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Résumeé

Dans cette thése, nous considérons deux problémes d’analyse non commutative. Ces
deux problémes sont liés aux multiplicateurs de Fourier dans les contextes non commu-
tatifs : une classe de multiplicateurs de Fourier L, pour le produit croisé tordu et des
commutateurs de classe Schatten concernant les multiplicateurs de Fourier sur le produit
croisé tordu. Ces deux objets se posent dans divers domaines de recherche mathématiques
et physiques comme la géométrie non commutative et ont attiré une grande attention ces
derniéres années.

Du point de vue physique, puisque, en plus d’étre étudié en mécanique quantique, le cal-
cul quantifié a souvent un analogue algébrique de formes différentielles dans le cadre non
commutatif ; par exemple, Connes a utilisé ce calcul quantifié pour calculer la mesure de
Hausdorff des ensembles de Julia, ou ensembles limites de groupes quasi-fuchsiens dans le
plan. Nous nous concentrons sur I’étude de la différentiabilité quantique du produit croisé
tordu, a savoir 'appartenance aux classes de Schatten des commutateurs impliquant les mul-
tiplicateurs de Fourier sur les espaces non commutatifs, et sur le calcul de la formule de trace
pour les dérivées quantifiées.

Nous traitons également des multiplicateurs de Fourier sur les produits croisés tordus.
Une attention particuliere est portée aux multiplicateurs de Fourier L, completement bornés
dans les cas discrets et localement compacts. Puisque les résultats de transfert entre les
multiplicateurs de Schur et de Fourier completement bornés sont bien connus pour le cas de
I’algebre de groupe de von Neumann, l'objectif principal est de combler les lacunes dans les
résultats de transfert des multiplicateurs de Fourier et de Schur sur le produit croisé tordu.
Les résultats susmentionnés peuvent également étre étendus au niveau L,. Nous étudions
également la stabilité des propriétés d’approximation par les produits croisés tordus.

La these se compose de quatre chapitres. Le chapitre 1 est une introduction contenant
une breve présentation des questions traitées et des résultats obtenus. Le chapitre 2 donne
quelques résultats préliminaires. Dans le chapitre 3, nous étudions les multiplicateurs de
Fourier sur le produit croisé tordu. Dans une situation ou l’action a est moyennable, nous
montrons que ¢ est un multiplicateur de Fourier completement borné sur L,(M =, , G)
si et seulement si ¢ est un multiplicateur de Schur completement borné sur §,(¢>(G)), ou
@(s,t) = @(s7't) pour s,t € G. En particulier, nous démontrons que les multiplicateurs de
Fourier complétement bornés sur L,(L,(G)) sont indépendants du cocycle. Ces résultats
seront traités dans le cas discret et localement compact. D’autre part, nous démontrons que
le produit croisé tordu M, , G hérite de 'injectivité et w+ -CBAP de M sous I’hypothése de
la moyennabilite de a. De plus, nous établissons que si I’algebre de von Neumann du groupe
tordu £,(G) est QWEDP, alors G est hyperlinéaire.

Dans le chapitre 4, nous étudions la différentiabilité quantifiée des produits croisés tor-
dus de l’espace euclidien, a savoir I'appartenance de classe de Schatten et de Schatten faible

\%



des commutateurs multiplicateurs de Fourier. Nous nous occupons des commutateurs sous
lesquels le symbole associé des multiplicateurs de Fourier sera une fonction homogene. Dans
le cas ou les propriétés de I’espace de Besov des éléments connexes dans les espaces non com-
mutatifs suggerent I’appartenance de Schatten des commutateurs, nous engageons la théorie
modulaire w+ pour traiter l’estimation de la p-norme de Schatten. Dans le cas ou les pro-
priétés de Sobolev des éléments associés dans les espaces non commutatifs suggerent les
propriétés de Schatten faibles des commutateurs, nous devons nous plonger dans le calcul
pseudo-différentiel non commutatif. En outre, la formule de trace pour les commutateurs
sera également calculée. De plus, nous considérerons également les résultats paralleles pour
les commutateurs d’ordre supérieur.

Mots clefs

Multiplicateurs de Fourier, multiplicateurs de Schur, l’algebre de groupe de von Neumann,
produit croisé tordu, classe de Schatten, espace de Besov, espace de Sobolev.



Abstract

In this thesis, we consider two problems of noncommutative analysis. These two problems
are related to the Fourier multipliers in the noncommutative settings: a class of L, Fourier
multipliers for the twisted crossed product and Schatten class commutators concerning the
Fourier multipliers on twisted crossed product. These two objects arise in various math-
ematical and physical research domains like noncommutative geometry and have drawn
wide attention in recent years.

From the physical point of view, since, in addition to being studied in quantum me-
chanics, quantised calculus often has an analog of the algebra of differential forms in the
noncommutative setting; for instance, Connes used this quantised calculus in computting
the Hausdorff measure of the Julia sets, or limit sets of Quasi-Fuchsian groups in the plane.
We focus on studying the quantum differentiability of the twisted crossed product, namely
the Schatten class memberships of the commutators involving the Fourier multipliers on
noncommutative spaces, and calculating the trace formula for the quantised derivatives.

We also deal with the Fourier multipliers on twisted crossed products. Particular atten-
tion is paid to the completely bounded L, Fourier multipliers in the discrete and locally
compact cases. Since the transference results between the completely bounded Schur and
Fourier multipliers are well known for the group von Neumann algebra case, the main goal
is to fill in the gaps in the transference results of Fourier and Schur multipliers on the twisted
crossed product. The aforementioned results can also be extended to the L, level. We also
study the stability of approximation properties by twisted crossed product.

The thesis consists of four chapters. Chapter 1 is an introduction containing a brief pre-
sentation of issues treated and results obtained. Chapter 2 gives some preliminary results.
In Chapter 3, we study the Fourier multipliers on the twisted crossed product. In a sit-
uation where the action « is amenable, we show that ¢ is a completely bounded Fourier
multiplier on L,(M >, G) if and only if ¢ is a completely bounded Schur multiplier on
Sp(62(G)), where @(s,t) = @(s~'t) for s5,t € G. In particular, we prove that the completely
bounded Fourier multipliers on L,(L;(G)) are independent of the 2-cocycle o. These results
will be treated in the discrete and locally compact case. On the other hand, we demonstrate
that the twisted crossed product M >, , G inherits injectivity and w*-CBAP of M under the
amenability assumption of a. Besides, we establish that if the twisted group von Neumann
algebra £, (G) is QWEP (quotient weak expectation property), then G is hyperlinear.

In Chapter 4, we study the quantised differentiability of the twisted crossed product of
Euclidean space, namely, the Schatten and weak Schatten class memberships of the Fourier
multiplier commutators. We deal with the commutators under which the associated sym-
bol of the Fourier multipliers will be a homogeneous function. In the case where the Besov
space properties of the related elements in the noncommutative spaces suggest the Schatten
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memberships of the commutators, we engage the w* modular theory to deal with the Schat-
ten p-norm estimate. In the case where the Sobolev properties of the associated elements in
the noncommutative spaces suggest the weak Schatten properties of the commutators, we
need to delve into the noncommutative pseudo-differential calculus. Furthermore, the trace
formula for the commutators will also be calculated. Moreover, we will also consider the
parallel results for the higher-order commutators.

Keywords

Fourier multiplier, Schur multiplier, group von Neumann algebra, twisted crossed product,
Quantum euclidean space, Schatten class, Sobolev space, Besov space, pseudodifferential
operator.

2020 Mathematics subject classification:

Primary: 46L51, 46152, 46L55, 46L87. Secondary: 47L25, 471065, 43A99.



Notations

We list below the notations that we use throughout the thesis:

(1) R, C denote respectively the set of real numbers, complex numbers. R, denotes the
interval (0, c0).

(2) RN denotes the N-dimensional real Euclidean space, and the typical point in RYN is
x = (x1,%p,--,xy). TN denotes the tori in the N-dimensional Euclidean space.

(3) O denotes a d xd antisymmetric matrix, namely 6" = —6.
(4) ]Rg denotes the d-dimensional quantum Euclidean space.

(5) Bf,"q(le) denote the Besov spaces on quantum Euclidean space.

(6) WI;”(IR”QZ) denote the Sobolev spaces on quantum Euclidean space respectively. W;”(IRg)
denote the homogeneous Sobolev spaces on quantum Euclidean space.

(7) S(IRZ) denote the Schwartz spaces on quantum Euclidean space.

(8) Sp and S ., denote the Schatten and weak-Schatten class over some Hilbert spaces H.
MS, denotes the set of Schur multipliers on S,,.

(9) G denotes the locally compact group, £G denotes the group von Neumann algebra of
G, while C}(G) and C*(G) denote the reduced and full group C*-algebra of G. L,(LG)
be the noncommutative L,-spaces on L(G).

(10) ML, (LG)denotes the set of all the completely bounded Fourier multipliers on L,(LG).
(11) (M, G,a, o) denotes a twisted w*-dynamical system.
(12) The twisted crossed product is denoted as M =, , G.

(13) Given a function ¢ on G, T, and Mg denote the Fourier and Schur multipliers respec-
tively.
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Chapter 1

Introduction

The thesis which collects some works obtained during my Ph.D is devoted to the study of
some problems in harmonic analysis on twisted crossed product defined by twisted actions
of a locally compact group G on a von Neumann algebra M. The two chapters correspond to
the work in progress in collaboration with Xiong Xiao (Harbin Institute of Technology) and
Xu Quanhua.

1.1 Harmonic analysis on twisted crossed product

This part is motivated by [15] that is devoted to the study of harmonic analysis on quantum
(or noncommutative) tori. One result of [15] states that the complete bounded Fourier multi-
pliers on the L,-space of a quantum d-torus "Il"g coincide with those on Lp(Td) of the usual d-
torus. This means that these multipliers are independent of the underlying skew-symmetric
matrix 6. Note that "Il"ed can be viewed as the twisted von Neumann algebra L,(Z%) of the
integer group Z? associated to a 2-cocyle o (a notion introduced first by Mackey [60]). Recall
that a 2-cocyle on a group G is a function 0 : GXG — T satisfying o(r,s)o(rs,t) = o (s, t)o(r, st)
and o(s,e) = o(e,s) = 1 for all 7,5, t € G (e being the unit of G). £,(Z") is a deformation of the
group von Neumann algebra L(Z%) = Lo, (T?) of Z°.

Another closely related result of [15] establishes a link between Fourier and Schur mul-
tipliers on Lp(Tg) in spirit of Ricard and Neuwirth article [69]. This line of investigation has
started with Eymard’s pioneering work [35]. Let us go into more details. Let G be a discrete
group and £(G) the von Neumann algebra generated by the left regular representation A of
G. Given a function ¢ : G — C, the Fourier multiplier T, initially defined on the group
algebra C[G] = span)(G), is the linear map determined by T,,(A(s)) = ¢(s)A(s) for all s € G. If
T, extends to a (completely) bounded map on £(G) by the w*-density of C[G]in L(G), ¢ is
called a (completely) bounded Fourier multiplier on £(G). Bozejko and Fendler [9] show that
@ is a completely bounded Fourier multiplier on £(G) iff the function ¢ on G x G, defined
by @(s,t) = @(st™!), is a completely bounded Schur multiplier on B(f,(G)); moreover, in this
case, the two associated completely bounded norms are equal. Recall that given a function
¢ on G x G, the Schur multiplier My, of symbol ¢ sends a matrix ()5 tec t0 (P(5,1)as )5 reG-
It is well known that M is automatically completely bounded if it is bounded on B(£,(G)).

Ricard and Neuwirth [69] extend Bozejko and Fendler’s result to the L,-space level. Let
L(G) be equipped with its canonical trace 7 that is the vector state induced by 6., where 6
denote the Dirac mass at s. Let L,(£(G)) be the noncommutative L,-space based on (£(G), 7)
for 1 < p < oo (recalling that L(£(G)) = £(G)). L,(£(G)) is equipped with its natural operator

1



Chapter 1. Introduction 2

space structure as introduced by Pisier [78] (see below for more details). Note that C[G]
is dense in L,(£(G)) for p < co. We call ¢ a (completely) bounded Fourier multiplier on
L,(£(G)) if T, extends to a (completely) bounded map on L,(£(G)).

Similarly, we define (completely) bounded Schur multipliers on the Schatten p-class
Sp(€2(G)) based on £,(G). The main result of [69] asserts that under the amenability assump-
tion of G, ¢ is a completely bounded Fourier multiplier on L,(£(G)) iff ¢ is a completely
bounded Schur multiplier on S,(¢,(G)) for 1 < p < co. [15] extends this result to the quan-

P

tum torus Tl"g. Since Schur multipliers on SP(ZZ(Zd)) do not depend on the skew symmetric
matrix 6, this second result of [15] implies the first one on Fourier multipliers quoted before.

In the present article, we intend to do all this in the setting of twisted group von Neu-
mann algebras. Let 0 be a 2-cocycle on G, and let A, be the twisted version of the left regular
representation A. More precisely, for any s € G, A,(s) is the unitary operator on ¢,(G) deter-
mined by (A, (s)&)(t) = o(t™!,5)&(s7!t) for any & € £,(G) and t € G. Then the twisted group
von Neumann algebra £,(G) is the von Neumann algebra generated by A,(G). The vector
state induced by 9, is again a faithful trace on £;(G) (see section 3.1 for more information).
One of our results shows that if G is hyperlinear, then the completely bounded Fourier mul-
tipliers on L,(£,(G)) are independent of 0. We also prove that ¢ is a completely bounded
Fourier multiplier on L,(L;(G)) iff ¢ is a completely bounded Schur multiplier on S,(¢5(G)).

More generally, we will work in the setting of twisted dynamic systems in the category
of von Neumann algebras. A twisted dynamic system (or more precisely, W*-system) is a
quadruple (M, a,0,G), where M is a von Neumann algebra and (a, o) a twisted action of G
on M (see section 3.1 for the precise definition as well as all notions unexplained below). Let
M, -G be the associated twisted crossed product. Note that twisted crossed products in the
category of C*-algebras were first studied by Zeller-Meier [107]; since then they have been
extensively investigated (cf., e.g. [12,70,71, 83]). In a recent series of papers [2-6], Bédos
and Conti have developed harmonic analysis on twisted crossed products of C*-algebras; in
particular, they obtained results on Fourier and Schur multipliers as well as on the conver-
gence of Fourier series. The interesting work [65] by McKee, Todorov and Turowska also
deals with the same subject.

However, all just quoted papers deal with either algebraic aspects of twisted crossed
products or analytic aspects only at the C*-algebraic level (i.e., at the L.,-level). This means
that analysis for L,-spaces with finite p has not been touched by these papers. The goal of
the present article is to fill up this deficiency. We prove that the previous results on Fourier
and Schur multipliers on L,(L;(G)) continue to hold for L,(Mx, ; G) under the assumption
that M be QWEP or G be hyperlinear. Note that Gonzalez-Pérez [39] has also established
the link between Fourier and Schur multipliers on untwisted crossed products.

We also study the stability of approximation properties by twisted crossed products. In
particular, we show that if the action « is amenable, then Mx,, ;G inherits the injectivity and
w*-completely bounded approximation property of M. Another approximation property
that we consider is QWEP. Recall that £(G) is QWEP iff G is hyperlinear (cf. [74]). We prove
that £,(G) is QWEP iff G is hyperlinear, that is, QWEP of £,(G) is independent of the 2-
cocycle o.

Our references for operator space theory are [34,78]. Recall that a linear map T : E —» F
between two operator spaces are said to be completely bounded (abbreviated to cb) if Id® T :



1.2. Schatten properties of commutators of singular integral operators on noncommutative
3 euclidean space

M,,(E) - M,,(F) is bounded uniformly in n € IN; in this case, the cb-norm of T is defined to

I Tl = sup|[Id® T : M,,(E) — M, (F)||.

n>1

All noncommutative L,-spaces in the sequel are equipped with their natural operator space
structure introduced by Pisier [76,78]. Let us briefly recall this. As a von Neumann algebra,
Lo (M) = M carries its natural operator space structure. The structure on L, (M) is defined as
the one induced by the opposite (M)°P that is viewed as the dual of L;(M). For 1 < p < o0, the

operator space structure on L,(M) is given by complex interpolation L,(M)) = (M,Ll (M)))y

p

We will frequently use Pisier’s characterization of cb maps (see [76, Lemma 1.7]): A linear
map T:E — Fiscbiff Id®T : S,[E] — S,[F] is bounded for some 1 < p < co (here for p = oo,
Se should be interpreted as the algebra of compact operators on ¢;). In this case,

ITllc = |[Id® T : S,[E] — S, [F]

’

where S,[E] denotes the E-valued Schatten p-class (see [76]). Applying this criterion to the
special case where E = F = L,(M), we see thatamap T on L,(M)is cbiff A®T : S,[L,(M)] —
Sp[Ly(M)] is bounded, and the cb-norm of T is the norm of the latter. Note that S,[L,(M)] =
Ly(B(C2)®M).

In the last result, B(¢,) can be replaced by a QWEP von Neumann algebra A. Recall that
a C*-algebra A has the WEP property if for the canonical inclusions A ¢ A™ C B(K) there
exists a contraction P : B(K) — A™ such that P|A =1Id. A is called QWEP if A is a quotient of
another C*-algebra with WEP.

We will often use the following result of Junge [53] without further reference. Let A be a
QWEP von Neumann algebra. If a map T : L,(M) — L,(M) is cb, then Id® T : L,(A®M) —
Lp(f@/\/t) is cb too, and the two cb-norms are equal.

1.2 Schatten properties of commutators of singular integral oper-
ators on noncommutative euclidean space

A. Connes introduced the quantised calculus in [20] as an analogue of the algebra of differ-
ential forms in a noncommutative setting, and later explored the link with the action func-
tional of Yang-Mills theory [21]. Connes successfully applied quantised calculus in com-
puting the Hausdorff measure of Julia sets and limit sets of Quasi-Fuchsian groups in the
plane [22, Chapter 4, Section 3.y ] (for a more recent exposition see [26, 28]).

The core ingredients of the quantised calculus, as outlined in [20], are a separable Hilbert
space H, a unitary self-adjoint operator F on H and a C*-algebra A represented on H such
that for all a € A the commutator [F,a] is a compact operator on H. Then the quantised
differential of a € A is defined to be the operatorda = i[F,a]. The compact operators on H
are described by Connes as being analogous to infinitesimals, and the rate of decay of the
sequence of singular values:

u(n, T) =inf{||T - R|| : rank(R) < n}

corresponds in some way to the “size” of the infinitesimal T (see [23]). In this setting one
can quantify the smoothness of an element a € A in terms of the rate of decay of {u(n,da)};" .
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Of particular interest are those elements a € A which satisfy:

p(nda) = O((n+1)"?) as n — oo, or,

Z u(nda)’ < oo, or,

n=0

1 n
sup ———— kda)P < o,
P gt 2) LA

for some p € (0,0). The first condition stated above is thatda is in the weak Schatten ideal
Sp,oo, the second condition is for da to be in the Schatten ideal Sp, and the final condition
is that [alP is in the Macaev-Dixmier ideal M ., [22, Chapter 4, Section 2.f] (see also [58,
Example 2.6.10]).

The link between quantised calculus and geometry is discussed by Connes in [21]. A
model example for quantised calculus is to take a compact Riemannian spin manifold M
with Dirac operator D, and define H to be the Hilbert space of square integrable sections of
the spinor bundle. The algebra A = C(M) of continuous functions on M acts by pointwise
multiplication on H, and one defines

F =1j0,c0)(D) = N—c0,0) (D)

One then hasdf =i[F, Mf], where Mf is the operator on H of pointwise multiplication by f.
In quantised calculus the immediate question is to determine the relationship between the
degree of differentiability of f € C(M) and the rate of decay of the singular values ofdf. In
general, we have the following:

feC®M)=fl! e My o

where d is the dimension of the manifold M [21, Theorem 3.1].

