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Résumé

Dans cette thèse, nous considérons deux problèmes d’analyse non commutative. Ces
deux problèmes sont liés aux multiplicateurs de Fourier dans les contextes non commu-
tatifs : une classe de multiplicateurs de Fourier Lp pour le produit croisé tordu et des
commutateurs de classe Schatten concernant les multiplicateurs de Fourier sur le produit
croisé tordu. Ces deux objets se posent dans divers domaines de recherche mathématiques
et physiques comme la géométrie non commutative et ont attiré une grande attention ces
dernières années.

Du point de vue physique, puisque, en plus d’être étudié en mécanique quantique, le cal-
cul quantifié a souvent un analogue algébrique de formes différentielles dans le cadre non
commutatif ; par exemple, Connes a utilisé ce calcul quantifié pour calculer la mesure de
Hausdorff des ensembles de Julia, ou ensembles limites de groupes quasi-fuchsiens dans le
plan. Nous nous concentrons sur l’étude de la différentiabilité quantique du produit croisé
tordu, à savoir l’appartenance aux classes de Schatten des commutateurs impliquant les mul-
tiplicateurs de Fourier sur les espaces non commutatifs, et sur le calcul de la formule de trace
pour les dérivées quantifiées.

Nous traitons également des multiplicateurs de Fourier sur les produits croisés tordus.
Une attention particulière est portée aux multiplicateurs de Fourier Lp complètement bornés
dans les cas discrets et localement compacts. Puisque les résultats de transfert entre les
multiplicateurs de Schur et de Fourier complètement bornés sont bien connus pour le cas de
l’algèbre de groupe de von Neumann, l’objectif principal est de combler les lacunes dans les
résultats de transfert des multiplicateurs de Fourier et de Schur sur le produit croisé tordu.
Les résultats susmentionnés peuvent également être étendus au niveau Lp. Nous étudions
également la stabilité des propriétés d’approximation par les produits croisés tordus.

La thèse se compose de quatre chapitres. Le chapitre 1 est une introduction contenant
une brève présentation des questions traitées et des résultats obtenus. Le chapitre 2 donne
quelques résultats préliminaires. Dans le chapitre 3, nous étudions les multiplicateurs de
Fourier sur le produit croisé tordu. Dans une situation où l’action α est moyennable, nous
montrons que ϕ est un multiplicateur de Fourier complètement borné sur Lp(M ⋊α,σ G)
si et seulement si ϕ̃ est un multiplicateur de Schur complètement borné sur Sp(ℓ2(G)), où
ϕ̃(s, t) = ϕ(s−1t) pour s, t ∈ G. En particulier, nous démontrons que les multiplicateurs de
Fourier complètement bornés sur Lp(Lσ (G)) sont indépendants du cocycle. Ces résultats
seront traités dans le cas discret et localement compact. D’autre part, nous démontrons que
le produit croisé torduM⋊α,σ G hérite de l’injectivité et w∗ -CBAP deM sous l’hypothèse de
la moyennabilite de α. De plus, nous établissons que si l’algèbre de von Neumann du groupe
tordu Lσ (G) est QWEP, alors G est hyperlinéaire.

Dans le chapitre 4, nous étudions la différentiabilité quantifiée des produits croisés tor-
dus de l’espace euclidien, à savoir l’appartenance de classe de Schatten et de Schatten faible
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des commutateurs multiplicateurs de Fourier. Nous nous occupons des commutateurs sous
lesquels le symbole associé des multiplicateurs de Fourier sera une fonction homogène. Dans
le cas où les propriétés de l’espace de Besov des éléments connexes dans les espaces non com-
mutatifs suggèrent l’appartenance de Schatten des commutateurs, nous engageons la théorie
modulaire w∗ pour traiter l’estimation de la p-norme de Schatten. Dans le cas où les pro-
priétés de Sobolev des éléments associés dans les espaces non commutatifs suggèrent les
propriétés de Schatten faibles des commutateurs, nous devons nous plonger dans le calcul
pseudo-différentiel non commutatif. En outre, la formule de trace pour les commutateurs
sera également calculée. De plus, nous considérerons également les résultats parallèles pour
les commutateurs d’ordre supérieur.

Mots clefs

Multiplicateurs de Fourier, multiplicateurs de Schur, l’algèbre de groupe de von Neumann,
produit croisé tordu, classe de Schatten, espace de Besov, espace de Sobolev.



Abstract

In this thesis, we consider two problems of noncommutative analysis. These two problems
are related to the Fourier multipliers in the noncommutative settings: a class of Lp Fourier
multipliers for the twisted crossed product and Schatten class commutators concerning the
Fourier multipliers on twisted crossed product. These two objects arise in various math-
ematical and physical research domains like noncommutative geometry and have drawn
wide attention in recent years.

From the physical point of view, since, in addition to being studied in quantum me-
chanics, quantised calculus often has an analog of the algebra of differential forms in the
noncommutative setting; for instance, Connes used this quantised calculus in computting
the Hausdorff measure of the Julia sets, or limit sets of Quasi-Fuchsian groups in the plane.
We focus on studying the quantum differentiability of the twisted crossed product, namely
the Schatten class memberships of the commutators involving the Fourier multipliers on
noncommutative spaces, and calculating the trace formula for the quantised derivatives.

We also deal with the Fourier multipliers on twisted crossed products. Particular atten-
tion is paid to the completely bounded Lp Fourier multipliers in the discrete and locally
compact cases. Since the transference results between the completely bounded Schur and
Fourier multipliers are well known for the group von Neumann algebra case, the main goal
is to fill in the gaps in the transference results of Fourier and Schur multipliers on the twisted
crossed product. The aforementioned results can also be extended to the Lp level. We also
study the stability of approximation properties by twisted crossed product.

The thesis consists of four chapters. Chapter 1 is an introduction containing a brief pre-
sentation of issues treated and results obtained. Chapter 2 gives some preliminary results.
In Chapter 3, we study the Fourier multipliers on the twisted crossed product. In a sit-
uation where the action α is amenable, we show that ϕ is a completely bounded Fourier
multiplier on Lp(M ⋊α,σ G) if and only if ϕ̃ is a completely bounded Schur multiplier on
Sp(ℓ2(G)), where ϕ̃(s, t) = ϕ(s−1t) for s, t ∈ G. In particular, we prove that the completely
bounded Fourier multipliers on Lp(Lσ (G)) are independent of the 2-cocycle σ . These results
will be treated in the discrete and locally compact case. On the other hand, we demonstrate
that the twisted crossed productM⋊α,σ G inherits injectivity and w∗-CBAP ofM under the
amenability assumption of α. Besides, we establish that if the twisted group von Neumann
algebra Lσ (G) is QWEP (quotient weak expectation property), then G is hyperlinear.

In Chapter 4, we study the quantised differentiability of the twisted crossed product of
Euclidean space, namely, the Schatten and weak Schatten class memberships of the Fourier
multiplier commutators. We deal with the commutators under which the associated sym-
bol of the Fourier multipliers will be a homogeneous function. In the case where the Besov
space properties of the related elements in the noncommutative spaces suggest the Schatten
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memberships of the commutators, we engage the w∗ modular theory to deal with the Schat-
ten p-norm estimate. In the case where the Sobolev properties of the associated elements in
the noncommutative spaces suggest the weak Schatten properties of the commutators, we
need to delve into the noncommutative pseudo-differential calculus. Furthermore, the trace
formula for the commutators will also be calculated. Moreover, we will also consider the
parallel results for the higher-order commutators.

Keywords

Fourier multiplier, Schur multiplier, group von Neumann algebra, twisted crossed product,
Quantum euclidean space, Schatten class, Sobolev space, Besov space, pseudodifferential
operator.
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Notations

We list below the notations that we use throughout the thesis:

(1) R, C denote respectively the set of real numbers, complex numbers. R+ denotes the
interval (0,∞).

(2) R
N denotes the N -dimensional real Euclidean space, and the typical point in R

N is
x = (x1,x2, · · · ,xN ). TN−1 denotes the tori in the N -dimensional Euclidean space.

(3) θ denotes a d × d antisymmetric matrix, namely θ∗ = −θ.

(4) R
d
θ denotes the d-dimensional quantum Euclidean space.

(5) Bαp,q(R
d
θ) denote the Besov spaces on quantum Euclidean space.

(6) Wm
p (Rdθ) denote the Sobolev spaces on quantum Euclidean space respectively. Ẇm

p (Rdθ)
denote the homogeneous Sobolev spaces on quantum Euclidean space.

(7) S(Rdθ) denote the Schwartz spaces on quantum Euclidean space.

(8) Sp and Sp,∞ denote the Schatten and weak-Schatten class over some Hilbert spaces H .
MSp denotes the set of Schur multipliers on Sp.

(9) G denotes the locally compact group, LG denotes the group von Neumann algebra of
G, while C∗r (G) and C∗(G) denote the reduced and full group C∗-algebra of G. Lp(LG)
be the noncommutative Lp-spaces on L(G).

(10) McbLp(LG) denotes the set of all the completely bounded Fourier multipliers on Lp(LG).

(11) (M,G,α,σ ) denotes a twisted w∗-dynamical system.

(12) The twisted crossed product is denoted asM⋊α,σ G.

(13) Given a function ϕ on G, Tϕ and Mϕ̃ denote the Fourier and Schur multipliers respec-
tively.
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Chapter 1

Introduction

The thesis which collects some works obtained during my Ph.D is devoted to the study of
some problems in harmonic analysis on twisted crossed product defined by twisted actions
of a locally compact group G on a von Neumann algebraM. The two chapters correspond to
the work in progress in collaboration with Xiong Xiao (Harbin Institute of Technology) and
Xu Quanhua.

1.1 Harmonic analysis on twisted crossed product

This part is motivated by [15] that is devoted to the study of harmonic analysis on quantum
(or noncommutative) tori. One result of [15] states that the complete bounded Fourier multi-
pliers on the Lp-space of a quantum d-torus Td

θ coincide with those on Lp(Td) of the usual d-
torus. This means that these multipliers are independent of the underlying skew-symmetric
matrix θ. Note that Td

θ can be viewed as the twisted von Neumann algebra Lσ (Zd) of the
integer group Z

d associated to a 2-cocyle σ (a notion introduced first by Mackey [60]). Recall
that a 2-cocyle on a groupG is a function σ : G×G→ T satisfying σ (r, s)σ (rs, t) = σ (s, t)σ (r, st)
and σ (s, e) = σ (e, s) = 1 for all r, s, t ∈ G (e being the unit of G). Lσ (Zd) is a deformation of the
group von Neumann algebra L(Zd) = L∞(Td) of Zd .

Another closely related result of [15] establishes a link between Fourier and Schur mul-
tipliers on Lp(Td

θ ) in spirit of Ricard and Neuwirth article [69]. This line of investigation has
started with Eymard’s pioneering work [35]. Let us go into more details. Let G be a discrete
group and L(G) the von Neumann algebra generated by the left regular representation λ of
G. Given a function ϕ : G → C, the Fourier multiplier Tϕ, initially defined on the group
algebra C[G] � spanλ(G), is the linear map determined by Tϕ(λ(s)) = ϕ(s)λ(s) for all s ∈ G. If
Tϕ extends to a (completely) bounded map on L(G) by the w∗-density of C[G] in L(G), ϕ is
called a (completely) bounded Fourier multiplier on L(G). Bożejko and Fendler [9] show that
ϕ is a completely bounded Fourier multiplier on L(G) iff the function ϕ̃ on G ×G, defined
by ϕ̃(s, t) = ϕ(st−1), is a completely bounded Schur multiplier on B(ℓ2(G)); moreover, in this
case, the two associated completely bounded norms are equal. Recall that given a function
φ on G ×G, the Schur multiplier Mφ of symbol φ sends a matrix (as,t)s,t∈G to (φ(s, t)as,t)s,t∈G.
It is well known that Mφ is automatically completely bounded if it is bounded on B(ℓ2(G)).

Ricard and Neuwirth [69] extend Bożejko and Fendler’s result to the Lp-space level. Let
L(G) be equipped with its canonical trace τ that is the vector state induced by δe, where δs
denote the Dirac mass at s. Let Lp(L(G)) be the noncommutative Lp-space based on (L(G), τ)
for 1 ≤ p ≤∞ (recalling that L∞(L(G)) = L(G)). Lp(L(G)) is equipped with its natural operator

1



Chapter 1. Introduction 2

space structure as introduced by Pisier [78] (see below for more details). Note that C[G]
is dense in Lp(L(G)) for p < ∞. We call ϕ a (completely) bounded Fourier multiplier on
Lp(L(G)) if Tϕ extends to a (completely) bounded map on Lp(L(G)).

Similarly, we define (completely) bounded Schur multipliers on the Schatten p-class
Sp(ℓ2(G)) based on ℓ2(G). The main result of [69] asserts that under the amenability assump-
tion of G, ϕ is a completely bounded Fourier multiplier on Lp(L(G)) iff ϕ̃ is a completely
bounded Schur multiplier on Sp(ℓ2(G)) for 1 ≤ p ≤ ∞. [15] extends this result to the quan-
tum torus T

d
θ . Since Schur multipliers on Sp(ℓ2(Zd)) do not depend on the skew symmetric

matrix θ, this second result of [15] implies the first one on Fourier multipliers quoted before.

In the present article, we intend to do all this in the setting of twisted group von Neu-
mann algebras. Let σ be a 2-cocycle onG, and let λσ be the twisted version of the left regular
representation λ. More precisely, for any s ∈ G, λσ (s) is the unitary operator on ℓ2(G) deter-
mined by (λσ (s)ξ)(t) = σ (t−1, s)ξ(s−1t) for any ξ ∈ ℓ2(G) and t ∈ G. Then the twisted group
von Neumann algebra Lσ (G) is the von Neumann algebra generated by λσ (G). The vector
state induced by δe is again a faithful trace on Lσ (G) (see section 3.1 for more information).
One of our results shows that if G is hyperlinear, then the completely bounded Fourier mul-
tipliers on Lp(Lσ (G)) are independent of σ . We also prove that ϕ is a completely bounded
Fourier multiplier on Lp(Lσ (G)) iff ϕ̃ is a completely bounded Schur multiplier on Sp(ℓ2(G)).

More generally, we will work in the setting of twisted dynamic systems in the category
of von Neumann algebras. A twisted dynamic system (or more precisely, W*-system) is a
quadruple (M,α,σ ,G), whereM is a von Neumann algebra and (α,σ ) a twisted action of G
onM (see section 3.1 for the precise definition as well as all notions unexplained below). Let
M⋊α,σG be the associated twisted crossed product. Note that twisted crossed products in the
category of C*-algebras were first studied by Zeller-Meier [107]; since then they have been
extensively investigated (cf., e.g. [12, 70, 71, 83]). In a recent series of papers [2–6], Bédos
and Conti have developed harmonic analysis on twisted crossed products of C*-algebras; in
particular, they obtained results on Fourier and Schur multipliers as well as on the conver-
gence of Fourier series. The interesting work [65] by McKee, Todorov and Turowska also
deals with the same subject.

However, all just quoted papers deal with either algebraic aspects of twisted crossed
products or analytic aspects only at the C*-algebraic level (i.e., at the L∞-level). This means
that analysis for Lp-spaces with finite p has not been touched by these papers. The goal of
the present article is to fill up this deficiency. We prove that the previous results on Fourier
and Schur multipliers on Lp(Lσ (G)) continue to hold for Lp(M⋊α,σ G) under the assumption
that M be QWEP or G be hyperlinear. Note that González-Pérez [39] has also established
the link between Fourier and Schur multipliers on untwisted crossed products.

We also study the stability of approximation properties by twisted crossed products. In
particular, we show that if the action α is amenable, thenM⋊α,σG inherits the injectivity and
w∗-completely bounded approximation property of M. Another approximation property
that we consider is QWEP. Recall that L(G) is QWEP iff G is hyperlinear (cf. [74]). We prove
that Lσ (G) is QWEP iff G is hyperlinear, that is, QWEP of Lσ (G) is independent of the 2-
cocycle σ .

Our references for operator space theory are [34, 78]. Recall that a linear map T : E→ F
between two operator spaces are said to be completely bounded (abbreviated to cb) if Id⊗ T :



3
1.2. Schatten properties of commutators of singular integral operators on noncommutative

euclidean space

Mn(E)→Mn(F) is bounded uniformly in n ∈N; in this case, the cb-norm of T is defined to

∥T ∥cb = sup
n≥1

∥∥∥Id⊗ T : Mn(E)→Mn(F)
∥∥∥.

All noncommutative Lp-spaces in the sequel are equipped with their natural operator space
structure introduced by Pisier [76,78]. Let us briefly recall this. As a von Neumann algebra,
L∞(M) =M carries its natural operator space structure. The structure on L1(M) is defined as
the one induced by the opposite (M)op that is viewed as the dual of L1(M). For 1 < p <∞, the
operator space structure on Lp(M) is given by complex interpolation Lp(M)) =

(
M,L1(M))

)
1
p

.

We will frequently use Pisier’s characterization of cb maps (see [76, Lemma 1.7]): A linear
map T : E→ F is cb iff Id⊗ T : Sp[E]→ Sp[F] is bounded for some 1 ≤ p ≤∞ (here for p =∞,
S∞ should be interpreted as the algebra of compact operators on ℓ2). In this case,

∥T ∥cb =
∥∥∥Id⊗ T : Sp[E]→ Sp[F]

∥∥∥,
where Sp[E] denotes the E-valued Schatten p-class (see [76]). Applying this criterion to the
special case where E = F = Lp(M), we see that a map T on Lp(M) is cb iff Id⊗T : Sp[Lp(M)]→
Sp[Lp(M)] is bounded, and the cb-norm of T is the norm of the latter. Note that Sp[Lp(M)] =
Lp(B(ℓ2)⊗M).

In the last result, B(ℓ2) can be replaced by a QWEP von Neumann algebra A. Recall that
a C*-algebra A has the WEP property if for the canonical inclusions A ⊂ A∗∗ ⊂ B(K) there
exists a contraction P : B(K)→ A∗∗ such that P

∣∣∣
A

= Id. A is called QWEP if A is a quotient of
another C*-algebra with WEP.

We will often use the following result of Junge [53] without further reference. Let A be a
QWEP von Neumann algebra. If a map T : Lp(M)→ Lp(M) is cb, then Id⊗ T : Lp(A⊗M)→
Lp(A⊗M) is cb too, and the two cb-norms are equal.

1.2 Schatten properties of commutators of singular integral oper-
ators on noncommutative euclidean space

A. Connes introduced the quantised calculus in [20] as an analogue of the algebra of differ-
ential forms in a noncommutative setting, and later explored the link with the action func-
tional of Yang-Mills theory [21]. Connes successfully applied quantised calculus in com-
puting the Hausdorff measure of Julia sets and limit sets of Quasi-Fuchsian groups in the
plane [22, Chapter 4, Section 3.γ] (for a more recent exposition see [26, 28]).

The core ingredients of the quantised calculus, as outlined in [20], are a separable Hilbert
space H , a unitary self-adjoint operator F on H and a C∗-algebra A represented on H such
that for all a ∈ A the commutator [F,a] is a compact operator on H . Then the quantised
differential of a ∈ A is defined to be the operator d̄a = i[F,a]. The compact operators on H
are described by Connes as being analogous to infinitesimals, and the rate of decay of the
sequence of singular values:

µ(n,T ) = inf{∥T −R∥ : rank(R) ≤ n}

corresponds in some way to the “size” of the infinitesimal T (see [23]). In this setting one
can quantify the smoothness of an element a ∈ A in terms of the rate of decay of {µ(n,d̄a)}∞n=0.
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Of particular interest are those elements a ∈ A which satisfy:

µ(n,d̄a) =O((n+ 1)−1/p) as n→∞, or,
∞∑
n=0

µ(n,d̄a)p <∞, or,

sup
n≥1

1
log(n+ 2)

n∑
k=0

µ(k,d̄a)p <∞ ,

for some p ∈ (0,∞). The first condition stated above is that d̄a is in the weak Schatten ideal
Sp,∞, the second condition is for d̄a to be in the Schatten ideal Sp, and the final condition
is that |d̄a|p is in the Macaev-Dixmier ideal M1,∞ [22, Chapter 4, Section 2.β] (see also [58,
Example 2.6.10]).

The link between quantised calculus and geometry is discussed by Connes in [21]. A
model example for quantised calculus is to take a compact Riemannian spin manifold M
with Dirac operator D, and define H to be the Hilbert space of square integrable sections of
the spinor bundle. The algebra A = C(M) of continuous functions on M acts by pointwise
multiplication on H , and one defines

F = 1l[0,∞)(D)− 1l(−∞,0)(D).

One then hasd̄f = i[F,Mf ], where Mf is the operator on H of pointwise multiplication by f .
In quantised calculus the immediate question is to determine the relationship between the
degree of differentiability of f ∈ C(M) and the rate of decay of the singular values of d̄f . In
general, we have the following:

f ∈ C∞(M)⇒ |d̄f |d ∈M1,∞,

where d is the dimension of the manifold M [21, Theorem 3.1].
For certain special cases it is possible to obtain a far more precise understanding of the

relationship between the smoothness of f and the singular values ofd̄f . The simplest exam-
ple is to take the unit circle T = {z ∈ C : |z| = 1}, with A = C(T ), H = L2(T ) and the standard
choice of F in this setting is the Hilbert transform. Then by a result of V. Peller [73, Theorem
7.3], we have that for any p ∈ (0,∞): d̄f ∈ Sp if and only if f is in the Besov space B1/p

p,p (T ).
Peller’s work has been extended to obtain even more precise relationships between f and
the singular values ofd̄f , for example, L. Gheorghe [36] found necessary and sufficient con-
ditions on f to ensure that d̄f is in an arbitrary Riesz-Fisher space. For more details from a
quantised calculus perspective, see [22, Chapter 4, Section 3.α].

In higher dimensions, the relationship between f andd̄f has also been studied [29,51,89].
To illustrate the situation, consider the d-dimensional torus Rd , d ≥ 2. The appropriate Dirac
operator in this setting is:

D =
d∑
j=1

−iγj ⊗∂j ,

where ∂j denotes differentiation with respect to the j-th coordinate on R
d , and {γ1, . . . ,γd}

denotes the d-dimensional euclidean gamma matrices, which are self-adjoint 2⌊
d
2 ⌋×2⌊

d
2 ⌋ com-

plex matrices satisfying γjγk + γkγj = 2δj,k1. The operator D may be considered as an un-

bounded self-adjoint operator on the Hilbert space L2(Rd ,C2⌊
d
2 ⌋). The corresponding oper-

ator F is a linear combination of Riesz transforms. The commutators of Riesz transforms
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1.2. Schatten properties of commutators of singular integral operators on noncommutative

euclidean space

and multiplication operators are studied in classical harmonic analysis: S. Janson and T.
Wolff [51] proved that ford̄f to be in Sp when p > d it is necessary and sufficient that f is in

the Besov space B
d
p
p,p(Rd). On the other hand, Janson and Wolff also proved that if p ≤ d then

d̄f ∈ Sp if and only if f is a constant.

The first results [62] concerning quantum differentiability in the noncommutative eu-
clidean space are the characterizations of the Schatten Sd,∞ properties of

d̄x :=
d∑
j=1

γj ⊗d̄xj (1.2.1)

on noncommutative euclidean space Rdθ. Quantum euclidean spaces were first introduced by
a number of authors, including Groenewold [42] and Moyal [66], for the study of quantum
mechanics in phase space. The constructions of Groenewold and Moyal were later abstracted
into more general canonical commutation relation (CCR) algebras, and have since become
fundamental in mathematical physics. Under the names Moyal planes or Moyal-Groenewold
planes, these algebras play the role of a central and motivating example in noncommuta-
tive geometry [43], [13]. As geometrical spaces with noncommutating spatial coordinates,
noncommutative euclidean spaces have appeared frequently in the mathematical physics
literature [31], in the contexts of string theory [91] and noncommutative field theory [67].

Quantum euclidean spaces have also been studied as an interesting noncommutative
setting for classical and harmonic analysis, and for this we refer the reader to recent work
such as [56].

In (1.2.1), γj ’s still denote the d-dimensional euclidean gamma matrices, and d̄xj :=

i[Rj ,Mx], where for 1 ≤ j ≤ d, Rj =
Dj

(−d)
1
2

denote the quantum counterpart of Riesz trans-

forms on R
d
θ. One of the main results in [61] states that d̄xi has bounded extension in Sd,∞

for every 1 ≤ i ≤ d iff x belongs to the homogeneous Sobolev space Ẇ 1
d (Rdθ).

