
HAL Id: tel-04414060
https://theses.hal.science/tel-04414060

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust machine learning for Graphs/Networks
Hakim Hafidi

To cite this version:
Hakim Hafidi. Robust machine learning for Graphs/Networks. Neural and Evolutionary Computing
[cs.NE]. Institut Polytechnique de Paris; Université Internationale de Rabat (@Université Interna-
tionale de Rabat), 2023. English. �NNT : 2023IPPAT004�. �tel-04414060�

https://theses.hal.science/tel-04414060
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
3I

P
PA

T0
04 Robust machine learning for

Graphs/Networks
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

Thèse de doctorat de l’Université Internationale de Rabat

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (ED IP
Paris)

Spécialité de doctorat : Réseaux, Informations et Communications

Thèse présentée et soutenue à Rabat, le 02/02/2023, par

HAKIM HAFIDI

Composition du Jury :

Amal SEGHROUCHNI ELFALLAH
Professeure, Sorbonne Université (LIP6) Présidente / Examinatrice

Pierre BORGNAT
Directeur de recherche au CNRS, ENS Lyon (Laboratoire de
Physique) Rapporteur

Cédric RICHARD
Professeur, Université Côte d’Azur (Laboratoire Lagrange) Rapporteur

Mohammed BOULMALF
Professeur, Université Internationale de Rabat (TICLab) Examinateur

Karim BAÏNA
Professeur, ENSIAS Université Mohammed V de Rabat(Rabat
IT Center) Examinateur

Philippe CIBLAT
Professeur, Télécom Paris (LTCI) Directeur de thèse

Mounir Ghogho
Professeur, Université Internationale de Rabat (TICLab) Co-directeur de thèse

2

Contents

List of Figures iii

List of Tables v

Introduction 5

1 Background and related work 11
1.1 Notations and definitions . 12

1.1.1 Graphs topology and the adjacency matrix 12
1.1.2 Attributed graphs . 13

1.2 The node classification problem . 14
1.3 Graph neural networks . 15

2 Contrastive learning for nodes’ representation 19
2.1 Introduction . 20
2.2 Background . 22

2.2.1 Problem formulation. 22
2.2.2 Graph Neural Networks (GNNs). 22
2.2.3 Contrastive learning . 23
2.2.4 Simple Siamese neural networks for nodes representation 23

2.3 Methodology of the proposed approach . 24
2.3.1 GraphCL . 24
2.3.2 Negative sampling strategies . 24
2.3.3 Overview of GraphCL . 26
2.3.4 Extension to inductive setup . 26

2.4 Experiments . 27
2.4.1 Experimental setup . 27
2.4.2 Results . 30
2.4.3 Ablation study . 31

2.5 Discussion . 34
2.5.1 Connection to mutual information 34
2.5.2 Understanding contrastive learning through alignment and unifor-

mity on the hypersphere . 35
2.5.3 Computational and model complexity 37

2.6 Conclusion . 38

3 Graph assisted bayesian classifiers 41
3.1 Introduction . 42
3.2 New Graph-Assisted Bayesian Classifier 44

3.2.1 The Classifier derivation . 44
3.2.2 Parameters’ estimation . 50
3.2.3 When does graph structure not help GAB 51

3.3 Link to Graph Neural Networks . 53
3.3.1 Recap of Graph Neural Networks 53
3.3.2 Relationship with a GNN based classifier 54

i

3.4 Discussion on complexity issues . 56
3.5 Numerical Results . 59

3.5.1 Synthetic datasets . 59
3.5.2 Real datasets . 60

3.6 Conclusion . 62

4 Robustness to adversarial attacks 65
4.1 Introduction . 66
4.2 Adversarial attacks . 67

4.2.1 Gradient-Based Attacks . 67
4.2.2 Optimization-Based Attacks . 68
4.2.3 Generative Adversarial Network (GAN)-Based Attacks 68

4.3 Adversarial attacks on graphs . 69
4.3.1 Attacker’s Capacity . 69
4.3.2 Methods of Attacking a Graph . 69

4.4 Measures to prevent adversarial attacks on graphs 70
4.4.1 Adversarial training . 71
4.4.2 Data purification . 71

4.5 Robustness of the graph assisted Bayesian classifier 71
4.5.1 The graph assisted Bayesian classifier as a belief propagation frame-

work . 72
4.5.2 Node similarity as a simple defence mechanism for GAB 74

4.6 Experiments . 74
4.6.1 Attack scenario . 74
4.6.2 Attack description . 75
4.6.3 Data description . 75
4.6.4 Results . 76

4.7 Conclusion . 76

Conclusion and perspectives 79

A Appendix A 81
A.1 Derivations for Eq. (3.3) . 81
A.2 Derivations for Eq. (3.12) . 82

Bibliography 89

ii

List of Figures

1.1 Example of d-hops neighborhoods of node u. The first setN1(u) = {a, b, c}
is the set of adjacent nodes to node u, the second comprises nodes of dis-
tance 2 from node uN2(u) = {d, e, f}, and the third set defines the 3-hops
neighborhood N3(u) = {h, g} . 13

1.2 Example of an attributed graph, with node features and node labels encoded
as colors of the nodes. The label space is defined asY = {”yellow”, ”green”, ”blue”},
uncolored nodes belong to the set of unlabelled nodes VUL = {c, g}. 14

1.3 Nodes with color indicate that the class is known; nodes with white indicate
that a class must be predicted. 15

2.1 A high-level overview of our method for a subgraph around node u. hu,1

and hu,2 form a positive pair with a query hq = hu,1 and its corresponding
key h+

q = hu,2. 26
2.2 Classification accuracy on Cora dataset. Effect of the number of negative

examples. 32
2.3 Classification accuracy on Cora dataset. Effect of the similarity between the

current example and its corresponding negative samples. 33
2.4 A comparison of Siamese NN trained with vs without stop-gradient and

batch normalization. Training loss across epochs. 35
2.5 A comparison of Siamese NN trained with vs without stop-gradient and

batch normalization. Accuracy of a linear classifier trained on top of the
representation on Cora dataset . 36

2.6 Representations of Cora dataset nodes on R2 using encoders trained with a
contrastive loss. Histograms of the cosine similarity between positive pairs. 37

2.7 Representations of Cora dataset nodes on R2 using encoders trained with a
negative cosine similarity loss. Histograms of the cosine similarity between
positive pairs. 38

2.8 Representations of Cora dataset nodes on R2 using encoders trained with a
supervised cross entropy loss. Histograms of the cosine similarity between
positive pairs. 39

2.9 Representations of Cora dataset nodes on R2 using encoders trained with
a contrastive loss (upper plot), a negative cosine similarity loss (middle
plot) and a supervised cross entropy loss (bottom plot). Feature distribu-
tions in R2 using Gaussian kernel density estimation. 40

3.1 GAB and GNN performance on synthetic datasets versus DoI. 60
3.2 GAB and GNN performance on Pubmed versus the size of the training set. 61
3.3 Accuracy performance with added noisy edges in Cora. 63

iii

iv

List of Tables

2.1 Description of datasets . 28
2.2 Classification accuracy on transductive tasks and micro-averaged F1 score

on inductive tasks . 31
2.3 Classification accuracy on Cora dataset. Effect of the number of hops be-

tween the current example and its corresponding negative samples. 33
2.4 Classification accuracy on Cora dataset. Effect of the choice of the encoder 34

3.1 Intra- and inter-class connection probabilities and classification accuracies. 43
3.2 Number of parameters or weights to be tuned/learnt. 57
3.3 Number of flops for the training phase. 58
3.4 Number of flops for the inference phase. 59
3.5 Description of the real datasets. 60
3.6 30%-supervised node classification accuracy (%). 62

4.1 Statistics of datasets . 75
4.2 GCN vsGAB : Effect of SPEIT attack [98] on the node classification accuracy

(%) without using any defence mechanism 76
4.3 GCN vsGAB : Effect of SPEIT attack [98] on the node classification accuracy

(%) using defence mechanisms . 77

v

vi

Abstract

Graphs are an effective tool for representing data produced by complex systems of interac-
tions. They offer a unifying framework for aligning structured and unstructured data. They
are characterized by a set of nodes, which represent the entities, and a set of links connect-
ing them, representing relationships between them. Nodes may be of different types and
may further be associated with several features. And links may represent different rela-
tionships and may also be associated with different attributes or semantic content. The
richness of these data as well as their appearance in several scientific disciplines and the
proliferation of databases of this type have led to the emergence of several studies which
aim to extend approaches from signal processing and deep learning to the graph setting.
Recently, graph representation learning has attracted the attention of the scientific com-
munity as a way of analyzing graphs and helping to leverage the richness of information
that resides in unstructured data. One of the major challenges facing graph representa-
tion learning is learning node embeddings which capture both node features and the graph
structure. These representations can then be fed into downstream machine learning mod-
els. Several interesting applications and problems have been discussed in the literature;
classification of graphs (eg. molecules), edge prediction (eg. Social network links), node
regression and classification (eg. citation networks). Most successful approaches for graph
representation learning are based on Graph Neural networks (GNN), a class of deep learn-
ing methods designed to perform inference on data described by graphs. A classic example
is the Graph Convolutional Network (GCN). GCN filter can be seen as an aggregation op-
erator, i.e., the representation of a node is obtained by averaging its intrinsic features with
those of its neighbors. GCN was first designed for the task of graph-based semi-supervised
learning, which consists of classifying nodes in a graph where labels are only available for
a small subset of nodes. The node classification task has then become a standard problem
for studying the performance of GNN and several approaches have been proposed to build
more sophisticated and expressive GNN. These models, however, suffer from several draw-
backs. First, similarly to deep learning models on other modalities such as images and text,
successful GNNs methods are trained in a supervised way and thus rely on quality labelled
data to perform well. Secondly, their performance varies significantly across datasets and
depends on the structure of the graph for node classification problems. Thirdly, it has been
shown that they are vulnerable to adversarial attacks. The objective of this thesis is to
address the above-mentioned problems by providing new techniques for the node repre-
sentation and node classification problems. To address the first point, we use contrastive
learning, a method that learns nodes’ representation in a self-supervised manner, which
reduces the reliance on labelled data to obtain good representations. For the node classifi-
cation problem, we propose a Bayesian based classifier that takes into account the structure
of the graph. Lastly, we study the robustness of the proposed classifier to adversarial attacks
and introduce a simple defence mechanisms against this type of attacks.

1

Chapter 0

2

Résumé

Nous vivons dans un environnement complexe et interconnecté. On peut observer ces in-
terconnexions dans plusieurs phénomènes, les réseaux sociaux, les fluctuations des prix
sur les marchés financiers, le trafic routier ou aérien ainsi que dans l’activité cérébrale ou
l’interaction des gènes. Tous ces phénomènes peuvent être caractérisés par un ensemble
d’entités qui interagissent les unes avec les autres, ce qui conduit à un système complexe. La
compréhension approfondie de ce type de systèmes nécessite d’aller au-delà de l’étude des
entités qui les composent. Les graphes sont un outil efficace pour représenter les données
produites par des systèmes d’interactions complexes. Ils offrent un cadre unifié pour aligner
les données structurées et non structurées. Ils sont caractérisés par un ensemble de nœuds,
qui représentent les entités, et un ensemble de liens les reliant, qui représentent les relations
entre eux. Les nœuds peuvent être de différents types et peuvent en outre être associés à
plusieurs caractéristiques. Les liens peuvent représenter différentes relations et peuvent
également être associés à différents attributs ou contenus sémantiques. La richesse de ces
données ainsi que leur apparition dans plusieurs disciplines scientifiques et la prolifération
des bases de données de ce type ont conduit à l’émergence de plusieurs études qui visent
à étendre les approches du traitement du signal et de l’apprentissage profond au cadre des
graphes. Récemment, l’apprentissage de représentation de graphes a attiré l’attention de
la communauté scientifique comme moyen d’analyser les graphes et d’aider à exploiter la
richesse d’information qui réside dans les données non structurées. L’un des principaux dé-
fis de l’apprentissage de représentation des graphes est d’apprendre des représentations de
nœuds qui capturent à la fois les caractéristiques des nœuds et la structure du graphe. Ces
représentations peuvent ensuite être utilisées par des modèles d’apprentissage automatique
pour résoudre différents problèmes. Plusieurs applications et problématiques intéressantes
ont été abordés dans la littérature : la classification de graphes (par exemple, molécules),
la prédiction de liens (par exemple, liens de réseaux sociaux), la régression ou la classifica-
tion de nœuds (par exemple, des réseaux de citations). La plupart des approches efficaces
pour l’apprentissage de représentation des graphes sont basées sur les réseaux de neu-
rones pour graphes (GNN), une classe de méthodes d’apprentissage profond conçues pour
effectuer des inférences sur des données décrites par des graphes. Un exemple classique
est le réseau à convolution pour graphes (GCN). Le filtre GCN peut être considéré comme
un opérateur d’agrégation, c’est-à-dire que la représentation d’un nœud est obtenue en
faisant la moyenne de ses caractéristiques intrinsèques avec celles de ses voisins. Le GCN a
d’abord été conçu pour la tâche d’apprentissage semi-supervisé, qui consiste à classifier les
nœuds dans un graphe où les labels ne sont disponibles que pour un petit sous-ensemble
de nœuds. La tâche de classification des nœuds est ensuite devenue un problème standard
pour étudier les performances des GNN et plusieurs approches ont été proposées pour con-
struire des GNN plus sophistiqués et plus expressifs. Ces modèles souffrent toutefois de
plusieurs inconvénients. Tout d’abord, comme les modèles d’apprentissage profond pour
d’autres modalités telles que les images et le texte, les méthodes GNN efficaces sont en-
traînées de manière supervisée et dépendent donc de données étiquetées de qualité pour
être performantes. Deuxièmement, concernant les problèmes de classification des nœuds,
les performances des GNN varient considérablement en fonctions des jeux de données et
dépendent de la structure du graphe. Enfin, il a été démontré qu’ils sont vulnérables aux

3

Chapter 0

attaques adversariaux. L’objectif de cette thèse est de répondre aux problèmes mentionnés
ci-dessus en fournissant de nouvelles techniques pour les problèmes de représentation et
de classification des nœuds. Pour répondre au premier point, et dans le but de réduire le
recours à l’intervention humaine pour la supervision et d’exploiter la richesse des données
non étiquetées disponibles, la première contribution est d’avoir développé une méthode ca-
pable d’apprendre les représentations de nœuds de manière auto-supervisée. Nous avons
proposé Graph Contrastive Learning (GraphCL), un cadre général qui vise à apprendre les
représentations de nœuds en maximisant la similarité entre deux versions perturbées des
caractéristiques et de la structure du graphe autour du même nœud. Pour le problème de
la classification des nœuds, nous avons proposé un classificateur bayésien qui prend en
compte la structure du graphe. Enfin, nous avons étudié la robustesse du classificateur pro-
posé aux attaques adverses et introduisons des mécanismes de défense simple contre ce
type d’attaques.

4

Introduction

Context and objectives of the thesis

We live in a complex and interconnected environment. We can observe these interconnec-
tions in several phenomena, social networks, price fluctuations in the financial markets,
road or air traffic as well as in brain activity or gene interaction. All these phenomena can
be characterized by a set of entities that interact with each other, which leads to a complex
system. The deep understanding of this kind of systems requires going beyond the study of
the entities that compose them. Many studies have shown that graphs are an effective tool
for representing relations between pairs of entities. It is through them that we are able to
gain a deeper understanding of not only immediate but also high-order interactions, as well
as how these interactions affect the underlying mechanisms that govern the studied phe-
nomena. There has therefore been great interest in developing the theory and algorithms
to handle graphs.

Graphs are characterized by a set of nodes, which represent the entities, and a set of
links connecting them, representing relationships between them. Nodes may be of differ-
ent types, and may further be associated with several features. And links may represent
different relationships and may also be associated with different attributes or semantic con-
tent.

Graphs have been studied through different and complementary prisms by several sci-
entific communities. Mathematicians have been especially interested in developing what
is now called classical graph theory, which focuses on understanding and analyzing graph
structure aswell as solving combinatorial problem such as findingmappings, paths or flows.
On the other hand, scientists from disciplines such as social science, biology and physics
contributed to the development of network science, an academic filed that is defined as "the
study of network representations of physical, biological, and social phenomena leading to
predictive models of these phenomena." More recently, researchers from signal processing
and machine learning communities extended concepts from their respective fields to the
graph setting.

In parallel to the interest of researchers in graphs and the development of a multitude
of methods and techniques for graph analysis, the last few years have seen a rapid develop-
ment of deep learning. A subfield of machine learning that is inspired by the brain structure
and based on artificial neural networks. The proliferation of large databases and the accel-
eration of computing power have allowed these methods to achieve surprising success in
various fields. These methods derive their success from their ability to automatically ex-
tract quality representations for different modalities, such as image, sound or text. Today,
we find direct applications of these methods in several technological tools that we use in
our daily lives.

We have alsowitnessed in recent years the emergence and availability of large databases
representing complex systems characterized by the interactions of millions or billions of
components. Thanks to the internet revolution, which offers the possibility to share and

5

Chapter 0

store huge amounts of data at low cost, we can now efficiently process and analyze these
kinds of databases. Large-scale projects have allowed scientists and the curious of all kinds
to have access to quantities of quality data, which was impossible or even unimaginable
a few decades ago. For example, web mapping informs us about the links or connections
between web pages. Social networks offer social interaction data such as the list of friends
or followers of each user of these platforms. In biology, researchers from around the world
have collaborated to provide the scientific community with maps of protein-protein inter-
actions.

The processing of these data can therefore be treated as a computational task on graphs
in a wide range of important applications. For example, the recommendation of friends
in social networks can be considered as a link prediction task, the detection of fraudu-
lent accounts can be viewed as a node classification problem, while the prediction of the
properties of chemicals can be considered as a graph classification task. Learning vector
representations of either individual nodes or graphs is essential for facilitating these tasks.
To achieve this, deep learning is a great prospect, given its success in learning representa-
tions in images and texts. However, deep learning on graphs poses enormous challenges
when compared to images and text. In graphs, nodes are unordered and can have a differ-
ent number of neighbors. It is therefore necessary to design new deep learning models for
graphs, since traditional deep learning models cannot directly be applied.

One of the strengths of deep learning is its ability to automatically generate or extract
meaningful representations. This is commonly called representation learning. In other
words, we try to find a function that takes as input arbitrary objects and that has as a target
a continuous space of fixed dimension. A good representation is one that keeps the essential
features of the objects and reflects them in the geometric properties of the destination space.
For example, images containing the same objects should have similar representations in the
destination space. In the same way, words or sentences that have the same meaning should
be represented by nearby vectors in the destination space.

Obtaining good representations is closely related to the relevance of a number of as-
sumptions, the choice of the architecture, the training loss, and the optimization meth-
ods. These choices or assumptions are made to increase the ability of generalization of the
learning algorithms, i.e., their effectiveness of accurately predicting outputs of previously
unseen inputs. We refer to the set of assumptions as inductive or learning bias. For ex-
ample, a powerful inductive bias of deep learning on images is the convolutional neural
network architecture (CNN). In order to take use of the fact that image feature statistics
are frequently translation invariant, CNNs use a particular architecture in which model pa-
rameters are connected or shared across image regions. The CNN model gains a beneficial
inductive bias from this type of parameter sharing because its "filters" only need to learn
from local features and can therefore generalize effectively to other areas in the image.

When it comes to graphs, finding representation of both the individual nodes and the
complete graph is our main concern. One way to work with graphs is to ignore the graph
structure and instead use a generic neural network model. For example, we could repre-
sent a graph as a list of its nodes and edges, and then use a standard neural network model,
such as a recurrent neural network (RNN) or a convolutional neural network (CNN), to
process the graph. However, this approach is likely to be suboptimal because it fails to

6

Introduction

use the graph structure as an inductive bias. For example, a social network contains in-
formation about the relationships between people, but a generic neural network will not
be able to exploit this information. To address this problem, a new family of neural net-
work models have been developed, known as Graph Neural Networks (GNNs). GNNs use
the graph structure as an inductive bias. In particular, they use the graph structure to de-
fine a computation graph, where the computation at each node depends on its neighbors
in the graph. This allows them to capture the complex relationships between nodes in a
graph. A node’s embedding often takes into account data from its immediate neighborhood,
whereas graph embeddings are further calculated as some sort of aggregation (pooling) of
node embeddings. This should be done using two distinct types of information. The first is
the adjacency matrix of the graph, which define its structure. The second is the available
information about the nodes and/or edges intrinsic features.

GNNs have then become themost successful approaches for graph representation learn-
ing. A classical example is the Graph Convolutional Network (GCN) [51]. The GCN fil-
ter can be seen as an aggregation operator, i.e. the representation of a node is obtained
by averaging its intrinsic features with those of its first-order neighbors using the sym-
metrically normalized adjacency matrix. GCN was designed for the task of graph-based
semi-supervised learning, which consists of classifying nodes in a graph where labels are
only available for a small subset of nodes. The node classification task has then become
a standard problem for studying the performance of GNN and several approaches have
been proposed to build more sophisticated and expressive GNN. As an example, the au-
thors in [81, 77] introduced GAT and AGNN that use an attention mechanism to update
the adjacency matrix by giving different weights to neighbors based on nodes’ and edges’
features. Other researchers explored higher-order information of the graph by repeatedly
mixing feature representations of neighbors at various distances [2] or by modifying the
propagation strategy of GCN by exploring its relation to the PageRank algorithm [53].

The success of deep learning has led to an increase in the use ofmachine learningmodels
in security-critical fields. This has raised concerns about the security of machine learning
models. One of the major concerns of machine learning models is their vulnerability to
adversarial attacks. These are small perturbations to the input that can cause the model
to produce erroneous outputs. These perturbations are usually imperceptible to humans.
This is an important concern since the security of many systems such as autonomous cars,
malware detection systems, and spam filters rely on the performance of machine learning
models. In the past few years, the focus has shifted towards adversarial attacks on graph
data. Adversarial attacks on graph data have been used to attack machine learning models
in security-critical fields such as malware detection systems, spam filters, and recommen-
dation systems. They have also been used to evaluate the robustness of machine learning
models and to provide insights into the vulnerabilities of the models. These attacks can also
be used to protect the privacy of users in social networks. Adversarial attacks on graphs
are different to attacks on other types of data, because of the unique properties of graphs.
The goal of adversarial attacks on graphs is to add or remove a limited number of edges or
nodes to change the output of the model, usually the prediction of a node’s label.

