and AADL hardware component categories are-
defined as stereotypes with a set of attributes representing the properties of the corre-
sponding component category.

The applicability and usefulness of ExSAM were investigated through two case studies.
One benchmark case study showed that ExSAM can fully cover all AADL aspects and one
large-scale industrial case study, showed that ExSAM was sufficient to satisfy the modeling

needs of industrial partners, while AADL and SYsML alone were not.

32

CHAPTER I. LITERATURE REVIEW

2.3.3.2 Combining SysML with MARTE

The lack of a common design language between different disciplines hampers the rea-
soning about system properties. Designers of one part of the system may make wrong
assumptions concerning some other parts that result of the increasing development costs
due to long feedback cycles. |Espinoza et al., 2009] investigate the possibility of combining
these two languages, SYSML and MARTE, since they are both widely used in industry.
SYsML [OMG, 2007| provides constructs to specify traceable requirements, structure and
behavior of system blocks, as well as a parametric formalism to specify equation-based
analytical models. MARTE (modeling and Analysis Real-Time and Embedded systems)
[OMG, 2008] deals with time- and resource-constrained aspects, and includes a detailed
taxonomy of hardware and software patterns along with their non-functional attributes
to enable state of the art quantitative analyses. The purpose of [Espinoza et al., 2009]
paper is to identify some scenarios in which the usage of the combination of the two pro-
files is of relevant added value in the embedded systems domain. SyYsSML and MARTE
consider characteristics of the embedded systems domain at different abstraction levels,
architectural styles, and particularly for specific purposes or application areas.

Modeling capabilities of both SYSML and MARTE are rich enough for a wide range of
design approaches. In particular, SYSML does not define any specific viewpoint, but it pro-
vides a means to specify how views are built, and to relate any user-specific view to a given
viewpoint. Although MARTE does not provide any concrete model element to define view-
points, it has an implicit conception of viewpoints rooted in its design rationale. Indeed,
some of the MARTE constructs have been designed to define domain-specific viewpoints.
Therefore, SYSML and MARTE can be used in a complementary way. While SYsML
provides means to create viewpoints in a general way, MARTE provides particular view-
points. As an example for Requirements Management /Traceability, SYSML requirements
diagrams explicitly show the various kinds of relationships between different requirements.
On the other hand, MARTE offers key features to specify non-functional requirements in
general and timing requirements in particular.

Integration strategies for combining the SYSML and MARTE profiles were presented
in |Espinoza et al., 2009] work. Both provide essential ingredients to model embedded
systems. The intent of this paper is to offer a better understanding of their conceptual
domains, and to help in using both profiles in a single model by avoiding semantic and

syntactical mismatches.

33

CHAPTER I. LITERATURE REVIEW

2.4 EVENT-B Formal Method

In software engineering, formal methods [Wing, 1990, Rodhe and Karresand, 2015]
are techniques that allow rigorous mathematical logic reasoning over computer programs
or electronic devices to demonstrate their validity with respect to a certain specification.
Formal methods allow a complete check of the entire system states and the properties that
can be proved in the system are valid for all possible inputs. When formal methods can
not be used throughout the development process (due to system complexity, lack of tools
or other reasons), they can still be used on parts of the system.

EVENT-B is a formal method introduced by Jean-Raymond Abrial [Abrial, 2010] spe-
cialized in modeling dynamic systems, which has been used in safety-critical systems such
as the Paris Metro line. As an evolution of the B-Method (called Classical B) [Abrial
and Hoare, 1996|, it specifies discrete systems based on mathematical notations, predicate
logic and set theory. It is used to model systems, which could contain different types of
components: software, hardware or humans, and to define the interactions between these
components. An EVENT-B specification is composed of a set of elements of two kinds: Ma-
chine and Context. The Machine represents the dynamic part of the model and it regroups
the behavioral properties of the system whereas the Context contains the static part of the

model. A model can contain machines only, or contexts only, or both.

CONTEXT MACHINE
<identifiant_contexte- <identifiant_maching>
EXTENDS REFINES
<liste_identifiant_contextes: <identifiant_machine=
SETS SEES
<liste_identifiant_ensemble s> <liste_identifiant_contextess
CONSTANTS VARIABLES
<liste_identifiant_constantes= <liste_identifiant_variables=
AXIOMS INVARIANTS
<labgl-: <prédicat> <label=: <prédicat>
THECREMS THEOREMS
<labal>: <prédicat> <label>: <prédicat=
END VARIANT
<variant=
EVENTS
<liste_événements=
END

Figure 1.5 — EVENT-B components structure

2.4.1 Machine

A machine is identified by a name and contains various clauses organized as follows:

— REFINES: a machine could be refined by another machine, this refinement is de-

34

CHAPTER I. LITERATURE REVIEW

fined in the clause REFINES and it is used to gradually introduce the details and

complexity into a model.

— SEES: a machine can see one or several contexts thus by adding the name of the

context in the clause SEES.

— VARIABLES: clause VARIABLES represents the state variable of the model. The

changing of the variable values reflects the state in which the system is located.

— INVARIANTS: clause INVARIANTS lists the various predicates, which the variables
must obey, at least, the typing of variables declared in the clause VARIABLES.

— THEOREMS: clause THEOREMS lists the various theorems, which have to be

proved within the machine.

— VARIANT: The VARIANT clause appears in a machine containing some convergent

events.

— EVENTS: clause EVENTS regroups events that specify the evolution of the state
variables defined in the specification of the system. All variables should be initial-
ized in the machine, a particular event called INITIALISATION is defined for this

purpose.

2.4.2 Context

A context has an identifier, which must be distinct from all other component (machine

or context) names within the same model. It contains various clauses organized as follows:

— EXTENDS: a context can extend optionally one or several other contexts by adding
its name in the clause EXTENDS. This means that the present context can use all

sets and constants of the extended contexts and of their extended contexts.

— SETS: clause SETS describes a set of abstract and enumerated types, which are the

basic types of the specification.

— CONSTANTS: clause CONSTANTS represents the various constants introduced in

the context.
— AXIOMS: clause AXIOMS contains all the properties of the constants and their
types.

— THEOREMS: lists the various theorems, which have to be proved within the context.

35

CHAPTER I. LITERATURE REVIEW

A context could be seen by a machine in order to use its sets and constants to type the
machine variables.
EVENT-B is based on two main mechanisms to master the complexity of a system which

are refinement and model decomposition.

2.4.3 EVENT-B refinement

EVENT-B refinement is a process that allows to gradually introduce the different parts
that constitute the system starting from an abstract model to a more concrete one. At
each refinement level, system details are gradually added into the concrete model which
must preserve the functionality and properties of the more abstract models. A machine
refinement consists in adding new variables and/or replacing existing variables with new
ones. A link between the abstract machine variables and the refinement machine variables
is explicitly defined by gluing invariants. Events can be refined and new ones can be
introduced. The refinement of an event has to verify that the guard of the refined event
should be stronger than the guard of the abstract one and the effect of the refined action
should be stronger than the effect of the abstract one. A context can also be extended
with other contexts by adding new modeling elements (sets, constants and axioms).

The EVENT-B method is a state-based specification method. EVENT-B refinement en-
sures that specified state variables of the concrete specification are consistent with specified
state variables in the abstract specification. In fact, event based specification refinement is
expressed in a sequence of events accepted by the specification, while state-based specifica-
tions are expressed in terms of the effect of events on state variables. Here, two properties
are verified : consistency and accessibility. The refinement consistency is verified if a
sequence of events is accepted by the concrete specification and has an effect on state
variables, then a corresponding sequence of events is accepted by the abstract specification
and the effect of this sequence on variables states matches. The refinement accessibility
consists of if an abstract event is allowed in a state, a corresponding concrete event must

be allowed in a corresponding state.

2.4.4 EVENT-B model decomposition

EVENT-B model decomposition is a powerful mechanism to scale the complexity of
the design of large and complex systems. An EVENT-B model can be decomposed into

several simple sub-components which can be refined separately and more comfortably than

36

CHAPTER I. LITERATURE REVIEW

the whole. Many approaches allow to decompose an EVENT-B model, particularly, the
shared-variable decomposition [Abrial, 2009| and the shared-event decomposition [Butler,
2009b]. Shared-variable decomposition is suitable for shared memory parallel systems,
whereas shared-event decomposition is more suitable for distributed system development.
The shared-variable decomposition approach consists in distributing the events of a model
over the selected sub-components. It allows the introduction of shared variables and ex-
ternal events. These ensure that the behavior of shared variables is preserved in all sub-
components. After that, further refinements then concentrate on how each sub-component
processes shared state variables. The shared-event decomposition is a set of events that
are synchronized and shared by sub-components. This approach defines a partial version
of a global event in each sub-machine, when the variables of a global event are distributed
between separate sub-machines. This is to simulate the action of the global event on the
considered variables. The recomposition of the refined sub-components gives rise to a

component which should refine the initial abstract component.

2.4.5 EVENT-B Proof obligation

The proof of the correctness of the EVENT-B models is one of the most important
aspects of EVENT-B method. To ensure this correctness, a set of proof obligations (denoted
PO) must be discharged. These proof obligations concern different aspects of the model
such as the verification of the invariants properties of an EVENT-B machine or the proof

of the correctness of a refinement. There is a different types of proof obligations.

— Invariant preservation: An invariant is a property that the system must always pre-
serve while its evolution. For this, each triggering of any event must always verify
this property preservation.

— Feasibility: Each event in an EVENT-B machine must always be feasible. Feasibility
requires that a new value actually exists for each event having a substitution. This
means, for a variable value before the triggering of an event, it should satisfy the

guard of the event and satisfies the system invariant.

— Theorems: Recall that theorems in EVENT-B are formulas that can be useful for
rewriting the invariant in a specific form or proving lemmas. The proof obligation
consists in proving that these formulas are deduced from the invariant of the machine
as well as the set of predicates in the AXIOMS and THEOREMS clauses of the

context.

37

CHAPTER I. LITERATURE REVIEW

— Abstract event refinement: This proof obligation guarantees that the abstract event

is correctly refined by the concrete event.

— Guard strengthening: The purpose of this proof obligation is to make sure that the
concrete guards in a concrete event are stronger than the abstract ones in the abstract
event. This ensures that when a concrete event is enabled, so is the corresponding

abstract one.

— Well-definedness: This proof obligation rule ensures that a potentially ill-defined

axiom, theorem, invariant, guard, action, variant, or witness is indeed well defined.

More details about proof obligations are found in [Abrial, 2010].

2.4.6 Tools Environments for EVENT-B

The EVENT-B modeling language is supported by the AtelierB [AtelierB, 1990] envi-
ronment, by the Rodin platform [Abrial et al., 2010] and by the ProB model checker and
animator [ProB, 2003|. These environments provide facilities for editing machines, refine-
ments, contexts and projects, for generating proof obligations corresponding to a given
property, for proving proof obligations in an automatic or/and interactive process and for
animating models. The internal prover is shared by AtelierB and Rodin and there are
hints generated by the prover interface for helping the interactive proofs. However, the
refinement process of machines should be progressive when adding new elements to a given
current model and the goal is to distribute the complexity of proofs through the proof-
based refinement. These tools are based on logical and semantical concepts of EVENT-B

models (machines, contexts, refinement).

3 State of the art

This section gives an overview of state-of-the-art contributions for designing system
models and their alignment with stakeholders needs. Particularly, we are interested in (i)
design models and their formal specification, (ii) requirements and architecture alignment.
The first part presents works about architecture modeling and their translation into for-
mal specification. These works present approaches using UML and its variants (SysML,
MARTE, ...) which are aligned with our proposed methodology and the translation of

graphical models into formal specifications, precisely EVENT-B, which is recommended for

38

CHAPTER I. LITERATURE REVIEW

critical systems. The second part presents research works dealing with alignment and trace-
ability issue between design models and requirements. These works define relationships and
traces established between UML, SysML, MARTE, ... design models and requirements

presented as models or textual specifications.

3.1 Design Model and Formal Specification
3.1.1 From Design Model to Formal Specification

Formal methods are specifically used for complex systems and more precisely for safety
critical systems because they need to be robust and reliable. Formalizing and abstracting
functionalities through specifications, in a "mathematical" way, make the verification pro-
cess easier to be applied in order to rigorously check the correctness of these systems. The
use of formal methods is thus recommended and a recent study of technological efforts con-
cerning the use of formal methods in railways performed in 2017 [ASTRAIL, 2017| claims
that “this analysis has shown a large variety of formal tools used, with a dominance of the
tools associated to the B family”. This is reaffirmed in [Bonvoisin, 2016]. However, using
formal methods leads to complex models which may be difficult to read, understand and
modify.

Graphical languages are used for visualizing, specifying, constructing and documenting
software systems in a simpler way. [ASTRAIL, 2017] also concludes by claiming: “This
analysis has shown a dominance of the UML modeling language for high-level representa-
tion of system models ...". However, the semantics of UML are given in natural language,
which does not allow formal and rigorous reasoning necessary for critical systems for which
safety and security are major concerns. So the complementarity between these two tech-
niques and how to link them one to the other are the objective of several research works,

methods and tools.

3.1.1.1 UML-B

UML provides graphical models that facilitate communication of ideas and system
process understanding but lacks of formal semantics. The B method [Abrial and Hoare,
1996] allows rigorous formal verification and animation but requires significant effort in
training to overcome the mathematical barrier that many practitioners perceive. To cope

with these problems, [Snook and Butler, 2006] propose a derivation of the B notations as

39

CHAPTER I. LITERATURE REVIEW

an action and constraint language for UML via the UML profiles mechanism and define the
semantics of UML entities via a translation into B. UML-B profile provides specializations
of UML entities to support model refinement. The result is a formally precise variant of
UML that can be used for refinement based object-oriented behavioral modeling. The
currently developed version of this profile uses the EVENT-B method and is integrated into
Rodin [Abrial et al., 2010].

This approach is based on UML class and state-machine diagrams. Class diagrams allow
to specify structures of the system. Associations are translated into relationships between
the sets and class methods are translated into events which allows to manage these sets.
State-machine diagrams define the system components behaviors. In EVENT-B, state-
machine transitions are translated into events. state-machine states can be translated into
constants, and a state variable which takes the value of the current state.

The integration of the tool supporting this approach in Rodin includes the UML drawing
tools and a translator to generate EVENT-B models. This tool allows to automatically
generate the corresponding EVENT-B models, every time a drawing is saved. The EVENT-B

verification tools (syntax checker and prover) then run automatically.

3.1.1.2 The B4MSecure Platform

The B4MSecure platform [Idani and Ledru, 2015| is a model-based approach which al-
lows a graphical modeling and formal reasoning on both functional and security models of
a system. This approach is based on UML for the functional description and SecureUML
|[Lodderstedt et al., 2002] for the access control rules. It generates B formal specification
which allows rigorous verification of the system functional and security models. These mod-
els are firstly validated separately, and then integrated in order to verify their interactions
and complementarity. The B4MSecure platform allows, on the one hand, the separation of
concerns, and on the other hand, the identification of links between functional and security
models. In fact, it allows a graphical modeling using UML class diagram customized with
access control policy concepts introduced by a UML profile for RBAC (Role Based Access
Control) inspired from SecureUML. Also, it assures the translation of both models into B
specifications in order to formally verify them.

