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Abstract

The progress of deep neural networks in the last decade across the domains has led

to concern about the black-box nature of these models. For the trustworthiness of

deep neural networks, as deep neural networks are inherently considered opaque and

black-box in nature explanation of the decisions in a human-understandable manner

is an open problem. Domains with high-stakes decisions such as judicial crimes,

healthcare, social media, and finance, are extremely vulnerable to the decision by

deep neural models. Recently, with the advent of deep neural models such as trans-

formers, the increasing complexity and number of parameters make explainability in

a human-understandable manner more important.

The work presented in this thesis, can be divided into two parts, first develop-

ing a multimodal network targeted towards the application of risk detection. The

data for risk detection consists of egocentric videos and signal data acquired from

various physiological and motion sensors. As the acquisition of the data is in a real-

world scenario, there are several challenges that arise for the use of this multimedia
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data using multimodal networks, i) weak synchronization of the data between the

modalities, ii) data missingness, iii) understanding the representation between the

modalities. To develop the multimodal network, at first we study the signals from

various sensors, to benchmark our model for the use of sensors we use sensor-based

human activity recognition datasets. Next, we develop our multimodal networks

for visual and sensor data. For the video data, we benchmarked using a large-scale

human action recognition dataset.

For our next part, we develop explainability methods for the transformers, more

specifically the vision transformers (saliency-based), in this, we evaluate our method

w.r.t, the human-attention-based gaze fixation system. For the video-based sys-

tem, we developed a model for highlighting the temporal importance of the frames.

This developed model is used on the visual data of the risk detection system and

benchmarked on a large-scale human action dataset. Next, we take leverage of our

explanability method and extend to use this method for better generalization of our

multimodal system. The two forms of multimodal data representation have been

tested, one the intermediate fusion in the feature space and the next late fusion in

the decision space. In this work, we also have touched upon robustness and domain

generalization using the interpretation of the models.



Résumé

Le travail présenté dans cette thèse peut être divisé en deux parties. La première

partie concerne le développement d’un réseau multimodal destiné à l’application de

la détection des risques des personnes fragiles dans l’environnement à domicile. Les

données consistent en des vidéos égocentriques et des signaux acquis à partir de

divers capteurs physiologiques et de mouvement. Comme l’acquisition des données

se fait dans un scénario réel, l’utilisation de ces données complexes dans des réseaux

multimodaux pose plusieurs problèmes : i) la faible synchronisation des données en-

tre les modalités, ii) l’absence de données, iii) la compréhension de la représentation

entre les modalités. Pour développer un réseau véritablement multimodal, nous

nous concentrons d’abord sur les composants uni-modaux, concevons et évaluons

nos modèles sur des ensembles de données uni-modales libres d’accès. Ensuite, les

modèles sont fusionnés dans une architecture multimodale pour prendre des décisions

sur des données multimodales réelles. L’une des configurations que nous avons pro-

posées est un transformer multimodal. Les deux formes de fusion d’informations ont
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été étudiées : i) la fusion intermédiaire dans l’espace des caractéristiques et ii) la

fusion tardive dans l’espace de décision.

Dans la deuxième partie de la thèse, nous développons des méthodes d’explicitation

pour les transformers, plus particulièrement les transformers visuels. Nous avons

évalué notre méthode en termes de plausibilité des explications obtenues par rap-

port aux cartes de densité de fixations du regard humain. Cette partie du tra-

vail a été réalisée sur un ensemble de données d’images fixes. Notre objectif étant

de développer des solutions pour l’analyse d’informations temporelles, telles que la

vidéo, et sur la base de la philosophie de l’importance par l’explication, nous avons

proposé un modèle pour mettre en évidence l’importance temporelle des images dans

la vidéo. Ce modèle a été utilisé sur les données visuelles du système de détection

des risques et comparé à un ensemble de données à grande échelle sur les actions

humaines. Ensuite, nous tirons parti de notre méthode d’explicabilité proposée et

l’utilisons pour une meilleure généralisation du transformer multimodal proposé. En

effet, l’utilisation de techniques d’explicabilité dans les transformers multimodaux

permet d’augmenter la précision de ces classificateurs sur des données complexes du

monde réel et ouvre des perspectives intéressantes pour les études sur l’éparcité et

la robustesse de ces approches.
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Chapter 1
Introduction

Deep learning research has been at the forefront of many domains such as computer

vision, Natural Language Processing (NLP), etc. for the past decade. A deep neu-

ral network model is believed to mimic the biological neurons of humans, allowing

networks to extract information from various data modalities in a task of content

understanding. With the increase of data acquisition devices, data has been abun-

dant, making deep neural networks highly successful. In the real world, the use

of multimodal data is evident, as the human cognitive system uses more than one

stimulus/modality for the understanding of the surrounding world. Thus, while us-

ing deep neural networks, the use of multimodal data eases the understanding of

concepts in the real world. But before combining modalities, it is prevalent to use

single modalities. Image and video representation is very important in computer

vision, and image analysis constitutes primarily many tasks such as understanding

the scene, its variations, and attributes, etc. Deep neural networks have achieved

1



CHAPTER 1. INTRODUCTION

tremendous results in classification, segmentation, and object detection. This also

resulted in the use of these networks for video analysis since videos are fundamentally

the combination of image frames along the temporal dimension, i.e., videos have an

added temporal dimensionality along with the spatial dimensionality. With recent

advancements in language and vision projects such as image and video captioning,

this research field brings some unique challenges for multimodal researchers given

the heterogeneity of the data and the contingency often found between modalities.

In this thesis, we use fusion and alignment as there is a correlation between the

modalities for the prediction of concepts.

The challenges for multimodal machine learning are multimodal fusion, co-learning,

multimodal representation learning, alignment of modality [11], etc. These include

attention models, auto-encoders, and multimodal recurrent networks. The represen-

tation of multimodal data is important for the performance of deep neural networks.

The ideal form of representation, as stated by Bengio et al. [14], comprises smooth-

ness, temporal and spatial coherence, sparsity, and natural clustering, among others.

The representation can be of two types: i) joint and ii) coordinated. These two types

of representations are illustrated in Figure 1.1. Joint representations present an uni-

modal representation in multimodal space. For joint representations, early fusion

techniques are used in the input space; i.e., it can be understood as concatenating

features from individual modalities. For representing the features from individual

modalities, neural networks (NNs) can be used since they are successive blocks of

the inner product followed by the non-linear activation functions. That is unimodal

2



representations can be projected to a joint space by them. In a coordinated space,

for the features from the individual modality, separate representations are learned

in a coordinated fashion under a constraint. One of the examples of coordinated

representation is computing similarity between features in a coordinated space. The

use of joint representations is especially when all the modalities are present during

inference time. Similarly, coordinated representations are majorly used for applica-

tions where only one modality is present in the inference time. The computation of

the similarity between the features reduces the distance between the features from

different individual modalities. The type of representation in multimodal learning is

dependent on the type of information we are trying to extract. For example, in the

task of sentiment analysis, semantic information is extracted from multiple modali-

ties for the analysis of the expressed emotions [147]. Similarly, a very common and

well-studied topic of action detection may use more than one modality to localize

instances of action in the temporal domain [27, 37]. Video captioning uses the video

frames and speech transcribed by automatic speech recognition as input and pre-

dicts a caption. The captions can be generated using a generative network in a joint

space. There are various other examples that can be demonstrated as to how the

representation of a multimodal network is used.

In recent years, the explainability or interpretability of decisions of DNNs

has gained importance due to the nature of the application the networks are used for.

There are applications such as in health care, law enforcement systems, finance, etc.,

3
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Figure 1.1: Illustration of two different types of representation for multimodal learning.

that leverage deep neural networks. Due to the black-box nature of the late, their

decisions are not human-understandable. This implies a lack of transparency when

used for high-stake decisions for these models. A black-box model can be a function

that is difficult for humans to comprehend. There is the myth that the greater

the complexity of the model, the greater the predictive performance is. However,

as stated in [110], it depends on the data, if the data are structured with a good

representation, then there is no significant difference in the predictive performance

between models. In addition to multimodal learning, explaining decisions plays an

important role. In this thesis, one of the novel applicative domains on which to focus

is the use of weakly synchronized signals along with videos for the classification of risk

events. With the compelling performances of the deep neural networks and a number

of training parameters ranging from millions to billions it is of prime importance to

understand the question what are the features responsible for the prediction of the

neural networks?.
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1.1 Problem Statement

This thesis is predominantly performing two tasks:

• Multimodal Learning for the prediction of risk events among old and frail indi-

viduals.

• Interpreting the decisions and using this interpretation for optimizing the pre-

dictive performance of the models.

Multimodal learning for the prediction of risk events encompasses learning from

data obtained from multiple modalities. The general overview for the prediction

of risk events is obtained by obtaining the videos using the ego-centric camera and

obtaining physiological and motion data from sensors. These data are manually

annotated using an annotation interface. Thus, the localization of the risk events

for network training is performed manually, that is, data are segmented using the

aforementioned annotation interface. Once these annotated data are obtained, we

use them for the prediction of risk events. For this task, we use real-world data, and

it is important to understand that these events are extremely rare in nature. The

other task is the interpretation of the decisions as predicted by the network. We

describe these tasks in detail in the following sections:

1.1.1 Multimodal Learning

To understand multimodal learning [11], first, the representation needs to be un-

derstood i.e, if there is a joint representation such that the data from the first
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Figure 1.2: Illustration of (right) early and (left) intermediate fusion strategy.

modality is denoted by {x1
1, x

1
2, x

1
3, ...., x

1
n} and from the second modality is given

by {x2
1, x

2
2, x

2
3, ..., x

2
n}, then after the projection, the distribution in the joint space

can be denoted as {x̂1, x̂2, x̂3, ..., x̂n}. From this joint distribution, the predictive

model can be {yi} = f(x̂i;w) where f is a neural model and yi is the predicted label.

To obtain the distribution in the joint space, neural networks can be used on the

individual modality i.e., {li1} = f1(x
1
i ;w1) and {li2} = f2(x

2
i ;w2) given f1 and f2

are neural models for the extraction of information to project in a common space

{x̂i} = g(li
1, li

2) where g can be a function to combine in a common joint space.

The coordinated representation can be also termed as the multiplicative represen-

tation [49]. In this representation, the similarities between the output distributions

of the individual modalities obtained from the respective neural networks are com-

puted and it is obtained as f1(x
1
i ;w1) ∼ f2(x

2
i ;w2). The early and intermediate fusion

as illustrated in Figure 1.2 techniques can be categorized in the joint representation

space whereas the late fusion technique can be categorized in the coordinated rep-

resentation space.
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1.1.2 Interpretation of Model Decisions

Interpretability and Explainability are often used interchangeably in the literature,

but the objective of both terms is to make certain properties of the model in a

human-understandable form. Prior to understanding the objective of explanations,

there are certain categories of explanations that need to be studied. The categories

can be divided into self-interpretable models, post-hoc explanations, explanations

by examples, and explanations by concepts. The objective and the task definition

change depending on the form of explanations we talk about. The two most common

explanation methods in the literature are post-hoc explanation methods and self-

interpretable models. We will understand these two forms of explanations here and

the rest are broadly discussed in Chapter 2.

• Post-Hoc Explanations: This type of explanation is crucial for systems where

a human is not in control of the training process. The post-hoc explanations

are considered mostly during the inference time; i.e., this type of explanation

is used at the post-training time. To understand it’s objective we take input

data as {x1, x2, x3, ...., xn} ∈ X. Let f(.) be a neural network for generalization

in a supervised manner, and thus the output predicted labels can be written

as {yi} = f(xi;w). Thus the post-hoc explanations can either explain the

model f(; ) at xi i.e., f(xi), or understand how each feature is contributing or

explain the whole input data i.e., f(xi) where xi ∈ X. Thus, these two forms

of explanation can be stated as local or global post hoc explanations. Global

post hoc explanations aim to use a total understanding of the model parameters
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Figure 1.3: Post-Hoc interpretable method example, an input image is fed to the pre-trained network
and using a post-hoc explanation method, the salient region of the image is highlighted

once the model is trained. Another form of post hoc analysis can be using a

surrogate model g(; ) where it takes the neural network f(; ) and xi as inputs

and outputs and the importance vector v.

• Self-Interpretable Models: Most machine learning models, such as sparse

linear models or decision trees, are self-interpretable models. These types of

models output the predicted class and an importance vector for the expla-

nation. Mathematically, this can be understood as {yi} = f(xi;w) where

i ∈ {1, 2, 3, ..., n} where n is the dimension of the label space. Along with

yi, these types of models also produce an importance vector v ∈ RN where N

is the dimension of the feature space. There is a debate on the accuracy vs.

interpretability trade-off while using self-interpretable models [133, 140], but

it is difficult to evaluate and is not prominent in the literature. These types

of models are very difficult for deep neural models and are not found in the

literature to the best of our knowledge.
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• The other forms of interpretable methods such as feature-based explanations

are also quite common, especially for computer vision problems, as these high-

light the features w.r.t. to the prediction. The highlighted important feature

weights can be visualized in the form of a heatmap. There are two important

methods for highlighting the features such as the gradient computation ∇f(x),

which resembles the change of features. Perturbation-based methods can also

be thought of as feature-based importance methods as we compute the feature

importance by perturbing the features, e.g. for images, we can perturb pixels

by gray values or some other color. Another way to compute the feature im-

portance methods is by using a neighborhood of interest for a given feature and

using a self-interpretable surrogate model such as a linear model for the expla-

nations. The example-importance explanations use a single example as the

prototype that can be used as representative samples (obtained from training

data) during the prediction. Another family of explanations, i.e., concept-

based explanations are based on human-based descriptions that match the

training data. Concept-based explanations require human annotations that are

difficult for large datasets and encompass all the concepts that are defined by

humans. Counterfactual examples are another predominant concept to un-

derstand the underlying behavior of models. They are based on small changes

in the input or features that can change the network prediction.
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1.2 Applications

The advent of intelligent devices over the past few years, increased the multimodal

application scenarios. One of the first multimodal applications studied is visual

speech recognition. Other applications include (not exhaustive), vision and language

navigation, human-computer interaction, healthcare, and surveillance.

1.2.1 Visual Speech Recognition

One of the prominent applications in current times is automatic visual speech recog-

nition (AVSR) initially proposed in 1980s. It includes integrating two modalities,

i.e., audio and visual systems to improve the performance in comparison to a single

modality recognition system. In this application also correlation is important among

the features between two modalities. One of the major challenges in AVSR is the

noisy environment for speech recognition. Another challenge is the fusion of these

two modalities as it uses different statistical patterns and properties among them.

Thus multimodal learning can help in learning the joint representations among these

two modalities.

1.2.2 Vision and Language Navigation

Vision and language navigation are fields that help systems interact with humans

in natural language. This field requires expertise from natural language processing,

computer vision, and robotics. This requires an embodied agent to navigate in a real

or simulated environment and communicate with humans. tasks are important in a
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way as the vision and language navigation problem has been approached in various

manners such as leveraging the LSTM/recurrent networks along with attention,

1.2.3 Human-Computer Interaction

In human-computer interaction, the system tries to leverage keyboard-tipping, mouse-

clicking, speech, touch, vision, and gestures. A multimodal human-computer interac-

tion system facilitates human-like interaction. The human-like interaction between

the computer and the user supported by multiple modal technologies has been ap-

plied in educational technology for a long time, especially in the field of pedagogical

agents and intelligent tutoring systems. The intelligent systems can also be trained

to trigger feedback from the reinforced learning system.

1.2.4 Healthcare

For healthcare, multimodal learning is very important for precision healthcare. Ad-

vances in deep learning have given the opportunity for predictions in many medical

fields such as cardiovascular medicine, neurology, dermatology, ophthalmology, radi-

ology, and other fields of medicine. It can predict the range of other health-related

risks. One of the major contributing factors towards the success of deep neural net-

works in healthcare is the large amount of biomedical data such as Electronic Health

Records (EHR). Generally, the individual data points are represented as vectors of

attributes also known as features. These features are determined by the experts in

the domain due to the heterogeneity of the concepts. Explainable methods are vital

for healthcare applications due to their extensive potential in the detection of autism,
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ADHD, developmental language disorders, etc.

1.2.5 Surveillance

For surveillance, the application of re-identification (ReID) plays an important role.

With the explosion of monitoring by Close Circuit Television (CCTV) cameras across

the world and the increase in surveillance, it is important for the system to first

identify the person, then track the person within a single camera view, and finally

use a ReID algorithm for multiple non-overlapping camera views. Another problem

in ReID is the change of basic appearances, especially if the surveillance is long-term.

An important problem in the past two/three years is wearing masks which makes it

even more challenging. Surveillance is also important in healthcare settings such as

centers for Alzheimer’s patients, patients with Parkinson’s, etc.

1.3 Scientific Problems and Challenges

Multimodal learning has been part of deep learning research for quite some time,

but it faces several challenges in learning representations for proper semantic under-

standing. The problem remains challenging from representation to fusion for proper

predictions.

1.3.1 Multimodal Representation Learning

For any deep neural network model, representation plays an important role because it

can affect learning to some extent. What and how the representation is used can give

a varied response on the same network. The representation can be used as joint or
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coordinated as mentioned before. It can be based on the concatenation of the input

features in the input space or projected to joint space forming joint representations

that learn jointly from various modalities. The first challenge while any form of

representation is the synchronization of the data across modalities. This challenge

can be due to various factors such as missing data from a few of the modalities,

etc. The challenge for representation also depends on the dimensionality of the

data, i.e., the data can be either spatial, temporal, or spatiotemporal. It is vital to

understand the task in hand for the representation, e.g., for long-term dependencies

understanding the temporal modality is vital. Similarly, to understand fine-grained

semantic information, spatial information is essential. The use of spatio-temporal

information is also complicated, as it is important to understand the salient spatial

features along with the temporal dependencies. In real-world datasets [32], such as

for audio-visual learning, the presence of noise also affects the representations. It is

important to extract the audio features and remove the noise from the audio signals.

The removal of noise and missing of data is not limited to audio or speech processing

but also other modalities.

1.3.2 Supervision

The supervision level depends on the task we are performing, as well as the amount

of ground-truth labeled data available. For a fully supervised network to generalize

well, there is a need for a large amount of annotated data, which in itself is a

challenge, as annotation for large datasets can be an expensive and time-consuming
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process. To reduce the dependency on large annotated datasets, it is essential for

the neural networks to move from the supervised setting to unsupervised or semi-

supervised settings. The objective in a supervised setting is to minimize the loss

computed between the predicted values and ground truth. Although in my thesis,

weak supervision is mostly used as we are dependent on the annotation of a single

modality. In unimodal self-supervised learning, the assumption is that ground truth

labels are not required, which alleviates the problem of annotating the data. Thus

it is dependent on a pretext task for obtaining a pseudo-label which further can be

used to supervise the neural networks. Thus, the loss is computed w.r.t. the pretext

label rather than using an actual label.

Self-supervised multimodal learning is similar to self-supervised unimodal learn-

ing, instead of using ground truth labels, it uses pretext labels/pseudo labels for the

minimization of the loss function. The pseudo-labels can be generated using some

pretext tasks on a single modality or using joint information from multiple or a few

of the modalities. There can be differences between unsupervised and self-supervised

networks, such as generative models being unsupervised. One of the major challenges

in the self-supervised setting is the requirement for large computational resources.

To lower the dependency on large computational resources, certain efforts are put

forward such as decoupled gradient accumulations [31], masked token dropping [74],

parameter sharing among the modalities [119, 117, 55], sharing attention weights

[13, 131] etc.
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1.3.3 Imbalance of Classes

The imbalance of classes is a major challenge in real-world datasets. Generalizing a

neural network with datasets having an imbalance in classes can give biased repre-

sentations, thus also jeopardizing post-hoc explanations. There are certain methods

in the literature to alleviate problems related to class imbalance, such as data aug-

mentation techniques, rebalancing the classes by either removing examples from the

majority class or generating more examples from the minority class, using focal loss

[78], etc. Nevertheless, all these techniques have their own associated problems.

Rebalancing samples may not give the true representation of the distributions as

synthesizing synthetic data can be challenging if the samples for generation are not

sufficient and removing samples may decrease the data for the neural networks to

generalize properly. Changing loss functions such as the so-called focal loss (by using

this loss we put more weight on the classes with less representation and less weight

on the classes with higher representation on the dataset) can help, but the challenge

is at times that it focuses a lot on the minority class overfitting the model.

1.3.4 Transferability

Transferability is a challenge across neural networks across domains, datasets, and

applications. Data augmentation is an effective technique for data adaptation, while

adversarial perturbations are important for improving generalization across datasets.

A common scenario can be training in a dataset and inferring/predicting on another
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dataset, and if the distribution gap between the training and inference data is signif-

icant, predictive performance decreases showing worse generalization. We state that

the dataset trained on is the source domain and the predictive dataset for fine-tuning

or inference as the target domain. Most of the finetuning requires generalizing well

on the pre-trained models during training, this is due to the addition of novel classes

in the target domain [7, 51]. Fine-tuning is important for the model to generalize well

on the novel classes in the target domain and increment the performance of the fine-

tuned model. Fine-tuned models also help in predictive performance on the novel

dataset. The distribution gap can hinder generalization during the fine-tuning of the

model. For multimodal datasets, it is more difficult majorly due to the cross-task

distribution gap. This may be also due to the missing modalities in the inference

time. In the literature, this is solved using knowledge distillation [56]. The latter

consists of extracting features from a large deep-learning model and transferring the

features to a smaller model.

1.3.5 Interpretability

For unimodal learning, interpretability is well studied, but the problem arises for mul-

timodal learning. Interpretability offers various insights into the multimodal model,

it is important for the model design, or debugging a dataset. Some interpretable

methods can highlight the trends of explanatory features across the whole dataset

providing global explanations. There are certain methods that focus on individual

examples to provide deeper insight into the importance of features. Interpretability
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for multimodal learning is challenging, as ideally, it should not only understand the

importance of the single modality, i.e., unimodal explanatory features but also un-

derstand the relative importance of the interactions between different modalities to

provide multimodal explanatory features. The literature is mostly understudied for

interpretability while modeling multiple modalities. Few of the methods highlight

the importance of metadata using shapely values[84], while the importance of visual

modalities such as images is highlighted using attribution/saliency maps. Applica-

tions requiring multimodal interactions such as image captioning, visual question

answering (VQA), visual entailment, etc, and feature alignment across different fea-

ture spaces also make it difficult to derive a multimodal explainable method.

