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In order to ease the notation, sometimes the dependence of a function on time is dropped. For instance, the function x(t) can sometimes be simply written as x. If the order of the identity matrix is clear from the context, then sometimes it is simply denoted as I.

When the symbol is placed in the position of a sub-block in a symmetric matrix, it means that the corresponding sub-block can be inferred by symmetry. 

Introduction

Switched systems are an interesting topic that has attracted a lot of attention from the automatic control community over the past few decades. Differently from pure continuous dynamical systems, the states of a switched system evolve according to one of a set of differential equations instead of evolving according to a single differential equation. Each one of these equations corresponds to a continuous dynamical evolution which is normally referred to as a mode. The state dynamics switch from one mode to another according to the occurrence of instantaneous events dictated by some switching rule.

To illustrate the general behavior of a switched system, consider Figure 1.1, which shows a visual representation of this kind of system. In this scheme, the differential equation associated with each mode j is given by ẋ = f j (x), j = 1, 2, . . . , N , where x denotes the state vector, each f j (x) is a continuous function, and N is the number of modes. As it can be seen in Figure 1.1, mode 2 is currently active by the switching rule. We have assumed in this scheme that the continuous dynamics in each mode are autonomous, though exogenous inputs can also be included.

As a simple example of the practical application of switched systems, a model such as the one depicted in Figure 1.1 could be applied to the gear shift of an automobile. In this case, the continuous state x can be the position and velocity while each mode corresponds to a different gear. The switching rule (which can be the driver or an automated system) decides which gear to shift to as well as when to switch.

The dynamics of the switching rule are not continuous since they describe the occurrence of discrete events in time, such as the shift of gears. Other examples of such events include pressing a button or flipping a switch. In the case of electrical systems, such events include closing and opening semiconductor devices such as transistors and diodes. For this reason, switched systems are part of a broader class of systems known as hybrid systems, which are characterized by the interaction between continuous and discrete dynamics. Their study has become increasingly popular in recent years due to their application for modeling the behavior of modern complex and large scale systems such as cyberphysical systems [START_REF] Antsaklis | Control of cyberphysical systems using passivity and dissipativity based methods[END_REF][START_REF] Khaitan | Design techniques and applications of cyberphysical systems: A survey[END_REF]. Thus, hybrid systems are not just an interesting topic in automatic control but their study is also relevant in the field of computer science. Some basic examples of hybrid systems are presented in [START_REF] Schaft | An introduction to hybrid dynamical systems[END_REF]. The difference between switched systems and the more general class of hybrid systems is that the continuous states are continuous for all time in the case of switched systems [START_REF] Liberzon | Switching in systems and control[END_REF]. In other words, the continuous states do not jump to somewhere else in the state space when switching occurs.

Both the analysis and the design of controllers for either switched or hybrid systems are challenging tasks due to the complexity of the phenomena arising over the course of their operation. One example of such phenomena is that of sliding modes, which are characterized by infinite switching among different modes driving the system trajectory along a manifold [START_REF] Utkin | Sliding modes in control and optimization[END_REF].

An important domain of application where the theories of switched or hybrid systems have been used is that of power electronic converters. In a nutshell, power converters are electric circuits containing storage elements such as inductors and capacitors that realize energy conversion by switching one or more semiconductor devices, such as transistors and diodes. The continuous states in this kind of systems are usually taken to be the currents flowing through the inductors and the voltages on the terminals of the capacitors. In each configuration of the switching components, the dynamics of these states are described by a classical differential equation. When, however, the configuration of the switches changes, the evolution of the states then starts being dictated
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Transistor open 'Open transistor' 'Close transistor' Figure 1.2: Scheme illustrating the switching aspect of the dynamics of a power converter. by another differential equation. Power converter systems are the main applications considered in this thesis and they shall be used to illustrate the theoretical results obtained here regarding stabilization of switched systems.

The simplified switching behavior of a generic DC/DC power converter containing one transistor and one diode is represented in Figure 1.2. When the transistor is closed, the system follows a certain continuous dynamics f 1 (x), whereas when it is open, the active continuous dynamics are given by f 2 (x). The passage from one mode to the other is triggered by either the instantaneous event 'Open transistor' or 'Close transistor', which justifies addressing such converters as switched systems. Though it is important to mention here that this approach is not widely adopted in the power electronics community. Instead, the traditional approach is to consider an average model for the converters, which avoids explicitly addressing the discrete behavior related to switching [START_REF] Bacha | Power electronic converters modeling and control[END_REF][START_REF] Caux | Modelling and control of a fuel cell system and storage elements in transport applications[END_REF][START_REF] Gateau | Multicell converters: active control and observation of flying-capacitor voltages[END_REF][START_REF] Middlebrook | A general unified approach to modelling switching-converter power stages[END_REF][START_REF] Sira-Ramirez | Control design techniques in power electronics devices[END_REF]. The advantage of doing so is that it enables the application of a vast number of classical control techniques developed over the course of many decades for continuous systems. The process of averaging the model of a converter will be briefly discussed in Chapter 2.

It is worth pointing out that in the case of power converters, one can in principle open and close the transistors at will, and therefore the system mode can be used as a control input 1 . In this scenario, the switching rule can be designed in order to achieve some control objective, such as stabilization or tracking. However, in some cases, the switching rule is not controlled and the system mode can be regarded as a perturbation. In this case, the analysis of the system behavior must be carried out under arbitrary switching [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF][START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results[END_REF]. In this thesis, however, we always assume to be in full control of the system mode, which allows the design of switching controllers for the system at hand.

In this thesis, we are going to focus on Switched Affine Systems (SASs), which are a subclass of switched systems. In the case of SASs, the dynamics f j (x) associated with any mode j are affine on the state x. Their study is interesting from a practical viewpoint since they have been shown to suitably model DC/DC power converters (see [START_REF] Albea-Sanchez | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF][START_REF] Corona | Stabilization of switched affine systems: An application to the buck-boost converter[END_REF][START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF][START_REF] Ndoye | Robust relay control for buck converters: experimental application[END_REF] for instance).

We are also going to be particularly interested in studying the interconnection of SASs with the purpose of stabilizing the whole network at a desired operating point. Not only is it an interesting problem by itself, but it also has potential applications in real-world systems such as in the case of DC converters connected in parallel. Indeed, paralleling converters present numerous advantages, such as more power processing capability, improved reliability due to redundancy, the possibility of distributing the stresses among the converters, increased fault tolerance, ease of maintenance and repair, etc. [START_REF] Huang | Circuit theoretic classification of parallel connected DC-DC converters[END_REF][START_REF] Thottuvelil | Analysis and control design of paralleled DC/DC converters with current sharing[END_REF]. Another example can be found in hybrid power generation systems, such as in transport applications, where fuel cells are employed in conjunction with storage elements [START_REF] Caux | Modelling and control of a fuel cell system and storage elements in transport applications[END_REF][START_REF] Hilairet | A passivity-based controller for coordination of converters in a fuel cell system[END_REF][START_REF] Hernández-Torres | Robust optimal control strategies for a hybrid fuel cell power management system[END_REF][START_REF] Hernández-Torres | A robust multivariable approach for hybrid fuel cell supercapacitor power generation system[END_REF][START_REF] Li | Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway[END_REF][START_REF] Phattanasak | Control of a hybrid energy source comprising a fuel cell and two storage devices using isolated three-port bidirectional DC-DC converters[END_REF][START_REF] Zandi | Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications[END_REF]. A very relevant application can also be found in DC microgrids [START_REF] Benahmed | Distributed-based integral action for current sharing and average voltage regulation in DC microgrids[END_REF][START_REF] Dragičević | DC microgrids -Part I: A review of control strategies and stabilization techniques[END_REF][START_REF] Hirsch | Microgrids: A review of technologies, key drivers, and outstanding issues[END_REF][START_REF] Sen | Microgrid control: A comprehensive survey[END_REF]. These systems have grown in relevance over the years with the rise of renewable energy sources such as solar panels as well as energy storage systems and loads such as electric vehicles [START_REF] Dragičević | DC microgrids -Part I: A review of control strategies and stabilization techniques[END_REF]. In a context of climate change, where the penetration of renewable energy sources in the grid is an essential part of any global strategy to curb carbon emissions, it is easy to see the importance in searching for better methods for the design and control of DC microgrids. A simplified representation of a DC microgrid is shown in Figure 1.3.

Interconnections of power converters are also present in aerospace applications. In earthorbiting spacecraft, solar arrays produce the DC bus voltage and DC/DC converters interface the main bus with the spacecraft payloads, regulating the voltages required by each payload [START_REF] Erickson | Fundamentals of power electronics[END_REF]. Both in this application and in DC microgrids, the presence of storage elements such as batteries is also important, and they are also connected to the bus by means of DC/DC converters.

The general objectives of this thesis are twofold:

1. Contributing new results to the theory of switched systems, specially regarding system stabilization. In this vein, the goal is to use mathematical tools based on the Lyapunov stability theory [START_REF] Khalil | Nonlinear systems[END_REF] to propose stabilizing controllers and rigorously demonstrate their effectiveness.

The main contribution regards proposing such results to a type of interconnection of SASs. All the proposed controllers should be designed in a numerically tractable way, even in a case where several systems are interconnected.

2. Bridging the gap between theory and practice by illustrating the theoretical results through their application to power converter examples. The idea is to link the abstract concepts introduced in the theoretical developments with actual physical objects, which stresses the advantages of the proposed methods by applying them to concrete examples.

In the next section, we review the literature pertinent to hybrid and switched systems in order to position this thesis with respect to existing works. Subsequently, we shall state in more details the contributions of the thesis.

Literature review

As mentioned before, hybrid systems are characterized by the interaction between continuous and discrete dynamics. As far as continuous dynamics are concerned, there is a vast body of works in the literature dealing with purely continuous systems, which has provided a solid formal framework for the analysis of these systems [START_REF] Franklin | Feedback control of dynamic systems[END_REF]. The success of the methods developed within this framework can be demonstrated by their application to numerous practical systems such as mechanical, electrical, electromechanical, thermal and fluid systems, just to name a few. This is justified by the fact that the system variables are mostly of continuous nature, such as, for example, position and velocity in a mechanical system, or currents and voltages in electrical systems. Many classical tools used for stability analysis and the design of feedback controllers can be found in references such as [START_REF] Franklin | Feedback control of dynamic systems[END_REF][START_REF] Hespanha | Linear systems theory[END_REF][START_REF] Ogata | Modern control engineering[END_REF] in the case of linear systems or [START_REF] Khalil | Nonlinear systems[END_REF][START_REF] Sastry | Nonlinear systems: analysis, stability, and control[END_REF] for the more general class of nonlinear systems. It is also worth mentioning that many tools for analysis and control have also been developed for the case of discrete-time systems, where the system dynamics are described by difference equations rather than differential equations. This class of systems is most relevant for the digital implementation of the control methods proposed for continuous systems and comprehensive presentations of the proposed techniques can be found in [START_REF] Åström | Computer-controlled systems: theory and design[END_REF][START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF].

More recently, though, another modeling framework has been created in order to capture the dynamics of certain systems that continuous models are not able to describe: the discrete-event systems [START_REF] Cassandras | Introduction to discrete event systems[END_REF]. Differently from continuous systems, the state variables are discrete and their evolution is dictated by the occurrence of events, instead of by a differential (or difference) equation. Discrete-event systems have proved useful in numerous applications such as manufacturing systems, and several methods have been developed over the years, specially for fault diagnosis [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF] and supervisory control [START_REF] Wonham | Supervisory control of discrete-event systems[END_REF]. Most works use formalisms such as automata [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF] or Petri nets [START_REF] David | Discrete, continuous, and hybrid Petri nets[END_REF]. Generally speaking, in both formalisms the transitions between discrete states are triggered by the occurrence of instantaneous events.

In many systems, however, it is important to consider both the discrete dynamics in terms of event occurrences and also the continuous evolution of some state variables. A very simple example of this can be found in timed discrete-event systems. One way to describe their behavior is through timed automata [START_REF] Alur | A theory of timed automata[END_REF], where, in addition to the events, the time instants in which they occur are also taken into account. In this case, a continuous variable, time, has been included in order to more accurately describe the system dynamics. Indeed, the incorporation of time in the discrete model brings some practical advantages such as an improvement in fault detection capability in manufacturing systems [START_REF] De Souza | Fault detection of discrete-event systems based on an identified timed model[END_REF], highlighting the gains obtained by simply adding one continuous variable. An extension to the more general case with other continuous variables can be found in the form of hybrid automata [START_REF] Henzinger | The theory of hybrid automata[END_REF][START_REF] Lygeros | Dynamical properties of hybrid automata[END_REF]. Many works in the field of hybrid systems have been developed over the years, covering a wide range of topics such as hybrid models identification [START_REF] Paoletti | Identification of hybrid systems a tutorial[END_REF] and realization theory [START_REF] Petreczky | Realization theory for linear hybrid systems[END_REF].

Some early results on stability of hybrid and switched systems have been covered in [START_REF] Decarlo | Perspectives and results on the stability and stabilizability of hybrid systems[END_REF]. They mostly apply Lyapunov-based methods in order to analyze the stability of hybrid systems. In one of these methods, multiple Lyapunov functions are used, and each Lyapunov function is associated with each mode [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF]. This contrasts with the approach using the so-called common Lyapunov function, where a single function is shared by all modes. The interest in using multiple Lyapunov functions is the reduction in conservatism with respect to the requirement that all modes share the same Lyapunov function [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results[END_REF].

The main problems addressed in early works on this topic are the following [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]: analysis of system stability for any arbitrary switching sequence, where switching is constrained in some way or not (see [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF] for when switching is sufficiently slow); and the design of a switching signal that stabilizes the system. Some other issues have also been addressed, such as the design of a continuous feedback controller for each mode of a nonautonomous switched system, as in [START_REF] Daafouz | Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach[END_REF], where this problem was addressed for discrete-time switched systems through the use of switched Lyapunov functions. In the sequel, we are going to focus on works dealing with switching control design, since the main objective of this thesis concerns the design of stabilizing switching controllers.

Many works have initially focused on the class of switched linear systems, and quadratic Lyapunov functions (multiple or common) were usually adopted. The advantage of this choice is the possibility of expressing the stability conditions as Linear Matrix Inequalities (LMIs), for which efficient solvers are available. In [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF], stabilizing switching laws were proposed for switched linear systems considering both state and output feedback, and the design was based on the solution of LMI problems. Further contributions include [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF], where a state-dependent switching signal has been proposed and, in addition to stabilization, a quadratic guaranteed cost has also been considered. The conditions for this result have been expressed as Lyapunov-Metzler inequalities, which are difficult to solve due to their non-convexity but more conservative conditions have been added so as to turn them into LMI conditions. These results have been extended in [START_REF] Geromel | Dynamic output feedback control of switched linear systems[END_REF] to consider dynamic output feedback. In [START_REF] Deaecto | Dynamic output feedback H ∞ control of switched linear systems[END_REF], the joint design of a switching rule and a continuous feedback controller has been carried out by also considering dynamic output feedback. Here, once again, simplifications are made in order for the conditions to be expressed as LMIs.

A strategy using composite quadratic Lyapunov functions has been proposed in [START_REF] Hu | Stabilization of switched systems via composite quadratic functions[END_REF] for the stabilization of switched linear systems. Even though this may reduce conservatism, the stabilization conditions are expressed as Bilinear Matrix Inequalities (BMIs), which are not as computationally easy to solve as LMIs.

In [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF], some stabilization results presented in [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF] were extended to SASs. In fact, a statedependent switching law is proposed and the design conditions are based on LMIs. The control problem for SASs is more challenging due to the fact that the modes do not share the same equilibrium point, differently from switched linear systems, where the origin is the equilibrium of all modes. Moreover, the equilibrium 2 in the case of SASs can only be reached by switching infinitely fast among the modes, giving rise to the well-known phenomenon of sliding modes. In practical systems, this is undesirable since it causes component wear due to chattering and thus damages the switching devices.

In [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF], the minimization of a quadratic guaranteed cost has been incorporated to the results in [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF] and the application to the three most common topologies of DC/DC power converters (the Buck, Boost, and Buck-Boost converters) has been shown. However, mitigation of the sliding motions has not been addressed. A related result has been proposed in [START_REF] Albea-Sanchez | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF], where the closed-loop system has been described using the hybrid systems formalism presented in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. In this work, sliding modes are avoided in the transient response. This result has been extended in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] to also prevent sliding mode in steady state. Even though asymptotic stabilization cannot be achieved in this scenario, the authors prove nonetheless practical stability of the closed-loop system, which, roughly speaking, means that convergence to a neighborhood around the origin is ensured [START_REF] Xu | Practical stability and stabilization of hybrid and switched systems[END_REF]. An application to a synchronous Boost-Boost converter has been shown in [START_REF] Sferlazza | Min-type control strategy of a DC-DC synchronous boost converter[END_REF].

All these results presented so far concerning SASs are based on LMIs and address control design with the aim of global stabilization. Most of these results require at least that the convex combination of the transition matrices of the modes be Hurwitz, which can be expressed as an LMI. Less restrictive LMI conditions can nonetheless be obtained by considering local stabilization [START_REF] Hetel | Local stabilization of switched affine systems[END_REF], as it will be seen in more details in Chapter 2. In this case, the problem of estimating the domain of attraction arises, and an LMI-based solution has been presented in [START_REF] Hetel | Variable structure control with generalized relays: A simple convex optimization approach[END_REF] for Linear Time-Invariant (LTI) systems with relay feedback [START_REF] Gonçalves | Global stability of relay feedback systems[END_REF][START_REF] Hetel | Sampled-data control of LTI systems with relays: A convex optimization approach[END_REF][START_REF] Johansson | Fast switches in relay feedback systems[END_REF][START_REF] Johansson | Limit cycles with chattering in relay feedback systems[END_REF][START_REF] Kader | Stabilization by a relay control using nonquadratic Lyapunov functions[END_REF], which are a relevant subclass of SASs. Recently, more relaxed conditions for global stabilization of SASs have been proposed in [START_REF] Egidio | Stabilization of rank-deficient continuoustime switched affine systems[END_REF], where the convex combination of the transition matrices is no longer required to be Hurwitz. It is also worth mentioning that some works have dealt with SASs stabilization without the use of quadratic Lyapunov functions, such as in [START_REF] Scharlau | Switching rule design for affine switched systems using a max-type composition rule[END_REF][START_REF] Senger | Switching rule design for affine switched systems with guaranteed cost and uncertain equilibrium condition[END_REF][START_REF] Trofino | Switching rule design for switched dynamic systems with affine vector fields[END_REF], where the Lyapunov function is formed by a max-type composition rule. Other works were based on tools derived from optimal control, such as [START_REF] Corona | Stabilization of switched affine systems: An application to the buck-boost converter[END_REF][START_REF] Patino | Practical optimal state feedback control law for continuous-time switched affine systems with cyclic steady state[END_REF][START_REF] Seatzu | Optimal control of continuous-time switched affine systems[END_REF].

Sampled-data controllers for SASs stabilization have also been proposed in the literature [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilization[END_REF][START_REF] Hetel | Robust sampled-data control of switched affine systems[END_REF]. One of the main features of these methods is that sliding modes are naturally prevented by allowing switching to happen only in sampling instants, which makes them particularly amenable to practical implementations. In [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilization[END_REF], the proposed controller was applied to a DC/DC power converter.

The case where only partial measurements are available was addressed for a quadratic Boost converter in [START_REF] Sferlazza | A hybrid control strategy for quadratic boost converters with inductor currents estimation[END_REF], where it was assumed that the currents were not measured. Stabilization in presence of uncertainties or perturbations has also been studied in many works within the SASs literature. In [START_REF] Kader | Stabilization of switched affine systems with disturbed state-dependent switching laws[END_REF], LMI conditions have been derived for stabilization taking into account external disturbances. State observers have also been employed for both estimating the states and parameter uncertainties [START_REF] Daafouz | Parameter and state estimation of switched affine systems[END_REF]. Taking into account such uncertainties is challenging in the case of SASs stabilization, because the equilibrium point itself becomes uncertain. In [START_REF] Sferlazza | Min-type control strategy of a DC-DC synchronous boost converter[END_REF], where the focus was the application to a synchronous Boost converter, a PI control is included in the control scheme to make the switching law robust to changes in the equilibrium caused by load 2 It is generally assumed in the works dealing with SASs stabilization that the equilibrium point is the origin. This is done without any loss of generality by carrying out a simple coordinate shift.

variations. Parameter uncertainty has been addressed using an adaptive observer-based approach in [START_REF] Beneux | Stabilisation of power converters with uncertain equilibrium: An adaptive switched approach with guarantee of stability in continuous and discontinuous conduction modes[END_REF][START_REF] Beneux | Robust stabilization of switched affine systems with unknown parameters and its application to DC/DC flyback converters[END_REF][START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF][START_REF] Deaecto | Asymptotic stability of continuous-time switched affine systems with unknown equilibrium points[END_REF] and its application to a DC/DC converter has been presented. In [START_REF] Zhang | Output-based robust switching rule design for uncertain switched affine systems: Application to DC-DC converters[END_REF], parameter uncertainties and external disturbances are also dealt with using state observers, and convergence to a neighborhood of the desired equilibrium point is ensured, and the results have been applied to a power converter. Robust stabilization based on integral action has been considered in [START_REF] Beneux | Integral action for uncertain switched affine systems with application to DC/DC converters[END_REF] and [START_REF] Ndoye | Robust relay control for buck converters: experimental application[END_REF]. The application to basic topologies of power converters has also been demonstrated in both these works. Robust stabilization results derived using the hybrid systems formalism have also been proposed in [START_REF] Theunisse | Robust global stabilization of the DC-DC boost converter via hybrid control[END_REF] and [START_REF] Albea-Sanchez | Robust hybrid control law for a boost inverter[END_REF] for the Boost converter and inverter, respectively.

As suggested by the above discussion, power electronic converters have been a popular field of application in the SASs literature. However, the practical examples addressed in these works are mostly converters containing one switch, which generally lead to switched systems having two modes 3 . One exception is [START_REF] Hetel | Binary control design for a class of bilinear systems: Application to a multilevel power converter[END_REF], where the control of a multilevel converter [START_REF] Meynard | Multicell converters: basic concepts and industry applications[END_REF], which usually has many modes, is accomplished. Another notable exception is [START_REF] Ndoye | Switching control design for LTI system with uncertain equilibrium: Application to parallel interconnection of DC/DC converters[END_REF], where the parallel interconnection of Buck converters is addressed under the SASs stabilization approach, even though in this work only the subclass consisting of LTI systems with relays is considered. The parallel connection of Buck converters has also been covered in [START_REF] Sinafar | Current sharing and voltage regulation of parallel DC-DC buck converters: Switching control approach[END_REF], where the problem is framed as the switching control design for multi-agent SASs [START_REF] Sinafar | Distributed adaptive switching control of uncertain switched affine multi-agent systems[END_REF][START_REF] Sinafar | Distributed minprojection control: A switching consensus protocol for switched affine multi-agent systems[END_REF]. The majority of works in the switched systems literature, however, do not consider the application to interconnections of power converters, even though they are of practical interest and have been widely studied using other techniques [START_REF] Huang | Circuit theoretic classification of parallel connected DC-DC converters[END_REF][START_REF] Mazumder | Stability analysis of parallel DC-DC converters[END_REF][START_REF] Thottuvelil | Analysis and control design of paralleled DC/DC converters with current sharing[END_REF][START_REF] Trégouët | New framework for parallel interconnection of buck converters: Application to optimal current-sharing with constraints and unknown load[END_REF].

It is worth pointing out that the behavior of many systems also exhibits two time scales (the slow and the fast dynamics), including applications in power electronics [START_REF] Ghanes | Fuel cell system control under converter losses with experimental results[END_REF][START_REF] Kimball | Singular perturbation theory for DC-DC converters and application to PFC converters[END_REF], and they can be studied using mature tools from singularly perturbed systems theory [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF]. Even though these methods have been applied to linear and nonlinear systems, few works deal with the case where switching is involved, i.e., the case of singularly perturbed switched systems. When switching has been taken into account, the purpose was mostly stability analysis [START_REF] Chitour | Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems[END_REF][START_REF] Hachemi | Stability analysis of singularly perturbed switched linear systems[END_REF][START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF][START_REF] Yang | Exponential stability of singularly perturbed switched systems with all modes being unstable[END_REF] instead of switching control design, and an interesting practical application in the field of metallurgy was presented in [START_REF] Malloci | Switched system modeling and robust steering control of the tail end phase in a hot strip mill[END_REF]. In [START_REF] Deaecto | H 2 and H ∞ performance optimization of singularly perturbed switched systems[END_REF], this problem was tackled for singularly perturbed linear systems, where well-conditioned LMI conditions were obtained for designing the controller. This is an important point, since singularly perturbed systems are usually ill-conditioned and the numerical solutions suffer from stiffness [START_REF] Hachemi | Stability analysis of singularly perturbed switched linear systems[END_REF]. The interconnection of a slow SAS and a fast LTI system (which can be viewed as a subclass of singularly perturbed SASs) has been considered in [START_REF] Tang | About switched affine system interconnected with fast LTI dynamics[END_REF], where a switching controller is designed to ensure ultimate boundedness of the solutions. Singularly perturbed hybrid affine systems have been studied in [START_REF] Kader | Symbolic models for incrementally stable singularly perturbed hybrid affine systems[END_REF], but in the context of safety-controller-based symbolic abstractions, which is quite distinct from the switched systems approach adopted in the other works cited before.

In conclusion, the literature to date on switched and hybrid systems is vast and rich both in theoretical and practical results. The body of work on stabilization of SASs, in particular, contains many examples of power converter applications where a significant portion of the tools for analysis 4 and control design can be easily employed with numerically efficient algorithms, such as LMI solvers. However, some questions or directions of further improvement remain. For instance, the application of such methods to interconnections of SASs (which model practical systems such as parallel converters) may lead to a large number of modes, due to its exponential growth with the number of SASs. The impact of this on either the LMI-based design or the real-time implementation and strategies to mitigate this effect are possibly lacking in the literature. The same can be said about the study of SASs cast in a singular perturbation framework, which seems to be a gap in the literature on SASs.

Contributions of the thesis

In this section, the results that shall be presented in this thesis later on in the next chapters are positioned with respect to the literature, which has briefly been reviewed in Section 1.1. The goal is to highlight the main contributions to the existing body of work in SASs stabilization.

One of the main takeaways from Section 1.1 is that a great number of methods developed for the control of SASs relies on the solution of LMI problems, which is certainly an attractive feature of these techniques since efficient solvers are commercially available. However, in certain systems containing multiple interconnected SASs, the number of modes grows exponentially with 3 Or three modes, if the converter is allowed to operate in discontinuous conduction mode (see, e.g., [START_REF] Beneux | Stabilisation of power converters with uncertain equilibrium: An adaptive switched approach with guarantee of stability in continuous and discontinuous conduction modes[END_REF][START_REF] Theunisse | Robust global stabilization of the DC-DC boost converter via hybrid control[END_REF]) 4 A recent reference on the stability analysis of SASs, including the case with dwell-time constraint, can be found in [START_REF] Della Rossa | Stability of switched affine systems: Arbitrary and dwell-time switching[END_REF].

the number of SASs, resulting in a possibly burdensome LMI problem where convergence to a solution is difficult and not at all efficient. In this thesis, this issue is addressed in the case of a particular type of interconnection consisting of multiple SASs coupled by an LTI system. The results presented are applicable to practical examples such as interconnections of power converters supplying a resistive load, which are not often covered in the literature on switched systems in spite of their relevance.

In addition to the design of stabilizing controllers for interconnected SASs, we also address the problem of state estimation in the presence of partial measurements and parameter uncertainties. Solutions to this problem found in the literature (e.g., in [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF]) are usually also heavily based on LMIs, and also suffer from the growth in the number of modes in the case of an interconnection. Thus, in this thesis a strategy to overcome this issue while adopting the observer-based approach is proposed. To the best of the author's knowledge, a stabilizing control design method with reduced LMI complexity in interconnected SASs has not yet been presented in the literature to date.

We also pursue the goal of complexity reduction in the LMI-based control design in the case of singularly perturbed SASs. As a matter of fact, in this class of systems, the LMI problem is ill-conditioned and thus we propose in this thesis a control design method that can be easily carried out by solving well-conditioned LMIs. This sort of approach in the case of general SASs, or even the subclass of LTI with relay feedback, has not been considered yet in the literature to the best of the author's knowledge. This is thus a relevant addition to the ever-growing field of singularly perturbed switched systems.

It has been mentioned in Section 1.1 that the state-dependent switching control of SASs leads to the undesired phenomenon of sliding modes. In this work, we present an alternative approach for bounding the switching frequency which seems better suited for the application to power converters. Our approach is based on the well-known concept of hysteresis, and even though it is quite a common phenomenon in engineering, its use in the switching control of SASs is not sufficiently explored.

Summary of publications

Some of the results presented in this thesis have also been reported in the following publications: 

Organization of the manuscript

In Chapter 2, we provide some background before presenting our results in the subsequent chapters. A classical DC/DC converter is introduced to illustrate some key theoretical concepts presented in the chapter. These concepts are drawn from the mathematical formalism of discontinuous systems and they are briefly reviewed. In addition to the theoretical background, we also revisit some pertinent works mentioned in Section 1.1 in more details. The goal is to more fully describe the state of the art on SASs stabilization so as to better clarify the contributions of the thesis. Our first results concerning the stabilization of interconnected SASs are presented in Chapter 3. The structure of the system is presented and the problem to be tackled is stated before the proposed stabilizing laws are introduced. These laws are divided into centralized and decentralized controllers. In the latter case, the only information for the control of each SAS comes from the states of the SAS itself, instead of other subsystems in the interconnection. This does not hold in the case of centralized controllers. The chapter closes with examples of interconnected power converters.

The results in Chapter 3 can only be applied when all system states are measured and there are no uncertainties in the model. In Chapter 4, we address this issue by proposing stabilization results that can be used even under these conditions. We also present some examples involving interconnections of power converters. Using one of these examples, we highlight the numerical advantages of the proposed methods with respect to a result in the literature that does not take into account the interconnected structure of the model.

In Chapter 5, the results related to singularly perturbed SASs are presented. Instead of concentrating on the LMI complexity reduction in the case of an interconnection, we focus on a single SAS and the goal is to avoid ill-conditioned LMIs. We first present our results for LTI systems controlled with relay feedback and then we move on to the general case of singularly perturbed SASs. To illustrate these results, they are applied both to academic examples and to classical topologies of DC power converters.

One drawback of the switching laws proposed in Chapters 3, 4 and 5, is the occurrence of sliding modes in the closed-loop trajectories. In Chapter 6, we then shift the focus to the practical implementation of switching control by introducing an hysteresis-based strategy to circumvent this issue. We first present this method in the case of a single SAS for an easier illustration. A DC/DC converter is used as an example and a comparison with another hysteresis-based technique in the literature is carried out. The extension to interconnected systems is also made afterwards, and once again an interconnection of converters is used to show the application of the obtained result.

Finally, in Chapter 7 we present the conclusion of the thesis. Some remarks are made regarding the proposed results and some interesting directions for future research are suggested as a way of improving these results and enlarging their field of application.

Chapter 2

Background

The goal of this chapter is to provide the necessary background for the results presented in the subsequent chapters of the thesis. It can be structured in the following way:

1. firstly, a motivating example is introduced with the aim of illustrating the systems that are going to be studied throughout this work;

2. then, the mathematical framework used for modeling and controlling these systems are presented considering the different links between the examples and the theoretical tools employed to address them;

3. and finally some pertinent results reported in the literature are discussed here in order to better clarify later on the contributions of the thesis.

Many results shown in this thesis are inspired by concrete systems that are usually studied in the field of power electronics, especially DC/DC power converters. As a starting point, consider the electrical circuit depicted in Figure 2.1, which describes a converter topology known as the Boost converter. The parameters of the circuit are the input voltage E, the inductor l, the capacitor c and the load resistance r o . The state of the system is x(t) = [i(t) v(t)] T , where i(t) is the current flowing in the inductor, and v(t) is the voltage on the capacitor, sometimes also referred to as the output voltage.

In DC/DC converters, one can usually find semiconductor devices such as transistors and diodes. In Figure 2.1, element S models a controlled switching component such as a transistor. Element D, on the other hand, represents a diode, which is an uncontrolled switching component. The presence of both these elements makes it possible to switch between two continuous dynamics. Indeed, it is well-known from power electronics that, when S is closed (resp. open), then D is open (resp. closed), and a differential equation describing the system dynamics is obtained by applying the Kirchhoff laws. This is detailed hereafter.

The state dynamics when S is closed and D is open are described by the following equations:

       di(t) dt = E l , dv(t) dt = - 1 r o c v(t).
(2.1a) In state-space matrix form, the dynamics can be written as:

(2.1b) - + E l i(t) D r o S c + - v(t)
ẋ(t) = f 1 (x(t)) := A 1 x(t) + b 1 , (2.2) 
where:

A 1 := 0 0 0 -1/(r o c) , b 1 := E/l 0 . (2.3)
Conversely, in the configuration where S is open and D is closed, it can be verified that the following dynamics are obtained:

       di(t) dt = - 1 l v(t) + E l , dv(t) dt = 1 c i(t) - 1 r o c v(t).
(2.4a)

(2.4b)

In matrix form, this can be written as:

ẋ(t) = f 2 (x(t)) := A 2 x(t) + b 2 , (2.5) 
where: Note that two continuous functions f 1 (x) and f 2 (x) are required in order to fully describe the system dynamics. In the case of power converters, since the opening or closing of a transistor (modeled by switch S) can be controlled, then one can decide which one of the two dynamics is active. Let σ ∈ I 2 be a variable that dictates which continuous dynamics is currently active. Then, the converter dynamics can be written in a more compact form as:

A 2 := 0 -1/l 1/c -1/(r o c) , b 2 := E/l 0 . ( 2 
ẋ(t) = A σ x(t) + b σ .
(2.7)

Since σ can be controlled, it is regarded as the control input. In this vein, the control law is designed with the following goal in mind: how to choose σ at every time instant (in other words, how to orchestrate the switching among f 1 (x) and f 2 (x)) in order to achieve the control objective (e.g., closed-loop stability). It is important to remark that the right-hand side of differential equation (2.7) is discontinuous, since the dynamics can switch from f 1 (x) to f 2 (x) and vice-versa. This makes it harder to study and a formal treatment of discontinuous systems is the object of Section 2.1.

Before presenting the mathematical framework within which the problem of control design for (2.7) is considered in this thesis, we briefly discuss hereafter the main difference between the approach adopted here and the one that is traditionally used by the power electronics community. This comparison is helpful in underscoring the difference between how the control problem is tackled in the two approaches.

In the field of power electronics, (2.7) is referred to as the instantaneous model of the system. However, analysis and control design are usually based on an approximate model where the average behavior of each signal is considered instead of their instantaneous values [START_REF] Middlebrook | A general unified approach to modelling switching-converter power stages[END_REF]. Since switching takes place in a frequency that is much larger than the system bandwidth and the average is taken over a switching period, then this model provides a good approximation of the system behavior. Moreover, the so-called average model has the important advantage of presenting continuous dynamics, thereby avoiding the complexities linked to the discontinuity of (2.7). The average model is expressed by the following equation:

ẋ(t) = Ā(δ(t))x(t) + b(δ(t)), (2.8) 
where

Ā(δ) := δ (1) A 1 + δ (2) A 2 , b(δ) := δ (1) b 1 + δ (2) b 2 , and δ(t) ∈ ∆ 2 is the control signal 1 . Note that δ (1) ∈ [0, 1] and δ (2) = 1 -δ (1)
. In practical terms, δ (1) is the fraction of the switching period during which dynamics f 1 (x) (where the transistor S is closed) is active and for this reason it is called the duty cycle. The dynamics described in (2.8) are continuous and nonlinear, since the product between elements of δ(t) and x(t) is present.

k c (x, x ) - + E l i(t) ro S c + - v(t) x PWM System S ∈ {0, 1} u ∈ R x(t)
In the control of power converters, one commonly seeks to stabilize the system at a desired operating point x , which must be an equilibrium of the average model. In order for x to be an equilibrium of (2.8), there must exist δ ∈ ∆ 2 such that:

Ā(δ )x + b(δ ) = 0.
(2.9)

Note that the control δ(t) converges to δ in order for the system to reach the operating point. In this case, δ (1) is the duty cycle in steady state.

The classical control approach in power electronics is generally based on the following steps:

1. Design a continuous controller for the average model (2.8) using some classical control method for nonlinear systems (see [START_REF] Sira-Ramirez | Control design techniques in power electronics devices[END_REF] for an overview of these methods applied to several converter topologies). This includes the linearization of (2.8) around the desired operating point x and the subsequent use of a linear controller, such as a static feedback controller or a PID controller. Let us refer to this controller as k c (x, x ). 

(x) (resp. f 2 (x))
. Therefore, a modulation stage is required where the continuous signal u = k c (x, x ) is translated to a binary signal S ∈ {0, 1}. This can be achieved with modulation techniques such as Pulse Width Modulation (PWM) [START_REF] Mohan | Power electronics: converters, applications, and design[END_REF] or Σ-∆ modulation [START_REF] Sira-Ramirez | Control design techniques in power electronics devices[END_REF], for example. A plot illustrating how PWM works can be seen in Figure 2.2. In this plot, signal u is compared at each time instant with a triangular high-frequency carrier wave. When u is above the carrier wave, S = 0; otherwise, S = 1.

Figure 2.3 provides an overview of the control strategy described above. If the carrier wave frequency is sufficiently high, then the PWM signal S emulates the continuous control signal u and the closed-loop system performance is approximately the desired one. Moreover, switching takes place at the same constant high frequency of the carrier wave signal.

We contrast the classical approach with the one whose block diagram is shown in Figure 2.4. Using the latter approach, a controller k(x, x ) is designed based on the instantaneous model

k(x, x ) - + E l i(t) ro S c + - v(t)
x r

System

S ∈ {0, 1}

x(t) expressed by equation (2.7), and not on the average model. Moreover, the control signal is directly the binary signal S ∈ {0, 1}, allowing us to sidestep the modulation stage. Thus the idea behind this approach is to basically orchestrate the switching so as to achieve the desired performance, even if this results in a variable switching frequency. Later on in this thesis, a strategy for the practical implementation of controllers developed in this framework is presented so as to avoid an unbounded switching frequency. As mentioned before, the average model has continuous dynamics, whereas the differential equation (2.7) is of discontinuous nature. This introduces some complexities in the approach illustrated by Figure 2.4. Indeed, several concepts such as solutions and even stability, which are well understood for continuous systems, must be revisited in light of the discontinuities. Indeed, certain phenomena such as sliding modes are not encompassed by the classical theory of continuous systems. For this reason, in the next section, some relevant definitions and results from the discontinuous systems literature are presented.

Discontinuous systems

In this section, we present a mathematical framework for studying discontinuous systems and state some useful definitions and results concerning this class of systems. The main objective is to provide a solid theoretical base for the results proposed throughout this thesis. Whenever possible, we will bridge the gap between abstract concepts laid out here and physical notions in practical examples, such as the Boost converter depicted in Figure 2.1. Some basic definitions that are useful in this section are presented in Appendix A.1.

Let us start by considering the following dynamical equation:

ẋ = f σ(•) (x), (2.10) 
where x ∈ R n is the state, f j : R n → R n , ∀j ∈ I N , are continuous functions, and σ(•) ∈ I N is a function that selects at each time instant which dynamics f j (x) is selected. The integer j ∈ I N corresponding to each continuous dynamics shall be referred to as a mode of the system. Function σ(•) is usually called the switching function and it can be time-dependent, state-dependent, or both. For our purposes, we shall assume for now that it is state-dependent, i.e., σ = σ(x).

The solutions of (2.10) are studied here using the Filippov formalism [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF], which is one of the most used frameworks for the analysis of discontinuous systems. Other solution definitions have been proposed in the literature, such as the Carathéodory and Krasovskii solutions (see [START_REF] Ceragioli | Discontinuous ordinary differential equations and stabilization[END_REF] for a brief discussion of these solutions). All these different types of solutions are more general than the classical solutions of ordinary differential equations, which are only suited for continuous systems. In the case of discontinuous systems, there are certain phenomena that can only be studied by using one of these more general formalisms. In fact, the reason why we consider solutions in the sense of Filippov, instead of Carathéodory or Krasovskii, is that they allow us to formally address an important phenomenon known as sliding modes, which will be specially relevant in the context of the systems that we shall look into later on.

The basic idea of the Filippov formalism is that, instead of looking at the dynamics f σ(x) (x) at individual points, we look at what happens at the neighborhood of each point [START_REF] Cortes | Discontinuous dynamical systems[END_REF]. This idea is formalized by the use of set-valued maps, which are mappings from one point in a space to a set of points in another (though possibly the same) space. To make this notion more precise, consider the following differential inclusion:

ẋ ∈ F(x), (2.11) 
where F : R n → 2 R n is a set-valued map given by:

F(x) := >0 µ(S)=0 conv f σ(x) (x) : x ∈ B(x, ) \ S , (2.12) 
where µ(•) is the usual Lebesgue measure. The set-valued map F(x) is expressed as the convex hull of all dynamics f σ(x) (x) in the immediate vicinity of point x, excluding those lying in arbitrary sets of measure zero. In the Filippov framework, the behavior of the system expressed by the discontinuous differential equation (2.10) is studied by the analysis of the differential inclusion (2.11), (2.12), as it will become clear throughout this section. A simple example showing how F(x) is computed is given as follows.

Example 2.1 (adapted from [START_REF] Cortes | Discontinuous dynamical systems[END_REF]) Consider the one-dimensional vector fields f j : R → R, j = 1, 2, given by:

f 1 (x) = -a, f 2 (x) = a, (2.13a) 
(2.13b)

where a > 0, and the following switching function:

σ(x) = 1, x > 0, 2, x ≤ 0.
(2.14)

The system described here is a simple version of a relay system. Using (2.12), the set-valued map F(x) associated with f σ(x) (x) is determined as:

F(x) =    {-a}, x > 0, [-a, a], x = 0, {a}, x < 0. (2.15)
It can be seen that, for x = 0, F(x) is an interval generated by the convex hull of the vector fields on either side of x = 0. For x = 0, F(x) is given by a singleton containing the dynamics f σ(x) (x).

The next definition precises the notion of solution that will be used from now on when dealing with discontinuous systems.

Definition 2.1 ([23]

) A Filippov solution of (2.10) on [0, t 1 ] ⊂ R is an absolutely continuous map x : [0, t 1 ] → R n that satisfies (2.11), (2.12), for almost all t ∈ [0, t 1 ].

The next proposition provides sufficient conditions for the existence of Filippov solutions for system (2.10).

Proposition 2.1 ( [START_REF] Cortes | Discontinuous dynamical systems[END_REF]) Assume that F : R n → 2 R n is locally bounded, upper semicontinuous, and takes non-empty, compact, and convex values. Then, for all x 0 ∈ R n , there exists a Filippov solution of (2.10) with initial condition x(0) = x 0 .

Inspired by Proposition 2.1, we assume that F(x) is locally bounded, upper semicontinuous, and takes non-empty, compact, and convex values. This will not be at all restrictive in this thesis since the systems that shall be studied all satisfy these properties.

Example 2.2 (adapted from [START_REF] Cortes | Discontinuous dynamical systems[END_REF]) Consider the system described in Example 2.1 and its associated set-valued map given by (2.15). Since F(x) satisfies the hypotheses of Proposition 2.1, then a solution exists for all initial condition x 0 ∈ R. Using (2.11), the solutions are computed as follows.

x(t) = x 0 -at, t ≤ x 0 /a, 0, t ≥ x 0 /a, , x 0 > 0, (2.16) 
x(t) = x 0 + at, t ≤ -x 0 /a, 0, t ≥ -x 0 /a, , x 0 < 0, (2.17)

x(t) = 0, x 0 = 0, (2.18) 
for all t ≥ 0.

For discontinuous systems, the classical notion of equilibrium point fails to apply. This is clear from Example 2.2, where it can be seen that the solution x(t) converges to the origin for any initial condition x 0 ∈ R, even though, from (2.13), f (0) = 0. Therefore, we present hereafter the definition of an equilibrium point in the Filippov framework, which is more suitable for the analysis of discontinuous systems.

Definition 2.2 ([23])

The point x ∈ R n is an equilibrium of (2.10) (or, equivalently, of (2.11)) if 0 ∈ F(x ).

Let us take another look at Example 2.2. Note that, from (2.15), the point x = 0 satisfies 0 ∈ F(0), implying that the origin is an equilibrium point according to Definition 2.2. Differently from the classical definition of an equilibrium point, this is actually coherent with the solutions expressed in Example 2.2.