This platform produces one B model, from the functional UML class diagram, gathering
its structural properties and all basic operations (constructors, destructors, getters and

setters) and a second B model is produced from the UML class diagram customization with

40

CHAPTER I. LITERATURE REVIEW

RBAC concepts to represent the security applied on functional models. Also, additional
invariants and user-defined operations can be added manually to take benefit of a proof
tool like AtelierB in order to validate the consistency of the functional specification. The
platform provides an annotation mechanism which allows the integration of B invariants
and specification of operations in the graphical model. This functionality is useful to avoid

inconsistent evolutions of the graphical and formal methods.

3.1.1.3 The CHESS toolset

[Cicchetti et al., 2012] and [Mazzini et al., 2016] present the CHESS toolset, a tooled
MDE approach for cross-domain modeling of industrial complex systems. These works are
based on an extension of UML, SYsML and MARTE modeling languages which allow the
specification of well-defined design views, each of them addresses a particular aspect of
the problem. The CHESS toolset allows code generation toward multiple target languages
and property description, verification, preservation and dependability using a dedicated
UML profile. This methodology supports the separation of concerns principle, strictly
separating the functional aspects of a component from the non-functional ones. In fact,
this approach relies on SYSML for the modeling of requirements and for the system level
design, on UML for modeling software aspects of the system, and on MARTE for describing
real-time aspects, staying as close as possible to the standard modeling languages. In
particular a profile has been defined on top of UML to model failures definition and their
intra/inter-components propagation, while SYSML has been extended to offer support for
contract-based design. MARTE has been used and extended to be able to model real-
time properties such as schedulability, end-to-end response time and different scheduling
algorithms for multicore deployments.

The CHESS methodology enables early verification, as possible inconsistencies and
integration issues will be raised at the earliest stages of the process. It also supports system-
software co-engineering as a seamless process, by keeping traceability between system level
entities and requirements on one side and the corresponding software and hardware level

entities on the other side.

3.1.1.4 Coupling of formal methods for industrial systems specification

[Fayolle, 2017| approach proposes to couple a formal graphical notation called Algebraic

State Transition Diagrams (ASTD) with an EVENT-B specification in order to provide a

41

CHAPTER I. LITERATURE REVIEW

better representation of the software behavior. The behavior is captured by ASTDs, based
on automata and process algebra operators, while the data model is described by means of
an EVENT-B specification. A set of properties can be checked. For instance: if a transition
can be executed according to the ASTD specification, then the corresponding event in
the EVENT-B specification can be executed, or an EVENT-B machine corresponding to an
ASTD must be able to execute all the sequences of events corresponding to the sequences

of transitions of the ASTD.

3.1.1.5 SysML to formal specification

[Mentré, 2016| present an approach to transform SysML diagrams into a B specifica-
tion. This approach proposes the use a graphical design of the architecture of a B software
using SYSML model and automatically transforms this model into a B specification. This
work focuses on the architecture of the system and its contained software. Therefore, it
considers only Block Description Diagram (BDD) and Internal Block Diagram (IBD). This
approach prototype was built upon the Eclipse environment, with Papyrus [Papyrus, 2008]
SYsML editor and Acceleo [Musset et al., 2006] model transformation language.

[Salunkhe et al., 2021] propose a transformation using Triple Graph Grammars (TGGs)
[Schiirr, 1994] from SYSML to EVENT-B. The aim is to identify the subset of the EVENT-B
language and SYSML language, which is necessary and appropriate for the transformation,
then search for the semantic similarities between both constructs and finally define a trans-
formation from SYsML to EVENT-B using MDE techniques. This work is an advancement
of the MBSE approach explained in [Berglehner et al., 2019]. In [Berglehner et al., 2019,
the SYSML state-machines are transformed to equivalent UML-B state-machines using
UML-B plug-in [Snook and Butler, 2006]. Later, UML-B state-machines are used to gen-
erate EVENT-B code, and then the safety requirements are verified. The overall approach
is time-consuming and increases the overall life cycle cost. From these challenges the work
of [Salunkhe et al., 2021] is motivated. In fact, it proposes a methodology and tool-chain
to automate the transformation of SYSML specification models into EVENT-B models.
Also, the traceability behind this transformation should be maintained between informal
requirements and the modeled system, specifically for the safety properties. The main
objective of this approach is to verify SYSML models against such safety requirements us-
ing formal methods with some tool support and reduce the efforts involved in the manual

transformation of a SYSML semi-formal model to an EVENT-B model. The implemented

42

CHAPTER I. LITERATURE REVIEW

prototype is limited to the simple and most relevant concepts of SYSML state-machines.
The transformation rules are defined using eMoflon-IBeX [Weidmann et al., 2019].

The work of [Poorhadi et al., 2022] proposes an integrated approach to combine SysML
graphical modeling with EVENT-B for formal specification and verification. The aim of
this approach is to reason about safety and security interactions at system modeling stage.
It also allows to visualize and formalize the analysis of the impact of security attacks on
system safety. The SysML subset used in this work contains block definition diagrams,
state-machine diagrams and sequence diagrams. The translation of these SYSML elements
into EVENT-B aims at achieving two goals. Firstly, it checks the correctness of the SYsML
diagrams and verify their consistency. Secondly, it analyzes the impact of cyber-attacks on
system safety. Safety properties are defined as invariants in the final model. Proofs should

be discharged without introducing any further assumptions.

3.1.1.6 Discussion

The UML-B and B4MSecure approaches propose a derivation of formal specification
from graphical modeling. These approaches are based on UML class and state-machine
diagrams and use UML profiles mechanisms to conduct the transformation into B notations.
However, these approaches reason about graphical design formally, but they require a basic
designer knowledge about the B notations to use correctly the UML-B profile and to add
safety invariants.

The CHESS toolset allows code generation toward multiple target languages and prop-
erty description, verification, preservation and dependability through a dedicated UML
profile. However, this approach do not allow system/sub-systems model decomposition
and refinement mechanisms which are particularly well suited to HLA modeling.

[Fayolle, 2017| proposes to link ASTDs with EVENT-B specifications in order to provide
a better representation of system behavior. However, the use of SYSML rather than other
graphical modeling language is advantageous since SYSML offers a set of concepts more
relevant to model systems. Moreover SYSML is recommended by the AFT project partners.

The SysML to formal specification approaches presented in 3.1.1.5 provide a model
transformation into formal specifications (B and EVENT-B). Their aim is to reason about
safety and security interactions at system modeling stage. However these approaches lack
of system/sub-systems decomposition and refinement mechanisms which are particularly

recommended to HLA modeling. Furthermore they do not allow to demonstrate require-

43

CHAPTER I. LITERATURE REVIEW

ments/HLA alignments and how HLA elements participate in satisfying stakeholders needs.

3.1.2 Refinement of design models

Refinement of design models can be used in a top down way in order to reduce system
complexity by gradually enriching abstract models with more details, while ensuring that
the detailed description preserves the original abstraction. Models refinement can also
be used in a bottom up way, to reverse engineer existing systems in order to enrich the
abstractions encoded in the concrete models.

EVENT-B refinement is used to relate system models at different abstraction levels.
These abstraction-refinement concepts can also be applied in UML models [Said et al.,
2009]. The notion of refined classes and inherited attributes in UML-B corresponds to the
variables refinement in EVENT-B. In UML-B refinement, a machine that refines a more
abstract machine may contain refined classes where each refined class refines a class of its
abstract machine. A refined class can inherit attributes of its abstract class and can drop
some of the attributes of its abstract class. A refined class can introduce new attributes.

State-machines are refined by building abstract states with nested sub-states. In UML-
B refinement, a machine can contain refined state-machines and refined states. The struc-
ture of a refined state-machine is an elaboration of the structure of its abstraction in two
possible ways: each transition is replaced by one or more transitions and an abstract state
can be refined by a nested state-machine. These nested state-machines are modeled in
state-machine diagrams different from their parent state-machine diagrams. In a nested
state-machine, a transition with an initial source state contains at most one incoming
transition to the super-state and a transition with a final target state contains at most one
outgoing transition from the super-state.

[Fayolle, 2017| uses two refinement mechanisms. The first one is to refine an ASTD
specification and the other one is to refine data specification in EVENT-B. ASTD refine-
ment [Frappier et al., 2014] is defined as follows: a concrete ASTD must preserve the traces
accepted by the refined ASTD. It allows the addition and removal of states and transitions.
The EVENT-B refinement in this approach is the classical one.

Papers [Lima et al., 2017] and [Miyazawa and Cavalcanti, 2014] propose a definition
of guidelines of usage for construction of meaningful SYSML models and a semantics for
SYSML models. This work focuses on a set of SYSML diagrams which are block defini-

tion, internal block, state machine, activity, and sequence diagrams and refinement-based

44

CHAPTER I. LITERATURE REVIEW

analysis and verification is supported by providing a semantics for these SYSML elements.
Using these semantics, notions of refinement of complete SYsSML models are defined and
can be used to support refinement laws that support the transformation of diagrammatic

models.

Discussion EVENT-B refinement is an important mechanism to gradually introduce the
different parts that constitute a system starting from an abstract model to a more concrete
one. The refinement mechanisms allow to enrich models with more details but it does not
allow a decomposition between different models describing systems components. That is
why, a decomposition mechanism between a system and its corresponding sub-systems is
required to simulate the behavior of each sub-system independently of its parent system
and to manage the interplay of the sub-systems behaviors which satisfy the parent system

tasks.

3.1.3 EVENT-B Model Decomposition

Model decomposition is a powerful tool to scale the design of large and complex systems.
The main idea of the decomposition is to cut a model M into sub-models M1, ..., Mn, which
can be refined separately and more comfortably than the whole. Many approaches have
been proposed to deal with the EVENT-B decomposition issue: generic instantiation [Abrial
and Hallerstede, 2007], the shared variable decomposition [Abrial, 2009], the shared event

decomposition [Butler, 2009a], the modularization [Hoang et al., 2011], etc.

3.1.3.1 Shared Variables Decomposition

Abrial et al. [Abrial and Hallerstede, 2007, Abrial, 2009| present decomposition as a
part of the state information (variables) that is shared between sub-components. Further
refinements then concentrate on how each component processes shared state information.
This approach proposes to handle the variables shared between several events, using ex-

ternal variables and events.

3.1.3.2 Shared Events Decomposition

[Butler, 2009a] present a decomposition approach, using shared events. A shared-event

decomposition is a set of events that are synchronised and shared by sub-components

45

CHAPTER I. LITERATURE REVIEW

el e2 el ed

lofk o

]
M1 / \ M2
3 e e2

el e2 e3_ e el el

g @

Figure 1.6 — Shared Variables Decomposition

[Hoang et al., 2011|. This approach consists of defining a partial version of a global event
in each sub-machine, when the variables of a global event are distributed between separate

sub-machines, to simulate the action of the global event on the considered variables.

Machine S

el e2

(a)

Machine T Machine W

el e2' e2" e3 ed
(b) (c)

Figure 1.7 — Shared Events Decomposition

3.1.3.3 SysML/KAOS EVENT-B model decomposition

SYsML/KAOS goal models allow the capture of assignments of requirements to agents
responsible for their achievement. Each agent is associated with a sub-system. [Fotso et al.,
2018¢| propose the use of a formal decomposition strategy shown in Figure 1.8, applied

at the most concrete level of the EVENT-B specification of the high-level system (parent

46

CHAPTER I. LITERATURE REVIEW

S
M
M_refl
M_ref2
x1,x2,x3
I(x1,x2,x3)
E1(x1,x3), E2(x2,x3)
T 1
. -
I
s1 l ; 52
|
! -
Ml_i i i M2_|
x1,x3 ! i x2,x3
nex3)| 1 12(x2, x3)
E1(x1,23) E2(x2,x3)
A
M1 M2
A Iy
M1_refl M2_refl

Figure 1.8 — [Fotso et al., 2018c| EVENT-B model decomposition

component), to build sub-systems interfaces. The definition of an EVENT-B components
called interfaces will bridge the gap between system and sub-systems specifications. This
interface defines events that correspond to the goals that the system assigns to the sub-
systems. It also defines variables involved in these events and their constraints. Invariant
predicates that define properties involved in sub-components also should be assigned to the
corresponding sub-component. To ensure that the sub-system specification conforms to the
interface specification, the most abstract level of the formal specification of a sub-system is
defined as a refinement of the sub-system interface. For an interface corresponding to the
agent, internal events of the interface are the correspondences goals assigned to the agent.
The variables of the interface are the ones involved in its internal events. If an interface
variable appears in another interface, then it is an external variable. Otherwise, it is
an internal variable. External events are defined in the interface, to emulate how external
variables are handled in other interfaces. Each external event is an abstraction of an internal
event defined in another interface. In this approach, [Fotso et al., 2018c| advocate also a
set of conditions that are necessary and sufficient to decompose the invariants involving

variables assigned to different interfaces.

This approach allows to avoid the difficulties lying in the definition of external events

47

CHAPTER I. LITERATURE REVIEW

such as redundancy of the same behavior associated with an external variable in each
interface where the external variable appears and the partitioning of guards and actions of
an event to consider only the variables of the interface where the external event must be
defined. This is achieved by defining a link between sub-systems interfaces and the most

concrete component of the high-level system specification.

3.1.3.4 Discussion

These approaches allow to reduce the complexity of the final level of modeling critical
systems, which can lead to complex and voluminous models, using model decomposition
techniques. Although, the real difficulty lies in the determination of the refinement level
from which to introduce the decomposition. Regarding the shared event approach, it may
be difficult, once the distribution of variables has been done, to separate the guards and
actions of events in order to construct the partial events (a variable cannot appear in two
different sub-machines). Also, not all actions are accepted to be decomposed and variables
partitioning is not always possible. Regarding invariants, the user selects which invariant
predicate should be assigned to which sub-component. However, for the shared variable
decomposition, shared variables and external events must be present in the resulting sub-
components and cannot be refined when refining these sub-components. Adding to that,
these approaches are about only formal specifications and their decomposition with no
easy-way to give a simpler presentation for no formal specifications stakeholders such as
system graphical modeling and decomposition.

The approach of [Fotso et al., 2018¢| focuses on ensuring that a requirement assigned to
a sub-system is well achieved by this sub-system. The approach uses a formal model decom-
position strategy and proof obligations to guarantee that sub-system goals are consistent
and meet system requirements expressed in SYSML/KAOS models that are translated
into EVENT-B specifications. Although, this approach provides formal specifications and
graphical model decomposition but it is limited only to RE step and does not provide a
complete view about the software design process and more precisely about its architecture

modeling.

3.2 Requirements and Architecture Alignment

Requirements traceability is defined as the ability to follow the life of a requirement

in both backward and forward directions. A RE process should be defined, which allows

48

CHAPTER I. LITERATURE REVIEW

to identify, control and monitor requirements and its changes in each project step. This
requirements tracing is based on relationships between requirements themselves or between
requirements and design artifacts. Several research works have proposed methodologies to

build these kinds of relationships.

3.2.1 SvysML relationships between requirements and SYsML elements

SYsML [OMG, 2007] specifies a set of requirements relationships which allow to relate

requirements to other requirements or to other design model elements.