For certain special cases it is possible to obtain a far more precise understanding of the
relationship between the smoothness of f and the singular values ofdf. The simplest exam-
ple is to take the unit circle T={z € C : |z| = 1}, with A = C(T), H = L,(T) and the standard
choice of F in this setting is the Hilbert transform. Then by a result of V. Peller [73, Theorem
7.3], we have that for any p € (0,00): df € S, if and only if f is in the Besov space le,,/g(rll").
Peller’s work has been extended to obtain even more precise relationships between f and
the singular values of df, for example, L. Gheorghe [36] found necessary and sufficient con-
ditions on f to ensure thatdf is in an arbitrary Riesz-Fisher space. For more details from a
quantised calculus perspective, see [22, Chapter 4, Section 3.a].

In higher dimensions, the relationship between f anddf has also been studied [29,51,89].
To illustrate the situation, consider the d-dimensional torus R?, d > 2. The appropriate Dirac
operator in this setting is:

d
j=1

where J; denotes differentiation with respect to the j-th coordinate on RY, and {y1,...,va)
denotes the d-dimensional euclidean gamma matrices, which are self-adjoint 212125 com-
plex matrices satisfying y;yx + yxy; = 20;x1. The operator D may be considered as an un-

.. . 14] )
bounded self-adjoint operator on the Hilbert space L,(IR?,C?*"). The corresponding oper-
ator F is a linear combination of Riesz transforms. The commutators of Riesz transforms
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and multiplication operators are studied in classical harmonic analysis: S. Janson and T.
Wolff [51] proved that fordf to be in S, when p > d it is necessary and sufficient that f is in
d

the Besov space Bg'p(IRd). On the other hand, Janson and Wolff also proved that if p < d then
df €S, if and only if f is a constant.

The first results [62] concerning quantum differentiability in the noncommutative eu-
clidean space are the characterizations of the Schatten S, ., properties of

d
dxi= ) yjedy; (1.2.1)
j=1

on noncommutative euclidean space IR‘é. Quantum euclidean spaces were first introduced by
a number of authors, including Groenewold [42] and Moyal [66], for the study of quantum
mechanics in phase space. The constructions of Groenewold and Moyal were later abstracted
into more general canonical commutation relation (CCR) algebras, and have since become
fundamental in mathematical physics. Under the names Moyal planes or Moyal-Groenewold
planes, these algebras play the role of a central and motivating example in noncommuta-
tive geometry [43], [13]. As geometrical spaces with noncommutating spatial coordinates,
noncommutative euclidean spaces have appeared frequently in the mathematical physics
literature [31], in the contexts of string theory [91] and noncommutative field theory [67].

Quantum euclidean spaces have also been studied as an interesting noncommutative
setting for classical and harmonic analysis, and for this we refer the reader to recent work
such as [56].

In (1.2.1), y;’s still denote the d-dimensional euclidean gamma matrices, and dx; :=

i[R;, M,], where for 1 <j <d, R; = ]Zjl denote the quantum counterpart of Riesz trans-
(=d)2

forms on IRg. One of the main results in [61] states thatdx; has bounded extension in S .,

for every 1 <i < d iff x belongs to the homogeneous Sobolev space Wdl(IRg).

A related direction of research concerning quantized differentials is trace formulae. As
early as [21] it was known that for functions on compact manifolds, it is possible to express
the Dixmier trace tr,,(Ff |) as an integral of derivatives of f. Such trace formulae are gen-
eralized to quantum euclidean spaces case for suitable elements x € R%; namely, for any
continuous normalised trace tr on S , we have

d d d
tr(Fx|?) = ¢4 Ldl ’l’[( Z|8]'x —Sj Zskakadz)z]ds, (1.2.2)
j=1 k=1

where 7 is the canonical trace associated to the noncommutative torus, c; is a certain con-
stant depending on d, and the integral is over s = (sq,...,s;) in the (d —1)-dimensional sphere
$9-1 with respect to its rotation-invariant measure ds.

From the trace formula (1.2.2) and an estimate of its right hand side integration, one
immediately deduces thatdx; has bounded extension in S, for every 1 <i<d and p <d iff x
is a constant operator; see also [61].

Main results

In the second part we will consider the commutators of the multiplier operator M, with
the quantum analogues of the so-called Calderén-Zygmund transforms. In the commuta-
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tive setting, Calderén-Zygmund transforms are singular integral operators having kernels
homogeneous of degree —d and with mean value zero on $/~!. By [93, Theorem I1.4.2], ev-
ery Calder6n-Zygmund transform can be written as the Fourier multiplier T;, whose symbol
¢ is smooth and homogeneous of degree 0. Now that no ambiguity will be caused, by ho-
mogeneity, we will identify this symbol ¢ with a function in C®($97!) in the sequel. For
¢ € C*(S% 1) and x € IRg, we denote Cy = [Ty, M,], which is a bounded operator on the
Hilbert space Lz(]Rg). More generally, if x is not necessarily bounded, say L, integrable, we
may still define Cy  on a dense subspace of LQ(IRg); see subsection 4.1.4 for detailed inter-
pretation.
When ¢(s) =s; € C®(S41), Ty =R = 8]-A_% is the j-th Riesz transform on IRg.

d
Theorem 1.2.1. Letd <p<oco. Ifx € Bp”,p(IRg), then Cy . has a bounded extension in S, and

[Coalls, =0 [ sup 160611+ sup Vo] s

d
Conversely, assume additionally that ¢ is not constant. If x € IRg and Cy y € Sp, then x € Bﬁlp(IRg)

and
Il g <o [Szgﬁl 9ls)l+ sup | Vos)IChlls,

d
Here B;lp(le) denotes the homogeneous Besov spaces on noncommutative euclidean

space. Since the constant term of x does not contribute to the commutator Cy , = [T, M,],
these homogeneous Besov spaces are more appropriate than the inhomogeneous versions
studied in [105] for the characterizations of the Schatten properties of Cg, ;.

We will also study the critical case, i.e., the S, ., properties of Cy, , for p < d. Again, we

use the homogeneous Sobolev space Wdl(le), whose norm (module constants) is given by
(L1<j<all9jxll9) 2.

Theorem 1.2.2. Ifx € Wdl(lR‘é ), then Cy \ has bounded extension in Sg .

We will calculate the Dixmier trace of |C¢,x|d for good enough x. The following trace
formula is new even for commutators of Calderén-Zygmund transforms in the classical (eu-
clidean space or torus) setting.

Theorem 1.2.3. Let x € Wdl(IRg). Then for every continuous normalised trace Tr,, on S; ., we
have

T@(| Z ds, @ akx|d)ds.

1<k<d

Tr (Cpal) =Co |

Here the integral over $9~1 is taken with respect to the rotation-invariant measure ds on $971.



Chapter 2

Preliminaries

This chapter presents some preliminary results which will be used throughout the whole
thesis.

2.1 Group representations

Representations are vital in this thesis. There are various types of representations. The
special and most used ones in this thesis are unitary representations. We give a short intro-
duction to these representations.

In general, by a representation, we mean a group homomorphism 7 : G — GL(V), where
V is a vector space and GL(V) is the group of linear automorphisms of V . As far as we con-
cerned, we only consider representations on Hilbert spaces over the complex field. When H
is a Hilbert space, we denote by B(H) the space of all bounded operators, by GL(H) the group
of invertible operators, and by U(H) the group of all unitary operators on H. To make use of
the topological structure of the group, we usually consider continuous representations.

Sometimes it is not convinient to work with the norm topology, since in sometimes the
operators we are considering are not continuous under the norm topology. Thus, it is neces-
sary to introduce some frequently used operator topology on B(H).

Recall that the strong operator topology (WOT) on B(H) is induced by the following
families of seminorm

we: T €B(H) - ||TEl, &eH,
and the weak operator topology on B(H) is the topology induced by the families of seminorm
e,y TeB(H)—(T&,n), & mneH.

Definition 2.1.1. We suppose that 1t is a representation of the locally compact group G on a
Hilbert space H, we say that the representation 1is continuous with respect to the SOT if the maps

seG n(s)é eH
are continuous with respect to all & € H. Analogously, if the maps
se G (n(s)é,n)

are continuous for all £, € H, then we say that the representation 1 is continuous with respect to
WOT.



Chapter 2. Preliminaries 8

Throughout the thesis, all the representations we are considering are continuous.

Definition 2.1.2. Two representations (1;, H;), i = 1,2 are called similar if there is an invertible
map T : Hy — H, such that
T 'ry(s)T = 71 (s)

for all s € G. Futhermore, if the operator T is unitary, we say that the two representations are
unitary equivalent and write 1ty ~ 10,.

2.1.1 Unitary representations

Definition 2.1.3. A representation (11, H) is called a unitary representation if it takes images in
U(H).

Example 2.1.1. The very basic example is the trivial representation:
seGridyeU(H)
forall s € G.

Example 2.1.2. The intrinsic example throughout this thesis is the left regular representation: the
left regular representation on L,(G) is defined by

A = F(s™'1), feLr(G), st €.

We define also the right regular representations on Ly(G),
1
(pa(s)f)(t) = A(S)Ef(ts), f € L,(G), s, t € G.

2.1.2 Group algebras

The left (resp. right) group von Neumann algebra L(G) (resp. R(G)) is the von Neumann subal-
gebra of B(L,(G)) generated by the set {A(s) : s € G} (resp. {p(s) : s € G}), that is, the closure in
the w* topology of span{A(s) : s € G} (resp. {p(s) : s € G}). Since L1(G) as *-algebra under twisted
convolution and involution has the same bounded approximate identity as the usual group algebra
L1(G), L(G) is equivalently generated by {A(f): f € L1(G)}.

The predual of L(G) is denoted A(G), called Fourier algebra. It is identified as the subspace of
Co(G) of continuous functions vanishing at infinity via wg , — (A(-)¢, 1), A(G,0) = Co(G). By
this identification, for functions ¢ € A(G,0) and f € L1(G), the duality bracket (@, A(f)) is given
as

<@MM=LWWM%. (2.1.1)

2.1.3 Weight on £(G)

We follow the construction in [99] to endow L(G) a weight, and R(G) with its opposite weight.
We begin with C.(G), the space of continuous compactly supported functions on G. With the
following convolution

6%@:Lfmmﬂﬂw (2.1.2)
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involution

sy = AGsTHE(sT), (2.1.3)
and inner product

(&)= Lé(s)%ds,

C.(G) is a left Hilbert algebra (see [99, Section VI.1] for definition), denoted as N(G). If we replace
the involution 531 with

()= &(s70),
then we get a right Hilbert algebra, denoted as 12(G).

It is evident that the completion of M(G) or 1(G) is the Hilbert space L,(G). To each & € M(G)
there corresponds a unique bounded operator 1p(E) = A(&) : 1 +— & xn on Ly(G), and the map
1t MUG) > 110(E) € B(Lo(G)) is a »-representation of M(G), which is nondegenerate. Then we
get the left von Neumann algebra 1t,(W(G))”. Likewise, for the right Hilbert algebra 1X(G) and its
anti =-representation 1,(n) = p5(1) on L(G), we have the right von Neumann algebra 1, (1R(G))”.

The modular operator and modular conjugation of the left Hilbert algebra N(G) are

AE(s) = A(s)E(s),  JE(s) = A(s) 2E(s), (2.1.4)

which are guaranteed by [99, Lemma VI.1.5].
A vector 11 € L,(G) is said to be right bounded if

sup{[[€ #77ll> : £ € MG, ), [l < 1} < o0

Denote by 1’ the set of all right bounded vectors in L,(G), and let n, = 1,(13"). Define NY(G)’ =
B’ N DY, where DY is the domain of the map 1 v 1°. Then this M(G)’ is a right Hilbert algebra.
And by [99, Lemma VI.1.15],

77, (M(G)) = n, Nnj.

Similarly, starting with the right Hilbert algebra M(G)’, let 1 be the set of all left bounded
elements in the sense
sup{[|€ x5 71ll2 : 17 € MG, )’ [Inll> < 1} < o0, (2.1.5)

and
Ny = T(g(B). (2.1.6)

Likewise, define M(G)” = B N D* where D is the domain of the map 1 — n*. Then we have
7e(M(G)”) = ng N1y Define also

n
me={Zy}xj DX, X Y1, Y € 1), (2.1.7)
j=1

and my, similarly.
For an arbitrary left Hilbert algebra M, M” and N do not agree in general. However in our
case, both M(G)” and M(G)’ are given by C.(G), a Tomita algebra, see [99, Section V1.2].

o

Lemma 2.1.3. Equipped with the complex one parameter group d : &(s) —d(s)
phisms, M(G) is a Tomita algebra. Moreover

&(s) of automor-

m(M(G))" =L(G),  m(1(G))”" =R(G,0)=L(G)"
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Now we define @ on L(G), as

CD(X*X) :{ ||f||§’ ifx = /\O'(f) (218)

+oo, otherwise.

By [99, Theorems VII.2.5 and VII.2.6], this ® is a weight on L(G) associated with the full left
Hilbert algebra MU(G); this weight is the twisted version of the Plancherel weight in [99, Defini-
tion VII.3.2]. Define also ¥ on R(G), as

+00, otherwise.

Wiyy) = { I8ll3, if y =p(g)

Again by [99, Theorem VII.2.5], we see that V is the opposite of . By the definition of m it follows
that the weight ®@ (resp. W) is extended to a linear functional on my (resp. m,), still denoted by ©
(resp. V).

Proposition 2.1.4. The weight ® on L(G) is tracial iff A(s) = 1, i.e., iff G is unimodular.

2.2 Noncommutative L, space

Throughout the thesis, we mainly consider the von Neumann algebra euipped with a normal
semifinite faithful trace. For this class of von Neumann algebra, the definition of noncom-
mutative L, space will be much neater.

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace t,
and let S;{A be the set of all positive elements x in M with 7(s(x)) < oo, where s(x) denotes the
support of x, i.e., the smallest projection e such that exe = x. Let Sy = span(S} ). Then every
x € Sy has finite trace, and Sy is a w*-dense *-ideal of M. Let 1 < p < co. For any x € Sy, the

operator |x|P belongs to S/T/l too (recalling |x| = (x*x)%). We define

Il = ((1x”))".

Then || -[|, is @ norm on Sy The completion of (Syy - [|,) is denoted by L,(M), the non-
commutative L,-space associated to (M, 7). We refer the reader to [79] and [106] for further
information on noncommutative L,-spaces.

In particular, if M = B(H) equipped with the usual trace Tr (H being a Hilbert space), the
corresponding noncommutative L,-space is the usual Schatten p-class, denoted by S,(H). If
H is separable and dim H = oo, S,(H) is simply denoted by S,,.

If My and M, are two semifinite von Neumann algebras equipped with 7; and 7,, respec-
tively, the von Neumann tensor algebra M;®M, is equipped with the tensor trace 7; ® 7.
We will often consider the tensor M®B(H), equipped with 7 ® Tr.

We will record some frequently used results of noncommutative L, spaces.

Theorem 2.2.1 (Hoder inequality). Let 0 < p,q,r < oo such that 1/r =1/p+1/q. Then

lxylly <lixllpllylly,  xp€S.

The next proposition means that the noncommutative L, is unitary invariant.
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Proposition 2.2.2. Let x € S and a,b € M. Then |laxbl|, < |lal| ||x[|, [[bl| for 0 < p < co. Conse-
quently, || ||, is unitary invariant.

The nest results is vital in the first part.

Proposition 2.2.3. Given two noncommutative measure space (M, t) and (N, p), if there is an
isomorphism 1 : M — N such that yo 1 = t (trace preserving), Then 1t can be extended to an
isometric isomorphism from L,(M) to L,(N).
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Chapter 3

Harmonic analysis on twisted crossed
product

For the convenience of reading, this chapter is presented self-contained with the rest of the
thesis. In this chapter, we study the Fourier and Schur multipliers of scalar valued symbol
on the noncommutative L, spaces of twisted crossed products.

3.1 Twisted crossed products
3.1.1 Basic properties
In this subsection we present basic notions and properties of twisted crossed products.

Definition 3.1.1. A twisted dynamical system is a quadruple (A, G, a,0) with a twisted action
(a,0) of G on M. Here the two functions a : G — Aut(M) and 0 : G x G — U(M) satisfy the
following conditions: for any s,t,r € G

(i) asoa; =Adg( 0 ags;
(ii) o(r,s)o(rs,t)=a,(o(s, t))o(r,st);
(iii) o(e,s) =o0(s,e)=1.
The following identity about the 2-cocycle will be often used later:
o(s,s ) =ag(o(sL,s)), seG. (3.1.1)

Let ¢1(G, M) denote the M-valued ¢;-space indexed by G. Then ¢;(G, M) becomes a
Banach *-algebra with convolution and involution defined as follows: for f, g € ¢;(G, M) and
seG

f*8(5)= ) f(tla(g(t"s)o(t,t™'s), (3.1.2)
teG
fis)=alss ™ as(f(sT)" (3.1.3)

Here we have decided to omit the twisted action (a,¢) in f+g and f¥, otherwise the notation
would be too heavy. However, we will use ¢; (G, M, a, 0) to denote the above Banach algebra
if confusion is possible.

13
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Definition 3.1.2. A covariant homomorphism of (A, G, a,0) is a pair (p,u) of a normal repre-
sentation p of M on a Hilbert space K, and a function u : G — U(K) such that

(i) u(s)u(t)=p(o(s,t))u(st),steG;
(ii) p(as(a)) =u(s)p(a)u(s)’,ae M,seG.

It is easy to check that (p,u) gives rise to a *-representation 7 x u of ¢1(G, M):

pxu(f)=) p(f(s)uls), feb(G M),

seG

The covariant representation of (4, G, a, o) that we are interested in is the regular covari-
ant representation. Let ¢,(G, H) denote the H-valued ¢,-space indexed by G. Define

(ma(@)&)(t) = ay1(a)e(t), & €6y(GH)tEG,
(Ae(5)E)t) =0t 5)E(s7'), £ €6a(GH),s,t€G.

Then 7, (a) and A, (s) are bounded operators on ¢,(G, H) and belong to the von Neumann al-
gebra tensor product M®B({,(G). Note that 7t,(a) is the block diagonal operator a.-1(a) =
diag(aﬁ(a))teG with entries in M (relative to the canonical basis of £,(G)) and A,(s) =

o(-1,5) ® L(s) is unitary, where L(s) is the left translation operator on ¢,(G). It is easy to
check that (m,, A,) is a covariant representation of (A, G, a, 0); moreover, 7, is faithful.

Definition 3.1.3. The above covariant representation (7,, A,) is called the twisted left regular
representation of (A, G, a, o). The twisted crossed product M=, , G is the von Neumann algebra
generated by 1, (M) and A, (G):

Mbq,0 G ={ma(@)Ag(s):a€ M,s€ G} C B(6y(G, H)).

It is clear that 11, x A;(¢1(G, M, a,0)) is a w*-dense *-subalgebra of M >, , G. Note that If
o identically equal to 1, M =, , G reduces to the usual crossed product M, G. In this case,
Ao is simply denoted by A. On the other hand, if M =C, M, , G is the twisted group von
Neumann algebra L,(G). The usual (untwisted) group Neumann algebra of G is denoted by
L(G).

Remark 3.1.4. We can also define a right regular representation (m],, A.) of (A, G, a, o) as fol-
lows:

(7% (@)€)(1) = ar(@)é(t), & €by(GH), LG,
(A5 ()E)(t) = a(t,9)E(ts), & € (G, H),5,t€G.