1.4 Contributions

Our first contribution is developing a multimodal representation learning model tar-

geted towards the application of detection of risk situations. In these contributions,

we have tested the unimodal scenarios as well as furthering these models by comple-

menting an added modality for multimodal scenarios. We have proposed multimodal

architectures and algorithms based on Gated Recurrent Unit (GRUs) with attention

to sequences of signal data where we have compared our results extensively with

the other sequence models such as LSTMs, vanilla GRUs etc., and 3D-ConvNets for

video modality. One of our main contributions has been proposing a two-stream

architecture for the detection of risks. We have further extended the two-stream

model to transformer-based architectures. In addition, we have also exploited the
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self-attention networks for different modalities.

The work published in this thesis were published in the following venues:

• R. Mallick, T. Yebda, J. Benois-Pineau, A. Zemmari, M. Pech, and H. Amieva.

A GRU Neural Network with Attention Mechanism for Detection of Risk Situ-

ations on Multimodal Lifelog Data. In CBMI, pages 1–6. IEEE, 2021

• R. Mallick, T. Yebda, J. Benois-Pineau, A. Zemmari, M. Pech, and H. Amieva.

Detection of Risky Situations for Frail Adults with Hybrid Neural Networks on

Multimodal Health Data. IEEE Multimedia, 29(1):7–17, 2022

• Rupayan Mallick, Jenny Benois-Pineau, Akka Zemmari, Marion Pech, Thin-

hinane Yebda, Helene Amieva and Laura Middleton. 2022 “A Hybrid Trans-

former Network for Detection of Risk Situations on Multimodal Life-Log Health

Data”. In 2022, International Conference in Multimedia Retrieval, Workshop

on Intelligent Cross-Data Analysis and Retrieval

• Rupayan Mallick, Jenny Benois-Pineau, Akka Zemmari, Thinhinane Yebda,

Marion Pech, Helene Amieva and Laura Middleton. “Pooling Transformer for

Detection of Risk Events in In-The-Wild Video Ego Data”. In: 2022 26th

International Conference on Pattern Recognition (ICPR2022)

• Rupayan Mallick, Jenny Benois-Pineau, Akka Zemmari. “I SAW: A Self-

Attention Weighted Method for Explanation of Visual Transformers”, In: 2022

IEEE International Conference on Image Processing (ICIP) (Oral Presentation)

• Rupayan Mallick, Jenny Benois-Pineau, Akka Zemmari, Boris Mansencal,
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Kamel Guerda, Helene Amieva, Laura Middleton. “Hybrid Transformer for

Recognition of Risk Events in Multimodal Data with Close-Domain Transfer”,

In: Multimedia Tools and Applications (Under Review).

• Rupayan Mallick, Jenny Benois-Pineau, Akka Zemmari. ”IFI: Interpreting

for Improving: a Multimodal Transformer with an Interpretability Technique

for Recognition of Risk Events”. In: ACM Multimedia (Under Review).

In the contributions mentioned above, we have majorly focused on developing

models based on the self-attention architecture due to its capability to capture long-

range dependencies. In this contribution we use spatiotemporal data, and although

there are a number of methodologies to localize the important spatial locations but

very scarce literature on understanding the important temporal locations, especially

on the self-attention-based architectures. We used a pooling approach for the com-

putation of the importance of temporal locations. The following publication has

been presented for this purpose. “Pooling Transformer for Detection of Risk Events

in In-The-Wild Video Ego Data”.

The interpretation of transformer-based models is still an open problem with

limited works in the literature. Our next contribution is based on the localization

of spatial regions responsible for the decision, thus we devised a novel approach to

interpret a vision transformer [36].

Our final two contributions are to leverage the interpretability method and guide
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the training based on the importance of spatial and temporal features for transformer-

based models. We devised a novel method on this intuition and provided an improve-

ment in the training algorithm.

For our contributions, we have mainly used the GPUs provided by the LaBRI.

For some experiments especially for Chapter 7, we have trained our models in the

Jean-Zay supercomputer, which uses the parallel distributed mechanism. For the

experiments conducted in the LaBRI servers, we have used 2, 16 GB P100 GPUs

and 2 46GB A40 GPUs. The Jean-Zay supercomputer provided us with several

nodes of advanced GPUs such as 32 GB V100 and 40 GB A100. This helps us to

use several parallel nodes helping to use large-scale datasets for our experiments.

1.5 Thesis Outline

Chapter 2, we discuss various state-of-the-art models for both learning of unimodal

and multimodal representation of data, we also as well as we discuss in length dif-

ferent interpretation and explanation methods.

Chapter 3 presents the work initially on unimodal data comprising sensors, then

extends this work to multimodal data consisting of signals from sensors and visual

data. This chapter in length highlights the problems in the implementation of real-

world multimodal data. In this chapter, we are concerned with the different problems

that we face during the implementation of this multimodal data. We introduce the

dataset Bio Immersive Risk Detection System (BIRDS) and describe the taxonomy
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of the classes corresponding to the risk situations of fragile persons living at home.

Chapter 4, we devise a pooling based on the temporal dimension to obtain the

important temporal locations in our temporal multimodal data. In this chapter, we

use the singular modality of the videos and thus we use a fully self-attention-based

transformer block. Previously in the literature, we have seen pooling helping to

understand the important spatial locations such as in-class activation maps [151].

Further, this pooling approach helps to use these important temporal locations to

improve the overall performance of the model.

Chapter 5 presents our novel method for the interpretation of vision transformers.

This method is also applicable to other self-attention-based methods. In this work,

we have introduced weighting the attention with the gradient of attention for the

transformers. We evaluate our method w.r.t. human-based attention system.

A novel method for optimizing the training algorithm using feature importance

by interpretability method is given in Chapter 6. In this, we added additional super-

vision using interpretable methods. We use this method for both video and signal

modality. In Chapter 7 we propose another novel method for better initialization

using interpretable methods for videos and signals.

Finally, we summarise the thesis and discuss the future works in Chapter 8.
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Chapter 2
State-of-the-Art

In this chapter, we look at the literature ranging back to the long dominance of

deep neural networks for generalizing data for various tasks in different domains

and modalities. First, we discuss various unimodal modeling strategies, and then

we discuss multimodality. Finally, we discuss interpretability and explainability in

both unimodal and multimodal scenarios. The explanation in the unimodal sce-

nario is well-studied in the literature; for multimodality, it is very challenging and

understudied.

2.1 Deep Neural Network Architectures

In many of the application domains, deep neural networks have been widely deployed

for data mining and data classification that can be generalized well amongst most

forms of data. However, the literature suggests using different networks for different

forms of data, for example, text, images, videos, signals, etc. The nature of the data
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is different, as a text paragraph needs context to make sense to humans; similarly,

videos have temporal context in addition to spatial context. On the graph data, the

nodes require to be learned which is represented in an adjacency matrix. Images

have spatial information, which can be learned by localized filters. Signals can be

considered as the point features with temporal information. But in the real world,

the data consist of one or many of these modalities for humans to perceive. The

predominant multimodal architectures can be seen in the application using modalities

such as text and images [104], text and videos[76, 127], pose/flow with the videos[38,

90, 58], etc. Thus, these combinations of modalities can be synchronized or weakly

supervised. In the following paragraphs, we will discuss different architectures for

each of these modalities in detail:

The visual modality can be categorized as the image and video modality, in this

section we discuss the image modality. Image modality has a huge significance, es-

pecially for applications related to computer vision. Convolution Neural Networks

(CNNs) and their variants are most commonly used for image-related tasks due to

their ability to capture local information, as the architectures are widely discussed in

the literature. In this chapter, transformers are majorly discussed. Initially, this ar-

chitecture was described for language representation tasks [128], but was adapted for

images due to its strong representation ability in [36] by Dosovitskiy et al. There are

other models that leverage the self-attention mechanism for images[81, 12, 122, 123].

Swin Transformer [81] is based on the shifted window approach with hierarchical

architecture. Wang et al. [132] proposed the self-attention network for non-local
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networks to capture long-range dependencies in images. Han et. al. [53] proposed

a connection between local attention and convolution layers. Other architectures

based on local attention are based on the transformer on [129, 109]. The trans-

formers are used for other downstream tasks such as segmentation[137, 116], object

detection[20, 70], pose estimation[138, 139] etc. Other vision tasks involve image

generation[41, 146], inpainting[73] etc. Architectures such as 3D-CNN [124], LSTM-

CNN [136], TimesFormer[16], ViViT[5], etc, extended the self-attention mechanism

for videos. The videos are trained in a form that additional dimensions in addi-

tion to the spatial dimension are taken into consideration. Similarly to sequential

tasks, transformers have helped in handling long-range sequences with contextual

relationships of the videos.

Multimodal architectures have existed in the literature since the inception of mul-

timodal data. Speech Recognition, Natural Language Processing, Text Generation,

etc., used multimodal models to understand the underlying feature representation.

One of the works [95] of audio-visual bimodal fusion uses shared hidden layer rep-

resentation to understand the higher-level correlation between the audio and visual

cues.

Other works such as CLIP [104] jointly train the image and the text encoder to get

the correct parings in a batch to create the training examples. In the [99] work, the

authors predict the temporal synchronization of audio and visual features. [126] uses

a multi-modal transformer with cross attention to understand unaligned multi-modal
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language sequences. These examples are numerous; however, multimodal architec-

tures on visual information and sensor information remain rare [152]. Combining

various modalities has been well studied in [80], using different fusion methods.

2.2 Interpretable Techniques

Due to the large number of parameters, it is difficult to circumvent the black-box

nature of deep neural networks. The fundamental question of trust and account-

ability for a decision taken by a Deep Neural Network (DNN) is still being studied.

There are a number of domains where reasoning is extremely important for the ac-

countability and trust of decisions. Interpretability gives the rationale behind the

decision given by deep models. Most of the explanations are qualitative in nature.

The qualitative nature of explanations gives diversity to the nature of explainable

methods. As given in [105], the diversity of explanations is due to what conforms to

the notion of explanations in deep models.

2.2.1 Explanation Methods

The categorization of the explanation methods can be based on many taxonomies.

The first of the taxonomy can be between ante-hoc methods [79] or intrinsically

explainable methods and post-hoc methods. The basic principle of these methods is

clearly explained in Chapter 1. The other form of categorization of explanations can

be black box and white box methods as given in [48, 6].

The black-box methods do not consider the internal parameters and features for
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computing the explanations rather it approximates a surrogate function (fsurr) to

estimate how an input corresponds to the prediction. For white box methods, the

assumption is model parameters and the DNN function is accessible thus these pa-

rameters can be used to obtain the explanations related to the DNN. One of the most

common methods to access the parameters of a DNN is using the backpropagation

algorithm. The other method perturbation-based method is majorly a black-box

method.

Another categorization of explanation methods is divided into two methods such

as backpropagation and perturbation based methods. Visualization methods high-

light the characteristics of inputs or features that are responsible for making the

decisions. Backpropagation methods are related to gradient accumulation during

network training. In perturbation-based methods, the fundamental principle is mod-

ifying the input to study the change in the output.

2.2.1.1 Backpropagation Based Methods

This method is part of thewhite-box method as we are accessing the network param-

eters and their interactions during the backpropagation process. In backpropagation-

based methods, we quantify how sensitive the output presented by the deep model

w.r.t., the input features. The fundamental approach for the backpropagation-based

methods is given by visualizing the derivative of the network to that of the input.

Next, we discuss some of the backpropagation-based methods. One of the first works

in this type of method is Activation Maximisation [40]. One of the advantages

of this method is it is really simple and we can compute the importance of features
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at any layer giving the visualization of the internal representations. In this method,

the idea is to maximize the activation of a neural unit in a given layer by optimizing

the input. This is performed by computing the gradient of the activation w.r.t. the

input X. Optimizes X to find X∗ in the direction of the gradient. Mathematically,

it is given in Equation 2.1, where X is the input and θ are the parameters and ai,j

is the obtained activation of the neuron between a neural unit i for the jth layer:

X∗ = argmax
X

ai,j(X, θ) (2.1)

One of the major drawbacks of this method is that it gives a global explanation

i.e. w.r.t, the whole and not individual model predictions. To visualize the features

from higher layers, Zeiler et. al. [145] proposed an algorithm called Deconvolu-

tion . In this method, the author assumes the deep model as Convolutional Neural

Networks (CNNs). The deconvolution network is devised as the inverse of the con-

volution networks. This is a top-down approach instead of bottom-up as presented

in Convolutional Neural Network. The convolutional layers in CNNs are replaced

by deconvolution layers. The kernels for deconvolutions are the transposed kernels

in the convolution predictions. Unpooling layers are used instead of pooling layers

in deconvolution layers. The deconvolution operation is simply the reverse of the

convolution operations as given in Equation 2.2, where Aℓ is the output of the layer

ℓ in the convolution operation, K is the learned filter of the convolution operation, b

is the bias passed during the convolution operation, and sℓ is referred to as switches:
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Aℓ−1 = unpool(ReLU(Aℓ − bℓ) ∗KℓT ), sℓ) (2.2)

The intuition behind this method is to see how much information is retained

by the extracted features on each layer. Similar to activation maximization, this

method too does not provide individual model predictions. Zhou et al. [151] provide

the visualization method called class activation maps (CAMs). Class Activation

Maps are created using global average pooling (GAP) [77] in convolutional models

as presented in Figure 2.3. Lin et al. [77] proposed applying global average pooling

to the layer before the fully connected layer (FC). For the classification task, the

FC layer has a total of C nodes for C classes. To retrieve the activation maps, the

weights between the convolution and fully connected layers are multiplied by the

activation of the convolutional layer. Mathematically, it can be expressed as given

in Equation 2.3, where Ak is the activation of the convolution layer containing the

convolution filter k and wk,c are the weights between the convolution and the fully

connected layer:

mapc =
K∑
k

wk,cAk (2.3)

This method is a class-dependent method, i.e. providing explanations w.r.t. the

classes. In simple terms, we scale the obtained saliency/attribution map to the size of

the input image. These attribution maps highlight the important regions of the input

image w.r.t the classification giving a unique saliency map for each class. Another

CAM-based method was proposed by Selvaraju et. al. [111] called Grad-CAM .
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Figure 2.1: In this method the predicted class score is mapped back to the previous convolutional
layer to generate the class activation maps (CAMs) to highlight the class-specific discriminative
regions. [151]

This method generalizes the CAM by computing the gradient of the output of the

network w.r.t., activation of the last convolution layer prior to the FC layer. Further,

it is averaged across the dimension of the feature map Ak to obtain the importance

score for the particular class c. The algorithm is expressed in the Equation 2.4 where

the Ak is of size m× n and αk,c is the importance computed.

αk,c =
1

m · n

m∑
i=1

n∑
j=1

∂yc
∂Ak,i,j

(2.4)

After obtaining the importance score, we compute the saliency map. The latter is

computed similarly to that presented in Equation 2.3 but instead of multiplying the

activation to that of the weights, it is weighted by the importance score and passed

through the non-linear function ReLU. The Equation is given in 2.5
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Figure 2.2: The overview of the GradCam method given a class of interest (tiger cat in this scenario).
[111]

Lmapc = ReLU
( K∑

k

αk,cAk

)
(2.5)

We use ReLU to obtain only the scores that have a positive influence w.r.t. the

output class. Since the activation is weighted with the importance scores which in

itself is computed by the gradient of the class scores to the activation feature map,

this method is called Gradient-weighted Class Activation Map. Methods using class

activation maps describe the sensitivity of the input features. The schema for the

method is presented in Figure 2.2

A family of methods measures the relevance of input features to the output

of the network. One of the most common relevance-based methods is Layer-

wise Relevance Propagation . In this method, the output of the deep neu-

ral network is decomposed into several relevance scores across the input features

x = {x1, x2, x3, ..., xN}. LRP is computed using Deep Taylor Decomposition, where
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the assumption is deep model f(.) is differentiable and therefore can be approxi-

mated using Taylor expansion at some root value x̂ such that f(x̂) = 0. The Taylor

expansion is given in the Equation where ϵ represents all second and higher-order

terms:

f(x) = f(x̂) +∇x̂f · (x− x̂) + ϵ =
N∑
i

∂f

∂xi

(x̂i) · (xi − x̂i) + ϵ (2.6)

The relevance scores are the first-order partial derivative terms in the 2.6. The

deep Taylor decomposition approach considers the conservation of the relevance

scores across the layers, starting from the output layer through each intermediate

layer and finally to the input. The relevance scores are given in the following Equa-

tion 2.7 for the layer ℓ and node i:

rℓi =
M∑
j

rℓi,j (2.7)

The relevance scores are backpropagated from the last layer to the input space.

Since ReLU is not applied in the LRP, the final heatmap shows the negative attri-

butions. The chosen root value plays a vital role in the final visualization of the

relevance maps in the image. There are two other common visualization methods

such as DeepLIFT [112] and Integrated Gradients [120]. There are several

other back-propagation-based visualization methods. Shrikumar et. al. [112] pro-

posed DeepLIFT similar to LRP requires a reference image and computation of

relevance and contribution scores. The core idea is to compute the contribution

scores based on the difference between the input features x and reference image x̂.
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Figure 2.3: LRP [8] decomposes the prediction function as a sum of layerwise relevance values. It
uses deep Taylor decomposition of the prediction. [48]

Let t be the output neuron and t0, an output neuron for the reference point, therefore

∆t = t− t0. The contribution score C∆xi∆t assigned to ∆xi such that :

∆t =
N∑
i=1

C∆xi∆t (2.8)

The Equation (2.8) is called the summation-to-delta property, to simplify it can

be thought of as the influencing factor of ∆xi on the ∆t. The computation of

contribution score can be computed using the Linear, Rescale, and RevealCancel

Rule which is an approximation to the shapely values. We define a multiplier in
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Equation (2.9) to assign the contribution of ∆x with respect to ∆t.

m∆x∆t =
C∆x∆t

∆x
(2.9)

The multiplier is analogous to the partial derivative. We can also imply the

chain rule for the multipliers as given in Equation 2.10 that is simply allowing us to

compute it for all hidden layers in a layer-by-layer manner. In Equation 2.10 aj are

neurons in the hidden layer.

m∆xi∆t =
∑
j

m∆xi∆ajm∆aj∆t (2.10)

Similarly to the LRP, the heatmap for the input image will be dependent on the

reference image. Different reference images can produce various heatmaps for inter-

pretation. This method produces positive and negative attributions. Sundarajan et

al. [120] proposed another method that requires a reference image called Integrated

Gradients . This method consists of two axioms: i) sensitivity and ii) implementa-

tion invariance. The first axiom sensitivity is as: compared to a reference input x̂

differing from the actual input x such that f(x) ̸= f(x̂) along the feature xi, then

the importance score for xi must be non-zero. The second axiom implementation in-

variance is as: when the model outputs are equal for all the possible inputs available

the importance score for xi is equal for both networks say f1(; ) and f2(; ). Primar-

ily, given a deep network F : Rn → [0, 1], the integrated gradient for feature i is

calculated as given in Equation 2.11.
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IntegratedGradsi(x) = (xi − x̂i)

∫ 1

α=0

∂F (x̂+ α(x− x̂))

∂xi

dα (2.11)

The Equation (2.11) can be effectively approximated using the Riemann approx-

imation as presented in Equation (2.12) where M is the number of steps of approxi-

mation.

IntegratedGradsi(x) ≃ (xi − x̂i)×
M∑
k=1

∂F (x̂+ k
M
(x− x̂))

∂xi

× 1

M
(2.12)

For practicality, the reference image is taken as a black image while for text this

can be taken as zero vector embedding. Overall, the intuition in this method is

interpretation is cumulative sensitivity of F to the changes in the feature i on all the

inputs between the straight line x and x̂.

2.2.1.2 Perturbation Based Methods

For perturbation-based methods, the algorithm computes the interpretation by the

difference of the network output when removing or occluding a part of the input

features and actual input features. One of the primary perturbation-based methods

is Sensitivity to Occlusion as proposed by Zeiler and Fergus et al. [145] In this

method, the authors slide a gray patch across the input image to see the variation of

the network output while the gray patch covers certain regions. The intuition is the

relevance of information or the importance of image regions for the network output.

If the network performance changes by a greater magnitude, the importance of that
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particular region is higher compared to the occluding a region that has less decrease

or change in magnitude of the network performance. This gives the correlation

between the region of interest and the output of the network. Zhou et al. [150]

introduced a similar method by forming a grid on the image and occluding it with

gray squares on this grid. In these types of methods, the patch size, density, and

shape of the patches may vary giving different results for different choices. One of

the major drawbacks to this type of method is computational time, as the higher

the resolution of the heatmap, the smaller the size of the occluding patches. As

this method concentrates on a particular region of interest, another drawback is the

multiple regions of interest in the input. Li et al. [71] proposed a method for natural

language tasks, by removing a textual embedding or setting the dimension to zero for

hidden activation. This is evaluated by using reinforcement learning to get feedback

on the network decision on multiple text embedding. An advantage of this method

is handling the sensitivity with occlusion to a combination of regions of interest.

The use of reinforcement learning helps in finding the minimum change in the input

features to alter the network decisions.

In the paper [44], the authors propose explanations as meta-predictors. For a

particular class c, we define a neural network f , i.e. this network only classifies for

the class c. To explain the behavior of the c classifier, the rule is given in Equation

(2.13) where Xc is a set with all instances of class c and Xc ⊂ X and f(x) = +1

means the presence of class c where Q1 is the rule for the local explanation.
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Q1(x; f) = {x ∈ Xc ⇔ f(x) = +1} (2.13)

As this is a perturbation-based method, the authors use three different types of

perturbation i) replacing regions with constant values, ii) replacing regions with noise,

and iii) blurring the regions. This method uses a form of local explanations, as for a

specific image x0, the visualization is obtained by perturbations. The perturbations

show the sensitivity of the neural network f(x0) to different regions of x0. Since it

is a form of local explanation, the perturbation of a given input instance is kept to

a minimum resulting in a much more concentrated saliency map and fewer spurious

locations. Another rigorous approach uses the deletion of information from the input

space to measure the influence of the network output. This approach is based on the

principle by [108] where they compute the marginal probability p(c|x−i) by keeping

and deleting a certain feature xi and x−i is the features except xi.

p(c|x−i) =
∑
xi

p(xi|x−i)p(c|x−i, xi) (2.14)

Using Equation (2.14), the importance/relevance score is calculated as the pre-

diction difference as given in Equation (2.15).