In this thesis, the main focus is on developing control design techniques to achieve closed-loop system stability. Thus, in the sequel, we specify stability concepts that are adapted to discontinuous systems and that are going to be used throughout the present work. Without loss of generality, the following definitions concern the stability of the origin. If x = 0, then one could apply these definitions to the system in the new coordinates x := x -x , given by ẋ = fσ(x) (x), where fσ(x) (x) := f σ(x+x ) (x + x ). Definition 2.3 (adapted from [START_REF] Bacciotti | Liapunov functions and stability in control theory[END_REF]) Let the origin be an equilibrium point of (2.10). Then, it is said to be:

• stable if, for each > 0, there exists D 0 ⊆ R n , with 0 ∈ Int {D 0 }, such that for all Filippov solutions x(t) of (2.10) defined on [0, +∞), with x(0) ∈ D 0 , x(t) < for all t ≥ 0;

• locally asymptotically stable if it is stable and the following condition holds: there exists

D ⊂ R n , with 0 ∈ Int {D}, such that lim t→+∞ x(t) = 0, (2.19) 
for all Filippov solutions x(t) of (2.10) defined on [0, +∞), with x(0) ∈ D;

• locally exponentially stable if there exist positive constants ρ 1 , ρ 2 , and D ⊂ R n with 0 ∈ Int {D} such that x(t) ≤ ρ 1 e -ρ2t x(0) , ∀t ≥ 0, (2.20) for all Filippov solutions x(t) of (2.10) defined on [0, +∞), with x(0) ∈ D;

• globally asymptotically stable if it is stable and x(t) → 0 for all Filippov solutions x(t) of (2.10) defined on [0, ∞), for any x(0) ∈ R n ;

• globally exponentially stable if there exist positive constants ρ 1 and ρ 2 such that (2.20) holds for all Filippov solutions x(t) of (2.10) defined on [0, ∞), for any x(0) ∈ R n .

In the literature on nonlinear systems, stability analysis is often carried out using methods based on the existence of a Lyapunov function [START_REF] Khalil | Nonlinear systems[END_REF]. It turns out that similar Lyapunov-based methods have been developed for dynamical systems described by differential inclusions. Consider the next theorem, which provides sufficient conditions for the stability of (2.10) (or, equivalently, (2.11)).

Theorem 2.1 (adapted from [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]) Let the origin be an equilibrium of (2.10) and assume that F(x) is nonempty, compact, convex, and upper semicontinuous. If, in some domain D ⊂ R n such that 0 ∈ Int {D}, there exist a continuous function V : D → R and positive constants a 1 and a 2 such that: 

a 1 x 2 ≤ V (x) ≤ a 2 x 2 , ∀x ∈ D \ {0}, ( 2 
∂V ∂x ς ≤ -W (x) < 0, ∀x ∈ D \ {0}, (2.23) 
then the origin of (2.10) is locally asymptotically stable.

It is important to remark that the set-valued map F(x) defined in (2.12) satisfies the assumption made in Theorem 2.1 concerning F(x), which makes this theorem very useful in the Filippov framework for stability analysis of discontinuous systems.

If W (x) = 2χV (x), with χ > 0, in Theorem 2.1, the following condition is obtained:

sup ς∈F (x) ∂V ∂x ς ≤ -2χV (x), ∀x ∈ D, (2.24) 
which can be shown, using arguments from [START_REF] Bacciotti | Liapunov functions and stability in control theory[END_REF][START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF][START_REF] Teel | Lyapunov-based sufficient conditions for exponential stability in hybrid systems[END_REF], to be sufficient for ensuring local exponential stability of the origin. The scalar χ shall be referred to as the decay rate. A physically motivated choice for the Lyapunov function V (x) can be the energy of the system. In this case, (2.24) expresses the condition that the energy is dissipated at a rate greater or equal to χ, which is sufficient to guarantee exponential stability.

In the next section, we introduce the main class of discontinuous systems addressed in this work. As it will be seen, their relevance here comes from the fact that they are suitable for modeling systems such as DC/DC converters.

Switched affine systems

In this section, we introduce a class of discontinuous systems known as Switched Affine Systems (SASs). Their dynamics can be written as follows:

ẋ(t) = A σ(•) x(t) + b σ(•) , (2.25) 
which is a particular case of (2.10) where f j (x) = A j x+b j , ∀j ∈ I N . Matrices A j and b j constitute the system data for each mode j ∈ I N and they all have appropriate dimensions. Note that, for each j ∈ I N , the dynamics are affine on the state x.

It is obvious from (2.7) that the Boost converter can be modeled as a SAS, as it is generally the case with DC/DC power converters. As discussed before, in these converters, one can select the configuration of the controlled switches and thus change the mode of the system. For this reason, the switching function σ(•) is regarded here as a control input. Moreover, as mentioned in Section 2.1, we shall consider here mostly state-dependent switching functions σ = σ(x).

From (2.12), the Filippov set-valued map associated with (2.25) is given by:

F(x) = >0 µ(S)=0 conv A σ(x) x + b σ(x) : x ∈ B(x, ) \ S . (2.26)
Under the assumption of measurable switching laws, F(x) is locally bounded, upper semicontinuous, and takes non-empty, compact, and convex values [START_REF] Bacciotti | Liapunov functions and stability in control theory[END_REF][START_REF] Hetel | Local stabilization of switched affine systems[END_REF]. Therefore, the results reported in Section 2.1 can be used to analyze the system behavior. Indeed, Proposition 2.1 guarantees that Filippov solutions exist for system (2.25). The following assumption is made. Assumption 2.1 There exists δ ∈ ∆ N such that:

Ā(δ )x + b(δ ) = 0, (2.27) 
with:

Ā(δ) := N j=1 δ (j) A j , b(δ) := N j=1 δ (j) b j .
(2.28)

Note that Assumption 2.1 implies that:

0 ∈ conv {A j x + b j : j ∈ I N } . (2.29)
In other words, x belongs to the convex hull of the dynamics f j (x ), ∀j ∈ I N . Since, for each j ∈ I N , A j x + b j is continuous with respect to x then from (2.26) we have that 0 ∈ F(x ). According to Definition 2.2, this means that x is an equilibrium of (2.25).

Interestingly, by comparing (2.27) with (2.9), it is easy to see that the same equation is obtained with both the average-model and the switched systems framework introduced in Section 2.1. In fact, the operating point x is the same in both cases, as well as the vector δ . Recall that δ (1) is the converter duty cycle in steady state. So it can be seen that physical quantities, such as the duty cycle, can be recovered from analyzing (2.25) within the discontinuous systems framework, showing that certain concepts that may seem abstract in the theory actually have real physical counterparts.

Example 2.3 Consider the switched affine model of the Boost converter given in (2.7), where matrices A j and b j , j = 1, 2, are given in (2.3) and (2.6). From the dynamics in equilibrium (2.27), the following equations are obtained:

x (2) = E 1 -δ (1)
, (2.30)

x (1) = x (2) 1 -δ (1) r o , (2.31) 
where, since ) is the inductor current and x (2) is the output voltage in equilibrium. Recall that δ (1) is the duty cycle in steady state.

x(t) = [i(t) v(t)] T , x (1 
Equations (2.30) and (2.31) express the conditions for a point x to be an equilibrium in the Boost converter example. It is worth noting that (2.30) is the same classical relationship between the input and output voltages found in the power electronics literature. Indeed, δ (1) ∈ [0, 1) and thus from (2.30) one immediately sees that the output voltage cannot be lower than the input voltage in equilibrium, which is a known physical constraint in Boost converters.

In the following sections, we present some pertinent results from the literature on how to design controllers with the aim of achieving closed-loop stability of SASs.

Stabilization of switched affine systems

The problem of stabilizing SASs has attracted a great deal of interest over the past few decades. Different methods have been proposed in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF][START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF][START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF][START_REF] Hetel | Local stabilization of switched affine systems[END_REF][START_REF] Trofino | Stabilizing switching rule design for affine switched systems[END_REF] for the case of SASs described by (2.25).

Stabilization of SASs is particularly challenging due to the fact that the equilibrium point x ∈ R n to be stabilized is usually different from the equilibrium of any mode. Thus, the equilibrium point of the switched system can only be reached via switching [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF]. In other words, stabilization can only be achieved by switching infinitely fast between two or more modes, giving rise to sliding motions.

The switching function σ(x) has the following general form:

σ(x) ∈ G(x), (2.32) 
where G : R n → 2 I N \{∅} is a set-valued map giving the modes that can be selected at state x ∈ R n . More precisely, it contains all modes that can be selected in some immediate neighborhood of point x. This will become clear later on. The associated Filippov set-valued map F(x) can then be determined from (2.12) and (2.32) to be:

F(x) = conv {A j x + b j : j ∈ G(x)} .
(2.33)

Two remarks can be made regarding (2.32):

• when, for some j ∈ I N , G(x) = {j}, then the dynamics of the SAS is simply mode j, i.e., A j x + b j . By defining the regions of activation R j := {x ∈ R n : G(x) = {j}}, ∀j ∈ I N , we can say that the trajectory evolves in R j ;

• when |G(x)| > 1, then at that point the trajectory belongs to S := {x ∈ R n : |G(x)| > 1}.

If certain conditions (presented in Chapter 6) are met , then the trajectory actually keeps evolving in S. This behavior characterizes the phenomenon of sliding modes.

The objective in the present section is the design of a switching law of the form (2.32) with the goal of stabilizing the desired equilibrium x . In the sequel, some strategies from related works are presented, both for global and local stabilization. These methods are based on the so-called min-type switching functions. Roughly speaking, they consist in selecting at each instant the mode minimizing the time derivative of the Lyapunov function, usually taken to be quadratic. The main interest in reporting these results is that a similar approach is adopted in this thesis. Recall the definition of S := {x ∈ R n : |G(x)| > 1}. If the system has N = 2 modes, then S is an (n -1)-dimensional surface that can be determined from (2.32). Indeed, when |G(x)| > 1, then the only possibility is that G(x) = I 2 . Using (2.32), this corresponds to the set of points x ∈ R n such that (x -x ) T P (A 1 x + b 1 ) = (x -x ) T P (A 2 x + b 2 ). Equivalently, this set of points can be described as S = {x ∈ R n : s(x) = 0}, where:

Global stabilization

s(x) := (x -x ) T P [(A 1 -A 2 )x + b 1 -b 2 ] .
(2.36)

The next example shows how Theorem 2.2 can be applied to design a switching law stabilizing the operation point of a Boost converter and also how the closed-loop system behaves in this case.

Example 2.4 Consider system (2.25) with matrices A j and b j given by (2.3) and (2.6) where the circuit parameters are: E = 400V, l = 1mH, c = 10µF, and r o = 40Ω. The goal is to stabilize the output voltage x (2) at the desired reference x (2) = 600V. The current in equilibrium is a function of x (2) and is determined using (2.30) and (2.31) as:

x (1) = x (2) 2 r o E . ( 2 

.37)

An LMI feasibility problem seeking to find P = P T 0 such that (2.34) is satisfied is numerically solved and the following matrix is obtained:

P = 11.93 -0.006 0.12 . ( 2 

.38)

A simulation of the closed-loop system has been run with initial condition x(0) = [5 300] T . Figures 2.5 and 2.6 show the resulting plots.

It is clear that the system states have converged to the desired operating point, since the output voltage has been stabilized at the reference value. Furthermore, we also show the switching surface described by equation s(x) = 0, with s(x) defined in (2.36). The trajectory starts at R 1 (mode 1 activated) and then reaches the surface s(x) = 0 for the first time. Then, for reasons that will be discussed in Section 6.1, the trajectory crosses the surface into R 2 . Then, it reaches the switching surface for the second time and then the sliding motion begins until stabilization at x is achieved.

We present hereafter an adapted version of a result in [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF] that also ensures global exponential stabilization of x . Theorem 2.3 (adapted from [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF]) Under Assumption 2.1, consider x ∈ R n and δ ∈ ∆ N such that (2.27) holds. If there exists P = P T 0 such that sym {P A j } ≺ 0, ∀j ∈ I N , (2.39) then x is a globally exponentially stable equilibrium point of the closed-loop system (2.25), (2.32), with:

G(x) = arg min j∈I N (x -x ) T P (A j x + b j ). (2.40)
Although Theorem 2.3 can be used to design a stabilizing controller, the design conditions are stricter. Indeed, it can be seen from 2.39 that all modes must be Hurwitz and they also must share a common Lyapunov function. In fact, in the case of the Boost converter, this stabilizing control method cannot be applied since matrix A 1 has one eigenvalue equal to zero, meaning that there does not exist P = P T 0 such that sym {P A 1 } ≺ 0.

Practical stabilization with dwell-time guarantee

The results reported in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] are also very interesting to mention here since they also deal with mintype switching laws. The results in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] are cast in the hybrid systems formalism presented in [START_REF] Goebel | Hybrid dynamical systems[END_REF], which is very general in the sense that they encompass a class of discontinuous systems larger than that of switched systems. The condition for designing a stabilizing controller is very similar to the one in [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF]: there exist matrices P = P T 0 and Q = Q T 0 such that sym P Ā(δ ) + 2Q 0, (2.41) which implies that matrix Ā(δ ) must be Hurwitz. The main difference lies in the switching law itself. Indeed, even though (2.35) is also used in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF], the problem of sliding modes is circumvented by imposing a positive dwell-time (which is the time spent without any switching) constraint on the switching law. This is done separately for the transient and the steady-state regimes of the trajectory, as briefly discussed in the sequel.

During the transient behavior, the strategy proposed in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] can be thought of as based on hysteresis. The idea is to let switching occur only when the following condition is met:

(x -x ) T P (A σ(x) x + b σ(x) ) ≥ -η(x -x ) T Q(x -x ), (2.42) 
where η ∈ (0, 1) is a design parameter impacting the width of the variable hysteresis band in transient. When x is far from x , this severely restricts switching and thus high-frequency switching is avoided during the transient behavior. It is shown in [START_REF] Albea-Sanchez | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF][START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] that x is globally asymptotically stable even in the presence of this switching constraint. Note, however, that as the trajectory x approaches x , switching becomes more and more frequent and theoretically it happens at an infinite rate when x → x . In order to also bound switching in steady state, in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] two strategies are proposed for not letting the switching frequency tend to infinity near the equilibrium point. One is based on space regularization and the other one on time regularization. In addition to limit switching to occur when (2.42) is satisfied, another restriction is imposed on switching when the strategy based on space regularization is applied. This additional constraint takes place locally around the equilibrium and is expressed as:

(x -x ) T P (x -x ) ≥ ε, (2.43) 
which means that switching cannot happen inside the ellipse E(x , P, ε), bounding the switching frequency even in steady state. This can also be viewed as an hysteresis-based mechanism. Indeed, The value of ε controls the size of the hysteresis band in steady state, which has the shape of an ellipse. Different values of ε correspond to distinct switching frequencies in steady state.

The solution based on time regularization basically consists in directly imposing a dwell-time T > 0 between two successive switching instants, which also has the effect of preventing infinite-rate switching.

In Chapter 6 of this thesis, we propose an hysteresis switching approach that is based on the states, much like constraints (2.42) and (2.43). For this reason, we focus hereafter on the method in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] based on space regularization. The next example illustrates this approach using the same system for which the switching law (2.35) has been applied without hysteresis in Example 2.4.

Example 2.5 Consider the Boost converter presented in Example 2.4. Let us apply the switching controller proposed in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] with space regularization supposing that the goal is to stabilize the system with a decay rate of χ = 20s -1 . Solving (2.41) with Q = χP , the matrix P obtained is the same as (2.38). The values of η = 0.5 and ε = 5 have been chosen in order to illustrate the switching behavior both in transient and steady state. The resulting plots are shown in Figures 2.7 to 2.9. In Figure 2.9, functions s a,j , j = 1, 2, are defined as:

s a,j := (x -x ) T P (A j x + b j ) + η(x -x ) T Q(x -x ), (2.44) 
and the surfaces expressed by s a,j = 0 define the boundary of the region where switching is allowed according to (2.42).

In Figure 2.9a, the trajectory starts at the initial state and at that moment mode 1 is activated. The trajectory eventually reaches the surface s(x) = 0. Without any switching constraints, the trajectory would switch to the other mode, as illustrated in Figure 2.6a. However, due to the restriction (2.42), the mode is left unchanged and then it switches to mode 2 only when (2.42) is satisfied (green dashed curve in Figure 2.9, representing s a,1 = 0). The second time the trajectory reaches the surface s(x) = 0, it stays in mode 2 until (2.42) is satisfied again, which happens when s a,2 is reached. Note how this contrasts with the behavior shown in Figure 2.6a, where it can be seen that, in the absence of constraint (2.42), the trajectory slides on s(x) = 0 upon reaching this surface for the second time.

Example 2.5 highlights an important phenomenon when switching constraints are present, specially in steady state. By examining Figures 2.7 to 2.9, it is clear that oscillations take place. This effect is more visible after some time around 1.5ms, at which moment the trajectory enters the ellipse E(x , P, ). Then, the state oscillations, shown in Figures 2.7b and 2.8b, become approximately constant and they basically represent the steady-state behavior of the system. These oscillations are also known as ripples and they play an important role in characterizing the steadystate performance of the closed-loop system. They will be specially relevant in Chapter 6 when an hysteresis-based strategy is also proposed to prevent infinite-rate switching.

It is worth noting that, by using a traditional PWM-based approach (see Figures 2.2 and 2.3), steady-state ripples also occur. This happens because the PWM itself is a way of constraining the switching frequency. However, instead of imposing a state-based constraint (such as (2.42)), PWM is time-based, as well as the time regularization strategy also proposed in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF].

Remark 2.3 Global stabilization is ensured using the methods presented in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF]. However, due to the steady-state switching constraints introduced by either space-or time-based regularization, asymptotically stability of the equilibrium point is no longer possible. However, as proven in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF], practical stabilization is ensured. The notion of practical stability is a relaxed version of asymptotic stability where convergence towards a region around the equilibrium point is analyzed instead of the equilibrium itself. To illustrate this, note in Figure 2.9b that the trajectory converges to E(x , P, ε), which contains x in its interior, and then remains inside this region.

Local stabilization

Here, we present some results regarding local stabilization of switched affine systems. Even though global stability is not ensured, less conservative sufficient conditions are obtained with respect to those for global stabilization. Firstly, Assumption 2.1 is slightly modified as follows. Assumption 2.2 There exists δ ∈ ∆ N , with δ (j) > 0 for every j ∈ I N , such that:

Ā(δ )x + b(δ ) = 0. (2.45)
Assumption 2.2 is stronger than 2.1, since the condition δ (j) > 0 has been added for all j ∈ I N . However, it is important in the context of local stabilization because it will be useful later on in the estimation of the domain of attraction. Note that Assumption 2.2 implies that x cannot be the equilibrium of any individual mode. In practice, this is not at all restrictive though. For example, in the case of the Boost converter, stabilizing the system at the equilibrium of a mode would mean either leaving the transistor on or off for all time, which does not have any practical purpose whatsoever.

The main result concerning local stabilization has been proposed in [START_REF] Hetel | Local stabilization of switched affine systems[END_REF]. Before presenting this result, an intermediary step consisting in rewriting the system in another form is required. With this in mind, consider the following proposition. with the control law u = k(x), where δ is such that (2.27) holds,

D(x) := (A 1 -A N ) x • • • (A N -1 -A N ) x , (2.47) 
B := D(x ) + b 1 -b N • • • b N -1 -b N , (2.48 
)

and k(x) = v σ(x+x ) , (2.49) 
where

v j :=      e j -δ (1) • • • δ (N -1) T , if j ∈ I N -1 -δ (1) • • • δ (N -1) T , if j = N, (2.50 
) with e j denoting the j-th canonical base vector of R N -1 , i.e., e j(j) = 1 and e j(k) = 0, ∀k ∈ I N -1 \ {j}, j = 1, 2, . . . , N -1.

The next result provides a way of designing a switching controller σ(x) using a continuous stabilizing controller k c (x) for the nonlinear system (2.46). Theorem 2.4 ([58]) Consider system (2.25) and its equivalent representation (2.46), (2.50) with x = x -x . Under Assumption 2.2, if the origin of the closed-loop system (2.46) is locally asymptotically stable using some continuous feedback law u = k c (x), with k c (0) = 0, then there exists a continuous positive-definite function V (x) defined on B(0, ν), ν > 0 and a measurable switching law of the form (2.32) with

G(x) = arg min j∈I N ∂V ∂ x Ā(δ )x + (D(x) + B) v j (2.51)
such that x = x is a locally asymptotically stable equilibrium point of the closed-loop system (2.25), (2.32).

Remark 2.4 If V (x) = xT P x in Theorem 2.4, for some P = P T 0, then, using Proposition 2.2, it can be checked that the switching law (2.51) is in fact equivalent to (2.35).

Let V := {v 1 , v 2 , . . . , v N }. Then, using Proposition 2.2, the closed-loop system (2.25) 

ẋ ∈ F(x) := conv Ā(δ )x + (D(x) + B) u : u ∈ V * (x) .
(2.53)

This way of representing the closed-loop system will be useful here and specially in Chapter 3. It is also useful to point out that, using the shifted coordinates x = x -x , the system dynamics (2.25) can also be written as:

ẋ = A σ(•) x + A σ(•) x + b σ(•) . (2.54) 
Our objective here is to develop controllers for the switched affine system (2.25). One of the main advantages of Theorem 2.4 is that it can be used to achieve this objective through the design of a continuous controller for the nonlinear input affine system (2.46), which is a problem for which many methods in the nonlinear systems literature have been proposed [START_REF] Khalil | Nonlinear systems[END_REF]. Then, it suffices to consider the corresponding Lyapunov function V (x) in the switching controller that is actually applied to control system (2.25).

A practical choice for a continuous stabilizer k c (x) is the classical static linear feedback controller k c (x) = K x, where K ∈ R (N -1)×n . An application of such a controller for the local stabilization of SASs including an estimation of the domain of attraction can be found in [START_REF] Kader | Stabilization of switched affine systems with disturbed state-dependent switching laws[END_REF]. Control design in this case is based on the following fact: if the pair ( Ā(δ ), B) is stabilizable, then for some χ > 0, there exist P = P T 0 and K such that the following LMI holds [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]: sym P Ā(δ ) + BK + 2χP 0.

(2.55)

Then, by considering the Lyapunov function V (x) = xT P x, the switching law (2.32), (2.51) ensures local stabilization.

The main advantage of applying the local stabilizer (2.51) instead of the global stabilizer (2.35) lies in the sufficient conditions for control design. In fact, recall that the condition to apply Theorem 2.2 is that Ā(δ ) must be Hurwitz. For local stabilization, on the other hand, (2.55) is sufficient, meaning that Ā(δ ) is not required to be Hurwitz. Instead, the pair ( Ā(δ ), B) must be stabilizable, which is a weaker condition. In addition, using (2.55), one is free to impose a desired decay rate χ through the design of the gain K. If ( Ā(δ ), B) is controllable, then any decay rate would theoretically be possible. In contrast, from (2.34) or (2.41), the decay rate is constrained by the open-loop matrix Ā(δ ). Therefore, using the controller for local stabilization ensures that the desired performance defined by the decay rate is achieved in a certain domain of attraction.

In the next section, the process of estimating the domain of attraction is explained in the case of a subclass of SASs, namely LTI systems with relay feedback control.

Stabilization of LTI systems with relay feedback control

In this section, we consider the following special subclass of switched affine systems:

ẋ(t) = Ax(t) + b σ(•) , (2.56) 
where it can be seen from (2.25) that A j = A, ∀j ∈ I N . In other words, the state transition matrix is common to all modes.

- Systems of the form (2.56) are very interesting for a number of reasons. Firstly, the particular structure of (2.56) allows to simplify some of the results that have been presented in the previous sections. More importantly though, it also has a practical interest in the field of power converters, as shown in the following example. 

+ E S l i(t) r o D c + - v(t)
A = 0 -1/l 1/c -1/(r o c) , (2.57) 
b 1 = E/l 0 , b 2 = 0 0 . (2.58) 
Using (2.27), x is an equilibrium point if there exists δ ∈ ∆ 2 such that:

x (1) = x (2)
r o , (2.59)

x (2) = δ (1) E. (2.60)
Since the transistor is closed in mode 1, here once again the δ (1) can be interpreted as the converter duty cycle in steady state. Equations (2.59)-(2.60) are the same as those used to describe the Buck converter from the average model viewpoint, just as in the case of the Boost converter. Indeed, it can be seen from (2.60) that the voltage in equilibrium can only be lower or equal to the input voltage.

Applying Theorem 2.2 to design a controller ensuring global stabilization, one needs to find

P = P T 0 such that: sym {P A} ≺ 0, (2.61) 
since Ā(δ ) = N j=1 δ (j) A = A, for all δ ∈ ∆ N . Therefore, the state transition matrix A must be Hurwitz. In addition, since A j is the same for every mode j, then the switching law boils down to: 

σ(x) ∈ G(x) = arg min j∈I N (x -x ) T P b j . ( 2 
(x) = 0, with s(x) = (x -x ) T P (b 1 -b 2 ), (2.63) 
which is the equation of an hyperplane in R n .

Using Proposition 2.2, system (2.56) can be rewritten in the coordinates x = x -x as:

ẋ = Ax + Bu, (2.64) 
with control law u = k(x) given by (2.49), (2.50). Expressed in this form, (2.64) can be thought of as an LTI system controlled by a relay u ∈ V = {v 1 , v 2 , . . . , v N }.

We present hereafter a useful result concerning set V. Note, using (2.50), that:

N j=1 δ (j) v j = N -1 j=1   δ (j)   ej -    δ (1)
. . .

δ (N -1)          -δ (N )    δ (1)
. . .

δ (N -1)    = =    δ (1)
. . .

δ (N -1)    - N -1 j=1 δ (j)    δ (1)
. . .

δ (N -1)    -δ (N )    δ (1)
. . .

δ (N -1)    = =    δ (1)
. . .

δ (N -1)    -    δ (1)
. . .

δ (N -1)    = 0, (2.65) 
since N j=1 δ (j) = 1. From Assumption 2.2, we have that δ (j) > 0, ∀j ∈ I N . Therefore, (2.65) implies:

0 ∈ Int {conv {V}} .

(2.66)

Set conv {V}, along with the result expressed in (2.66), will be specially relevant in the sequel for the estimation of the domain of attraction. It is useful to represent this set as the intersection of N h halfspaces in R N -1 . This is possible because conv {V} is a polytopic region whose vertices are v 1 , v 2 , . . . , v N . Since (2.66) holds, the expressions for each halfspace are given by:

ζ T q v ≤ 1, v ∈ R N -1 , q ∈ I N h , (2.67) 
where ζ q ∈ R N -1 parameterizes the q-th hyperplane. The convex hull of V is then written as:

conv {V} = {v ∈ R N -1 : ζ T q v ≤ 1, ∀q ∈ I N h }. (2.68)
Now define the following set:

C V (K) := {x ∈ R n : K x ∈ conv {V}}, (2.69) 
which, as a consequence of (2.66), satisfies the property 0 ∈ Int {conv {C V (K)}}. let us rewrite C V (K) using (2.68):

C V (K) = x ∈ R n : ζ T q K x ≤ 1, ∀q ∈ I N h . (2.70) Since 0 ∈ Int {C V (K)}, then ∃β > 0 such that E(0, P, β) ⊂ C V (K). A condition for β is obtained hereafter. According to [16, Section 5.2.2], E(0, P, β) ⊂ C V (K) if and only if : max ζ T q K x : x ∈ E(0, P, β) ≤ 1, ∀q ∈ I N h , (2.71) 
which is equivalent to:

βζ T q KP -1 K T ζ q ≤ 1, ∀q ∈ I N h . (2.72)
Now we can state the following theorem, which is an adapted version of a result presented in [START_REF] Hetel | Variable structure control with generalized relays: A simple convex optimization approach[END_REF].

Theorem 2.5 Consider system (2.64) with conv {V} written as in (2.68). Under Assumption 2.2, if for a given χ > 0 there exist matrices P = P T 0 and K such that

sym {P (A + BK)} + 2χP 0, (2.73) 
then for any β > 0 satisfying (2.72), the origin of the closed-loop system (2.64) with control law u = k(x) given by k(x) ∈ V (x) = arg min

v∈V xT P Bv (2.74)
is locally exponentially stable with decay rate χ in Ω 0 := E(0, P, β).

It is important to remark that the conditions of Theorem 2.5 can be expressed as LMIs. Indeed, it is well-known that (2.73), with P 0, is equivalent to the following LMI with τ > 0:

sym {AQ} -2τ BB T + 2χQ 0, (2.75) 
where P and K are recovered as P = Q -1 and

K = -τ B T P. (2.76)
On the other hand, condition (2.72) can be rewritten as:

1 -βζ T q KP -1 K T ζ q ≤ 0, q ∈ I N h . (2.77)
Using (2.76), inequality (2.77) becomes:

1 -τ 2 βζ T q B T Q -1 Bζ q ≤ 0, q ∈ I N h , (2.78) 
which, since β > 0, can be written as:

1 β -τ 2 ζ T q B T Q -1 Bζ q ≤ 0, ∀q ∈ I N h . (2.79) 
Let γ = 1/β. Then, since Q 0, we can use the Schur complement to show that (2.79) can be equivalently expressed as the following LMIs2 :

γ τ ζ T q B T Q 0, ∀q ∈ I N h . (2.80)
Therefore, design of the control law (2.74) can be carried out by solving an LMI feasibility problem where we search for a matrix Q = Q T 0 and two positive scalars τ and γ such that (2.75) and (2.80) are satisfied.

So far, we have only considered switching laws which assume perfect knowledge of the equilibrium point. Indeed, the term x must be known in order to be able to apply the controllers introduced here. In some cases, however, x might be uncertain, which poses a serious problem for stabilization using one of these controllers. In the next section, we look at how this problem can be resolved.

Adaptive stabilization of switched affine systems

It is very common in practice that one or more parameters of the system are not well known. In the case of DC/DC power converters, the load usually varies, which has a direct impact on the current flowing in the load. Moreover, the presence of semiconductor components such as transistors and diodes introduces some parasitic resistances and voltage drops. These effects can be modeled as uncertainties on the input voltage, which had been assumed in the converter examples treated in past sections to be perfectly constant. As a matter of fact, the supply of the converter may also suffer voltage variations (due to battery discharge, for instance), further incurring more uncertainties on the input voltage. The aforementioned parameter uncertainties are represented for the Boost converter in the electrical circuit shown in Figure 2.11.

In the circuit shown in Figure 2.11, ∆E is a voltage source modeling the uncertainty in the input voltage and ∆i o is a current source that models the uncertainty in the load current. The perturbation vector is denoted as

p = [∆E ∆i o ] T .
Parameter uncertainty is a relevant problem in the case of switched affine systems because the desired equilibrium itself may depend on such parameters and thus the point to which the system must be stabilized becomes uncertain. Indeed, looking again at the Boost converter example, even though x (2) is known and equal to the desired reference x r , the value of x (1) depends on the unknown parameters in addition to x r , as it will be seen later on in Example 2.7.

This dependence of x on p poses a clear issue given that the stabilizing control strategies presented before in Section 2.3 all depend on the exact knowledge of the desired equilibrium x .

In the present section, a switching controller taking into account parameter uncertainties is presented with the goal of overcoming this issue. The approach discussed here is an adapted version of the one found in [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF]. The main idea behind this method is the use of an extended observer to estimate the parameter values and then use them in a min-type switching control law of the same kind as those in Section 2.3.

- + E - + ∆E l i(t) D r o ∆i o S c + - v(t)
It is also assumed here that only partial measurements are available. The motivation behind this assumption is that some sensors may not be present or prohibitively expensive to be used, and therefore not all system states become available for control. Since the control law is statedependent, the states must then also be estimated in addition to the uncertain parameters. Once all these estimations are available, then the stabilizing controller can be applied to drive the state to the equilibrium. Therefore, the approach described here can be broken down into two main steps:

1. design an observer whose role is to provide the necessary estimates of both the states and unknown parameters;

2. design a stabilizing controller based on the aforementioned estimations.

The system equations are written as:

ẋ = A σ x + b σ + G σ p, (2.81) 
y = Cx, (2.82) 
where x ∈ R n is the state, p ∈ R np is the vector regrouping all uncertain parameters, and y ∈ R ny is the measured output vector. Matrices G j , j = 1, 2, . . . , N , model the influence of the parameters on system dynamics. The stabilization objective consists in driving part of the states to a prescribed reference x r . Without loss of generality, we write the state vector x as x = [x T 1 x T 2 ] T and consider that x 2 must be stabilized at x r . In general, the equilibrium states x 1 depend on the choice of x r .

However, since parameters p are unknown, so is the equilibrium point of (2.81). In fact, the equilibrium is also a function of p, and thus x = x (p, x r ). The equilibrium point can be written as

x (p, x r ) = [x 1 (p, x r ) T x T r ] T , with x 1 (•)
assumed to be a continuously differentiable function. The next assumption is made concerning the unknown parameters.

Assumption 2.3 The parameter vector p belongs to a known compact set P.

In order to accommodate the uncertainty in the parameters, Assumption 2.1 is modified as follows.

Assumption 2.4 For any p ∈ P, there exists δ (p, x r ) ∈ ∆ N such that:

Ā(δ (p, x r ))x (p, x r ) + b(δ (p, x r )) + Ḡ(δ (p, x r ))p = 0, (2.83) 
where:

Ḡ(δ) := N j=1 δ (j) G j . (2.84)
Note that, according to Assumption 2.4, the point x (p, x r ) is an equilibrium of the system for any p ∈ P.

The next assumption bounds the variation of the equilibrium point with respect to the parameters.

Assumption 2.5 There exists a scalar ϑ(p, x r ) ≥ 0 such that:

∂x (p, x r ) ∂p ≤ ϑ(p, x r ), (2.85) 
for all p ∈ P.

In order to deal with the uncertainty in δ (•) caused by its dependence on p, the following assumption is also made. Assumption 2.6 There exists a polytopic approximation ∆ ⊆ ∆ N , whose vertices are denoted as δ1 , δ2 , . . . , δnv , such that δ (p, x r ) ∈ ∆, ∀p ∈ P.

In the next example, we model the Boost converter shown before, but now we consider that it is subject to uncertainties. 

       di(t) dt = E l - ∆E l , dv(t) dt = - 1 r o c v(t) - ∆i o c .
(2.86a)

(2.86b)
For mode 2, the dynamics are:

       di(t) dt = - 1 l v(t) + E l - ∆E l , dv(t) dt = 1 c i(t) - 1 r o c v(t) - ∆i o c . (2.87a) 
(2.87b)

The system is then described by (2.81), with matrices A j and b j given by (2.3)-(2.6), j = 1, 2, p = [∆E ∆i o ] T , and:

G 1 = G 2 = G := -1/l 0 0 -1/c . ( 2 

.88)

We assume in this example that all measurements are available, in order to focus on robustness with respect to perturbations. Thus C = I 2 . In addition, parameter ∆E varies in the range [0,

p * 1 ]V while ∆i o varies in [0, p * 2 ]A, with 0 ≤ p * 1 < E and p * 2 ≥ 0. Set P is then equal to P = [0, p * 1 ] × [0, p * 2 ]
. The numerical values in this example are p * 1 = 80V and p * 2 = 20A. Recall that the control objective is to stabilize the output voltage x (2) at the desired value x r . Therefore, as before, x (2) = x r . From (2.83), x (1) (p, x r ) is determined as:

x (1) (p, x r ) = 1 δ (2) (p, x r ) x r r o + p (2) , (2.89) 
where:

δ (p, x r ) = 1 - E-p (1) xr E-p (1)
xr .

(2.90)

Furthermore, from the expression for δ (p, x r ), one can easily check that:

1 - E -p * 1 x r ≤ δ (1) (p, x r ) ≤ 1 - E x r , (2.91 
)

and E -p * 1 x r ≤ δ (2) (p, x r ) ≤ E x r , (2.92) 
implying that δ (p, x r ) ∈ P for all p ∈ P. Therefore, we may take as vertices of the polytopic approximation ∆ the vectors δ1 = δ (0, 0) and δ2 = δ (p * 1 , p * 2 ). This is illustrated in Figure 2.12, where ∆ is represented by the black line segment contained in ∆ 2 . Let η denote the extended vector formed by states x and parameters p. Thus, η := [x T p T ] T . The estimations for vectors x, p and η are denoted as x, p and η, respectively. The switched observer proposed in [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF] has the following dynamics:

η = Ãσ η + bσ + Lσ (y -C η), (2.93) 
where:

Ãj := A j G j 0 0 , bj := b j 0 , ∀j ∈ I N , (2.94) 
C := C 0 , (2.95) 
and Lj , j = 1, 2, . . . , N , are gains to be determined. The observer expressed by (2.93) can be seen as a switched version of the classical extended Luenberger observer. The dynamics of the estimation error ẽ := η -η are given by:

ė = Ãσ -Lσ C ẽ.
(2.96)

The following proposition provides a design procedure to determine the gains Lj in order to ensure the convergence of the estimations, i.e., lim t→∞ ẽ(t) = 0. Proposition 2.3 (adapted from [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF]) For a given χ o > 0, if there exists a symmetric matrix P obs 0 and matrices R j , j = 1, 2, . . . , N , such that:

sym P obs Ãj -R j C + 2χ o P obs 0, ∀j ∈ I N , (2.97) 
then, by choosing Lj = P -1 obs R j , ∀j ∈ I N , the point ẽ = 0 is a globally exponentially stable equilibrium of the error dynamics (2.96) with decay rate χ o .

The next example illustrates the observer design procedure by means of the Boost converter example.

Example 2.8 Consider the Boost converter discussed in Example 2.7. Let matrices Ãj , bj , j = 1, 2, and C be constructed according to (2.94), (2.95). The observer design is carried out by using Proposition 2.3 choosing χ o = 2000s -1 . This value has been chosen in order for the observer dynamics to be much faster than the desired closed-loop state dynamics, with decay rate chosen to be χ = 20s -1 (as it will be seen in Example 2.9). Solving (2.97) and P obs 0, we obtain the following matrices:

P obs =     1.08 0 0.24 0 1.08 0 0.02 0.12 0 1.08     , (2.98) R 1 =     0.022 0 0 -0.005 -0.001 0 0 -1.082     × 10 5 , R 2 =     0.022 0.536 0.536 -0.005 -0.001 -0.002 0.022 -1.082     × 10 5 .
(2.99)

The observer gains Lj , j = 1, 2, are then given by:

L1 =     0.04 0 0 0.02 -0.09 0 0 -1.00     × 10 5 , L2 =     0.04 0.90 0.49 0.02 -0.09 -1.83 0.01 -1.00     × 10 5 .
(2.100)

According to Proposition 2.3, by using the observer (2.93), the estimation errors all converge to zero with decay rate χ o .

The result presented in Proposition 2.3 is interesting because it expresses the observer design in terms of an LMI feasibility problem. The theorem presented hereafter provides sufficient conditions for the stabilization of (2.81) based only on the estimates obtained from (2.93) with observer gains determined using Proposition 2.3.

Theorem 2.6 (adapted from [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF]) Consider that the conditions of Proposition 2.3 are satisfied and that Assumptions 2.3-2.6 hold. For a given χ > 0, if there exists a symmetric matrix P 0 such that sym P Ā( δq ) + 2χP 0, ∀q ∈ I nv ,

then, for any p ∈ P, x (p, x r ) is a globally exponentially stable equilibrium point of the closed-loop system (2.81) with switching law given by σ(x, p) ∈ arg min

j∈I N (x -x (p, x r )) T P (A j x + b j + G j p) , (2.102) 
where x and p are the solutions of (2.93) with Lj determined as in Proposition 2.3, ∀j ∈ I N .

In the next example, the control of the Boost converter with parameter uncertainties presented in Example 2.7 is addressed.

Example 2.9 Let us apply Theorem 2.6 to design a controller based on the estimates provided by (2.93), with Lj calculated in Example 2.8, j = 1, 2. Choosing χ = 20s -1 , (2.101) is solved for P 0 and the following matrix is obtained:

P = 8622 -4.6 86 
.
(2.103)

Figures 2.13 and 2.14 show the simulation results. The parameters evolved according to the blue plots in Figure 2.14. The input voltage suffers a step disturbance of 60V at instant t = 5ms, and the load current starts at 3A and then has a 400% step variation at t = 10ms reaching 15A. It is interesting to note in these plots the actions of both the observer and the controller. In Figure 2.14, the estimations converge to the real values of the parameters, even though large variations occur at start-up and also when the load current abruptly changes. Based on these estimates, the equilibrium point x (•) is updated (red curves in Figure 2.13) and the controller (2.102) drives the system states to the updated equilibrium point. The result is that the output voltage converges to the desired reference x r , fulfilling the control objective.

The method presented here for the design of an adaptive observer-based stabilizer can be briefly described by Algorithm 2.1, which is carried out offline. Once matrices P and Lj , j = 1, 2, . . . , N , have been obtained using Algorithm 2.1, the online controller is applied as described by Algorithm 2.2. 

1 Initialize η(0) = 0 2 while t ≥ 0 do 3 Collect measurements y(t) 4 Solve (2.93) to find η(t) = [x(t) p(t)] T 5 Update equilibrium point x (p(t), x r ) 6
Select mode σ(x(t), p(t)) given by (2.102)

Conclusion

The main takeaway of this chapter is that a number of switching control techniques exist for switched affine systems and they work very well for DC/DC power converters since they manage to stabilize the desired operating point even when common uncertainties are present in the circuit. Moreover, the control design can be carried out through the solution of LMI problems, which is very attractive from a computational viewpoint. In the following chapters, the goal is to extend these results to more complex systems, such as power converters interconnected in a network. Indeed, we will see that in this case the solution of the LMIs can quickly become burdensome as the number of converters grows. Strategies to overcome this issue will be proposed in Chapters 3 and 4.

Another factor that may impact the solution of the LMIs is the bad conditioning of the matrices involved. This occurs when there is a large gap between the time scales of the system dynamics. To the best of our knowledge, this has not been addressed in the literature on SASs controlled by the state-dependent switching laws discussed in the present chapter. This problem will be addressed in Chapter 5 in the context of singularly perturbed systems.

Chapter 3

Networked control of switched affine systems

In certain applications, a system can be studied as SASs interconnected in a network. This is the case, for instance, of microgrids consisting of a certain number of DC power converters interfacing each energy source (batteries, solar panels, etc.) with the DC bus and the load, as represented in Figure 1.3. For our purposes in this chapter, we assume that the association of the DC bus and the load is modeled as a linear system, which is the case if it can be represented as a resistance in parallel with a capacitance.

It is worth pointing out that such a network of switched systems can itself be modeled as a single switched system. In this case, each mode of the network can be mapped on to a different combination of the modes of each individual switched system. The total number of modes of the network is then given by the product of the numbers of modes in each switched system. For this reason, the total number of modes grows exponentially with the number of switched systems.

Since the network is a switched system, the same techniques presented in Chapter 2 can, in principle, be applied to design stabilizing controllers for the network as a whole. However, there are two difficulties that arise when using these approaches:

• due to the exponential growth of the modes with the number of switched systems in the network, numerical issues may arise for larger networks. Indeed, this means that some constructive methods for control design presented in Chapter 2 will be more computationally costly due to the high number of LMIs to solve;

• the real-time implementation of the switching control law will also be much more resourceintensive, since the decision of the control signal is based on the solution of an optimization problem where the objective function is tested for all possible modes of the system. See (2.35) for an example: in order to determine the mode to be selected, the expression (xx ) T P (A j x + b j ) must be evaluated for all j ∈ I N . A high number of computations would then be necessary if N is large.

In the current chapter, we seek to overcome the aforementioned difficulties by adopting a framework that is adapted to address switched systems interconnected in a network. Since we are interested in applying the developed techniques to the control of power converters, we shall specifically focus on networked switched affine systems.

The goal is the stabilization of the entire network at a desired equilibrium point. To that end, we employ Lyapunov-based methods inspired from the literature on SASs. The work developed here can be seen as an extension of the classical state-dependent switching controllers presented in Chapter 2, based on a quadratic Lyapunov function, to a network of SASs with a view to avoiding the issues outlined above.

Furthermore, in a network of systems, there is another issue that may be relevant depending on the application: the signal transmission between the different systems. For example, the control signal for each system may depend on the states of all systems in the network, which may not be practically feasible if the network is too large and the delays in communication hinder system stabilization. Therefore, in the course of this chapter, we will also be interested in developing decentralized controllers, in which the control signal in each system only depends on the states of that system, thus avoiding communication issues between different systems. The following section describes the network that we address here and formalizes the problem at hand.

ẋ1 = f 1 (x 1 , σ 1 , x 0 ) (SAS 1) ẋ2 = f 2 (x 2 , σ 2 , x 0 ) (SAS 2) . . . ẋm = f m (x m , σ m , x 0 ) (SAS m) ẋ0 = f 0 (x 1 , . . . , x m , x 0 ) (Linear system) x 1 x 2 x m x 0 σ 1 σ 2 σ m

System description and problem statement

We are interested in systems described as a set of m switched affine systems coupled by a linear system. The scheme illustrating how these systems interact is shown in Figure 3.1. The control inputs are the switching functions σ i , i = 1, . . . , m, and they are represented in blue in Figure 3.1.

The dynamics of the full network are described by the following equations:

             ẋ1 = f 1 (x 1 , σ 1 , x 0 ) := A 1,σ1 x 1 + A 01 x 0 + b 1,σ1 ẋ2 = f 2 (x 2 , σ 2 , x 0 ) := A 2,σ2 x 2 + A 02 x 0 + b 2,σ2 . . . . . . . . . ẋm = f m (x m , σ m , x 0 ) := A m,σm x m + A 0m x 0 + b m,σm ẋ0 = f 0 (x 1 , . . . , x m , x 0 ) := A 10 x 1 + A 20 x 2 + . . . + A m0 x m + A 0 x 0 , (3.1) 
where x i ∈ R ni , i = 0, . . . , m. The i-th switched affine system has N i modes and the switching function σ i : R ni → I Ni selects at each instant the mode j i ∈ I Ni to be selected, for every i ∈ I m .