This leads to the right twisted crossed product M >y, ; G. In this article, we only consider
left twisted crossed products.

The above twisted crossed product is independent of the choice of a particular covariant
representation. By this we mean the following property that is proved as [?, Theorem X.1.7]
in the untwisted setting.
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Remark 3.1.5. Let (p, u) be a covariant representation of (A, G, a, o) with p a normal faithful
representation of M on K. Define

(Pa(@E)(H) = p(ar-1(@)e(t), & €6r(GK) tEG,
(Aop)E)1) = p(a(t7,5))E(s7 ), € € 6(G,K),s,t €.

Then there exists an isomorphism ® from M =, , G onto {p,(M), A, ,(G)}” such that

7 (f’p

O(n4(a)) = pala) and D(A(s) = Asp(s), a€eM,seC.

Convention. To lighten notation, throughout the remainder of the article, we will set
R=Mxy,G and N = M®B(l,(G)).

It is clear that R is a subalgebra of A from the construction of R. The canonical embed-
ding of R into V. will be denoted by ! if one wishes to distinguish R and (R) in some special
situations. We will use the matricial representation of R in N relative to the canonical basis
{0s)sec of €, (recalling that 6 is the Dirac mass at s). Let {e;;}s cc be the canonical matrix
units of {,(G). Then 7, (a) is the block diagonal matrix:

T, (a) = Zas—l (a)®ess, aeM,
seG

On the other hand, it is easy to check that

Ag(r) = 20(5_1’7)®€s,rls; redG.

seG
Thus
o (@) Ao (r) = Z’as*l (a)a(s_l, r)® €s,r-1s
seG
and more generally
Ty X Ao (f) = Z aci (fst™No(s st ) @es,  fe6(GM). (3.1.4)

s,teG

We now extend the Fell principle to the present setting. Let (M;, G, a1, 01) and (M,, G, a3, 03)
be two twisted dynamic systems, and let (p;, u;, K;) be a covariant representation of (M;, G, a;, 0;)
for i = 1,2. Define the associated tensor objects:

M=M®M,, a=a;Qa,, o0 =0]Q0;
K =K; ®K5, P=pP1®P2 U=uU3Up.

Recall that p, and A, , are defined in Remark 3.1.5. The following is to be compared with [4,
Theorem 4.10].

Proposition 3.1.6. With the above notation, the two covariant representations (01 ® P2 q,, 41 ®
Aoy p,) and (pa, Ag) of (A, G, @, 0) are unitarily equivalent. More precisely, there exists a unitary
operator U on €,(G, K) such that

Upa(@)U" =p1®paa,(a) and U, o(HU" = ui(t)® Ag, p,(t), a€M,teG.
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Proof. Define U : {,(G,K) — ¢,(G,K) by
(UE)(s) = (p1(o1(s,s™))ur(5)®1)E(s), & €6,(G,K),5€G.

Clearly, U is unitary. Given a = a; ® a; € M, we calculate Up,(a)U" as follows. Given
& €4,(G,K),s € G, applying successively U*,p,(a) and U, we have

(Upal)UE)(s)
= (u1(s)pr (o1 (5,57 ) @1)E(s)
> a1 (a1) ® ag e (a2)1y (5)*p1 (o (s,571))E(s)
= (p1(a1(s, 57 ) )ur(s) @1 )ary 51 (1) ® a1 (ag) 11 (5)*pr (01 (5,57 ) @ 1)E ().
The first component in the tensor of the last operator is equal to
p1(o1(s,s71 ) Yup(s)ay s (ar)u (s)'pr(or(s,s7"))
= p1(01(s,57 ) )pr(@ys 0 ay 1 (ar))p1(or(s,s71)
= p1(a1(s,571))p1(01(s,57aror(s,s7 )1 (o1 (s,571)) = pa(ay).
We then deduce that
Upa(@)U" = p1®p2a,(a), aeM.
Similarly, we compute U A, ,(1)U™:
(UAgo(HU*E)(s)
= [91(01(5'5_1)*)Ml(S)Pl(Ul(S_lf t))ul(t_ls)*Pl(01(t_ls’s_lt))]‘@Pz(Uz(S_lff))é(f_15)-
The first tensor factor above is equal to
p1(01(s,s7 1) )pr(ars(or (s 1)ur(s)ur (t7's) pr (o1 (t71s,5711)
= p1(o1(s,571))p1(ays Dy (s)uy (s™'¢)
= p1(o1(s,571))p1(ay, Dpr(o1(s,s™ )uy (¢)
= pi|or(s,s7 ) a1 s(01(s7, )o (5,57
(s,577) s

- 91[01 55

)
)
S,S

1*01( S,

Thus
Uds (U =u (1) ® Ay, p,(t), tEG.
This finishes the proof of the proposition. O

Let us record two particular instances of the above proposition for late use. The first
one is the case where M, = C and 0, = 1. Then (M;, G, a1,0;1) becomes our usual twisted
dynamic system (A, G,a,0) and Ay, ,, reduces to the untwisted left regular representation A
on G.

Corollary 3.1.7. Let (p,u) be a covariant representation of (A,G,a,0) on K. Then (p®1, u® A)
is unitarily equivalent to (pg, Ag,p)-

The second instance is where M; = M, = C and 6] = 0, = 0 with ¢ a scalar valued
2-cocycle.

Corollary 3.1.8. Let o be a scalar valued 2-cocycle on G. Then Az ® A, is unitarily equivalent to
I1® A
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3.1.2 Dual trace

Recall that M is equipped with a faithful tracial normal state 7. We view M as the left
multiplication algebra on H = L,(M). Then 7 is the vector state induced by the identity 1
of M, considered as an element of L,(M) (recalling that M C L,(M) canonically). The dual
state T on M, , G is the vector state induced by 1 (®9,:

T(x) = {1\ ® 0, x(1 1y ®0,)), XxER.
Proposition 3.1.9. The dual state T on R is tracial and faithful.

Proof. To show the traciality, first note that for f € £;(G, M)
T(1tq X A (f)) = 7(f(0)).
Next we calculate f#xf(0)

ff)=) fra(fE ot

teG

=) ot alfE el fE ot

teG

- Za(t_l,t)*arl (FE) F(1)o(t, 1),

teG
Noting that Adg -1 4 0 @1 = art, we get
fAfO)=) a'(f1)
teG
Similarly, using (3.1.1), we have
fHo)=) Ffe
teG
Since a preserves T, for x = 1t, x A, (f) we deduce
)= ) t(fOf (1)) =Tlex).
teG
Then the traciality of T follows from the w*-density of 7, x A, (¢;(G, M)) in R and the nor-
mality of 7.
We next show the faithfulness of 7. Assume that T{x*x) = 0. Let y = 1, X A;(f) with
f €41(G,M). Then
Ixp(1 ® 8)II* = Tp"x"xy) = Txyy'x”) < llyl*T(xx") = 0.
Thus xy(1,®9.) = 0. An elementary calculation shows

(1, ®5,) Zna $)(1y®3,) Zas 15 ®6s.

seG seG

This shows that {na X Ao (f) A ®8,): f €l (G,M)} is dense in £,(G,L,(M)). It then follows
that x = 0, so T is faithful. O



Chapter 3. Harmonic analysis on twisted crossed product 18

Remark 3.1.10. The above proof also shows that the map f +— 7, x A,(f) establishes a uni-
tary from ¢,(G, L,(M)) onto Ly(R).

In

— .. . -1
Remark 3.1.11. Note that the restriction of T to 7, (M) coincides with 7 o (Tla . (M)) .

other words, if we identify 7, (M) with M, this restriction is just 7. Thus there exists a
unique trace preserving conditional expectation £ from R to 1, (M). It is easy to show that

E(ta x Ao (f)) = 1a(f(0)), [ €li(GM).

3.1.3 Amenabilty

In this subsection, we study the stability of several approximation properties by twisted
crossed products. To that end, we first recall the definition of amenable actions. Given
f,g €l1(G, M), define the M-valued inner product:

(f18)=) fs)gls).

seG

We also define a second convolution on ¢; (G, M) by

fragls)=) fBan(gt™s)).

The following definition and lemma are classical in the category of C*-algebras (see, for
instance, [11, section 4.3]). We adopt them to the von Neumann algebra setting just replacing
the norm convergence by the w*-convergence.

Definition 3.1.12. The action « is said to be amenable if there exists a net {T;};c; of finitely
supported functions on G with values in the center Z(M) of M such that

(i) Ti(s)>0forallielandseGandY Ti(s)* =1;
(i) Hm{(1®8,)% T~ Ty, (1®6;) %, Ty — T,) - 0 for all s € G.
1

The following simple fact will be used later.

Lemma 3.1.13. Let T; be as above and T;(s) = T;(s™"). Then lim; (1 —T;%, Tl(s)) = 0 in the strong
topology for any s € G.

Proof. We have

teG teG
- ZT,(t)*(T,- —(1®85) %, T)(t)
teG

Here for a function f € ¢{(G, M), we have used C(f) to denote the column matrix indexed
by G whose entries are {f(t)};cg. Now let £ € H and & =(¢&,0,0,---) € {,(G,H) viewed as a
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column vector. Then

(1= Tixa Tiw) 2| = |C(TyC(Ti - (1 @8) EH
<|lc(m) ~(1®85) % T)E]|
=|c(myc || (€ C(T; — (18 065) %0 T, C(T; ~ (18 8) %, TH)E)?
=<5,<Ti—<1®6s>*a n,n—<1®és>*an>a>%eo,
whence the assertion. O

If G is amenable, so is a. In this case, the net {T;};c is given by the normalized character-
istic functions of a Felner net. Like for the usual crossed products, we will show the stability
of the injectivity and w+-approximation property of M by twisted crossed products relative
to amenable actions. We will follow the arguments in [11, Section 4.3]. However, we will
do this also at the L,-space level for the late use concerning Schur multipliers. Gonzélez-
Pérez [39] obtained similar results for untwisted crossed products, in particular, he already
used the following map @, as a key ingredient in his paper.

Let T : G — Z(M) be a finitely supported function such that T(s) > 0 and Y . T(s)* = 1.
Let F be the support of T and Pr the orthogonal projection from ¢,(G) onto ¢,(F). Let Mg
denote the algebra of complex matrices indexed by F and IMg(M) = M @ Mg. Set

X = Zas ))®es s € N = MBB(5(G)).

Note that X is a positive block diagonal contraction. Let 1 < p < co and p’ be the conjugate
index of p. Recall that 1: R — A is the canonical embedding. Define a map @, : R — N by
1

@, (x) = X71(x)X?, xeR.

Here for p = oo, X7 is interpreted as the support projection of X which is noting but P, that
is,

Do (x) = Ppi(x)Pp.
The image of @, is contained in Mp(M). By (3.1.4), forae M,re G

O, (1, Zocs Pas (a)a(s_l,r)as-lr(T(r‘ls))% ®eg 15 (3.1.5)

seF
In the reverse direction, define ¥ : Mp(M) — R by
Wi(a)= ) mafai(ago(s™ st Ao(st™), @ = (ag) e Mp(M)
s,teF

and for 1 < p < oo (Recalling that p” denotes the conjugate index of p)

Y

(@) = W (X7 ax? ).

Thus forae M,s,t € F

L
7

W (a®eg;) = 7'(0([0(;11(&5—1 (T(s))? ao*(sfl,stfl)*as-lr(T(rfls))#)]/\a(stfl). (3.1.6)

In the following, R is equipped with the dual trace T, N' and Mp(M) with the tensor
trace T®TIr.
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Lemma 3.1.14. The above defined maps @, and Y, satisfy the following properties:
(i) qu and \pr are completely positive;

(ii) @, extends to a complete contraction from Ly(R) into L,(N'), and \V, extends to a complete
contraction from L,(Mp(M)) into L,(R);
(iii) The adjoint map of @, is equal to \Vy.

(iv) Foranyae M,re€ G

v

\pp oq)p(na(a)/\a(r)) = Ta(T o T(r)) 4 (a)Ag (7).

Proof. (i) It is clear that @, is completely positive. The complete positivity of W, will follow
from that of W;. We first show that \V; is positive. This is equivalent to showmg that for any
f € ¢1(G, M) such that the function s — f(s7!) is supported by F we have

(Zf Ly pt ®est)>0

s,teG

But

W) P ey )= L mala (1A ot st ot
:zZna[a;l (7 s o™ 07 Aa(t)
= iina[Ad(,(s,sly oay(f(sT f(s o (s 1)) Ao (t)
ZZna[a s as(f(T D) ots s D] Aa (1)

=T X Ag( fﬁ*f 20,

where we have used the identity a,(o(s™!,¢)*)o(s,571) = o(s,s7!t) for the next to the last equal-
ity. This shows the positivity of W. To prove the n-positivity for any n € IN, we use the
following commutative diagram,

M, @ MeMp) ——— (M, ® M)@M

lld@‘l’l i‘l’m

M, ® (M a0 G) i> (Mn ® M) Xd®a,1Q0 G,

where W, , is defined in the same way as W, just replacing (M, a, o) by (M,,®M,1ld®a,1®
o). By the part already proved, ¥, , is positive, so ¥} is n-positive for any 1, consequently,
completely positive.

(ii) As an isomorphic embedding, @, is completely contractive from R to N; in fact, D,
is unital from R to IMg(M). Let us show that ®@; is completely contractive from L;(R) to
Li(N).

To that end, let x € Ly (R). Write x = y*z with y,z € L,(R) and |||, ||zl|, = [|x[l;. Then by the
Cauchy-Schwarz inequality,

@1, ) < 1@ 12X
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As Ly(R) = €5(G,Ly(M)), there exists f € €,(G,Ly(M)) such that y = 1ty x A;(f). Then by
(3.1.4), the assumption that T(t) € Z(M) and o (s, t) € (M), we have

2
ol =] 2o eorrier ot o e rineed,
_ tZG s (£ st e (D05t
= Y llac st a0
By the invariance of 7 under a, we get
L lles s e T = )l oacn DTN 10
= Z ||Ado(t,t*1)* Oy O g1 (f(St_l))T(t)“i(/\/l)
s,teG
_ Z [[Adg (1) 0 ps (f(St_l))T(t)“i(M
s,teG
=Y llac FOTIE g
s,teG
=Y et fen Y T0y]
seG teG
- ;T[asl (f(s)'f(s)]= ”y”iz(k)

Thus [[(y)XlL,(v) = IWllL,w)- Similarly, [|i(z)XI|z, ) = llzllL,r)- Hence [|Py (x)l|z, () < IIxllz, (1))
So @, is contractive.

The case 1 < p < o is then treated by interpolation. Indeed, the preceding arguments,
with some minor modifications, remain valid for the complex powers of X: X' (correspond-
ing to p = c0) and X% (corresponding to p = 1) for any a,b € R. Then by the three lines
lemma, we deduce that @, is contractive from L,(R) to L,(N).

Repeating the previous reasoning with IM,, ® M instead of M for any n € IN, we prove
that @, is completely contractive. As in the proof of the complete positivity of W in (i), this
standard passage is illustrated by the following diagram:

M, ® (M XN, o G) ;> (Mn ® M) Xd®a,1®0 G

ild@% l(DM

M, ® (M®B(£,(G)) —— (M,,® M)®B({,(G)),

where @, ,, is defined in the same way as @, just replacing (M, a, o) by (M,,® M,1d®a, 1 ®0).
We pass to the part on W,,. First note that I, is unital:

\POO(Z}M@eS,S) (Zas ®ess) na(ZT(s)z):
seF seF

Thus W, is completely contractive since it is completely positive.
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Next we show that ¥, is completely contractive. Like for @;, we only need to show that
W, is contractive. Let x be a unit vector in L (IMp(M)). We must show that [[\V; (x)||r, (x) < 1.
Since the unit ball of L;(IMg(M)) is the closed convex hall of all tensors & ® 1 with unit
vectors &,1 € €5(F,Ly(M)). We can assume that x itself is such a tensor. By the density of M
in Ly(M), we can further assume that £ and 7 takes values in M. Then the matrix form of x
is x = (E(s)1(t))scep- Let f(s) = E(s™!)* and g(s) = n(s~!)*. Then the proof of the positivity of
W in (i) above yields the following:

W) =W ) FT R @) = o x Ag(Fixg) = [t X Ao () Tta X Ao ()]
s,teG

Therefore,

NP ()2, (1) < 17ta X Ao (Ol )lITea X Ao (@I, 1) = 1f lley B, mplIglley 7 L, < 1

This is the desired assertion.

As for @,, an interpolation argument then shows that W, is completely contractive for
1<p<oo.

(iii) Let a,b € M and r,s,t € F. Then by (3.1.5)

<T(a(b)/\0(r)’ ®;(a®es,t)> = <®p(na(b)/\a(r))i a ®es,t>
=0p144 T[(Oés—l(T(S))%as—l(b)U(S_l,T)as—lr(T(T’_ls))%)*(Z].

By the assumption that T take values in the positive part of Z(M) and the a-invariance of 7,
we have

==

tf(a1 (T(s)? a1 (D)o (s~ a1, (T(r7'))7 ) a

= T[as—l (b*)(as-l (T(s))%aa(sfl, ) g1, (T(r s

~

=  —
==

~—

—

= [b"a7 (a1 (T ao(s™, 1y (T('s)

==
~—
[—

Then by (3.1.6), we deduce that
(na(b)/\a(r)’ CD;(a ® es,t)> = (ﬂa(b)/\g(i’), \Pp’(a ® es,t»-

Hence @, =W
(iv) For any a € M, r € G. Using the assumption that T(s) € Z(M), we have

W) 0 @, (14 (a) A, (1))

= ;as1<T<s>>as1<a>a<s-1,r>a5u(T(r—ls))@es,rls)

() an (T ac @ac (T ) ol oe, )

= ZZG(aS%(aS (T($)as1 (@aci (T s)a(s™ r)o(s™,r)))Ag (1)
= ina(T(s)m(T<r—1s>>)na<a>Ag<r>

=14 (T %4 T(r))na(a)/\a(r)-

Thus the proof of the lemma is complete. O
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The following elementary lemma is well known. We include its proof for completeness.

Lemma 3.1.15. Let {a;} be a bounded net in M converging strongly to 0. Then for any p < oo and
x € L,(M), the net {a;x} converges to 0 in L,(M).

Proof. By the density of M in L,(M), it suffices to consider x € M. The case p = 2 is just the
assumption (recalling that M acts standardly on L,(M)). The case p < 2 is an easy conse-
quence of the case p = 2 since |[|a; x|, <||a;x[|;. The remaining case 2 < p < co is dealt with by
the following Holder inequality

2 2

llaixll, < llaixlly lla;xlleo *
O

Now assume that « is amenable. Let {T;};c; be an approximate net as in Definition 3.1.12,
and let @, ; and W, ; be the maps defined before Lemma 3.1.13 with T; instead of T.

Lemma 3.1.16. Let 1 < p < co. Then {\¥, ; oD, ;}icr converges to the identity of L,(R) in the point
strong-topology (w*-topology for p = o).

Proof. We know that span{m,(a)A,(r):a € M,r € G}is dense in L,(R) for p < co and w*-dense
for p = co. Thus for p < oo, we need only to show that for any x € span{r,(a)A,(r):ae M,r e
G}

lim b = W, 0 Dy, ()l ) = .

By linearity, we can further assume that x = 7t,(a) A, (7). Then by Lemma 3.1.14(iii), Lemma 3.1.13
and Lemma 3.1.15, we get

=Wy, 0 Py, ()l 1) = 10 (1 = T, To(r) 20 (@) Ao (M)l ) — O.