Diffi(c|x) = log
( p(c|x)
1− p(c|x)

)
− log

( p(c|xi)

1− p(c|x−i)

)
(2.15)

Zintgraf et al. [154] improved the prediction difference by sampling the patches

instead of the pixels, patches give better spatial context compared to pixels which
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in itself increases the robustness. Finally, this method helps alter the intermediate

activations and evaluate the effect on downstream layers.

2.2.1.3 Local Approximations

For local approximations, a surrogate model is developed on a subset of inputs to

mimic the decisions by deep neural networks. The small subset of inputs is approxi-

mated within a small neighborhood or a subspace of the input data say xi. The data

subsets are chosen with similar feature values. According to Baehrens et al., local

approximations have been generated in [9] where they present a vector defined by the

derivative of conditional probability. The direction and magnitude of the derivatives

at x0 along the data space define a vector field that characterizes the flow away from

a corresponding class.

Ribiero et al.,[106] proposed a very popular method named Local Interpretable

Model-Agnostic Explanations. This method is a post-hoc method, where a sur-

rogate model is used to explain the deep model. The surrogate model used is termed

the interpretable model. Let f(; ) be the deep model and g(; ), be the surrogate/in-

terpretable model. g ∈ G, where G is a class of inherently interpretable models, such

as linear regression models, decision trees, etc. For decision trees and regression mod-

els to be interpretable, it is important to realize the complexity of the interpretable

model (e.g. the depth of the decision trees) which is denoted by Ω(G). Let x ∈ Rd

be the original input representation to the deep model f and x′ as the interpretable

representation such that x′ ∈ {0, 1}d′ as the domain for g is Rd′ . When defining the

locality of x, we define the proximity parameter Πx(z). The proximity parameter
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defines the proximity of the function as the proximity of the perturbed data points

z to the original data point x. A loss term L(f, g,Πx) defines the unfaithfulness of

g in approximating f within the locality Πx. Thus, the objective is to minimize this

loss term as given in Equation 2.16:

ε(x) = argmin
g∈G

{L(f, g,Πx) + Ω(G)} (2.16)

Given a perturbed sample z ∈ {0, 1}d′ (which contains a fraction of nonzero ele-

ments of x′), we recover the sample in the original representation z ∈ Rd′ and obtain

f(z), which is used as a label for the explanation model. Given this dataset Z of

perturbed samples with associated labels, we optimize equation 2.16 to get an expla-

nation ε(x). Z is obtained to train the interpretable model and Z = {z′, f(z),Πx(z)}.

This method is model-agnostic and generalizes the surrogate model around the local

neighborhood of the reference image. Therefore, only a single local interpretable

model for a set of similar inputs is needed. This method works well with data dis-

tribution that has low variance. An example after the implementation of LIME on

an image is shown in Figure 2.4. Lundberg et al. [84] demonstrated another method

by computing Shapely values for the input features. A perturbed input is provided

to the model.

2.2.1.4 Attention Mechanisms

Attention mechanisms can be considered an intrinsic method and can be consid-

ered one of the inherent explainability methods. The placement of the attention
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Figure 2.4: Explanation of different predictions in an image trained on Inception network. [106]

mechanism can capture semantic information in the earlier layers and determine the

fine-grained feature interaction among the pixel tokens if placed on later layers. The

output and explanation can be obtained simultaneously in this method. Attention

visualizations can be considered inherent visualizations. To compute the attention

weights, several ways have been proposed in literature such as computing cosine

similarity [130], the dot product of matrices [85], additive model structure [10], etc.

The attention mechanism was earlier used for sequential tasks, multimodal fusion,

etc. but lately, attention has been used for most of the applicative tasks to improve

the performance of deep neural models. In simple terms, attention mechanisms pro-

vide show the weighting of the input features. Prior to the use of attention for

visual data, attention was used for text processing. Natural language tasks such as

language translation [128, 10, 85], sentiment analysis [33, 69], etc., use an attention

mechanism for better performance of the deep models. This can be of two types such

as self-attention or simply attention. For self-attention, the computation of attention

is simply a dot product between inputs from the same distribution. In the atten-

tion mechanism, the important part is to use a decoder system to use the learned
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weights for the input sequences for greater emphasis. The decoder can be a recurrent

network for language translation or a CNN for visual tasks. Attention mechanisms

emphasize important correlations in data distributions. For multimodal modeling

tasks, the attention mechanism can aid in feature alignment which further aids in

the fusion of multimodal data. Applications related to multimodal interaction tasks

include visual question answering, image captioning, or visual entailment. Mascharka

et al. [91] introduce a neural module that models the attention mechanism that de-

creases the gap between explainability and performance for visual reasoning tasks.

The attention mechanism for multimodal modeling increases the interpretability of

the models due to the complementary information on the domain, but representation

and interaction can be challenging for this task.

2.2.2 Jointly-Training

Training an additional model for explainability along with the model for the primary

tasks such as detection, classification, segmentation, etc is also studied in the liter-

ature. This additional model for explaining can provide the explanation in various

forms, such as concept-based explanation, text explanations, the association between

latent and input features, etc. The additional model for explanation is jointly trained

with the actual model (model used for primary tasks). This method can be easily

understood using the example of image captioning as given in Equation 2.17. In

Equation 2.17, the first loss term L(yn, y′) corresponds to the prediction loss and

L(en, e′) corresponds to the loss of the explanation component.
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argmin
θ

1

N

N∑
n=1

αL(yn, y′) + L(en, e′) (2.17)

Some explanations from joint training are presented as text instead of statistics

which is understandable to humans as it is natural language. Similarly, another ex-

planation method is the use of the association of explanation, as mentioned earlier,

uses association input and latent features. The association can be between input fea-

tures and semantic concepts or between model prediction and a set of input features.

The advantage of this type of method lies in the fact that semantically meaningful

concepts can be represented as relational graphs, heatmaps, etc. The high-level con-

cepts are associated with the internal model representation. The challenge with this

method is the access to the internal representation of the model. Another disadvan-

tage of this method is the high computational costs, which causes a bottleneck of

this method.

2.3 Transformer Based Interpretation

The state of the art for transformer-based interpretation methods is not very widely

discussed in the literature. Therefore, we have presented it in the dedicated Chapter

5 with our own proposed solution.
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Chapter 3
Hybrid Deep Neural Networks for Risk

Detection

3.1 Introduction

For the first time in history, most people worldwide can expect to live into their

sixties and beyond. Between 2017 and 2050, the number of people aged 60 and older

is expected to double, to reach 2.1 billion, representing more than 21% of the world’s

population, and up to 40% in some European and Asian countries. The quality

of life of the elderly continues to improve through an important investment by the

scientific community to cope with the aging of the world population [100], especially

in developed countries. In spite of this investment, the number of so-called ”frail”

people continues to increase.

For this reason, promoting healthy living in place has progressively become a ma-

jor challenge for all societies worldwide. In this context, “SmartHealth” technologies
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are clearly a promising level of action to improve the living environments of the

elderly population.

To meet the current demands of the elderly, particularly the frail elderly, for

independent living, monitoring systems have to include the detection of risks and

situations encountered by the frail elderly. The development of smartphones and

other wearable devices such as smartwatches etc helped in obtaining the recordings

from accelerometers, gyrometers, and other vital signals such as heart rate, blood

pressure, etc. Several datasets are publicly available such as OPPORTUNITY[24],

WISDM[66] and UCI-HAR[4]. An effective monitoring system should not be limited

to a device with a limited range of daily living situations but should be extensible

and include a wide range of situations that may be encountered by a person living

at home. The integration of e-health sensors in portable devices has increased the

potential for full-time monitoring applications.

Multimedia technologies are deployed today on the multimodal data collected

by wearable sensors. The adventure of Deep Neural Networks (DNNs) as powerful

classifiers and the recent multi-stream DNN architectures allow us to handle the

heterogeneous data in the tasks of monitoring frail subjects [94]. Data fusion which

is necessary as both the context of the person and his/her physiological and motor

status have to be considered can be efficiently realized with such architectures.

However, there are several constraints associated with each sensor technology, such

as missing data issues related to wireless technologies, latency in response times, etc.,

and difficulties in synchronization for real-time monitoring. The major challenge for
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our problem is the pre-processing of the dataset. In the recording scenario defined by

psychologists sixteen sensors are used, some of them are wired, others use blue tooth

protocol and WiFi [141]. While recording a risky situation there can be a failure for

the sensors in data transmission. Furthermore, events to detect in the monitoring

process, such as risky situations are rare compared with the overall volume of the

data which might be collected in a daily recording lasting for several hours. This is

why data pre-processing for the DNN training becomes a complex task. Compared

to another previous work, [143], we have developed new architectures for the detec-

tion of risk situations. In particular, we propose a hybrid architecture allowing to

simultaneously include sensor signals and video data. This data collection protocol

has been established by Dr. Thinhinane Yebda and Dr. Marion Pech

In this chapter, we report multidisciplinary research on the prevention of risk situ-

ations of frail people. Not only do we have to design an efficient risk detection system

on multimodal data, but also to identify real-life situations that can be considered

risky, that is, to design the risk taxonomy, and to define a data collection protocol

in the most ergonomic manner for frail people. This chapter proposes an end-to-end

network for the detection of risk situations from a novel health dataset comprising

both visual and unsynchronized multi-variate time series data. The contributions of

the chapter, are the following:

• An adapted GRU architecture with attention blocks to perform detection of risk

situations in a pre-recorded in-the-wild dataset.

• A two-stream hybrid 3DCNN-GRU architecture on an unsynchronized health
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monitoring data comprising visual and signal modalities.

• An adapted two-stream architecture using self-attention models as backbone

instead of CNN and RNN-based architecture.

• We build on our previous work [142] to precise and develop the risk taxonomy.

• Data collection protocols for individual monitoring of frail persons are devel-

oped.

The chapter is organized as follows: Section 3.2 presents the state of the art,

making the focus on the healthcare aspect of the present research, the use of IoT for

the frail and elderly, and data analysis. In Section 3.3, our scenario and data collec-

tion protocols are presented and the taxonomy of risk situations is defined. Section

3.4 describes the proposed hybrid two-stream architecture of the DNN classifier for

the detection of risk situations. In Section 3.5 experiments and results are reported.

Finally, conclusions and future work are discussed in Section 3.6.

3.2 State-of-the-Art

In this state-of-the-art, we will initially focus on the healthcare aspect, then Internet

of Things (IoT) technologies for assisted aging will be reviewed. Finally, the focus

will be on sensing data analysis with Deep Neural Networks.

46



3.2. STATE-OF-THE-ART

3.2.1 Healthcare Aspects

When developing systems for healthcare and monitoring, clinical and specific aspects

have to be taken into account. These include conditions typical of health care and

care of the elderly in general. The first focus category includes dementia in all its

forms and stages, Alzheimer’s disease is a special case of severe dementia, Parkinson’s

disease, “frailty and falls”, or chronic diseases in general. Elder care refers to the

care of elderly people who do not have a specific disease, but rather need monitoring

and maintenance of an active and healthy lifestyle in old age. This can be achieved

by non-intrusive technologies and is known as “ambient assisted living” (AAL). A

wide range of risk situations encountered by frail people have been identified in

[121], These studies were used in [142] to select a necessary set of sensors and design

data collection scenarios. The most common accidents among the elderly are falls.

Furthermore, the risks faced by older adults differ according to their medical history.

For example, for Parkinson’s patients, the most urgent risks are Parkinson’s falls,

for Alzheimer’s patients, there are stressful situations, loss of orientation and loss of

direction. For people with diabetes, hyperglycemia and hypoglycemia are dangerous.

For the elderly without a particular disease, risk situations often rely on the context

and their physiological conditions, e.g. a person in a hypo-tonic status could stumble

in a bathroom or in a kitchen and thus has a risk of fall, or being in a stressed

condition and cooking he/she could forget fire on the cooker, that is has a domestic

accident risk. In the follow-up we shortly review IoT technology, which allows for

human sensing in monitoring and risk prevention.
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3.2.2 IoT for Elderly

In the broad range of Internet of Things (IoT) technologies wearables dominate the

literature due to their growing popularity and affordability. In [115], the authors

selected the most relevant devices in an AAL context, including wearables that con-

tribute to the well-being of the elderly.

They studied different types of them such as headbands, sociometric badges, camera

clips, smart watches, and sensors integrated into clothing, Biometric sensors are a

special type of portable or non-portable devices that are used for continuous and

on-demand measurement of physiological and medical data. In the field of health-

care, they are used e.g., for measuring body temperature, electrocardiogram (ECG),

pulse oxygen saturation, blood pressure, blood sugar, etc. Smart home devices are

usually ambient and unobtrusive in an AAL context. A study [134] reviews indoor

positioning systems, emphasizing on human activity recognition, as well as biometric

sensors (vital sign monitoring, blood pressure, and glucose).

The data recorded by these sensors represent time series and have to be analyzed

either online or offline (lifelog) to detect situations of potential risk in the everyday

life of elderly and frail persons. Hence rises the classification problem for risk situa-

tions detection. The most powerful classifiers/predictors nowadays are Deep Neural

Networks. In the following, we will review some of them.

3.2.3 Monitoring Data Analysis with Deep Neural Networks

The ultimate goal of IoT systems for frail subjects monitoring consists of real-time

decision-making for risk detection and prevention. The general trend for such a
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detection consists in the development of supervised machine learning approaches

particularly Deep Neural Networks (DNN)[17].

Such classifiers are heavy to train but are quite light in decision making as re-

quired matrix operations which are executed in parallel and can be implemented on

mobile devices. Nevertheless, before the designed architecture may be made lighter

and transferred to a wearable device, e.g., by network quantization, it is necessary

to design an efficient DNN solution yielding a high accuracy in the classification of

multimodal signals from the wearable. The sensor data are time series that can be

efficiently processed by Recurrent Neural Networks (RNNs). RNNs have a ”mem-

ory” that captures information about what has been computed so far and performs

the same task for each element of a sequence. RNN can not only learn local and

long-term temporal dependencies of data but can also accommodate variable-length

input sequences. Although RNNs are a simple and powerful algorithm, it suffers from

gradient vanishing. To combat these problems, the particular design of RNN was

proposed by S. Chochreiter et al. in 1997, namely long-term and short-term memory

(LSTM) architectures [57]. Currently, RNNs such as LSTM and Gated Recurrent

Units (GRU) are used in healthcare research. Friedrich et al. [45] present Inertial-

Measurement-Units (IMU) and LSTM to predict mobility assessment score that gives

valuable information to physicians to diagnose changes in mobility and physical per-

formance. In visual data processing, Convolutional Neural Networks (CNNs)[68] are

the most popular. Many studies applied CNNs to detect risky situations especially

49



CHAPTER 3. HYBRID DEEP NEURAL NETWORKS FOR RISK DETECTION

falls [22]. For the analysis of temporal video information, the so-called 3D Conv-

Nets[59] are suitable as they process chunks of successive video frames to take into

account temporal coherency and singularities for video classification. Some of them

are designed as two-stream architectures to take into account [90] both appearance

(pixel data) and motion data (optical flow).

The concept of two-stream architecture is suitable for our task of classification of

risk situations, as the complex multimodal data contains both time-series signal data

from sensors and video data. To present the classification problem, we first describe

the risk detection scenario and taxonomy.

3.3 Risk Situations for Frail Persons

In this section, we will first describe the scenario of detection of risk situations we are

working on. Then the taxonomy of the considered risk situations will be presented.

3.3.1 Scenario and Taxonomy of Semantic Risk Situations

In the monitoring scenario, a frail person remains in his/her home environment.

He/she is monitored only indoors. We are interested in “semantic risk situations”.

It represents a combination of both: the person’s motor and physiological status and

his/her contextual environment. In our scenario, the context is observed with the

help of the wearable camera and the state of the person - with physiological and

dynamic sensors. Such a recording process has been already exhaustively studied

in literature[60]. The proposed taxonomy of risk situations comprises ”immediate”
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risks and long-term risks.

Immediate Risks Immediate risks are those risks that can have an immediate impact

on the lives of frail subjects:

• Environmental Risk of fall : Concerning environmental risk situations, the po-

tential association between household hazards and older adults falls is well ex-

plored in the literature [83]. Walking on a slippery floor, climbing stairs, and

stumbling on obstacles, for example, are some of the environment-related actions

encountered by older adults that may increase their risk of falls.

• Physiological Risk of fall : Age-related physiological changes also increase the

risk of falls among older adults as they correspond to potential changes in phys-

iological symptoms such as heart rate, acceleration, meta-acceleration, etc. [92].

Sit to stand is an example of a daily living activity risk scenario in which older

adults can be exposed to acute fall risk [101].

• Risk of Domestic Accident : Domestic accidents are defined as daily activities

such as cooking, using knives, handling of “dangerous” utensils, and ironing

that can potentially be associated with burns or increased risk of sustaining

injuries.

• Risk of Intrusion: The risk is defined as a situation when the subject is near a

door and another person is present.
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Long-Term Risks are described as situations with less immediate impact on indi-

viduals and include:

• Risk of Dehydration: The individual does not drink (water, tea, or coffee) during

the daily monitoring period; the detection problem consists on the contrary in

drinking action detection.

• Risk of Medication Intake: It is also a risk when a person under medication

forgets to take medicine. As in the risk of dehydration, the detection problem

consists in drug intake detection.

The risk of falling resembles all risks that can arise from actions carried out by frail

people on a daily basis. For the risk of domestic accidents, we consider all risks that

can be linked to the activities that frail people carry out specifically in the kitchen.

Therefore we assimilate the risk of domestic accidents to the possibility that a frail

person is in his/her kitchen.

We note, that a frail person is in a risky situation when the “dangerous” context

is combined with his/her unusual status, e.g., a frail person is not each time in a

risky situation when he/she enters the kitchen or goes upstairs in the house. This is

why contextual (visual) and multi-modal (physiological) sensing is necessary. Fur-

thermore, we intentionally exclude the ”fall” detection from our taxonomy as it is

not a risk, but already a dangerous event and because of the large availability of fall

detection products already on the market. Finally, in this paper we will present our

results on four classes: a)No Risk, b) Risk of falling, c) Risk of domestic accident, d)

Drinking of water. The project is continuing and other risk situations will be further
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recorded. We also stress that we work under one-subject scenario. Risk detection

has to be adapted to the environment of each frail subject.

3.3.2 Data Collection Protocol

Healthy volunteers were recording data on a wearable kit simulating risk situations.

They were also asked to write a short recording dairy approximately indicating the

time instant when the subject puts the devices on himself, adjusts them, records,

and simulates various situations where each risk or situation from our taxonomy is

reported e.g., 13:45 entering into the kitchen (risk of domestic accident).

The wearable kit consists in devices connected to the developed Android applica-

tion.It comprises the following sensors

• A bracelet Empatica E4, which is a medically-graded wearable device. It is

equipped with an accelerometer, an Electrodermal Activity (EDA) sensor, a

PPG (Photoplethysmogram) sensor, an Infrared Thermopile Sensor, and a Blue-

tooth Low Energy transmitter.

• A chest-worn wearable device MetaMotionR. The following measures are ex-

tracted: acceleration, angular velocity, and magnetic field.

• A wearable camera which is positioned on the shoulder. The latter is directly

connected to a phone considered as the main controller of the whole device. The

camera records 3 seconds of video every 10 seconds with 10 fps frame rate.

The device was worn for thirty days by two healthy volunteers: One young adult

twenty-six years old, wore it for 21 days and a sixty-two years old volunteer wore the
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device for 9 days.

Psycho-gerontologists consider that a frail person may be in a risky situation

when he/she does not e.g. simply enter the kitchen, but when he/she is disturbed,

stressed, etc. Thus we asked our volunteers to simulate such situations by associating

emotions (fear, stress, etc.) with their actions.

Recorded dataset BIRDS- Bio-Immersive Risk Management System - contains

recordings of 30 days of the overall volume of 6316 min. The recording time per

day varies from nearly two hours up to five hours. The duration of risk situations

represents only a few percent of the whole. The corpus BIRDS will be made publicly

available subject to fulfilling legal procedures according to GDPR (https://gdpr-

info.eu/). We have simulated the recording process with healthy volunteers. For

frail elderly special permission is required with insurance. This is a part of future

work.

3.4 Two-Stream Neural Network for Recognition of Seman-

tic Risk Situations

We consider sensor data and visual data as two modalities and design a two-stream

architecture to solve the multi-class classification task of semantic risk detection.

3.4.1 Two-Stream Network Architecture

The proposed architecture is illustrated in Figure 3.1. The upper branch is a 3D

convolutional network, built on ResNet backbone. We use this model as it proved
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Figure 3.1: Two-Stream Network for the multimodal data constituting of the videos and multivari-
ate time series signals.

to be efficient when recognizing actions in the video in our previous work [90] and

shortly describe it in Section 3.4.3. The bottom branch is a recurrent neural network

GRU which is precisely an encoder network described in Section 3.4.4. The fusion

of modalities is performed by an intermediate fusion approach. Two streams of our

network are trained end-to-end using synchronized training data from video and

multi-modal sensors.

Figure 3.1 illustrates the concatenation of normalized features from the two branches

with a red cross. The concatenated features are submitted to a decoder network,

which is a GRU network with an attention block. The class assignment is realized

with the usual fully connected and softmax layers.

The data is split into 80%, and 20% as training and test data. We describe data

pre-processing in Section 3.4.2.

3.4.2 Data Pre-Processing

The real-world data collected in the wild require cleansing.
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Visual Data: Visual data is collected from a wearable camera, see Section 3.3.2

requires data preprocessing as similar to sensor data the risk situations constitute

only a few percent compared to the whole volume of visual data. Thus, scrapping of

non-risky situations is a necessity for balancing the dataset to avoid the high bias of

the deep network. The frame extraction is performed. The frame aggregation is then

realized using a sliding window approach prior to feeding the data to the network.

It facilitates the preservation of the temporality of the data. The temporal window

size Nv is fixed to 10 frames according to our preliminary experience. The frame rate

in recorded videos is not constant, it varies between 12 - 25 fps, due to the various

connection delays on the Android platform. Hence, the window of length Nv can

correspond to a different duration in time. Raw RGB pixel data are used.