The control inputs are considered to be the switching functions of each switched affine system. The notation for A i,ji can be explained as follows: A i,ji refers to the dynamic matrix of the j i -th mode of the i-th SAS, j i = 1, 2, . . . , N i , i = 1, 2, . . . , m. The notation for b i,ji is constructed analogously. Matrices A 0i and A i0 , i = 1, 2, . . . , m, on the other hand, do not depend on the mode of SAS i, and neither does matrix A 0 . Denoting the full state as

x = [x T 1 x T 2 • • • x T m x T 0 ] T ∈ R n , the desired equilibrium point as x = [x 1 T x 2 T • • • x m T x 0 T ] T and the switching vector σ as σ = [σ 1 σ 2 • • • σ m ]
T , the dynamics of the full-order system can be expressed as:

ẋ = f (x, σ) := A(σ)x + b(σ), (3.2) 
where:

A( j) :=        diag A 1, j (1) , A 2, j (2) , . . . , A m, j (m) A 01 A 02 . . . A 0m A 10 A 20 • • • A m0 A 0        (3.3) and b(j) :=         b 1, j (1) b 2, j (2) . . . b m, j (m) 0         , ∀ j ∈ I N1 × I N2 × . . . × I Nm . (3.4) 
The full network, whose dynamics are given by (3.1), may equivalently be described as a single switched affine system with dynamics given by (3.2)- (3.4), where each j ∈ I N1 × I N2 × . . . × I Nm can be mapped on to a different mode in I N , with N being the total number of modes of the entire network. Thus, the full network, when modeled as a single switched affine system, has a total of N = m i=1 N i modes. In the case of interconnected DC converters, j i denotes whether the transistor in converter i ∈ I m is either close (j i = 1) or open (j i = 2). If m = 3, then N = 8 combinations of open or closed switches are possible.

Remark 3.1 Since we have that N i ≥ 2, ∀i ∈ I m , then N ≥ 2 m . This underscores the exponential growth of the number of modes in the network with the number of switched systems m.

The goal is to stabilize the state of the full network to the desired equilibrium point x , i.e., to ensure that x i → x i , where x i , ∀i ∈ I m ∪ {0}, are the desired equilibrium points for each system.

The following assumption is a restatement of Assumption 2.2 to the networked system presented here.

Assumption 3.1 A 10 x 1 + A 20 x 2 + • • • + A m0 x m + A 0 x 0 = 0, (3.5) 
and, for each i ∈ I m there exists δ i ∈ ∆ Ni , with δ i,ji > 0, ∀j i ∈ I Ni , such that:

Āi (δ i )x i + A 0i x 0 + bi (δ i ) = 0, (3.6) 
where Āi (δ i ) :

= Ni ji=1 δ i(ji) A i,ji and bi (δ i ) := Ni ji=1 δ i(ji) b i,ji .
In our case, inspired by the application to interconnected converters, we assume that x 0 is the reference and x i , ∀i ∈ I m , are determined from x 0 using (3.5).

In Chapter 2, we have seen that some min-type state-dependent switching laws have been proposed in the SASs literature and they have been successfully applied to power converters. Here, we also seek to design switching laws of the same type, but to multiple switched systems. To that end, we consider switching laws having the following general form:

σ i (x) ∈ G i (x), (3.7) 
where G i : R n → 2 I N i \ {0} is a function to be determined for each i ∈ I m .

In the case of system (3.1), (3.7), the differential inclusion describing the closed-loop dynamics of the full state x is given by (2.11), with the expression for F(x) being determined as:

F(x) = conv A( j)x + b( j) : j ∈ G 1 (x) × G 2 (x) × . . . × G m (x) . (3.8) 
In the next section, we rewrite the dynamics of the system under study in a way that is more convenient for proving our stabilization results.

Equivalent system

Before presenting our first result, concerning local stabilization, let us introduce the following lemma, which provides a different way of writing the dynamics of each SAS. Just as in Section 2.3.3, this form of writing is more convenient for showing local stabilization and estimating the domain of attraction. The reason is that, just as in Section 2.3.3, our stabilization result is based on the existence of a continuous stabilizing static state-feedback controller in a neighborhood of the equilibrium point. Lemma 3.1 Under Assumption 3.1, the dynamics of the i-th switched affine system, i ∈ I m , which is given by ẋi

= A i,σi x i + A 0i x 0 + b i,σi , (3.9) 
can be equivalently written in the shifted coordinates xi = x i -x i as:

ẋi = Āi (δ i )x i + D i (x i )v i,σi + A 0i x0 + B i v i,σi , (3.10) 
where:

D i (x i ) := (A i,1 -A i,Ni )x i • • • (A i,Ni-1 -A i,Ni )x i , (3.11) 
B i := D i (x i ) + b i,1 -b i,Ni • • • b i,Ni-1 -b i,Ni , (3.12) 
and

v i,ji :=      e i,ji -δ i(1) • • • δ i(Ni-1) T , if j i ∈ I Ni-1 -δ i(1) • • • δ i(Ni-1) T , if j i = N i , (3.13) 
with e i,ji denoting the j i -th canonical base vector of R Ni-1 , j i = 1, . . . , N i -1.

Proof: In shifted coordinates, dynamics (3.9) can be written as:

ẋi = A i,σi xi + A i,σi x i + A 0i x0 + A 0i x 0 + b i,σi . (3.14) 
Now, note that:

A i,σi xi -Āi (δ i )x i = A i,σi xi - Ni ji=1 δ i(ji) A i,ji xi = A i,σi xi - Ni-1 ji=1 δ i(ji) A i,ji xi -δ i(Ni) A i,Ni xi . (3.15) Since δ i(Ni) = 1 - Ni-1 ji=1 δ i(ji) , then the term δ i(Ni) A i,Ni
xi can be written as:

δ i(Ni) A i,Ni xi = A i,Ni xi - Ni-1 ji=1 δ i(ji) A i,Ni xi . (3.16)
From (3.15) and (3.16), we have:

A i,σi xi = Āi (δ i )x i + (A i,σi -A i,Ni ) xi + Ni-1 ji=1 -δ i(ji) (A i,ji -A i,Ni ) xi = Āi (δ i )x i + D i (x i )v i,σi , (3.17) 
with D i (x i ) and v i,ji given by (3.11) and (3.13), respectively. In addition, using (3.6), we have that:

A i,σi x i + A 0i x0 + A 0i x 0 + b i,σi = A i,σi x i + A 0i x0 + A 0i x 0 + b i,σi - Ni ji=1 δ i(ji) (A i,ji x i + A 0i x 0 + b i,ji ) . (3.18)
Developing (3.18) and once again using the fact that

δ i(Ni) = 1 - Ni-1
ji=1 δ i(ji) , we obtain:

A i,σi x i + A 0i x0 + A 0i x 0 + b i,σi = A 0i x0 + (A i,σi -A i,Ni ) x i + b i,σi -b i,Ni + Ni-1 ji=1 -δ i(ji) [(A i,ji -A i,Ni ) x i + b i,ji -b i,Ni ] = A 0i x0 + (A i,1 -A i,Ni ) x i • • • (A i,Ni-1 -A i,Ni ) x i v i,σi + b i,1 -b i,Ni • • • b i,Ni-1 -b i,Ni v i,σi = A 0i x0 + B i v i,σi , (3.19) 
with B i given by (3.12). Using (3.17) and (3.19), it can be easily checked that (3.14) can be rewritten as (3.10). From (3.1), the dynamics of the linear system are given by:

ẋ0 = A 10 x 1 + A 20 x 2 + . . . + A m0 x m + A 0 x 0 . (3.20)
Applying the coordinate shift x0 = x 0 -x 0 and using (3.5), we have that:

ẋ0 = A 10 x1 + A 20 x2 + . . . + A m0 xm + A 0 x0 . (3.21)
In light of Lemma 3.1 and equation (3.21), and considering x = x -x , system (3.1) can be equivalently written in the following form:

ẋ = Ā(δ )x + D(x)u + Bu, (3.22) 
where:

Ā(δ ) :=        diag Ā1 (δ 1 ), . . . , Ām (δ m ) A 01 A 02 . . . A 0m A 10 A 20 • • • A m0 A 0        , δ :=      δ 1 δ 2 . . . δ m      , (3.23) D(x) := diag (D 1 (x 1 ), . . . , D m (x m )) 0 , (3.24) 
B := diag (B 1 , . . . , B m ) 0 , (3.25) 
and

u := v T 1,σ1 • • • v T m,σm T . It is important to remark that u ∈ V := V 1 × V 2 × . . . × V m
, where:

V i := {v i,1 , v i,2 , . . . , v i,Ni } ∀i ∈ I m . (3.26) 
Switching law (3.7) can equivalently be written as:

v i,σi (x) ∈ V * i (x) := {v ji ∈ V i : j i ∈ G i (x + x )} , ∀i ∈ I m . (3.27) 
From (3.8), (3.22) and (3.27), the set-valued map F(x) can be restated in x-coordinates as:

F(x) := conv Ā(δ )x + D(x)ṽ + Bṽ : ṽ ∈ V * (x) , (3.28) 
where

V * (x) := V * 1 (x) × V * 2 (x) × . . . × V * m (x).
In shifted coordinates, closed-loop stability can be studied with respect to the origin. Thus, the origin of (3.22) is locally exponentially stable in D := {x ∈ R n : x = x -x , ∀x ∈ D} if there exists a strict Lyapunov function V : D → R satisfying the conditions of Theorem 2.1 and:

sup ς∈ F (x) ∂V ∂ x (x)ς ≤ -2χV (x), ∀x ∈ D, (3.29) 
for some χ > 0.

Recall from Section 2.3.3 that Assumption 2.2 implied that 0 ∈ Int {conv {V}}. Following exactly the same arguments, it can be shown that Assumption 3.1 implies:

0 ∈ Int {conv {V i }} , ∀i ∈ I m . (3.30) 
Note that for each i ∈ I m , conv {V i } is a polytope whose vertices are the elements of V i . Moreover, as a consequence of (3.30), conv {V i } can be expressed as the intersection of N h,i halfspaces given by ζ T i,qi v i ≤ 1, q i = 1, 2, . . . , N h,i , as described by the following equation:

conv {V i } = v i ∈ R Ni-1 : ζ T i,qi v i ≤ 1, q i = 1, . . . , N h,i , ∀i ∈ I m , (3.31) 
and it will become clear that this representation is convenient in expressing some of our main results.

In the next section, we introduce our first results concerning the design of stabilizing switching controllers for the interconnection considered here.

Centralized controller design

As a first step, let us propose a stabilizing controller having a centralized structure, i.e., assuming the controller for each switched affine system has access to all states of the network. Consider the following theorem, which provides both a constructive method for obtaining the switching law for each system and an estimation of the domain of attraction. Theorem 3.1 Consider the closed-loop system (3.22), (3.27). For a given desired decay rate χ > 0, assume that there exist Q = Q T 0, τ > 0 and γ > 0 such that the following LMI conditions are feasible:

sym Ā(δ )Q -2τ BB T + 4χQ 0, (3.32) γ τ ζT i,qi B T Q 0, ∀q i ∈ I N h,i , ∀i ∈ I m , (3.33) 
where ζT i,qi := ( 0

• • • 0 i-1 k=1 (N k -1) times ζ T i,qi 0 • • • 0 m k=i+1 (N k -1) times ), ∀q i ∈ I N h,i , (3.34 
)

for every i ∈ I m . Consider P = Q -1 = [P 1 P 2 • • • P m P 0 ], with P i ∈ R n×ni , ∀i ∈ I m ∪ {0}.
Then x is locally exponentially stable with decay rate χ, where:

V * i (x) = arg min vi∈Vi xT P i [D i (x i ) + B i ] v i . (3.35)
Moreover, define K as:

K := -τ B T P =      K 1 K 2 . . . K m      , (3.36) 
with K i ∈ R (Ni-1)×n , ∀i ∈ I m . In addition, let:

a := m i=1 Ni-1 ji=1 A i,ji -A i,Ni K i , (3.37) 
and β > 0 a real number such that:

β ≤ min 1 γ , χ a 2 λ 3 min (P ) P 2 . ( 3.38) 
Then, set Ω 0 (x ) := E(x , P, β) is an estimation of the domain of attraction.

Proof: The feasibility of LMI (3.32) implies that the following matrix inequality holds [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]:

sym P ( Ā(δ ) + BK) + 4χP 0, (3.39) 
with P = Q -1 and K given in (3.36). Using the notation x = x -x , (3.39) implies:

2x T P Ā(δ )x + 2x T P BK x + 4χx T P x 0, (3.40) 
which, by adding the term 2x T P D(x)K x to both sides of the inequality, is equivalent to: equivalent to E(0, P, γ -1 ) ⊂ C W (K).

2x T P Ā(δ )x + 2x T P D(x)K x + 2x T P BK x + 4χx T P x 2x T P D(x)K x, ∀x ∈ R n . (3.41) Define the set C W (K) := {x ∈ R n : K x ∈ W}, where W := conv {V 1 } × conv {V 2 } × . . . × conv {V m }. Note that x ∈ C W (K) if and only if there exists (δ 1 (x), δ 2 (x), . . . , δ m (x)) ∈ ∆ N1 × ∆ N2 × . . . × ∆ Nm such that: K x =      K 1 x K 2 x . . . K m x     =       N1 j1=1 δ 1(j1) (x)v 1,j1 N2 j2=1 δ 2(j2) (x)v 2,j2 . . . Nm jm=1 δ m(jm) (x)v m,jm       . (3.42) From (3.42), it is clear that x ∈ C W (K) if and only if K i x ∈ conv {V i } for all i ∈ I m . From (3.31), this is equivalent to ζ T i,qi K i x ≤ 1, for all q i ∈ I N h,i . Using (3.34), it can be checked that this is equivalent to ζi,qi K x ≤ 1, ∀q i ∈ I N h,i , ∀i ∈ I m . This means that C W (K) can be written as C W (K) = {x ∈ R n : ζi,qi K x ≤ 1, ∀q i ∈ I N h,i , ∀i ∈ I m }. Note that C W (K)
Since E(0, P, γ -1 ) ⊂ C W (K), it can be shown using (3.24), (3.25), (3.41) and (3.42) that:

2x T P Ā(δ )x + m i Ni ji=1 δ i(ji) (x)2x T P i [D i (x i ) + B i ] v i,ji + 4χx T P x ≤ 2x T P D(x)K x, (3.43) 
for all x ∈ E(0, P, γ -1 ). Now, note that for any i ∈ I m :

min ji∈I N i 2x T P i [D i (x i ) + B i ] v i,ji ≤ Ni ji=1 δ i(ji) (x)2x T P i [D i (x i ) + B i ] v i,ji
, ∀x ∈ E(0, P, γ -1 ).

(3.44)

For each i ∈ I m , select v * i (x) such that:

v * i (x) ∈ V * i (x) = arg min vi∈Vi xT P i [D i (x i ) + B i ] v i . (3.45)
Then, from (3.43), (3.44) and (3.45), we have:

2x T P Ā(δ )x + m i 2x T P i [D i (x i ) + B i ] v * i (x) + 4χx T P x ≤ 2x T P D(x)K x, (3.46) 
for all x ∈ E(0, P, γ -1 ). By writing (3.46) in matrix form, we obtain:

2x T P Ā(δ )x + [D(x) + B] v * (x) ≤ 2x T P D(x)K x -4χx T P x, ∀x ∈ E(0, P, γ -1 ), (3.47) 
where

v * (x) := v * 1 T (x) v * 2 T (x) • • • v * m T (x) T .
Consider now the Lyapunov function V (x) = xT P x. From (3.47), we then have:

∂V ∂ x Ā(δ )x + [D(x) + B] v * (x) ≤ 2x T P D(x)K x -4χV (x), ∀x ∈ E(0, P, γ -1 ). (3.48) 
From (3.28) and (3.48), we have:

∂V ∂ x ς ≤ 2x T P D(x)K x -4χV (x), ∀ς ∈ F(x), (3.49) 
for all x ∈ E(0, P, γ -1 ). Due to the convexity and compactness of F(x), (3.49) implies:

sup ς∈ F (x) ∂V ∂ x ς ≤ 2x T P D(x)K x -4χV (x), (3.50) 
for all x ∈ E(0, P, γ -1 ). Note, from (3.29) and (3.50), that the system is locally exponentially stable at x = 0 with decay rate χ if there exists a region R ⊆ E(0, P, γ -1 ) with 0 ∈ Int {R} such that, for all x ∈ R, the following holds:

2x T P D(x)K x -4χx T P x ≤ -2χx T P x, (3.51) 
or equivalently,

xT P D(x)K x ≤ χx T P x. (3.52)
Note from (3.24) and (3.36) that:

D(x)K =        D 1 (x 1 )K 1 D 2 (x 2 )K 2 . . . D m (x m )K m 0        . (3.53)
Using the triangle inequality then yields: Likewise, from (3.11), we conclude that

D(x)K ≤ m i=1 D i (x i )K i . ( 3 
D i (x i ) ≤ Ni-1 ji=1 (A i,ji -A i,Ni )x i . Using the Cauchy-Schwarz inequality, this implies that D i (x i ) ≤ Ni-1 ji=1 A i,ji -A i,Ni xi , ∀i ∈ I m . Since xi ≤ x , then D i (x i ) ≤ c i x , where c i := Ni-1 ji=1 A i,ji -A i,Ni .
Note that, using once again the Cauchy-Schwarz inequality and noting from (3.37) 

that a = m i=1 c i K i , (3.54) implies that D(x)K ≤ m i=1 D i (x i ) K i ≤ a x . In addition, D(x)K x ≤ D(x)K x ≤ a x 2 .
This implies that, for all ρ > 0, ∃r > 0 such that D(x)K x ≤ ρ x for all x ∈ B(0, r 2 ). This is illustrated in Figure 3.2. Changing the slope ρ only changes the point where the blue and red curves intersect, but such a value r always exists.

Since

xT P D(x)K x ≤ x P D(x)K x ≤ ρ P x 2 and λ min (P ) x 2 ≤ xT P x, then if ρ ≤ χλ min (P ) P , (3.55) 
then (3.52) holds for all x ∈ B(0, r 2 ). By looking at Figure 3.2, it can be seen that the value of r can be determined by finding the intersection between both curves, i.e., when a x 2 = ρ x . Since r > 0, then r = ρ/a. Using (3.55), we obtain:

r ≤ χλ min (P ) a P . (3.56) 
Therefore, we have seen that inequalities (3.50) and (3.52) hold for all x ∈ R, where R = E(0, P, γ -1 ) ∩ B(0, r 2 ), with r constrained by (3.56). In order to obtain an estimation of the domain of attraction, we look for an invariant set E(0, P, β) inside R. For E(0, P, γ -1 ) ⊆ B(0, r 2 ), it suffices that r -2 xT x ≤ γ xT P x for all x ∈ R n , which always holds if γ -1 ≤ r 2 λ min (P ). For E(0, P, β) ⊆ E(0, P, γ -1 ), it is sufficient to take β ≤ γ -1 . Thus, taking β ≤ min{γ -1 , r 2 λ min (P )} ensures that E(0, P, β) ⊆ R. Using (3.56), we then obtain expression (3.38). Finally, since x = x -x , then Ω 0 (x ) is an estimation of the domain of attraction in x-coordinates.

From (3.32), it can be seen that stabilizability of the pair ( Ā(δ ), B) is sufficient in order to be able to apply the controller provided by Theorem 3.1. Indeed, condition (3.33) can always be satisfied thanks to the fact that 0 ∈ Int {C W }, since one can always fit an ellipse inside any neighborhood of x . Therefore, the advantage of this result is that the sufficient conditions are not restrictive.

Note that once P , τ and γ are determined by solving LMIs (3.32)-(3.33), an upper bound for β is calculated as in (3.38). However, based on this expression, it is not clear how one could maximize or even tune the size of the domain of attraction. This is a major drawback of Theorem 3.1 and we will see how this can be fixed in subsequent results presented in the current chapter. For instance, in the next corollary this issue is overcome by ensuring global stabilization of the equilibrium point, thereby bypassing the need for estimating the domain of attraction. Corollary 3.1 Consider system (3.22). For a given χ, assume that there exists Q = Q T 0 such that: sym Ā(δ )Q + 2 χQ 0.

(3.57)

Consider P = Q -1 = [P 1 P 2 • • • P m P 0 ], with P i ∈ R n×ni , ∀i ∈ I m ∪ {0}.
Then x is globally exponentially stable with decay rate χ with V * i (x) given by (3.35).

Proof: This proof consists in using Theorem 3.1 to show that, for any β > 0, Ω(x ) = E(x , P, β) is an estimation of the domain of attraction, implying global stability. First, it is important to remark that, by choosing χ = χ/2, (3.57) implies that (3.32) holds for all τ > 0. Second, from (3.38), two conditions must be satisfied:

(i) β ≤ γ -1 ; (ii) β ≤ χ 2a 2 λ 3 min (P ) P 2 .
Using the Schur complement and rearranging the terms, it is straightforward to check that LMIs (3.33) 

imply that γ -1 ≤ τ -2 (min i∈Im l i ) -1
, where

l i := min q∈I N h,i ζT i,q B T P B ζi,q . Take τ 1 (β) = β -1/2 (min i∈Im l i ) -1/2
. Now, note that for any τ such that 0 < τ ≤ τ 1 (β), LMIs (3.33) (and hence condition i) are satisfied.

On the other hand, from (3.36), we have that K i = τ d i , with d i , i = 1, . . . , m, positive constants depending on B and P . Thus, from (3.37), a = τ ā, where ā :=

m i Ni-1 j=1 A i,j - A i,Ni d i .
Therefore, condition ii can be restated as β ≤ τ -2 , with a known positive constant depending on ā, χ and P . Using similar arguments as before, by choosing τ 2 (β) = ( /β) 1/2 , it can be seen that condition ii holds for all τ such that 0 < τ ≤ τ 2 (β).

In conclusion, by choosing any arbitrary β > 0, condition (3.38) holds by choosing any τ in (3.33) such that 0 < τ ≤ min{τ 1 (β), τ 2 (β)}. Since both τ 1 (β) and τ 2 (β) are strictly positive values, such a value of τ always exists.

Even though Corollary 3.1 ensures global stabilization of the equilibrium point, the condition for control design is more restrictive. Indeed, from (3.57), it can be checked that Ā(δ ) must be Hurwitz. This is the same remark that has been made in Chapter 2 concerning the comparison between the global and the local stabilization of switched affine systems.

Application to an interconnection of 3 Boost converters

Let us illustrate the results presented in this section by applying them to a simple practical scenario. To that end, we consider a case where three DC/DC converters are connected in parallel and the goal is to stabilize the output voltage on the load. The circuit representing the system is shown in Figure 3.3. It consists in m = 3 Boost converters connected in parallel to feed a resistance load. Note that, due to the presence of the output filters, the output voltages of the converters are generally different from each other and from the voltage on the load.

Converter i ∈ I m , with m = 3, is connected to the load through an output filter characterized by elements l i and r i . The association of each converter with their respective filter can be modeled as a switched affine system containing N i = 2 modes, ∀i ∈ I m .

The states in converter i ∈ I m , are the input current x i(1) , the voltage x i(2) and the output current x i(3) . State x 0 is the voltage on the load. The system dynamics are given by (3.1), with:

A i,1 =   0 0 0 0 0 -1/c i 0 1/l i -r i /l i   , A i,2 =   0 -1/l i 0 1/c i 0 -1/c i 0 1/l i -r i /l i   , (3.58) b i,ji =   E i /l i 0 0   , ∀j i ∈ I Ni , (3.59) 
A 0i =   0 0 -1/l i   , A i0 = 0 0 1/c o , ∀i ∈ I m , (3.60) 
A 0 = - 1 r o c o . (3.61)
Our objective here is to stabilize the output voltage x 0 at a desired reference value x r . With respect to the output currents of each converter, their equilibrium values can be chosen in any way such that their sum equals the equilibrium current on the load r o , which is equal to x r /r o . Let us assume that a design parameter κ ∈ ∆ m specifies the distribution of the load current among the converters. Alternatively, κ could also be provided by an algorithm implementing some current sharing strategy on the second level of the microgrid control. If a homogeneous distribution of currents is desired, κ is chosen such that κ (j) = 1/m, ∀i ∈ I m . The specification of κ allows to uniquely determine the equilibrium output currents of each converter, which in turn makes x unique. Then:

- + E 1 l 1 x 1(1) l 1 x 1(3) r 1 r o c 1 + - x 1(2) c o + - x 0 - + E 2 l 2 x 2(1) l 2 x 2(3) r 2 c 2 + - x 2(2) - + E 3 l 3 x 3(1) l 3 x 3(3) r 3 c 3 + - x 3(2)
x i(3) = κ (i) x r r o , ∀i ∈ I m . (3.62)
Moreover, it can be shown using (3.6) that the remaining expressions for the equilibrium points are determined as:

x 0 = x r , (3.63) 
x i(2) = x r + r i x i(3) , ∀i ∈ I m , (3.64) 
δ i = 1 -Ei x i(2) Ei x i(2) T , (3.65) 
x i(1) = x i(3) δ i(2) , ∀i ∈ I m . (3.66) 
Applying Lemma 3.1, the dynamics of each switched affine system can be equivalently written as in (3.9), with:

Āi (δ i ) = 2 ji=1 δ i(ji) A i,ji =   0 -(1 -δ i )/l i 0 (1 -δ i )/c i 0 -1/c i 0 1/l i -r i /l i   , (3.67) 
D i (x i ) = (A i,1 -A i,2 ) xi =   0 1/l i 0 -1/c i 0 0 0 0 0   xi =   xi(2) /l i -x i(1) /c i 0   , (3.68) 
B i = D i (x i ) + b i,1 -b i,2 =   x i(2) /l i -x i(1) /c i 0   , (3.69) 
Table 3.1: Numerical values used in the example with three converters, ∀i ∈ I m . 

x r 600V E i 400V l i 10mH l i 1mH c i 10µF c o 10µF r i 1Ω r o 40Ω κ [1/3 1/3 1/3] T 0 
v i,1 = 1 -δ i(1) , v i,2 = -δ i(1) , (3.70) 
for every i ∈ I m . Note that conv

{V i } = [-δ i(1) , 1 -δ i(1)
], ∀i ∈ I m . In other words, conv {V i } is a polytope given by the intersection of the half-planes

{v i ∈ R : v i ≤ 1 -δ i(1) } and {v i ∈ R : v i ≥ -δ i(1) }, for each i ∈ I m . Therefore, from (3.31), we have that N h,i = 2, ζ i,1 = 1/(1 -δ i(1) ) and ζ i,2 = -1/δ i(1) , ∀i ∈ I m .
For the simulation, we have chosen the numerical values presented in Table 3.1. Note that κ has been chosen to impose equal current sharing among the converters in the network. Firstly, let us try applying Theorem 3.1 to design a centralized stabilizing controller for the system. Let us choose χ = 20s -1 as the desired decay rate. By numerically solving LMIs (3.32)-(3.33), we obtain Q, τ and γ. Then, once P i , ∀i ∈ I m , are determined from Q, switching law (3.35) can be implemented to locally stabilize the system at the desired operating point.

However, using (3.36)-(3.38), we have found an estimation for the domain of attraction that is smaller than a ball of radius 2 × 10 -6 . Therefore, even though x is locally exponentially stable, Ω 0 (x ) is too small to be useful in practical applications. For this reason, work needs to be done in order to increase the size of the estimated domain of attraction. In spite of this, it is relevant to remark that the obtained switching controller manages to stabilize the system even for some initial conditions that are far away from the equilibrium point. Consider for instance that the initial condition is x(0) = 0, which corresponds to a point on the border of the ball of radius 1207.6 centered at x , i.e., x(0) is far away from the estimated domain of attraction. The plot for the evolution of the output voltage in this case is shown in blue in Figure 3 output voltage has been stabilized to the desired value x r , fulfilling the control objective. This suggests that the problem is indeed that the estimation for the domain of attraction is excessively conservative, and not that the proposed switching law fails to ensure stabilization. The input and output currents also converge to their equilibrium values, as shown in blue in Figure 3.5. Now, let us attempt to ensure global stabilization of the equilibrium point, which would prevent the issue with the domain of attraction. To that end, we apply Corollary 3.1 choosing the decay rate χ = 20s -1 . Solving LMI (3.57), we determine matrix Q and hence the matrices P i , ∀i ∈ I m , that are used in the switching law (3.35).

The plots corresponding to the simulation using this controller are shown in violet in Figures 3.4 and 3.5. The plots for the input and output currents are the same for all i ∈ I m , since the converters are identical as well as x i . It can be seen that, once again, the output voltage is stabilized at x r . It is interesting to remark the similarity between the plots shown in Figure 3.4 using both stabilization methods. However, note that with the control law proposed in Corollary 3.1, we can theoretically guarantee that the closed-loop system is exponentially stable at the desired equilibrium point. We have been able to design such a globally stabilizing controller because Ā(δ ) is open-loop stable with decay rate greater than χ, otherwise LMI (3.57) would not be feasible.

Decentralized controller design

In this section, the goal is to design controllers that only require the measurement of states of the same switched subsystem. As mentioned at the beginning of this chapter, this can prove advantageous in situations where exchange of information between subsystems is not reliable, such as in large-scale interconnections where delays may be present. Decentralized control eliminates the need for information to be exchanged between different subsystems.

As a starting point, we use Theorem 3.1 as a way of obtaining decentralized controllers. This can be accomplished by constraining matrix Q of the quadratic Lyapunov function to be blockdiagonal, with each sub-block along the diagonal having the dimensions of the states corresponding to each subsystem in the network. Corollary 3.2 Consider the closed-loop system (3.22), (3.27). For a given desired decay rate χ > 0, assume that there exist Q i = Q T i 0, i = 0, 1, . . . , m, τ > 0 and γ > 0 such that the following LMI conditions are feasible:

     diag (Ψ 1 , . . . , Ψ m ) Φ 1 . . . Φ m Ψ 0      0, (3.71) 
γ τ ζ T i,q B T i Q i 0, ∀q ∈ I N h,i , ∀i ∈ I m , (3.72) 
where

Ψ i = sym Āi (δ i )Q i -2τ B i B T i + 4χQ i , Φ i = A 0i Q 0 + Q i A T i0 , ∀i ∈ I m , and Ψ 0 = sym {A 0 Q 0 } + 4χQ 0 . Consider P i = Q -1 i , with P i ∈ R ni×ni , ∀i ∈ I m ∪ {0}.
Then x is locally exponentially stable with decay rate χ, where:

V * i (x i ) := arg min v∈Vi xT i P i [D i (x i ) + B i ] v. (3.73) 
Let:

a = τ m i=1 B T i P i Ni-1 ji=1 A i,ji -A i,Ni . (3.74) 
Then, set Ω 0 (x ) := E(x , diag (P 1 , P 2 , . . . , P m , P 0 ) , β) is an estimation of the domain of attraction, where:

β ≤ min 1 γ , χ a 2 min i∈Im∪{0} λ 3 min (P i ) max i∈Im∪{0} P i 2 . ( 3 

.75)

Proof: The proof follows by simply applying the results of Theorem 3.1 constraining matrix Q to be block-diagonal, i.e., having the form

Q = diag (Q 1 , Q 2 , . . . , Q m , Q 0 ), with Q i ∈ R ni×ni , ∀i ∈ I m ∪ {0}.
The following global stability result can be obtained from Corollary 3.2 and it will be particularly useful in Chapter 6.

Corollary 3.3 Consider the closed-loop system (3.22), (3.27). For a given desired decay rate χ > 0, assume that there exist

Q i = Q T i 0, i = 0, 1, . . . , m, such that the LMI condition (3.71) is feasible with Ψ i = sym Āi (δ i )Q i + 2 χQ i , Φ i = A 0i Q 0 + Q i A T i0 , ∀i ∈ I m , and Ψ 0 = sym {A 0 Q 0 } + 2 χQ 0 .
Then, by taking

P i = Q -1 i , ∀i ∈ I m ∪ {0},
x is globally exponentially stable with decay rate χ by using the switching control law (3.73).

Proof: We use Corollary 3.2 to show that for any β > 0, Ω 0 (x ) is an estimation of the domain of attraction. The proof then consists in applying the same steps outlined in the proof of Corollary 3.1, except that here we use the results of Corollary 3.2 instead of Theorem 3.1.

Even though one is able to design a stabilizing controller using Corollary 3.2, the same issues concerning the estimation of the domain of attraction found in Theorem 3.1 arise. This is to be expected since these results follow directly from the application of this theorem.

In the next theorem, we propose a constructive design method for stabilizing (3.22) that does not suffer from the lack of tuning over the domain of attraction. Indeed, as it will be seen in the sequel, it is even possible to maximize the size of the domain of attraction by solving a convex optimization problem. Theorem 3.2 Consider the closed-loop system (3.22), (3.27). For a given desired decay rate χ > 0, assume that there exist

Q i = Q T i 0, Q i ∈ R ni , Q 0,i ∈ R n0 , i = 1, . . . ,
m, τ > 0 and ν > 0 such that the following LMI conditions are feasible:

Q := diag Q 1 , . . . , Q m , m i=1 Q 0,i 0, (3.76) 
Ψ i,ji Φ i Θ i 0, ∀j i ∈ I Ni , ∀i ∈ I m , (3.77) 1 τ ζ T i,qi B T i Q i 0, ∀q i ∈ I N h,i , ∀i ∈ I m , (3.78 
)

νI ni I ni Q i 0, ∀i ∈ I m , (3.79 
)

νI n0 I n0 m i=1 Q 0,i 0, (3.80) 
where

Ψ i,ji := sym {A i,ji Q i } -2τ B i B T i + 2χQ i , ∀j i ∈ I Ni , Θ i := sym {A 0 Q 0,i } + 2χQ 0,i ,

and

Φ i := A 0i m k=1 Q 0,k + Q i A T i0
, ∀i ∈ I m . Then x is locally exponentially stable with decay rate χ, where:

V * i (x i ) = arg min vi∈Vi xT i Q -1 i B i v i , ∀i ∈ I m . (3.81)
In addition, set Ω 0 (x ) := E(x , Q -1 , 1) is an estimation of the domain of attraction, and B(x , 1/ν) ⊆ Ω 0 (x ).

Proof: LMI (3.77) implies the following:

xT i Ψ i,ji xi + 2x T i Φ i x0 + xT 0 Θ i x0 ≤ 0, (3.82) 
for every j i ∈ I Ni and all

(x i , x0 ) ∈ R ni × R n0 , i = 1, . . . , m. It follows from (3.82) that: xT                 diag (0, . . . , 0, Ψ i,ji , 0, . . . , 0) 0 . . . 0 Φ i 0 . . . 0 Φ m Θ i                 x ≤ 0, (3.83) 
for all j i ∈ I Ni , ∀i ∈ I m . Note that, by summing (3.83) over all i ∈ I m , then:

xT      diag (Ψ 1,j1 , . . . , Ψ m,jm ) Φ 1 . . . Φ m m i=1 Θ i      x ≤ 0, (3.84) 
for all x ∈ R n and every (j 1 , . . . , j m ) ∈ I N1 × . . . × I Nm . Using (3.3), (3.25) and (3.76), it can be verified that (3.84) is equivalent to the following LMI:

sym A( j)Q -2τ BB T + 2χQ 0, (3.85) 
for all j ∈ I N1 × . . . × I Nm . This is equivalent to:

sym Q -1 A( j) + BK + 2χQ -1 0, ∀ j ∈ I 1 × . . . × I m , (3.86) 
with K = -τ B T Q -1 [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. From (3.42), we have that

K i x = Ni ji=1 δ i(ji) (x)v i,ji , ∀i ∈ I m . Due to the block-diagonal structure of Q, then K i x = -τ B T i Q -1 i xi , ∀i ∈ I m . This means that x ∈ C W (K) if and only if there exists δ i (x i ) ∈ ∆ Ni such that K i xi = Ni ji=1 δ i(ji) (x i )v i,ji , ∀i ∈ I m .
Therefore, using similar arguments as in the proof of Theorem 3.1, we can show that (3.86) implies:

2x T Q -1 A( j)x + m i=1 Ni ji=1 δ i(ji) (x i )2x T i Q -1 i B i v i,ji + 2χx T Q -1 x ≤ 0, ∀x ∈ E(0, Q -1 , 1), (3.87)
for every j ∈ I N1 × . . . × I Nm . Note that:

min ji∈I N i xT i Q -1 i B i v i,ji ≤ Ni ji=1 δ i(ji) (x i )x T i Q -1 i B i v i,ji , ∀i ∈ I m . (3.88) Select v * i (x i ) such that v * i (x i ) ∈ V i (x i ), with V i (x i ) given by (3.81), ∀i ∈ I m . Let j * i (x i ) ∈ {j i ∈ I Ni : v i,ji ∈ V i (x i )}, ∀i ∈ I m .
Then, considering the particular case where j = j * (x) :=

[j * 1 (x 1 ) j * 2 (x 2 ) • • • j * m (x m )]
T , we have from (3.87) and (3.88):

2x T Q -1 A( j * (x))x + m i=1 2x T i Q -1 i B i v * i (x i ) + 2χx T Q -1 x ≤ 0, ∀x ∈ E(0, Q -1 , 1). (3.89) As in the proof of Theorem 3.1, let v * (x) = v * 1 T (x 1 ) • • • v * m T (x m )
T . Inequality (3.89) can then be rewritten as:

2x T Q -1 A( j * (x))x + Bv * (x) ≤ -2χx T Q -1 x, (3.90) 
for all x ∈ E(0, Q -1 , 1). Now, from (3.9), (3.11) and (3.14), note that

A i,ji xi = Āi (δ i )x i + D i (x i )v i,ji
, for all j i ∈ I Ni and for every i ∈ I m . Using (3.3), (3.22) and (3.24), this implies that:

A( j * (x))x = Ā(δ )x + D(x)v * (x). (3.91) 
From (3.90) and (3.91):

2x T Q -1 Ā(δ )x + D(x)v * (x) + Bv * (x) ≤ -2χx T Q -1 x, ∀x ∈ E(0, Q -1 , 1). (3.92) Consider the Lyapunov function V (x) = xT Q -1 x.
Using similar arguments as in the proof of Theorem 3.1, we have from (3.28) and (3.92):

sup ς∈ F (x) ∂V ∂ x ς ≤ -2χV (x), ∀x ∈ E(0, Q -1 , 1), (3.93) 
implying local stabilization at x with Ω 0 (x) as an estimation of the domain of attraction. Finally, from (3.79) and (3.80), we have, using the Schur complement,

νI ni -Q -1 i 0, ∀i ∈ I m , and νI n0 -( m i=1 Q 0,i ) -1
0. These two expressions are equivalent to:

νI n -Q -1 0. (3.94) From (3.94), we have ν xT x -xT Q -1 x ≥ 0, ∀x ∈ R n . Then x ∈ B(0, 1/ν) ⇐⇒ xT x ≤ 1/ν =⇒ xT Q -1 x ≤ 1 ⇐⇒ x ∈ E(0, Q -1 , 1). Therefore, B(0, 1/ν) ⊆ E(0, Q -1 , 1). In x-coordinates, this is translated as B(x , 1/ν) ⊆ Ω 0 (x ).
The controller designed with Theorem 3.2 ensures that the ball of radius 1/ √ ν is inside the domain of attraction Ω 0 (x ). Since ν is a decision variable of the LMI problem, it is possible to tune it in certain ways. For instance, if we wish the domain of attraction to contain a point belonging to a certain ball B(0, r 2 min ), then one could add the following inequality to the LMI problem:

ν ≤ 1 r 2 min .
(3.95)

A more interesting approach is to maximize the size of the domain of attraction given the restrictions expressed by LMIs (3.76)- (3.80). Note that, since B(0, 1/ν) ⊆ Ω 0 (x ), then this can be achieved by solving the following optimization problem: min ν, subject to ν > 0, τ > 0, Q i 0, ∀i ∈ I m , and (3.76) -(3.80).

(3.96)

Note that the objective function in (3.96) is linear, meaning that it can easily be solved by numerical means such as the LMI solver in Matlab. This offers an attractive solution in the cases where the initial condition may vary in a wide region or is far away from the equilibrium point. This is an important advantage of this method compared to the one expressed by Theorem 3.1.

Other interesting observations can be made regarding the differences between the design procedures obtained with Theorems 3.1 and 3.2. For example, the LMI conditions in Theorem 3.2 are more restrictive. To see why, let us take a closer look at conditions (3.76)- (3.77). As it can be seen in the proof of Theorem 3.2, these LMIs imply (3.85). Consequently, (3.85) must hold for all j ∈ I N1 × . . . × I Nm considering a common Lyapunov function V (x) = xT Q -1 x, which is rather restrictive. On the other hand, in the case of Theorem 3.1, stabilizability of the pair ( Ā(δ ), B) is already sufficient. LMIs (3.78)-(3.80) are always feasible though, as a consequence of Assumption 3.1. Indeed, as stated previously in the case of Theorem 3.1, one can always fit an ellipse in any given neighborhood of x . Thus, (3.78) is feasible. Moreover, it is always possible to place a ball inside such an ellipse, implying feasibility of (3.79)- (3.80).

In addition, it is also worth noting that the expressions for the switching law are different. In (3.35), the objective function that is being minimized has a quadratic form, whereas this expression is linear in (3.81). 

Application to an interconnection of 3 Boost converters

In the sequel, we seek to design the decentralized switching controller proposed in Theorem 3.2 for the same interconnection of three converters introduced in the previous section. By choosing once again χ = 20s -1 , the optimization problem (3.96) is numerically solved and the following results are obtained:

τ = 0.003, (3.97) 
ν = 2.3 × 10 -6 , (3.98) 
Q i =   0.004 0.001 0 4.161 0.020 0.041   × 10 8 , ∀i ∈ I m , (3.99) 
Q 0,1 = 4.004 × 10 8 , (3.100) 
Q 0,2 = 3.998 × 10 8 , (3.101) 
Q 0,3 = 3.999 × 10 8 . (3.102) 
It has been verified that the initial condition x(0) = 0 lies inside the domain of attraction Ω 0 (x ). A simulation has been run applying switching law (3.81), and the resulting plots are shown in Figures 3.6 and 3.7. By comparing Figures 3.6 and 3.4, it can be seen that the response using the switching controller proposed in Theorem 3.2 is faster with respect to those using the quadratic switching laws. In addition, this is achieved with a similar level of overshoot in this particular example. This, along with the decentralized structure of controller (3.81), highlights its usefulness even taking into account the fact that the LMIs to be solved are more restrictive than in the previous cases.

Application to an interconnection of 15 DC/DC converters

Now we turn our attention to a more complex scenario where several converters of different topologies are interconnected. In this example, we choose a system consisting in 15 converters connected in parallel. We consider three different converter topologies: the Buck, the Boost, and the Buck-Boost. As before, the DC bus and the load are modeled as an equivalent resistance in parallel with a capacitance. The different elements of the network are shown in Figure 3.8. We label the nodes corresponding to the bus terminals as v + bus and v - bus . We assume that there are m buck = m boost = m buckboost = 5 converters of each topology. They are labeled in the following way: the indexes corresponding to the Buck converters are in set I buck := {1, 2, . . . , m buck }, those corresponding to Boost converters are in I boost := {m buck + 1, m buck +2, . . . , m buck +m boost }, and those corresponding to Buck-Boost converters are in

I buckboost := {m buck + m boost + 1, m buck + m boost + 2, . . . , m}, with m = m buck + m boost + m buckboost .
The dynamics of the system are described by (3.1), with the following matrices:

A i,ji =   0 -1/l i 0 1/c i 0 -1/c i 0 1/l i -r i /l i   , j i = 1, 2, ∀i ∈ I buck , (3.103) 
A i,1 =   0 0 0 0 0 -1/c i 0 1/l i -r i /l i   , A i,2 =   0 -1/l i 0 1/c i 0 -1/c i 0 1/l i -r i /l i   , ∀i ∈ I boost ∪ I buckboost , (3.104) b i,ji =   E i /l i 0 0   , ∀j i ∈ I Ni , ∀i ∈ I boost , (3.105) 
b i,1 =   E i /l i 0 0   , b i,2 =   0 0 0   , ∀i ∈ I buck ∪ I buckboost , (3.106) 
A 0i =   0 0 -1/l i   , A i0 = 0 0 1/c o , ∀i ∈ I m , (3.107) 
A 0 = - 1 r o c o . (3.108)
Using (3.6), the equations specifying the equilibrium points are obtained as follows:

x 0 = x r , (3.109) 
x i(3) = κ (i) x r r o , ∀i ∈ I m , (3.110) 
x i(2) = x r + r i x i(3) , ∀i ∈ I m , (3.111) 
δ i = x i(2) Ei 1 - x i(2) Ei T , ∀i ∈ I buck , (3.112) 
δ i = 1 -Ei x i(2) Ei x i(2) T , ∀i ∈ I boost , (3.113) 
-

+ E i l i x i(1) l i x i(3) r i v + bus v - bus c i + - x i(2)
(a) Circuit representing a Buck converter with an output filter.

-

+ E i l i x i(1) l i x i(3) r i v + bus v - bus c i + - x i(2)
(b) Circuit representing a Boost converter with an output filter.

