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Résumé

Estimation de la vraisemblance marginale des mod-

èles de mélange finis

Les modèles de mélange suscitent un intérêt considérable en raison de leur capacité
à modéliser l’hétérogénéité dans une population donnée. À cet égard, ils ont été
introduits formellement pour la première fois dans Pearson 1894, où un mélange
normal à deux composantes est ajusté au rapport entre la longueur du front et la
longueur du corps d’une population de crabes. En établissant une correspondance
entre moments empiriques et moments théoriques d’une loi gaussienne puis en
résolvant une équation polynomiale de degré neuf, Pearson identifie deux groupes
homogènes au sein de la population de crabes, mettant ainsi en évidence une probable
divergence évolutive entre les deux groupes, comme illustré en Figure 1.

1
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ilaires, mais plus complexes, comprennent la modélisation de sujets (topic modeling)
tels que l’allocation Dirichlet latente (Blei et al. 2003; Chen and Doss 2019), ou la
segmentation, la compression et la classification d’images (Aiyer et al. 2005; Zeng
et al. 2014).

Les méthodes existantes pour estimer K sont présentées dans l’examen approfondi
de Celeux et al. 2019. Elles comprennent des stratégies fréquentistes telles qu’une
version adaptées des tests de rapport de vraisemblance (Likelihood ratio test ou
LRT, McLachlan 1987; Heckman et al. 1990; McLachlan and Peel 2000; Frühwirth-
Schnatter 2006), des estimateurs issus de la méthode des moments (Dacunha-Castelle
and Gassiat 1997), ou bien des critères d’information populaires (Smyth 2000).

D’un point de vue bayésien, l’estimation de K peut être effectuée en même
temps que l’estimation des paramètres et des poids de mélange ϑ = (θ, ̟) en
définissant une distribution a priori sur K. Échantillonner selon la distribution a
posteriori de K est loin d’être simple et nécessite la conception d’échantillonneurs
dits transdimensionnels. Les travaux fondateurs de Green 1995 et Richardson
and Green 1997 ont conduit à la construction de méthodes de Monte-Carlo par
chaînes de Markov à sauts réversibles (RJMCMC) qui permettent de réaliser de tels
"sauts" entre des espaces de dimensions différentes. De tels modèles où K est traité
comme n’importe quel autre paramètre ont été formalisés par Richardson and Green
1997 ou Nobile 2004, où ils étaient appelés mélanges avec un nombre aléatoire de
composantes. Le terme mélange de mélanges finis (MFM, Miller and Harrison 2018)
est maintenant plus fréquemment utilisé. De récentes avancées incluent notamment
l’établissement de nouvelles stratégies d’échantillonnage adaptées à la complexité
intrinsèque des mélanges (voir par exemple Frühwirth-Schnatter et al. 2021).

Une autre approche bayésienne consiste à calculer le facteur de Bayes (Jeffreys
1935; Raftery 1996) pour des valeurs concurrentes de K. Une telle stratégie est
connue pour être consistante (c’est-à-dire que le facteur de Bayes pointe de manière
cohérente vers le bon modèle pour un nombre croissant d’observations n, Chib and
Kuffner 2016). En pratique, les applications concrètes de cette approche nécessitent
l’estimation de la vraisemblance marginale d’un modèle de mélange fini, définie
comme l’intégrale de la fonction de vraisemblance par rapport à la distribution a
priori, ce qui n’est pas une tâche facile. Les algorithmes d’échantillonnage de Monte
Carlo les plus populaires pour relever ce défi sont l’algorithme de Chib (Chib 1995),
l’algorithme bridge sampling (Meng and Wong 1996; Frühwirth-Schnatter 2004;
Frühwirth-Schnatter 2019) et, dans une moindre mesure, les méthodes de Monte
Carlo séquentielles (Chopin 2002; Gunawan et al. 2020).

De manière plus générale, être en mesure de calculer la vraisemblance marginale
d’un modèle revêt une importance cruciale dans un contexte bayésien car c’est là
l’outil principal utilisé pour l’évaluation et la comparaison de modèles. En effet,
Fong and Holmes 2020 montre que le calcul de la vraisemblance marginale d’un
modèle est formellement équivalent à une validation croisée exhaustive de type leave-
p-out moyennée sur toutes les valeurs de p, la validation croisée étant la procédure
fréquentiste de référence pour l’évaluation de modèles. Par conséquent, être en
mesure de calculer la vraisemblance marginale d’un modèle de mélange fini est
d’intérêt non seulement pour sélectionner de manière cohérente une valeur de K,
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mais également pour trouver un noyau de mélange approprié f , ou même pour
comparer un modèle de mélange à une alternative paramétrique ou non paramétrique.

Contributions du Chapitre 2

Une approximation sensée de la vraisemblance marginale des modèles de mélange
nécessite des méthodes ad hoc qui tiennent compte des défis spécifiques liés à ces
modèles. En particulier, pour une distribution a priori echangeable sur les poids
et les paramètres de mélange, la distribution a posteriori du mélange π(ϑ|y) est
invariante par permutation. Cela se traduit par

π((ϑ1, . . . , ϑK)|y) = π((ϑσ(1), . . . , ϑσ(K)|y)

pour tous (ϑ1, . . . , ϑK) ∈ ΘK × ∆K−1 et toutes les permutations σ ∈ SK , où SK

désigne l’ensemble des permutations de {1, . . . , K}.
Cela implique que la distribution a posteriori présente K! modes équiprobables.
Comme l’a remarqué Neal 1999 en réponse à Chib 1995, un bon comportement de
mélange des algorithmes MCMC ciblant la distribution a posteriori est essentiel
pour une approximation satisfaisante de la vraisemblance marginale du modèle.
Cependant, dans le cas des mélanges finis, cela nécessite une visite équilibrée de toutes
les K! configurations modales de la distribution a posteriori (un phénomène également
appelé label switching), ce qui la plupart du temps est une attente irréaliste étant
donné un budget computationnel fini. Pour compenser ce comportement indésirable
des échantillonneurs MCMC, les méthodes populaires telles que l’algorithme de Chib
et l’algorithme bridge sampling ainsi que leurs adaptations ultérieures aux mélanges
finis ont recours à l’application artificielle d’un phénomène de permutation parfait en
intégrant leurs estimateurs sur l’espace des permutations SK . Cela entraîne un coût
supplémentaire de O(K!) qui n’est en pratique supportable que pour des valeurs
de K inférieures 5. Dans le Chapitre 2, nous introduisons d’abord un algorithme
de Chib modifié qui utilise la structure de partition induite par les modèles de
mélange. Cette dernière a en effet la propriété attirante de résister au phénomène
de label switching, évitant ainsi le coût exponentiel de O(K!) payé par les méthodes
traditionnelles. Nous adaptons également l’algorithme d’imputation séquentielle
découvert par Kong et al. 1994 aux mélanges finis. En plus de sa robustesse vis-à-vis
du label switching, cette approche se révèle également robuste à une augmentation
du nombre d’observations n. Finalement, nous proposons une revue empirique
des estimateurs classiques de la vraisemblance marginale, anciens et nouveaux, et
mettons en évidence leurs forces et faiblesses dans différents scénarios où K et n ne
sont pas nécessairement petits. En particulier, nous constatons que les approches de
Monte Carlo séquentielles sont les plus efficaces et nous espérons que cette évaluation
sera une incitation à utiliser ces méthodes plus souvent.
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Propriétés asymptotiques et estimation de la

vraisemblance marginale pour les modèles de

mélange de processus de Dirichlet

Spécification du modèle

Le modèle de mélange de processus de Dirichlet (DPM), introduit pour la première
fois dans Ferguson 1983, est l’un des principaux outils du domaine des statistiques
bayésiennes non-paramétriques. En supposant a priori un nombre infini de com-
posantes de mélange, il est parfois appelé modèle de mélange "infini" par opposition
aux mélanges finis. En effet, pour des données i.i.d y = (y1, . . . , yn), le DPM peut
être décrit par la spécification du modèle génératif suivant :

yi|θi
i.i.d∼ F (yi|θi) pour i = 1, . . . , n

θi|P ∼ P

P |M ∼ DP (M, G0)

M ∼ ΠM

où F (·|θ) est une distribution à support dans R
d avec une densité par rapport à la

mesure de Lebesgue f(·|θ) et DP (M, G0) désigne le processus de Dirichlet ayant
pour mesure de base G0 et paramètre de concentration M . Les réalisations P du
processus de Dirichlet sont presque sûrement discrètes, de sorte que, si δx désigne la
fonction delta de Dirac,

P =
∞∑

k=1

̟kδθk

avec ̟k = Vk
∏

l<k(1 − Vl) où Vl
i.i.d∼ Beta(1, M) (assurant que

∑∞
k=1 ̟k = 1 presque

sûrement) et θ1, θ2, . . .
i.i.d∼ G0.

La vraisemblance de P peut alors s’écrire comme

fP (y) := p(y|P ) =
n∏

i=1

ˆ

Θ

f(yi|θ)dP (θ) =
n∏

i=1

∞∑

k=1

̟kf(yi|θk).

Le champ d’applications du DPM est vaste, allant du regroupement (clustering)
multivarié (Crépet and Tressou 2011) à l’estimation bayésienne de densités (Neal
1992; Rabaoui et al. 2012). Une caractéristique attrayante du DPM est l’hypothèse
a priori très faible posée sur la distribution des poids de mélange ̟ = (̟1, ̟2, . . . )
et des paramètres θ = (θ1, θ2, . . . ) puisque leur distribution a priori P est elle-même
aléatoire, ce qui en fait l’une des pierres angulaires de la statistique bayésienne
non-paramétrique.
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Consistance du facteur de Bayes pour le test d’une hy-
pothèse nulle paramétrique par rapport à une alternative
non-paramétrique de mélange de processus de Dirichlet

Recourir à ce type de modèles flexibles car non paramétriques peut être motivé
par le souhait de se libérer de la contrainte de la sélection et de la comparaison de
modèles. Par conséquent, il peut sembler surprenant au départ de s’intéresser à
l’estimation de la vraisemblance marginale du DPM, définie par

mDP (y) =

ˆ

fP (y)Π(dP, dM)

où Π désigne la distribution a priori conjointe sur (P, M) avec P |M ∼ DP (M, G0)
et M ∼ ΠM .
Cependant, il arrive que la quantité mDP (y) puisse avoir plusieurs applications
d’intérêt. Par exemple, le problème habituel de modélisation statistique qui
consiste à déterminer si un échantillon de taille n y = (y1, . . . , yn) provient
d’une famille paramétrique particulière de distributions peut être formalisé
comme un test d’adéquation par rapport à une alternative non paramétrique,
comme le DPM. Formellement, nous considérons ici le problème de tester
l’hypothèse nulle paramétrique H0 : f0 ∈ ∪K∈N∗MK , où MK désigne le modèle
paramétrique de mélanges de K distributions fθ(y), par rapport à l’alternative
H1 : f0 ∈ F \ {∪K∈N∗MK} modélisée par le modèle de mélange de processus de
Dirichlet avec noyau de mélange fθ(y), pour F un ensemble englobant de fonctions
de densité. Cette procédure est pertinente du point de vue bayésien à condition que
le facteur de Bayes soit consistant, c’est-à-dire si

lim
n→∞

BF0,1 := lim
n→∞

m0(y)

m1(y)
=





∞ sous H0 : f0 ∈ ∪K∈N∗MK

0 sous H1 : f0 ∈ F \ {∪K∈N∗MK}

La consistance du facteur de Bayes sous H1 est un problème bien étudié qui a été
prouvé dans Ghosal et al. 2008 et Mcvinish et al. 2009 sous une hypothèse peu
restrictive sur le modèle paramétrique et qui vaut pour les mélanges finis. Le résultat
est obtenu en utilisant l’existence de tests exponentiellement consistants (Ghosh and
Ramamoorthi 2003), ce qui fait que BF0,1 converge exponentiellement rapidement
vers 0 sous H1.

Établir la consistance du facteur de Bayes sous H0, cependant, est plus difficile.
Un tel résultat a été obtenu dans Dass and Lee 2004 ou Verdinelli and Wasserman
1998 lorsqu’on considère une hypothèse nulle ponctuelle par rapport à une grande
classe d’alternatives non paramétriques. Pour des hypothèses H0 plus générales,
Mcvinish et al. 2009 propose des conditions suffisantes sur les distributions non-
paramétriques pour lesquelles la consistance du facteur de Bayes pour le test d’une
famille paramétrique de distributions est vérifiée. Ces conditions nécessitent une
compréhension pointue de la masse a priori des voisinages décroissants de f0 sous
la distribution a priori non-paramétrique impliquée par le processus de Dirichlet.
D’autres approches consistent à considérer une distribution a priori non-paramétrique
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modifiée sous H1, comme dans Tokdar and Martin 2021 par exemple, où un processus
de Dirichlet particulier est construit afin de tester la gaussianité d’un échantillon.

Outre les applications de type tests d’adéquation, la vraisemblance marginale du
DPM peut être utilisée pour trouver la meilleure mesure mélangeante en minimisant
le facteur de Bayes pour les alternatives paramétriques par rapport aux alternatives
non paramétriques dans le contexte de l’estimation bayésienne de densité (Argiento
et al. 2010) ou pour sélectionner des partitions appropriées de certaines données
(Ray and Mallick 2006).

Contributions du chapitre 3

Supposons que, sous H0, certaines données y proviennent d’un mélange fini Pf0 avec
K0 composantes. Nous notons sa densité par rapport à la mesure de Lebesgue par
f0 := p(y|P0) =

´

f(y|θ)dP0(θ), avec P0 =
∑K0

k=1 ̟0
kδθ0

k
et θ0

k ∈ Θ ⊂ R
d pour tout k.

Notre principale contribution est d’étudier le comportement asymptotique du
facteur de Bayes

BFK,DP =
mK(y)

mDP (y)

où mK(y) est la vraisemblance marginale des données pour un modèle de mélange
fini à K composantes, où K n’est pas nécessairement égal à K0.
Notre première préoccupation est de prouver que le facteur de Bayes est consistant,
c’est-à-dire

BFK0,DP −→ 0 en probabilité sous Pf0 . (1)

Établir la consistance du facteur de Bayes en comparant un modèle paramétrique
comme les mélanges finis au modèle de mélange de processus de Dirichlet n’est
pas immédiat. En particulier, il est nécessaire d’établir une borne supérieure
asymptotique pour mDP (y). Nous nous concentrons sur la recherche d’une telle
borne supérieure lorsque f0 ∈ ∪K∈N⋆MK , où MK désigne le modèle de mélanges
avec K densités fθ(y). Cela nécessite un contrôle précis de la masse a priori de
voisinages L1 décroissants autour de la vraie densité f0. Nous fournissons un tel
résultat dans le Lemme 0.1 ci-dessous.

Cela est fait sous un ensemble de cinq hypothèses, dont trois (A1–A3) concernent
la régularité de la densité f et l’identifiabilité (forte) du mélange Pf0 . Une classe de
modèles satisfaisant ces conditions est par exemple les mélanges de type position
(location) de distributions Normales ou Laplace. L’hypothèse A4 est une condition
suffisante sur la mesure de base G0 du processus de Dirichlet pour que les moyennes
aléatoires µ(P ) :=

∑∞
k=1 ̟kθk existent presque sûrement, où P ∼ DP (M, G0). Enfin,

l’hypothèse A5 exige que la distribution a priori ΠM sur M ait un support restreint
à [ζ, ∞) pour certains ζ > 0 et ait des queues exponentiellement décroissantes.

Lemma 0.1. Soit y = (y1, . . . , yn) des observations i.i.d de f0 := fP0 avec P0 =∑K0
j=1 ̟0

j δθ0
j
. Supposons que les hypothèses A1–A3 sont satisfaites. Soit Π la

distribution a priori conjointe sur (P, M) où P |M ∼ DP (M, G0) et M ∼ ΠM , de
telle sorte que Π vérifie les hypothèses A4–A5. Alors, pour toute suite δn telle que
δn

n→∞−→ 0,
Π (‖fP − f0‖1 < δn) ! δK0−1+dK0+ζ−ε

n
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où ε > 0 peut être choisi aussi proche de 0 que désiré.

La principale difficulté dans la preuve du lemme ci-dessus est d’établir que la
densité des moyennes aléatoires de Dirichlet µ(P ) a une densité continue et bornée,
ce qui est fait en montrant que leur fonction caractéristique est intégrable. Le
Lemme 0.1 implique ensuite le théorème suivant, qui fournit une borne supérieure
asymptotique pour mDP (y).

Theorem 0.2. Soit y = (y1, . . . , yn) des observations i.i.d de f0 := fP0 avec
P0 =

∑K0
j=1 ̟0

j δθ0
j
. Supposons que les hypothèses A1–A3 sont satisfaites. Soit Π la

distribution a priori conjointe sur (P, M) où P |M ∼ DP (M, G0) et M ∼ ΠM , de
telle sorte que Π vérifie les hypothèses A4–A5. Alors pour tout 0 < t < ζ,

Pf0

(
mDP (y) > n−(K0−1+dK0+t)/2

)
n→∞−→ 0

où

mDP (y) :=

ˆ

fP (y)/f0(y)dΠ(P )

En utilisant les bornes inférieures calculées dans Rousseau and Mengersen 2011,
le résultat ci-dessus se traduit directement en un résultat de consistance du facteur
de Bayes, qui est donné dans le corollaire suivant.

Corollary 0.3. Si la distribution a priori Π vérifie les hypothèses A4–A5 et la
distribution a priori sur MK0 est définie comme dans (2.5), alors

(i) si fP0 ∈ MK0 satisfait les hypothèses A1–A3, alors mK0(y)/mDP (y) → ∞
sous fP0.

(ii) De plus, pour tout K > K0, si la distribution a priori sur MK est
définie comme dans (2.5) et a pour hyperparamètre de concentration α =
(α, . . . , α) pour un certain α > 0, et que soit α < d/2 ∧ ζ/(K − K0), ou bien
d/2 < α ∧ ζ/(K − K0), alors mK(y)/mDP (y) → ∞ sous fP0.

(iii) Si inffP ∈MK
KL(fP0 , fP ) > 0 et la distribution de Dirichlet a priori vérifie

ΠDP (KL(fP0 , fP ) ≤ ǫ) > 0 pour tout ǫ > 0, alors mK(y)/mDP (y) → 0 sous
fP0.

Notons que le résultat ci-dessus atteint plus que l’objectif d’établir la consistance
du facteur de Bayes (1). En fait, les modèles de mélanges surestimés (c’est-à-dire
lorsque K > K0) sont favorisés par le facteur de Bayes sous un choix approprié
des hyperparamètres sur les poids du mélange fini et une troncation suffisamment
grande de la distribution a priori de M . Ce résultat supplémentaire est établi en
utilisant les bornes inférieures asymptotiques fournies dans Rousseau and Mengersen
2011 sur mK(y) lorsque K > K0.

En pratique, un tel test d’adéquation est intéressant si l’on est capable d’estimer
correctement l’intégrale incalculable définissant mDP (y). À notre connaissance,
seul les travaux de Basu and Chib 2003 abordent cette question en proposant une
adaptation de l’algorithme de Chib de Chib 1995. Nous comparons cette méthode
avec une nouvelle approche basée sur la régression logistique inverse (RLR) établie
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dans Geyer 1994, ainsi qu’avec d’autres estimateurs. Nos résultats empiriques
suggèrent que malgré ses bonnes performances, la méthode de Chib ne semble aussi
robuste que la RLR lorsque la taille des données n augmente.

Dans l’ensemble, nous espérons que les résultats du Théorème 0.2 combinés à la
nouvelle méthode d’estimation de mDP (y) aideront à éclairer le choix entre modèles
paramétriques et non-paramétriques.

Calcul distribué de la vraisemblance marginale des

les mélanges finis

Le calcul distribué a récemment émergé en tant que paradigme puissant pour
résoudre des problèmes complexes en apprentissage automatique et en inférence
statistique, lorsque la quantité de données est trop importante pour être traitée
par une seule machine. Cette approche consiste à diviser la tâche d’inférence en
sous-problèmes plus petits qui peuvent être résolus indépendamment par plusieurs
machines ou processeurs, puis à combiner les résultats pour obtenir une solution
globale au problème initial. Cela réduit non seulement la charge computationnelle
sur les machines individuelles, mais facilite également le calcul parallèle, permettant
une inférence plus rapide et plus efficace.

Du point de vue de l’inférence bayésienne, cette stratégie, généralement appelée
divide and conquer, est principalement composée de trois étapes. Tout d’abord, les
données y sont divisées en S lots non chevauchants y1, . . . , yS et la distribution a
posteriori complète est décomposée de la façon suivante

π(ϑ|y) ∝ p(y|ϑ)π(ϑ)

=
S∏

s=1

p(ys|ϑ)π(ϑ)1/S

∝
S∏

s=1

π̃(ϑ|ys) (2)

pour une fonction de vraisemblance p(y|ϑ) et une distribution a priori π(ϑ), où pour
tout s = 1, . . . , S, π̃(ϑ|ys) est appelée la sous-distribution a posteriori du paramètre
ϑ sur le lot ys. L’inférence est ensuite réalisée sur chaque sous-ensemble de données
indépendamment, éventuellement en parallèle, en exécutant des algorithmes MCMC
sur plusieurs unités de calcul. Enfin, les différents échantillons des sous-distribution
a posteriori sont recombinés pour approcher un échantillon de la distribution a
posteriori complète. Cette dernière étape est généralement complexe car il n’existe
pas de moyen exact de transformer une collection d’échantillons {ϑ

(s)
t }t provenant de

chaque sous-distribution a posteriori π̃(ϑ|ys) en un échantillon {ϑt}t distribué selon
π(ϑ|y). En se basant sur le théorème de Bernstein-von Mises, Huang and Gelman
2005 et Scott et al. 2016 utilisent des approximations normales aux sous-distributions
a posteriori pour reconstruire un échantillon de la distribution a posteriori complète
comme une moyenne pondérée des échantillons de sous-distribution a posteriori. En
supposant toujours la normalité des sous-distributions a posteriori, Neiswanger et al.
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2014 utilise une estimation par noyau pour reconstruire la distribution a posteriori
complète. D’autres approches consistent à recombiner les sous-échantillons via leur
barycentre dans un espace de Wasserstein des mesures de probabilité (Srivastava
et al. 2018), ou leur médiane géométrique (Minsker et al. 2014). Les applications
de la stratégie divide and conquer sont nombreuses. En premier lieu, elle peut être
utilisée pour réduire considérablement le coût de l’inférence a posteriori lorsque
la quantité de données disponible est très importante, en réduisant les goulets
d’étranglement en mémoire et en calcul. Une autre application immédiate est
l’inférence sur une architecture de données distribuées, dans laquelle les données sont
stockées à différents endroits, soit pour des raisons de confidentialité, par exemple
avec des données de santé (Hallock et al. 2021), soit simplement parce que la taille
de l’ensemble de données est trop grande pour être stockée sur une seule machine.

Malgré sa popularité, l’application du paradigme divide and conquer à la mod-
élisation par mélanges reste largement inexplorée jusqu’à présent. En effet, bien
que l’inférence sur chaque lot de données ys ne pose généralement pas de problème,
l’hypothèse habituelle de normalité asymptotique utilisée pour la recombinaison des
S échantillons MCMC ne s’applique pas à la distribution a posteriori des modèles
de mélange.

Dans le cas général, le défi du calcul distribué de la vraisemblance marginale
d’un modèle selon une stratégie divide and conquer reste largement inexploré jusqu’à
présent. Le problème réside dans le fait qu’il existe une manière pratique de relier
la distribution a posteriori complète et les sous-distributions a posteriori par le biais
de (2), mais qu’une telle identité ne s’applique pas à la vraisemblance marginale.
En effet,

m(y) =

ˆ S∏

s=1

p(ys|ϑ)π(ϑ)1/Sdϑ

-=
S∏

s=1

ˆ

p(ys|ϑ)π(ϑ)1/Sdϑ.

Cela nécessite une approche différente pour combiner les estimations de vraisemblance
marginale calculées sur chaque lot ys séparément. Très récemment, une identité
reliant m(y) et {m̃(ys)}

S
s=1 a été formalisée dans Buchholz et al. 2022.