Thus the assertion is proved for p < co. The case p = co is an immediate consequence of the
case p =1 for @, ; and ¥, ; are normal by Lemma 3.1.14 (iii). Alternately, like for the case
p < oo, one easily shows that W, ; o @, ;(x) strongly converges to x for any x € K. O]

An operator space E is said to have the completely bounded approximation property (CBAP)
with constant A if the identity of E is the limit in the point strong-topology of a net of finite
rank A-completely bounded maps. Similarly, if E is a dual space, it has the w*-CBAP if
the identity of E is the limit in the point w*-topology of a net of finite rank A-completely
bounded w*-continuous maps. This is equivalent to saying that the predual E, of E has the
CBAP with constant A.

On the other hand, a von Neumann algebra M is called semidiscrete if there exist normal
completely positive contractions u; : M — M, and v; : M, - M such that v; o u; converges
to the identity of M in the point w*-topology. It is well known that M is semidiscrete iff it is
injective (see [16,18,33]).

The following result insures the stability of the above approximation properties under
twisted crossed products.

Theorem 3.1.17. Assume that « is amenable. Then

(1) R is semidiscrete iff M is semidiscrete;
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(i) R has the w*-CBAP iff M has the w*-CBAP.

Proof. Since M is the image of a normal conditional expectation of R (see Remark 3.1.11),
both “only if” parts are clear.

To show the converses, let {T;} be the approximate identity in Definition 3.1.12. Let
®,; and ¥, ; be the maps given before Lemma 3.1.16. Let F; be the support of T;. By
Lemma 3.1.14 and Lemma 3.1.16 (and the proof of the latter), @ ; : R — Mg, (M) and
Wi : ME,(M) — R are normal completely positive contractions and ¥, ; o @, ; converges to
the identity of R in the point w*-topology.

Now assume that M is semidiscrete. Choose normal completely positive contractions
up: M—->M,, and v; : M, —» M such that v; o u; converges to the identity of M in the point
w*-topology. Then the composition maps

(IdlMp,» ®uj) oDy ;: R — Mg, ®1Mnj and W, ;o0 (IdlMpi ®vj): M, ®IM,1]. — R
are normal completely positive contractions. It is easy to check that
[\I’oo,i o (IdIMp,. ®v]-)] o [(IdlMpi ®1uj)o (IDOOJ] — Idy; in the point w*-topology.
Therefore, R is semidiscrete. The part on w*-CBAP is proved in the same way. O

Remark 3.1.18. The above proof is easily adapted to show that under the amenability of a
and given 1 < p < oo, L,(R) has the CBAP iff L,(M) has the CBAP.

Remark 3.1.19. As pointed out in the Introduction, twisted crossed products have been
extensively investigated in the category of C*-algebras. Let (A, a, 0, G) be a twisted dynamic
C*-system with A a C*-algebra. Let Ax, , G and Ax, , ,G be the associated full and reduced
twisted crossed products, respectively (see [70,71]). Assume that a is amenable in the C*-
algebraic sense, this means that the convergence in Definition 3.1.12 now takes place in the
norm topology of A. Then the proof of the previous theorem can be modified to show the
following:

(i) Axgo G=Axg, G
(ii) A, o Gis nuclear iff A is nuclear;
(iii) Axg 0 Gis exact iff A is exact.

We are also interested in the stability of QWEP under twisted crossed products. However,
it is an open problem whether this property holds even for untwisted crossed products. At
the time of this writing, we are even unable to show that the QWEP property of £,(G) is
independent of 0. We only have the following partial answer. Recall that the group von
Neumann algebra £(G) is QWEP iff G is hyperlinear (cf. [74, 84]).

Proposition 3.1.20. Let 0 : G — T be a 2-cocycle. If L,(G) is QWEP, then G is hyperlinear.

Proof. It is easy to see that L£5(G) is naturally isomorphic to £,(G), so L5(G) is QWEP too.
Consequently, L5(G)®L,(G) is QWEP. Corollary 3.1.8 implies that £(G) is isomorphic to the
von Neumann subalgebra of L5(G)®L,(G) generated by {A5(s)® A, (s) : s € G}; it is clear that
the latter subalgebra is the image of a conditional expectation. Hence, £(G) is QWEP, so G is
hyperlinear. O
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The following open problem seems very interesting. By Theorem 3.1.25 below, it is equiv-
alent to a similar one in the untwisted case.

Problem 3.1.21. Let 0 : G — T be a 2-cocycle. Assume that G is hyperlinear. Is £;(G)
QWEP? More generally, let M be QWEP and G hyperlinear. Is M =, , G QWEP?

By Theorem 3.1.25 below, the first part of the above problem reduces to the following

Problem 3.1.22. Let K be a Hilbert space and 8 : G — Aut(B(K)) an action. Assume that G is
hyperlinear. Is B(K) >z G QWEP?

It is well known that every automorphism of B(K) is inner. The difficulty here is whether
the action f can be implemented by a unitary representation u of G on K such that g, =
Ad, ) for every s € G. If the answer for the latter was affirmative, then one would have
B(K)»p G = B(K )J®L(G), so the above problem would have a positive solution.

3.1.4 Equivalence

The main result of this subsection reduces twisted crossed products to untwisted ones.

Definition 3.1.23. Two twisted actions (a,0) and (B,v) of G on M are said to be exterior
equivalent if there exists a function u : G — U(M) such that for all s, € G

Bs=Adyoas and v(st)=u(s)as(u(t))o(st)u(st)".

It is clear that this is indeed an equivalence relation. The following two results are the
von Neumann counterparts of the corresponding results for C*-algebras in [70, section 3].

Proposition 3.1.24. Let (a,0) and (B,v) be two exterior equivalent twisted actions of G on M.
Then M, ; G and Mg, G are isomorphic. More precisely, there exists a unitary operator U on
0>(G, H) such that

Ung(a)U" =mg(a) and Uy (s)U" =mp(u(s))A,(s)) aeM,;seG.

Proof. Define the required unitary U by (U&)(s) = u(s~!)&(s) for £ € £,(G,H),s € G. Then the
equality Um,(a)U" = 7tg(a) is just a reformulation of f; = Ad,(s) o a;. Let us show the second
one. For £ € {,(G,H) and s,t € G, we have

(UA()U™E)(t) = ult ot spu(t sy e(s™)
= [t syt [ e () )o (¢ spue sy e (s )
= Bt (u(s) (17, 5)e (s ).
Thus UAg(s)U" = mp(u(s)*)A,(s). It then follows that UM >, , GU* = M >g ,, G. O

The next result reduces a twisted crossed product to a untwisted one by amplification.
Let (A,G,a,0) be a twisted dynamic system. Recall that A(s) is the left translation on ¢,(G)
and we define

u(s) = (1/\/1 ® /\(s))o(s,-)*, seq.

Namely, (u(s)é)(t) =o(s,s71t)*E(s7 ) for £ € ,(G,H) and t € G. Clearly, u(s) € U(M@B(ZZ(G))).
Next, define
Bs = Ady(s) o (as®Idp, (), SEG.
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We claim that (a®Idp ¢, (G)), 0 ®1p(s,(G)) is exterior equivalent to (B,1). To that end, it suffices
to show that

u(s)( as ® dp(e,(c) (1 (1)) (o(s, )@ prycy Ju(st) = 1, s,t€G.

Let T be the operator on the left hand side of the above identity. T is a product of four
operators. Given & € {5(G,H) and r € G, we explain the successive actions of the four factors
of T on £ by the following diagram:

(TE)(r) > o(st,r)E(str)
— o(s,t)o(st,r)E(str)
> ag(o(t tr))o(s, t)o(st, t1r)&(sr)
(s, s ) ag(o(t s o (s, t)a (st s r)E(r).
The operator in the last term is equal to

1 -1.-1

[as(a(t,t s ir))a(s,s 1) o(s, t)o(st, t s 1r)

= [a(s,t)a(st, t‘ls_lr)]*o(s, t)o(st,t 1s7lr)=1.
Therefore, TE =&, i.e., T =1 as desired. Thus the claim is proved.

Combined the above claim and Proposition 3.1.24, we deduce the following
Theorem 3.1.25. Keeping the above notation, we have
(M 4,0 G)BB(Ly(G)) = (MBB(65(G)) ) <4 G.
Proof. By Proposition 3.1.24, we get
(MBBC2(G))) =asidyeyio 081 G = (MBBAG))) 5 G-

However, we have canonically

(M§B<€2(G))) xd@IdB(Q(G))'U®1B((’Z(G)) G = (M ><10(,(T G)éB(ZZ(G)
Thus the theorem follows. O

Remark 3.1.26. Theorem 3.1.25, together with its C*-algebra version in [70], reduces the
stability of approximation properties under twisted crossed products in Theorem 3.1.17 to
that under usual crossed products.

3.2 Fourier multipliers

We now consider Fourier multipliers on twisted crossed products, in particular, on twisted
group von Neumann algebras. We will always assume that 1 < p < co. p’ is the conjugate
index of p. Recall that kK = M >, , G.

Definition 3.2.1. Given a function ¢ € {,(G), define T, on 7, X A,(¢1(G, M)) by
T(p(na X Ag(f)) =10 X A (@f).

We call ¢ a (completely) bounded Fourier multiplier on L,(R) if T, extends to a (completely)
bounded map on L,(R). The Banach space of bounded (resp. cb) Fourier multipliers on
L,(R) is denoted by M(L,(R)) (resp. Mcp(L,(R)).
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If M = C, the multipliers above are just those on the twisted group von Neumann al-
gebra £;(G). If further o is trivial, they are multipliers on the usual group von Neumann
algebra £(G). It is trivial that M(Ly(R)) = Mp(L2(R)) = €oo(G). It is equally clear that ¢ is
a (completely) bounded L,-Fourier multiplier iff ¢ is a (completely) bounded L,-Fourier
multiplier. Thus it suffices to consider the case 2 < p < co. By interpolation, we easily show
that (completely) bounded L,-Fourier multipliers are also (completely) bounded L,-Fourier
multipliers for 2 <p < g < .

Motivated by the Fourier multiplier results on quantum tori in [15], we aim to reduce
twisted cb multipliers to those in the untwisted and scalar setting, i.e., those on £(G) inde-
pendent of the von Neumann algebra M and the 2-cocycle o.

Theorem 3.2.2. We have
M (L£(G)) € Mep(R) contractively.

If additionally R is QWEP, then for 2 <p < oo
Mcb(Lp(£(G))) € Mep(Ly(R)) contractively.

Proof. We will apply Corollary 3.1.7 to p = 7, u = A, and K = ¢,(G, H). We find a unitary U
on ¢,(G, K) such that

Upa(@U'=p(a)®1 and U, ,(s)U" =u(s)®A(s), aeM,seG.

Let A be the von Neumann subalgebra of RQL(G) generated by {p(a)®1, u(s)®A(s),a e M,s €
G}. Then A is isomorphic to {p,(M), A, ,(G)}” by a trace preserving isomorphism. Since p
is faithful, by Remark 3.1.5, R = {p, (M), A5,,(G)}” also via a trace preserving isomorphism.
Thus we deduce that there exists a trace preserving isometric isomorphism @ : R — A such
that
D(ry(a) =p(a)®@1 and DP(A,(s) =u(s)®A(s), aeM,seC.

This isomorphism intertwines multipliers on R and those on £(G). Namely, denoting T, the
Fourier multiplier of symbol ¢ on R and T(p the one on £(G), we then have

DoT,=(ldy®T,)o .
More precisely, for f € {1(G, M) we have
O[ Y @l)malf(sNAe(5)] = ) p(s)p(f()u(s) @ A(s).

seG seG

If ¢ is a cb multiplier on £(G) with cb-norm less than 1, then 72, is a cb contraction on £(G),
so ldy ® T(p is contractive on R®L(G). Consequently,

13" eomalf Ay = [0 ) eomalfA6)]|
b = ilis>p<f<s>>u<s>m<s>||
< seip(f(s))u(s)@)\(s)”
= fmﬂs)mo(s)HR.
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This shows that T, is a contraction on K. Tensoring R with M, for any n € IN, we then
deduce the first assertion on p = co.

The second part is proved in a similar way. But now we require the QWEP of R to ensure
that Idy ® Ff('(, is bounded on L,(R®L(G)) whenever T@ is cb on L,(£(G)). On the other hand,
since the isomorphism @ : R — M is trace preserving, it extends to an isometry from L,(R)
onto L,(A). The rest of the argument is the same as above, so we omit the details. ]

If M = C, the converse to the above theorem holds too.

Theorem 3.2.3. We have
M (L5 (G)) = M, (£(G)) isometrically.
If additionally L, (G) is QWEP, then for 2 <p < oo
Meb(Lp(£(G))) = Meo(L, (£(G))) isometrically.

Thus the cb Fourier multipliers on L,(£,(G)) are independent of the 2-cocycle o (under
the mild condition that £,(G) is QWEP). Note that this is not true for bounded Fourier
multipliers (see [85]). In fact, based on Fell’s absorption principle, our proof is inspired
of [85].

Proof of Theorem 3.2.3. This proof is similar to that of the previous theorem, so only an out-
line is given. Now we use Corollary 3.1.8 and consider the case 2 < p < co. By that corollary,
the von Neumann subalgebra A of L5(G)®L(G) generated by Az ® A, is isomorphic to £(G)
by a trace preserving isomorphism, so L,(A) = L,(£(G)). Now given ¢ € {(G) let T, and T;P
denote the associated Fourier multipliers on £(G) and £;(G), respectively:

To(A(s) = @(s)A(s) and  T(As(s)) = @(s)As(s), s€G.

Assume that T(p is cb on L,(L,(G)). Since L,(G) is QWEP, LF(G) is QWEP too (see the proof
of Proposition 3.1.20). Thus Id ® T(p is bounded on L,(L5(G)®L(G)), so is its restriction to

L,(A). Then as in the proof of the previous theorem, we deduce that T, is bounded on

L,(L(G)). O

3.3 Schur multipliers

In this section we link Fourier multipliers and Schur multipliers. Given ¢ : Gx G — C, the
associated Schur multiplier M, is formally defined by My (a) = [¢(s, t)a(s, t)], sc for any finite
matrix a indexed by G. We call ¢ a (completely) bounded Schur multiplier on S,(£>(G)) if
M extends to a (completely) bounded map on S,(¢>(G)). The resulting spaces of multipliers
are denoted by S(5,(£2(G))) and S¢p(S,(£2(G))), respectively. This definition also extends to
the operator-valued setting. Namely, we define in the same way (completely) bounded Schur
multipliers on L,(/N) (recalling that NV = MRB({5(G))), so we have the corresponding spaces
S(L,(N)) and S¢,(L,(N)). Like for Fourier multipliers, we only need to consider the case
2<p<oo.
It is well know that S, (B(¢>(G))) = S(B(¢,(G))) isometrically. This follows from Grothendieck’s

characterization of Schur multipliers (see [77, Theorem 5.1]): ¢ € S(B(¢,(G))) iff there exist a
Hilbert space K and &, 1 € €,(G, K) such that

P(s,t) =(&(s), n(t)), s teGC.
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Moreover, in this case,
lplls,,Biea(G)) = IPllsBie,(cy) = inflllElle, (6)ll7lle. )}
where the infimum runs over all representations of ¢ as above. Consequently,
Sep(N) =S(N) =S(B(¢,(G))) isometrically.
It is obvious that for 2 <p < oo
Seb(Lp(N)) CSep(Sp(€2(G)))  contractively.
If additionally M is QWEP, the converse conclusion holds too and moreover
Seb(Lp(N) =S (S,(62(G)))  isometrically.

However, it is a well known open problem of Pisier whether bounded Schur multipliers on
Sp are automatically cb for 2 <p < co.

Fourier and Schur multipliers are closely related, as shown by Bozejko and Fendler [9]:
T, is cb on L(G) iff Mg is cb on B({5(G)), where ¢(s, t) = @(st™!). Such a phenomenon con-
tinues to hold for 1 < p < co under the amenability of G: Neuwirth and Ricard [69] proved
that for amenable G one has ”T(p”Mcb(Lp(ll(G))) = ||M$||Scb(5p(€z(6))'

We will study all this for R = M >, , G. Identifying R and (R) c N, we see that the
restriction of Mg to R coincides with the Fourier multipliers T,,. Hence, T, is (completely)
bounded on R iff M‘75|R is (completely) bounded. In particular, if ¢ € S(B(¢,(G)), then ¢ €
M (R) and [l@llm,, r) < [1@]ls(B(z,(G))- The first part of the following shows that the converse is
true.

Theorem 3.3.1. Let ¢ € {,(G).

(i) @ is a cb Fourier multiplier on R iff ¢ is a (cb) Schur multiplier on B({,(G)). In this case,
the two associated cb-norms are equal.

(i1) If @ is a cb Fourier multiplier on L,(R) with 2 <p < oo, then @ is a cb Schur multiplier on
Ly(N) with [|@lls (1,7 < 1Pl (L, v)-

Proof. We will prove the missing direction of (i) and (ii) at the same time. The elements of
L,(N) are viewed as infinite matrices with entries in L,(M). Leta =} ;a5 ® e € L,(N)
be such a matrix with only finitely many non-vanishing entries. By the density of M in
L,(M), we can assume that a, ; € M. On the other hand, using the faithfulness of 7, we also
write a =) ¢ ;ccTa(ds:) ®es ;. Let

D, = Z)\G(s)tX)eS,s and D, = Z/\a(t_l)@)etlt.
seG teG

These are block diagonal unitaries in R®B(¢,(G)). Now consider the element
a= Dl &ZDZ € Lp(‘R@B(gz))

Clearly,
”E”LP(}@B(@)) = ”””LP(N)'
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On the other hand, since (7,, A,) is a covariant representation of (A, G, @, 0), we get
_ -1
= $)Tq(as,) Ao () ® e

= as das, t (S)Aa(t_1)®es,t

s,teG

= ) Talas(ag ) Ao (st )malols, ) @ey,
s,teG

- Z na[as ast gy 1 ]/\ ®est
s,teG

Hence
T, ® Idpe,(c) Z(p (st™1) na[as ag )1 (0(s, t ) ]/\ ®est
s,teG
= DIM(E(Q)DZ

Since T, is cb on L,(R), we then obtain

”Ma(a) = ||D1 D2||L (R®B(£,))

_”T ®Idp,(c) ~)”L (R®B(£,))
ol osmie
R))”a“Lp(N

Therefore, Mg is bounded on L,(N). Applying the above argument to M, ® \ instead of
N, we deduce that Mg is cb on L,(N) with cb-norm less than or equal to ”‘P”Mcb(Lp(R))- The
assertion is thus proved. O

)

The “only if” part of Theorem 3.3.1 (i) admits an alternate standard proof that we outline
as follows (see [77, Chapter 6]).

Suppose that T, is cb on R. By Wittstock’s factorization theorem, there exist a Hilbert
space K, a *-representation w : R — B(K) and two bounded operators V;,V, : H®¢,(G) - K
such that

Ty(x) = Viw(x)Vy, x€R.

Choosing an unit vector £ € H, for s,t € G we have

:<<§®6e,<§®6>

= (A ()E®SY), Ao(sT)(E ®0))

= (Ao (s A () (E @), E @)
:<na<a o () () E @), E@55)

= <na(cr Do (s, 7)) A (st Y)E®S,), & ®55>.
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Then
) = (st e x Ao (05,57 0 (s, 7)) @851 ) (€ @ 6y), £ 65)
= (T, ( ( )(E®6)), £ @)
:<V2w L(EVI(E®), E®0,)

:<w<AG< >>v1<s®at>, W(Ao (s Va(E®55)).