-

+ E i l i x i(3) r i v - bus v + bus l i x i(1) c i + - x i (2) 
(c) Circuit representing a Buck-Boost converter with an output filter. 

δ i = x i(2) Ei+x i(2) Ei Ei+x i(2) T , ∀i ∈ I buckboost , (3.114) 
x i(1) = x i(3) , ∀i ∈ I buck , (3.115) 
x i(1) = x i(3) δ i(2) , ∀i ∈ I boost ∪ I buckboost . (3.116)
In Chapter 2, we have discussed the study of the Boost converter using the traditional approach based on an average model. Similarly, (3.109)- (3.116) can also be obtained from the classical averaging approach commonly used in power electronics.

The values adopted for the simulations are shown in Table 3.2. We impose once more that the operating output current in each converter must be the same, which is why we have made

κ (i) = 1/m, ∀i ∈ I m .
In this example, we use the decentralized controller proposed in Theorem 3.2 as a way of showing the benefits of our approach in a case where several converters are present in the network. By solving LMIs (3.76)-(3.80) choosing χ = 10s -1 , we obtain the following numerical results: 

E i 800V l i 9mH l i 1mH c i 12µF r i 1Ω Boost converters, i ∈ I boost E i 400V l i 10mH l i 1mH c i 10µF r i 1Ω Buck-Boost converters, i ∈ I buckboost E i 1200V l i 11mH l i 1mH c i 8µF r i 1Ω Bus + load x r 600V r o 40Ω c o 10µF Current sharing κ (i) = 1/m, ∀i ∈ I m τ = 8.1 × 10 -4 , (3.117) 
ν = 5.9 × 10 -6 , (3.118)

Q i =   0.0020 -0.0002 0 1.4769 0.0003 0.0178   × 10 8 , ∀i ∈ I buck , (3.119) 
Q i =   0.0018 0 0 1.7820 0.0004 0.0178   × 10 8 , ∀i ∈ I boost , (3.120) 
Q i =   0.0017 -0.0009 0 2.2520 0.0005 0.0179   × 10 8 , ∀i ∈ I buckboost , (3.121) 
Q 0,i = 1.7 × 10 8 , ∀i ∈ I buck , (3.122) 
Q 0,i = 1.8 × 10 8 , ∀i ∈ I boost , (3.123) 
Q 0,i = 1.9 × 10 8 , ∀i ∈ I buckboost .

(3.124)

A simulation has been run with initial condition x = 0, which has been verified to lie inside the domain of attraction Ω 0 (x ). The plot of the output voltage x 0 as a function of time is shown in Figure 3.9. Since all Buck converters are identical and the output currents are equally shared, their state trajectories are also the same. For this reason, the plots of only one Buck converter are shown (Figure 3.10). The same holds for the Boost and Buck-Boost converters, whose plots are shown in Figures 3.11 and 3.12, respectively.

We can observe once more that the output voltage has been stabilized to the desired value x r , as expected. Likewise, the currents in all converters have reached their equilibrium values. 

Conclusion

In this chapter, we have introduced our first results concerning the stabilization of the interconnection of SASs at a desired equilibrium point. We have proposed both local and global stabilizers, and the design of the controllers can be easily carried out with the use of efficient numerical solvers. Moreover, both centralized and decentralized structures have been considered for the control law. The proposed methods have been successfully applied to power converter examples, including a case where several converters of different topologies are interconnected to feed a resistive load. However, these techniques suffer from some drawbacks. The first one is that the equilibrium point must be perfectly known by the designer, which is not practical in a scenario where uncertainties are present. Taking this into account will be the subject of the next chapter, where an adaptive observer-based controller is proposed. The second drawback is that the controllers introduced here do not prevent the occurrence of sliding modes, which means that their implementation in real systems is not practical. A strategy to overcome this issue is presented in Chapter 6, where an hysteresis-based approach is adopted to physically implement the control techniques that have been theoretically proven to stabilize the system.

Chapter 4

Observer-based networked control of switched affine systems

In Chapter 3, an approach has been proposed for dealing with SASs interconnected in a network through a linear system. In the current chapter, we extend this approach to the case where some parameters of the system are unknown. Thus, the scheme illustrating the network, shown in Figure 3.1, is slightly modified to account for such uncertainties. Labeling these parameters as p 1 , p 2 , . . . , p m , and p 0 , the new scheme illustrating the network is shown in Figure 4.1. The uncertain parameters are represented in red.

Parameter uncertainty presents a difficult challenge for mainly the following reason: the desired equilibrium point depends on the parameters of each subsystem in the network, which means that uncertainties in the parameters generally imply that the equilibrium point itself is uncertain.

To see an example of this uncertainty in practice, let us revisit the converter networks presented in Chapter 3. In some situations, there may be changes in the current drawn by the load, since the load itself may change over time. Therefore, this current can be regarded as an uncertain parameter. The equilibrium point depends on this parameter since the load current is shared among the converters, and thus the equilibrium current at the output of each converter is directly impacted by the load variations. Moreover, semiconductor devices are present in the converters, and they introduce uncertainties such as internal resistances and forward voltage drops. These effects can be modeled as uncertainties in the input voltage of each converter, which then also becomes an uncertain parameter. Examples of such converter networks subjected to these uncertainties will be discussed later on in Section 4.3.

In the current chapter, not only do we address parameter uncertainty but we also consider that not all state measurements are available. Therefore, since we use a state-dependent controller, the states must be estimated from the partial measurements. In addition to the system states, we

ẋ1 = f 1 (x 1 , σ 1 , x 0 , p 1 , p 0 ) (SAS 1) ẋ2 = f 2 (x 2 , σ 2 , x 0 , p 2 , p 0 ) ( SAS 2) 
. . . CHAPTER 4. OBSERVER-BASED NETWORKED CONTROL OF SASS also estimate the unknown parameters so that the equilibrium point can be known. To fulfill both these objectives, we propose an approach based on an extended observer.

ẋm = f m (x m , σ m , x 0 , p m , p 0 ) (SAS m) ẋ0 = f 0 (x 1 , . . . , x m , x 0 , p 1 , p 2 , . . . , p m , p 0 ) (Linear system) x 1 x 2 x m x 0 σ 1 σ 2 σ m

State and parameter estimation

In this section, we formalize the problem. Consider the full-order dynamical equation of the network:

ẋ = A(σ)x + b(σ) + G(σ)p, (4.1) 
y = Cx, (4.2) 
where

p = [p T 1 p T 2 • • • p T m p T 0 ]
T ∈ R np is the parameter vector, y ∈ R ny is the measured output vector, C = diag (C 1 , . . . , C m , C 0 ), with each C i being the local output matrix, and:

G( j) :=        diag G 1, j (1) , G 2, j (2) , . . . , G m, j (m) G 01 G 02 . . . G 0m G 10 G 20 • • • G m0 G 0        . ( 4.3) 
Note that (4.1)-( 4.3) are an extension of the dynamics considered in (3.1). Indeed, now we have included the measured outputs and also the parameter vector, which we assume to be uncertain. By writing C as a block-diagonal matrix, we assume that the measured states in each system in the network only depend on the states in that system. Furthermore, by writing G( j) as in (4.3), we consider:

• the dynamics of switched affine system i only depend on the parameters p i and p 0 , meaning that they only depend on parameters of the same system or of the linear system;

• the dynamics of the linear system may depend on parameters of any system in the network.

These assumptions made with respect to the structure of C and G( j) are motivated by the practical application of the DC microgrid. This will become clear later on in Section 4.3. Assumption 4.1 p i ∈ P i , where P i , i = 0, 1, 2, . . . , m, are known compact sets. Assumption 4.2 ṗi = 0, i = 0, 1, 2, . . . , m. Assumption 4.1 constrains each parameter vector p i to belong to known compact sets. This is often reasonable since one usually has an idea about the possible values that a parameter may take. Assumption 4.2 states that the parameters are constant (or their variation is slow), and it is a well-known assumption in the literature on approaches based on an extended observer.

From the system dynamics (4.1) and using Assumption 4.2, we can write the extended dynamics of the system as:

η = Ã(σ)η + b(σ), (4.4) 
y = Cη, (4.5) 
where

η = [η T 1 η T 2 • • • η T m η T 0 ] T with η i = [x T i p T i ] T , i = 0, 1, 2, .
. . , m, is the extended state vector. Matrices Ã( j), b( j) and C are defined as:

Ã( j) :=        diag Ã1, j (1) , Ã2, j (2) , . . . , Ãm, j (m) Ã01 Ã02 . . . Ã0m Ã10 Ã20 • • • Ãm0 Ã0        , (4.6) b( j) :=       b1, j (1) b2, j (2) . . . bm, j (m)       , ∀ j ∈ I N1 × I N2 × . . . × I Nm , (4.7) 
and

C := diag C1 , C2 , . . . , Cm , C0 , (4.8) 
with Ãi,ji :=

A i,ji G i,ji 0 0 , bi,ji = b i,ji 0 , ∀j i ∈ I Ni , (4.9) 
Ã0i = A 0i G 0i 0 0 , Ãi0 = A i0 G i0 0 0 , Ci := C i 0 , ∀i ∈ I m , (4.10) 
and

Ã0 = A 0 G 0 0 0 . (4.11)
The main difficulty is that now the equilibrium point is no longer known, since it depends on the parameters. The following assumption is made regarding the relationship of the equilibrium point with the parameter uncertainties.

Assumption 4.3 The equilibrium point of each subsystem depends on the parameters in the following way: x i = x i (p i , p 0 ), ∀i ∈ I m , and x 0 = x 0 (p 0 ). In addition:

m i=1 [A i0 x i (p i , p 0 ) + G 0i p i ] + A 0 x 0 (p 0 ) + G 0 p 0 = 0, (4.12) 
and, for each i ∈ I m there exists δ i (p i , p 0 ) ∈ ∆ Ni such that:

Āi (δ i (p i , p 0 ))x i (p i , p 0 ) + Ḡi (δ i (p i , p 0 ))p i + A 0i x 0 (p 0 ) + bi (δ i (p i , p 0 )) = 0, (4.13) 
where:

Ḡi (δ i ) := Ni ji=1 δ i(ji) G i,ji , (4.14) 
for all (p i , p 0 ) ∈ P i × P 0 .

The full equilibrium point is denoted as x (p) := [x 1 (p 1 , p 0 ) T . . . x m (p m , p 0 ) T x 0 (p 0 ) T ] T . Assumption 4.3 is important because it ensures that the desired operation point is an actual equilibrium point of the system for any parameters satisfying Assumption 4.1. Note that now δ i is dependent on parameters p i and p 0 .

The following assumption is made in order to deal with the variation of δ i (p i , p 0 ) with the parameters. Basically, we assume that all possible vectors δ i (p i , p 0 ) lie inside a given known set. Assumption 4.4 A polytopic approximation ∆i := conv δi,1 , δi,2 , . . . , δi,N ∆i is known such that

{δ i (p i , p 0 ) : (p i , p 0 ) ∈ P i × P 0 } ⊆ ∆i ⊆ ∆ Ni , ∀i ∈ I m .
Consider the following definitions, related to the variation of the equilibrium point with respect to the parameters:

H i (p i , p 0 ) := ∂x i ∂p i (p i , p 0 ), (4.15) 
H 0i (p i , p 0 ) := ∂x i ∂p 0 (p i , p 0 ), (4.16 
)

H 0 (p 0 ) := ∂x 0 ∂p 0 (p 0 ), (4.17) 
H i (p i , p 0 ) := H i (p i , p 0 ) H 0i (p i , p 0 ) 0 H 0 (p 0 ) , (4.18) 
for every (p i , p 0 ) ∈ P i × P 0 , ∀i ∈ I m . The following assumption is made. Assumption 4.5 H i (p i , p 0 ) is bounded and a value ϑ i ≥ 0 is known such that:

max (pi,p0)∈Pi×P0 H i (p i , p 0 ) ≤ ϑ i , (4.19) 
for every i ∈ I m .

Assumption 4.5 has been introduced to bound the variation of the equilibrium point with respect to the parameters.

We are interested now in designing an extended observer with the aim of estimating both the states and parameters. A Luenberger-type observer has been selected for its simple design (based on LMIs) allowing to fully specify the dynamics of the estimation error. The observer adopted here can be regarded as an adaptation of the one presented in Section 2.4 to the interconnection of SASs studied here. The proposed observer is written as follows:

ηi = Ãi,σi ηi + Ã0i η0 + bi,σi + L i (y i -C i xi ), ∀i ∈ I m , (4.20) 
η0 = Ã0 η0 + m i=1 Ãi0 ηi + L 0 (y 0 -C 0 x0 ), (4.21) 
where ηi = [x T i pT i ] T is the estimation vector, y i = C i x i are the local measurements, and L i are gains to be determined, for all i ∈ I m ∪ {0}.

Since we assume that the parameters are unknown and we may not have access to all states, the switching law must only depend on the estimations η. Therefore, a controller of the following form is proposed:

σ i (x i , pi , p0 ) ∈ Ĝi (x i , pi , p0 ) := arg min ji∈I N i (x i -x i (p i , p0 )) T W i (A i,ji xi + G i,ji pi + b i,ji ) , (4.22) 
with W i , i = 1, 2, . . . , m, parameters to be determined. Define the local estimation error as: ẽi := ηi -η i , ∀i ∈ I m ∪ {0}, and the total estimation error as

ẽ := [ẽ T 1 • • • ẽT m ẽT 0 ]
T . From (4.4), (4.20) and (4.21) it can be shown that:

ė = Ã(σ) -L C ẽ, (4.23) 
where L := diag (L 1 , . . . , L m , L 0 ). Note that the dynamics described by (4.23) are discontinuous. Thus, once again, we use the Filippov formalism to analyze the estimation error dynamics. In this vein, consider the following differential inclusion:

ė ∈ Fo (ẽ, η) := conv Ã( j) -L C ẽ : j (i) ∈ Ĝi (x i , pi , p0 ), ∀i ∈ I m , (4.24) 
which expresses the closed-loop dynamics (4.22), (4.23) in the Filippov framework. Since Ĝi (x i , pi , p0 ) ⊆ I Ni , ∀i ∈ I m , then:

Fo (ẽ, η) ⊆ conv Ã( j) -L C ẽ : j ∈ I N1 × . . . × I Nm . (4.25) 
In order to be able to use the estimated values in the switching controller, one must first show that the error dynamics exponentially converge to zero with a given decay rate χ o > 0. A sufficient condition for this exponential convergence is the existence of a radially unbounded positive-definite function V o : R n+np → R such that:

sup ς∈ Fo(ẽ,η) ∂V o ∂ẽ (ẽ)ς ≤ -2χ o V o (ẽ), ∀(ẽ, η) ∈ R 2(n+np) , (4.26) 
It is important to remark that the exponential stabilization of the estimation error holds globally if (4.26) is verified. The following proposition gives sufficient conditions for the observer (4.20), (4.21) to ensure exponential convergence of the estimations to their actual values. Proposition 4.1 For a given χ o > 0, assume that there exist symmetric matrices S i 0, S 0,i , and scalars τ o,i , ∀i ∈ I m , such that the following LMIs are satisfied:

m i=1 S 0,i 0, (4.27) 
m i=1 τ o,i > 0, (4.28) 
  sym S i Ãi (j i ) -2τ o CT i Ci + 2χ o S i S i Ã0i + ÃT i0 S 0 sym S 0,i Ã0 -2τ o,i CT 0 C0 + 2χ o S 0,i   0, (4.29) 
for every j i ∈ I Ni , ∀i ∈ I m , where S 0 := m i=1 S 0,i , and τ o := m i=1 τ o,i . Then, by setting:

L i = τ o S -1 i CT i , ∀i ∈ I m ∪ {0}, (4.30) 
the point ẽ = 0 is a globally exponentially stable equilibrium of (4.23) with decay rate χ o .

Proof: From (4.29), we have:

ẽi ẽ0 T Ψi,ji Φi Θi ẽi ẽ0 ≤ 0, ∀(ẽ i , ẽ0 ) ∈ R ni × R n0 , ∀i ∈ I m , (4.31) 
or

ẽT i Ψi,ji ẽi + 2ẽ T i Φi ẽ0 + ẽT 0 Θi ẽ0 ≤ 0, ∀(ẽ i , ẽ0 ) ∈ R ni × R n0 , ∀i ∈ I m , (4.32) 
where Ψi,ji = sym

S i Ãi (j i ) -2τ o CT i Ci + 2χ o S i , ∀j i ∈ I Ni , Φi = S i Ã0i + ÃT i0 S 0 , and Θi = sym S 0,i Ã0 -2τ o,i
CT 0 C0 + 2χ o S 0,i , ∀i ∈ I m . Summing (4.32) over all i ∈ I m , we obtain the following matrix equation:

ẽT      diag Ψ1,j1 , . . . , Ψm,jm Φ1 . . . Φm m i=1 Θi      ẽ ≤ 0, (4.33) 
for all (j 1 , . . . , j m ) ∈ I N1 × . . . × I Nm . Note that

m i=1 Θi = sym S 0 Ã0 -2τ 0 CT 0 C0 + 2χ o S 0 .
Then, from (4.33), we have:

ẽT sym S Ã( j) -2τ o CT C + 2χ o S ẽ ≤ 0, ∀ j ∈ I N1 × . . . × I Nm , (4.34) 
with S = diag (S 1 , . . . , S m , S 0 ), which, thanks to (4.28), can be equivalently written as (see [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]):

ẽT sym S Ã( j) -L C ẽ ≤ -2χ o ẽT Sẽ, ∀ j ∈ I N1 × . . . × I Nm . (4.35)
Consider the Lyapunov function V o (ẽ) = ẽT Sẽ, which is positive-definite due to (4.27). From (4.35):

∂V o ∂ẽ (ẽ) Ã( j) -L C ẽ ≤ -2χ o V o (ẽ), ∀ j ∈ I N1 × . . . × I Nm . (4.36) 
Using (4.25), as well as convexity arguments, we have:

∂V o ∂ẽ (ẽ)ς ≤ -2χ o V o (ẽ), ∀ς ∈ Fo (ẽ, η). (4.37) 
Noting that Fo (ẽ, η) is compact, we obtain (4.26). Therefore, the estimation error exponentially converges to zero with decay rate χ o .

Stabilizing control design

In order to study the stabilization of (4.1) in the presence of the observers (4.20), (4.21), define the augmented state vector as ψ := [x T ẽT ] T , where x(p

) := [x 1 (•) T • • • xm (•) T x0 (•) T ] T , xi (p i , p0 ) = xi -x i (p i , p0
), ∀i ∈ I m , and x0 (p 0 ) = x0 -x 0 (p 0 ). Now, from (4.20), (4.21), it can be checked that:

ẋ = A(σ)x + G(σ)p + b(σ) -diag [I n1 0]L 1 C1 , . . . , [I nm 0]L m Cm , [I n0 0]L 0 C0 ẽ. (4.38)
Furthermore, from (4.23):

ṗ = -diag [0 I np 1 ]L 1 C1 , . . . , [0 I np m ]L m Cm , [0 I np 0 ]L 0 C0 . (4.39)
Let H(p) be defined as:

H(p) :=        diag (H 1 (p 1 , p 0 ), H 2 (p 2 , p 0 ), . . . , H m (p m , p 0 )) H 01 (p 1 , p 0 ) H 02 (p 2 , p 0 ) . . . H 0m (p m , p 0 ) 0 H 0 (p 0 )        (4.40)
Then, from (4.38), (4.39) and (4.40), we obtain the following dynamical equation for x:

ẋ = A(σ)x + Z(p)ẽ + g(σ, p), (4.41) 
where:

Z(p) :=      diag [-I n1 H 1 (•)]L 1 C1 , . . . , [-I nm H m (•)]L m Cm 0 H 01 (•) L 0 C0 . . . 0 H 0m (•) L 0 C0 0 -I n0 H 0 (•) L 0 C0      , (4.42) 
and:

g(σ, p) := A(σ)x (p) + G(σ)p + b(σ). (4.43) 
By defining ψ = [x T ẽT ] T , we have, from (4.23), (4.41):

ψ = =:A ψ (σ, p) A(σ) Z(p) 0 Ã(σ) -L C ψ + =:g ψ (σ, p) g(σ, p) 0 . (4.44) 
Here, once again, we use the Filippov formalism to address the discontinuous dynamics expressed in (4.44) assuming a switching law of the form (4.22). To that end, consider the following differential inclusion:

ψ ∈ Fψ (ψ, η) := conv A ψ ( j, p)ψ + g ψ ( j, p) : j (i) ∈ Ĝi (x i , pi , p0 ), ∀i ∈ I m . (4.45) 
Analogously to expression (4.26), a sufficient condition for the global exponential stabilization of (4.45) with decay rate χ at the origin (i.e., x → x (p)) is the existence of a radially-unbounded positive-definite function V ψ : R 2n+np → R such that:

sup ς∈ Fψ (ψ,η) ∂V ψ ∂ψ (ψ)ς ≤ -2χV ψ (ψ), ∀(ψ, η) ∈ R 2n+np × R n+np . (4.46)
The next result provides a constructive design method for obtaining a switching controller of the form (4.22). Theorem 4.1 Assume that for a given χ o > 0, there exist symmetric matrices S i 0, S 0,i , and scalars τ o,i , ∀i ∈ I m such that (4.27)-(4.29) hold. In addition, for a given χ ∈ R such that 0 < χ < χ o , assume that there exist symmetric matrices W i 0, W 0,i and scalars ω i > 0, ∀i ∈ I m , such that the following LMIs are satisfied:

    sym W i Āi δi + 2χW i W i A 0i + A T i0 W 0 z i W i 0 sym {W 0,i A 0 } + 2χW 0,i 0 z i W 0,i -ω i I 0 -ω i I     0, (4.47)
for every δi ∈ Vert ∆i , ∀i ∈ I m , and

ωI 2(χ o -χ)diag (S 1 , S 2 , . . . , S m , S 0 ) , (4.48) 
where

W 0 = m i=1 W 0,i , ω = m i=1 ω i , S 0 = m i=1
S 0,i , and:

z i := (1 + ϑ 2 i )λ max diag L i Ci CT i L T i , L 0 C0 CT 0 L T 0 , ∀i ∈ I m , (4.49) 
with

L i = τ o S -1 i CT i , ∀i ∈ I m ∪ {0}.
Then x (p), for any p ∈ P 1 × . . . × P m × P 0 , is a globally exponentially stable equilibrium point of the closed-loop system (4.1), (4.20), (4.21), (4.22), with decay rate χ.

Proof: For every i ∈ I m , define Ψi (δ i ) := sym W i Āi (δ i ) + 2χW i , Φi = W i A 0i + A T i0 W 0 , and Θi = sym {W 0,i A 0 } + 2χW 0,i . Since ω i > 0, using the Schur complement, (4.47) is equivalent to:

Ψi (δ i (p i , p 0 )) Φi Θi + z 2 i ω -1 i W 2 i 0 0 W 2 0,i 0, (4.50) 
as a consequence of Assumption 4.4 and the convexity of (4.47) with respect to δi . Indeed, note that

δ i (•) ∈ ∆i =⇒ Āi (δ i (•)) ∈ conv δi∈Vert{ ∆i} Āi (δ i ) .
Define matrix Z i (p i , p 0 ) as: 

Z i (p i , p 0 ) := -I ni H i (p i , p 0 ) 0 H 0i (p i , p 0 ) 0 0 -I n0 H 0 (p 0 ) L i Ci 0 0 L 0 C0 . ( 4 
λ max Z i (p i , p 0 )Z i (p i , p 0 ) T ≤ z 2 i . (4.52) 
Note that (4.52) implies1 :

ω -1 i W i 0 0 W 0,i Z i (p i , p 0 )Z i (p i , p 0 ) T W i 0 0 W 0,i z 2 i ω -1 i W 2 i 0 0 W 2 0,i , (4.53) 
for all (p i , p 0 ) ∈ P i × P 0 .

Since

ω i > 0, then ω ≥ ω i , ∀i ∈ I m . This implies that ω -1 i = λ max diag (ω, ω i ) -1 . Therefore, from (4.53) 
:

W i 0 0 W 0,i Z i (p i , p 0 ) ωI 0 0 ω i I -1 Z i (p i , p 0 ) T W i 0 0 W 0,i z 2 i ω -1 i W 2 i 0 0 W 2 0,i , (4.54) 
From (4.50) and (4.54):

Ψi (δ i (•)) Φi Θi + W i 0 0 W 0,i Z i (•) ωI 0 0 ω i I -1 Z i (•) T W i 0 0 W 0,i 0, (4.55) 
for all (p i , p 0 ) ∈ P i × P 0 . Using the definition of Z i (•) in (4.51) and the Schur complement, it can be seen that (4.55) is equivalent to:

    Ψi (δ i (p i , p 0 )) Φi W i -I H i (•) L i Ci W i 0 H 0i (•) L 0 C0 Θi 0 W 0,i -I H 0 (•) L 0 C0 -ωI 0 -ω i I     0, (4.56)
or, equivalently:

    xi x0 ẽi ẽ0     T     Ψi (δ i (•)) Φi W i -I H i (•) L i Ci W i 0 H 0i (•) L 0 C0 Θi 0 W 0,i -I H 0 (•) L 0 C0 -ωI 0 -ω i I         xi x0 ẽi ẽ0     ≤ 0, (4.57)
for all (x i , x0 , ẽi , ẽ0 ) ∈ R ni+n0 × R ni+np i +n0+np 0 , ∀i ∈ I m . Summing (4.57) over all i ∈ I m , we can show that:

x ẽ T sym W Ā(δ (p)) + 2χW W Z(p) -ωI x ẽ ≤ 0, ∀p ∈ P 1 × . . . × P m × P 0 , (4.58) 
where W := diag (W 1 , . . . , W m , W 0 ).

Since we also assume that there exist symmetric matrices S i 0, S 0,i , and scalars τ o,i , ∀i ∈ I m such that (4.27)-(4.29) hold, then, from Proposition 4.1, (4.35) also holds with S = diag (S 1 , . . . , S m , S 0 ). In addition, from (4.48):

ωẽ T ẽ ≤ 2(χ o -χ)ẽ T Sẽ, ∀ẽ ∈ R n+np . (4.59)
Summing (4.35) and (4.59), we obtain:

ωẽ T ẽ + 2ẽ T S Ã( j) -L C ẽ + 2χẽ T Sẽ ≤ 0, ∀ j ∈ I N1 × . . . × I Nm . (4.60) 
Now, summing (4.58) and (4.60):

x ẽ T sym W Ā(δ (p)) + 2χW W Z(p) sym S Ã( j) -L C + 2χS x ẽ ≤ 0. (4.61) 
Inequality (4.61) implies:

m i=1 Ni ji=1 2δ i(ji) (•) xT i W i (A i,ji xi + A 0i x0 ) + xT 0 W 0 A T i0 xi + 2x T 0 W 0 A 0 x0 + +2x T W Z(•)ẽ + 2χx T W x + 2ẽ T S Ã( j) -L C + χS ẽ ≤ 0. (4.62) 
From (4.13), we have:

Ni ji=1 δ i(ji) (p i , p0 ) [A i,ji x i (p i , p0 ) + G i,ji pi + A 0i x 0 (p 0 ) + G 0i p0 + b i,ji ] = 0, (4.63) 
for all (p i , p0 ) ∈ R np i × R np 0 , ∀i ∈ I m . Using (4.62) and (4.63):

m i=1 Ni ji=1 2δ i(ji) (•) xT i W i (A i,ji xi + A 0i x0 + G i,ji pi + G 0i p0 + b i,ji ) + xT 0 W 0 A T i0 xi + +2x T 0 W 0 A 0 x0 + 2x T W Z(•)ẽ + 2χx T W x + 2ẽ T S Ã(j) -L C + χS ẽ ≤ 0. (4.64)
Note, for all i ∈ I m :

min ji∈I N i xT i W i (A i,ji xi + G i,ji pi + b i,ji ) ≤ Ni ji=1 δ i(ji) xT i W i (A i,ji xi + G i,ji pi + b i,ji ). (4.65) 
Let:

j * i (x i , pi , p0 ) ∈ Ĝi (x i , pi , p0 ) = arg min ji∈I N i xT i W i (A i,ji xi + G i,ji pi + b i,ji ) , (4.66) 
for every i ∈ I m , and form vector

j * (x, p) = [j * 1 (•) • • • j * m (•)]
T . Since (4.64) is valid for all j ∈ I N1 × . . . × I Nm , then it also holds for j = j * (x, p). From (4.64) and (4.65), we then have:

m i=1 2 xT i W i A i,j * i (•) xi + A 0i x0 + G i,j * i (•) pi + G 0i p0 + b i,j * i (•) + xT 0 W 0 A T i0 xi + +2x T 0 W 0 A 0 x0 + 2x T W Z(•)ẽ + 2χx T W x + 2ẽ T S Ã( j * (•)) -L C + χS ẽ ≤ 0.
(4.67)

Let P = diag (W, S). Then (4.67) can be restated as:

2ψ T P (A ψ (j * (•), p)ψ + g ψ (j * (•), p)) + 2χψ T P ψ ≤ 0, ∀ψ ∈ R 2n+np , (4.68) 
for all j * i (•) ∈ Ĝi (x i , pi , p0 ), ∀i ∈ I m . Now, consider the Lyapunov function V ψ (ψ) = ψ T P ψ. Then, from (4.68), we obtain: 

∂V ψ ∂ψ (ψ) (A ψ (j * (•), p)ψ + g ψ (j * (•), p)) ≤ -2χV ψ (ψ). ( 4 
L i , ∀i ∈ I m ∪ {0} χ, ∆i , ϑ i , ∀i ∈ I m W i , ∀i ∈ I m S i , ∀i ∈ I m ∪ {0}
∂V ψ ∂ψ (ψ)ς ≤ -2χV ψ (ψ), ∀ς ∈ Fψ (ψ, η). (4.70)
Due to the compactness of Fψ (ψ, η), it can be seen from (4.70) that condition (4.46) holds for all (x, η) ∈ R 2n+np , implying that the origin is globally exponentially stable in ψ-space. Consequently: (i) x converges to zero and thus x → x (p), and (ii) ẽ converges to zero and thus we have both x → x and p → p. From (i) and (ii), we finally obtain x → x (p).

The LMI conditions (4.47), (4.48), which must be feasible so that Theorem 4.1 can be applied, depend on the solution of the LMI problem for obtaining the observer using Proposition 4.1. For this reason, it is possible to tweak the observer design with a view to reducing the degree of conservatism of Theorem 4.1. Consider, for instance, LMI (4.48). This condition is less restrictive if the minimum eigenvalue of any S i , i ∈ I m ∪ {0}, is large enough (since the upper bound on ω is relaxed). In order to relax condition (4.48), the following conditions can be added to the other inequalities in Proposition 4.1: , and z i also depends on τ o . It can be shown that z i can be upper-bounded by a value that is proportional to the ratio τ o /ι. Thus, even though maximizing ι contributes to decreasing z i , the term τ o may contribute to increase it. However, it has been observed during simulations conducted in Section 4.3 that maximizing ι while designing the observer does in fact make the LMIs of Theorem 4.1 feasible whereas they would not be by simply applying Proposition 4.1. Therefore, we have chosen to present here the option of maximizing ι.
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A visual representation of the methods proposed in this chapter is shown in Figures 4.2 and 4.3. The design procedure, both for the observer and the controller, is carried out offline and the goal is to find the gains L i (for the observer), ∀i ∈ I m ∪ {0}, and W i (for the controller), ∀i ∈ I m , as illustrated in Figure 4.2. The online behavior of the closed-loop system, wherein the gains determined offline are used, is shown in Figure 4.3. The adaptive control scheme is highlighted in this figure. It is clear from this scheme that the choice of the mode for each SAS is made according to the measured output of each subsystem in the interconnection.

The design of the adaptive controller proposed in this chapter is also described in Algorithm 4.1. It has been considered in the algorithm that the decision variable ι is maximized, though one could alternatively simply find feasible solutions for S i , S 0,i and τ o,i , ∀i ∈ I m . Observer (4.20), (4.21)

L i , ∀i ∈ I m ∪ {0} Controller (4.22) W i , ∀i ∈ I m System Figure 4.1 Measurements y i = C i x i , ∀i ∈ I m ∪ {0} x i (•), ∀i ∈ I m xi , pi , ∀i ∈ Im ∪ {0} σ i (•), ∀i ∈ Im x i , ∀i ∈ Im ∪ {0} y i , ∀i ∈ Im ∪ {0}
Adaptive controller 

m i S 0,i 3 Compute τ o = m i τ o,i 4 Compute L i = τ o S -1 i Ci , ∀i ∈ I m ∪ {0} 5 Compute z i using (4.49), ∀i ∈ I m 6 Solve LMIs (4.47), ∀ δi ∈ Vert ∆i , W i 0, ω i > 0, ∀i ∈ I m ,
(t) = [x i (t) T pi (t) T ] T , ∀i ∈ I m ∪ {0} 5 Update equilibrium point x i (p i (t), p0 (t)), ∀i ∈ I m 6 
Select mode σ i (x i (t), pi (t), p0 (t)) given by (4.22), ∀i ∈ I m

In Algorithm 4.2, we describe the real-time implementation of the adaptive control strategy proposed here, also illustrated in Figure 4.3. Since we have so far considered only continuous-time systems, the implementation described by Algorithm 4.2 is also in continuous time.

Simulation examples

In this section, we analyze some practical examples with power converters considering the problem of state and parameter estimation introduced in the current chapter. Once again, we first consider a simple network consisting in only three Boost converters, so as to make it easier to illustrate the theoretical results proposed in this chapter. Then, a more complex example with a larger network is presented in order to show that the method remains effective in practical cases with several converters. A third example is used for the purpose of highlighting the advantages of our approach with respect to the state-of-the-art technique presented in Section 2.4.
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Interconnection of 3 Boost converters

The interconnection of three Boost converters is represented in Figure 4.4. We assume that the current source on the load side represents an unknown perturbation p 0 . On the converter side, we use a voltage source p i , ∀i ∈ I m , m = 3, to represent the drop in voltage caused by uncertainties on the input voltages and also to model the drops in the semiconductor devices.

The system dynamics are given by (4.1), with the components of A( j), b( j) and G( j), j ∈ I N1 × I N2 × I N3 , given as follows:

A i,1 =   0 0 0 0 0 -1/c i 0 1/l i -r i /l i   , A i,2 =   0 -1/l i 0 1/c i 0 -1/c i 0 1/l i -r i /l i   , (4.74) 
A 0i =   0 0 -1/l i   , A 10 = A 20 = 0 0 1/c o , G 0i = G i0 = 0, (4.75) b i,ji =   E i /l i 0 0   , G i,ji =   -1/l i 0 0   , ∀j i ∈ I Ni , ∀i ∈ I m , (4.76) 
A 0 = - 1 r o c o , G 0 = - 1 c o . (4.77)
Moreover, let us assume that we do not have access to the measurements of voltages x i(2) , ∀i ∈ I m . Then, the components of C in (4.2) are given by:

C i = 1 0 0 0 0 1 , ∀i ∈ I m , C 0 = 1. (4.78)
The parameters p i are supposed to belong to intervals P i = [0, p imax ], ∀i ∈ I m ∪ {0}, with 0 ≤ p imax < E i , ∀i ∈ I m , and p 0max ≥ 0. Thus Assumption 4.1 is satisfied. In addition, they are assumed to be constant, in accordance with Assumption 4.2.

Our objective here is to stabilize the output voltage x 0 at a desired reference value x r . With respect to the output currents of each converter, their equilibrium values can be chosen in any way such that their sum equals the equilibrium current on the load (i.e., the sum of the current flowing in r o and p 0 ). Here, we also use the design parameter κ ∈ ∆ m to decide the distribution of the load current among the converters in steady state. Due to the presence of p 0 , (3.62) is modified as follows:

x i(3) (p 0 ) = κ (i) x r r o + p 0 . (4.79)
It can be shown using (4.12), (4.13), that the remaining equations for the equilibrium points are determined as:

x 0 (p 0 ) = x r , (4.80) 
x i(2) (p 0 ) = x r + r i x i(3) (p 0 ), (4.81) 
δ i (p i , p 0 ) = 1 -Ei-pi x i(2) (p0) Ei-pi x i(2) (p0) T , (4.82) 
x i(1) (p i , p 0 ) = x i(3) (p 0 ) δ i(2) (p i , p 0 ) , ∀i ∈ I m . (4.83) 
From (4.80)-(4.83), we have:

H 0 (p 0 ) = 0, (4.84) 
H i (p i , p 0 ) =    x i(2) (p0)x i(3) (p0) (Ei-pi) 2 0 0    , ∀i ∈ I m , (4.85) 
H 0i (p i , p 0 ) =    κ (i)( xr+2r i x i(3) (p0)) (Ei-pi) κ (i) r i κ (i)    , ∀i ∈ I m . (4.86) 
Note that H i (•) 2 can be expressed as

H i (•) 2 = λ max H i (•) T H i (•)
. In addition, using (4.84)-(4.86):

Tr H i (p i , p 0 ) T H i (p i , p 0 ) ≤ Tr H i (p imax , p 0max ) T H i (p imax , p 0max ) , ∀(p i , p 0 ) ∈ P i × P 0 , (4.87)
for all i ∈ I m . Since the trace of a square matrix is the sum of its eigenvalues and

H i (•) T H i (•) 0, then Tr H i (•) T H i (•) ≥ λ max H i (•) T H i (•)
. Therefore, we take ϑ i to be:

ϑ i = Tr {H i (p imax , p 0max ) T H i (p imax , p 0max )}, ∀i ∈ I m . (4.88) 
Furthermore, from (4.79), (4.81) and (4.82), we have:

δ i(1) (0, 0) ≤ δ i(1) (p i , p 0 ) ≤ δ i(1) (p imax , p 0max ), (4.89) 
δ i(2) (p imax , p 0max ) ≤ δ i(2) (p i , p 0 ) ≤ δ i(2) (0, 0), (4.90) 
for all (p i , p 0 ) ∈ P i × P 0 , ∀i ∈ I m . It can be seen that (4.89)-(4.90) describe a line segment in R 2 . Since line segments are polytopes, then we simply take ∆i to be ∆i = {δ i (p i , p 0 ) : (p i , p 0 ) ∈ P i ×P 0 }, in accordance with Assumption 4.4. Using (4.89)-(4.90), the vertices of ∆i are determined to be:

δi,1 = 1 -Ei x i(2) (0) Ei x i(2) (0) T , (4.91) δi,2 = 1 -Ei-pimax x i(2) (p0max) Ei-pimax x i(2) (p0max) T , (4.92) 
for all i ∈ I m . For the simulation, we have chosen the same numerical values presented in Table 3.1. For the maximum values that each parameter may take, we have chosen the values in Table 4 From (4.30), we calculate L i , ∀i ∈ I m , and L 0 to be: for all i ∈ I m . A simulation has been run implementing the observer (4.20), (4.21) with the obtained gains L i , ∀i ∈ I m ∪ {0} and the switching controller (4.22) with the determined numerical values for W i , ∀i ∈ I m . In this simulation, the parameters p i have evolved as plotted in blue in Figure 4.5, ∀i ∈ I m ∪ {0}. Note that p 1 , p 2 and p 3 suffer a step variation at the same instant t = 20ms. In the same plots, it can be seen that, despite substantial parameter variations occurring at the same time, their estimations converge to their real values. Parameter p 0 also changes, but at instant t = 30ms. The estimation of this parameter also converges to the real value quite fast, which allows the controller to quickly reject the influence of this external disturbance. Figures 4.6 and 4.7 show the remaining plots obtained by simulation. In Figure 4.7 we only show the currents in converter i = 1 but the currents follow a similar behavior in the other two converters. We can see that the output voltage has been successfully stabilized at the desired reference x r , meaning that all state estimations have converged and thus the state-dependent controller has been successful in achieving closed-loop stability, as expected. This is made possible by the fact that the equilibrium values for the states change according to the parameter estimations. Since the estimated values are accurate, so are the real-time updates to the equilibrium point, and finally the controller ensures that the equilibrium point is tracked. In Figure 4.6, we also note in the zoomed part of the plot that the output voltage remains practically unchanged even though p 1 , p 2 and p 3 suffer step variations at the same time instant t = 20ms.

L i =     2823 

Interconnection of 15 DC/DC converters

As it has been done in Chapter 3, now we analyze the case where several converters are interconnected. However, we consider here the presence of unknown parameters as done in Section 4. to uncertainties in the source or parasitic elements in the semiconductor devices), and an unknown parameter modeled as a current source parallel to the load resistance (which may correspond to load variations).

The circuit representing the linear system in the interconnection is shown in Figure 4.8. This circuit, as well as those shown in Figures 4.9, 4.10 and 4.11, are the same circuits in Figure 3.8 but now the uncertain parameters, shown in red, are considered. We consider the same configuration of converters as in Section 3.4.2, labeled in the same way. The values of the elements in the converter circuits are given in Table 3.2.

The system dynamics are described by (4.1), with the sub-blocks of A( j) and b( j) given by (3.103)-(3.108). As in the example with three converters in Section 4.3.1, the components of G( j) are given by:

G i,ji =   -1/l i 0 0   , ∀j i ∈ I Ni , ∀i ∈ I m , (4.102) 
G 0i = G i0 = 0, ∀i ∈ I m , (4.103) 
G 0 = - 1 c 0 . ( 4 

.104)

The components of matrix C are given by (4.78), meaning that once again we assume that the states x i(2) are not measured, ∀i ∈ I m . All parameters p i are assumed to lie in the interval

P i = [0, p imax ], ∀i ∈ I m ∪ {0}, with p imax given in Table 4.2.
Since our goal is to stabilize the output voltage at the desired reference x r , we have x 0 (p 0 ) = x r . By imposing equal current sharing among the converters, we obtain from (4.13) the following equations describing the parameter-dependent equilibrium values for the output current and voltage for each converter: -

x i(3) (p 0 ) = κ (i) x r r o + p 0 , ∀i ∈ I m , (4.105) 
+ E i - + p i l i x i(1) l i x i(3) r i v + bus v - bus c i + - x i(2)
Figure 4.9: Circuit representing the Buck converter i ∈ I buck considering an uncertain input voltage drop p i .

x i(2) (p 0 ) = x r + r i x i(3) (p 0 ), ∀i ∈ I m . (4.106) 
Using definition (4.17), we have:

H 0 (p 0 ) = 0, (4.107) 
which will be useful for calculating ϑ i , ∀i ∈ I m . The determination of ϑ i and the vertices of the polytopic approximation ∆i , ∀i ∈ I m , is carried out individually for each topology hereafter.

Buck converter

The electrical circuit modeling each Buck converter is shown in Figure 4.9. The equations for δ i (•) and the equilibrium current in each Buck converter are given by: 

δ i (p i , p 0 ) = x i(2) (p0) Ei-pi 1 - x i(2) (p0) Ei-pi T , ∀i ∈ I buck , (4.108) 
x i(1) (p i , p 0 ) = x i(3) (p 0 ), ∀i ∈ I buck . ( 4 
H i (p i , p 0 ) = 0, H 0i (p i , p 0 ) =   κ (i) κ (i) r i κ (i)   , ∀i ∈ I buck . (4.110) 
After determining H i (p i , p 0 ) as in (4.18), it can easily be shown that:

H i (•) 2 = λ max H i (•) T H i (•) = κ 2 (i) r i 2 + 2 , ∀i ∈ I buck . (4.111)
Since the expression for λ max H i (•) T H i (•) does not depend on p i or p 0 , then we can simply choose ϑ i as:

ϑ i = κ (i) r i 2 + 2, ∀i ∈ I buck , (4.112) 
in order to fulfill Assumption 4.5.

In the case of Buck converters, all matrices A i,ji , j i = 1, 2, ∀i ∈ I buck , are the same. This implies that Āi (δ i ) does not depend on δ i ∈ ∆ Ni . Thus, interestingly, the vertices of the polytopic approximation ∆i do not need to be determined, for any i ∈ I buck , to be able to use Theorem 4.1. This is clear from the LMI (4.47).

- - 

+ E i - + p i l i x i(1) l i x i(3) r i v + bus v - bus c i + - x i(2)
+ E i - + p i l i x i(3) r i v - bus v + bus l i x i(1) c i + - x i(2)

Boost converter

The electrical circuit of the Boost converter is shown in Figure 4.10. For each one of these converters, δ i (•) and the equilibrium current are calculated as follows:

δ i (p i , p 0 ) = 1 -Ei-pi x i(2) (p0) Ei-pi x i(2) (p0) T , ∀i ∈ I boost , (4.113) 
x i(1) (p i , p 0 ) =

x i(3) (p 0 ) δ i(2) (p i , p 0 ) , ∀i ∈ I boost . (4.114) 
The expressions for H i (•) and H 0i (•) for the Boost converter have already been determined in Section 4.3.1 and are given by (4.85) and (4.86). Therefore, using the same arguments as in Section 4.3.1, ϑ i can be chosen as:

ϑ i = Tr {H i (p imax , p 0max ) T H i (p imax , p 0max )}, ∀i ∈ I boost . (4.115) 
Furthermore, again using the same arguments as in Section 4.3.1, the vertices of the polytopic approximation ∆i are given by (4.91) and (4.92).