Our proposed work aim at improving three important aspects of the node classification
task.

7

Chapter 0

1. With the objective of reducing the reliance on human intervention for supervision
and leveraging the richness of the available unlabeled data, the first contribution is
to develop a method capable of learning node representations in an unsupervised
way. We proposed Graph Contrastive Learning (GraphCL), a general framework for
learning node representations in a self supervised manner. GraphCL learns node em-
beddings by maximizing the similarity between the representations of two randomly
perturbed versions of the intrinsic features and link structure of the same node’s lo-
cal subgraph. We use graph neural networks to produce two representations of the
same node and leverage a contrastive learning loss to maximize agreement between
them. In both transductive and inductive learning setups, we demonstrate that our
approach significantly outperforms the state-of-the-art in unsupervised learning on
a number of node classification benchmarks.

2. With the aim of improving the robustness of node classifiers to structural noise, we
propose a graph-assisted Bayesian node classifier (GAB) which takes into account
the degree of impurity of the graph, and show that it consistently outperforms GNN
based classifiers on benchmark datasets, particularly when the degree of impurity is
moderate to high.

3. With the objective of improving the robustness of node classifiers to adversarial at-
tacks. We first study the robustness of our proposed classifier (GAB) to these attacks
on graph structured data. We show that it is naturally significantly more robust than
GNNs to this kind of attacks. We further suggest simple defence mechanisms and
compare their performance with equivalent defences on GNNs.

Outline of the manuscript and contributions

There are four chapters in this thesis. Chapter 1 provides a brief summary of the back-
ground and related and prior work on graph-structured data analysis. Our original contri-
butions are presented in Chapters 2, 3, and 4.

In chapter 1, we first introduce general notations and definitions about graph topology and
attributed graphs. We then define the node classification problem on attributed graphs.
Finally, we present related work on graph neural networks.

In chapter 2, we tackle the problem of learning nodes’ representation in an unsupervised
manner. We opt for contrastive learning, a self-supervised learning technique. We present
the general framework of our approach, along with multiple ways of generating a negative
sample for the contrastive learning framework. Lastly, we study the performance of the
learned representations on node classification problems. We present comparison of our
approach with different baselines and state-of-the-art methods on a number of benchmark
datasets in both transductive and inductive learning settings.

In chapter 3, we focus on the node classification problem. We start from the observation that
GNNs have performance that varies significantly with the datasets. We show how the de-
gree of impurity of the graphs can explain these variations, and introduce a novel Bayesian
node classifier that takes into account the degree of impurity of graphs when classifying

8

Introduction

nodes. We present details of the derivations of our proposed classifier and comparison of
its performances with state-of-the-art methods on multiple benchmark datasets. We show
that it is more robust than GNN-based methods to structural noise.

In chapter 4, we study the robustness of the classifier we presented in chapter 3 to ad-
versarial attacks. We first give detailed presentation of adversarial attacks and defences
on graph-structured data. We then show that our classifier is more robust to these types
of attacks than GNN based methods. Finally, we suggest a simple defence mechanism to
improve the robustness of our classifier.

Publications

Following is a list of publications resulting from the research conducted during the thesis.

• Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. “Negative
sampling strategies for contrastive self-supervised learning of graph representations”.
In: Signal Processing 190 (2022), p. 108310

• Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. “Bayesian
Node Classification for Noisy Graphs”. In: 2021 IEEE Statistical Signal Processing
Workshop (SSP). IEEE. 2021, pp. 246–250

• Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. “Graph-
Assisted Bayesian Node Classifiers”. In: IEEE Access (2022 (under review))

• Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. “On the
Robustness of Bayesian Graph Classifiers to Adversarial Attacks”. In: IEEE Access
(2022 (To be submitted))

9

Chapter 0

10

Chapter 1

Background and related work

1.1 Notations and definitions . 12
1.1.1 Graphs topology and the adjacency matrix 12
1.1.2 Attributed graphs . 13

1.2 The node classification problem 14
1.3 Graph neural networks . 15

11

Chapter 1

1.1 Notations and definitions

1.1.1 Graphs topology and the adjacency matrix

Definition 1 (Graph). A graph is a pair G = (V , E) where V is a set of nodes (or vertices)
and E ⊆ V × V is a set of edges. Each edge e ∈ E is pair (u, v) with u, v ∈ V . A graph can
be weighted if there is a mapping w : e→ we that assign a weight we to the corresponding
edge e. Otherwise, it is called an unweighted graph. A graph is undirected if (u, v) ∈ E ⇔
(v, u) ∈ E , i.e relationships between nodes are symmetric. In contrast, when relationships
are asymmetric, i.e (u, v) ∈ E does not imply that (v, u) ∈ E , the graph is said to be
directed. In this thesis, unless explicitly mentioned, we consider graphs to be unweighted
and undirected.

Definition 2 (Adjacent nodes). A node v is called adjacent to a node u if there is an edge
(u, v) ∈ E .

Definition 3 (Path). A path is a sequence of nodesP = {u1, . . . , un} such that ui is adjacent
to ui+1 for 1 ≤ i ≤ n.

Definition 4 (Distance). The distance ∆(u, v) between nodes u and v is the number of
edges in the shortest path connecting them.

Definition 5 (Neighborhood). The d-hops neighborhoodNd(u) of node u is the set of nodes
of distance d from node u, i.e., Nd(u) = {v ∈ V|∆(u, v) = d}. When there is no room for
confusion, we refer to the 1-hop neighborhood simply by N (u), the set of adjacent nodes
to u.

The notion of neighborhood is essential to most graph learning techniques. It defines the
primary mechanism by which information propagates between nodes. Figure 1.1 shows
a simple example of d-hops neighborhoods of node u. The first set N1(u) = {a, b, c} is
the set of adjacent nodes to node u, the second comprises nodes of distance 2 from node u
N2(u) = {d, e, f}, and the third set defines the 3-hops neighborhood N3(u) = {h, g}.

Definition 6 (Node degree). The degree du of a node is the number of elements in its 1-hop
neighborhood.

Definition 7 (Adjacency matrix). An adjacency matrix A ∈ RN×N represents the topo-
logical structure of the graph, where N = |V| is the number of nodes in the graph. In the
case of unweighted graphs, matrix entries are defined such that Au,v = 1 if (u, v) ∈ E and
Au,v = 0 otherwise. It is a symmetric matrix in the case of undirected graphs.

12

Background and related work

u

b

c

a
f

e
d

g

h

Figure 1.1: Example of d-hops neighborhoods of node u. The first set N1(u) = {a, b, c} is
the set of adjacent nodes to node u, the second comprises nodes of distance 2 from node u
N2(u) = {d, e, f}, and the third set defines the 3-hops neighborhood N3(u) = {h, g}

1.1.2 Attributed graphs

Graphs, as defined above, encode structural information of the network of interest. Both
the neighborhood sets and the adjacency matrix hold information about how the different
components of our systems interact and relate to each other. While this kind of informa-
tion is of upmost importance, it lacks the contextual information that network components
carry. For example, in a citation network where nodes represent research papers and edges
citations, textual information of the documents (the frequency of words that appear in the
documents or their semantic representation in the form of text embeddings) would be very
helpful in predicting the research field of the paper.

To encode such information, we represent each node u ∈ V by a feature vector, xu ∈ RF×1

where F is the number of node’s intrinsic features. The information of all nodes in the
graph is either summarized in the form of a matrix X = [x1,x2, . . . ,xN]

⊤ ∈ RN×F or a
set of feature vectors X = {x1,x2, . . . ,xN}.

Furthermore, depending on the application, we may have access to node-level or graph-
level labels for a subset of nodes or graphs. Since the focus of this thesis is node-level
problems, we define the label space Y = {1, 2, . . . , K} as the set of possible categories or
classes to which nodes may belong, whereK is the number of classes. Therefore, each node
u belongs to a class yu ∈ Y . And the set of nodes in a graph G can be described as V =
VL∪VUL whereVL is the set of labelled nodes andVUL the set of unlabelled nodes. Figure 1.2
illustrates an example of an attributed graph, with node features and node labels encoded
as colors of the nodes. The label space is defined as Y = {”yellow”, ”green”, ”blue”},
uncolored nodes belong to the set of unlabelled nodes VUL.

13

Chapter 1

b

c

d

a
f

g
e

i

h

Figure 1.2: Example of an attributed graph, with node features and node labels encoded
as colors of the nodes. The label space is defined as Y = {”yellow”, ”green”, ”blue”},
uncolored nodes belong to the set of unlabelled nodes VUL = {c, g}.

1.2 The node classification problem

Aswe have brieflymentioned in the introduction, multiple computational tasks are possible
when dealing with graph data. One can be interested in classifying graphs as a whole,
classifying nodes or predicting the existence of edges, for example. In this thesis, we are
specifically interested in the node classification task. We therefore introduce the latter
problem in this section and formally describe it.

For node classification problems, we are interested in classifying nodes to different cat-
egories. We can therefore consider nodes to be the primary data of interest and edges as
additional information to enhance the performance of our classifiers. In the sense that we
can make decisions based only on the intrinsic attributes of nodes, and we may be able to
make better decisions by considering the relationships between them.

It has been popular to categorize node classification problems by whether the model
can generalize to unseen data. If so, the method operates in an inductive setting, otherwise
it operates in a transductive setting. In the latter, the principal assumption is that we have
access to features of all nodes of a given graph during the training time. We also have access
to labels of a subset of nodes, and the task consists of inferring labels of the remaining nodes
of the graph. Whereas in the inductive learning setting, features and labels of nodes of a set
of graphs are available. The goal is to learn rules that can generalize to nodes in previously
unseen graphs (nodes whose features were not available during training).

We introduce here a more formal definition of the transductive setting of the node clas-
sification problem. Given a graph G = (V , E), its adjacency matrix A, the feature matrix
X and labels of a subset of nodes VL, the goal is to predict labels of the remaining nodes of
the graph VUL.

14

Background and related work

(a) (b)

Figure 1.3: Nodes with color indicate that the class is known; nodes with white indicate
that a class must be predicted.

1.3 Graph neural networks

In image processing, the concept of convolution is a strong basic element. The method
involves moving a kernel matrix over the image to capture local patterns of interest inside
the image. The idea of translational invariance, which states that a pattern is interesting
regardless of where we discover it in the image, is encoded by this type of model. Addi-
tionally, it encodes a locality assumption: pixels that are close to one another will likely
have stronger relationships than those that are far apart. This idea is at the heart of con-
volutional neural networks (CNNs), which are the most commonly used neural network
architecture for computer vision. [5] However, CNNs are limited to operating on data with
a grid-like structure, such as images, videos, and text, which can be represented as a regular
grid of pixels or characters. GNNs extend CNNs to data that can be represented as graphs,
which are irregular structures that cannot be represented as regular grids. Hence, a GNN is
a neural network that can operate on graph-structured data. The goal of GNNs is to learn
a vector representation of the nodes, edges, or entire graph. This learned representation
can then be used for downstream machine learning tasks, such as node classification, link
prediction, and graph classification.

Historically, The first graph neural networkwas introduced byGori et al. in 2005 [29]. In
2009, Micheli et al.[61] introduced the Neural Network for Graphs (NN4G) model, which is
based on a constructive supervised learning algorithm. The NN4Gmodel was used for node
classification, graph classification, and graph regression. In 2013, Bruna et al. [6] proposed
the spectral graph convolutional neural network (GCN) model. The spectral GCN model
uses the Fourier basis of a graph to define a spectral convolution operation on the graph.
In 2016, Defferrard et al.[18] proposed the Chebyshev spectral GCN model, which uses
Chebyshev polynomials to approximate the spectral GCN model. This model can be used
for node classification and graph classification. In 2017, Kipf andWelling [51] proposed the
graph convolutional network (GCN) model, which is a simplified version of the Chebyshev
spectral GCN model. The GCN model is a semi-supervised learning algorithm that can
be used for node classification. In 2018, Hamilton et al. [38] proposed the GraphSAGE
model, which is an inductive learning algorithm for GNNs. GraphSAGE learns a function

15

Chapter 1

that generates embeddings for unseen nodes by sampling and aggregating features from
the nodes’ local neighborhoods. In 2019, Velickovic et al. [81] proposed the graph attention
network (GAT)model, which uses self-attention to assign different weights to the neighbors
of a node.

GNNs learn node representations by aggregating the features of neighboring nodes and
edges. The output of the ℓ-th layer of these GNNs is generally expressed as:

h(ℓ)
u = σ(ℓ)(ϕ(ℓ)(h(ℓ−1)

u , {h(ℓ−1)
v : v ∈ N1(u)})) (1.1)

where h
(ℓ)
u is the feature vector of node u at the ℓ-th layer initialized by h

(0)
u = xu and

N1(u) is the set of first-order neighbors of node u. Different GNNs use different formu-
lations for the non-linear function σ(ℓ) (called activation function) and the linear function
ϕ(ℓ) [38]. Note that a first-order GNN based classifier relies on one layer, or equivalently
considers only the 1-hop neighborhood in the graph.

Graph Convolutional Neural Network (GCN): The convolutional propagation rule
used in GCN is defined as follows

ϕ(ℓ) = (W (ℓ))⊤

 h
(ℓ−1)
u

du + 1
+

∑
v∈N1(u)

h
(ℓ−1)
v√

(du + 1)(dv + 1)

 (1.2)

where

• W (ℓ) is a learnable weight matrix,

• du is the degree of node u.

The activation function (for any layer except the last one) is a rectified linear unit (ReLU).
For the last layer, we consider the softmax which for each node u outputs the probability
that the node u belongs to class k. Then the node u is assigned to the class with the highest
probability [51].

Graph convolution Operator Network (GON): In [3, 63], GON is defined as GCN
where Eq. (3.20) is replaced with the following one

ϕ(ℓ)
u = (W

(ℓ)
1)⊤h(ℓ−1)

u + (W
(ℓ)
2)⊤(

∑
v∈N1(u)

h(ℓ−1)
v). (1.3)

Unlike GCN, GON computes a transformation matrix of the central node that is different
from the transformation of its neighbors.

Graph Isomorphism Network (GIN): In [89], GIN is defined as GCN or GON where
Eqs.(3.20)-(3.21) are replaced with the following one

ϕ(ℓ)
u = (W (ℓ))⊤

(1 + α)h(ℓ−1)
u +

∑
v∈N1(u)

h(ℓ−1)
v

 . (1.4)

16

Background and related work

where α is a positive hyperparameter. GIN thus attributes a different learnable weight to
the central node (through α) when combining information from its neighbors.

Graph Attention Network (GAT): In [81], GAT is defined as GCN, GON or GIN but
with the following layer link

ϕ(ℓ)
u =

∑
v∈N1(u)∪{u}

α(ℓ)
u,v(W

(ℓ))⊤h(ℓ−1)
v , (1.5)

where α(ℓ)
u,v are normalized attention coefficients computed by an attention mechanism as

follows:

α(ℓ)
u,v =

eς(w
(ℓ)[(W (ℓ))⊤h

(ℓ−1)
u ∥(W (ℓ))⊤h

(ℓ−1)
v])∑

k∈N1(u)
eς(w

(ℓ)[(W (ℓ))⊤h
(ℓ−1)
u ∥(W (ℓ))⊤h

(ℓ−1)
k])

. (1.6)

with ς the leaky ReLu function, the weighting row vectorw(ℓ) ∈ R2H , where H is the size
of the hidden layer and ∥ corresponds to column concatenation.

17

Chapter 1

18

Chapter 2

Contrastive learning for nodes’ repre-
sentation

2.1 Introduction . 20
2.2 Background . 22

2.2.1 Problem formulation. 22
2.2.2 Graph Neural Networks (GNNs). 22
2.2.3 Contrastive learning . 23
2.2.4 Simple Siamese neural networks for nodes representation 23

2.3 Methodology of the proposed approach 24
2.3.1 GraphCL . 24
2.3.2 Negative sampling strategies 24
2.3.3 Overview of GraphCL . 26
2.3.4 Extension to inductive setup 26

2.4 Experiments . 27
2.4.1 Experimental setup . 27
2.4.2 Results . 30
2.4.3 Ablation study . 31

2.5 Discussion . 34
2.5.1 Connection to mutual information 34
2.5.2 Understanding contrastive learning through alignment

and uniformity on the hypersphere 35
2.5.3 Computational and model complexity 37

2.6 Conclusion . 38

19

Chapter 2

2.1 Introduction

In many fields, the rapid increase in data volume and the complexity of its structure and
representation make it difficult to exploit it effectively. Graphs offer a unified framework
for aligning well-structured and unstructured data. However, graphs have long been poorly
leveraged because of their complexity, and limited approaches relying on content associated
with nodes and links. Recently, graph representation learning has attracted the attention of
the scientific community as a way of analyzing graphs and helping to exploit the richness of
information that resides in poor-structured data. Graphs are characterized by a set of nodes,
which represent the entities, and a set of links connecting them, representing relationships
between the nodes. Nodes may be of different types, and may further be associated with
several features. And links may represent different relationships andmay also be associated
with different attributes or semantic content. One of the major challenges facing graph
representation learning is learning node embeddings which capture both node features and
graph structure. These representations can then be fed into downstream machine learning
models.

Most successful approaches for graph representation have been great efforts to gener-
alize neural networks to graph data and fall under the umbrella of Graph Neural Networks
(GNNs) or Deep Geometric Learning [3, 51, 5, 89]. These approaches have achieved re-
markable results in a number of important tasks, such as node classification [38, 9, 57] and
link prediction [52, 95]. However, these methods are very reliant on human annotation
and suffer from the necessity of some form of supervision. This requires high cost, ex-
pert knowledge in the domain and the use of annotated data, which is not often available.
Hence, it is of importance to develop methods capable of learning representations in an
unsupervised manner.

In order to compensate for the absence of labels or predefined tasks, some unsupervised
methods have adopted the homophily hypothesis, which states that linked nodes should be
nearby in the embedding space [42]. Inspired by the Skipgram algorithm for embedding
words into a latent space, where adjacent vectors correspond to co-occurring words in a
sentence [62], a majority of these methods use random walks to generate sentence-like se-
quences where co-occurring nodes are close to one another in the embedding space [69, 31]
and can also be adapted to heterogeneous graphs [20, 93, 92]. Other methods, such as au-
toencoders, also employ the homophily hypothesis by reconstructing either the adjacency
matrix or the neighborhood of a node [82, 52]. Despite their success in learning relatively
powerful representations, relying on the homophily hypothesis may bias these methods to-
wards emphasizing the direct proximity of nodes over topological information [82]. More
recently, [80] proposed Deep Graph Infomax (DGI) that learns representations by training
a discriminator to distinguish between representations of nodes that belong to the graph
from nodes that belong to a corrupted graph. Leveraging recent advances in unsupervised
visual representations [19], the success of DGI has been attributed to the maximization
of mutual information between global and local parts of the input. This requires learning
global representations of the entire graph, which can be very costly and even intractable
when dealing with large graphs.

To overcome the above-mentioned challenges, we here propose a contrastive frame-

20

Contrastive learning for nodes’ representation

work for self-supervised learning of nodes’ representations, called GraphCL. We take in-
spiration from the success of contrastive losses in learning meaningful representations of
images [13, 40] and develop a model that learns node embeddings by maximizing the sim-
ilarity between the representations of two randomly perturbed versions (views) of the in-
trinsic features and link structure of the same node’s local subgraph. The perturbation
consists of randomly dropping from its L-hop subgraph, a subset of edges and nodes’ in-
trinsic features. Other researchers have also used the contrastive loss to learn nodes or
graph representations using different augmentation (perturbation) strategies. In [39], the
authors used the diffusion matrix as a second view of the graph. In [90], the authors used
four different strategies consisting of dropping nodes, perturbing edges, masking attributes
or sampling subgraphs.

Contrastive learning is a special case of Siamese networks, which are weight-sharing
neural networks applied to two or multiple inputs. Recent approaches use augmentations
of the same data point as inputs and maximize the similarity between the learned repre-
sentations of the two inputs. Maximizing the similarity between each pair of augmented
data points in the dataset can lead to a trivial solution. Since we want representations of
all pairs of augmented views to be equal, a possible solution is to map all nodes to a single
point (representation). This is what we call a collapsing of representations to a single data
point (i.e. if all representations are the same, then so are those of each pair of augmented
views). Contrastive learning is one way of preventing this undesirable solution. It does
so by contrasting between positive (similar) examples and negative (dissimilar) examples.
The objective of the training phase is to map positive examples to nearby locations in the
destination (representation) space while pushing away negative examples, often by using
noise-contrastive estimation [32]. One key component of contrastive learning frameworks
is the choice of negative examples. The most common strategy is to uniformly sample from
the training dataset using examples either from the current batch or from a memory bank.
It has been shown that these approaches require large batches or memory banks to per-
form well for visual representation [13, 40]. To improve the performance and efficiency
of contrastive frameworks, recent studies have proposed novel sampling strategies. Most
strategies are based on the assumption that hard negative examples (i.e. examples that are
hard to distinguish from a positive pair) are beneficial in learning more powerful represen-
tations. In [47], the authors use hard negative mixing to synthesize new examples from
the available hard negatives. In [86], the authors sample negatives from a ring around each
positive (i.e. they sample negatives that are neither too close nor too far from the positive
example).

More recent Siamese network architectures preventing representation collapsing still
rely on the use of pairs of positive examples only. In [30], the authors experimentally show
that the learned representations of their proposed framework do not collapse when using a
momentum network even when not using negative examples. In [14], the authors avoid the
collapsing phenomenon by simply using a stop-gradient strategy when directly maximiz-
ing the similarity between two augmented views. The stop-gradient strategy consists of
considering the representation of one of the augmented views as a constant when updating
the network parameters.

While these methods have shown surprisingly good results when applied to image

21

Chapter 2

datasets, it is not clear whether they are easily generalizable to non-Euclidean data such
as graphs. In this work, we introduce novel sampling strategies of negative examples
based on the graph structure and show that our approach improves the performance of
the learned representations on downstream classification tasks and outperforms existing
methods. In addition, we conduct extensive experiments to study the different components
of our Siamese network-based approach for learning nodes’ representations, which enable
us to answer the following questions:

• Is a larger set of negative examples always useful in learning good representations?