Therefore, by Grothendieck’s theorem quoted previously, ¢ is a cb Schur multiplier on
B(€5(G)).

Next we aim to show the converse to Theorem 3.3.1(ii) under the amenability of the
action a.

Theorem 3.3.2. Assume that a is amenable. Let 2 < p < oo and ¢ € {,(G).

(i) If @'is a bounded (resp. cb) Schur multiplier on L,(N'), then ¢ is a bounded (resp. cb) Fourier
multiplier on Ly(R) with [|@llmw, k) < I@llsz, ) (resp. 1@l i, ) < 1@lls g, v)-

(ii) Assume additionally that M is QWEP. If ¢ is a cb Schur multiplier on S,((5(G)), then ¢ is
a cb Fourier multiplier on LP(R) with ||(P||Mcb(Lp(R)) < ||@|5Cb(5p(52(c)).

Proof. Let @, ; and ¥, ; be the maps in Lemma 3.1.16. Let x = 11, x A, (f) with f € £1(G, M).
It is easy to check that

Dy, i(Tp(x)) = Mg(Pyi(x))).

Assume that ¢ is a bounded Schur multiplier on L,(N). Then by Lemma 3.1.16 and Ler-
mma 3.1.14, we get

1T (L, 1) = li{n”‘pp,i ° q)Pfi(T(P(x))”LP(R)
= lilm ||q)Pfi(T(P(x))||LP(N)

< lim_sup ”Ma o CI)p,i(x)||Lp(/\/)

< @lst, a0 lim sup |2, ()]
< ||5||S(LP(N))||X||LP(R)

Hence, ¢ is a bounded Fourier multiplier on L,(R) and ||(P||M(LP(R)) < ||¢||S(L,,(/\/))- Similarly,
we show the cb version.
We know that if M is QWEP, then

Scb(Sp(€2(G)) = Sep (L (N)) isometrically.
Thus the last assertion follows. O

Combining Theorem 3.3.1 and Theorem 3.3.2, we obtain the following

Corollary 3.3.3. Assume that the action « is amenable and M is QWEP. Let ¢ € {,(G). Then ¢
is a cb Fourier multiplier on L,(R) iff ¢ is a cb Schur multiplier on S, (€,(G)); in this case, the two
associated cb norms are equal.
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We end this section with a result showing that there exists no nontrivial 2-cocycle on a
free group IF; on d generators (d may be o).

Proposition 3.3.4. Every scalar-valued 2-cocycle o on [, is exterior equivalent to the constant
function 1.

Proof. Let {g1,---,44} be a set of generators of [F;. Using the construction of £,(IF;), one
easily shows that A;(g1),--+, A;(g4) are free Haar unitaries. By this we mean that the spectral
measure of each A((g;) is normalized Haar measure on T and A,(g;),---, A,(g4) are free in
the following sense:
T(xl-1 ---xik) =0

whenever x; € A; ,---,x; € A; with vanishing trace and i; # iy--- # iy, where A; is the von
Neumann subalgebra generated by A, (g;).

It then follows that the two algebras £(IF;) and £, (IE;) are isomorphic by an isomorphism
P mappmg A(gi) to Ay(gi) for 1 < i < d. Writing an element ¢ € [F; in reduced word g =
gl gZ “ with i # iy--- # i and ny,---,n, € Z\ {0}, we deduce that p(A(g)) = ¢(g)A,(g) for
some function p:F; - T. Consequently, @ is a completely contractive Fourier multiplier
from L(IF;) to £,(F;). By the discussion before Theorem 3.3.1 and the matricial form (3.1.4)
of elements in A, (F;), we see that (qo(st Do(s71,st™ 1))S \F
Schur multiplier on the subalgebra L(IF;) of B(ZZ(IFd)): Tinen by the alternate proof of the

“only if” part of Theorem 3.3.1 (i), we find a Hilbert space K and two fucntions &,7 : [F; — K
such that [|E(s)||, [I7(#)| < 1 and

defines a completely contractive

(p(st_l)a(s_l,st_l) =(&(s),n(t)), s telf,.

Taking s = t = e in the above equation, we get (£(e),7(e)) = ¢(e) = 1. Hence by the equality
case in the Cauchy inequality, we see that £(e) = 7j(e). Next, take t = e in the above equation,
we have

P(s)a(s7h,5) = (E(s), 1(e)) = (E(s), E(e)),
which forces &(s) = @(s)o(s71,5)E (e).
Similarly, we have 7(t) = ¢(t~1)&(e). Combining these two expressions we deduce
(Es)n(t ))
(p(s)a(s™,s)E(e), p(t1)E(e))
P(s)o(s 1;S)§0(t_1)-
C

)

(p(st_1 )0(5‘1, st‘l)

However, o(s7!,st™') = ¢(s71,s)0(s,t~1). Changing t~! to t, we finally obtain

o(s,t) = @(s) p(t) (st).

This means that o is exterior equivalent to 1. O]



Chapter 4

Schatten properties of commutators of
singular integral operators on
noncommutative euclidean space

4.1 Quantum euclidean spaces and Fourier multipliers

The original motivation for noncommutative euclidean spaces begins with the canonical
commutation relations of quantum mechanics. There are various equivalent definitions for
noncommutative euclidean spaces. In line with our definition on twisted crossed product in
Chapter 1, we define an euclidean space to be the twisted group von Neumann algebra of
R associated with a 2-cocycle. Throughout the remainder of this chapter, 0 will be a fixed
antisymmetric d x d matrix with d > 2; together with 6, we define

o(s,t):exp(%(s,et)), s,teR%. (4.1.1)

Then o : RY x IR? — T is a 2-cocycle in the following sense
o(s,t)o(s+t,u)=o(t,u)o(s,t+u) and o0(0,5)=0(s,0)=1, stuc R%.
Note that by the antisymmetry of 8, o further satisfies
o(s,s)=0(-s,s)=1, se RY. (4.1.2)

4.1.1 Basic defintions
Define the following family of unitary operators on L,(IR%):
(Ao()E)(H) = a(-t,5)E(t=5), &eLy(RY), steR’ (4.1.3)
It is routine to verify that the family {Ag(s)}scgre is strongly continuous, and satisfies
Ao(s)Ag(t) = o (s, t)Ag(s+1t), steRY. (4.1.4)

The above relation is called the Weyl form of the canonical commutation relations, and its
representation theory is summarised by the well-known Stone-von Neumann theorem: with
the condition that det(0) = 0, any two C*-algebras generated by a strongly continuous uni-
tary family {1g(s)}sere satisfying (4.1.4) are =-isomorphic. For more details, see [10, Sec-
tion 5.2.2.2] and [46, Theorem 14.8], [96, Chapter 2, Theorem 3.1].

33
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Definition 4.1.1. The noncommutative euclidean space associated to 6, denoted by IRd, is the
von Neumann subalgebra of B(L,(IR%)) generated by {1¢(s)}scre given in (4.1.3).

Taking 6 = 0, the above definition states that IRS is the von Neumann algebra generated
by the unitary group of translations on R?, and is *-isomorphic to L, (IR?). Therefore, the
algebra of essentially bounded functions on euclidean space is recovered as a special case of
Definition 4.1.1.

We refer the reader to [38, 56] for more details on the above approach of defining non-
commutative euclidean spaces. Alternative but unitarily equivalent way can be found in the
literature, see, for instance, [10,96].

We also caution the reader that the approach taken here is the “Fourier dual” of the
approach in [43]. In the commutative case, Ag(s) is the operator on L,(IR?) of translation
by s € R?, and the Fourier transform provides an isomorphism with the algebra L, (IR?) of
essentially bounded functions.

With the above definition, one easily views IRg as the twisted group von Neumann alge-
bra £,(IR?), where the 2-cocyle o is given by (4.1.1). Conversely, for any 2-cocycle o on R?,
the twisted group von Neumann algebra L,(R%) is a noncommutative euclidean space.

Let us turn to the integration theory on R?. Let fe L;(R%). Then t — f(t)Ag(t) is a
bounded strongly continuous function from R? to B(L,(IR%)), so the integral

Ao(f)=| f(t)Ae(t)dt
R4
defines a bounded operator on L,(IR?), more precisely, for any & € L,(IR?) one has
Ao(f)E = fmdf(tm@(t)gdt.

Approximating f by step functions, one easily shows that Ag(f) belongs to IRg. More gener-
ally, for any bounded Borel measure y on RY, the following integral

Ao(p) = L{ Ao(t)dp(t)

defines an operator in IRg too. This time, it is even easier to see that Ayp(y) € le by approxi-
mating p by linear combinations of Dirac measures in the w*-topology.

Given f,g € L;(IR%). Then one has

Ao(F)Aa(8) = Ao(f+9g) and Ag(f)" = Ae(f?),

where for s € R?

frog(s)= f o(s—t,t)f(s—t)g(t)dt = f o(s, t)f(s—t)g(t)dt,
R R
FHs) = als,—s)f(=5) = F(-s).

Here we have used (4.1.2). Equipped with the above convolution and involution, L;(R%)
becomes an involutive Banach algebra. Then le is the w*-closure of Ag(L;(R%)). Here L, (R%)
can be replaced by any reasonable smaller space of continuous functions, for instance, the
space C,(IR%) of compactly supported continuous functions on IR%.




35 4.1. Quantum euclidean spaces and Fourier multipliers

In the sequel, we will sometimes use Ag(f) for some non integrable functions f; for
instance, Ag(f) may be a bounded operator for f € L,(IR%); whenever it is bounded, Ag(f)
belongs to le.

Let f € L;(RY) N C(IRY). Define

t9(Ae(f)) = f(0).

By [62, Lemma 2.7], the functional 7 : L (R?) N C(R?) — C admits an extension to a semifi-
nite normal faithful trace on IR‘Z). The traciality of 74 is easy to be checked. Indeed, let

f € L,(IR%) such that Ay(f) is bounded and fﬂ +g f is continuous. Then
to(Ae(f) Ao(f)) = de £ (s)1*ds = to(Ag(f)Aa(f)"). (4.1.5)

More generally, let f,g € Ly(R?) such that Ag(f), Ag(g) are bounded and f¥x g is continuous.
Then

To(Ag f f (4.1.6)

For1<p<oco, Lp(IRg) is the noncommutative L,-spaces associated to (IRg, Tg); more pre-
cisely, Lp(IRg) is defined as the completion of

{xe IRZ : To(|x|P) < oo}

with the norm ||x||, = T6(|X|p) As usual, we let L (IRg) = le with the operator norm.

Remark 4.1.2. By the Plancherel formula (4.1.5), the map f +— Ay(f) establishes an isometry
from L,(R%) onto LZ(IRg). Later, we will identify L,(R%) and Lz(ﬂ?g).

4.1.2 Distributions and derivations

The class of Schwartz functions on IRZ is defined as the image of the usual Schwartz class
S(RY) under Ay. That is,

S(RY) ={Ag(f): f € S(RY)}. (4.1.7)
The Schwartz space S(le) is equipped with the topology induced by the isomorphism Ag :
S(R?Y) — S(IR’Z)), where S(R?) is equipped with its usual Fréchet topology. On the other

hand, equipped with the convolution and involution of L;(IR%), S(R?) becomes a topological
involutive algebra, so S (lR’é) is a »-subalgebra of IRg.

Lemma 4.1.3. Let 1 < p < co. Then S(IRg) is a norm dense subspace of LP(IRg)for p<ocoanda
w*-dense subspace ofLoo(IRg).

Proof. The assertion is clear for p = co. The case p = 2 is equally clear by virtue of (4.1.5).
Now let x € S(IRg). We need to show that x € Ll(]Rg). If x =yzwithy,ze S(IRg), then the

Cauchy-Schwarz inequality implies that x € Ll(IRg). However, by [62, Proposition 2.5], all
finite sums of products yz with y,z € S(IRg) is a dense *-subalgebra of S(IRg). It then follows
that S(RY) € L; (R%) too. Thus S(R%) € L;(R%) N L, (RY) continuously.

To show the density of S(IRZ) in LP(IRZ) for p < o0, it suffices to show that for any a € le
supported by a projection of finite trace, there exists a net (4;) in S(IRg) such that a; — a in
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Lp(le). Since S(IRg) is a w*-dense *-subalgebra of R%, by Kaplansky’s theorem, there exists

a bounded net (4;) in S(IRZ) strongly converging to a. Then by Lemma 2.15 of Chapter 1 (or
more precisely, its proof), [|a; —al|, — 0. O

Definition 4.1.4. The space of tempered distributions on le is the topological dual space
S’(IRg) of S(]Rg), i.e., the space of continuous linear functionals on S(]Rg).

As in the classical case, we have the following elementary fact.

Lemma 4.1.5. Every element of Ll(IR’é) + LOO(IR’é) defines a distribution on IRg.

Proof. Letx = x1+x, withx; € Ll(IRg) and x, € L(X,(IRZ). Lety e S(IRg). Then by Lemma (4.1.3),
RS Ll(IRg) N LOO(IRg). Thus 19(xy) = 19(x1v) + To(x2v) is well defined. Since the inclusion
S(]Rg) C Ll(le) N LOO(IRg) is continuous, the map y +— 7y(xy) defines a continuous linear
functional on & (IRg). This shows the assertion. O

We next pass to the defintion of derivation on S(le). For x = Ag(f) € S(IRg), we define
drx = f sef(s)Ag(s)ds.
R4
More generally, for a = (ay, -+, ay) € IN‘é, we set
0%x = J- sYf(s)Ag(s)ds,
R4

where s = s{! -~-s§d. We kindly remind the reader that, the above definition of partial
derivatives coincides with that in [62], given as the commutator of x with pointwise mul-
tiplication operator acting on L,(IR?).

By (4.1.6), we see that d; is a self-adjoint operator on Lz(lR‘é) with S(IRZ) as definition

domain. Let A = 9% +- -+ 83 be the Laplacian, it is a positive operator on LZ(IRg). We will

frequently use the Bessel and Riesz operators (1 + A)% and Az which will be abbreviated as
and I respectively. More generally, for a € R, define J* = (1 + A)? and I = A3,

It is clear that d%x belongs to S (IR‘é) too. Consequently, by duality, these partial deriva-
tions extend to all distributions. In particular, d%x exists as a distribution for any x €
L1 (R) + Loy (IRY).

Remark 4.1.6. The Bessel potential J operates on S’(IR?)). A little bit more attention should
be paid to the case of the Riesz potential I%. Let

So(RY) = {x: dx(0) =0 V o € NE}.
Then I operates on SO(]R’Z)) = /\Q(SO(JR”I)), and by duality, on the dual space Sé(IR”Ql) too.

4.1.3 Fourier multipliers

Let ¢ : RY — C be a measurable function such that ¢ f € L;(R?) for any f € S(R?). For any
x = Ag(f) with f € S(R?), we define the Fourier multiplier Ty of symbol ¢ as follows:

Ty(x) = Ao($f). (4.1.8)
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It Ty, extends to a (completely) bounded maps on Lp(IRg), we say that ¢ is a (completely)
bounded Fourier multiplier on LP(IRg). In the sequel, ¢ will often be continuous on R?\ {0}.

It is often useful to express Ty as the convolution operator with the inverse Fourier trans-
form ¢ of ¢. For this we first introduce an action of R? on IRg. For any s € RY define

wy(t) = ™0t e RY,

We view w; as a unitary operator on Ly(RY) by multiplication. Then define a; = Ad,, i.e.,
ay(x) = wexw; for any x € B(L,(IR%)). It is easy to check that

ai(Aa(t) = ws(t)Ag(t), s,teR%

This implies that a leaves IRg invariant, so it yields an action of R? on IR‘;. More generally,
given x = Ag(f) with f € L;(IR?), we have

as(Ao(f)) = Ao(ws f).

This shows that @ is trace preserving, so @ extends to an isometric action of R on Lp(le).
We denote ¢ as the inverse Fourier transform of ¢. Now assume that ¢ € L;(R%). Then
for x = Ag(f) with f € S(R?), we have

r

Ty = [ p(s)f(5)ho(s)ds
= [ oo pppsar
IRd

This suggests to define
Gox= [ G o 4.19)
R4

This alternate definition has an avantage: ¢ * x can be defined for any x € LP(IRZ). Since a_;
is an isometry on Lp(IRg), we immediately get the following:

Lemma 4.1.7. Let ¢ be a function on R? such that ¢ € Ly(R?). Then Ty is completely bounded
on LP(IRg)for 1 < p < oo with cb-norm majorized by ||(j;||1.

We need to extend Fourier multipliers or convolution in (4.1.9) to distributions. This is
easy for the latter. First note that o’ leaves S (le) invariant. Then taking adjoints, we see that
for any x € S’(IIV{Z) and t € R, @,(x) is again a distribution. If ¢ € L, (R%), (4.1.9) still defines
a distribution ¢ = x.

On the other hand, if ¢ is a function such that ¢f € S(R) for any f € S(R“), then
the definition (4.1.8) also extends to a distribution x by duality. These two definitions are
consistent when both of them make sense for a distribution x and a function ¢; in this case,
we have Ty (x) = ¢ xx.

Remark 4.1.8. Typical examples of Fourier multipliers are noncommutative analogues of
partial derivatives, Bessel and Riesz potentials. The symbols of /% and I* will be denoted by
J. and I, respectively, so J,(s) = (1 + s|2)2 and I,(s) = |s]* for s € R.
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Remark 4.1.9. One may also define the Fourier multiplier from the perspective of functional
calculus: Denote V = (dq,---,d;). For a function ¢ on R?, we write the Fourier multiplier Tj,
as

Ty = P(d1,++,da) = G(V).
If moreover ¢ € C(R? \ {0}) that is homogeneous of order 0, we may view ¢ as a function in
C($971). In this case,
-1 1
Tqb = <P(91:“';9d) = ({b(alA 21"'radA 2)

since the spectrum of the d-tuple (81A_%, ey QdA_%) falls into the unit sphere $%-1.

4.1.4 Commutators

In the sequel, we will fix a function ¢ € C®(R? \ {0}) that is homogeneous of order 0 and
non identically zero. ¢ can be viewed as a function in C*($~!). The Fourier multiplier Ty,

defined as in (4.1.8), is bounded on LZ(IRg).
Given x € IRg, denote by M, : v = xy the left multiplication on LZ(IRg). Then M, is a
bounded linear operator on L2(Rg). We now define the commutator

C(P’x = [T(P'Mx]

This is a so-called Calderén-Zygmund transform on RR%, it is bounded on Lz(le). When
P(s) = |Ss—7|, Ty = R; is the j-th Riesz transform on le, and Cg , is the j-th component of the
quantised differential studied in [62].

As in [62], we remark that if x is not necessarily bounded we may still define C , on the
dense subspace Ag(C(RY)) of Lz(le). Suppose that x € LP(IRg) for some 2 < p < co. Then
for y = Ap(g) € Ao(C2(RY)) with ¢ € CX(IRY) compactly supported by K, we have from [62,
Theorem 3.17] that M,y = M, Ty, v € LQ(IRg). It then follows that T,M,y € LQ(IRg). On the

other hand, since ¢g is still a compactly supported function in L,(IR?), using the foregoing
argument we have M, T,y € LZ(IRg). Thus in that case Cy ,(y) is a well-defined element in

Ly(R%).

N?ore generally, viewing IRg as a von Neumann algebra on Lz(lR‘é) (in its standard form),
M, is just x itself. Thus if x is a measurable operator on (IRg,TQ), Cy,x is a densely defined
operator on LZ(IRg).

Our main concern is to characterise the membership of Cy, in the Schatten p-class
Sp(Lz(le)). Since LQ(IRZ) = L,(IR?) unitarily via the Plancherel formula, we will always view
Cg,x as an operator on L,(IR%). We will denote Sp(Lz(IRd)) simply by S,.