Buck-Boost converter

The electrical circuit of the Buck-Boost converter is shown in Figure 4.11. As it has been done for the two other topologies, δ i (•) and x i(1) (•) are determined for the Buck-Boost converter to be:

δ i (p i , p 0 ) = x i(2) (p0) Ei+x i(2) (p0)-pi Ei-pi Ei+x i(2) (p0)-pi T , ∀i ∈ I buckboost , (4.116) 
x i(1) (p i , p 0 ) = x i(3) (p 0 ) δ i(2) (p i , p 0 ) , ∀i ∈ I buckboost . (4.117) 
From (4.105), (4.106) and (4.117), we obtain:

H i (p i , p 0 ) =    x i(2) (p0)x i(3) (p0) (Ei-pi) 2 0 0    , H 0i (p i , p 0 ) =    κ (i)( Ei+xr+2r i x i(3) (p0)-pi) (Ei-pi) κ (i) r i κ (i)    , (4.118) 
for all i ∈ I buckboost . After forming matrix H i (p i , p 0 ), it can be shown, just as it has been done for the Boost converter in Section 4.3.1, that:

Tr H i (p i , p 0 ) T H i (p i , p 0 ) ≤ Tr H i (p imax , p 0max ) T H i (p imax , p 0max ) , (4.119) 
for all (p i , p 0 ) ∈ P i × P 0 , for every i ∈ I buckboost . Therefore, we pick ϑ i to be:

ϑ i = Tr {H i (p imax , p 0max ) T H i (p imax , p 0max )}, ∀i ∈ I buckboost . (4.120) 
Now note from (4.116) that the steady-state duty cycle δ i(1) (•) can be rewritten as:

δ i(1) (p i , p 0 ) = 1 1 + Ei-pi x i(2) (p0)
, ∀i ∈ I buckboost .

(4.121)

From (4.105), (4.106) and (4.121):

δ i(1) (0, 0) ≤ δ i(1) (p i , p 0 ) ≤ δ i(1) (p imax , p 0max ), ∀(p i , p 0 ) ∈ P i × P 0 , ∀i ∈ I buckboost . (4.122)
Consequently, since δ i(2) = 1 -δ i(1) , we have from (4.122):

δ i(2) (p imax , p 0max ) ≤ δ i(2) (p i , p 0 ) ≤ δ i(2) (0, 0), ∀(p i , p 0 ) ∈ P i × P 0 , ∀i ∈ I buckboost . (4.123)
Inequalities (4.122) and (4.123) describe a line segment containing δ i (p i , p 0 ) for any (p i , p 0 ) ∈ P i × P 0 . Therefore, we can simply pick as vertices of ∆i the points:

δi,1 = δ i (0, 0), (4.124) 
and δi,2 = δ i (p imax , p 0max ),

for every i ∈ I buckboost .

Numerical application and simulation results

Once more, Proposition 4.1 is applied offline to design the observer (4.20), (4.21). Choosing χ o = 2000s -1 as the decay rate of the estimation error dynamics, LMIs (4.27)-(4.29) are solved to obtain the following: We apply the observer (4.20), (4.21), and the controller (4.22). The evolution of the parameters is shown in blue in Figure 4.12. The scenario considered here is similar to the one in Section 4.3.1: the parameters p i , ∀i ∈ I m , which represent unknown variations in the input voltages of all converters, suffer a step variation at instant t = 20ms, and at instant t = 30ms p 0 also has a step variation. The parameters evolve in the same way for all converters of the same topology, but differently with respect to converters of other topologies. All of these parameters initialize at a non-zero value, which makes their estimation essential for control since start-up.

S i =    
The resulting plots from the simulation are shown in Figures 4.12 to 4.16. The Buck converters are identical and have been subjected to the same parameter variations. Since, in addition, matrices W i are also the same for every Buck converter, the obtained responses are also the same for all of them. The same is true for the Boost and Buck-Boost converters. For this reason, only the plots concerning one converter of each topology are shown. (2,3)

Analyzing the plots, it can be seen that all parameter estimations converged, even with partial measurements. As a result, the equilibrium point was successfully updated as the parameters changed over time. This made tracking the equilibrium point, and particularly the desired output voltage x r , possible. And indeed, one can see in Figures 4.13 to 4.16 that the system has been stabilized at the correct equilibrium point.

In the example discussed in this section, we have chosen χ o = 2000s -1 and χ = 20s -1 . The large gap between these values was necessary to allow the feasibility of LMI (4.48). Indeed, if χ o = 10χ = 200s -1 had been considered instead, then the LMI problem to design the controller would have been infeasible. This reflects the intuitive idea that the estimations must converge much faster than the system states. However, relaxations of the LMI conditions must be sought in order to reduce the distance between the estimation and the state dynamics.

Comparison with an observer-based switching controller

In this section, a comparison is established between the method proposed here for observer-based control and a state-of-the-art technique that does not take into account the networked structure of the system. The goal is to highlight the advantages of our method when addressing SASs interconnected in a network, especially from a computational viewpoint. The comparison is made with the observer-based controller presented in Section 2.4, which was developed in [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF]. The first step is to describe the system using this framework, which is done hereafter.

By modeling the full network presented in Figure 4.1 as a single SAS, as explained in Chapter 3, the total number of modes is N = m i=1 N i . Let us introduce the bijective mapping ξ : I N → I N1 × . . . × I Nm which allows to pass from the full mode j ∈ I N (when representing the entire interconnection as a single SASs) to the combined mode j ∈ I N1 × . . . × I Nm (formed by combining the modes of each individual SAS in the interconnection). A very simple example illustrating the use of this function is given as follows3 .

Example 4.1 Consider a network containing m = 2 switched systems, with the first system having N 1 = 2 and the second system having N 2 = 3 modes. This means that the interconnection, when treated as a single SASs, has a total of 2 × 3 = 6 modes. Table 4.3 shows one option for the function ξ.

In order to implement the control design method in Section 2.4, we begin by designing an observer to tackle the same issues discussed before concerning partial measurements and parameter estimation. To that end, the design of the observer is conducted using Proposition 2.3. Thus, we search for matrices P obs = P T obs 0 and R j , ∀j ∈ I N , such that the following LMIs are satisfied:

sym P obs Ã(ξ(j)) -R j C + 2χ o P obs 0, ∀j ∈ I N , (4.145) 
for a given decay rate χ o > 0. Note that an LMI constraint exists for each j, meaning that in fact (4.145) expresses N matrix inequalities. Since it is also imposed that P obs 0, a feasibility LMI problem containing N + 1 inequalities must be solved in order to find P obs and the N matrices R j .

The N observer gains Lj , ∀j ∈ I N , are then determined as Lj = P -1 obs R j . In Section 2.4, it was shown that a polytopic approximation ∆N had to be considered in order to take into account the variation of δ (•) with respect to the unknown parameters. Note, however, that to apply Theorem 2.6, we do not need to explicitly determine the set ∆ N . Instead, we need only a set of matrices Āvert,q , q = 1, 2, . . . , n vert such that, for any p ∈ P, Ā(δ (p, x r )) lies inside a polytope in R n×n whose vertices are Āvert,q , q = 1, 2, . . . , n vert . Using the sets ∆i , i = 1, 2, . . . , m, defined in Assumption 4.4, we have:

Ā(δ (p, x r )) ∈ conv Ā(δ) : δ ∈ Vert ∆1 × Vert ∆2 × . . . × Vert ∆m , ∀p ∈ P. (4.146)
We then take Āvert,q , q = 1, 2, . . . , n vert to be each vertex of the polytope described on the right-hand side of (4.146). Note that n vert is the product of the numbers of vertices of ∆i , ∀i ∈ I m .

For the design of the stabilizing controller presented in Theorem 2.6, the following set of LMIs is solved:

sym P Āvert,q + 2χP ≺ 0, ∀q ∈ I nvert , (4.147) 
for a given decay rate χ > 0.

It is important to remark that the general approaches underlying each method are very similar. Indeed, in both cases, an LMI problem is solved to design an observer and then another LMI problem is solved in order to design a stabilizing controller. In the sequel, we present a physical example and discuss how each method handles the two design steps computationally. In addition, we also briefly analyze their performances regarding parameter estimation and equilibrium stabilization.

Numerical example

Let us consider a network like the one shown in Section 4.3.2 with m = 5 converters. The component values and parameter bounds are the same as those found in Tables 3.2 and 4.2, respectively. We consider that in the network there are 2 Buck converters, 1 Boost converter and 2 Buck-Boost converters in the network. Or more precisely, I buck = {1, 2}, I boost = {3}, and I buckboost = {4, 5}. The total number of modes of the network is N = 32, since N i = 2, ∀i ∈ I m .

The simulation plots obtained with observer (2.93) and controller (2.102) are shown in Figures 4.17 It can be seen in the example with 5 converters that the parameter estimations and the equilibrium point updates are more oscillatory when using the technique shown in Section 2.4, which degrades the system performance with respect to the currents. On the other hand, this technique manages to stabilizes the output voltage without any overshoot, whilst some overshoot and a slightly slower response are observed with the method introduced in the present chapter.

In order to highlight the differences between both methods from a computational viewpoint, Table 4.4 shows some key comparisons regarding the LMI problems that are solved in each case. It also shows the time it takes to simulate the system using the observer-based controller obtained with each method 4 . The hardware used for the design and simulation in both cases is a computer equipped with Intel(R) Core(TM) i7-10810U 1.1GHz and 32GB of RAM. The software used was MATLAB/Simulink R2019b, and the LMIs were solved using the Robust Control Toolbox integrated in this version of MATLAB. Some interesting remarks can be made from Table 4.4. First, our method presents a clear computational advantage as far as observer design is concerned. Indeed, while it takes about an hour for the method in Section 2.4 to obtain the observer gains, the technique proposed here takes less than one second. It is also worth remarking the difference in the number of LMI variables in this case. For the stabilizing controller design step, the computation times using both methods are quite similar.

Note also that the simulation of the system with the controller from Section 2.4 lasted about 5 times the duration of the simulation using the controller developed here. This is to be expected since, from (2.102), a certain expression must be evaluated N times in order to determine the mode that minimizes it, whereas in the case of controller (4.22), a similar expression is evaluated N i times for each mode i. This means that the expression is in fact evaluated only m i=1 N i , or 2m in the case of the system addressed here, instead of N = 2 m times. This strongly suggests that our method is better suited for a real-time implementation when the number of converters is larger. This is an interesting path to pursue in future works aiming at experimental validation of this technique.

Remark 4.2

The number of converters has been chosen to be m = 5 in the numerical comparison because, for any m ≥ 6, memory issues kept arising when using the method in Section 2.4. This prevented the solution of the LMI problem for designing the observer gains and thus the comparison with our method would not have been possible. This goes to show how a large number of converters can hinder the use of stabilizing strategies in the SASs literature that do not take into account the networked structure of the system.

Conclusion

In this chapter, global stabilization results for the interconnection of SASs described in Figure 4.1 have been proposed. The main feature of the method presented here is the presence of an observer in the control scheme, which allows us to deal with the case with partial measurements or uncertain parameters. In fact, thanks to the observer, the estimation of the equilibrium point can be updated in real time and the controller is then able to drive the system to the equilibrium.

Both the design procedures for the observer and controller have been conceived with the interconnection structure in mind. Thus, the idea behind these techniques is to avoid the computational complexity that can quickly grow with the number of modes. In Section 4.3, it has been shown that the proposed method is suited for the practical application considered here, namely an interconnection of DC/DC power converters subject to load and input voltage variations. Moreover, by comparing this method with one in the literature that does not take into account the interconnected structure, we could check that indeed the LMI-based design proposed here is advantageous from a numerical viewpoint.

In the next chapter, we aim at reducing the complexity of LMI problems in the design of stabilizing laws for SASs for another class of systems. Instead of an interconnection of SASs, we shall in fact consider singularly perturbed SASs, in which the LMI problems may be ill conditioned by adopting the stabilizing methods presented in Section 2.3.

Chapter 5

Singularly perturbed switched systems

In the previous chapters, some control laws have been proposed with the aim of stabilizing the desired equilibrium point of SASs interconnected in a network whose scheme is given in Figure 3.1 or 4.1. The main feature of the proposed methods is the reduction in complexity of the LMI problem required to design the controller. As evidenced in Section 4.4, the LMIs are more tractable with the approach introduced in Chapters 3 and 4.

The goal of the present chapter is to investigate a different way of numerically alleviating the LMI problem to be solved for control design. Here we tackle the following issue reported in the literature: ill-conditioning of the matrices A j , j = 1, 2, . . . , N , in (2.25). The impact of this bad conditioning can be seen on LMI (2.39). This LMI only has a solution P 0 if A j are Hurwitz. If matrices A j are ill-conditioned, however, from a numerical viewpoint they can be very close to being singular. This implies that the solver might run into some issues finding the solution of the LMI.

It is well-known in the literature that poor conditioning of the matrices arises when distinct time scales are present in the system, i.e., when some states are much faster than the rest. Techniques that adequately address this disparity between the state dynamics have been introduced in the literature within the framework of singularly perturbed systems, but they deal mostly with linear and classical nonlinear systems [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF]. However, only few works have dealt with the case where bad conditioning arises in switched systems [START_REF] Deaecto | H 2 and H ∞ performance optimization of singularly perturbed switched systems[END_REF][START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF][START_REF] Tang | About switched affine system interconnected with fast LTI dynamics[END_REF][START_REF] Yang | Exponential stability of singularly perturbed switched systems with all modes being unstable[END_REF]. And even then, most works address the analysis under arbitrary switching laws [START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF][START_REF] Yang | Exponential stability of singularly perturbed switched systems with all modes being unstable[END_REF], and not control design. A state-dependent switching law for stabilization of singularly perturbed switched linear systems has been presented in [START_REF] Deaecto | H 2 and H ∞ performance optimization of singularly perturbed switched systems[END_REF], where H 2 and H ∞ performance criteria have also been considered.

The idea in this chapter is to adopt a singularly perturbed systems approach to develop stabilizing controllers for SASs that take into account the difference in time scales. We shall then refer to this kind of systems as singularly perturbed switched affine systems and the aim is to develop controllers whose design procedure is based on the solution of well conditioned LMIs.

From a practical viewpoint, the methods proposed in this chapter for dealing with the time scale separation are relevant to the main application at hand, namely DC/DC power converters. In fact, it is commonplace in the field of power electronics to consider that the current is much faster than the voltage dynamics. A classical control approach is even based on the design of separate controllers for the inner loop (for the current) and for the outer loop (for the voltage). Moreover, some works in the literature explicitly frame power converters as singularly perturbed systems [START_REF] Kimball | Singular perturbation theory for DC-DC converters and application to PFC converters[END_REF].

The results expressed in this chapter are preliminary and they are not yet applicable to networked switched systems. Therefore, we shall focus on single SASs. As a first step, we address the subclass of SASs presented in Section 2.3.4 (namely LTI systems with relay feedback) cast in a singularly perturbed systems framework. This allows for a simpler visualization of the system behavior before moving on afterwards to general SASs.

Singularly perturbed LTI systems with relay feedback control

Consider the following system:

ẋ = A 11 x + A 12 z + B 1 u, ε ż = A 21 x + A 22 z + B 2 u, (5.1a) 
(5.1b) where x ∈ R nx is the slow state vector, z ∈ R nz is the fast state vector, u ∈ R nu is the control input, ε > 0 is the singular perturbation parameter, and matrices A 11 , A 12 , A 21 , A 22 , B 1 and B 2 are of appropriate dimensions. The control signal u can only take values in the finite set

V = {v 1 , v 2 , . . . , v N }.
Roughly speaking, the parameter ε quantifies the gap between both time scales. When this gap is wide, ε is a small value, which is why we have partitioned the state into the slow and fast parts. Let η = x T z T T ∈ R n denote the full state vector, where n = n x + n z . Then, the full state dynamics (5.1) can be written in a more compact form as:

η = A ε η + B ε u, (5.2) 
where:

A ε = A 11 A 12 ε -1 A 21 ε -1 A 22 , (5.3) 
and

B ε = B 1 ε -1 B 2 .
(5.4)

Note that (5.2) has the same structure as (2.64). The difference lies in the presence of ε. It can be seen in ( 5.3) that a low value of ε can make A ε ill-conditioned, and thus the stabilizing strategies presented in Chapter 2 would be difficult to apply due to the aforementioned numerical issues.

In order to simplify the developments carried out here, we suppose that the goal is to stabilize the origin η = 0. The following assumption is made: Assumption 5.1 conv {V} has nonempty interior and 0 ∈ Int {conv {V}}.

It can be shown that Assumption 5.1 is just a different way of restating Assumption 2.2 (see Section 2.3.4). We also make the following two assumptions.

Assumption 5.2 The pair

(A ε , B ε ) is stabilizable. Assumption 5.3 Matrix A 22 is invertible.
Assumption 5.2 is essential for the design of a stabilizing controller, as it shall be seen later on. Assumption 5.3 is very common in the study of standard singularly perturbed systems and its usefulness will also be made clear.

The focus will be on adapting the min-type switching laws from Chapter 2 to singularly perturbed systems. For this reason, the switching law in this section has the following form:

k(η) ∈ arg min v∈V η T Γv, (5.5)
where Γ is a design parameter to be determined. Using (5.2) and (5.5), the differential inclusion describing the system dynamics in closed loop is written as:

η ∈ F ε (η) = conv A ε η + B ε ṽ : ṽ ∈ arg min v∈V η T Γv .
(5.6)

It has been shown in Theorem 2.5 that LMI (2.75) is sufficient for local stabilization of (2.64). In the case of system (5.2), LMI (2.75) is written as:

sym {A ε Q} -2τ B ε B T ε + 2χQ 0. (5.7)
Similarly to what was done in Section 2.3.3, here control design will be based on LMI (5.7). Note that Assumption 5.2 ensures that there exist Q = Q T 0 and τ > 0 such that (5.7) holds for a given choice of χ > 0. However, finding this solution might be computationally tricky due to ill conditioning of A ε .

The problem tackled in this section can then be stated as follows: given system (5.1) (or its equivalent representation (5.2)), propose an LMI-based constructive method for the design of a stabilizing state-dependent switching law having the form (5.5) while avoiding ill-conditioning induced by the low value of parameter ε.

Before the investigation of the switching law design problem, we discuss in the next subsection the behavior of the singularly perturbed system when switching does not occur. This discussion will prove useful in the interpretation of the results obtained by simulation later on.

Open-loop behavior for a fixed v j ∈ V

Here, we provide a description of the qualitative behavior of solutions of (5.1) for a fixed input v j ∈ V. In addition to being helpful in illustrating the behavior of the system when a single mode j is active, some useful definitions and notations are also introduced in this discussion. However, it is important to keep in mind that the switching control causes one mode to switch to another. Therefore, the conclusions presented here will have to be modified in order to take into account the switching behavior of the closed-loop system (5.1), (5.5).

In the literature on singularly perturbed systems, one approach that is usually adopted to analyze the system behavior is to study the limit case where ε = 0. Indeed, since ε is very low, this approach yields a good approximation of the solution while also providing an insightful visualization of how a singularly perturbed system behaves. For this reason, this approach will be applied here to system (5.1).

By setting ε = 0 and u = v j , the dynamical equation for the fast states (5.1b) is replaced by the following static equation1 :

0 = A 21 x s + A 22 z s + B 2 v j , (5.8) 
where x s and z s denote the slow components of x and z, respectively. For each x s and v j , (5.8) has one root ξ(x s , v j ), j = 1, 2, . . . , N , solving for z s . For each such root, a surface is defined in (x, z)-space as z = ξ(x, v j ). We shall refer to each one of these surfaces as the quasi-steady-state manifold associated with v j . Using (5.8) and Assumption 5.3, the equation describing the manifold associated with v j is given by:

z = ξ(x, v j ) = -Gx -M v j , (5.9) 
where:

G := A -1 22 A 21 , M := A -1 22 B 2 .
(5.10) From (5.1a) and (5.8), the slow dynamics can be written as follows:

ẋs = A s x s + B s v j , (5.11) 
with:

A s := A 11 -A 12 G, B s := B 1 -A 12 M.
(5.12)

For the fast dynamics, define the variable z f := z -z s . Note that z f is the difference between the state z and its slow component, which belongs to the quasi-steady-state manifold. Moreover, define the fast time scale τ = ε -1 t. Neglecting the variation of the slow component z s with respect to the fast time scale (i.e., by considering ε żs = 0), the following equation is obtained for the evolution of z f in the fast time scale:

dz f dτ = A f z f , (5.13) 
where

A f := A 22 .
According to (5.13), when u = v j , then the trajectory vanishes to the quasi-steady-state manifold z = ξ(x, v j ) in the case where A f is Hurwitz. On the other hand, if A f is not Hurwitz, then the trajectory diverges from the quasi-steady-state manifold. Remark 5.1 One of the main goals in classical singular perturbation theory is to reduce the order of the model by only considering the slow states and neglecting the fast ones. This is not our objective here. Instead, we aim to provide constructive design methods of non-decoupling switching control based on well-conditioned LMIs for systems exhibiting two distinct time scales.

In the sequel, matrices A s , G, M , and A f defined above will be used to propose LMI-based stabilization criteria for system (5.1) which are independent of the small parameter ε, in such a way that the numerical issues of the ill-conditioned system are alleviated. We will start by proposing a strategy where the controller explicitly depends on the value of ε, and then a strategy that does not.

ε-dependent switching law

Let us start by presenting the following lemma, which has been proposed in [START_REF] Deaecto | H 2 and H ∞ performance optimization of singularly perturbed switched systems[END_REF].

Lemma 5.1 ( [START_REF] Deaecto | H 2 and H ∞ performance optimization of singularly perturbed switched systems[END_REF]) Consider two symmetric matrices Ψ, Θ ∈ R n having the following structure2 :

Ψ = Ψ 11 Ψ 12 Ψ 22 , Θ = 0 Θ 12 Θ 22 , (5.14) 
where Θ 22 is invertible. There exists ε * > 0 such that

Ψ + ε -1 Θ ≺ 0 (5.15)
holds for all ε ∈ (0, ε * ) if and only if Ψ 11 ≺ 0, Θ 12 = 0 and Θ 22 ≺ 0.

Lemma 5.1 is a powerful result since it provides ε-independent conditions for the ε-dependent LMI (5.15) to be feasible. Interestingly, these conditions are valid for arbitrarily small values for ε, which show their relevance for singularly perturbed systems. Furthermore, the bound ε * up to which the conditions are valid can be estimated as in the following remark.

Remark 5.2 ([34]

) An estimation for ε * in Lemma 5.1 can be carried out as follows: if Ψ 11 is invertible and

Ψ c := Ψ 22 -Ψ T 12 Ψ -1 11 Ψ 12 ≤ 0, then ε * = +∞.
Otherwise, ε can be determined as:

ε * = 1 λ max (-Θ 22 ) -1/2 Ψ c (-Θ 22 ) -1/2 .
(5.16)

Recall the way set conv {V} has been expressed in (2.68). We rewrite this set here as follows:

conv {V} = v ∈ R nu : ζ T q v ≤ 1, ∀q ∈ I N h .
(5.17)

We also redefine set C V (K), presented in (2.69), using η-coordinates:

C V (K) = {η ∈ R n : Kη ∈ conv {V}} . (5.18)
Just as in Section 2.3.3, conv {V} and C V (K) will be particularly helpful here for the estimation of the domain of attraction, when the stabilization results only hold locally.

In the following theorem, our first stabilizing controller is presented.

Theorem 5.1 Consider system (5.1) under Assumptions 5.1-5.3. Given a parameter χ > 0, if there exist ν > 0 and matrices W = W T 0, S = S T 0, Y 1 and Y 2 , such that:

sym {A s W + B s Y 1 } + 2χW ≺ 0, (5.19) sym A f S -A f GY T 1 M T + A f M Y 2 ≺ 0, (5.20 
)

Q := W -W G T -Y T 1 M T S + GW G T 0, (5.21)   1 ζ T q Y 1 ζ T q Y 2 W -W G T -Y T 1 M T S + GW G T   0, ∀q ∈ I n h , (5.22 
)

νI n I n Q 0, (5.23)
then, there exists ε * > 0 such that the origin of the closed-loop system (5.1), (5.5), with Γ = Q -1 B ε is locally exponentially stable with decay rate χ for all ε ∈ (0, ε * ). In addition, the set

Ω 0 = {η ∈ R n : η T Q -1 η ≤ 1}
is an estimation of the domain of attraction and B(0, 1/ν) ⊆ Ω 0 .

Proof: The demonstration of the results of Theorem 5.1 can be done in two steps. First, LMI (5. [START_REF] Caux | Modelling and control of a fuel cell system and storage elements in transport applications[END_REF]) is written in the form (5.14), (5.15). Second, it is shown that (5.19)-(5.21) are sufficient conditions for (5.7) to hold for all ε ∈ (0, ε * ) for some ε * > 0. With the latter result, it is shown that the closed-loop full-order switched system (5.1), (5.5), is locally exponentially stable with Γ = Q -1 B ε . Moreover, it is shown that (5.22) implies Ω 0 ⊂ Int {C V (K)} and that Ω 0 is an estimation of the domain of attraction. First, let us rewrite A ε and B ε as follows:

A ε = A 11 A 12 0 0 + ε -1 0 0 A 21 A 22 , (5.24) 
B ε = B 1 0 + ε -1 0 B 2 .
(5.25)

Let Q = Q T = W Q 12 Q 22 0, with W ∈ R nx×nx , Q 12 ∈ R nx×nz , Q 22 ∈ R nz×nz and Y = [Y 1 Y 2 ] = KQ, with Y 1 ∈ R nu×nx and Y 2 ∈ R nu×nz . Plugging A ε , B ε , Q and K = Y Q -1 in (5.7
) and developing, we obtain an expression of the form (5.14), (5.15), with:

               Ψ 11 = sym A 11 W + A 12 Q T 12 + B 1 Y 1 + 2χW ; Ψ 12 = A 11 Q 12 + A 12 Q 22 + B 1 Y 2 + 2χQ 12 ; Ψ 22 = 2χQ 22 ; Θ 12 = W A T 21 + Q 12 A T 22 + Y T 1 B T 2 ; Θ 22 = sym {A 22 Q 22 + A 21 Q 12 + B 2 Y 2 } . (5.26a) (5.26b) (5.26c) (5.26d) (5.26e) From (5.21), we have Q 12 = -W G T -Y T 1 M T and Q 22 = S + GW G T .
Thus, from (5.26) we obtain Θ 12 = 0. Moreover, LMIs (5. [START_REF] Caux | Modelling and control of a fuel cell system and storage elements in transport applications[END_REF]) and (5.20) imply Ψ 11 ≺ 0 and Θ 22 ≺ 0, respectively. Therefore, applying Lemma 5.1, one can conclude that (5.7) holds for all ε ∈ (0, ε * ). Using matrices Θ 22 , Ψ 11 , Ψ 12 defined in (5.26), ε * can be estimated as in Remark 5.2.

Let us now consider the Lyapunov function (5.21). Taking P = Q -1 , inequality (5.7) is equivalent to:

V (η) = η T Q -1 η with Q defined in
2η T P A ε η + 2η T P B ε Kη + 2χη T P η < 0, (5.27) 
for all η ∈ R n . Under Assumption 5.1 there exists a neighborhood of the origin E(0, P, β) with β > 0 such that Kη ∈ conv {V} for all η ∈ E(0, P, β). On the other hand, using (5.21), LMI (5.22) can be expressed as:

1 ζ T q Y Q 0, ∀q ∈ I n h .
(5.28)

Applying the Schur complement on (5.28), we can show that (5.22

) implies 1 -ζ T q Y Q -1 Y T ζ q > 0, ∀q ∈ I n h .
Following similar arguments as in Section 2.3.4, this implies that E(0, P, 1) ⊂ Int {C V (K)}. Therefore, there exists δ(η) ∈ ∆ N such that:

Kη = N j=1 δ (j) (η)v j , ∀η ∈ E(0, P, 1).
(5.29)

Substituting (5.29) in (5.27), we obtain, for all η ∈ E(0, P, 1) \ {0}:

N j=1 δ (j) (η) η T P A ε η + η T P B ε v j + χη T P η < 0.
(5.30)

Since δ (j) (η) ≥ 0, ∀j ∈ I N , then from (5.30), for each η = 0, there exists at least one v j ∈ V such that η T P A ε η + η T P B ε v j + χη T P η is negative. Choosing v j = v j * such that v j * ∈ arg min v∈V η T P B ε v then guarantees that:

η T P A ε η + η T P B ε v j * + χη T P η < 0, (5.31) 
for all η ∈ E(0, P, 1) \ {0}. Therefore, we have from (5.31) that:

∂V ∂η (η) (A ε η + B ε v j * ) ≤ -2χη T P η, (5.32) 
for all η ∈ E(0, P, 1) \ {0}. Take Γ = P B ε . Then, from (5.6), (5.32), and using convexity and compactness arguments:

sup ς∈F (η)
∂V ∂η ς ≤ -2χV (η), ∀η ∈ E(0, P, 1) \ {0}.

(5.33)

Thus, the origin is locally exponentially stable in Ω 0 = E(0, Q -1 , 1) with decay rate χ. In addition, LMI (5.23) 

implies that νη T η -η T Q -1 η ≥ 0, ∀η ∈ R n . Thus, η ∈ B(0, 1/ν) ⇐⇒ νη T η ≤ 1 =⇒ η T Q -1 η ≤ 1 ⇐⇒ η ∈ Ω 0 . Therefore, B(0, 1/ν) ⊆ Ω 0 .
Theorem 5.1 provides an LMI-based constructive method for the design of a stabilizing statedependent switching law of the form (5.5) Rather than trying to solve the ε-dependent stability condition given by LMI (5.7), we look for W 0, S 0, Y 1 and Y 2 such that LMIs (5.19)-(5.22) are feasible. These LMIs, unlike (5.7), do not depend on ε and yet they allow the design of a controller that stabilizes the full-order singularly perturbed switched system (5.1). Thus, by using Theorem 5.1, numerical problems caused by ill conditioning are avoided.

Global stabilization results are obtained from Theorem 5.1 in the following corollary.

Corollary 5.1 If A s and A f are Hurwitz, then there exists ε * > 0 such that, for all ε ∈ (0, ε * ), the origin of the closed-loop system (5.2), (5.5) is globally exponentially stable with Γ = Q -1 B ε and:

Q = W -W G T S + GW G T 0, (5.34) 
where W = W T 0 and S = S T 0 are solutions of the LMIs sym {A s W } ≺ 0 (5.35)

and sym {A f S} ≺ 0, (5.36) 
respectively.

Proof: If A s and A f are Hurwitz, then LMIs (5. [START_REF] Caux | Modelling and control of a fuel cell system and storage elements in transport applications[END_REF]) and (5.20) are feasible for some χ, W = W T 0 and S = S 0 while considering Y 1 = 0 and Y 2 = 0. Moreover, (5.34) follows from (5.21). In addition, K = 0. Thus, C V (K = 0) = {η ∈ R n : 0 ∈ conv {V}}. Using Assumption 5.1, we have C V (K) = R n . Thus, following the same steps as in Theorem 5.1, one can show that the closed-loop full-order switched system (5.1)-(5.5) with Γ = Q -1 B ε and Q defined in (5.34) is globally exponentially stable.

It is interesting to note that the conditions of Theorem 5.1 and Corollary 5.1 are only dependent on data from the approximate models (i.e., with ε = 0) and the expressions of the quasi-steadystate manifolds introduced in Section 5.1.1. Moreover, in the case of Corollary 5.1, the conditions are simply the stability of both the slow and fast dynamics.

The following example illustrates the use of Theorem 5.1 to design a stabilizing controller for a simple second-order system, in order to ease the visualization of how the system behaves in closed loop.

Example 5.1 Consider a system described by (5.2) with:

A ε = -1 1 8 × 10 3 1.2 × 10 4 , B ε = 1 1 × 10 4 ,
(5.37)

and V = {v 1 , v 2 }, with v 1 = 1 and v 2 = -1.5. Note that the matrix A ε is poorly conditioned due to the difference in the orders of magnitude between the first and second rows.

The dynamics of the system can be equivalently expressed as in (5.1), with A 11 = -1, A 12 = 1, A 21 = 0.8, A 22 = 1.2, B 1 = B 2 = 1, and ε = 1 × 10 -4 . Note that A 22 is not Hurwitz.

Choosing χ = 1, it can be verified that LMIs (5.19)- (5.22) are feasible with W = 21.7, S = 1.5, Y 1 = 0.94 and Y 2 = -1.28. Matrix Γ is then determined as Γ = Q -1 B ε , in accordance with Theorem 5.1. The bound ε * for which stabilization is ensured has been calculated as ε * = 0.005. Therefore, we have that ε < ε * . Figure 5.1 shows the state-space trajectory of the closed-loop system, from the initial state η(0) = [0.6 -1]

T . The border of the estimated domain of attraction ∂Ω 0 is also represented in the figure. Consider the simulation result obtained in Example 5.1. At instant t = 0, k(η(t)) = v 1 according to the designed switching law. Then, the fast state rapidly changes while the slow state remains practically unchanged. This behavior is represented by the vertical portion of the trajectory. Note that the trajectory diverges from the quasi-steady-state manifold associated with v 1 , which is consistent with the fast dynamics expressed in (5.13) considering that A 22 is not Hurwitz.

However, at a certain point, the trajectory reaches the switching surface s(η) = η T Γ(v 1 -v 2 ) = 0. The expression for this surface comes from the control law (5.5), in the same way as explained in Section 2.3.1. Once this surface is reached, the trajectory starts sliding on it until stabilizing at the origin.

It is worth noting that, despite the fact that the LMI conditions in Theorem 5.1 and Corollary 5.1 are ε-independent, the same cannot be said about the proposed switching law. In fact, the design parameter Γ is determined to be equal to Q -1 B ε , and thus it depends on ε. This is inconvenient if this parameter is not well known or if its use in the controller is not practical [START_REF] Tognetti | LMI-based output feedback control of singularly perturbed systems with guaranteed cost[END_REF]. In the next section, this drawback is overcome by the proposal of a design method leading to an ε-independent controller.

ε-independent switching law

Consider the following lemma, which will be useful in proving a subsequent result regarding the design of an ε-independent switching law. Lemma 5.2 Consider three symmetric matrices Ψ, Θ, Σ ∈ R n×n , where Ψ and Θ are written as in (5.14) and Σ has the following form:

Σ = 0 0 Σ 22 , (5.38) 
where Σ 22 ∈ R nz×nz and Σ 22 ≺ 0. There exists ε * > 0 such that

Ψ + ε -1 Θ + ε -2 Σ ≺ 0 (5.39)
holds for all ε ∈ (0, ε * ) if and only if Ψ 11 ≺ 0 and Θ 12 = 0. Assuming Ψ 22 -Ψ T 12 Ψ -1 11 Ψ 12 0, ε * can be estimated as follows: ε = +∞ if Θ 22 0, and:

ε * = 1 λ max (-Σ 22 ) -1/2 Θ 22 (-Σ 22 ) -1/2 ,
(5.40)

otherwise.

Proof: First, note that (5.39) can be written as:

Ψ + ε -1 0 Θ 12 ε -1 Σ 22 + Θ 22 ≺ 0.
(5.41)

Since Σ 22 ≺ 0, we know that there exists ε * 1 > 0 such that ε -1 Σ 22 + Θ 22 ≺ 0 holds for all ε ∈ (0, ε * 1 ). Indeed, if Θ 22 0, then ε * 1 = +∞. Otherwise:

ε * 1 = 1 λ max (-Σ 22 ) -1/2 Θ 22 (-Σ 22 ) -1/2 .
(5.42)

From Lemma 5.1, we know that there exists ε * 2 > 0 such that (5.41) holds for all ε ∈ (0, ε * 2 ) if and only if Ψ 11 ≺ 0, Θ 12 = 0 and ε -1 Σ 22 + Θ 22 ≺ 0. We have already established that the latter is valid for all ε ∈ (0, ε * 1 ). Therefore, the result of the lemma is valid for all ε ∈ (0, ε * ) with

ε * = min{ε * 1 , ε * 2 }. The estimation of ε *
2 is carried out as follows. First, rewrite (5.41) as:

Ψ 11 Ψ 12 Ψ 22 + ε -2 Σ 22 + ε -1 Θ 22 ≺ 0, (5.43)
which, using the Schur complement (given that Ψ 11 is invertible), is equivalent to

Ψ 22 + ε -2 Σ 22 + ε -1 Θ 22 -Ψ T 12 Ψ -1 11 Ψ 12 ≺ 0 or, equivalently: -ε -1 ε -1 Σ 22 + Θ 22 Ψ 22 -Ψ T 12 Ψ -1 11 Ψ 12 .
(5.44)

Since Ψ 22 -Ψ T 12 Ψ -1 11 Ψ 12 0, then clearly ε * 2 = +∞. Therefore, ε * = min{ε * 1 , ε * 2 } = ε * 1 .
The main result of this section is proposed in the following theorem.

Theorem 5.2 Consider system (5.1) under Assumptions 5.1-5.2. Given a parameter χ > 0, if there exist ν > 0 and matrices

W = W T 0, S = S T 0, Π 1 = Π T 1 0, Π 2 = Π T 2 and Y 1 , such that: sym {A 11 W + B 1 Y 1 } + 2χW + Π 1 ≺ 0, (5.45) 
sym {A 22 S} + Π 2 ≺ 0, (5.46)

Π 1 A 12 S + W A T 21 + Y T 1 B T 2 Π 2 0, (5.47 
)

1 ζ T q Y 1 W 0, ∀q ∈ I n h , (5.48)   νI nx 0 I nx νI nz 0 W   0, (5.49) 
then there exists ε * > 0 such that, for all ε ∈ (0, ε * ), the origin of the closed-loop system (5.2), (5.5), with:

Γ = W -1 B 1 S -1 B 2 , (5.50)
is locally exponentially stable with decay rate χ. Moreover,

Ω * 0 = {η ∈ R n : η T Q -1 ε * η ≤ 1}
is an estimation of the domain of attraction, where Q -1 ε * is given by:

Q -1 ε * = W -1 0 0 ε * S -1 , (5.51) 
and B(0, 1/ν) ⊆ Ω * 0 .
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Proof: Consider the following inequality: 

sym {A ε Q ε + B ε Y } + 2χQ ε + Π ε ≺ 0, (5.52) with Q ε = Q T ε and Π ε = Π T ε given by Q ε = W 0 0 ε -1 S , Π ε = Π 1 ε -1 Π 12 ε -2 Π 2 , ( 5 
                     Ψ 11 = sym {A 11 W + B 1 Y 1 } + 2χW + Π 1 ; Ψ 12 = 0; Ψ 22 = 0; Θ 12 = A 12 S + W A T 21 + Y T 1 B T 2 + Π 12 ; Θ 22 = 2χS; Σ 22 = sym {A 22 S} + Π 2 .
(5.54a) (5.54b) (5.54c) (5.54d) (5.54e) (5.54f) LMIs (5.45) and (5.46) imply that Ψ 11 ≺ 0 and Σ 22 ≺ 0, respectively. By making

Π 12 = -(A 12 S + W A T 21 + Y T 1 B T 2 )
, the condition Θ 12 = 0 is enforced. Thus, applying Lemma 5.2, we can show that there exists µ > 0 such that (5.52) holds for all ε ∈ (0, µ).

Note that LMI (5.47) implies that:

Π 1 -Π 12 Π 2 0.
(5.55)

Applying the Schur complement on the first row and column of (5.55), we have (since

Π 1 0) that (5.55) ⇐⇒ Π 2 -Π T 12 Π -1 1 Π 12 0 ⇐⇒ ε -2 Π 2 -ε -2 Π T 12 Π -1 1 Π 12 0
, which, by using once again the Schur complement, is equivalent to Π ε 0.

Therefore, we have shown that (5.45)-(5.47) are sufficient conditions for the feasibility of (5.52) and for Π ε 0 to hold, for all ε ∈ (0, µ), for some µ > 0.

On the other hand, from LMI (5.48) and since S 0, then for all ε > 0:

  1 ζ T q Y 1 0 W 0 ε -1 S   0, ∀q ∈ I n h .
(5.56)

Applying the Schur complement on (5.56):

1 -ζ T q Y Q -1 ε Y T ζ q > 0, ∀q ∈ I n h . (5.57) Since Π ε 0, taking Q = Q -1 ε and K = Y Q -1
ε , one can show that (5.52) implies (5.39). Following the same arguments as in the proof of Theorem 5.1, it can be shown that the origin of full-order switched system (5.2), (5.5) is locally exponentially stable in

Ω 0 = E(0, Q -1 ε , 1) ⊂ Int {C V (K)}. For all ε ∈ (0, µ), η ∈ Ω * 0 ⇐⇒ x T W -1 x + µz T S -1 z ≤ 1 =⇒ x T W -1 x + εz T S -1 z ≤ 1 ⇐⇒ η ∈ Ω 0 ,
since S -1 0. This implies that Ω * 0 ⊆ Ω 0 , and therefore Ω * 0 is an ε-independent estimation of the domain of attraction.

Using the Schur complement, it can be shown that (5.49) implies that the LMI expressed as

    νI nx 0 I nx 0 νI nz 0 I nz W 0 ε -1 S     0. (5.58) is equivalent to ε -1 S - 1 ν I nz 0, (5.59)
which is guaranteed to be valid for all ε ∈ (0, ρ), with ρ = νλ min (S). In other words, if ε ∈ (0, ρ), then LMI (5.58) holds. This LMI can be rewritten as:

νI n I n Q ε 0, (5.60)
which in turn implies νη T η -η T Q -1 ε η ≥ 0 for all η ∈ R n , or equivalently:

η T Q -1 ε η ≤ η T η 1/ν , ∀η ∈ R n , (5.61) 
and thus

η T η ≤ 1/ν =⇒ η T Q -1 ε η ≤ 1. Put simply, B(0, 1/ν) ⊆ E(0, Q -1 ε , 1)
. Recall that this is the case as long as ε ∈ (0, ρ). Now let ε * = min{µ, ρ}, so that all results proven so far are valid for all ε ∈ (0, ε * ). Note that

η ∈ Ω * ⇐⇒ x T Q -1 1 x + ε * z T Q -1 2 z ≤ 1 =⇒ x T Q -1 1 x + εz T Q -1 2 z ≤ 1 ⇐⇒ η ∈ Ω ε , ∀ε ∈ (0, ε * ), since Q -1 2 0. This implies Ω * ⊆ ∩ ε∈(0,ε * ) Ω ε , and therefore Ω * is contained in the domain of attraction. Since ε * ≤ ρ and Ω * = Ω ε * , then B(0, 1/ν) ⊆ Ω * .
The bound ε * up to which the results of Theorem 5.2 are valid can be calculated as in the proof.

The results presented in Theorem 5.2 allows the design of a controller that does not depend on ε, which can clearly be seen in the expression for Γ given in (5.50). However, the value of ε must still be bounded by ε * for these results to apply. Even though this presents an advantage with respect to the ε-dependent controller proposed in Theorem 5.1, the conditions of Theorem 5.2 are more strict. Indeed, one can instantly see from LMI (5.45) that the pair (A 11 , B 1 ) must be stabilizable with the imposed decay rate χ, and that A 22 must be Hurwitz, i.e., the fast dynamics must be asymptotically stable.

In Theorem 5.2, we have included the variable ν as a way of tuning the size of the domain of attraction, much as it has been done in Theorem 3.2.

We present hereafter a numerical example illustrating the application of Theorem 5.2 to design an ε-independent controller. As in Example 5.1, we aim at stabilizing a simple second-order system in order to allow a better visualization of the system behavior.

Example 5.2 Consider the same system described in Example 5.1, but with A 22 = -1.2. This means that now A 22 is Hurwitz and so Theorem 5.2 can be applied.

Choosing χ = 1, LMIs (5.45)-(5.48) are solved and the following results are obtained: ρ = 1.58, W = 1.23, S = 0.94, Π 1 = 1.24, Π 2 = 1.13 and Y 1 = -1.07. Using Lemma 5.2, the value of the bound ε * has been estimated to be ε * = 0.6. Therefore, once again, we have ε < ε * . It is worth pointing out that the obtained controller could be used no matter the value of ε, as long as ε ∈ (0, ε * ), thereby ensuring a certain robustness with respect to uncertainties in ε.

Figure 5.2 shows the resulting trajectory using the ε-independent control law, from the initial state η(0) = [-0.8 -0.4] T .

In Example 5.2, we have once again that k(η(0)) = v 1 . Note, however, that this time the trajectory converges to the quasi-steady-state manifold z = ξ(x, v 1 ), exactly as described in Section 5.1.1 for A 22 Hurwitz. Then, when the switching surface is reached, the control input is no longer fixed at v 1 . Instead, as before, the trajectory starts sliding on the surface s(η) = 0 until stabilization at the origin. From the moment where the sliding motion begins, the analysis carried out in Section 5.1.1 is no longer applicable since the system switches infinitely fast between both modes.

It is interesting to remark that, in Examples 5.1 and 5.2, the separation between the slow and fast dynamics is not observed once switching takes place. Thus, the complete state trajectory can be qualitatively described as consisting of two distinct phases:

1. the singularly perturbed systems phase: in this phase, the trajectory exhibits the behavior of a singularly perturbed affine system3 , which can be analyzed as in Section 5.1.1. This phase happens before the trajectory reaches the switching surface s(η) = 0. Note that there is no switching involved in this phase. - 2. the switched systems phase: once the trajectory reaches the surface s(η) = 0, a sliding mode takes place until stabilization at the origin. In this phase, the system behaves purely as a switched affine system, and the difference in time scales which is characteristic of singularly perturbed systems is not observed.