• Does sampling hard negative examples improve the quality of the representation?

• Can we train a Siamese neural network to learn nodes’ representations without using
negative examples?

2.2 Background

2.2.1 Problem formulation.

Let G = (V , E) be an undirected graph, where V is a set of nodes and E ⊆ V ×V is a set of
edges. Each node u ∈ V is represented by a feature vector xu ∈ RP . An adjacency matrix
A ∈ RN×N represents the topological structure of the graph, whereN = |V| is the number
of nodes in the graph. Without loss of generality, we assume the graphs to be unweighted,
i.e. Au,v = 1 if (u, v) ∈ E and Au,v = 0 otherwise. We are also provided with a matrix
X ∈ RN×P that summarizes the intrinsic feature vectors of all nodes.

Our objective is to learn an effective representation of nodes without human annota-
tion. This will be done through the learning of a graph neural network encoder f that
maps both node original feature and the graph structure to a higher level representation,
i.e. f(X,A) = H(L) ∈ RN×P ′ , where P ′ is the embedding size. The u−th row of H(L)

corresponds to the embedding h
(L)
u of node u. In the remainder of the chapter, hu refers to

the output of the GNN’s last layer, i.e. hu = h
(L)
u .

2.2.2 Graph Neural Networks (GNNs).

GNNs are a class of graph embedding architectures which use the graph structure in addi-
tion to node and edge features to generate a representation vector (i.e., embedding) for each
node. Recent GNNs learn node representations by aggregating the features of neighboring
nodes and edges. The output of the l-th layer of these GNNs is generally expressed as,

h(l)
u = COMBINE(l)(h(l−1)

u , AGGREGATE(l)({(h(l−1)
u , h(l−1)

v) : v ∈ N (u)})), (2.1)

where h(l)
u is the feature vector of the node u at the l-th layer initialized by h

(0)
u = xu and

N (u) is the set of first-order neighbors of the node u. According to Eq. (2.1), h(L)
u corre-

sponds to the output of the last layer of the GNN, which involves the nodes of node u’s

22

Contrastive learning for nodes’ representation

L-hop subgraph. Different GNNs use different formulations of the COMBINE and AGGRE-
GATE functions; the ones used in this work are described in subsection 2.4.1.

2.2.3 Contrastive learning

In this work, we consider the dictionary look up formulation of contrastive learning, which
means that considering a query hq, a corresponding positive pair h+

q and a set of negative
examples Q−

q , a contrastive loss is a function which has a low value when hq is similar to
h+
q and dissimilar to all elements of Q−

q . A successful and widely used form of contrastive
loss is defined as:

Lhq ,h
+
q ,Q−

q
= − log

exp(h⊤
q h

+
q /τ)

exp(h⊤
q h

+
q /τ) +

∑
hn∈Q−

q
exp(h⊤

q hn/τ)
, (2.2)

where τ is a temperature hyperparameter and hq, h+
q and all hn in Q−

q are L2 normalized
feature vectors. The final loss is summed across all queries q belonging to the dataset D
and can be expressed as follows when scaled by the temperature τ [12]:

L = − 1

τ |D|
∑
q∈D

h⊤
q h

+
q +

1

|D|
log
∑
q∈D

exp(h⊤
q h

+
q /τ) +

∑
hn∈Q−

q

exp(h⊤
q hn/τ)

 , (2.3)

where |D| is the number of elements in D.

In a contrastive learning framework, different negative sampling strategies (i.e., the
way to buildQ−

q) may be employed to avoid collapsing of the contrastive loss optimization
problem into a unique representation of all samples.

2.2.4 Simple Siamese neural networks for nodes representation

In [14], the authors argue that their approach can prevent collapsing when maximizing the
similarities between the representations of two views of the same image without the use
of negative examples. Their approach works by sampling two views of x1 and x2 of the
same image x which they process using an encoder f and a multi-layer perceptron (MLP)
prediction head g. Letting p1 = g(f(x1)), p2 = g(f(x2)), h1 = f(x1) and h2 = f(x2)
denote respectively the outputs of the MLP prediction and the encoder, the objective is to
minimize the symmetric negative cosine similarity loss which is defined as:

L =
1

2
S(p1, stopgrad(h2)) +

1

2
S(p2, stopgrad(h1)), (2.4)

where S(p1, h2) = − p1
∥p1∥ .

h2

∥h2∥ and the stopgrad operation consists of treating h2, respec-
tively h1, as constant when updating the models’ parameters.

23

Chapter 2

2.3 Methodology of the proposed approach

2.3.1 GraphCL

GraphCL’s objective is to learn node representations by maximizing the similarity between
two embeddings of the same node. The two embeddings are obtained from applying a GNN
encoder to two perturbed versions of the graph. This framework has three main compo-
nents: a stochastic perturbation, a GNN based encoder and a contrastive loss function. We
first introduce each of these components, and then give a high-level overview of the pro-
posed method.

• Stochastic perturbation. We apply two stochastic perturbations to the graphwhich
allow us to obtain two representations of the same node, which we consider as posi-
tive examples. In this work, we consider simultaneous transformations of both node
features and the connectivity of the graph. The graph structure is transformed by
randomly dropping edges using samples from a Bernoulli distribution. For the node’s
original features, we apply a similar strategy by simply applying dropout to the input
features;

• Graph neural network encoder. We apply a GNN based encoder that learns repre-
sentations of all nodes in the graph. Our framework supports several choices of GNN
architectures. Details about the choices of architectures are given in section 2.4.1.

• Contrastive loss function. We define a pretext prediction task that aims at iden-
tifying the corresponding positive example h+

q of a representation hq given a set of
generated examples, with hq and h+

q being a positive pair of examples (i.e. obtained
from the GNN representations of two transformations of the graph). As for the neg-
ative examples’ generation, details are provided in subsection 2.3.2.

2.3.2 Negative sampling strategies

Negative sampling has been shown to be a key ingredient for the success of contrastive
learning frameworks. Different strategies have been proposed to build negatives examples
for visual presentations [13, 40, 47, 86]. First, we investigate whether the conclusions that
have been drawn from the most successful approaches of visual representations are still
valid when applied to graphs. We hereafter introduce three negative sampling strategies:
the two first are standard, while the third one is new and well adapted to graph.

• Random sampling. This approach consists of considering the samples of the cur-
rent (randomly generated) mini-batch as negatives. The problem with this approach
is the number of negative examples is limited by the size of the mini-batch, which is
limited by the memory of the GPU. An alternative would be to randomly sample neg-
atives from a memory bank that contains either representations of the whole training
set or a queue with representations of the last few batches.

24

Contrastive learning for nodes’ representation

• Feature-based sampling. In [86], the authors propose to pick two percentiles ωk

and ωl ∈ [0, 100] and considering hnc as a negative example for a representation
of a query hq if and only if h⊤

q hnc is within the ωk-th to the ωl-th percentile of all
hn ∈ Q−

q .This enables to build easily hard negative examples (i.e., negatives that are
hard to distinguish from the current sample) which are beneficial in learning powerful
representations as mentioned in [84, 91]. To adapt this method to the graph setting,
instead of considering the similarities in the representation space, which requires
using the encoder to learn the representations of all nodes in the graph, we simply
consider the similarities of the nodes’ original features. For each node u, we consider
as negatives all nodes v whose original features are neither too close nor too far from
those of the node u (i.e. x⊤

u xv/∥xu∥∥xv∥ is within the ωk-th to the ωl-th percentile of
all nodes of the graph).

• Graph-based sampling. Using original feature similarities as a negative sampling
strategy requires computing similarities between each pair of nodes in the graph,
then sorting them and fine-tuning the model to select the best values for the per-
centiles ωk and ωl. To avoid this, we propose to make use of the graph structure
information to select negatives. Instead of considering distances between the nodes’
original features, we use the distance between the nodes on the graph. For each node
u, we simply sample negatives from its l-th order neighbors.

25

Chapter 2

xu

x̃u,1

x̃u,2

f(·)

f(·)

hu,1

hu,2

M
axim

ize
sim

ilarity

Edges
Removed Edges

Figure 2.1: A high-level overview of our method for a subgraph around node u. hu,1 and
hu,2 form a positive pair with a query hq = hu,1 and its corresponding key h+

q = hu,2.

2.3.3 Overview of GraphCL

The training algorithm of GraphCL is summarized in the following steps:

1. Draw two stochastic perturbations t1 and t2 as defined in section 2.3.1 and illustrated
in Figure 2.1. Apply them to nodes’ original features and the graph structure:

• (X̃1, Ã1) ∼ t1(X,A)

• (X̃2, Ã2) ∼ t2(X,A)

2. Apply the encoder to both views of the graph:

• HL
1 = f(X̃1, Ã1)

• HL
2 = f(X̃2, Ã2)

3. Select negative examples as suggested in subsection 2.3.2.

4. Update parameters of the encoder f using the loss function defined in Eq. (2.3).

2.3.4 Extension to inductive setup

Unlike the transductive setup where we have access to the whole graph and features of all
nodes of the graph during training time. In the inductive setup, the objective is to generate
representations of nodes that were not used when training the model. These previously
unseen nodes can be new nodes in an evolving graph such as a social network, we refer
to this by the single graph inductive setup. These nodes can also come from previously
unseen graphs which helps generalization across graphs with the same form of features,
we refer to this by the multiple graph inductive setup.

26

Contrastive learning for nodes’ representation

GraphCL can be easily extended to both setups. The extension to the multiple graph
setup is straightforward, as it consists of training the encoder on each of the available
graphs for the training and using the learned encoder to produce representations of nodes
of the new graphs. For inductive learning on large graphs, we train the encoder by sam-
pling minibatches of nodes. The training algorithm of GraphCL for the inductive setup is
summarized in the following steps for each sampled minibatch B:

1. For each node u in the minibatch we define (Xu, Au) as the subgraph containing all
nodes and edges that are at most L-hops from u in the graph and their corresponding
features;

2. Draw two stochastic perturbations t1 and t2 as defined in section 2.3.1 and apply them
to u’s L-hop neighborhood subgraph:

• (X̃u,1, Ãu,1) ∼ t1(Xu, Au)

• (X̃u,2, Ãu,2) ∼ t2(Xu, Au)

3. Apply the encoder to the two representations of node u:

• hu,1 = f(X̃u,1, Ãu,1)

• hu,2 = f(X̃u,2, Ãu,2)

4. Update parameters of the encoder.

2.4 Experiments

We evaluate the effectiveness of GraphCL representations on both tranductive and induc-
tive learning setups. The transductive learning setup consists of embedding nodes from a
fixed graph (i.e. all node features and the entire graph structure are known during training
time). On the other hand, the inductive learning setup consists of generating representation
of unseen nodes or new graphs. Following common practice, we opt for a linear evalua-
tion of the learned node representations. Specifically, we use these representations to train
a logistic regression model to solve multiclass node classification tasks on five well-know
benchmark datasets, three for the transductive learning setup and two for the inductive
setup. We summarize the datasets and the baselines respectively in sections 2.4.1 and 2.4.1,
provide model configuration and implementation details in section 2.4.1, and discuss the
results in section 2.4.2.

2.4.1 Experimental setup

Datasets

For the transductive setting, we utilize Cora, Citeseer and Pubmed [73], three citation net-
works where nodes are bag of words representations of documents and edges correspond

27

Chapter 2

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,707 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60/500/1,000

ogbn-arxiv Transductive 169,343 1,166,243 128 40 Time
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive 56,944 818,716 50 121 44,906/6,154/5,524
(24 graphs) (multilabel) (20/2/2 graphs)

Table 2.1: Description of datasets

to (undirected) citations. Each node belongs to one class. We also use ogbn-arxiv, which
is another citation network, where nodes are computer science papers represented by a
128-dimensional feature vector obtained by averaging the embeddings of words in its title
and abstract. Each node belongs to one of forty subject areas of arXiv CS papers [75].

On the other hand, a protein-protein interaction dataset (PPI) is used for the inductive
setting on multiple graphs [101]. It consists of multiple graphs corresponding to differ-
ent human tissues where node features are the positional gene sets, motif gene sets and
immunological signatures. Each node has several labels among 121 labels from the gene
ontology. For the inductive setting on large graphs, we use a Reddit dataset [38]. It rep-
resents a large social network where nodes correspond to Reddit posts (i.e. represented
by their GloVe embedding [68]) and edges connecting two posts mean that the same user
commented on them. Labels are the posts’ subreddit and the objective is to predict the
community structure of the social network.

Statistics of the datasets, including data splits are given in table 2.1. For ogbn-arxiv
dataset, we follow recommendations from the Open Graph Benchmark initiative and adopt
a data split that is based on the publication dates of the papers [43]. More precisely, we
train on papers published until 2017, validate on those published in 2018, and test on those
published since 2019.

Baselines

For the transductive learning tasks, we use four unsupervised methods for comparison: La-
bel Propagation (LP) [100], DeepWalk [69], Embedding Propagation (EP-B) [21], and Deep
Graph Infomax (DGI) [80]. We also report the results of training logistic regression on
the intrinsic input features only, and also on the concatenation of DeepWalk embeddings
and the nodes’ intrinsic features. Aside from unsupervised methods, we also compare our
approach to strong supervised baselines, Graph Convolution Networks (GCN) [51].

For the inductive learning tasks, in addition toDeepWalk andDGI, we compareGraphCL
with the unsupervised GraphSAGEmethods [38]. We also provide results of two supervised
approaches, FastGCN [10] and Gated Attention Networks (GaAN) [94].

28

Contrastive learning for nodes’ representation

Model configurations

Eq. (2.1) provides a general formulation of graph neural networks. Several architectures
have been proposed for the choice of AGGREGATE and COMBINE. In all our exper-
iments the basic update rule is the mean pooling variant from [38].

h(l)
u ←

(
W (l−1)

)⊤ ·MEAN({h(l−1)
u } ∪ {h(l−1)

v ,∀v ∈ N (u)}), (2.5)

where theMEAN operator is the element-wisemean of all vectors in ({h(l−1)
u }∪{h(l−1)

v , ∀v ∈
N (u)}), and W (0) ∈ RP×P ′ and W (l−1) ∈ RP ′×P ′ , for l > 1, are learnable linear transfor-
mations.

All GNN aggregation operations are computed in parallel resulting in a matrix repre-
sentation as follows:

H(l) = ÂH(l−1)W (l−1) (2.6)

whereH(l) = [h
(l)
1 , h

(l)
2 , . . . , h

(l)
N]⊤ is the matrix of nodes’ hidden feature vectors at the l−th

layer and Â = Ď−1Ǎ is the normalized version of the adjacencymatrix with added self-loop
Ǎ = A+ IN with Ď being its diagonal degree matrix, i.e. Ďii =

∑
j Ǎij . We also consider

the symmetrically normalized version of the adjacency matrix where Â = Ď− 1
2 ǍĎ

1
2 . We

refer to encoders using this variant by GCN when needed.

Transductive learning For Citeseer and Pubmed, we use a one layer GNN as defined in
Eq. (2.6), the encoder is then simply expressed as:

f(X,A) = ÂXW (0) (2.7)

For Cora, our encoder is a two-layer GNN:

f(X,A) = Âσ(ÂXW (0))W (1) (2.8)

where σ is an exponential linear unit [15], and f(X,A) is the concatenation of all nodes’
embeddings. In each layer, we compute P ′ = 512 features resulting in a node embedding
size of 512. For the larger ogbn-arxiv dataset, we use a three-layer GNN, and train the
model by randomly sampling 1024 negative examples for each node.

Inductive learning For both inductive learning setups on large graphs and on multiple
graphs , we use a three-layer mean-pooling encoder with residual units as follows:

H(1) = σ(ÂXW
(0)
1 +XW

(0)
2) (2.9)

H(2) = σ(ÂH(1)W
(1)
1 +H(1)W

(1)
2) (2.10)

f(X,A) = ÂH(2)W
(2)
1 +H(2)W

(2)
2 (2.11)

We set the hidden layers and the embedding size to P ′ = 512 and apply RELU as an acti-
vation function.

29

Chapter 2

For the multiple-graph setting, we sample one graph at a time from the training set to
train the contrastive loss function. For the single graph inductive setup, the scale of the
dataset makes it impossible to fit into GPU memory. We therefore adopt the sub-sampling
strategy of [38]. We first select a minibatch of nodes and construct for each of them their
L-hop neighborhood subgraph by sampling a fixed size neighborhood. We sample 10 nodes
in each of the three levels resulting in 1 + 10 + 100 + 1000 = 1111 neighboring nodes .

We use Pytorch [66] and the Pytorch Geometric [24] libraries to implement all our ex-
periments. We initialize all models using Glorot initialization [26] and trained them to
minimize the contrastive loss provided in Eq. (2.3) using the Adam optimizer [50] with an
initial learning rate of 0.001. We tune the weight decay in {0.001, 0.01, 0.05, 0.1, 0.15}. We
further tune the temperature τ in the loss function in {0.1, 0.5, 0.8, 1.0} and the number of
epochs in {20, 50, 100, 150, 200}.

To define the stochastic perturbation, we tune the probability of dropping an edge in
[0.05, 0.75] and the probability of dropping node features in [0.2, 0.8]. GraphCL is found
to be robust to different choices of the perturbation parameters. However, we found that
applying high perturbations to node features (i.e. randomly dropping 50% to 70% of input
features) and small perturbations of the graph structure (i.e. randomly dropping 10% to 20%
of edges) results in stronger representations.

2.4.2 Results

We present the results of evaluating node representations using downstream multiclass
node classification tasks in Table 2.2. We report average results over 50 runs of training,
followed by a logistic regression. Specifically, we use the mean classification accuracy on
the test nodes for transductive tasks and the micro-averaged F1 score on the (unseen) test
nodes for the inductive setting. We report the results of EP-B provided in [21] and [81],
and also the results provided in [80]. To insure a fair comparison with the other methods,
we report the results of the standard implementation of GraphCL which was described in
the previous section. In particular, we use a standard embedding size P ′ = 512. We refer
to the results by GraphCL in table 2.2. We also report GraphCL* which refers to the
results that were achieved using the best parameters including the best negative sampling
strategy, choice of encoders and embedding size. For example, we notice a 1% gain on the
classification accuracy of Cora when using a GCN encoder and sampling negative from the
second order neighbors of the current example. Moreover, we notice a surprising 0.2 gain
on the F1 score on PPI when increasing the embedding size to P ′ = 2048.

We see that the proposed GraphCL outperforms the previous state-of-the-art by achiev-
ing the best classification accuracy over the three transductive tasks and the best F1 score
on inductive tasks. We note that, except for PPI dataset, GraphCL achieves competitive
performance with strong supervised baselines without using label information. We assume
that by maximizing agreement between representations that share the same information
but have independent noise, GraphCL is able to learn representations that benefit from the
richness of information in the graph which compensate for the information provided by
the labels.

30

Contrastive learning for nodes’ representation

Transductive

Method Cora Citeseer Pubmed ogbn-arxiv

Raw features 47.9± 0.4% 49.3± 0.2% 69.1± 0.3% 55.50± 0.23%

DeepWalk [69] 67.2% 43.2% 65.3% 70.07± 0.13%

DeepWalk + features 70.7± 0.6% 51.4± 0.5% 74.3± 0.9% _
EP-B [21] 78.1± 1.5% 71.0± 1.4% 79.6± 2.1% 68± 0.00%

DGI [80] 82.3± 0.6% 71.8± 0.7% 76.8± 0.6% 70.18± 0.12%
GraphCL 83.6± 0.5% 72.5± 0.7% 79.8± 0.5% 70.18± 0.17%

GraphCL* 84.6± 0.4% 73.1± 0.6% 80.1± 0.5% 71.38± 0.13%

GCN(supervised)[51] 81.5% 70.3% 79.0% 71.74± 0.002%

Inductive

Method Reddit PPI

Unsupervised Raw features 0.585 0.422

GraphSage-GCN [38] 0.908 0.465

GraphSage-mean [38] 0.897 0.486

GraphSage-LSTM [38] 0.907 0.482

GraphSage-pool [38] 0.892 0.502

DGI [80] 0.940± 0.001 0.638± 0.002

GraphCL 0.951± 0.01 0.659± 0.006

GraphCL* 0.960± 0.01 0.841± 0.004

Supervised FastGCN [10] 0.937 −
GaAN [94] 0.958± 0.001 0.969± 0.002

Table 2.2: Classification accuracy on transductive tasks and micro-averaged F1 score on
inductive tasks

2.4.3 Ablation study

We report on a study to understand the effects of different parameters. All experiments
have been conducted using Cora dataset.

Effect of the number of negatives

Figure 2.2 shows the effect of the number of negatives on the accuracy of the downstream
classification task. We find that training a contrastive loss with a small number of negatives
leads to poor representations. However, our experiments show that at a certain threshold,
increasing the number of negatives does not improve the quality of the representations.
Beyond that threshold, the variations of the classification accuracy seem to be due to the

31

Chapter 2

Figure 2.2: Classification accuracy on Cora dataset. Effect of the number of negative exam-
ples.

randomness of the training procedure only. Since using a large number of negatives slows
down the training and requires more computing power, our findings suggest that one has
to properly choose the number of negatives to optimize for both the quality of the repre-
sentations and the training efficiency.

Effect of feature similarity based negative sampling strategies

Wenext analyze the effect of hard negative samples on the quality of the learned representa-
tions. We first implement the feature similarity based negative sampling strategy described
in section 2.3.2. We select negatives from a ring around the current example. This is done
by varying the values of the percentiles ωl and ωk. Figure 2.3 show the accuracy of a linear
classifier trained on the learned representation while varying the distance of the ring from
the current example. We select negatives from a ring of diameter 10% (i.e. ωl−ωk = 10%).
The results confirm our intuition that hard negatives improve the quality of the represen-
tations. We notice that selecting only negatives that are too far from the current example
leads to poor representations. In fact, if all negatives are easy to distinguish from the cur-
rent example, there is no reason for the encoder to learn higher level features that can help
to distinguish between the corresponding positive example and all the negatives. On the
other hand, selecting negatives from nodes that are very similar to the current example
worsens the quality of the representations. This can be explained by the fact that negatives
that are close to the current example are likely to belong to the same class and should rather
be considered as positive examples. Training an encoder to push these examples away from
the current example unsurprisingly leads to lower quality representations.