A related direction of research concerning quantized differentials is trace formulae. As
early as [21] it was known that for functions on compact manifolds, it is possible to express
the Dixmier trace trω(|d̄f |d) as an integral of derivatives of f . Such trace formulae are gen-
eralized to quantum euclidean spaces case for suitable elements x ∈ R

d
θ; namely, for any

continuous normalised trace tr on S1,∞ we have

tr(|d̄x|d) = cd

∫
S
d−1
τ

( d∑
j=1

|∂jx − sj
d∑
k=1

sk∂kx|2
) d

2

ds, (1.2.2)

where τ is the canonical trace associated to the noncommutative torus, cd is a certain con-
stant depending on d, and the integral is over s = (s1, . . . , sd) in the (d−1)-dimensional sphere
S
d−1 with respect to its rotation-invariant measure ds.

From the trace formula (1.2.2) and an estimate of its right hand side integration, one
immediately deduces thatd̄xi has bounded extension in Sp for every 1 ≤ i ≤ d and p ≤ d iff x
is a constant operator; see also [61].

Main results

In the second part we will consider the commutators of the multiplier operator Mx with
the quantum analogues of the so-called Calderón-Zygmund transforms. In the commuta-
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tive setting, Calderón-Zygmund transforms are singular integral operators having kernels
homogeneous of degree −d and with mean value zero on S

d−1. By [93, Theorem II.4.2], ev-
ery Calderón-Zygmund transform can be written as the Fourier multiplier Tφ whose symbol
φ is smooth and homogeneous of degree 0. Now that no ambiguity will be caused, by ho-
mogeneity, we will identify this symbol φ with a function in C∞(Sd−1) in the sequel. For
φ ∈ C∞(Sd−1) and x ∈ R

d
θ, we denote Cφ,x = [Tφ,Mx], which is a bounded operator on the

Hilbert space L2(Rdθ). More generally, if x is not necessarily bounded, say L2 integrable, we
may still define Cφ,x on a dense subspace of L2(Rdθ); see subsection 4.1.4 for detailed inter-
pretation.

When φ(s) = sj ∈ C∞(Sd−1), Tφ = Rj = ∂j∆
− 1

2 is the j-th Riesz transform on R
d
θ.

Theorem 1.2.1. Let d < p <∞. If x ∈ B
d
p
p,p(Rdθ), then Cφ,x has a bounded extension in Sp and∥∥∥Cφ,x

∥∥∥
Sp
≲d,p

[
sup
s∈Sd−1

|φ(s)|+ sup
s∈Sd−1

|∇φ(s)|
]∥∥∥x∥∥∥

B
d
p
p,p

.

Conversely, assume additionally that φ is not constant. If x ∈Rdθ and Cφ,x ∈ Sp, then x ∈ B
d
p
p,p(Rdθ)

and ∥∥∥x∥∥∥
B
d
p
p,p

≲d,p
[

sup
s∈Sd−1

|φ(s)|+ sup
s∈Sd−1

| ∇φ(s)|
]∥∥∥Cφ,x

∥∥∥
Sp
.

Here B
d
p
p,p(Rdθ) denotes the homogeneous Besov spaces on noncommutative euclidean

space. Since the constant term of x does not contribute to the commutator Cφ,x = [Tφ,Mx],
these homogeneous Besov spaces are more appropriate than the inhomogeneous versions
studied in [105] for the characterizations of the Schatten properties of Cφ,x.

We will also study the critical case, i.e., the Sd,∞ properties of Cφ,x for p ≤ d. Again, we
use the homogeneous Sobolev space Ẇ 1

d (Rdθ), whose norm (module constants) is given by
(
∑

1≤j≤d ∥∂jx∥dd)1/d .

Theorem 1.2.2. If x ∈ Ẇ 1
d (Rdθ), then Cφ,x has bounded extension in Sd,∞.

We will calculate the Dixmier trace of |Cφ,x|d for good enough x. The following trace
formula is new even for commutators of Calderón-Zygmund transforms in the classical (eu-
clidean space or torus) setting.

Theorem 1.2.3. Let x ∈ Ẇ 1
d (Rdθ). Then for every continuous normalised trace Trω on S1,∞, we

have
Trω(|Cφ,x|d) = Cd

∫
S
d−1
τθ(

∣∣∣ ∑
1≤k≤d

∂skφ ∂kx
∣∣∣d)ds.

Here the integral over Sd−1 is taken with respect to the rotation-invariant measure ds on S
d−1.



Chapter 2

Preliminaries

This chapter presents some preliminary results which will be used throughout the whole
thesis.

2.1 Group representations

Representations are vital in this thesis. There are various types of representations. The
special and most used ones in this thesis are unitary representations. We give a short intro-
duction to these representations.

In general, by a representation, we mean a group homomorphism π : G→ GL(V ), where
V is a vector space and GL(V ) is the group of linear automorphisms of V . As far as we con-
cerned, we only consider representations on Hilbert spaces over the complex field. When H
is a Hilbert space, we denote by B(H) the space of all bounded operators, byGL(H) the group
of invertible operators, and by U (H) the group of all unitary operators on H . To make use of
the topological structure of the group, we usually consider continuous representations.

Sometimes it is not convinient to work with the norm topology, since in sometimes the
operators we are considering are not continuous under the norm topology. Thus, it is neces-
sary to introduce some frequently used operator topology on B(H).

Recall that the strong operator topology (WOT) on B(H) is induced by the following
families of seminorm

ωξ : T ∈ B(H) 7→ ∥T ξ∥, ξ ∈H,

and the weak operator topology on B(H) is the topology induced by the families of seminorm

ωξ,η : T ∈ B(H) 7→ ⟨T ξ,η⟩, ξ,η ∈H.

Definition 2.1.1. We suppose that π is a representation of the locally compact group G on a
Hilbert space H , we say that the representation ı is continuous with respect to the SOT if the maps

s ∈ G 7→ π(s)ξ ∈H

are continuous with respect to all ξ ∈H . Analogously, if the maps

s ∈ G 7→ ⟨π(s)ξ,η⟩

are continuous for all ξ,η ∈H , then we say that the representation π is continuous with respect to
WOT.

7
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Throughout the thesis, all the representations we are considering are continuous.

Definition 2.1.2. Two representations (πi ,Hi), i = 1,2 are called similar if there is an invertible
map T :H1→H2 such that

T −1π2(s)T = π1(s)

for all s ∈ G. Futhermore, if the operator T is unitary, we say that the two representations are
unitary equivalent and write π1 ≃ π2.

2.1.1 Unitary representations

Definition 2.1.3. A representation (π,H) is called a unitary representation if it takes images in
U (H).

Example 2.1.1. The very basic example is the trivial representation:

s ∈ G 7→ idH ∈U (H)

for all s ∈ G.

Example 2.1.2. The intrinsic example throughout this thesis is the left regular representation: the
left regular representation on L2(G) is defined by

(λ(s)f )(t) = f (s−1t), f ∈ L2(G), s, t ∈ G.

We define also the right regular representations on L2(G),

(ρσ (s)f )(t) = ∆(s)
1
2 f (ts), f ∈ L2(G), s, t ∈ G.

2.1.2 Group algebras

The left (resp. right) group von Neumann algebra L(G) (resp. R(G)) is the von Neumann subal-
gebra of B(L2(G)) generated by the set {λ(s) : s ∈ G} (resp. {ρ(s) : s ∈ G}), that is, the closure in
the w∗ topology of span {λ(s) : s ∈ G} (resp. {ρ(s) : s ∈ G}). Since L1(G) as ∗-algebra under twisted
convolution and involution has the same bounded approximate identity as the usual group algebra
L1(G), L(G) is equivalently generated by {λ(f ) : f ∈ L1(G)}.

The predual of L(G) is denoted A(G), called Fourier algebra. It is identified as the subspace of
C0(G) of continuous functions vanishing at infinity via ωξ,η 7→ ⟨λ(·)ξ,η⟩,A(G,σ )→ C0(G). By
this identification, for functions ϕ ∈ A(G,σ ) and f ∈ L1(G), the duality bracket ⟨ϕ,λ(f )⟩ is given
as

⟨ϕ,λ(f )⟩ =
∫
G
ϕ(s)f (s)ds. (2.1.1)

2.1.3 Weight on L(G)

We follow the construction in [99] to endow L(G) a weight, and R(G) with its opposite weight.
We begin with Cc(G), the space of continuous compactly supported functions on G. With the

following convolution

ξ ∗ η(s) =
∫
G
ξ(t)η(t−1s)dt, (2.1.2)
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involution
ξ♯(s) = ∆(s−1)ξ(s−1), (2.1.3)

and inner product

⟨ξ,η⟩ =
∫
G
ξ(s)η(s)ds,

Cc(G) is a left Hilbert algebra (see [99, Section VI.1] for definition), denoted as M(G). If we replace
the involution ξ♯ with

ξ♭(s) = ξ(s−1),

then we get a right Hilbert algebra, denoted as N(G).
It is evident that the completion of M(G) or N(G) is the Hilbert space L2(G). To each ξ ∈M(G)

there corresponds a unique bounded operator πℓ(ξ) = λ(ξ) : η 7→ ξ ∗ η on L2(G), and the map
πℓ : M(G) 7→ πℓ(ξ) ∈ B(L2(G)) is a ∗-representation of M(G), which is nondegenerate. Then we
get the left von Neumann algebra πℓ(M(G))′′. Likewise, for the right Hilbert algebra N(G) and its
anti ∗-representation πr(η) = ρσ (η) on L2(G), we have the right von Neumann algebra πr(N(G))′′.

The modular operator and modular conjugation of the left Hilbert algebra M(G) are

∆ξ(s) = ∆(s)ξ(s), Jξ(s) = ∆(s)−
1
2ξ(s−1), (2.1.4)

which are guaranteed by [99, Lemma VI.1.5].
A vector η ∈ L2(G) is said to be right bounded if

sup{∥ξ ∗ η∥2 : ξ ∈M(G, ),∥ξ∥2 ≤ 1} <∞.

Denote by B′ the set of all right bounded vectors in L2(G), and let nr = πr(B′). Define M(G)′ =
B′ ∩D♭, where D♭ is the domain of the map η 7→ η♭. Then this M(G)′ is a right Hilbert algebra.
And by [99, Lemma VI.1.15],

πr(M(G)′) = nr ∩n∗r .

Similarly, starting with the right Hilbert algebra M(G)′, let B be the set of all left bounded
elements in the sense

sup{∥ξ ∗σ η∥2 : η ∈M(G,σ )′ ,∥η∥2 ≤ 1} <∞, (2.1.5)

and
nℓ = πℓ(B). (2.1.6)

Likewise, define M(G)′′ = B ∩ D♯ where D♯ is the domain of the map η 7→ η♯. Then we have
πℓ(M(G)′′) = nℓ ∩n∗ℓ. Define also

mℓ = {
n∑
j=1

y∗jxj : x1, · · · ,xn, y1, · · · , yn ∈ nℓ}, (2.1.7)

and mr similarly.
For an arbitrary left Hilbert algebra M, M′′ and M′ do not agree in general. However in our

case, both M(G)′′ and M(G)′ are given by Cc(G), a Tomita algebra, see [99, Section VI.2].

Lemma 2.1.3. Equipped with the complex one parameter group dα : ξ(s) 7→d(s)αξ(s) of automor-
phisms, M(G) is a Tomita algebra. Moreover

πℓ(M(G))′′ = L(G) , πr(N(G))′′ = R(G,σ ) = L(G)′ .
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Now we define Φ on L(G)+ as

Φ(x∗x) =
{
∥f ∥22, if x = λσ (f )
+∞, otherwise.

(2.1.8)

By [99, Theorems VII.2.5 and VII.2.6], this Φ is a weight on L(G) associated with the full left
Hilbert algebra M(G); this weight is the twisted version of the Plancherel weight in [99, Defini-
tion VII.3.2]. Define also Ψ on R(G)+ as

Ψ (y∗y) =
{
∥g∥22, if y = ρ(g)
+∞, otherwise.

Again by [99, Theorem VII.2.5], we see that Ψ is the opposite of Φ . By the definition of m it follows
that the weight Φ (resp. Ψ ) is extended to a linear functional on mℓ (resp. mr), still denoted by Φ

(resp. Ψ ).

Proposition 2.1.4. The weight Φ on L(G) is tracial iff ∆(s) ≡ 1, i.e., iff G is unimodular.

2.2 Noncommutative Lp space

Throughout the thesis, we mainly consider the von Neumann algebra euipped with a normal
semifinite faithful trace. For this class of von Neumann algebra, the definition of noncom-
mutative Lp space will be much neater.

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace τ ,
and let S+

M be the set of all positive elements x inM with τ(s(x)) <∞, where s(x) denotes the
support of x, i.e., the smallest projection e such that exe = x. Let SM = span(S+

M). Then every
x ∈ SM has finite trace, and SM is a w∗-dense ∗-ideal ofM. Let 1 ≤ p <∞. For any x ∈ SM, the
operator |x|p belongs to S+

M too (recalling |x| = (x∗x)
1
2 ). We define

∥x∥p =
(
τ(|x|p)

) 1
p .

Then ∥ · ∥p is a norm on SM. The completion of (SM,∥ · ∥p) is denoted by Lp(M), the non-
commutative Lp-space associated to (M, τ). We refer the reader to [79] and [106] for further
information on noncommutative Lp-spaces.

In particular, ifM = B(H) equipped with the usual trace Tr (H being a Hilbert space), the
corresponding noncommutative Lp-space is the usual Schatten p-class, denoted by Sp(H). If
H is separable and dimH =∞, Sp(H) is simply denoted by Sp.

IfM1 andM2 are two semifinite von Neumann algebras equipped with τ1 and τ2, respec-
tively, the von Neumann tensor algebra M1⊗M2 is equipped with the tensor trace τ1 ⊗ τ2.
We will often consider the tensorM⊗B(H), equipped with τ ⊗Tr.

We will record some frequently used results of noncommutative Lp spaces.

Theorem 2.2.1 (Höder inequality). Let 0 < p,q, r ≤∞ such that 1/r = 1/p+ 1/q. Then

∥xy∥r ≤ ∥x∥p∥y∥q, x,y ∈ S .

The next proposition means that the noncommutative Lp is unitary invariant.
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Proposition 2.2.2. Let x ∈ S and a,b ∈ M. Then ∥axb∥p ≤ ∥a∥ ∥x∥p ∥b∥ for 0 < p < ∞. Conse-
quently, ∥ ∥p is unitary invariant.

The nest results is vital in the first part.

Proposition 2.2.3. Given two noncommutative measure space (M, τ) and (N ,µ), if there is an
isomorphism π :M→ N such that µ ◦ π = τ (trace preserving), Then π can be extended to an
isometric isomorphism from Lp(M) to Lp(N ).
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Chapter 3

Harmonic analysis on twisted crossed
product

For the convenience of reading, this chapter is presented self-contained with the rest of the
thesis. In this chapter, we study the Fourier and Schur multipliers of scalar valued symbol
on the noncommutative Lp spaces of twisted crossed products.

3.1 Twisted crossed products

3.1.1 Basic properties

In this subsection we present basic notions and properties of twisted crossed products.

Definition 3.1.1. A twisted dynamical system is a quadruple (A,G,α,σ ) with a twisted action
(α,σ ) of G onM. Here the two functions α : G→ Aut(M) and σ : G ×G→U (M) satisfy the
following conditions: for any s, t, r ∈ G

(i) αs ◦αt = Adσ (s,t) ◦αst;

(ii) σ (r, s)σ (rs, t) = αr(σ (s, t))σ (r, st);

(iii) σ (e, s) = σ (s, e) = 1.

The following identity about the 2-cocycle will be often used later:

σ (s, s−1) = αs(σ (s−1, s)), s ∈ G. (3.1.1)

Let ℓ1(G,M) denote the M-valued ℓ1-space indexed by G. Then ℓ1(G,M) becomes a
Banach ∗-algebra with convolution and involution defined as follows: for f ,g ∈ ℓ1(G,M) and
s ∈ G

f ⋆g(s) =
∑
t∈G

f (t)αt(g(t−1s))σ (t, t−1s), (3.1.2)

f ♯(s) = σ (s, s−1)∗αs(f (s−1))∗. (3.1.3)

Here we have decided to omit the twisted action (α,σ ) in f ⋆g and f ♯, otherwise the notation
would be too heavy. However, we will use ℓ1(G,M,α,σ ) to denote the above Banach algebra
if confusion is possible.

13
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Definition 3.1.2. A covariant homomorphism of (A,G,α,σ ) is a pair (ρ,u) of a normal repre-
sentation ρ ofM on a Hilbert space K , and a function u : G→U (K) such that

(i) u(s)u(t) = ρ(σ (s, t))u(st), s, t ∈ G;

(ii) ρ(αs(a)) = u(s)ρ(a)u(s)∗, a ∈M, s ∈ G.

It is easy to check that (ρ,u) gives rise to a ∗-representation π ×u of ℓ1(G,M):

ρ ×u(f ) =
∑
s∈G

ρ(f (s))u(s), f ∈ ℓ1(G,M).

The covariant representation of (A,G,α,σ ) that we are interested in is the regular covari-
ant representation. Let ℓ2(G,H) denote the H-valued ℓ2-space indexed by G. Define(

πα(a)ξ
)
(t) = αt−1(a)ξ(t), ξ ∈ ℓ2(G,H), t ∈ G,(

λσ (s)ξ
)
(t) = σ (t−1, s)ξ(s−1t), ξ ∈ ℓ2(G,H), s, t ∈ G.

Then πα(a) and λσ (s) are bounded operators on ℓ2(G,H) and belong to the von Neumann al-
gebra tensor product M⊗B(ℓ2(G). Note that πα(a) is the block diagonal operator α·−1(a) =
diag

(
αt−1(a)

)
t∈G

with entries in M (relative to the canonical basis of ℓ2(G)) and λσ (s) =

σ (·−1, s) ⊗ L(s) is unitary, where L(s) is the left translation operator on ℓ2(G). It is easy to
check that (πα ,λσ ) is a covariant representation of (A,G,α,σ ); moreover, πα is faithful.

Definition 3.1.3. The above covariant representation (πα ,λσ ) is called the twisted left regular
representation of (A,G,α,σ ). The twisted crossed productM⋊α,σG is the von Neumann algebra
generated by πα(M) and λσ (G):

M⋊α,σ G =
{
πα(a)λσ (s) : a ∈M, s ∈ G

}′′
⊂ B(ℓ2(G,H)).

It is clear that πα ×λσ (ℓ1(G,M,α,σ )) is a w∗-dense ∗-subalgebra ofM⋊α,σ G. Note that If
σ identically equal to 1,M⋊α,σ G reduces to the usual crossed productM⋊α G. In this case,
λσ is simply denoted by λ. On the other hand, ifM = C,M⋊α,σ G is the twisted group von
Neumann algebra Lσ (G). The usual (untwisted) group Neumann algebra of G is denoted by
L(G).

Remark 3.1.4. We can also define a right regular representation (πrα ,λ
r
σ ) of (A,G,α,σ ) as fol-

lows: (
πrα(a)ξ

)
(t) = αt(a)ξ(t), ξ ∈ ℓ2(G,H), t ∈ G,(

λrσ (s)ξ
)
(t) = σ (t, s)ξ(ts), ξ ∈ ℓ2(G,H), s, t ∈ G.

This leads to the right twisted crossed product M ⋊
r
α,σ G. In this article, we only consider

left twisted crossed products.

The above twisted crossed product is independent of the choice of a particular covariant
representation. By this we mean the following property that is proved as [?, Theorem X.1.7]
in the untwisted setting.



15 3.1. Twisted crossed products

Remark 3.1.5. Let (ρ,u) be a covariant representation of (A,G,α,σ ) with ρ a normal faithful
representation ofM on K . Define(

ρα(a)ξ
)
(t) = ρ

(
αt−1(a)

)
ξ(t), ξ ∈ ℓ2(G,K), t ∈ G,(

λσ,ρ(s)ξ
)
(t) = ρ

(
σ (t−1, s)

)
ξ(s−1t), ξ ∈ ℓ2(G,K), s, t ∈ G.

Then there exists an isomorphism Φ fromM⋊α,σ G onto {ρα(M),λσ,ρ(G)}′′ such that

Φ(πα(a)) = ρα(a) and Φ(λσ (s)) = λσ,ρ(s), a ∈M, s ∈ G.

Convention. To lighten notation, throughout the remainder of the article, we will set

R =M⋊α,σ G and N =M⊗B(ℓ2(G)).

It is clear that R is a subalgebra of N from the construction of R. The canonical embed-
ding of R intoN will be denoted by ι if one wishes to distinguish R and ι(R) in some special
situations. We will use the matricial representation of R inN relative to the canonical basis
{δs}s∈G of ℓ2 (recalling that δs is the Dirac mass at s). Let {es,t}s,t∈G be the canonical matrix
units of ℓ2(G). Then πα(a) is the block diagonal matrix:

πα(a) =
∑
s∈G

αs−1(a)⊗ es,s, a ∈M,

On the other hand, it is easy to check that

λσ (r) =
∑
s∈G

σ (s−1, r)⊗ es,r−1s, r ∈ G.

Thus
πα(a)λσ (r) =

∑
s∈G

αs−1(a)σ (s−1, r)⊗ es,r−1s,

and more generally

πα ×λσ (f ) =
∑
s,t∈G

αs−1(f (st−1))σ (s−1, st−1)⊗ es,t , f ∈ ℓ1(G,M). (3.1.4)

We now extend the Fell principle to the present setting. Let (M1,G,α1,σ1) and (M2,G,α2,σ2)
be two twisted dynamic systems, and let (ρi ,ui ,Ki) be a covariant representation of (Mi ,G,αi ,σi)
for i = 1,2. Define the associated tensor objects:

M =M1⊗M2, α = α1 ⊗α2, σ = σ1 ⊗ σ2;

K = K1 ⊗K2, ρ = ρ1 ⊗ ρ2, u = u1 ⊗u2.

Recall that ρα and λσ,ρ are defined in Remark 3.1.5. The following is to be compared with [4,
Theorem 4.10].

Proposition 3.1.6. With the above notation, the two covariant representations (ρ1 ⊗ ρ2,α2
, u1 ⊗

λσ2,ρ2
) and (ρa, λσ ) of (A,G,α,σ ) are unitarily equivalent. More precisely, there exists a unitary

operator U on ℓ2(G,K) such that

Uρα(a)U ∗ = ρ1 ⊗ ρ2,α2
(a) and Uλσ,ρ(t)U ∗ = u1(t)⊗λσ2,ρ2

(t), a ∈M, t ∈ G.
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Proof. Define U : ℓ2(G,K)→ ℓ2(G,K) by

(Uξ)(s) =
(
ρ1(σ1(s, s−1)∗)u1(s)⊗ 1

)
ξ(s), ξ ∈ ℓ2(G,K), s ∈ G.

Clearly, U is unitary. Given a = a1 ⊗ a2 ∈ M, we calculate Uρα(a)U ∗ as follows. Given
ξ ∈ ℓ2(G,K), s ∈ G, applying successively U ∗,ρα(a) and U , we have(

Uρα(a)U ∗ξ
)
(s)

7→
(
u1(s)∗ρ1(σ1(s, s−1))⊗ 1

)
ξ(s)

7→ α1,s−1(a1)⊗α2,s−1(a2)u1(s)∗ρ1(σ1(s, s−1))ξ(s)

7→
(
ρ1(σ1(s, s−1)∗)u1(s)⊗ 1

)
α1,s−1(a1)⊗α2,s−1(a2)

(
u1(s)∗ρ1(σ1(s, s−1))⊗ 1

)
ξ(s).

The first component in the tensor of the last operator is equal to

ρ1(σ1(s, s−1)∗)u1(s)α1,s−1(a1)u1(s)∗ρ1(σ1(s, s−1))

= ρ1(σ1(s, s−1)∗)ρ1(α1,s ◦α1,s−1(a1))ρ1(σ1(s, s−1))

= ρ1(σ1(s, s−1)∗)ρ1(σ1(s, s−1)a1σ1(s, s−1)∗)ρ1(σ1(s, s−1)) = ρ1(a1).

We then deduce that
Uρα(a)U ∗ = ρ1 ⊗ ρ2,α2

(a), a ∈M.

Similarly, we compute Uλσ,ρ(t)U ∗:(
Uλσ,ρ(t)U ∗ξ

)
(s)

=
[
ρ1(σ1(s, s−1)∗)u1(s)ρ1(σ1(s−1, t))u1(t−1s)∗ρ1(σ1(t−1s, s−1t))

]
⊗ ρ2(σ2(s−1, t))ξ(t−1s).