+ E S r l w (1)
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In the sequel, we apply the methods developed here to the practical example of a Buck converter.

Buck converter example

Consider the electric circuit of the Buck converter, shown in Figure 5.3. Note that it is slightly different from the circuit shown in Figure 2.10 since here a parasitic resistance r has been added in series to inductor l, similarly to the converter models presented in [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF]. This has been done in order to meet the conditions that must be satisfied to apply the results obtained in this section. Nevertheless, this does not pose a significant restriction considering that in practice parasitic resistances are always present in an electrical circuit.

The system state is denoted as w, with w (1) the inductor current and w (2) the output voltage, as shown in Figure 5.3. Adopting a similar approach as in Example 2.6, the following model is obtained:

dw dt = A w,σ w + b w,σ , (5.62) 
where σ is the switching function, and A w,j and b w,j , j = 1, 2, are given by:

A w,1 = A w,2 = -r/l -1/l 1/c -1/(r o c) , (5.63) 
b w,1 = E/l 0 , b w,2 = 0 0 . (5.64) 
The goal is to stabilize the equilibrium point w . Firstly, though, it is necessary to express the dynamics (5.62) in the form (5.1) (or (5.2)) in order to be able to apply the results proposed so far in this section. To that end, consider the following coordinate transformation η = φ(w), which has been inspired by the one introduced in [77]:

x = φ (1) (w) = w (2) -w (2) E , z = φ (2) (w) = r o w (1) -w (1) E . (5.65) 
In addition, we also normalize the time variable as:

t = t r o c . (5.66) 
With the coordinate changes (5.65)-(5.66), the dynamics (5.62) can be written as follows (the time derivative is taken with respect to t ):

η = A ε η + b ε,σ, (5.67) 
where:

A ε = -1 1 -ε -1 -ε -1 r/r o , (5.68) 
b ε,1 =   r o w (1) -w (2) /E ε -1 1 -rw (1) + w (2) /E   , b ε,2 =   r o w (1) -w (2) /E -ε -1 rw (1) + w (2) /E   , (5.69) 
and

ε = l r 2 o c . (5.70) 
The advantage of expressing the dynamics of the system in this way is that we obtain a value of ε that is dimensionless. This makes for an easier interpretation, since a dimensionless parameter is more useful in quantifying the separation between the time scales of the slow and fast variables.

Stabilizing the state w to w is equivalent to stabilizing the origin of system (5.67). From Assumption (2.2) we have that for the origin to be an equilibrium point of (5.67), there must exist δ ∈ ∆ 2 such that δ (1) b ε,1 + δ (2) b ε,2 = 0. Denoting once again δ (1) as α (the duty cycle of the converter), this condition implies:

α = rw (1) + w (2) E , (5.71) 
w (2) = r o w (1) . (5.72) 
Note from (5.69) that using (5.71)-(5.72), b ε,1 and b ε,2 can be written as:

b ε,1 = 0 ε -1 (1 -α ), b ε,2 = - 0 ε -1 α , (5.73) 
respectively. As a consequence, (5.67) can be equivalently expressed as (5.2), with:

B ε = 0 ε -1 , (5.74 
)

v 1 = 1 -α , v 2 = -α , (5.75) 
and A ε given by (5.68). From (5.3) and (5.4) we have that

A 11 = -1, A 12 = 1, A 21 = -1, A 22 = -r/r o , B 1 = 0 and B 2 = 1.
The values of the circuit parameters are given in Table 5.1. The equilibrium current value w (1) is determined from (5.72) to be w (1) = 5A. The value of α is then calculated from (5.71) to be α = 0.51. Since α ∈ (0, 1), we can see that 0 ∈ Int {conv {v 1 , v 2 }} and thus Assumption 5.1 is satisfied.

Let us impose a decay rate of χ w = 20s -1 . In normalized time t , the decay rate χ has a different value. To see why, consider a differentiable function V (t) such that:

dV dt ≤ -2χ w V. (5.76) 
Table 5.1: Numerical values used in the example described in Section 5.1.4. By multiplying both sides of inequality (5.76) by r o c, we have:

w (2) 200V E 400V l 0.5mH c 1000µF r 1Ω r o 40Ω 0 
dV dt ≤ -2r o cχ w V, (5.77) 
meaning that the decay rate in normalized time is equal to χ = r o cχ w . In our example, we then have that χ = 0.8. Solving the LMI problem of Theorem 5.1 then yields the following results: ν = 119.5, W = 0.106, S = 83.9, Y 1 = 0.043, and Y 2 = -1.551. The value of the bound ε * has been estimated as ε * = 8.38 × 10 -4 , which is larger than the value of ε = 3.125 × 10 -4 . The results obtained by simulation are shown in Figures 5.4 and 5.5. The switching surface in w-coordinates is represented in red in Figure 5.5 and its expression is given by s w (w) = 0, where s w (w) is defined as:

s w (w) := φ(w) T Γ(v 1 -v 2 ). (5.78) 
Once again, we see that the desired reference point is stabilized, albeit with a large current overshoot. The behavior of the current in the beginning reflects its fast variation with respect to the output voltage. Indeed, it goes from 0A to about 60A while the voltage is kept around 100V. When the switching surface is reached, this difference in time scales vanishes and the system exhibits a pure switching behavior characterized by a sliding mode. Now let us design an ε-independent controller for the same Buck converter. Solving the LMI problem posed in Theorem 5.2, choosing again χ w = 20s -1 , the following results are obtained: ν = 0.90, W = 1.41, S = 1.42, Π 1 = 0.83, Π 2 = 0.04 and Y 1 = 0.003. The value of the bound ε * is estimated to be ε * = 0.026, which is much higher than the value of ε = 3.125 × 10 -4 .

The simulation results are shown in Figures 5.6 and 5.7. The plots for the current and voltage in Figure 5.6 are in different scales in order to better visualize the time response of each variable. Indeed, compared with the ε-dependent controller, here the voltage is much slower and the current much faster.

In Figure 5.7a, the trajectory of the system is shown in w-coordinates. The same trajectory, but in η-coordinates, can be better visualized in Figure 5.7b. The switching surface is vertical and its equation is given by s w (w) = w (1) -w [START_REF] Ahmad | Robust switching control of DC-DC boost converter for EV charging stations[END_REF] . It is worth pointing out that this switching surface is also used when applying classical sliding mode control for DC/DC power converters (this method is referred to as indirect control in [110, Chapter 3] because the surface is defined based on the current, and not on the voltage, which is the variable to be stabilized). However, here the corresponding switching law stabilizes the system for any ε ∈ (0, ε * ).

In the next section, the class of general singularly perturbed SASs is addressed. This will allow to extend the techniques developed here to a larger class of DC/DC power converter topologies, such as Boost converters, for instance.

Singularly perturbed switched affine systems

In the present section, we seek to extend some of the obtained results to singularly perturbed SASs in general.

Let us start by writing the system in the following form:

ẋ = A 11 (u)x + A 12 (u)z + B 1 u ε ż = A 21 (u)x + A 22 (u)z + B 2 u, (5.79a) (5.79b) 
where x, z, ε and u are defined exactly as in Section 5.1. In particular, recall that u can only take values in the finite set V = {v 1 , v 2 , . . . , v N }. Assumption 5.1 is also made here, i.e., conv {V} has nonempty interior and 0 ∈ Int {conv {V}}.

The full state η is once again defined as the concatenation of the slow and fast states, and thus η = x T z T T . Matrix A ε (u) is defined for each u ∈ V as:

A ε (u) = A 11 (u) A 12 (u) ε -1 A 21 (u) ε -1 A 22 (u) , (5.80) 
while B ε is defined as in (5.4). In compact form, the dynamics are written as:

η = A ε (u)η + B ε u. (5.81) 
The switching law adopted here is also (5.5), and the goal is to determine the design parameter Γ ensuring closed-loop stability while avoiding ill conditioning issues in the LMI-based control design.

The differential inclusion describing the system dynamics is given by: η ∈ F ε,sas (η) := conv A ε (ṽ)η + B ε ṽ : ṽ ∈ arg min v∈V η T Γv .

(5.82)

Recall the discussion carried out in Section 5.1.1 describing the open-loop behavior of system (5.79) keeping some v j ∈ V fixed as the control input. The same analysis applies to the more general class of systems described by (5.79). The only difference is that, since matrices A 11 (v j ), A 12 (v j ), A 21 (v j ) and A 22 (v j ) depend on v j , then the equation for the quasi-steady-state manifold associated with each v j is now given by:

z = ξ j (x, v j ) = -G j x -M j v j , (5.83) 
where

G j := A -1 22 (v j )A 21 (v j ) and M j := A -1 22 (v j )B 2 .
Note that the subscript j has been added to ξ(•), G and M to denote their dependence on v j .

In this section, we are going to focus on ε-independent control laws, given their advantageous properties discussed in Section 5.1. However, we propose at first a lemma that gives ε-dependent conditions for stabilization, as well as an ε-dependent switching law for the control of system (5.79). This result will be useful later in proving our main result concerning ε-independent stabilization of (5.79). It is worth mentioning that this result is very similar to others presented in the literature on switched systems, such as [START_REF] Hetel | Variable structure control with generalized relays: A simple convex optimization approach[END_REF] and [START_REF] Delpoux | Parameter-dependent relay control: Application to PMSM[END_REF]. However, these works do not consider general switched affine systems or the singular perturbation parameter. Lemma 5.3 Given a parameter χ > 0, assume that there exist ν > 0 and matrices

Q = Q T 0 and Y ∈ R nu×n such that: sym {A ε (v j )Q + B ε Y } + 2χQ ≺ 0, ∀j ∈ I N , (5.84 
)

1 ζ T q Y Q 0, ∀q ∈ I n h , (5.85) 
Lemma 5.4 Consider symmetric matrices Ψ j , Θ j , Σ j ∈ R n×n , j = 1, . . . , N , of same dimensions, having the following form 4 :

Ψ j = Ψ j 11 Ψ j 12 Ψ j 22 , Θ j = 0 Θ j 12 Θ j 22 , Σ j = 0 0 Σ j 22 , (5.92) 
where Σ j 22 ≺ 0, ∀j ∈ I N . There exists µ > 0 such that

Ψ j + ε -1 Θ j + ε -2 Σ j ≺ 0, ∀j ∈ I N , (5.93) 
holds for all ε ∈ (0, µ) if and only if Ψ j 11 ≺ 0 and Θ j 12 = 0, ∀j ∈ I N . In addition, assuming

Ψ j 22 -Ψ j 12 T Ψ j 11 -1
Ψ j 12 0, ∀j ∈ I N , and defining:

µ j = +∞, if Θ j 22 0, λ -1 max (-Σ j 22 ) -1/2 Θ j 22 (-Σ j 22 ) -1/2 , otherwise. (5.94) 
for every j ∈ I N , then the bound µ can be estimated as µ = min j∈I N µ j .

Proof: From (5.93), we have, for each i ∈ I N :

Ψ j + ε -1 0 Θ j 12 ε -1 Σ j 22 + Θ j 22 ≺ 0. (5.95) 
Since Σ j 22 ≺ 0, we know that there exists µ j,1 > 0 such that ε -1 Σ j 22 + Θ j 22 ≺ 0 holds for all ε ∈ (0, µ j,1 ). Indeed, if Θ j 22 0, then µ j,1 = +∞. Otherwise, µ j,1 = 1/λ max (-Σ j 22 ) -1/2 Θ j 22 (-Σ j 22 ) -1/2 . According to Lemma 5.1, there exists µ j,2 > 0 such that (5.95) holds for all ε ∈ (0, µ j,2 ) if and only if Ψ j 11 ≺ 0, Θ j 12 = 0 and ε -1 Σ j 22 + Θ j 22 ≺ 0, the latter being valid for all ε ∈ (0, µ j,1 ). Therefore, (5.95) holds for all ε ∈ (0, µ j ) with µ j = min{µ j,1 , µ j,2 }.

The estimation of µ j,2 is carried out as follows. First, rewrite (5.95) as:

Ψ j 11 Ψ j 12 Ψ j 22 + ε -2 Σ j 22 + ε -1 Θ j 22 ≺ 0, (5.96) 
which, using the Schur complement (given that Ψ j 11 is nonsingular), is equivalent to

Ψ j 22 +ε -2 Σ j 22 + ε -1 Θ j 22 -Ψ j 12 T Ψ j 11 -1
Ψ j 12 ≺ 0 or, equivalently:

-ε -1 ε -1 Σ j 22 + Θ j 22 Ψ j 22 -Ψ j 12 T Ψ j 11 -1 Ψ j 12 .
(5.97)

Since Ψ j 22 -Ψ j 12 T Ψ j 11 -1
Ψ j 12 0, then clearly µ j,2 = +∞. Therefore, µ j = min{µ j,1 , µ j,2 } = µ j,1 , ∀j ∈ I N , and thus µ j can be written as in (5.94). The bound µ can be taken as the most conservative one among the bounds for each j ∈ I N . Thus, µ = min j∈I N µ j .

The main result of this section is proposed in the next theorem. An LMI-based approach for the design of an ε-independent switching law for system (5.79) is provided. The singular perturbation parameter ε does not appear either in the LMI conditions or in the proposed switching law. Nevertheless, local exponential stabilization is shown for all ε ∈ (0, ε * ) while both the upper bound ε * and an estimation of the domain of attraction are determined. Theorem 5.3 Consider system (5.79). For a given parameter χ > 0, assume that there exist

ν > 0, Q 1 = Q T 1 0, Q 2 = Q T 2 0, Y 1 ∈ R nu×nx , Π j 1 = Π j 1 T 0 and Π j 2 = Π j 2 T
, j = 1, . . . , N , such that the following LMI conditions are satisfied: 

1 ζ T q Y 1 Q 1 0, ∀q ∈ I n h , (5.98) 
  νI nx 0 I nx νI nz 0 Q 1   0, (5.99) 
4 Ψ j 1 ∈ R nx×nx , Ψ j 12 , Θ j 12 ∈ R nx×nz , Ψ j 2 , Θ j 2 , Σ j 2 ∈ R nz ×nz . -6 -4 -2 0 2 4 6 -3 -2 - 
A ε (v 1 ) = -1 0 0 -4000 , A ε (v 2 ) = -1 1 -20000 -4000 , (5.114) 
B ε = -2.5 30000 , (5.115) 
v 1 = 0.61, v 2 = -0.39, (5.116) 
and switching law u = k(η) given by (5.5). By taking ε = 5 × 10 -5 , the dynamics can be rewritten as (5.79), with: The conclusions made regarding Example 5.3 are similar to those made in Example 5.2. Indeed, in addition to stabilization of the origin, here we also observe the division of the trajectory into two separate phases. Initially, in the first phase, the mode is kept at j = 2 and a large variation in z occurs while x remains practically constant (vertical portion of the trajectory in Figure 5.8). Then, the trajectory follows the quasi-steady-state manifold associated with v 2 until reaching the switching surface s(η) = 0. From this point on, a new phase begins, where switching takes place and a sliding motion occurs until the origin is stabilized. Just as in Examples 5.1 and 5.2, the time scale separation is not observed while switching takes place.

A 11 (v 1 ) = A 21 (v 2 ) = -1, A 12 (v 1 ) = A 21 (v 1 ) = 0, A 12 (v 2 ) = 1, A 22 (v j ) = -0.2, j = 1, 2, B 1 = -2.
It is also interesting to remark that, differently from Examples 5.1 and 5.2, the quasi-steadystate manifolds are not parallel to each other. This is to be expected, since it can be seen from (5.83) that the slope of the manifold depends on j, which was not the case before in Section 5.1.1, where only the linear coefficient depended on j (see (5.9)).

In the following subsection, we apply the same results to a Boost converter in order to illustrate the method on a practical application.

Boost converter example

Let us apply the results of Theorem 5.3 to design an ε-independent switching law for the stabilization of the Boost converter shown in Figure 5.9.

The electric circuit shown in Figure 5.9 is different from the one shown in Figure 2.1 because here we consider the presence of a resistive parasitic element associated with inductor l. This has been done for the same reason as in Section 5.1.4: meeting the conditions for using the methods proposed in this chapter.

-

+ E r l w (1) D r o S c + - w (2) 
Figure 5.9: Boost converter supplying a load r o , taking into account the internal resistance r.

The system state is denoted as w, with w (1) the inductor current and w (2) the output voltage. The model of the converter is given by (5.62), this time with A w,j and b w,j , j = 1, 2, given by:

A w,1 = -r/l 0 0 -1/(r o c) , A w,2 = -r/l -1/l 1/c -1/(r o c) , (5.117) 
and

b w,1 = b w,2 = E/l 0 . (5.118) 
The goal, once again, is to stabilize the state w at a desired equilibrium point w = w (

T . By considering the coordinate transformation defined in (5.65) and the normalized time variable t = t/(r o c), the system dynamics can be written as:

η = A ε,σ η + b ε,σ , (5.119) 
where:

A ε,1 = -1 0 0 -ε -1 r/r o , A ε,2 = -1 1 -ε -1 -ε -1 r/r o , (5.120) 
and

b ε,1 = -w (2) /E ε -1 1 -rw (1) /E , b ε,2 =   r o w (1) -w (2) /E ε -1 1 -rw (1) + w (2) /E   , (5.121) 
while, just as in the Buck converter addressed before, the expression for ε is given by (5.70). Following the same procedure outlined in Section 5.1.4 for the Buck converter example, we have in equilibrium that:

α = 1 - w (2) 
r o w (1) , (5.122) 
w (2) 2 + r o w (1) rw (1) -E = 0, (5.123) 
E r + r o ≤ w (1) ≤ E r , (5.124) 
with α denoting once again the converter steady-state duty cycle. Using Proposition 2.2 on dynamics (5.119), we can determine B ε as:

B ε = b ε,1 -b ε,2 = -r o w (1) /E ε -1 w (2) /E , (5.125) 
and v j , j = 1, 2, as:

v 1 = 1 -α , v 2 = -α . (5.126) 
By setting A ε (v j ) = A ε,j , j = 1, 2, we now have the model of the Boost converter written as (5.81). If the model were to be expressed as in (5.79), the matrix parameters would be given by: The values used in this example are shown in Table 5.2. The equilibrium current w (1) is w (1) = 24A, which is one of the roots of (5.123). From (5.122), we have that α = 0.37. Since it belongs to the interval (0, 1), we have that 0 ∈ Int {conv {v 1 , v 2 }} and therefore Assumption 5.1 holds.

A 11 (v 1 ) = A 11 (v 2 ) = A 21 (v 2 ) = -1, A 12 (v 1 ) = A 21 (v 1 ) = 0, A 12 (v 2 ) = 1, A 22 (v 1 ) = A 22 (v 2 ) = -r/r o , B 1 = -r o w (1) /E and B 2 = w (2) /E.
w (2) 600V E 400V l 1mH c 10µF r 1Ω r o 40Ω -8 -6 -4 -2 0 2 4 6 8 -4 -3 -2 - 
Here, as in Section 5.1.4, we impose a decay rate of χ w = 20s -1 . Since the normalized time here is also t = r o c, then by following the same reasoning as in that section, the decay rate in normalized time is equal to χ = r o cχ w . Using the numerical values in Table 5.2, we then have χ = 0.008.

We have chosen as initial condition the point w 0 = [5 300] T . However, by solving the LMI feasibility problem presented in Theorem 5.3, we obtain an estimation of the domain of attraction that does not contain w 0 . This problem can be fixed thanks to the presence of the LMI variable ν. Indeed, we can simply add the following LMI constraint to the conditions presented in Theorem 5.3:

ν ≤ 1 φ(w 0 ) T φ(w 0 ) , (5.127) 
since this condition implies that φ(w 0 ) T φ(w 0 ) ≤ 1/ν and thus the initial condition η 0 = φ(w 0 ) belongs to B(0, 1/ν) in η-space. Recall that Theorem 5.3 ensures that this ball lies inside the domain of attraction, which means that condition (5.127) is sufficient for the desired initial condition to be inside the domain of attraction. Solving the LMI feasibility problem of Theorem 5.3 along with (5.127) yields the following results: ν = 0.17, Q 1 = 7.33, Q 2 = 7.87, Π 1 1 = 6.31, Π 2 1 = 6.29, Π 1 2 = 0.20, Π 2 2 = 0.20, and

Y 1 = -0.19. The bound ε * is ε * = 1.34.
Figure 5.10 shows the sets B(0, 1/ν), Ω 0 and Ω ε , as well as the initial condition η 0 . Recall from the proof of Theorem 5.3 that Ω ε is an ε-dependent estimation of the domain of attraction. Since ε is unknown, we use Ω 0 as the domain of attraction. Note in Figure 5.10 that Ω 0 ⊆ Ω ε , as shown in the proof of Theorem 5.3 since ε < ε * . In addition, thanks to the inclusion of (5.127), the initial condition is inside the obtained estimation of the domain of attraction.

The simulation results are plotted in Figures 5.11 and 5.12. We can see that the desired 
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(b) In η-coordinates. equilibrium point has been stabilized. Note that here, just as in Example 2.4, the sliding mode does not start the first time the trajectory reaches the switching surface. The reason for this behavior has been discussed in Section 6.1, where conditions for the occurrence of a sliding mode have been presented.

In the sequel, we briefly discuss one interesting consequence of the method proposed here concerning its application to a power converter: the possibility of formally addressing uncertainties in the values of the inductance and of the capacitance by finding stabilization conditions even in their presence.

Let l and c denote the nominal values of the inductance and the capacitance, respectively. The value of ε associated with these values is denoted as ε nom = l/(r 2 o c). On the other hand, the real uncertain values of l and c are denoted as l and c, and the corresponding value of ε is given by ε = l/(r 2 o c). As discussed before, the decay rate in normalized time is given by χ = χ w r o c, where χ w is the decay rate in the original time variable t (measured in seconds). It is important to remark that the results of Theorem 5.3 hold for a given normalized decay rate χ. In the presence of uncertainties, the actual decay rate is also uncertain and given by:

χw = χ r o c = c c χ w . (5.128) 
Recall that χ w is the imposed decay rate chosen by design. This choice is respected as long as the decay rate in presence of uncertainties w is higher than χ w , which, from (5.128), happens if c/c ≤ 1. On the other hand, the switching law stabilizes the system if ε < ε * . This condition can Figure 5.13: Representation of the uncertainties in inductance and capacitance for which stabilization is still ensured. equivalently be written as:

l l < ε * ε nom c c .
(5.129) Condition (5.129) is represented by the shaded regions in Figure 5.13. The green shaded region represents the pairs of values (c/c, l/l) for which, in addition to stabilization, the imposed decay rate χ w is respected, since in this region c/c ≤ 1. The yellow shaded region, on the other hand, represents the pairs of values for which stabilization is ensured, but with a lower decay rate guarantee.

It is interesting to remark the large uncertainties that are tolerated by the controller in this example. For instance, if the capacitance is at its nominal value (c/c = 1), the inductance l can be about 20 times larger than its nominal value and stabilization with the same switching law is still theoretically ensured, and in this case with the same decay rate.

Even though it has just been shown that the control method enjoys a nice robustness property with respect to the inductance and the capacitance of the converter, it is much more useful in practice to ensure robustness with respect to the resistances r and r o . That is why in Chapter 4 we have considered that the load r o was uncertain. Therefore, more work needs to be done in order to investigate a way to take into account uncertainty in these parameters using the singular perturbation approach.

Conclusion

In this chapter, we have proposed switching laws for the stabilization of two classes of switched systems: LTI systems with relay control and SASs more broadly. The main objective was system stabilization imposing a given decay rate. Our main results in this chapter concern stabilization using an ε-independent controller, which ensure a certain robustness with respect to the parameter ε, since its precise value does not need to be known. We must, however, determine the bound ε * up to which stabilization is still ensured. As it has been seen over the course of this chapter, this value can be easily calculated. In addition to the controller, an ε-independent estimation of the domain of attraction has also been obtained when local stabilization is addressed. Conditions for global stabilization have also been stated using the local stabilization results as starting points.

Once the proposed methods have been presented, we have also applied them to the stabilization of DC/DC power converters, and the results have been validated by simulation. This shows the potential of the techniques developed here for practical applications.

All methods presented so far in the thesis have been shown to be theoretically valid and simulation results have confirmed what was expected from the theory. However, since the adopted controllers are all state-dependent, sliding modes arise in the closed-loop trajectories. This poses a severe practical issue since this can lead to damages in components and possibly even their Chapter 6

Hysteresis-based switching

In Section 2.3, we have briefly touched upon the subject of sliding modes, which is a very important phenomenon in the context of switched affine systems. As the trajectory slides on the switching surface, the system switches infinitely fast between two or more modes. We say that in this case the switching frequency is infinite. Recall from the previous examples involving power converters that switching is carried out through physical components such as transistors and diodes. These devices all have limitations regarding switching frequencies, and going above these frequencies can severely damage the components, possibly leading to their destruction. It is then immediate to see that, from a practical viewpoint, infinite-rate switching is less than desirable. Even though sampling is involved in the digital implementation of switching control and the mode remains unchanged during each sampling period, the switching frequency may still be too high in the case of a fast FPGA (Field-Programmable Gate Array) implementation.

In the current chapter, the goal is to overcome the practical issue caused by the sliding modes that arise by applying the switching controllers presented so far, specially those proposed in Chapters 3 and 4. Even though it has been proven that these controllers are successful in stabilizing a network of DC/DC converters, limiting the switching frequency at an acceptable value is paramount in the process of implementing such control laws in real applications.

The approach that is adopted here for bounding the switching frequency is based on hysteresis, which is very well known in several engineering domains. The idea is to take the continuous-time switching controllers developed in the previous chapters and restrict switching to occur at isolated time instants defined by a suitably designed hysteresis function. We shall refer to this switching strategy as hysteresis-based switching.

The first step in developing an hysteresis-based switching controller is to look closer at the switching surface and the conditions ensuring that the trajectory slides on this surface. In the following discussion, we restrict our attention to switched affine systems written as in (2.25) with N = 2 modes, before tackling later on the case of networked switched systems.

Characterization of the sliding motion

Consider system (2.25) with controller given by the global stabilizer (2.35). Using Proposition 2.2, the system dynamics can be rewritten in the shifted coordinates x = x -x as:

ẋ = Ā(δ )x + g(x)k(x), (6.1) 
where1 :

g(x) := (A 1 -A 2 )(x + x ) + b 1 -b 2 (6.2) and k(x) = v σ(x+x ) , with v 1 = 1-α , v 2 = -α , and α := δ (1)
. The control law can be expressed in terms of k(x) as:

k(x) ∈ V * (x) = arg min v∈V xT P g(x)v. (6.3) 
This control law has been chosen for the analysis shown here because all the other controllers presented so far are all similar in form. with k(x) given in (6.3). We also make the technical assumption that x(0) / ∈ S, since this would make k h (x(0)) ill-defined. This is not at all restrictive considering that S is a set of measure zero.

Since h > 0, there is always a non-zero time duration between two successive switching instants. It is important to recall that, by definition, S = {x ∈ R n : |V * (x)| > 1}. As switching can never occur on S, then |V * (x)| = 1 for any x ∈ R n where switching occurs. This implies that k h (•) is always uniquely defined, i.e., k h (•) ∈ I N .

Consider the following definition regarding the region of the state space where hysteresis takes place. Definition 6.1 The hysteresis band H is defined as:

H := {x ∈ R n : |s(x)| < h}. (6.12) 
One can easily see from Definition 6.1 that switching never occurs when the trajectory is in H. The hysteresis band is represented as the shaded region in Figure 6.1. Remark 6.1 The hysteresis width is constant with respect to s(x), and not to the state x itself. This is clear from Figure 6.2, which shows a constant width 2h between the endpoints s(x) = h and s(x) = -h as s(x) evolves with time. In the state space, however, these curves are not necessarily at the same distance from each other.

The next assumption is made regarding the hysteresis band. Assumption 6.1 The hysteresis parameter h is sufficiently small so that, if x ∈ H, then x belongs to a neighborhood of some xs ∈ S where the linear approximation of s(x) around xs is valid.

The main consequence of Assumption 6.1 is that the trajectory does not stray far from Ss while in the hysteresis band. A sufficiently small value for h means that, even though infinite-rate switching is avoided, the frequency is still sufficiently high to keep the trajectory close to Ss . In addition, the dynamics of each mode is a constant vector while the mode is active inside H. Remark 6.2 Assumption 6.1 is analogous to the traditional claim made in power electronics that the switching frequency of the converter is much higher than the system bandwidth. Indeed, this implies that a linear approximation of the system approximates well its dynamics, given that highfrequency switching always keeps the trajectory very close to Ss .

-h In light of Assumption 6.1, the time evolution of s(x) is approximated by a sequence of line segments, as shown in Figure 6.2. We consider that the time t j that the system spends in mode j, j = 1, 2, is a function of the point xs ∈ Ss around which the trajectory evolves in H. By convention, ṡ(x) > 0 (resp. < 0) when mode 1 (resp. 2) is active.

0 h t s(x(t)) t 1 (x s ) t 2 (x s )
Consider the following definition, which precises what is meant by switching frequency. Definition 6.2 Function F sw : Ss → R + associates each xs ∈ Ss with the switching frequency F sw (x s ), defined as:

F sw (x s ) := 1 t 1 (x s ) + t 2 (x s ) , (6.13) 
as the trajectory x(t) switches around xs .

The next theorem provides a way of calculating the switching frequency for any point in Ss .

Theorem 6.1 Consider system (6.1), with control law k h (x) given by (6.11). Under Assumption 6.1, the switching frequency F sw (x s ) associated with xs ∈ Ss is bounded and given by the following expression: We have from (6.1) that ẋ = Ā(δ )x + g(x)v j when mode j is active, j = 1, 2. Thus:

F sw (x s ) = - 1 2h Ā(δ )x s + g(x s )v 1 T ∇s(x s )∇s(x s ) T Ā(δ )x s + g(x s )v 2 ∇s(x s ) T g(x s ) . ( 6 
ṡ(x s ) = ∇s(x s ) T ( Ā(δ )x + g(x)v j ), (6.16) 
when mode j is active. From (6.15) and (6.16), the following expressions are obtained: As a consequence of the adopted convention for ṡ(x), t 1 (x s ) and t 2 (x s ) are positive, implying that F sw (x s ) is also positive. From (6.2) and (6.4), the gradient of s(x s ) is determined as: ∇s(x s ) = sym {P (A 1 -A 2 )} xs + P g(0). (6.19) According to Definition 6.2, F sw (x s ) = 1/(t 1 (x s ) + t 2 (x s )). Then, it can be checked that (6.14) can be obtained from (6.17), (6.18) and (6.19). Since Ss only contains points where ū(x s ) is defined, then ∇s(x s ) T g(x s ) = 0. Therefore, recalling that h > 0, we have that F sw (x s ) is bounded for every xs ∈ Ss . Equation (6.14) provides a way of estimating the switching frequency F sw (x s ) if the trajectory is passing around xs ∈ Ss . This means that we can determine all possible values of the switching frequency, since (6.14) can be evaluated for all xs ∈ Ss .

t 1 (x s ) = 2h ∇s(x s ) T Ā(δ )x + g(x)v 1 , (6.17 
It is interesting to remark from (6.14) that the switching frequency is inversely proportional to the hysteresis parameter. As h → 0, which corresponds to the case without hysteresis, the switching frequency tends to infinity, as expected.

We have implicitly assumed over the course of this section that the controller (6.3) (with no hysteresis) asymptotically stabilizes the system, since it has been designed exactly for that purpose. This means that, in this case, x(t) slides on Ss until converging to x = 0 as t → +∞. With this in mind, consider the next definition, which is relevant in describing the switching behavior in steady state. Definition 6.3 The steady-state switching frequency F ss is defined as F ss := F sw (0).

The next result is an important consequence of Theorem 6.1. Indeed, this result is most useful in evaluating the impact of hysteresis on the steady-state performance of the controller, as it will be seen later on. Corollary 6.1 Consider system (6.1), with control law k h (x) given by (6.11). The steady-state switching frequency is given by:

F ss = α (1 -α ) 2h g(0) T P g(0). (6.20) 
Proof: In light of Definition 6.3, it suffices to set xs = 0 in (6.14) and recall that v 1 = 1 -α and v 2 = -α .

Corollary 6.1 is very interesting from a design viewpoint, since it allows to determine h in order to ensure a certain desired switching frequency in steady state. This is attractive in practical applications involving power converters because the switching components all have frequency constraints, and using Corollary 6.1 one knows the value of h allowing to respect such constraints. Remark 6.3 We do not explicitly consider here the singularly perturbed SASs introduced in Chapter 5, but the results proposed in the present chapter can be adapted to them as long as the singular perturbation parameter ε is known. More precisely, even though the hysteresis-based controller can be applied even with ε unknown (using the ε-independent controllers presented in Chapter 5), Theorem 6.1 and Corollary 6.1 provide results that would depend on ε, introducing difficulties for the choice of parameter h.

It is important to keep in mind that each individual mode j ∈ I 2 has its own equilibrium point x j , which is the solution of2 :

Ā(δ )x j + g(x j )v j = 0, j ∈ I 2 , (6.21) 
or, equivalently (using the definitions of Ā(δ ) and g(x)):

A j x j + g(0)v j = 0, j ∈ I 2 . (6.22)

From (6.22), one can see that if A j is Hurwitz, then x j = Ā(δ ) -1 g(0)v j is unique and it attracts the system trajectory in mode j. By using the switching law (6.3) without hysteresis, this is not a problem since the trajectory slides on Ss and converges to 0 without ever stabilizing at x j , for some j ∈ I 2 . On the other hand, in the case with hysteresis, perhaps x j is in H. Then, the trajectory risks stabilizing at x j instead of the desired equilibrium point x = 0. In order to avoid the situation depicted in Figure 6.3, the value of h must be constrained to be less than an upper bound that shall be denoted as h. To find h, note that x j must lie outside H for all j ∈ I 2 such that mode j is asymptotically stable, i.e., such that A j is Hurwitz. If mode j is not stable, then the trajectory cannot stabilize at x j . Thus, let I H denote the set of asymptotically stable modes:

I H := {j ∈ I N : A j is Hurwitz}. (6.23) 
It must be ensured that |s(x j )| > h for all j ∈ I H . Equivalently, the minimum value of |s(x j )| over all j ∈ I H must be greater than h. If I H = ∅, then the following constraint on h is obtained:

h < h = min j∈I H |s(x j )|. (6.24) 
On the other hand, if I H = ∅, then h does not need to be constrained regarding the problem illustrated by Figure 6.3. Remark 6.4 It has been stated in Assumption 6.1 that h is small enough that the trajectory stays close to Ss . Nonetheless, (6.24) imposes an additional constraint that may be particularly useful when the duty cycle α is close to 0 or 1, since in this case the desired equilibrium point is close to that of some individual mode.

Due to the finite switching frequency, oscillations arise in the system trajectory, including in steady state. This behavior has been described in Section 2.3.2 in the context of the results reported in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF], since the switching frequency is also bounded in this work. Hereafter, we offer a characterization of these ripple amplitudes in steady state using the hysteresis-based approach proposed in the present chapter. Let vector R ∈ R n denote the steady-state peak-to-peak ripple amplitudes of the states, i.e., R (q) is the ripple amplitude of the q-th state, q = 1, 2, . . . , n.

As a consequence of Assumption 6.1, around the origin (x ≈ 0) the system dynamics (6.1) can be rewritten as:

ẋ = g(0)v j , j ∈ I 2 , (6.25) 
when mode j is active. Integrating the absolute value of g(0)v j while mode 1 is active yields for each state component3 :

R (q) = t1(0) 0 |g (q) (0)|v 1 dt = |g (q) (0)|v 1 t 1 (0). (6.26)
Since in steady state modes 1 and 2 alternate in cycles, the computation of R (q) could also be carried out considering the dynamics in mode 2. In that case, (6.26) can be replaced by:

R (q) = t2(0) 0 |g (q) (0)|v 2 dt = |g (q) (0)|v 2 t 2 (0). (6.27) 
Now, from (6.17):

t 1 (0) = 2h g(0) T P g(0)v 1 = 2h g(0) T P g(0)(1 -α ) . (6.28)
Using (6.20), (6.26) and (6.28), R (q) can be expressed as:

R (q) = α (1 -α )|g (q) (0)| F ss . (6.29)
The determination of R (q) is an important step in characterizing the steady-state performance of the closed-loop system. Indeed, in power converter applications, the steady-state ripples correspond to the well-known oscillations in currents and voltages that occur due to PWM (see [START_REF] Mohan | Power electronics: converters, applications, and design[END_REF] or any introductory book on power electronics). It is essential to have an expression for the amplitude of these ripples in order to restrict them to acceptable levels by a judicious choice of the switching frequency. Such an expression is also used in practice to design the inductor or capacitor to be used in the converter. Therefore, in this domain of application, expression (6.26) (or equivalently (6.27) or (6.29)) is indeed very useful.

Motivated by the previous discussion on steady-state state ripples, we apply in the sequel the hysteresis-based technique proposed here to a Boost converter.

Boost converter example

Consider the same Boost converter presented in Example 2.4. The first step in applying the hysteresis-based strategy is to design a stabilizing controller using Theorem 2.2. Note that this has been done in Example 2.4 for a given decay rate χ = 20s -1 , where we have found P given by (2.38).

Let ∆I denote the steady-state ripple amplitude for the current flowing in the inductor. This corresponds to R (1) , since the current is the first component of the state vector. In the case of the Boost converter, from (2.3), (2.6), and (6.2), g(0) is computed as:

g(0) = (A 1 -A 2 )x = x (2) /l -x (1) /c . (6.30) 
Recalling from Section 2.3 that x (2) is the desired voltage reference x r , then using (6.29) and (6.30) yields:

∆I = α (1 -α )x r lF ss , (6.31) 
which, using (2.30), can be expressed as:

∆I = α E lF ss . (6.32) 
It is interesting to remark that (6.32) is the same expression that is commonly adopted in power electronics for the current ripple in Boost converters. The only difference is that the PWM carrier frequency is used instead of F ss .

Let us choose ∆I = 1.2A as the desired steady-state current ripple. Using (6.32), this corresponds to a switching frequency of F ss = 111kHz. Note that we could have also imposed a desired switching frequency and calculated the resulting current ripple.

Using (6.20), the hysteresis parameter h has been determined to be h = 4.9 × 10 6 . From (2.3), it can be seen that A 1 is not inversible, and thus not Hurwitz. On the other hand, it can be easily checked in (2.6) that A 2 is Hurwitz. Thus, I H = {2} and, from (6.24), we have that h = 3.5 × 10 7 . Therefore, the value of h respects the constraint expressed by (6.24).

A simulation of the Boost converter presented in Example 2.4 is run applying the hysteresisbased switching law (6.11). The resulting plots are shown in Figures 6.4 to 6.6. To make it easier to visualize the physical quantities involved, in the plots the results are expressed in the original x-coordinates.

Firstly, note that indeed the switching controller has managed to drive the state to a small neighborhood of the equilibrium point. Indeed, the voltage in steady state oscillates around the reference x r with a ripple amplitude of 4.5V. This is exactly the value that is obtained by calculating R (2) using (6.26). Moreover, the current ripple is close to the specified value of ∆I = 1.2A, as expected. It is also interesting to compare the phase portraits shown in Figures 2.6 and 6.6. The trajectory in Figure 2.6 is the one that would have been obtained if we had set h = 0 in the hysteresis-based switching approach. In Figure 6.6, since hysteresis is present, the system can only switch from one mode to the other on the borders of the hysteresis band, and it can clearly be seen that switching occurs at a finite rate.

Comparison with variable-width hysteresis

In Section 2.3.2, the switching controller based on hysteresis-based approach proposed in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] has been presented. We shall refer to this method as the variable-width hysteresis strategy in order to distinguish it from our method, which has constant width (in the sense explained in Remark 6.1). A comparison between the variable-width hysteresis strategy and the one proposed in the present chapter is carried out hereafter using the same Boost converter introduced in Example 2.4. The simulation results obtained by applying variable-width hysteresis are reported in Example 2.5 and they are used here for the comparison.

Note that the matrix P in the controller is the same in both examples. Moreover, the imposed current ripple ∆I = 1.2A for the constant-width hysteresis proposed here is the same current ripple observed in Figure 2.7b. Therefore, the comparison between both techniques is conducted with simulations run in similar conditions. In order to ease the visual comparison, the obtained plots for the current and voltage are shown again in Figures 6.7 and 6.8, respectively. The trajectories obtained with both methods are also shown again in Figure 6.9a. The plots corresponding to our hysteresis-based method are shown in blue and the ones obtained with the method in Section 2.3.2 are in violet.

Firstly, some conclusions can be drawn with respect to the current. As it can be seen in Figure 6.7b, the steady-state performance is very similar in both cases, with basically the same current ripple amplitude. It is worth noting though that it is not as straightforward to impose a current ripple using variable-width hysteresis as it is with constant-width hysteresis. Indeed, the hysteresis parameter h has been chosen so that the ripple amplitude matches the one obtained with variable-width hysteresis.

The transient behavior is also very relevant to analyze. In the case of variable-width hysteresis, one can see in Figure 6.7a that the current overshoots the equilibrium in the beginning, which can be explained by the fact that the state variations are wider when the trajectory is far away from the equilibrium point. This is clearly visible in the phase portraits shown in Figure 6.9.

Let us focus now on the evolution of the switching frequency in both methods. With constantwidth hysteresis, the frequency varies between 53kHz (at about 0.2ms) then it steadily rises until reaching 108kHz at instant 1.6ms. From then on, it continues to smoothly rise until converging to the steady-state value of 111kHz. In the case of variable-width hysteresis, the switching frequency starts at 49kHz when t = 0.2ms, similarly to when using constant-width hysteresis. However, as it can be seen in Figure 6.7a, the current oscillation amplitude starts decreasing until becoming practically negligible. This corresponds to a rapidly increasing switching frequency, which reaches the value of 1.7MHz at instant 1.6ms. The fast variation and this high switching frequency are stressful conditions for the switching devices, which may potentially cause component wear over time. When the trajectory reaches E(x , P, ε), then the switching frequency starts decreasing from 1.7MHz until reaching 111kHz in steady state.

As far as the output voltage is concerned, there are only some minor differences between both hysteresis methods, as observed in Figure 6.8. In steady state, the voltage ripple amplitudes are the same using either method. Since the shapes of the hysteresis band around equilibrium are different in each method, there is an offset in the voltage responses, as seen in Figure 6.8b. Even though a static error is present, it is worth noting that in both methods the trajectory remains bounded in a neighborhood of the desired equilibrium point, characterizing practical stability.

It is interesting to remark that Theorem 6.1 provides a way of determining the switching frequency when the trajectory passes by any point xs on the neighborhood of the switching surface s(x s ) = 0. Though it must be stressed that the condition ū(x s ) ∈ (v 2 , v 1 ) must be respected in order for switching to occur around xs . In the case of the example discussed here, the plot for ū(x) is shown in Figure 6 6.11 a plot of F sw (x s ) as a function of xs(2) , calculated using Theorem 6.1. Note that the switching frequency is zero at about xs(2) = -218V.

In addition, when xs(2) = 0V, meaning that x (2) = x r = 600V, the switching frequency is about 111kHz, which is its steady-state value. Figure 6.11 is interesting because it allows the designer to know in advance what the possible switching frequencies are, even during the transient regime.

In conclusion, when practical considerations related to the operation of power converters are taken into account, it seems that the switching controller with constant-width hysteresis is the more suitable choice for preserving the switching components. Moreover, as observed in the Boost converter example shown here, the smooth variation of the switching frequency does not occur at the expense of system performance.

Experimental validation

In the sequel, we show that the method introduced here to bound the switching frequency can indeed be implemented in practice. To that end, we consider once again the Boost converter illustrated in Figure 2.1. The values of the circuit parameters are given in Table 6.1. Figure 6.12 shows the experimental setup. The dSPACE platform sends the digital control signal to a circuit board. At this point, if the logical signal is high, corresponding to mode j = 1, this circuit sends a voltage of 15V to the gate of the controlled switch, which in this case is an IGBT. Thus, the circuit board acts as a driver of the IGBT. Both the IGBT and the diode of the Boost converter are found inside the box next to where the marking 'Switches' is located. The rest of the circuit of the Boost converter is composed of the inductor and capacitors shown in the figure .  Completing the circuit, a DC voltage source can be found on the right; and a variable resistive load is shown on the bottom. The current and the voltage sensors can also be seen in this figure. Their measurements are sent to two analog-to-digital ports on the dSPACE platform, where they Suppose that we wish to bound the switching frequency at F ss = 5kHz. Using (6.20), the corresponding value for the hysteresis parameter is h = 5.2 × 10 4 . Figures 6.13 to 6.15 show both the results obtained in the experiment and those obtained by simulation. The simulations were conducted using the software Simulink. More specifically, the scheme of the Boost converter was constructed using blocks from the Simscape toolbox. In addition, we have also considered in the simulation that the controller is sampled at the same rate of the dSPACE, so as to better compare the experimental and simulation results.