32

Contrastive learning for nodes’ representation

Figure 2.3: Classification accuracy on Cora dataset. Effect of the similarity between the
current example and its corresponding negative samples.

Effect of graph based negative sampling strategies

l-th order neighbors Accuracy

1 31.4 ± 1.2 %
2 84.6 ± 0.4%
3 80.8 ± 0.6 %

Table 2.3: Classification accuracy on Cora dataset. Effect of the number of hops between
the current example and its corresponding negative samples.

Graphs provide additional information about the examples. We aim at taking advantage
of the graph structure to sample negative examples. Table 2.3 shows the average accuracy
of 50 runs of training to learn nodes’ embeddings, on top of which we apply a linear classi-
fier. We sample negatives from the l-th order neighbors of the current example. Similarly to
the results of the feature similarity based negative sampling strategy, we find that negatives
that are at the right distance from the current example improve the quality of the learned
representations. More specifically, we achieve the best performance when sampling nega-
tives from the second order neighbors.

33

Chapter 2

Encoder Accuracy

MLP 66.1 %
Mean Pooling 83.6 %

GCN 84.2 %

Table 2.4: Classification accuracy on Cora dataset. Effect of the choice of the encoder

Training without negative samples

In the previous section, we have discussed the effect of negative sampling strategies on the
quality of the learned representations by using them to linearly classify nodes on a multi-
class classification downstream task. Here, we would like to see whether it is possible to
learn meaningful representations by maximizing the similarities between the representa-
tions obtained from two views of the same graph without the use of any negative examples.
To do so, we train a Siamese neural network to minimize the negative cosine similarity loss
in Eq. (2.4). We implement the stop-gradient strategy described in section 2.2.4 and ap-
ply batch normalization on the hidden layer of the prediction MLP head (see section 2.2.4).
Both stop-gradient and batch normalization have been reported to prevent the collapsing to
a single representation when applied to Siamese neural networks for visual representations
[14, 30]. Figures 2.4 and 2.4 respectively show the loss and accuracy of training a Siamese
neural network without neither batch normalization nor stop-gradient referred to as Siam,
with stop-gradient but without batch normalization referred to as Siam+SG, and with both
stop-gradient and batch normalization referred to as Siam+SG+BN.

We observe that when training without stop-gradient and batch normalization, the loss
function quickly converges to the minimum possible value −1. To verify that the cause
is the collapsing to the single representation solution, we compute the standard deviation
of all the representations, which we found to be equal to zero for all features. We also
notice that although adding stop-gradient and batch normalization prevent the collapsing
to a single representation, the learned representations are still of low quality and perform
much worse than the representations learned using negative samples.

2.5 Discussion

2.5.1 Connection to mutual information

The contrastive loss in Eq. (2.3) has been proposed as a lower bound estimator of the mutual
information. A formal proof given by [78] shows that:

I(hq, h
+
q) ≥ log(N)− L, (2.12)

34

Contrastive learning for nodes’ representation

Figure 2.4: A comparison of Siamese NN trained with vs without stop-gradient and batch
normalization. Training loss across epochs.

where N is the number of negative samples Q−
q and I(hq, h

+
q) is the mutual information

between hq and h+
q :

I(hq, h
+
q) = E

(hq ,h
+
q)∼p

hq,h
+
q
(·)
log

[
p(hq, h

+
q)

p(hq)p(h+
q)

]
(2.13)

where p(hq, h
+
q) is the joint distribution of hq and h+

q , and p(hq) and p(h+
q) are the corre-

sponding marginals.

Therefore, given anyN , minimizing the loss functionL alsomaximizes the lower bound
on the mutual information I(hq, h

+
q). We note however that it has been shown that the

bound in Eq. (2.12) can be not tight . Our experiments suggest that contrastive methods’
success highly depends on other parameter designs, and so cannot be solely attributed to
the properties of the mutual information. This confirms the remark done in[59] where the
bound in Eq. (2.12) was seen not to be tight. More precisely, results in Table 2.4.3 emphasize
the impact of the choice of the encoder on the performance of the contrastive loss. The
ablation study that we conducted also highlights the effect of the negative sampling strategy
and the importance of hard negative examples for learning powerful representations.

2.5.2 Understanding contrastive learning through alignment and
uniformity on the hypersphere

To better understand the behavior of GraphCL, we analyze it through the perspective of
uniformity and alignment that has been introduced in [83]. The main idea behind the con-
trastive loss is attracting positive pairs together in the representation space while pushing
away the corresponding negative examples from the current sample. Eq. (2.3) actually en-
courages the learned representations to obey the following properties:

35

Chapter 2

Figure 2.5: A comparison of Siamese NN trained with vs without stop-gradient and batch
normalization. Accuracy of a linear classifier trained on top of the representation on Cora
dataset

• Alignment: Representations of augmented views should be consistent and invariant
to noise.

• Uniformity: The learned representations should match a prior distribution of high
entropy (the uniform distribution over the hypersphere) to preserve as much infor-
mation of the data as possible.

We visualize the learned representations of Cora dataset nodes inR2 (i.eP ′ = 2) to compare
the behavior of the following methods:

• GraphCL: An encoder trained with the standard implementation of GraphCL as de-
scribed above.

• Siam+SG+BN: A siamese neural network encoder trained with the negative cosine
similarity loss using stop-gradient and batch normalization techniques.

• SupervisedGCN:An encoder and a linear classifier trained jointly with a supervised
cross entropy loss.

All encoders are 2-layers GCNs that map nodes to normalized feature vectors of dimen-
sion two. Figures 2.6,2.7 and 2.8 summarize the resulting distributions. GraphCL embed-
dings clearly display both properties. Positive pairs are more aligned than those learned
using the negative cosine similarity and supervised loss with an average cosine similarity
of 0.9 for GraphCL and 0.75 and 0.7 respectively for the other methods. Representations
of GraphCL are also evenly distributed on the hypersphere and exhibit the most uniform
distribution.

36

Contrastive learning for nodes’ representation

Figure 2.6: Representations of Cora dataset nodes on R2 using encoders trained with a
contrastive loss. Histograms of the cosine similarity between positive pairs.

It has been shown in [83] that both the alignment and uniformity properties are impor-
tant in learning highly transferable features to downstream tasks. This contributes to the
success of GraphCL and may explain its ability to outperform strong supervised baselines
on nodes’ classification, especially on the transductive learning setup.

It is also worth noticing that although adding stop-gradient and batch normalization
techniques to the training procedure of the negative cosine similarity loss (i.e. Siam+SG+BN
in Figure 2.5) prevent the collapsing to the single representation solution, the encoder fails
to uniformly map the nodes’ representations across the hypersphere. This explains its re-
sults on the classification downstream task (see Figure 2.9).

2.5.3 Computational and model complexity

Last, we discuss the computational and model complexity of GraphCL. Let G = (V , E) be a
graph and N = |V| the total number of nodes in the graph. Moreover, let L be the number
of layers, M the minibatch size and R the number of neighbors being sampled for each
node in the inductive setting. We assume for simplicity that the dimension of the nodes’
hidden features is constant and denote it as P ′. The computational complexity and space
complexity of GraphCL depend on the choice of the encoder. We use the same encoder
for the two branches (i.e. each of the subgraphs). For the transductive learning setup, the
computational and space complexity are linear with respect to the number of nodes and
are respectively O(LNP ′2) and O(LNP ′ + KP ′2) . For the inductive learning, we use
a sub-sampling strategy to load the graphs into memory; the computational complexity
is then O(RLNP ′2) and the space complexity is O(MRLP ′ + LP ′2). The computational
complexity is linear with respect to the number of nodes. Both the number of layers L and

37

Chapter 2

Figure 2.7: Representations of Cora dataset nodes on R2 using encoders trained with a
negative cosine similarity loss. Histograms of the cosine similarity between positive pairs.

the number of sampled neighbors R are fixed and user-specified. The space complexity is
linear with respect to theminibatch sizeM . The sampling strategy sacrifices time efficiency
to save memory, which is necessary for very large graphs.

2.6 Conclusion

We introduced GraphCL, a general framework for self-supervised learning of nodes’ repre-
sentations. The key idea of our approach is to maximize agreement between two represen-
tations of the same node. The representations are generated by injecting random perturba-
tions to the graph structure and nodes’ intrinsic features. We have conducted a number of
experiments on both transductive and inductive learning tasks. Experimental results show
that GraphCL outperforms state-of-the-art unsupervised baselines on nodes’ classification
tasks and is competitive with supervised baselines. We further investigated different nega-
tive sampling strategies, including training with a similarity based loss without contrasting
with negative samples and propose a graph based negative sampling strategy. In the future,
we will investigate the potential of our approach in learning graphs’ representations that
are robust to adversarial attacks on the graph data and explore the reasons of the low qual-
ity of nodes’ representations when training a siamese neural network without negative
samples.

38

Contrastive learning for nodes’ representation

Figure 2.8: Representations of Cora dataset nodes on R2 using encoders trained with a
supervised cross entropy loss. Histograms of the cosine similarity between positive pairs.

39

Chapter 2

Figure 2.9: Representations of Cora dataset nodes onR2 using encoders trained with a con-
trastive loss (upper plot), a negative cosine similarity loss (middle plot) and a supervised
cross entropy loss (bottomplot). Feature distributions inR2 using Gaussian kernel density
estimation.

40

Chapter 3

Graph assisted bayesian classifiers

3.1 Introduction . 42
3.2 New Graph-Assisted Bayesian Classifier 44

3.2.1 The Classifier derivation 44
3.2.2 Parameters’ estimation . 50
3.2.3 When does graph structure not help GAB 51

3.3 Link to Graph Neural Networks 53
3.3.1 Recap of Graph Neural Networks 53
3.3.2 Relationship with a GNN based classifier 54

3.4 Discussion on complexity issues 56
3.5 Numerical Results . 59

3.5.1 Synthetic datasets . 59
3.5.2 Real datasets . 60

3.6 Conclusion . 62

41

Chapter 3

3.1 Introduction

Attributed graphs are useful tools for representing interactive phenomena such as social
networks [4], financial market fluctuations [49], road or air traffic, human scene [72], brain
activity [55], or gene interaction [54]. Graphs are described by i) a set of nodes associated
with the entities (subscribers in social networks, planes in air traffic, etc.) and ii) a set
of edges connecting them in order to represent their relationships. Graphs are said to be
attributed when nodes and/or edges have assigned values, called features. While this type
of data is rich for inference, it is not well suited to standard signal processing or machine
learning techniques. The adaptation of these techniques to graph data has been the subject
of numerous studies that aim to perform graph classification (e.g., molecules)[96] [25], edge
prediction (e.g., social network links)[95], node regression or classification (e.g., citation
networks) [35, 33, 36].

This works focuses on node classification, which is one of the most important tasks of
machine learning on graphs. Its objective is to predict the class (called also label) of each
unlabeled node of the graph by relying on both nodes’ features and nodes’ connections
within the graph.

In most real world graphs, connections between nodes are far from arbitrary. In so-
cial networks for instance, people are more likely to connect with those who share similar
characteristics or areas of interest [60]. A citation network has connections between arti-
cles if one cites another, so links between articles addressing the same research topic are
more likely than links between those addressing different topics. [70]. As in social sciences
literature, a homophilic graph can be described as one where similar nodes tend to be con-
nected to each other [60]. Using this principle, one should make use of the topology of the
graph to determine the class of a node, rather than relying solely on intrinsic features, as
is commonly done with standard machine learning approaches.

When taking into account the graph topology in a classifier, the first question is: what
kind of information to share over the graph? There are two approaches.

• Label Propagation (LP): only the labels (true or estimated) are propagated through
the adjacent nodes in the graph to make a new decision. Several methods relying
on voting have been developed to merge labels’ information [100]. The labels at
the initial step are either provided or estimated using the node’s features only, i.e.
ignoring the graph.

• Feature propagation (FP): the nodes’ features are propagated through the adjacent
nodes at each step. Typically, a weighted averaging of the current features of adjacent
nodes (sometimes followed by a nonlinear function) is carried out for each node at
each step.

In this work, we focus only on the FP approach. Graph neural networks (GNN) have re-
cently been developed in order to adapt Neural Networks to attributed graphs. Typically,
at each layer, they linearly combine the features of adjacent nodes and then apply an ac-
tivation function. The training on labelled nodes consists of finding out the best weights

42

Graph assisted bayesian classifiers

of each linear combination. In this work, we propose to derive in closed-form a classifier
relying on (Bayesian) decision theory. As a result, we obtain an interpretable algorithm
based on some parameters whose estimation step replaces the training phase of the GNN.

Before we go any further, let us briefly review the works on FP based on GNN. The
most common way has been to extend the convolutional neural network (CNN) to the
graph structure [41] by redefining the convolution operator on the graph domain. These
CNN-based methods suffer from a high computational cost due to the necessity of perform-
ing an eigendecomposition of the graph Laplacian. To overcome this problem, different
approaches avoid explicit computation of this eigendecomposition by using a polynomial
expansion to represent the filters [18, 51]. More specifically, in [51], the authors consider
a first-order polynomial approximation to build a neural network which they called Graph
Convolutional Network (GCN) to do semi-supervised node classification. The GCN can
also be seen as an aggregation operator, i.e. the representation of a node is obtained by av-
eraging its intrinsic features with those of its first-order neighbors. The authors in [79, 77]
respectively introduced Graph Attention Network (GAT) and Attention-based Graph Neu-
ral Network (AGNN) where different weights are assigned to neighbors based on nodes’
and edges’ features. Other researchers explored higher-order (or equivalently, multi-hop)
information of the graph by repeatedly mixing features of neighbors at various distances
[2] or by modifying the propagation strategy of GCN [53]. Although these approaches have
achieved remarkable results on a number of benchmark datasets, we notice that their per-
formance vary significantly across datasets. For instance, the gain compared to a simple
logistic regression (i.e. no contribution from the neighbors) highly depends on the dataset.

We use the following example to explain the underlying reason for the performance
variations over datasets. We define p̄ as the average probability of intra-class connection
(i.e., the probability that two nodes from the same class are connected), and q̄ as the aver-
age probability of inter-class connection (i.e., the probability that two nodes from different
classes are connected). The degree of impurity of the graph may be represented by the
ratio q̄/p̄. Datasets with a degree of impurity less than 1 are called assortative [48] and
correspond to graphs containing communities (nodes with similar features are connected
to each other). In Table 3.1, we show the classification accuracies of a logistic regression
classifier and a two-layer GCN for two widely-used datasets used for benchmarking GNN
algorithms. We also display the estimated values for p̄, q̄ and the degree of impurity q̄/p̄.
As expected, node classification using graph structure is easier with graphs offering low

Table 3.1: Intra- and inter-class connection probabilities and classification accuracies.

Cora Citeseer
Intra-class connectivity (p) 23× 10−3 12× 10−3

Inter-class connectivity (q) 5.5× 10−3 4.3× 10−3

Degree of Impurity (q/p) 0.23 0.36

Logistic Regression (LR) 56.0% 57.2%

Two-layer GCN [51] 81.5% 70.3%

Gain between GCN and LR +45.5% +22.9%

degree of impurity (like Cora). This may explain the performance variations over datasets.

43

Chapter 3

In this work, a different point of view is taken by proposing a Bayesian classifier which
does not rely on a neural network structure and is able to better adapt to the level of impu-
rity than GNN-based classifiers.

Our approach to tackle the node classification problem is related to the so-called col-
lective classification [8, 73] which refers to the classification of a set of connected nodes by
using their intrinsic features and/or labels and their relative connections. Optimal collective
classifications are carried out by maximizing the joint likelihood. However, optimal (and
so exact) inference is an NP-hard issue in general, and is thus generally not well suited for
the real-world networks. As a consequence, most collective classifiers rely on developing
approximate inference [65, 8]. Some recent studies combine methods from collective classi-
fication with neural networks to ensure a better end-to-end learning, e.g. [45]. However, all
the above-mentioned algorithms only make use of features of first-hop neighbors and thus
rely on a propagation step to make use of higher-hop nodes’ information in an iterative
manner. We instead introduce a new classifier that directly takes into account higher-hop
nodes. This has the additional advantage of being more interpretable.

Let us define some notations. Let G = (V , E) be an undirected graph where V is a set of
nodes and E ⊆ V × V is a set of edges. Each node u ∈ V is represented by a feature vector
xu ∈ RF×1 where F is the number of node’s features. An adjacency matrix A ∈ RN×N

represents the topological structure of the graph where N = |V| is the number of nodes in
the graph. Without loss of generality we assume the graph to be unweighted i.e Au,v = 1
if (u, v) ∈ E and Au,v = 0 otherwise. Let X = [x1,x2, . . . ,xN]

⊤. Let yi denote the label
of the ith node and let K denote the number of classes, i.e. yi ∈ {1, . . . , K}.

The objective of node classification is to predict the class of all unlabeled nodes in the
graph given the adjacency matrixA, the feature matrixX and the set of available labels.

The chapter is organized as follows: in Section 3.2, we introduce our new graph-assisted
Bayesian classifier (GAB). In Section 3.3, we compare our approach with GNN-based clas-
sifiers. In particular, we show our classifier has the shape of a GNN only in the noise-free
case (i.e., q = 0) and under further conditions on the distribution of the features. In Sec-
tion 3.4, complexity issues are discussed. In Section 3.5, numerical results are provided.
Comparison with existing GNN-based methods are done on real datasets whose degree of
impurity has been modified by injecting artificial noise (i.e., introducing fictitious edges
between classes). We see that our proposed Bayesian classifier offers better performance
than GNN-based classifiers. In Section 3.6, concluding remarks are drawn.

3.2 New Graph-Assisted Bayesian Classifier

3.2.1 The Classifier derivation

In this section, we derive our new GAB classifier based on Maximum A Posteriori (MAP)
principle. We develop this classifier for a node u, called node of interest in the rest of the
chapter. Obviously, in practice, any node in the graph will be seen as a node of interest in a
Round-Robin manner. We first consider the entire graph and then, in order to simplify the

44

Graph assisted bayesian classifiers

derivations, we consider only the information provided by the hop distance between the
node and a node of interest.

Let

• Vu be the set of nodes which will be involved in the classification of node u. Node u
is not included in this set.

• Xu = {xu} ∪ {xv, v ∈ Vu} be the set of feature vectors of node u and its “helping”
nodes.

• Dk be the distribution generating the feature vectors of nodes belonging to class k.

We do not assume that theses distributions are known. We instead either assume a shape
for these distributions and then estimate their parameters, or approximate them using a
neural network. The objective is to compute the posterior probability that a node u belongs
to class k knowing information on the graph IG (typically its partial connectivity through
the set Vu), and Xu. Consequently, the classifier makes the following decision

k̂u = argmax
k

Pu(k).

where the posterior probability that needs to be computed is defined as:

Pu(k) = P (yu = k|Xu, IG).

Using the Bayes’ rule, we obtain

Pu(k) = P (yu = k|Xu, IG)

=
P (Xu|yu = k, IG)P (yu = k|IG)

P (Xu|IG)
∝ P (Xu|yu = k, IG)P (yu = k) (3.1)

since the denominator does not depend on k and the prior probability of an individual
node u to belong to class k does not depend on the graph information. The above posterior
probability can be rewritten as

Pu(k) ∝ Qu(k)πk (3.2)

with {
Qu(k) = P (Xu|yu = k, IG),
πk = P (yu = k).

Let V be the size of the set Vu. Let {v1, · · · , vV } be the nodes of Vu. In Appendix A.1,
we show that

Qu(k) = Dk(xu)
K∑

kv1 ,··· ,kvV =1

V∏
ℓ=1

Dkvℓ
(xvℓ)

× p(yv1 = kv1 , · · · , yvV = kvV |yu = k, IG). (3.3)

45

Chapter 3

Eq. (3.3) cannot be simplified further since the term p(yv1 = kv1 , · · · , yvV = kvV |yu =
k, IG) cannot be split into individual posterior probabilities. Indeed according to Example 1
below, one can see that in general p(yv1 = kv1 , · · · , yvV = kvV |yu = k, IG) ̸=

∏V
ℓ=1 p(yvℓ =

kvℓ|yu = k, IG).

Example 1 Let us consider the graph G = (V , E), where V = {A,B,C} and E = {(B,C)}.
We set the number of classes toK = 3. We assume that only nodes belonging to the same class
can be connected. We now compute P (yB = k, yC = k′|yA = 1, IG) in two different cases.

In the first case, we consider that IG provides only information on the connections between
the pairs (A,B) and (A,C). Consequently, we only know A is not connected to B and A is
not connected to C . This leads to the following expression for k ∈ {2, 3}

P (yB = k|yA = 1, IG) = P (yC = k|yA = 1, IG) = 0.5, (3.4)

and

P (yB = k, yC = k′|yA = 1, IG) = 0.25 (3.5)

which is equal to P (yB = k|yA = 1, IG)× P (yC = k′|yA = 1, IG).

In the second case, we consider that IG provides information on all possible connections.
Once again, for k ∈ {2, 3}

P (yB = k|yA = 1, IG) = P (yC = k|yA = 1, IG) = 0.5. (3.6)

But we now have for k ̸= k′ ∈ {2, 3}

P (yB = k, yC = k′|yA = 1, IG) = 0, (3.7)

which is different from P (yB = k|yA = 1, IG)× P (yC = k′|yA = 1, IG). □

Consequently, in order to pursue analytical derivations offering practical algorithms,
we make the following simplifying assumption:

p(yv1 = kv1 , · · · , yvV = kvV |yu = k, IG)

=
V∏
ℓ=1

p(yvℓ = kvℓ|yu = k, IG) (3.8)

which corresponds to assuming statistical independence between the classes of node u’s
neighboring nodes given the graph. As seen in Example 1, this independence generally
does not hold true, but it is required to pursue closed-form derivations.

46

Graph assisted bayesian classifiers

Using Eqs. (3.3) and (3.8), we obtain

Qu(k) = Dk(xu)
K∑

kv1 ,··· ,kvV =1

V∏
ℓ=1

Dkvℓ
(xvℓ)

×
V∏

ℓ′=1

p(yvℓ′ = kvℓ′ |yu = k, IG)

= Dk(xu)
K∑

kv1 ,··· ,kvV =1

V∏
ℓ=1

Dkvℓ
(xvℓ)

× p(yvℓ = kvℓ |yu = k, IG)
= Dk(xu)

×
V∏
ℓ=1

(
K∑

k′=1

p(yvℓ = k′|yu = k, IG)Dk′(xvℓ)

)
.