Proposition 0.4 (Buchholz et al. 2022). Soit y des données i.i.d et un modèle P
pour lequel la fonction de vraisemblance se factorise en p(y|ϑ) =

∏S
s=1 p(ys|ϑ), la

vraisemblance marginale des données peut être écrite comme

m(y) = ZS
S∏

s=1

m̃(ys)

ˆ S∏

s=1

π̃(ϑ|ys)dϑ (3)

où pour chaque s = 1, . . . , S,

π̃(ϑ|ys) ∝ p(ys|ϑ)π̃(ϑ),

m̃(ys) =

ˆ

p(ys|ϑ)π̃(ϑ)dϑ,
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et

Z =

ˆ

π(ϑ)1/Sdϑ

Pour la plupart des choix de prior π(ϑ), sous certaines contraintes potentielles sur
les hyperparamètres, la distribution a priori π̃(ϑ) est une distribution de probabilité
bien définie et l’intégrale Z est analytique. Dans le cas des mélanges finis, l’estimation
des vraisemblances marginales sur chaque lot m̃(ys) peut être réalisée en utilisant les
algorithmes décrits au Chapitre 2. Cependant, l’intégrale I :=

´

Θ

∏S
s=1 π̃(ϑ|ys)dϑ

est clairement intractable pour les mélanges finis. Pour la classe plus générale
des modèles conditionnellement conjugués, caractérisés par la disponibilité d’une
expression en forme close de la distribution postérieure augmentée π(ϑ|z, y) pour
des variables latentes z, Buchholz et al. 2022 proposent un estimateur prometteur
pour I.

Proposition 0.5 (Buchholz et al. 2022). Pour des modèles conditionnellement
conjugués, l’intégrale I :=

´

Θ

∏S
s=1 π̃(ϑ|ys)dϑ peut être estimée par

Î =
1

T

T∑

t=1

ˆ S∏

s=1

π̃(ϑ|z(t)
s , ys)dϑ (4)

où {z
(t)
s }T

t=1 ∼ π̃(zs|ys) et Î est un estimateur non biaisé de I.

Malgré la nature conditionnellement conjuguée des mélanges finis, nous argu-
mentons que l’estimateur (4) ne convient pas pour ces modèles. Nous proposons
des versions "corrigées" de Î ainsi qu’une stratégie SMC (Sequential Monte Carlo)
pour résoudre le problème d’estimation distribuée de la vraisemblance marginale
des modèles de mélange finis.

Contributions du Chapitre 4

Nous remarquons que l’utilisation de la variable latente d’appartenance au groupe
z dans l’astuce d’augmentation des données suggérée par l’équation (4) rend
l’estimation de I à travers Î difficile dans le cas des modèles de mélanges finis.
Le problème ici est que les étiquettes de groupe zs ne sont pas cohérentes entre les S
lots. Bien que cela ne rende pas l’estimateur Î biaisé, cela augmente certainement sa
variance dans le cas où l’échantillonneur de Gibbs ne visite pas uniformément toutes
les K! configurations modales, au sein et entre les S lots, ce qui ne se produit que
rarement étant donné un budget computationnel fini. Nous proposons une solution
simple, dans la même veine que la correction proposée par Berkhof et al. 2003 pour
l’estimateur de Chib (Chib 1995), qui consiste à faire la moyenne sur toutes les
permutations des variables latentes zs, pour tout s = 1, . . . , S. Ceci est donné dans
la proposition suivante.

Proposition 0.6 (Estimateur permuté de I). Soit S un entier supérieur à 1 et
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{z
(t)
s }T

t=1 ∼ π̃(zs|ys) pour s = 1, . . . , S. Alors

Îperm =
1

TK!S−1

T∑

t=1

∑

σ2,...,σS∈SK

ˆ

π̃(ϑ|z(t)
1 , y1)

S∏

s=2

π̃(ϑ|σs(z
(t)
s ), ys)dϑ (5)

est un estimateur non biaisé de I.

Malgré le fait que l’estimateur Îperm compense la variance de Monte Carlo
explosive de Î, il a un coût computationnel élevé de l’ordre de O

(
TK!S−1

)
. Afin

de réduire ce dernier, nous proposons une stratégie d’échantillonnage préférentiel
qui sélectionne les combinaisons de permutations (σ2, . . . , σS) qui contribuent le
plus à l’intégrale de l’équation (5). Cela réduit considérablement le coût de Îperm

à O(T (Kn/S + K! + M)), où M est le nombre de simulations d’importance à
chaque itération t = 1, . . . , T . Malgré cet estimateur corrigé et relativement peu
coûteux pour I, nous nous rendons compte que la variance intrinsèque due à
l’astuce d’augmentation (4) est trop grande dans la plupart des situations, en raison
de l’écart entre les distributions π̃(z|y) :=

∏S
s=1 π̃(zs|ys), à partir desquelles les

variables latentes sont échantillonnées, et la "véritable" distribution postérieure
complète π(z|y).

Pour cette raison, nous changeons notre approche du problème en considérant
simplement l’intégrale I comme la constante de normalisation d’un produit non
normalisé de distributions. En effet, en définissant le produit incrémental de distri-
butions

π̃s(ϑ) ∝
s∏

l=1

π̃(ϑl|yl)

nous remarquons que I est simplement égal à ZS =
´

Θ
π̃S(ϑ)dϑ. Cela permet de

réécrire l’identité originale (3) dans Buchholz et al. 2022 comme dans la proposition
suivante.

Proposition 0.7 (Une nouvelle identité). Soit y des données i.i.d et un modèle statis-
tique pour lequel la fonction de vraisemblance se factorise en p(y|ϑ) =

∏S
s=1 p(ys|ϑ),

la vraisemblance marginale des données peut être décomposée comme

m(y) = ZS × m̃(y1) ×
S∏

s=2

ˆ

πs−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ

Maintenant, en remarquant que pour tout s = 2, . . . , S,
ˆ

π̃s−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ = Eπ̃s−1(p(ys|ϑ)π̃(ϑ))

découle une stratégie SMC pour estimer m(y) en utilisant la séquence de distributions
{π̃s−1(ϑ)}S

s=2. Non seulement cette méthode montre une performance améliorée
empiriquement, en termes de variance et de temps de calcul, mais elle s’applique
également à une classe de modèles plus générale, en relâchant toute hypothèse de
conjugalité. Nous sommes optimistes quant au fait que cette approche pourrait
faciliter la tâche d’estimation de la vraisemblance marginale de grands ensembles de
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données et/ou distribués au sein de plusieurs entités, même en dehors du contexte
de la modélisation par mélanges.
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Chapter 1
Introduction

1.1 Evidence estimation for Finite mixtures

Mixture models are of significant interest due to their convenient way of modeling
heterogeneity in a given population. As such, they were first formally introduced
by Pearson 1894 in which a two-component Normal mixture is fitted to the ratio
of forehead to body-length in a population of crabs. By matching moments and
solving a polynomial equation of degree nine, Pearson identifies two homogeneous
clusters within the population of crabs, shedding light on a probable evolutionary
divergence between the two groups, as shown on Figure 1.1.

15
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2003; Chen and Doss 2019), or image segmentation, compression and classification
(Aiyer et al. 2005; Zeng et al. 2014).

Existing methods for estimating K can be found in the thorough review by Celeux
et al. 2019. They include frequentist strategies such as suitably adapted Likelihood
Ratio Tests (LRTs, McLachlan 1987; Heckman et al. 1990; McLachlan and Peel
2000; Frühwirth-Schnatter 2006), method of moments estimators (Dacunha-Castelle
and Gassiat 1997), or popular information criteriae (Smyth 2000).

From a Bayesian perspective, estimating K can be done alongside the estimation
of the mixture parameters and weights ϑ = (θ, ̟) by setting a prior distribution
on K. Sampling from the subsequent posterior distribution of K is far from
straightforward since it requires to design so-called transdimensional samplers. The
seminal work by Green 1995 and Richardson and Green 1997 led to the construction
of Reversible Jump Monte Carlo Markov Chains (RJMCMC) which allow such
‘jumps’ between spaces of different dimensions. Such models where K is treated as
any other parameter have been formalized by Richardson and Green 1997 or Nobile
2004 where they were referred to as mixtures with a random number of components.
The term Mixture of Finite Mixtures (MFM, Miller and Harrison 2018) is now
more generally used by practitioners. Recent advances include the derivation of new
sampling strategies for such complex models (see for instance Frühwirth-Schnatter
et al. 2021).

Another Bayesian approach consists in computing the Bayes Factor (Jeffreys 1935;
Raftery 1996) for competing values of K. Such a strategy is known to be consistent
(i.e the Bayes Factor consistently points towards the right model for an increasing
number of observations n, Chib and Kuffner 2016). In practice, concrete applications
of this approach require the estimation of the marginal likelihood of a finite mixture
model, defined as the integral of the likelihood function against the prior distribution,
which is not an easy task. The most popular Monte Carlo algorithms to tackle
this challenge are Chib’s algorithm (Chib 1995), Bridge Sampling (Meng and Wong
1996; Frühwirth-Schnatter 2004; Frühwirth-Schnatter 2019), and to a lesser extent,
Sequential Monte Carlo methods (Chopin 2002; Gunawan et al. 2020).

More generally, being able to compute the marginal likelihood of a model
is of crucial importance in a Bayesian setting as it is the main tool used for
model evaluation and comparison. In fact, Fong and Holmes 2020 shows that
computing the marginal likelihood of a model is formally equivalent to exhaustive
leave-p-out cross-validation averaged over all values of p, cross-validation being the
gold standard frequentist procedure for model evaluation. Hence, being able to
compute the marginal likelihood of a Finite mixture model is of interest not only for
consistently selecting a value of K, but also for finding a suitable mixture kernel f ,
or even comparing a mixture model against a different parametric or nonparametric
alternative.

1.1.2 Contributions of Chapter 2

Successfully approximating the marginal likelihood of mixture models requires ad
hoc methods which account for the specific challenges that arise when dealing with
such models. In particular, for an exchangeable prior on the mixture weights and
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parameters, the mixture posterior distribution π(ϑ|y) is permutation invariant. This
translates to

π((ϑ1, . . . , ϑK)|y) = π((ϑσ(1), . . . , ϑσ(K)|y)

for all (ϑ1, . . . , ϑK) ∈ ΘK × ∆K−1 and all σ ∈ Sk, where SK denotes the set of
permutations of {1, . . . , K}.
This implies that the posterior distribution displays K! equiprobable modes. As
noticed by Neal 1999 in a response to Chib 1995, a good mixing behavior of
MCMC algorithms targeting the posterior distribution is essential for meaningful
approximation of the model evidence. However, in the case of finite mixtures,
this requires a balanced visit of all K! modal configurations of the posterior (a
phenomenon also called label switching), which, most of the time, is an unrealistic
expectation given a finite computational budget. To make up for this ill-behavior of
MCMC samplers, popular methods such as Chib’s algorithm and Bridge Sampling
and their subsequent adaptations to finite mixtures resort to artificially enforcing a
perfect label switching phenomenon by integrating their estimators over the space
of permutations SK . This comes at an additional cost of O(K!) which is barely
sustainable even for values of K as small as 5. In Chapter 2, we first introduce a
modified Chib’s algorithm which makes use of the partitioning structure induced by
mixture models. This quantity is of significant interest since it is resilient to label
switching, thus avoiding the exponential cost of O(K!) paid by traditional methods.
We also adapt the sequential imputation algorithm discovered by Kong et al. 1994 to
finite mixtures. On top of being robust to label switching, this approach also proves
to scale very well with the number of observations n. Subsequently, we provide an
empirical review of classical estimators of the marginal likelihood, old and new, and
highlight their strengths and weaknesses in different scenarios where K and n need
not be small. In particular, we find that Sequential Monte Carlo approaches are
the most effective and we are hopeful this assessment will incite practitioners to use
these methods more often.

1.2 Evidence asymptotics and estimation for the

Dirichlet Process mixture model

1.2.1 Model spectification

The Dirichlet Process Mixture model (DPM), first introduced by Ferguson 1983 is
one of the main tools of the field of Bayesian nonparametrics. Assuming an infinite
number of mixture components a priori, it is sometimes called the ‘infinite’ mixture
model as opposed to finite mixtures. Indeed, for some i.i.d data y = (y1, . . . , yn),
the DPM can be described by the following generative model specification

yi|θi
i.i.d∼ F (yi|θi) for i = 1, . . . , n

θi|P ∼ P

P |M ∼ DP (M, G0)

M ∼ ΠM
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where F (·|θ) is a distribution supported on R
d with density with respect to the

Lebesgue measure f(·|θ) and DP (M, G0) denotes the Dirichlet Process with base
measure G0 and concentration parameter M . The realizations P of the Dirichlet
Process are almost surely discrete such that, if δx denotes the Dirac delta function,

P =
∞∑

k=1

̟kδθk

with ̟k = Vk
∏

l<k(1 − Vl) for some Vl
i.i.d∼ Beta(1, M) (ensuring that

∑∞
k=1 ̟k = 1

almost surely) and θ1, θ2, . . .
i.i.d∼ G0.

The likelihood of P can then be written as

fP (y) := p(y|P ) =
n∏

i=1

ˆ

Θ

f(yi|θ)dP (θ) =
n∏

i=1

∞∑

k=1

̟kf(yi|θk).

The range of applications of the DPM is broad, from multivariate clustering (Crépet
and Tressou 2011) to Bayesian density estimation (Neal 1992; Rabaoui et al. 2012).
An appealing trait of the DPM is the very mild prior assumption set on the distri-
bution of the mixture weights ̟ = (̟1, ̟2, . . . ) and parameters θ = (θ1, θ2, . . . )
since their prior P is itself random, making it one of the cornerstones of Bayesian
nonparametrics.

1.2.2 Bayes factor consistency for testing a parametric null
hypothesis against a non-parametric Dirichlet Process
mixture alternative

Resorting to this kind of flexible, nonparametric models may be motivated by a wish
to free oneself from the constraint of model selection and comparison. Therefore, it
might seem surprising at first to care about the estimation of the model evidence of
the DPM, which can be defined as

mDP (y) =

ˆ

fP (y)Π(dP, dM)

where Π denotes the joint prior distribution on (P, M) with P |M ∼ DP (M, G0)
and M ∼ ΠM .
However, it happens that the quantity mDP (y) can have several applications of
interest. For instance, the usual problem of statistical modeling of determining
whether an n−sample y = (y1, . . . , yn) arises from a particular parametric family of
distributions can be formalized as a goodness of fit test against a nonparametric
alternative, like the DPM. Formally, we consider here the problem of testing the
parametric null hypothesis H0 : f0 ∈ ∪K∈N∗MK , where MK denotes the parametric
model of mixtures with K emission distributions fθ(y), against the alternative
H1 : f0 ∈ F \ {∪K∈N∗MK} modelized by the Dirichlet Process mixture model with
mixture kernel fθ(y), for F an encompassing set of density functions. The latter
procedure is relevant from a Bayesian perspective provided that the Bayes Factor is
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consistent, that is

lim
n→∞

BF0,1 := lim
n→∞

m0(y)

m1(y)
=





∞ under H0 : f0 ∈ ∪K∈N∗MK

0 under H1 : f0 ∈ F \ {∪K∈N∗MK}

The consistency of the Bayes Factor under H1 is a well-studied problem that was
proved by Ghosal et al. 2008 and Mcvinish et al. 2009 under a mild assumption on
the parametric model that holds for finite mixtures. The result is obtained using the
existence of exponentially consistent tests (Ghosh and Ramamoorthi 2003), which
in turn makes BF0,1 converge to 0 exponentially fast under H1.

Establishing the consistency of the Bayes Factor under H0, however, is more
challenging. Such a result was obtained by Dass and Lee 2004 or Verdinelli and
Wasserman 1998 when considering a point null hypothesis against a large class of
nonparametric alternatives. For more general hypotheses H0, Mcvinish et al. 2009
derive sufficient conditions on nonparametric distributions for which the consistency
of the Bayes factor for testing a parametric family of distributions holds. These
conditions require a refined understanding of the prior mass of decreasing neighbor-
hoods of f0 under the Dirichlet Process non-parametric prior. Other approaches
consist in considering a modified nonparametric prior under H1 as in Tokdar and
Martin 2021 for example, where a particular DPM alternative is constructed for
testing normality.

Besides goodness-of-fit type of applications, the marginal likelihood of the DPM
can be used to find the best-fitting mixing measure by minimizing the Bayes Factor
for parametric against nonparametric alternatives in the context of Bayesian density
estimation (Argiento et al. 2010) or to select suitable partitions of some data (Ray
and Mallick 2006).

1.2.3 Contributions of Chapter 3

Let us assume that, under H0, some data y arise from a finite mixture Pf0 with
K0 components. We denote its density with respect to the Lebesgue measure by
f0 := p(y|P0) =

´

f(y|θ)dP0(θ), with P0 =
∑K0

k=1 ̟0
kδθ0

k
and θ0

k ∈ Θ ⊂ R
d for all k.

Our main contribution is to study the asymptotic behavior of the Bayes Factor

BFK,DP =
mK(y)

mDP (y)

where mK(y) is the marginal likelihood of the data for a K−component finite
mixture model, where K need not be equal to K0.
Our first concern is to prove that the Bayes Factor is consistent, that is

BFK0,DP −→ 0 in Pf0 probability. (1.1)

Establishing the consistency of the Bayes Factor comparing a parametric model
like finite mixtures against the Dirichlet Process mixture model is not straightforward.
In particular, one needs to derive an asymptotic upper-bound on mDP (y). We
concentrate on deriving such an upper bound when f0 ∈ ∪K∈N⋆MK , where MK
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denotes the model of mixtures with K densities fθ(y). This requires a refined control
of the a priori mass of decreasing L1-neighborhoods around the true density f0. We
provide such a result in Lemma 3.3 below.

This is done under a set of five assumptions, three of which (A1–A3) concern the
regularity of the kernel density f and the (strong) identifiability of the mixture Pf0 . A
class of models satisfying these conditions are for instance location mixtures of Normal
or Laplace distributions. Assumption A4 is a sufficient condition on the Dirichlet
Process prior base measure G0 for Dirichlet random means µ(P ) :=

∑∞
k=1 ̟kθk to

exist almost surely, where P ∼ DP (M, G0). Finally, assumption A5 requires that
the prior ΠM on M has support on [ζ, ∞) for some ζ > 0 and has exponentially
decreasing tails.

Lemma 3.3. Assume that y = (y1, . . . , yn) are i.i.d observations from f0 := fP0

with P0 =
∑K0

j=1 ̟0
j δθ0

j
and that Assumptions A1–A3 are satisfied. Denote by Π the

joint prior distribution on (P, M) where P |M ∼ DP (M, G0) and M ∼ ΠM , such
that Π verifies Assumptions A4–A5. Then for any sequence δn such that δn

n→∞−→ 0,

Π (‖fP − f0‖1 < δn) ! δK0−1+dK0+ζ−ε
n

where ε > 0 can be chosen as close to 0 as desired.

The main difficulty in the proof of the above lemma is to establish that the
density of the Dirichlet random means µ(P ) has a continuous and bounded density,
which is done by showing that their characteristic function is integrable. Lemma
3.3 subsequently implies the following Theorem, which provides an asymptotic
upper-bound on mDP (y).

Theorem 3.1. Assume that y = (y1, . . . , yn) are i.i.d observations from f0 := fP0

with P0 =
∑K0

j=1 ̟0
j δθ0

j
and that Assumptions A1–A3 are satisfied. Denote by Π the

joint prior distribution on (P, M) where P |M ∼ DP (M, G0) and M ∼ ΠM , such
that Π verifies Assumptions A4–A5. Then for any 0 < t < ζ,

Pf0

(
mDP (y) > n−(K0−1+dK0+t)/2

)
n→∞−→ 0

where

mDP (y) :=

ˆ

fP (y)/f0(y)dΠ(P )

The above result directly translates into a Bayes Factor consistency result, which
is given in the following corollary

Corollary 3.2. If the DP prior verifies A4–A5 and the prior on MK0 is defined
as in (2.5), then

(i) If fP0 ∈ MK0 satisfies Assumptions A1–A3, then mK0(y)/mDP (y) → ∞
under fP0.

(ii) Moreover for all K > K0, if the prior on MK is defined as in
(2.5) with Dirichlet hyperparameter α = (α, . . . , α) for some α >
0, if either α < d/2 ∧ ζ/(K − K0), or d/2 < α ∧ ζ/(K − K0), then
mK(y)/mDP (y) → ∞ under fP0.
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(iii) If inffP ∈MK
KL(fP0 , fP ) > 0 and the DP prior verifies ΠDP (KL(fP0 , fP ) ≤

ǫ) > 0 for all ǫ > 0, then mK(y)/mDP (y) → 0 under fP0.

Note that the result above achieves more than the goal of establishing the Bayes
Factor consistency (1.1). In fact, overfitted mixture models (i.e when K > K0)
are favored by the Bayes Factor under a suitable choice of hyperparameters on
the weights of the finite mixture and a large enough truncation of the prior on M .
This additional result is established using the asymptotic lower-bounds provided in
Rousseau and Mengersen 2011 on mK(y) when K > K0.

In practice, such a goodness-of-fit test is of interest if one is able to correctly
estimate the intractable integral defining mDP (y). To our knowledge, only Basu
and Chib 2003 address this issue by proposing an adaptation of Chib’s algorithm
from Chib 1995. We compare this method with a new approach based on the
Reverse Logistic Regression (RLR) trick established by Geyer 1994, as well as other
estimators. We empirically find that despite its good performance, Chib’s method
does not seem to scale as well as RLR with an increase in the data size n.

Overall, we are hopeful that the results of Theorem 3.1 combined with the new
estimation method of mDP (y) we suggest will ease the task of Bayesian model
selection for practitioners. Our empirical results suggest that a result similar to
Corollary 3.2 could be obtained for more general models, such as location-scale
mixtures. The difficulty is to control the a priori mass of decreasing neighborhoods
of f0 in this scenario (as in Lemma 3.3) since it requires a refined understanding of
linear functionals of the Dirichlet Process.

1.3 Distributed evidence computation for finite

mixtures

Distributed computation has emerged as a powerful paradigm for tackling complex
problems in machine learning and statistical inference, where the amount of data is
too large to be processed by a single machine. This approach involves breaking down
the inference task into smaller sub-problems that can be solved independently by
multiple machines or processors, and then combining the results to obtain a global
solution to the initial problem. This not only reduces the computational burden on
individual machines but also facilitates parallel computation, enabling faster and
more efficient inference.

From a Bayesian inference perspective, this strategy, usually called divide and
conquer, is mainly composed of three steps. First, the data y is divided into S
non-overlapping batches y1, . . . , yS and the full posterior distribution is decomposed
as

π(ϑ|y) ∝ p(y|ϑ)π(ϑ)

=
S∏

s=1

p(ys|ϑ)π(ϑ)1/S

∝
S∏

s=1

π̃(ϑ|ys) (1.2)
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for a likelihood function p(y|ϑ) and a prior π(ϑ), where for all s = 1, . . . , S, π̃(ϑ|ys)
is called the sub-posterior distribution of parameter ϑ on batch ys. Posterior
inference is then conducted on each subset of the data independently, possibly in
parallel, running MCMC algorithms across several computing units. Lastly, the
different sub-posterior samples are recombined to approximate a sample from the
full posterior distribution. This last step is usually complex as there exists no
exact way to transform a collection of samples {ϑ

(s)
t }t from each sub posterior

π̃(ϑ|ys) into a sample {ϑt}t that is distributed according to π(ϑ|y). Based on the
Bernstein-von Mises theorem, Huang and Gelman 2005 and Scott et al. 2016 use
normal approximations to the sub-posterior distributions to reconstruct a sample
from the full posterior as a weighted average of the sub-posterior samples. Still
assuming normality of the sub-posterior distributions, Neiswanger et al. 2014 uses
kernel density estimation to reconstruct the full posterior. Other approaches consist
in recombining the sub-samples through their barycenter in a Wasserstein space of
probability measures (Srivastava et al. 2018), or their geometric median (Minsker
et al. 2014). Applications of a divide and conquer strategy are numerous. First
and foremost, it can be used in order to significantly reduce the cost of posterior
inference when the amount of data at hand is very large by reducing memory
and computational bottle necks. Another immediate application is inference on a
distributed data architecture, in which data is stored at different locations, either
for privacy issues, for instance with health data (Hallock et al. 2021), or simply
because the data set size is too large to be stored on a single machine.

Despite its popularity, the application of the divide and conquer paradigm to
mixture modeling remains largely unexplored so far. Indeed, while conducting
inference on each data batch ys is generally not an issue, the usual assumption of
asymptotic normality used for recombination of the S MCMC samples does not
hold for the posterior distribution of mixture models.