The first tensor factor above is equal to

ρ1(σ1(s, s−1)∗)ρ1(α1,s(σ1(s−1, t)))u1(s)u1(t−1s)∗ρ1(σ1(t−1s, s−1t))

= ρ1(σ1(s, s−1)∗)ρ1(α1,s(σ1(s−1, t)))u1(s)u1(s−1t)

= ρ1(σ1(s, s−1)∗)ρ1(α1,s(σ1(s−1, t)))ρ1(σ1(s, s−1t))u1(t)

= ρ1

[
σ1(s, s−1)∗α1,s(σ1(s−1, t))σ1(s, s−1t)

]
u1(t)

= ρ1

[
σ1(s, s−1)∗σ1(s, s−1)

]
u1(t) = u1(t).

Thus
Uλσ (t)U ∗ = u1(t)⊗λσ2,ρ2

(t), t ∈ G.
This finishes the proof of the proposition.

Let us record two particular instances of the above proposition for late use. The first
one is the case where M2 = C and σ2 ≡ 1. Then (M1,G,α1,σ1) becomes our usual twisted
dynamic system (A,G,α,σ ) and λs2,ρ2

reduces to the untwisted left regular representation λ
on G.

Corollary 3.1.7. Let (ρ,u) be a covariant representation of (A,G,α,σ ) on K . Then (ρ⊗ 1, u ⊗λ)
is unitarily equivalent to (ρa, λσ,ρ).

The second instance is where M1 = M2 = C and σ1 = σ2 = σ with σ a scalar valued
2-cocycle.

Corollary 3.1.8. Let σ be a scalar valued 2-cocycle on G. Then λσ ⊗λσ is unitarily equivalent to
1⊗λ.
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3.1.2 Dual trace

Recall that M is equipped with a faithful tracial normal state τ . We view M as the left
multiplication algebra on H = L2(M). Then τ is the vector state induced by the identity 1M
ofM, considered as an element of L2(M) (recalling thatM⊂ L2(M) canonically). The dual
state τ̂ onM⋊α,σ G is the vector state induced by 1M ⊗ δe:

τ̂(x) = ⟨1M ⊗ δe, x(1M ⊗ δe)⟩, x ∈R.

Proposition 3.1.9. The dual state τ̂ on R is tracial and faithful.

Proof. To show the traciality, first note that for f ∈ ℓ1(G,M)

τ̂(πα ×λσ (f )) = τ(f (0)).

Next we calculate f ♯⋆f (0):

f ♯⋆f (0) =
∑
t∈G

f ♯(t)αt(f (t−1))σ (t, t−1)

=
∑
t∈G

σ (t, t−1)∗αt(f (t−1)∗)αt(f (t−1))σ (t, t−1)

=
∑
t∈G

σ (t−1, t)∗αt−1(f (t)∗f (t))σ (t−1, t).

Noting that Adσ (t−1,t)∗ ◦αt−1 = α−1
t , we get

f ♯⋆f (0) =
∑
t∈G

α−1
t

(
f (t)∗f (t)

)
.

Similarly, using (3.1.1), we have

f ⋆f ♯(0) =
∑
t∈G

f (t)f (t)∗.

Since α preserves τ , for x = πα ×λσ (f ) we deduce

τ̂(x∗x) =
∑
t∈G

τ
(
f (t)f (t)∗

)
= τ̂(xx∗).

Then the traciality of τ̂ follows from the w*-density of πα × λσ (ℓ1(G,M)) in R and the nor-
mality of τ̂ .

We next show the faithfulness of τ̂ . Assume that τ̂(x∗x) = 0. Let y = πα × λσ (f ) with
f ∈ ℓ1(G,M). Then

∥xy(1M ⊗ δe)∥2 = τ̂(y∗x∗xy) = τ̂(xyy∗x∗) ≤ ∥y∥2τ̂(xx∗) = 0.

Thus xy(1M ⊗ δe) = 0. An elementary calculation shows

y(1M ⊗ δe) =
∑
s∈G

πα(f (s))λσ (s)(1M ⊗ δe) =
∑
s∈G

αs−1(f (s))σ (s−1, s)⊗ δs.

This shows that
{
πα ×λσ (f )(1M ⊗ δe) : f ∈ ℓ1(G,M)

}
is dense in ℓ2(G,L2(M)). It then follows

that x = 0, so τ̂ is faithful.
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Remark 3.1.10. The above proof also shows that the map f 7→ πα ×λσ (f ) establishes a uni-
tary from ℓ2(G,L2(M)) onto L2(R).

Remark 3.1.11. Note that the restriction of τ̂ to πα(M) coincides with τ ◦
(
πα

∣∣∣
πα(M)

)−1
. In

other words, if we identify πα(M) with M, this restriction is just τ . Thus there exists a
unique trace preserving conditional expectation E from R to πα(M). It is easy to show that

E(πα ×λσ (f )) = πα(f (0)), f ∈ ℓ1(G,M).

3.1.3 Amenabilty

In this subsection, we study the stability of several approximation properties by twisted
crossed products. To that end, we first recall the definition of amenable actions. Given
f ,g ∈ ℓ1(G,M), define theM-valued inner product:

⟨f , g⟩ =
∑
s∈G

f (s)∗g(s).

We also define a second convolution on ℓ1(G,M) by

f ∗α g(s) =
∑
t∈G

f (t)αt(g(t−1s)).

The following definition and lemma are classical in the category of C*-algebras (see, for
instance, [11, section 4.3]). We adopt them to the von Neumann algebra setting just replacing
the norm convergence by the w∗-convergence.

Definition 3.1.12. The action α is said to be amenable if there exists a net {Ti}i∈I of finitely
supported functions on G with values in the center Z(M) ofM such that

(i) Ti(s) ≥ 0 for all i ∈ I and s ∈ G and
∑
s∈G Ti(s)

2 = 1;

(ii) lim
i
⟨(1⊗ δs) ∗α Ti − Ti , (1⊗ δs) ∗α Ti − Ti⟩

w∗−→ 0 for all s ∈ G.

The following simple fact will be used later.

Lemma 3.1.13. Let Ti be as above and Ťi(s) = Ti(s−1). Then limi

(
1−Ti ∗α Ťi(s)

)
= 0 in the strong

topology for any s ∈ G.

Proof. We have

1− Ti ∗α Ťi(s) =
∑
t∈G

Ti(t)
2 −

∑
t∈G

Ti(t)αt(Ti(s
−1t))

=
∑
t∈G

Ti(t)
∗(Ti − (1⊗ δs) ∗α Ti)(t)

= C(Ti)
∗C(Ti − (1⊗ δs) ∗α Ti).

Here for a function f ∈ ℓ1(G,M), we have used C(f ) to denote the column matrix indexed
by G whose entries are {f (t)}t∈G. Now let ξ ∈ H and ξ̃ = (ξ,0,0, · · · ) ∈ ℓ2(G,H) viewed as a
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column vector. Then∥∥∥(1− Ti ∗α Ťi(s))ξ∥∥∥ =
∥∥∥C(Ti)

∗C(Ti − (1⊗ δs) ∗α Ti)ξ̃
∥∥∥

≤
∥∥∥C(Ti)

∗
∥∥∥∥∥∥C(Ti − (1⊗ δs) ∗α Ti)ξ̃

∥∥∥
=
∥∥∥C(Ti)

∗C(Ti)
∥∥∥ 1

2 ⟨ξ̃, C(Ti − (1⊗ δs) ∗α Ti)∗C(Ti − (1⊗ δs) ∗α Ti)ξ̃⟩
1
2

= ⟨ξ, ⟨Ti − (1⊗ δs) ∗α Ti , Ti − (1⊗ δs) ∗α Ti⟩ξ⟩
1
2 → 0,

whence the assertion.

If G is amenable, so is α. In this case, the net {Ti}i∈I is given by the normalized character-
istic functions of a Følner net. Like for the usual crossed products, we will show the stability
of the injectivity and w∗-approximation property ofM by twisted crossed products relative
to amenable actions. We will follow the arguments in [11, Section 4.3]. However, we will
do this also at the Lp-space level for the late use concerning Schur multipliers. González-
Pérez [39] obtained similar results for untwisted crossed products, in particular, he already
used the following map Φp as a key ingredient in his paper.

Let T : G→Z(M) be a finitely supported function such that T (s) ≥ 0 and
∑
s∈G T (s)2 = 1.

Let F be the support of T and PF the orthogonal projection from ℓ2(G) onto ℓ2(F). Let MF

denote the algebra of complex matrices indexed by F and MF(M) =M⊗MF . Set

X =
∑
s∈F

αs−1(T (s))⊗ es,s ∈ N =M⊗B(ℓ2(G)).

Note that X is a positive block diagonal contraction. Let 1 ≤ p ≤ ∞ and p′ be the conjugate
index of p. Recall that ι : R→N is the canonical embedding. Define a map Φp : R→N by

Φp(x) = X
1
p ι(x)X

1
p , x ∈R.

Here for p =∞, X
1
p is interpreted as the support projection of X which is noting but PF , that

is,
Φ∞(x) = PFι(x)PF .

The image of Φp is contained in MF(M). By (3.1.4), for a ∈M, r ∈ G

Φp(πα(a)λσ (r)) =
∑
s∈F

αs−1(T (s))
1
pαs−1(a)σ (s−1, r)αs−1r(T (r−1s))

1
p ⊗ es,r−1s. (3.1.5)

In the reverse direction, define Ψ1 : MF(M)→R by

Ψ1(a) =
∑
s,t∈F

πα
[
α−1
s−1

(
as,tσ (s−1, st−1)∗

)]
λσ (st−1), a = (as,t) ∈MF(M),

and for 1 < p ≤∞ (Recalling that p′ denotes the conjugate index of p)

Ψp(a) = Ψ1

(
X

1
p′ aX

1
p′
)
.

Thus for a ∈M, s, t ∈ F

Ψp(a⊗ es,t) = πα
[
α−1
s−1

(
αs−1(T (s))

1
p′ aσ (s−1, st−1)∗αs−1r(T (r−1s))

1
p′
)]
λσ (st−1). (3.1.6)

In the following, R is equipped with the dual trace τ̂ , N and MF(M) with the tensor
trace τ ⊗Tr.



Chapter 3. Harmonic analysis on twisted crossed product 20

Lemma 3.1.14. The above defined maps Φp and Ψp satisfy the following properties:

(i) Φp and Ψp are completely positive;

(ii) Φp extends to a complete contraction from Lp(R) into Lp(N ), and Ψp extends to a complete
contraction from Lp(MF(M)) into Lp(R);

(iii) The adjoint map of Φp is equal to Ψp′ .

(iv) For any a ∈M, r ∈ G

Ψp ◦Φp(πα(a)λσ (r)) = πα(T ∗α Ť (r))πα(a)λσ (r).

Proof. (i) It is clear that Φp is completely positive. The complete positivity of Ψp will follow
from that of Ψ1. We first show that Ψ1 is positive. This is equivalent to showing that for any
f ∈ ℓ1(G,M) such that the function s 7→ f (s−1) is supported by F we have

Ψ1

( ∑
s,t∈G

f (s−1)∗f (t−1)⊗ es,t
)
≥ 0.

But

Ψ1

(∑
f (s−1)∗f (t−1)⊗ es,t

)
=
∑
s,t

πα
[
α−1
s−1

(
f (s−1)∗f (t−1)σ (s−1, st−1)∗

)]
λσ (st−1)

=
∑
t

∑
s

πα
[
α−1
s−1

(
f (s−1)∗f (s−1t)σ (s−1, t)∗

)]
λσ (t)

=
∑
t

∑
s

πα
[
Adσ (s,s−1)∗ ◦αs

(
f (s−1)∗f (s−1t)σ (s−1, t)∗

)]
λσ (t)

=
∑
t

∑
s

πα
[
σ (s, s−1)∗αs

(
f (s−1)∗f (s−1t)

)
σ (s, s−1t)

]
λσ (t)

= πα ×λσ (f ♯⋆f ) ≥ 0,

where we have used the identity αs(σ (s−1, t)∗)σ (s, s−1) = σ (s, s−1t) for the next to the last equal-
ity. This shows the positivity of Ψ . To prove the n-positivity for any n ∈ N, we use the
following commutative diagram,

Mn ⊗ (M⊗MF) (Mn ⊗M)⊗MF

Mn ⊗ (M⋊α,σ G) (Mn ⊗M)⋊Id⊗α,1⊗σ G,

�

Id⊗Ψ1 Ψ1,n

�

where Ψ1,n is defined in the same way as Ψ1 just replacing (M,α,σ ) by (Mn⊗M, Id⊗α,1⊗
σ ). By the part already proved, Ψ1,n is positive, so Ψ1 is n-positive for any n, consequently,
completely positive.

(ii) As an isomorphic embedding, Φ∞ is completely contractive from R toN ; in fact, Φ∞
is unital from R to MF(M). Let us show that Φ1 is completely contractive from L1(R) to
L1(N ).

To that end, let x ∈ L1(R). Write x = y∗z with y,z ∈ L2(R) and ∥y∥2 ∥z∥2 = ∥x∥1. Then by the
Cauchy-Schwarz inequality,∥∥∥Φ1(x)

∥∥∥
L1(N ))

≤
∥∥∥ι(y)X

∥∥∥
L2(N )

∥∥∥ι(z)X∥∥∥
L2(N )

.
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As L2(R) � ℓ2(G,L2(M)), there exists f ∈ ℓ2(G,L2(M)) such that y = πα × λs(f ). Then by
(3.1.4), the assumption that T (t) ∈ Z(M) and σ (s, t) ∈ U (M), we have∥∥∥ι(y)X

∥∥∥2
L2(N )

=
∥∥∥∥ ∑
s,t∈G

αs−1(f (st−1))σ (s−1, st−1)αt−1(T (t))⊗ es,t
∥∥∥∥2

L2(N )

=
∑
s,t∈G

∥∥∥αs−1(f (st−1))αt−1(T (t))σ (s−1, st−1)
∥∥∥2
L2(M)

=
∑
s,t∈G

∥∥∥αs−1(f (st−1))αt−1(T (t))
∥∥∥2
L2(M)

.

By the invariance of τ under α, we get∑
s,t∈G

∥∥∥αs−1(f (st−1))αt−1(T (t))
∥∥∥2
L2(M)

=
∑
s,t∈G

∥∥∥α−1
t−1 ◦αs−1(f (st−1))T (t)

∥∥∥2
L2(M)

=
∑
s,t∈G

∥∥∥Adσ (t,t−1)∗ ◦αt ◦αs−1(f (st−1))T (t)
∥∥∥2
L2(M)

=
∑
s,t∈G

∥∥∥Adσ (t,s−1)∗ ◦αts−1(f (st−1))T (t)
∥∥∥2
L2(M)

=
∑
s,t∈G

∥∥∥αs−1(f (s))T (t)
∥∥∥2
L2(M)

=
∑
s∈G

τ
[
αs−1(f (s)∗f (s))

∑
t∈G

T (t)2
]

=
∑
s∈G

τ[αs−1(f (s)∗f (s))] =
∥∥∥y∥∥∥2

L2(R)
.

Thus ∥ι(y)X∥L2(N ) = ∥y∥L2(R). Similarly, ∥ι(z)X∥L2(N ) = ∥z∥L2(R). Hence ∥Φ1(x)∥L1(N )) ≤ ∥x∥L1(R)).
So Φ1 is contractive.

The case 1 < p < ∞ is then treated by interpolation. Indeed, the preceding arguments,
with some minor modifications, remain valid for the complex powers of X: Xib (correspond-
ing to p = ∞) and Xa+ib (corresponding to p = 1) for any a,b ∈ R. Then by the three lines
lemma, we deduce that Φp is contractive from Lp(R) to Lp(N ).

Repeating the previous reasoning with Mn ⊗M instead of M for any n ∈ N, we prove
that Φp is completely contractive. As in the proof of the complete positivity of Ψ in (i), this
standard passage is illustrated by the following diagram:

Mn ⊗ (M⋊α,σ G) (Mn ⊗M)⋊Id⊗α,1⊗σ G

Mn ⊗ (M⊗B(ℓ2(G))) (Mn ⊗M)⊗B(ℓ2(G)),

�

Id⊗Φp Φp,n

�

where Φp,n is defined in the same way as Φp just replacing (M,α,σ ) by (Mn⊗M, Id⊗α,1⊗σ ).
We pass to the part on Ψp. First note that Ψ∞ is unital:

Ψ∞

(∑
s∈F

1M ⊗ es,s
)

= Ψ

(∑
s∈F

αs−1(T (s)2)⊗ es,s
)

= πα
(∑
s∈F

T (s)2
)

= 1.

Thus Ψ∞ is completely contractive since it is completely positive.
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Next we show that Ψ1 is completely contractive. Like for Φ1, we only need to show that
Ψ1 is contractive. Let x be a unit vector in L1(MF(M)). We must show that ∥Ψ1(x)∥L1(R) ≤ 1.
Since the unit ball of L1(MF(M)) is the closed convex hall of all tensors ξ ⊗ η with unit
vectors ξ,η ∈ ℓ2(F,L2(M)). We can assume that x itself is such a tensor. By the density ofM
in L2(M), we can further assume that ξ and η takes values inM. Then the matrix form of x
is x = (ξ(s)η(t)∗)s,t∈F . Let f (s) = ξ(s−1)∗ and g(s) = η(s−1)∗. Then the proof of the positivity of
Ψ1 in (i) above yields the following:

Ψ1(x) = Ψ1

( ∑
s,t∈G

f (s−1)∗g(t−1)⊗ es,t
)

= πα ×λσ (f ♯⋆g) = [πα ×λσ (f )∗][πα ×λσ (g)].

Therefore,

∥Φ(x)∥L1(R) ≤ ∥πα ×λσ (f )∥L2(R)∥πα ×λσ (g)∥L2(R) = ∥f ∥ℓ2(F,L2(M))∥g∥ℓ2(F,L2(M)) ≤ 1.

This is the desired assertion.
As for Φp, an interpolation argument then shows that Ψp is completely contractive for

1 < p <∞.
(iii) Let a,b ∈M and r, s, t ∈ F. Then by (3.1.5)

⟨πα(b)λσ (r), Φ∗p(a⊗ es,t)⟩ = ⟨Φp(πα(b)λσ (r)), a⊗ es,t⟩

= δr−1s,t τ
[(
αs−1(T (s))

1
pαs−1(b)σ (s−1, r)αs−1r(T (r−1s))

1
p
)∗
a
]
.

By the assumption that T take values in the positive part of Z(M) and the α-invariance of τ ,
we have

τ
[(
αs−1(T (s))

1
pαs−1(b)σ (s−1, r)αs−1r(T (r−1s))

1
p
)∗
a
]

= τ
[
αs−1(b∗)

(
αs−1(T (s))

1
p aσ (s−1, r)∗αs−1r(T (r−1s))

1
p
)]

= τ
[
b∗α−1

s−1

(
αs−1(T (s))

1
p aσ (s−1, r)∗αs−1r(T (r−1s))

1
p
)]
.

Then by (3.1.6), we deduce that

⟨πα(b)λσ (r), Φ∗p(a⊗ es,t)⟩ = ⟨πα(b)λσ (r), Ψp′ (a⊗ es,t)⟩.

Hence Φ∗p = Ψp′ .
(iv) For any a ∈M, r ∈ G. Using the assumption that T (s) ∈ Z(M), we have

Ψp ◦Φp(πα(a)λσ (r))

= Ψ1

(∑
s∈G

αs−1(T (s))αs−1(a)σ (s−1, r)αs−1r(T (r−1s))⊗ es,r−1s

)
= Ψ1

(∑
s∈G

αs−1(T (s))αs−1(a)αs−1r(T (r−1s))σ (s−1, r)⊗ es,r−1s

)
=
∑
s∈G

πα
(
α−1
s−1

(
αs−1(T (s))αs−1(a)αs−1r(T (r−1s))σ (s−1, r)σ (s−1, r)∗

))
λσ (r)

=
∑
s∈G

πα
(
T (s)αr(T (r−1s))

)
πα(a)λσ (r)

= πα(T ∗α Ť (r))πα(a)λσ (r).

Thus the proof of the lemma is complete.
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The following elementary lemma is well known. We include its proof for completeness.

Lemma 3.1.15. Let {ai} be a bounded net inM converging strongly to 0. Then for any p <∞ and
x ∈ Lp(M), the net {aix} converges to 0 in Lp(M).

Proof. By the density ofM in Lp(M), it suffices to consider x ∈M. The case p = 2 is just the
assumption (recalling that M acts standardly on L2(M)). The case p < 2 is an easy conse-
quence of the case p = 2 since ∥aix∥p ≤ ∥aix∥2. The remaining case 2 < p <∞ is dealt with by
the following Hölder inequality

∥aix∥p ≤ ∥aix∥
2
p

2 ∥aix∥
1− 2

p
∞ .

Now assume that α is amenable. Let {Ti}i∈I be an approximate net as in Definition 3.1.12,
and let Φp,i and Ψp,i be the maps defined before Lemma 3.1.13 with Ti instead of T .

Lemma 3.1.16. Let 1 ≤ p ≤∞. Then {Ψp,i ◦Φp,i}i∈I converges to the identity of Lp(R) in the point
strong-topology (w∗-topology for p =∞).

Proof. We know that span{πα(a)λσ (r) : a ∈M, r ∈ G} is dense in Lp(R) for p <∞ and w∗-dense
for p =∞. Thus for p <∞, we need only to show that for any x ∈ span{πα(a)λσ (r) : a ∈M, r ∈
G}

lim
i
∥x −Ψp,i ◦Φp,i(x)∥Lp(R) = 0.

By linearity, we can further assume that x = πα(a)λσ (r). Then by Lemma 3.1.14(iii), Lemma 3.1.13
and Lemma 3.1.15, we get

∥x −Ψp,i ◦Φp,i(x)∥Lp(R) = ∥πα(1− Ti ∗α Ťi(r))πα(a)λσ (r))∥Lp(R)→ 0.

Thus the assertion is proved for p <∞. The case p =∞ is an immediate consequence of the
case p = 1 for Φ∞,i and Ψ∞,i are normal by Lemma 3.1.14 (iii). Alternately, like for the case
p <∞, one easily shows that Ψ∞,i ◦Φ∞,i(x) strongly converges to x for any x ∈R.

An operator space E is said to have the completely bounded approximation property (CBAP)
with constant Λ if the identity of E is the limit in the point strong-topology of a net of finite
rank Λ-completely bounded maps. Similarly, if E is a dual space, it has the w∗-CBAP if
the identity of E is the limit in the point w∗-topology of a net of finite rank Λ-completely
bounded w∗-continuous maps. This is equivalent to saying that the predual E∗ of E has the
CBAP with constant Λ.

On the other hand, a von Neumann algebraM is called semidiscrete if there exist normal
completely positive contractions uj :M→Mnj and vj : Mnj →M such that vj ◦uj converges
to the identity ofM in the point w∗-topology. It is well known thatM is semidiscrete iff it is
injective (see [16, 18, 33]).

The following result insures the stability of the above approximation properties under
twisted crossed products.

Theorem 3.1.17. Assume that α is amenable. Then

(i) R is semidiscrete iffM is semidiscrete;
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(ii) R has the w∗-CBAP iffM has the w∗-CBAP.

Proof. Since M is the image of a normal conditional expectation of R (see Remark 3.1.11),
both “only if” parts are clear.

To show the converses, let {Ti} be the approximate identity in Definition 3.1.12. Let
Φp,i and Ψp,i be the maps given before Lemma 3.1.16. Let Fi be the support of Ti . By
Lemma 3.1.14 and Lemma 3.1.16 (and the proof of the latter), Φ∞,i : R → MFi (M) and
Ψ∞,i : MFi (M)→R are normal completely positive contractions and Ψ∞,i ◦Φ∞,i converges to
the identity of R in the point w∗-topology.

Now assume that M is semidiscrete. Choose normal completely positive contractions
uj :M→Mnj and vj : Mnj →M such that vj ◦uj converges to the identity ofM in the point
w∗-topology. Then the composition maps

(Id
MFi
⊗uj ) ◦Φ∞,i : R→MFi ⊗Mnj and Ψ∞,i ◦ (Id

MFi
⊗ vj ) : MFi ⊗Mnj →R

are normal completely positive contractions. It is easy to check that[
Ψ∞,i ◦ (Id

MFi
⊗ vj )

]
◦
[
(Id

MFi
⊗uj ) ◦Φ∞,i

]
→ IdR in the point w∗-topology.

Therefore, R is semidiscrete. The part on w∗-CBAP is proved in the same way.

Remark 3.1.18. The above proof is easily adapted to show that under the amenability of α
and given 1 ≤ p <∞, Lp(R) has the CBAP iff Lp(M) has the CBAP.