We need to write the kernel of Cy, . To that end, we assume that x is a good operator, for
instance, x = Ag(f) € Ly (IRg) for some f € L (R?) N C(R?). Then a simple calculation gives

to(xAg(t)) = f(1), teR%

Put X(t) = t(xAg(t)") whenever x € L, (R%).
We write formally

x= | F(HAg(t)dt
R4
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whenever e L (R?). Now let & € Ly(IR?). Then for s € IRg, we have

r

(x&)(s) = | X(£)(Ag(t)E)(s)dt

= X(s—t)o(—s,s—t)E(t)dt
JIR4
= [ o(s,t)x(s—t)E(t)dt.

JR

Here for the last equality, we have used (4.1.2). Thus the kernel of x is

[x] = o (s, T(s — )] e (4.1.10)

On the other hand, the Fourier multiplier Ty is a diagonal operator, or more precisely, the

multiplication operator by ¢ on L,(IR?). It then follows that the kernel of the commutator
Cy,x is given by

Ky(s,t) = o(s,t)X(s— ) p(s) - (), s,te R (4.1.11)

4.2 Function spaces on quantum euclidean spaces

In this section we give the definition of Sobolev and Besov spaces on quantum euclidean
spaces, which will be used to characterise the (weak) Schatten properties of commutators.

Definition 4.2.1. For a positive integer m and 1 < p < oo, the Sobolev space WI;“(IR‘é) is the
spaceof x € S’(le) such that every partial deriavtive of x up to order m is in Lp(IRg), equipped

with the norm: 1
7
Il = () N0l )"

|a|<m

The homogeneous Sobolev space W,;”(le) consists of those x € S’(IRZ) such that every partial

derivative of order m is in Lp(le), equipped with the seminorm:

g = ( ) 1ol )

lar|=m

By [62, Proposition 3.14], S(IRg) is norm-dense in Wp’”(IRg) when m > 0and 1 < p < oo;
the density of S(le) in me(IRg) holds only when m >0 and 1 < p < oo, see [63].
Besov spaces are defined by using a fixed test function ¢ € S(R?) such that
suppg € (£:27 <[¢]<2),
@>0o0n{&: 27 <|&|<2),
Y e =1,&=0

keZ

(4.2.1)
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For convenience, we assume in addition that ¢ is even (but this is not necessary for the
validity of our results). The sequence {¢(27%-)}(c7 is a Littlewood-Paley decomposition of RY,
modulo constant functions. Denote by ¢y the inverse Fourier transform of ¢(27%.). Recall
that for a distribution x, the convolution ¢y * x is defined in (4.1.9) (see the discussion after
Lemma 4.1.7). Recall that the distribution space S(’)(le) is introduced in Remark 4.1.6.

Definition 4.2.2. Let 1 < p,q < o0 and a € R. The homogeneous Besov space on le is defined
by
BY (R = {x € S{(IRY) : Il < oo},

where X

q
Il = () 2%l i)

keZ

|LTt Bf,,Co(le) be the subspace of B“’oo(le) consisting of all x such that 2"’||(pk + x|, — 0 as
k| — oo.

We state some basic properties of Besov spaces.
Proposition 4.2.3. Let 1 <p,q < ocoand a € R. Then
(i) B;‘,’q(IRg) is a Banach space;
(ii) SO(IR‘Z)) is dense in Bf,,q(le)for 1<p<ooandl<g<oo;

(iii) The dual space of B?,’q(IRg) coincides isomorphically with B;,‘fq,(IRg)for 1<p<ooandl <
g < oo, where p’ denote the conjugate exponents of p; besides, the dual space of BZ,CO(IR”GZ)
coincides isomorphically with B;,‘fl(lR‘é)for 1 <p<oo.

Proof. (i) Let {x,},, be a Cauchy sequence in B;‘]’q(IRg). Then for each k € Z, {@y *x,,}, is a
Cauchy sequence in Lp(le). Thus @y * x,, converges to some vy in LP(IRg). We define

y= Z}/k-

For every x € SO(IRg), we write the Littlewood-Paley decomposition of x:

X = Z,(Pf +x (convergence in € So(le).
jeZ
Then noting that ¢; *y, = 0 for j & {k - 1,k,k + 1}, we easily show that the above element y is
a well-defined element in 8(’)(1R‘§). On the other hands, as # — oo, we have

j+1 j+l
Py =Pt ) Pt ) Y=ty
k=1 k=j-1

Thus, we conclude the proof.
(ii) For x € B;’,,q(le), we may choose an integer N € IN large enough such that

k
Iellgs, = Y 24 llgi»
|k|<N
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is small enough. Since S(le) is norm dense in Lp(le) by Lemma 4.1.3, for |k| < N, we find
Yk € S(IRZ) such that ||yx — @i *xll, < & (with very small ¢ > 0). By Lemma 4.1.7, we also have

lpj * vk — @ * pr*xll, < .

We define
k+1

y= Z Z Pj* Yk

k<N j=k—1
Then y € SO(IRg). Using the fact that @; * @y = 0 for j & {k— 1,k k + 1}, we deduce || *y — @y *
xllp < ¢ for |k| < N; consequently, ||y — xllgz'q is small.
(iii) Let y € B;ffq,(le). Define £, (x) = t9(xy) for x € SO(IRg). Then

k+1

16,0 =) Tolprrx ) @j*y)

kezZ j=k-1
k+1

< ZH(PHXHPH Z (Pf*y“p’

kez j=k-1

< IIXIIB;@(IRg)IIyIIB;g'q,(IRg).

By the density of SO(IRg) in Bqu(]Rg), we deduce that y € B;ffq,(lR’é) defines a bounded linear

functional on B;‘]’q(IRg).
For the converse, given a Banach space X, define the weighted ¢, space {3(X) to be the
space of all sequences (---,x_1,xg,x1,---) with x; € X, equipped with the norm

1
() 2lxelif).

keZ

If g = co, then we define the space cj(X) to be the space of all sequences (---,x_;,x¢,x1,":*)
such that 2%9||x||x — 0 as |k| — oo.

The dual space of £G(X) is 6;,“(X*) for q < co. By definition, Bf,’q(IRg) embeds into Kg(Lp(IRg))
through the map x — (---, p_1 *x, pg*x, @1 *x,---). Suppose that £ is a continuous linear func-
tional on Bg,q(]Rg). Then by the Hanh-Banach theorem, ¢ extends to a continuous functional

on €g(Lp(IRg)) with the same norm, so there exists an element y € K;,“(Lp,(le)) such that

0x) =) Tolpepicx).
keZ
Let
Y= ) (@1 * e+ Pk* P+ @it * i)
keZ

Then we have y € B;ffq,(IRg) and £ ={,.

For B4 . (IR%), it embeds into c(L,(IR%)), and the dual of c§(L,(IRY)) is £;%(L,(R)). The
same argument works. O

Next, we collect the following two propositions on lifting property and interpolation for
Besov spaces on IRY, which are counterparts of Theorem 3.6 and Proposition 5.1 in [105].
The proofs in [105] repeat mutatis mutandi, so are omitted.
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Proposition 4.2.4. Let 1 < p,q < co, a,b € R. Then J* and 1" are isomorphisms between B?,’q(IRg)
and B P(RY).

Proposition 4.2.5. Let 0 <1 <1, ag,a; € Rand py, p1,90,91 € [1,00]. Then we have the following
complex interpolation formula

a dy pa d d
(BﬁﬂARQLBAMARQ»W:B;ARGL

where

1- 1-
a=(1-n)ayg+nay, %:_774_1 l:—17+i (with g < o0).

Po P1 14 90 41
Like in the case of quantum tori in [105, Chapter 3], one may expect various of equivalent
characterisations of Besov norms on IRZ. However, we will not study such characterisations
on le in here. For later use, we record only the following elementary proposition.

Proposition 4.2.6. Let i be a Schwartz function supported on the annulus {s € R? : § <|s| < 4}
and equal to 1 on the smaller one {s € R i <|s| < 2}. Denote ¢y as the inverse Fourier transform
of z,b(2*k~). Then we have

1
k q
Il ~a ( ) 2% prs i)

kezZ

Proof. For k € Z, denote A, = {s € R? : 2k°1 < |s| < 2K). These sets Ay form a partition of
R\ {0}. Put also Ag = Ag_1 U Ag U Ag,q. Obviously, i (s) = 1 for any s € Ay.

Note that
k+2

Pprx = 2: Pr* @j*X.

j=k—-3

Since 1 is an infinitely differentiable function with compact support, we see that F~!(1) is
integrable, so with Lemma 4.1.7,

k+2

i xlly, < IF @ ) Ny xlly-

j=k—3

It follows that

==

( ZZﬂka”lpk*xllg); < 6||f_1(l/))||1(qukaH(Pk*xHZ) :

keZ keZ

whence

1
k q
() 2%l xlf)” < il

keZ

For the converse, since zj)\k(cf) =1 for any & € Ay, we have
(Pk * X = (Pk*llbk * X.
By Lemma 4.1.7 again, we have

llpi = xllp < IF (@l = xll.
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It follows that

= =

1
(L2t <1 M (2 15)'

kez kez
which implies

= =

k
Il < () 27l xlf)"

keZ
So we conclude (4.2.6). O

4.3 Upper bounds for commutators

We start this section with an additional assumption on ¢: Hereafter, we will assume

max( sup |¢p(s)|, sup |V(j)(s)|) <1

seGa-1 seGa-1
Under this assumption, all constants in the late estimates will be independent of ¢.

Let Cy x be a commutator with kernel in (4.1.11). We will show the upper estimate for
||C¢,x||5p. We need to consider a nicer operator I“C(p,xlb for a,b € R (a,b often positive). In

the Fourier transform side, I* is the multiplication operator on L,(IR?) by I, (recalling that
I,(s) = s|*). Denoting K, , ; the kernel of I“Cd),xlb, by (4.1.11) we have

Keap(s1) = sl (s, )%(s = 1)(p(s) = p(0))l1l”, 5,1 € (R, (4.3.1)

Convention. For simplicity of presentation, we make the convention that for an integral
operator Ty with kernel K on L,(IR?), the notation ||K(s, t)||3p stands also for the S,-norm of
Tk.

Convention. In the sequel, unless explicitly stated otherwise, x will be assumed to be a
“good” operator which admits a kernel as in (4.1.10) so that all calculations are legitimate.
For instance, x can be in Ag(L; (IRg)) or even in S(IRg).

We will frequently use the following elementary fact without further reference.

Fact. Let 11,& : RY — C be two bounded measurable functions with L,,-norm < 1. Let A and
B be the multiplication operators on L,(R%). Then for Tx as above, the kernel of ATxB is
1(s)K(s,t)E(t), so by the above convention, we have

[k newlls, = [[aTcls, <[[Tkls, =Kl

Another simple fact about ¢ will be also used. Let sy € R?\ {0}, 0 < r < @, and B(sgp,7) =
{s e R :|s—sy| < r). Since the first order derivatives of ¢ are homogeneous of order —1, the
mean value theorem implies

[ U550, [¢ = bls0)|,_ ey <7 sup |V¢<s>|sé. (4.3.2)

Jssol< 4!
This immediately implies

() — p(1)] < min(l,%), 5t R (4.3.3)
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4.3.1 Upper bound for the S_,-norm

The next theorem gives the upper bound estimate of S.,-norm of IC I b In this subsection,
x is a good operator with kernel so that all calculations below are legitimate.

Theorem 4.3.1. Leta>0,b>0and a+b <1. If x € B (RY), then I°Cy, (1" € S, (L, (RY)) and
||1uc4>,x1h||sm <d,ab Ixllpest -

Proof. This part is the most technical part of the chapter. Reformulated in terms of the

kernel in (4.3.1), the assertion means

”Kx,a,b”Soo Sd,a,b ”X”ng’go

In the following, assume that [[x||gss < 1. Recall that Ay = {s € R? : 2k-1 < |s| < 2K}. We claim
that .
2007K)if j <k,

2bk=1)if > k.
Assuming the above claim, we easily prove the above desired estimate on K , ;. Indeed,
according to the partition {A;};cz of R?, we write

Keap(s1)= ) ) My (5)Keap(s, )l (1)

jEZ keZ

18, (5) K5, DU (O] 5 St { (4.3.4)

The internal sum is a block diagonal operator, so by (4.3.4)

1> e Ko s,zf)llAk(t)HS =suplL,, (Kol s, ()] g 2000,
kezZ

Thus, since a,b > 0, we get
IKyqplls, <a ) 27mm@blil <, 1,
jeZ
We will show (4.3.4) according to the two cases j < k and j > k. The latter is symmetric
to the former by passing to adjoints, thus we need only consider the former. We will divide

this case into two sub-cases: j <k—2and k-1 <j <k. The first sub-case is relatively simple,
while that for the second is quite subtle.

Step 1: j < k—2. Note that for s € Aj and t € Ay, [s] < 2J < 2k=2 and 251 < |t| < 2%, Then
2k=2 <|s — t| < 2k*1 In other words, s —t € & (recalling Ay = Aj_; UA; U A, 1). So we have
1L (5K (5, )1y (1) = 1Ly ()]sl (s, RS - £)[bi(5) - by (D)L (1)
5,(9lsl*a (s, £)(s = X5 — )[hi(s) = i ()|t T (1)

n (S)lsI%0 (s, 1) g+ x(s = )i (s) — P (1)]IH" Ly, (1).

]

1
=1
Thus

14, (5) K5, s (1)]| < (|0, ()lsI i) (s, £)pg (s = 1) Wy (1)]|
+ |, ()5l (5, 1) (s = )b () W (1)
< 2a]+bk+1||o_ (s, t lp/k*\x s—t) ”s

_ paj+bk+l ||1Pk * X”LN(IR")
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Since ||x[[grs. < 1, by Proposition 4.2.6, we have

”lzbk *x”Lm(IRg) < 2*(a+b)k'

Combining the preceding inequalities, we obtain
|11, ()Ke 0,55, t)]lAk(t)”Sm < 2alj=k)

Thus (4.3.4) is proved for j < k - 2.

Step 2: k—1 < j < k. For this case we need an auxiliary partition of IR?. Fix an integer £ € Z
such that

1
Ok
2 <4(4+2d)' (4.3.5)

For m = (my,---,my) € Z%, let Q,, be the cube in R? with center 2¢m and side length 20, 1e
Qu = [26my =271, 20my + 25 s x [20my — 2671, 20my + 2671,
The family {Q,,},uez¢ is a partition of RY. Let m,n € Z%. We first aim to estimate
[, (s)r(s, (27 (s = 1))Ts = B)[b(s) = p(E) g, ()|
= |[1g, (s)o (s, )@rx(s — D)p(s) = p(£) o, (1)
Ifm—n|>4+d,forseQ,, and t€Q,,
Is—t| > |26m — 20n| = |s — 2m| — |t — 20n| > 20(4 + d) - 2¢d = > 2042,

s0 @(27¢(s = t)) = 0 (recalling that ¢ is the test function given by (4.2.1)).
On the other hand, assume that [m—n| < 4+d and Q,NAy = 0. Take one point ty € Q,NA.

Then Q, C B(to, 2-1d?)  B(ty, 2{(4 + 2d)). For t € Q,,,
It —to| < |t = 20m| +2m = 26n| + 1261 — t,|
<20°1as 4 204+ d)+ 2071 d% < 20 (4 + 2d),

Hence Q,, C B(to, 2 (4 + 2d)) as well. Now by (4.3.5), 2{(4 + 2d) < 22 < 5l Thus by (4.3.2),
we deduce that

g, () (s, 1)@z Fx(s = D p(s) = p(EN]1, (D)1g, ()] 5
Jo (s, @7 x(s = )P (s) = b(to)) 1, ()1g, (1)]|
+||g,, (s)o(s, ) pr=x(s = ) (1) = p(to) 1, () g, (1) (4.3.6)

< 257"”0'(5, t)pp*x(s — t)“sm

= 2K g2, ) S ol-kn—C{a+b)
oo Ry

Since {Q,,} ez is a partition of R? and {Q, N Ag},ez¢ a partition of Ay, by the above discus-
sion, we write

o(s,t)Pe*x(s = t)[P(s) — (1)), ()
= Z Z Qi (8)0 (5, ) Pr*x(s — t)[P(s) ), ()1, (£)

meZ4 nez4

= Y ) g, (5)a(s HEr(s - Ol p(s) — ()], (B)1g, (¢).

|m|<4+d nez?
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For the internal sum that is a block diagonal operator, we have

“Z Qo (8)0 (5, )@ X(s = 1)[P(s) — () [T, (D)1, (¢ )”
nezZ4 Seo
= sup [y, (5)o (s, (s - t>[q><s>—qb(t»]uAk(t)uQ”(t)”Sm

0 if m|>4+d,
20kp=lath) if | < 4 +d.

Therefore, il follows that under the condition (4.3.5) we have
o (s, H@ETx(s = ) p(s) — (e, (D] < 27 K270,
Consequently,

1, () (s, @5 = )[p(s) = S(EN M (1) <q 27 K270,

We next deal with the case 2¢°% > W. If £ > k+2, since j <k, we know from the

support assumption of @ that (27¢(s—t)) =0 for s € Ajand t € Ag. Hence there exists only a
finite number of values of ¢ to consider: k —log,[4(4+2d)] <€ <k + 2. For these ¢, we simply
have

14 (s)ar(s, )@ ex(s = 1) (5) = ()] (1)
< ||11 (s)a(s, )pr=x(s = £)ep(s) L, ()|

+ |1, () (s, ) prx(s = ) (1) Ly (1)
S ”(Pé’ *x”Lm(IRg) < 27Amh),

Summing over ¢ all estimates obtained so far and using the condition that a+b < 1, we finally
deduce that

12, (s)or(s, )50 = )[p(5) = (N, (1)

Z 1, (s)a (s, H@EFx(s = £)[p(5) = (N5, ()]
0<k+2

S_, Z 2€ k2 (a+b) Z 2—€(a+b) Sd 2—k(a+b).
O<k-log,[4(4+2d)] k-log,[4(4+2d)|<C<k+2

Therefore, it follows that for k—1 <j <k

||]1 i 5 Kxab(sft)]lAk(t)Hsm
= ||, (sl o (s, ) prx(s = 1) p(s) = PN Wy (1)
<4 2]a2kb2 k(a+b) <4 1.

Thus the claim (4.3.4) is completely proved, so is the theorem. O
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4.3.2 Upper bound for the S;-norm

We next turn to the upper bound for the S;-norm.

Theorem 4.3.2. Let a > —%, b> —% anda+b+d<1.Ifxe€ B‘fﬁ“d(ﬂ?g), then I“C(P,xlh €S, and

IFCopl[lg, Sanp el gy (4.3.7)

Proof. By the density of SO(IRg) in B}Hl”d(le) (see Proposition 4.2.3), it suffices to show the
theorem above for x € SO(IRg). Let us justify this. Assume that (4.3.7) is valid for all x €
SO(IRZ). Letx e B‘fﬁbJ“d(IRg) and take a sequence (x,,) in SO(IR”GI) converging to x in B;}“d(ﬂ?g).
Then by (4.3.7), (I“C(p,xnﬂ’) is a Cauchy sequence in S;, so it converges in S; to a limit that
must be I°Cy I”. So I°C,,,I” € S; and (4.3.7) holds.