In the general case, the challenge of distributed computation of the marginal
likelihood of a model in a divide and conquer fashion remains largely unexplored
so far. The issue being that while there exists a convenient way of linking the
full posterior distribution and the sub-posterior distribution through (1.2), such an
identity does not hold for the marginal likelihood. Indeed,

m(y) =

ˆ S∏

s=1

p(ys|ϑ)π(ϑ)1/Sdϑ

-=
S∏

s=1

ˆ

p(ys|ϑ)π(ϑ)1/Sdϑ.

This calls for a different approach to combining marginal likelihoods estimates
computed on each batch ys separately. Very recently, an identity bridging the gap
between m(y) and {m̃(ys)}

S
s=1 has been derived by Buchholz et al. 2022.

Proposition 4.1 (Buchholz et al. 2022). For some data y and a model P for which
the likelihood function factorizes as p(y|ϑ) =

∏S
s=1 p(ys|ϑ), the marginal likelihood
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of the data can be written as

m(y) = ZS
S∏

s=1

m̃(ys)

ˆ S∏

s=1

π̃(ϑ|ys)dϑ (4.2)

where for each s = 1, . . . , S,

π̃(ϑ|ys) ∝ p(ys|ϑ)π̃(ϑ),

m̃(ys) =

ˆ

p(ys|ϑ)π̃(ϑ)dϑ,

and

Z =

ˆ

π(ϑ)1/Sdϑ

For most prior choices π(ϑ), under some potential constraints on the hyperpa-
rameters, the prior π̃(ϑ) is a well-defined probability distribution and the integral
Z is analytical. In the case of finite mixtures, the estimation of the sub-marginal
likelihoods m̃(ys) can be done using the algorithms described in Chapter 2. Integral
I :=

´

Θ

∏S
s=1 π̃(ϑ|ys)dϑ however, is clearly intractable for finite mixtures. For the

more general class of conditionally conjugate models, which are characterized by the
availability of a closed-form expression for the augmented posterior π(ϑ|z, y) for
some latent variable z, Buchholz et al. 2022 derive a promising estimator for I.

Proposition 4.5 (Buchholz et al. 2022). For general conditionally conjugate models,
the integral I :=

´

Θ

∏S
s=1 π̃(ϑ|ys)dϑ can be estimated through

Î =
1

T

T∑

t=1

ˆ S∏

s=1

π̃(ϑ|z(t)
s , ys)dϑ (4.3)

where {z
(t)
s }T

t=1 ∼ π̃(zs|ys) and Î is an unbiased estimator of I.

Despite the conditionally conjugate nature of finite mixtures, we argue that
estimator (4.3) is not suited for these models. We propose ‘corrected’ versions of Î
as well as a SMC strategy to tackle the issue of distributed evidence computation
for finite mixtures.

1.3.1 Contributions of Chapter 4

We remark that using the latent cluster membership variable z in the data aug-
mentation trick suggested by equation (4.3) makes the estimation of I through Î
difficult in the case of finite mixture models. The issue here is that cluster labels zs

are not coherent across the S batches. While this does not make estimator Î biased,
it certainly makes its variance explode in the case where the Gibbs sampler does
not visit evenly all K! modal configurations, within and across the S batches, which
clearly hardly ever happens given a finite computational budget. We propose an easy
fix, in the same vein as the correction proposed by Berkhof et al. 2003 for Chib’s
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estimator (Chib 1995), which consists in averaging over all permutations of the
latent variables zs, for all s = 1, . . . , S. This is given in the following proposition.

Proposition 4.6 (Permuted estimator of I). Let S be an integer larger than 1 and
let {z

(t)
s }T

t=1 ∼ π̃(zs|ys) for s = 1, . . . , S. Then

Îperm =
1

TK!S−1

T∑

t=1

∑

σ2,...,σS∈SK

ˆ

π̃(ϑ|z(t)
1 , y1)

S∏

s=2

π̃(ϑ|σs(z
(t)
s ), ys)dϑ (4.5)

is an unbiased estimator for I.

Despite making up for the explosive Monte Carlo variance of Î, estimator Îperm

comes at the heavy computational cost of O
(
TK!S−1

)
. In order to reduce the latter,

we come up with an Importance Sampling strategy that selects the combinations
of permutations (σ2, . . . , σS) that contribute the most to the integral of equation
(4.5). This greatly reduces the cost of Îperm to O(T (Kn/S + K! + M)) where M is
the number of importance simulations at each iteration t = 1, . . . , T .
Despite having derived a corrected and relatively cheap estimator for I, we realize
that the intrinsic variance due to the augmentation trick (4.3) is too large in most
situations, due to the discrepancy between the distributions π̃(z|y) :=

∏S
s=1 π̃(zs|ys),

from which the latent variables are sampled, and the full ‘true’ posterior distribution
π(z|y).

For this reason, we change our approach to the problem by simply regarding
integral I as the normalizing constant of an unnormalized product of distributions.
Indeed, by defining the incremental product of distributions

π̃s(ϑ) ∝
s∏

l=1

π̃(ϑl|yl)

we remark that I is simply equal to ZS =
´

Θ
π̃S(ϑ)dϑ. This enables to rewrite the

original identity (4.2) by Buchholz et al. 2022 as in the following proposition.

Proposition 4.8 (A new identity). For some data y and a statistical model for which
the likelihood function factorizes as p(y|ϑ) =

∏S
s=1 p(ys|ϑ), the marginal likelihood

of the data can be decomposed as

m(y) = ZS × m̃(y1) ×
S∏

s=2

ˆ

πs−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ

Now by remarking that for all s = 2, . . . , S,
ˆ

π̃s−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ = Eπ̃s−1(p(ys|ϑ)π̃(ϑ))

one can derive a SMC strategy to estimate m(y) using the sequence of distributions
{π̃s−1(ϑ)}S

s=2. Not only does this method show enhanced performance empirically,
both in terms of variance and computational time, but it also is applicable to a more
general class of models, by relaxing any conjugacy assumption. We are hopeful this



26 CHAPTER 1. Introduction

approach could ease the estimation task of the marginal likelihood of large and/or
distributed datasets, even outside of the context of mixture modeling.



Chapter 2
Evidence estimation for finite mixtures

Abstract

In this chapter, we consider the problem of estimating the marginal likelihood of
finite mixture models by Monte Carlo methods. We review classical methods and
highlight their expensive computational cost as soon as the number of mixture
components K is bigger than 5. We then propose alternative algorithms that show
better scaling properties.

27
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2.1 Introduction

Mixture models are of significant interest due to their convenient way of modeling
heterogeneity in a given population. Essentially, when some group structure is
present in the data, Finite Mixture models (FM) arise as a natural tool to conduct a
Bayesian clustering analysis, using for instance a collapsed Gibbs sampler (Algorithm
2). They have been successfully applied to document classification (Blei et al. 2003)
but also more generally to computer vision, genetics, physics, or economics (see
McLachlan et al. 2019 for a comprehensive review of applications).
Most difficulties in applying Finite Mixtures to real-world data reduce to the choice
of mixture kernels and/or the number of components K. Celeux et al. 2019 lists
the different existing strategies to estimate K. From a frequentist perspective, the
most natural approach is to resort to likelihood ratio tests (LRT). As highlighted
by McLachlan and Peel 2000, this procedure is not immediately applicable to
finite mixtures due to identifiability and regularity issues. Indeed, when testing
say H0 = K vs H1 = K + 1, the null hypothesis is specified by parameters lying
on the boundary of the parameter space, making standard results about LRTs
invalid. Bootstrap strategies (McLachlan 1987) or direct modifications of the LRT
(Frühwirth-Schnatter 2006) have been applied to circumvent this challenge, to name
a few. Other approaches involve method of moments estimators (Heckman et al.
1990; Dacunha-Castelle and Gassiat 1997) or information criteria (Smyth 2000), the
latter being popular alternatives to LRT, which, in real-life applications, are not
commonly used by practitioners due to the complexity of their implementation for
Finite Mixtures.

Bayesian methods typically do not rely on such strong regularity assumptions
which make them appealing when dealing with notoriously complex models like
mixtures. Inference on K can be carried out by using overfitted mixtures (i.e with
K > K0). Rousseau and Mengersen 2011 have indeed shown that for a specific choice
of hyperparrameters on the mixture weights, the K − K0 extra components are
emptied, leaving only K0 meaningful components. Alternatively, a natural strategy
is to set a prior distribution on K resulting in the so-called Mixture of Finite
Mixtures model (see for instance Miller and Harrison 2018 or Frühwirth-Schnatter
et al. 2021 for a thorough review of this approach). However, Cai et al. 2021 show
that the posterior estimate on the number of components K is not consistent when
the mixture kernels f are misspecified, even when the prior distribution is allowed
to depend on the data set size n.

The Bayesian paradigm offers a practical framework to address the issue of
model choice thanks to the Bayes Factor (Jeffreys 1935), that conveniently allows to
compare any two models M0, M1 through the identity

BFM0,M1 =
m0(y)

m1(y)
(2.1)

where mi(y), i = 0, 1, is the marginal likelihood of model Mi (a.k.a model evidence)
defined as the integral of the likelihood function against the prior distribution, that
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is
mi(y) =

ˆ

Θi

pi(y|θ)Πi(dθ) (2.2)

where pi and Πi denote the likelihood function and the prior distribution on Θi for
model Mi, respectively. Straightforwardly, this quantity can also be viewed as the
normalizing constant of the posterior distribution on θ. Note that there is typically
no requirement that models be nested or have any particular structure for the Bayes
Factor (2.1) to define a consistent model selection strategy. In fact, it can be shown
for a large class of models that

BFM0,M1 −→
n→∞

+∞

in PM0− probability and interested readers are referred to Chib and Kuffner 2016
for a thorough review of consistency results for the Bayes Factor. Unfortunately, the
marginal likelihood of the data is rarely easy to compute as integral (2.2) is usually
intractable. This is the case for mixture models with more than 1 component. For
instance, evaluating the marginal likelihood of a conjugate K-component mixture
model for y = (y1, . . . , yn) requires about O(Kn) computations of analytical integrals,
which is hardly achievable as soon as K and/or n become moderately large.

A common estimation strategy for mi(y) is through the Bayesian Information
Criterion (BIC, Schwarz 1978) which makes use of a second-order Taylor’s expansion
of the unnormalized posterior density π̃i(θ|y) = pi(y|θ)πi(θ) around its maximum
θ∗. However, the derivation of BIC strongly relies on regularity and identifiability
assumptions which do not hold for overfitted finite mixtures. To address this issue,
Drton and Plummer 2017 suggests a modified singular BIC criterion. However,
the effect of the prior distribution on pi(y) is neglected by BIC, which may not be
desirable for Bayesian inference.

Therefore, it is common to resort to Monte Carlo methods to approximate the
integral (2.2). Note that other approaches exist, in particular using variational
methods. Interested readers can refer to Chérief-Abdellatif and Alquier 2018 for
applications of variational Bayes techniques to mixture models.

Literature is rich with Monte Carlo methods for estimating the marginal likelihood
of parametric models (see for instance Frühwirth-Schnatter 2004, Pajor 2017 or
Llorente et al. 2020 for a thorough review of existing methods). However, the
intrinsic complexity of mixture models calls for ad hoc algorithms or adaptations of
existing methods. Among the difficulties posed by such models are the multi-modal
nature of their posterior and the presence of a label-switching phenomenon (or lack
thereof) when sampling from the latter, which will be explained and illustrated
later in this chapter. Popular marginal likelihood estimators suitable for mixture
models are the method of Chib 1995 or the adaptation of Bridge Sampling proposed
by Frühwirth-Schnatter 2019, or, to some extent, Sequential Monte Carlo (SMC)
methods (Del Moral et al. 2006).

However, if one wishes to retrieve an estimator with a reasonable variance,
those methods get very computationally expensive as K, the number of mixture
components, and/or n, the number of observations, increase. Values of K as small
as 5 already represent a significant computational burden, stressing the need for
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new estimators more suited to real-life applications where K needs not be small.
For instance, some applications of topic models such as Latent Dirichlet Allocation
(Blei et al. 2003) may involve a large number of latent topics. Large number of
clusters may also naturally be found in big data applications such as in Ullah and
Mengersen 2019 where as many as 15 groups are detected in the data. This chapter
provides an assessment of Monte Carlo estimators of the model evidence (2.2) of
Finite Mixture models, existing and new, and aims at identifying robust methods
that scale well with K and n.

In this chapter, we first introduce the finite mixture model and derive all the
necessary quantities to conduct Bayesian inference. We then describe and study
the classical estimators of the marginal likelihood used for Finite Mixtures, that is
the Arithmetic and Harmonic Mean Estimators, Chib’s algorithm, Bridge Sampling
and Sequential Monte Carlo and highlight their potential shortcomings. We then
derive two novel algorithms, one of them making use of the latent partitioning
structure induced by finite mixtures, which we believe can overcome the defects of
the above-mentioned methods. Finally, we compare and assess in an empirical study
the performances of all the algorithms under consideration.
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2.2 The Finite Mixture model

In this section, we introduce the Finite Mixture model and provide basic Gibbs
sampling strategies for simulating according to the posterior distribution. This work
is mostly based on the book Frühwirth-Schnatter 2006, which we highly recommend
to anyone wishing to read a thorough introduction to finite mixtures and Markov
switching models.

2.2.1 Notation

• Data : y = (y1, . . . , yn), n ≥ 1.

• Subset of data : y1:l = (y1, . . . , yl) for l ≤ n

• Π(·) : generic notation of a prior distribution on some parameter ϑ.

• π(ϑ) : Radon-Nikodym density of Π(·) with respect to some measure ν (the
Lebesgue measure or the counting measure, depending on the context).

• Π(·|y) : posterior distribution of some parameter ϑ given data y.

• π(ϑ|y) : Radon-Nikodym density of Π(·|y) with respect to some measure ν

(the Lebesgue measure or the counting measure, depending on the context).

2.2.2 Model specification and posterior inference

A Finite Mixture model (FM) can be defined as the convex sum of K distributions
which densities (with respect to some dominating measure) f(·|θk), k = 1, . . . , K,
are parametrized by some θk ∈ Θ ⊂ R

d, for d ∈ N \ {0}.
That is, given a collection of n > 0 independent and identically distributed (i.i.d) real
random variables y = (y1, . . . , yn) ∈ R

d×n assumed to arise from a finite mixture of
K emission distributions F (·|θ) with density with respect to the Lebesgue measure
f(·|θ), their joint distribution can be written as

p(y1, . . . , yn|ϑ) =
n∏

i=1

p(yi|ϑ) =
n∏

i=1

K∑

k=1

̟kf(yi|θk). (2.3)

where ϑ = (ϑ, ̟) and ̟ = (̟1, . . . , ̟K) belongs to the K − 1-dimensional simplex
∆K−1. In other words, for all k = 1, . . . , K, ̟k ≥ 0 and ̟1 + · · · + ̟K = 1. From
now on we shall denote by ΩK the complete parameter space ΘK × ∆K−1.
From a Bayesian perspective, it is necessary to elicit a prior distribution Π on ΩK .

It is common practice to assume that the emission parameter θ and the vector of
weights ̟ are independent a priori. The latter is typically assumed to follow a
Dirichlet distribution, denoted by D(·|α), for some vector α ∈ (0, ∞)K and this
shall be our prior choice thereafter. Hence, we define

Πϑ(dϑ) :=

[
K∏

k=1

G0(dθk)

]
D(d̟|α) (2.4)
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where we have further assumed that the parameters θ1, . . . , θK are independent a
priori and follow some distribution G0 on Θ with density g0 with respect to the
Lebesgue measure.

Finite mixtures are key models to account for heterogeneity in a given population,
as can be intuited from Figure 2.1, representing a simple mixture of 4 univariate
normal distributions, or from Figure 2.2, for bivariate data. Therefore, a natural
alternative specification of model (2.3) can be derived with the introduction of a
latent individual cluster membership variable z = (z1, . . . , zn) ∈ {1, . . . , K}n, which
indicates from which mixture component each observation yi arises. Then sampling
an observation y can be viewed as allocating a mixture component z with probability
P(z = k) = ̟k for k = 1, . . . , K, before drawing y from the mixture component
f(·|θk). This generative view of mixture models can be summarized as

yi|θ, zi
i.i.d.∼ f(.|θzi

), i = 1, . . . , n

P(zi = k|̟) = ̟k, i = 1, . . . , n (2.5)

̟ = (̟1, . . . , ̟K) ∼ D(α)

θ1, . . . , θK
i.i.d.∼ G0

and allows for the definition of the complete data likelihood function (Frühwirth-
Schnatter 2006)

p(y, z|ϑ) =
n∏

i=1

p(yi|ϑ, zi)p(zi|ϑ)

=
n∏

i=1

K∏

k=1

(f(yi|θk)̟k)1(zi=k)

=
K∏

k=1


 ∏

i:zi=k

f(yi|θk)




(
K∏

k=1

̟
Nk(z)
k

)

where Nk(z) =
∑N

i=1 1(zi = k), is the number of observations allocated to component
k = 1, . . . , K.
Consequently, one can define the augmented posterior distribution using Bayes’
formula by

π(ϑ|y, z) ∝ p(y, z|ϑ)π(ϑ). (2.6)

The prior defined in (2.4) conveniently passes its independence property onto the
posterior distribution (2.6) which factorizes as

π(ϑ|y, z) =
K∏

k=1

π(θk|y, z) × π(̟|z). (2.7)

where the posterior distribution on the weights ̟ can be easily identified with the
Dirichlet distribution D(·|α1 + N1(z), . . . , αK + NK(z)) by noticing that

π(̟|z) ∝
K∏

k=1

̟
Nk(z)
k × ̟αk−1

k . (2.8)
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The posterior distribution on the parameters θ can be derived up to a proportionality
constant as

π(θk|y, z) ∝
∏

i:zi=k

f(yi|θk)g0(θk). (2.9)

In the special case that g0 is conjugate to f , the posterior on the parameters (2.9)
has a closed form expression. The model is then called conditionally conjugate
(Frühwirth-Schnatter 2006) since (2.9) belongs to the same parametric family as
G0, conditionally on the latent vector z. We give below the example of a normally
distributed mixture kernel F and its associated conjugate distribution G0.

Example 1. If the mixture kernel F is chosen to be the normal distribution
N (·|µk, σ2

k) where (µk, σ2
k) ∈ R × (0, ∞), then the associated conjugate prior distri-

bution G0 is the Normal-Inverse Gamma N IG(·|µ0, λ, a, b) for µ0 ∈ R and λ, a, b > 0
defined as

N IG(dµk, dσ2
k|µ0, λ, a, b) =

√
λ√

2πσ2
k

ba

Γ(a)

(
1

σ2
k

)a+1

× exp

{
−2b + λ(µk − µ0)

2

2σ2

}
dµkdσ2

k.

(2.10)

Indeed, let yk := {yi : zi = k}, the posterior distribution on the parameters
θk := (µk, σ2

k) given yk can be derived up to a proportionality constant as

π(µk, σ2
k|y, z) ∝


 1√

σ2
k




Nk(z)

exp

{
−

∑
i:zi=k(yi − µk)2

2σ2
k

}

× 1√
σ2

k

(
1

σ2
k

)a+1

exp

{
−2b + λ(µk − µ0)

2

2σ2
k

}

∝ 1√
σ2

k

(
1

σ2
k

)Nk(z)/2+a+1

exp



− 1

2σ2
k


2


b +

1

2

∑

i:zi=k

(yi − yk)2

+
Nk(z)λ

2(Nk(z) + λ)
(yk − µ0)

2

)
+ (λ + Nk(z))

(
µk − Nk(z)yk + λµ0

Nk(z) + λ

)2







Hence, the posterior distribution of (µk, σ2
k) given z is again N IG(µ′

0, λ′, a′, b′) where





µ′
0 = (Nk(z)yk + λµ0)/(Nk(z) + λ)

λ′ = λ + Nk(z)

a′ = a + Nk(z)/2

b′ = b + (1/2)
[∑

i:zi=k(yi − yk)2 + Nk(z)λ/(Nk(z) + λ)(yk − µ0)
2
]

Remark 2.1. If
µk|σ2

k, µ0, λ ∼ N (µ0, σ2/λ)
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and
σ2

k|a, b ∼ IG(a, b)

where IG(a, b) denotes the Inverse Gamma distribution with shape and scale a and
b, then

(µk, σ2
k) ∼ N IG(µ0, λ, a, b).

This alternative definition to the Normal-Inverse Gamma distribution comes in handy
when deriving Gibbs sampling strategies to sample from the posterior distribution of
θk = (µk, σ2

k).

However, knowledge about the allocations z = (z1, . . . , zn) is usually not ac-
cessible and hence must be inferred along with the parameters θ and the weights
̟. It turns out that the elements of z are conditionally independent given y and
ϑ = (θ, ̟) and that

π(zi = k|yi, ϑ) =
p(yi|zi = k, ϑ)p(zi = k|ϑ)

∑K
j=1 p(yi|zi = j, ϑ)p(zi = j|ϑ)

=
f(yi|θk)̟k∑K

j=1 f(yi|θj)̟j

(2.11)

The latent variable representation of mixture models (2.5) and the subsequent
definition of the conditional posterior distributions on the parameters (2.7) and
(2.8) and the allocation vector (2.11) are at the core of the Gibbs sampling strategy
commonly used by practitioners for simulating (ϑ, z) from the posterior, which
was introduced by Diebolt and Robert 1990. Algorithm 1 gives a pseudo-code
implementation. Moreover, conjugacy allows to integrate parameters ϑ out in order

Algorithm 1 : Gibbs sampler for conjugate finite mixture models
1 At step t,
2 for i = 1, . . . , n do

3 Sample z
(t)
i |yi, ϑ

(t−1) using (2.11);
4 end
5 for k = 1, . . . , K do

6 Sample θ
(t)
k |y, z

(t) using (2.9)
7 end

8 Sample ̟
(t)|z(t) using (2.8)

to work solely with the allocation vector z. Indeed, one can derive its likelihood as
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p(y|z) =

ˆ

Θ

p(y|z, θ)Π(dθ)

=

ˆ

Θ

n∏

i=1

p(yi|zi, θ)Π(dθ)

=
K∏

k=1

ˆ

Θ

∏

i:zi=k

p(yi|θk)G0(dθk)

=
K∏

k=1

mk(z) (2.12)

where mk(z) :=
´

Θ

∏
i:zi=k p(yi|θk)G0(dθk) for all k = 1, . . . , K is the marginal

likelihood of the data allocated to component k. Note that a closed-form expression
of this quantity is available thanks to the conjugacy of the prior and can be easily
derived using Example 1 for the Normal Finite Mixture model, for instance.
Likewise, it is straightforward to compute the induced prior on z by integrating out
the weights as follows

π(z) =

ˆ

∆K−1

π(z|̟)D(d̟|α)

=
Γ

(∑K
k=1 αk

)

∏K
k=1 Γ(αk)

ˆ

∆K−1

K∏

k=1

̟
Nk(z)+αk−1
k d̟1 . . . d̟K

=
Γ

(∑K
k=1 αk

) ∏K
k=1 Γ(Nk(z) + αk)

Γ

(
n +

∑K
k=1 αk

) ∏K
k=1 Γ(αk)

. (2.13)

Therefore, it is natural to work with the posterior on the allocations given by

π(z|y) ∝ p(y|z)π(z). (2.14)

Sampling from (2.14) can be done with Gibbs sampling by writing the posterior full
conditionals for all i = 1, . . . , n,

π(zi = k|z−i, y) =
p(y|z−i, {zi = k})π(z−i, {zi = k})

∑K
j=1 p(y|z−i, {zi = j})π(z−i, {zi = j})

where z−i = (z1, . . . , zi−1, zi+1, . . . , zn). The collapsed Gibbs sampler (Algorithm
2), as first described by Chen and Liu 1996, makes use of this representation to
sample the allocation vector from the posterior distribution, without simulating the
parameters ϑ.