Remark 3.1.19. As pointed out in the Introduction, twisted crossed products have been
extensively investigated in the category of C*-algebras. Let (A,α,σ ,G) be a twisted dynamic
C*-system withA a C*-algebra. LetA⋊α,σG andA⋊α,σ ,rG be the associated full and reduced
twisted crossed products, respectively (see [70, 71]). Assume that α is amenable in the C*-
algebraic sense, this means that the convergence in Definition 3.1.12 now takes place in the
norm topology of A. Then the proof of the previous theorem can be modified to show the
following:

(i) A⋊α,σ G =A⋊α,σ ,r G;

(ii) A⋊α,σ ,r G is nuclear iff A is nuclear;

(iii) A⋊α,σ ,r G is exact iff A is exact.

We are also interested in the stability of QWEP under twisted crossed products. However,
it is an open problem whether this property holds even for untwisted crossed products. At
the time of this writing, we are even unable to show that the QWEP property of Lσ (G) is
independent of σ . We only have the following partial answer. Recall that the group von
Neumann algebra L(G) is QWEP iff G is hyperlinear (cf. [74, 84]).

Proposition 3.1.20. Let σ : G→ T be a 2-cocycle. If Lσ (G) is QWEP, then G is hyperlinear.

Proof. It is easy to see that Lσ (G) is naturally isomorphic to Lσ (G), so Lσ (G) is QWEP too.
Consequently, Lσ (G)⊗Lσ (G) is QWEP. Corollary 3.1.8 implies that L(G) is isomorphic to the
von Neumann subalgebra of Lσ (G)⊗Lσ (G) generated by {λσ (s)⊗λσ (s) : s ∈ G}; it is clear that
the latter subalgebra is the image of a conditional expectation. Hence, L(G) is QWEP, so G is
hyperlinear.
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The following open problem seems very interesting. By Theorem 3.1.25 below, it is equiv-
alent to a similar one in the untwisted case.

Problem 3.1.21. Let σ : G → T be a 2-cocycle. Assume that G is hyperlinear. Is Lσ (G)
QWEP? More generally, letM be QWEP and G hyperlinear. IsM⋊α,σ G QWEP?

By Theorem 3.1.25 below, the first part of the above problem reduces to the following

Problem 3.1.22. Let K be a Hilbert space and β : G→ Aut(B(K)) an action. Assume that G is
hyperlinear. Is B(K)⋊β G QWEP?

It is well known that every automorphism of B(K) is inner. The difficulty here is whether
the action β can be implemented by a unitary representation u of G on K such that βs =
Adu(s) for every s ∈ G. If the answer for the latter was affirmative, then one would have
B(K)⋊β G � B(K)⊗L(G), so the above problem would have a positive solution.

3.1.4 Equivalence

The main result of this subsection reduces twisted crossed products to untwisted ones.

Definition 3.1.23. Two twisted actions (α,σ ) and (β,ν) of G on M are said to be exterior
equivalent if there exists a function u : G→U (M) such that for all s, t ∈ G

βs = Adu(s) ◦αs and ν(s, t) = u(s)αs(u(t))σ (s, t)u(st)∗.

It is clear that this is indeed an equivalence relation. The following two results are the
von Neumann counterparts of the corresponding results for C*-algebras in [70, section 3].

Proposition 3.1.24. Let (α,σ ) and (β,ν) be two exterior equivalent twisted actions of G onM.
ThenM⋊α,σ G andM⋊β,νG are isomorphic. More precisely, there exists a unitary operator U on
ℓ2(G,H) such that

Uπα(a)U ∗ = πβ(a) and Uλσ (s)U ∗ = πβ(u(s)∗)λν(s), a ∈M, s ∈ G.

Proof. Define the required unitary U by (Uξ)(s) = u(s−1)ξ(s) for ξ ∈ ℓ2(G,H), s ∈ G. Then the
equality Uπα(a)U ∗ = πβ(a) is just a reformulation of βs = Adu(s) ◦αs. Let us show the second
one. For ξ ∈ ℓ2(G,H) and s, t ∈ G, we have(

Uλσ (s)U ∗ξ
)
(t) = u(t−1)σ (t−1, s)u(t−1s)∗ξ(s−1t)

=
[
u(t−1)αt−1(u(s)∗)u(t−1)∗

][
u(t−1)αt−1(u(s)∗)σ (t−1, s)u(t−1s)∗

]
ξ(s−1t)

= βt−1(u(s)∗)ν(t−1, s)ξ(s−1t).

Thus Uλσ (s)U ∗ = πβ(u(s)∗)λν(s). It then follows that UM⋊α,σ GU
∗ =M⋊β,ν G.

The next result reduces a twisted crossed product to a untwisted one by amplification.
Let (A,G,α,σ ) be a twisted dynamic system. Recall that λ(s) is the left translation on ℓ2(G)
and we define

u(s) =
(
1M ⊗λ(s)

)
σ (s, ·)∗, s ∈ G.

Namely,
(
u(s)ξ

)
(t) = σ (s, s−1t)∗ξ(s−1t) for ξ ∈ ℓ2(G,H) and t ∈ G.Clearly, u(s) ∈ U

(
M⊗B(ℓ2(G))

)
.

Next, define
βs = Adu(s) ◦ (αs ⊗ IdB(ℓ2(G))), s ∈ G.
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We claim that (α⊗IdB(ℓ2(G)),σ⊗1B(ℓ2(G))) is exterior equivalent to (β,1). To that end, it suffices
to show that

u(s)
(
αs ⊗ IdB(ℓ2(G))(u(t))

)(
σ (s, t)⊗ 1B(ℓ2(G))

)
u(st)∗ = 1, s, t ∈ G.

Let T be the operator on the left hand side of the above identity. T is a product of four
operators. Given ξ ∈ ℓ2(G,H) and r ∈ G, we explain the successive actions of the four factors
of T on ξ by the following diagram:

(T ξ)(r) 7→ σ (st, r)ξ(str)

7→ σ (s, t)σ (st, r)ξ(str)

7→ αs(σ (t, t−1r)∗)σ (s, t)σ (st, t−1r)ξ(sr)

7→ σ (s, s−1r)∗αs(σ (t, t−1s−1r)∗)σ (s, t)σ (st, t−1s−1r)ξ(r).

The operator in the last term is equal to

[αs(σ (t, t−1s−1r))σ (s, s−1r)]∗σ (s, t)σ (st, t−1s−1r)

=
[
σ (s, t)σ (st, t−1s−1r)

]∗
σ (s, t)σ (st, t−1s−1r) = 1.

Therefore, T ξ = ξ, i.e., T = 1 as desired. Thus the claim is proved.
Combined the above claim and Proposition 3.1.24, we deduce the following

Theorem 3.1.25. Keeping the above notation, we have

(M⋊α,σ G)⊗B(ℓ2(G)) �
(
M⊗B(ℓ2(G))

)
⋊β G.

Proof. By Proposition 3.1.24, we get(
M⊗B(ℓ2(G))

)
⋊α⊗IdB(ℓ2(G)),σ⊗1B(ℓ2(G))

G �
(
M⊗B(ℓ2(G))

)
⋊β G.

However, we have canonically(
M⊗B(ℓ2(G))

)
⋊α⊗IdB(ℓ2(G)),σ⊗1B(ℓ2(G))

G = (M⋊α,σ G)⊗B(ℓ2(G).

Thus the theorem follows.

Remark 3.1.26. Theorem 3.1.25, together with its C*-algebra version in [70], reduces the
stability of approximation properties under twisted crossed products in Theorem 3.1.17 to
that under usual crossed products.

3.2 Fourier multipliers

We now consider Fourier multipliers on twisted crossed products, in particular, on twisted
group von Neumann algebras. We will always assume that 1 ≤ p ≤ ∞. p′ is the conjugate
index of p. Recall that R =M⋊α,σ G.

Definition 3.2.1. Given a function ϕ ∈ ℓ∞(G), define Tϕ on πα ×λσ (ℓ1(G,M)) by

Tϕ(πα ×λσ (f )) = πα ×λσ (ϕf ).

We call ϕ a (completely) bounded Fourier multiplier on Lp(R) if Tϕ extends to a (completely)
bounded map on Lp(R). The Banach space of bounded (resp. cb) Fourier multipliers on
Lp(R) is denoted by M(Lp(R)) (resp. Mcb(Lp(R)).
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If M = C, the multipliers above are just those on the twisted group von Neumann al-
gebra Lσ (G). If further σ is trivial, they are multipliers on the usual group von Neumann
algebra L(G). It is trivial that M(L2(R)) = Mcb(L2(R)) = ℓ∞(G). It is equally clear that ϕ is
a (completely) bounded Lp-Fourier multiplier iff ϕ is a (completely) bounded Lp′ -Fourier
multiplier. Thus it suffices to consider the case 2 < p ≤ ∞. By interpolation, we easily show
that (completely) bounded Lq-Fourier multipliers are also (completely) bounded Lp-Fourier
multipliers for 2 ≤ p < q ≤∞.

Motivated by the Fourier multiplier results on quantum tori in [15], we aim to reduce
twisted cb multipliers to those in the untwisted and scalar setting, i.e., those on L(G) inde-
pendent of the von Neumann algebraM and the 2-cocycle σ .

Theorem 3.2.2. We have
Mcb(L(G)) ⊂Mcb(R) contractively.

If additionally R is QWEP, then for 2 < p <∞

Mcb(Lp(L(G))) ⊂Mcb(Lp(R)) contractively.

Proof. We will apply Corollary 3.1.7 to ρ = πα ,u = λσ and K = ℓ2(G,H). We find a unitary U
on ℓ2(G,K) such that

Uρα(a)U ∗ = ρ(a)⊗ 1 and Uλσ,ρ(s)U ∗ = u(s)⊗λ(s), a ∈M, s ∈ G.

LetA be the von Neumann subalgebra of R⊗L(G) generated by {ρ(a)⊗1,u(s)⊗λ(s), a ∈M, s ∈
G}. Then A is isomorphic to {ρα(M),λσ,ρ(G)}′′ by a trace preserving isomorphism. Since ρ
is faithful, by Remark 3.1.5, R � {ρα(M),λσ,ρ(G)}′′ also via a trace preserving isomorphism.
Thus we deduce that there exists a trace preserving isometric isomorphism Φ : R→A such
that

Φ(πα(a)) = ρ(a)⊗ 1 and Φ(λσ (s)) = u(s)⊗λ(s), a ∈M, s ∈ G.

This isomorphism intertwines multipliers on R and those on L(G). Namely, denoting Tϕ the
Fourier multiplier of symbol ϕ on R and T̃ϕ the one on L(G), we then have

Φ ◦ Tϕ =
(
IdR ⊗ T̃ϕ

)
◦Φ .

More precisely, for f ∈ ℓ1(G,M) we have

Φ
[∑
s∈G

ϕ(s)πα(f (s))λσ (s)
]

=
∑
s∈G

ϕ(s)ρ(f (s))u(s)⊗λ(s).

If ϕ is a cb multiplier on L(G) with cb-norm less than 1, then T̃ϕ is a cb contraction on L(G),
so IdR ⊗ T̃ϕ is contractive on R⊗L(G). Consequently,∥∥∥∑

s∈G
ϕ(s)πα(f (s))λσ (s)

∥∥∥
R

=
∥∥∥∥Φ[∑

s∈G
ϕ(s)πα(f (s))λσ (s)

]∥∥∥∥A
=
∥∥∥∥∑
s∈G

ϕ(s)ρ(f (s))u(s)⊗λ(s)
∥∥∥∥A

≤
∥∥∥∥∑
s∈G

ρ(f (s))u(s)⊗λ(s)
∥∥∥∥A

=
∥∥∥∥∑
s∈G

πα(f (s))λσ (s)
∥∥∥∥
R
.
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This shows that Tϕ is a contraction on R. Tensoring R with Mn for any n ∈ N, we then
deduce the first assertion on p =∞.

The second part is proved in a similar way. But now we require the QWEP of R to ensure
that IdR ⊗ T̃ϕ is bounded on Lp(R⊗L(G)) whenever T̃ϕ is cb on Lp(L(G)). On the other hand,
since the isomorphism Φ : R→N is trace preserving, it extends to an isometry from Lp(R)
onto Lp(A). The rest of the argument is the same as above, so we omit the details.

IfM = C, the converse to the above theorem holds too.

Theorem 3.2.3. We have

Mcb(Lσ (G)) = Mcb(L(G)) isometrically.

If additionally Lσ (G) is QWEP, then for 2 < p <∞

Mcb(Lp(Lσ (G))) = Mcb(Lp(L(G))) isometrically.

Thus the cb Fourier multipliers on Lp(Lσ (G)) are independent of the 2-cocycle σ (under
the mild condition that Lσ (G) is QWEP). Note that this is not true for bounded Fourier
multipliers (see [85]). In fact, based on Fell’s absorption principle, our proof is inspired
of [85].

Proof of Theorem 3.2.3. This proof is similar to that of the previous theorem, so only an out-
line is given. Now we use Corollary 3.1.8 and consider the case 2 < p <∞. By that corollary,
the von Neumann subalgebra A of Lσ (G)⊗L(G) generated by λσ ⊗λσ is isomorphic to L(G)
by a trace preserving isomorphism, so Lp(A) � Lp(L(G)). Now given ϕ ∈ ℓ∞(G) let Tϕ and T̃ϕ
denote the associated Fourier multipliers on L(G) and Lσ (G), respectively:

Tϕ(λ(s)) = ϕ(s)λ(s) and T̃ϕ(λs(s)) = ϕ(s)λs(s), s ∈ G.

Assume that T̃ϕ is cb on Lp(Lσ (G)). Since Lσ (G) is QWEP, Lσ (G) is QWEP too (see the proof
of Proposition 3.1.20). Thus Id ⊗ T̃ϕ is bounded on Lp(Lσ (G)⊗L(G)), so is its restriction to
Lp(A). Then as in the proof of the previous theorem, we deduce that Tϕ is bounded on
Lp(L(G)).

3.3 Schur multipliers

In this section we link Fourier multipliers and Schur multipliers. Given φ : G ×G→ C, the
associated Schur multiplierMφ is formally defined byMφ(a) = [φ(s, t)a(s, t)]s,t∈G for any finite
matrix a indexed by G. We call φ a (completely) bounded Schur multiplier on Sp(ℓ2(G)) if
Mφ extends to a (completely) bounded map on Sp(ℓ2(G)). The resulting spaces of multipliers
are denoted by S(Sp(ℓ2(G))) and Scb(Sp(ℓ2(G))), respectively. This definition also extends to
the operator-valued setting. Namely, we define in the same way (completely) bounded Schur
multipliers on Lp(N ) (recalling thatN =M⊗B(ℓ2(G))), so we have the corresponding spaces
S(Lp(N )) and Scb(Lp(N )). Like for Fourier multipliers, we only need to consider the case
2 < p ≤∞.

It is well know that Scb(B(ℓ2(G))) = S(B(ℓ2(G))) isometrically. This follows from Grothendieck’s
characterization of Schur multipliers (see [77, Theorem 5.1]): φ ∈ S(B(ℓ2(G))) iff there exist a
Hilbert space K and ξ,η ∈ ℓ∞(G,K) such that

φ(s, t) = ⟨ξ(s), η(t)⟩, s, t ∈ G.
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Moreover, in this case,

∥φ∥Scb(B(ℓ2(G))) = ∥φ∥S(B(ℓ2(G))) = inf{∥ξ∥ℓ∞(G)∥η∥ℓ∞(G)},

where the infimum runs over all representations of φ as above. Consequently,

Scb(N ) = S(N ) = S(B(ℓ2(G))) isometrically.

It is obvious that for 2 < p <∞

Scb(Lp(N )) ⊂ Scb(Sp(ℓ2(G))) contractively.

If additionallyM is QWEP, the converse conclusion holds too and moreover

Scb(Lp(N )) = Scb(Sp(ℓ2(G))) isometrically.

However, it is a well known open problem of Pisier whether bounded Schur multipliers on
Sp are automatically cb for 2 < p <∞.

Fourier and Schur multipliers are closely related, as shown by Bożejko and Fendler [9]:
Tϕ is cb on L(G) iff Mϕ̃ is cb on B(ℓ2(G)), where ϕ̃(s, t) = ϕ(st−1). Such a phenomenon con-
tinues to hold for 1 < p <∞ under the amenability of G: Neuwirth and Ricard [69] proved
that for amenable G one has ∥Tϕ∥Mcb(Lp(L(G))) = ∥Mϕ̃∥Scb(Sp(ℓ2(G)).

We will study all this for R = M ⋊α,σ G. Identifying R and ι(R) ⊂ N , we see that the
restriction of Mϕ̃ to R coincides with the Fourier multipliers Tϕ. Hence, Tϕ is (completely)
bounded on R iff Mϕ̃

∣∣∣
R

is (completely) bounded. In particular, if ϕ̃ ∈ S(B(ℓ2(G)), then ϕ ∈
Mcb(R) and ∥ϕ∥Mcb(R) ≤ ∥ϕ̃∥S(B(ℓ2(G)). The first part of the following shows that the converse is
true.

Theorem 3.3.1. Let ϕ ∈ ℓ∞(G).

(i) ϕ is a cb Fourier multiplier on R iff ϕ̃ is a (cb) Schur multiplier on B(ℓ2(G)). In this case,
the two associated cb-norms are equal.

(ii) If ϕ is a cb Fourier multiplier on Lp(R) with 2 < p <∞, then ϕ̃ is a cb Schur multiplier on
Lp(N ) with ∥ϕ̃∥Scb(Lp(N )) ≤ ∥ϕ∥Mcb(Lp(R)).

Proof. We will prove the missing direction of (i) and (ii) at the same time. The elements of
Lp(N ) are viewed as infinite matrices with entries in Lp(M). Let a =

∑
s,t∈G as,t ⊗ es,t ∈ Lp(N )

be such a matrix with only finitely many non-vanishing entries. By the density of M in
Lp(M), we can assume that as,t ∈M. On the other hand, using the faithfulness of πα, we also
write a =

∑
s,t∈Gπα(as,t)⊗ es,t. Let

D1 =
∑
s∈G

λσ (s)⊗ es,s and D2 =
∑
t∈G

λσ (t−1)⊗ et,t .

These are block diagonal unitaries in R⊗B(ℓ2(G)). Now consider the element

ã =D1aD2 ∈ Lp(R⊗B(ℓ2)).

Clearly, ∥∥∥ã∥∥∥
Lp(R⊗B(ℓ2))

=
∥∥∥a∥∥∥

Lp(N )
.
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On the other hand, since (πa,λσ ) is a covariant representation of (A,G,α,σ ), we get

ã =
∑
s,t∈G

λσ (s)πα(as,t)λσ (t−1)⊗ es,t

=
∑
s,t∈G

πα(αs(as,t))λσ (s)λσ (t−1)⊗ es,t

=
∑
s,t∈G

πα(αs(as,t))λσ (st−1)πα(σ (s, t−1))⊗ es,t

=
∑
s,t∈G

πα
[
αs(as,t)αst−1(σ (s, t−1))

]
λσ (st−1)⊗ es,t .

Hence

Tϕ ⊗ IdB(ℓ2(G))(ã) =
∑
s,t∈G

ϕ(st−1)πα
[
αs(as,t)αst−1(σ (s, t−1))

]
λs(st

−1)⊗ es,t

=D1Mϕ̃(a)D2.

Since Tϕ is cb on Lp(R), we then obtain∥∥∥Mϕ̃(a)
∥∥∥
Lp(N )

=
∥∥∥D1Mϕ̃(a)D2

∥∥∥
Lp(R⊗B(ℓ2))

=
∥∥∥Tϕ ⊗ IdB(ℓ2(G))(ã)

∥∥∥
Lp(R⊗B(ℓ2))

≤
∥∥∥ϕ∥∥∥

Mcb(Lp(R))

∥∥∥ã∥∥∥
Lp(R⊗B(ℓ2)

=
∥∥∥ϕ∥∥∥

Mcb(Lp(R))

∥∥∥a∥∥∥
Lp(N )

.

Therefore, Mϕ̃ is bounded on Lp(N ). Applying the above argument to Mn ⊗N instead of
N , we deduce that Mϕ̃ is cb on Lp(N ) with cb-norm less than or equal to ∥ϕ∥Mcb(Lp(R)). The
assertion is thus proved.

The “only if” part of Theorem 3.3.1 (i) admits an alternate standard proof that we outline
as follows (see [77, Chapter 6]).

Suppose that Tϕ is cb on R. By Wittstock’s factorization theorem, there exist a Hilbert
space K , a ∗-representation ω : R→ B(K) and two bounded operators V1,V2 : H ⊗ ℓ2(G)→ K
such that

Tϕ(x) = V ∗2ω(x)V1, x ∈R.

Choosing an unit vector ξ ∈H , for s, t ∈ G we have

1 = ⟨ξ ⊗ δe, ξ ⊗ δe⟩

=
〈
λσ (t−1)(ξ ⊗ δt), λσ (s−1)(ξ ⊗ δs)

〉
=
〈
λσ (s−1)∗λσ (t−1)(ξ ⊗ δt), ξ ⊗ δs

〉
=
〈
πα(σ (s, s−1)∗)λσ (s)λσ (t−1)(ξ ⊗ δt), ξ ⊗ δs

〉
=
〈
πα(σ (s, s−1)∗σ (s, t−1))λσ (st−1)(ξ ⊗ δt), ξ ⊗ δs

〉
.
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Then

ϕ(st−1) =
〈
ϕ(st−1)πα ×λσ

((
σ (s, s−1)∗σ (s, t−1)

)
⊗ δst−1

)
(ξ ⊗ δt), ξ ⊗ δs

〉
=
〈
Tϕ

(
λσ (s−1)∗λσ (t)

)
(ξ ⊗ δt), ξ ⊗ δs

〉
=
〈
V ∗2ω(λσ (s−1)∗λσ (t−1))V1(ξ ⊗ δt), ξ ⊗ δs

〉
=
〈
ω(λσ (t−1))V1(ξ ⊗ δt), ω(λσ (s−1)V2(ξ ⊗ δs)

〉
.

Therefore, by Grothendieck’s theorem quoted previously, ϕ̃ is a cb Schur multiplier on
B(ℓ2(G)).

Next we aim to show the converse to Theorem 3.3.1(ii) under the amenability of the
action α.

Theorem 3.3.2. Assume that α is amenable. Let 2 < p <∞ and ϕ ∈ ℓ∞(G).

(i) If ϕ̃ is a bounded (resp. cb) Schur multiplier on Lp(N ), thenϕ is a bounded (resp. cb) Fourier
multiplier on Lp(R) with ∥ϕ∥M(Lp(R)) ≤ ∥ϕ̃∥S(Lp(N )) (resp. ∥ϕ∥Mcb(Lp(R)) ≤ ∥ϕ̃∥Scb(Lp(N ))).

(ii) Assume additionally thatM is QWEP. If ϕ̃ is a cb Schur multiplier on Sp(ℓ2(G)), then ϕ is
a cb Fourier multiplier on Lp(R) with ∥ϕ∥Mcb(Lp(R)) ≤ ∥ϕ̃∥Scb(Sp(ℓ2(G)).

Proof. Let Φp,i and Ψp,i be the maps in Lemma 3.1.16. Let x = πα ×λσ (f ) with f ∈ ℓ1(G,M).
It is easy to check that

Φp,i(Tϕ(x)) =Mϕ̃

(
Φp,i(x)

)
).

Assume that ϕ̃ is a bounded Schur multiplier on Lp(N ). Then by Lemma 3.1.16 and Ler-
mma 3.1.14, we get

∥Tϕ(x)∥Lp(R) = lim
i

∥∥∥Ψp,i ◦Φp,i(Tϕ(x))
∥∥∥
Lp(R)

≤ lim
i

∥∥∥Φp,i(Tϕ(x))
∥∥∥
Lp(N )

≤ limsup
i

∥∥∥Mϕ̃ ◦Φp,i(x)
∥∥∥
Lp(N )

≤ ∥ϕ̃∥S(Lp(N )) limsup
i

∥∥∥Φp,i(x)
∥∥∥
Lp(N )

≤ ∥ϕ̃∥S(Lp(N ))

∥∥∥x∥∥∥
Lp(R)

.

Hence, ϕ is a bounded Fourier multiplier on Lp(R) and ∥ϕ∥M(Lp(R)) ≤ ∥ϕ̃∥S(Lp(N )). Similarly,
we show the cb version.

We know that ifM is QWEP, then

Scb(Sp(ℓ2(G)) = Scb(Lp(N )) isometrically.

Thus the last assertion follows.