Sensor Signal Data: Data pre-processing is composed of two steps, i.e data im-

putation and data normalization. Data is recorded with a number of sensors, which

may malfunction at arbitrary time moments or loose their connection via WiFi and

Bluetooth, which results in missing values from the data requiring imputation of

data. We use a classical data imputation by mean value, computed on the available

raw data of each sensor on the whole dataset.

In the following, we denote xi the the vector of dimension S whose entries are

the observed values of the S sensors at time i and xmean the vector of means of all

available values of sensors. We also denote by x the set of variables {x1, x2, · · · , xD}.

This is our whole set of measures in the whole corpus. Supposing the Independence of

the coordinates of x the covariance matrix Σ of x will be diagonal. The normalization
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we propose consists for the whitening of the data, see Equation (3.1) in a vector form.

ζ(xi) =
xi − xmean√

Σ(x)
. (3.1)

Then we linearly scale the whole set of whitened measures ζ(xi) to fit the interval

[0, 1] for each coordinate of xi, and obtain the normalized data xnormi
.

xnormi
=

ζ(xi)−min(ζ(xi))

max(ζ(xi))−min(ζ(xi))
. (3.2)

Data Synchronization: Data synchronization is introduced to facilitate the end-

to-end network architecture as well as encompass the challenge of variable sampling

rate between the video recording device and the devices recording the multivariate

time data. The visual data is sampled w.r.t multi-variate sensor data using a key i.e

for this data, it is, namely, the timestamp, thus the timestamps recorded by sensors

are matched with the videos and the corresponding frames are generated for the

particular timestamp. So, for a particular video, the corresponding sensor data is

established. The synchronization is performed on a frame level.

3.4.3 3D ResNet Encoder for Visual Data

In the intermediate fusion paradigm, the processing of visual data consists in encod-

ing them via the “visual” network which is a 3D convolutional network, we built on

ResNet-26 backbone with 3D convolutions. The use of 3D CNN helps us to capture

the temporal information of the videos. Upon applying the 3D convolution, the value
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at the particular position x, y, z at the jth feature map in the ith layer is given by

Equation (3.3).

vxyzij = tanh

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
(3.3)

In Equation (3.3), the 3D kernel is of size Ri along the temporal dimension and

wpqr
ijm is the (p, q, r)th value of kernel connected with the mth feature map of the previ-

ous layer The visual encoding is performed by using the RGB videos pre-processed as

mentioned in Section 3.4.2 for visual data. Features are extracted using the ResNet-

26 architecture for feeding to the decoder network. 3D CNNs i.e. containing 3D

convolution kernels for spatio-temporal data that have been used quite extensively

for activity recognition tasks [59]. The features from the ResNet-26 are extracted

from the penultimate layer i.e. just before the softmax layer. The 3D ResNet used

here is the basic block architecture which constitutes two convolution layers followed

by a batch normalization layer and ReLU for each of the individual layers mentioned.

As mentioned in the architecture of ResNet the use of the bypass, we use the shortcut

pass to connect the top of the block with the last ReLU layer of the block.

3.4.4 GRU Encoder-Decoder with Attention Layer for Sensor Data and

Two-Stream Fusion

In this section, we present the GRU network with an attention layer. Its encoder

part is used to process the multimodal time series data from sensors. The decoder

part in this architecture comprises the attention layer that is used for intermediate
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fusion in our two-stream network.

The encoder network maps the normalized sensor data to a sequence of represen-

tation features. The input sequence is taken as xnormi
within a temporal window of

the length Ns. An input sample at time t is xt ∈ RS×N . The equations describing

the GRU encoder are given below:

rt = σ(Wrxt + Urht−1 + br) (3.4)

zt = σ(Wzxt + Uzht−1 + bz) (3.5)

h̃t = tanh(Wxt + U(rt ⊙ ht−1) + b) (3.6)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (3.7)

Here rt ,zt, ht refer to reset gate, update gate, and hidden state, respectively.

Wz, Wt, W , Uz, Ut, U , bz, br, b are model parameters, and σ denotes the sigmoid

function.

The decoder network contains the attention block followed by two stacked layers

of recurrent neural networks (in our case a GRU) and finally a fully connected layer.

The decoder network is initialized with the same state as that of the encoder network.

The class state is predicted by the final fully connected layer. Figure 3.1 (right) gives

the overview of the decoder network.
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Attention Block in the Decoder: It stresses the features and dependencies

leading to better predictions. We pass the concatenated features from the video

stream and from the signals to the decoder network for classification. The equations

below describe the attention block for the network.

The multidimensional output from the sensor stream is ht ∈ RM×Ns with M the

number of features on the hidden state in the GRU block. The output ht of the

GRU-based encoder is then fed to the attention block. For the sake of clarity, we

will further denote the output of the encoder as ot. The output features from the

video stream i.e. the ResNet-26 features are denoted by rest ∈ RC×F with C being

the number of channels and F as a number of features which depend on the size

of the input image which for Res-Net is 224 × 224. The architecture used here is

the basic block and bottleneck, and with our preliminary experience, the basic block

architecture is used [54]. The features obtained from both the streams are flattened

and concatenated as given in Equation (3.8).

ct = rest ⊕ ot (3.8)

c̃t = SoftMax(ct) (3.9)

For the calculation of the attention weights the combined normalized input fea-

tures are concatenated with the initial hidden state of the decoder as the features

while training are updated with respect to the decoder output and its hidden state.

Equations (3.10), (3.11), and (3.12) show the calculation of attention weights.
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ć = c̃t ⊕ h0 (3.10)

at = ćt.W
T
t (3.11)

The output of the layer is passed to the softmax for normalization as in Equation

(3.12)

ãt = SoftMax(at) (3.12)

gt = ãt.c
T
t , (3.13)

To push the output ct to the decoder we first initialize the decoder GRU with the

same initial state h0 as for the encoder GRU for the sake of reproducibility of results.

Then the outputs ct are processed and passed to the decoder, the first layer of it is

the attention block, which is a linear layer, see Equation (3.11). The attention is

given in Figure (3.2).

The result gt is submitted to the GRU classifier - decoder, see Figure 3.1 lower part.

We also designed this GRU classifier as a two-layered network as the addition of the

second layer improved the performance accordingly to our preliminary experiences.

Now let us consider the self-attention models for the purpose of the two-stream

network:
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Figure 3.2: Design of the attention block.

3.4.5 3D Bottleneck Transformer for Videos

3D Bottleneck transformer has been developed for the visual data which are in the

form of videos inspired by [114]. In the original work [114] the bottleneck transformer

is based on ResNet-50 network [62]. The idea is to leverage the benefit of self-

attention in the bottleneck blocks of the ResNet. For this purpose, we have inflated

the 2D self-attention on the original network to 3D self-attention to accommodate

the temporal information. The self-attention is presented in the last stack of the

ResNet-50 architecture. The reason to use the self-attention in the last block is to

use the lowest resolution of the feature maps. In this transformer, we have changed

the 2D convolutions to 3D convolutions to process chunks of video frames instead

of images. A global multihead self-attention is applicable to the 3D feature maps.

We applied the multi-head self-attention on the last three layers of the ResNet-50

instead of spatial convolution. The attention of a particular ith head in a transformer

62



3.4. TWO-STREAM NEURAL NETWORK FOR RECOGNITION OF SEMANTIC RISK
SITUATIONS

is expressed by Equation (3.14):

headi = SoftMax
[QWQ

i (KWK
i )T√

dk

]
VW V

i
(3.14)

Here Q,K, V are respectively query, key and value matrices and WQ
i ,WK

i ,W V
i are

their weight matrices and dk is the dimension of the input key vectors. As Q,K,V

the same feature tensor is obtained from an initial layer of ResNet-50 exactly as in

[114], but computed with 3D convolutions.

The multi-head attention in the transformer is expressed by Equation 3.15

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh)W
0 (3.15)

Here W 0 are learnable parameters multiplying the attention matrix after concate-

nation of attentions of each head h is the number of heads. The transformer weight

matrices are trained with Adam optimizer[63] as in [114]. The feedforward network of

the transformer is multi-layer perceptron with one hidden layer. The output feature

dimension of the transformer for video is dv = 64.

3.4.6 Linear Transformer for Sensor Data

For sequences of vectors of sensor signals we used linear transformer proposed by

Wang et al. [113] for the sake of computational efficiency. Here Key (K) and Value

(V ) matrices are of dimension n × d as composed of n vectors of sensor signals of

dimension d. They proposed a self-attention mechanism that is based on context
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mapping in linear time and complexity w.r.t sequence length. The idea is to add

two linear projection matrices after the computation of key and value matrices rep-

resented as E and F in Equation (3.16), thus reducing the dimension. The authors

project the original (n × d) dimensional key K and value V matrices to (k × d)

matrices with projection matrices Ek×n, Fk×n, where the target dimension k satisfies

k << n. Thus in the computation of attention for one head, instead of using n× d

matrices for a general transformer, as given in Equation (3.14), k × d dimensional

matrices are used to reduce the computational cost. The final attention matrix headi

in Equation (3.16) remains of the same dimension n× d. In [113] the authors report

similar performances of the linformer with projection on k-dimensional space, where

k is twice lower than n of the original transformer without projection. Despite our

sequences being of lower temporal dimension n = 25 than those considered in [113] as

defined by risk detection application, in view of the complexity reduction in training

and the future real-time generalization performance, it is still interesting to reduce

the computational complexity.

headi = softmax
[QWQ

i (EiKWK
i )T√

dk

]
FiVW V

i
(3.16)

The multi-head self-attention is computed as in other transformers by concatena-

tion, see Equation 3.15.

Once Multi-Head Self Attention is obtained, we pass it through a feed-forward

network comprised of multi-layer perceptron with a single hidden layer. The output
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feature dimension is ds = 64

3.5 Experiments and Results

3.5.1 Datasets

In this work, we have applied the proposed method to two datasets: the first one

is open sensor dataset UCI-HAR[4] for action recognition. The second one is our

recorded BIRDS dataset.

3.5.1.1 UCI-HAR Dataset

UCI-HAR is a dataset for Activities of Daily Life (ADL). The dataset was recorded

by 30 volunteers on a Samsung Galaxy SII smartphone during two trials. In the first

trial the smartphone was placed on the left side of the belt and for the second trial,

after a period of 5 seconds, the smartphone was placed according to the preference of

the user. A visual inference was used for the annotation of the ground truth. A total

of 9 parameters were recorded at a sampling rate of 50 Hz using a tri-axial linear

acceleration and angular velocity with the phone accelerometer and gyroscope. For

the reduction of noise, a median filter, as well as a 3rd order low-pass butter filter,

were used. Mapping of signals to the frequency domain is through Fast Fourier

Transform and sampled by a fixed width sliding window, i.e., 128 readings/window

(2.56 seconds and 50% overlap). This dataset contains a total of 10299 instances. The

taxonomy comprises 6 activities: Walking, Walking Upstairs, Walking Downstairs,

Sitting, Standing, Laying Down.
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Figure 3.3: Hybrid Transformer Network for the multimodal data consisting of the visual data as
videos and multivariate time series signals.

For the creation of training and test datasets, a total of 70% and 30% volunteers

are used respectively. Table 3.1 shows data distribution for the training and test sets

for each class. The dataset does not contain video data. The combined architecture

is presented in the Figure 3.3

3.5.1.2 BIRDS Dataset

Our dataset BIRDS have been recorded according to the protocol described in Section

3.3.2. The overall number of sensors is 16, which defines the dimension of the data

vector.

In the experiments, we use recordings from one frail adult volunteer of 12 days
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Activities Train Instance Test Instance

Walking 1226 496

Walking Upstairs 1073 471

Walking Downstairs 986 420

Sitting 1286 491

Standing 1374 532

Laying Down 1407 537

Table 3.1: Distribution of Human Activity Classes on UCI-HAR Dataset. [4]

duration, because of privacy constraints on the data. Three situations appear on

this span of 12 days.

They are: Environment Risk of Falling, Physiological Risk of Falling, Risk of

Domestic Accident and an “opposite-to-risk” situation, such as Risk Associated to

Dehydration and Risk due to Medication Intake. The rejection class is labeled as No

Risk situations. Table 3.2 contains the distribution of samples for the classes of this

taxonomy in the dataset. In the second column, the number of signal samples is

indicated, and in the third column - the number of recorded video files.

Risk Situations
Sensor Data Video Data

Samples Percentage Samples Percentage

No Risk 20176233 95.03% 18207 94.45%

Environmental Risk of Fall 312425 1.47% 248 1.30%

Physiological Risk of Fall 180307 0.85% 156 0.81%

Risk of Domestic Accident 333616 1.57% 477 2.47%

Risk associated with Medication Intake 145992 0.69% 114 0.60%

Risk associated to Dehydration 81624 0.38% 62 0.32%

Table 3.2: Distribution of risk situations on the raw sensor and video data for BIRDS dataset.

67



CHAPTER 3. HYBRID DEEP NEURAL NETWORKS FOR RISK DETECTION

As stated earlier, no risk samples constitute most of the data. Hence, the dataset

is strongly imbalanced and cannot serve for DNN (Deep Neural Networks) training

as it is. To balance it, we have retained only 0.85% proportion of No risk samples

from the whole sensor dataset. Additionally to the data normalization and scaling,

we, see Section 3.4.2, adopted a sliding window approach at a pre-processing step for

the creation of instances for the sensor data. A fixed length window of 20 samples

was considered with a sliding stride of 4 samples. Note that the time intervals

between different samples are not stable because of the sensors’ imprecision. Hence,

the fixed 20 sample window can have a different duration in time (in the limit of a

few milliseconds). For assigning a unique label to a window, we used the maximal

mode of the ground truth label histogram computed on it.

We note, that the BIRDS dataset is much more challenging than the UCI-HAR

dataset [4]. The latter is regularly sampled and less prone to noise.

3.5.2 Risk Classification with a Two-Stream Hybrid Neural Network

In this section, benchmarking and experiments of the proposed hybrid two-stream

network are presented.

As discussed in Section 3.4 we are using two streams, one for feature extraction

from videos and the second stream for feature extraction from the sensors. The sensor

signals have to be processed by our GRU with an autoencoder network. Hence, we

first bench-marked our approach only on the signals using the lower branch of the
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two-stream architecture, see Figure 3.1. Then the best model was used in the two-

stream architecture and finally, we compared our two-stream hybrid network in risk

detection problem with the 3D CNN classifier applied to the video data only.

3.5.2.1 Benchmarking on Sensor signals

Our first series of experiments was conducted on the UCI-HAR dataset [4] as it is

more regular and balanced than the BIRDS dataset.

We used three networks: LSTM [57], GRU[30], Autoencoder (GRU)[28], Lin-

Former [113] and our GRU Autoencoder with Attention. The optimization method

was Adam [63] with a fixed learning rate of 0.0001 and a batch size of 128 for UCI-

HAR dataset. We have varied the number of epochs for each network as presented

in Table 3.3. From this Table, we conclude that the proposed GRU Autoencoder

with Attention block gives the best result for a reasonable number of epochs (20).

The second series of experiments was conducted on our challenging BIRDS dataset.

Here we first optimized the learning rate and batch size hyper-parameters by bisec-

tion method and got a learning rate of 0.00001 and batch size of 256 on LSTM. The

same parameters were used for other networks: GRU, Autoencoder GRU, and GRU

with Attention, see Table 3.4.

The training was done using the open-source PyTorch Framework. Training has

been conducted in a single server with 2× Tesla P100-PCIE-16GB.

The reported test accuracy score in Table 3.4 is lower than on the UCI-HAR

dataset, but still, the GRU with attention performs the best.
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Algorithms Test Acc. % Epoch

LSTM [57] 81.38 20

LSTM [57] 92.36 200

GRU [30] 87.03 20

GRU [30] 89.65 30

Autoencoder(GRU) 85.34 20

Autoencoder(GRU) 90.46 25

Autoencoder + Attn (GRU) 92.28 20
LinFormer [113] 89.71 20

Table 3.3: Comparative Study of various Algorithms on UCI-HAR Dataset.

Algorithms Test Acc. % Cross-Val. (µ± σ)

CNN[68] 48.43 0.728± 0.22

LSTM[57] 51.33 0.721 ± 0.43

GRU[30] 50.31 0.77 ± 0.50

Autoencoder(GRU), [28] 56.14 0.806 ± 0.59

GRU with Attention 57.13 0.832 ± 0.73

Linformer [113] 56.92 0.791 ± 0.67

Table 3.4: Accuracy and 10-fold average Cross-Validation Scores on the signal sensor data with
balanced dataset. BIRDS dataset.

3.5.2.2 Results of Two-Stream Hybrid Network

At first, we present the results on the four classes instead of six classes as well and

the data is a subset of the data comprising six classes in volume. As mentioned data

acquisition is still an ongoing task, therefore the acquisition of new classes as well as

data volume is progressive.

3.5.2.2.1 Ablation of the two-stream 3DCNN-GRU network: The results for this

section are presented in four classes instead of six, Environmental Risk of Fall,
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Algorithms p-Values

CNN[68] vs Ours 2.6× 10−4

LSTM[57] vs Ours 6.8× 10−6

GRU[30] vs Ours 6.6× 10−5

Autoencoder[28] vs Ours 8.9× 10−6

Table 3.5: Paired t-test results (p-values) between Ours (GRU with Attention) and other methods

Risk of Domestic Accident, Risk associated to Hydration and the reject class No Risk

Balancing of data is an important success factor for training a well-generalizing

model of a DNN. Our dataset BIRDS are highly imbalanced between risk and no

risk situations. As we stated in Section 3.5.1.2 we retain only 0.85% of No Risk

class for sensor signals accordingly in our preliminary experiments. For balancing

video data, we have conducted a series of three experiments with different data

scrapping percentages reducing the No Risk data sample proportion. The No Risk

samples were randomly chosen from the original No Risk class population according

to the fixed percentage. The percentages were chosen as 1.5% (Experiment 1 ), 0.5%

(Experiment 2 ) and 0.75% (Experiment 3 ).We compare the performances of our

two-stream network on balanced data.

The results are presented in Table 3.7. They are expressed as per-class Precision,

Recall, and F-score. The results of Experiment 1 show the precision of the class Hy-

dration By Water Intake to be 0, which implies this particular class is not predicted.

Reducing the sample size of No Risk situation to 0.5% of the total amount of the No

Risk in the training dataset, which is equivalent to the total sample size of the class

Hydration by Water Intake, the precision of Hydration By Water Intake becomes
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almost 100% see “Experiment 2”. Finally, in Experiment 3, we used a higher propor-

tion 0.75% of the No Risk visual data, which provides us with the overall accuracy

score of 80.21% with much less bias in the network for randomly split data. The

experiments also show the importance of the No Risk situation while calculating the

evaluation scores. Mean 10-fold cross-validation results on sensors yield us the best

results as given in Table 3.4.

The cross-validation scores with respect to sensors have been obtained on the

validation set. The cross-validation score provides a significant improvement in the

mean accuracy scores from 60.55% to 83.20% as provided in Table 3.4 for our sensor

data. This result also highlights the importance of the data when randomly split and

while performing the cross-validation. Since the data has been taken on several days

over a period of months thus it also signifies how features can change specifically for

health data due to physiological and psychological changes.

The accuracy of the best model using the cross-validation is around 83.26%

which is an improvement from the previous model considering random splitting. It is

evident from the results that there is almost an improvement of 20% in the accuracy

score using cross-validation for the sensor data whereas only 3% improvement is

observed while using the combination of visual and sensor data. Consequently, it

is observed that visual features are dominant over the features which are obtained

from the sensors.

Statistical hypothesis tests (paired t-test) were performed for the amount of data

used in our experiments as presented in Table 3.5 validating our experiments. For
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each comparison of our method with any methodM listed in Table 3.5, we tested the

hypothesis H0: the accuracy of methodM is equal to the accuracy of our method.

The p-values computed between our model vs. the model M are much lower if we

consider an α to be 0.05.

The values thus given in Table 3.5 are significantly lower than alpha thus we can

reject all the hypotheses.

3.5.2.3 Results using Transformers for the Two-Stream Network

Here we apply the transformer network on both the video and sensor streams of

the BIRDS dataset. The results are shown in Table 3.6 in terms of the f-scores,

precision/accuracy, and recall per class. The overall accuracy of the model is 72.19%.

The cross-validation provides a slight improvement of the overall accuracy of 71.09%

(mean on 10-fold cross-validation). This is a slight improvement when compared to

just the video stream giving an accuracy of 70.47% (mean on 5-fold cross-validation)

or only the sensor stream which achieves an accuracy of 35.55% (with the same

scheme of mean on 10-fold cross-validation).

Risk Situations Precision Recall F-Scores

No-Risk 0.83 0.86 0.80

Environmental Risk of Fall 0.75 0.82 0.69

Physiological Risk of Fall 0.27 0.20 0.40

Risk of Domestic Accident 0.73 0.72 0.74

Risk Associated with Medication Intake 0.52 0.59 0.47

Risk Associated to Dehydration 0 0 0

Table 3.6: Evaluation Metrics in the BIRDS dataset
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From Table 3.6 the metrics for Risk Associated to Dehydration are 0 which

is a drawback for the network. It can be argued that features from ‘opposite-risk’

situations are very similar to No-Risk thus it may have been classified as No-Risk

class.

3.5.2.4 Comparison w.r.t. Risk Detection on Video only

Hence in this experiment, we compare our hybrid two-stream network performance

on the classification of risk situations on video only with 3D Res-Net-26 and 3D-

BotNet. The video accuracies give 65.67% and 70.47% respectively. The accuracy of

video classification is 65.67% for only video streams compared to 73.86% for our two-

stream framework using the 3DCNN-GRU framework while using a self-attention-

based model the combined accuracy is 72.19%.

3.6 Conclusion

In our chapter, we have proposed a novel two-stream method hybrid network 3DCNN-

GRU as well as self-attention-based models, for the classification of risk situations

on temporal data including sensors and video. The 3DCNN-GRU method comprises

the extraction of features from the two networks, the fusion of the features followed

by an introduction of an attention block, with training performed in an end-to-end

manner. The “video stream” is processed by a 3D Res-Net with 3D convolutions.

The other stream GRU encoder is used to encode the features from the multi-modal

sensor data. For the self-attention based model the video features are extracted
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using a self-attention based model named 3D BottleNeck transformer and signal fea-

tures are obtained using a linear transformer. The combined features are then fused

and normalized followed by an MLP. This network is also trained in an end-to-end

manner.