Posterior simulations, as provided by Algorithms 1 and 2, are at the core of
most Monte Carlo methods aiming at estimating the marginal likelihood of a Finite
Mixture model, as we shall see in this chapter. In the next section we briefly
introduce the concept of non-identifiability and show how it makes the posterior
distribution invariant under permutations of the model parameters.
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Algorithm 2 : Collapsed Gibbs sampler on the allocations
1 At step t,
2 for i = 1, . . . , n do

3 Sample a new allocation z
(t)
i |z(t−1)

−i , y using 8
4 end

2.2.3 Non-identifiability of the model : posterior permuta-
tion invariance and label-switching

Identifiability is a desirable feature of parametric models in order to conduct mean-
ingful inference of the underlying parameters. More precisely, a statistical model
Mλ = {λ ∈ Λ : Pλ} on some sample space Y is identifiable iff

p(y|λ1) = p(y|λ2) for almost all y ∈ Y ⇒ λ1 = λ2

for some λ1, λ2 ∈ Λ.
It is clear that finite mixture models do not satisfy this condition. Indeed, consider
a K−component finite mixture with some mixture kernel f(·|θ) and let ϑ

∗ be a
permuted version of some ϑ = (θ, ̟) in the complete parameter space ΩK . Then

p(y|ϑ) =
K∑

k=1

̟kf(y|θk) =
K∑

k=1

̟∗
kf(y|θ∗

k) = p(y|ϑ∗)

while ϑ -= ϑ
∗.

This permutation-invariance property of the likelihood function propagates to the
posterior distribution, provided the prior is also permutation-invariant. Our choice
of prior so far satisfies this invariance property provided that α, the hyperparameter
of the Dirichlet prior on the weights ̟ is such that α1 = · · · = αK .

In such cases, the permutation-invariance of the posterior distribution can easily
be deduced from the fact that

p(y|ϑ)π(ϑ) = p(y|ϑ∗)π(ϑ∗)

which implies that
π(ϑ|y) = π(ϑ∗|y) (2.15)

for all permutation ϑ
∗ of ϑ ∈ ΩK . This implies that the posterior distributions on

the parameters ϑ has K! equiprobable modes, as illustrated in Figure 2.3. In this
Figure, we observe a so called balanced label-switching phenomenon. That is, the
posterior samples are such that θ1, the parameter associated to the ‘first’ mixture
component, is sampled equally from both the neighborhoods of the true parameter
θ0 and its permuted version θ

∗
0. This is a desirable property of MCMC samplers.

However, as K gets large or when the data has relatively distant modes, it typically
becomes increasingly difficult for samplers to visit equally all K! posterior modes.
Posterior invariance is a challenge for practitioners since equation (2.15) hinders
estimation of the parameters a posteriori. For instance, it implies that the classical
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Figure 2.3: Density plot of 200 000 posterior simulations from a 2-component mixture
of Normal distributions, with true paramerers θ0 = (0.5, −0.5) and equal weights
̟0 = (0.5, 0.5)

posterior mean estimator of the component specific θk is such that E[θk|y] = E[θk′|y],
for all k, k′ ∈ {1, . . . , K}. Note that choosing an asymmetric prior, while effectively
making the various modes not equally likely a posteriori, is very unlikely to reduce
the posterior to a unimodal distribution. Alternatively, practitioners sometimes
restrict the parameter space a priori by forcing θ1 < · · · < θK , for instance, but this
often leads to impractical posterior sampling (Celeux et al. 2000).

As we shall see in the next section, the lack of identifiability of finite mixtures
and the multimodality of their posterior distribution severely hinders the estimation
of the model evidence.
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2.3 Classical estimators and their shortcomings

In this section we review the most popular algorithms for estimating the marginal
likelihood of finite mixtures and highlight how they struggle tackling the challenging
structure of mixture models. In particular, we explain why some of them fail at
giving reliable estimates at a reasonable computational cost as soon as the number
of mixture components K is bigger than 5.

2.3.1 Arithmetic and harmonic mean estimators

We begin our review with two naive estimators, namely the Arithmetic Mean
estimator (AME) and the Harmonic Mean Estimator (HME), and explain how,
despite their convenient simplicity, they generally produce poor estimates of m(y)
for finite mixtures.

The AME is derived quite straightforwardly by noticing that

m(y) =

ˆ

Θ

p(y|ϑ)Π(dϑ) = EΠ [p(y|ϑ)]

which implies that the following estimator

m̂AME(y) =
1

T

T∑

t=1

p(y|ϑ(t)) (2.16)

where {ϑ
(t)}T

t=1
i.i.d∼ Π, is unbiased for m(y). It is assumed that one can generate

i.i.d samples from the prior distribution, which is often the case in practice.
By its simplicity, this estimator is often used as a first approach to estimating the
marginal likelihood of a model. However, whenever the support of the prior is much
more spread out than that of the posterior, as is often the case when the sample
size n grows, most prior samples will result in a near-zero likelihood evaluation,
while only a very small portion of them contributes to the mean in (2.16). This
means that in some situations, a prohibitively large number of prior simulations is
necessary to get a reliable estimate of the marginal likelihood through the AME.

A corrected version of the AME was proposed by Pajor 2017, by constraining
the prior simulations to a high-posterior region A and compensating by dividing
the estimator (2.16) by an estimate of Π(A|y). This method is not really suited to
finite mixtures in that the posterior distribution is heavily multimodal, as discussed
in Section 2.2.3, making the choice of A difficult.

The Harmonic Mean Estimator, first introduced by Newton and Raftery 1994 is
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built upon the identity

1 =

ˆ

Θ

π(ϑ)dϑ

⇔ 1 = m(y)

ˆ

Θ

p(y|ϑ)π(ϑ)

p(y|ϑ)m(y)
dϑ

⇔ m(y) =

[
ˆ

Θ

π(ϑ|y)

p(y|ϑ)

]−1

⇔ m(y) =

{
EΠ(ϑ|y)

[
1

p(y|ϑ)

]}−1

which leads to the estimator

m̂HME(y) =

[
1

T

T∑

t=1

1

p(y|ϑ(t))

]−1

where {ϑ
(t)}T

t=1
i.i.d∼ π(ϑ|y) This estimator has the advantage of making use of

posterior simulations instead of samples from the prior. However, this estimator
suffers from many shortcoming. First, the inverse of the likelihood function might be
really large for some points in the parameter space, leading to a potentially infinite
variance. Second, a simple application of Jensen’s inequality shows that the HME
overestimates the marginal likelihood. Finally, as pointed out by Lenk 2009, it
suffers from a so called simulation pseudo-bias. This phenomenon is due to the fact
that most posterior simulations tend to concentrate on a subset Θ̃ of the parameter
space Θ such that Π(Θ̃|y) = 1 − ε for some small ε > 0. This is in part due to the
absolute zero of the computer preventing the Markov Chain Monte Carlo (MCMC)
algorithm targeting the posterior to visit certain areas of the parameter space with
very low posterior probability. While this is not really a problem for parameter
inference, it is troublesome for marginal likelihood estimation. Indeed, one can write

m(y) =

ˆ

Θ̃

p(y|ϑ)π(ϑ)dϑ +

ˆ

Θ̃c

p(y|ϑ)π(ϑ)dϑ

= Π(Θ̃)

ˆ

Θ̃

p(y|ϑ)π(ϑ|Θ̃)dϑ + m(y)Π(Θ̃c|y)

= Π(Θ̃)

ˆ

Θ̃

p(y|ϑ)π(ϑ|Θ̃)dϑ + m(y)ε

=
Π(Θ̃)

1 − ε

ˆ

Θ̃

p(y|ϑ)π(ϑ|Θ̃)dϑ

Since MCMC posterior simulations are concentrated in the subset Θ̃, then the
HME actually estimates the quantity

´

Θ̃
p(y|ϑ)π(ϑ|Θ̃)dϑ but is missing a factor

Π(Θ̃)/(1 − ε). In practice Π(Θ̃) might be much smaller than one, in particular when
the prior is very diffuse, as soon as the likelihood concentrates on a small subset of
Θ. This leads to an overestimation of the log-marginal likelihood by log Π(Θ̃).

In favorable scenarios, the AME and HME can yield accurate estimates of the
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marginal likelihood, but it is simple to see that they struggle when confronted to
the complex structure of mixture models, which is highlighted in the simulations
of Section 2.5. Therefore, tailor-made methods have been developed over the years
in order to tackle this issue and we next review Chib’s estimator, that is usually
deemed to be the gold standard for estimating the marginal likelihood of finite
mixture models.

2.3.2 Chib’s estimator

Chib’s estimator was first introduced in Chib 1995 as a convenient way to estimate
the marginal likelihood of a model directly from the output of a MCMC algorithm
targeting the posterior distribution. It builds upon the simple identity

m(y) =
p(y|ϑ0)π(ϑ0)

π(ϑ0|y)
(2.17)

which holds for all value of ϑ0 ∈ ΩK by Bayes’ formula.
Therefore it is enough to be able to evaluate (2.17) at a suitably chosen point

ϑ0 = (θ0, ̟0) in the parameter space. The likelihood function and the prior density
are available in closed form, hence it is easy to compute p(y|ϑ0) and π(ϑ0). However,
the posterior density is intractable and requires careful estimation. The idea of Chib
1995 is to use the fact that the conditional posterior density π(ϑ|y, z) has a simple
formulation given in (2.7), given a conditionally conjugate prior G0. Since

π(ϑ0|y) =

ˆ

π(ϑ0|y, z)π(z|y)dz,

the posterior density can be approached at point ϑ0 through the Rao-Blackwellized
unbiased estimator

π̂(ϑ0|y) =
1

T

T∑

t=1

π(ϑ0|y, z
(t)) (2.18)

where {z
(t)} is a sample of the posterior distribution π(z|y).

The estimate (2.18) is then plugged into (2.17) yielding Chib’s estimator of the
marginal likelihood

m̂Chib(y) =
p(y|ϑ0)π(ϑ0)

π̂(ϑ0|y)
. (2.19)

Note that for the posterior estimate (2.18) to have good variance properties, it
is usually recommended to choose some high posterior density point. Typically,
choosing the maximum a posteriori (MAP) estimator from the Gibbs output is a
good strategy since the likelihood and the prior can be easily evaluated. Algorithm
3 gives a pseudo-code implementation of Chibs estimator.

Unfortunately, as pointed out by Neal 1999, despite being theoretically valid,
Chib’s method is severely affected by the multimodality of the mixture posterior
distribution. Indeed, it is unusual for the Gibbs sampler to visit equally all K!
modes of the posterior distribution. In fact, it is not rare for it to get stuck in
only one modal configuration as illustrated in Figure 2.4, where the example of a
two-component mixture is given. In this case, (2.18) overestimates the posterior
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2.3.3 Bridge Sampling

Bridge sampling is a very popular generalization of Importance sampling that
was introduced by Meng and Wong 1996 as a way to directly estimate the ratio
of normalizing constants of two distributions. An immediate application is the
estimation of the Bayes Factor between two models, for instance. If one of those
distributions has a known normalizing constant, Bridge sampling can be used to
derive an estimate of the marginal likelihood of the other distribution.
Introducing q(ϑ), an importance distribution for π(ϑ|y) supported on ΩK and α(ϑ),
a positive function such that

0 <

ˆ

ΩK

α(ϑ)q(ϑ)π(ϑ|y) < ∞

then one can notice that

Eq(ϑ) [α(ϑ)p(y|ϑ)π(ϑ)]

Eπ(ϑ|y) [α(ϑ)q(ϑ)]
=

´

ΩK
α(ϑ)p(y|ϑ)π(ϑ)q(ϑ)dϑ

´

ΩK
α(ϑ)q(ϑ)p(y|ϑ)π(ϑ)

m(y)
dϑ

= m(y) (2.23)

Identity (2.23) naturally leads to the following Bridge Sampling estimator of the
marginal likelihood

m̂BS(y) =
1

T1

T1∑

t=1

α(ϑ(t,1))p(y|ϑ(t,1))π(ϑ(t,1))
/

1

T2

T2∑

t=1

α(ϑ(t,2))q(ϑ(t,2)) (2.24)

where {ϑ
(t,1)}T1

t=1 are simulations from the importance distribution q(ϑ) whereas
{ϑ

(t,2)}T2
t=1 are simulations from the posterior π(ϑ|y).

The choice of α(ϑ) is crucial to guarantee a reasonable variance for estimator (2.24).
The optimal α(ϑ) that minimizes the variance is derived by Meng and Wong 1996
as

α∗(ϑ) = [T1q(ϑ) + T ∗
2 π(ϑ|y)]−1

where T ∗
2 denotes the Effective Sample Size (ESS) of the posterior simulations, as

they most likely arise from a MCMC algorithm and hence are not i.i.d. The optimal
α∗ given above is useless in practice as the posterior distribution cannot be evaluated
point-wise. A trick is to define recursively the Bridge Sampling estimator as

m̂BS,l(y) =

1
T1

∑T1
t=1

p(y|ϑ(t,1))π(ϑ(t,1))

T1q(ϑ(t,1)+T ∗

2
p(y|ϑ(t,1))π(ϑ

(t,1))
mBS,l−1(y)

1
T2

∑T2
t=1

q(ϑ(t,2))

T1q(ϑ(t,2)+T ∗

2
p(y|ϑ(t,2))π(ϑ

(t,2))
mBS,l−1(y)

(2.25)

where p(y|ϑ)π(ϑ)/m̂BS,l−1(y) is used as an approximation to π(ϑ|y) at iteration
l. At the first iteration, mBS,0(y) can be chosen to be a simple arithmetic mean
estimation of the marginal likelihood.
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As l grows, the optimal Bridge sampling estimator is retrieved and defined as

m̂BS(y) = lim
l→∞

m̂BS,l(y).

In practice, one should repeat recursion (2.25) until a stopping criterion is met, such
as |mBS,l(y) − mBS,l−1(y)| ≤ ǫ, for some small ǫ > 0.

Another crucial choice for a successful Bridge sampling estimation of the marginal
likelihood is that of the distribution q(ϑ). Frühwirth-Schnatter 2019 provides a
comprehensive review on how to apply the Bridge Sampling framework to finite
mixtures. As can be expected, the difficulty lies in deriving a good importance
density q(ϑ) that yields a good approximation to the notoriously complex posterior
distribution of a finite mixture model. In particular, q must have support on the
K! posterior modes. In the same vein as the permutation Chib’s estimator (2.21)
described in the previous section, Frühwirth-Schnatter 2019 proposes the following
choice for q(ϑ),

q(ϑ) =
1

K!T0

T0∑

t=1

∑

σ∈S({1,...,k})

π(ϑ|σ(z(t,0)), y)

where T0 ≪ T1 and {z
(t,0)}T0

t=1 is drawn with replacement from the output {z
(t,1)}T1

t=1

of the Markov chain targeting the posterior.
Notice that q is simply a mixture of K!T0 distributions with equal weights. Hence,
sampling from q can simply be done by first drawing uniformly one of the T0

allocation vector z
(t,0), then drawing a permutation σ and finally sampling ϑ given

(σ(z1), . . . , σ(zn)) and y using (2.7).
Although T0 is a smaller number than T1, it is clear that this estimator suffers from
the same type of computational shortcomings as the permutation Chib’s estimator.
Computing estimator (2.25) comes at the cost of evaluating T0 × K! × (T1 + T2)
times the augmented posterior π(ϑ|z, y) distribution.

Algorithm 5 : Bridge Sampling Algorithm for conditionally conjugate
finite mixtures

Input : {ϑ
(t,1)}, t = 1; . . . , T1 i.i.d from the importance distribution q(ϑ)

{ϑ
(t,2)}, t = 1; . . . , T2 from the posterior π(ϑ, z|y)

Tolerance ǫ > 0
/* Initialize the sequence mBS,l */

1 Set m̂BS,0(y) = m̂AME(y) using (2.16)
2 Set l = 0
3 do
4 l = l + 1
5 Compute m̂BS,l using (2.25)
6 while |m̂BS,l − m̂BS,l−1| > ǫ;
7 Return mBS,l
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2.3.4 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods are a broad class of algorithms that suc-
cessively perform importance sampling and resampling steps on a sequence of
instrumental distributions in order to obtain a sample from a distribution of interest.
They are particularly popular for state space models such as Hidden Markov Models
(HMM) for instance (see e.g Kantas et al. 2015), although their range of application
is much broader. In the context of Bayesian inference, the goal is to design a
sequence of distributions {πl}

L
l=0, where π0 typically is the prior distribution and

πL the posterior distribution of interest, π(ϑ|y). Starting with an initial sample
{ϑ

(0)
t }T

t=1 from π0, the algorithm successively reweights the particles ϑt through the
importance step

w
(l)
t ∝ πl(ϑ

(l−1)
t )

πl−1(ϑ
(l−1)
t )

(2.26)

where initially w
(0)
t = π0(ϑ

(0)
t ), yielding the weighted sample {ϑ

(l)
t , w

(l)
t }. It is then

common practice to resample with replacements the particles {ϑt}t according to
their normalized weights W

(l)
t = w

(l)
t /

∑T
j=1 w

(l)
j yielding a new sample with equal

normalized weights {ϑ̃
(l)

t , 1/T}. This resampling step, while enabling the deletion of
unlikely particles, might lead to a so called particle degeneracy as the number of
unique values among the sample may become low. To enforce diversity among the
set of particles, a mutation step is performed in which each ϑ

(l)
t is moved through

a πl-invariant MCMC kernel Kl(·, dϑ). In practice, the mutation kernel is applied
several times on each particle.

Equation (2.26) above stresses the importance of choosing successive distributions
πt and πt+1 as not being too dissimilar in order to ensure good variance properties.
Otherwise, the last set of particles {ϑ

(L)
t , w

(L)
t } might be a very poor approximation

to the distribution of interest πL. Chopin 2002 adopts a data tempering approach, in
which the sequence {πl}l is chosen to be {π(ϑ|y1:al

)}L
l=1 where y1:al

= (y1, . . . , yal
)

and a1 < a2 < · · · < aL = n. This approach is computationally interesting in that it
does not require the evaluation of the likelihood function on the whole dataset y at
each iteration. A possible limitation is the underlying assumption that π(ϑ|y1:al

) and
π(ϑ|y1:al+1

) are likely to be similar, which might heavily depend on the construction
of the data batches {y1:al

}l, especially for finite mixtures.
We describe here another approach based on a sequence of so called tempered

posteriors
πl(ϑ) = πl(ϑ|y) ∝ π(ϑ)p(y|ϑ)λl

in which the likelihood is raised to a temperature λl such that λ0 = 0 < λ1 < · · · <
λL−1 < λL = 1. For suitably chosen temperatures, one can effectively bridge the
gap from the prior to the posterior distribution.

On top of being an alternative to classical MCMC schemes, the SMC framework
provides an immediate estimate of the marginal likelihood. Indeed, let

Zl :=

ˆ

π(ϑ)p(y|ϑ)λldϑ
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be the normalizing constant of distribution πl(ϑ) so that πl(ϑ) = π(ϑ)p(y|ϑ)λl/Zl.
Then one can write

m(y) = ZL =
L∏

l=1

Zl

Zl−1

(2.27)

Equation (2.27) above holds since Z0 =
´

π(ϑ)dϑ = 1. Then, by noticing that

ˆ

π(ϑ)p(y|ϑ)λl

π(ϑ)p(y|ϑ)λl−1
πl−1(ϑ|y)dϑ =

ˆ

Zl

Zl−1

πl(ϑ|y)dϑ

=
Zl

Zl−1

(2.28)

Since at step l the sample {ϑ
(l)
t , 1/T} is approximately distributed according to

πl(ϑ|y), then a straightforward estimate of (2.28) is given by

Ẑl

Zl−1

=
1

T

T∑

t=1

π(ϑ
(l)
t )p(y|ϑ(l)

t )λl

π(ϑ
(l)
t )p(y|ϑ(l)

t )λl−1

=
1

T

T∑

t=1

p(y|ϑ(l)
t )λl−λl−1

which then yields the following biased estimator of the marginal likelihood

m̂SMC(y) =
L∏

l=1

Ẑl

Zl−1

(2.29)

Choosing wisely the sequence of temperatures is advised in order to ensure a
good variance for the estimate (2.29). Indeed, if the gap between two successive
temperatures λl and λl+1 is too rough, one can expect the discrepancy between the
tempered posteriors πl and πl+1 to cause particle degeneracy. To this end, adaptive
strategies are used in for instance Jasra et al. 2011 or Schäfer and Chopin 2013 to
derive a suitable jump from temperature λl to λl+1. These methods are based on
a readily-available estimate of the Effective Sample Size (ESS) at each iteration l
given by

ESS(λl) =

(∑T
t=1 w

(l)
t

)2

∑T
t=1 (w

(l)
t )2

. (2.30)

We here stress the dependence on the next temperature λl since

w
(l)
t =

π(ϑ
(l−1)
t )p(y|ϑ(l−1)

t )λl

π(ϑ
(l−1)
t )p(y|ϑ(l−1)

t )λl−1

= p(y|ϑ(l−1)
t )λl−λl−1 .

Therefore, a good adaptive strategy, as suggested by Buchholz et al. 2021, is to chose
λl such that ESS(λl) = cT where c is typically equal to 0.8 so that the effective size
of the sample of particles at each step is about 80% that of the initial number of
particles. This step can be performed by a simple bisection algorithm, for instance.

Algorithm 6 below give a full implementation of the SMC algorithm described
in this section. Note that other tuning parameters can be chosen adaptively, such
as the number of times the MCMC kernel is applied to the particles in the mutation
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step, or the tuning parameters of the mutation kernel itself. Interested readers are
referred to Buchholz et al. 2021 for a complete review of such adaptive approaches.

Algorithm 6 : Adaptive tempered SMC for finite mixtures

1 Input : Number of particles T , Markov kernels Kl that are πl invariant,
where πl(ϑ|y) ∝ π(ϑ)p(y|ϑ)λl

2 Initialization : l = 0, λ0 = 0
3 while λl < 1 do
4 if l = 0 then
5 for t = 1, . . . , T do

6 Sample ϑ
(0)
t ∼ π0 where π0 is the prior distribution on ϑ

7 end

8 end
9 else

10 for t = 1, . . . , T do

11 Mutation. Move particles ϑ
(l)
t ∼ Kl(ϑ̃

(l−1)

t , dϑ)
12 end

13 end
14 Find the next temperature λt+1 > λt adaptively using the ESS given in

(2.30) as in Buchholz et al. 2021.
15 Reweighting.
16 for t = 1, . . . , T do

17 w
(l+1)
t = p(y|ϑ(l)

t )λl+1−λl

18 Set ϑ
(l+1)
t := ϑ

(l)
t

19 end

20 Resampling. Resample with replacement from {ϑ
(l+1)
t , w

(l+1)
t }n

i=1 to

obtain a new sample with equal weights {ϑ̃
(l+1)

t , 1
T

}
21 l = l + 1

22 end

23 Output : m̂SMC
K (y) =

∏
l

1
T

∑T
t=1 w

(l)
t
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2.4 Proposed estimators

In this section, we present two novel estimators of the model evidence for conjugate
finite mixture models. One of them is inspired by Chib’s method and takes advantage
of the partitioning of the data induced by such models. It yields efficient and robust
results as well as a great reduction in computational time even for K > 5. The
second one is an application of Kong et al. 1994’s sequential imputation algorithm,
which is surprisingly very rarely used as a solution to the problem of evidence
estimation for finite mixtures.

2.4.1 Chib’s estimator on the partitions (ChibPartitions)

Partitioning comes as a natural by-product of the classical Gibbs sampling algo-
rithm given in Algorithm 1. Indeed, if the output of such an MCMC algorithm
is {ϑ

(t), z
(t)}T

t=1, we can denote by C(z(t)) the partition on [n] = {1, . . . , n} in-
duced by z

(t) = (z
(t)
1 , . . . , z(t)

n ), for all t = 1, . . . , T . For example, if n = 4 and
K = 4 and for some t, z

(t) = (1, 2, 1, 3), then the corresponding partition is
C(z(t)) = {{y1, y3}, {y2}, {y4},∅}, i.e observations y1 and y3 are in the same cluster
whereas y2 and y4 are the only members of their respective cluster. A partition is obvi-
ously defined up to a permutation of the labels of the corresponding allocation vector
z

(t). In particular, note that two different allocation vectors z and z̃ can yield the
same partitioning structure. We note this equivalence relation on the partition space
by C(z)

.
= C(z̃). For instance {{y1, y3}, {y2}, {y4},∅}

.
= {{y2}, {y1, y3},∅, {y4}}

The core idea of the ChibPartitions estimator that we propose is to apply the
marginal likelihood identity used by Chib’s algorithm (2.17) to partitions. The
intuition is that partitions are invariant to a permutation of the cluster labels
obtained through Gibbs sampling, and hence do not suffer from a potential lack
of label switching of the MCMC sampler. This is established in the following
proposition.

Proposition 2.1. For the finite mixture model specified in (2.5), the induced prior
distribution on the partition C(z) for some allocation vector z ∈ {1, . . . , K}n is

π(C(z)) =
K!

(K − K+)!