Finally, we get

Qu(k) = Dk(xu)
V∏
ℓ=1

(
K∑

k′=1

ru,vℓ(k, k
′)Dk′(xvℓ)

)
(3.9)

with
ru,v(k, k

′) = p(yv = k′|yu = k, IG). (3.10)

The term ru,v(k, k
′) is the probability to be in class k′ for node v given that node u is in

class k and that we have partial (or total) information on the graph IG . Notice that the term
ru,v(k, k

′) depends on the graph statistics as we will see in Eq. (3.13). In general, deriving
a closed-form expression of ru,v(k, k′) with respect to the graph statistics is very difficult
due to combinatorial complexity.

Before going further, we make the following remark.

Remark 1 (How to take into account the labelled nodes?) Some of the nodes inVu may
have already been labeled, so their classes are known. Eq. (3.9) should then be adapted to ac-
count for this knowledge. Let us consider that node v1 is labelled and belongs to class k1. The
following term

K∑
k′=1

ru,v1(k, k
′)Dk′(xv1)

should be replaced with
K∑

k′=1

ru,v1(k, k
′)δk′,k1 = ru,v1(k, k1)

where δ is the so-called Kronecker index. Consequently, if Vu = Lu∪Uu with Lu being the set

47

Chapter 3

of labelled nodes and Uu being the set of unlabelled nodes, we have that

Qu(k) = Dk(xu)
∏
v∈Lu

ru,v(k, kv)

×
∏
v∈Uu

(
K∑

k′=1

ru,v(k, k
′)Dk′(xv)

)

where kv is the class of the labelled node v.

As an example, we consider Lu = {v1} and Uu = ∅, and obtain

Qu(k) = Dk(xu).ru,v1(k, k1),

which is the likelihood function for xu assuming class k, corrected by a term depending on the
probability of connection between class k and that of the labelled neighbor node.

In order to obtain a practical algorithm, IG for each node of interest, u, will be made to
consist of only the distances between this node and other nodes of the graph, i.e.,

IG = {distance of each node of G to root u}.

Therefore, we order Vu as follows

Vu = N1(u) ∪N2(u) · · · ∪ N∆u(u)

where Nd(u) is the set of d-hops neighbors of u and ∆u is the maximum distance from
node u; we have that ∆u ≤ V . Hence, Eq. (3.9) can be rewritten as

Qu(k) = Dk(xu)

×
∆u∏
d=1

∏
v∈Nd(u)

(
K∑

k′=1

ru,v(k, k
′)Dk′(xv)

)
.

The above expression will be next simplified further.

We recall that ru,v(k, k′) is equal to p(yv = k′|yu = k, IG). As IG now merely consists
of the distances between each node and the node of interest, ru,v(k, k′) no longer depends
on the specific path(s) connecting u to v but only hop distance, between node v and node u.
Moreover we assume that the probability of connection between two nodes only depends
on the nodes’ classes but not on the specific nodes. Consequently, ru,v(k, k′) is replaced
with r(d)(k, k′).

To control the contributions of neighbors to the computation of the posterior probabil-
ity, depending on their distance to node u, we propose to modify the expression of Qu(k)
as follows

Qu(k) = Dk(xu)
∆u∏
d=1

∏
v∈Nd(u)

(
K∑

k′=1

r(d)(k, k′)γdDk′(xv)

)
. (3.11)

where {γd}d=1,··· ,∆u are hyper-parameters to tune. Simulation results show that hyper-
parameter γd decreases with d, as expected. Setting γd = 1 for all values of d implies

48

Graph assisted bayesian classifiers

that all the nodes in Vu have the same weights and so contribute equally. This can be
counter-productive especially when the degree of impurity is high. Indeed, information
from distant nodes may not be reliable, mostly because of the simplifications made to IG .
The optimization of the hyperparameters should counter-act this kind of phenomenon.

The goal now is to derive r(d)(k, k′). Let R(d) ∈ RK×K be the matrix whose (k, k′)th
element is r(d)(k, k′). It is worth pointing out that, in general, R(1) is not symmetric but
is non-negative with the row-sums equal to 1 (while the column-sums are not necessary
equal to 1). Consequently,R(1) (shortened toR) is a row-stochastic matrix. First of all, we
have that

r(d)(k, k′) = P (yv = k′|yu = k, Cd)

where IG has been replacedwith Cd, which is defined as the knowledge that both considered
nodes are connected in d hops.

In Appendix A.2, we show that

R(d) = Rd. (3.12)

Since we are able to find r(d)(k, k′) with respect to r(1)(k, k′), we should now derive
r(1)(k, k′) in closed-form. We first define the following parameters:

• Let p(k) denote the probability that any two randomly selected nodes belonging to
the same class k are directly connected.

• Let q(k, k′) denote the probability that two randomly selected nodes not belonging
to the same class are connected. We let q(k, k) = p(k). We also assume symmetry,
i.e. q(k, k′) = q(k′, k).

• Let p̄ define the average probability of connection between nodes of the the same
class, i.e.

p̄ =
1

K

K∑
k=1

p(k).

Similarly, let q̄ define the average probability of connection between nodes not be-
longing to the same class, i.e.

q̄ =
1

K(K − 1)

K∑
k,k′=1
k ̸=k′

q(k, k′).

• The degree of impurity (DoI), roughly evoked in Section 3.1, is defined as

DoI =
q̄

p̄
.

This defines a general stochastic block model (SBM), a widely used random graph model
for community detection and clustering [1, 67]. Note that we use SBM only for analytic

49

Chapter 3

tractability, and that unlike the work on community detection, we are interested in node
classification, given some labeled samples.

By using Bayes’ rule, we have that

r(1)(k, k′) = P (yB = k′|yA = k, ĨG)

=
P (ĨG|yB = k′, yA = k)P (yB = k′|yA = k)

P (ĨG|yA = k)

=
P (ĨG|yB = k′, yA = k)P (yB = k′|yA = k)∑K

k′′=1 P (ĨG|yA = k, yB = k′′)P (yB = k′′)

=
q(k, k′)P (yB = k′|yA = k)∑K

k′′=1 q(k, k
′′)P (yB = k′′)

=
q(k, k′)P (yB = k′)∑K

k′′=1 q(k, k
′′)P (yB = k′′)

=
q(k, k′)πk′∑K

k′′=1 q(k, k
′′)πk′′

. (3.13)

As an example, if the probabilities of connection do not depend on the classes, i.e.,
p = p(k) for any k and q = q(k, k′) for any k ̸= k′, we obtain

r(1)(k, k′) =

pπk

pπk+q
∑

k′′=1
k′′ ̸=k

πk′′
k = k′

qπk′
pπk+q

∑
k′′=1
k′′ ̸=k

πk′′
k ̸= k′ .

Hence, according to Eqs. (3.2) and (3.11), we obtain

k̂u = argmaxk πkDk(xu)
∆u∏
d=1

∏
v∈Nd(u)

×

(
K∑

k′=1

r(d)(k, k′)γdDk′(xv)

)
(3.14)

with r(d)(k, k′) given by Eq. (3.12). We notice that the shape of the function to maximize is
simple and corresponds to a product over all the considered nodes of a weighted sum of the
possible distributions. The weights are perfectly characterized thanks to our derivations.

3.2.2 Parameters’ estimation

In order to implement our node classifier, i.e. to compute Eq. (3.14), we need πk, p(k),
q(k, k′), and the distributions Dk(·) for all k and all k′. Since these are unknown, they
have to be estimated using the data. Here, in order to perform this estimation using simple
algorithms, we consider only the available labeled nodes of the graph in the estimation.
These algorithms are described below:

50

Graph assisted bayesian classifiers

• Estimation of πk: this is obtained by counting the number of labeled nodes belonging
to class k divided by the total number of labeled nodes.

• Estimation of p(k) and q(k, k′): we count all the pairs of labeled nodes belonging to
class k and k′; then we count the number of these pairs that are connected in 1-hop.
The estimate of q̂(k, k′) is obtained by dividing the latter count by the former one. if
these values do not depend on k and k′, we also average over all the involved pairs
(with k ̸= k′ to obtain q(k, k′) = q̄ and when k = k′ to obtain q(k, k) = p̄).

• Estimation of classes’ statistics Dk(·): we assume a shape for the distribution , and
this shape is dependent on a set of parameters. For instance, in the Cora dataset, the
features are binary, so they are modeled as independent Bernoulli random variables;
the probability associated with each feature is estimated using the proportion of non-
zero elements of this feature in the labeled nodes, and Laplace smoothing. If the
features are continuous-valued, we use the Gaussian distribution.

It is worth pointing out that a semi-supervised estimation approachmay also be possible
but this would require an iterative approach that cycles between parameter estimation and
node classification. It is also worth noting that the estimation step plays the role of the
learning phase in GNN-based classifiers or in the classifiers developed in [45].

The values of the hyperparameters γv are set to 1 by default. The optimization of these
hyperparameters is addressed in Sections 3.4 and 3.5.
This optimization will be shown to improve classification performance. Indeed, these hy-
perparameters will adjust the degree to which neighbors of different orders should con-
tribute to the classification of a node.

3.2.3 When does graph structure not help GAB

Thanks to Eq. (3.14), we will be able to characterize some conditions on the graph’s pa-
rameters for which the graph through the proposed GAB helps each node to improve its
classification performance. Reasoning by contradiction, one can see that the classifier does
not take into account the neighbors if and only if (iff) the function

k 7→
∏

v∈Nd(u)

(
K∑

k′=1

r(d)(k, k′)γvDk′(xv)

)

is independent of k for any d. Indeed, if true, the a posteriori distribution to maximize
depends on k only through Dk(xu).

The above-mentioned function leads to the same output regardless of k for any feature
values iff the weights r(d)(k, k′) are identical for any k. Therefore the condition for the
neighbors to be useless is

r(d)(k, k′) = t(d)(k′),∀k. (3.15)

According to Eq. (3.12), it is easy to prove that if it is satisfied for d = 1, then it remains
true for any d. Therefore, we need to only focus on d = 1. According to Eqs. (3.13) and

51

Chapter 3

(3.15), we obtain
q(k, k′)πk′∑K

k′′=1 q(k, k
′′)πk′′

= t(1)(k′),∀k. (3.16)

We will now inspect some particular cases:

• In the case of constant intra-class and inter-class probabilities of connection, we ob-
tain the following constraint for any pair (k, k′) such that k ̸= k′

πk′ + (q̄/p̄)
K∑

k′′=1
k′′ ̸=k′

πk′′ = (p̄/q̄)πk +
K∑

k′′=1
k′′ ̸=k

πk′′ .

By setting ν =
∑K

k=1 πk, we have

πk′(1− q̄/p̄) + πk(1− p̄/q̄) = ν(1− q̄/p̄)

which implies that

πk′ + πk

1− p̄/q̄

1− q̄/p̄
= 1 (3.17)

where k 7→ πk := πk/ν is a probability mass function. As (1 − p̄/q̄)/(1 − q̄/p̄) is
negative, this equation does not hold except if p̄ = q̄. Consequently, the neighbors
are not involved in the GAB classifier when the degree of impurity is 1 since there is
no community structure.

• In the case of K = 2, Eq. (3.16) implies that

p(2)

q̄π1 + p(2)π2

=
q̄

p(1)π1 + qπ2

and
q̄

q̄π1 + p(2)π2

=
p(1)

p(1)π1 + q̄π2

,

which leads to
q̄ =

√
p(1)p(2). (3.18)

In this setup, the neighbors are not involved in the GAB classifier when the inter-
class probability of connection is the geometric mean of the intra-class probabilities
of connection, and so not necessary when the degree of impurity (defined through
the arithmetic mean) is equal to 1. Obviously, if p(1) = p(2), we go back to the
first item leading to p = q, i.e., a degree of impurity equal to 1. But when p(1) ̸=
p(2), the degree of impurity leading to a graph-agnostic classifier is equal to the ratio
between the geometric mean and the arithmetic mean of the intra-class probabilities
of connection which is strictly smaller than 1 in general case.

52

Graph assisted bayesian classifiers

3.3 Link to Graph Neural Networks

3.3.1 Recap of Graph Neural Networks

GNNs are a class of graph embedding architectures which use the graph structure in ad-
dition to node and edge features to generate a representation vector (i.e., embedding) for
each node. GNNs learn node representations by aggregating the features of neighboring
nodes and edges. The output of the ℓ-th layer of these GNNs is generally expressed as:

h(ℓ)
u = σ(ℓ)(ϕ(ℓ)(h(ℓ−1)

u , {h(ℓ−1)
v : v ∈ N1(u)})) (3.19)

where h
(ℓ)
u is the feature vector of node u at the ℓ-th layer initialized by h

(0)
u = xu and

N1(u) is the set of first-order neighbors of node u. Different GNNs use different formu-
lations for the non-linear function σ(ℓ) (called activation function) and the linear function
ϕ(ℓ) [38]. Note that a first-order GNN based classifier relies on one layer or equivalently
considers only the 1-hop neighborhood in the graph.

Graph Convolutional Neural Network (GCN): The convolutional propagation rule
used in GCN is defined as follows

ϕ(ℓ) = (W (ℓ))⊤

 h
(ℓ−1)
u

du + 1
+

∑
v∈N1(u)

h
(ℓ−1)
v√

(du + 1)(dv + 1)

 (3.20)

where

• W (ℓ) is a learnable weight matrix,

• du is the degree of node u.

The activation function (for any layer except the last one) is a rectified linear unit (ReLU).
For the last layer, we consider the softmax which for each node u outputs the probability
that node u belongs to class k. Then the node u is assigned to the class with the highest
probability [51].

Graph convolution Operator Network (GON): In [3, 63], GON is defined as GCN
where Eq. (3.20) is replaced with the following one

ϕ(ℓ)
u = (W

(ℓ)
1)⊤h(ℓ−1)

u + (W
(ℓ)
2)⊤(

∑
v∈N1(u)

h(ℓ−1)
v). (3.21)

Unlike GCN, GON computes a transformation matrix of the central node that is different
from the transformation of its neighbors.

53

Chapter 3

Graph Isomorphism Network (GIN): In [89], GIN is defined as GCN or GON where
Eqs.(3.20)-(3.21) are replaced with the following one

ϕ(ℓ)
u = (W (ℓ))⊤

(1 + α)h(ℓ−1)
u +

∑
v∈N1(u)

h(ℓ−1)
v

 . (3.22)

where α is a positive hyper-parameter. GIN thus attributes a different learnable weight to
the central node (through α) when combining information from its neighbors.

Graph Attention Network (GAT): In [81], GAT is defined as GCN, GON or GIN but
with the following layer link

ϕ(ℓ)
u =

∑
v∈N1(u)∪{u}

α(ℓ)
u,v(W

(ℓ))⊤h(ℓ−1)
v , (3.23)

where α(ℓ)
u,v are normalized attention coefficients computed by an attention mechanism as

follows:

α(ℓ)
u,v =

eς(w
(ℓ)[(W (ℓ))⊤h

(ℓ−1)
u ∥(W (ℓ))⊤h

(ℓ−1)
v])∑

k∈N1(u)
eς(w

(ℓ)[(W (ℓ))⊤h
(ℓ−1)
u ∥(W (ℓ))⊤h

(ℓ−1)
k])

. (3.24)

with ς the leaky ReLu function, the weighting row vectorw(ℓ) ∈ R2H , where H is the size
of the hidden layer and ∥ corresponds to column concatenation.

3.3.2 Relationship with a GNN based classifier

In this Section, we compare the shape of the proposed GAB and the GNN. In GNN, there is
one activation function between each layer which implies that the multi-hop information
has undergone several non-linear functions before arriving at the node of interest. In GAB,
the multi-hop mixture is done prior to making the final decision and do not follow a suc-
cessive concatenation of linear combination and activation function. All the operations are
intermixed, therefore GNN and GAB are very different in terms of structure, except for the
one-layer/one-hop case. We therefore focus here on the relation between the first-order
GAB classifier and first-order GNN-based classifier. For doing that, we consider a binary
classification problem (i.e K = 2). According to Eq. (3.14), we assign node u to class 1 if:

Pu(1) ≥ Pu(2),

which implies that :

π1D1(xu)
∏

v∈N1(u)
(r(1, 1)D1(xv) + r(1, 2)D2(xv))

π2D2(xu)
∏

v∈N1(u)
(r(2, 1)D1(xv) + r(2, 2)D2(xv))

> 1.

By setting

S(x) =
D1(x)

D2(x)

54

Graph assisted bayesian classifiers

and taking the log, we obtain the following test T (where T > 0 means "decide class 1"):

T = log

(
π1

π2

)
+ log (S(xu))

+
∑

v∈N (u)

log

(
r(1, 2) + r(1, 1)S(xv)

r(2, 2) + r(2, 1)S(xv)

)
.

As q(1, 2) = q(2, 1), two classes in the system lead to q̄ = q(1, 2) = q(2, 1). Consequently,

r(1, 2) + r(1, 1)S(xv)

r(2, 2) + r(2, 1)S(xv)
=

q̄π2+p(1)π1S(xv)
p(1)π1+q̄π2

p(2)π2+q̄π1S(xv)
q̄π1+p(2)π2

.

Therefore, the test T can be split into three parts:

T = log

(
π1

π2

)
+ log

(
q̄π1 + p(2)π2

p(1)π1 + qπ2

)
+ log (S(xu))

+
∑

v∈N (u)

log

(
q̄π2 + p(1)π1S(xv)

p(2)π2 + q̄π1S(xv)

)
.

The first part corresponds to a constant term and so is connected to the threshold. The
second part is the contribution of the node of interest. The third part, which is the most
interesting, corresponds to the contribution of the neighbors in the test. Clearly, in general,
this term is not linear with respect to the nodes’ features and so the test cannot be seen as
a one-layer GNN.

If, in addition, p(1) = p(2) = p̄, the test can be written easily with respect to the DoI as
follows

T = log

(
π1

π2

)
+ log

(
DoI.π1 + π2

π1 +DoI.π2

)
+ log (S(xu))

+
∑

v∈N (u)

log

(
DoI.π2 + π1S(xv)

π2 +DoI.π1S(xv)

)
.

For instance, we remark that if theDoI is much larger than the pdf ratio between the classes
(which may be roughly related to the Kullback-Leibler divergence), then the third term is
almost independent of the nodes’s feature and the information provided by the graph is not
used since it is not reliable.

Consider now that the graph is pure (i.e., r(1, 2) = r(2, 1) = 0 or equivalently q = 0),
we obtain

T = log(
π1

π2

) + |N (u)| log
(
r(1, 1)

r(2, 2)

)
+

∑
v∈N (u)∪{u}

log(S(xv)), (3.25)

55

Chapter 3

where we consider that p(1)may be different from p(2). Once again the proposed classifier
does not boil down to a one-layer GNN. Actually, it can be a GNN if the term log2(S(xv))
is a linear combination of xv. This can be achieved if the function S(xv) is at least a power-
function of xv, such as the Gaussian function or Binomial function.

Let us first consider the Gaussian case, i.e. xv ∼ N (µ(v),Σ) where µ(v) is either
µ1 (if class 1) or µ2 (if class 2) and the correlation matrix is independent of the class (if
not, a second-order polynomial occurs and the GAB is different from a GNN). According to
Eq. (3.25), the first-order GAB test is equal to

T = ω0 +

 ∑
v∈N (u)∪{u}

ω⊤
1 xv

 , (3.26)

where

ω0 = log

(
π2

π1

)
+ (|N (u)|+ 1)(µ⊤

2 Σ
−1µ2 − µ⊤

1 Σ
−1µ1),

ω⊤
1 := [ω1,1, · · · , ω1,F] = (µ2 − µ1)

⊤Σ−1. (3.27)

Consequently this test is a GNN-based test.

Let us now consider the Binomial case. We assume that features xv,f are independent
binary random variables with probabilitiesP (xv,f = 1|yv = 1) = α

(1)
f andP (xv,f = 1|yv =

2) = α
(2)
f . Eq. 3.25 can be written as Eq. (3.26) with

ω0 = log

(
π2

π1

)
+ F

F∑
f=1

log

(
1− α

(2)
f

1− α
(1)
f

)
,

ω1,f = − log

(
α
(1)
f

α
(2)
f

1− α
(2)
f

1− α
(1)
f

)
.

Consequently this test is a GNN-based test as well.

3.4 Discussion on complexity issues

In this section, we compare the different versions of the proposed GAB and the GAT in
terms of parameters/weights to tune and the number of flops for doing this tuning during
the training phase. We will consider only the two-hops case for the GAB and the two-layers
case for the GAT.

First of all, we evaluate the number of parameters to be tuned. Let H and dmax be
respectively the size of the hidden layer and the maximum degree of the considered graph.

For a GAB classifier, we need to estimate

• K2 parameters for the transitionmatrixR through the terms {p(k)}k and {q(k, k′)}k ̸=k′ ;

56

Graph assisted bayesian classifiers

• the parameters of the class’ distributions (obviously, this value depends on the shape
of the assumed distributions):

– KF parameters when each class of each feature is Bernoulli-distributed
– (KF+KF 2) parameters when each class is arbitrary Gaussian-distributed. The

number of parameters can be reduced if the Gaussian distribution per class is
structured. For instance, if the covariance is independent of the class, we only
have (KF +F 2) parameters. If in addition, the covariance matrix is diagonal or
is assumed as a diagonal matrix for the sake of simplicity, we have (KF + F)
parameters;

– K parameters for the priors {πk}k.

When Cora or PubMed dataset are considered (see Table 3.5 for more details), the distribu-
tion is assumed to be Bernoulli in our numerical evaluations (even if not), which implies
that the total number of parameters to estimate, Np is given by

Np = K(K + F + 1). (3.28)

For GAT, we need to tune/learn the weights and the attention parameters of the neural
network. As only two layers are considered we obtain FH weights for the first layer, HK
weights for the second layer, and 2H (resp. 2F) weights for the attention mechanism for
the first layer (resp. the second one). As a consequence, the number of weights to tune,
denoted by Nw is as follows:

Nw = FH +HK + 2(H +K). (3.29)

According to the number of classes and features given in Table 3.5 and by assuming a
hidden layer of size H = 256, we have the following values Np and Nw for the Cora and
PubMed dataset in Table 3.2.