— «Copy» relationship is a dependency between a supplier requirement and a client
requirement that specifies that the text of the client requirement is a read-only copy

of the text of the supplier requirement.

— «DeriveReqt» relationship is a dependency between two requirements in which a

client requirement can be derived from the supplier requirement.

— «Satisfy» relationship is a dependency between a requirement and a model element

that fulfills the requirement.

— «Refine» relationship can be used to describe how a model element or set of elements
can be used to further refine a requirement. For example, a use case or activity

diagram may be used to refine a text-based functional requirement.

— «Verify» relationship. A Verify relationship is a dependency between a requirement
and a test case or other model element that can determine whether a system fulfills

the requirement.

3.2.2 The MeMVaTEx methodology: from requirements to models in auto-

motive application design

Authors in [Albinet et al., 2008| present a model-based methodology named MeM Va-
tex for requirements expression, traceability and verification. The methodology relies on
the Electronic Architecture & Software Tools — Architecture Description Language (EAST-
ADL2) framework and two of the UML profiles: MARTE for real-time embedded systems
and SYSML for system requirements modeling. The methodology defines the different
models used at each abstraction level of the process. The results are a requirement model
and a solution model which relates to the requirements. From the EAST-ADL2 framework,

a decomposition of the design process into abstraction levels is adopted. For each level,

49

CHAPTER I. LITERATURE REVIEW

requirement models and solution models are separately built. The real-time aspects and
non functional constraints are modeled within the UML MARTE profile. V&V techniques
can then be connected to these models to express the satisfaction of the requirements by
the proposed solution. Traceability management mechanisms defined in this approach are
used for relating requirements of the same abstraction level, requirements through succes-
sive abstraction levels and requirements to other elements from solution models or V&V
means. Traceability links used in MeMVaTEx are those proposed by SysML, but they con-
cern MeMVaTEx requirement and design elements from SysML. In a same EAST-ADL2
level, requirements can only have «DeriveReqt» dependency relationship between require-
ments for a requirement A (the client) refined into a requirement B (the supplier) and the
requirement containment relationship for the decomposition of a parent requirement into
several ones. For considering requirements of different levels, the previous relationships
are used with the «copy» dependency relationship which is related to requirements that
appear in a level and that are unchanged when considering the next EAST-ADL2 level. To
relate requirements to other design elements, the «satisfy» dependency relationship is used
between a requirement and a model element that fulfills this requirement. The «verify»
relationship between a requirement and a test case that can determine whether a system

fulfils the requirement.

3.2.3 KAOS: Connecting the goal model with other system views

The core of a KAOS goal model consists of an annotated refinement graph where
potential conflicts may be indicated [Van Lamsweerde, 2009]. In addition to refinement
and conflict links, the goal model shows interface links with other sub-models of the system

model.

— The concern link presents an interface between the goal model and the KAOS object
model. A goal concerns a conceptual object if its specification refers to this object.
However, a conceptual item referenced in a goal/property specification has been
determined to be an object. This object should be an entity, an association, an

agent, or an event.

— The responsibility link presents an interface between the goal model and the KAOS
responsibility model. It relies on agent capabilities which are defined in terms of
ability to monitor or control object attributes and associations defined in the object

model. A goal assigned to some agent must be realizable by this agent in view of its

50

CHAPTER I. LITERATURE REVIEW

capabilities.

— Operationalization link refers to the process of mapping leaf goals, under responsibil-
ity of single agents, to operations ensuring them. Each such operation is performed
by the responsible agent under restricted conditions for satisfaction of its underlying

goals.

— coverage link relies on making a goal underline a positive scenario. A specific instance
of agent behaviors is captured through scenarios and general class behaviors are
captured through state machines. A sequence diagram illustrating typical interaction
sequences among agent instances is in general more easily elaborated by focusing on
pairwise interactions one agent pair after the other. When the goal underlying the
scenario is an achieve goal and the scenario is sequentially composed of cohesive

parts, the end of each part is considered as a milestone for reaching the goal target.

3.2.4 UML, MARTE, SysML/Requirements Traceability

[Marques et al., 2014| present a model-driven requirement engineering approach for
the embedded software domain. It is based on an integrated set of UML, MARTE and
SYSML standard notations in order to improve requirements specification and traceabil-
ity. This approach named MDEReq supports modeling and management of functional and
non-functional requirements also it gives for designers an effective control of requirement
changes, and its impacts on other requirements or design artifacts in the whole develop-
ment process. To represent requirements, SYSML requirement diagram is used. It allows
to represent functional and non-functional requirements. It allows also to model require-
ments derivation and requirements hierarchy relationships using «derive» and «composite»
stereotypes. UML models are used to build a functional, structural and behavioral view of
the system, using respectively, use case, class and sequence diagrams. From the MARTE
Foundations, Time and Generic Resource Modeling (GRM) are used to indicate classes
that represent the interactions with external devices and to represent a clock and delay
aspects. From the MARTE design model, the high Level Application Modeling (HLAM)
sub-package is used to indicate that a class represents a concurrent unit and to detail
timing aspects into a sequence diagram.

These artifacts are related to the requirements using «satisfy» and «refine» SysML
relationship. «refine» is used to indicate that a requirement is detailed by a use case, while

«satisfy» identifies that an artifact must satisfy the associated requirement. A sequence

51

CHAPTER I. LITERATURE REVIEW

diagram is used to satisfy a requirement behavior. During the validation activity, test cases
are defined and related to requirements through «verify» relationships. This approach
proposes three different matrixes, which allow tracing requirements in different abstraction
levels and in different design phases. During the elicitation activity, a traceability matrix
is generated in which relationships between two requirements can be traced according to
derive and composite relations. The matrix relating requirements to design artifacts is
generated during the analysis and specification activity through «refine» and «satisfy»
relationships. Finally, the tracing matrix built during the validation activity indicates
which test cases are used to verify each requirement. When a requirement changes, related

test cases should be checked.

3.2.5 Generation and validation of traces between requirements and architec-

ture based on formal trace semantics

|Goknil et al., 2014] present an approach for automatic trace generation and validation
between requirements and architecture. Requirements relations and architecture verifica-
tion techniques are used. A trace meta-model is defined with commonly used trace types.
The semantics of traces and requirements relations are used for generating and validating
traces with a tool support. The tool provides a generation and validation of traces by using
requirements relations and /or verification of architecture and generation and validation of
requirements relations by using traces. The tool is based on model transformation in ATL
and term-rewriting logic in Maude |Clavel et al., 2003].

The aim of this approach is to improve the literature observed practices by providing
a degree of automation that allows faster trace generation and improves the precision of
traces by validating them. Two types of traces between requirements and architecture

which are «satisfiesy and «allocatedTop.

— «satisfiesy traces are established automatically based on architecture verification and
reasoning over existing traces. It relates a set of architectural elements to a single
requirement. The «satisfies» traces are established after verifying the requirement

over the architectural model.

— «allocatedTo» traces are usually assigned manually by the software architect. They
express the expectation of the software architect that a certain set of architectural
elements is responsible for fulfilling a given requirement. Since the «allocatedTo»

traces are manually assigned, they may be invalid and/or incomplete.

92

CHAPTER I. LITERATURE REVIEW

The basic mechanisms of automatic generation of satisfies traces, trace validation, and
inference based on requirements relations can be combined in various scenarios that the

software architect can follow.
1. Generating traces by using verification of architecture.
2. Validating traces by using verification of architecture.
3. Generating/validating traces by using requirements relations.

4. Generating/Validating requirements relations by using traces between requirement

and architecture.

To resume, this approach improves the process of collecting traceability information.
First, traces can be generated automatically by checking if a requirement is satisfied by
the architecture. This makes the process of establishing traces faster and less error prone
compared to manually assigning traces. Second, traces are validated by using verification
techniques and constraints ensuring that requirements relations are reflected in the software
architecture. This eliminates false positive traces and helps in identifying missed traces. As
an additional result, the requirements model may be improved by detecting invalid require-
ments relations and discovering new relations. The process is generally semi-automatic and

iterative since the software architect has to decide on the outcome of the supporting tools.

3.2.6 Traceability Between Restricted Natural Language Requirements and
AADL Models

[Wang et al., 2019] propose an approach to bridge the gap between natural language
requirements (NLRs) and AADL models. First, this approach proposes a requirement
modeling method based on the restricted natural language, which is named as RM-RNL.
The RM-RNL can eliminate the ambiguity of NLRs and barely change engineers habits
of requirement specification. Second, it presents a method to automatically generate the
initial AADL models from the RM-RNLs and to automatically establish traceability links
between the elements of the RM-RNL and the generated AADL models. Third, the ini-
tial AADL models are refined through patterns to achieve the change of requirements and
traceability links. This paper focuses on three traceability scenarios. The first traceability
scenario (TS-1) is based on the RM-RNL, which automatically generates the AADL mod-
els and requirement traceability links through model transformations. TS-2 describes the

requirement changes, that is, change the elements of the RM-RNL; therefore, the AADL

93

CHAPTER I. LITERATURE REVIEW

models and the traceability links should be regenerated. TS-3 describes the refinement of
the AADL models. It should maintain the change of the requirements and the traceabil-
ity links at the same time. To establish these links, requirement traceability information
model called RAInterM is created. RAInterM defines a "TraceType" enumeration to spec-
ify links types, which are: «Generation automatically» which relates the component to a
requirement through model transformation. «ImplementedBy» relates requirement to sys-
tem fragments, implementation plans, code source, etc. «MappedTo» relates requirement
to a particular attribute, operation, state, or value of the artifact. «Satisfy» which relates
requirement to the component that fulfills it, «Refine» which relates a requirement to its
refined requirement and finally «Verify» which relates requirements to test cases.

In this approach the process of automatically generate the requirement traceability
links actually consists of three steps. First, Traceability links are established between the
RM-RNL and the RAInterM model. Then, Traceability links are established between a
RAInterM model and the AADL models. Finally, Traceability links are established between
the RM-RNL and the AADL models through merging the generated traceability links in

the former two steps.

3.2.7 Discussion

The proposed approaches provide solutions to assure requirements traceability vis-a-vis
design model elements. However, not all of them can allow the formal verification of the
requirements, the design and the traceability links. In fact, SYsSML, [Albinet et al., 2008,
KAOS and [Marques et al., 2014] approaches support requirements and/or architectural
design modeling. They provide a mechanism to align requirements with design elements
but they lack of formal verification techniques to prove the consistency of the different
models and also of the alignment links. These approaches only use test cases associated
with requirements to verify the alignment. The work of [Goknil et al., 2014| presents an
approach for automatic trace generation and validation between requirements and archi-
tecture. This approach is based on formal trace semantics, yet, it does not provide formal
reasoning about architecture models and it provides only two types of generated links:
automatically «satisfiesy and manually «allocatedTo». These links do not give semantics
about the manner of how this satisfaction is applied or the order of architecture elements
execution which assures the requirement satisfaction. The work of [Wang et al., 2019] pro-

duces AADL design model directly from requirements models, then alignment links exist

o4

CHAPTER I. LITERATURE REVIEW

intuitively between the different models and there is no difficulties to identify them. Also,
this approach takes as input only textual specification to model requirements and it does
not support any other kind of artifacts which specify requirements. Finally, this approach

also does not provide formal reasoning about requirements and architecture models.

4 Synthesis

While the quality of a system is the main measure of its success, which depends on
the extent to which it meets its requirements. Also, in large complex system design, re-
quirements engineering experts may be different of HLA design experts then two different
kinds of models will be designed for the same system with no correspondence. In our work,
the choice is on SYSML/KAOS to model requirements and formally verify them while
SYsML/KAOS provides strong semantic expressiveness, refinement and decomposition
mechanisms well suited with EVENT-B. Then, the thesis focuses on HLA modeling with
design model refinement and decomposition and its formal verification using EVENT-B.
The choice for this step is on SYSML and EVENT-B formal method because SYsML is
aligned with SYsML/KAOS, offering a set of concepts more relevant to model complex
systems and it is recommended by the AFT project partners. EVENT-B, on the other hand,
is recommended for critical systems. To reveal SYSML extensions with refinement and de-
composition mechanisms, a purpose to combine SYSML and the EVENT-B is stemming
from the need to master the complexity of such systems that allow a step-by-step design and
make proofs easier. Afterward, alignment links are established between SYsML/KAOS
requirements models and SYsML HLA models to display a traceable requirements satis-
faction by HLA elements. Finally, the thesis proposes a plugin that supports these works,

implemented using available free software and frameworks (EMF, Papyrus, AtelierB, etc.).

5 Conclusion

In this chapter, we have presented related works about requirements modeling and its
formal specification and HLA modeling with its refinement and decomposition which are
important mechanisms to manage HLA complexity. We have presented works dealing with
the formalization of the HLA models into formal specifications. Finally, we have presented
works that propose solutions for requirements and architecture alignment and the formal

verification of these alignment links.

95

CHAPTER I. LITERATURE REVIEW

A summary of the similarities and differences between the studied approaches is pre-
sented in table 1.1. Most of the presented works deal with graphical requirements and/or
HLA modeling. However, we can conclude from the table that most of these works do not
formally verify requirements and HLA models to prove their correctness and consistency.
The works that allow requirements and HLA modeling at the same time define mechanisms
to align requirements and architecture models in order to provide a traceability between
them and demonstrate that the architecture corresponds to stakeholders needs. Although,

these works, except [Goknil et al., 2014], do not give a formalization of these alignments.

Model refinement and decomposition are two main mechanisms to master the complex-
ity of complex systems. The table shows that only UML-B, [Miyazawa and Cavalcanti,
2014, Lima et al., 2017] and [Wang et al., 2019], presents solutions to support model refine-
ment. Refinement is a process that allows to gradually introduce the different parts that
constitute complex systems and allows to define how sub-components interplay can satisfy
parent system goals. Model decomposition is shown in the table as a mechanism presented
in [Abrial, 2009, Butler, 2009a] and used in SYsML /KAOS to decompose EVENT-B mod-
els into finer-grained models. Nevertheless, the presented approaches that support HLA
graphical modeling do not provide a solution to decompose HLA into a system /sub-system
hierarchy. Adding to that, HLA model decomposition into several sub-components allows

a better management of large complex systems and more comfortably than the whole.

The work of |Goknil et al., 2014] is the most complete work in the table evaluation cri-
teria. In fact, it allows requirements modeling and its formal specification, HLA graphical
modeling and it assures requirements and architecture alignment and its formal specifica-
tion. However, in this approach, there is no model decomposition applied on HLA models
to give system/sub-system hierarchy. HLA models are not formally verified. This ap-
proach defines only two types of alignment links. One of them is specified manually. Its
process is generally semi-automatic and iterative since software architect has to decide on
the outcome of the supporting tools, so it is not possible to guarantee the consistency of

the outcomings.