Γ

(∑K
k=1 αk

) ∏K
k=1 Γ(Nk(z) + αk)

Γ

(
n +

∑K
k=1 αk

) ∏K
k=1 Γ(αk)

where K+ < K denote the number of unique elements in the vector z, or alternatively
the number of non empty clusters implied by z.

Proof. First note that the prior on allocations π(z) given by (2.13) gives the same
weight to all allocation vectors z yielding an equivalent partition. Hence,

π (C(z)) = π


 ⋃

z̃:C(z̃)
.
=C(z)

z̃


 =

∑

z̃:C(z̃)
.
=C(z)

π(z) =
K!

(K − K+)!
π(z)

where the last equality comes from |{z̃ : C(z̃)
.
= C(z)}| = K!/(K − K+)!
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Note that the partitions induced by K−component finite mixtures live in the set
PK([n]), the set of partitions of {1, . . . , n} with at most K parts. Now, it is possible
to rewrite Chib’s identity as

m(y) =
p(y|C0)π(C0)

π(C0|y)
(2.31)

for some partition C0 ∈ PK([n]).
This identity is convenient as under a conditionally conjugate model, the likeli-

hood of a partition is available in closed form and given by

p(y|C(z)) = p(y|z) =
K∏

k=1

ˆ

Θ

∏

i:zi=k

p(yi|θ)G0(dθ) :=
K∏

k=1

mk(z) (2.32)

with the convention that m(∅) = 1. The posterior density of a partition C0 is
unfortunately not available in closed form. However, we can estimate it with the
following simple Monte Carlo estimator readily computable from the Gibbs sampler
output.

π̂(C0|y) =
1

T

T∑

t=1

1{C0 .
=C(z(t))} (2.33)

for some sample {z
(t)} distributed according to the posterior distribution. This

estimator is then plugged back into (2.31) to yield the ChibPartitions estimator
m̂ChibP art(y). From a computational viewpoint, comparing two partitions with the
equivalence relation .

= can be done with O(n) operations.
Possible shortcomings of Algorithm 7 stem from the cardinality of the set PK([n])

potentially making the estimation of the posterior density difficult. Note that there
exists no simple expression giving the exact value of |PK([n])| for all K and n but it
can be written as

|PK([n])| =
K∑

k=1

S(n, k) :=
K∑

k=1

1

k!

k∑

l=0

(−1)l

(
k

l

)
(k − l)n

where S(n, k) are the Stirling numbers of the second kind, counting the number of
ways to partition a set of n distinguishable objects into k nonempty subsets (see,
e.g., Graham et al. 1989). This number is increasing very quickly with n and k.
Indeed, |PK([n])| ≈ nk−1/[(k − 1)!k!], if n >> k. It is therefore crucial to choose C0

to be the estimated MAP or a similar high-posterior probability partition to achieve
a reduced variance for the estimator (2.33). As supported by the simulations in
Section 2.5, such a strategy appears to be sufficient to ensure a robust estimator of
the posterior density. One might fear that the connection of C0 with the MCMC
sample {C(z(t))}t could introduce a bias in (2.33). Simulations in Section 2.5 give
no indication of such a phenomenon. Were a bias detected, then a simple strategy
would be to choose C0 within an independent MCMC sample simulated in parallel
to the one used to compute (2.33).

Compared with alternative corrections of Chib’s 1995 method, such as the fully
permuted Chib’s estimator described earlier (hereafter ChibPerm) which requires
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O(TK!) likelihood evaluations, ChibPartitions only needs O(T ), where T is the
length of the Markov chain in Algorithm 7.

Proposition 2.2. An estimate of the variance of log m̂ChibP art(y) is given by

V̂(log m̂ChibP art(y)) = (π̂(C0|y))−2
V̂(π̂(C0|y))

where

V̂(π̂K(C0|y)) =
1

T

(
σ0 + 2

q∑

s=1

(
1 − s

q + 1

)
σs

)

for σs = 1
T

∑T
t=s+1

(
1{C0 .

=C(z(t))} − π̂K(C0|y)
)2

and q large enough.

Proof. The expression of the auto-correlation consistent variance estimator
V̂(π̂K(C0|y)) is an immediate application of Newey and West 1986. Then, the
estimate of log m̂ChibP art(y) is obtained by the Delta method.

Algorithm 7 : ChibPartitions estimator for conditionally conjugate mix-
tures
1 Input : (z(t))T

t=1 from an MCMC targeting π(z|y)
2 for t = 1, . . . , T do
3 Compute π̃(C(z(t))|y) = p(y|C(z(t)))π(C(z(t))) using Proposition 2.1 and

(2.32)
4 Set C0 = argmax

t=1,...,T
{π̃(C(z(t))|y)}

5 end

6 Compute π̂(C0|y) = (1/T )
∑T

t=1 1({C0 .
= C(z(t))})

7 Output : m̂ChibP art(y) = p(y|C0)π(C0)/π̂(C0|y)

2.4.2 Sequential Importance Sampling

The Sequential Importance Sampling (SIS) algorithm described here can be included
in the SMC framwork described in Section 2.3.4. It stems from Kong et al. 1994
that addresses the issue of missing data problems by sequential imputation, using
a latent variable z, representing the missing part of the data. The authors show
that for a particular choice of importance distribution π∗, a SIS procedure yields
a direct estimator of the evidence m(y). This is applicable whenever one can
sample easily from distributions p(zi|y1:i, z1:i−1) for all i ≥ 2 where z1:i = (z1, . . . , zi)
and whenever the prequential predictive densities p(yi|y1:i−1, z1:i−1) are available in
closed form for all i ≥ 2. The link to the latent cluster membership of finite mixture
models z is immediate and shall be highlighted later in this Section.

The core idea is to define π∗ := π∗(z1, . . . , zn|y) = p(z1|y1)
∏n

i=2 p(zi|y1:i, z1:i−1)
as an approximation to the posterior distribution in which the latent variable z is
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imputed sequentially. Then one can notice that

π(z|y) × 1

π∗(z|y)
=

p(z, y)

m(y)
×

(
p(y1)

p(z1, y1)

p(z1, y1, y2)

p(z1, y1, z2, y2)
. . .

p(z1:n−1, y)

p(z, y)

)

=
p(y1)

∏n
i=2 p(yi|z1:i−1y1:i−1)

m(y)

=
w(z, y)

m(y)

where w(z, y) := p(y1)
∏n

i=2 p(yi|z1:i−1, y1:i−1).
This leads to the following identity

ˆ

w(z, y)π∗(z|y)dz =

ˆ

m(y)π(z|y)dz

= m(y)

which implies the unbiased estimator of the marginal likelihood of the data y

m̂SIS(y) =
1

T

T∑

t=1

w(z(t), y)

for a sample {z(t)}T
t=1 from π∗(z|y).

The strength of this estimator is that, just like ChibPartitions, it does not suffer
from label switching or the lack threreof.

Proposition 2.3. An estimate of the standard deviation of log m̂SIS(y) is given by

ŝd(log m̂SIS(y)) =
1√
T

× ŝd(w)

m̂SIS(y)

Proof. The proof is an immediate application of the Delta method and can be found
in Irwin et al. 1994.

As mentioned earlier, it is immediate to apply the SIS framework to the condi-
tionnaly conjugate finite mixture model, as also noticed by Carvalho et al. 2010.
The only requirement is to be able to compute π∗ for the latent cluster membership
variable z, which we give below.

Proposition 2.4. In the conditionnaly conjugate mixture model specified in (2.5),
for all 1 < i ≤ n,

p(yi|z1:i−1, y1:i−1) =
K∑

k=1

mk(z1:i−1 ∪ {zi = k})

mk(z1:i−1)

Nk(z1:i−1) + αk

i − 1 +
∑K

k=1 αk

(2.34)

and for all k = 1, . . . , K,

p(zi = k|y1:i, z1:i−1) ∝ mk(z1:i−1 ∪ {zi = k})

mk(z1:i−1)

Nk(z1:i−1) + αk

i − 1 +
∑K

k=1 αk

(2.35)
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Proof. For all 1 < i ≤ n,

p(yi|z1:i−1, y1:i−1) =

ˆ ˆ

p(yi|̟, θ)
K∏

k=1

Π(dθk|y1:i−1, z1:i−1)Π(d̟|z1:i−1, α)

=
K∑

k=1

ˆ ˆ

̟kf(yi|θk)π(θk|y1:i−1, z1:i−1)dθΠ(d̟|z1:i−1, α)

=
K∑

k=1

mk(z1:i−1 ∪ {zi = k})

mk(z1:i−1))

ˆ

̟kΠ(d̟|z1:i−1, α)

=
K∑

k=1

mk(z1:i−1 ∪ {zi = k})

mk(z1:i−1))

Nk(z1:i−1) + αk

i − 1 +
∑K

k=1 αk

where the second equality comes directly from equations (2.9) and (2.12), while the
integral of the third equality is simply the expectation of the Dirichlet posterior of
the weights given in (2.8). Finally, (2.35) is proved by noticing that

p(zi = k|y1:i, z1:i−1) ∝ p(zi = k, yi|y1:i−1, z1:i−1)

=

ˆ ˆ

p(yi|θk, zi = k)π(zi = k|̟)π(θk|z1:i−1, y1:i−1)

× π(̟|z1:i−1)dθkd̟

=

ˆ ˆ

̟kf(yi|θk)π(θk|z1:i−1, y1:i−1)π(̟|z1:i−1)dθkd̟

=
mk(z1:i−1 ∪ {zi = k})

mk(z1:i−1))

ˆ

̟kΠ(d̟|z1:i−1, α)

=
mk(z1:i−1 ∪ {zi = k})

mk(z1:i−1))

Nk(z1:i−1) + αk

i − 1 +
∑K

k=1 αk

Despite the efficiency of such samplers that will be highlighted in the following
section, note that SIS, and more generally SMC approaches, are not as popular as
Chib’s algorithm or Bridge sampling.

We give in Algorithm 8 an implementation of SIS for a conditionally conjugate
mixture model.
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Algorithm 8 : SIS for the conditionally conjugate mixture model

1 Input : Number of iterations T
2 for t=1,. . . ,T do

/* Initialization */

3 Sample z
(t)
1 from π(z1|y1)

4 Compute p(y1) = m({y1}), set w(t) ← p(y1)
5 for i=2,. . . ,n do

6 Sample z
(t)
i using (2.35)

7 Set w(t) ← w(t)p(yi|z
(t)
1:i−1, y1:i−1) using (2.34)

8 end

9 end

10 Return m̂SIS(y) = 1/T
∑T

t=1 w(t)
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2.5 Simulation study

In this section, we assess and compare our proposed estimators to Chib’s algorithm,
Bridge sampling and SMC. To do so, we consider different experimental designs,
involving large values of K and n.

Unless specified otherwise, we fit Normal mixture models and use the conditionally
conjugate Normal-Inverse Gamma prior for the location and scale parameters θ =
(µ, σ

2) as described in Example 1 and equation (2.10) that is defined for all k =
1, . . . , K by σ2

k ∼ Γ−1(a, b) and µk|σ2
k ∼ N (µ0, σ2

k/λ) where Γ−1 is the inverse
gamma distribution in the shape and scale parametrization. The hyperparameters
(a, b, µ, λ) are derived empirically following recommendations from Raftery 1996 :
a = 1.28, b = 0.36(y2 − y2), µ0 = ȳ, 1/λ = (ymax − ymin)/2.6. Finally the prior on
the mixture weights is chosen to be Dirichlet with concentration parameter α = 1K .
Note that this choice of prior ensures that π(ϑ|y, z) := π(µ, σ

2|y, z) is available in
closed form, which is a prerequisite to most of the algorithms we wish to implement.

2.5.1 Experiment 1 : Galaxies data

The first experiment we design aims at assessing the relative performance of our
suggested ChibPartitions and SIS algorithms in a basic setting. As is usually done
in the mixture modeling community, we use the benchmark galaxies data set that
contains the radial velocity of 82 galaxies.

Figure 2.6 shows boxplots of the estimates of the marginal likelihood given by the
above methods for an increasing number of mixture components K. In each scenario,
the simple arithmetic mean estimator, computed with a very large number of
simulations {ϑ

(t)}T
t=1 from the prior π(ϑ), is defined as m̂AME(y) = 1

T

∑T
t=1 p(y|ϑ(t)).

This prohibitively time-consuming estimator is here solely for a benchmarking
purpose. Except for this estimator, all other algorithms are allocated as much time
as required for them to converge, provided this time is reasonable. For instance,
bridge sampling and the fully-permuted Chib estimator (ChibPerm) are not included
for K = 6 and K = 8 as they fail to converge in a time comparable to the other
methods. Hence, Figure 2.6 only provides insights about which methods provide
reliable estimates for an increasing number of mixture components. For K = 3,
although most estimates agree on a common value for m(y), Chib’s method is almost
exactly off by a factor log 3! ≈ 1.79, which is the consequence of an almost complete
lack of label switching during the Gibbs sampling step, as discussed earlier. The sum
over all permutations produced by the fully-permuted Chib’s estimator (ChibPerm)
makes up for this bias, and so does ChibRandPerm, which sums over 100 randomly
sampled permutations. As K grows, all classical methods except adaptive SMC
fail to estimate the marginal likelihood while our candidates ChibPartitions and
SIS are consistently pointing to the reference value given by the arithmetic mean
estimator. For K = 5, the time (in seconds) taken by each of the four successful
algorithms (ChibPartitions, SIS, adaptive SMC and Bridge sampling) to yield one
estimate of the marginal likelihood as displayed in Figure 2.6 is respectively 425,
472, 7539, 57983. The time given corresponds to the average computational time
over 20 repetitions of each estimator on one core Intel(R) Xeon(R) CPU E5-2630
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v4 @ 2.20GHz. As is expected theoretically, one can observe a massive decrease
in computational time offered by ChibPartitions and SIS with respect to Bridge
Sampling and the fully permuted Chib’s estimator. Although it is not done in
this experiment, note that it is straightforward to parallelize the embarrassingly
parallel SIS algorithm and thus to further reduce its computational time. Figure
2.8 shows the evolution of the Mean Squared Error (MSE) as a function of time for
the 5 component-mixture model on the galaxies data. Note that methods SIS and
SMC are not implemented in their parallelized version. Despite this, SIS clearly
outperforms the other algorithms, closely followed by ChibPartitions.

Figure 2.7 gives boxplots of the marginal likelihoods estimators given by SIS for
different values of K and indicates that a mixture of 5 components is best supported
by the galaxies data, for our choice of prior.

Figure 2.7: galaxies data. Boxplots of the SIS marginal likelihood estimators for
different values of K. 20 repetitions each.
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Figure 2.9: Experiment 2, n = 1000. Boxplots with 20 replications for each method
considered

to converge in a reasonable time, we only consider ChibPartitions, SIS, SMC and
Bridge sampling for this more difficult scenario. It is difficult to compare these
four methods on an equal footing since there is no one-to-one connection between
their respective hyperparameters. The results obtained on Figures 2.9 and 2.10 are
roughly the best possible outcome for each algorithm. That is, when increasing the
value of a hyperparameter, thus allocating more computational time, we do not
observe a significant improvement for the observed Monte Carlo variance.

The obtained results are presented on Figures 2.9 and 2.10. ChibPartitions
is presented in a separate plot for readability reasons. We can indeed see that it
suffers from a pathological variance, probably due to the high cardinality of the set
of partitions P3([1000]). This in turn leads to a strong downward bias on the log
scale. The other methods considered all seem to agree on a common value for the
marginal likelihood for all considered values of K. Note that the Bridge sampling
estimator is not included in the scenarios where K > 3 as it failed to give an output
in a reasonable time. For K = 3 however, Bridge Sampling seems to be giving the
most accurate estimate of log m̂(y). The average computational times to obtain one
marginal likelihood estimate is given in Table 2.1. We see that the computational
time of SIS is much lower than that of adaptive SMC, for a comparable estimation
precision.

2000 observations. The data generating process for this
scenario is a 6-component mixture of Normal distributions
with means µ = (2.51, −6.22, −5.28, −4.54, 2.75, 11.46), weights
̟ = (0.20, 0.01, 0.27, 0.20, 0.18, 0.14) and scales σ = (2, 2, 2, 2, 2, 2). Given
the previous experiment, we do not include ChibPartitions in our simulations
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Figure 2.10: Experiment 2 n = 1000. Boxplots of ChibPartitions with 20 replications

Time in seconds
Algorithm ChibPartitions SIS SMC Bridge Sampling
K

3 110 230 3565 1008
7 324 250 7870 -
10 532 434 11907 -
13 778 674 17496 -

Table 2.1: Experiment 2. Average time needed to obtain one of the marginal
likelihood estimates used in the boxplots of Figures 2.9 and 2.10.
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Figure 2.11: Experiment 2 n = 2000. Boxplots with 20 replications for each method
considered

Time in seconds
Algorithm SIS SMC Bridge Sampling
K

3 153 5890 2870
13 903 34468 -

Table 2.2: Experiment 2. Average time needed to obtain one of the marginal
likelihood estimates used in the boxplots of Figure 2.11.

and focus on SMC, SIS and Bridge Sampling. The latter, as shown on 2.11, has
a considerably small variance for the case K = 3, but is unfortunately unable
to converge in a reasonable time for K = 13. Although they show comparable
results for K = 3, SIS clearly outperforms SMC both in terms of variance and
computational time (cf Table 2.2) for the most complex scenario where K = 13.

2.5.3 Experiment 3 : Synthetic data, n = 1000, well-specified
mixture

In this experiment, we try to assess the performance of our methods on a well-
specified six-component mixture of normal distributions. The Data Generating
Process (DGP) is the six-component normal mixture with equal weights, means
µ = (0, 6, 12, 18, 24, 30) and variances σ

2 = (1, 1, 1, 1, 1, 1) from which we generate
n = 1000 data points y. On the other hand, we fit a conditionally conjugate normal
mixture model with K = 6 and hyperparameters as the ones chosen in Experiment
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Figure 2.13: Boxplots for the Experiment 3. 20 repetitions for each algorithm.
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2.6 Conclusion and perspectives

In this chapter, we have explained why estimating the marginal likelihood of
K−component finite mixture models is a complex task that generally requires
ad hoc solutions. Classical estimators usually suffer from a sort of curse of di-
mensionality phenomenon as their complexity typically grows as K!, due to the
multimodality of the posterior distribution.

We identified two methods, namely ChibPartitions and SIS, that scale with
the number of mixture components and/or with the number of observations, as
opposed to classical algorithms. We have investigated several scenarios to better
understand the strengths and flaws of these algorithms. In particular, it seems that
ChibPartitions is more efficient than any other method provided the considered
mixture model is well-specified. On the other hand, SIS outperforms the other
algorithms in more ill-specified settings and provides reliable estimates for all kind
of scenarios. Furthermore, the adaptive SMC algorithm that we have presented
shows rather good performance and can be used in the non-conjugate case.

An interesting research avenue would consist in deriving a more elaborate estimate
for the posterior on the partitions π(C0|y). This could indeed greatly improve the
performance of the ChibPartitions algorithm.
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Chapter 3
Evidence asymptotics and estimation for

infinite mixtures

Abstract

In this chapter, we investigate the frequentist properties of the marginal likelihood of
a Dirichlet Process mixture, and establish the consistency of the Bayes factor when
comparing a parametric family of finite mixtures against the nonparametric ‘strongly
identifiable’ Dirichlet Process Mixture model. We then consider the problem of
estimating numerically the marginal likelihood of the Dirichlet Process mixture
(DPM) model, a.k.a the infinite mixture model. This is a difficult problem that is
still lacking a fully satisfactory resolution. In particular, we evaluate the algorithm
proposed by Basu and Chib 2003 and suggest an alternative based on an idea of
Geyer 1994.

69
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3.1 Introduction

The Dirichlet Process Mixture model (DPM), or ‘infinite’ mixture model, first
introduced by Ferguson 1983, has become one of the main tools in the field of
Bayesian nonparametrics. Its range of applications is broad, from multivariate
clustering (see, e.g., Crépet and Tressou 2011) to Bayesian density estimation (Neal
1992, Rabaoui et al. 2012). Such models are of particular interest when practitioners
are not willing to make strong assumptions on the underlying a priori distribution
of the mixture parameters. In this setting, their prior distribution is assumed to be
a realization of the Dirichlet Process (DP), formalized by Ferguson 1973, which can
be viewed as a prior on the space of discrete distributions.

Bayesian model selection is primarily done by comparing the marginal likelihoods
of the data (a.k.a model evidence) for competing models, defined as

m(y) =

ˆ

Θ

f(y|θ)Π(dθ)

for some data y, a density function f , prior Π, and parameter space Θ. In the context
of mixture modeling, being able to compute the evidence of a model is of great
importance and has several applications of interest. For instance, the usual problem
of statistical modeling of determining whether an n−sample y = (y1, . . . , yn) arises
from a particular parametric family of distributions can be formalized as a goodness
of fit test against a nonparametric alternative, like the DPM. For example, Tokdar
and Martin 2021 designs a particular DPM alternative for testing normality. Other
applications include Argiento et al. 2010 who attempts to find the best-fitting mixing
measure by minimizing the Bayes Factor for parametric against nonparametric
alternatives in the context of Bayesian density estimation, or Ray and Mallick 2006
who compute the marginal likelihood of a DPM in order to choose a partition of
the data. The Bayes Factor was proven to be consistent for a point null hypothesis
against a large class of nonparametric alternatives by Dass and Lee 2004. Mcvinish
et al. 2009 derive sufficient conditions on nonparametric distributions for which the
consistency of the Bayes factor for testing a parametric family of distributions holds.
Proving such consistency results usually comes at the cost of having a refined control
on the asymptotic behavior of the marginal likelihoods that determine the Bayes
Factor.

Understanding the behavior of the marginal likelihood of some data y under the
Dirichlet Process mixture model, denoted by mDP (y), corresponds to determining
asymptotic lower and upper bounds for the latter. Deriving lower bounds on marginal
densities is typically done along the lines of Ghosal et al. 2000, where these bounds
are used to obtain posterior concentration rates under a Dirichlet Process mixture
model. There is now a large literature on posterior contraction rates in Dirichlet
process mixture models, see for instance Ghosal and van der Vaart 2007, Kruijer
et al. 2010, Shen et al. 2013, and Scricciolo 2014 in which a lower bound on mDP (y)
is derived for Dirichlet Process mixtures of Gaussians.

The difficult part when assessing evidence in this setting stands in obtaining an
upper bound on mDP (y), since it requires a refined understanding on neighborhoods
of f0, the true density from which data arise. Obtaining such an upper bound is
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of interest even outside the context of testing, since it is a way to understand the
behavior of credible regions in infinite dimensional models (see, e.g., Rousseau and
Szabo 2020), together with proving a lower bound on posterior contraction rates as
in Castillo 2008.

Obviously, practical applications of Bayes Factor consistency results for the
DPM are dependent on the existence of reliable estimators of the model evidence
associated to the DPM and, subsequently, to the Bayes Factor. Unfortunately, this
issue still lacks a satisfactory and popular resolution. In fact, to our knowledge,
only Basu and Chib 2003 directly address the issue of evidence estimation for the
DPM by adapting the method of Chib 1995. SMC tools have been proposed by
MacEachern et al. 1999 for beta-binomial Dirichlet Process mixtures. This idea was
later generalized by Griffin 2017 and applied to a very particular kind of DPM by
Tokdar and Martin 2021. However, their proposed SMC framework relies on the
strong assumption that the concentration parameter M of the DP is known and
fixed. Quintana and Newton 2000 give an ad hoc procedure in order to identify the
maximum likelihood estimator of M . Neither Chib’s algorithm nor SMC appear to
be widely used by practitioners. Hence, it is a common practice to use the DPM
without considering alternative parametric or nonparametric models, although it
may not always be appropriate.

In Section 3.3, we derive an upper bound on mDP (y) when f0 ∈ ∪K∈N∗MK ,
where MK denotes the mixture models with K components fθ(y) (Theorem 3.1). We
subsequently establish the consistency of the Bayes factor comparing the parametric
family of ‘strongly identifiable’ finite mixtures against the nonparametric location
Dirichlet Process Mixture model (Corollary 3.2). This is achieved by controlling the
a priori mass of decreasing neighborhoods of the true density f0 (Lemma 3.3).

We propose in Section 3.4 an algorithm based on Reverse Logistic Regression
(Geyer 1994) that does not require the concentration parameter M to be fixed but
rather to follow a Gamma prior distribution. We show empirically that this method
scales better with the amount of data than the algorithm of Basu and Chib 2003
does. We also provide a review and assessment of the ways to estimate the marginal
likelihood of a nonparametric DPM model, including scenarios where n is large,
which, to our knowledge, has not been done before. Moreover, we assess empirically
the behavior of the Bayes Factor comparing a family of finite mixtures against a
nonparametric DPM alternative.