Combining Theorem 3.3.1 and Theorem 3.3.2, we obtain the following

Corollary 3.3.3. Assume that the action α is amenable andM is QWEP. Let ϕ ∈ ℓ∞(G). Then ϕ
is a cb Fourier multiplier on Lp(R) iff ϕ̃ is a cb Schur multiplier on Sp(ℓ2(G)); in this case, the two
associated cb norms are equal.
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We end this section with a result showing that there exists no nontrivial 2-cocycle on a
free group Fd on d generators (d may be∞).

Proposition 3.3.4. Every scalar-valued 2-cocycle σ on Fd is exterior equivalent to the constant
function 1.

Proof. Let {g1, · · · , gd} be a set of generators of Fd . Using the construction of Lσ (Fd), one
easily shows that λσ (g1), · · · ,λσ (gd) are free Haar unitaries. By this we mean that the spectral
measure of each λs(gi) is normalized Haar measure on T and λσ (g1), · · · ,λσ (gd) are free in
the following sense:

τ
(
xi1 · · ·xik

)
= 0

whenever xi1 ∈ Ai1 , · · · ,xik ∈ Aik with vanishing trace and i1 , i2 · · · , ik , where Ai is the von
Neumann subalgebra generated by λσ (gi).

It then follows that the two algebras L(Fd) and Lσ (Fd) are isomorphic by an isomorphism
ρ mapping λ(gi) to λσ (gi) for 1 ≤ i ≤ d. Writing an element g ∈ Fd in reduced word g =
gn1
i1
· · ·gnkik with i1 , i2 · · · , ik and n1, · · · ,nk ∈ Z \ {0}, we deduce that ρ(λ(g)) = ϕ(g)λσ (g) for

some function ϕ : Fd → T . Consequently, ϕ is a completely contractive Fourier multiplier
from L(Fd) to Lσ (Fd). By the discussion before Theorem 3.3.1 and the matricial form (3.1.4)
of elements in λσ (Fd), we see that

(
ϕ(st−1)σ (s−1, st−1)

)
s,t∈Fd

defines a completely contractive

Schur multiplier on the subalgebra L(Fd) of B(ℓ2(Fd)). Then by the alternate proof of the
“only if” part of Theorem 3.3.1 (i), we find a Hilbert space K and two fucntions ξ,η : Fd → K
such that ∥ξ(s)∥,∥η(t)∥ ≤ 1 and

ϕ(st−1)σ (s−1, st−1) = ⟨ξ(s),η(t)⟩, s, t ∈ Fd .

Taking s = t = e in the above equation, we get ⟨ξ(e),η(e)⟩ = φ(e) = 1. Hence by the equality
case in the Cauchy inequality, we see that ξ(e) = η(e). Next, take t = e in the above equation,
we have

ϕ(s)σ (s−1, s) = ⟨ξ(s),η(e)⟩ = ⟨ξ(s),ξ(e)⟩,

which forces ξ(s) = ϕ(s)σ (s−1, s)ξ(e).
Similarly, we have η(t) = ϕ(t−1)ξ(e). Combining these two expressions we deduce

ϕ(st−1)σ (s−1, st−1) = ⟨ξ(s),η(t)⟩

= ⟨ϕ(s)σ (s−1, s)ξ(e),ϕ(t−1)ξ(e)⟩
= ϕ(s)σ (s−1, s)ϕ(t−1).

However, σ (s−1, st−1) = σ (s−1, s)σ (s, t−1). Changing t−1 to t, we finally obtain

σ (s, t) = ϕ(s)ϕ(t)ϕ(st).

This means that σ is exterior equivalent to 1.



Chapter 4

Schatten properties of commutators of
singular integral operators on
noncommutative euclidean space

4.1 Quantum euclidean spaces and Fourier multipliers

The original motivation for noncommutative euclidean spaces begins with the canonical
commutation relations of quantum mechanics. There are various equivalent definitions for
noncommutative euclidean spaces. In line with our definition on twisted crossed product in
Chapter 1, we define an euclidean space to be the twisted group von Neumann algebra of
R
d associated with a 2-cocycle. Throughout the remainder of this chapter, θ will be a fixed

antisymmetric d × d matrix with d ≥ 2; together with θ, we define

σ (s, t) = exp
( i
2
⟨s,θt⟩

)
, s, t ∈Rd . (4.1.1)

Then σ : Rd ×Rd → T is a 2-cocycle in the following sense

σ (s, t)σ (s+ t,u) = σ (t,u)σ (s, t +u) and σ (0, s) = σ (s,0) = 1, s, t,u ∈Rd .

Note that by the antisymmetry of θ, σ further satisfies

σ (s, s) = σ (−s, s) = 1, s ∈Rd . (4.1.2)

4.1.1 Basic defintions

Define the following family of unitary operators on L2(Rd):(
λθ(s)ξ

)
(t) = σ (−t, s)ξ(t − s), ξ ∈ L2(Rd), s, t ∈Rd . (4.1.3)

It is routine to verify that the family {λθ(s)}s∈Rd is strongly continuous, and satisfies

λθ(s)λθ(t) = σ (s, t)λθ(s+ t), s, t ∈Rd . (4.1.4)

The above relation is called the Weyl form of the canonical commutation relations, and its
representation theory is summarised by the well-known Stone-von Neumann theorem: with
the condition that det(θ) , 0, any two C∗-algebras generated by a strongly continuous uni-
tary family {λθ(s)}s∈Rd satisfying (4.1.4) are ∗-isomorphic. For more details, see [10, Sec-
tion 5.2.2.2] and [46, Theorem 14.8], [96, Chapter 2, Theorem 3.1].
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Definition 4.1.1. The noncommutative euclidean space associated to θ, denoted by R
d
θ, is the

von Neumann subalgebra of B(L2(Rd)) generated by {λθ(s)}s∈Rd given in (4.1.3).

Taking θ = 0, the above definition states that Rd0 is the von Neumann algebra generated
by the unitary group of translations on R

d , and is ∗-isomorphic to L∞(Rd). Therefore, the
algebra of essentially bounded functions on euclidean space is recovered as a special case of
Definition 4.1.1.

We refer the reader to [38, 56] for more details on the above approach of defining non-
commutative euclidean spaces. Alternative but unitarily equivalent way can be found in the
literature, see, for instance, [10, 96].

We also caution the reader that the approach taken here is the “Fourier dual” of the
approach in [43]. In the commutative case, λθ(s) is the operator on L2(Rd) of translation
by s ∈ Rd , and the Fourier transform provides an isomorphism with the algebra L∞(Rd) of
essentially bounded functions.

With the above definition, one easily views Rdθ as the twisted group von Neumann alge-
bra Lσ (Rd), where the 2-cocyle σ is given by (4.1.1). Conversely, for any 2-cocycle σ on R

d ,
the twisted group von Neumann algebra Lσ (Rd) is a noncommutative euclidean space.

Let us turn to the integration theory on R
d . Let f ∈ L1(Rd). Then t 7→ f (t)λθ(t) is a

bounded strongly continuous function from R
d to B(L2(Rd)), so the integral

λθ(f ) =
∫
R
d
f (t)λθ(t)dt

defines a bounded operator on L2(Rd), more precisely, for any ξ ∈ L2(Rd) one has

λθ(f )ξ =
∫
R
d
f (t)λθ(t)ξdt.

Approximating f by step functions, one easily shows that λθ(f ) belongs to R
d
θ. More gener-

ally, for any bounded Borel measure µ on R
d , the following integral

λθ(µ) =
∫
R
d
λθ(t)dµ(t)

defines an operator in R
d
θ too. This time, it is even easier to see that λθ(µ) ∈ Rdθ by approxi-

mating µ by linear combinations of Dirac measures in the w∗-topology.

Given f ,g ∈ L1(Rd). Then one has

λθ(f )λθ(g) = λθ(f ∗θ g) and λθ(f )∗ = λθ(f ♯),

where for s ∈Rd

f ∗θ g(s) =
∫
R
d
σ (s − t, t)f (s − t)g(t)dt =

∫
R
d
σ (s, t)f (s − t)g(t)dt,

f ♯(s) = σ (s,−s)f (−s) = f (−s).

Here we have used (4.1.2). Equipped with the above convolution and involution, L1(Rd)
becomes an involutive Banach algebra. Then R

d
θ is the w∗-closure of λθ(L1(Rd)). Here L1(Rd)

can be replaced by any reasonable smaller space of continuous functions, for instance, the
space Cc(Rd) of compactly supported continuous functions on R

d .
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In the sequel, we will sometimes use λθ(f ) for some non integrable functions f ; for
instance, λθ(f ) may be a bounded operator for f ∈ L2(Rd); whenever it is bounded, λθ(f )
belongs to R

d
θ.

Let f ∈ L1(Rd)∩C(Rd). Define

τθ(λθ(f )) = f (0).

By [62, Lemma 2.7], the functional τθ : L1(Rd)∩C(Rd)→ C admits an extension to a semifi-
nite normal faithful trace on R

d
θ. The traciality of τθ is easy to be checked. Indeed, let

f ∈ L2(Rd) such that λθ(f ) is bounded and f ♯ ∗θ f is continuous. Then

τθ(λθ(f )∗λθ(f )) =
∫
R
d
|f (s)|2ds = τθ(λθ(f )λθ(f )∗). (4.1.5)

More generally, let f ,g ∈ L2(Rd) such that λθ(f ),λθ(g) are bounded and f ♯ ∗θ g is continuous.
Then

τθ(λθ(f )∗λθ(g)) =
∫
R
d
f (s)g(s)ds. (4.1.6)

For 1 ≤ p <∞, Lp(Rdθ) is the noncommutative Lp-spaces associated to (Rdθ , τθ); more pre-
cisely, Lp(Rdθ) is defined as the completion of

{x ∈Rdθ : τθ(|x|p) <∞}

with the norm ∥x∥p = τθ(|x|p)
1
p . As usual, we let L∞(Rdθ) = R

d
θ with the operator norm.

Remark 4.1.2. By the Plancherel formula (4.1.5), the map f 7→ λθ(f ) establishes an isometry
from L2(Rd) onto L2(Rdθ). Later, we will identify L2(Rd) and L2(Rdθ).

4.1.2 Distributions and derivations

The class of Schwartz functions on R
d
θ is defined as the image of the usual Schwartz class

S(Rd) under λθ. That is,
S(Rdθ) = {λθ(f ) : f ∈ S(Rd)}. (4.1.7)

The Schwartz space S(Rdθ) is equipped with the topology induced by the isomorphism λθ :
S(Rd) → S(Rdθ), where S(Rd) is equipped with its usual Fréchet topology. On the other
hand, equipped with the convolution and involution of L1(Rd), S(Rd) becomes a topological
involutive algebra, so S(Rdθ) is a ∗-subalgebra of Rdθ.

Lemma 4.1.3. Let 1 ≤ p ≤ ∞. Then S(Rdθ) is a norm dense subspace of Lp(Rdθ) for p <∞ and a
w∗-dense subspace of L∞(Rdθ).

Proof. The assertion is clear for p = ∞. The case p = 2 is equally clear by virtue of (4.1.5).
Now let x ∈ S(Rdθ). We need to show that x ∈ L1(Rdθ). If x = yz with y,z ∈ S(Rdθ), then the
Cauchy-Schwarz inequality implies that x ∈ L1(Rdθ). However, by [62, Proposition 2.5], all
finite sums of products yz with y,z ∈ S(Rdθ) is a dense ∗-subalgebra of S(Rdθ). It then follows
that S(Rdθ) ⊂ L1(Rdθ) too. Thus S(Rdθ) ⊂ L1(Rdθ)∩L∞(Rdθ) continuously.

To show the density of S(Rdθ) in Lp(Rdθ) for p <∞, it suffices to show that for any a ∈ Rdθ
supported by a projection of finite trace, there exists a net (ai) in S(Rdθ) such that ai → a in
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Lp(Rdθ). Since S(Rdθ) is a w∗-dense ∗-subalgebra of Rdθ, by Kaplansky’s theorem, there exists
a bounded net (ai) in S(Rdθ) strongly converging to a. Then by Lemma 2.15 of Chapter 1 (or
more precisely, its proof), ∥ai − a∥p→ 0.

Definition 4.1.4. The space of tempered distributions on R
d
θ is the topological dual space

S ′(Rdθ) of S(Rdθ), i.e., the space of continuous linear functionals on S(Rdθ).

As in the classical case, we have the following elementary fact.

Lemma 4.1.5. Every element of L1(Rdθ) +L∞(Rdθ) defines a distribution on R
d
θ.

Proof. Let x = x1+x2 with x1 ∈ L1(Rdθ) and x2 ∈ L∞(Rdθ). Let y ∈ S(Rdθ). Then by Lemma (4.1.3),
y ∈ L1(Rdθ) ∩ L∞(Rdθ). Thus τθ(xy) = τθ(x1y) + τθ(x2y) is well defined. Since the inclusion
S(Rdθ) ⊂ L1(Rdθ) ∩ L∞(Rdθ) is continuous, the map y 7→ τθ(xy) defines a continuous linear
functional on S(Rdθ). This shows the assertion.

We next pass to the defintion of derivation on S(Rdθ). For x = λθ(f ) ∈ S(Rdθ), we define

∂kx =
∫
R
d
skf (s)λθ(s)ds.

More generally, for α = (α1, · · · ,αd) ∈Nd
0 , we set

∂αx =
∫
R
d
sαf (s)λθ(s)ds,

where sα = sα1
1 · · ·s

αd
d . We kindly remind the reader that, the above definition of partial

derivatives coincides with that in [62], given as the commutator of x with pointwise mul-
tiplication operator acting on L2(Rd).

By (4.1.6), we see that ∂j is a self-adjoint operator on L2(Rdθ) with S(Rdθ) as definition
domain. Let ∆ = ∂2

1 + · · · + ∂2
d be the Laplacian, it is a positive operator on L2(Rdθ). We will

frequently use the Bessel and Riesz operators (1 +∆)
1
2 and ∆

1
2 which will be abbreviated as J

and I respectively. More generally, for a ∈R, define Ja = (1 +∆)
a
2 and Ia = ∆

a
2 .

It is clear that ∂αx belongs to S(Rdθ) too. Consequently, by duality, these partial deriva-
tions extend to all distributions. In particular, ∂αx exists as a distribution for any x ∈
L1(Rdθ) +L∞(Rdθ).

Remark 4.1.6. The Bessel potential Ja operates on S ′(Rdθ). A little bit more attention should
be paid to the case of the Riesz potential Ia. Let

S0(Rd) = {x : ∂̂αx(0) = 0 ∀ α ∈Nd
0}.

Then Ia operates on S0(Rdθ) = λθ
(
S0(Rd)

)
, and by duality, on the dual space S ′0(Rdθ) too.

4.1.3 Fourier multipliers

Let φ : Rd → C be a measurable function such that φf ∈ L1(Rd) for any f ∈ S(Rd). For any
x = λθ(f ) with f ∈ S(Rd), we define the Fourier multiplier Tφ of symbol φ as follows:

Tφ(x) = λθ(φf ). (4.1.8)
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It Tφ extends to a (completely) bounded maps on Lp(Rdθ), we say that φ is a (completely)
bounded Fourier multiplier on Lp(Rdθ). In the sequel, φ will often be continuous on R

d \ {0}.
It is often useful to express Tφ as the convolution operator with the inverse Fourier trans-

form φ̌ of φ. For this we first introduce an action of Rd on R
d
θ. For any s ∈Rd define

ws(t) = e2πi⟨s,t⟩, t ∈Rd .

We view ws as a unitary operator on L2(Rd) by multiplication. Then define α̂s = Adws , i.e.,
α̂s(x) = wsxw∗s for any x ∈ B(L2(Rd)). It is easy to check that

α̂s(λθ(t)) = ws(t)λθ(t), s, t ∈Rd .

This implies that α̂ leaves R
d
θ invariant, so it yields an action of Rd on R

d
θ. More generally,

given x = λθ(f ) with f ∈ L1(Rd), we have

α̂s(λθ(f )) = λθ(wsf ).

This shows that α̂ is trace preserving, so α̂ extends to an isometric action of Rd on Lp(Rdθ).
We denote φ̌ as the inverse Fourier transform of φ. Now assume that φ̌ ∈ L1(Rd). Then

for x = λθ(f ) with f ∈ S(Rd), we have

Tφ(x) =
∫
R
d
φ(s)f (s)λθ(s)ds

=
∫
R
d

∫
R
d
φ̌(t)e−2πi⟨s,t⟩f (s)λθ(s)dsdt

=
∫
R
d
φ̌(t)â−t(x)dt.

This suggests to define

φ̌ ∗ x =
∫
R
d
φ̌(t)â−t(x)dt. (4.1.9)

This alternate definition has an avantage: φ̌ ∗ x can be defined for any x ∈ Lp(Rdθ). Since â−t
is an isometry on Lp(Rdθ), we immediately get the following:

Lemma 4.1.7. Let φ be a function on R
d such that φ̌ ∈ L1(Rd). Then Tφ is completely bounded

on Lp(Rdθ) for 1 ≤ p ≤∞ with cb-norm majorized by ∥φ̌∥1.

We need to extend Fourier multipliers or convolution in (4.1.9) to distributions. This is
easy for the latter. First note that α̂ leaves S(Rdθ) invariant. Then taking adjoints, we see that
for any x ∈ S ′(Rdθ) and t ∈ Rd , α̂t(x) is again a distribution. If φ̌ ∈ L1(Rd), (4.1.9) still defines
a distribution φ̌ ∗ x.

On the other hand, if φ is a function such that φf ∈ S(Rd) for any f ∈ S(Rd), then
the definition (4.1.8) also extends to a distribution x by duality. These two definitions are
consistent when both of them make sense for a distribution x and a function φ; in this case,
we have Tφ(x) = φ̌ ∗ x.

Remark 4.1.8. Typical examples of Fourier multipliers are noncommutative analogues of
partial derivatives, Bessel and Riesz potentials. The symbols of Ja and Ia will be denoted by
Ja and Ia, respectively, so Ja(s) = (1 + |s|2)

a
2 and Ia(s) = |s|a for s ∈Rd .
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Remark 4.1.9. One may also define the Fourier multiplier from the perspective of functional
calculus: Denote ∇ = (∂1, · · · ,∂d). For a function φ on R

d , we write the Fourier multiplier Tφ
as

Tφ = φ(∂1, · · · ,∂d) = φ(∇).

If moreover φ ∈ C(Rd \ {0}) that is homogeneous of order 0, we may view φ as a function in
C(Sd−1). In this case,

Tφ = φ(∂1, · · · ,∂d) = φ(∂1∆
− 1

2 , · · · ,∂d∆−
1
2 )

since the spectrum of the d-tuple (∂1∆
− 1

2 , · · · ,∂d∆−
1
2 ) falls into the unit sphere S

d−1.

4.1.4 Commutators

In the sequel, we will fix a function φ ∈ C∞(Rd \ {0}) that is homogeneous of order 0 and
non identically zero. φ can be viewed as a function in C∞(Sd−1). The Fourier multiplier Tφ,
defined as in (4.1.8), is bounded on L2(Rdθ).

Given x ∈ R
d
θ, denote by Mx : y 7→ xy the left multiplication on L2(Rdθ). Then Mx is a

bounded linear operator on L2(Rdθ). We now define the commutator

Cφ,x = [Tφ,Mx].

This is a so-called Calderón-Zygmund transform on R
d
θ, it is bounded on L2(Rdθ). When

φ(s) =
sj
|s| , Tφ = Rj is the j-th Riesz transform on R

d
θ, and Cφ,x is the j-th component of the

quantised differential studied in [62].
As in [62], we remark that if x is not necessarily bounded we may still define Cφ,x on the

dense subspace λθ(C∞c (Rd)) of L2(Rdθ). Suppose that x ∈ Lp(Rdθ) for some 2 ≤ p < ∞. Then
for y = λθ(g) ∈ λθ(C∞c (Rd)) with g ∈ C∞c (Rd) compactly supported by K , we have from [62,
Theorem 3.17] that Mxy = MxT1lKy ∈ L2(Rdθ). It then follows that TφMxy ∈ L2(Rdθ). On the
other hand, since φg is still a compactly supported function in L2(Rd), using the foregoing
argument we have MxTφy ∈ L2(Rdθ). Thus in that case Cφ,x(y) is a well-defined element in
L2(Rdθ).

More generally, viewing R
d
θ as a von Neumann algebra on L2(Rdθ) (in its standard form),

Mx is just x itself. Thus if x is a measurable operator on (Rdθ , τθ), Cφ,x is a densely defined
operator on L2(Rdθ).

Our main concern is to characterise the membership of Cφ,x in the Schatten p-class
Sp(L2(Rdθ)). Since L2(Rdθ) � L2(Rd) unitarily via the Plancherel formula, we will always view
Cφ,x as an operator on L2(Rd). We will denote Sp(L2(Rd)) simply by Sp.

We need to write the kernel of Cφ,x. To that end, we assume that x is a good operator, for
instance, x = λθ(f ) ∈ L1(Rdθ) for some f ∈ L1(Rd)∩C(Rd). Then a simple calculation gives

τθ
(
xλθ(t)∗

)
= f (t), t ∈Rd .

Put x̂(t) = τθ(xλθ(t)∗) whenever x ∈ L1(Rdθ).
We write formally

x =
∫
R
d
x̂(t)λθ(t)dt
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whenever x̂ ∈ L1(Rd). Now let ξ ∈ L2(Rd). Then for s ∈Rdθ, we have

(xξ)(s) =
∫
R
d
x̂(t)(λθ(t)ξ)(s)dt

=
∫
R
d
x̂(t)σ (−s, t)ξ(s − t)dt

=
∫
R
d
x̂(s − t)σ (−s, s − t)ξ(t)dt

=
∫
R
d
σ (s, t)x̂(s − t)ξ(t)dt.

Here for the last equality, we have used (4.1.2). Thus the kernel of x is

[x] = [σ (s, t)x̂(s − t)]s,t∈Rd . (4.1.10)

On the other hand, the Fourier multiplier Tφ is a diagonal operator, or more precisely, the
multiplication operator by φ on L2(Rd). It then follows that the kernel of the commutator
Cφ,x is given by

Kx(s, t) = σ (s, t)x̂(s − t)
(
φ(s)−φ(t)

)
, s, t ∈Rd . (4.1.11)

4.2 Function spaces on quantum euclidean spaces

In this section we give the definition of Sobolev and Besov spaces on quantum euclidean
spaces, which will be used to characterise the (weak) Schatten properties of commutators.

Definition 4.2.1. For a positive integer m and 1 ≤ p ≤ ∞, the Sobolev space Wm
p (Rdθ) is the

space of x ∈ S ′(Rdθ) such that every partial deriavtive of x up to orderm is in Lp(Rdθ), equipped
with the norm:

∥x∥Wm
p

=
( ∑
|α|≤m

∥∂αx∥p
) 1
p
.

The homogeneous Sobolev space Ẇm
p (Rdθ) consists of those x ∈ S ′(Rdθ) such that every partial

derivative of order m is in Lp(Rdθ), equipped with the seminorm:

∥x∥Ẇm
p

=
( ∑
|α|=m

∥∂αx∥p
) 1
p
.

By [62, Proposition 3.14], S(Rdθ) is norm-dense in Wm
p (Rdθ) when m ≥ 0 and 1 ≤ p < ∞;

the density of S(Rdθ) in Ẇm
p (Rdθ) holds only when m ≥ 0 and 1 < p <∞, see [63].

Besov spaces are defined by using a fixed test function ϕ ∈ S(Rd) such that
suppϕ ⊂ {ξ : 2−1 ≤ |ξ | ≤ 2},
ϕ > 0 on {ξ : 2−1 < |ξ | < 2},∑
k∈Z

ϕ(2−kξ) = 1, ξ , 0.
(4.2.1)
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For convenience, we assume in addition that ϕ is even (but this is not necessary for the
validity of our results). The sequence {ϕ(2−k ·)}k∈Z is a Littlewood-Paley decomposition of Rd ,
modulo constant functions. Denote by ϕk the inverse Fourier transform of ϕ(2−k ·). Recall
that for a distribution x, the convolution ϕk ∗ x is defined in (4.1.9) (see the discussion after
Lemma 4.1.7). Recall that the distribution space S ′0(Rdθ) is introduced in Remark 4.1.6.

Definition 4.2.2. Let 1 ≤ p,q ≤ ∞ and a ∈ R. The homogeneous Besov space on R
d
θ is defined

by
Bap,q(R

d
θ) =

{
x ∈ S ′0(Rdθ) : ∥x∥Bap,q <∞

}
,

where

∥x∥Bap,q =
(∑
k∈Z

2qka∥ϕk ∗ x∥
q
p

) 1
q
.