Table 3.2: Number of parameters or weights to be tuned/learnt.

Dataset Np (GAB) Nw (GAT)
Cora 10,087 369,066
PubMed 1,512 129,286

We observe that the number of parameters for GAB is much smaller (by more than an
order of magnitude) than for GAT. In addition, the parameters in GAB are interpretable.
Moreover, since for GAT, parameters are learnt using an iterative process, the computa-
tional complexity in terms of the number of epochs may significantly vary with the chosen
optimization algorithm.

We here consider two variants for the GAB. The first one (denoted by GAB2) corre-
sponds to the case where γ1 = γ2 = 1 while the second one (denoted by GAB2γ) is opti-
mized with respect to the pair γ = (γ1, γ2). Let Nt, Ng, and Nv be the number of training

57

Chapter 3

nodes, the number of tested pairs γ, and the number of nodes for validation respectively.
To estimate the Np parameters during the training phase, we need NpNt flops since each
parameter corresponds to counts or sums over each training node. To select the best pair
of hyperparameters γ, we compute our GAB on all validation and test nodes. A GAB eval-
uation leads to at mostK2D2

maxF flops by looking at Eq. (3.14). Indeed we consider that to
compute each test for one class, we need d2maxKF flops where F corresponds to the flops
required to computeDk(·) as it is the case for the Bernoulli case or the diagonal correlation
matrix Gaussian case. Finally, we have that

Nflop|GAB2γ = NpNt +NgNvK
2d2maxF. (3.30)

When we only consider GAB2, the second term in the Right Hand Side (RHS) has to be
omitted. Note that the 2D grid for the hyperparameterγ is [0 : 0.1 : 1]2 leading toNg = 121.

For GAT2, we just consider the number of flops required for learning the weights (so
the hyperparameters such as the learning rate are assumed to be obtained for free). To
learn the weights, we apply a gradient-descent like algorithm with Ne epochs. Hereafter,
we consider only the neural network’s weights which are dominant. So the weights related
to the attention mechanism are ignored.

We consider one epoch. For the first layer (resp. second layer), we have FH (resp. HK)
weights to update and so FH (resp. HK) sums have to be computed once the gradient
is known. For estimating the gradient, we average over Nt nodes, over the sum of the
neighbors (at most dmax) and a matrix computation of sizeHF (resp. KH) with the current
feature of size F (resp. H). Consequently, we have

Nflop|GAT2 = NeFHNtdmaxFH +NeHKNtdmaxHK. (3.31)

In Table 3.3, we report the rough number of flops for Cora (with a supervision of 30%
and 5%) and PubMed (with a supervision of 5%) with three classifiers. We set Ne = 500,
Nt = 140 (Cora-5%) or Nt = 1000 (Cora-30% and PubMed-5%). Moreover dmax = 168 for
Cora and dmax = 171 for PubMed.

Table 3.3: Number of flops for the training phase.

Dataset GAB2 GAB2γ GAT2
Cora-30% 1.01× 107 1.99× 1011 1.14× 1019

Cora-5% 1.41× 106 1.99× 1011 1.60× 1018

PubMed-5% 1.51× 106 9.31× 1010 1.40× 1018

In the inference phase, applying our classifier (GAB2) leads to K2d2maxF flops (which
corresponds to the number of flops in the second part of the RHS in Eq. (3.30) without Ng

andNv). For GAT2, we haveFHdmaxFH+HKdmaxHK flops (actually, we apply Eq. (3.31)
by removing Ne and Nt). In Table 3.4, we report the rough number of flops during the
inference phase for Cora and PubMed.

We remark that the numbers of flops for our GAB classifiers are much smaller (by many
orders of magnitude) than for the GAT in both training and inference phases. Consequently,

58

Graph assisted bayesian classifiers

Table 3.4: Number of flops for the inference phase.

Dataset GAB2/GAB2γ GAT2
Cora 2.3× 109 1.60× 1012

PubMed 1.3× 108 2.80× 1011

the structure imposed by the derivations of the GAB enable us to have interpretability and
less complexity than the black box GAT.

3.5 Numerical Results

In this section, we conduct experiments with two kinds of datasets: the synthetic ones
where we especially analyze the robustness to the degree of impurity; and some real bench-
mark ones where we compare our classifier to many other approaches based on GNN. The
performance of our classifier (and the ordering with respect to standard GNN based ap-
proaches) depend on the dataset and the level of supervision.

3.5.1 Synthetic datasets

For the sake of simplicity, we consider two classes, i.e., K = 2. Each class is associated
with a different statistical distribution of the node’s feature vector xv. We assume here that
the two distributions are multivariate Gaussian, i.e. xv follows N (µ1, Σ1) in class 1 and
N (µ2, Σ2) in class 2, with unknown mean and covariance. We assume that the features
are uncorrelated in the two classes, i.e. Σ1 = diag(σ2

1) and Σ2 = diag(σ2
2), where σ2

1 and
σ2

2 are (F × 1) vectors. To average over different configurations, different distributions
are generated by drawing µ1 and µ2 randomly from U([0, 1]F) and drawing σ1 and σ2

randomly from U([0.5, 3.5]F). Moreover, the links are generated randomly using different
values of the probability of intra-connectivity, p̄, and the probability of inter-connectivity,
q̄ where q̄ ≤ p̄.

In each experimental setting, we evaluate the average node classification accuracy using
a Monte Carlo simulation with 1, 000 runs. We set the number of nodes to N = 5, 000
and the number of features to F = 500. For each run, we train each classifier on 500
(already-labeled) nodes and test its accuracy on 2, 000 nodes. We use the remaining nodes
for validation.

In Fig. 3.1, we plot the classification accuracy versus the Degree of Impurity (q̄/p̄) for
one-order GAB and one-layer GCN. We observe that the GAB is more robust to DoI than
the GCN especially beyond a DoI of one half. As expected, the GAB is graph-agnostic when
Eq. (3.18) is satisfied. For instance, when p(1) = p(2) = 0.05 then the agnosticity occurs
at q̄/p̄ = 1 while when p(1) = 0.025 and p(2) = 0.075, the agnosticity is reached at
q̄/p̄ = 0.866. We remark that GNN has similar behavior with respect to the usefulness of
the information coming from the graph.

59

Chapter 3

Figure 3.1: GAB and GNN performance on synthetic datasets versus DoI.

3.5.2 Real datasets

Unless otherwise stated, we use the attributed graphs described in Table 3.5, and we use
the training/validation/testing split equal to 30%, 20%, 50%, respectively. To implement
the GNN based classifiers, we use Pytorch where we initialize all the GNN weights by
Glorot initialization, and we train them to minimize the cross entropy loss using the Adam
optimizer with an initial learning rate of 0.005.

Table 3.5: Description of the real datasets.

Dataset Classes Nodes Edges Features
Cora[73] 7 2,708 5,429 1,433
CiteSeer[73] 6 3,327 4,732 3,707
PubMed[73] 3 19,717 44,338 500
CS[74] 15 18,333 163,788 6,805
Physics[74] 5 34,493 495,924 8,415
Sexual[64, 44] 2 1,888 2,096 20

In Fig. 3.3, we plot the accuracy versus the DoI: on the top, the GAB at several orders as
well as the best combination of powers γd in Eq. (3.14). Here, the training phase enables us
to estimate the parameters of the GAB except the γd. The powers γd are optimized with a
grid search approach during the validation phase, on themiddle panel, the GATwith several
layers, and on the bottom panel the GCN at several layers. The dataset is here always Cora
which implies that the distributions are Bernoulli. The x-axis starts with the real value of the
DoI andwe add links between previously unconnected nodes that belong to different classes
with the goal of gradually varying the DoI to 1. The above mentioned classifiers are trained
for each "impure" graph. We remark that the information on the graph is less accurate for

60

Graph assisted bayesian classifiers

5 10 15 20 25 30
Size of the training set (%)

76

78

80

82

84

86

88

90

Ac
cu
ra
cy
 (
%
)

GAB* (Pubmed)
GAT (Pubmed)
GCN (Pubmed)
GAB* (Cora)
GAT (Cora)
GCN (Cora)

Figure 3.2: GAB and GNN performance on Pubmed versus the size of the training set.

any approach when we consider more hops; actually, the confidence on the "far" data is
smaller. Nevertheless by averaging properly the hops as in GABγ, the performance are
improved slightly. In any case, GABγ is better then the best other approaches since it
enables to better adapt to the impurity. Moreover GABγ outperforms the graph-agnostic
classifier; so it always manages to take benefit of the graph.

In Table 3.6, we compare our approaches GABγ and GAB⋆ up to five hops (in GAB⋆,
we approximate the unknown distributions by two-layer NNs which are learnt during the
training phase) with the methods presented and analyzed in [45]. We copy-paste the val-
ues given in [45] where the best number of layers and the best version of each approach
have been selected. We select the best version of GAB in the sense that we optimized the
hyperparameters γ by allowing at most the fifth-order case. In GABγ, the shape of the dis-
tributions is a priori given. For instance, for PubMed, we considered a Bernoulli one while it
is inaccurate. We plot the accuracy rate and the ranking (in brackets) for a 30%-supervised
graph. For computing the average accuracy and the ranking (for all the considered datasets)
for our GAB approach, we select the best one. We remark that the performance of our ap-
proach is close to GBPN and GAT which are the best ones in the literature. When GABγ is
bad, it corresponds to the case PubMed where the used distribution does not fit well with
the true one. So improvement can be done by choosing a better approximation. In addition
to the good performance of our proposed approach, we have interpretability of our algo-
rithms since we wrote them in closed-form and we are able to understand the meaning of
each element.

In Fig. 3.2, we plot the accuracy rate versus the training size (in percentage) for our
approach (GAB⋆) and the GCN and GAT with two-layers/hops. In solid line, we consider
PubMed dataset and in dash line, we consider Cora dataset. We observe that for PubMed,
our approach outperforms the state of the art regardless of the training size. Actually we
should note than as PubMed is a large dataset, a small portion of training still leads to a

61

Chapter 3

Table 3.6: 30%-supervised node classification accuracy (%).

Dataset MLP GCN SAGE GAT GMNN DeeperGCN GBPN GABγ GAB⋆
Cora 72.1(9) 87.1(3) 86.9(4) 87.1(2) 86.4(6) 87.2(1) 86.4(6) 86.9(4) 86.3(8)

CiteSeer 71.2(9) 73.5(5) 73.5(5) 73.1(7) 72.9(8) 73.9(4) 74.8(2) 75.2(1) 74.7(3)

PubMed 86.5(6) 87.1(5) 87.8(4) 88.1(3) 86.7(7) 84.7(9) 88.5(2) 86.4(8) 89.5(1)

CS 94.2(5) 93.2(9) 93.7(7) 94.0(6) 93.3(8) 94.9(3) 95.5(1) 94.5(4) 95.2(2)

Physics 95.8(9) 96.1(6) 96.3(5) 96.3(6) 96.1(8) 96.7(3) 96.9(1) 96.4(4) 96.7(2)

Sexual 74.5(8) 83.9(6) 93.3(5) 93.6(4) 77.0(7) 65.0(9) 97.4(1) 96.5(3) 97.1(2)

84.4(7.6) 86.8(5.6) 88.9(5) 89.0(4.6) 85.2(7.3) 83.0(4.8) 89.9(2.2) 90.1(2)

large amount of data to estimate the statistics required for GAB. In contrast, for Cora, our
approach outperforms GCN and GAT only when the training is large enough (and as Cora
is a small dataset, large enough means also when the training set in percentage is large
enough).

According to all the previous experiments, we remark that our GAB approach is more
robust to the degree of impurity and its performance is close to or better than the tested
GNN approaches on a number of benchmark graphs.

3.6 Conclusion

We have proposed a new graph-assisted Bayesian-based node classifier. This classifier is
able to take into account the degree of impurity of the graph. It is also shown to significantly
outperform some GNN-based classifiers, in addition to providing more interpretability and
requiring lower computational complexity (if the model of the nodes’ distributions is well
approximated in closed-form).

62

Graph assisted bayesian classifiers

Figure 3.3: Accuracy performance with added noisy edges in Cora.

63

Chapter 3

64

Chapter 4

Robustness to adversarial attacks

4.1 Introduction . 66
4.2 Adversarial attacks . 67

4.2.1 Gradient-Based Attacks 67
4.2.2 Optimization-Based Attacks 68
4.2.3 Generative Adversarial Network (GAN)-Based Attacks . . 68

4.3 Adversarial attacks on graphs . 69
4.3.1 Attacker’s Capacity . 69
4.3.2 Methods of Attacking a Graph 69

4.4 Measures to prevent adversarial attacks on graphs 70
4.4.1 Adversarial training . 71
4.4.2 Data purification . 71

4.5 Robustness of the graph assisted Bayesian classifier 71
4.5.1 The graph assisted Bayesian classifier as a belief propaga-

tion framework . 72
4.5.2 Node similarity as a simple defence mechanism for GAB . 74

4.6 Experiments . 74
4.6.1 Attack scenario . 74
4.6.2 Attack description . 75
4.6.3 Data description . 75
4.6.4 Results . 76

4.7 Conclusion . 76

65

Chapter 4

4.1 Introduction

As we have mentioned multiple times in the previous chapters, graphs can be used as an
effective tool for representing many systems across multiple areas and disciplines. We have
also seen that representation learning and more specifically graph neural networks have
been used successfully to obtain powerful representations of either individual nodes on
graphs or the entire graphs. Representations that can be fed into machine learning mod-
els to solve several downstream tasks. We recall that most graph neural networks take
advantage of the message passing scheme which aim at gathering information from neigh-
boring nodes to update each node’s representation. This allows us to learn representations
that capture both intrinsic nodes’ features and the structural information of the graph. It
also has been found that GNNs are useful in a variety of applications due to their strong
representation learning capacity.

Despite their success, it was also shown that these models inherit drawbacks of clas-
sical deep learning models such as convolutional neural networks. More specifically their
vulnerability to adversarial attacks. Which means that injecting small perturbations to ei-
ther nodes’ features or the structure of the graph significantly decreases the performance
of these models. These vulnerabilities challenge the effectiveness of GNNs and make their
deployment in critical applications a concern. On social networks, fraudulent or malicious
accounts can link to normal users and thus fool fake account detection systems. They can
then continue to operate normally on these platforms by spreading false information for
example.

It is therefore necessary to carefully study the impact of this type of attacks onGNNs and
investigate new techniques to increase the robustness of these models in order to promote
the successful adoption of GNNs in a broader range of applications. This particular issue
caught the attention of academics, who developed a variety of strategies and tactics to both
deceive GNNs by carefully designing subtle alterations to the graph data and to protect
them from these same attacks.

In the previous chapter we have introduced a new Bayesian based classifier for the
problem of node classification. We have showed that its ability to take into account the
degree of impurity of the graph makes it more suitable for graphs with weak community
structure when compared to graph neural networks based approaches. In this chapter our
primary objective is to study the robustness of the proposed classifier to adversarial attacks
on graph structured data. We show that it is naturally significantly more robust than GNNs
to this kind of attacks. We further suggest simple defence mechanisms and compare their
performance with equivalent defences on GNNs.

The chapter is organized as follows. In section 4.2, we give an introduction to adversarial
attacks and describe how they were first used and generated for images. In section 4.3, we
focus on adversarial attacks for graph structured data by giving an introduction to the
different types of attacks that were proposed in the literature. We then present some of the
proposed defences against graph attacks in section 4.4. The two last section focus on the
robustness of GAB to adversarial attacks. In section 4.5 we introduce a defence mechanism
to improve the robustness of gab, while in section 4.6 we demonstrate how that mechanism

66

Robustness to adversarial attacks

improves the robustness though a number of experiments.

4.2 Adversarial attacks

The term adversarial attack was first introduced in [17]. Adversarial attacks are small per-
turbations to the input that can cause a machine learning model to produce erroneous out-
puts. These perturbations are usually imperceptible to humans. The perturbations are gen-
erated in a way that maximizes the model’s loss function. The field of adversarial attacks
has grown significantly in the last few years.

Adversarial attacks can be targeted or untargeted. Targeted attacks aim to change the
output of themodel to a specific class. For example, a targeted attack on amalware detection
systemwould be an attack that aims to change the classification of amalicious file to benign.
On the other hand, untargeted attacks only aim to change the output of the model and do
not have a specific target class.

Adversarial attacks can be generated in a white-box setting or a black-box setting. In
the white-box setting, the adversary has access to the model’s parameters and architecture.
This is a common setting in the early works on adversarial attacks. The attacks are gener-
ated by using the gradient of the loss function with respect to the input. In the black-box
setting, the adversary has no access to the model’s parameters or architecture. In this set-
ting, the adversary generates the attacks by repeatedly querying the model and observing
its outputs.

Adversarial attacks can be generated using a variety of methods. In this section, we will
discuss the different methods that have been used to generate adversarial attacks.

4.2.1 Gradient-Based Attacks

We will discuss the methods that use the gradient of the loss function with respect to the
input to generate adversarial attacks. The gradient of the loss function can be used to iden-
tify the direction in which the input needs to be perturbed to maximize the loss function.
The loss function can be chosen to achieve a specific goal such as a targeted attack.

One of the first works that used the gradient of the loss function to generate adversar-
ial attacks was [76]. In this work, the authors used the box-constrained Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization method to generate the attacks.
The goal of the attack was to find the minimum perturbation that causes the model to
misclassify the input. The L-BFGS method requires access to the model’s parameters and
architecture. Therefore, the attack is generated in a white-box setting.

Goodfellow et al. [28] proposed a fast method for generating adversarial attacks us-
ing the gradient of the loss function. This method, called the Fast Gradient Sign Method
(FGSM), perturbs the input by a small value in the direction of the sign of the gradient of the
loss function. The attack can be generated in a white-box setting or a black-box setting. In
the white-box setting, the adversary has access to the model’s parameters and architecture.

67

Chapter 4

In this case, the gradient of the loss function can be calculated using backpropagation. In
the black-box setting, the adversary has no access to the model’s parameters or architec-
ture. In this case, the adversary can estimate the gradient of the loss function by repeatedly
querying the model and observing its outputs. The attack can be generated using any loss
function that the adversary desires. For example, the adversary can choose the loss function
to achieve a targeted attack or an untargeted attack.

Madry et al. [58] proposed an iterative version of the FGSMmethod. Thismethod, called
the Projected Gradient Descent (PGD)method, perturbs the input inmultiple iterations by a
small value in the direction of the sign of the gradient of the loss function. In each iteration,
the perturbed input is projected onto the space of allowable perturbations. This method can
also be used in a white-box setting or a black-box setting and can also be applied both the
targeted and untargeted settings.

4.2.2 Optimization-Based Attacks

In this section, we will discuss the methods that use an optimization problem to generate
adversarial attacks. The optimization problem can be used to generate a targeted attack or
an untargeted attack.

Carlini and Wagner [7] proposed a method for generating adversarial attacks using
an optimization problem. The goal of the optimization problem is to find the minimum
perturbation that causes the model to misclassify the input. The optimization problem can
be solved using the Adam [50] or the L-BFGS [56] optimization methods. The attack can
be generated in a white-box setting or a black-box setting. In the white-box setting, the
adversary has access to the model’s parameters and architecture. In this case, the gradient
of the loss function can be calculated using backpropagation. In the black-box setting,
the adversary has no access to the model’s parameters or architecture. In this case, the
adversary can estimate the gradient of the loss function by repeatedly querying the model
and observing its outputs.

4.2.3 Generative Adversarial Network (GAN)-Based Attacks

In this section, wewill discuss themethods that use a generative adversarial network (GAN)
to generate adversarial attacks. GANs were first introduced in [27]. They consist of two
networks: a generator and a discriminator. The generator takes a random noise vector as
input and generates an output. The discriminator takes the generator’s output and tries to
classify it as real or fake. The generator and the discriminator are trained simultaneously
to compete with each other. GANs have been used to generate images that look realistic.

In [87], the authors proposed a method for generating adversarial attacks using a GAN.
The GAN is trained to generate adversarial attacks. The generator takes the original input
and generates an adversarial example. The discriminator takes the original input and the
adversarial example and tries to classify them as real or fake. The generator and the dis-
criminator are trained simultaneously to compete with each other. The generator can be

68

Robustness to adversarial attacks

trained using any loss function that the adversary desires.

4.3 Adversarial attacks on graphs

The primary taxonomy of adversarial attacks on graph-structured data is briefly introduced
in this section. Attack algorithms can be divided into many categories according to the
objectives, capabilities, resources, and knowledge of the attackers. We make an effort to
provide a concise explanation of the key aspect of graph adversarial attacks.

4.3.1 Attacker’s Capacity

The attacker’s capacity to introduce adversarial noise to the graph data defines a first cat-
egorization of adversarial attacks on graphs. Attacks can occur either at the training or
the test phase. In the first scenario, poisoning attacks, also known as training-time at-
tacks, aim to influence the performance of the targeted models by changing the training
datasets. In other words, attackers are adding "poison" into data on which the models are
trained leading to a decrease in their performances. In this case, after changing the training
dataset, the target models’ parameters are retrained. On the other hand, in evasion attacks,
models are already trained on clean datasets and their parameters are fixed. Attacks take
place only during the inference phase.

4.3.2 Methods of Attacking a Graph

The most common methods for attacking a graph are to either add or remove edges from
the graph. This is because the edges in a graph represent relationships between nodes, and
changing the edges can change the structure of the graph. In some cases, it is also possible
to add or remove nodes from the graph or modify nodes’ features.

Edge Modification

Most adversarial attacks on graphs focus on changing the edges in the graph. In these
attacks, the attacker adds or removes edges from the graph. These attacks can be divided
into two types: untargeted attacks, where the goal is to change the label of any node in
the graph, and targeted attacks, where the goal is to change the label of a specific node.
Untargeted attacks are the most common type of attack, and they are the type of attack
that is most commonly used to evaluate an attack. The main goal of an untargeted attack
is to change the label of as many nodes as possible. This can be achieved by adding or
removing edges from the graph.