Based on these remarks and limitations, the work of our thesis aims to propose a com-
plementary approach to existing approaches. Indeed, they do not give a complete support
for modeling complex systems from requirements to HLA with a formal verification behind
the different steps and a formal traceability which verifies the satisfaction of the stakehold-

ers requirements by the HLA elements. For this, our motivations are to provide a holistic

o6

CHAPTER I. LITERATURE REVIEW

Related Requirements| Requirements| HLA Design Model HLA Requirements| Alignment
works modeling formal graphical model decomposition formal & formal
specification | modeling | refinement specification | Architecture | specification
alignment
SysML v v v
KAOS v v
SysML/KAOS v v v
UML-B v v v
CHESS toolset v v
[Salunkhe v v
et al., 2021]
[Poorhadi v v
et al., 2022]
[Lima et al., v v
2017] &
[Miyazawa and
Cavalcanti,
2014]
[Abrial, 2009] v v
& [Butler,
2009b|
[Goknil et al., v v v v v
2014]
[Wang et al., v v v v
2019]

process which covers the conceptualization process of complex systems. More precisely, it
aims to support requirements modeling with its formal verification, HLA modeling with

its formal specification and the most principal necessity is to link HLA with requirements

Table 1.1 — Table summarizing the evaluation of related works

in order to guarantee the traceability between these two entities.

o7

CHAPTER [I
Contribution: A methodology for
high-level architecture modeling

aligned with requirements models

Contents
1 Methodology overview o v v v v v i v ittt e e e e e e 61
2 ATO over ERTMS case study excerpt 65
3 High-level architecture modeling and formal verification 65
3.1 High-level architecture modeling 67
3.1.1 SysML and EVENT-B refinement and decomposition mech-
anisms extensions Lo 68
3.1.1.1 Package diagram and its extensions 69
3.1.1.2 HLA restricted BDD 70
3.1.1.3 HLA restricted state-machine diagram 72
3.1.14 Sequence diagram and its extensions 73
3.1.2 SysML HLA modeling process architecture 77
3.2 SYSML to EVENT-B Translation 79
3.2.1 Model-to-Model transformation 79
3.2.1.1 EVENT-B meta-model L0 79
3.2.1.2 Translation Rules 81
3.2.2 Model-to-Text Translation 86
3.2.3 Example of application of the translation rules 86
3.2.4 HLA formal verification 90
3.3 Conclusion 91
4 Requirements & high-level architecture alignment 91

4.1 SYsML/KAOS modeling and formal verification 92

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

4.1.1 SYsML/KAOS Modeling 92
4.1.2 EVENT-B formalization of SYSML/KAOS Models 94
4.2 Graphical alignment oL oo 96
4.3 Formalization of graphical alignment links 98
4.4 Conclusion L 107
5 Illustration of the methodology on acasestudy 107
5.1 Landing Gear System case study 107
5.2 SYsML/KAOS modeling and formalizing of the landing gear system
casestudyo L L 108
5.2.1 SYsML/KAOS Goal modeling 109
5.2.2 SYsML/KAOS Goal model formalization. 111
5.2.2.1 The Root Level 111
5.2.2.2 The First Refinement Level 112
5.2.2.3 The fourth refinement level 114
5.2.3 SYsML/KAOS Goal model decomposition 117
5.2.4 SYysML /KAOS model decomposition formalization using Event-
5 117
5.24.1 SysML/KAOS Pilote SubSystem 119
5.2.4.2 SYsML/KAOS Mechanical SubSystem 120
5.2.5 Conclusion L L 123
5.3 High-level architecture modeling and formalizing of the landing gear
system case study Lo Lo 125
5.3.1 The main system (Level 0) 125
5.3.2 Landing gear system HLA level 1 127
5.3.3 Landing gear system HLA decomposition 132
5.3.4 The Pilote SubSystem HLA 134
5.3.5 Formal verification of the landing gear system HLA EVENT-B
specification Lo 138
5.3.6 Conclusion L L 138
5.4 Requirements & high-level architecture alignment examples 139

5.4.1 Example of alignment between landing gear system SYsML/KAOS
models and SYSML HLA models 139

5.4.2 Example of alignment between train control system SYsML/KAOS
models and SYSML HLA models 143

60

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

5.4.2.1 Train control system SYsML/KAOS requirements
model Lo 143

5.4.2.2 Train control system SYSML HLA models 145
5.4.2.3 Train control system SYSML/KAOS models and

SysML HLA models alignment 147
5.4.3 Conclusion 150
({] Conclusion i ittt 150

In this chapter, we propose a model-based methodology to prove the alignment of HLA
models with stakeholders needs for the purpose of their satisfaction. This methodology
allows, on one hand, to model requirements and HLA and formally verify them. On the
other hand, it allows to formally verify traceability between these two parts. Results pre-
sented in this chapter are published in [Bougacha, 2020, Bougacha et al., 2022b, Bougacha
et al., 2022a, Bon et al., 2023, Bougacha et al., 2023|

1 Methodology overview

Complex systems such as railway systems are composed of a large set of sub-systems.
They generally are heterogeneous in that they integrate various kinds of components as
mechanical, electronic, or software. The design of these systems requires the collaboration
of domain experts and the use of a common language to communicate with each other to
build a consistent model. Moreover their design depends on solutions that can address
the interplay between sub-systems. Therefore, high-level architectures of complex systems
should be represented as a layered hierarchy of sub-systems. Such a HLA must enable the
specification of the main functional elements of a system, together with its interfaces and
interactions while each sub-system can function independently from its participation in the
main system. It constitutes a framework common to all the domain experts involved in
the design of the system.

The development process of this kind of systems becomes critical since it could not re-
spond to stakeholders needs due to its complexity and the consequence of a failure in such
systems may be serious |Leveson, 2016]. The quality of such systems is the main measure
of their success, that depends on the degree to which they fulfill their requirements. Re-
quirements modeling is an important activity in the design process. The competitiveness

of a system cannot be ensured unless its HLA is aligned with its requirements. Indeed,

61

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

alignment provides strong guarantees, and is key to a coherent governance and success of
the system. Therefore, it is important to bring closer requirements and HLA modeling
activities. In modern system development methods, analysts start the development pro-
cess with an inception phase where they must acquire a deep knowledge of the system
requirements. This phase is crucial since it prepares for requirements modeling, analysis

and verification, which gives a global view on stakeholders needs.

Model-Driven Engineering (MDE) [Kent, 2002] is a software engineering approach
which defines a generic framework to generate code using successive model transforma-
tions and allows to express separately each of the concerns of users, designers, architects,
etc. In MDE, the crucial key point is the use of models as primary entities to process them
automatically or half automatically. These models are abstract representations of a reality.
MDE is increasingly used to develop complex systems. However it is difficult to establish
traceability links between requirements and design models in the context of MDE. There is
a substantial gap between requirements descriptions and designs, because transformation
from requirements to design models is not included in MDE, which starts from an analysis
model (or design model) and ends with deployed code.

MDE gives a simple manner to represent systems for a better understanding while it
can provide graphical models. However, nowadays, the usefulness of formal verification and
validation of system specifications is industrially demonstrated [Bonvoisin, 2016], especially
for critical systems which require a high level of safety.

To cope with these issues, we propose a model-based methodology, summarized in
Figure 2.1, composed of three phases: (1) SysML/KAOS Modeling, (2) SysML HLA
Modeling and (3) Alignment.

A methodology provides a logical and systematic means of proceeding with the design
process as well as a set of guidelines for decision-making [Zhu, 2005]. A methodology
provides a sequence of activities, methods and often uses a set of notations or diagrams.
A methodology is especially important for large complex projects where many designers
are involved. Its use establishes a set of common communication channels for translating
design to code and a set of common objectives. Methodology refers to the overarching
strategy and rationale of a research project. It involves studying methods used in a field
and theories or principles behind them, in order to develop an approach that matches
required objectives. Methods are specific tools and procedures used to collect and analyze

data.

62

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

The aim of the proposed methodology is to model stakeholders requirements, to rep-

resent HLA in a layered hierarchy of system/sub-systems relationships and finally to align

HLA elements with requirements to guarantee traceability between them.

1. SysML/KAOS Modeling

2. SysML HLA Modeling

HLA package Diagram
P = Package

e commmses // f oy @

[

Block Definition State-Machine
Diagram Diagram
Sequence Diagram

Goal Model][

Domain Model]< 3. Alignment)|

;

Specification

v
[Event-B Specification]

[Event-B Specification

]

Formal
Verification,
Validation

Model
Checkers

Figure 2.1 — Methodology overview

Theorem
Provers

SYsML/KAOS Modeling [Laleau et al., 2010]: Consists of a RE phase in which
requirements are modeled using SYSML/KAOS goal models enriched with domain mod-
els. Afterwards, these requirements models are formalized using EVENT-B in order to be

formally verified. We have chosen the SYsML/KAOS approach for the following reasons:

v' It provides strong semantic expressiveness.

v SYsML is well recommended by the AFT project partners

v' EVENT-B is specialized in modeling systems, and has been used in safety-critical
system applications such as the Paris Metro lines [Behm et al., 2003, Abrial, 2006|

v' SYsML/KAOS refinement and decomposition mechanisms are well suited with EVENT-B.

This phase is composed of two steps:

e First, a graphical modeling of system requirements as a hierarchy of goals is achieved
using the SYSML /KAOS modeling framework and refinement patterns. Then, these
goal models are enriched with domain models that define the system structure and

concepts used to define goals.

63

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

e Second, an EVENT-B formalization of these goal and domain models is carried out.

A formal verification step using EVENT-B provers, model checkers and animators is ap-
plied on the formalized specification to prove the correctness and consistency of system

requirements.

SysML HLA Modeling: Corresponds to the definition of the HLA of critical complex
systems that must be validated by domain experts and its translation into EVENT-B formal
specification to prove its correctness and consistency.

To conduct this phase, a two step process is performed:

e First, a graphical modeling of HLA in a system/sub-system layered hierarchy is
presented using SYSML extension mechanisms that we have defined.

e Second, an automatic translation of HLA models into EVENT-B models is established.

The results presented in this phase have been published in [Bougacha et al., 2022b,
Bougacha et al., 2022a].

Alignment: Aims to provide alignment links between SYSML/KAOS elements and
HLA elements. These alignment links allow to guarantee traceability relationships be-
tween participating entities to assure that HLA elements satisfy the system goals hence
they satisfy stakeholders needs.

The alignment process contains two steps:

e First, alignment links are graphically specified to be well understood, documented
and validated by all the stakeholders.

e Second, a formalization of these alignment links is achieved to prove their consistency.
New proof obligations are generated in addition with existing proof obligations of type

invariant preservation, feasibility of non-deterministic actions and well-definedness.

A formal verification step is performed to check the resulting EVENT-B specification. Dis-
charging all proof obligations (existing and alignment proof obligations) allows to prove
that system requirements are formally aligned with HLA elements.

This chapter is organized as follows. Section 2 presents an excerpt of a case study that
we will use to exemplify our works. Section 3 gives a presentation of the proposed HLA
SYSML extensions and their translation to EVENT-B. This is followed by a requirements
and HLA alignment approach in Section 4 in which we describe the SYSML/KAOS re-

quirements modeling approach and the process to generate EVENT-B formal specification

64

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

in Subsection 4.1. Section 5 presents an illustration of our methodology on use cases.

Finally, Section 6 reports our conclusions.

2 ATO over ERTMS case study excerpt

Throughout this section, we use an extract of a case study inspired from ATO over
ERTMS system (Automatic Train Operation over European Railway Traffic Management
System)|Bon et al., 2022|. A railway system may be controlled using Automatic Train
Operation (ATO): this is one of the challenging tasks of the railway industry. In railway,
four different grades of automation (GoA) are used. With GoA2 traction and braking are
automatic but the driver ensures the environment monitoring and is able to switch towards
manual driving if necessary.

This subsystem is activated and deactivated by the driver, which implies the en-
abling/disabling of the Railway System. The driver is also responsible for switching
driving mode between manual or automatic. The GoA2 is composed of two subsystems :
OnBoard and Track. The OnBoard subsystem is responsible for executing the driving
mode chosen by the driver and updates the state of the Track subsystem with the current
driving mode. The GoA2 subsystem functions in a global framework called ATO over
ERTMS. The specification is based on a normative and prenormative documentation. The
ATO itself is not specified and the studied system is only the context and interfaces of the
ATO. The same phenomenon occurs with relationships with the track system: ERTMS
specifies the OnBoard system and interfaces with the track. As a consequence, the track

side is not specified as it is linked to national specific implementations.

3 High-level architecture modeling and formal verification

Complex systems are systems composed of many components which may interact with
each other, such as air traffic management system, railway systems, smart grid, autonomous
automobile systems, medical monitoring, industrial control systems, robotics systems, etc.
Their behavior is intrinsically difficult to model due to the dependencies, competitions,
relationships, or other types of interactions between their parts or between a given system
and its environment. In many cases, it is useful to represent such a system as a network
where nodes represent components and links their interactions. Therefore, designing HLA

of these systems depends on solutions that can address interplay between their sub-systems.

65

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

This HLA should be represented as a layered hierarchy of sub-systems. It must enable the
specification of the main functional elements of the system, together with its interfaces and
interactions.

For that, we propose to combine SYSML and the EVENT-B formal method. The choice
is on SYSML rather than UML while it offers a set of concepts more relevant to model
systems and as previously presented, is recommended by the AFT project partners. In-
deed, the AFT project reuses the RailTopoModel ! that contains a SYSML-based functional
ontology of a railway infrastructure. Moreover, the European initiative EULYNX 2 has de-
fined a standard SYsML-based model of railways signalling system components. EVENT-B
allows to specify systems rather than just software and it is already used in many safety-
critical systems |Lecomte et al., 2017]. Its use is also recommended in the ASTRAIL study
[ASTRAIL, 2017]

Figure 2.2 presents an overview of the process of modeling HLA and its formalization

into EVENT-B models.

High-Level Architecture

_'-M i e . N
- ' "”':.-l“; . = == i ——
e T Dohl)
Package Diagram | ‘ SysML Block Definition Diagram | I UML State-Machine Diagram ‘ | UML Sequence Diagram

Model
Transformation

Event-B
Model

Figure 2.2 — HLA modeling and formalization approach

This process is composed of two steps

— The first step consists in modeling high-level architectures using SYsML diagrams.

1. http://www.railtopomodel.org/en/. It is a standard for the representation of railway infrastructure-
related data
2. https://www.eulynx.eu/

66

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

Four kinds of SYSML diagrams have been selected: package, block definition, state-
machine and sequence diagrams.

The refinement and decomposition mechanisms are interesting characteristics of EVENT-B
that facilitate a step-by-step design and make proofs easier to discharge. Therefore,

we propose to extend SYSML with these relevant mechanisms to enable an automatic
translation. These extensions are applied on two SYSML diagrams, the package and

sequence diagrams.

— The second step consists in translating SYSML diagrams into EVENT-B models.
This model translation is implemented using three sets of rules: a set for elements
related to a package; a set for the SYSML refinement extensions; a set for the SYsSML

decomposition extensions. This step is performed in two phases.

1. A model-to-model transformation to implement the above rules. It takes as
input the SYsSML extended meta-model and it produces as output an EVENT-B

model conform to the EVENT-B meta-model.

2. A model-to-text transformation to generate EVENT-B textual formal speci-
fications. This textual specification can be introduced into provers such as
ATELIERB [AtelierB, 1990], model-checkers and animators such as ProB [ProB,
2003| to verify the consistency of the modeled HLA of the system and to be

validated by domain experts through models animations.