Let Bap,c0
(Rdθ) be the subspace of Bap,∞(Rdθ) consisting of all x such that 2kr∥ϕk ∗ x∥p → 0 as

|k| →∞.

We state some basic properties of Besov spaces.

Proposition 4.2.3. Let 1 ≤ p,q ≤∞ and a ∈R. Then

(i) Bap,q(R
d
θ) is a Banach space;

(ii) S0(Rdθ) is dense in Bap,q(R
d
θ) for 1 ≤ p <∞ and 1 ≤ q <∞;

(iii) The dual space of Bap,q(R
d
θ) coincides isomorphically with B−ap′ ,q′ (R

d
θ) for 1 ≤ p <∞ and 1 ≤

q < ∞, where p′ denote the conjugate exponents of p; besides, the dual space of Bap,c0
(Rdθ)

coincides isomorphically with B−ap′ ,1(Rdθ) for 1 ≤ p <∞.

Proof. (i) Let {xn}n be a Cauchy sequence in Bap,q(R
d
θ). Then for each k ∈ Z, {ϕk ∗ xn}n is a

Cauchy sequence in Lp(Rdθ). Thus ϕk ∗ xn converges to some yk in Lp(Rdθ). We define

y =
∑
k∈Z

yk .

For every x ∈ S0(Rdθ), we write the Littlewood-Paley decomposition of x:

x =
∑
j∈Z

ϕj ∗ x (convergence in ∈ S0(Rdθ).

Then noting that ϕj ∗ yk = 0 for j < {k − 1, k,k + 1}, we easily show that the above element y is
a well-defined element in S ′0(Rdθ). On the other hands, as n→∞, we have

ϕj ∗ xn = ϕj ∗
j+1∑
k=j−1

∗xn→ ϕj ∗
j+1∑
k=j−1

yk = ϕj ∗ y.

Thus, we conclude the proof.
(ii) For x ∈ Bap,q(Rdθ), we may choose an integer N ∈N large enough such that

∥x∥qBap,q −
∑
|k|≤N

2kqa∥ϕk ∗ x∥
q
p



41 4.2. Function spaces on quantum euclidean spaces

is small enough. Since S(Rdθ) is norm dense in Lp(Rdθ) by Lemma 4.1.3, for |k| ≤ N , we find
yk ∈ S(Rdθ) such that ∥yk−ϕk ∗x∥p ≤ εk (with very small εk > 0). By Lemma 4.1.7, we also have

∥ϕj ∗ yk −ϕj ∗ϕk ∗ x∥p ≤ εk .

We define

y =
∑
|k|≤N

k+1∑
j=k−1

ϕj ∗ yk .

Then y ∈ S0(Rdθ). Using the fact that ϕj ∗ϕk = 0 for j < {k −1, k,k + 1}, we deduce ∥ϕk ∗ y −ϕk ∗
x∥p ≤ ε′k for |k| ≤N ; consequently, ∥y − x∥Bap,q is small.

(iii) Let y ∈ B−ap′ ,q′ (R
d
θ). Define ℓy(x) = τθ(xy) for x ∈ S0(Rdθ). Then

|ℓy(x)| =
∑
k∈Z

τθ(ϕk ∗ x
k+1∑
j=k−1

ϕj ∗ y)

≤
∑
k∈Z
∥ϕk ∗ x∥p

∥∥∥ k+1∑
j=k−1

ϕj ∗ y
∥∥∥
p′

≲ ∥x∥Bap,q(Rd
θ)∥y∥B−ap′ ,q′ (Rd

θ).

By the density of S0(Rdθ) in Bap,q(R
d
θ), we deduce that y ∈ B−ap′ ,q′ (R

d
θ) defines a bounded linear

functional on Bap,q(R
d
θ).

For the converse, given a Banach space X, define the weighted ℓq space ℓaq(X) to be the
space of all sequences (· · · ,x−1,x0,x1, · · · ) with xk ∈ X, equipped with the norm

(
∑
k∈Z

2kqa∥xk∥
q
X)

1
q .

If q = ∞, then we define the space cr0(X) to be the space of all sequences (· · · ,x−1,x0,x1, · · · )
such that 2ka∥xk∥X → 0 as |k| →∞.

The dual space of ℓaq(X) is ℓ−aq′ (X∗) for q <∞. By definition, Bap,q(R
d
θ) embeds into ℓaq(Lp(Rdθ))

through the map x 7→ (· · · ,ϕ−1 ∗x,ϕ0 ∗x,ϕ1 ∗x, · · · ). Suppose that ℓ is a continuous linear func-
tional on Bap,q(R

d
θ). Then by the Hanh-Banach theorem, ℓ extends to a continuous functional

on ℓaq(Lp(Rdθ)) with the same norm, so there exists an element y ∈ ℓ−aq′ (Lp′ (R
d
θ)) such that

ℓ(x) =
∑
k∈Z

τθ(ykϕk ∗ x).

Let
y =

∑
k∈Z

(ϕk−1 ∗ yk +ϕk ∗ yk +ϕk+1 ∗ yk).

Then we have y ∈ B−ap′ ,q′ (R
d
θ) and ℓ = ℓy .

For Bap,c0
(Rdθ), it embeds into ca0(Lp(Rdθ)), and the dual of ca0(Lp(Rdθ)) is ℓ−a1 (Lp′ (R

d
θ)). The

same argument works.

Next, we collect the following two propositions on lifting property and interpolation for
Besov spaces on R

d
θ, which are counterparts of Theorem 3.6 and Proposition 5.1 in [105].

The proofs in [105] repeat mutatis mutandi, so are omitted.
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Proposition 4.2.4. Let 1 ≤ p,q ≤∞, a,b ∈R. Then Jb and Ib are isomorphisms between Bap,q(R
d
θ)

and Ba−bp,q (Rdθ).

Proposition 4.2.5. Let 0 < η < 1, a0, a1 ∈R and p0,p1,q0,q1 ∈ [1,∞]. Then we have the following
complex interpolation formula(

Ba0
p0,q0(Rdθ), Ba1

p1,q1(Rdθ)
)
η

= Bap,q(R
d
θ),

where
a = (1− η)a0 + ηa1,

1
p

=
1− η
p0

+
η

p1
,

1
q

=
1− η
q0

+
η

q1
(with q <∞).

Like in the case of quantum tori in [105, Chapter 3], one may expect various of equivalent
characterisations of Besov norms on R

d
θ. However, we will not study such characterisations

on R
d
θ in here. For later use, we record only the following elementary proposition.

Proposition 4.2.6. Let ψ be a Schwartz function supported on the annulus {s ∈ Rd : 1
8 ≤ |s| ≤ 4}

and equal to 1 on the smaller one {s ∈Rd : 1
4 ≤ |s| ≤ 2}. Denote ψk as the inverse Fourier transform

of ψ(2−k ·). Then we have

∥x∥Bap,q ≈d
(∑
k∈Z

2qka∥ψk ∗ x∥
q
p

) 1
q
.

Proof. For k ∈ Z, denote △k = {s ∈ R
d : 2k−1 ≤ |s| < 2k}. These sets △k form a partition of

R
d \ {0}. Put also △̃k = △k−1 ∪△k ∪△k+1. Obviously, ψ̂k(s) ≡ 1 for any s ∈ △̃k .

Note that

ψk ∗ x =
k+2∑
j=k−3

ψk ∗ϕj ∗ x.

Since ψ is an infinitely differentiable function with compact support, we see that F −1(ψ) is
integrable, so with Lemma 4.1.7,

∥ψk ∗ x∥p ≤ ∥F −1(ψ)∥1
k+2∑
j=k−3

∥ϕj ∗ x∥p.

It follows that (∑
k∈Z

2qkα∥ψk ∗ x∥
q
p

) 1
q
≤ 6∥F −1(ψ)∥1

(∑
k∈Z

2qkα∥ϕk ∗ x∥
q
p

) 1
q
,

whence (∑
k∈Z

2qkα∥ψk ∗ x∥
q
p

) 1
q
≲ ∥x∥Bαp,q .

For the converse, since ψ̂k(ξ) ≡ 1 for any ξ ∈ △̃k , we have

ϕk ∗ x = ϕk ∗ψk ∗ x.

By Lemma 4.1.7 again, we have

∥ϕk ∗ x∥p ≤ ∥F −1(ϕ)∥1∥ψk ∗ x∥p.
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It follows that (∑
k∈Z

2qkα∥ϕk ∗ x∥
q
p

) 1
q
≤ ∥F −1(ϕ)∥1

(∑
k∈Z

2qkα∥ψk ∗ x∥
q
p

) 1
q
,

which implies

∥x∥Bαp,q ≲
(∑
k∈Z

2qkα∥ψk ∗ x∥
q
p

) 1
q
.

So we conclude (4.2.6).

4.3 Upper bounds for commutators

We start this section with an additional assumption on φ: Hereafter, we will assume

max
(

sup
s∈Sd−1

|φ(s)|, sup
s∈Sd−1

|∇φ(s)|
)
≤ 1.

Under this assumption, all constants in the late estimates will be independent of φ.

Let Cφ,x be a commutator with kernel in (4.1.11). We will show the upper estimate for
∥Cφ,x∥Sp . We need to consider a nicer operator IaCφ,xI

b for a,b ∈ R (a,b often positive). In

the Fourier transform side, Ia is the multiplication operator on L2(Rd) by Ia (recalling that
Ia(s) = |s|a). Denoting Kx,a,b the kernel of IaCφ,xI

b, by (4.1.11) we have

Kx,a,b(s, t) = |s|aσ (s, t)x̂(s − t)
(
φ(s)−φ(t)

)
|t|b, s, t ∈ (Rd . (4.3.1)

Convention. For simplicity of presentation, we make the convention that for an integral
operator TK with kernel K on L2(Rd), the notation ∥K(s, t)∥Sp stands also for the Sp-norm of
TK .

Convention. In the sequel, unless explicitly stated otherwise, x will be assumed to be a
“good” operator which admits a kernel as in (4.1.10) so that all calculations are legitimate.
For instance, x can be in λθ(L1(Rdθ)) or even in S(Rdθ).

We will frequently use the following elementary fact without further reference.

Fact. Let η,ξ : Rd → C be two bounded measurable functions with L∞-norm ≤ 1. Let A and
B be the multiplication operators on L2(Rd). Then for TK as above, the kernel of ATKB is
η(s)K(s, t)ξ(t), so by the above convention, we have∥∥∥η(s)K(s, t)ξ(t)

∥∥∥
Sp

=
∥∥∥ATKB∥∥∥Sp ≤ ∥∥∥TK∥∥∥Sp =

∥∥∥K(s, t)
∥∥∥
Sp
.

Another simple fact about φ will be also used. Let s0 ∈ Rd \ {0}, 0 < r < |s0|2 , and B(s0, r) =
{s ∈ Rd : |s − s0| < r}. Since the first order derivatives of φ are homogeneous of order −1, the
mean value theorem implies∥∥∥1lB(s0,r)[φ−φ(s0)]

∥∥∥
L∞(Rd )

≤ r sup
|s−s0|≤

|s0 |
2

|∇φ(s)| ≤ r
|s0|

. (4.3.2)

This immediately implies

|φ(s)−φ(t)| ≲min
(
1,
|s − t|
|t|

)
, s, t ∈Rd . (4.3.3)
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4.3.1 Upper bound for the S∞-norm

The next theorem gives the upper bound estimate of S∞-norm of IaCφ,xI
b. In this subsection,

x is a good operator with kernel so that all calculations below are legitimate.

Theorem 4.3.1. Let a > 0,b > 0 and a+ b < 1. If x ∈ Ba+b
∞,∞(Rdθ), then IaCφ,xI

b ∈ S∞(L2(Rdθ)) and

∥IaCφ,xI
b∥S∞ ≲d,a,b ∥x∥Ba+b

∞,∞
.

Proof. This part is the most technical part of the chapter. Reformulated in terms of the
kernel in (4.3.1), the assertion means

∥Kx,a,b∥S∞ ≲d,a,b ∥x∥Ba+b
∞,∞
.

In the following, assume that ∥x∥Ba+b
∞,∞
≤ 1. Recall that △k = {s ∈ Rd : 2k−1 ≤ |s| < 2k}. We claim

that ∥∥∥1l△j (s)Kx,a,b(s, t)1l△k (t)
∥∥∥
S∞
≲d,a,b

2a(j−k) if j ≤ k,

2b(k−j) if j > k.
(4.3.4)

Assuming the above claim, we easily prove the above desired estimate on Kx,a,b. Indeed,
according to the partition {△j}j∈Z of Rd , we write

Kx,a,b(s, t) =
∑
j∈Z

∑
k∈Z

1l△j+k (s)Kx,a,b(s, t)1l△k (t).

The internal sum is a block diagonal operator, so by (4.3.4)∥∥∥∥∑
k∈Z

1l△j+k (s)Kx,a,b(s, t)1l△k (t)
∥∥∥∥
S∞

= sup
k∈Z

∥∥∥1l△j+k (s)Kx,a,b(s, t)1l△k (t)
∥∥∥
S∞
≲d 2−min(a,b)|j |.

Thus, since a,b > 0, we get

∥Kx,a,b∥S∞ ≲d
∑
j∈Z

2−min(a,b)|j | ≲d 1.

We will show (4.3.4) according to the two cases j ≤ k and j > k. The latter is symmetric
to the former by passing to adjoints, thus we need only consider the former. We will divide
this case into two sub-cases: j ≤ k−2 and k−1 ≤ j ≤ k. The first sub-case is relatively simple,
while that for the second is quite subtle.

Step 1: j ≤ k − 2. Note that for s ∈ △j and t ∈ △k , |s| ≤ 2j ≤ 2k−2 and 2k−1 ≤ |t| ≤ 2k . Then
2k−2 ≤ |s − t| ≤ 2k+1. In other words, s − t ∈ △̃k (recalling △̃k = △k−1 ∪△k ∪△k+1). So we have

1l△j (s)Kx,a,b(s, t)1l△k (t) = 1l△j (s)|s|
aσ (s, t)x̂(s − t)[φi(s)−φi(t)]|t|b1l△k (t)

= 1l△j (s)|s|
aσ (s, t)ψ̂k(s − t)x̂(s − t)[φi(s)−φi(t)]|t|b1l△k (t)

= 1l△j (s)|s|
aσ (s, t)ψ̂k ∗ x(s − t)[φi(s)−φi(t)]|t|b1l△k (t).

Thus ∥∥∥1l△j (s)Kx,a,b(s, t)1l△k (t)
∥∥∥
S∞
≤
∥∥∥1l△j (s)|s|

aφi(s)σ (s, t)ψ̂k ∗ x(s − t)|t|b1l△k (t)
∥∥∥
S∞

+
∥∥∥1l△j (s)|s|

aσ (s, t)ψ̂k ∗ x(s − t)φi(t)|t|b1l△k (t)
∥∥∥
S∞

≤ 2aj+bk+1
∥∥∥σ (s, t)ψ̂k ∗ x(s − t)

∥∥∥
S∞

= 2aj+bk+1
∥∥∥ψk ∗ x∥∥∥L∞(Rd

θ)
.
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Since ∥x∥Ba+b
∞,∞
≤ 1, by Proposition 4.2.6, we have

∥ψk ∗ x∥L∞(Rd
θ) ≲ 2−(a+b)k .

Combining the preceding inequalities, we obtain∥∥∥1l△j (s)Kx,a,b(s, t)1l△k (t)
∥∥∥
S∞
≲ 2a(j−k).

Thus (4.3.4) is proved for j ≤ k − 2.
Step 2: k − 1 ≤ j ≤ k. For this case we need an auxiliary partition of Rd . Fix an integer ℓ ∈ Z
such that

2ℓ−k <
1

4(4 + 2d)
. (4.3.5)

For m = (m1, · · · ,md) ∈Zd , let Qm be the cube in R
d with center 2ℓm and side length 2ℓ, i.e.,

Qm = [2ℓm1 − 2ℓ−1,2ℓm1 + 2ℓ−1)× · · · × [2ℓmd − 2ℓ−1,2ℓmd + 2ℓ−1).

The family {Qm}m∈Zd is a partition of Rd . Let m,n ∈Zd . We first aim to estimate∥∥∥1lQm(s)σ (s, t)ϕ(2−ℓ(s − t))x̂(s − t)[φ(s)−φ(t))]1lQn(t)
∥∥∥
S∞

=
∥∥∥1lQm(s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1lQn(t)

∥∥∥
S∞

If |m−n| > 4 + d, for s ∈Qm and t ∈Qn,

|s − t| ≥ |2ℓm− 2ℓn| − |s − 2ℓm| − |t − 2ℓn| > 2ℓ(4 + d)− 2ℓd
1
2 > 2ℓ+2,

so ϕ(2−ℓ(s − t)) = 0 (recalling that ϕ is the test function given by (4.2.1)).
On the other hand, assume that |m−n| ≤ 4+d andQn∩△k , ∅. Take one point t0 ∈Qn∩△k .

Then Qn ⊂ B(t0,2ℓ−1d
1
2 ) ⊂ B(t0,2ℓ(4 + 2d)). For t ∈Qm,

|t − t0| ≤ |t − 2ℓm|+ |2ℓm− 2ℓn|+ |2ℓn− t0|

≤ 2ℓ−1d
1
2 + 2ℓ(4 + d) + 2ℓ−1d

1
2 ≤ 2ℓ(4 + 2d),

Hence Qm ⊂ B(t0,2ℓ(4 + 2d)) as well. Now by (4.3.5), 2ℓ(4 + 2d) < 2k−2 ≤ |t0|2 . Thus by (4.3.2),
we deduce that ∥∥∥1lQm(s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)1lQn(t)

∥∥∥
S∞

≤
∥∥∥1lQm(s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t0))]1l△k (t)1lQn(t)

∥∥∥
S∞

+
∥∥∥1lQm(s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(t)−φ(t0))]1l△k (t)1lQn(t)

∥∥∥
S∞

≲ 2ℓ−k
∥∥∥σ (s, t)ϕ̂ℓ ∗ x(s − t)

∥∥∥
S∞

= 2ℓ−k
∥∥∥ϕℓ ∗ x∥∥∥L∞(Rd

θ)
≤ 2ℓ−k2−ℓ(a+b).

(4.3.6)

Since {Qm}m∈Zd is a partition of Rd and {Qn ∩△k}n∈Zd a partition of △k , by the above discus-
sion, we write

σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)

=
∑
m∈Zd

∑
n∈Zd

1lQm+n
(s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)1lQn(t)

=
∑
|m|≤4+d

∑
n∈Zd

1lQm+n
(s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)1lQn(t).
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For the internal sum that is a block diagonal operator, we have∥∥∥∥ ∑
n∈Zd

1lQm+n
(s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)1lQn(t)

∥∥∥∥
S∞

= sup
n∈Zd

∥∥∥∥1lQm+n
(s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)1lQn(t)

∥∥∥∥
S∞

≲

0 if |m| > 4 + d,

2ℓ−k2−ℓ(a+b) if |m| ≤ 4 + d.

Therefore, il follows that under the condition (4.3.5) we have∥∥∥σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)
∥∥∥
S∞
≲d 2ℓ−k2−ℓ(a+b).

Consequently, ∥∥∥1l△j (s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)
∥∥∥
S∞
≲d 2ℓ−k2−ℓ(a+b).

We next deal with the case 2ℓ−k ≥ 1
4(4+2d) . If ℓ ≥ k + 2, since j ≤ k, we know from the

support assumption of ϕ that ϕ(2−ℓ(s− t)) = 0 for s ∈ △j and t ∈ △k . Hence there exists only a
finite number of values of ℓ to consider: k − log2[4(4 + 2d)] ≤ ℓ < k + 2. For these ℓ, we simply
have ∥∥∥1l△j (s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)

∥∥∥
S∞

≤
∥∥∥1l△j (s)σ (s, t)ϕ̂ℓ ∗ x(s − t)φ(s)1l△k (t)

∥∥∥
S∞

+
∥∥∥1l△j (s)σ (s, t)ϕ̂ℓ ∗ x(s − t)φ(t))1l△k (t)

∥∥∥
S∞

≲
∥∥∥ϕℓ ∗ x∥∥∥L∞(Rd

θ)
≤ 2−ℓ(a+b).

Summing over ℓ all estimates obtained so far and using the condition that a+b < 1, we finally
deduce that∥∥∥1l△j (s)σ (s, t)x̂(s − t)[φ(s)−φ(t))]1l△k (t)

∥∥∥
S∞

≤
∑
ℓ<k+2

∥∥∥1l△j (s)σ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]1l△k (t)
∥∥∥
S∞

≲
∑

ℓ<k−log2[4(4+2d)]

2ℓ−k2−ℓ(a+b) +
∑

k−log2[4(4+2d)]≤ℓ<k+2

2−ℓ(a+b) ≲d 2−k(a+b).

Therefore, it follows that for k − 1 ≤ j ≤ k∥∥∥1l△j (s)Kx,a,b(s, t)1l△k (t)
∥∥∥
S∞

=
∥∥∥1l△j (s)|s|

aσ (s, t)ϕ̂ℓ ∗ x(s − t)[φ(s)−φ(t))]|t|b1l△k (t)
∥∥∥
S∞

≲d 2ja2kb2−k(a+b) ≲d 1.

Thus the claim (4.3.4) is completely proved, so is the theorem.



47 4.3. Upper bounds for commutators

4.3.2 Upper bound for the S1-norm

We next turn to the upper bound for the S1-norm.

Theorem 4.3.2. Let a > −d2 , b > −
d
2 and a+ b+ d < 1. If x ∈ Ba+b+d

1,1 (Rdθ), then IaCφ,xI
b ∈ S1 and∥∥∥IaCφ,xI

b
∥∥∥
S1
≲d,a,b

∥∥∥x∥∥∥
Ba+b+d

1,1
. (4.3.7)

Proof. By the density of S0(Rdθ) in B1+b+d
1,1 (Rdθ) (see Proposition 4.2.3), it suffices to show the

theorem above for x ∈ S0(Rdθ). Let us justify this. Assume that (4.3.7) is valid for all x ∈
S0(Rdθ). Let x ∈ Ba+b+d

1,1 (Rdθ) and take a sequence (xn) in S0(Rdθ) converging to x in Ba+b+d
p,p (Rdθ).

Then by (4.3.7), (IaCφ,xnI
b) is a Cauchy sequence in S1, so it converges in S1 to a limit that

must be IaCφ,xI
b. So IaCφ,xI

b ∈ S1 and (4.3.7) holds.

Thus x will be assumed to be a good operator whose commutator admits a kernel as in
(4.1.11). Using the Littlewood-Paley decomposition of x:

x =
∑
k∈Z

ϕk ∗ x

and the definition of the Ba+b+d
1,1 -norm, (4.3.7) reduces to the following

Claim. Assume that x ∈ L1(Rdθ) such that x̂ is supported by B(0,R). Then∥∥∥IaCφ,xI
b
∥∥∥
S1
≲d,a,b R

a+b+d∥x∥L1(Rd
θ). (4.3.8)

For n ∈Zd , let QRn be the cube with centre Rn and side length R, and Q̃Rn the concentric
cube with side length 3R. We are going to estimate∥∥∥|s|aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b1lQRn(t)

∥∥∥
S1

(4.3.9)

and then calculate the sum over n ∈ Zd . Note that if s < Q̃Rn and t ∈ QRn, x̂(s − t) = 0 thanks
to the support assumption of x̂. So

(4.3.9) =
∥∥∥1̃lQRn(s)|s|

aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b1lQRn(t)
∥∥∥
S1
.

We divide the proof into two cases: |n| > 3
√
d and |n| ≤ 3

√
d.

Step 1: |n| > 3
√
d. The cube Q̃Rn is contained in B(Rn, 3

2

√
dR) and 3

2

√
dR < |Rn|2 . Thus by

(4.3.2), we have

(4.3.9) =
∥∥∥1lQ̃Rn(s)|s|

aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b1lQRn(t)
∥∥∥
S1

≤
∥∥∥1lQ̃Rn(s)|s|

aσ (s, t)x̂(s − t)[φ(s)−φ(Rn)]|t|b1lQRn(t)
∥∥∥
S1

+
∥∥∥1lQ̃Rn(s)|s|

aσ (s, t)x̂(s − t)[φ(t)−φ(Rn)]|t|b1lQRn(t)
∥∥∥
S1

≲d |n|−1
∥∥∥1lQ̃Rn(s)|s|

aσ (s, t)x̂(s − t)1lQRn(t)
∥∥∥
S1
.

(4.3.10)

By definition,
x̂(s − t) = τθ

(
xλθ(s − t)∗

)
= σ (s,−t)τθ

(
xλθ(t)λθ(−s)

)
,
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so
σ (s, t)x̂(s − t) = τθ

(
λθ(−s)xλθ(t)

)
.