3.2. The Dirichlet Process Mixture model 73

3.2 The Dirichlet Process Mixture model

This introduction to the Dirichlet Process and the subsequent Dirichlet Process
Mixture model is mainly based on the book by Hjort et al. 2010 and in particular
on Chapter 2 (Ghosal 2010).

3.2.1 Notations

• Data : y = (y1, . . . , yn), n ≥ 1.

• Subset of data : y1:l = (y1, . . . , yl) for l ≤ n

• Π(ϑ) : generic notation of a prior distribution on some parameter ϑ.

• π(ϑ) : Radon-Nikodym density of Π(ϑ) with respect to some measure ν (the
Lebesgue measure or the counting measure, depending on the context).

• Π(ϑ|y) : posterior distribution of some parameter ϑ given data y.

• π(ϑ|y) : Radon-Nikodym density of Π(ϑ|y) with respect to some measure ν

(the Lebesgue measure or the counting measure, depending on the context).

3.2.2 The Dirichlet Process

The Dirichlet Process (DP) was first introduced by Ferguson 1973 as a stochastic
process which realizations are probability distributions. More precisely, for Θ

is a measurable space, G0 a probability measure on Θ and some M > 0, the
Dirichlet Process DP (M, G0) is such that for all finite partition {B1, . . . , BK} of Θ,
if P ∼ DP (M, G0), then

(P (B1), . . . , P (BK)) ∼ D(MG0(B1), . . . , MG0(BK)) (3.1)

where D(·) denote the K-dimensional Dirichlet distribution. As we will see later on,
this stochastic process is commonly used in the field of Bayesian nonparametrics as a
prior on the distribution of the component parameters of an infinite-dimensional mix-
ture model, or Dirichlet Process Mixture model and we derive below the fundamental
properties of the Dirichlet Process that help comprehend its attractiveness.

Expectation and variance of a realization of the DP. Deriving the first two
moments of a realization of the Dirichlet Process helps understanding the specific
roles of the probability measure G0 and the so called concentration parameter
M > 0 which fully characterize the DP. They can easily be computed using the
trivial partition {B, Bc} of Θ, for a measurable set B,

P (B) ∼ D(MG0(B), M(1 − G0(B)))
d
= Beta(MG0(B), M(1 − G0(B)).

Therefore,

E[P (B)] =
G0(B)

G0(B) + 1 − G0(B)
= G0(B).
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This implies that if θ|P ∼ P then

P(θ ∈ B) = E(1(θ ∈ B)) = E[E(1(θ ∈ B)|P )]

= E[P(θ ∈ B|P )]

= E[P (B)] = G0(B)

Hence, the marginal distribution of θ is G0. For this reason, the latter is called
base measure.

On the other hand,

V[P (B)] =
G0(B)(1 − G0(B))

M + 1
,

which implies that P is more concentrated around its mean as M grows. Hence the
name concentration parameter for M . Moreover, as M → ∞, P (B) → G0(B) for
any measurable set B, which implies that P → G weakly.

Conjugacy. Another interesting property of the Dirichlet Process is its conju-
gacy. Indeed, if one considers a sample {θ1, . . . , θn} from P , then for all partition
{B1, . . . , BK}, equation (3.1) yields

P(P (B1), . . . , P (BK)|θ1, . . . , θn) ∝ P(θ1, . . . , θn|P (B1), . . . , P (BK))

× P(P (B1), . . . , P (BK))

= P (B1)
NB1

+MG0(B1) × · · · × P (BK)NBK
+MG0(BK)

where NBk
= |{i : θi ∈ Bk}|.

Hence

P (B1), . . . , P (BK)|θ1, . . . , θn ∼ D(NB1 + MG0(B1), . . . , NBK
+ MG0(BK)).

Since this is true for all partitions of Θ, then the posterior distribution of P given a

sample (θ1, . . . , θn) is again a Dirichlet Process with base measure
MG0+

∑n

i=1
δθi

M+n
and

concentration parameter M + n. This writes

P |θ1, . . . , θn ∼ DP

(
M + n,

MG0 +
∑n

i=1 δθi

M + n

)

Predictive distribution and discreteness of realizations of the DP. A
specificity of the Dirichlet Process is that its realizations are almost surely discrete
distributions. To see this, consider the predictive distribution of θn+1 given a sample
(θ1, . . . , θn) ∼ P .
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P(θn+1 ∈ B|θ1, . . . , θn) =

ˆ

P(θn+1 ∈ B|P )P(dP |θ1, . . . , θn)

=

ˆ

P (B)P(dP |θ1, . . . , θn)

= E[P (B)|θ1, . . . , θn]

=
MG0(B) +

∑n
i=1 δθi

(B)

M + n
.

Hence,

θn+1|θ1, . . . , θn ∼ M

M + n
G0 +

1

M + n

n∑

i=1

δθi
(3.2)

Thus, irrespective of the nature of the base measure G0, sample values from P might
take on the same value with non-zero probability. This implies that a realization P
of the Dirichlet Process is almost surely a discrete distribution. Another interesting
property induced by (3.2) is the exchangeability of the sequence (θ1, . . . , θn). Thus
it is possible to derive the full conditional distribution

θi|θ−i ∼ M

M + n − 1
G0 +

1

M + n − 1

n∑

i=1

δθi
(3.3)

where θ−i := (θ1, . . . , θi−1, θi+1, . . . , θn).
The next paragraph describes a useful analogy to characterize the Dirichlet process.

The Chinese Restaurant Process analogy. A useful representation of the DP
can be built upon the discreteness of its realizations and the predictive distribution
(3.2). Indeed, since P is almost-surely discrete, a sample (θ1, . . . , θn) may have ties.
Let us denote by (θ∗

1, . . . , θ∗
K+

) the K+ ≤ n unique values in the sample. Then a
new value θn+1 is sampled according to the distribution

θn+1|θ
∗
1, . . . , θ∗

K ∼ M

M + n
G0 +

1

M + n

K∑

k=1

Nkδθ∗

k
(3.4)

with Nk =
∑n

i=1 1(θi = θ∗
k), where we have simply used the predictive distribution

(3.2).
This is conveniently formalized by the so-called Chinese Restaurant Process (CRP,
Aldous 1985), which is a discrete-time stochastic process, best described with the
analogy of sitting customers arriving one by one in a restaurant with an infinite
number of tables. That is, in this restaurant analogy, a new customer θn+1 sits at
an existing table with probability Nk/(M + n), while it sits at a new table with
probability M/(M + n). Once the customer is seated, distribution (3.4) is updated
according to the table allocation of θn+1 before proceeding with seating the next
new customer, θn+2.

This representation helps better understand the ‘rich gets richer’ phenomenon
at play with the Dirichlet Process. A new customer will seat at an existing table
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with probability proportional to the number of customers already seated at this
table. In fact, the expected number of tables as n grows to infinity is O(M log n).
Indeed, since for all i = 1, . . . , n the probability that customer i sits at a new table is
M/(M + i−1). Hence, the expected number of table is given by

∑n
i=1 M/(M + i−1)

which is upper-bounded by MHn where Hn is the n-th harmonic number.
The CRP is also useful for understanding the partitioning structure induced

by the Dirichlet Process. The unique values (θ∗
1, . . . , θ∗

K) among (θ1, . . . , θn) define
indeed a partition on the space [n], which makes the DP particularly attractive as a
prior on the distribution of the parameters of the components of a mixture model,
as we shall see in the next section.

Table 1 Table 2 Table 3

θ∗
1 θ∗

2 θ∗
3

C1 C2 C4 C3 C7 C5 C6

. . .
∝ M ∝ M

Figure 3.1: Illustration of the Chinese Restaurant Process. Ci stands for customer i.

Stick-breaking representation of realizations of the DP. Sethuraman 1994
gives the following convenient representation of realizations of a DP as discrete
distributions on Θ with infinitely many atoms. It is derived as

θ1, θ2, . . .
i.i.d∼ G0

V1, V2, . . .
i.i.d∼ Beta(1, M)

̟k = Vk

k−1∏

j=1

(1 − Vj), for k = 1, 2, . . .

P =
∞∑

k=1

̟kδθk

(3.5)

The induced distribution on the weights ̟ is usually denoted GEM(M) and is
called the stick-breaking distribution. Indeed, if one assimilates the segment [0, 1]
with a stick of length 1 that is first broken at ̟1 = V1, a proportion V2 of the
remaining length of the stick (1 − V1) is then broken, and so on, as illustrated on
Figure 3.2. This mechanism ensures that

∑∞
k=1 ̟k = 1 a.s.

The representation of P as a discrete distribution given in (3.5) makes the
Dirichlet Process an intuitively convenient choice of prior for the parameters of an
‘infinite’ mixture model that we shall introduce in the next section.
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̟1 ̟2 ̟3 . . .

0 1

Figure 3.2: Illustration of the stick breaking process for V1 = 0.2, V2 = 0.4, V3 = 0.3
and the resulting weights ̟1, ̟2 and ̟3 represented on a ‘stick’ of length one.

3.2.3 The Dirichlet Process Mixture model - specification
and posterior inference

First formalized by Ferguson 1983, the Dirichlet Process Mixture model (DPM) can
be specified as

yi|θi
i.i.d∼ F (yi|θi) for i = 1, . . . , n

θi|P ∼ P

P |G0, M ∼ DP (M, G0)

M ∼ ΠM

(3.6)

for a collection of data points y = (y1, . . . , yn) where F (·|θ) is a distribution supported
on R

d with density with respect to the Lebesgue measure f(·|θ). The discrete nature
of realizations of the Dirichlet Process P enables ties in the parameters and therefore
a clustering of the data y.

An alternative specification to (3.6) that truly highlights the mixture nature of
the DPM makes use of the stick-breaking representation (3.5) and reads

yi|zi, θ
i.i.d∼ F (yi|θzi

) for i = 1, . . . , n

θ1, θ2, . . .
i.i.d∼ G0

P(zi = k|̟) = ̟k

̟1, ̟2, . . . |M ∼ GEM(M)

M ∼ ΠM

where θ = (θi)
∞
i=1.

Equivalently, since P =
∑∞

k=1 πkδθk
a.s, the likelihood of data y given P is easily

derived as

fP (y) := p(y|P ) =
n∏

i=1

ˆ

Θ

f(yi|θ)dP (θ) =
n∏

i=1

∞∑

k=1

̟kf(yi|θk) (3.7)

The link between the likelihood (3.7) and that of a finite mixture is immediate and
explains the commonly used ‘infinite mixture’ term for denoting the DPM. In fact,
the DPM arises as the limit of a K−dimensional finite mixture with Dirichlet prior
D(M/K, . . . , M/K), as K → 0.

The likelihood (3.7) is not convenient to work with due to its intractability. It
is common to consider instead the likelihood augmented with the latent allocation
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variables z = (z1, . . . , zn) given by

p(y|z) =

ˆ

p(y|z, θ)Π(dθ)

=

ˆ n∏

i=1

p(yi|zi, θ)Π(dθ)

=
K+∏

k=1

ˆ ∏

i:zi=k

f(yi|θ
∗
k)G0(dθ∗

k)

=
K+∏

k=1

mk(z) (3.8)

where mk(z) :=
´ ∏

i:zi=k f(yi|θ
∗
k)G0(dθk) is the marginal likelihood of data allocated

to component k and K+ is the number of non-empty clusters induced by the
allocation vector z. This quantity is available in closed form for a conjugate prior
G0 to the likelihood function f .

From the predictive distribution (3.2) one can derive the prior induced on the
allocation vector z that writes

π(z|M) = π(z1, . . . , zn|M) =
Γ(M)

Γ(M + n)
MK+

K+∏

k=1

Γ(Nk). (3.9)

Notice that equation (3.9) implies that the sequence of random variables
z = (z1, . . . , zn) is exchangeable under the DP prior.

The posterior distribution on the allocation vector can then be derived up to a
constant as

π(z|y, M) ∝ p(y|z)π(z|M)

On the other hand, full conditional posteriors on θ can be obtained up to a
proportionality constant by using equation (3.3) and multiplying by f(yi|θi)

θi|θ−i, y, M ∝ Mf(yi|θi)G0(θi) +

K−i
+∑

k=1

N−i
k f(yi|θ

∗
k)δθ∗−i

k

where the quantities with a superscript −i denote the appropriate quantities once
observation yi is ignored.
Notice that this can be rewritten as

θi|θ−i, y, M ∝ M

ˆ

Θ

f(yi|θi)G0(dθi) × Π(θi|yi) +

K−i
+∑

k=1

N−i
k f(yi|θ

∗−i
k )δθ∗−i

k

which defines a Gibbs Sampling strategy where θi is either given the value of one of
the unique θ

∗−i with probability proportional to N−i
k f(yi|θ

∗
k), or assigned a new value

of theta from the posterior distribution given yi only with probability proportional
to M

´

Θ
f(yi|θi)G0(dθi). Another interpretation is to first sample the allocation zi
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according to its full conditional

Π(zi|z−i, θ
∗−i, y, M) ∝





M
´

Θ
f(yi|θ)G0(dθ) if zi = K−i

+ + 1

N−i
zi

f(yi|θ
∗−i
zi

) if zi = 1, . . . , K−i
+

(3.10)

before sampling θi as

Π(θi|zi, z−i, θ
∗−i, y) =





Π(θi|yi) if zi = K−i
+ + 1

δθ∗−i
zi

if zi = 1, . . . , K−i
+

(3.11)

This is summarized in Algorithm 9 below.

Algorithm 9 : Gibbs Sampler for conditionally conjugate DPM
1 At step t,
2 for i = 1, . . . , n do

3 Sample z
(t)
i |z(t)

−i, (θ∗−i)(t), y, M according to (3.10);
4 Sample θi|zi, z−i, θ

∗−i, y according to (3.11);
5 end

6 Return ({z
(t), θ

(t)}t) distributed according to Π(θ, z|y, M)

The parameters θ can hinder good mixing within the above Gibbs sampler. Thus,
if clustering is the only purpose of inference, it is common to integrate with respect
to Π(θ∗−i|y) which yields

Π(zi = k|z−i, y, M) ∝




M
´

Θ
f(yi|θ)G0(dθ) if k = K−i

+ + 1

N−i
k

´

Θ
f(yi|θ

∗−i
k )dΠ(θ∗−i

k |y−i
k ) if k = 1, . . . , K−i

+

(3.12)

where y
−i
k = {yl : l -= i and zl = k} and

Π(θ|y−i
k ) ∝ G0(θ)

∏

l (=i,sl=k

F (yl|θ)

is the posterior distribution computed on data allocated to group k, excluding yi,
which is analytical for a conjugate pair G0 and F .
Hence equation (3.12) can be rewritten as

Π(zi = k|z−i, y, M) ∝




M
´

Θ
f(yi|θ)G0(dθ) if k = K−i

+ + 1

N−i
k mk(z−i ∪ {zi = k})/mk(z−i) if k = 1, . . . , K−i

+

(3.13)
where mk(z) is defined as in equation (3.8).
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This defines the so called collapsed Gibbs Sampler (Neal 2000) as detailed below.

Algorithm 10 : Collapsed Gibbs Sampler for conditionally conjugate DPM
1 At step t,
2 for i = 1, . . . , n do

3 Sample z
(t)
i |z(t)

−i, y, M according to (3.13);
4 end

5 Return {z
(t)}t distributed according to Π(z|y, M)

As indicated in our model specification (3.6), it is common practice to assume a
prior distribution ΠM on M . In fact, when estimating the number of clusters present
in a dataset, Ascolani et al. 2023 shows that a well-chosen prior on M can lead to a
consistent estimation procedure while Miller and Harrison 2013 demonstrate that it
is not true when M is held fixed.

However, computing the full conditional posterior distribution on M to perform
Gibbs sampling is not trivial. Escobar and West 1995 give a convenient data-
augmentation strategy to be able to infer M within the Gibbs sampling framework.
Using the posterior on K+ given in Antoniak 1974,

π(K+|M, y) = cn(K+)n!MK+
Γ(M)

Γ(M + n)

= cn(K+)n!MK+−1 β(M + 1, n)(M + n)

Γ(n)

where cn(K+) does not depend on M and β(·, ·) denotes the usual Beta function,
the posterior full conditional on M can be written

π(M |K+, z, y, θ) = π(M |K+, y)

∝ π(M)π(K+|M, y)

∝ π(M)MK+−1(M + n)

ˆ 1

0

xM(1 − x)n−1dx.

Thus, the posterior full conditional of M can be seen as the marginal distribution of
the joint distribution on (M, η) for some random variable η such that

π(M, η|K+, y) ∝ π(M)MK+−1(M + n)ηM(1 − η)n−1

for 0 < η < 1.
Now note that for a Gamma prior Γ(a, b) on M , given η,

π(M |η, K+, y) ∝ Ma+K+−2 exp{−(b − log η)M}(M + n)

∝ Ma+K+−1 exp{−(b − log η)M} + nMa+K+−2 exp{−(b − log η)M}

∝ (b − log η)a+K+

Γ(a + K+)
Ma+K+−1 exp{−(b − log η)M}

+
n(b − log η)

a + K+ − 1

(b − log η)a+K+−1

Γ(a + K+ − 1)
Ma+K+−2 exp{−(b − log η)M}
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which is a mixture of two Gamma distributions,

Π(M |η, K+, y) = ωΓ(a + K+, b − log η) + (1 − ω)Γ(a + K+ − 1, b − log η) (3.14)

with ω = (a + K+ − 1)/{a + K+ − 1 + n(b − log η)}.
Trivially,

Π(η|M, y) = Beta(M + 1, n).

Hence the following algorithm gives a full Gibbs sampling strategy when a Γ(a, b)
prior is set on the concentration parameter.

Algorithm 11 : Collapsed Gibbs Sampler for conditionally conjugate DPM
and M ∼ Γ(a, b) a priori

1 At step t,
2 for i = 1, . . . , n do

3 Sample z
(t)
i |z(t)

1:i−1, z
(t−1)
i+1:n, y, M (t) according to (3.13);

4 end

5 Sample η(t)|K(t)
+ , M (t−1), y ∼ Beta(1 + M (t−1), n);

6 Sample M (t)|K(t)
+ , η(t), y using the mixture (3.14);

7 Return {z
(t), M (t)}t distributed according to Π(z, M |y)

While these Gibbs sampling approaches are well-established, there still remains
computational challenges when working with the DPM. For instance the issue of
Bayesian model selection and assessment, which in practice heavily depends on the
availability of model evidence estimation techniques. However, this issue remains
largely unexplored so far in Bayesian non-parametrics. To the best of our knowledge,
only Basu and Chib 2003 directly addresses the problem of estimating the marginal
likelihood of a DPM. For this reason, this algorithm has never been properly assessed
and compared to alternative methods.

From a theoretical perspective, deriving an upper-bound on the marginal likeli-
hood in a Dirichlet Process mixture model remains an open challenge. We provide
such a result in the next Section. Our main contribution is the derivation of an
asymptotic upper bound on mDP (y) (Theorem 3.1). This is done by controlling the
a priori mass of decreasing L1-neighborhoods of the true mixture density f0 (Lemma
3.3). A consequence is the consistence of the Bayes Factor comparing a parametric
model against a DPM alternative (Corollary 3.2).

In Section 3.4, we propose an empirical illustration of the above-mentioned
theoretical results. Doing so requires reliable estimates to the model evidence
mDP (y). We derive a new approach based on Geyer’s Reverse Logistic Regression
(RLR) trick (Geyer 1994) and compare its performance with Chib’s algorithm for
the DPM.
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3.3 Asymptotics of the evidence associated to the

DPM

In this section we study the asymptotic behaviour of the marginal likelihood
mDP (y) =

´

fP (y)dΠ(P ) when Π is the Dirichlet Process DP (M, G0) for some

data y = (y1, . . . , yn) with yi
iid∼ f0, a probability density on R

d. Understanding
the behaviour of mDP (y) corresponds to determining asymptotic lower and upper
bounds for mDP (y). Deriving lower bounds on marginal densities is typically done
using the technique of Ghosal et al. 2000, Lemma 8.1 for instance, where it is is used
to derive posterior concentration rates under a Dirichlet Process mixture model.
There is now a large literature on posterior contraction rates in Dirichlet process
mixture models, see for instance Ghosal and van der Vaart 2007, Kruijer et al. 2010,
Shen et al. 2013, and Scricciolo 2014 in which a lower bound on mDP (y) is derived.

The difficult part when assessing evidence in this setting stands in obtaining an
upper bound on mDP (y), since it requires a refined understanding on neighbourhoods
of f0. In the following section we concentrate on deriving such an upper bound when
f0 ∈ ∪K∈N⋆MK , where MK denotes the model of mixtures with K densities fθ(y).
Indeed an important application of such an upper bound is in the goodness of fit test
(or test for the number of components) H0 : f0 ∈ MK , versus H1 : f0 /∈ MK , to prove
that the Bayes factor is consistent under the null, i.e that mK(y)/mDP (y) → ∞ in
probability under f0.

3.3.1 Main result

In this section we assume that P0 =
∑K0

j=1 ̟0
j δθ0

j
where ̟0

j > 0 for all j and θ0
j -= θ0

i

for all i -= j, resulting in

f0 = fP0 :=

ˆ

Θ

f(y|θ)P0(dθ) =
K0∑

j=1

̟0
j f(y|θ0

j ).

We also consider the following regularity assumptions on the distribution f(y|θ).

Assumption A1 [Regularity] For all y ∈ Y ⊂ R
d, the function θ → f(y|θ) is twice

continuously differentiable and there exist H1 ∈ L2(Rd), H2 ∈ L1(Rd), H3 ∈ L1(Rd),
and δ0, δ > 0 such that for all j = 1, · · · , K0,

sup
θ∈Θ

‖∇f(y|θ)‖ ≤ H1(y),

sup
‖θ−θ0

j
‖≤δ0

‖D2f(y|θ)‖ ≤ H2(y)

‖D2f(y|θ) − D2f(y|θ0
j )‖ ≤ H3(y)‖θ − θ0

j ‖δ, ∀‖θ − θ0‖ ≤ δ0,

where ∇f and D2f denote respectively the gradient and the Hessian matrix of f .
We then consider a strong identifiability assumption, similar to the one used

in Chen 1995 or Nguyen 2013. Denote by S+
d the set of symmetrical semi-definite

matrices of dimension d.
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Assumption A2 [Strong identifiability] For all ǫ > 0 and all ν0 non null measures
on A0 = [∪K0

j=1B(θ0
j , ǫ)]c satisfying ν0(A0) ≤ 1 and all α0 ≥ 0, αj ∈ R, βj ∈ R

d and
γj ∈ S+

d , j = 1, · · · , K0,

α0fν0(y) +
K0∑

j=1

[αjfθ0
j

+ βj∇fθ0
j

+ tr(D2fθ0
j
γj)] = 0 ⇔ α0 = αj = 0, βj = 0, γj = 0

where fλ =
´

fθ(x)λ(dθ) for all finite measure λ on R
d.

Assumption A3 For all x, fθ(x) converges to 0 at Θ̄ ∩ Θc, where Θ̄ is the closure
of Θ and supθ ‖fθ(·)‖∞ < ∞.
Assumption A4 The Dirichlet Process base measure G0 has positive density on
R

d and verifies:
´

Θ
ea1‖θ‖a2 dG0(θ) < ∞, for some a1, a2 > 0

Assumption A5 The prior ΠM on M has support on [ζ, ∞) for some ζ > 0 and is
such that

ˆ ∞

ζ

exp {M(δ0 + (1 − δ1) log K0)} dΠM(M) < ∞

where δ0, δ1 > 0 can be chosen arbitrarily small.

Remark 3.1. The cornerstone of the proof of Lemma 3.3 is the existence and
boundedness of the density function of the Dirichlet Process random mean defined as
µ(P ) :=

´

θdP (θ) for P a realization of the Dirichlet Process DP (M, G0). Feigin
and Tweedie 1989 show that if

´

Θ
log(1 + ‖θ‖)dG0(θ) < ∞ then the random mean

µ(P ) exists. Thus, Assumption A4 clearly ensures the existence of µ(P ) and is also
necessary to the proof of Theorem 3.1.