Further, this chapter introduces a novel dataset along with the visual data with a

number of challenges such as missing data and non-synchronization of data between

the videos and sensors. This framework is unique as the video classification of risk

situations is performed with complementary features from the multi-modal sensor

data.

The hybrid architecture showed quite a large increase in performance compared

to the semantic risk classification on the sensor data only. Working on the real-world

“in-the-wild” dataset which is highly imbalanced, we have developed strategies and

tools for handling such kind of data and will continue dataset recording and devel-

oping further, the classification network. This chapter also highlights the necessity

for improving the performance for the risk-detection task in the self-attention-based

model.
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Table 3.7: Evaluation scores for various experimentation on BIRDS dataset. Experiment 1:
Situation of No Risk is 1.5% of the total No Risk situations. Experiment 2: Situation of No Risk
is 0.5% of the total No Risk situations Experiment 3: : Situation of No Risk is 0.75% of the total
No Risk situations
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Chapter 4
Importance Based Pooling Transformer for

Detection of Risk Events

In this chapter, we are focused on visual data, more specifically on videos. We adapt

transformer models for the videos and try to optimize them. The target application

is the detection of risks of frail persons in their home environment, but only using

visual data. In contrast to the last chapter, we limit the complementary information

from the signals. The proposal of Vision Transformer by Dosovitskiy et. al. [36]

transformed image generalization using the transformers. The observed challenge

for this method is the change of view as we are using ego-centric video data and not

from a fixed singular viewpoint camera.

For interpretability, the idea is the localization of the features responsible for the

model decisions. In this chapter, we seek to identify these important locations during
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the training time. We are extending our work by deploying a complete transformer-

based model instead of self-attention blocks on a convolution-based model. As dis-

cussed in previous chapters, transformers were initially proposed for sequential mod-

eling and replace the traditional architectures such as RNNs and their variants such

as LSTM [57] and GRU [29].

Our target application is the detection of risks of frail persons in their home

environment, as was the case in our previous contributions. In Chapter 3 we have

described our multimodal corpus BIRDS. Video data are most important in the

recognition of the so-called “semantic risks” [144]. The latter refers to complex

visual events and actions such as taking pills, drinking water, etc. Therefore, we

resort to the latest models of transformers to analyze these video data. We note

that recent transformer models allow for the design of systems to handle such data

[94]. In this chapter, we are focused on the single modality of video, as we seek

the best attainable accuracy in this modality. We remind you that our dataset

BIRDS consists of challenging in-the-wild recorded data. Its annotation was fulfilled

with visual inference and the diary recorded by the subjects during their monitoring.

Hardware failures during recording or loss of connection yield missing data and noise.

Therefore, a benchmark on publicly available “clean” datasets is necessary. We do

it on the publicly available Kinetics-400 dataset [21].

To better meet the real-world accuracy requirements of automatic risk detection

systems, we propose a video transformer architecture with a temporal pooling oper-

ation to handle noisy in-the-wild real-world data.
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Transformer models have recently become a very popular tool for data analysis

for various classification problems. Recently, transformers have been used for com-

puter vision tasks such as video understanding [125], object detection [20], action

recognition[16, 5], etc. The transformers can be seen as the integration of the self-

attention module with the CNNs, as using the CNNs as a feature extractor or as a

pure transformer without CNNs. Due to the lower inductive bias compared to CNNs,

the use of transformers is based on a large amount of data. Video understanding

and recognition have been long studied in the literature, with the use of LSTMs on

top of convolutional features [72] or with the advent of 3D CNN models [124, 59].

For downstream tasks such as video classification and object detection, the use of

self-attention with convolution operation has been well studied in [50].

The use of DNNs in a supervised learning paradigm for health data analysis has

become state-of-the-art in the detection of critical situations and prognostics [17].

The lower the number of cases to be checked by a human operator, the more accept-

able automatic decision-making systems is for in-the-wild monitoring of frail subjects.

Self-attention model in DNNs has proven to be efficient in increasing the accuracy

of detectors on physiological signals as was shown in [86]. Nevertheless, there still

remains a place for improvement.

In the healthcare domain, transformers remain mainly designed for the mining of

medical records, sometimes being employed for the joint mining of images and text

[55]. Transformers architectures used for the extraction of spatiotemporal visual

79



CHAPTER 4. IMPORTANCE BASED POOLING TRANSFORMER FOR DETECTION OF
RISK EVENTS

data, such as video, have recently been proposed [149], [82], adding temporal at-

tention to the spatial attention of visual transformers designed for image analysis

[36]. The difference of our work from such transformers [16], consists in introducing

a learnable temporal pooling operation for better frame selection from a video seg-

ment. The use of pooling in the transformer is also studied in works like [149, 42] but

our core architecture as well as the pooling operation are different. In [42], the pool-

ing operation is used to hierarchically expand the channel capacity and pool spatial

resolution, similar to CNN. The [149] uses pooling to reduce the temporal resolution

with the topk std approach. In the attention matrix, where each row corresponds to

a frame in a video clip, they retain only k rows according to their strongest standard

deviation of them. Thus, the video frames with the most concentrated attention are

retained as representative frames of the clip. On the contrary, in our method, we

learn the temporal locations of k important frames and retain frames accordingly.

As the aging of the population becomes a massive phenomenon with the prolifer-

ation of age-related diseases, there is a growing need for monitoring technologies for

assisted living. Patients with chronic and age-related diseases require surveillance

under “ecological conditions” at their homes.

For the elderly without a particular disease, risk situations often rely on the

context and their physiological conditions, e.g., a person being in a stressed condition

and cooking could forget fire on the cooker, that is, has a domestic accident risk.

Wearable IoT devices have been successfully penetrating the practices of moni-

toring frail subjects in the AAL paradigm. In a recent review [115], the authors have
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selected the most relevant devices for AAL, specifically wearables. When analyzing

the vast literature available today on the use of IoT for elderly care, one can state

that such systems perform a large number of physiological and dynamic measures

such as body temperature, pulse oxygen saturation, blood pressure, acceleration, and

angular velocity measured in different parts of the body.

The recorded data represent time series. The video data from the wearable cam-

eras, the ego video data, is the unavoidable component of understanding complex

risk situations related to the context in which the person evolves. We call these risk

situations “semantic risks”[144].

The chapter is organized as follows: Section 4.1 describes the proposed archi-

tecture of the video transformer with pooling. In Section 4.2 our experiments and

results are reported. Finally, the conclusions and future work are discussed in Section

4.3.

4.1 Pooling Video Transformer for Detection of Semantic

Risk Situations

To detect risk situations from the presented taxonomy, we propose a video trans-

former architecture. Our transformer is based on the Visual Transformer (ViT) [36].

Contrarily to video transformers that have recently been proposed [82, 5], in our

transformer we introduce a pooling operation on the input video data in the rep-

resentation space to select the most important frames, thus reducing the temporal

redundancy of visual information. To recover the original temporal information, we
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Figure 4.1: Video Transformer with separable spatial and temporal attention for the videos

also symmetrically introduce the unpooling operation. We detail our transformer in

the following.

4.1.1 Visual Transformer Architecture

The video transformer architecture that we propose is adapted from Visual Trans-

former (ViT) [36] which is inspired by the original transformer model [128] used for

natural language processing tasks. The ViT was proposed for images. Here, each

image is split into N non-overlapping patches, xi ∈ RP×P , i = 1, · · · , N . We flatten

the patch to the 1D dimension and get the vector of size P 2. Note that we dropped

the channel dimension for simplicity of notation. Then, a trainable linear projection

of each patch of size P 2 is performed, yielding 1D tokens zi ∈ Rd with d being the

target dimension of latent vector space. The projected output zi is called the “patch

embedding”. Therefore, we get for N patches an N × d embedding matrix. Hence,

we denote E as an embedding operator of the (xi)i=1,··· ,N patches (the combination

of the flattening and the projection). We further prepend the class token zcls to

the embedding of the input patch and get [zcls,E(x1), · · · ,E(xN)]. The class token
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zcls is a learnable embedding of dimension Rd that is initialized with 0. Finally,

Epos ∈ Rd×(N+1), called positional embedding, is added to retain positional informa-

tion. Thus the Zℓ input of lth transformer layer l = 1, · · · , L. The Equation (4.1)

gives the expression for 0th layer. The output of the 0th layer is used to compute the

input of the next layer as presented in Equation (4.2).

Z0 = [zcls,E(x1), · · · ,E(xN)] + Epos (4.1)

The L transformer layers constitute the encoder. The encoder consists of alternating

layers of multiheaded self-attention block and multi-layer perceptron block. Layer

Normalization (LN) is performed before each block and residual connections are

added after each block. If we denote by Ẑℓ the output of a transformer layer, by

MSA - multihead self-attention operation of the transformers [36] and by MLP multi-

layered perceptron, then the equations for the alternating layers are given below, see

Equations (4.2) and (4.3) for MSA and MLP layers, respectively. In Equation (4.2)

and (4.3) we have ℓ = 1....L.

Ẑℓ = MSA(LN(Zℓ−1)) + Zℓ−1 (4.2)

Zℓ+1 = MLP(LN(Ẑℓ)) + Ẑℓ (4.3)
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4.1.2 Spatio-Temporal Transformer

We divide each video into M temporal windows Vm ∈ RT×H×W ,m = 1, · · · ,M . Each

window Vm is of spatial dimension H ×W of video frames and contains T frames.

Further, we call Vm video clips. This is illustrated in Figure (4.1) by a stack of

“clips”. We divide each clip into spatio-temporal cuboids, splitting each frame into

patches as for ViT, see Section 4.1.1. The spatio-temporal transformer is shown in

Figure (4.1) Given the patch size in each image as P × P and flattening each patch,

now a clip Vm is a collection of tensors Vm,ii=1,...,N ∈ RT×(P 2). In the following, we

will drop the index m. Let us now consider a patch in an image at the time moment

t: x(i,t) ∈ RP 2
. Similar to the image transformer we perform a linear embedding

for the individual patches as given in Equation (4.4) where Epost ∈ Rd×(N+1) and

transformer is using a latent vector of size d, t = 1, ...T :

Z0
t = [zcls,E(x(1,t)), · · · ,E(x(N,t))] + Epost

(4.4)

First, we apply temporal attention to the patch x(i,t). Thus, the temporal at-

tention for a ith patch on the layer ℓ in a given clip is computed as follows. For

each block at layer ℓ the query (q), key (k) and value (v) are computed as given in

Equation (4.5), (4.6) and (4.7):

qℓ(i,t) = W ℓ
qt(LN(Z

ℓ−1
(i,t))) (4.5)
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kℓ
(i,t) = W ℓ

kt(LN(Z
ℓ−1
(i,t))) (4.6)

vℓ(i,t) = W ℓ
vt(LN(Z

ℓ−1
(i,t))) (4.7)

Here, Wqt ,Wkt ,Wvt are weight matrices. The linear layer is illustrated as the FC

layer in Figure 4.1 in the left part.

For generalizing on the smaller dataset and incrementing temporal (frame) im-

portance, the pooling operation is used in the temporal self-attention.

q̂ℓ(i,t) = pool(qℓ(i,t)); k̂
ℓ
(i,t) = pool(kℓ

(i,t)); v̂
ℓ
(i,t) = pool(vℓ(i,t)) (4.8)

sℓ(i,t) = MSAt(q̂
ℓ
(i,t), k̂

ℓ
(i,t), v̂

ℓ
(i,t)) (4.9)

Here pool denotes the pooling operation, which consists of dropping frames from

a video clip, which we will explicit in the subsection 4.1.3 below. Multi-head self-

attention operator (MSAt) is described in Equation (4.10) (illustrated in Figure (4.1

as MSAt) using the dot product between the query q̂ℓ(i,t) and the key k̂ℓ
(i,t):

sℓ(i,t) = SoftMax
((q̂ℓ(i,t)) · (k̂ℓ

(i,t))
T )

√
d

)
· v̂ℓ(i,t) (4.10)

Once we obtain the sℓ(i,t) we unpool or upsample it to the original actual temporal

dimension T as in Equation (4.11).
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q̂ℓs(i,t) = unpool(sℓ(i,t)); k̂
ℓ
s(i,t) = unpool(sℓ(i,t)); v̂

ℓ
s(i,t) = unpool(sℓ(i,t)) (4.11)

Here unpool denotes unpooling the operation which is inverse of pool and is also

introduced below. Now, similarly for spatial attention, the query, the key and, the

value are computed as given in Equation (4.12), (4.13) and (4.14) :

qℓs(i,t) = W ℓ
qs(LN(q̂

ℓ
s(i,t))) (4.12)

kℓ
s(i,t) = W ℓ

ks(LN(k̂
ℓ
s(i,t)) (4.13)

vℓs(i,t) = W ℓ
vs(LN(v̂

ℓ
s(i,t)) (4.14)

Here, Wqs ,Wks ,Wvs are weight matrices.

Following self-attention with respect to the temporal dimension, spatial atten-

tion is performed as given in Equation (4.15) which is described in Equation (4.16)

(illustrated in Figure (4.1) in the block MSAs).

sℓs(i,t) = MSAs(q
ℓ
s(i,t), k

ℓ
s(i,t), v

ℓ
s(i,t)) (4.15)

sℓs(i,t) = Softmax
((qℓs(i,t)) · (kℓ

s(i,t))
T )√

d

)
· vℓs(i,t) (4.16)
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Finally, as shown in Figure (4.1), sℓs(i,t) is passed to the multilayer perceptron as

given in Equation (4.17).

Sℓ = MLP(LN(sℓs(i,t)) + sℓs(i,t) (4.17)

4.1.3 Temporal Pooling and Unpooling

The temporal pooling operation is performed to reduce temporal redundancy, as in

egocentric videos the camera could point on the spatially close locations. Therefore,

non-important frames can be removed.

The temporal pooling and unpooling of video have been inspired by [61]. The

authors perform temporal downsampling in their 3D convolutional network. Their

pooling is realized in the input space. In our work, we propose pooling after tokens

have been obtained in a transformer, that is in the feature space. We retain embedded

video frames at learnable grid locations on a non-uniform temporal grid. The number

of frames to retain is regulated by a target temporal reduction ratio α < 1. Thus,

the fixed number nf = α × T of the most important frames must be retained, with

T being the initial number of frames in the clip. We express the importance of

frames by probj where j = 1, ...αT of their temporal location. To compute this

probability, we follow the method proposed in [61]. There, probj is obtained by the

projection of spatio-temporal features into the space of dimension α×T . In our case,

we compute this probability in the q, k, v spaces for each coordinate separately thus

getting the probability vector probj = (probj(q), probj(k), probj(v))
T . To sample at
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a higher rate with higher importance, the cumulative distribution function (cdf) of

1 − probj(i), i ∈ (q, k, v) is taken for each marginal distribution. Thus, the grid-

location at time j can be given as (locj(i) = T · cdf(1 − probj(i))). Finally, the

input token in q, k or v is interpolated with respect to the learned grid location.

This is the pool operation as in Equation (4.8). The pooling is carried out in the

three spaces q, k, and v, but the temporal locations are different and correspond to

the most important temporal features in each of the three spaces. The difference

between the computation of self-attention as given in Equation (3.14) is basically

putting the self-attention in a ResNet block. The self-attention is computed on the

features inside the ResNet block. The difference here is using the self-attention layer

after obtaining the features from MSAt

Prior to the computation of spatial attention, to attain the original temporal

resolution, upsampling of the tokens is performed using the inverse mapping of the

cumulative distribution functions. The unpooling operation is performed to regain

the temporal dimension. The retention of temporal dimension is required for compu-

tation of MSAs, as the temporal dimension needs to be constant across the layers.

This is the unpool operation in Equation (4.11).

4.2 Experiments and Results

Experiments have been performed on two datasets. For benchmarking, we use the

publicly available Kinetics-400 dataset [21]. For risk detection, we use the dataset

BIRDS specifically recorded for our project. In the Kinetics-400 dataset, we only used
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Figure 4.2: A:(top) A clip of 8 frames of Kinetics-400 dataset for the class ’Bowling’ B:(bottom)
A clip of dataset BIRDS for the class ’Environmental Risk of Fall’

RGB stream without flow stream, as in the reference transformers only this stream

is used. Figure 4.2 shows the clips of Kinetics-400 and BIRDS for a single class. The

difference in view between the ego video and the general action classification videos

is clear.

4.2.1 Benchmarking on Kinetics-400

Kinetics-400 [21] is the dataset for human action classification. The videos are taken

from YouTube with real-world scenarios and are of around 10s duration. The dataset

contains about 306,000 video clips, about 240,000 as train, 20,000 as validation, and

40,000 as test set. It comprises 400 classes of actions. For our experiments, we

have sampled video clips of temporal dimension 8 from the original videos with a

sampling rate of 32. Thus, each video clip is a tensor in RGB − T space with

dimensions (3× 8× 224× 224). Here C = 3 is the number of color channels, T = 8

is the temporal length, H = W = 224 is the spatial dimension of the cropped video

frames.

The results are reported and compared with various models in Table 4.1. They are

obtained on the RGB stream. The flow stream is not considered for the computation

of the accuracy of models such as [21, 43, 132]. All transformer-based models, e.g.,
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Algorithms Test Acc. % Pre-Trained

3D-ConvNet [124] 56.1 ✓

I3D [21] 71.1 ✓

I3D NL [132] 77.7 ✓

X3D-M [43] 76.0 ✓

TimesFormer [16] 75.1 ✓

Video Swin Transformer (Swin-T) [82] 78.8 ✓

Video Transformer (with pooling) 78.3 ✓

Table 4.1: Test accuracy scores (top1) of various Algorithms on Kinetics-400 on the RGB stream.

[16, 82] are compared for the same configuration of input parameters, such as spatial

and temporal resolution and frame number we gave above. For our model, we are

using the pretrained weights on ImageNet1K followed by the training on Kinetics-400

by ‘divided-space-time’ configuration for the [16] model.

As can be seen from Table 4.1, the best model in Kinetics-400 is the Video Swin

Transformer [82]. Our model with pooling and unpooling performs closely to it. If

we compare our model with its baseline from [16], it gives an accuracy increase of

3%.

4.2.2 Risk Category Classification with Video Transformer Model on

BIRDS dataset

The recording of the BIRDS dataset has been presented in Chapter 3. The BIRDS

dataset is made up of a total of 19,500 videos. We classify 6 situations: 5 risks and

No-Risk as mentioned in Chapter 3. The class No Risk constitutes most of the data,

see data distribution between classes in Table 4.2. To balance the dataset and reduce

bias in the models, the No Risk class was reduced. Only 5% of No Risk videos were
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randomly selected. This gave a total number of videos of 1800 comprising samples

of all classes of our taxonomy.

In the case of the BIRDS dataset, we obtain video clips of 8 frames using a sliding

window approach with a stride of 4 frames between two consecutive clips. Indeed,

our problem is to detect a risk situation in which temporal borders do not correspond

to the borders of the video.

Each clip is a tensor of size (3×8×224×224), as was for the Kinetics-400 dataset,

see Section 4.2.1. We split the dataset with a ratio of 75% for the train and 25% for

the test data.

Risk Situations
Video Data

Samples Percentage

No Risk 18207 94.45%

Environmental Risk of Fall 248 1.30%

Physiological Risk of Fall 156 0.81%

Risk of Domestic Accident 477 2.47%

Risk associated with Medication Intake 114 0.60%

Risk associated to Dehydration 62 0.32%

Table 4.2: Distribution of video data for risk situations for the BIRDS dataset.

All models mentioned in Table 4.3 used are pre-trained with ImageNet1K. Bot-

Net3D mentioned in Table 4.3 is adapted from the BotNet [114] model for the images.

We used 3D convolution instead of 2D convolution, and, for self-attention, inflated

the 2D features to the 3D features.

For experiments on the BIRDS dataset, we applied stochastic gradient descent

(SGD) with a momentum of 0.9, with a constant learning rate of 0.0001, and used a
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Algorithms Test Acc. % Pretrained

3D-ConvNet [124] 65.32 ✓

BotNet3D 70.47 ✓

Video Swin Transformer [82] 78.11 ✓

TimesFormer [16] 83.29 ✓

Video Transformer(with pooling) 86.77 ✓

Table 4.3: Test Accuracy Scores(top1) of various Algorithms compared to proposed Video pooling
Transformer on BIRDS dataset.

batch size of 4. The experiments have been run for a total of 30 epochs on the pre-

trained ImageNet1K dataset, as mentioned in Table 4.3. The experiments have been

conducted on GPUs NVIDIA P100, V100. As given in Table 4.3, Video Transformer

with Pooling achieves the best accuracy compared to other video transformers [16,

82]. Compared to the Video Swin Transformer which was the best on Kinetics-400,

it gives 8.67% of increased accuracy and 3.5% of increased accuracy with respect to

TimesFormer [16].

In this chapter, a factorized form of video transformer was used with separable

spatial and temporal attention. The pooling method was proposed for the temporal

attention block. To validate this temporal pooling we have compared it with other

pooling methods such as Min Temporal Pooling and Max Temporal Pooling pre-

serving the temporal location to help us for inverse mapping during the unpooling

operation. We achieved lower accuracy scores of 83.24% and 82.33%, respectively.

The superior performance of the Grid Pooling over average and max pooling can be

due to learning the importance of temporal locations to extract the most contributing

frames.
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4.3 Conclusion

In this chapter, we have proposed a new model of video transformers with pooling

and unpooling operations in query, key, and value space. A factorized form of video

transformer was used with separable spatial and temporal attention. The pooling

method was proposed for the temporal attention block. To validate this temporal

pooling we have compared it with other pooling methods such as Min Temporal

Pooling and Max Temporal Pooling. We achieved lower accuracy scores of 83.24%

and 82.33%, respectively. The superior performance of the Grid Pooling over min

and max pooling can be due to learning the importance of temporal locations to

extract the most contributing frames. These operations allow for the use of video

frame importance in the decision process.