3.1 High-level architecture modeling

HLA is a layered hierarchy of sub-systems that collaborate together to satisfy parent
system goals and to represent interactions with environment entities. Moreover, a sub-
system can have its own life and can exist independently besides its contribution in parent
system life cycle.

We have chosen to represent HLA by four SYsML diagrams: package, block definition,
state-machine and sequence diagrams. This choice is based on the description presented

in the SysML for systems engineering book [Holt and Perry, 2008]:

— Package diagram: Its main use is to show high-level relationships between groups of
things in a model. It is used to display the way a model is organized in the form of

a package containment hierarchy.

— Block Definition Diagram (BDD): It is the most widely used diagram in SYsML for

67

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

modeling the static structure of a system. It is also the richest diagram in terms
of the amount of syntax available to the modeler. It also allows to adopt design
techniques for creating extensible system HLA structures, a practice that masters
the complexity and to change the design as stakeholders needs evolve. As with all
SYSML diagrams, it is not necessary to use every piece of syntax, as experience has
shown that 80 % of any modeling task can be achieved by using approximately 20 %

of block definition diagram syntax.

— State-machine diagram: it is one of the most widely used diagrams to describe state-
dependent behavior of an object. State-machine diagrams are usually applied to any
element that has behavior such as: actors, use cases, methods, subsystems, systems
etc. They are typically used in conjunction with sequence diagrams and have very

strong relationships with BDDs.

— Sequence diagram: it is an interaction diagram that details how operations are car-
ried out. It captures high-level interactions between users and the system, between
the system and other systems, or between sub-systems, suitable to represent HLA
systems/sub-systems interplay. Adding to that, sequence diagrams are very powerful
when used as a consistency check between various interacting objects that already

have their internal behavior defined with state-machine diagrams.

3.1.1 SvysML and EVENT-B refinement and decomposition mechanisms exten-

sions

To model a HLA hierarchy, new packages are designed for each system (a parent system

or a sub-system). Each package is composed of a set of diagrams:

— a BDD represents systems (parent systems or sub-systems) as blocks and associations

which link sub-systems to their parent system and to environment entities.

— a state-machine diagram, one for each system of the BDD, specifies the behavior of
the system by a set of its different states and the transitions process between these

states.

— a sequence diagram represents the life cycle of the current system, the interactions
between its sub-systems and how they cooperate to satisfy the objectives of the parent

system.

68

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

3.1.1.1 Package diagram and its extensions

Package diagram is a static structural diagram that shows the relationships among

packages and their contents. It allows to group the structures of a model and defines high

level relationships between these groupings. This diagram encompasses two main elements:

— A package represents a graphical node. It is made up of a number of packageable

elements. In SysML, almost any element can be enclosed within a package. In

HLA modeling, we are interested in block, state-machine and sequence diagrams as

packageable elements in the package. A package itself is also a packageable element

and thus can contain other packages.

— A dependency represents a graphical path that links different packages and how they

depend on each other. Note that the semantics of dependency is informal and can

be adapted for particular needs.

Figure 2.3 shows an example of package diagram that encompasses a set of packages

related between each other using a dependency relationship.

Package Diagram |

Package X

Package Y

Package

Package Z

T

- - - - - - -

Dependency

Figure 2.3 — Package diagram example

To model a system HLA in a layered hierarchy of sub-systems, two kinds of relationships

have been introduced.

— The first one is inspired from the refinement link of EVENT-B and is called HLA _refines.

It is defined between two packages and is used to detail the behavior of the parent

package. For this, new blocks and a new sequence diagram are introduced in the

child package. This new sequence diagram describes the interactions between blocks

69

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

to satisfy the parent behavior.

— The second relationship, called HLA decompose, comes from the fact that some
blocks of a package can be considered as sub-systems because they have their own
life and can exist independently of the other blocks. In this case, they become
new packages and the link with the parent package is HLA decompose link. This
concept corresponds to the decomposition mechanism of EVENT-B, more precisely
the shared-event decomposition since the systems/sub-systems we consider behave

as distributed systems.

To represent these system /sub-systems relationships, the extract of SYsML package
diagram meta-model used for our HLA modeling encompasses one or more packages re-
lated one to the other using a dependency relationship. This relationship is extended by
introducing new meta-classes, as described by the grey boxes in Figure 2.4 HLA refines

and HLA decompose, as sub-classes of the meta-class Dependency.

‘ Package Diagram ‘

1.4 0.*

isComponentOf‘ Package isrefined Dependency
* .1 ‘

0. 0.1 0..
isComposedOf refines|

HLA_decompose HLA_refines
| |

Figure 2.4 — SYsML extended package diagram meta-model

Figure 2.5 illustrates the use of the proposed package diagram extensions. HLA refines
extension is used between Packages 1 and 1.1 while Package 1.1 describes the sub-systems
interplay to satisfy the parent system behavior represented in the Package 1. Package
1.1 sub-systems can exist independently, therefore, HLA decompose extension is used to
represent the system/sub-systems decomposition into Packages 2, 3 and 4. Each of these
packages describes a separate sub-system. Packages 2 and 4 represent sub-systems that
could behave as a parent system while it encompasses nested components and sub-systems.
Therefore, these two packages are HLA refine into Packages 2.1 and 4.1 that describe the

interplay of their sub-systems.

3.1.1.2 HLA restricted BDD

A BDD is a structural diagram. As HLA is represented by a set of system /sub-systems

layered hierarchy we are only interested in basic modeling elements of this diagram. These

70

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

Package diagram |
Package 1 |
A
{« HLA_refines »
Package 1.1
« HLA_decompose » | « HLA_decompose »
v v v
Package 2 | Package 3 | Package 4 |
A FY
« HLA_refines » « HLA_refines »
Package 2.1 | Package 4.1 |

Figure 2.5 — Package diagram extension application example

two basic elements are Block and Relationship.

— A Block defines a collection of features used to describe a system, sub-system, com-

ponent or other system elements.

— A Relationship relates together one or more blocks. It participates in describing the
structure of a system, sub-system or component. In SYsML, block relationships
encompass many types of links. To model HLAs, we are interested in two types of

relationships: Association and Composition.

These concepts come from UML class diagrams, with the same semantics. The extract of
BDD meta-model, used for HLA modeling, is presented in Figure 2.6. It can encompass
one or more blocks related to each other using associations. Inheritance is expressed by the
reflexive association subBlock/superBlock. An association has two ends, also called roles,
represented by the AssociationEnd class and linked to a block by the characBlock associa-
tion. The Characteristic class groups the common characteristics of the Association End.
The characMultMin and characMaxMult attributes describe the minimum and maximum
multiplicities of a role or an association. An association Block is represented by a link of
the association assocBlock.

Figure 2.7 presents an example of the BDD diagram of the ATO over ERTMS case study
excerpt. Block ATOOETCS GOA2System is the main system and is composed of two sub-

systems Track and OnBoard related to the main system with a composition association. A

71

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

0.*
BDD
name: String
.Compositio.n |5Comgonent0f ,1*
minMult: String Characteristic
Mult: Strin |scomposed0f Block 1 % . -
maxviult: g . characMultMin: String
0.*] name: String characBlock)
characMaxMult: String
isSubBlockOf ‘0“1 0.1
isSuperBlockOf assoBlock T
0.1
— assoAssocEnd2 —
Association 0.1 1| AssociationEnd
assoName: String | assoAssocEndl | roleName: String
0.1 1

Figure 2.6 — SysML BDD meta-model

simple association interactsWith is presented between the OnBoard system and Pilot which

describes the control of the OnBoard system by the Pilot.

«Block» ?
ATOoETCS_GOA2System

1‘ +
+ 1 + 1
«Block» «Block» | interactsWith
= Track = OnBoard 1 1

Figure 2.7 — BDD example

3.1.1.3 HLA restricted state-machine diagram

A state-machine diagram is used to model the behavior of a block. Such a diagram is
composed of two basic elements: states and transitions. It describes the state changes of a

block instance during its life cycle.

— A state is an abstraction of the attribute values and links of an object. Sets of
values are grouped together into a state according to properties that affect the gross

behavior of the object.

— A transition arrow depicts the movement from one state to another. These changes
are triggered by events associated to the transitions of the diagram. A system repre-

sented as transitions between states is very useful for describing complex behaviors.

We have extracted all the concepts of SYSML state-machine diagrams that we need to

model HLAs. They are presented in the meta-model of Figure 2.8. It is composed of 0 or

72

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

more states identified by a name and transitions represented by the triggering event name.

A state could be a source of an outgoing transition and a target of an incoming transition.

From BDD Package
meta-model
Y.
Block isAssociatedTo | State-Machine Diagram
name: String |! 0.1 name: String
0.% lo..*
e outgoing 1]
Transition * sourcd State
. target)
eventName: String [- aree name: String
Incoming 1]

Figure 2.8 — SysML State-machine diagram meta-model

As an example of state-machine diagram, we give an extract of the state-machine dia-
gram that represent the behavior of the OnBoard system. This diagram is shown in Figure
2.9 and it describes the lifecycle of the system with two states BoardForAutomaticDriving
and BoardForManualDriving and two transitions SetBoardForManual and SetBoardForAuto-

matic.

OnBoard States
BoardForAutomaticD rivingJ

SetBoardForManual éetBoardforAutomatic

BoardForManualDriving l

Initial1

L

Figure 2.9 — State-machine diagram example

3.1.1.4 Sequence diagram and its extensions

A sequence diagram is used to display the interactions between users, objects, systems
and entities within a system. It presents a dynamic view of a use case, a requirement, or a
system, a view that expresses sequences of behaviors and event occurrences over time. All
the concepts of SYSML sequence diagrams that we need to model HLAs are presented in

the meta-model of Figure 2.11:

— An Interaction is a behavioral specification that comprises a sequence of communi-
cations exchanged among a set of instances within a collaboration to accomplish a

specific purpose, such as a parent system goal.

73

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

— An object lifeline represents the existence of an object over some time. Objects that
exist throughout an interaction should appear at the top of the object dimension

with their lifelines drawn parallel to the time dimension.

— Messages specify communication from one object to another, with an expectation

that an activity will be performed by the recipient object.

— The intersection of a message arrow and a lifeline is represented by the element

MessageOccurenceSpecification.

— A GeneralOrdering represents a binary relation between two MessageOccurenceSpec-
ification, to describe that one MessageOccurenceSpecification must occur before the
other in a valid trace. This mechanism provides the ability to define partial orders

of MessageOccurenceSpecification that may otherwise not have a specified order.

— CombinedFragment is a logical grouping which contains the conditional structures
that affect the flow of messages. A combined fragment contains interaction operands
and is defined by the interaction operator. An interaction operator defines the se-
mantics of a combined fragment and determines how to use the interaction operands
in the combined fragment. An interactionOperand is a container that groups the
interaction fragments and messages that run if the guard condition is met. If there is
no guard condition, the block always runs. An interactionConstraint is a constraint

used in interactions to guard an operand in a combined fragment.

Figure 2.10 shows an example of a sequence diagram of the OnBoard system. It shows
the elements involved in a execution scenario namely Driver, ATOonBoard etc., as well as
the message exchanges between the system and actors, or between parts of the system or
subsystems, in a chronological manner.

The following constraints/extensions have been defined:

— FEach message corresponds to a transition in the state-machine of the block associated
to the target lifeline. This association is established using the signature property of

the sequence diagram message.

— As we have introduced a refinement link between packages, we need to specify how this
refinement is elaborated between the refining package and the refined package. The
parent system main goal is produced through the interplay of its sub-systems. Each
one executes some behaviors to satisfy some whole system tasks. This sub-systems

interplay covers the whole system tasks and satisfies the main system goal. The

74

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

OnBoard
| driver: Driver | [ATOonBoard : ATOonBoard| [ETCS : ETCS| | train : Train
' SetON - ;
PowerON i
Init |
Connect .
SetReady E
loo «Refines Message» E
v SetEngaged ; E
Start '
i Brakg '
L L Stop 1]
D:\SetStop i
Shutwan '
i |
; ! SetOFF

Figure 2.10 — Sequence diagram example

main system life cycle and the sub-systems interplay are represented using sequence
diagrams. Therefore, to elaborate the refinement, we opt to refine a message from
the parent system sequence diagram with a message resulting from its sub-systems
interplay. The choice is on sequence diagram messages while it represents the system

life cycle activities. Thus, this is achieved by:

— Adding a new meta-class in the meta-model, called Refines Message, sub-class
of the meta-class Message that contains an attribute of type Message, called

Refined Message.

— Refines Message used to associate the sequence diagram message resulted from
the sub-systems interplay with a message from parent system sequence diagram

defined in the Refined Message attribute.

Figure 2.12 illustrates the use of the proposed sequence diagram extension applied on
ATO over ERTMS case study excerpt [Bougacha et al., 2022a]. Excerpt (1) describes
the sequence diagram of Component RS of type Railway System with Message EnableSys-

tem. Excerpt (2) shows Message (Activate) exchanged between Components Driver and

75

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

From State-Machine Diagram From BDD

meta-model meta-model
0..%
Transition N
Sequence Diagram Block _
eventName: String name: String
1 1
Interaction types
isAssociatedTo [}
* 1.% 1.* B 0.*
Message sendEve
Occurrence 0.1 f Message Lifeline covered1.. CombinedFragment
Specification w name: String name: String l'c';veredby name: String
name: String 0-1 : AN coveredBy |1 ?
before |1 after|1 covered | 1.*

Refi M InteractionOperand Constraint
toAfter|, toBefore, S name: String
GeneralOrdering Refined_Message: Message[1] ?
1.%

InteractionConstraint
name: String

Figure 2.11 — Extract of SYSML extended sequence diagram meta-model

ATOoverETCSGoA2, sub-components of Railway System. In this system, the activation of
AT OoverETCSGoA2 components implies the enabling of the Railway System. Then, Message

Activate refines the parent system message EnableSystem, as precised in Excerpt (3).

® RS : Railways System
T
loop _ ___]

1------

=
=1
-3
=
L)

@
2
i}
3

I [Railways system is enabled]

alt
':P_l [Railways system is disabled]

1

@ I dmel:.l}wer I Inoovcmnqol?:a‘l.TDwanCSGoAd

Activate

it H
L) [Railways System is disabled] : :
' «Refines_Messages X
[] '
i

I

IIE}

v (2 Refines_Message (from Sequence_Diagram_Refinement_Profile)

Refined_Message: Message [1] = EnableSystem

Figure 2.12 — Example of the sequence diagram extensions

76

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

3.1.2 SysML HLA modeling process architecture

Figure 2.13 presents the SYSML HLA modeling process architecture. As we have al-
ready presented, a package diagram is created to design an HLA. This diagram describes
the layered hierarchy of system/sub-systems relationships and encompasses a set of pack-
ages each of them corresponds to a component of this hierarchy (a system or a sub-system).

The packages are presented as follows:

1. The first package Package 1 describes the main system in a BDD and its associated
state-machine diagram which defines the system behavior and a sequence diagram
that represents its life cycle. Sequence diagram messages are associated with the

state-machine diagram transitions.