We now write x = yz with y,z ∈ L2(Rdθ) such that ∥x∥1 = ∥y∥2∥z∥2. Then

1lQ̃Rn(s)|s|
aσ (s, t)x̂(s − t)1lQRn(t) = τθ

([
1lQ̃Rn(s)|s|

aλθ(−s)y
] [
zλθ(t)1lQRn(t)

])
.

Thus by the Cauchy-Schwarz inequality,∥∥∥1lQ̃Rn(s)|s|
aσ (s, t)x̂(s − t)1lQRn(t)

∥∥∥
S1

≤
∥∥∥1lQ̃RnIaλθ(−·)y

∥∥∥
L2(Rd ;L2(Rd

θ))

∥∥∥zλθ(·)Ib1lQRn
∥∥∥
L2(Rd ;L2(Rd

θ))

= ∥y∥2∥z∥2
(∫

Q̃Rn

|s|2ads
) 1

2
(∫

QRn

|t|2bdt
) 1

2

≲d ∥x∥1Ra+b+d |n|a+b.

Combining all above estimates, when |n| > 3
√
d, we arrive at

(4.3.9) ≲d R
a+b+d |n|a+b−1∥x∥1.

Since a+ b+ d < 1, summing over |n| > 3
√
d, we get∑

|n|>3
√
d

∥∥∥|s|aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b1lQRn(t)
∥∥∥
S1
≲d R

a+b+d∥x∥1. (4.3.11)

Step 2: |n| ≤ 3
√
d. Let

E = ∪|n|≤3
√
dQRn and Ẽ = ∪|n|≤3

√
d Q̃Rn.

It is suffices to estimate ∥∥∥|s|aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b1lE(t)
∥∥∥
S1
. (4.3.12)

Again by the support assumption of x̂

(4.3.12) =
∥∥∥1lẼ(s)|s|aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b1lE(t)

∥∥∥
S1
.

Note that E ⊂ Ẽ ⊂ ∪k≤L△k with L = log2[5R
√
d]. Thus, by the boundedness of φ,

(4.3.12) ≤
∑
j,k≤L

∥∥∥1l△j (s)|s|
aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b1l△k (t)

∥∥∥
S1

≲
∑
j,k≤L

∥∥∥1l△j (s)|s|
aσ (s, t)x̂(s − t)|t|b1l△k (t)

∥∥∥
S1
.

By the arguments in Step 1, we have∥∥∥1l△j (s)|s|
aσ (s, t)x̂(s − t)|t|b1l△k (t)

∥∥∥
S1
≤ ∥x∥1∥|s|a∥L2(△j )∥|t|

b∥L2(△k) ≲d 2j(a+ d
2 )+k(b+ d

2 ).
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Since a,b > −d2 , summing over all j,k ∈Z with j,k ≤ L, we get

(4.3.12) ≲d R
a+b+d∥x∥1.

Thus (4.3.11) is proved.
Finally, going back to (4.3.8), we have∥∥∥IaCφ,xI

b
∥∥∥
S1
≤
∑
n∈Z

∥∥∥|s|aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b1lQRn(t)
∥∥∥
S1
≲d R

a+b+d∥x∥1.

This is (4.3.8).

4.3.3 Upper bound for the Sp-norm

We begin with the easiest case: the upper bound for the S2-norm. In this case, the S2 norm
of an operator T ∈ S2(L2(Rd)) is equal to the norm of its kernel in L2(Rd ×Rd).

Lemma 4.3.3. Let a,b > −d2 and a+ b+ d
2 < 1. If x ∈ Ba+b+ d

2
2,2 (Rdθ), then IaCφ,xI

b ∈ S2 and∥∥∥IaCφ,xI
b
∥∥∥
S2
≲d,a,b

∥∥∥x∥∥∥
B
a+b+ d2
2,2

.

Proof. Like in the proof of Theorem 4.3.2, we assume that x is a good operator with kernel
in (4.1.11). Then by (4.3.3)

∥IaCφ,xI
b∥2S2

=
∫
R
d

∫
R
d

∣∣∣∣|s|aσ (s, t)x̂(s − t)[φ(s)−φ(t)]|t|b
∣∣∣∣2dsdt

=
∫
R
d
|x̂(s)|2

∫
R
d
|s+ t|2a

∣∣∣φ(s+ t)−φ(t)
∣∣∣2|t|2bdsdt

≲

∫
R
d
|x̂(s)|2

∫
R
d
|s+ t|2amin

(
1,
|s|2

|t|2
)
|t|2bdsdt

=
∫
R
d
|x̂(s)|2

(∫
|t|≤|s|
|s+ t|2a|t|2b +

∫
|t|>|s|

|s|2

|t|2
|s+ t|2a|t|2b

)
dtds.

Whereas a+ b+ d
2 < 1, we see that∫

|t|>|s|

|s|2

|t|2
|s+ t|2a|t|2bdt ≲d,a,b |s|2a+2b+d .

On the other hand, by b > −d2 , we have∫
|t|≤|s|
|s+ t|2a|t|2b ≲d,b |s|2a+2b+d .

Putting the above estimates together, we obtain

∥IaCφ,xI
b∥2S2
≲d,a,b

∫
R
d
|x̂(s)|2|s|2a+2b+dds ≲d,a,b ∥x∥2

B
a+b+ d2
2,2

,

where the last step follows from the Plancherel formula and the fact that Ia+b++ d
2 is an iso-

morphism of B
a+b+ d

2
2,2 (Rdθ) onto B0

2,2(Rdθ) = L2(Rdθ) (see Proposition 4.2.4).
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Now we are now able to prove the upper bound for the Sp-norm. We include the cases
p ∈ {1,2,∞} already treated before just for completeness. Note that for p = ∞, x should be
additionally assumed to be good.

Theorem 4.3.4. Let 1 ≤ p ≤ ∞, a + b + d
p < 1 and a,b > max(−dp ,−

d
2 ). If x ∈ B

a+b+ d
p

p,p (Rdθ), then

IaCφ,xI
b belongs to B

a+b+ d
p

p,p (Rdθ) and∥∥∥IaCφ,xI
b
∥∥∥
Sp
≲d,p,a,b ∥x∥

B
a+b+ dp
p,p

.

Proof. We will use complex interpolation by the results already proved for p ∈ {1,2,∞}. To
that end, we need first extend those results to complex powers in Ia and Ib. This is easy since
for a,b ∈C ∥∥∥IaCφ,xI

b
∥∥∥
Sp

=
∥∥∥IReaCφ,xI

Reb
∥∥∥
Sp
.

First consider the case 2 < p <∞. Let η = 2
p . Under the conditions on a,b, one can choose

ai ,bi such that

a = (1− η)a0 + ηa1, b = (1− η)b0 + ηb1;

a0,b0 > 0, a0 + b0 < 1, a1,b1 > −
d
2
, a1 + b1 +

d
2
< 1.

For z ∈ {z ∈C : 0 ≤ Rez ≤ 1}, define

a(z) = a0(1− z) + a1z, b(z) = b0(1− z) + b1z and Tz(x) = Ia(z)Cφ,xI
b(z).

Then Tz is an analytic family of linear operators. Lemma 4.3.3 and Theorem 4.3.1 states that

Tz is bounded from Ba+b
∞,∞(Rdθ) to S∞ for Rez = 0, while by Lemma 4.3.3, Tz is maps B

a+b+ d
2

2,2 (Rdθ)
to S2 for Rez = 1. Therefore, by complex interpolation,

Tη :
(
Ba0+b0
∞,∞ (Rdθ), B

a1+b1+ d
2

2,2 (Rdθ)
)
η
→

(
S∞, S2

)
η

is bounded.

Thanks to Proposition 4.2.5, this implies that the desire assertion for 2 < p < ∞. The case
1 < p < 2 is treated similarly, and is therefore omitted.

Theorem 4.3.1 is not proved for all x ∈ Ba0+b0
∞,∞ (Rdθ) but only for good x with kernel as

in (4.1.11). To make the preceding proof more rigorous, we can use the closure of S0(Rdθ)

in Ba0+b0
∞,∞ (Rdθ). Since S0(Rdθ) is dense in B

a1+b1+ d
2

2,2 (Rdθ), it is a classical fact from interpolation

theory that Proposition 4.2.5 remains valid with this closure instead of Ba0+b0
∞,∞ (Rdθ).

On the other hand, one cannot directly interpolate Theorem 4.3.1 and Theorem 4.3.2
because of the choice of ai ,bi (i = 0,1) satisfying the required conditions. This explains why
one has to consider the two cases p < 2 and p > 2 separately.

4.3.4 Higher commutators

More generally, we may consider the N -th order commutators. Let φ1, · · · ,φN ∈ C∞(Sd−1) be
N non-constant functions. Define

Cφ1,··· ,φN ,x = [TφN , ..., [Tφ1
,Mx]...] (4.3.13)
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For a good operator x with kernel as in (4.1.10), the kernel of Cφ1,··· ,φN ,x as an integral oper-
ator on L2(Rd) is

Kφ1,··· ,φN ,x(s, t) = σ (s, t)x̂(s − t)
N∏
i=1

(φi(s)−φi(t)). (4.3.14)

Then for a,b ∈R, we have

∥IaCφ1,··· ,φN ,xI
b∥Sp(L2(Rd

θ)) = ∥|s|aKφ1,··· ,φN ,x(s, t)|t|b∥Sp(L2(Rd )).

Theorem 4.3.4 extends to higher commutators:

Theorem 4.3.5. Let 1 ≤ p ≤ ∞. Let a,b ∈ R such that a + b + d
p < N and a,b > max(−dp ,−

d
2 ).

If x ∈ B
d
p
p,p(Rdθ) (x is assumed additionally to be a good operator for p = ∞), then Cφ1,··· ,φN ,x has

bounded extension in Sp(L2(Rdθ)). Moreover,

∥Cφ1,...,φN ,x∥Sp ≲d,p,a,b,N
N∏
i=1

[
sup
s∈Sd−1

|φi(s)|+ sup
s∈Sd−1

|∇φi(s)|
]
∥x∥

B
d
p
p,p

.

Proof. With minor modifications, the arguments in the previous subsections easily extend to
the present setting. Let us point out only the necessary modifications. Firstly, for p =∞, the
only modification lies in the proof of (4.3.6) (and in the subsequent arguments, of course),
now the factor 2ℓ−k there is changed to 2N (ℓ−k), which leads to the corresponding change on
a,b: now a + b < N instead of a + b < 1 before. Secondly, for p = 1, the only change occurs
for (4.3.9): the factor |n|−1 there is replaced by |n|−N . Thirdly, for p = 2, in the first displayed
formula in the proof of Lemma 4.3.3, we have to change min

(
1, |s|

2

|t|2
)

to min
(
1, |s|

2N

|t|2N
)
. Finally,

the interpolation argument in the proof of Theorem 4.3.4 remains the same.

4.4 Lower bounds for commutators and the proof of Theorem 1.2.1

This section is devoted to the converse results of those in the previous section. Letφ1, · · · ,φN ∈
C∞(Sd−1) be N functions such that

sup
s∈Sd−1

|φi(s)|+ sup
s∈Sd−1

|∇φi(s)| ≤ 1, 1 ≤ i ≤N.

Recall that the higher commutator Cφ1,...,φN ,x in subsection 4.3.4. We will show that if

Cφ1,··· ,φN ,x ∈ Sp(L2(Rdθ)) , then x ∈ B
d
p
p,p(Rdθ) if Cφ1,··· ,φN ,x ∈ Sp(L2(Rdθ)) under the following

nondegeneracy condition:

∀s ∈Rd \ {0} ∃ t ∈Rd \ {0} such that
N∏
i=1

(φi(s)−φi(t)) , 0. (4.4.1)

For N = 1, this condition means that φ1 is not a constant function. We will need another
associated higher one: for k ≥ 1 set

CN,k,y = Cφ1, ...,φN︸     ︷︷     ︸
k tuple

, φ̄1, ...φ̄N︸    ︷︷    ︸
k−1 tuple

, y
,
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where φ1, ...,φN︸     ︷︷     ︸
k tuple

means k tuple of (φ1, ...,φN ), that is, each φi is repeated k times.

The following lemma is the counterpart of [50, Lemma 9.1] for the classical euclidean
spaces. Recall that p′ denotes the conjugate index of p.

Lemma 4.4.1. Suppose that 1 ≤ p ≤∞, k ≥ 1, a,b,a1,b1 ∈R satisfying the following conditions

b+ b1 > −d, a+ a1 + b+ b1 + d < 2kN ; (4.4.2)

a1,b1 >max(−d
2
,− d
p′

), a1 + b1 +
d
p′
< (2k − 1)N. (4.4.3)

Denote γ = −(a+ a1 + b+ b1 + d) and set

ω(s) = |s|γ
∫
R
d

N∏
i=1

|φi(s+ t)−φi(t)|2k |s+ t|a+a1 |t|b+b1dt. (4.4.4)

Then for x ∈ S(Rdθ),

∥Tω(x)∥
B
a+b+ dp
p,p

≤ C∥IaCφ1,...,φN ,xI
b∥Sp .

Here and late in the proof, the constant C depends on d and all involved indices.

Proof. It is easy to show that the integral in (4.4.4) is convergent thanks to (4.4.2). By defini-
tion, it is clear that ω is homogenous of order zero. Let s0 , 0. By (4.4.1), there exists t0 , 0
such that φi(s0)−φi(t0) , 0 for every 1 ≤ i ≤N . Choose δ > 0 such that∣∣∣∣ s|s| − s0

|s0|

∣∣∣∣ < δ =⇒ |φi(s)−φi(s0)| < 1
2
|φi(s0)−φi(t0)|, 1 ≤ i ≤N.

Let r > 0 sufficiently large so that∣∣∣∣ rs0 + t0
|rs0 + t0|

− s0
|s0|

∣∣∣∣ =
∣∣∣∣ s0 + r−1t0
|s0 + r−1t0|

− s0
|s0|

∣∣∣∣ < δ.
Thus

|φi(rs0 + t0)−φi(s0)| < 1
2
|φi(s0)−φi(t0)|.

However, by the homogeneity of φi , we have

φi(s0 + r−1t0)−φi(r−1t0) = φi(rs0 + t0)−φi(t0) = [φi(s0)−φi(t0)] + [φi(rs0 + t0)−φi(s0)].

Hence,

|φi(s0 + r−1t0)−φi(r−1t0)| ≥ |φi(s0)−φi(t0)| − |φi(rs0 + t0)−φi(s0)| > 1
2
|φi(s0)−φi(t0)|.

Then by continuity, φi(s0 +t)−φi(t) , 0 for t in the neighborhood of r−1t0 for every 1 ≤ i ≤N ,
which clearly implies that ω(s0) , 0.

We will prove the desired inequality by duality. By (4.4.3) and Theorem 4.3.5, for any
y ∈ S(Rdθ) we have

∥Ia1CN,k,yI
b1∥Sp′ ≤ C∥y∥

B
a1+b1+ d

p′
p′ ,p′

.
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Then for x ∈ S(Rdθ), by the Placherel formula, we have

⟨IaCφ1,...,φN ,xI
b, Ia1CN,k,yI

b1⟩ = τθ
[
IaCφ,xI

b
(
Ia1CN,k,yI

b1
)∗]

=
∫
R
d

∫
R
d
x̂(s − t)ŷ(s − t) |φ(s)−φ(t)|2|s|a+a1 |t|b+b1dsdt

=
∫
R
d

∫
R
d
x̂(s)ŷ(s − t) |φ(s+ t)−φ(t)|2|s+ t|a+a1 |t|b+b1dsdt

=
∫
R
d
x̂(s)ŷ(s − t)|s|−γω(s)ds

= ⟨I−γTω(x), y⟩.

Consequently, ∣∣∣⟨I−γTω(x), y⟩
∣∣∣ ≤ ∥IaCφ1,...,φN ,xI

b∥Sp ∥I
a1CN,k,yI

b1∥Sp′
≤ C∥IaCφ1,...,φN ,xI

b∥Sp ∥y∥
B
a1+b1+ d

p′
p′ ,p′

.

For p > 1, by Proposition 4.2.3(
B
a1+b1+ d

p′

p′ ,p′ (Rdθ)
)∗

= B
−a1−b1− d

p′
p,p (Rdθ).

Then by the density of S(Rdθ) in B
a1+b1+ d

p′

p′ ,p′ (Rdθ) (see Proposition 4.2.3), we deduce

∥I−γTω(x)∥
B
−a1−b1− dp′
p,p

≲d,p′ ,a1,b1
∥IaCφ1,...,φN ,xI

b∥Sp .

However, by Proposition 4.2.4,

∥I−γTω(x)∥
B
−a1−b1− dp′
p,p

≈ ∥Tω(x)∥
B
a+b+ dp
p,p

.

Thus the assertion is proved for p > 1.

For the case p = 1, we use the subspace B
a1+b1+ d

p′
∞,c0 (Rdθ) in place of B

a1+b1+ d
p′

∞,∞ (Rdθ), the above
argument works equally.

In order to apply Lemma 4.4.1, we need the following Tauberian result for a general ho-
mogeneous function ν as in [50]. Recall that a function ν on R

d is called a Fourier multiplier
on a Besov space Bap,q(R

d) (resp. Bap,q(R
d
θ)) if Tν is bounded on Bap,q(R

d) (resp. Bap,q(R
d
θ)).

Lemma 4.4.2. Suppose that ν is a homogeneous function of order zero on R
d \ {0} and never

vanishes. If ν is a Fourier multiplier on Ba0
1,1(Rd)) for some a0 ∈R, then ν−1 is a Fourier multiplier

on Bap,p(Rdθ) for all a ∈R and 1 ≤ p ≤∞.

Proof. Consider the Banach algebra L̂1 = {f̂ : f ∈ L1(Rd)}. Let △′ = {s ∈ Rd : 1 ≤ |s| ≤ 8} and
let I = {f̂ ∈ L̂1 : f = 0 on △′}. Then I is a closed ideal of L̂1 and L̂1/I = {f̂

∣∣∣△′ : f ∈ L1(Rd)} is a
unital Banach algebra.

Choose η ∈ C∞(Rd) supported in a larger annulus such that η = 1 on △′. Then η̌ ∈ Ba0
1,1, so

Tν(η̌) ∈ Ba0
1,1(Rd); it follows that the Fourier transform of Tν(η̌), that is νη, belongs to L̂1. Thus
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ν
∣∣∣△′ = νη

∣∣∣△′ ∈ L̂1/I . Since ν , 0 on △′, we have that ν−1
∣∣∣△′ ∈ L̂1/I , i.e., there exists h ∈ L1(Rd)

such that ĥ = ν−1 on △′.
Now let x ∈ Bap,p(Rdθ) and ŷ = ν−1x̂. If △′k = {s ∈ Rd : 2k−1 ≤ |s| ≤ 2k+1} ⊂ △′, then (ϕ being

the test function in (4.2.1))

ϕ̂k ∗ y = ϕ̂kν
−1x̂ = ϕ̂kĥx̂ = ̂h ∗ϕk ∗ x,

and thus
∥ϕk ∗ y∥p ≤ ∥h∥1∥ϕk ∗ x∥p.

By homogeneity, the above inequality holds for arbitrary △′k , hence ∥y∥Bap,p ≤ C∥x∥Bap,p . This

means that ν−1 is a Fourier multiplier on Bap,p(Rdθ)

Theorem 4.4.3. Let 1 ≤ p ≤∞ and a,b ∈R. Let x be a good operator with kernel as in (4.1.10), for
instance, x ∈ λθ

(
L1(Rd)

)
, andφ1, ...,φN satisfy the nondegeneracy condition 4.4.1. If IaCφ1,...,φN ,xI

b ∈

Sp
(
L2(Rdθ)

)
, then x ∈ B

a+b+ d
p

p,p (Rdθ) and

∥x∥
B
a+b+ dp
p,p

≲d,p,a,b,N ∥IaCφ1,...,φN ,xI
b∥p.

Proof. Choose first a1,b1 > 0 such that a + a1,b + b1 > 0, then a′ = b′ ∈ (−d2 ,min(0, N−d2 )).
Let a′1 = a + a1 − a′ ,b′1 = b + b1 − b′. Choose k ∈ N such that a1 + b1 + d < (2k − 1)N and
a+ a1 + b+ b1 + d < 2kN .

Applying Lemma 4.4.1 to p = 1 and the indices a′ ,b′ , a1,b
′
1, we get

∥Tω(x)∥Ba′+b′+d1,1
≤ C∥Ia

′
Cφ1,...,φN ,xI

b′∥S1
.

On the other hand, by Theorem 4.3.5,

∥Ia
′
Cφ1,...,φN ,xI

b′∥S1
≤ C∥x∥Ba′+b′+d1,1

.

Thus
∥Tω(x)∥Ba′+b′+d1,1

≤ C∥x∥Ba′+b′+d1,1
.

This means that ω is a Fourier multiplier on Ba
′+b′+d

1,1 (Rdθ)), especially for the degenerate case
θ = 0 too. This enables us to apply Lemma 4.4.2; consequently, ω−1 is a Fourier multiplier

on B
a+b+ d

p
p,p (Rdθ). Thus

∥x∥
B
a+b+ dp
p,p

≤ C∥Tω(x)∥
B
a+b+ dp
p,p

.

Now applying Lemma 4.4.1 once more, this time to p,a,b... (noting that we have the same
function ω defined by (4.4.4) according to the choice of the indices), we finally deduce

∥x∥
B
a+b+ dp
p,p

≲d,p,a,b,N ∥IaCφ1,...,φN ,xI
b∥Sp .

Thus the theorem is proved.
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Proof of Theorem 1.2.1. Combining Theorems 4.3.4 and 4.4.3, we conclude Theorem 1.2.1 for

x ∈ S(Rdθ). For general x ∈ B
d
p
p,p(Rdθ), by Proposition 4.2.3, we may find a sequence {xn}n≥1 ⊂

S(Rdθ) such that xn→ x in B
d
p
p,p(Rdθ). Since {xn}n≥1 is Cauchy in B

d
p
p,p(Rdθ), by the upper bound

estimate, the sequence {Cφ,xn}n≥1 is also Cauchy in Sp, so has a limit in Sp. On the other hand,
it is straightforward to verify that Cφ,xnη → Cφ,xη in L2(Rdθ) for any η ∈ S(Rdθ). Therefore,
the limit of {Cφ,xn}n≥1 in Sp must be Cφ,x. Now that,

lim
n→∞

∥xn∥
B
d
p
p,p

= ∥x∥
B
d
p
p,p

and lim
n→∞

∥Cφ,xn∥Sp = ∥Cφ,x∥Sp ,

we complete the proof of the theorem.

Conversely, we have to deduce x ∈ B
d
p
p,p(Rdθ) from Cφ,x ∈ Sp. To that end, we will use the

following simple fact: When x ∈ L∞(Rdθ) and Cφ,,x ∈ Sp with 1 ≤ p ≤ ∞, for ν ∈ L1(Rd), we
have

∥Cφ,ν∗x∥Sp ≤ ∥ν∥1∥Cφ,x∥Sp . (4.4.5)

This is the Sp analogue of [62, Equality (6.12)], and the proof is very simple since Cφ,ν∗x can
be written as a convolution with ν.

From [62, Lemma 3.12], we may select {ψε}ε>0 and {φε}ε>0 such that ψε ∗ (λθ(φε)x) ∈
S(Rdθ). The upper bound (4.4.5) implies:

∥Cφ,ψε∗(λθ(φε)x)∥Sp ≤ ∥ψε∥1∥Cφ,λθ(φε)x∥Sp .

By (4.4.5) and Theorem 4.3.4, we have

∥Cφ,ψε∗(λθ(φε)x)∥Sp ≤ ∥ψε∥1
(
∥Cφ,λθ(φε)Mx∥Sp + ∥λθ(φε)∥∞∥Cφ,x∥Sp

)
≲d,p ∥ψε∥1

(
∥λθ(φε)∥

B
d
p
p,p

∥x∥∞ + ∥λθ(φε)∥∞∥Cφ,x∥Sp
)

≲d,p ∥x∥∞ + ∥Cφ,x∥Sp .