Remark 3.2. Assumption A5 is a sufficient but not a necessary condition for the
proof of Lemma 3.3. The truncation on the support of the concentration parameter
M can be understood as a way for the Bayes factor to efficiently discriminate between
the DPM and finite mixture models. Indeed, as M goes to 0, the number of non-empty
clusters given by the DPM is close to 1, making the distinction between the two
models difficult. One prior distribution satisfying this assumption is the truncated
Gamma distribution with rate β > δ0 + (1 − δ1) log K0.

The next Theorem shows that under Assumptions A1–A5 and if fP0 is a mixture
with K0 components, then mDP (y) is bounded from above by n−(K0−1+dK0+t)/2 for
some 0 < t < ζ.

Theorem 3.1. Assume that y = (y1, . . . , yn) are i.i.d observations from f0 := fP0

with P0 =
∑K0

j=1 ̟0
j δθ0

j
and that Assumptions A1–A3 are satisfied. Denote by Π the

joint prior distribution on (P, M) where P |M ∼ DP (M, G0) and M ∼ ΠM , such
that Π verifies Assumptions A4–A5. Then for any 0 < t < ζ,

Pf0

(
mDP (y) > n−(K0−1+dK0+t)/2

)
n→∞−→ 0

where

mDP (y) :=

ˆ

fP (y)/f0(y)dΠ(P )

A consequence of Theorem 3.1 is the convergence of the Bayes factor:
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Corollary 3.2. If the DP prior verifies A4–A5 and the prior on MK0 is defined
as in (2.5), then

(i) If fP0 ∈ MK0 satisfies Assumptions A1–A3, then mK0(y)/mDP (y) → ∞
under fP0.

(ii) Moreover for all K > K0, if the prior on MK is defined as
in (2.5) with Dirichlet hyperparameter α = (α, . . . , α) for some
α > 0, if either α < d/2 ∧ ζ/(K − K0), or d/2 < α ∧ ζ/(K − K0), then
mK(y)/mDP (y) → ∞ under fP0.

(iii) If inffP ∈MK
KL(fP0 , fP ) > 0 and the DP prior verifies ΠDP (KL(fP0 , fP ) ≤

ǫ) > 0 for all ǫ > 0, then mK(y)/mDP (y) → 0 under fP0.

Remark 3.3. The sufficient conditions on the truncation parameter ζ of the prior
on M in Corollary 3.2 for the overfitted case can be understood as a way to force the
concentration parameter of the Dirichlet Process not to be too small a priori. This
indeed favors larger numbers of clusters induced by the DPM and in turn makes the
finite mixture alternative with K > K0 a better fit. Notice that ζ must grow as the
number of extra components K − K0 increases.

Remark 3.4. By exploiting the proof of Proposition 3.10 of Gassiat and Van Handel
2014 (see Proposition 3.12) Assumption A2 is established in location mixtures, i.e.
for models in the form fθ(y) = f(y − θ) and Theorem 3.1 is valid under Assumptions
A1, A3, A4, A5.

Remark 3.5. A sufficient condition for Assumption A4 to be true is that distribution
G0 has a finite first moment, which includes Gaussian distributions for instance.
Note that although the Cauchy distribution has no finite expectation, it does verify
Assumption A4.

The following Lemma is at the core of the proof of Theorem 3.1 and provides an
upper bound on decreasing L1 neighborhoods of the true density f0.

Lemma 3.3. Assume that y = (y1, . . . , yn) are i.i.d observations from f0 := fP0

with P0 =
∑K0

j=1 ̟0
j δθ0

j
and that Assumptions A1–A3 are satisfied. Denote by Π the

joint prior distribution on (P, M) where P |M ∼ DP (M, G0) and M ∼ ΠM , such
that Π verifies Assumptions A4–A5. Then for any sequence δn such that δn

n→∞−→ 0,

Π (‖fP − f0‖1 < δn) ! δK0−1+dK0+ζ−ε
n

where ε > 0 can be chosen as close to 0 as desired.

Proof. We wish to prove that

Π(‖fP − f0‖1 ≤ δn) = o(n−D(K0)/2−t/2).

for some ζ > t > 0, where ζ is the truncation on the support of M given by
Assumption A5. Using a similar idea to Lemma 3.8 of Gassiat and Van Handel 2014,
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we construct balls Aj := B(θ0
j , ǫ) for all j = 1, . . . , K0 around the true parameters

θ0
j with radius

ǫ ≤ min{‖θ0
i − θ0

j ‖/4; i -= j ≤ K0},

so that the balls Aj are disjoint. We then define

pj := P (B(θ0
j , ǫ)) =

∑

i:θi∈Aj

̟i

and
A0 :=

(
∪K0

j=1Aj

)C

so that {A0, . . . , AK0} is a partition of Θ.
Using this partition, we group the atoms of the discrete distribution P from the

Dirichlet Process with their ‘closest’ corresponding true parameter θ0
j as following :

‖f0 − fP ‖1 =

∥∥∥∥∥∥
∑

i:θi∈A0

̟ifθi
+

K0∑

j=1





∑

i:θi∈Aj

̟ifθi



 +

K0∑

j=1





∑

i:θi∈Aj

̟ifθ0
j





−
K0∑

j=1





∑

i:θi∈Aj

̟ifθ0
j



 −

K0∑

j=1

̟0
j fθ0

j

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑

i:θi∈A0

̟ifθi
+

K0∑

j=1





∑

i:θi∈Aj

̟ifθ0
j

− ̟0
j fθ0

j





+
K0∑

j=1





∑

i:θi∈Aj

̟i(fθi
− fθ0

j
)





∥∥∥∥∥∥
1

=

∥∥∥∥∥∥

ˆ

A0

fθdP (θ) +
K0∑

j=1

{(
pj − ̟0

j

)
fθ0

j
+

ˆ

Aj

(
fθ − fθ0

j

)
dP (θ)

}∥∥∥∥∥∥
1

A Taylor expansion of fθ around θ0
j yields

=

∥∥∥∥∥∥

ˆ

A0

fθdP (θ) +
K0∑

j=1

{(
pj − ̟0

j

)
fθ0

j
+

ˆ

Aj

(
θ − θ0

j

)T ∇fθ0
j
dP (θ)

+
1

2

ˆ

Aj

(
θ − θ0

j

)T
D2fθ0

j

(
θ − θ0

j

)
dP (θ)

}
+ R

∥∥∥∥∥
1

:= ‖∆(P ) + R‖1
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where

‖R‖1 ≤
K0∑

j=1

ˆ

Aj

∥∥∥∥∥∥
sup

θ′:‖θ′−θ
j
0‖≤‖θ−θ0

j
‖

∣∣∣∣
(
θ − θ0

j

)T [
D2fθ′ − D2fθ0

j

] (
θ − θ0

j

)∣∣∣∣

∥∥∥∥∥∥
1

dP (θ)

≤
K0∑

j=1

ˆ

Aj

∣∣∣∣∣∣
‖θ − θ0

j ‖2 sup
θ′:‖θ′−θ

j
0‖≤‖θ−θ0

j
‖

∥∥∥D2fθ′ − D2fθ0
j

∥∥∥

∥∥∥∥∥∥
1

≤
K0∑

j=1

‖H3‖1

ˆ

Aj

∥∥∥θ − θ0
j

∥∥∥
2+δ

dP (θ).

By Lemma 3.7 in Appendix, there exists a constant c(f0) depending only on f0 such
that

‖∆(P )‖1 ≥ c(f0)


P (A0) +

K0∑

j=1

{∣∣∣pj − ̟0
j

∣∣∣ +

∥∥∥∥∥

ˆ

Aj

(
θ − θ0

j

)
dP (θ)

∥∥∥∥∥

+

ˆ

Aj

∥∥∥θ − θ0
j

∥∥∥
2

dP (θ)

}]

:= c(f0)N(P )

Then if ‖f0 − fP ‖1 ≤ δn

δn ≥ ‖∆(P ) + R‖1 ≥ |‖∆(P )‖1 − ‖R‖1|

≥ ‖∆(P )‖1 − ‖R‖1

≥ c(f0)N(P ) − ‖R‖1

Hence

Nn(P )c(f0) ≤ δn +
K0∑

j=1

‖H3‖1

ˆ

B(θ0
j
,ǫ)

‖θ − θ0
j ‖2+δdP (θ)

and choosing ǫ small enough gives

Nn(P ) ≤ 2δn

c(f0)
! δn.

We now bound from above Π(Nn(P ) ≤ δn|M). Consider

Pj =
P1Aj

pj

and
p0 = P (A0)

then under the Dirichlet Process prior (p0, · · · , pK0) and P1, · · · , PK0 are mutually in-
dependent and for all j = 1, . . . , K0, Pj ∼ DP (MGj, G0,j) where Gj := G0(B(θ0

j , ǫ))
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and G0,j := G0(· ∩ B(θ0
j , ǫ)). Hence

Π(Nn(P ) ≤ δn|M) ≤Π(p0 ≤ δn, |pj − ̟0
j | ≤ δn, ∀j = 1, . . . K0)

×
K0∏

j=1

Π




∥∥∥∥∥∥

ˆ

B(θ0
j
,ǫ)

(θ − θ0
j )dPj(θ)

∥∥∥∥∥∥
≤ δn




Let Πj be the marginal Dirichlet Process prior distribution of
´

θdPj(θ) and let
πj denote its density w.r.t the Lebesgue measure. By Lemma 3.6 in Appendix, we
know that πj is continuous and we have that

Π




∥∥∥∥∥∥

ˆ

B(θ0
j
,ǫ)

(θ − θ0
j )dPj(θ)

∥∥∥∥∥∥
≤ δn


 = Π




∥∥∥∥∥∥

ˆ

B(θ0
j
,ǫ)

θdPj(θ) − θ0
j

∥∥∥∥∥∥
≤ δn




= Πj(B(θ0
j , δn))

≤ sup
‖x−θ0

j
‖≤δn

πj(x)(δn)d

!

(
Γ(M)

Γ(1 + M)

)d+1

δd
n

where we have used the constant in M found in the proof of Lemma 3.5 in Appendix
for the last inequality. Hence,

Π(Nn(P ) ≤ δn|M) !
Γ(M)

∏K0
j=0 Γ(MGj)

ˆ

Sn

K0∏

j=1

p
MGj−1
j (1 −

K0∑

j=1

pj)
MG0−1dp1, . . . , dpdK0

× M−K0(d+1)δdK0
n

where Sn := ∆K0 ∩ {(p1, . . . , pK0 : |pj − ̟0
j | ≤ δn, ∀j = 1, . . . K0}, with ∆K0 the

K0-dimensional simplex.

≤ Γ(M)
∏K0

j=0 Γ(MGj)

K0∏

j=1

(̟0
j − δn)−1

ˆ

Sn

(1 −
K0∑

j=1

pj)
MG0−1dp1 . . . dpK0

× M−K0(d+1)δK0d
n

For n large enough,

!
Γ(M)

∏K0
j=0 Γ(MGj)

ˆ

Sn

(1 −
K0∑

j=1

pj)
MG0−1dp1 . . . dpK0 × M−K0(d+1)δK0d

n

We now introduce the following change of variable




p0 = 1 − ∑K0
j=1 pj

p1 = p1

...

pK0−1 = pK0−1

⇔





pK0 = 1 − ∑K0−1
j=0 pj

p1 = p1

...

pK0−1 = pK0−1
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which Jacobian is equal to 1 so that

!
Γ(M)

∏K0
j=0 Γ(MGj)

ˆ

pMG0−1
0 1(p0≤K0δn)

K0−1∏

j=1

1(|pj−̟0
j
|≤δn)dp0 . . . dpK0−1

× M−K0(d+1)δK0d
n

Where the constraint on p0 comes from

|pK0 − ̟0
K0

| ≤ δn ⇒ p0 ≤ 1 − ̟0
K0

+ δn −
K0−1∑

j=1

pj

⇒ p0 ≤ 1 −
K0∑

j=1

̟0
j + δn + (K0 − 1)δn

⇒ p0 ≤ K0δn.

Hence,

Π(Nn(P ) ≤ δn|M) !
Γ(M)

∏K0
j=0 Γ(MGj)

(K0δn)MG0δK0−1
n × M−K0(d+1)−1δK0d

n

Integrating with respect to the prior distribution ΠM on M , supported on [ζ, ∞] for
some ζ > 0 yields

Π(Nn(P ) ≤ δn) !

ˆ ∞

ζ

Γ(M)
∏K0

j=0 Γ(MGj)
(K0δn)MG0δK0−1

n × M−K0(d+1)−1δK0d
n dΠM(M)

! δK0−1+dK0+ζG0
n

ˆ ∞

ζ

Γ(M)
∏K0

j=0 Γ(MGj)
(K0)

MG0 × M−K0(d+1)−1dΠM(M)

︸ ︷︷ ︸
(∗)

Note that by Stirling’s approximation,

Γ(M)
∏K0

j=0 Γ(MGj)
∼
∞

M (K0−1)/2 exp



−M

K0∑

j=0

Gj log(Gj)



 .

Hence, integral (∗) converges if and only if

ˆ ∞

ζ

M (K0−1)/2−K0(d+1)−1 exp



M


−

K0∑

j=0

Gj log(Gj) + G0 log(K0)






 dΠM(M) < ∞

which is guaranteed by Assumption A5 since − ∑K0
j=0 Gj log(Gj) and G0 can be

made respectively as close to zero and one as desired provided one chooses ǫ small
enough.
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As required, we conclude that

Π(Nn(P ) ≤ δn) ! δK0−1+dK0+ζ−ε
n

where ε > 0 can be chosen as small as desired.

The results obtained in Theorem 3.1 and subsequently in Corollary 3.2 are of
interest when one is able to compute the Bayes Factor comparing a parametric
model M0 against a nonparametric alternative (here represented by the Dirichlet
Process mixture model). Recall that the Bayes Factor, which can be defined as

BF0,DP =
m0(y)

mDP (y)

is rarely available in closed form. Estimating the numerator can be done using the
methods prescribed in Chapter 2 when M0 is a finite mixture model. However,
estimating mDP (y) is a non-trivial problem that still lacks a fully satisfactory
resolution. To the best of our knowledge, the problem of evidence approximation for
the DPM has only been addressed in Basu and Chib 2003. In the following Section,
we provide a review of this algorithm and propose an alternative method based on
Geyer 1994 Reverse Logisitic Regression solution. We also assess the performance of
these algorithms in an empirical study.

3.4 Marginal likelihood estimation for the Dirich-

let Process Mixture model

3.4.1 An adaptation of Chib’s estimator to the DPM

As extensively discussed in Chapter 2 Section 2.3.2, Chib’s algorithm (Chib 1995)
is often deemed to be the gold standard of marginal likelihood estimation in finite
mixture models. The difficulty of applying Chib’s identity (also known as the
candidate’s representation) to the DPM lies in the intractability of the likelihood
functions p(y|ϑ) and p(y|P ) where P denotes the mixing measure distributed
according to DP (M, G0). Indeed, while the former can only be written in closed
form when the allocations z are known, the latter is composed of infinitely many
terms. The fundamental idea of Basu and Chib 2003 is to consider instead the
integrated likelihood

p(y|M) =

ˆ

p(y|P )dDP (P ; M, G0) (3.15)

and to write

mDP (y) =
p(y|M0)π(M0)

π(M0|y)

which holds for all M0 > 0.
Unlike its finite mixture counterpart, on top of estimating the posterior distribution
that is not available in closed form, Chib’s algorithm for the DPM can only be used
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if a sensible estimator can be found to estimate the intractable integral defining the
integrated likelihood (3.15). We here describe the strategy prescribed by Basu and
Chib 2003.

Estimating the posterior ordinate π(M0|y). Conveniently, this step can be
conducted in a similar fashion as in the finite mixture algorithm by considering the
augmented posterior distribution π(M0|η, K+, y) and using the integrated estimator

π̂(M0|y) =
1

T1

T1∑

t=1

π(M0|η(t), K
(t)
+ , y) (3.16)

where π(M0|η(t), K
(t)
+ , y) is the mixture of two Gamma distributions defined in (3.14)

and {η(t), K
(t)
+ }T1

t=1 ∼ π(η, K+|y) are directly available from the output of the Gibbs
sampler presented in Algorithm 11.

Estimating the likelihood ordinate p(y|M0). Estimating the likelihood (3.15)
is less straightforward and cannot be done by a simple post-processing step of
the Gibbs output. Instead, Basu and Chib 2003 suggests to adopt a Sequential
Importance Sampling strategy of data imputation, following the seminal article by
Kong et al. 1994. The framework is the same as the one prescribed for the SIS
estimator derived in Chapter 2 Section 2.4.2. The core idea is still to define an
approximation to the posterior distribution in which the latent variable z is imputed
sequentially

π∗(z1, . . . , zn|M0, y) = π(z1|M
0, y1)

n∏

i=2

π(zi|M
0, y1:i, z1:i−1). (3.17)

Then one can notice that

π(z|M0, y) × 1

π∗(z|M0, y)
=

p(z, y|M0)

p(y|M0)

×
(

p(y1|M
0)

p(z1, y1|M0)

p(z1, y1:2|M
0)

p(z1:2, y1:2|M
0)

. . .
p(z1:n−1, y|M0)

p(z, y|M0)

)

=
p(y1|M

0)
∏n

i=2 p(yi|M
0, z1:i−1, y1:i−1)

p(y|M0)

=
w(z, y)

p(y|M0)

where w(z, y, M0) := p(y1|M
0)

∏n
i=2 p(yi|M

0, z1:i−1, y1:i−1).
This leads to the following identity

ˆ

w(z, y, M0)π∗(z|M0, y)dz =

ˆ

p(y|M0)π(z|M0, y)dz

= p(y|M0)
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which induces the unbiased estimator of the integrated likelihood

p̂(y|M0) =
1

T

T∑

t=1

w(z(t), y, M0)

for a sample {z
(t)}T2

t=1 from π∗(z|M0, y).

Sampling from π∗(z|M0, y) is straightforward when considering the expression
for Π(zi|M, z−i, y) given in (3.12). It writes

Π(zi = k|z1:i−1, y1:i, M) ∝




M
´

Θ
f(yi|θ)G0(dθ) if k = Ki−1

+ + 1

N i−1
k

mk(z1:i−1∪{zi=k})
mk(zi−1)

if k = 1, . . . , Ki−1
+

(3.18)

where Ki−1
+ , N i−1

k denote respectively the number of non-empty clusters and the
number of observations allocated to group k < Ki−1

+ induced by vector z1:i−1.
In a similar way, we can derive

p(yi|M, z1:i−1, y1:i−1) =

Ki−1
+∑

k=1

N i−1
k

M + i − 1

mk(z1:i−1 ∪ {zi = k})

mk(zi−1)

+
M

M + i − 1

ˆ

Θ

f(yi|θ)G0(dθ)

(3.19)

which yields the strategy described in Algorithm 12 below.

Algorithm 12 : Basu and Chib 2003

1 Sample {M (t), η(t)}T1
t=1 from the posterior π(M, η|y) using Algorithm 11;

2 Set M0 = 1
T1

∑
t M (t) or any other point with high posterior probability.;

3 Compute π̂(M0|y) using (3.16);
4 for t = 1, . . . , T2 do
5 for i = 1, . . . , n do

6 Compute u
(t)
i = p(yi|M

0, z1:i−1, y1:i−1) using (3.19);
7 Re-use the computations of the step above to sample zi from

Π(zi = k|z1:i−1, y1:i, M0) using (3.18);
8 end

9 end

10 Compute p̂(y|M0) = 1
T2

∑T2
t=1

∏n
i=1 u

(t)
i ;

11 Return mChib(y) = p̂(y|M0)π(M0)/π̂(M0|y)

3.4.2 A novel approach based on Reverse Logistic Regression

Introduced by Geyer 1994, Reverse Logistic Regression (RLR) is a biased Importance
Sampling approach to the issue of estimating normalizing constants. Let π1(θ)
and π2(θ) denote two distributions, with π1 = π̃1/c1 only determined up to a
proportionality constant where c1 :=

´

π̃1(θ)dθ. If one has access to samples
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{θ
(t)
1 }T1

t=1 and {θ
(t)
2 }T2

t=1 respectively from π1 and π2, the trick suggested by Geyer
1994 is to think of the samples as arising from the two component mixture

hmix(θ) =
T1

|T |
π̃1(θ)/c1 +

T2

|T |
π2(θ)

where |T | := T1 + T2.
This representation is completely artificial and in fact counterintuitive since we know
exactly from which component each sample is generated. However, it allows for a
new approach to the problem of estimating c1. Indeed, consider the probability p1

that some θ belongs to group 1,

p1(θ, c1) =
(T1/|T |)π̃1(θ)/c1

(Ti/|T |)π̃1(θ)/c1 + (T2/|T |)π2(θ)

then estimating c1 can be done by maximizing the log quasi-likelihood

ℓ(c1) =
T1∑

t=1

log p1(θ
(t)
1 , c1) +

T2∑

t=1

log(1 − p1(θ
(t)
2 , c1)). (3.20)

This in fact defines a logistic regression inference scheme, except for the fact that the
response variable happens to be known while the regressors θ are random, hence the
name Reverse Logistic Regression. Notice that it is crucial that π2 be a normalized
distribution for identifiability reasons. Indeed, the likelihood ℓ(θ, c1, c2) is equal to
ℓ(θ, κc1, κc2) for any constant κ, which makes the maximum likelihood estimator for
c1 and c2 unique up to a multiplicative constant.

Chen and Shao 1997 show that this procedure is in fact essentially equivalent to
Bridge Sampling, as defined in Chapter 2 Section 2.3.3. As such, standard results of
Importance sampling apply and in particular the choice of the importance distribution
π2 is crucial for a good estimation of c1. To better understand the connection to
Bridge Sampling, notice that, assuming for simplification that T1 = T2 = T ,

∂ℓ(c1)

∂c1

=
T∑

t=1

∂p1/∂c1

p1(θ
(t)
1

−
T∑

t=1

∂p1/∂c1

1 − p1(θ
(t)
2 , c1)

= − 1

c1

T∑

t=1

π2(θ
(t)
1 )

π̃1(θ
(t)
1 )/c1 + π2(θ

(t)
1 )

+
1

c1

T∑

t=1

π̃1(θ
(t)
1 )/c1

π̃1(θ
(t)
1 )/c1 + π2(θ

(t)
1 )

so that the maximum likelihood estimator ĉ1T verifies

T∑

t=1

π2(θ
(t)
1 )

π̃1(θ
(t)
1 )/ĉ1T + π2(θ

(t)
1 )

/ T∑

t=1

π̃1(θ
(t)
2 )/ĉ1T

π̃1(θ
(t)
2 )/ĉ1T + π2(θ

(t)
2 )

= 1.
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Letting T tend to infinity, and denoting the limit of ĉ1T by c̄1

ˆ

π2(θ)π1(θ)

π̃1(θ)/c̄1 + π2(θ)
dθ

/ˆ
π̃1(θ)/c̄1π2(θ)

π̃1(θ)/c̄1 + π2(θ)
dθ = 1

⇔
ˆ

π2(θ)π̃1(θ)/c̄1

π̃1(θ)/c̄1 + π2(θ)
dθ

/ˆ
π̃1(θ)/c̄1π2(θ)

π̃1(θ)/c̄1 + π2(θ)
dθ = c1/c̄1

⇔ c̄1 = c1 (3.21)

under some regularity assumption.
Hence, ĉ1T −→ c1 and identifying equation (3.21) with the Bridge Sampling identity
(2.23) shows that RLR is asymptotically equivalent to optimal Bridge Sampling.
Chen and Shao 1997 provide an asymptotic estimate of the relative error of ĉ1T w.r.t
c1 given by

E

[
(ĉ1T − c1)

2/c2
1

]
≈ 4

T




{
ˆ

π1(θ)π2(θ)

0.5π1(θ) + 0.5π2(θ)
dθ

}−1

− 1




which stresses the need for an importance distribution π2 with as much overlap with
π1 as possible with minimum requirement that

´

π1(θ)π2(θ)dθ > 0.
Returning to the issue of estimating the marginal likelihood mDP (y), the applica-

tion of RLR with π̃1(z, M) := p(y|z)π(z|M)π(M) boils down to finding a suitable
importance distribution that is a good approximation to the posterior π(y|z, M).
We suggest using

π2(z, M) := π∗(z|y, M)π(M)

where π∗(z|y, M) is the sequential approximation to the posterior distribution
defined in (3.17). Notice that

´

π2(z, M)dzdM = 1 and that sampling from π2 can
be achieved by first sampling M from the prior, before sampling sequentially the
allocations z using equation (3.18). We summarize the procedure in Algorithm 13
below.

Algorithm 13 : Reverse Logistic Regression for marginal likelihood esti-
mation in a DPM (RLR-SIS).