2. The main system represented by Package 1 is a parent system composed of a set
of sub-systems that collaborate to satisfy the parent system main goal. From this
end, the second package Package 1.1 is created and it refines Package 1 using the
HLA refines stereotype. The parent system to sub-systems composition relationship
is designed in the BDD. A state-machine diagram is found and associated to each
sub-system behavior. A sequence diagram is created to define the life cycle of the
sub-systems interplay for the purpose to satisfy the parent system goal. The result
of this interplay is represented by a sequence diagram message that refines, using

the Refines Message stereotype, a message from the parent system sequence diagram.

3. Sub-systems can be considered as independent systems that can exist by their own
besides their participation in the main system life cycle. To this aim, a decomposition
mechanism using HLA decompose stereotype is applied on the parent system and a
new package is created for each sub-system (Package 2, Package 3, Package 4). This
decomposition is applied on the package Package 1.1 because it is the refinement
package of Package 1 in which we have introduced the interplay of the parent system

corresponding sub-systems.

4. From step 3, If one of these sub-systems is a parent system that is composed of other
sub-systems then these steps should be re-executed from step 1 until we arrive to a

package with no encompassed sub-systems such as Package 3.

7

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

System package diagram

|
'« Refines_Message »

Package 1
_ State
«B[qlck» « . e | [machine
= isAssociatedTo s : diagram
BDD \ isAssociatedTo
types
[sequence diagram]
A
Package 1.1 i « HLA_refines »
| isAssociatedTo . ; State
- ' ' machine
2| L diagram
w7l
rE
isAssociatedTo
types
BDD T }
W=
r.- —.- — = s s s s s mm s =

[Refinement sequence diagram]

« HLA_decompose »

e

4

Package 2

'
'
|
_________________________ L

« HLA_refines »

Package 2.1

« HLA_decompose »

__ 4

v v

Package 3 Package 4

A

« HLA refines »

Package 4.1

Figure 2.13 — SysML HLA modeling process architecture

78

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

3.2 SysML to EVENT-B Translation

HLA modeling with SYsML diagrams is a designer easy practice to define graphical
views of critical systems which give a better understanding. However, it may lead to
some design errors due to the lack of precise semantics. So, a formal notation is required
to rigorously check the correctness of such systems and guarantee the validation and the
verification of their specification. In this subsection, we present the translation rules that
enable an automatic translation of EVENT-B specification from HLA models enriched with
safety relevant EVENT-B mechanisms. This step is performed in two phases: model-to-

model transformation and model-to-text transformation.

3.2.1 Model-to-Model transformation

Model-to-model transformation is a model-driven process that enables to derive a target
model from a source model that are conform to a source and a target meta-models, and
create one or more mapping declarations that define relationships between these two meta-
models. To this end, this translation requires source models which are, in our work, HLA
models that are conform to the extended SYSML meta-models presented in the previous
subsection and target models that are EVENT-B models conform to EVENT-B meta-model.
However, a standardized meta-model for EVENT-B is still not available. The one proposed
in the Rodin Platform [Abrial, 2010] is of high complexity and cannot cover our needs.
Therefore, to conduct this model-to-model transformation we propose an EVENT-B meta-
model conform to the EVENT-B notation used in ATELIERB and restricted to the concepts

that are relevant to our use.

3.2.1.1 EVENT-B meta-model

Our proposed EVENT-B meta-model is shown in Figure 2.14. It presents EVENTB SPEC
as the root meta-class. This meta-class defines an EVENT-B specification. It is composed

of zero or more CONTEXT and zero or more MACHINE.

— A CONTEXT describes the static part of a system, it is composed of:

e Zero or more CONSTANTS and SETS;
e zero or more AXIOMS mandatory to define constant types and properties;
e A context can be extended with zero or more contexts and it can be seen with

zero or more machines.

79

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

EventB_Spec 0% SETS 0..* used

name: Strin name: Strin
refined 0..* 0..* refines g extendeci g
’ \’ 0.. extends
[0.* 0.4 0.*

shared_Event_decomposition_componentsOf _ O.. MACHINE o sees CONTEXT o CONSTANTS
Machine 0..¥ name: String

shared_Event_decomposition_composedOf 0.1 hame: String name: String 0.* types_constant
| [‘ 1..* typed_constant
1.% 1.* I
_refines 0.*| .) o AXIOMS
EVENTS VARIABLES 1..* associates INVARIANTS e ; N 0..% uses
s — tedTo 1 = name: String
| name: String name: String | @ssoca name: String
refined 0..*
0..% ‘ 11.* PREDICATE
GUARDS ACTIONS body: String
name: String name: String j&

Figure 2.14 — EVENT-B meta-model

— A MACHINE describes the dynamic part of a system, it is composed of:

e One or more VARIABLES which represents the list of state variables of the
model;

e One or more INVARIANTS which represents the typing predicates of the var-
ious variables and the predicates that the variables should obey;

e One or more EVENTS that represents the list of the various events related
to the model. It is composed of a set of GUARDS and ACTIONS. Events can
be refined and new ones can be introduced. The refinement of an event has
to verify that the guard of the refined event is stronger than the guard of the
abstract one and the effect of the refined action is stronger than the effect of
the abstract one.

e A machine can refine or be refined by another machine and it can see zero or
more contexts.

e A machine can be decomposed into one or more sub-machines following the
shared-event decomposition approach. The shared-event decomposition is a set
of events that are synchronized and shared by sub-components. This approach
defines a partial version of a global event in each sub-machine, when the variables
of a global event are distributed between separate sub-machines. This is to
simulate the action of the global event on the considered variables. We have
adopted the shared-event decomposition approach for our HLA modeling as we

can consider that a system composed of sub-systems acts as a distributed system

Some EVENT-B concepts presented in section 2.4 are not supported in this meta-model

because they are not relevant to our use. We give as an example the use of THEOREMS, in

80

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

our HLA we don’t model any type of these theorems. Also VARIANTS, in our translation
events are created from sequence diagram message in a specific scenario. Then, these events
cannot be convergent. Events parameters are not supported in our meta-model because
the proposed translation is an end-to-end translation and all defined elements in the HLA

have corresponding element in the EVENT-B specification.

3.2.1.2 Translation Rules

Three sets of rules have been defined.
— The first one considers elements related to a package.
— The second one deals with the SYSML refinement extensions.

— The last one deals with SYSML decomposition extensions.

Translation of package elements.

Tables 2.1 and 2.2 summarized the rules that translate all the elements of a package,
which includes package diagram, BDD, state-machine diagram, sequence diagram elements.
It should be noted that in these two tables, F X designates the result of the translation
of Element X.

Rule 1 of Table 2.1: a package diagram gives an EVENT-B project containing the HLA
EVENT-B specification.

Rule 2 of Table 2.1: a package, inside a package diagram, that is not a decomposed

package gives an EVENT-B machine and an EVENT-B context.

SYSML concepts EVENT-B concepts
Rule | Translation of Element | Constraint Element Constraint
Package Diagram PD PD is a Package Diagram E_PD E_PD € EventB_ Spec
Package that is P P € SysML_ Package E P M E_P_M € MACHINE
not a decomposed P ¢ ran(HLA decompose) E P CONT | E P CONT € CONTEXT
package E P MSEESE P CONT

Table 2.1 — Translation rules for a package diagram

The rules of Table 2.2 are applied for the elements of a given package. Note that the
translation rules of elements of the BDD meta-model (Figure 2.6), in particular Block,
Association, AssociationEnd and Characteristic are the same as those used for translating
the equivalent concepts in class diagrams [Laleau and Mammar, 2000]. Mainly, an asso-

ciation between two blocks is modeled as a relation between two constants representing

81

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

these blocks instances. The relation become a function, an injection,... depending on the
multiplicity of the association.

Figure 2.15 shows an example of the translation of an association called interactsWith
between the Pilot and the OnBoard subsystem. The EVENT-B formalization of this asso-
ciation shown in Listing 1 is presented as a bijective function between the sets PILOT and

OnBoard created from the corresponding elements of HLA.

SYSTEM ATOoETCS_GOA2SystemL1_CONT
SETS

- .3 OnBoard; PILOT
«Block» CONSTANTS
ED)|
EIATOGETCS_GOA2System pilot, onboard, interactsWith,

1.

+¢1 +¢1 PROPERTIES
interactsWith € PILOT ~—
«Block» «Block» | interactsWith OnB d
B Track EOnBoard [y 4 nboar
. . . . END
Figure 2.15 — Association translation rule ex-
ample Listing 1 — Example of a translation rule for

an association.

The first three rules in Table 2.2 are rather straightforward. Rule 6 expresses that
a lifeline L associated to a block B is translated by a constant £ LC' instance of the
abstract set & B S associated to B, and a variable £ LV that represents the current
state of E_LC' in the state-machine associated to B.

Rule 7 needs to be more precisely defined. An EVENT-B event £ M obtained from
the translation of a message M is of the form:

SELECT G_M THEN A M END

where G__ M are the guards and A M are the actions. G_M and A M are obtained as

follows.

— Let SQ be a sequence diagram.

— Let C'B be a combined fragment in the sequence diagram that contains an interaction

operand 10.

— A message M is defined between two lifelines in SQ, L, its origin, and Lo, its

destination (L; and Lo are not necessary different).
— Ly (Lo, resp.) is associated to block By (Baz, resp.).

— Let SM; (SMay, resp.) be the state-machine associated to B; (Ba, resp.).

82

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

SYsML concepts

EVENT-B concepts

message that is not
a refined message

Rule | Translation of Element Constraint Element Constraint
Block B B € SysML_Block E B S E B S e SETS
State-machine of a | SM, B SM € SysML_ State-machine | E_SM E_SM € SETS
block SM is associated to B
State-machine S1,59, S; € SysML _States E_Si,E_So,| E_S; € CONSTANTS
states ... Sn SM € SysML _State-machine | ...E_S, E SM={E_S;,E_S2,...E_S,
SM S; is a state of SM
Lifeline of a L,B, SM L € SysML _Lifeline E LC, E LC € CONSTANTS
sequence diagram L is an instance of block B, E_LV E LCeE B S
associated to a SM is the state diagram E_LV € VARIABLES
block associated to B (E_LV e {E LC} - E_SM)
B and SM have already been € INVARIANTS
translated (E_LV:e {E LC} —
E_SM) € INITTALISATION
Sequence diagram M M € SysML_ Message E M E_M € EVENTS

— M is associated to a transition T" of SMs.

Table 2.2 — Translation rules for elements of a package

— Let S5, be the source state of T" and TS5 be the target state of T

Note that Rule 5 gives E_SS; (E_TS;, resp.) as the EVENT-B elements associated to

SS; (T'S;, resp.). Rule 6 gives E_L;C and F_L;V as the EVENT-B elements associated

to Lz

e Calculation of A M
A MA2E LV(E LC):=E TS,

The current state of £ LoC corresponding to the lifeline Ly is the target state of

the transition 7.

e Calculation of G_ M

— If M is the first message of SQ then
G M2FE L)V(E LC)=FE_SS,

— If M is encompassed in IO constrained by the interaction constraint G IC then

G M2G ICANE L V(E LyC)=E_SS,

We precise that G IC' is defined using a lifeline L associated to a block from

83

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

the parent system and its current state C'Sy. Then

G IC=FE LV(E_LC)=FE_CSp

— FElse, let Prev_ M be the message of SQ that precedes M. Its lifeline destina-
tion is necessary L; and Prev M corresponds to a transition 7" of SM; whose
source state is SS7 and target state T'57.

G M2FE LiWV(E _ I.C)=FE TS1 ANE_Ly)V(E_LyC)=FE_SS,
This means that M is triggered after Prev_ M (i.e. the current state of £ L1C
is the target state of the transition 77 and the current state of E_LoC' is the
source state of T').
It should be noted that this ordering between messages M and Prev M is de-

fined by the GeneralOrdering meta-class of the sequence diagram meta-model.

Translating SYSML refinement extensions to EVENT-B. Two rules are defined to

translate the two SYSML package and sequence diagram refinement extensions.

— Machine Refinement Rule is defined as follows: Let P; and Py two SysML
packages such that P, HLA refines P;. P; and Ps are translated into EVENT-B
according to Rule 2 and give £ Py M and E_ P, M machines.

In £ Py M, two clauses are added to express the SYsSML package refinement:
— F P, MREFINESE P M
— F P, M SEES E Py CONT
— E P; M variables are copied in E Py, M
— FE_P;_ M variables initialisation is copied in E_ Py M

— Event Refinement Rule is defined as follows:

Let P; and Py two SYSML packages such that P, HLA refines P1. P; and Py are
translated into EVENT-B according to Rule 2 and Machine Refinement Rule. This

gives £ P1_ M and E Py M machines such that £ P> M refines £ P, M.

Let My (Ma, resp.) a SYSML message of the sequence diagram of P; (g, resp.) such
that My Refines Message My. M is translated according to Rule 7:

E M, 2 SELECT G_M; THEN A M, END

Then My is translated by:

84

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

E_M2ref E_M1£ SELECT G_MAE_LVMy(E_LCM,)=E_SSM,
THEN A M, | E_LVMy(E_LCM,) := E_TSM; END

Translating SYSML decomposition extensions to EVENT-B. As already stated, we
use the shared-event decomposition approach |Butler, 2009b| of EVENT-B to translate the

SYsML package decomposition extension.

— First a new EVENT-B machine called INTERFACE that corresponds to each of the
decomposed machines representing sub-systems is created.

— Then all the variables of the machine to be decomposed are assigned to one of these
decomposed machines.

— The elements from the machine to be decomposed linked to a variable assigned to an
interface are also assigned in this interface.

Following the shared-event decomposition mechanism, all the variables of the machine
to be decomposed must be assigned to one of the decomposed machines. However, if
the machine to be decomposed is a refinement machine that refines an abstract one then
it contains also the redefinition of abstract variables coming from refinement. We recall
also that after decomposition each sub-system can function independently from its par-
ticipation in the main system. Therefore, the interface that represents each sub-system
encompasses only elements related to this sub-system with no relationship with the parent
system. That is why, we have created a supplementary new EVENT-B machine called RE-
FINEMENT _INTERFACE that will get from the decomposed machine all abstract variables
and their associated elements coming from refinement.

The Machine Decomposition Rule is illustrated in Figure 2.16 and defined as follows.

Let P, P; and Ps three SYSML packages such that P is HLA decompose into P; and
P5. we recall that P; and P are sub-systems of P and then corresponds to the blocks B
and Bp in P. P is translated into EVENT-B according to Rule 2 and give £ P M machine.

— E P M machine is shared-event decomposed into two machines called £ Py Interface
and E Py Interface that correspond to P; and Ps.

— Each £ P; Interface contains the elements of £ P M linked to the B; block: SEES
clause, variables, invariant and the events that read or modify these variables.

— If E P M isarefinement machine then a new interface called EP_ Refinement_ Interface
is created. It contains the elements of £ P_ M coming from the refinement (abstract

variables and their related elements).

85

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

— E_P; Interface is refined by a machine called £ P; M that contains the translation

of the elements of P; (blocks, sequence diagram, state-machines).