Firstly, it is important to remark that the hysteresis-based controller has managed to stabilize the output voltage of the converter, albeit with oscillations and a static error of about 1V (2% error). The ripples were expected as a consequence of the hysteresis bounding the switching frequency. However, as it can be seen in more details in Figures 6.13b and 6.14b, the ripples have an irregular shape. This is due to the finite sampling period, which has not been taken into account in the characterization of the hysteresis-based strategy. Due to this effect, the switching frequency varies even in steady state. Nevertheless, it has been observed that, both in the simulation and in the experiment, the switching frequency is always less than the specified value of 5kHz. This makes intuitive sense, since delays caused by sampling can only slow switching. Consequently, the method proposed in this chapter can still be used in practice to bound the frequency at some desired value.

As suggested in the above discussion, the interaction between hysteresis and sampling appears to have a sharp effect on the system response. We therefore believe that a formal treatment of this challenging scenario is necessary for appropriately modeling the control action in experimental applications, specially when sampling is slow.

In addition to finite sampling, another issue that came up in the experimental test is the sensitivity to parameter uncertainties. Indeed, the load resistance must be known with accuracy. Moreover, it has been observed that parasitic resistances in the circuit also contribute to increasing the static error. These factors showcase the interest in dealing with uncertainties, as it was done in Chapter 4. The use of observers is then a possible path to follow when applying the hysteresisbased strategy presented here. However, the sampling rate limitation also hinders the effectiveness of an observer-based approach. Another possibility, which seems promising even when sampling is slow, is the development of robust controllers. In this sense, the addition of an integral action could correct the equilibrium point to be stabilized and thus eliminate the static error.

In conclusion, by conducting an experiment on a real Boost converter, the implementation of the proposed hysteresis-based switching controller has been validated in practice. However, many problems still remain to be solved in order to guarantee that the closed-loop system behaves as expected. They are mostly caused by the finite sampling frequency, which is always a factor in computer-controlled systems, and also by the uncertainties in the circuit parameters, including parasitic effects. Hysteresis-based techniques tackling these issues are envisaged as a next step of this study. Now that the effectiveness of our hysteresis strategy has been demonstrated for a switched affine system, let us turn our attention to the more complex configuration where a network of switched affine systems is considered. The goal is to see how hysteresis-based switching can be generalized to the system represented in Figure 3.1. This is the object of the next section.

Extension to networked switching control

So far in this chapter we have applied an hysteresis-based switching control for a single switched affine system with 2 modes. It has been seen that this strategy successfully bounds the switching frequency and thus suits power converter applications. In the present section, we seek to extend this technique to a network of switched affine systems, and the goal now is to bound the switching frequency at an imposed value for every system in the network.

We assume that each switched system has 2 modes. This is not a restrictive assumption for the main application that we are considering here, namely the interconnection of DC/DC power converters. This is due to the fact that each transistor can only be either close or open according to our model.

Consider the switching controller proposed in Corollary 3.3. It has been shown that under the conditions stated in this corollary, the desired equilibrium x is globally exponentially stable. In addition, the control law is decentralized in the sense that it only requires local measurements in each switched system. In this section, we shall exploit this decentralization property to generalize hysteresis-based switching to the network structure.

Let us start by recalling that the switching law proposed in Corollary 3.3 can be written as follows:

k i (x i ) ∈ V * i (x i ) = arg min vi∈Vi xT i P i [D i (x i ) + B i ] v i , (6.34) 
where P i are matrices satisfying the conditions of Corollary 3.3, ∀i ∈ I m . Defining function g i (x i ) as

g i (x i ) := (A i,1 -A i,2 )(x i + x i ) + b i,1 -b i,2 , ∀i ∈ I m , (6.35) 
the switching law (6.34) is rewritten as:

k i (x i ) ∈ V * i (x i ) = arg min vi∈Vi xT i P i g i (x i )v i . (6.36) 
Using controller (6.36), the states x i of each switched system converge to x i , ∀i ∈ I m . Moreover, they do so by switching infinitely fast on a switching surface, just as in the case with a single switched system previously discussed. If we look at the i-th system individually, this sliding motion occurs when V * i (x i ) = {v i,1 , v i,2 }. By defining the steady-state duty cycle as α i = δ (i) for each i ∈ I m , we have from Lemma 3.1 that v i,1 = 1 -α i and v i,2 = -α i . Consequently, V * i (x i ) can also be written as V * i (x i ) = {1 -α i , -α i }. From (6.36), a sliding mode takes place when the following condition is met:

xT i P i g i (x i )(1 -α i ) = -x T i P i g i (x i )α i , (6.37) 
or, equivalently, when si (x i ) := xT i P i g i (x i ) = 0. (6.38)

Note the similarity between the definition of s(x i ) and that of s(x). The switching surface (shifted so that x i coincides with the origin) is then defined as Si := {x i ∈ R ni : si (x i ) = 0}. The characterization of the sliding motion can then be carried out exactly in the same way as in Section 6.1. It is important to recall that this can be done thanks to the decentralized structure of the controller, which ensures that si (x i ) only depends on xi .

The differential inclusion describing the system dynamics on Si is given by:

ẋi ∈ Fi (x i , x0 ) := conv Āi (δ i )x i + A 0i x0 + g i (x i )v i : v i ∈ V * i (x i ) . (6.39) 
Consider now the equivalent control signal ūi (x i , x0 ), defined for each i ∈ I m , which can be thought of as a continuous input sustaining the sliding motion (just like ū(x) in the case of a single switched system). The sliding mode dynamics are then expressed as:

ẋi = Ā(δ i )x i + A 0i x0 + g i (x i )ū i (x i , x0 ), (6.40) 
with ūi (x i , x0 ) ∈ (-α i , 1 -α i ). It is interesting to remark that the equivalent control signal is also a function of x0 . Following the same reasoning adopted in Section 6.1, ūi (x i , x0 ) can be explicitly determined as:

ūi (x i , x0 ) = - ∇s i (x i ) T Āi (δ i )x i + A 0i x0 ∇s i (x i ) T g i (x i ) , (6.41) 
for all xi ∈ R n such that ∇s i (x i ) T g(x i ) = 0. The trajectory xi slides on Si when xi ∈ Si and ūi (x i , x0 ) ∈ (-α i , 1 -α i ).

Remark 6.5 In Section 6.1, we have defined set Ss , which was the portion of S where switching is actually possible. Defining set Ssi ⊂ Si in the same way is not possible since here ūi (•) is also dependent on x0 , and thus Ssi would change according to x0 .

For each switched system i ∈ I m , the hysteresis-based switching law is then recursively defined for all t ≥ 0 as:

k hi (x i (t)) = k i (x i (t)), if |s i (x i (t))| ≥ h i or t = 0, lim τ →t -k hi (x i (τ )), otherwise, (6.42) 
with k i (x i ) given in (6.34). The hysteresis parameters this time are denoted as h i > 0, ∀i ∈ I m , so that a different hysteresis width can be defined for each i. The hysteresis bands Hi are also independent from each other and are defined as Hi := {x i ∈ R ni : |s i (x i )| < h i }, for every i ∈ I m . Assumption 6.1 is adapted as follows.

Assumption 6.2 For every i ∈ I m , the hysteresis parameter h i is sufficiently small so that, if xi ∈ Hi , then xi belongs to a neighborhood of some xsi ∈ Si where the linear approximation of si (x i ) around xsi is valid.

Assumption 6.2 allows us to adopt the same reasoning followed in the case of a single switched system to the network structure considered here. This assumption implies that, for all i ∈ I m , the evolution of si (x i ) is approximated by a sequence of line segments, similarly to the behavior of s(x) in Figure 6.2. In particular, around the origin xi = 0, i.e. in steady state, the trajectory spends a certain time t i,1 in mode 1 and some time t i,2 in mode 2. We adopt the convention that ṡi (0) > 0 in mode 1 and that ṡi (0) < 0 in mode 2.

The steady-state switching frequency for each i ∈ I m is then given by:

F ss,i = 1 t i,1 + t i,2 , ∀i ∈ I m . (6.43) 
Consider the next theorem, which extends Corollary 6.1 to networked switched systems.

Theorem 6.2 Consider system (3.22) with switching law (6.42). The steady-state switching frequency for each i ∈ I m is determined as:

F ss,i = α i (1 -α i ) 2h i g i (0) T P i g i (0). ( 6 

.44)

Proof: The proof is based on the same steps carried out to prove Theorem 6.1 and Corollary 6.1.

Around the desired equilibrium point, xi ≈ 0, ∀i ∈ I m ∪ {0}. Following similar arguments as in the proof of Theorem 6.1, we have that:

ṡi (0) = 2hi ti,1 -2hi ti,2 (6.45) 
for every i ∈ I m . Since around x = 0, ẋi ≈ g i (0)(1 -α i ) in mode 1 and ẋi ≈ -g i (0)α i in mode 2, it can be shown that:

t i,1 = 2h i (1 -α i )g i (0) T P i g i (0) (6.46) and t i,2 = 2h i α i g i (0) T P i g i (0) , (6.47) 
for all i ∈ I m . Then, it is easy to check that (6.44) is obtained from (6.43), (6.46) and (6.47).

The usefulness of Theorem 6.2 comes from the fact that it allows to determine h i for a desired value of the steady-state switching frequency in the i-th switched system.

Let x i,ji denote the equilibrium point of mode j i ∈ I Ni , i.e., A i,ji x i,ji + g i (x i,ji )v i,ji = 0, ∀i ∈ I m . Just as in the case of a single switched system, here we also may face the issue illustrated in Figure 6.3, namely stabilization at the equilibrium of some individual mode x i,ji instead of the desired equilibrium x i = 0. Following the exact same reasoning adopted in Section 6.2, we also constrain the value of h i as follows:

h i < hi = min ji∈I Hi |s i (x i,ji )|, ∀i ∈ I m , (6.48) 
where:

I Hi := {j i ∈ I Ni : A i,ji is Hurwitz}, ∀i ∈ I m . (6.49)
By once again using the arguments exposed in Section 6.2, we can also characterize the steadystate oscillations for each system in the network. To that end, let vector R i ∈ R ni denote the steady-state peak-to-peak ripple amplitudes, i.e., R i(qi) is the ripple amplitude of the q i -th state, q i = 1, 2, . . . , n i , ∀i ∈ I m .

Recall that the system dynamics can be approximated (thanks to Assumption 6.2) as ẋi ≈ g i (0)(1 -α i ) in mode 1 and ẋi ≈ -g i (0)α i in mode 2. Proceeding in the same way as in Section 6.2, the following expression is obtained:

R i(qi) = α i (1 -α i )|g i(qi) (0)| F ss,i , ∀q i ∈ I ni , ∀i ∈ I m . (6.50) 
Now that the steady-state behavior has been characterized even in the case of networked switched systems, we apply in the sequel these results to an interconnection of power converters for the purpose of illustrating them in a practical example.

Converter network example

Consider an interconnection of converters as represented in Figure 3.8. In this example, there are 2 Buck converters (I buck = {1, 2}), 1 Boost converter (I boost = {3}) and 2 Buck-Boost converters (I buckboost = {4, 5}). Once again, the circuit parameters are those given in Table 3.2.

Let us start by designing a switching controller according to Corollary 3.3. Choosing χ = 20s -1 , the matrices P i , ∀i ∈ I m ∪ {0}, obtained are given as follows. For each converter i ∈ I m , suppose that the steady-state current ripple should be kept at R i(1) = 1A. Using (6.44) and (6.50), the hysteresis parameters h i are determined as:

P i =   1.1349 -0.0019 0.0088 0.0014 -0.0006 0.1189   × 10 5 , ∀i ∈ I buck , (6.51) 
P i =   1.3043 -0.0012 0.0093 0.0012 -0.0004 0.1175   × 10 5 , ∀i ∈ I boost , (6.52) 
P i =   1 
h i = 0.5 × 10 10 , ∀i ∈ I buck , (6.54) 
h i = 0.4 × 10 10 , ∀i ∈ I boost , (6.55) 
h i = 1.2 × 10 10 , ∀i ∈ I buckboost . (6.56) 
Applying the obtained hysteresis-based controller (6.42), we obtain the simulation results shown in Figures 6.16 to 6.22a. Recall from past examples that, since the converters of each topology are identical, so are their responses. Thus, only the results corresponding to one converter of each topology are shown. Figure 6.16 shows that the output voltage has indeed been stabilized to the reference x r , fulfilling the control objective. Moreover, it is interesting to remark that no steady-state ripples are observed in the output voltage. This is due to the filtering property of the linear system coupling the converters, i.e., the output filters. A similar conclusion can be made regarding the voltage at the capacitor of the Buck converters, shown in Figure 6.18b: the inductor and capacitor present in the Buck topology (see Figure 2.10) form a filter that damped the steady-state voltage oscillations caused by hysteresis. On the other hand, in the case of the Boost and Buck-Boost converters, steady-state voltage oscillations are still present, as shown in Figures 6.20b and 6.22b. However, these ripples are small compared with the steady-state voltage of about 600V. As far as the currents in each converter are concerned, however, the ripples are much more significant compared with the equilibrium values, which is why the design of the hysteresis-based controller has been carried out aiming at constraining the current ripples. Figure 6.17: Current in the Buck converters described in Section 6.6 using hysteresis-based switching.

The objective of imposing a current ripple of R i(1) = 1A, ∀i ∈ I m , has been fulfilled, as it can be observed by analyzing Figures 6.17b,6.19b and 6.21b. This shows that the extension of hysteresis-based switching to the case of networked switched systems is indeed valid and can be used in the practical application of interconnected power converters. Remark 6.6 On a practical note, the output inductive filters l i , i = 1, 2, . . . , m, serve a special purpose in this chapter. Indeed, due to hysteresis, as previously discussed, ripples in the switching frequency appear, which is evidenced by Figures 6.17, 6.19 and 6.21. However, thanks to the effect of the output filters, steady-state ripples are not observed in the output currents or in the DC bus voltage.

Conclusion

In this chapter, the focus has been on the practical implementation of the switching control techniques developed over the past chapters. To that end, an hysteresis-based strategy has been introduced. The main feature of this method is that switching is not allowed to occur in the so-called hysteresis band, which has constant width in s(x)-space. As a consequence, infinite-rate switching characterized by the sliding mode phenomenon does not take place on the switching surface. The approach has been firstly presented for the simple case of only one SAS. Then, a generalization to an interconnection of SASs has also been proposed thanks to the decentralized property of a controller introduced for interconnected systems in Chapter 3. The application of the proposed hysteresis-based method to power converters has also been discussed in this chapter. This method has been shown to be convenient for this kind of systems, since it is possible to ensure an acceptable level of ripple amplitudes in the state variables, which has practical relevance in power electronics. Moreover, we have also seen that the switching frequency is smoother than the one obtained using another hysteresis-based method from the SASs literature.

Chapter 7

General conclusion and perspectives

Conclusions

In this thesis, we have proposed novel results with the aim of contributing to the theory of SASs. The main focus was to develop control methods suited to interconnected SASs with a solid mathematical grounding. This is a relevant point since the control of interconnected SASs is a fairly unexplored topic in the literature. It has been seen in Chapter 3 that the proposed stabilization techniques were successful in ensuring closed-loop stability with the desired performance. Their applicability to interconnected SASs comes from the reduced complexity of the LMI problems that usually need to be solved for SASs stabilization. Both centralized and decentralized strategies have been considered, for local and global stabilization. In the cases where only local stability was ensured, an estimation of the domain of attraction was provided. The contributions of this chapter are summarized as follows.

• An interconnection of SASs characterized by their coupling with a linear system has been presented. Even though this is a specific kind of interconnection, it has nevertheless been shown to be suitable for the application to practical systems such as interconnections of power converters, as evidenced in Sections 3.3.1, 3.4.1 and 3.4.2.

• In Lemma 3.1, we have rewritten the system model in a way that is convenient for the design of local stabilizing control laws. This has been done in order to extend a local stabilization result reported in [START_REF] Hetel | Local stabilization of switched affine systems[END_REF] to interconnected SASs. In fact, inspired by [START_REF] Hetel | Local stabilization of switched affine systems[END_REF], we have proposed in Theorem 3.1 a design method for obtaining a local stabilizing switching law which follows from the simpler problem of designing a linear static feedback controller for a linear system. A way of estimating the domain of attraction is also provided.

• In addition to local stabilization, we have also proposed results ensuring global stabilization, at the expense of stronger conditions. In Corollary 3.1, the same switching law as in Theorem 3.1 is considered, but now the stability result holds globally.

• Even though the results expressed in Theorem 3.1 and Corollary 3.1 are successful in providing sufficient conditions for stabilization, the control signal sent to each SAS depends on states of other subsystems in the interconnection. This characterizes a centralized architecture where all states are measured and then transmitted to a central controller, which then computes the mode to be sent to each SAS. In order to avoid issues related to this architecture, such as possible communication delays, we have also proposed in Section 3.4 results ensuring stabilization in a decentralized control architecture, where the control signal of each SAS depends only on its own states. In Corollary 3.2, we have introduced a local stabilizer in a decentralized setting; and conditions ensuring global stabilization were proposed in Corollary 3.3.

• One major drawback of Theorem 3.1 and Corollary 3.2 is that, despite offering an estimation of the domain of attraction, it is not straightforward to tune it. To address this shortcoming, we have proposed in Theorem 3.2 design conditions that allow to tune the domain of attraction to some extent. In fact, it is even possible to maximize the size of the estimated domain of attraction by solving a convex optimization problem. It is also worth mentioning that the resulting controller is decentralized. • The main contribution of Chapter 3, though, is related to the sufficient conditions for control design. These conditions are expressed as LMIs, which is quite common in the literature on SASs. However, here the LMI conditions have been proposed with the interconnection structure in mind. This is an important point because, if traditional LMI-based methods were employed to interconnected SASs, the LMI problem to be solved would suffer from the explosion of the number of modes. Therefore, the results presented in this chapter allow to design stabilizing controllers for the interconnection whilst overcoming the computational burden that would arise with other stabilizing techniques for SASs.

• The application of these methods has been illustrated using interconnections of power converters, showing the potential of the proposed techniques to real systems.

Although the methods proposed in Chapter 3 are successful in ensuring system stabilization, they all require the equilibrium point to be perfectly known since it depends on the system parameters. In Chapter 4, this issue is overcome in the case of the interconnection considered here by considering parameter uncertainties respecting some mild assumptions. An observer-based approach is adopted to estimate the uncertain parameters and, as a consequence, the equilibrium point. Another feature of this approach is that, under some observability conditions, it also allows to deal with the case where only partial measurements are available. This is an improvement on the results of Chapter 3, where all states must be measured. A summary of this chapter's contributions is given below.

• An observer suited for the interconnection of SASs at hand has been proposed in Proposition 4.1. This result can be regarded as an extension of the classical Luenberger observer where both the states and uncertain parameters are estimated. The observer gains are determined by solving an LMI problem adapted to the interconnected structure of the system, i.e., which avoids the exponential growth in complexity with the number of modes.

• We have considered an adaptive control scheme wherein the equilibrium point is updated based on the estimated values provided for the uncertain parameters. This allows the use of a stabilizing controller that drives the system trajectory to the updated equilibrium point.

The design of such a controller is proposed in Theorem 4.1, where sufficient conditions for global stabilization are expressed as LMIs. In the same vein as before, the issue of explosion with the number of modes is avoided, and stabilization is guaranteed for any parameter vector within a given known bounded set.

• The proposed method has been applied to interconnected power converters in Sections 4.3.1 and 4.3.2, where it has been shown that it is suitable for dealing with two common sources of uncertainties in this kind of systems: input voltage and load variations.

• In Section 4.4, a comparison has been established with a similar technique from the literature, presented in Section 2.4. We have concluded that the LMI conditions that we obtain are easier to solve due to their lower complexity when applied to interconnections of SASs. Moreover, the simulation results suggest that our controller also leads to a more efficient real-time implementation.

The proposed methods for the stabilization of interconnected SASs can be summarized in Table 7.1, wherein they are classified according to four relevant features: the structure of the controller (centralized or not), whether the stabilization is global or only local, whether one can tune the size of the domain of attraction, and whether the controller is robust to parameter uncertainties.

The practical examples used in Chapters 3 and 4 all consisted in a set of classical DC/DC converters interconnected through linear filters, which can be thought of as a simplified version of a DC microgrid. The stabilizing methods have been successfully applied to these examples even when several converters were involved, showcasing the practical interest of the developed techniques.

Up to this point, the focus had been on reducing the complexity of LMI problems when designing or using controllers for interconnected systems. However, in this thesis, we have also aimed at reducing the computational burden of LMIs in the case of systems exhibiting dynamics evolving in two distinct time scales. With this in mind, some results concerning stabilization of singularly perturbed SASs were proposed in Chapter 5. The main feature of these results was the fact that the LMI-based control design problem is well-conditioned in spite of the singular perturbation parameter. Moreover, we have designed controllers that do not require the value of this parameter, which is attractive from a robust control viewpoint, and their effectiveness has been validated by both academic and practical examples. In fact, it has been shown that DC/DC converters can be modeled as singularly perturbed SASs by applying a certain coordinate transformation, thereby allowing the use of our methods. These contributions are summarized as follows.

• Firstly, in Theorem 5.1, a result concerning the design of a switching controller for a subclass of singularly perturbed SASs has been proposed. This subclass is formed by the singularly perturbed LTI systems with relay control. The proposed controller has been shown to stabilize the system at the desired equilibrium point. The main feature of this method is that the LMI problem to be solved for obtaining the controller is well conditioned. Moreover, since only local stability is ensured with this controller, an estimation of the domain of attraction is also provided as a result of the solution of the LMI problem.

• In Corollary 5.1, the results of Theorem 5.1 were used for deriving conditions ensuring global stability of the closed-loop system. This has been done by adopting stricter conditions, where both the slow and fast dynamics are required to be asymptotically stable.

• One issue with the results presented in Theorem 5.1 and Corollary 5.1 is that the controller depends on the singular perturbation parameter ε. This is inconvenient if the value of ε is not known. For this reason, in Theorem 5.2, an ε-independent stabilizing controller is proposed.

Local stabilization has been shown to hold for any ε up to a certain bound ε * that can be calculated from the solution to the LMI problem. The estimated domain of attraction is also independent from ε, but it depends on ε * . These results are possible thanks to a useful matrix result proposed in Lemma 5.2.

• The aforementioned results have been extended to the general case of singularly perturbed SASs in Section 5.2. As a first step towards that end, in Lemma 5.3 an intermediary result ensuring local stabilization of the origin has been proposed. However, the LMI conditions are ill conditioned due to the presence of ε. This lemma has been used though to prove our main result, presented in Theorem 5.3. Another result that has been proposed to prove this theorem is Lemma 5.4, which is an extension of Lemma 5.2 to general singularly perturbed SASs.

• In Theorem 5.3, well-conditioned LMI conditions (i.e., without the presence of ε) have been proposed for the design of an ε-independent stabilizing switching controller for singularly perturbed SASs. The stabilization result holds only locally, but, just as in the case of Theorems 5.1 and 5.2, an estimation of the domain of attraction (also independent from ε, although depending on the bound ε * ) is provided.

• In Corollary 5.2, global stabilization conditions have been proposed by using Theorem 5.3. Once more, this comes at the expense of stricter conditions.

• The application of these methods have been illustrated by using both academic and practical examples. In the latter case, the stabilization of DC power converters has been accomplished by employing the proposed techniques. This is an interesting point, since the stabilization conditions presented in Theorem 5.3 are relatively conservative, considering that they must hold true for all modes of the SASs. In spite of this fact, the application to a Boost converter has been shown to be possible in Section 5.2.1. Moreover, a robustness property stated in terms of the circuit elements (more specifically, the inductance and capacitance) has been presented as an interesting consequence of the stabilization result for singularly perturbed SASs.

A strategy for the practical implementation of the switching controllers proposed in the previous chapters was proposed in Chapter 6. This strategy is based on hysteresis and we have seen that it effectively avoids the occurrence of sliding modes that arise in state-dependent switching control of SASs. It has also been seen that the proposed hysteresis-based switching controller is well suited to power converters due to the easy tuning of the desired accepted levels of steady-state ripples. The application of this technique in an experimental setting illustrated its use in the case of a Boost converter, though with some caveats related to sampling and uncertainties. Furthermore, the use of the proposed hysteresis-based switching controller to the interconnected system has been made possible thanks to the decentralized structure of the controller proposed in Corollary 3.3.

Perspectives

Even though the results proposed here have been successfully applied to some real-world systems, it is evident that there remains a lot to do. The following points have been identified as possible directions for future research.

• In the case of the interconnected SASs, for instance, it would be interesting to investigate whether similar reductions in LMI complexity can be obtained for more general structures, beyond a set of SASs coupled by an LTI system.

• Note that the results concerning the adaptive observer-based control of interconnected SASs ensure global stabilization. It would be an interesting possibility for further studies to investigate if less restrictive LMI conditions can be obtained for local stabilization. This is challenging for the following reason: since the equilibrium point changes with parameter variations, so does the domain of attraction. The estimation of a domain of attraction that is independent from the unknown parameters, with a low degree of conservatism, is then an interesting problem to be addressed in future works. The conservatism of the LMI conditions is also something worthy addressing. A possible way of obtaining less restrictive conditions is to investigate the use of non-quadratic Lyapunov functions, which have been shown to be applicable in the SASs literature [START_REF] Kader | Stabilization by a relay control using nonquadratic Lyapunov functions[END_REF].

• With regard to stabilization of singularly perturbed SASs, our results are very preliminary and they open up several possible research directions. Recall that some of the LMI conditions for control design, despite being well conditioned, can be rather restrictive. Indeed, the fast dynamics must be Hurwitz in order to apply the results and, in the case of global stabilization, the dynamic matrices of the slow dynamics must also be Hurwitz. And that must be true for each mode, which seems to constrain the domain of application of these results even though it is still possible to apply them to some power converters, as long as we consider parasitic resistances, as seen in Chapter 5. Strategies to relax these LMI conditions are therefore envisaged as a natural next step.

• It is also worth noting that the bound for the singular perturbation parameter can be determined but we do not have any control over it. For this reason, it would also be interesting to come up with a numerically efficient method for maximizing this bound.

• Another reason why the approach for dealing with singularly perturbed SASs is preliminary is because the end goal is to use the time scale separation as a means for model reduction. More specifically, we believe that a path worth exploring is how to derive conditions for control design using only data from the slow dynamics model. A composite controller where the design is based on the slow and fast models separately is also envisaged. In fact, such controllers are well known in the literature on singularly perturbed systems [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF], and a framework for composite switching controllers applied to singularly perturbed switched systems (and SASs in particular) would thus be a very pertinent and interesting addition to the literature.

• It would also be worthy exploring this model reduction capability in interconnections of SASs.

In fact, even adapting the results proposed in this thesis regarding singular perturbations to the interconnection remains elusive for the moment. This stresses the need for further studies in this direction, which has the potential to yield some worthy contributions not only to the SASs literature, but also to singularly perturbed discontinuous systems in a more general sense.

• As far as the hysteresis-based strategy proposed in Chapter 6 is concerned, we have considered that the hysteresis parameter remains constant. It would also be interesting to analyze the possibility of modifying this value in real time by means of an adaptive scheme, in the same spirit as what has been done in [START_REF] Repecho | Switching frequency regulation in sliding mode control by a hysteresis band controller[END_REF] for sliding mode controllers. One advantage of doing so would be to impose a nearly constant switching frequency throughout system operation, even during the transient behavior.

• A follow-up study to the experimental validation carried out in Section 6.4 is also envisaged. The goal would be to develop an hysteresis-based controller integrating the effect of sampling. It would also be pertinent to propose a control method with some robustness properties, in order to eliminate the dependence of stabilization on uncertain parameters such as parasitic elements. Plusieurs systèmes naturels et techniques peuvent être modélisés de manière appropriée par des systèmes commutés, ce qui met en évidence leur pertinence pratique. A titre d'exemple, un tel modèle pourrait être appliqué au changement de vitesse d'une automobile. Dans ce cas, l'état continu peut être la position et la vitesse tandis que chaque mode correspond à une vitesse différente. La règle de changement de vitesse (qui peut venir du conducteur lui-même ou d'un système automatisé) décide vers quelle vitesse passer ainsi que le moment de la changer.

Résumé étendu en français

La dynamique de la règle de commutation n'est pas continue puisqu'elle décrit l'apparition d'événements discrets dans le temps, comme le changement de vitesse. D'autres exemples de tels événements incluent l'appui sur un bouton ou l'actionnement d'un interrupteur. Pour cette raison, les systèmes commutés font partie d'une classe plus large de systèmes appelés systèmes hybrides, caractérisés par l'interaction entre dynamiques continues et discrètes. Leur étude est devenue de plus en plus populaire ces dernières années en raison de leur application à la modélisation du comportement de systèmes modernes complexes et à grande échelle tels que les systèmes cyberphysiques. Ainsi, les systèmes hybrides ne constituent pas seulement un sujet intéressant en automatique, mais leur étude est également pertinente dans le domaine de l'informatique. La différence entre les systèmes commutés et la classe plus générale des systèmes hybrides réside dans le fait que les états sont continus à tout moment dans le cas des systèmes commutés. En d'autres termes, les états continus ne sautent pas ailleurs dans l'espace d'état lorsque la commutation se produit.

L'analyse et la conception de contrôleurs pour des systèmes commutés ou hybrides sont des tâches difficiles en raison de la complexité des phénomènes qui se produisent au cours de leur fonctionnement. Un exemple de tels phénomènes est le comportement dit de Zeno, caractérisé par l'apparition d'un nombre illimité d'événements discrets sur une durée finie.

Un domaine d'application important où les théories des systèmes commutés ou hybrides ont été utilisées est celui des convertisseurs électroniques de puissance. En un mot, les convertisseurs de puissance sont des circuits électriques contenant des éléments de stockage tels que des inductances et des condensateurs qui réalisent la conversion d'énergie en commutant grâce à un ou plusieurs dispositifs semi-conducteurs, tels que des transistors et des diodes. Les états continus dans ce type de systèmes sont généralement considérés comme les courants circulant dans les inductances et les tensions aux bornes des condensateurs. Dans chaque configuration des composants de commutation, la dynamique de ces états est décrite par une équation différentielle classique. Cependant, lorsque la configuration des interrupteurs change, l'évolution des états commence alors à être dictée par une autre équation différentielle. Les systèmes de convertisseurs de puissance sont les principales applications considérées dans cette thèse et ils sont utilisés pour illustrer les résultats théoriques obtenus ici concernant la stabilisation des systèmes commutés.

Considérons un convertisseur de puissance DC/DC générique contenant un transistor et une diode. Lorsque le transistor est fermé, le système suit une certaine dynamique continue, alors que lorsqu'il est ouvert, le système suit une dynamique différente. Le passage d'un mode à l'autre est déclenché soit par l'événement instantané d'ouverture du transistor, soit par sa fermeture, ce qui justifie d'appeler de tels convertisseurs des systèmes commutés. Il est toutefois important de mentionner ici que cette approche n'est pas largement adoptée dans la communauté de l'électronique de puissance. Au lieu de cela, l'approche traditionnelle consiste à considérer un modèle moyen pour les convertisseurs, ce qui évite d'aborder explicitement le comportement discret lié à la commutation. L'avantage de cette méthode est qu'elle permet l'application d'un grand nombre de techniques de contrôle classiques développées au cours de plusieurs décennies pour les systèmes continus.

Il convient de souligner que dans le cas des convertisseurs de puissance, on peut en principe ouvrir et fermer les transistors à volonté, et donc le mode peut être utilisé comme entrée de commande. Dans ce scénario, la règle de commutation peut être conçue afin d'atteindre un certain objectif de contrôle, tel que la stabilisation ou le suivi d'un signal de référence. Cependant, dans certains cas, la règle de commutation n'est pas contrôlée et le mode peut être considéré comme une perturbation. Dans ce cas, l'analyse du comportement du système doit être effectuée sous commutation arbitraire. Dans cette thèse, cependant, nous supposons toujours que nous contrôlons totalement le mode, ce qui permet la conception de contrôleurs de commutation pour le système en question.

Dans cette thèse, nous nous concentrons sur les Systèmes Affines Commutés (SACs), qui sont une sous-classe des systèmes commutés. Dans le cas des SACs, la dynamique associée à tout mode est affine à l'état continu. Leur étude est intéressante d'un point de vue pratique puisqu'il a été démontré qu'ils modélisent de manière appropriée les convertisseurs de puissance DC/DC dans de nombreux travaux.

Nous sommes également particulièrement intéressés par l'étude de l'interconnexion des systèmes affines commutés dans le but de stabiliser l'ensemble du réseau à un point de fonctionnement souhaité. Non seulement il s'agit d'un problème intéressant en soi, mais il a également des applications potentielles dans des systèmes réels, comme dans le cas des convertisseurs DC connectés en parallèle. En effet, les convertisseurs en parallèle présentent de nombreux avantages, tels qu'une plus grande capacité de traitement de puissance, une fiabilité améliorée grâce à la redondance, la possibilité de répartir les contraintes entre les convertisseurs, une tolérance aux pannes accrue, une facilité de maintenance et de réparation, etc. Un autre exemple peut être trouvé dans les systèmes de production d'énergie hybrides, comme dans les applications de transport, où les piles à combustible sont utilisées conjointement avec des éléments de stockage. Une application très pertinente peut également être trouvée dans les micro-réseaux DC. Ces systèmes ont gagné en pertinence au fil des années avec l'essor de l'intégration sur le r'eseau électrique des sources d'énergie renouvelables telles que les panneaux solaires ainsi que des systèmes de stockage d'énergie et des charges telles que les véhicules électriques. Dans un contexte de changement climatique, où la pénétration des sources d'énergie renouvelables dans le réseau est un élément essentiel de toute stratégie mondiale visant à réduire les émissions de gaz à effet de serre, il est facile de voir l'importance de rechercher de meilleures méthodes pour la conception et le contrôle des micro-réseaux DC. Les interconnexions de convertisseurs de puissance sont également présentes, par exemple, dans les applications aérospatiales. Dans les engins spatiaux en orbite autour de la Terre, un certain nombre de sections de panneaux solaires peuvent être connectées ou deconnectées pour produire la tension du bus DC et des convertisseurs DC/DC interfacent le bus principal avec les charges utiles de l'engin spatial, régulant les tensions requises par chaque charge utile. Tant dans cette application que dans les micro-réseaux DC, la présence d'éléments de stockage tels que des batteries est également importante, et ils sont également connectés au bus au moyen de convertisseurs DC/DC.

Les objectifs généraux de cette thèse sont doubles:

1. Apporter de nouveaux résultats à la théorie des systèmes commutés, notamment en ce qui concerne la stabilisation des systèmes. Dans cette optique, l'objectif est d'utiliser des outils mathématiques basés par exemple sur la théorie de la stabilité de Lyapunov pour proposer des contrôleurs stabilisateurs et démontrer rigoureusement leur efficacité. La principale contribution consiste à proposer de tels résultats à un type d'interconnexion de systèmes affines commutés. Tous les contrôleurs proposés doivent être conçus de manière numériquement exploitable, même dans le cas où plusieurs systèmes sont interconnectés.

2. Combler le fossé entre la théorie et la pratique en illustrant les résultats théoriques à travers leur application à des exemples de convertisseurs de puissance. L'idée est de relier les concepts abstraits introduits dans les développements théoriques avec des objets physiques réels, ce qui souligne les avantages des méthodes proposées en les appliquant à des exemples concrets.

Un résumé des résultats de chaque chapitre se trouve ci-dessous.

Chapitre 2

Dans le Chapitre 2, quelques bases sont données avant la présentation de nos résultats dans les chapitres suivants. Un convertisseur DC/DC classique est présenté pour illustrer certains concepts théoriques clés présentés dans le chapitre. Ces concepts sont tirés du formalisme mathématique des systèmes discontinus et sont brièvement passés en revue. En plus du contexte théorique, nous présentons également plus en détail quelques travaux pertinents de la littérature. L'objectif est de décrire en plus de détails certains travaux issus de l'état de l'art sur la stabilisation des SACs afin de mieux clarifier les apports de la thèse. Les principaux points de ce chapitre sont répertoriés comme suit. 

Chapitre 4

Les résultats du Chapitre 3 ne peuvent être appliqués que lorsque tous les états du système sont mesurés et qu'il n'y a aucune incertitude dans le modèle. Dans le Chapitre 4, nous abordons cette question en proposant des résultats de stabilisation qui peuvent être utilisés même dans ces conditions. L'idée clé est l'utilisation d'une approche basée sur des observateurs. La solution à ce problème repose en grande partie sur les IMLs et pourrait donc en principe également souffrir de la croissance du nombre de modes en cas d'interconnexion. Cependant, la stratégie proposée dans ce chapitre évite ce problème. à la connaissance de l'auteur, une méthode de conception de contrôle stabilisante avec une complexité réduite des IMLs dans des SACs interconnectés n'a pas encore été présentée dans la littérature à ce jour. Un résumé des résultats de ce chapitre est donné comme suit.

• Le schéma précédemment introduit au Chapitre 3 est étendu pour inclure des paramètres incertains. On suppose que ces paramètres interviennent linéairement sur la dynamique de chaque sous-système de l'interconnexion. Des hypothèses supplémentaires sont faites concernant ces paramètres, telles qu'une variation lente et l'appartenance à des ensembles compacts connus. On considère également que les états ne sont pas tous disponibles pour les mesures. En plus des incertitudes des paramètres mentionnées ci-dessus, elles rendent le problème de contrôle plus difficile par rapport à celui abordé dans le Chapitre 3.

• Les questions d'incertitudes sur les paramètres et de mesures partielles sont traitées en adoptant une approche d'observateur étendu. Plus précisément, l'état du système est augmenté pour inclure les paramètres incertains, puis un observateur linéaire de type Luenberger est conçu pour fournir des estimations en temps réel de l'état augmenté. La procédure de conception, présentée dans la Proposition 4.1, garantit une performance donnée définie par un taux de décroissance spécifié, et est basée sur la solution d'un problème IML dans lequel la complexité de calcul ne souffre pas de l'explosion du nombre de modes.

• Une fois l'observateur conçu à l'aide de la Proposition 4. • Sur la base de la discussion précédente sur le comportement du mode glissant, nous proposons dans la Section 6.2 notre stratégie de commutation basée sur l'hystérésis. L'idée est d'approcher le comportement idéal du mode glissant en contraignant la commutation à se produire uniquement à la limite d'une bande d'hystérésis entourant la surface de commutation. Puisque la largeur de cette bande est supérieure à zéro, la fréquence de commutation est limitée et ainsi une commutation à débit infini est évitée. La largeur de la bande d'hystérésis est ajustée via le paramètre d'hystérésis. Dans le cas limite où celle-ci est nulle, la bande d'hystérésis est identique à la surface de commutation et le mouvement de glissement idéal est retrouvé. Bien évidemment, pour des raisons pratiques, ce paramètre sera toujours positif et directement lié à la fréquence de découpage, vu que les pertes par commutation doivent être limitées.

• Dans le Théorème 6.1, nous obtenons une expression liant la fréquence de commutation à un point de la surface de commutation autour duquel évolue la trajectoire dans la bande d'hystérésis. C'est un résultat intéressant, puisque le concepteur est capable de connaître au préalable toutes les valeurs possibles de la fréquence de découpage.

• En appliquant le Théorème 6.1 au cas particulier où le point autour duquel évolue la trajectoire est l'équilibre lui-même, un résultat très utile est obtenu dans le Corollaire 6.1 : une expression donnant le relation entre la fréquence de commutation en régime permanent et le paramètre d'hystérésis. En effet, cela correspond au régime stationnaire où la fréquence de commutation est constante et la trajectoire a convergé vers un voisinage de l'équilibre.

• Le fait que la trajectoire s'écarte de la surface de commutation alors qu'elle se trouve dans la bande d'hystérésis introduit la possibilité qu'elle puisse converger vers le point d'équilibre d'un mode, au lieu de celui souhaité. Ce problème est résolu en limitant le paramètre d'hystérésis à une valeur qui empêche que cela se produise.

• En raison de l'hystérésis, des oscillations d'état se produisent en régime permanent. Des expressions liant les amplitudes de ces oscillations à la fréquence de commutation en régime permanent sont également obtenues. L'intérêt de ce résultat réside dans le fait que le paramètre d'hystérésis peut être choisi de manière à maintenir les oscillations en régime permanent à des niveaux acceptables définis par la conception.

• Notre approche a été appliquée avec succès à un exemple de convertisseur Boost. En effet, l'oscillation du courant a été maintenue au niveau souhaité en régime permanent, suggérant l'utilité de la méthode proposée dans le contrôle des convertisseurs de puissance.

• Une comparaison de notre approche avec celle présentée dans la Section 2.3.2 est également effectuée. Nous concluons que notre méthode semble mieux adaptée à l'application en question, car il est moins simple d'imposer un comportement souhaité pour la fréquence de commutation ou les oscillations d'état en utilisant l'autre technique.

• Dans la Section 6.4, une validation expérimentale est effectuée pour tester l'implémentation pratique de notre méthode sur un véritable convertisseur Boost. Même si la fréquence de commutation a été limitée par la valeur spécifiée, certains résultats inattendus ont été observés, tels que la forme des réponses des états. Nous pensons que cela est dû au taux d'échantillonnage fini de la plate-forme dSPACE utilisée dans la configuration ainsi qu'aux incertitudes dans les paramètres des composants du circuit. L'intégration de ces deux facteurs dans la stratégie basée sur l'hystérésis présentée ici constitue une étude à poursuivre évidente qui semble pertinente dans la pratique.

• Ensuite, dans la Section 6.5, l'approche discutée jusqu'ici est étendue à l'interconnexion de SACs présentée au Chapitre 3. Cette extension a été rendue possible grâce à l'un des contrôleurs décentralisés proposés dans le Chapitre 3. En fait, la structure décentralisée permet d'appliquer indépendamment les mêmes résultats obtenus auparavant pour un seul SASs à chaque SASs de l'interconnexion. Dans cette optique, le Théorème 6.2 propose un résultat qui permet au concepteur de spécifier soit la fréquence en régime permanent souhaitée, soit l'amplitude acceptable des oscillations en régime permanent. Et ce pour chaque SAC de manière indépendante. Ces résultats sont validés par simulation utilisant une interconnexion de 5 convertisseurs de puissance DC, et nous montrons que la tension de sortie est stabilisée à la référence et que les oscillations de courant sont maintenues au niveau souhaité en régime permanent.

Conclusion

Enfin, dans le Chapitre 7 nous présentons la conclusion de la thèse. Quelques remarques sont faites concernant les résultats proposés et quelques pistes intéressantes pour des recherches futures sont suggérées afin d'améliorer ces résultats et d'élargir leur champ d'application.
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 412413 Figure 4.12: Evolution of the parameters p i , ∀i ∈ I m ∪ {0}, and their estimations, in the example with 15 converters.
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 414 Figure 4.14: Currents in one of the Buck converters in the example with 15 converters using the controller proposed in Theorem 4.1.

Figure 4 . 15 : 5 (

 4155 Figure 4.15: Currents in one of the Boost converters in the example with 15 converters using the controller proposed in Theorem 4.1.
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 416 Figure 4.16: Currents in one of the Buck-Boost converters in the example with 15 converters using the controller proposed in Theorem 4.1.
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 417 Figure 4.17: Output voltage in the example with 5 converters.

  to 4.27, along with the results obtained with the method developed here in Sections 4.1 and 4.2 (observer (4.20)-(4.21) and controller (4.22)). As before, since the plots are the same for identical converters with same uncertainties, we only show the plots corresponding to one converter of each topology.
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 418 Figure 4.18: Parameter p 0 in the example with 5 converters.

Figure 4 . 19 : 4 - 2 (

 41942 Figure 4.19: Current in converter i = 1, in the example with 5 converters.
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 420 Figure 4.20: Output current in converter i = 1, in the example with 5 converters.
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 421 Figure 4.21: Parameter p i in converter i = 1, in the example with 5 converters.
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 422 Figure 4.22: Current in converter i = 3, in the example with 5 converters.
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 423 Figure 4.23: Output current in converter i = 3, in the example with 5 converters.
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 424 Figure 4.24: Parameter p i in converter i = 3, in the example with 5 converters.
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 425 Figure 4.25: Current in converter i = 4, in the example with 5 converters.
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 426 Figure 4.26: Output current in converter i = 4, in the example with 5 converters.
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 427 Figure 4.27: Parameter p i in converter i = 4, in the example with 5 converters.
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 51 Figure 5.1: Trajectory of the system described in Example 5.1.

. 53 )

 53 and Y = [Y 1 0]. Following similar steps as in the proof of Theorem 5.1, (5.52) can be rewritten in the form (5.39) with Ψ, Θ and Σ having the structure shown in (5.14) and (5.38), with
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 52 Figure 5.2: Trajectory of the system described in Example 5.2.

Figure 5 . 3 :

 53 Figure 5.3: Buck converter supplying a load r o , taking into account the internal resistance r.
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 54 Figure 5.4: Current and voltage in the Buck converter described in Section 5.1.4 using an εdependent controller.
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 55 Figure 5.5: Phase portrait of the Buck converter described in Section 5.1.4 using an ε-dependent controller.
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 56 Figure 5.6: Current and voltage in the Buck converter described in Section 5.1.4 using an εindependent controller.
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 57 Figure 5.7: Phase portrait of the Buck converter described in Section 5.1.4 using an ε-independent controller.
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 58 Figure 5.8: Trajectory of the system described in Example 5.3.