In the future, we aim to add time series signals obtained from various sensors worn

by subjects in monitoring. The added modalities may improve overall performance,

as the dynamic and psychological sensors can help reduce false positives for the classes

where the inter-class variance in the RGB data is low. Furthermore, interpretability

for the multimodal data needs to be considered in order to better understand the

features that contribute the most to the results. The following chapter presents the

interpretability of transformers. It shows a novel method to construct the saliency

maps for them.
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Chapter 5
A Self-Attention Weighted Method for

Explanation of Visual Transformers

5.1 Introduction

For image classification tasks, humans make an informed decision using the visual

cortex that filters the regions relevant to decision-making [67]. DNNs which are

bio-inspired models imitate human decision processes, but they are often considered

black boxes by human decision makers. This is why explainable AI research has

become very intensive [15]. The goal here is to explain the elements and patterns

in the input data that have influenced the decision the most. Such an explanation

makes human users trust AI tools and is particularly needed in critical application

domains such as e.g. medicine. For parameter-heavy models such as transformers,

it is not evident which features influence the decision. Hence, their explanations

are needed to understand the features and thus input importance for a particular
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decision. This also helps to provide feedback on the network to optimize it. In

the explanation of transformers, the know-how on explainable artificial intelligence

(XAI) applied to DNNs can be used and further developed.

Recently, in transformers, self-attention which is the basic block, has been used

for the interpretation of decisions as proposed in [2]. Abnar et. al. [2] developed two

methods for combining the attention scores across layers, i.e., attention rollout and

attention flow. They represent a transformer as an attention graph, where attention

from different layers can be backpropagated to previous layers until the input, thus

explaining the classification result. In the first method attention rollout, the input

token identities are assumed to be combined linearly based on attention weights.

The latter are trained during the transformer training. Attention weights are then

adjusted by rolling them out to capture the propagation of information from input

tokens to intermediate embeddings. Rolling out means recursive multiplication of

raw attention matrices Ak, k = i, ...j; i > j of transformer layers, thus propagating

attention from layer i to layer j. The second method attention flow formulates

attention propagation as the max flow problem on a graph since it considers the

attention graph as a flow network. This method is not class-specific.

Chefer et. al [25] proposed a transformer explanation inspired by the LRP [8]

method, which was developed for explaining the decisions of CNNs. On the contrary,

their class-specific method, as [25] integrates the relevance scores with the gradient

of attention w.r.t class score. The computed relevance score is an updated version

from [8] as the author uses both positive and negative attributions, which are simply
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the relevance values (computed using Deep Taylor Decomposition (DTD)). For the

non-parametric layers (add layer), a normalizing term is added by the authors of

[25].

In [26], the authors of [25] extended their work to co-attention methods performing

on multisource input (images and text) as well as encoder-decoder attention.

The contributions of our work are in proposing a self-attention-based explanation

method for vision transformers. This method is class-specific, but model-agnostic

compared to popular relevance propagation-based methods. We compare our method

with the state-of-the-art explainers, a recently adapted version of Relevance Propa-

gation for the transformers [25] being amongst them.

When comparing methods, we are based on the hypothesis that a good explana-

tion of a network or a transformer has to correlate with human attention deployed in

visual recognition tasks. Thus we compare our explanation maps with Gaze Fixation

Density Maps (GFDMs) obtained from psycho-visual experiments when humans ob-

serve visual scenes in a specific visual recognition task [97, 39]. Hence, the quality of

explanations can be measured by usual metrics such as Pearson Correlation Coeffi-

cient (PCC) and Similarity(SIM) with Gaze Fixation Density Maps as was proposed

in [3] and further developed in [18, 153].

5.2 Proposed Method

In this section, we describe our proposed Self-Attention Weighted (SAW) method for

the vision transformers. This is a class-specific and model-agnostic approach. This
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is a “sensitivity” based method and not a relevancy-based method as the change in

input changes the interpretation.

5.2.1 Computation of Attention

The computation of self-attention in vision transformers is based on the so-called self-

attention mechanism [128]. First of all, we briefly recall a typical vision transformer

[36], which we have already introduced in Chapter 4. In a vision transformer, an

image is divided into N non-overlapping patches xi ∈ RP×P sampled on the regular

grid. Each patch is flattened to get a vector of size P 2. Then these vectors are the

inputs into the transformer network. In the following, we drop the channel dimension

for the simplicity of notation. 1D tokens zi ∈ Rd are obtained from the patches

by trainable linear projections where d is the target dimension of the latent space

vector. zi is called patch embedding. Thus, the embedding matrix is of dimension

RN×d. To aid in classification, the learnable class token zcls is prepended on the

embedding matrix. Finally, the positional embedding Epos of dimension Rd×(N+1)

is added to retain the positional information of the patches. Thus, the input to

the first layer of the transformer is given in Equation (5.1). The computation of

attention is different as computed in Chapter 3, and Chapter 4. In the other two

chapters, the computation of the self-attention is for videos and signals. In Chapter

3, self-attention is implemented inside a ResNet block whereas in Chapter 4, there is

use of temporal and spatial self-attention separately. In this chapter, we are simply

computing the self-attention on the image patches. The Equation (5.1) gives the
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embedding vector for the 0th layer. This equation is equivalent to the Equation (4.1)

Z0 = [zcls,E(x1), · · · ,E(xN)] + Epos (5.1)

If we consider a transformer of L layers, then at each layer ℓ, the query (q), key

(k) and value (v) are computed accordingly to the Equations (5.2, 5.3, 5.4). The

W ℓ
q , W

ℓ
k , and W ℓ

v represent the weight matrices and LN denotes layer normalization.

qℓ = W ℓ
q (LN(Z

ℓ−1)) (5.2)

kℓ = W ℓ
k(LN(Z

ℓ−1)) (5.3)

vℓ = W ℓ
v (LN(Z

ℓ−1)) (5.4)

The self-attention is computed by Equation (5.5, 5.6).

Aℓ = SoftMax
(qℓ · kℓT

√
d

)
(5.5)

Âℓ = Aℓ · vℓ (5.6)

Equations (5.5, 5.6) express the attention weight matrices for only one head of a

multi-head self-attention block. To obtain the final attention weight matrices, the

attention matrices are concatenated.
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The architecture consists of encoders, where each encoder comprises alternating

layers of the multiheaded self-attention block and multi-layer perceptron block. The

skip or residual connections are also introduced from the input tokens of each encoder

to the output of the self-attention block. The skip connection can be seen in the right

of Figure 5.1.

Figure 5.1: Illustration of the Vision Transformer (ViT). (Right): This is the illustration of Multi-
Head Attention showing different heads. Projection Layer constitutes the Linear Layer. (Left):
This diagram is taken from [36]

5.2.2 Self-Attention Weighted Method

The idea is to propagate the attention and the gradient of the attention from the

last layer to the input patch xi. The computation of the weighted attention map is

inspired from [2] and [25]. The rollout method is class-agnostic as it simply depends

on the aggregation of the attention weights as obtained from Equation (5.5). Equa-

tions (5.7, 5.8) state the rollout method where I is the identity matrix that accounts

for the residual or skip connection and h is the index of the H attention heads.
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Figure 5.2: Illustration of the attention and attention gradient across the transformer layers.

A′ℓ = I +
1

H

∑
h

Aℓ
h (5.7)

A′
rollout =

L∏
ℓ=1

A′ℓ (5.8)

We wish our method to be class-specific, i.e., for each given class from the final

classification decision at the generalization step, to explain what were the features

in the input token and thus the pixels in the input patch that have contributed to

the classification of the patch to the given class.

Therefore, in our Self-Attention Weighted Method (SAW), attention weights ob-

tained from Equation (5.5) are taken and are element-wise multiplied by the gradient

of the attention with respect to a specific class. This is expressed by Equations (5.9)
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Figure 5.3: Comparison of various explanations (baselines and our proposed method SAW) w.r.t
Gaze Fixation Density maps.

and (5.10) below:

A′ℓ
saw = I +

1

H

∑
h

(∇Ah
ℓ ∗Ah

ℓ) (5.9)

A′
saw =

L∏
ℓ=1

A′ℓ
saw (5.10)

Similar to Equation (5.7), in Equation (5.9) we add I i.e., the identity matrix to

account for the residual or skip connections. To extend, the I matrix avoids the self-

inhibition of each token. In Equation (5.9), ∇ denotes the gradient and ∗ denotes

element-wise multiplication. Figure 5.2 illustrates the attention computation for each

layer. The attention matrices are visualized as heat maps in the bottom of the figure

and the gradient matrices are depicted in the upper part with a heatmap. Thus

the modified attention weights A′
saw are computed from the attention weights of the
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trained transformer model. The matrix A′
saw is then interpolated to the resolution of

the input image and normalized using min-max to fit the interval [0, 1]. In Figure 5.3

A′
saw is visualized as a heat map on the input image together with other heatmaps

of reference methods.

Algorithm 1 Algorithm to obtain the Explanation Map

Input: modeltrained,X
A, yc ← evaluate (modeltrained, X )
∇Ac = ∂yc

∂A

A′ℓ
saw = I + 1

H

∑
h(∇Acℓ ∗Aℓ)

A′
saw =

∏L
ℓ=1 A

′ℓ
saw

mapc ← Interpolate A′

Output: mapc

5.3 Experiments and Results

In this section, we present the evaluation approach we have followed and benchmark

our SAW method against other explainers.

5.3.1 Dataset

We evaluate our SAW method on MexCulture- a public dataset containing images

together with gaze fixations [96].

MexCulture: Mex-Culture dataset [93] contains a total of 20000 images of ar-

chitectural structures for classification of cultural heritage buildings. The taxonomy

ranges to four different classes i.e., three classes of architectural structures Colonial,

Prehispanic, Modern, and the structures which cannot be classified as in any of the

mentioned three classes are classified as Other. The 20000 images are divided into

103



CHAPTER 5. A SELF-ATTENTION WEIGHTED METHOD FOR EXPLANATION OF
VISUAL TRANSFORMERS

12000 training images, 4000 validation images, and 4000 test images. In this dataset,

284 images are complemented by Gaze Fixation Density Maps (GFDMs), which are

computed using the gaze fixations and available at 1. Gaze fixations were recorded

in a psycho-visual experiment where subjects performed a visual task of recognition

of an architectural style of historical buildings [93]. Visual saliency-based attention

mechanisms seek to bring the external knowledge of high saliency regions in images

that have been built upon recorded gaze fixations or predicted by a powerful visual

attention model, into a DNN. It gives them priority over other regions/pixels in

images

5.3.2 Evaluation Scheme and Results

In evaluating the quality of our explanations, we follow the principle that explanation

maps are good if they are similar to human observations of the images in a visual

recognition task. This approach has become popular now and was, namely, proposed

in [18]. Human observations are expressed as Gaze Fixation Density Maps (GFDMs)

built upon gaze fixations. We refer the reader to [96] for a detailed explanation of the

computation of GFDMs. Heat maps built upon explanation maps are obtained in a

number of state-of-the-art methods such as GradCam [111], adapted relevance prop-

agation [25], rollout method [2], and our self-attention weighted method (SAW). All

explanations are obtained on Visual Transformer architecture [36] with pre-trained

weights on the ImageNet base configuration and fine-tuned on our dataset for the

four-class classification problem. In our experiments, images of size 224 × 224 are

1https://www.nakala.fr/data/11280/5712e468
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used, the number of layers in the transformer is L = 12, the size of image patches is

P = 16, and the number of heads in the transformer is 12. Training is performed for

20 epochs and the obtained test accuracy is of 89.71%.

We first qualitatively evaluate different methods visually comparing them with GFDMs

on the same images. An illustration is given in Figure 5.3. It shows a sample from

three classes of buildings: Colonial, Modern, and Pre-Hispanic, the images are se-

lected randomly from the three classes. The reference GFDMs are depicted in the

second column. In all three classes, our proposed method is closer to visual atten-

tion than the maps of four state-of-the-art methods as we can see from Figure 5.3.

When classifying images, the network not only focuses on the object but also on the

other parts, similar to visual attention, which uses outside knowledge in the predic-

tion. Most of the available literature performs the quantitative evaluation against

the bounding boxes and segmentation maps. This may not be always correct. An

object part, background, texture, shape, and other forms of semantics can also con-

tribute towards the recognition of the object. Humans have prior knowledge as well

as the surrounding knowledge to make decisions.

For quantitative comparison, we use two metrics to compare the saliency maps as in

[3]. These two metrics are Similarity and Pearson Correlation Coefficient (PCC).

In the following, a GFDM is denoted as S1, and pixel importance/explanation maps

obtained by an explanation method are denoted S2. The maps are normalised to sum

to one, that is
∑

i S1i =
∑

i S2i = 1. The first metric, similarity (SIM) considers the
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two maps as experimental probability laws. And expresses the intersection of experi-

mental laws. Thus, if the two importance maps completely overlap, then a maximum

similarity of 1 is achieved; otherwise, for no overlapping maps, the similarity is of 0

value. The Similarity is given in Equation (5.11).

SIM(S1, S2) =
∑
i

min(S1i , S2i) (5.11)

For the Pearson Correlation coefficient (PCC), if the two maps are perfectly cor-

related then PCC is close to 1 else if they are absolutely not correlated then PCC is

0. The Pearson Correlation Coefficient (PCC) is computed for two saliency/impor-

tance maps as given in Equation (5.12) where cov(S1, S2) is the covariance between

the maps and σ(S1) and σ(S2) is the standard deviation of S1 and S2.

PCC(S1, S2) =
cov(S1, S2)

σ(S1)× σ(S2)
(5.12)

Table 5.1 gives the evaluation metrics values between various methods and gaze

fixation density maps over 284 images of Mexculture dataset.

Methods
Similarity PCC
(µ± σ) (µ± σ)

Gaze Den. Map v/s LRP [8] 0.4963 ±0.0283 0.042 ±0.1800
Gaze Den. Map v/s GradCam [111] 0.5516 ±0.0059 0.352 ±0.0230
Gaze Den. Map v/s Attn. Rollout [2] 0.6247 ±0.0031 0.355 ±0.0300
Gaze Den. Map v/s Adapt. Rel [25] 0.6444 ±0.0049 0.456 ±0.0215
Gaze Den. Map v/s SAW (ours) 0.6682 ±0.0040 0.477 ±0.0228

Table 5.1: Comparison of the metric scores for various baseline methods and to our Self-Attention
Weighted Method
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The scores in Table 5.1 give the quantitative evaluation of the importance/saliency

maps explaining transformer decisions compared to the corresponding gaze fixation

density maps which are used as ground truth. Upon comparing our method SAW

with respect to the baseline methods available in the literature, we note that SAW

has the highest similarity of 67% as well as the PCC score of 48% with the gaze

fixation density maps.

5.4 Conclusion

In this chapter, we have proposed a novel method Self-Attention Weighted Method

(SAW), to interpret the decisions by visual transformer networks. This method is

class-specific and model-agnostic. It is solely dependent on self-attention for the

interpretations of visual transformer decisions. The proposed method has an im-

proved similarity of 2.5% and 2% of PCC improvement with gaze fixation density

maps, compared to the previous state-of-the-art methods. This method is closest to

human visual attention, thus showing that self-attention in visual transformers can

be used for the explanation of their decisions. In the next chapter, we have extended

the method SAW to spatio-temporal models for the improvement in the training

methodology
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Chapter 6
Training using Interpretable Deep Learning

Methods of Explainable AI (XAI) are popular for understanding the features and

decisions of neural networks. On the other hand, transformers used for single modal-

ities such as videos, texts, or signals as well as multi-modal data can be considered

as a state-of-the-art model for various tasks such as classification, detection, seg-

mentation, etc. They generalize better than conventional CNNs as presented in the

previous chapters. The use of feature selection methods while training using inter-

pretability techniques can be exciting to train the transformer models. Thus, in this

chapter we propose the use of an interpretability method based on attention gradients

to highlight important attention weights along the training iterations. This guides

the transformer parameters to evolve in the more optimal direction and thus gen-

eralize better. This work considers a multimodal transformer on multimodal data:

video and signals from sensors. First studied in the video part of our multimodal
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data, this strategy is applied to the sensor data in our multimodal transformer ar-

chitecture before fusion. We show that the late fusion via a combined loss from

both modalities outperforms single-modality results. The target application of this

approach is Multimedia in Health for the detection of risk situations of lonely per-

sons i.e. frail adults in the @home environment from the wearable video and sensor

data (BIRDS dataset). We also benchmark our approach on the publicly available

single-video Kinetics-400 dataset to assess the performance, which is indeed better

than the state-of-the-art.

The increasing number of parameters in deep models is very evident with the

increasing amount of data. With the advent of transformers and parameters ranging

from millions to billions, a larger amount of data is needed to generalize. This

also explains the fact that the interpretability is lower in these kinds of models

due to the higher complexity, which in itself is an inherent challenge. Now, the

idea is to see whether these interpretability methods help in getting better models.

Various explanations are available for vision as well as language models for a better

understanding of the models as presented in Chapter 2. Before transformer-based

models CNNs dominated the literature for vision, thus a number of explanation and

interpretable models were proposed [111, 151, 148, 75].

In this chapter, we are using BIRDS encompassing two modalities, a) an egocentric

video modality and b) a combination of physiological and motion sensors. The target

application as presented in Chapter 3 is the detection of risk events amongst old and
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frail individuals.

Most of the literature focuses on interpreting the models and using them in a

human-understandable manner as is well presented in Chapter 2. In this chapter,

the intuition is to focus on the parts of attention that are relevant to the particular

class/label, thus we are weighing the gradient of attention to the attention during the

training time. Our video models are based on the fine-tuning of models trained on a

larger dataset. During the fine-tuning procedure, our model employs two loss terms,

the first one is to compute the classification accuracy, and the second one encourages

more focus on the relevant attention weights. To better understand the risk events, an

additional modality comprising signals from sensors is added to the visual modality.

To the best of our knowledge, this is a novel work using interpretability to train a

multimodal network.

In this chapter, the contributions are as follows.

• We propose a gradient-based interpretable method that can be used at training

time to improve classification scores at the generalization step in both video and

signal transformers;

• We are using a multimodal architecture, compounding sensor data (signals)

to the visual data (videos) for a better understanding of the context in the

application of recognition of risks.

The chapter is organized as follows. In Section 6.1 we present our interpretability

technique applicable to both video and signal data and the multimodal architecture

that we propose for the recognition of risk events from wearable video and signal
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data. In Section 6.2, we present the descriptions of datasets, training using a single

modality and multiple modalities, multimodal data organization, etc. For the final

Section 6.3, we have the conclusion and discuss our future works.

6.1 Methodology

Our objective is to identify attention weights in a transformer responsible for classify-

ing the data point to a particular class, therefore, added supervision is provided. This

added supervision is based on an interpretable method which in itself is a gradient-

based method. To cater to the application of recognizing risk events, we apply the

same methodology on the video transformer and on the sensor signal transformer.

6.1.1 Training Transformers with Interpretable Methods

The interpretable method for a ViT was proposed in [87]. It uses the gradient

of attention. We are similarly using the same gradient of attention to train our

video transformer. Our video transformer is based on the Swin-3D model [82]. The

intuition to use the gradient of attention is to direct the computation of the attention

weights toward the obtained class score as the gradient of attention is computed with

respect to the class score.

A vanilla image transformer (ViT) uses the decomposition of the input image into

rectangular patches and considers each patch as a vector [36]. The Query (Q),

Key(K), and Value (V ) matrices are an embedding in the R(P 2×d) space where (P, P )

is the patch size and d is the dimension for the linear projection of patches-vectors

112



6.1. METHODOLOGY

into the representation space. Recall that self-attention is computed as the inner

product of the Query and the Key as given in Equation 6.1. The final attention is

given in Equation 6.2

A = Q.KT (6.1)

Thus, the attention as proposed in [128].

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V (6.2)

If we now consider temporal data such as a bunch of video frames or a bunch of

sequential signal recordings, then the computation of attention can be performed as

in the Video Swin Transformer [82]. The reason to use the Swin Transformer is due

to the lower computational complexity compared to [36]. In [36], the computational

complexity is quadratic with respect to the dimension of the input image while the

computational complexity for the [81] is linear with respect to the input image.

They consider blocks of video frames as a 3D structure with time as the 3rd axis.

Instead of taking patches in images, a 3D block is taken in the video as a data

point. Each of these data points is embedded to Q, K, and V with the dimension of

(MP 2 × d) where M is the number of temporal windows. It is given by introducing

a 3D relative position bias and shifted windows. The 3D relative position bias B

gives the geometric relationship between the visual tokens that encodes the relative

configurations in the spatial or temporal dimension, that is, encoding the distance

between the two tokens. The distance between [−M + 1,M − 1] for the temporal
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axis and [−P +1, P −1] for the spatial axis, i.e., height and width. The attention for

the swin-transformer [81] is given in the Equation 6.3 with Q,K, V ∈ R(MP 2×d) and

B ∈ RM2×P 2×P 2
. The input video clip, which is our token, is a tensor of T ×H ×W

dimension. We divide it into ⌈ T
M
⌉, ⌈H

P
⌉, ⌈W

P
⌉ non-overlapping windows with a window

size of M × P × P to get our data points.

Attention(Q,K, V ) = SoftMax
(QKT

√
d

+B
)
V (6.3)

For our work, we are using interpretable methods to train models in an optimal

direction. The core idea of using the gradient of attention ∇A helps in the under-

standing of change in the attention weights w.r.t classes. Thus, we are multiplying

the attention weights An at each nth epoch with the gradient of attention w.r.t. the

class as given in Equation 6.4, ∇Ac
n−1 is the gradient of attention w.r.t class c and

An ∈ RMP 2×MP 2
.

Aninterpret
= An · ∇Ac

n−1 (6.4)

We use this to compute the loss for interpretability, as given in Equation 6.5,

the objective is to use the interpretable features which highlight the important fea-

tures from the attention weights and reduce the cost function between the weighted

attention weights and the obtained attention weights:

Linterpret = CrossEntropy(An, Aninterpret
) (6.5)
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The final loss of the training algorithm is given by the weighted sum of the classi-

fication loss Lclass and the interpretability loss Linterpret. The final loss function is in

Equation 6.6 where α and β are hyperparameters with β + α = 1 and α ≥ 0, β ≥ 0.

Ltotal = αLclass + βLinterpret (6.6)

Ltotal = αLclass + (1− α) ∗ [−
∑

Aninterpret
log(An)] (6.7)

The algorithm is given in Algorithm 2. Training schemes for single modalities

(video and signal) are illustrated in Figures 6.1 and 6.3, respectively.