Event-B specification architecture

Shared-event decomposition

E_P1_Interface E_P2_Interface

High-level architecture

[p]

'
« HLA_decompose » H « HLA_decompose »
A= ubeteg i g P gt~ "

Figure 2.16 — Decomposition extension translation to EVENT-B

3.2.2 Model-to-Text Translation

This step generates automatically an EVENT-B textual specification from the resulting
EVENT-B models of the previous step using Acceleo [Musset et al., 2006]. Acceleo is a
template based technology allowing to automatically produce any kind of source code from
any data source available in EMF format. This textual specification can be introduced
into provers such as AtelierB [AtelierB, 1990|, model-checkers and animators such as ProB
[ProB, 2003] to verify the consistency of the modeled system. In this way, design errors

can be detected and invariant violation can be discovered.

3.2.3 Example of application of the translation rules

To give a better understanding of this translation, we present here an application
example of these rules on an extract of HLA models. This extract is taken from the
ATO over ERTMS case study presented in [Bougacha et al., 2022a]. Figure 2.17 shows
the package ATOoverETCSGoA2 that includes a BDD describing the ATOoverETCSGoA2
system and its sub-systems Track and OnBoard. State-machine diagrams are created for
each sub-system to specify their behaviors and a sequence diagram describing the sub-
systems interplay to satisfy the parent system behavior is designed.

Listings 2 and 3 show the generated EVENT-B specification that represents the struc-
tural and dynamic parts from this HLA excerpt after application of the rules described in
Section 3.2.1.2. Listing 2 presents the context which defines
the structural part and the machine shown in Listing 3 which defines

the dynamic part.

86

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

|[ATOoverETCSGoA2| |
(OnBoard States)
[Track States
| orderOnBoardForATODriving
1 . | orderTrackF orATODriving |
1 + 1 Se!OnBoardFlinualemgI | SetOnBoardF ofATODriving | SetTrackForManualDriving| | | SetTrackForATQDriving
«Block» «Block» Initial5 L |
[Track] DnBoard] ‘orderOnBoardForManualDriving ® orderTrackForManualDrinving
Initiall
J
- S/
ATOOETCSGoA2
[[enBoard - Onoard]]
S S —
[+7) [Train is functional]
BooD b
[SetTrackF orATOD iving|
«Refines_ Message»
SetTrackForManualDriving v
«Refines_ Messages
e

Figure 2.17 — SYysML to EVENT-B translation rules application example

Therefore, the steps of the translation process for the example are:

— First, the package ATOoverETCSGoA2 (framed in yellow) is transformed into a con-
text and a machine that sees the

created context. (rule 2 in Table 2.3)

— The ATOoverETCSGoA2 system is a sub-system that corresponds to a parent system.
The decomposition of the machine created from the parent system package allows
to create a set of interfaces each of which corresponds to a sub-system (see Sections
3.1.1.1 and 3.2.1.2). Therefore, the machine refines ATOoverETC-
SGoA2 Interface. It gets from this interface all its seen context, variables and their

initialisations. (Machine refinement rule in Section 3.2.1.2)

— BDD blocks Track and OnBoard (framed in blue) are transformed into two sets Track

and OnBoard. (rule 3 in Table 2.3)

— Sequence diagram lifelines onboard and track are translated into two constants:

such that € OnBoard
and such that € Track. (rule 6 in Table 2.3)
— Two variables and are created from the sequence diagram

lifelines onboard and track. (rule 6 in Table 2.3)

87

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL

ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

SYSML concepts

EVENT-B concepts

Rule | Translation of Element Constraint Element Constraint
1 Package Diagram PD PD is a Package Diagram E_PD E_PD € EventB_Spec
2 Package that is not a P P € SysML_ Package E P M E_P_M € MACHINE
decomposed package P ¢ ran(HLA _decompose) E_P_CONT E_P_CONT € CONTEXT
E P _MSEESE_P_CONT
3 Block B B € SysML_Block E B S E B S € SETS
4 State-machine of a block SM, B SM € SysML _ State-machine E_SM E_SM € SETS
SM is associated to B
5 State-machine States S1,S2, S; € SysML_ States E_Si1,E_S2, E_S; € CONSTANTS
«e:Sn SM € SysML _ State-machine E_Sn E_SM={E_S;,E_S2,...E_S,
SM S; is a state of SM
6 Lifeline of a Sequence L,B, SM L € SysML _ Lifeline E_LC,E_LV E_LC € CONSTANTS
Diagram associated to a block L is an instance of block B, E LCeE_B_S
SM is the state diagram E_LV € VARIABLES
associated to B (E_LV e {E_LC} - E_SM)
B and SM have already been € INVARIANTS
translated (E_LV :€ {E_LC} —
E SM) € INITIALISATION
7 Sequence Diagram Message M M € SysML_ Message E M E_M € EVENTS

that is not a refined message

Table 2.3 — Translation rules application table

— State-machine diagrams OnBoard States and Track States (framed in green) defining

sub-systems behaviors are transformed into two sets OnBoardStates and TrackStates.

(rule 4 in Table 2.3)

— States of the state-machine diagrams (framed in pink), such as orderOnBoardForATO-

Driving from the state-machine diagram OnBoard States, are mapped into constants
orderOnBoardForAT ODriving such that orderOnBoardForATODriving € OnBoardStates.
(rule 5 in Table 2.3)

— Once the variables created their typing invariants and initialisation are generated.

For example the typing invariant of Variable

€ OnBoard — OnBoardStates. (rule 6 in Table 2.3)

— Variable atooveretcsgoa2State comes from the refined machine ATOoETCSGoA2 _ Interface.

(Machine refinement rule in Section 3.2.1.2)

is:

— Sequence diagram messages (framed in purple) related to state-machine diagram

transitions such as SetTrackForATODriving are mapped to events such as SetTrackFo-

rATODriving in the machine. (rule 7 in Table 2.3)

— The guard and action of the event are related to the source and target states of the

transition associated to the sequence diagram message. We give for example the

guard:

88

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

= orderTrackForManualDrinving
and the action:
:= orderTrackForATODriving. (Guards and actions calculation rules

in Section 3.2.1.2).

— The guard of the event is related to sequence diagram combined fragment constraints
and to the message that precedes the current message (see Section 3.2.1.2). The guard
associated to the event SetTrackForATODriving is:

=orderOnBoardForATODriving. (Guards and actions calcula-

tion rules in Section 3.2.1.2).

— As shown in the sequence diagram, the message SetOnBoardForATODriving Refines Message
the message SetATO from the parent system sequence diagram. Therefore, this is
translated in the EVENT-B specification by:

SetOnBoardForATODriving ref SetATO.
The event SetOnBoardForATODriving redefines from event SetATO all its guards and

actions. (Event refinement rule in Section 3.2.1.2)

SYSTEM

SETS OnBoard; Track; ;

CONSTANTS , , orderOnBoardForATODriving,
orderTrackForManualDrinving , orderOnBoardForManualDriving,
orderTrackForATODriving

PROPERTIES

€ 0OnBoard A € Track A

orderOnBoardForATODriving €& A
orderTrackForATODriving € A
END

Listing 2 — SYsML to EVENT-B translation rules application example context.

REFINEMENT

REFINES ATOoverETCSGoA2_Interface

SEES , RailwaysSystemL1_CONT,
RailwaysSystemLO_CONT

VARIABLES , , atooveretcsgoa2State

89

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

INVARIANT
€ OnBoard — A
€ Track —
INITIALISATION
re { = [
:€ o } = [

atooveretcsgoa2State :€ {atooveretcsgoa2} —
ATOoverETCSGoA2States
EVENTS
SetTrackForATODriving=
SELECT = orderOnBoardForATODriving A
= orderTrackForManualDrinving THEN
:= orderTrackForATODriving
END ;
SetOnBoardForATODriving ref SetATO=
SELECT =orderOnBoardForManualDriving A
atooveretcsgoa2State (atooveretcsgoa2)=manualDriving THEN
:=orderOnBoardForATODriving ||
atooveretcsgoa2State (atooveretcsgoa2) :=ATODriving
END
END

Listing 3 — SYsML to EVENT-B translation rules application example context.

3.2.4 HLA formal verification

This verification generates automatically a set of proof obligations corresponding to the

modeled functional properties without any non-functional properties integration, and proof

obligations from the application of model decomposition. These proofs are of type invari-

ant preservation, non-deterministic action feasibility and well-definedness. The verification

step is of paramount importance. It provides a theorem proving method for process verifi-

cation to detect probable invariants violations during the verification using model checking.

The verification process also goes far beyond the simple verification of the structural prop-

erties of the model. Precisely, it enables the verification of the advanced decomposition

and refinement aspects and system behavior of different states achieved from the initial

90

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

state after execution process. The formal verification step checks the correctness of the
designed HLA of railway system specification thanks to ProB [ProB, 2003] model checker
and animator which is used to discover some errors and invariant violation during the
model animation from different execution scenarios or during the verification using model
checking. Therefore, our approach provides a reliable HLA of complex system with a high

level of integrity.

3.3 Conclusion

In this section, we have proposed a set of extensions on SYSML to be aligned with
EVENT-B refinement and decomposition mechanisms. These extensions allow to automat-
ically translate SYSML models of HLA into EVENT-B specifications. Two SYSML parts
are extended. The first part is about package diagrams which are customized to represent
the decomposition of system/sub-systems hierarchies and the refinement of a system by
its sub-systems interplay. The second part consists in customizing sequence diagrams with
stereotypes applied on messages to refine the parent system behavior by the collaboration
of its sub-systems processes. We have also defined a set of translation rules to trans-
late SYSML models into EVENT-B specifications in order to formally verify them using
ATELIERB.

Contributions about this section are published in [Bougacha et al., 2022b].

4 Requirements & high-level architecture alignment

The quality of a complex system is the main measure of its success, that depends
on the degree to which it fulfills its requirements. To this end, alignment links between
requirements models and HLA models need to be established. These semantic links can
be the support to prove the compliance of HLA specification with the expression of system
requirements. The third part of our work aims to propose a model-based approach to
establish alignment links graphically between SYsSML/KAOS models and HLA models
and then the translation of these links into EVENT-B formal specification and their formal
verification (see Figure 2.18).

The process is composed of two steps:

— The first step consists in graphically modeling alignment links between leaf goals

and sequence diagram messages. This graphical modeling step is a simple manner to

91

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

1. SysML/KAOS Modeling 2. SysML HLA Modeling

[Domain Model] [Goal Model

y—
S [— Y/

..............

................

Specification
Figure 2.18 — SYsML/KAOS models and SysML HLA models alignment approach

establish alignment links and to validate them by system stakeholders.

— The second step aims to formalize these alignment links into EVENT-B specification
in order to be integrated in ATELIERB for formal verification purposes. To perform

this formalization, a set of translation rules is defined.

4.1 SysML/KAOS modeling and formal verification

As already introduced in 2.2.1, SYsSML/KAOS [Laleau et al., 2010, Gnaho et al., 2013b]
is a RE method that allows the modeling of functional and non-functional requirements and
the domain of a system. This approach aims to derive an EVENT-B specification directly
from the SYSML/KAOS models. Figure 2.19 presents an overview of the SYsML/KOAS

approach [Fotso et al., 2018a].

4.1.1 SysML/KAOS Modeling

As shown in this Figure 2.19, the first step of this process is to build goal models
enriched with domain models. In our work, we are interested, for now, with functional goals
knowing that a functional SYsSML /KAOS is called an "Achieve" goal. The functional goals
hierarchy is built through a succession of refinements using the three types of refinement
patterns AND, OR and MILESTONE.

Domain models are described by ontologies expressed using the SYsSML /KAOS domain
modeling language [Tueno et al., 2017¢c, Fotso et al., 2018b], based on OWL [Sengupta and
Hitzler, 2014 and PLIB [Pierra, 2006]. Each refinement level in the functional goal model is

92

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

|

takeholder SysML/KACS Or

needs Goal Modeling D

| GoalModel J

.
F :

b 5 VSML/KAOS —-’. Checkers V;?I“:?a?ilon jmatcly 2
Domain Modeling P, Y Nalidati .
alidation .

) Theorem H

- —Romain blodel Provers :

& :

I. -

Figure 2.19 — SYsML/KAOS specification process

enriched with a domain model. Domain models can be linked together to form a hierarchy.
Concepts, as elements of domain model, designate collections of individuals with common

properties.

SYsML/KAOS models example

Figure 2.20 shows an excerpt from the SYSML/KAOS goal model that represents the
functional goals of the ATO over ERTMS case study. The main purpose is to move the
train on GOA2 (goal MoveTrainOnGOA2). To achieve this purpose, the system must first,
initiate the OnBoard system to be driven by ATO (goal MakeOnBoardForATODriving) and
second, initiate the Track system that the Onboard is initiated to be driven by ATO (goal
MakeTrackForATODriving). Two agents are defined: Onboard and Track, each of which is

associated to a leaf goal that it is responsible for.

Figure 2.21 represents the SYSML /KAOS domain model associated with the root level
of the goal diagram (Figure 2.20). The ATOoETCS GOA2 entity is modeled as a con-
cept named ATOoETCS GOA2System. The possible states of a ATOoETCS GOAZ2 are
modeled as an instances of attribute named ATOoETCS GOA2SystemStates, which con-
tains two instances of DataValue of type STRING: manualDriving and automaticDriving.

atooetcs goa?2 is modeled as an instance of an individual named atooetcs goa2 individual

of ATOoETCS GOA2System.

93

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

foveTrainOnGOAz;

MLS

ATOOETCS_GOA2System Frp——
ATOOETCS_GOA2SystemStates:(<<instanceOf ATOOETCS_

{manualDriving, automaticDriving}) [<-------- GOA2System
keQnBoardForATODrivi TakeTrackForATODri\rin;

Figure 2.21 — Excerpt from the steam-
. N boiler control system SYsML/KAOS domain
¢ OnBoard f (Track model

Figure 2.20 — Excerpt from the steam-boiler
control system SYsML/KAOS goal model

4.1.2 EVENT-B formalization of SysML/KAOS Models

The second step shown in Figure 2.19 is a B System ? formalization of SYsML/KAOS
models. Goal models provide the behavioral part (events) of the specification while domain
models provide its structural part (sets, constant and their properties, variables and their
invariant) and the initialisation of state variables. It remains to manually specify the body
of events and to formally verify and validate the specification with ATELIERB tools.

As the semantics of the refinement between goals is different from that of the refinement
between EVENT-B components, proof obligations for goal refinement are generated as
presented in 2.2.2. They depend on the goal refinement operator used and complete the

EVENT-B proof obligations for invariant preservation and for event feasibility.

EVENT-B formalization of SYsML/KAOS models example

For the EVENT-B formalization of SYSML/KAOS models, we recall that each goal
model level is represented as a machine in the EVENT-B specification. Listing 4 rep-
resents the root level of the EVENT-B specification of the ATO over ETCS GOA2 sys-
tem. The concept ATOoETCS GOA2System, of the domain model, gives a set and its
individual atooetcs goa2 gives a constant typed with a property as an element of set
ATOoETCS GOA2System and a variable atooetcs goa2State gives a total function from
ATOoETCS GOA2System to ATOoETCS GOA2SystemStates and initialised in the INI-
TTALISATION clause. At this level, event MoveTrainOnGOA2 allows to change the driving
from manual to automatic.