5 ,Π 2 2 = 5 . 63 .

 52563 and B 2 = 1.5. By solving LMIs (5.98)-(5.102) choosing χ = 0.3, we obtain the following: Q 1 = 25.8, Q 2 = 28.2, Y 1 = 0.76, Π 1 1 = Π 2 1 = 20.7, and Π 1 2 = The bound ε * has been estimated as ε * = 0.3. Since ε < ε * , the controller proposed in Theorem 5.3 can be used. Figure 5.8 shows the simulation results.
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 510 Figure 5.10: Plot showing the relationship between sets B(0, 1/ν), Ω 0 and Ω ε .
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 511 Figure 5.11: Current and voltage in the Boost converter described in Section 5.2.1.
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 512 Figure 5.12: Phase portrait of the Boost converter described in Section 5.2.1.
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 61 Figure 6.1: Plot illustrating the hysteresis band H.
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 62 Figure 6.2: Plot of s(x(t)) as a function of time during hysteresis.

) and t 2

 2 (x s ) = -2h ∇s(x s ) T Ā(δ )x + g(x)v 2 . (6.18) 

  Figure 6.3 shows how this situation may arise.
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 63 Figure 6.3: Example of a trajectory that is stabilized at x j , for some j ∈ {1, 2}, instead of the desired equilibrium x = 0.
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 64 Figure 6.4: Current in the system described in Example 2.4 using hysteresis-based switching.

  Zoom on the steady-state ripples.
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 65 Figure 6.5: Output voltage in the system described in Example 2.4 using hysteresis-based switching.
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 66 Figure 6.6: Phase portrait showing the trajectory of the states in Example 2.4 using hysteresisbased switching.
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 67 Figure 6.7: Current in the system described in Example 2.4 using constant-and variable-width hysteresis.
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 68 Figure 6.8: Output voltage in the system described in Example 2.4 using constant-and variablewidth hysteresis.

Figure 6 . 9 :

 69 Figure 6.9: Trajectories in the system described in Example 2.4 using constant-and variable-width hysteresis.
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 610 Figure 6.10: Plot of ū(x), x ∈ S.
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 611612 Figure 6.11: Plot of F sw (x s ), xs ∈ Ss .
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 613 Figure 6.13: Current in the system described in Section 6.4 using hysteresis-based switching.
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 614 Figure 6.14: Output voltage in the system described in Section 6.4 using hysteresis-based switching.

 × 10 5 ,

 5 ∀i ∈ I buckboost .(6.53) 
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 0616 Figure 6.16: Output voltage in the system described in Section 6.6 using hysteresis-based switching.
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 618 Figure 6.18: Output current and voltage in the Buck converters described in Section 6.6 using hysteresis-based switching.
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 619 Figure 6.19: Current in the Boost converter described in Section 6.6 using hysteresis-based switching.
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 620 Figure 6.20: Output current and voltage in the Boost converter described in Section 6.6 using hysteresis-based switching.
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 621 Figure 6.21: Current in the Buck-Boost converters described in Section 6.6 using hysteresis-based switching.

Figure 6 . 22 :

 622 Figure 6.22: Output current and voltage in the Buck-Boost converters described in Section 6.6 using hysteresis-based switching.
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  Let us start by presenting a classical result from the SASs literature. The next theorem gives sufficient conditions for global exponential stability of a SAS controlled by a state-dependent switching signal. The matrix inequality (2.34) is an example of an LMI. The stabilization results presented throughout this thesis are usually based on finding solutions to LMI problems. In Theorem 2.2, for instance, one must find a matrix P = P T that satisfies both LMI conditions P 0 and (2.34). A brief introduction to LMIs is given in Appendix A.2.

	Theorem 2.2 (adapted from [15]) Under Assumption 2.1, consider x ∈ R n and δ ∈ ∆ N
	such that (2.27)-(2.28) hold. If there exists P = P T 0 such that	
	sym P Ā(δ ) ≺ 0,	(2.34)
	then x is a globally exponentially stable equilibrium point of the closed-loop system (2.25), (2.32),
	with:		
	G(x) = arg min	(x -x ) T P (A j x + b j ).	(2.35)
	j∈I N		
	It can be seen from (2.34) that in order to apply Theorem 2.2, matrix Ā(δ ) must be Hurwitz.
	It is important to remark that this can be the case even if some modes are unstable.	
	Remark 2.2		

  Example 2.6 The Buck converter is another classical DC/DC converter topology. It is used to step down the input voltage so as to obtain a lower voltage at the output. The electrical circuit of this converter is shown in Figure 2.10. The state is x = [i(t) v(t)] T , where i(t) is the current in the inductor and v(t) is the output voltage. By proceeding in a similar manner as for the Boost converter, applying the Kirchhoff laws in the configuration where σ = 1 (S closed, D open) and σ = 2 (S open, D closed), a state-space model of the form (2.56) is obtained. Matrices A, b 1 and b 2 can be easily determined as:

Table 3 .

 3 2: Numerical values used in the example with 15 converters.

	Buck converters, i ∈ I buck

  Even though it has been seen that maximizing ι relaxes LMI condition (4.48), it may restrict even more LMI (4.47). Indeed, we note from (4.50) that larger values of z i restrict even further condition(4.47)

		.71)
	S 0,i ιI,	(4.72)
	for every i ∈ I	

m ∪ {0}, where ι > 0 is a new decision variable. Then, by solving the following optimization problem: max ι>0 ι, subject to (4.71)-(4.72) and the conditions of Proposition 4.1, (4.73) we can actually maximize the eigenvalues of S i , ∀i ∈ I m ∪ {0}. It is easy to see that this makes (4.48) less restrictive. Remark 4.1

Table 4 .

 4 1: Maximum parameter values used in the simulation with three converters.

	S 0,i =	1340 302.4 2713	, ∀i ∈ I m ,	(4.93)

.1. In order to design the observer (4.20), (4.21), we use Proposition 4.1 choosing the decay rate χ o = 1000s -1 . By finding feasible solutions to the LMIs (4.27)-(4.29), we obtain the following:

Table 4 .

 4 2: Maximum parameter values used in the simulation with 15 converters.

	p imax , ∀i ∈ I buck	10V
	p imax , ∀i ∈ I boost	9V
	p imax , ∀i ∈ I buckboost 8V
	p 0max	10A

  With the matrices determined above, the gains L i , ∀i ∈ I m ∪ {0}, are calculated from (4.30) as follows:

		0.462	0.169	
	1.1258 -0.0109 0.0313 0.0018 -0.0084 0.1831 0.0017 0.03 0 0.0014     × 10 6 , ∀i ∈ I buck , 9.0183 -0.0217 0.0969 0.2237     0.0113 -0.0637 0.0001 1.4925 0.0084 0.0103     × 10 5 , ∀i ∈ I boost ,  S i = S i =    9.5969 -0.0132 0.0234 0.2172 0.0095 -0.0594 0.0001 1.6204 0.0087 0.0095     × 10 5 , ∀i ∈ I buckboost , S 0,i = 451 67.5 829 , τ o,i = 2.5 × 10 8 , ∀i ∈ I buck , S 0,i = 451 66.1 823    3.436 7.581 0.169 1.422 -9.821 -5.087    × 10 4 , ∀i ∈ I buck , L i =     0.048 0.009 0.153 0.996 0.009 0.174 -1.045 -0.353     × 10 5 , ∀i ∈ I boost , L i =     0.427 0.095 1.305 9.994 0.095 1.579 -9.873 -3.748     × 10 4 , ∀i ∈ I buckboost , L 0 = 2.883 -0.266 × 10 5 . Using (4.112), (4.115), (4.120) and (4.132)-(4.135), the values of z i , ∀i ∈ I m , are determined (4.126) (4.127) (4.128) (4.129) (4.132) (4.133) (4.134) and (4.135) from (4.49) as: , τ L i = z

o,i = 2.5 × 10 8 , ∀i ∈ I boost , (4.130) S 0,i = 463 107 953 , τ o,i = 2.7 × 10 8 , ∀i ∈ I buck , (4.131) i = 2.914 × 10 5 , ∀i ∈ I buck , (4.136) z i = 2.923 × 10 5 , ∀i ∈ I boost , (4.137) z i = 2.922 × 10 5 , ∀i ∈ I buckboost .

Table 4 .

 4 3: Table illustrating function ξ.

	j j = ξ(j)
	1	(1,1)
	2	(1,2)
	3	(1,3)
	4	(2,1)
	5	(2,2)
	6	

Table 4 .

 4 4: Table comparing the computational performance of our method and the one presented in Section 2.4.

		Method in Sections 4.1 and 4.2 Method in Section 2.4
	Observer LMIs		
	Calculation time [s]	0.546	3572.250
	Number of LMIs	23	33
	Number of decision variables	71	7997
	Controller LMIs		
	Calculation time [s]	0.399	0.259
	Number of LMIs	22	33
	Number of decision variables	40	136
	Simulation time [s]	95.08	503.30

Table 5 .

 5 2: Numerical values used in the example described in Section 5.2.1.

  .14) Proof: According to Assumption 6.1, if x ∈ H, then there exists xs ∈ S such that x ≈ xs . If xs ∈ Ss , then the trajectory switches around xs . From Figure6.2, the time derivative of s(x s ) can be written as:

	ṡ(x s ) =	2h t1(xs) , if mode 1 is active, -2h t2(xs) , otherwise.	(6.15)

Table 6 .

 6 1: Numerical values used in the experimental validation of the hysteresis-based technique. ≥ -218V and x ∈ S, then switching occurs around x. In other words, x ∈ Ss . With this in mind, we show in Figure

	x (2) 50V
	E	20V
	l	4.5mH
	c	1000µF
	r o	52.8Ω

  Figure 6.15: Mode in steady state in the system described in Section 6.4 using hysteresis-based switching.
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Table 7 .

 7 1: Comparison between the methods proposed for the stabilization of interconnected SASs.

	Method	Structure	Stabilization Domain of attraction Robustness
	Theorem 3.1	Centralized	Local	Not tunable	No
	Corollary 3.1	Centralized	Global	-	No
	Corollary 3.2 Decentralized	Local	Not tunable	No
	Corollary 3.3 Decentralized	Global	-	No
	Theorem 3.2 Decentralized	Local	Tunable	No
	Theorem 4.1	Centralized	Global	-	Yes

  IntroductionLes systèmes commutés constituent un sujet intéressant qui a suscité beaucoup d'attention de la part de la communauté en automatique au cours des dernières décennies. Contrairement aux systèmes dynamiques continus purs, les états d'un système commuté évoluent selon l'une d'un ensemble d'équations différentielles au lieu d'évoluer selon une seule équation différentielle. Chacune de ces équations correspond à une évolution dynamique continue que l'on appelle habituellement un mode. La dynamique des états passe d'un mode à un autre en fonction de l'apparition d'événements instantanés dictés par une règle de commutation.

  • Le modèle commuté du convertisseur Boost est présenté. Ensuite, nous présentons également le modèle dit moyen, qui est celui traditionnellement adopté à des fins de contrôle en électronique de puissance. Nous comparons brièvement les schémas de contrôle basés sur ces modèles et discutons de certaines différences importantes. Par exemple, lors de l'utilisation de modèles moyens, puisque des contrôleurs classiques continus sont utilisés, le signal de commande doit être converti en signaux binaires. La raison en est que le contrôle d'un convertisseur de puissance s'effectue par la fermeture et l'ouverture de transistors, qui caractérisent les entrées binaires. Le passage d'un signal continu à un signal binaire se fait en ajoutant un étage de modulation, tel que la MLI (Modulation de Largeur d'Impulsion). En revanche, lorsque le modèle commuté est utilisé, un tel étage de modulation n'est pas nécessaire, puisque le signal de commande est discret et peut être directement utilisé pour commander les transistors. La MLI inclue une fréquence fixe dite de découpage, contrairement à la fréquence variable des méthodes proposées. • Le cadre d'étude des systèmes discontinus est également brièvement passé en revue dans ce chapitre. Le formalisme de Filippov est introduit et certains concepts familiers de la théorie classique du contrôle, tels que la solution et la stabilité, sont redéfinis dans ce formalisme. La raison en est de fournir une base mathématique solide aux résultats présentés dans les chapitres suivants. La principale caractéristique du formalisme de Filippov est que les inclusions différentielles sont utilisées pour décrire la dynamique du système, au lieu des équations différentielles. Cela permet de prendre en compte des dynamiques continues distinctes au voisinage d'un point en considérant leurs combinaisons convexes. Ceci est pertinent pour les systèmes commutés puisque cette méthodologie permet des solutions caractérisées par des modes glissants. Quelques exemples académiques sont présentés pour fournir des illustrations simples de ces concepts. • Les SACs sont ensuite introduits et abordés à la lumière du formalisme de Filippov. Il est montré que les SACs conviennent à la modélisation des convertisseurs de puissance, et le modèle commuté du convertisseur Boost est utilisé à titre d'illustration. Dans un premier temps, certains résultats de la littérature concernant la stabilisation globale sont présentés et appliqués à un exemple de convertisseur Boost. Les conditions pour qu'un point soit un équilibre sont données sur la base de la théorie de Filippov et le point d'équilibre souhaité est stabilisé à l'aide de ces résultats. Dans les Théorèmes 2.2 et 2.3, des problèmes formulés en terme des Inégalités Matricielles Linéaires (IMLs) sont résolus pour la synthése de correcteurs stabilisateurs globaux. Cependant, les modes glissants sont toujours présents dans les trajectoires du système en boucle fermée. Une stratégie de contrôle de commutation contournant ce problème de fréquence de commutation infinie est présentée dans la Section 2.3.2, où une méthode introduisant une hystérésis à largeur variable est présentée. Ce résultat est également illustré à l'aide de l'exemple du convertisseur Boost. • En plus des résultats de stabilisation globale, des stabilisateurs locaux pour les SACs sont également discutés. Même si la garantie de stabilisation est plus faible, les conditions pour la synthèse de la loi de commande sont moins strictes. De plus, des estimations du domaine d'attraction sont également fournies dans ces techniques. Une représentation équivalente du système qui est plus pratique pour la stabilisation locale est présentée dans la Proposition 2.2, puis dans le Théorème 2.4, le principal résultat concernant la stabilisation locale est présenté. Le point principal de ce résultat est que la synthèse du correcteur de commutation est en fait basée sur la conception d'un correcteur continu utilisant la représentation du système dans la Proposition 2.2. Dans la Section 2.3.4, ce résultat est appliqué au cas particulier des systèmes linéaires invariants avec contrôle par relais. Il est montré que ce cas particulier est adapté à la modélisation d'une autre topologie de convertisseur classique : le convertisseur Buck. Ensuite, dans le Théorème 2.5, un contrôleur stabilisateur est proposé ainsi qu'une estimation du domaine d'attraction. • Dans la Section 2.4, une stratégie globale de stabilisation prenant en compte les incertitudes des paramètres et les mesures partielles est présentée. La principale caractéristique de cette technique est la structure de commande avec adaptation du point d'équilibre recherché: -tout d'abord, un observateur est employé pour estimer à la fois les états et les paramètres inconnus; -ensuite, ces estimations sont utilisées pour mettre à jour le point d'équilibre, calculé afin d'assurer le suivi d'une certaine référence; -enfin, le stabilisateur proposé est utilisé pour conduire la trajectoire du système jusqu'au point d'équilibre estimé. • La méthode d'adaptation pour la commande décrite ci-dessus est appliquée au convertisseur Boost, où les paramètres incertains sont supposés être la tension d'entrée et la charge. La référence est la tension de sortie souhaitée et les estimations sont utilisées pour déterminer le courant d'inductance d'équilibre, nécessaire pour mettre à jour le point d'équilibre. Un grand nombre de méthodes développées pour le contrôle des SACs reposent sur la résolution de problèmes impliquant des IMLs, ce qui est certainement une caractéristique intéressante de ces techniques puisque des solveurs efficaces sont disponibles dans le commerce. Cependant, dans certains systèmes contenant plusieurs SACs interconnectés, le nombre de modes augmente de façon exponentielle avec le nombre de SACs, ce qui entraîne un problème IML potentiellement fastidieux où la convergence vers une solution est difficile et pas du tout efficace. Dans cette thèse, cette problématique est abordée dans le cas d'un type particulier d'interconnexion constitué de plusieurs SACs couplés par un système linéaire invariant. Les résultats présentés sont applicables à des exemples pratiques tels que les interconnexions en parallèle de convertisseurs de puissance alimentant une charge résistive, qui ne sont pas souvent abordés dans la littérature sur les systèmes commutés malgré leur pertinence. Les principaux points abordés dans le Chapitre 3 sont les suivants. • L'interconnexion de SACs couplée à un système linéaire invariant est introduite et le problème à résoudre est énoncé : la conception d'un contrôleur de commutation pour chaque SAC visant à stabiliser le point d'équilibre souhaité de l'ensemble de l'interconnexion. Dans le Lemme 3.1, les équations du système sont exprimées sous une forme plus adequate, exactement dans le même esprit que le résultat de la littérature présentée dans la Proposition 2.2 pour un seul SAC. En effet, cette représentation s'avère utile pour exprimer nos principaux résultats dans ce chapitre. • Notre premier résultat principal est proposé dans le Théorème 3.1. Il s'agit d'une conception de commande stabilisante basée sur les IML. La stabilisation locale est assurée et une estimation du domaine d'attraction est fournie. Le contrôleur obtenu est centralisé, puisque le signal de commande pour chaque SAC de l'interconnexion dépend également des états des autres SACs, ainsi que du système de couplage linéaire. Un stabilisateur global est dérivé dans le Corollaire 3.1 en imposant une condition IML plus stricte. • L'application des contrôleurs centralisés susmentionnés est illustrée à l'aide d'un exemple pratique impliquant 3 convertisseurs Boost connectés en parallèle. Les convertisseurs sont connectés à une résistance de charge à travers de filtres inductifs. Dans cet exemple, la proportion du courant de charge en équilibre tiré de chaque convertisseur est constante. En plus, ces valeurs de courant sont les mêmes pour tous les convertisseurs. Il est démontré que les contrôleurs réussissent effectivement à stabiliser l'interconnexion. Cependant, en utilisant le stabilisateur local proposé dans le Théorème 3.1, l'estimation du domaine d'attraction n'est pas satisfaisante car trop petite pour être utile en pratique. Cela suggère que cette estimation est excessivement conservatrice. De plus, ses performances sont très similaires à celles utilisant un contrôleur proposé dans le Corollaire 3.1, qui évite le problème lié au domaine d'attraction, car il s'agit d'un résultat garantissant la stabilisation globale. • Nous utilisons également le Théorème 3.1 pour dériver un contrôleur décentralisé, dans un résultat présenté dans le Corollaire 3.2. Le contrôleur est dit décentralisé car le signal de contrôle envoyé à chaque SAC ne dépend que de ses propres états. Les conditions du Corollaire 3.2 garantissent uniquement une stabilisation locale, mais une estimation du domaine d'attraction est fournie. Ce résultat de stabilité est rendu global dans le Corollaire 3.3 en considérant une condition IML plus forte par rapport au Corollaire 3.2. • Dans le Théorème 3.2, une autre procédure de conception constructive pour la stabilisation est proposée. Contrairement aux anciens résultats de stabilisation locale, cette fois l'estimation du domaine d'attraction peut être ajustée dans une certaine mesure, permettant d'obtenir des estimations beaucoup moins conservatrices. En effet, nous présentons également une manière de maximiser sa taille en résolvant un simple problème d'optimisation convexe contraint par les conditions IML du Théorème 3.2. L'inconvénient de cette méthode est que ces conditions sont plus restrictives. Il convient cependant de noter que le contrôleur obtenu avec ce théorème est décentralisé. • L'application du Théorème 3.2 à deux exemples pratiques est également présentée. Tout d'abord, ce résultat est illustré en utilisant la même interconnexion de 3 convertisseurs Boost présentée précédemment. Il est montré que, dans ce cas, le contrôleur du Théorème 3.2 surpasse celui des résultats précédents, soulignant l'intérêt de cette technique. Ensuite, son utilisation dans une interconnexion beaucoup plus grande, composée de 15 convertisseurs, est également présentée. Les 3 topologies les plus basiques de convertisseurs de puissance DC sont présentes dans cette interconnexion : il y en a 5 de chaque topologie. Le point d'équilibre souhaité a été stabilisé, démontrant l'application de ce résultat dans un scénario pratique contenant plusieurs convertisseurs.

	Chapitre 3

  1, un contrôleur stabilisateur utilisant les estimations temps réel est proposé dans le Théorème 4.1. Non seulement ces estimations sont explicitement utilisées dans le contrôleur, mais elles sont également nécessaires à la mise à jour du point d'équilibre cible, qui dépend des paramètres et est également utilisé dans le contrôleur. Tout comme dans le cas de l'observateur, la conception du contrôleur repose également sur la solution d'un problème IML dont la complexité ne croît pas de façon exponentielle avec le nombre de modes dans l'interconnexion. La stabilisation est garantie pour tout paramètre dans les ensembles bornés connus spécifiés par le concepteur et, de plus, le résultat de stabilité est global.• La méthode développée dans ce chapitre est appliquée au contrôle de l'interconnexion de 3 convertisseurs Boost puis à l'interconnexion de 15 convertisseurs, à l'instar des exemples abordés dans le Chapitre 3. Les incertitudes prises en compte ici sont la tension d'entrée dans chaque convertisseur et le courant de charge, qui sont deux sources d'incertitude courantes dans ce type de systèmes. La technique proposée dans ce chapitre s'est avérée efficace pour stabiliser la tension de sortie malgré les variations des paramètres. • Afin de mettre en valeur l'apport de ce chapitre, dans la Section 4.4, une comparaison est établie avec une autre technique issue de la littérature qui repose également sur l'utilisation d'un observateur, mais qui ne prend pas en compte la structure interconnectée du système. Une interconnexion de 5 convertisseurs de puissance DC alimentant une charge est utilisée pour cette comparaison. Nous concluons que les problèmes d'IML résolus à l'aide de notre méthode nécessitent moins de ressources que la technique de la littérature. Dans le Chapitre 5, les résultats liés aux SACs singulièrement perturbés sont présentés. Leur étude devient pertinente lorsqu'il s'agit de SACs qui présentent deux échelles de temps distinctes, et le paramètre de perturbation singulière ε quantifie l'écart entre elles. Au lieu de nous concentrer sur la réduction de la complexité des IMLs dans le cas d'une interconnexion, nous nous concentrons sur un seul SAC et le but est d'éviter les IMLs mal conditionnées. Nous présentons d'abord nos résultats pour les systèmes linéaires invariants contrôlés par relais, puis nous passons au cas général des SACs singulièrement perturbés. Pour illustrer ces résultats, ils sont appliqués à la fois à des exemples académiques et à des topologies classiques de convertisseurs de puissance DC. Une liste des contributions de ce chapitre est donnée ci-après : • Dans un premier temps, nous abordons le cas particulier des systèmes linéaires singulièrement perturbés avec commande par relais. Dans le Théorème 5.1, une procédure constructive basée sur des IML qui ne dépendent pas de ε est proposée pour la conception d'un contrôleur stabilisateur. Du fait de l'indépendance par rapport à ε, les conditions IML sont bien conditionnées. Le résultat de stabilité est local, mais une estimation du domaine d'attraction est fournie. Dans le Corollaire 5.1, ces résultats sont appliqués pour dériver un contrôleur stabilisateur global au détriment de conditions plus strictes (bien que toujours bien conditionnées). Ce résultat, ainsi que le reste des résultats stabilisateurs présentés dans ce chapitre, est valable pour tout ε jusqu'à une certaine limite ε * , qui peut être facilement calculée. • Puisque la valeur de ε n'est peut-être pas bien connue en pratique, nous proposons également un contrôleur indépendant de ε. Pour cela, nous prouvons d'abord un résultat utile montré dans le Lemme 5.2. Sur la base de ce résultat, dans le Théorème 5.2, une procédure de conception basée sur des LMI bien conditionnés est proposée pour la synthèse du contrôleur ε-indépendant. Encore une fois, le résultat de stabilité est local, mais une estimation du domaine d'attraction est fournie. Fait intéressant, cette estimation ne dépend pas de ε, mais dépend de la limite connue ε * . • Des exemples académiques et pratiques sont utilisés pour illustrer les résultats susmentionnés. L'exemple pratique utilisé ici est un convertisseur Buck, dont le modèle est écrit comme un système linéaire singulièrement perturbé avec commande par relais. Dans tous ces exemples, la stabilisation est atteinte. Le principal point à retenir est que la réponse du système peut être divisée en deux phases distinctes: l'une qui peut être complètement caractérisée par la perturbation singulière; et un autre où seul un mouvement de glissement est observé, ce qui caractérise un système commuté. • Dans la Section 5.2, nous abordons les SACs singulièrement perturbés généraux . Nous commençons par prouver un résultat intermédiaire dans le Lemme 5.3 qui fournit des conditions IML mal conditionnées dépendantes de ε pour l'obtention d'un contrôleur stabilisateur, qui dépend également de ε. Le but de ce résultat est d'être utilisé avec le résultat matriciel proposé dans le Lemme 5.4 pour prouver le Théorème 5.3, qui est notre résultat principal dans cette section. Dans ce théorème, nous proposons une procédure basée sur des LMI bien conditionnés pour obtenir un contrôleur de commutation indépendant de ε, dans le même esprit que celui fait dans la Section 5.1. Cela inclut une estimation du domaine d'attraction qui dépend de la valeur connue ε * , mais pas de ε. Une fois de plus, un résultat de stabilisation globale est proposé dans le Corollaire 5.2 en considérant des conditions IML plus strictes. • Les méthodes liées aux SACs singulièrement perturbés sont également illustrées à l'aide d'exemples académiques et pratiques, où il est démontré que la stabilisation est effectivement réalisée. L'exemple pratique montre que le résultat de la stabilisation peut être appliqué à un convertisseur Boost. Ceci, ainsi que l'exemple utilisant le convertisseur Buck, met en évidence l'utilité pratique du cadre présenté dans ce chapitre. Un inconvénient des lois de commutation proposées dans les Chapitres 3, 4 et 5 est l'apparition de modes glissants dans les trajectoires en boucle fermée. Dans le Chapitre 6, nous nous concentrons sur la mise en oeuvre pratique du correcteur commuté en introduisant une stratégie basée sur l'hystérésis pour contourner ce problème. Nous présentons d'abord cette méthode dans le cas d'un SAC unique pour une illustration plus simple, et ensuite on passe à l'extension aux systèmes interconnectés. Les points abordés dans ce chapitre sont répertoriés ci-dessous. • Avant d'introduire notre approche basée sur l'hystérésis, nous commençons par caractériser la dynamique du mode glissant. En particulier, nous décrivons la surface de commutation. Cette discussion est utile car elle précise où se produit le mode glissant et dans quelles conditions.

	Chapitre 6
	Chapitre 5

This is true when the converter operates in continuous current mode (see[START_REF] Mohan | Power electronics: converters, applications, and design[END_REF] or any other basic textbook on power electronics).

We consider t to be in the time scale of the system dynamics and not of the switching frequency. Thus, δ(t) is considered to be constant over a switching period.

Throughout this thesis, the Schur complement is an important tool that is used in the proof of several results. For a brief introduction giving all the necessary information needed in this thesis, see Appendix A.3.

Here, as well as in other steps of this proof, we have used the inequality x T M x ≤ λmax(M )x T x, which holds for any vector x ∈ R d and any symmetric matrix M ∈ R d×d .

Note that χ < χo, which is a necessary condition for the feasibility of (4.48).

Due to the fact that ξ(•) is bijective, there are N ! different choices for specifying this function. However, for our purposes, it is not necessary to know which one is adopted.

The simulation time was the time required to simulate

50ms of the system evolution.

Here, we slightly abuse notation by setting ε = 0, since this is only an approximation of the real value of ε, which is positive and supposed to be very small.

Ψ 11 ∈ R nx×nx , Ψ 12 , Θ 12 ∈ R nx×nz , Ψ 22 , Θ 22 , Σ 22 ∈ R nz ×nz .

Instead of a singularly perturbed switched affine system.

destruction. In order to address this problem, the next chapter is dedicated to the practical implementation of the switching controllers proposed in this thesis.

Recall from Proposition

2.2 the definitions of D(x) and B.

Note that x j is the equilibrium point of mode j in x-coordinates.

The absolute value is taken so that the ripple amplitudes are positive numbers.

Acknowledgments

(5.86)

Then, the origin of the closed-loop system (5.79), (5.5), is locally exponentially stable by choosing Γ = Q -1 B ε in (5.5). In addition, Ω 0 = E(0, Q -1 , 1) is an estimation of the domain of attraction that contains the ball B(0, 1/ν).

Proof: Using (5.84) and considering P = Q -1 , then: 2η T P A ε (v j )η + 2η T P B ε Kη + 2χη T P η < 0, ∀j ∈ I N , (5.87) for all η ∈ R n \ {0}, with K = Y P . Consider set C V (K) = {η ∈ R n : Kη ∈ conv {V}}. Using Assumption 5.1 and continuity arguments, it can be seen that C V (K) has nonempty interior. On the other hand, using the Schur complement, (5.85) 

Using the same arguments as in Section 2.3.3, this implies E(0, P, 1) ⊂ C V (K). Thus, there exists δ(η) ∈ ∆ N such that Kη = N j =1 δ (j ) (η)v j , for all η ∈ E(0, P, 1). Substituting in (5.87) and taking into account the fact that N j =1 δ (j ) (η) = 1:

δ (j ) (η) η T P A ε (v j )η + η T P B ε v j + χη T P η < 0, (5.88) for every j ∈ I N and for all η ∈ E(0, P, 1)\{0}. Since δ (j ) (η) ∈ [0, 1], ∀j ∈ I N , then for each η there must be at least one minimizer v * j for which η T P A ε (v j )η + η T P B ε v j * + χη T P η is negative. Choosing j = j * such that v j * ∈ arg min v∈V η T P B ε v then guarantees that:

for every j ∈ I N and for all η ∈ E(0, P, 1)\{0}. In particular, (5.89) is valid for j = j * . Consider the Lyapunov function V (η) = η T P η. Since ∂V /∂η = 2η T P and taking j = j * , we obtain from (5.89):

∂V ∂η (A ε (v j * )) η + B ε v j * ) < -2χη T P η, (5.90) for all η ∈ E(0, P, 1)\{0}. By considering Γ = P B ε and noting that F ε,SASs (η) is compact and convex:

and therefore the origin is locally exponentially stable with decay rate χ. Since Ω 0 = E(0, P, 1) is a level set of V (η), then it can be taken as an estimation of the domain of attraction. Finally, LMI (5.86) 

It is important to remark that stabilizability of the pairs (A ε (v), B ε ), ∀v ∈ V, is necessary to apply Lemma 5.3. This can be seen by LMI (5.84).

Remark 5.3 Lemma 5.3 can be thought of as a version of Theorem 2.3 where the stabilization result is local instead of global. Indeed, in Theorem 2.3, all matrices A j , j = 1, 2, . . . , N , must be Hurwitz. This is a stronger condition than the one presented in Lemma 5.3 (see (5.84)), but on the other hand global stabilization is ensured.

There are two drawbacks in using Lemma 5.3 for control design, which mirror the same difficulties discussed in Section 5.1 regarding the solution of LMI (5.7): the low value of ε can cause ill conditioning in the solution of the LMI problem. Moreover, note that the switching law depends on ε.

Before proposing our main result, which addresses the aforementioned shortcomings, consider first the following lemma. This lemma can be seen as a generalization of Lemma 5.2 to the case where A(v) varies with v ∈ V.

for every j ∈ I N . Then, there exists ε * > 0 such that, for all ε ∈ (0, ε * ), the origin of the closed-loop system (5.79), (5.5), is locally exponentially stable with decay rate χ by choosing Γ as:

(5.103)

In addition,

) is an estimation of the domain of attraction, where:

and B(0, 1/ν) ⊆ Ω * .

Proof: Consider the following inequality:

)

for every j ∈ I N , and Y = [Y 1 0]. Moreover, note that A ε (v j ) and B ε can be written as:

(5.108)

Using (5.107)-(5.108) and developing, (5.105) can be written in the form of expression (5.93) with Ψ j , Θ j and Σ j having the structure shown in (5.92), where:

(5.109a)

(5.109b)

(5.109c)

(5.109d)

(5.109e)

(5.109f)

The feasibility of (5.46) implies directly that Σ j 22 ≺ 0 for all j ∈ I N . Thus, we can apply Lemma 5.4 to show that there exists µ > 0 such that (5.52) holds for all ε ∈ (0, µ) if and only if Ψ j 11 ≺ 0 and Θ j 12 = 0, ∀j ∈ I N . It can be readily seen that the feasibility of (5.45) implies Ψ j 11 ≺ 0. The condition Θ j 12 = 0 is enforced by making

. Therefore, LMI (5.47) implies that:

Applying the Schur complement on the first row and column of (5.110), we have (since

0, which, by using once again the Schur complement, is equivalent to Π j ε 0 for any j ∈ I N . Therefore, we have shown that (5.100)-(5.102) are sufficient conditions for (5.105) and for Π j ε 0, for all j ∈ I N and for all ε ∈ (0, µ), for some µ > 0. Since Π j ε 0, (5.105) implies that (5.84) holds with

Because of this, using the result from Lemma 5.3, one can show that the origin of the closed-loop system (5.79), (5.5) is locally exponentially stable with decay rate χ by selecting Γ = Q -1 ε B ε , whose expression is given in (5.103). Moreover, exactly as in the proof of Lemma 5.3,

Note that, using the Schur complement, this is implied by (5.98).

We can follow the same arguments as in the proof of Theorem 5.2 to show that B(0, 1/ν) ⊆ E(0, Q -1 ε , 1), for all ε ∈ (0, ρ), where ρ = νλ min (Q 2 ). We can also show that B(0, 1/ν) ⊆ Ω * 0 if ε * = min{µ, ρ} by following the same steps as in the proof of Theorem 5.2.

The bound ε * for which the results of Theorem 5.3 are valid can be estimated as detailed in the proof.

Using (5.102) and the fact that Π j 1 0, ∀j ∈ I N , it can be checked that Π j 2 must also be positive-definite for all j ∈ I N . Therefore, we have from (5.101) that A 22 (v j ) must be Hurwitz for all j ∈ I N . If this is not the case, then the LMI conditions in Theorem 5.3 would not be feasible.

Remark 5.4 If a bound ε is known such that ε ≤ ε < ε * , then a less conservative estimation of the domain of attraction can be obtained as Ω0 = E(0, Q -1 ε , 1).

In the sequel, we present a follow-up result where global stabilization is ensured.

Corollary 5.2 Assume that there exist matrices

, j = 1, . . . , N , such that the following LMI conditions are satisfied:

)

(5.113)

Then, there exists ε * > 0 such that, for all ε ∈ (0, ε * ), the origin of the closed-loop system (5.1), (5.5), (5.103) is globally exponentially stable with decay rate χ. 

ε . Now if these LMIs are satisfied with Y 1 = 0, then (5.87) holds with K = 0. As a result of Assumption 5.1, C V (K = 0) = {η ∈ R n : 0 ∈ conv {V}} = R n . Therefore, (5.87) holds for all η ∈ R n \{0}, meaning that the stability result obtained in Theorem 5.3 holds globally.

Note that Corollary 5.2 presents stricter conditions with respect to those in Theorem 5.3. Indeed, it can be seen that now both A 11 (v j ) and A 22 (v j ) must be Hurwitz for every j ∈ I N in order for LMIs (5.111)-(5.113) to be feasible. On the other hand, the stabilization result is stronger than the one provided by Theorem 5.3.

Consider the results proposed both in this section and in Section 5.1 concerning ε-independent stabilization, namely Theorems 5.2 and 5.3 and Corollaries 5.1 and 5.2. It can be seen in the proofs of these results that the independence of the proposed switching laws on ε is accomplished by choosing a Lyapunov function

ε η that is in fact parameterized by ε. This means that, for any ε ∈ (0, ε * ), there is a Lyapunov function that can be used to prove the stability results. Even though the value of ε is unknown, we know that a Lyapunov function exists as long as ε < ε * . Remark 5.5 Consider the set Ω 0 , determined using either Theorem 5.2 or 5.3. Even though this set is an estimation of the domain of attraction, it is not necessarily invariant, since it is not a level set of the Lyapunov function V ε (η) for the actual value of ε.

The next numerical example illustrates the application of Theorem 5.3 to a second-order singularly perturbed SAS.

CHAPTER 6. HYSTERESIS-BASED SWITCHING

Recall from Section 2.3.1 that in the case where N = 2, the switching surface S is given by S = {x ∈ R n : s(x) = 0}, with s(x) given by: s(x) = g(x -x ) T P (x -x ).

(6.4)

In order to simplify the analysis carried out in the sequel, we shall mostly use the shifted coordinates x. In this vein, let s(x) := s(x + x ), which implies that: s(x) = g(x) T P x.

(6.5)

In addition, let S := {x ∈ R n : s(x) = 0}. Note that S is simply the switching surface shifted in a way that the origin (in x-space) coincides with x in x-space.

When the trajectory slides on S, then V * (x) = I 2 . From (2.53), the differential inclusion describing the system on S is:

In other words, the system follows a trajectory dictated by an equivalent control signal varying in conv {V} = [v 2 , v 1 ]. The dynamics can then be expressed as follows:

where ū(x) ∈ (v 2 , v 1 ) is the equivalent control signal responsible for driving the trajectory along S. This signal is well-known in the sliding modes literature [START_REF] Utkin | Sliding modes in control and optimization[END_REF] and its role is to model with a continuous function ū(x) the action of the discontinuous control k(x) while the trajectory slides on S.

There are two conditions for the trajectory to remain in S:

From the second condition:

The equivalent control signal can then be explicitly determined from (6.8) to be:

for all x ∈ R n such that ∇s(x) T g(x) = 0.

As we have seen before, ū(x) ∈ conv {V} = [v 2 , v 1 ] when the trajectory slides on S. Therefore, the portion of S where the sliding conditions are satisfied is given by:

with ū(x) given by (6.9). The relationship between S and Ss is illustrated in Figure 6.1. It is important to remark that, if the system trajectory crosses Ss , then it starts sliding on Ss , since the conditions for doing so are met. On the other hand, if it crosses S at some point belonging to S \ Ss , then it will simply switch from one mode to the other and cross to the other side of S.

Set Ss is where infinite-rate switching occurs, and thus it will be most relevant in the following section, where an hysteresis-based switching method is introduced.

Constant-width hysteresis

In this section, the switching law (6.3) is adapted to include an hysteresis effect, preventing the system from switching infinitely fast on Ss . The main idea behind our approach here is that switching is not allowed to occur as soon as the trajectory reaches Ss , in which case s(x) = 0. Instead, switching is only allowed to occur when |s(x)| reaches a predetermined threshold h > 0, which will be referred to as the hysteresis parameter. The modified control law, denoted as k h (x), is recursively defined for all t ≥ 0 as follows:

Appendix A

Mathematical preliminaries

A.1 Some useful definitions regarding sets and mappings

Firstly, we present hereafter some important definitions, adapted from [START_REF] Khalil | Nonlinear systems[END_REF], related to sets contained in R n .

Definition A.5 A point x ∈ R n is a boundary point of a set R if every neighborhood of x contains at least one point belonging to R and one point not belonging to R.

Definition A. [START_REF] Antsaklis | Control of cyberphysical systems using passivity and dissipativity based methods[END_REF] The boundary of a set R, denoted as ∂R, is the set of all boundary points of R.

Definition A.7 The interior of a set R, denoted as Int {R}, is equal to R \ ∂R.

Definition A.8 A set R is convex if, for every x, y ∈ R and any α ∈ (0, 1), the point αx + (1α)y ∈ R.

In the sequel, some mathematical concepts concerning standard and set-valued maps are defined. Let us start with the definition of an absolutely continuous mapping, which is specially relevant in describing solutions of discontinuous systems. Definition A.9 (adapted from [START_REF] Sontag | Mathematical control theory: deterministic finite dimensional systems[END_REF]) The function x : [a, b] → R n is absolutely continuous if for every 1 > 0, there exists 2 > 0 such that, for every k and every sequence of points

so that k q=1 (b q -a q ) < 2 , we have that:

Absolute continuity can be equivalently defined as follows [START_REF] Sontag | Mathematical control theory: deterministic finite dimensional systems[END_REF]. Function x : [a, b] → R n is absolutely continuous if there is some integrable function such that

Absolutely continuous functions are differentiable almost everywhere, which makes them suitable for describing the solutions of discontinuous systems. Note how this contrasts with solutions of classical ordinary differential equations, which are required to be differentiable everywhere. Now let us turn our attention to set-valued maps, which are also very relevant in the context of discontinuous systems since their dynamics are usually described by differential inclusions.

A set-valued map is a function that assigns sets to points [START_REF] Cortes | Discontinuous dynamical systems[END_REF]. Let us consider set-valued maps of the form F : R n → 2 R n , which means that F(x) ⊆ R n is a set assigned to point x ∈ R n . Consider the following definitions.

Definition A.10 (adapted from [START_REF] Cortes | Discontinuous dynamical systems[END_REF]) The set-valued map F : R n → 2 R n is locally bounded at x ∈ R n if there exists > 0 such that F(x) is bounded for every x ∈ B(x, ).

Definition A.11 ([23])

The set-valued map F : R n → 2 R n is upper semicontinuous at x ∈ R n if, for all 1 > 0, there exists 2 > 0 such that F(x) ⊆ F(x) + B(0, 1 ) for all x ∈ B(x, 2 ). Definitions A.10 and A.11 are useful for stating conditions on the dynamics of discontinuous systems that ensure the existence of solutions, as in the case of Proposition 2.1.

A.2 Linear Matrix Inequalities

In this section, we give a very brief introduction to Linear Matrix Inequalities (LMIs). This introduction is based on [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF].

An LMI has the following form:

x (q) F q 0, (A.4)

or

x (q) F q 0, (A.5)

where x ∈ R N d is the vector of decision variables and F q ∈ R n×n , q = 1, 2, . . . , N d , are given symmetric matrices. LMI (A.4) is equivalent to the following statement:

The LMI (A.4) (resp. (A.5)) is a convex constraint on x, since the set {x ∈ R N d : F (x) 0} (resp. {x ∈ R N d : F (x) 0}) is convex. This represents many constraints that appear in control theory, such as in stability analysis, control design, observer design, etc.

Even though we have expressed LMIs (A.4)-(A.5) as inequalities depending on the decision variables in vector x, in practice they come in the form of matrix inequalities where matrices themselves are variables. The relationship between these two forms is clarified in the following example. Consider the Lyapunov inequality: sym {P A} ≺ 0, (A.8)

where A ∈ R n×n is a given matrix and P = P T is the variable. Let us write (A.8) in the form (A.4). To do so, consider N d matrices P 1 , P 2 , . . . , P N d , that form a basis for symmetric matrices in R n×n . Thus, N d = n(n + 1)/2. Then, take:

Note that P 1 , P 2 , . . . , P N d , are given matrices. The problem of finding the matrix variable P in (A.8) is then equivalent to the problem of finding x ∈ R N d in (A.4), with F 0 and F q , q = 1, 2, . . . , N d , given by (A.9)-(A.10). Throughout the thesis, LMIs are written in the form exemplified by (A.8).

We are mostly interested in solving two types of LMI problems. The first one is the so-called feasibility problem, where we simply look for a vector x ∈ R N d such that the LMI constraint (A.4) is satisfied. The second one is the minimization of a function that is linear on x subject to the constraint (A.4), which can be expressed as follows:

where w ∈ R N d is a given vector. The same is valid in the case where constraint (A.4) is replaced by (A.5).

For the solution of these problems, efficient solvers are readily available. Two of the most used options can be easily coded in Matlab: one is the LMI Lab, included in the Robust Control Toolbox; and the other one is the freely available toolkit YALMIP [START_REF] Lofberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF]. Both provide a user-friendly set of commands for specifying and solving LMIs. A discussion of the numerical algorithms used for finding solutions to LMIs is beyond the scope of this work. However, they can be found in references such as [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF].

A.3 Schur complement

A very important tool in the context of matrix inequalities is the Schur complement. Its main use in this thesis comes from the following result.

Theorem A.1 (adapted from [START_REF] Horn | Basic properties of the Schur complement[END_REF]) Let M be a symmetric matrix partitioned as

where M 11 is square and invertible. Then: Analogous results are obtained for negative-(semi)definiteness. To that end, it suffices to apply Theorem A.1 to test the positive-(semi)definiteness of matrix -M or -M .

By applying the Schur complement (or, more precisely, Theorem A.1), it is possible in some cases to convert nonlinear matrix inequalities to LMIs. To illustrate this point, consider the following matrix inequality: sym {P A} + P BR -1 B T P + Q ≺ 0, (A. [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF] where A, B, Q and R are given matrices of appropriate dimensions, Q = Q T , R = R T 0, and P = P T is the variable. Note that (A.15) is a quadratic matrix inequality in P , and therefore cannot be solved by the efficient numerical algorithms developed for linear inequalities. However, by using the Schur complement, it can be seen that (A.15) can be equivalently expressed as the following LMI:

-sym {P A} -Q P B R 0, (A.16) which can then be easily solved using an LMI solver to find feasible solutions for P .