Algorithm 2 Training Algorithm for the Transformer model

if epoch is 0 then
An,model0 ← train (modelpt) ▷ modelpt is the pre-trained model
∇Ac

0 ← evaluate (model0) (where c ∈ 1, ...C)
else if 1 ≤ epoch ≤ N then (where epoch ∈ 1, ...N)

if c == Label : then
An, index,modeln ← train (modeln−1,∇Ac

n−1)
∇Ac

n ← evaluate (modeln)
L = αLclass + βLinterpret

argmin
θ
L ← argmin

θ
[αLclass + βLinterpret]

else if c ̸= Label then
An, index,modeln ← train (modeln−1)

end if
end if

6.1.2 Multimodal Architecture

Our multimodal architecture is designed with two streams: a) the video stream

which uses Swin-3D [82] architecture, and b) the sensor transformer which uses a

LinFormer [113] as the architecture to generalize on the sensor signal data. We have
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Figure 6.1: The training scheme for the video modality, using the gradient of the attention for
additional supervision. A denotes the attention and ∇A denotes the gradient of attention. Lclass

is the classification loss, Linterpret interpretation loss.

used a late fusion technique via a combined loss on signal and video modalities.

Thus, optimization for the combination of the losses is given by:

argmin
θv ,θs

[
λvE(xv ,yv)∼V [L(θv, xv, yv)] +

λsE(xs,ys∼S) [L(θs, xs, ys)]
] (6.8)

The λv and λs are hyperparameters to weight the loss functions (λs + λv = 1

where λv ≥ 0, λs ≥ 0). The pair (xv, yv) belongs to the distribution V which is for

the video data, where xv is the input, yv is the ground-truth labels. Similarly, (xs, ys)

is the input and ground-truth label pair of the distribution S, that is, for the sensor

signal data.

The combination of the two different modalities is illustrated in Figure 6.2.
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Figure 6.2: The combination of the two modalities and training using the combined loss as given
in 6.8.

6.2 Experiments and Results

In this section, we will describe the experiments conducted. We first describe the

datasets used and the organization of the data.

6.2.1 Datasets Description

The datasets used are the Kinetics-400 [21] and BIRDS. Kinetics-400 is used for

benchmarking on videos as in Chapter 4.
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6.2.1.1 Kinetics Dataset

Video (Visual Information) is the most important component in the detection of

semantic events. Therefore, we first report on our experiments with only a video

transformer and introduce the dataset used.

Kinetics-400 [21] is the dataset for human action classification. The videos are

taken from YouTube with real-world scenarios and are about 10 seconds long. The

dataset contains around 306,000 videos, about 240,000 videos constitute a training

set, 20,000 are selected for validation, and 40,000 for the test. It comprises 400 classes

of actions. For our experiments, we have sampled video clips of temporal dimension

T = 8 from the original videos reduced by temporal sampling as in [21]. Thus, each

video clip is a tensor in RGB−T space with dimensions (ζ×T×H×W ). Here ζ = 3

is the number of color channels, T = 8 is the temporal length, and H = W = 224 is

the spatial dimension of the cropped video frames.

6.2.1.2 Multimodal Dataset

For this work, we used the multimodal risk detection dataset named BIRDS (Bio-

Immersive Risks Detection System) 1.

A taxonomy of five classes has been defined [143] on immediate and long-term risks

as well as presented in Chapter 3. The dataset and the definition of the taxonomy

are well presented in Chapter 3, 4. The data distribution and the organization of

the dataset is presented below.

This gave a total number of clips as 9600 for all classes of the taxonomy. The

1BIRDS will be publicly available upon GDPR clearance
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training, validation, and test contain 6713, 923, and 1924 clips, respectively.

6.2.2 Multimodal Data Organization

The multimodal data are organized in the following way: Videos are split into tempo-

ral clips of duration τ . Note that this parameter depends on the video frame rate and

has to be set experimentally. In our case, we propose τ = 8 for our wearable video

setting and variable frame rate in the BIRDS corpus, as well as for the Kinetics-400

dataset, optimized due to the sparse grid search with respect to the global accuracy

objective. These clips are sampled with a sliding window approach with a covering

of ∆τ frames. We have set this parameter ∆τ = 4 frames on BIRDS and ∆τ = 5 on

Kinetics-400 datasets, respectively.

The signals and videos are referenced using timestamps. Similarly, we take the cor-

responding windows from the signals using the timestamp of the videos. Using this

timestamp, the corresponding signals are taken into account, where a fixed length

window of σ = 20 with a sliding stride of ∆σ = 4 samples. The organization of

signal data is illustrated in Figure 6.3. The temporal windows of σ samples taken

from the group of s sensors represent a tensor of dimension σ×s. Note that the time

intervals between different samples are not stable because of the sensors’ imprecision.

If there is imprecision on the labels of these windows in the sensors, then we take

the statistical mode of the labels in the particular window.
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6.2.3 Training of 3D-Swin with Interpretability Techniques on Video

6.2.3.1 Kinetics-400

To train on the Kinetics-400 dataset, we are using the pre-trained weights on the

ImageNet-1K dataset for the 3D-Swin transformer. For the Kinetics-400 dataset, in

our experiments, we are using the 8-frame clip with a resolution of 224 × 224. Our

method outperforms all the baseline methods; see Table 6.1. In [87], the authors

use the class-specific form of interpretation by elementwise multiplying the gradient

of attention along with the attention. In our transformer, we use the gradient of

attention, see Section 6.1, to weight the importance of attention with respect to the

ground truth labels for videos.

Algorithms Top-1 Accuracy Pre-Train

3D-ConvNet [124] 56.1% ✓
I3D [21] 71.1% ✓

I3D NL [132] 77.7% ✓
X3D-M [43] 76.0% ✓

TimesFormer [16] 75.1% ✓
Video Swin Transformer [82] 78.8% ✓

Video Swin T-In (VS-T-In, ours) 79.1% ✓

Table 6.1: Test accuracy scores (top-1 accuracy) on the Kinetics-400 Dataset

6.2.3.2 BIRDS Dataset

For training on the BIRDS dataset, we are using the pre-trained model on the

Kinetics-400 and fine-tuning our training scheme with these pre-trained weights.

Our training scheme generalizes better than the state-of-the-art on the video part

of BIRDS corpus. The improvement in the average top-1 accuracy compared to the

120



6.2. EXPERIMENTS AND RESULTS

vanilla training scheme (without additional supervision) of the Video Swin Trans-

former [82] is ∼ 2.98% as depicted in the last column of Table 6.2 validating our

proposed method of additional supervision. 3D-BotNet in the second column of the

Table 6.2 is a model for videos adapted from [114] which was devised for images.

The nature of the videos for the BIRDS is different from Kinetics-400 as BIRDS are

ego-centric videos.

Algorithms Top-1 Acc. Pre-Train

3D-ConvNet [124] 69.27% ✓
3D-BotNet 70.61% ✓

TimesFormer [16] 74.11% ✓
Video Swin Transformer (Swin-T) [82] 73.39% ✓
Video Transformer (with pooling)[88] 75.19% ✓
Video Swin T-In (VS-T-In, ours) 76.37% ✓

Table 6.2: Test accuracy scores (top-1) on the BIRDS dataset for the video modality.

As illustrated in Figure 6.4, the per-class accuracy for the video modality (orange

bars) and video modality with interpretability (violet bars) differs. In four classes

out of six, the accuracy of the transformer with supervision using interpretability is

higher. In two classes: Environmental Risk of Fall and Dehydration (which means

detection of drinking action), the baseline Video Swin Transformer performs better.

We can explain this by the discrepancy of the data in these two classes corresponding

to a very different viewpoint on the environment (class 2) and on the difference

of close views (bottles, mugs, and glasses). However, the overall accuracy with

the additional supervision by the attention gradient is higher ∼ 3% (average top-1

accuracy improvement).
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Figure 6.3: The training scheme for generalization in the signal part in the multimodal transformer.

6.2.4 Training of Signal Transformer

The training scheme of the signal transformer is similar to that of the video trans-

former. The challenge with signal data is non-recording of approximately 95% of the

data across various features due to various failures. The data is imputed by replacing

the missing values with random values sampled from the normal distribution com-

puted on the particular signal (feature) then the data are linearly scaled along that

particular signal. In signal transformers, additional supervision using interpretation

gives an improvement of ∼ 4.7%. We are not pre-training the signal transformer due

to the unavailability of similar datasets which would comprise both physiological and

motion sensors. The training scheme is presented in Figure 6.3 and the comparative

results are given in Table 6.3.

6.2.5 Multimodal Transformer with Interpretability Results

The accuracy score using the multimodal approach i.e., using the videos and signals

together, is 78.26% in this BIRDS dataset which is an improvement of ∼ 1.9% while
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Algorithms Top-1 Acc Pre-Train

Vanilla Transformer[128] 32.68 ×
Vanilla Transformer-In(ours) 34.07 ×

LinFormer[113] 35.55 ×
LinFormer-In (ours) 40.26 ×

Table 6.3: Test accuracy (top-1 accuracy) on the signal sensor data with balanced BIRDS dataset.

using the singular video modality of the network. The overall accuracy score using

both modalities together without interpretability assisted additional supervision

is 76.51%. The improvement of ∼ 1.8% of our method also validates our training

scheme. Figure 6.5 shows the accuracy scores of various architecture models on single

sensor modality, single video modality, and combined video and signal modalities. It

illustrates the better performance of multimodal models and shows that our model

with interpretability is the best (∼ 1.8%)

6.2.6 About Ablation

The ablation in a multimodal architecture means the use of only one modality, such

as video or signals in our case. We have implicitly done this in the previous section

when we were talking about training videos and signal transformers. Therefore, here

we briefly discuss and compare these results in a single modality and multimodal

setting.

6.2.7 Training Specifications

For the video transformers, all models use 224 resolution frames, with a patch size

of 16×16 for transformers. For all the video transformers, we have used tiny models
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Figure 6.4: Precision scores for each class: 1-No Risk, 2-Environmental Risk of Fall, 3-Physiological
Risk of Fall, 4-Risk of Domestic Accident, 5-Risk Associated with Dehydration, 6-Risk Associated
with Medication Intake

for the fine-tuning, due to resource constraints. Pre-trained weights are taken from

[135]. For the training, we have used a single Tesla A40 GPU. For the BIRDS dataset,

the fine-tuning process is for a period of 25 epochs with a batch size of 16. A grid

search is used to obtain the learning rate between 1e-3 and 1e-5. Small changes in

learning rate do not have a strong impact on the model’s classification accuracy. For

our approach, we have used an SGD optimizer with Nesterov momentum and weight

decay. To weigh the loss function of various modalities, the weighting constants are

also obtained using a grid search approach; see Section 6.1. The value of α = 0.7,

β = 0.65 and λ = 0.8 for our experiments.
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Figure 6.5: Top-1 accuracy scores. In Green: signal modality only. In blue: video modality only.
In red: video and sensor modalities together. For BIRDS corpus

6.3 Conclusion

The key element of our work is a scheme to use additional interpretability-based

supervision which improves the overall accuracy of any self-attention-based network.

To validate our approach, we took a multimodal dataset comprising videos and sig-

nals from different sensors. First, our approach was validated on a single modality

data i.e., video or signals. Our approach gives a tangible improvement in every

single modality tested. In signals, it outperforms the best baseline of ∼ 4.8%, in

video ∼ 1.2%. In the video modality of BIRDS, the proposed method outperforms
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the vanilla version of the Video Swin Transformer by ∼ 3%. For the publicly avail-

able Kinetics-400 dataset, we also achieved better results on video than the best-

performing baseline Video Swin Transformer. Computing multimodal architecture

on the multimodal BIRDS corpus, we achieved 1.8% top-1 accuracy improvement us-

ing interpretation-supervised training. Therefore, we can conclude, that our proposed

interpretability technique for training of transformers helps in both single-modality

and multimodal model training.

In the next chapter, we focus on the initialization and domain adaptability using

interpretable methods.
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Chapter 7
Domain Adaptation Using Interpretability

Pre-trained models and transfer learning have played an important role in computer

vision and natural language modeling tasks [102, 52]. Therefore, such kind of tech-

niques are naturally transferable to multimodal/multimedia data. Recent models,

such as transformers, require a large amount of data for training, as transformer

models lack inductive bias. Models such as Vision Transformer (ViT) [36], [103] and

BERT [35] show quite an improvement while pre-training them on publicly avail-

able datasets, e.g. ImageNet [34]. Pre-training the network and fine-tuning the last

layers, preserving the learned features, provides impressive results on downstream

tasks. This preserves the information of the prior task while adapting to that of the

new tasks.

In the present chapter, we tackle multimodal data, consisting of time-series in

the form of signals from and short sequences of egocentric videos from the BIRDS

project. We work in a real-world scenario where data recording is challenging. To
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efficiently train the proposed models, an adequate transfer learning design is there-

fore needed. The hypothesis in our work consists in assuming a large domain gap

between the source and the target data distributions. The hypothesis originates from

the fact that the classification tasks have to be performed on a totally new dataset.

The analogous datasets on which the model could have been pre-trained by a con-

ventional fine-tuning approach do not exist. Nevertheless, datasets with a piece of

partial information are available. Hence, a domain adaptation is needed.

The differences in the complex multi-modal dataset we have and, available datasets

are twofold: i) the data classification tasks are not the same, that is the target tax-

onomies are different, and ii) the dimension and the nature of the data also differ.

We tackle transfer learning from partial datasets to our multimodal dataset with

a particular taxonomy of clases for risk detection problem.We have presented the

protocol for recording such datasets in a “one-person scenario” and the taxonomy of

risk situations to detect in [89] as well as in Chapter 3, Section 3.3. In the present

chapter, we propose an efficient transfer learning scheme from partial datasets on

multimodal data. Its main components are:

• data dimension adaptation;

• use of interpretable techniques for reinforcement of features in the source domain

for better initialization and efficient transfer.

The remainder of the chapter is organized as follows. In Section 7.1, we describe

the architecture of our hybrid transformer model for the multimodal data that we
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have. Section 7.2 is specifically devoted to our strategy of model training with trans-

fer learning. The results and a discussion are presented in Section 7.3. Conclustion

is given in section Section 7.4.

Pre-Training: Transfer learning is one of the key methods for learning pre-

trained weights, with the idea of fine-tuning the layers to adapt to the target distri-

bution. Regularization is one of the methods proposed to preserve the information

during the pre-training [65]. Regularizing the network by freezing some layers, that

is, using parameters trained in the source domain as proposed by Goodfellow and

Bengio [47], reduces overfitting during the fine-tuning process. Language processing

and image understanding models have shown to be effective when pre-trained on

large source domain datasets and then fine-tuned on smaller datasets in the orig-

inal form or using network surgery [98]. For instance, large language transformer

networks such as BERT [35] and GPT-3 [19] with billions of parameters have well

exploited the use of large datasets to pre-train the model to obtain stronger perfor-

mances with downstream tasks on smaller models with surgery[98]. For the image

domain, large datasets such as ImageNet21K [107], JFT-300M [118], and JFT-3B

have played a pivotal role in the training of large vision models. Kolesnikov et al.[64]

used Deep Residual Networks (ResNets) to understand the difference in scaling with

pre-trained models on the ImageNet-1K, ImageNet-21K, and JFT-300M. Indeed, as

various research has shown [46], for the target domain, a stabilized vs. random

initialization is more efficient in terms of attained accuracy.

The majority of transfer learning schemes operate in an inter-domain manner.
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This means that CNNs or Transformers (ViT) are pre-trained on a large open publicly

available dataset. Then the transfer is performed into the target domain even if the

target domain data does not have the same characteristics, e.g. pre-training on LeNet

and transfer with fine-tuning to medical image classification tasks [1]. However, the

authors of [1] show that intra-domain transfer is more efficient in terms of accuracy.

Intra-Domain means that the data have been collected from similar distributions, e.g.

transfer between different image modalities, such as in [1]. Furthermore, in [12], the

authors propose a self-supervised pre-training for fine-tuning in downstream tasks

such as classification, segmentation, etc. The authors in [12] propose that each image

is divided into patches and visual tokens, where some of the patches are corrupted

using masks. Pre-training predicts the visual token of the original image based on

the encoding vector of the corrupted image. The pre-training parameters are first

initialized randomly, and then for a given layer, the output matrices of self-attention

and feed-forward network are re-scaled.

While it is tedious to find a large amount of data from the same domain to

perform the intra-domain transfer, the usage of data from similar, close domains can

be possible due to the existence of open corpora. Hence, inter-domain transfer from

close domains seems to us a good way to proceed. Nevertheless, the pre-trained

model has to be of sufficient quality and stability in order to initialize the target

domain model.

Thus, in our approach, we seek two goals:

• close-domain transfer;
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• stabilization of the source domain model.

Recently, interpretability techniques have been shown to be efficient in explaining

the decisions of deep neural networks. They highlight input data that influence the

most decision/classification output [6]. Therefore, it is seducing to use them, in the

manner of self-attention models in Neural Networks for filtering out weakly relevant

input data in training. Thus, the source model can be stabilized for efficient transfer

to the target one. As the goal is to increase the success rate in the target domain,

such a stabilization transfer strategy can be designed for a better initialization of the

target domain model. This is the core of our approach. Therefore, an appropriate

interpretability technique must be chosen to be included in the global process. In

the follow-up of this section, we review such techniques and justify our choice.

Interpretability Techniques: These methods for interpretation of decisions of

CNNs and transformers have been largely presented in the chapter 2. In the previous

chapter 5 we have introduced our interpretability technique for a vision transformer.

We will apply it for efficient training in the target domain in this chapter.

In the follow-up sections, we explain our method in detail, starting from the

overview of a hybrid architecture for the classification of multimodal data we have

designed.

7.1 Hybrid-Model Architecture

We design our transfer learning technique for the hybrid model architecture we have

introduced in chapter 3. We will shortly remind it here.
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The proposed hybrid transformer comprises two branches; see Figure 7.1. The

first branch is a Vision Transformer(ViT) that we have developed for the mining of

video data. The second branch is the Signal Transformer (ST). It encodes the sensor

signals. According to our previous studies, see chapter 3 video data analysis in a

hybrid architecture allows for obtaining quite high accuracies, and signal data can

be considered as complementary data, increasing the accuracy via the fusion mecha-

nism. Therefore, in our architecture, we have focused on the design of ViT. For the

video data, we use the factorized form of the spatio-temporal attention model that

we developed in Chapter 4 on the basis of [16]. We illustrate it in the Figure 7.3 on

the frames of an excerpt of the video part of the dataset BIRDS.

The architecture of the signal transformer uses the transformer encoder from [128].

It comprises both the encoder and the decoder modules.

7.2 Model Training

7.2.1 Domain Transfer with Data Dimension Adaptation

The use of pre-trained models on physiological signals is rare in the literature. One

cannot find a dataset that contains exactly the same type and quantity of sensor

signals as required for the classification problem in the target domain. It is possible

to find a dataset with only dynamic signals, such as tri-axial angular velocity and

accelerations, e.g. a popular UCI-HAR [4] dataset. Therefore, a direct transfer

between the model trained on the source domain dataset for the initialization of the
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Figure 7.1: The overall scheme constituting both the modalities i.e. for the signals and the videos

target domain model would not be possible. This would result in a huge distribution

shift as a new form of features is introduced after the pre-training. The challenge

here is to adapt the features of the source domain to the target domain. Hence, we

need to embed the source data to achieve the dimension of the target domain data.

The second question to address is the difference in class taxonomies in the source
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Figure 7.2: The video transformer training scheme. ∇A denotes the attention gradient in the
trained transformer on the source domain (ImageNet1K), while A denotes the attention prior to
initializing the model trained on the target domain

and target domains. Due to this difference, the shapes of the loss functions will

differ, which makes the initialization of an optimizer tricky.

When transferring from the video source domain to the video target domain, the

question of dimension adaptation is not raised, as the nature and dimension of source-

domain and target-domain data are the same. For the second point, the difference

in taxonomies, the problem remains the same, be it a video, a signal, or a hybrid

scheme.

For the dimension adaptation of source and target domain data in the signal

transformer, we propose a linear transformation to embed and match the features to

the target domain.

The domain transfer approach with adaptation to the dimensions of the data is

illustrated in Figure 7.4.
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Figure 7.3: For a video clip of 8 frames, A) Actual Frames, B) Attention on the frames, C) Gradient
of Attention, D) a Combination of Gradient of Attention and Attention as given in Equation (7.3)
and E) a Combination of Gradient of Attention and Attention as given in Equation (7.4) that
use SoftMax for the normalization when the gradient is added to 1 matrix. The attention and
gradient of the attention are computed using the pre-trained weights on the source domain (i.e.
ImageNet1K)

The first three blocks perform source domain data encoding and adaptation. The

first block in Figure 7.4 is the linear projection of the features. Let us consider our

source domain data sample Xs ∈ RSs×Ts with Ss the number of sensors and Ts the

length of the temporal window. The dimension of the data in our target domain is

St×Tt with St - the number of target domain sensors and Tt the length of the target

temporal window. Thus, the method to adapt the dimension of the source data to

the target model is as follows:
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Figure 7.4: The signal transformer training scheme. UCI-HAR dataset has 9 input features while
BIRDS has 16 input features, thus a Linear Layer is used as a projection and then trained on
Transformer Encoder Layer (Transformer Encoder(S)). For the target domain (Transformer Encoder
(T)), the BIRDS are used as the input dataset.

• We perform linear projection of our source input space RSs×Ns to the target

space RSt×Tt using flattened version U′
s of our input data U′

s ∈ RSs×Ts . This

projection is realized accordingly to Equation (7.1).

U′
I = Wst ×U′

s +B (7.1)

Here, Wst is the projection weight matrix, Wst ∈ R(St∗Tt)×(Ss∗Ts), B ∈ RSt∗Tt is

the bias vector. Thus, we obtain the vector U′
I ∈ R(St∗Tt)

• The vector U′
I is unflattened and becomes our input data sample UI ∈ R(St×Tt)
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to train the transformer of the source domain.

Training in the source domain is carried out as schematized by the block Trans-

former Encoder (S) in Figure 7.4. Thus, we obtain the trained weights Ms for all

layers of the transformer. They are then used for the initialization of the model,

depicted as Transformer Encoder (T) in Figure 7.4, which is the transformer for our

target domain. The weight initialization is realized as given in Equation (7.2).

M0
t = Ms (7.2)

Here, M0
t is the entire set of initial weights of the target transformer.

Training of the source domain is done end-to-end, where we have the linear layer

for the projection of the input dimension to a different feature dimension i.e. the

target input dimension. The target domain model has exactly the same transformer

architecture as the source domain to facilitate fine-tuning on the target domain.