Each refinement level of the EVENT-B specification is the result of the translation of

3. B System designates a syntactic variant of EVENT-B offered within the ATELIERB tool.

94

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

goal model refinement level. Listing 5 represents an excerpt of the EVENT-B formalization
of the first refinement level of the goal diagram presented in Figure 2.20 with its associated
domain models. This level defines an EVENT-B component containing 3 variables, 3 in-
variants and 2 events MakeOnBoardForATODriving, MakeTrackForATODriving. These events
MILESTONE REFINE the parent goal MoveTrainOnGOA2. Therefore, the EVENT-B for-

malization of this refinement pattern is produced using the keyword ref milestone.

SYSTEM ATOoETCS_GOA2System
SETS ATOoETCS_GOA2System, ATOoETCS_GOA2SystemStates
CONSTANTS atooetcs_goa2, manualDriving, automaticDriving

PROPERTIES

atooetcs_goa2 € ATOoETCS_GOA2System A
ATOOETCS_GOA2SystemStates = {automaticDriving, manualdriving}
VARIABLES atooetcs_goa2State
INVARIANT
atooetcs_goa2State € ATOoETCS_GOA2System —
ATOoETCS_GOA2SystemStates
INITIALISATION
atooetcs_goa2State : € {atooetcs_goa2} —
ATOoETCS_GOA2SystemStates
EVENTS
MoveTrainOnGOA2 =
SELECT atooetcs_goa2State (atooetcs_goa2)= manualdriving THEN
atooetcs_goa2State (atooetcs_goa2):= automaticDriving
END
END

Listing 4 — EVENT-B formalization of the SYsML/KAOS models example root level pre-
sented in Figures 2.20 and 2.21.

SYSTEM ATOoETCS_GOA2System2
REFINES ATOoETCS_GOA2System

VARIABLES atooetcs_goa2State, onboardState, trackState,
INVARIANT

95

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

INITIALISATION

EVENTS

MakeOnBoardForATODriving ref_milestone MoveTrainOnGOA2 =

END;

MakeTrackForATODriving ref_milestone MoveTrainOnGOA2 =

END
END

Listing 5 — An excerpt of the EVENT-B formalization of the SYSML/KAOS models ex-

ample first refinement level presented in Figures 2.20.

4.2 Graphical alignment

To process the first step, we note that the requirements side is represented by a
SYsML/KAOS goal model enriched with a domain model for each goal model level and
the architecture side is represented by a SYsML HLA model.

To specify graphical alignment links between these two sides, we have chosen to establish
links between concepts from each side:

— leaf goals from SYSML/KAOS goal model because they are the most concrete goals
of a goal model. A leaf goal is assigned to an agent (environment, software or sub-
system agent) responsible for the goal satisfaction.

— Sequence diagram messages while they represent running interactions between system
components. Each message corresponds to a transition in the state-machine of the

block associated to the target component.
We propose three kinds of alignment links to satisfy leaf goals assigned to a sub-system
(an agent).
— The first alignment kind is called Satisfy. It is defined to represent an alignment link

when one message can satisfy one goal.

— The second kind is called And_ Satisfy. It is defined when a goal is satisfied by a set

of messages, i.e. the execution of all of them, in any order, is needed to satisfy the

96

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

goal.

— The last alignment kind is called Milestone Satisfy. It is defined when a sequential

execution of a set of messages in a specific order is needed to satisfy a goal.
These alignment links definitions are inspired from two concepts:

— First, the SYSML requirement diagram Satisfy relationship, a dependency between a
requirement and a model element that fulfills the requirement. This relationship di-
rection points from the satisfying (client) model element to the (supplier) requirement

that is satisfied.

— Second, The SYsML/KAOS refinement operators AND, OR and MILESTONE
which represents the goal model hierarchy where higher-level goals can be refined
into lower-level sub-goals and the set of sub-goals satisfy the higher-level goal. We
recall that, when a goal is AND-refined into sub-goals, all of them must be satisfied
for the parent goal to be satisfied. The MILESTONE refinement consists in identi-
fying milestone states that must be sequentially satisfied for the parent goal to be
satisfied. Finally, when a goal is OR-refined, the satisfaction of one its sub-goals is

sufficient for the satisfaction of the parent goal.

Therefore, to create alignment links, we have merged these two concepts to adapt the
SYSML Satisfy relationship between requirements and model elements and enrich it with
the goal/sub-goals satisfaction semantics.

Figure 2.22 shows the alignment meta-model, in which these three alignment kinds are
represented as subclasses of the meta-class Dependency. Two binary associations are then
defined. The first one is to link a leaf goal to a dependency and the second is to link
a dependency to a set of messages of a sequence diagram. Note that a message can be
linked to several dependencies. The kind of alignment link is specified by a stereotype on
the arrows between messages and leaf goals. Let us note that, for a Milestone_ Satisfy

alignment link, the order of the messages must be given by numbering the relevant arrows.

Graphical alignment example

To give a simple representation of these graphical alignment links, we have applied the
proposed alignment process on example from the ATO over ERTMS case study excerpt.
Shown in Figure 2.23, the right hand model presents the SYSML /KAOS goal model of the
ATO over ETCS GOA2 whereas the left hand model presents its associated HLA package
taken from HLA models [Bougacha et al., 2022a]. The SYsML/KAOS goal model contains

97

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

SysML/KAOS SysML HLA
requirements
metamodel
metamodel
Leaf Goal SD Message
1 1 . 1.*
Dependency
A ¥
Satisfy Milestone Satisfy =~ AND_Satisfy

Figure 2.22 — Alignment meta-model

two leaf goals MakeOnBoardForATODriving and MakeTrackForATODriving. These two leaf
goals are satisfied respectively by the sequence diagram messages SetBoardforAutomatic
and SetTrackforAutomatic. Then, two alignment links are created of kind Satisfy, from the
sequence diagram messages to the leaf goals to represent that the satisfaction of one leaf
goal is established with the related sequence diagram message.

More details and illustrations about the graphical alignment modeling will be presented

in Section 5.4.

4.3 Formalization of graphical alignment links

To formalize graphical alignment links using EVENT-B, a set of translation rules has
been defined.

Recall that the EVENT-B formalization of the SYsML/KAOS models is described in
[Matoussi et al., 2011a, Tueno Fotso et al., 2018] and the EVENT-B formalization of the
SysML HLA models is presented in 3.2.1.2. Each goal, including leaf goals, is transformed
to an event in the EVENT-B specification of requirements models and each sequence dia-
gram message is transformed to an event in the HLA model EVENT-B specification.

The main idea is to define an alignment link between a set of messages and a leaf goal
as a refinement relationship between the corresponding EVENT-B events. There are many

reasons why it is not possible to use the standard EVENT-B refinement namely:

— The semantics of the EVENT-B refinement do not correspond to our alignment se-

mantics. Indeed, EVENT-B refinement process allows to gradually enrich the differ-

98

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

ATOOETCS_GOA2SystemL1 |

]

«Block»

I ATOOETCS_GOA2System ATOQETCS GOA2SystemL1 J
| driver : Driver 1 hrack : Track| I onBoard : OnBoard
alt : «Rehnés,Messagew
[[powering on| driver] SetAutomatic

BDD ! i

Track States |

‘ SetBoardforAutomatic

trackForAutomaticDriving [[powering orrutomatic] SetTrackForAutomatic
SetTrackForManual elTrackForAutomatic ' aRefings |Messagen
' SetManual

trackForManualDriving

State Machine Diagram of Track L

Initial1

SetTrackForDriver SetBoardForDriver

OnBoard States

BoardForAutomaticDriving L Satisfy
SetBoardForManual -: etBoardforAutomatic
Sequence Diagram
BoardForManualDriving
Initial1
State Machine Diagram of OnBoard

loveTrainOnGOAZ

Satisfy

A J

ﬁceOnBoardForATODri%)dékeTra: KForATODriv y

Figure 2.23 — Graphical alignment example

ent parts that constitute the system with more functional, safety, etc details, starting

from an abstract model to a more concrete one.

— The messages that satisfy a leaf goal can belong to distinct EVENT-B machines
whereas in EVENT-B it is not possible to specify that a set of machines refines one

machine.

However, as the formalization of SYSML/KAOS models and SysML HLA models is car-
ried out in EVENT-B, we think that it would be more appropriate to formalize alignment
with EVENT-B. The proposed solution is to build a new EVENT-B machine for each align-
ment link. New sets of refinement proof obligations are specified, one for each kind of
alignment. Discharging these proof obligations allows to formally verify the satisfaction of
a leaf goal by a set of HLA messages.

Figure 2.24 illustrates how this new machine is built for a leaf goal LG which is

99

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

And_ Satisfy by the HLA sequence diagram messages M; and Ms:

P MACHINEE G M
REFINES ...

SEESE G M CONTEXTS
VARIABLESE vgl, E vg2, .
INVARIANTS E_G M INVARIANTS

MACHINEE A M

REFINES ...

SEESE_A M CONTEXTS
VARIABLESE val,E va2, ...
INVARIANTS E_A_M INVARIANTS

INITIALISATION INITIALISATION
EVENTS EVENTS
ELG(E vgl,Evg) -~ ————f————————-— | E M (E val) _ _ __. s
END EM(E va2) - = — - & -
END :

SysML/KAOS Event-B specification

HLA Event-B speciﬂcaliolp

T
MACHINE E_LG_Goal_SaTisfaction_Interfliice
REFINESE G M :
SEESE G M CONTEXTS,E_A M CONTEXTS
VARIABLESE vgl,E vg2, E val, EivaZ:
INVARIANTS INV A (E va, E_vas) A|

— Refinement
,,,,,, » Alignment

Gluing INV (E vgl,E va l}

INITIALISATION :

EVENTS 1
E M ref andE LG (E vgl, Efvgt. E val) -

E Myref andE LG (E_vgl.E_vg2,E va2) «

END

Alignment Event-B specification

Figure 2.24 — EVENT-B architecture of the proposed alignment

— The top left machine, called £ G_ M, is the SYsSML /KAOS EVENT-B machine that

contains the event £ LG corresponding to the leaf goal LG.

— The top right machine, called E. A M, is the HLA EVENT-B machine that contains
the events E_ M; and E_ My corresponding to the messages M; and M,. In this

example, let us assume that M; and My belong to the same machine.

— the new machine, called £ LG Goal_Satisfaction_ Interface, is the alignment ma-
chine. This machine refines £ G M and imports the events £ M; and £ M from
the HLA machine £ A M.

Table 2.4 presents the first four translation rules that allows to obtain the elements
of the EVENT-B alignment machines. The two columns of Source concepts describe the
elements related to the SYSML/KAOS models and the SyYsSML HLA models needed for
defining alignment links. The two columns of Target concepts describe the elements of the
EVENT-B alignment machine obtained from translating the Source concepts.

Rules 2, 3 and 4 need to be more precisely defined.

100

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

Source concepts Target concepts
Rule | Translation of Element Constraint Element Constraint
1 Leaf goal to satisfy | LG LG is the leaf goal E LG Goal | E LG Goal Satisfaction Interface
E_LG E_LG is the event related to Satisfac- € MACHINE;
LG tion Interface E_LG_Goal Satisfaction Interface
E_G_M is the EVENT-B REFINES E_G_M;
machine that contains E_LG E LG _Goal Satisfaction Interface
SEES E_G_M CONTEXTS;
2 Variables involved E_vg;, E_vg; are the variables of E_vgi, E_vg;, € VARIABLES
inE_LG i€ [l.n] E_G_M involved in E_LG i€ [l.n]
3 Messages M; My, ... My, are messages E_M; E_M; € EVENTS
responsible for the E_M; E_M;j is the event related to je[l.p] E_LG_Goal_Satisfaction Interface
satisfaction of the j€1..p] message Mj; SEES E_A_M; CONTEXTS
leaf goal LG E_A_M;j is the Event-B
machine that contains E_M;
4 Variables involved E_va; E_va; 1, are the variables E_va;p, E_va;, € VARIABLES
in E_M; events je[l.p] involved in E_ M; je[l.p] INV_A _M;(E_vaji, .., E_vajq) €
k € [1..q] INV_A M,(E vaj, k € [1.q] INVARIANTS
...,B_vaj 4) is the part of
E_A_ M;j invariant related to
the E_va; variables

Table 2.4 — First four translation rules for alignment links

— Rule 2. This rule aims at copying the variables £ vg; (i € [1..n]), involved in the

event £ LG corresponding to the leaf goal LG to satisfy from the machine E._ G M,
in the alignment machine of LG called E LG Goal Satisfaction Interface.

Rule 3. M; (j € [1..p]) are the messages of the HLA model responsible for the
satisfaction of the leaf goal LG. E_ M; (j € [1..p]) are the corresponding EVENT-B
events. These messages can belong to several sequence diagrams, consequently the
corresponding events can belong to several EVENT-B machines E_A_M;. Each
E_Mj is copied from E_A_M; in the LG _ Goal_ Satisfaction_ Interface and this
machine will also SEES E_A_M; CONTEXTS.

Rule 4. Each event £ M; (j € [1..p]) uses a set of variables £_va;j (k € [1..q]) com-
ing from the HLA model. Rule 4 aims at copying these variables in the alignment ma-
chine £ LG_ Goal_ Satisfaction_ Interface. INV_A_M;(E_wa;,, ...,E_wva;4), the
part of B A_ M; invariant related to the E_wa;j variables, is also copied in the

machine £ LG_ Goal_Satisfaction_ Interface.

Rule 5 consists in constructing the gluing invariant in the machine £ LG Goal Satisfaction

_ Interface. These invariants link variables of the HLA EVENT-B machines £ A_ M; to

variables of the SYSML/KAOS EVENT-B machine E_G_ M. Recall that, as presented

in [Tueno Fotso et al., 2018]|, each leaf goal LG is associated to one or more elements of

101

CHAPTER II. CONTRIBUTION: A METHODOLOGY FOR HIGH-LEVEL
ARCHITECTURE MODELING ALIGNED WITH REQUIREMENTS MODELS

the domain model. They give the structural part (CONTEXTS, VARIABLES and IN-
VARIANTS) of the EVENT-B machine £ G_ M. Likewise, in the HLA model translation
presented in 3.2.1.2, the source and the target lifelines of a sequence diagram message are
associated to blocks in the BDD. They give the VARIABLES and INVARIANTS part of
the EVENT-B machines £ A_ M;. Thus, the gluing invariant comes to establish links be-
tween elements of the domain model and elements of the BDD. This can only be a creative
activity from the designer that cannot be automatized.

To formalize the semantics of the proposed alignment links between goals and messages,
we propose a set of new refinement proof obligations, different from the proof obligations
generated for the EVENT-B standard refinement. They will depend on the satisfaction
relationship used. These proof obligations are inspired by the proof obligations defined for
the formalization of refinement links between goals [Matoussi et al., 2011a| to establish
that a set of sub-goals satisfies a parent goal. We have adapted them to establish that one
or more messages can satisfy a goal.

Let LG be a leaf goal and M, My two messages. Let £ LG be the event associated
to LG and E_ My, E_ M, the two events associated to M; and Ms. Each event F is of the
form: £ = SELECT E_Guard THEN E_Post.

Rule 6 is