Thus x will be assumed to be a good operator whose commutator admits a kernel as in
(4.1.11). Using the Littlewood-Paley decomposition of x:

XZZ(Pk*X

keZ

and the definition of the B‘l’flerd—norm, (4.3.7) reduces to the following

Claim. Assume that x € Ll(IRg) such that X'is supported by B(0,R). Then

ICoel®ll Saan Rl ey (4.3.8)

For n € Z%, let Qg, be the cube with centre Rn and side length R, and éRn the concentric
cube with side length 3R. We are going to estimate

llst“o (s, )Ts = D(s) = d(0)]Ia" gy, (1) (4.3.9)

and then calculate the sum over n € Z%. Note that if s ¢ QRH and t € Qg,, X(s —t) = 0 thanks
to the support assumption of x. So

(4:3.9) = [g, (sl o (s, HFs = DIp(s) ~ p(0)e Uy, ()] .

We divide the proof into two cases: |n| > 3Vd and |n| < 3Vd.
Step 1: |n| > 3Vd. The cube Qg, is contained in B(Rn,%\/ER) and %\/ER < @ Thus by
(4.3.2), we have
(4.3.9) =[5, (s)lsl*a(s, /x5 = )[p(s) = P11t Ug, (£) ||S
<||ug,, ©lsl"a (s, x0s = D[ (s) = p(Rm)]It gy, (¢) ||Sl
+ |1, (5)lsl"o (s, )FTs ~ D[p(£) ~ p(Rm) 1t gy, ()]
Sa n[7H |1, (5)lsl*o (s, 35 = g, (1) -

(4.3.10)

By definition,
X(s—t) = Tg(x/lg(s - t)*) = a(s,—t)rg(x/lg(t)/\g(—s)),
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SO

o (s, (s — 1) = To( Ao (=5)xAg (1))

We now write x = yz with y,z € Lz(le) such that ||x||; = |y|l2]lz]l>- Then

llg,, (S)sfo (s, s~ 1lg,, (1) = 7o [11g,, ()st*Ao(-5)9] [2A6(1) g, (1]
Thus by the Cauchy-Schwarz inequality,
15, (s)sl?a (s, 175 = D)1y, (0],
<||]1QR71I Ao(= Z’”Lz R%L,(RY) 226() Ib]lQRn“L (R%L,(RY))

1
=||V||2||Z||2(J~ |s|2ﬂds)2(f |t|2bdt)2
QRn QRn

<4 ||x||1Ra+b+d|n|a+b.

Combining all above estimates, when |n| > 3Vd, we arrive at
(4.3.9) <q RV |07 x|,

Since a+b+d < 1, summing over |n| > 3Vd, we get

D lsitots, 0%ts = (s) - peIEP g, (1), <a R+ lnly-
|n|>3Vd

Step 2: |n| < 3Vd. Let
E=UpsygQrn and  E=Uy 035 Orn
It is suffices to estimate
llst“o (s, 1)=Ts = ) (s) = O L (1) | -
Again by the support assumption of x°
(4.3.12) = [[1g(s)ls|"0 (s, 7 = £)[p(s) = p(Nel L (t)|
Note that E C E C Up< A with L = log,[5RVd]. Thus, by the boundedness of ¢,

(4.3.12)< ) ||y ()lslo (s, OF(s = Op(s) = pON U, ()]

jk<L

Z||11 (s)lsl®o (s, £)FTs — )|t T, ( ||S

j k<L

By the arguments in Step 1, we have

i(ged d
1, )lsl?0 (s, 30s = )1t W (]| < Il lsIle g I ) Sa 270052720,

(4.3.11)

(4.3.12)



49 4.3. Upper bounds for commutators

Since a,b > —%, summing over all j, k € Z with j, k <L, we get
(4.3.12) <g R0 1]l

Thus (4.3.11) is proved.
Finally, going back to (4.3.8), we have

Col’ll, < ) [lslo (s, 7S = ) p(s) ~ DI g, (1), Sa R+ el
nez

This is (4.3.8). O

4.3.3 Upper bound for the S,-norm

We begin with the easiest case: the upper bound for the S;-norm. In this case, the S, norm
of an operator T € S,(L,(IR%)) is equal to the norm of its kernel in L,(IRY x IRY).

a+b+4

Lemma 4.3.3. Let a, b>—7anda+b+ <L Ifx€B,, (IRd) thenI“C¢x1beSQand

ICol”s, < |

a+h+% .
B2,2

Proof. Like in the proof of Theorem 4.3.2, we assume that x is a good operator with kernel
in (4.1.11). Then by (4.3.3)

a b2
I1°C V11,

( . J;Rd ||5|u0(51 t)ﬂs - t)[¢(5) — ¢(t)]|t|b|2d5dt

_( ms)ﬁj |s+t|2a|¢(s+t)—¢(t)|2|t|2”dsdt
R4 R4

i 2 2 | | 2b
[%(s)| |s+t|“m1n( —)Itl dsdt
le

"t
g 2 2ay,2b |s|? 2ay,12b
= X(s s+ t|“¢t]7 + —s+t“t dtds.
2
JRre lt|<s] 1t>1s| 1]

Whereas a+ b + % <1, we see that

A

J\ | | |S + t|2a|t|2bdt <d wb |S|2a+2b+d
eipls 111
On the other hand, by b > ——, we have

j |S+ t|2a|t|2b Sd,b |S|2a+2b+d.
[t]<ls]

Putting the above estimates together, we obtain

b2 2a+2b+d
1 Coat W, Saan [ ORI ds 500 6,
R4 Bzz

where the last step follows from the Plancherel formula and the fact that I a+b++5 s an iso-
b+l
morphism of B?z *2 (IRg) onto Bg’z(IRg) = LZ(IRg) (see Proposition 4.2.4). O
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Now we are now able to prove the upper bound for the S,-norm. We include the cases

p € {1,2,00} already treated before just for completeness. Note that for p = oo, x should be
additionally assumed to be good.

d d _d atbg od

Theorem 4.3.4. Let 1 <p <oco,a+b+ 5 < 1 and a, b > max(—i,—j). If x € By, "(Rp), then

b atb+d

I°Cy .17 belongs to By, " (Rg) and

I°CyI"|| < x :
17*Conlls, Sapan Il g
Proof. We will use complex interpolation by the results already proved for p € {1,2,00}. To
that end, we need first extend those results to complex powers in I* and I”. This is easy since
fora,beC
b _ |I7R Reb
[1°Coat?[l5, = 1 Cpu ™,

First consider the case 2 <p <oo. Let 7 = l%' Under the conditions on 4, b, one can choose
a;,b; such that

a=(1-mn)ag+nay, b=(1-1n)bg+nby;

d d
ag,b9 >0, ag+by <1, ap,by>-5, a1 +b+5<1.

For ze{ze C:0<Rez <1}, define
a(z) =ay(1-2)+az, b(z)=bo(l-2)+bz and T,(x)=1"C, 1",

Then T, is an analytic family of linear operators. Lemma 4.3.3 and Theorem 4.3.1 states that
a+b+i

T, is bounded from BQZ;O(IRS) to S, for Rez = 0, while by Lemma 4.3.3, T, is maps B, , (IRg)
to S, for Rez = 1. Therefore, by complex interpolation,
b, +4
T,: (Big;g()(mg), B‘;; 1+ (1125)),7 - (Soo, 52);7 is bounded.
Thanks to Proposition 4.2.5, this implies that the desire assertion for 2 < p < co. The case
1 < p < 2is treated similarly, and is therefore omitted. O

Theorem 4.3.1 is not proved for all x € BZS;EO(IRg) but only for good x with kernel as

in (4.1.11). To make the preceding proof more rigorous, we can use the closure of SO(IRg)

. . . . by +4 . . . .
in BZS;&O(IR‘(;). Since SO(IRg) is dense in B‘;;r 172 (]Rg), it is a classical fact from interpolation

theory that Proposition 4.2.5 remains valid with this closure instead of BQ;SO(HQZ).

On the other hand, one cannot directly interpolate Theorem 4.3.1 and Theorem 4.3.2
because of the choice of a;,b; (i = 0,1) satisfying the required conditions. This explains why
one has to consider the two cases p <2 and p > 2 separately.

4.3.4 Higher commutators

More generally, we may consider the N-th order commutators. Let ¢¢,---, Py € C‘X’(Sd’l) be
N non-constant functions. Define

Coppione = [Tpngreor [ Tpyr M) (4.3.13)
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For a good operator x with kernel as in (4.1.10), the kernel of Cg, .. 4 » as an integral oper-
ator on L,(R%) is

N
Ky pn(5:1) = *(s—t) ]_[ (4.3.14)
i=1

Then for a,b € R, we have
||I“C¢1,...,¢N,x1b||sp(Lz(mg)) = |||5|aK({)1,~-»,¢N,x(Srt)|t|b||SP(L2(IRd))'

Theorem 4.3.4 extends to higher commutators:

).
d

If x € B;,’,p(IRg) (x is assumed additionally to be a good operator for p = co), then Cgp, .. o x has

Theorem 4.3.5. Let 1 < p < oco. Let a,b € R such that a+b + % < N and a,b > max(—%,—

N

bounded extension in Sp(Lz(le)). Moreover,

ICs,....onnll, <d,p,a,b,N]—[[ sup I+ sup Vs S

i=1 s€Sd! o

Proof. With minor modifications, the arguments in the previous subsections easily extend to
the present setting. Let us point out only the necessary modifications. Firstly, for p = o, the
only modification lies in the proof of (4.3.6) (and in the subsequent arguments, of course),
now the factor 267 there is changed to 2V(=%), which leads to the corresponding change on
a,b: now a+ b < N instead of a+ b < 1 before. Secondly, for p = 1, the only change occurs
for (4.3.9): the factor |n|™! there is replaced by |n|™N. Thirdly, for p = 2, in the first displayed

formula in the proof of Lemma 4.3.3, we have to change min(l, Hz) to min(l, Iil%) Finally,
the interpolation argument in the proof of Theorem 4.3.4 remains the same.

4.4 Lower bounds for commutators and the proof of Theorem 1.2.1

This section is devoted to the converse results of those in the previous section. Let ¢1,---, Py €
C*®(S$%1) be N functions such that

sup |¢p;(s)|+ sup [Voi(s)|<1, 1<i<N.

seGd-1 s€Gd-1

Recall that the higher commutator Cd) ¢nx 1N subsection 4.3.4. We will show that if

.....

Cy, -y € Sp(La(IRE)) , then x € Bp",,( @) if Cg,. puix € Sp(L2(R%)) under the following
nondegeneracy condition:

VseR?\ {0}t € R?\ {0} such that ]_[(qbi(s)—(j)i(t)):tO. (4.4.1)

For N =1, this condition means that ¢ is not a constant function. We will need another
associated higher one: for k > 1 set

Cnjy=C P
N.ky Py PN P1y PN Y
—
k tuple k-1 tuple
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where ¢1,..., ¢ means k tuple of (¢1,..., ), that is, each ¢; is repeated k times.
_
k tuple
The following lemma is the counterpart of [50, Lemma 9.1] for the classical euclidean

spaces. Recall that p” denotes the conjugate index of p.

Lemma 4.4.1. Suppose that 1 <p < oo, k> 1, a,b,ay,b; € R satisfying the following conditions

b+by>-d,a+a;+b+b; +d <2kN; (4.4.2)
(11,171 >max(—g,—§), [11+b1+1%<(2k—1)N. (443)

Denote y = —(a+ay +b+ by +d) and set

|s|7’f ]_[ Ipi(s + ) — Ppi(1)[2K |s + e+ P +or e, (4.4.4)

Then for x € S(IRg),

ITo( wsvg < CHI*Cp,, gyl s,
BPP
Here and late in the proof, the constant C depends on d and all involved indices.

Proof. It is easy to show that the integral in (4.4.4) is convergent thanks to (4.4.2). By defini-
tion, it is clear that w is homogenous of order zero. Let sy # 0. By (4.4.1), there exists ¢ty # 0
such that ¢;(sg) — ¢;(tg) = 0 for every 1 <i < N. Choose 6 > 0 such that

[£ =20l < 5 = Iy(s) - dilsoll < 5 ilso) ~ ko)l 1<i<N.
ol >

Let r > 0 sufficiently large so that

rsg + tO So _ So + 7’71 tO So

Irso+tol lsoll s+ 7 1tol  Isol
Thus

L ibitso) = pitto)l.

lpi(rso +to) — Pi(so)l < >

However, by the homogeneity of ¢;, we have

Pi(so+1 o) = pi(r~ o) = pilrso + to) — pilte) = [Pi(s0) — Pilto)] + [Pilrso + to) — Pilso)].

Hence,

|pi(so+77"to) = i(r " o)l > |pi(s0) — ilto)l = Ii(rso + to) — Pilso)| > %ldh‘(so) = ¢i(to)l-

Then by continuity, ¢;(so+t)—;(t) # 0 for ¢ in the neighborhood of r~!t, for every 1 <i <N,
which clearly implies that w(sg) = 0.
We will prove the desired inequality by duality. By (4.4.3) and Theorem 4.3.5, for any
Ve S(IRg) we have
I g I lls, < CUBI 4y,
p

pp
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Then for x € S(IRg), by the Placherel formula, we have

(I°Cy, gV T Cpy e, 1) = Te[lﬂc(p,xﬂ’ (I CripI") ]

r

= |, ], T 0TI - gl i+ dsds

C

_ [ j T(s)D(s — 1) |p(s + 1) — p(t)P]s + t*F 4 ||+ dsdt
]Rd IRd
-

= | X(s)9(s—t)ls| Y w(s)ds
JR4

=(I""T,(x),p).

Consequently,

b
< CI*Co,,.ppI”lls, IVl crsb -
B

Py
For p > 1, by Proposition 4.2.3

B, , " (R§)) =By, (RY).

d
%

( a1+b1+i, d

a +b+

Then by the density of S(IR‘Z)) inB,

(IRg) (see Proposition 4.2.3), we deduce

— b
”I 7/Ta)(x)” ﬁ;rblf[% Sd,p’,al,hl ||Iac¢1 ..... (PN,XI ”SP'
Bp,p

However, by Proposition 4.2.4,

I T (N )2y = NTo (O ind -
Byp ’ Bpp
Thus the assertion is proved for p > 1.
a1+b1+i, dh - ﬂ1+b1 v d
For the case p = 1, we use the subspace By, ¢, " (R) in place of Bo,oo " (IRj), the above
argument works equally. ]

In order to apply Lemma 4.4.1, we need the following Tauberian result for a general ho-
mogeneous function v as in [50]. Recall that a function v on IR? is called a Fourier multiplier
on a Besov space B?]’q(IRd) (resp. B;‘,’q(IRg)) if T, is bounded on B;Iq(IRd) (resp. B;Iq(IRg)).

Lemma 4.4.2. Suppose that v is a homogeneous function of order zero on R? \ {0} and never
vanishes. If v is a Fourier multiplier on B??l (R)) for some ag € R, then v=" is a Fourier multiplier

on Bg,p(le)for allaeRand 1 <p < oo.

Proof. Consider the Banach algebra L, = {]? feL(RY). Let oA’ ={seR?:1<|s| <8} and
let I ={f €l : f =0o0n A’}. Then I is a closed ideal of Ly and L,/I = {f|A, :feLli(R%)}isa
unital Banach algebra.

Choose 17 € C®(IR?) supported in a larger annulus such that 7 = 1 on A”. Then 1} € B‘ll?l, SO

T, (1) € B‘lz"’l (R9); it follows that the Fourier transform of T,(#), that is v#;, belongs to L,. Thus
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v| = v17| € Ll/I Since v # 0 on A’, we have that v~ | , Efl/l, i.e., there exists h € L;(R%)

such that h=v~! on A"
Now let x € B;‘,’p(IRg) and y = v 1% If AL =1{se RY : 2K-1 < |s| < 2k+1} ¢ A, then (¢ being
the test function in (4.2.1))

PrFy = Py T = Guhx = he e,

and thus
ok *yll, < Ihllill@x = Il

By homogeneity, the above inequality holds for arbitrary A}, hence [[y]| B, <C ||| By, This
means that v~! is a Fourier multiplier on Bf,,p(lR‘é) O

Theorem 4.4.3. Let 1 <p <ocoanda,beR. Let x be a good operator with kernel as in (4.1.10), for
instance, x € /\Q(L (RY) ) and ¢1,..., N satisfy the nondegeneracy condition 4.4.1. IfI“C(Pl”“,(pN,xlb €

Sp(Lz(IR )) thenxeBpp (]Rd)and

Byp

Proof Choose first a;,b; > 0 such that a+a;,b+b; >0, then a’ = b € (—% min(0, NT“’l))
Let aj =a+a; —a’,bj =b+b; —b’. Choose k € N such that a; + by +d < (2k - 1)N and
a+a;+b+by+d<2kN.

Applying Lemma 4.4.1 to p = 1 and the indices a’,1’,a;, b}, we get

.....

.....

Thus
” Tﬂ)(x)“B‘l’fl*b/*d < C||X||Bzf:;rb’+d .

This means that w is a Fourier multiplier on B?:Tb,m(]l?g)), especially for the degenerate case

0 = 0 too. This enables us to apply Lemma 4.4.2; consequently, ™! is a Fourier multiplier
a+b+—

on B,, ’(R%). Thus

d

”x” a+b+g <C||T ( )” “*’”ﬁ'

Byp Byp

Now applying Lemma 4.4.1 once more, this time to p,a,b... (noting that we have the same
function w defined by (4.4.4) according to the choice of the indices), we finally deduce

[I| b SdpabN I Ch,,.in, NE lls,-
Byp

Thus the theorem is proved. O
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Proof of Theorem 1.2.1. Combining Theorems 4.3.4 and 4.4.3, we conclude Theorem 1.2.1 for
d

X € S(IRg). For general x € Bf,p(IRg), by Proposition 4.2.3, we mezy find a sequence {x,},>1 C

S(IRg) such that x,, — x in Blg’p(IRg). Since {x,},>1 is Cauchy in Bg,p(IRg), by the upper bound

estimate, the sequence {Cy ,, },;>1 is also Cauchy in S, so has a limit in S,. On the other hand,

it is straightforward to verify that Cy , 71 — Cg 7 in Lz(le) forany n €S (IRg). Therefore,
the limit of {Cy  },>1 in S, must be Cy . Now that,

lim [lx,ll ¢ =Ilxll ¢ and lim [ICy . [ls, = ICg xlls,,

p p
Byp Byp

we complete the proof of the theorem.
d

Conversely, we have to deduce x € Blﬁp( d) from Cy , € §,. To that end, we will use the

following simple fact: When x € L (IR )and Cy €S, w1th 1 < p < oo, for v e L1(R?), we
have

ICp,vaxlls, < IVIIHIICq s, - (4.4.5)

This is the S, analogue of [62, Equality (6.12)], and the proof is very simple since Cy ., can
be written as a convolution with v.

From [62, Lemma 3.12], we may select {{.},~0 and {¢.}.>o such that ¥, * (Ag(¢.)x) €
S(IRg). The upper bound (4.4.5) implies:

ICo, 021000 )0)lls, S N1Pell1llCq, a4, )xlls,-

By (4.4.5) and Theorem 4.3.4, we have

IC,p+1p(g01)lls, < el (IC, 10(p)Mills, + 1Mo (Pe)lleollCy s, )
Sdp ||¢5||1(||A9<¢ i g ||x||oo+||Ae(q>g>||m||c¢,x||sp)
Sap Ixllo + ||c4,,x||s,,.
It follows that {Cyp y .(1,(4,)x)}e>0 i uniformly bounded in S, as ¢ — 0. Now applying The-

orem 4.4.3 to the smooth elements e * (Ag(pe)x, we see that {he * (Ag(Pe)x)}eso is uni-

d

formly bounded in B}, (le), so the sequence {(gok * (1,b.g * ()\g(qbe)x)))kez}po is uniformly
d

bounded in €£(LP(IR2)). Since 1 < p < oo, the space 6”( (IRd)) is reflexive and therefore

{((Pk * (1‘[)5 * (Ae(qbg)x)))k Z}DO has a weak limit point in €p( p(IRg)). But one easily checks

that for any v = (vx)kez € €q ( q(]Rg)) (finitely supported in the sense that only finitely many
Vi # O)'

lim ) (o1 (9 * (Aa(@0)0).ve) = )_(r+x)

e—0
kez keZ
d

It follows that the weak limit point of {((pk * (1,bf * (/\Q(qbg)x))) Jeso in € (Lp(IRg)) must be

d
(@k * x)kez- Therefore, x € Bpp,p(IRg). O
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4.5 The S, property of Cy . and the proofs of Theorems 1.2.2 and
1.2.3

In this section we consider the endpoint case of TTheorem 1.2.1 when p = d. Instead of S,
we will characterise the membership of Cy , in the weak Schatten d-class S .