Since to adapt the weights to the target domain, we perform network surgery

and delete the linear layer as shown above the dotted lines in Figure 7.4 (left side)

and use the weights of the transformer layer of the source domain to initialize the

transformer of the target domain.

7.2.2 Transfer with Interpretability Techniques

Interpretability techniques highlight the features responsible for a particular decision.

Our intuition in this work is to use the weights that are used to learn these important

features as an initialization for the target domain. In transformers, the basic building
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block is self-attention, and the interpretability for transformers in Chapter 5 provides

us with a better understanding of the attention weights in the network. Thus, we

are using interpretability to focus on the important transformer weights learned in a

source domain.

For the video transformer, we are using interpretability techniques, as we have

proposed in Chapter 5. We are fusing the gradient of attention with attention.

The training scheme is illustrated in Figure 7.2. In Figure 7.3, some examples of

video frames, their attention maps, and their gradient maps based on the pre-trained

model in the source domain are given. The interpretability technique was used only

in the spatial domain in this example. The attention of the source domain As is

computed using the inner product of keys and queries from the model trained on

the source domain, in the same way as in Equation (6.1) from Chapter 6. To obtain

the gradient of attention ∇As for the source domain, examples from all classes of

the source domain are taken and pushed through the transformer, and gradients of

attention for all the examples are then averaged.

The first way to fuse the attention gradient with the attention in the transformer

is to element-wise multiply the attention by its gradient as we did in Chapter 5, 6;

see Equation (7.3).

A0
t = As ⊙∇As (7.3)

Here ⊙ denotes the element-wise multiplication. Strengthening the attention by

multiplication with the gradient would enforce the changes, but the multiplication

operator has the absorption property. Therefore, another way to do it consists of
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keeping the attention in low-gradient areas and reinforcing it when the gradient is

strong. This is waht we propose now. Equation (7.4) expresses this approach with

1, a matrix composed of 1’s.

A0
t = As ⊙ SoftMax(1+∇As) (7.4)

In Equation (7.3) and Equation (7.4), As denotes the initial attention obtained

from the pre-trained model whereas the ∇As denotes the gradient of the attention

for the pre-trained model, A0
t denotes initial attention of the target model i.e the

model that will be fine-tuned. Exactly the same approach is applied to the Signal

Transformer. The experiments and results are reported in Section 7.3 for signal and

video transformers.

7.2.3 Datasets for source and target domains

The datasets used as source domains are:

• ImageNet1K [34] for video data.

• UCIHAR [4] for signal data. It required dimension adaptation proposed in

section 7.2.1

The datasets used for the target domains:

• Kinetics-400 [21] and video data of BIRDS.

• The signal data for the target domain is the signal BIRDS.
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For the hybrid data, BIRDS dataset was used. Data organisation with temporal

windowing has been already presented in 6.

7.3 Experiments and Results

7.3.1 Experiments on Video Modality Transformers

The experiments for the video transformers we proposed have been initially con-

ducted on the open-source dataset, Kinetics-400, see Section 6.2.1.1, for the sake of

comparison with State-of-the-Art models. The network used the pre-trained weights

on the ImageNet1k dataset trained on ViT [36]. The results are presented in terms

of top1 accuracy in Table 7.1. Here, our models are in bold. G depicts the model

with attention computed according to the multiplication by its gradient, Equation

(7.3) and SG depicts the usage of the model from Equation (7.4).

Algorithms Top-1 Accuracy Pre-Train

3D-ConvNet [124] 56.1% ✓

I3D [21] 71.1% ✓

I3D NL [132] 77.7% ✓

X3D-M [43] 76.0% ✓

TimesFormer [16] 75.1% ✓

Video Swin Transformer (Swin-T) [82] 78.8% ✓

Video Transformer (with pooling)[88] 78.3% ✓

Video Transformer ([G]) Eq: 7.3 77.24% ✓

Video Transformer ([SG]) Eq: 7.4 77.31% ✓

Table 7.1: Test accuracy scores (top-1) on the Kinetics Dataset [21]

Generally, our results on Kinetics-400 are similar to the SOTA. 7.1. We note
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that the video Swin Transformer [82] slightly outperforms all models. It gives ap-

proximately 1% better accuracy compared to our models. This can be due to the

hierarchical embedding of the input image proposed in [81]. Our model with inter-

pretability techniques gives an increase of accuracy compared to our baseline Times-

Former [16] by 2.1% using Equation (7.3) and 2.2% increment using Equation (7.4).

We also note that the model of Equation (7.4) slightly outperforms, by 0.7%, the

model of Equation (7.3). Thus, we use it in our further experiments.

7.3.2 Experiments on Signal Modality Transformers

To conduct the baseline experiments for the signal modality transformer, we have

used an open-source dataset, UCI-HAR [4], see Chapter 6. The same dataset was

used then for training the source model. The total number of training instances is

7352, while the test instances are 2947. The evaluation scores are computed for the

test set. The accuracy of our model from Equation (7.3) is 91.26% on the UCI-HAR

dataset. With the model from Equation (7.4) we obtain very similar but better

scores: 91.48%. Compared to the baseline without the gradient of attention (90.6%

of accuracy), we state that for the signal transformer, the use of interpretability

techniques allows for better scores.

7.3.3 Experiments on Multimodal Data with the Hybrid Transformer

For multi-modality, we use the video data and signals that are weakly synchronized

in the BIRDS dataset; see Section 6.2.1.2. A complete synchronization is described

in [89]. The data is synchronized using the nearest time stamp of the recording for
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the two different modalities. From each stream, we obtain the features as illustrated

in Figure 7.1. These features are fused by concatenation to form a shared represen-

tation. They are then normalized before they are submitted to the classifier. The

two branches of the hybrid transformer are both initialized by the weights trained for

the same architecture in the source domain. For the video transformer as a source

domain, we use ImageNet1K putting the duration of video clip T = 1 (see section

7.2). For the signal transformer as a source domain, we take the UCI-HAR dataset

and perform dimension adaptation for training as described in Section 7.2.1. For the

layers that ingest fused features, see the illustration in Figure 7.1, the weights are

initialized randomly with a flat Gaussian distribution.

The accuracy for this two-stream architecture with domain adaptation and inter-

pretability technique in both video and signal transformers is 73.61%.

The baseline of the hybrid transformer consists in training the target domain

model without any sort of pre-training and without attention models. In this case,

the accuracy score is 54.39%.

7.3.4 Ablation Studies

As ablation studies, we understand performing the same classification task on only

one modality: signals from sensors or video. As monitoring frail people for privacy

reasons is preferred by gerontologists without video data, we first report on the

results obtained with a Signal transformer only.

142



7.3. EXPERIMENTS AND RESULTS

7.3.4.1 BIRDS Sensors

For sensor data, we first trained the dataset using the Transformer Encoder Layer[128]

without any pre-training, which gives us the top-1 accuracy of 34.41%, see the first

line of Table 7.2. Further, we are pre-training it with the UCI-HAR dataset [4]

and dimension adaptation, according to our method see section 7.2.1. Here, the

source domain (UCI-HAR) dimension is of 9 sensors and the target domain dimen-

sion (BIRDS) has 16 sensors. The use of the gradient of attention according to the

model from Equation (7.3) (Transformer[G] in the table) is slightly lower (37.29%)

than with the model from Equation (7.4) (Transfromer [SG] in the table). Finally,

without using the gradient of attention at all, only with dimension adaptation, we

obtain the highest accuracy of 40.87%. Despite interpretability techniques that have

shown their performance on a “clean” dataset UCI-HAR, in the case of the BIRDS

dataset quite a lot of signal values are missing and are imputed as in [89]. Therefore,

in a real-world scenario, the nature of the data has an impact on the performance.

Algorithms Top-1 Accuracy Pre-Train

Transformer from scratch [128] 34.41% ×
Transformer[G] 37.29% ✓

Transformer[SG] 37.52% ✓

Transformer (Dimen. Adapt) 40.87% ✓

Table 7.2: Test accuracy scores (top-1) on the BIRDS dataset for the sensor modality.
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7.3.4.2 BIRDS Video Data

Table 7.3 shows the accuracy scores for the BIRDS video data recorded by one

subject, as presented in Section 6.2.1.2. The video model was trained - without pre-

training and with pretraining on ImageNet1K datasets as for hybrid transformer.

The first conclusion is obvious - the pre-training with transfer from ImageNet1K

gives an accuracy increase for all models. To compare our proposed interpretabil-

ity techniques with the SOTA we used TimesFormer. From our experiments, we

conclude that the models of Equation (7.4) and of Equation (7.3) yield very similar

results(75.32% compared to 75.55%). We also notice that these results are very close

to the results from our previous work with Pooling Transformer [88], where the pool-

ing was performed accordingly to the importance of video frames. Hence adding the

“importance” of attention by fusing with the gradient or selecting important frames

in video chunks goes in the sense of our intuition - in transformers as in CNNs the

feature selection methods based on feature importance have to be included to boost

performances.

Having performed this ablation study, we notice that the hybrid transformer per-

formances compared to the best signal transformer performances are strongly in-

creased (from 40.87% to 73.61%). However, the ablation of the signal branch in-

creases the accuracy of the system when performing on video only (from 73.61% to

75.55%). We can explain this by the nature of signal data, which in our real-world

scenario had to be strongly imputed. Nevertheless, we think that such a decrease

does not remove the added value of a hybrid scheme and that the interpretability
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techniques have proven to be interesting for source model training.

Algorithms Top-1 Accuracy Pre-Train

3D-ConvNet [124] 64.86% ×

3D-ConvNet [124] 73.27% ✓

TimesFormer [16] 57.29% ×

TimesFormer [16] 74.11% ✓

Video Swin Transformer (Swin-T) [82] 61.74% ×

Video Swin Transformer (Swin-T) [82] 73.39% ✓

Video Transformer (with pooling)[88] 75.21% ✓

Video Transformer ([G]) Eq: 7.3 75.55% ✓

Video Transformer ([SG]) Eq: 7.4 75.32% ✓

Table 7.3: Test accuracy scores (top-1) on the BIRDS dataset for the video modality.

7.4 Conclusion

In this chapter, we proposed a transfer learning model for the hybrid transformer

for the classification of multimodal data. The core of the method is the use of in-

terpretability techniques in both modalities: signals and video to train the source

domain model. We should stress that we worked in the close-domain transfer frame-

work: for video, the source domain was an image dataset, and for signals, the source

domain was a signal dataset coming from a similar scenario. Our experiments have

shown better performance of target domain models when initialized with trained

source domain ones with interpretability techniques. We proposed strengthening

attention in the transformers with its gradient by two models- element-wise multipli-

cation and attention conservation and reinforcement. The usefulness of both models
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was experimentally shown both on open source datasets Kinetics-400 and UCI-HAR

and on a complex multimodal dataset BIRDS for risk detection. We also used a

simple dimension adaptation scheme for signals which is quite generic and can be

used for any data. These contributions are the last in our research. In the following,

we conclude our work and outline its perspectives.
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Chapter 8
Conclusion and Perspectives

In this thesis, we presented different solutions for the recognition of concepts in mul-

timodal data in the framework of Deep Learning Paradigm. Our main objective was

the methodological advancement of multimodal systems and the interpretation of

decisions of various systems in a human-understandable manner.

The target application for most of the thesis was to take up a real-world scenario.

For this purpose, we focused on the detection of risk situations of frail people living

in home environments from multimodal data recorded with a Bio-Immersive Risk

Detection System(BIRDS) developed in our research group together with gerontolo-

gists and an SME. In such-in-the-wild data, there are a number of challenges. They

were the synchronization of sensors, video, and signal ones, due to the difference in

sampling rates between the modalities and the missingness of the data. Another

uniqueness of our problem is the rarity of the risks compared to the “No-Risk” sit-

uations. Indeed, risks can be considered as an anomaly in a person’s day-to-day
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activity. The classes of risk and no-risk data were therefore imbalanced. In addi-

tion to the mentioned challenges, the nature of the video also posed a challenge due

to the difference of viewpoint from the general video datasets available with fixed

viewpoints. In our research we have proposed several hybrid models starting from a

combination of a temporal network, such as GRU autoencoder with a 3D convolution

network ResNet, upt to introducing novel hybrid transformer architectures.

In Chapter 3, we devised our first two-stream architecture for the generalization of

the multimodal data. Signal modalities obtained from physiological and motion sen-

sors were modeled on a sequence model such as a GRU autoencoder with attention

and benchmarked with other temporal models such as LSTM and GRU. For base-

line experiments on the signal modality, we tested our algorithm on the UCI-HAR

dataset, a human activity recognition dataset. The autoencoder GRU with attention

showed performances comparable with LSTM, but with much lower training cost,

dividing the number of training epochs by ten. The final accuracy was higher than

90%. On the application concerned dataset, i.e. BIRDS, we obtained state-of-the-art

performance, this time with GRU without an autoencoder layer but with attention.

Taking into account the semantic nature of our risks, which were context-dependent

in our scenario an addition of visual modality was necessary. Therefore, we devel-

oped a two-stream architecture in which we weakly synchronized the two modalities

due to the difference in sampling rates between the camera and various sensors.

The video modality was analyzed using a 3D-ResNet. We used the intermediate

fusion technique to combine the two modalities in the latent space. As self-attention
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models proved to be efficient even on our complex real-world data, we used self-

attention-based models in both modalities to extract the features. To quantify the

contribution of self-attention modules, we performed ablation of self-attention mod-

els on a singular modality. For videos, the accuracy scores do increase with attention

when compared to the ConvNet models. However, in signals, the accuracy decreases

when compared to models without attention. This decrease can be attributed to

the decrease of inductive biases in the models and the lack of model pre-training.

Due to the class imbalance problem, we scraped a lot of data from the “No-Risk”

class, as it could overfit the model. Another major problem with the data was the

massive imputation of missing data, which may also cause overfitting of the model

in the sensors. Our final accuracy with these hybrid networks reached 73.26% in the

challenging BIRDS dataset.

Taking into account a better performance of transformer models, reported in

the literature, our second hybrid model was designed as a combination of a linear

transformer for signals and the BotNet transformer for video. We have inflated

BotNet to the third temporal dimension of the video, compared to the reference

model, which was proposed only for images. Nevertheless, the transformer model

on signal modality did not bring improvement compared to the GRU-with-attention

due to the data noisiness we mentioned above.

The hybrid architecture based on transformers gives an accuracy score of 72.19%.

In this, we did not use a pure transformer-based/self-attention-based architecture.

We used self-attention blocks instead of convolutional blocks in the last ResNet block
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as was the case in BotNet.

In Chapter 4, we focus on fully self-attention transformers and propose a method

to improve the accuracy of the video part of our data. For this purpose, we used a

factorized form of video transformer model with separate temporal and spatial self-

attentions, namely TimesFormer. We completed it by computing the importance

of the temporal locations using a pooling-based approach in the latent space. This

method is not a post hoc method, but rather the temporal locations are learned

during the training of the model. As this model was proposed for the video modal-

ity, we benchmarked it on the publicly available Kinetics-400 dataset. The method

did perform better than other factorized video transformer models but we obtained

similar results to the Swin Transformer model which uses hierarchical-based shifted

window self-attention blocks. For the BIRDS dataset, we outperform all the models,

even the Swin Transformer model for the video. We got an overall increment of the

accuracy of 3.5% with regard to the best baseline.

One of the major developments in the last years has been the introduction of

transformer models, but the interpretability of these models is still understudied. In

Chapter 5, we proposed a novel method for the interpretation of decisions of trans-

formers. This method is class-specific, i.e. it is class discriminative which implies

localizing different regions on the same image given different classes. However, this is

a model-agnostic method, which implies that any self-attention-based models can use

this post-hoc method. We call our method I-SAW: Image Self Attention Weighted
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method. Allows for interpretation of the transformer layers and selection of the most

important for the decision input for images. In order to evaluate this approach, we

applied a methodology developed by our team which consists of the comparison of

explanation maps with human perception of visual content, expressed by Gaze Fix-

ation Density Maps (GFDMs) [18]. To benchmark our approach, we used an image

dataset MexCulture [93] which provides GFDMs for evaluation purposes. We eval-

uated our method both qualitatively and quantitatively. The qualitative evaluation

consisted of a simple visual comparison of our explanation maps with other state-

of-the-art methods. Quantitative comparison consisted in computation of metrics

for comparison of saliency maps, such as similarity and Pearson Correlation Coef-

ficient score. Both comparisons gave the superior performance of our explanation

method on transformers. In quantitative comparisons, the method has an improved

similarity of 2.5% and 2% of PCC improvement compared to previous state-of-the-

art methods. This method is closest to human visual attention, thus showing that

self-attention in visual transformers can be used for the explanation of their decisions.

One question that arises is whether explanation methods can help improve the

training of models. Interpretable methods point out important areas of an image by

identifying the region that led to the model’s decision. In Chapter 6, we proposed to

use the localization effect of interpretability techniques at the feature and input lev-

els to improve the generalization capabilities of transformers. We use interpretation

techniques for both modalities during the training process. An additional supervi-

sion was proposed via a specific term in the loss function pushing the attention to
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approach the gradient-weighted attention. The proposed method gave an improve-

ment of accuracy by ∼ 5% on signal for a tested Linformer[113]. The improvement

has been also observed on the hybrid transformer despite it being lower ∼ 1.8%.

Our proposed interpretability technique was applied, in Chapter 7, for domain

adaptation. We trained a video transformer on ImageNet1K and applied SAW on

the pre-trained weights excluding the last layer. The gain of accuracy was obtained

on the video part of BIRDS of ∼ 1%.

For the signal transformer on the BIRDS dataset, the gain was ∼ 3%. In this

chapter, we have also proposed a domain adaptation technique with the adaptation of

dimensionality of data from the source domain to the target domain and have applied

it to the signal dataset BIRDS as a target domain using UCI-HAR data as a source

domain. The dimension adaptation was done by a trained linear layer. Dimension

adaptation brought∼ 3% of improvement compared to the interpretability technique.

These results show that the interpretability technique has to be studied better in

future works.

Furthermore, data acquisition and studies are required to create a real-world mul-

timodal dataset with less noisy signal data. Similarly, this interpretable technique

has been tested to adjust to the domain gap. In this technique, attention is given

during initialization, which also improves the transformers’ generalization capability.
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Hence in our work, we have proposed several solutions for the analysis of multi-

modal data in order to recognize specific events. Our contributions consisted of the

architecture design of DNNs and transformers, the introduction of new interpretabil-

ity techniques for the explanation of transformer decisions, and the use of them to

improve transformer training. The perspectives of this work are numerous. we can

summarize them in the following:

• From an information fusion point of view - we need to more exhaustively explore

different fusion strategies. In our work, we have used intermediate fusion in

the latent space and late fusion by loss combination. It might be interesting

to explore early fusion techniques in the input space which have shown to be

performant in the e.g. visual attention tasks [23]. Before we can do it, a signal-

video synchronization question will have to be further studied. The late fusion

has not been extensively studied either. Here it would be interesting to apply

methods of symbolic AI considering each network as an agent and to develop

fusion rules or use MLPs in the decision space.

• Considering explainability, there can be numerous perspectives. We think that

pooling approaches can be used to identify the most important attention heads

or layers to get a better explanation. The goal of a saliency-based explanation

method is to highlight or localize the important locations, and adaptive pooling

approaches can suffice this requirement. There needs to be other methods for

evaluating the explanation methods, this can be performed by obtaining the

saliency maps and using it as a pseudo-image for a classification task. This is
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not the only perspective as, the evaluation of explanation methods is an open

and intensively researched question.

• In data representation, the perspectives are also open. In our work, we have

used the sensor signals in the temporal domain. In hybrid architectures, audio

signals are used at present in the spectral domain, e.g. via spectrograms. This

is also one of the possibilities to explore.

• Transformers require a large amount of data to be correctly trained. We have

seen the drawback of them when training on a limited amount of positive exam-

ples of risk situations in the BIRDS dataset. Thus the perspective of incremental

learning with transformers seems to us a promising way to solve the problem

of heavy training. Furthermore, incremental learning in real-world applications

such as monitoring for risk prevention to adapt to changing living conditions is

mandatory. This is the future of our work.
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Apprentissage profond explicable application aux données multimodales

Résumé : Les progrès réalisés par les réseaux neuronaux profonds au cours de la dernière décennie pour
diverses tâches de classification ont suscité des inquiétudes quant à la nature "boîte noire" de ces modèles.
La fiabilité des décisions des modèles d’IA et la compréhension par l’humain de ces décisions est un problème
ouvert. Récemment, avec l’avènement de modèles à base de réseaux neuronaux profonds tels que les
transformers, la complexité croissante et le nombre de leurs paramètres rendent l’explicabilité « simple » pour
l’humain plus importante. Le travail présenté dans cette thèse peut être divisé en deux parties. La première
concerne le développement d’un réseau multimodal destiné la détection des risques pour des personnes fragiles
dans un contexte de maintien à domicile. Dans la deuxième partie de la thèse, nous développons des méthodes
d’explicitation pour les transformers, plus particulièrement les transformers visuels. Ensuite, nous tirons
parti de notre méthode d’explicabilité proposée et l’utilisons pour une meilleure généralisation du transformer
multimodal proposé. En effet, l’utilisation de techniques d’explicabilité dans les transformers multimodaux
permet d’augmenter la précision de ces classifieurs sur des données complexes du monde réel et ouvre des
perspectives intéressantes pour les études sur l’éparcité et la robustesse de ces approches.
Mots-clés : Explainability, Deep Neural Networks, Multimodal Learning, Information Fusion

Explainable Deep Learning with Application to Multimodal Data

Abstract: The progress made by deep neural networks over the last decade for various classification tasks in
all domains has raised concerns about the "black box" nature of these models. The reliability of decisions from
deep neural networks in a human-understandable way is an open problem. Recently, with the advent of deep
neural models such as transformers, the increasing complexity and number of parameters make explanations
in a human-understandable way more important. The work presented in this thesis can be divided into two
parts. The first part concerns the development of a multimodal network for the application of risk detection
for frail people in the home environment. In the second part of the thesis, we develop explanation methods for
transformers, more specifically visual transformers. Finally, we take advantage of our proposed explainability
method and use it for a better generalization of the proposed multimodal transformer. Indeed, the use of
explainability techniques in multimodal transformers increases the accuracy of these classifiers on complex
real-world data and opens up interesting perspectives for studies on the sparsity and robustness of these
approaches.
Keywords: Explainability, Deep Neural Networks, Multimodal Learning, Information Fusion
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