One of the first untargeted attacks on graphs was proposed by in [104]. In this attack,
the attacker can either separately add or remove edges to the graph. The attacker uses a
surrogate model to estimate the importance of each edge in the graph. The surrogate model

69

Chapter 4

is a two-layer GCN, and it is trained to predict the labels of the nodes in the graph. The
attacker then uses a greedy algorithm to add edges to the graph. At each iteration of the
algorithm, the edge that maximizes the classification loss is selected. The algorithm stops
when themaximumnumber of edges have been added. It is possible to both add and remove
edges from the graph. The first attack of this type was proposed by Chen et al. [11]. In this
attack, the attacker uses a surrogate model to estimate the importance of each edge in the
graph. The surrogate model is a DeepWalk model, and it is also trained to predict the labels
of the nodes in the graph.

Node Modification

Another type of attack is to add or remove nodes from the graph. This type of attack is less
common, because it is less powerful since by modifying label of neighbors of the attacked
node does not force automatically the change of the label of the considered node. But
the main advantage of node modification attacks is that they are more difficult to detect,
because the structure of the graph is not changed as much.

The first node modification attack was proposed by Dai et al. [16]. In this attack, the
attacker can either add or remove nodes to the graph. The attacker uses a surrogate model
to estimate the importance of each node in the graph. The surrogate model is a two-layer
GCN, and it is trained to predict the labels of the nodes in the graph. The attacker then
uses a greedy algorithm to add nodes to the graph. At each iteration of the algorithm, the
attacker selects the node that maximizes the classification loss. The algorithm stops when
the maximum number of nodes have been added.

Feature Modification

There are other types of attacks that are less common, but they have been proposed in recent
years. These attacks include attacks that change the features of nodes. The first attack of
this type was proposed by Chen et al. [11]. He uses DeepWalk model that is trained to
predict the labels of the nodes in the graph as a surrogate model to estimate the importance
of each feature. The attacker then uses a greedy algorithm to modify the features. At each
iteration of the algorithm, the attacker selects the feature that maximizes the classification
loss. The algorithm stops when the maximum number of features have been modified.

4.4 Measures to prevent adversarial attacks on graphs

We have demonstrated in earlier sections that subtle perturbations to graph data can easily
mislead graph neural networks. It is incredibly challenging to use graph neural networks in
safety-critical applications because of their vulnerability. Various countermeasure tactics
have been put out to protect graph neural networks from these attacks. The approaches
currently in use can be divided into different categories.

70

Robustness to adversarial attacks

4.4.1 Adversarial training

A popular defense against adversarial attacks on image data is adversarial training [8]. In
order for the trained model to successfully categorize upcoming adversarial cases, adver-
sarial examples must be inserted into the training set. Similar to this, we can use this ap-
proach to counter graph adversarial attacks. It is suggested that during adversarial training,
edges are dropped at random to provide perturbations on the adjacency matrix [16]. Even
though such a straightforward technique only slightly increases classification accuracy (1%
increase), it demonstrates some effectiveness with such inexpensive adversarial training.
Additionally, projected gradient descent rather than randomly dropping edges is used to
produce perturbations on the discrete input structure [88]. On the other hand, a dynamic
regularization adversarial training technique is suggested to disturb the input features [23].

4.4.2 Data purification

Adversarial training techniques only focus on defending against evasion attacks, which
focuses on attacks that happen during training. Instead, the majority of graph purification
defence strategies concentrate on avoiding poisoning attacks. Purification approaches seek
to clean the poisoned graph and create reliable graph neural network models based on it
given that poisoning attacks introduce poisons into the training graph. Pre-processing [22]
and graph learning [46] are two methods for achieving graph purification.

Pre-processing Pre-processing techniques initially clean up the data from the graph be-
fore training the GNN model on it. The GNN model is trained on an uninfected graph in
this manner. Authors in [85] suggest a purification technique based on two conclusions
made about the attacking techniques: Attackers typically favor adding edges over remov-
ing edges or changing characteristics, and they also frequently connect nodes with distinct
features. They thus suggest a protection strategy that involves removing edges who con-
nect nodes which have low Jaccard Similarity. The edge between these two nodes could be
hostile because they are different from one another and it is unlikely that they are related in
reality [71]. The experimental results show that the suggested defense strategy is effective
and efficient.

Graph learning Pre-processing might not be the best option for cleaning the graph be-
cause it is not a part of the GNN training procedure and might unintentionally delete or-
dinary edges. Graph learning is an alternate purification technique that aims to eliminate
adversarial patterns.

4.5 Robustness of the graph assisted Bayesian classifier

In this section, we are interested in the robustness of the graph assisted Bayesian (GAB)
classifier that we introduced in chapter 3. In section 4.5.1, we provide an intuitive and

71

Chapter 4

interpretable formulation of GAB. This formulation will allow us to introduce a simple
defence mechanism that increases the robustness of GAB to adversarial attacks in section
4.5.2.

4.5.1 The graph assisted Bayesian classifier as a belief propagation
framework

We recall that our graph assisted Bayesian classifier is defined as stated in Eq.3.14 as follows:

k̂u = argmaxk πkDk(xu)
∆u∏
d=1

∏
v∈Nd(u)

×

(
K∑

k′=1

r(d)(k, k′)γdDk′(xv)

)
(4.1)

In the rest of the chapter, we consider the first order classifier which only takes into
account first-order neighbors of the nodes of interest. It can be expressed as follows:

k̂u = argmax
k

P (yu = k|Xu, IG), (4.2)

where IG provides information only about adjacent nodes to node u and Xu = {xu} ∪
{xv, v ∈ N1(u)} is the set of feature vectors of node u and its first order neighbors. The
posterior probability of a node u belonging to class k knowing features of its first-order
neighbors can then be expressed as:

P (yu = k|Xu, IG) = πkDk(xu)
∏

v∈N1(u)

(
K∑

k′=1

r(k, k′)Dk′(xv)

)
To solve the equation Eq.4.2, we have to compute the probability P (yu = k|Xu, IG) for
all k ∈ {1, . . . , K}, then assign the class with the larger probability to the node. We can
summarize the expression for all possible classes as follows:

p⃗u = π⃗ ⊙ b⃗u ⊙
⊙∏

v∈N1(u)

Rb⃗v (4.3)

where:

• The operator ⊙ is the Hadamard element-wise product, i.e.
x1

x2
...

xK

⊙

y1
y2
...
yK

 =

x1y1
x2y2
...

xKyK

72

Robustness to adversarial attacks

• The operator
⊙∏
represents the Hadamard product of a sequence of vectors.

• p⃗u =

P (yu = 1|Xu, IG)
P (yu = 2|Xu, IG)

...
P (yu = K|Xu, IG)

 ∈ RK×1 where the k-th entry represents the probability

of belonging to class k.

• π⃗ =

π1

π2
...

πK

 ∈ RK×1 where the k-th entry represents the prior probability of be-

longing to class k.

• b⃗u =

D1(xu)
D2(xu)

...
DK(xu)

 ∈ RK×1 where the k-th entry represents the prior probability of

belonging to class k based only on intrinsic features of node u

• R ∈ RK×K is the transition probability matrix whose entries r(k, k′) represent the
probability that a node of class k is connected to a node of class k′.

Since or multiplication are element-wise, by taking the log of the previous equation, we
obtain the following:

log(p⃗u) = log(π⃗) + log(⃗bu) +
∑

v∈N1(u)

log(Rb⃗v), (4.4)

where log(x⃗) is a vector whose i-th entry is (log(xi)i.

This formulation allow us to make the following interpretation of the classifier. The left
hand term represents our belief about the belonging of node u to each of one of the classes
knowing its intrinsic features, its first-order neighbors and their corresponding features.
Each entry of the vector represents a class. The higher the value of an entry, the more
likely it is that a node belongs to the corresponding class. The right hand term is composed
of three parts. The term involving π represents the likelihood of belonging to each of the
classes based on the available labelled nodes in the training set. The second term can be
interpreted as our initial belief when using only intrinsic features of node u. The third term
make it possible to update our initial belief by taking into consideration the information
from the neighboring nodes.

Unlike GNN-based methods who propagate features through the edges of the graph
and update each node’s features by taking into consideration the received features from
the neighboring nodes before estimating the likelihood of belonging to each of the classes.
In GAB, we first estimate the likelihood that each of the nodes belongs to each one of the
classes, then we propagate this belief through the edges by taking into consideration the
degree of impurity of the graph through the use of the transition matrixR.

73

Chapter 4

4.5.2 Node similarity as a simple defence mechanism for GAB

A part from the benefit of interpretability that the formulation of the previous section pro-
vides, it also allow us to introduce a simple defence mechanism against adversarial attacks.
In the following, we motivate and describe our defence strategy.

As it was shown in multiple studies [71, 85], the majority of adversarial attacks on the
graph structure, and especially for the node classification task, consists of adding malicious
edges between unrelated nodes, i.e. nodes that belong to different classes and whose fea-
tures are dissimilar. Adding these edges contribute to misleading the classifiers into assign-
ing the wrong class to the attacked nodes. This is even more true for models that are based
on the aggregation of features from neighbouring nodes such as GCN based classifiers.

As seen in section 4.4.2, data purification techniques consist of comparing adjacent
nodes’ similarity to remove suspicious links that connect dissimilar nodes. Although these
kind of mechanisms were shown to be effective in defending against graph attacks, they
might delete ordinary edges, which can have an opposite effect on the decision of the clas-
sifiers. We suggest instead to weight the contribution of the neighbors according to their
similarities to the node of interest when using GAB. This can directly be applied to our
classifier, by modifying Eq 4.4 as follows:

log(p⃗u) = log(π⃗) + log(⃗bu) +
∑

v∈N1(u)

S(u, v)∑
v′∈N1(u)

S(u, v′)
log(Rb⃗v), (4.5)

where S(u, v) = xu

∥xu∥ .
xv

∥xv∥ is the cosine similarity function that measures similarity be-
tween intrinsic features of nodes u and v. Note that the expression S(u, v) in the previous
equation is general and can represent any similarity function depending on the nature of
nodes’ features.

4.6 Experiments

4.6.1 Attack scenario

It is essential to understand potential attackers’ capabilities in order to evaluate adversarial
robustness. In this experiment, we opt for a commonly used scenario to benchmark both
adversarial attacks and countermeasures [97]. That is, attackers are aware of every node,
edge, and label in the graph (aside from the labels of the test nodes), but they are oblivious
of the target model or defense mechanism. The number of edges that they can perturb∆A

is limited and is less then a ratio δe of all edges in the graph. During training, they are not
allowed to make any changes to the original graph. Only a limited number of queries can
be used to get predictions from the target model.

74

Robustness to adversarial attacks

Dataset Nodes Edges Features Classes

Cora 2,680 5,148 302 7
Citeseer 3,191 4,172 768 6

Table 4.1: Statistics of datasets

4.6.2 Attack description

To compare the robustness of GAB with GNN based methods, we opt for the SPEIT attack
[98] which can be described as follows. It is based on Enhanced Feature Gradiant Attack and
Adversarial Adjacent Matrix Generation. It works by first constructing an attack matrix,
then altering the features of the attack nodes by optimizing an attack loss. Many proposed
attacks in prior research on graph adversarial attacks affect features and connections simul-
taneously. Finding the best solution, however, gets challenging as the search space grows.
Because of this, the SPEIT attack modifies connections and features in turn. Instead of tar-
geting all test nodes, it ignores test nodes that are already challenging to classify in favor of
those that are likely to be accurately classified. Since, it does not have access to test nodes’
labels, this strategy uses a number of models to predict the labels and look for their most
shared predictions. The idea is that a node’s similar classification across many models is
most likely the result of its topology or feature properties. It is thus interesting to select
these nodes and alter their features and/or their neighbourhood.

4.6.3 Data description

Datasets We use "grb-cora" and "grb-citeseer", which are modified versions of "cora" and
"citeseer" citation networks that were presented in previous chapters. This refined version
[102] removes duplicated nodes and use pre-trained word embedding as initial node fea-
tures instead of the binary dictionary of the original version. Table 4.1 shows statistics of
datasets.

We also follow the data splitting scheme that was proposed in [97]. It is founded on
the observation that was made in [103] which states that nodes with a small number of
neighbors are more vulnerable to adversarial attacks. They thus suggest to divide datatsets
into subsets with different degree distributions. Each of the sets provides a particular degree
of difficulty, More precisely, we use four test sets named "Easy", "Medium", "Hard" and "Full".
The latter contains all test nodes.

75

Chapter 4

grb-cora grb-citeseer

Easy Medium Hard Full Easy Medium Hard Full

GCN 48.1 69.2 88.6 59.4 40.5 49.5 61.6 48.7
GAB⋆ 65.3 77.4 89.2 73.7 56.4 62.7 74.6 64.5

Table 4.2: GCN vs GAB : Effect of SPEIT attack [98] on the node classification accuracy (%)
without using any defence mechanism

4.6.4 Results

We conduct several experiments to compare the adversarial attack robustness of GNN-
based models with that of GAB. We report the results in terms of accuracy obtained on
several test sets with the different levels of difficulty described above.

Table 4.2 shows results of that comparison when applying the models without the use
of any defence mechanism. The results demonstrate clearly that GAB is significantly more
robust than GCN. This is due to the Bayesian nature of GAB that updates its belief on the
class to which a node belongs when using features of its neighbors by taking into consid-
eration the degree of impurity of the graph (see Eq. 4.5.1). When an adversarial edge is
added to the graph, it usually connect the attacked node to a node from a different class,
GAB is designed to give less importance to nodes that re more likely to belong to a differ-
ent class. Which make it by design more robust than GCN. This was also shown in Figure
3.1 in the previous chapter. Although the purpose of chapter 3 was not to study the ro-
bustness to adversarial attacks, adding random edges between nodes from different classes
can be interpreted as a simple untargeted attack. Results in Table 4.2 are consistent with
those in Figure 3.1 although now we are using a more sophisticated attack than the random
perturbation in the previous chapter.

On the other hand, table 4.3 shows accuracy on the node classification task of a "forti-
fied" version of GCN called RobustGCN [99] and of the version of GAB that was defined in
Eq. 4.5.2 which we refer to as RobustGAB⋆. Results hows improvement of both methods
when compared models with no defences. RobustGAB⋆ is still slightly better then Robust-
GCN. It is worth noticing that the purpose of this work is to study the robustness of GAB
to adversarial attacks. Thus, we have not conduct extensive experiment and comparison
with all available defence mechanisms in the literature. A classical example is adversarial
training which can be applied to any classifier since it modifies the training data and not the
actual model, and it was shown to be effective in increasing the robustness of all models.

4.7 Conclusion

The robustness of node classifiers to adversarial attacks is a crucial concern for the use of
these techniques in practical applications. The focus of this chapter is to study the robust-

76

Robustness to adversarial attacks

grb-cora grb-citeseer

Easy Medium Hard Full Easy Medium Hard Full

RobustGCN [99] 74.6 81.2 88.4 79.8 52.3 61.6 77.1 59.3
RobustGAB⋆ 73.2 80.1 88.1 80.2 58.1 64.3 76.1 66.2

Table 4.3: GCN vs GAB : Effect of SPEIT attack [98] on the node classification accuracy (%)
using defence mechanisms

ness of the Bayesian classifier we proposed. We show that our classifier can resist these
attacks better than GNN-based methods. Then, based on the similarity between the intrin-
sic features of the nodes, we suggest novel defense methods to enhance its robustness.

77

Chapter 4

78

Conclusion and perspectives

Conclusion

The research carried out for this thesis has made significant advancements in the field of
graph learning. Our main goal was to contribute to the progress of graph learning tech-
niques, specifically to the task of node classification. We achieved this by proposing novel
graph-structured data processing techniques.

The first contribution is a method we called GraphCL. It is a general contrastive learn-
ing framework for learning nodes’ representations in a self-supervised way. It learns node
embeddings by maximizing the similarity between the representations of two randomly
perturbed versions of the same graph. It starts by generating two representations of the
same node using graph neural networks, then leverages a contrastive learning loss to opti-
mize agreement between them.

The second contribution is related to the robustness of node classifiers to structural
noise. Starting from the observation that GNNs perform differently based on the dataset,
we examined the reason for this. We showed that these variations are related to the degree
of impurity of the graph then proposed a novel Bayesian node classifier that takes into
account the degree of impurity of graphs when classifying nodes.

The third contribution is about the robustness of node classifiers to adversarial attacks,
a critical issue for the deployment of these methods in real world applications. We demon-
strate that our classifier is more robust to these attacks than GNN-based techniques. Then,
in order to increase its robustness, we propose novel defense mechanisms.

Perspectives

In future works, the following concerns deserve to be addressed.

1. In chapter 4, we studied the robustness of the Bayesian classifier that we proposed to
adversarial attacks. We limited ourselves to first order classifiers. We had therefore
started to analyze the robustness of higher order classifiers to this kind of attacks. The
question of the robustness of prediction models being crucial for their deployment in
critical applications, it is necessary for us to analyze more deeply the robustness of
the models we propose. In the continuity of our work, we plan to pursue this analysis
using other types of attacks. In particular the recently proposed injection methods
which are more realistic because they are based on the injection of new nodes to
graphs [103]. On a social network for example, it is easier to create a new malicious
user and connect him to other users (by following other accounts for example), than
to modify the properties or links of existing users.

2. Next, we would like to tackle the problem of link prediction. The most powerful

79

methods today are based on GNN. One of the approaches, for example, is to first
use GNNs to obtain representations of nodes in a self supervised manner, and then
estimate the probability of the existence of links between pairs of nodes based on
their similarity. Another method consists in using GNNs to obtain a representation
of the subgraph around the link we are interested in, and then use this representation
to decide if the link exists or not [95]. Previous methods look for proprieties such as
the presence or not of cycles, triangles or cliques in the subgraphs around the links
to determine their probability of existence. We instead would like to take a different
path by building on the Bayesian approach we proposed for node classification in
chapter 3 to develop Bayesian models for link prediction.

3. Another research direction that interests us is the learning of representations in an
unsupervised way. The framework we presented in chapter 2 is based on contrastive
learning. This approach allowed us to obtain good quality node representations (i.e.
representations that proved useful for the node classification task) and to minimize
the need for manual annotation. However, this method requires the use of negative
samples. Generating these examples and integrating them into the learning process
can be very costly in terms of computation time and can even become unfeasible
when dealing with very large graphs. Therefore, it is of great importance to improve
the performance and efficiency of self-supervised learningmethods to accelerate their
deployment in real applications. This can be done either by optimizing the process
of generating and using negative samples, or by developing other self-supervised
approaches that do not rely on negative samples. We plan to explore both of these
directions in the future.

80

Appendix A

Appendix A

A.1 Derivations for Eq. (3.3)

We first focus on the term Q
(1)
u (k). We get

Q(1)
u (k) = P (Xu|yu = k, IG)

=
∑

{kv}v∈Vu

P (Xu|yu = k, {yv = kv}v∈Vu , IG)

× p({yv = kv}v∈Vu|yu = k, IG)

As the classes of the neighbors are given, the information on the graph becomes redundant
and so useless. Therefore IG can be removed from the first term.

Q(1)
u (k) =

∑
{kv}v∈Vu

P (Xu|yu = k, {yv = kv}v∈Vu)

× p({yv = kv}v∈Vu|yu = k, IG)

Given the classes, the samples of each node are run independently, so we get

Q(1)
u (k) =

∑
{kv}v∈Vu

∏
v′∈Vu

P (xv′ |yu = k,

{yv = kv}v∈Vu)

× p({yv = kv}v∈Vu|yu = k, IG)
=

∑
{kv}v∈Vu

P (xu|yu = k)

×
∏
v′∈Vu

P (xv′|yv′ = kv′)

× p({yv = kv}v∈Vu|yu = k, IG)
= Dk(xu)

∑
{kv}v∈Vu

∏
v′∈Vu\{u}

Dkv′
(xv′)

× p({yv = kv}v∈Vu|yu = k, IG).

81

which concludes the derivations by doing a re-ordering.

A.2 Derivations for Eq. (3.12)

• Let us start with d = 2:

r(2)(k, k′) = P (yv = k′|yu = k, C2)

=
K∑

k′′=1

P (yv = k′|yu = k, yw = k′′, C2)

× P (yw = k′′|yu = k, C1)

As the class of w is known, the information on the class of u becomes useless and
only the fact that v and w are 1-hop neighbor remains also important. Therefore, we
obtain

r(2)(k, k′) =
K∑

k′′=1

P (yv = k′|yw = k′′, C1).r(1)(k, k′′)

=
K∑

k′′=1

r(1)(k′′, k′).r(1)(k, k′′). (A.1)

where w is the node connecting u and v. This node w exists since u and v are 2-hop
connected. According to Eq. (A.1), we have

R(2) = R2.

• For any d, we have,

r(d)(k, k′) = P (yv = k′|yu = k, Cd)

=
K∑

k′′=1

P (yv = k′|yu = k, yw = k′′, C1)

× P (yw = k′′|yu = k, Cd−1)

=
K∑

k′′=1

P (yv = k′|yw = k′′, C1).r(d−1)(k, k′′)

=
K∑

k′′=1

r(1)(k′′, k′).r(d−1)(k, k′′).

Therefore,
R(d) = R(d−1)R.

• Finally, by induction, we conclude the derivations.

82

Bibliography

[1] Emmanuel Abbe. “Community detection and stochastic block models: recent devel-
opments”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 6446–6531.

[2] Sami Abu-El-Haija et al. “MixHop: Higher-Order Graph Convolutional Architec-
tures via Sparsified Neighborhood Mixing”. In: Proceedings of the 36th International
Conference on Machine Learning. 2019, pp. 21–29.

[3] James Atwood and Don Towsley. “Diffusion-convolutional neural networks”. In:
Advances in Neural Information Processing Systems. 2016, pp. 1993–2001.

[4] Stephen P Borgatti, Martin G Everett, and Jeffrey C Johnson. Analyzing social net-
works. Sage, 2018.

[5] Michael M Bronstein et al. “Geometric deep learning: going beyond Euclidean data”.
In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

[6] Joan Bruna et al. “Spectral networks and locally connected networks on graphs”. In:
arXiv preprint arXiv:1312.6203 (2013).

[7] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of neural
networks”. In: 2017 ieee symposium on security and privacy (sp). Ieee. 2017, pp. 39–
57.

[8] Soumen Chakrabarti, Byron Dom, and Piotr Indyk. “Enhanced hypertext catego-
rization using hyperlinks”. In: Acm Sigmod Record 27.2 (1998), pp. 307–318.

[9] Ines Chami et al. “Hyperbolic graph convolutional neural networks”. In: Advances
in Neural Information Processing Systems. 2019, pp. 4869–4880.