4.5.1 Upper estimate for S, ,, property of C, ,

It is shown in [63, Corollary 5.2] that x € Wd1 (IRg) iff [R;, M,] has bounded extension in S o,
for all 1 <j <d. Here R; denotes the j-th Riesz transform on RR%, or from the perspective of

functional calculus, R; = ¢(V) with ¢(&) = é—]' and V= (91, e, ad).

Based on the estimates of R}, M,], we are able to deduce the estimate of C , for general
¢ € C¥(S47L).
Lemma 4.5.1. Assume that ¢ € C®(S% 1) and x € Wdl (IRg). Then Cg x has a bounded extension
in Sy o satisfying
IC¢,xlls, .. < Cp.a g}%ll[Rj;lesdm-

Proof. We appeal to [95, Lemma 3.5], which states that: Let (By,---,B;) C B(H) be a commut-
ing self-adjoint tuple. Let A € B(H). Let h € S(R). Then for any 1 < p < co, we have

LA (B Bo)ls,.. < Cap ma, 19 - max A, By, . (45.1)

For our purpose, we set p =d, A = M, and Bj = R;. Set also h(t) = g(l—a)x(ItI),t € R? where x

is a Schwartz function on IR vanishing on (—oo, %) and satisfying x(1) = 1. Then

max 571 < Cgy.
1Sjsdll ihll < Cy

and it follows from [62, Theorem 1.1] that for x € Wd1 (IRg),

max |[|[M,, R; < o0.
1Sj£d”[ xr ]]”Sd’oo o

Evidently, h(Ry, -+, Rg) = Tp, so (4.5.1) ensures the desired assertion. O

Proposition 4.5.2. Assume that ¢ € C®($4!) and x € W;(H{‘é). Then Cgy . has a bounded
extension in Sy , satisfying
ICp,xlls,, < Cop,allxllyiyr-

Proof. Assume initially x € S(IRZ) C WC}(IRg). The above lemma and [62, Theorem 1.1] yield
ICpxlls;. < Co lnsl]?lgii”[ijMx]”Sdm < Co,allxllyr- (4.5.2)

For general x € Wdl(IRZ), by [63, Proposition 4.9], we may approximate x by a sequence
{xp}us1 C S(IRg) such that lim,,_, ||Xn—X||Wdl = 0. Then the estimate in (4.5.2) forces {[ Ty, My, |}i>1
Cauchy in the S; ., topology. Hence, there is a limit in S; .. On the other hand, for any
1 € S(RY) € Ly(IRY),

[Td)'Mxn]ﬁ - [T¢’Mx]77

in LZ(IRg). So [Ty, My, | — [Ty, M,] in the S; o, topology. Since (4.5.2) holds for all {x,},>1
with the same constant, passing n — oo, we conclude the proof. O
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4.5.2 The trace formula

This part is devoted to the computation of Trw(qu;’xld) for continuous normalised trace Tr,,
on S ., (or especially for Dixmier trace).

Since the partial derivatives on classical euclidean spaces and on quantum euclidean
spaces will appear in the same circumstance, we make the convention that, dg,, d5 will de-
note the partial derivatives of real variable functions ¢(&) on classical euclidean spaces,
while dy, d* will denote the partial derivatives on quantum euclidean spaces defined in sub-
section 4.1.2.

To begin with, we replace Ty by another Fourier multiplier T whose symbol is smooth
on the whole R?. Such ¢ is easy to find: letting x € C®(RY) such that x(&) =1 for {& € R? :
€] > L} and x(&) = 0 for {& e RT: [E] < 1) Take ¢ = x¢p. We put

1
A= o Z Tigia,, gMoe (4.5.3)

1<k<d

We are going to reduce the computation of Trw(|C¢’x|d) to that of Tr,(|A|4(1 + A)_%).

We will engage the theory of pseudodifferential operators on R?. In the following, we
collect some definitions and properties of symbol classes and pseudodifferential operators
on noncommutative euclidean space. The main reference is [37].

Definition 4.5.3. For every m € IR, the class S”’(]Rd;S(IRg)) consists of all maps p € C°°(IRd;S(IRg))
such that, for all multi-indices a, € INd, there exists Ca,ﬁ > 0 such that

m—|p
1939 p(El < Cop(1 +1EP)" 7", VEERY.

We can now define the pseudodifferential operator on IR”QZ.

Definition 4.5.4. Given f € S(RY) and pE Sm(IRd;S(IRg)), we set

Ptaf)= [ felpe)olee.

The operator F, is called the pseudo-differential operator of symbol p.

If pe Sm(IRd;S(IRg)) with m € R, then P, is said to be a pseudodifferential operator of
order m. The following conclusion, also quoted from [37], gives the principle of symbolic
calculus for pseudodifferential operator.

Proposition 4.5.5. Let p1, p, be two symbols in Sml(IRd;S(IR‘é)), SmZ(IRd;S(]Rg)) respectively.
Then there exists a symbol p3 € Sm1+m2(IRd;S(IRg)) such that

By, =P, By,

Moreover,

27i)~lal
03— Z &agplaapz e §m+m-No(RY; S(RY)), V¥ Ny > 0. (4.5.4)
|a|<N0 a
The following is the fundamental mapping property of the pseudodifferential operators
on quantum euclidean space, see [37, Theorem 4.12].
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Proposition 4.5.6. Let p be a symbol of order 0, then P, extends to a bounded operator on L2(IR‘Z,).

One feature of the Schwartz class S(R) is the factorisability: that is, every f € S(R%),
can be obtained as a product f = gh for g,h € S(R?). To our best knowledge, such factoris-
ability is not verified for S(IR?,) for general 6. In order to overcome this drawback, a dense
subalgebra of S (]Rg) is introduced in [62]. Namely, [62, Proposition 2.5] states that there is
a dense *-subalgebra A(le) C S(le) such that every x € A(IRg) can be expressed as a finite
linear combination of products of elements of A(IRd) i.e. every element x = .A(IRZ) can be
represented as x = Z] 1¥j2j with each y;,z; € A(le)

With this subalgebra A(R ), we have the following

Proposition 4.5.7. Let p € S‘m(IRd;S(IRg)) with m> 0, and x € A(IRg). Then for n > 0, we have
Ppr]_” €S.a4 . and 1\/I,CPp]_'1 €S a4

oo’
m+n’ m+n’

Proof. Without loss of generality, we may assume that x = yz for y,z € A(IRg). So we may
decompose P,M,] ™" as

Ppr]_n = (Pp]m)(]_mMy)(Mz]_n)
Since F, has order —m, Proposition 4.5.5 implies that the composition P,M,J™ is of order
0 and thus has bounded extension by Proposition 4.5.6. Moreover, by [56, Theorem 7.6],
J7"M, € S o and M,] ™" e Sd o respectively. We therefore conclude F,M,J™ €S 4 from

m+n’

the Holder inequality. The other assertion is deduced similarly, using the decomposition

ByJ " = (M ")) 0
Lemma 4.5.8. Let x € .A(IR‘;) and let A be defined as in (4.5.3). For any y € A(IRg), we have:

M,Cg, ~MyA] " €8y,

¢, x
Proof. By the above proposition, we only have to show that the symbol of Conx— AJ7!
of order —2 using symbol calculus. Note that the symbol ¢ of the Fourier multlpher T$ is

smooth on the whole R?, so that T is viewed as a pseudodifferential operator of order 0.
Now for two pseudodifferential operators T; and M, of order 0, we appeal to Lemma 4.5.5,
to obtain the asymptotic expansion of the principal symbol of [ — M,]. Indeed, the symbol

of M, T is q{)( )x, while that of quMx is expanded as
al

ZZ 27“ - 92 P(£)9°x. (4.5.5)

720 |al=j

By the homogeneity of ¢ and the definition of ¢, each 9“[5(5)9"% coincides with the ho-
mogeneous symbol J¢ ¢(&)d“x of order —|a| when || > 1. Thus, the symbol of [T, oy M,] is
classical of order —1, the leading term bemg

Z o e, (&)Ipx. (4.5.6)
1<k<d

Next, let us continue with the computation of symbol of A constructed in (4.5.3). Now it
is easily checked that the symbol of A is classical of order 0, the principal symbol being

1 —
) 5 l€0 B(E)kx. (4.5.7)
1<k<d
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Indeed. By Proposition 4.5.4, the symbol of A has the asymptotic expansion

N
Yy Y P 110, 867 (9u).

>0 |aj=j 1<k<d

Obviously, this is a classical symbol of order 0, with principal symbol

) 1€195, B(E)yx.

1<k<d
So, the principal symbol of AJ,! is of order —1, given by
Z Lag B(&)Iix,
2mi
1<k<d

which is the same as in (4.5.6). Hence, C$,x — AJ7 ! is of order —2. The desired assertion
follows then from Proposition 4.5.7. O]

Lemma 4.5.9. Let x,y, A be as in Lemma 4.5.8. For any continuous normalised trace Tr,, on S; ,,
we have
Tr(IMy Cpel) = Tr (M A1),

Proof. By the fact that any continuous normalised trace Tr,, on S; ., vanishes on S;, we are
reduced to showing that
IM, Cy o — IM,AIY] € S,. (4.5.8)

We first claim the following “symmetric” version of (4.5.8):

d

IM,Cy|* - (]‘llMyA|2]‘1)2 €85 (4.5.9)

By the construction of ¢, we see that ¢ — ¢ € LP(IRd) for any p > 1, so [62, Theorem 3.17]
ensures that Cy , — C&x € S%’oo. By the previous lemma, we have

M,Cg, -M,A] " € 84 o (4.5.10)

Next, we proceed as the proof of [62, Lemma 6.4]. Taking the adjoint of (4.5.10), we have

* _1 *
(MyCy,) =T (MyA) €Su . (4.5.11)
Moreover, it follows from Proposition 4.5.7 that
MyA] ™" € Sg e (4.5.12)
Combining (4.5.10), (4.5.11) and (4.5.12), we deduce from the Holder inequality that
IM,Cyp >~ T IM, AP = (MyC&;’x) (M,Cg, -M,A]™)

¢;X ,00 1

+((Myc~ )*_]_I(MyA)*)MyA]_I €84 C S
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When d = 2, this gives (4.5.9). If d > 2, we appeal to a result from Ricard [86, Theorem 3.4],
which says that we can take a power % to each term of the preceding inclusion to get

1
_ _1\2
IMyCol ~ (1M APT ) € 53
Introducing a power d, we get

M, ol - (17, 421
yPx y

d-1 k
—k— _ _1\172\(,_ _1\2
= ) IMyCyl 1M,y = (M APT ) ) 1 AP )
k=0
d-1
€ S a4 +S5a-84 CSsa  CSy.
P d—k-1" 6 k’ 5d+1”

So we have finished the proof of (4.5.9).
It remains to deduce (4.5.8) from (4.5.9). This is done by repeating mutatis mutandi the
proof of [62, Proposition 6.5]; the details are omitted. O

The presence of M, is necessary in Lemma 4.5.8, so necessary in Lemma 4.5.9, due to the
fact that the Bessel potential /7% is not compact on LZ(IR‘;) for a > 0.

Lemma 4.5.8 reduces the computation of Tra,(lMyC(P,xld) to that of Trw(|MyA|d(1 —A)"2).
In order to calculate the trace Trw(|C¢,x|d), we will first calculate the trace Trw(IMyAld(l -

_d
2

A)‘%) by Connes’ trace formula [64, Theorem 6.15] for smooth y, and then approximate
Trw(|C¢,x|d) by passingy — 1 in Tra,(lMqu_L,,xld) .

Let us quote [64, Theorem 6.15] in the following. Let CO(IRg) be the norm closure of
S(IRg) in B(L,(R%)). For every g € C($91), as explained in Remark 4.1.9, g(VA_%) is the
Fourier multiplier Ag(f) /\e(g(ﬁ)f(t)) in B(Lz(IR‘é))‘ Identifying LZ(IRg) with L,(R?) by the
Plancherel formula, we may also view g(VA_%) as the pointwise multiplication operator in

B(L,(R%)). So all g(VA_%) with g € C($%1) form a commutative C*-subalgebra of B(L,(RR%)).
Set H(CO(IRg)HE, C(S%1)) to be the C*-subalgebra of B(L,(IR?)) generated by CO(]R‘é)HE and

all those g(VA_%)’s. Theorem 3.3 of [64] implies that there exists a unique norm-continuous
+-homomorphism

sym : TT(Co(IR§) + €, C($9")) — (Co(R§) + C) ®pmin C(S*7)

which maps x € CO(IRg) tox®1 and g(VA_%) to 1®g. Then [64, Theorem 6.15] says that for
every continuous normalised trace Tr,, on S ., every x € Wld(IRg), and every T € l_I(CO(IRg) +
C, C(S%1)), we have

Tr,, (TM,J ) = cd(rg ®f )(sym(TMx)) (4.5.13)
Gd-1
where C; is a certain constant depending only on the dimension d.

Theorem 4.5.10. Let x € Wdl(IRg) and ¢ € C®($971). Then for every continuous normalised trace
Tr,, on Sy o, we have

TeullCoal) = Ca [ o] Y o500 e,

1<k<d
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Proof. Firstly, we assume that x € A(IRZ). For any continuous normalised trace Tr, on S; o,
and arbitrary y € A(IRg), Lemma 4.5.9 implies that

Tr o, (IMyCyp xI?) = Tro, (IM, A1),

Since d > 2,
IM,A|? = M, AI"2(M,A)*M, A

has the form TM, for some T € I—I(CO(IRg) +C,C($%* 1)) and z € Wld(IRg). So (4.5.13) is appli-
cable, giving

Ty (M, AT ) = Co(ro® [ Y(symipg,ath)

Evidently,
1 d
sym(lMyAld) = |% agkq[) yakx ,
1<k<d
whence
d
Tr,, (M, Cy, %) = C4 L“ 7o (| Z e, v x| )dE. (4.5.14)
1<k<d

It remains to get rid of y € A(IRg) and the assumption x € A(IRg) using approximation
argument. Firstly, we may take (v,),>1 C .A(le) such that y, — 1 ¢ LOO(IRg) with respect to
the w*-topology. This is done by the construction of A(]R”Gl) in [62, Proposition 2.5]. With
this sequence (y,,),,>1, we note that both sides of (4.5.14) are estimated from above by ||x||Wdl.
Passing n — oo, we arrive at

d
Trw(|C¢,x|d):Cdj wo| Y 0ok, (4.5.15)
st 1<k<d

Next, using the density of A(IRg) in Wdl(lR‘é), we find (x,,),>1 C A(IRg) such that x,, — x in
Wfl(IRg). Again, both sides of (4.5.15) are estimated from above by ”X”Wdl. Passing n — oo in

d
Trul1Con ) = Ca [ wall Y dsd i,
ST i<k=d
we see that (4.5.15) holds for any x € W;(IR‘é). This ends the proof of the theorem. O

We end this section with some remarks concerning the opposite of Proposition 4.5.2.
It is shown in [62] that, if [Rj, M,] € S4 forall 1 <j<d, then x € W{;(IRZ) with

Il <Ca ) IR, M I,
1<j<d
We cannot have this estimate for a single [T, M,]. Take ¢ = % for instance: Proposition
4.5.2 and Theorem 4.5.10 ensure

1
195/l = Ca Tro, (1R, MJI') 7 < Call[Rj, Mllls, . < Cillxllyi-
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But neither we can conclude
19;xlla =a I[Rj, My]lls, .

nor
[T, Micllls, ., ~a llxllyit

for a single ¢ € C($471).

Furthermore, it is shown in [62] that, if [R;,M,] € S,,p <d forall 1 <j<d, thenxisa
constant. Returning to the classical euclidean setting, this assertion is weaker than the result
in [51], which states that if [Ty, M,] € S, p < d for some ¢, then x is a constant. We cannot
conclude such noncommutative counterpart of Janson-Wolff’s result in [51] from Theorem
4.5.10 as well. This indicates the drawback of our method: when taking the Dixmier trace
of the commutator, we lost some information of the original function (operator) x.
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Résumé

Cette thése a pour but d’étudier quelques problémes dans l’analyse harmonique sur
les produits croisés tordus qui sont définis par des actions tordues d’un groupe locale-
ment compact G sur une algebre de von Neumann M. Elle se compose de deux parties. La
premiere porte sur les produits croisés tordus et leurs multiplicateurs de Fourier et de Schur.
Nous démontrons que la propriété d’étre QWEP pour l'algebre de von Neumann tordue
d’un groupe G est indépendante du 2-cocycle sous-ajacent et que les Lp-multiplicateurs de
Fourier complétement bornés sur cette algébre tordue sont aussi indépendants du 2-cocycle.
Sous I'hypothese d’une action moyennable, nous établissons plusieurs résultats de trans-
fert entre les multiplicateurs de Fourier et de Schur sur les espaces Lp non-commutatifs du
produit croisé tordu. Dans la deuxieme partie, nous étudions les commutateurs de multi-
plicateurs de Fourier sur le produit croisé tordu d’un espace euclidien. Nous caractérisons
leur appartenance a la p-classes de Schatten par celle de leurs symboles a un espace de
Besov associé. Cette partie contient aussi une formule sur la trace de Dixmier qui nous
donne également une caractérisation de I'appartenance de ces commutateurs a une p-classe
de Schatten faible par un espace de Sobolev. En particulier, nos résultats s’appliquent au cas
d’un espace euclidien quantique.

Mots clefs: Multiplicateurs de Fourier, multiplicateurs de Schur, 1’algébre de groupe de von
Neumann, produit croisé tordu, classe de Schatten, espace de Besov, espace de Sobolev.

Abstract

This thesis is devoted to the study of some problems in the harmonic analysis on twisted
crossed products defined by twisted actions of a locally compact group G on a von Neumann
algebra M. It consists of two parts. The first concerns twisted crossed products and their
Fourier and Schur multipliers. We prove that the property of being QWEP for the twisted
von Neumann algebra of a group G is independent of the underlying 2-cocycle and that the
completely bounded Lp-Fourier multipliers on this twisted algebra are also independent of
the 2-cocycle. Under the hypothesis of an amenable action, we establish several transference
results between the Fourier and Schur multipliers on the noncommutative Lp spaces of the
twisted crossed product. In the second part, we study Fourier multiplier commutators on
the twisted crossed product of an Euclidean space. We characterize their Schatten p-class
membership by that of their symbols in the associated Besov space. In addition, this part
contains a formula on the Dixmier trace, which also gives us a characterization of the weak
Schatten p-class membership of these commutators by a Sobolev space. In particular, our
results apply to the case of quantum Euclidean spaces.

Keywords: Fourier multiplier, Schur multiplier, group von Neumann algebra, twisted
crossed product, Quantum euclidean space, Schatten class, Sobolev space, Besov space,
pseudodifferential operator.
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