It follows that {Cφ,ψε∗(λθ(φε)x)}ε>0 is uniformly bounded in Sp as ε→ 0. Now applying The-
orem 4.4.3 to the smooth elements ψε ∗ (λθ(φε)x, we see that {ψε ∗ (λθ(φε)x)}ε>0 is uni-

formly bounded in B
d
p
p,p(Rdθ), so the sequence {

(
ϕk ∗

(
ψε ∗ (λθ(φε)x)

))
k∈Z
}ε>0 is uniformly

bounded in ℓ
d
p
p (Lp(Rdθ)). Since 1 < p < ∞, the space ℓ

d
p
p (Lp(Rdθ)) is reflexive and therefore

{
(
ϕk ∗

(
ψε ∗ (λθ(φε)x)

))
k∈Z
}ε>0 has a weak limit point in ℓ

d
p
p (Lp(Rdθ)). But one easily checks

that for any y = (yk)k∈Z ∈ ℓ
− dp
q (Lq(R

d
θ)) (finitely supported in the sense that only finitely many

yk , 0),

lim
ε→0

∑
k∈Z

(
ϕk ∗

(
ψε ∗ (λθ(φε)x)

)
, yk

)
=
∑
k∈Z

(ϕk ∗ x,yk)

It follows that the weak limit point of {
(
ϕk ∗

(
ψε ∗ (λθ(φε)x)

))
k∈Z
}ε>0 in ℓ

d
p
p (Lp(Rdθ)) must be

(ϕk ∗ x)k∈Z. Therefore, x ∈ B
d
p
p,p(Rdθ).
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4.5 The Sd,∞ property of Cφ,x and the proofs of Theorems 1.2.2 and
1.2.3

In this section we consider the endpoint case of TTheorem 1.2.1 when p = d. Instead of Sd ,
we will characterise the membership of Cφ,x in the weak Schatten d-class Sd,∞.

4.5.1 Upper estimate for Sd,∞ property of Cφ,x

It is shown in [63, Corollary 5.2] that x ∈ Ẇ 1
d (Rdθ) iff [Rj ,Mx] has bounded extension in Sd,∞

for all 1 ≤ j ≤ d. Here Rj denotes the j-th Riesz transform on R
d
θ, or from the perspective of

functional calculus, Rj = φ(∇) with φ(ξ) =
ξj
|ξ | and ∇ =

(
∂1, · · · ,∂d

)
.

Based on the estimates of [Rj ,Mx], we are able to deduce the estimate of Cφ,x for general
φ ∈ C∞(Sd−1).

Lemma 4.5.1. Assume that φ ∈ C∞(Sd−1) and x ∈ Ẇ 1
d (Rdθ). Then Cφ,x has a bounded extension

in Sd,∞ satisfying
∥Cφ,x∥Sd,∞ ≤ Cφ,d max

1≤j≤d
∥[Rj ,x]∥Sd,∞ .

Proof. We appeal to [95, Lemma 3.5], which states that: Let (B1, · · · ,Bd) ⊂ B(H) be a commut-
ing self-adjoint tuple. Let A ∈ B(H). Let h ∈ S(Rd). Then for any 1 < p <∞, we have

∥[A,h(B1, · · · ,Bd)]∥Sp,∞ ≤ Cd,p max
1≤j≤d

∥∂̂jh∥1 · max
1≤j≤d

∥[A,Bj ]∥Sp,∞ . (4.5.1)

For our purpose, we set p = d, A = Mx and Bj = Rj . Set also h(t) = g( t|t| )χ(|t|), t ∈ Rd where χ

is a Schwartz function on R vanishing on (−∞, 1
2 ) and satisfying χ(1) = 1. Then

max
1≤j≤d

∥∂̂jh∥1 ≤ Cφ.

and it follows from [62, Theorem 1.1] that for x ∈ Ẇ 1
d (Rdθ),

max
1≤j≤d

∥[Mx,Rj ]∥Sd,∞ <∞.

Evidently, h(R1, · · · ,Rd) = Tφ, so (4.5.1) ensures the desired assertion.

Proposition 4.5.2. Assume that φ ∈ C∞(Sd−1) and x ∈ Ẇ 1
d (Rdθ). Then Cφ,x has a bounded

extension in Sd,∞ satisfying
∥Cφ,x∥Sd,∞ ≤ Cφ,d∥x∥Ẇ 1

d
.

Proof. Assume initially x ∈ S(Rdθ) ⊂ Ẇ 1
d (Rdθ). The above lemma and [62, Theorem 1.1] yield

∥Cφ,x∥Sd,∞ ≤ Cφ max
1≤j≤d

∥[Rj ,Mx]∥Sd,∞ ≤ Cφ,d∥x∥Ẇ 1
d
. (4.5.2)

For general x ∈ Ẇ 1
d (Rdθ), by [63, Proposition 4.9], we may approximate x by a sequence

{xn}n≥1 ⊂ S(Rdθ) such that limn→∞ ∥xn−x∥Ẇ 1
d

= 0. Then the estimate in (4.5.2) forces {[Tφ,Mxn]}n≥1

Cauchy in the Sd,∞ topology. Hence, there is a limit in Sd,∞. On the other hand, for any
η ∈ S(Rdθ) ⊂ L2(Rdθ),

[Tφ,Mxn]η→ [Tφ,Mx]η

in L2(Rdθ). So [Tφ,Mxn] → [Tφ,Mx] in the Sd,∞ topology. Since (4.5.2) holds for all {xn}n≥1
with the same constant, passing n→∞, we conclude the proof.
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4.5.2 The trace formula

This part is devoted to the computation of Trω(|Cφ,x|d) for continuous normalised trace Trω
on S1,∞ (or especially for Dixmier trace).

Since the partial derivatives on classical euclidean spaces and on quantum euclidean
spaces will appear in the same circumstance, we make the convention that, ∂ξk ,∂

α
ξ will de-

note the partial derivatives of real variable functions φ(ξ) on classical euclidean spaces,
while ∂k ,∂α will denote the partial derivatives on quantum euclidean spaces defined in sub-
section 4.1.2.

To begin with, we replace Tφ by another Fourier multiplier Tφ̃ whose symbol is smooth

on the whole R
d . Such φ̃ is easy to find: letting χ ∈ C∞(Rd) such that χ(ξ) = 1 for {ξ ∈ Rd :

|ξ | ≥ 1
2 } and χ(ξ) = 0 for {ξ ∈Rd : |ξ | ≤ 1

4 }. Take φ̃ = χφ. We put

A =
1

2πi

∑
1≤k≤d

T|ξ |∂ξk φ̃
M∂kx. (4.5.3)

We are going to reduce the computation of Trω(|Cφ,x|d) to that of Trω(|A|d(1 +∆)−
d
2 ).

We will engage the theory of pseudodifferential operators on R
d . In the following, we

collect some definitions and properties of symbol classes and pseudodifferential operators
on noncommutative euclidean space. The main reference is [37].

Definition 4.5.3. For everym ∈R, the class Sm(Rd ;S(Rdθ)) consists of all maps ρ ∈ C∞(Rd ;S(Rdθ))
such that, for all multi-indices α,β ∈Nd

0 , there exists Cα,β > 0 such that

∥∂αx∂
β
ξρ(ξ)∥ ≤ Cα,β(1 + |ξ |2)

m−|β|
2 , ∀ξ ∈Rd .

We can now define the pseudodifferential operator on R
d
θ.

Definition 4.5.4. Given f ∈ S(Rd) and ρ ∈ Sm(Rd ;S(Rdθ)), we set

Pρ(λθ(f )) =
∫
R
d
f (ξ)ρ(ξ)λθ(ξ)dξ.

The operator Pρ is called the pseudo-differential operator of symbol ρ.

If ρ ∈ Sm(Rd ;S(Rdθ)) with m ∈ R, then Pρ is said to be a pseudodifferential operator of
order m. The following conclusion, also quoted from [37], gives the principle of symbolic
calculus for pseudodifferential operator.

Proposition 4.5.5. Let ρ1, ρ2 be two symbols in Sm1(Rd ;S(Rdθ)), Sm2(Rd ;S(Rdθ)) respectively.
Then there exists a symbol ρ3 ∈ Sm1+m2(Rd ;S(Rdθ)) such that

Pρ3
= Pρ1

Pρ2
.

Moreover,

ρ3 −
∑
|α|<N0

(2πi)−|α|

α!
∂αξρ1∂

αρ2 ∈ Sm1+m2−N0(Rd ;S(Rdθ)), ∀N0 ≥ 0. (4.5.4)

The following is the fundamental mapping property of the pseudodifferential operators
on quantum euclidean space, see [37, Theorem 4.12].
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Proposition 4.5.6. Let ρ be a symbol of order 0, then Pρ extends to a bounded operator on L2(Rdθ).

One feature of the Schwartz class S(Rd) is the factorisability: that is, every f ∈ S(Rd),
can be obtained as a product f = gh for g,h ∈ S(Rd). To our best knowledge, such factoris-
ability is not verified for S(Rdθ) for general θ. In order to overcome this drawback, a dense
subalgebra of S(Rdθ) is introduced in [62]. Namely, [62, Proposition 2.5] states that there is
a dense ∗-subalgebra A(Rdθ) ⊂ S(Rdθ) such that every x ∈ A(Rdθ) can be expressed as a finite
linear combination of products of elements of A(Rdθ), i.e. every element x = A(Rdθ) can be
represented as x =

∑n
j=1 yjzj with each yj , zj ∈ A(Rdθ).

With this subalgebra A(Rdθ), we have the following

Proposition 4.5.7. Let ρ ∈ S−m(Rd ;S(Rdθ)) with m > 0, and x ∈ A(Rdθ). Then for n ≥ 0, we have
PρMxJ

−n ∈ S d
m+n ,∞

and MxPρJ
−n ∈ S d

m+n ,∞
.

Proof. Without loss of generality, we may assume that x = yz for y,z ∈ A(Rdθ). So we may
decompose PρMxJ

−n as
PρMxJ

−n = (PρJ
m)(J−mMy)(MzJ

−n)

Since Pρ has order −m, Proposition 4.5.5 implies that the composition PρMxJ
−n is of order

0 and thus has bounded extension by Proposition 4.5.6. Moreover, by [56, Theorem 7.6],
J−mMy ∈ S d

m ,∞
and MzJ

−n ∈ S d
n ,∞

respectively. We therefore conclude PρMxJ
−n ∈ S d

m+n ,∞
from

the Hölder inequality. The other assertion is deduced similarly, using the decomposition
MxPρJ

−n = (MxJ
−m−n)(Jm+nPρJ

−n).

Lemma 4.5.8. Let x ∈ A(Rdθ) and let A be defined as in (4.5.3). For any y ∈ A(Rdθ), we have:

MyCφ̃,x −MyAJ
−1 ∈ S d

2 ,∞
.

Proof. By the above proposition, we only have to show that the symbol of Cφ̃,x − AJ
−1 is

of order −2 using symbol calculus. Note that the symbol φ̃ of the Fourier multiplier Tφ̃ is

smooth on the whole R
d , so that Tφ̃ is viewed as a pseudodifferential operator of order 0.

Now for two pseudodifferential operators Tφ̃ and Mx of order 0, we appeal to Lemma 4.5.5,
to obtain the asymptotic expansion of the principal symbol of [Tφ̃,Mx]. Indeed, the symbol

of MxTφ̃ is φ̃(ξ)x, while that of Tφ̃Mx is expanded as∑
j≥0

∑
|α|=j

(2πi)−|α|

α!
∂αξ φ̃(ξ)∂αx. (4.5.5)

By the homogeneity of φ and the definition of φ̃, each ∂αξ φ̃(ξ)∂αx coincides with the ho-
mogeneous symbol ∂αξφ(ξ)∂αx of order −|α| when |ξ | ≥ 1. Thus, the symbol of [Tφ̃,Mx] is
classical of order −1, the leading term being∑

1≤k≤d

1
2πi

∂ξk φ̃(ξ)∂kx. (4.5.6)

Next, let us continue with the computation of symbol of A constructed in (4.5.3). Now it
is easily checked that the symbol of A is classical of order 0, the principal symbol being∑

1≤k≤d

1
2πi
|ξ |∂ξk φ̃(ξ)∂kx. (4.5.7)



59 4.5. The Sd,∞ property of Cφ,x and the proofs of Theorems 1.2.2 and 1.2.3

Indeed. By Proposition 4.5.4, the symbol of A has the asymptotic expansion

∑
j≥0

∑
|α|=j

∑
1≤k≤d

(2πi)−|α|

α!
∂αξ

(
|ξ |∂ξk φ̃

)
(ξ)∂α(∂kx).

Obviously, this is a classical symbol of order 0, with principal symbol∑
1≤k≤d

|ξ |∂ξk φ̃(ξ)∂kx.

So, the principal symbol of AJ−1
θ is of order −1, given by∑

1≤k≤d

1
2πi

∂ξk φ̃(ξ)∂kx,

which is the same as in (4.5.6). Hence, Cφ̃,x − AJ
−1 is of order −2. The desired assertion

follows then from Proposition 4.5.7.

Lemma 4.5.9. Let x,y,A be as in Lemma 4.5.8. For any continuous normalised trace Trω on S1,∞,
we have

Trω(|MyCφ,x|d) = Trω(|MyA|dJ−d).

Proof. By the fact that any continuous normalised trace Trω on S1,∞ vanishes on S1, we are
reduced to showing that

|MyCφ,x|d − |MyA|dJ−d ∈ S1. (4.5.8)

We first claim the following “symmetric” version of (4.5.8):

|MyCφ,x|d −
(
J−1|MyA|2J−1

) d
2
∈ S1. (4.5.9)

By the construction of φ̃, we see that φ − φ̃ ∈ Lp(Rd) for any p ≥ 1, so [62, Theorem 3.17]
ensures that Cφ,x −Cφ̃,x ∈ S d

2 ,∞
. By the previous lemma, we have

MyCφ̃,x −MyAJ
−1 ∈ S d

2 ,∞
. (4.5.10)

Next, we proceed as the proof of [62, Lemma 6.4]. Taking the adjoint of (4.5.10), we have(
MyCφ̃,x

)∗
− J−1

(
MyA

)∗
∈ S d

2 ,∞
. (4.5.11)

Moreover, it follows from Proposition 4.5.7 that

MyAJ
−1 ∈ Sd,∞. (4.5.12)

Combining (4.5.10), (4.5.11) and (4.5.12), we deduce from the Hölder inequality that

|MyCφ,x|2 − J−1|MyA|2J−1 =
(
MyCφ̃,x

)∗(
MyCφ̃,x −MyAJ

−1
)

+
((
MyCφ̃,x

)∗
− J−1

(
MyA

)∗)
MyAJ

−1 ∈ S d
3 ,∞
⊂ S 5d

12
.
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When d = 2, this gives (4.5.9). If d > 2, we appeal to a result from Ricard [86, Theorem 3.4],
which says that we can take a power 1

2 to each term of the preceding inclusion to get

|MyCφ,x| −
(
J−1|MyA|2J−1

) 1
2
∈ S 5d

6 ,∞
.

Introducing a power d, we get

|MyCφ,x|d −
(
J−1|MyA|2J−1

)d/2
=
d−1∑
k=0

|MyCφ,x|d−k−1
(
|MyCφ,x| −

(
J−1|MyA|2J−1

)1/2
)(
J−1|MyA|2J−1

) k
2

∈
d−1∑
k=0

S d
d−k−1 ,∞

· S 5d
6
· S d

k ,∞
⊂ S 5d

5d+1 ,∞
⊂ S1.

So we have finished the proof of (4.5.9).
It remains to deduce (4.5.8) from (4.5.9). This is done by repeating mutatis mutandi the

proof of [62, Proposition 6.5]; the details are omitted.

The presence ofMy is necessary in Lemma 4.5.8, so necessary in Lemma 4.5.9, due to the
fact that the Bessel potential J−a is not compact on L2(Rdθ) for a > 0.

Lemma 4.5.8 reduces the computation of Trω(|MyCφ,x|d) to that of Trω(|MyA|d(1−∆)−
d
2 ).

In order to calculate the trace Trω(|Cφ,x|d), we will first calculate the trace Trω(|MyA|d(1 −
∆)−

d
2 ) by Connes’ trace formula [64, Theorem 6.15] for smooth y, and then approximate

Trω(|Cφ,x|d) by passing y→ 1 in Trω(|MyCφ,x|d) .
Let us quote [64, Theorem 6.15] in the following. Let C0(Rdθ) be the norm closure of

S(Rdθ) in B(L2(Rd)). For every g ∈ C(Sd−1), as explained in Remark 4.1.9, g(∇∆−
1
2 ) is the

Fourier multiplier λθ(f ) 7→ λθ(g( t|t| )f (t)) in B(L2(Rdθ)). Identifying L2(Rdθ) with L2(Rd) by the

Plancherel formula, we may also view g(∇∆−
1
2 ) as the pointwise multiplication operator in

B(L2(Rd)). So all g(∇∆−
1
2 ) with g ∈ C(Sd−1) form a commutative C∗-subalgebra of B(L2(Rd)).

Set Π(C0(Rdθ)+C,C(Sd−1)) to be the C∗-subalgebra of B(L2(Rd)) generated by C0(Rdθ)+C and

all those g(∇∆−
1
2 )’s. Theorem 3.3 of [64] implies that there exists a unique norm-continuous

∗-homomorphism

sym : Π(C0(Rdθ) +C,C(Sd−1)) −→
(
C0(Rdθ) +C

)
⊗min C(Sd−1)

which maps x ∈ C0(Rdθ) to x⊗ 1 and g(∇∆−
1
2 ) to 1⊗ g. Then [64, Theorem 6.15] says that for

every continuous normalised trace Trω on S1,∞, every x ∈W d
1 (Rdθ), and every T ∈Π(C0(Rdθ)+

C,C(Sd−1)), we have

Trω(TMxJ
−d) = Cd

(
τθ ⊗

∫
S
d−1

)(
sym(TMx)

)
(4.5.13)

where Cd is a certain constant depending only on the dimension d.

Theorem 4.5.10. Let x ∈ Ẇ 1
d (Rdθ) andφ ∈ C∞(Sd−1). Then for every continuous normalised trace

Trω on S1,∞, we have

Trω(|Cφ,x|d) = Cd

∫
S
d−1
τθ(

∣∣∣ ∑
1≤k≤d

∂ξkφ∂kx
∣∣∣d)dξ.
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Proof. Firstly, we assume that x ∈ A(Rdθ). For any continuous normalised trace Trω on S1,∞,
and arbitrary y ∈ A(Rdθ), Lemma 4.5.9 implies that

Trω(|MyCφ,x|d) = Trω(|MyA|dJ−d).

Since d ≥ 2,
|MyA|d = |MyA|d−2(MyA)∗MyA

has the form TMz for some T ∈Π(C0(Rdθ) +C,C(Sd−1)) and z ∈W d
1 (Rdθ). So (4.5.13) is appli-

cable, giving

Trω(|MyA|dJ−d) = Cd
(
τθ ⊗

∫
S
d−1

)(
sym(|MyA|d)

)
.

Evidently,

sym(|MyA|d) =
∣∣∣ 1
2πi

∑
1≤k≤d

∂ξkφ y∂kx
∣∣∣d ,

whence

Trω(|MyCφ,x|d) = Cd

∫
S
d−1
τθ(

∣∣∣ ∑
1≤k≤d

∂ξkφ y∂kx
∣∣∣d)dξ. (4.5.14)

It remains to get rid of y ∈ A(Rdθ) and the assumption x ∈ A(Rdθ) using approximation
argument. Firstly, we may take (yn)n≥1 ⊂ A(Rdθ) such that yn → 1 ∈ L∞(Rdθ) with respect to
the w∗-topology. This is done by the construction of A(Rdθ) in [62, Proposition 2.5]. With
this sequence (yn)n≥1, we note that both sides of (4.5.14) are estimated from above by ∥x∥Ẇ 1

d
.

Passing n→∞, we arrive at

Trω(|Cφ,x|d) = Cd

∫
S
d−1
τθ(

∣∣∣ ∑
1≤k≤d

∂ξkφ∂kx
∣∣∣d)dξ. (4.5.15)

Next, using the density of A(Rdθ) in Ẇ 1
d (Rdθ), we find (xn)n≥1 ⊂ A(Rdθ) such that xn → x in

Ẇ d
1 (Rdθ). Again, both sides of (4.5.15) are estimated from above by ∥x∥Ẇ 1

d
. Passing n→∞ in

Trω(|Cφ,xn |
d) = Cd

∫
S
d−1
τθ(

∣∣∣ ∑
1≤k≤d

∂ξkφ∂kxn
∣∣∣d)dξ,

we see that (4.5.15) holds for any x ∈ Ẇ 1
d (Rdθ). This ends the proof of the theorem.

We end this section with some remarks concerning the opposite of Proposition 4.5.2.
It is shown in [62] that, if [Rj ,Mx] ∈ Sd,∞ for all 1 ≤ j ≤ d, then x ∈ Ẇ 1

d (Rdθ) with

∥x∥Ẇ 1
d
≤ Cd

∑
1≤j≤d

∥[Rj ,Mx]∥Sd,∞ .

We cannot have this estimate for a single [Tφ,Mx]. Take φ =
ξj
|ξ | for instance: Proposition

4.5.2 and Theorem 4.5.10 ensure

∥∂jx∥d = Cd Trω(|[Rj ,Mx]|d)
1
d ≤ Cd∥[Rj ,Mx]∥Sd,∞ ≤ C

′
d∥x∥Ẇ 1

d
.
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But neither we can conclude
∥∂jx∥d ≈d ∥[Rj ,Mx]∥Sd,∞

nor
∥[Tφ,Mx]∥Sd,∞ ≈d ∥x∥Ẇ 1

d

for a single φ ∈ C(Sd−1).
Furthermore, it is shown in [62] that, if [Rj ,Mx] ∈ Sp,p ≤ d for all 1 ≤ j ≤ d, then x is a

constant. Returning to the classical euclidean setting, this assertion is weaker than the result
in [51], which states that if [Tφ,Mx] ∈ Sp,p ≤ d for some φ, then x is a constant. We cannot
conclude such noncommutative counterpart of Janson-Wolff’s result in [51] from Theorem
4.5.10 as well. This indicates the drawback of our method: when taking the Dixmier trace
of the commutator, we lost some information of the original function (operator) x.
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Résumé

Cette thèse a pour but d’étudier quelques problèmes dans l’analyse harmonique sur
les produits croisés tordus qui sont définis par des actions tordues d’un groupe locale-
ment compact G sur une algèbre de von Neumann M. Elle se compose de deux parties. La
première porte sur les produits croisés tordus et leurs multiplicateurs de Fourier et de Schur.
Nous démontrons que la propriété d’être QWEP pour l’algèbre de von Neumann tordue
d’un groupe G est indépendante du 2-cocycle sous-ajacent et que les Lp-multiplicateurs de
Fourier complètement bornés sur cette algèbre tordue sont aussi indépendants du 2-cocycle.
Sous l’hypothèse d’une action moyennable, nous établissons plusieurs résultats de trans-
fert entre les multiplicateurs de Fourier et de Schur sur les espaces Lp non-commutatifs du
produit croisé tordu. Dans la deuxième partie, nous étudions les commutateurs de multi-
plicateurs de Fourier sur le produit croisé tordu d’un espace euclidien. Nous caractérisons
leur appartenance à la p-classes de Schatten par celle de leurs symboles à un espace de
Besov associé. Cette partie contient aussi une formule sur la trace de Dixmier qui nous
donne également une caractérisation de l’appartenance de ces commutateurs à une p-classe
de Schatten faible par un espace de Sobolev. En particulier, nos résultats s’appliquent au cas
d’un espace euclidien quantique.
Mots clefs: Multiplicateurs de Fourier, multiplicateurs de Schur, l’algèbre de groupe de von
Neumann, produit croisé tordu, classe de Schatten, espace de Besov, espace de Sobolev.

Abstract

This thesis is devoted to the study of some problems in the harmonic analysis on twisted
crossed products defined by twisted actions of a locally compact group G on a von Neumann
algebra M. It consists of two parts. The first concerns twisted crossed products and their
Fourier and Schur multipliers. We prove that the property of being QWEP for the twisted
von Neumann algebra of a group G is independent of the underlying 2-cocycle and that the
completely bounded Lp-Fourier multipliers on this twisted algebra are also independent of
the 2-cocycle. Under the hypothesis of an amenable action, we establish several transference
results between the Fourier and Schur multipliers on the noncommutative Lp spaces of the
twisted crossed product. In the second part, we study Fourier multiplier commutators on
the twisted crossed product of an Euclidean space. We characterize their Schatten p-class
membership by that of their symbols in the associated Besov space. In addition, this part
contains a formula on the Dixmier trace, which also gives us a characterization of the weak
Schatten p-class membership of these commutators by a Sobolev space. In particular, our
results apply to the case of quantum Euclidean spaces.
Keywords: Fourier multiplier, Schur multiplier, group von Neumann algebra, twisted
crossed product, Quantum euclidean space, Schatten class, Sobolev space, Besov space,
pseudodifferential operator.
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