[10] Jie Chen, Tengfei Ma, and Cao Xiao. “FastGCN: Fast Learning with Graph Convolu-
tional Networks via Importance Sampling”. In: arXiv e-prints, arXiv:1801.10247 (Jan.
2018), arXiv:1801.10247. arXiv: 1801.10247 [cs.LG].

[11] Jinyin Chen et al. “Link prediction adversarial attack”. In: arXiv preprint arXiv:1810.01110
(2018).

[12] Ting Chen and Lala Li. “Intriguing Properties of Contrastive Losses”. In: arXiv e-
prints, arXiv:2011.02803 (Nov. 2020), arXiv:2011.02803. arXiv:2011.02803[cs.LG].

[13] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Repre-
sentations”. In: arXiv e-prints, arXiv:2002.05709 (Feb. 2020), arXiv:2002.05709. arXiv:
2002.05709 [cs.LG].

[14] Xinlei Chen and Kaiming He. “Exploring Simple Siamese Representation Learning”.
In: arXiv e-prints, arXiv:2011.10566 (Nov. 2020), arXiv:2011.10566. arXiv: 2011.
10566 [cs.CV].

[15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs)”. In: arXiv e-prints,
arXiv:1511.07289 (Nov. 2015), arXiv:1511.07289. arXiv: 1511.07289 [cs.LG].

83

https://arxiv.org/abs/1801.10247
https://arxiv.org/abs/2011.02803
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2011.10566
https://arxiv.org/abs/2011.10566
https://arxiv.org/abs/1511.07289

[16] Hanjun Dai et al. “Adversarial attack on graph structured data”. In: International
conference on machine learning. PMLR. 2018, pp. 1115–1124.

[17] Nilesh Dalvi et al. “Adversarial classification”. In: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining. 2004,
pp. 99–108.

[18] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional neu-
ral networks on graphs with fast localized spectral filtering”. In: Advances in neural
information processing systems. 2016, pp. 3844–3852.

[19] R Devon Hjelm et al. “Learning deep representations by mutual information estima-
tion andmaximization”. In: arXiv e-prints, arXiv:1808.06670 (Aug. 2018), arXiv:1808.06670.
arXiv: 1808.06670 [stat.ML].

[20] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. “metapath2vec: Scalable
representation learning for heterogeneous networks”. In: international conference
on knowledge discovery and data mining. 2017, pp. 135–144.

[21] Alberto Garcia Duran and Mathias Niepert. “Learning graph representations with
embedding propagation”. In: Advances in Neural information Processing Systems.
2017, pp. 5119–5130.

[22] Negin Entezari et al. “All you need is low (rank) defending against adversarial at-
tacks on graphs”. In: Proceedings of the 13th International Conference on Web Search
and Data Mining. 2020, pp. 169–177.

[23] Fuli Feng et al. “Graph adversarial training: Dynamically regularizing based on
graph structure”. In: IEEE Transactions on Knowledge and Data Engineering 33.6
(2019), pp. 2493–2504.

[24] Matthias Fey and Jan Eric Lenssen. “Fast Graph Representation Learning with Py-
TorchGeometric”. In: arXiv e-prints, arXiv:1903.02428 (Mar. 2019), arXiv:1903.02428.
arXiv: 1903.02428 [cs.LG].

[25] Thomas Gaudelet et al. “Utilizing graph machine learning within drug discovery
and development”. In: Briefings in bioinformatics 22.6 (2021), pp. 1–22.

[26] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: International Conference on Artificial Intelligence
and Statistics. 2010, pp. 249–256.

[27] Ian Goodfellow et al. “Generative adversarial networks”. In: Communications of the
ACM 63.11 (2020), pp. 139–144.

[28] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harness-
ing adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

[29] Marco Gori, Gabriele Monfardini, and Franco Scarselli. “A new model for learning
in graph domains”. In: Proceedings. 2005 IEEE international joint conference on neural
networks. Vol. 2. 2005. 2005, pp. 729–734.

84

https://arxiv.org/abs/1808.06670
https://arxiv.org/abs/1903.02428

BIBLIOGRAPHY

[30] Jean-BastienGrill et al. “Bootstrap your own latent-a new approach to self-supervised
learning”. In: Advances in Neural Information Processing Systems. Vol. 33. 2020.

[31] AdityaGrover and Jure Leskovec. “node2vec: Scalable feature learning for networks”.
In: International Conference on Knowledge Discovery and Data Mining. 2016, pp. 855–
864.

[32] Michael Gutmann and Aapo Hyvärinen. “Noise-contrastive estimation: A new es-
timation principle for unnormalized statistical models”. In: Conference on Artificial
Intelligence and Statistics. 2010, pp. 297–304.

[33] Hakim Hafidi et al. “Bayesian Node Classification for Noisy Graphs”. In: 2021 IEEE
Statistical Signal Processing Workshop (SSP). IEEE. 2021, pp. 246–250.

[34] Hakim Hafidi et al. “Graph-Assisted Bayesian Node Classifiers”. In: IEEE Access
(2022 (under review)).

[35] Hakim Hafidi et al. “GraphCL: Contrastive Self-Supervised Learning of Graph Rep-
resentations”. In: arXiv e-prints, arXiv:2007.08025 (July 2020), arXiv:2007.08025. arXiv:
2007.08025 [cs.LG].

[36] Hakim Hafidi et al. “Negative sampling strategies for contrastive self-supervised
learning of graph representations”. In: Signal Processing 190 (2022), p. 108310.

[37] Hakim Hafidi et al. “On the Robustness of Bayesian Graph Classifiers to Adversarial
Attacks”. In: IEEE Access (2022 (To be submitted)).

[38] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learn-
ing on large graphs”. In: Advances in Neural Information Processing Systems. 2017,
pp. 1024–1034.

[39] Kaveh Hassani and Amir Hosein Khasahmadi. “ContrastiveMulti-View Representa-
tion Learning onGraphs”. In: arXiv e-prints, arXiv:2006.05582 (June 2020), arXiv:2006.05582.
arXiv: 2006.05582 [cs.LG].

[40] KaimingHe et al. “Momentum contrast for unsupervised visual representation learn-
ing”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 9729–9738.

[41] Mikael Henaff, Joan Bruna, and Yann LeCun. “Deep convolutional networks on
graph-structured data”. In: arXiv preprint arXiv:1506.05163 (2015).

[42] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. “Latent space approaches to
social network analysis”. In: Journal of the American Statistical Association 97.460
(2002), pp. 1090–1098.

[43] WeihuaHu et al. “Open graph benchmark: Datasets formachine learning on graphs”.
In: arXiv preprint arXiv:2005.00687 (2020).

[44] Junteng Jia and Austion R Benson. “Residual correlation in graph neural network
regression”. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2020, pp. 588–598.

85

https://arxiv.org/abs/2007.08025
https://arxiv.org/abs/2006.05582

[45] Junteng Jia et al. “Graph Belief PropagationNetworks”. In: arXiv preprint arXiv:2106.03033
(2021).

[46] Wei Jin et al. “Graph structure learning for robust graph neural networks”. In: Pro-
ceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining. 2020, pp. 66–74.

[47] Yannis Kalantidis et al. “Hard negativemixing for contrastive learning”. In:Advances
in Neural Information Processing Systems. Vol. 33. 2020.

[48] Brian Karrer and Mark EJ Newman. “Stochastic blockmodels and community struc-
ture in networks”. In: Physical review E 83.1 (2011), p. 016107.

[49] Anish Khazane et al. “DeepTrax: Embedding Graphs of Financial Transactions”. In:
IEEE International Conference On Machine Learning And Applications (ICMLA). 2019,
pp. 126–133.

[50] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: arXiv e-prints, arXiv:1412.6980 (Dec. 2014), arXiv:1412.6980. arXiv:1412.
6980 [cs.LG].

[51] Thomas N. Kipf andMaxWelling. “Semi-Supervised Classification with Graph Con-
volutional Networks”. In: arXiv e-prints, arXiv:1609.02907 (Sept. 2016), arXiv:1609.02907.
arXiv: 1609.02907 [cs.LG].

[52] Thomas N. Kipf and Max Welling. “Variational Graph Auto-Encoders”. In: arXiv e-
prints, arXiv:1611.07308 (Nov. 2016), arXiv:1611.07308. arXiv:1611.07308[stat.ML].

[53] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. “Predict then
propagate: Graph neural networks meet personalized pagerank”. In: arXiv preprint
arXiv:1810.05997 (2018).

[54] Xin Li et al. “Gene function prediction with gene interaction networks: a context
graph kernel approach”. In: IEEE Transactions on Information Technology in Biomedicine
14.1 (2009), pp. 119–128.

[55] Yanlin Li et al. “Supervised Graph Representation Learning for Modeling the Rela-
tionship between Structural and Functional Brain Connectivity”. In: IEEE Interna-
tional Conference onAcoustics, Speech and Signal Processing (ICASSP). 2020, pp. 9065–
9069.

[56] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method for large
scale optimization”. In: Mathematical programming 45.1 (1989), pp. 503–528.

[57] Sitao Luan et al. “Break the Ceiling: StrongerMulti-scale Deep Graph Convolutional
Networks”. In: Advances in Neural Information Processing Systems. 2019, pp. 10943–
10953.

[58] Aleksander Madry et al. “Towards deep learning models resistant to adversarial
attacks”. In: arXiv preprint arXiv:1706.06083 (2017).

86

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1611.07308

BIBLIOGRAPHY

[59] David McAllester and Karl Stratos. “Formal Limitations on the Measurement of Mu-
tual Information”. In: arXiv e-prints, arXiv:1811.04251 (Nov. 2018), arXiv:1811.04251.
arXiv: 1811.04251 [cs.IT].

[60] Miller McPherson, Lynn Smith-Lovin, and James M Cook. “Birds of a feather: Ho-
mophily in social networks”. In: Annual review of sociology 27.1 (2001), pp. 415–444.

[61] Alessio Micheli. “Neural network for graphs: A contextual constructive approach”.
In: IEEE Transactions on Neural Networks 20.3 (2009), pp. 498–511.

[62] TomasMikolov et al. “Efficient Estimation ofWord Representations in Vector Space”.
In: arXiv e-prints, arXiv:1301.3781 (Jan. 2013), arXiv:1301.3781. arXiv: 1301.3781
[cs.CL].

[63] ChristopherMorris et al. “Weisfeiler and Leman go neural: Higher-order graph neu-
ral networks”. In: AAAI Conference on Artificial Intelligence. Vol. 33. 2019, pp. 4602–
4609.

[64] Martina Morris. HIV Transmission Network Metastudy Project: An Archive of Data
From Eight Network Studies, 1988–2001. 2011.

[65] Kevin Murphy, Yair Weiss, and Michael I Jordan. “Loopy belief propagation for ap-
proximate inference: An empirical study”. In: arXiv preprint arXiv:1301.6725 (2013).

[66] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems. 2019, pp. 8024–
8035.

[67] Tiago P Peixoto. “Bayesian stochastic blockmodeling”. In: Advances in network clus-
tering and blockmodeling (2019), pp. 289–332.

[68] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global
vectors for word representation”. In: Conference on Empirical Methods in Natural
Language Processing. 2014, pp. 1532–1543.

[69] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of so-
cial representations”. In: International Conference on Knowledge Discovery and Data
Mining. 2014, pp. 701–710.

[70] Erhard Rahm and Andreas Thor. “Citation analysis of database publications”. In:
ACM Sigmod Record 34.4 (2005), pp. 48–53.

[71] Alan Said, ErnestoWDe Luca, and Sahin Albayrak. “How social relationships affect
user similarities”. In: Proceedings of the International Conference on Intelligent User
Interfaces Workshop on Social Recommender Systems, Hong Kong. 2010.

[72] Alvaro Sanchez-Gonzalez et al. “Graph networks as learnable physics engines for in-
ference and control”. In: International Conference onMachine Learning. 2018, pp. 4470–
4479.

[73] Prithviraj Sen et al. “Collective classification in network data”. In: AI magazine 29.3
(2008), pp. 93–93.

87

https://arxiv.org/abs/1811.04251
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

[74] Oleksandr Shchur et al. “Pitfalls of graph neural network evaluation”. In: arXiv
preprint arXiv:1811.05868 (2018).

[75] Arnab Sinha et al. “An overview of microsoft academic service (mas) and applica-
tions”. In: Proceedings of the 24th international conference on world wide web. 2015,
pp. 243–246.

[76] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv preprint
arXiv:1312.6199 (2013).

[77] Kiran K Thekumparampil et al. “Attention-based graph neural network for semi-
supervised learning”. In: International Conference on Learning Representations (2018).

[78] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation Learning with
Contrastive Predictive Coding”. In: arXiv e-prints, arXiv:1807.03748 (July 2018), arXiv:1807.03748.
arXiv: 1807.03748 [cs.LG].

[79] Petar Veličković et al. “Graph Attention Networks”. In: International Conference on
Learning Representations (2018). url: https://openreview.net/forum?
id=rJXMpikCZ.

[80] Petar Veličković et al. “Deep Graph Infomax”. In: arXiv e-prints, arXiv:1809.10341
(Sept. 2018), arXiv:1809.10341. arXiv: 1809.10341 [stat.ML].

[81] Petar Veličković et al. “GraphAttentionNetworks”. In: arXiv e-prints, arXiv:1710.10903
(Oct. 2017), arXiv:1710.10903. arXiv: 1710.10903 [stat.ML].

[82] DaixinWang, Peng Cui, andWenwu Zhu. “Structural deep network embedding”. In:
International Conference on Knowledge Discovery and Data mining. 2016, pp. 1225–
1234.

[83] TongzhouWang and Phillip Isola. “UnderstandingContrastive Representation Learn-
ing through Alignment and Uniformity on the Hypersphere”. In: arXiv e-prints,
arXiv:2005.10242 (May 2020), arXiv:2005.10242. arXiv: 2005.10242 [cs.LG].

[84] Chao-Yuan Wu et al. “Sampling matters in deep embedding learning”. In: IEEE In-
ternational Conference on Computer Vision. 2017, pp. 2840–2848.

[85] Huijun Wu et al. “Adversarial examples on graph data: Deep insights into attack
and defense”. In: arXiv preprint arXiv:1903.01610 (2019).

[86] Mike Wu et al. “Conditional Negative Sampling for Contrastive Learning of Visual
Representations”. In: arXiv e-prints, arXiv:2010.02037 (Oct. 2020), arXiv:2010.02037.
arXiv: 2010.02037 [cs.LG].

[87] Chaowei Xiao et al. “Generating adversarial examples with adversarial networks”.
In: arXiv preprint arXiv:1801.02610 (2018).

[88] Kaidi Xu et al. “Topology attack and defense for graph neural networks: An opti-
mization perspective”. In: arXiv preprint arXiv:1906.04214 (2019).

[89] Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: arXiv e-prints,
arXiv:1810.00826 (Oct. 2018), arXiv:1810.00826. arXiv: 1810.00826 [cs.LG].

88

https://arxiv.org/abs/1807.03748
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/1809.10341
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2010.02037
https://arxiv.org/abs/1810.00826

BIBLIOGRAPHY

[90] Yuning You et al. “Graph Contrastive Learning with Augmentations”. In: Advances
in Neural Information Processing Systems. Vol. 33. 2020.

[91] Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. “Hard-aware deeply cascaded embed-
ding”. In: IEEE international conference on computer vision. 2017, pp. 814–823.

[92] Chuxu Zhang, Ananthram Swami, and Nitesh V Chawla. “Shne: Representation
learning for semantic-associated heterogeneous networks”. In: International Con-
ference on Web Search and Data Mining. 2019, pp. 690–698.

[93] Chuxu Zhang et al. “Heterogeneous graph neural network”. In: International Con-
ference on Knowledge Discovery & Data Mining. 2019, pp. 793–803.

[94] Jiani Zhang et al. “GaAN: Gated Attention Networks for Learning on Large and Spa-
tiotemporal Graphs”. In: arXiv e-prints, arXiv:1803.07294 (Mar. 2018), arXiv:1803.07294.
arXiv: 1803.07294 [cs.LG].

[95] Muhan Zhang and Yixin Chen. “Link prediction based on graph neural networks”.
In: Advances in Neural Information Processing Systems. 2018, pp. 5165–5175.

[96] Muhan Zhang et al. “An end-to-end deep learning architecture for graph classifica-
tion”. In: Thirty-second AAAI conference on artificial intelligence. 2018.

[97] Qinkai Zheng et al. “Graph robustness benchmark: Benchmarking the adversarial
robustness of graph machine learning”. In: arXiv preprint arXiv:2111.04314 (2021).

[98] Qinkai Zheng et al. KDD CUP 2020 ML Track 2 Adversarial Attacks and Defense
on Academic Graph 1st Place Solution. 2020. url: https://github.com/
Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT.

[99] Dingyuan Zhu et al. “Robust graph convolutional networks against adversarial at-
tacks”. In: Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining. 2019, pp. 1399–1407.

[100] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. “Semi-supervised learning
using gaussian fields and harmonic functions”. In: International Conference on Ma-
chine Learning. 2003, pp. 912–919.

[101] Marinka Zitnik and Jure Leskovec. “Predictingmulticellular function throughmulti-
layer tissue networks”. In: Bioinformatics 33.14 (2017), pp. i190–i198.

[102] Xu Zou et al. “Dimensional reweighting graph convolutional networks”. In: arXiv
preprint arXiv:1907.02237 (2019).

[103] Xu Zou et al. “TDGIA: Effective injection attacks on graph neural networks”. In:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 2021, pp. 2461–2471.

[104] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. “Adversarial attacks
on neural networks for graph data”. In: Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining. 2018, pp. 2847–2856.

89

https://arxiv.org/abs/1803.07294
https://github.com/Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT
https://github.com/Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT

Titre : Apprentissage automatique robuste pour Graphes/Réseaux

Mots clés : Représentation des graphes, Apprentissage profond, Réseaux de neurones pour graphes

Résumé : Cette thèse aborde les progrès de l’ap-
prentissage des représentation des noeuds d’un
graphe, en se concentrant sur les défis et les op-
portunités présentés par les réseaux de neurones
pour graphe (GNN). Elle met en évidence l’im-
portance des graphes dans la représentation des
systèmes complexes et la nécessité d’apprendre des
représentations de nœuds qui capturent à la fois
les caractéristiques des nœuds et la structure des
graphes. L’étude identifie les problèmes clés des
réseaux de neurones pour graphe, tels que leur
dépendance à l’égard de données étiquetées de
haute qualité, l’incohérence des performances dans
divers ensembles de données et la vulnérabilité aux
attaques adverses.

Pour relever ces défis, la thèse introduit plusieurs
approches innovantes. Tout d’abord, elle utilise l’ap-
prentissage contrastif pour la représentation des
nœuds, permettant un apprentissage auto-supervisé
qui réduit la dépendance aux données étiquetées.
Deuxièmement, un classificateur bayésien est pro-
posé pour la classification des nœuds, qui prend
en compte la structure du graphe pour améliorer la
précision. Enfin, la thèse aborde la vulnérabilité des
GNN aux attaques adversariaux en évaluant la ro-
bustesse du classificateur proposé et en introduisant
des mécanismes de défense efficaces. Ces contri-
butions visent à améliorer à la fois la performance
et la résilience des GNN dans l’apprentissage de la
représentation des noeuds.

Title : Robust machine learning for Graphs/Networks

Keywords : Graph representation, Deep learning, Graph neural networks

Abstract : This thesis addresses advancements in
graph representation learning, focusing on the chal-
lenges and opportunities presented by Graph Neu-
ral Networks (GNNs). It highlights the significance
of graphs in representing complex systems and the
necessity of learning node embeddings that capture
both node features and graph structure. The study
identifies key issues in GNNs, such as their depen-
dence on high-quality labeled data, inconsistent per-
formance across various datasets, and susceptibility
to adversarial attacks.
To tackle these challenges, the thesis introduces

several innovative approaches. Firstly, it employs
contrastive learning for node representation, enabling
self-supervised learning that reduces reliance on la-
beled data. Secondly, a Bayesian-based classifier is
proposed for node classification, which considers the
graph’s structure to enhance accuracy. Lastly, the the-
sis addresses the vulnerability of GNNs to adversa-
rial attacks by assessing the robustness of the propo-
sed classifier and introducing effective defense me-
chanisms. These contributions aim to improve both
the performance and resilience of GNNs in graph re-
presentation learning.

Institut Polytechnique de Paris
91120 Palaiseau, France

	List of Figures
	List of Tables
	Introduction
	Background and related work
	Notations and definitions
	Graphs topology and the adjacency matrix
	Attributed graphs

	The node classification problem
	Graph neural networks

	Contrastive learning for nodes' representation
	Introduction
	Background
	Problem formulation.
	Graph Neural Networks (GNNs).
	Contrastive learning
	Simple Siamese neural networks for nodes representation

	Methodology of the proposed approach
	GraphCL
	Negative sampling strategies
	Overview of GraphCL
	Extension to inductive setup

	Experiments
	Experimental setup
	Results
	Ablation study

	Discussion
	Connection to mutual information
	Understanding contrastive learning through alignment and uniformity on the hypersphere
	Computational and model complexity

	Conclusion

	Graph assisted bayesian classifiers
	Introduction
	New Graph-Assisted Bayesian Classifier
	The Classifier derivation
	Parameters' estimation
	 When does graph structure not help GAB

	Link to Graph Neural Networks
	Recap of Graph Neural Networks
	Relationship with a GNN based classifier

	Discussion on complexity issues
	Numerical Results
	Synthetic datasets
	Real datasets

	Conclusion

	Robustness to adversarial attacks
	Introduction
	Adversarial attacks
	Gradient-Based Attacks
	Optimization-Based Attacks
	Generative Adversarial Network (GAN)-Based Attacks

	Adversarial attacks on graphs
	Attacker’s Capacity
	Methods of Attacking a Graph

	Measures to prevent adversarial attacks on graphs
	Adversarial training
	Data purification

	Robustness of the graph assisted Bayesian classifier
	The graph assisted Bayesian classifier as a belief propagation framework
	Node similarity as a simple defence mechanism for GAB

	Experiments
	Attack scenario
	Attack description
	Data description
	Results

	Conclusion

	Conclusion and perspectives
	Appendix A
	Derivations for Eq. (3.3)
	Derivations for Eq. (3.12)

	Bibliography