1 Sample {z
(t)
1 , M

(t)
1 }T1

t=1 from the posterior π(M, z|y) using Algorithm 11;
2 for t = 1, . . . , T2 do

3 Sample M
(t)
2 from the prior;

4 Sample z
(t)
2 |M (t)

2 , y using (3.18);
5 end
6 Optimize the log quasi-likelihood ℓ(c1) (3.20);
7 Return mDP (y) = arg maxc1 ℓ(c1)
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3.5 Simulation study

Our ambition for this section is twofold. First, we assess and compare the algorithm
of Basu and Chib 2003 to our proposed estimator as well as other alternatives which,
to our knowledge, has never been done before. Second, we provide an empirical
illustration to the Bayes Factor consistency result obtained in Corollary 3.2.

Unless specified otherwise, we fit Normal Dirichlet Process mixture models and use
the conditionally conjugate Normal-Inverse Gamma prior G0 for the location and scale
parameters θ = (µ, σ

2) as described in Example 1 and equation (2.10) of Chapter
2 which is defined for all k = 1, . . . , K by σ2

k ∼ Γ−1(a, b) and µk|σ2
k ∼ N (µ0, σ2

k/λ)
where Γ−1 is the inverse gamma distribution in the shape and scale parametrization.
The hyperparameters (a, b, µ, λ) are derived empirically following recommendations
from Raftery 1996 : a = 1.28, b = 0.36(y2 − y2), µ0 = ȳ, 1/λ = (ymax − ymin)/2.6.
Finally the prior on the concentration parameter M is chosen to be a Gamma
distribution with shape and scale (1, 1), as commonly done by practitioners. Note
that this choice of prior ensures that π(ϑ|y, z) := π(µ, σ

2|y, z) is available in closed
form, and that it makes the Gibbs sampling strategy given in Algorithm 11 readily
applicable.

3.5.1 Experiment 1 : Galaxies data.

In this section, we evaluate the relative performances of Basu and Chib 2003’s
algorithm with other competing alternatives. To do so, we once again start by using
the galaxies data that contains the radial velocity of 82 galaxies and consider a
Dirichlet Process mixture of normal distributions with unknown location and scale
parameters.

Note that, while for finite mixtures, model complexity is a function of the number
of mixture components K, most difficulties arise in the DPM for a growing number
of observations n. This is partly due to the fact that the number of non-empty
clusters K+ is O(M log(n)). Hence we design three different scenarios with subsets
of the galaxies data of size respectively 6, 36 and 82, as shown on Figure 3.3. One
can note in particular that the Arithmetic Mean estimator (AME, defined in 2.3.1
of Chapter 2), which shows rather good results for a small number of observations,
fails to converge as soon as the amount of data becomes moderately large. Since
we are not able to make the AME converge (i.e to make its Monte Carlo variance
low) for even a prohibitively high computational time, we use Reverse Logistic
Regression where the prior is used as the importance distribution (hereafter RLR-
Prior) as a reference value. This method is indeed independent of both Basu and
Chib 2003’s algorithm and RLR with a SIS adversarial distribution since it does
not depend on the sequential imputation scheme (3.18). It is interesting to note
that RLR-Prior yields rather satisfactory results despite such a naïve choice of
importance distribution. For non-conjugate Dirichlet Process Mixture models, this
rather inexpensive estimator could be a good, easy-to-implement, first approach to
the marginal likelihood estimation problem.

It is interesting to see that both Chib’s algorithm and our candidate RLR-SIS
yield accurate estimates of the marginal likelihood for all scenarios considered. The
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Harmonic Mean estimator (HME, cf Section 2.3.1 of Chapter 2), however, seems to
suffer from a simulation pseudo-bias as also discussed in Section 2.3.1 of Chapter
2, which leads to an overestimation of the marginal likelihood. Note that this
phenomenon is probably combined to an explosive variance which is typical of the
HME, as already pointed by Radford M. Neal in his discussion of Newton and
Raftery 1994.
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yields a more accurate estimate of the marginal likelihood within a much lower run
time.

Figure 3.5: Boxplots of the marginal likelihoods estimates, 20 repetitions each.
Dirichlet process mixture model, synthetic data, n = 1000. Chib left hand side
: T1 = 104, burnIn = 103, T2 = 600, Run time : 04:09:51. Chib right hand side
T1 = 105, burnIn = 104, T2 = 2000, Run time : 34:01:18. RLR-SIS : T1 = 104,
burnIn = 103, T2 = 600, Run time : 06:23:12.

3.5.3 Experiment 3 : Testing a finite mixture against a
DPM.

In this experiment, we check whether the Bayes factor converges to infinity under
the null hypothesis that data arises from a finite mixture with K0 components, when
fitting a DPM. That is, we want to check whether BFK,DP := mK(y)

mDP (y)
−→
n→∞

∞, for
K not necessarily equal to K0. Note that we here relax some of the assumptions of
Theorem 3.1 and Corollary 3.2. In particular we use the same prior as described
above which implies that M has support on (0, ∞) a priori, and we consider location-
scale mixtures of Normal distributions, which are not covered by our consistency
result. The goal of this experiment is to show empirically that such a result still
holds for more general mixtures.

To do so, 100 data sets y are generated from a Data Generating Process (DGP)
P0, where P0 is a finite mixture. The Bayes Factor is then computed for successive
values of n and the resulting ‘Bayes Factor paths’ are displayed on Figure 3.6. We
consider three different DGPs P0 given by





P
(1)
0 = N (0, 4)

P
(2)
0 = 0.3N (−3, 1) + 0.2N (4, 1) + 0.5N (12, 1)

P
(3)
0 = 0.3N (0, 1) + 0.2N (1, 1) + 0.5N (2, 1).

In Figure 3.6a, we fit a one component mixture of Normal distributions, or in other
words a Normal distribution, on 100 data sets generated from P

(1)
0 . Observe that
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most Bayes Factor paths are above the dashed line drawn at y = 1. Empirically,
we can see that the Bayes Factor appears to point towards the finite mixture, as it
seems that P

(1)
0 (BFK,DP > 1) −→ 1. Figure 3.6b shows the Bayes Factor paths of a

3−component mixture against the DPM for data arising from P
(2)
0 . It is interesting

to notice that in this scenario the Bayes Factor seems to converge much faster than
in the previous case. This is slightly counter-intuitive since we expect the DPM to
yield a better fit on multimodal data which should induce a slower convergence of the
Bayes Factor for K0 = 3 than for K0 = 1. However, this could be due to the rather
well-separated modal configuration of data generated from P

(2)
0 which should lead

to a very good fit for the finite mixture model with 3 components. This intuition
is confirmed in Figure 3.6c where the DGP used, P

(3)
0 still has 3 components, but

much less separated. We observe indeed a much slower convergence of the Bayes
Factor to infinity, although most Bayes Factor paths seem to cross the reference
line y = 1 for increasing values of n. On Figure 3.6d, DGP P

(3)
0 is still used but a

5-component Normal mixture model is fitted instead. In this scenario, the DPM
alternative seems to yield a rather good fit, although most Bayes Factor paths seem
to favour the finite mixture as n increases.

We also consider an under-specified scenario in which K0 = 3 (using P
(2)
0 as the

DGP) while K = 1 (Figure 3.6e) and K = 2 (Figure 3.6f). This relates to the case
(i.i.i) of Corollary 3.2. We clearly see that empirically the Bayes Factor converges to
0, indicating a better fit of the DPM. Subsequently, an interesting test for checking
the validity of a finite mixture model in a given population is to consider a mixture
with a conservatively large number of components K. If the Bayes Factor against the
DPM points towards the finite mixture, it is a good indication that a finite mixture
with K0 ≤ K components is a good fit for the data. Notice that this relates to the
strategy of overfitting mixtures suggested by the results Rousseau and Mengersen
2011.
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3.6 Conclusion and perspectives

In this chapter, we proved in Theorem 3.1 and Corollary 3.2 the consistency of the
Bayes Factor associated to the problem of testing a parametric model against a
Dirichlet Process Mixture model, both under the null and the alternative, which
was an open problem so far. In addition, Lemma 3.3 provides a solution to the
unaddressed challenge of upper bounding the prior mass of L1-neighborhoods of
the true mixture density f0 under the DP prior. An immediate application is
goodness-of-fit tests that compare a parametric null to a nonparametric alternative.

However, we noticed that there does not seem to exist any reference method
widely used by practitioners for numerically estimating the marginal likelihood of a
Dirichlet Process Mixture model. We benchmarked Basu and Chib 2003’s approach
with other algorithms, including a method based on Geyer 1994’s reverse logistic
regression that is reliable and scales better with the number of observations n. Our
simulation study supports the use of Geyer’s RLR method with a SIS importance
distribution as a way to estimate the marginal likelihood of a DPM.

An interesting research avenue would be to identify scalable evidence estimation
techniques for non-conjugate Dirichlet Process mixtures. The Reverse Logistic
Regression method seems like a good framework to achieve this goal, provided one
can derive a good adversarial distribution π∗ for such models. As to the asymptotics
of the marginal likelihood under a DPM, it would be interesting to extend Theorem
3.1 to location-scale Dirichlet Process mixtures. Our computational simulations
support that such a result is still valid for this wider class of models.
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3.A Appendix

3.A.1 Technical lemmas

The following lemma by Yamato 1984 provides an expression for the character-
istic function ψ of µ(P ) :=

´

θdP (θ) for P a realization of the Dirichlet Process
DP (M, G0). Lemma 3.5 subsequently establishes that ψ is integrable. This is at
the core of the proof of Lemma 3.3 which makes use of the existence of a continuous
density function for the random variable µ(P ).

Lemma 3.4. (Yamato 1984) Under Assumption A4, the characteristic function ψ

of µ(P ) can be written as

ψ(z) = E




∞∏

j=1

ϕ(̟jz)


 , z ∈ R

d

Lemma 3.5. For all d ≥ 1, if P =
∑∞

j=1 ̟jδθj
∼ DP (M, G0),

EP







d+1∑

j=1

̟2
j




− d
2

∣∣∣∣∣∣∣
M


 < ∞

Proof. We first notice that





V1 = ̟1

V2(1 − V1) = ̟2

...

Vd+1(1 − Vd) . . . (1 − V1) = ̟d+1

⇔





V1 = ̟1

V2 = ̟2

1−̟1
...

Vd+1 = ̟d+1

1−
∑d

i
̟i

where Vi
i.i.d∼ Beta(1, M). Hence,

I :=E


 1

(
∑d+1

j=1 ̟2
j )

d
2

∣∣∣∣∣∣
M




=

(
Γ(M)

Γ(1 + M)

)d+1 ˆ

[0,1]d+1

(1 − V1)
M−1 . . . (1 − Vd+1)

M−1

(V 2
1 + · · · + V 2

d+1(1 − Vd)2 . . . (1 − V1)2)d/2
dV1 . . . dVd+1

Let Bε = {(V1, . . . , Vd+1) : ∃i ∈ {1, . . . , d + 1}, ̟i > ε} and fix ε = 1/(2(d + 1)).
Then,

I ≤


ˆ

[0,1]d+1∩Bc
ε

(1 − V1)
M−1 . . . (1 − Vd+1)

M−1

(V 2
1 + · · · + V 2

d+1(1 − Vd)2 . . . (1 − V1)2)d/2
dV1 . . . dVd+1 + ε−d




×
(

Γ(M)

Γ(1 + M)

)d+1
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We then use the change of variable given by (3.A.1) which Jacobian is

det(J) =
1

1 − ̟1

× 1

1 − ̟1 − ̟2

× · · · × 1

1 − ∑d
i ̟i

Hence,

I ≤


ε−d +

ˆ

∆d+1∩Bc
ε

1

(
∑d+1

j=1 ̟2
j )

d
2

×
(
1 − ∑d+1

j=1 ̟j

)M−1

(1 − ̟1) . . . (1 − ∑d
j=1 ̟j)

d̟1 . . . d̟d+1




×
(

Γ(M)

Γ(1 + M)

)d+1

where ∆d+1 = {̟ ∈ R
d+1 : 0 ≤ ̟j ≤ 1, ∀j and

∑
j ̟j ≤ 1}.

I ≤
(

Γ(M)

Γ(1 + M)

)d+1

ε−d + 2d

ˆ

∆d+1∩BC
ε

(
1 − ∑d+1

j=1 ̟j

)M−1

(
∑d+1

j=1 ̟2
j )

d
2

d̟1 . . . d̟d+1




If M ≥ 1

I ≤
(

Γ(M)

Γ(1 + M)

)d+1

ε−d + 2d

ˆ

∆d+1

1

(
∑d+1

j=1 ̟2
j )

d
2

d̟1 . . . d̟d+1




If M < 1

I ≤
(

Γ(M)

Γ(1 + M)

)d+1

ε−d + 2d+1−M

ˆ

∆d+1

1

(
∑d+1

j=1 ̟2
j )

d
2

d̟1 . . . d̟d+1




Let J =
´

∆d+1
1/(

∑d+1
j=1 ̟2

j )
d
2 d̟1 . . . d̟d+1. We shall prove that J is finite.

Using the hyperspherical change of variable




̟1 = r cos θ1

̟2 = r sin θ1 cos θ2

...

̟d = r sin θ1 . . . cos θd

̟d+1 = r sin θ1 . . . sin θd

where θ1, . . . , θd−1 ∈ [0, π] and θd ∈ [0, 2π). The Jacobian of this transformation is

bounded by rd, and noticing that r =
(∑d+1

j=1 ̟2
j

) 1
2 , we get

J ≤
ˆ 1

0

ˆ 2π

0

. . .

ˆ π

0

rd

rd
dθ1 . . . dθddr
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Hence,

J ≤ 2π

(
π

2

)d−1

and

E


 1

(
∑d+1

j=1 ̟2
j )

d
2

∣∣∣∣∣∣
M


 < ∞

Lemma 3.6. If P =
∑∞

j=1 ̟jδθj
∼ DP (M, G0) where G0 has a density with respect

to Lebesgue measure and verifies
ˆ

|ϕ(u)|du = CG0 < ∞,

with ϕ the characteristic function of G0 and CG0 a constant, then under Assumption
A4 µ(P ) has a bounded density with respect to the Lebesgue measure.

Proof. Using Lemma 3.4, the characteristic function ψ of µ(P ) is equal to

ψ(z) = E

∞∏

j=1

ϕ(̟jz), P =
∑

j

̟jδθj

where ϕ is the characteristic function of G0. Let ̟(1) = maxj ̟j and note that, in
particular, |ψ(z)| ≤ E|ϕ(̟(1)z)|. Hence,

ˆ

|ψ(z)|dz ≤ E


 1

̟d
(1)

ˆ

|ϕ(u)|du


 ≤ CG0E




(∑r
j=1 ̟2

j

r

)−d/2

 , for some r > 0

Using Lemma 3.5, with r = d + 1, we obtain,

ˆ

|ψ(z)|dz ! CG0

(
Γ(M)

Γ(1 + M)

)d+1

Lemma 3.7. Let P =
∑∞

i=1 ̟iδθi
be a realization of the Dirichlet Process.

Define

∆(P ) =

ˆ

A0

fθdP (θ) +
K0∑

j=1

[
pj − p0

j

]
fθ0

j
+

ˆ

B(θ0
j
,ǫ)

(
θ − θ0

j

)T ∇fθ0
j
dP (θ)

+
1

2

ˆ

B(θ0
j
,ǫ)

(
θ − θ0

j

)T
D2fθ0

j

(
θ − θ0

j

)
dP (θ)

where for all j = 1, . . . , K0,
pj =

∑

i:θi∈B(θ0
j
,ǫ)

̟i
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for some ǫ > 0 and ∇fθ0
j

and D2fθ0
j

denote respectively the gradient and the Hessian
of fθ evaluated at θ0

j .
Then, under Assumption A2, there exists a constant c(f0) depending only on f0 such
that

‖∆(P )‖1 ≥ c(f0)


P (A0) +

K0∑

j=1





∣∣∣pj − ̟0
j

∣∣∣ +

∥∥∥∥∥∥

ˆ

B(θ0
j
,ǫ)

(
θ − θ0

j

)
dP (θ)

∥∥∥∥∥∥
+

ˆ

B(θ0
j
,ǫ)

∥∥∥θ − θ0
j

∥∥∥
2

dP (θ)








:= c(f0)N(P )

(3.22)

where B(θ0
j , ǫ) = {θ : ‖θ − θ0

j ‖ ≤ ǫ}.

Proof. Let

∆̃(P ) =

∥∥∥∥∥
∆(P )

N(P )

∥∥∥∥∥
1

=

∥∥∥∥∥∥
α0

ˆ

A0

fθ(x)dν0(x) +
K0∑

j=1

αjfθ0
j

+ βT
j ∇fθ0

j
+

1

2
tr(D2fθ0

j
γj)

∥∥∥∥∥∥
1

where




α0 = P (A0)
N(P )

,

ν0(dθ) =
P (dθ)1A0

P (A0)
,

αj =
pj−p0

j

N(P )

βj = 1
N(P )

´

B(θ0
j
,ǫ)

(θ − θ0
j )dP (θ),

γj = 1
N(P )

´

B(θ0
j
,ǫ)

(θ − θ0
j )(θ − θ0

j )T dP (θ)

(3.23)

and assume that (3.22) does not hold. Then there exists a sequence (Pm)m with
αm

0 , νm
0 , αm

j , βm
j , γm

j for j = 1, . . . , K0 defined as in (3.23) along which ∆̃(Pm) goes
to zero. Note that by construction

tr(γj) =
1

N(P )

ˆ

B(θ0
j
,ǫ)

‖θ − θ0
j ‖2dP (θ)

and that for j = 1, . . . , K0, (αm
j , βm

j , γm
j )m∈N belong to a compact set so that there

exists a sub-sequence still labeled (αm
j , βm

j , γm
j )m∈N which is convergent to some

value (α∗
j , β∗

j , γ∗
j ).

Similarly, νm
0 is a sequence of measure with mass bounded by 1, so it converges

vaguely to a sub-probability measure ν∗
0 on A0 along a subsequence νm

0 . Since for
all x ∈ R

d, fθ(x) is continuous in θ and converges to 0 on the boundary of Θ,
ˆ

A0

fθ(x)dνm
0 (θ)

m→∞−→
ˆ

A0

fθ(x)dν∗
0(θ), ∀x ∈ R

d
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Now
ˆ

A0

fθ(x)dνm
0 (θ) ≤ sup

θ

‖fθ(·)‖∞

hence on any compact subset B of Rd,
∥∥∥∥∥1B(·)

ˆ

A0

fθ(x)(dνm
0 − dν∗

0)(θ)

∥∥∥∥∥
1

m→∞−→ 0

so that for all compact subset B of Rd and for all x ∈ B,

α∗
0

ˆ

A0

fθ(x)dν∗
0(θ) +

K0∑

j=1

α∗
jfθ0

j
(x) + β∗

j
T ∇fθ0

j
(x) +

1

2
tr(D2fθ0

j
(x)γ∗

j ) = 0

for j = 1, . . . , K0.
Since the relation is true for all B, it is true for all x ∈ R

d. The strong identifiability
assumption A2 implies that α∗

0 = 0, α∗
j = 0, β∗

j = 0 and γ∗
j = 0, which is not

possible since

α∗
0 +

K0∑

j=1

|α∗
j | + ‖β∗

j ‖ + tr(γ∗
j ) = lim

m→∞
αm

0 +
K0∑

j=1

|αm
j | + ‖βm

j ‖ + tr(γm
j )

= lim
m→∞

1 = 1

Hence (3.22) is valid.

3.A.2 Proof of Theorem 3.1

To prove Theorem 3.1, we prove that the associated posterior concentrates in L1

norm at the rate δn = (log n)q/
√

n for some q > 0 and then we bound from above
Π({P : ‖fP − f0‖1 ≤ (log n)q/

√
n}). Let D(K0) = K0 − 1 + dK0, if we denote by
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ℓn(P ) = log fp(y) the log likelihood, then for some 0 < t < ζ,

Pf0

(
ˆ

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2

)

= Pf0

(
ˆ

‖fP −f0‖1>δn

eℓn(P )−ℓn(P0)dΠ(P )

+

ˆ

‖fP −f0‖1≤δn

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2

)

≤ Pf0

(
ˆ

‖fP −f0‖1>δn

eℓn(P )−ℓn(P0)dΠ(P ) >
1

2
n−(D(K0)+t)/2

)

+ Pf0

(
ˆ

‖fP −f0‖1≤δn

eℓn(P )−ℓn(P0)dΠ(P ) >
1

2
n−(D(K0)+t)/2

)

Using Markov’s inequality and Fubini,

≤ Pf0

(
ˆ

‖fP −f0‖1>δn

eℓn(P )−ℓn(P0)dΠ(P ) >
1

2
n−(D(K0)+t)/2

)

+ 2n(D(K0)+t)/2
Π (P : ‖fP − f0‖1 ≤ δn)

The most difficult part of the proof is to show that the right-most term converges to
0. It requires to control the a priori mass of decreasing neighborhoods of f0, which
is achieved in in Lemma 3.3. Therefore, it is enough to show that

Pf0

(
ˆ

‖fP −f0‖1>δn

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2

)
= o(1). (3.24)

Proof of (3.24). Throughout the proof C denotes a generic constant depending
only on f0 = fP0 . To prove (3.24), we use the strategy of the proof of Theorem 2.4
of Ghosal et al. 2000. Let η > 0 be arbitrarily small,

Fn = {fP : P (Θc
n) ≤ ηδn}, Θn = {‖θ‖ ≤ (log n)a},

for some a > 0 and

Fn,ℓ = {fP ∈ Fn; ‖fP − f0‖1 ∈ (ℓδn, (ℓ + 1)δn)}, ℓ ≥ 1.

Splitting
ˆ

‖fP −f0‖1>δn

eℓn(P )−ℓn(P0)dΠ(P ) =
∑

ℓ≥1

ˆ

Fn,ℓ

eℓn(P )−ℓn(P0)dΠ(P )

+

ˆ

Fc
n

eℓn(P )−ℓn(P0)dΠ(P ),
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we bound

Pf0

(
ˆ

‖fP −f0‖1>δn

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2

)

= Pf0


∑

ℓ≥1

ˆ

Fn,ℓ

eℓn(P )−ℓn(P0)dΠ(P ) +

ˆ

Fc
n

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2




≤ Pf0


∑

ℓ≥1

ˆ

Fn,ℓ

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2/2




+ Pf0

(
ˆ

Fc
n

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2/2

)

≤
∑

ℓ≥1

Pf0

(
ˆ

Fn,ℓ

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2
Π(Fn,ℓ)/2

)

+ Pf0

(
ˆ

Fc
n

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2/2

)

≤
∑

ℓ≥1

Ef0

{
1

(
ˆ

Fn,ℓ

fP /f0dΠ(P ) > n−(D(K0)+t)/2
Π(Fn,ℓ)/2

)
(φn,ℓ + (1 − φn,ℓ))

}

+ Pf0

(
ˆ

Fc
n

eℓn(P )−ℓn(P0)dΠ(P ) > n−(D(K0)+t)/2/2

)

≤
∑

ℓ≥1


Ef0(φn,ℓ) +

2
´

Fn,ℓ
EfP

(1 − φn,ℓ)dΠ(P )

Π(Fn,ℓ)n−(D(K0)+t)/2


 +

2Π(F c
n)

n−(D(K0)+t)/2

where the last inequality uses Markov inequality and Fubini and where the φn,ℓ are
the L1 tests in slice Fn,ℓ as in Theorem 7.1 of Ghosal et al. 2000. In other words, if
1/18 ≥ ω > 0, and if Bi,ℓ, for i ≤ Nn,ℓ, is a covering of Fn,ℓ by L1 balls of radius
ωℓδn, then φn,i,ℓ, i ≤ Nn,ℓ are the individual L1 tests satisfying

Ef0(φn,i,ℓ) ≤ e−c1nℓ2δ2
n , sup

f∈Bi,ℓ

EfP
(1 − φn,i,ℓ) ≤ e−c1nℓ2δ2

n

then φn,ℓ = max
Nn,ℓ

i=1 φn,i,ℓ satisfies

Ef0(φn,ℓ) ≤ Nn,ℓe
−c1nℓ2δ2

n , sup
fP ∈Fn,ℓ

EfP
(1 − φn,ℓ) ≤ e−c1nℓ2δ2

n

Therefore to prove (3.24), it is enough to bound for some ρ > 0,

Nn,ℓ ! e(log n)2q−ρ

, (3.25)

and showing that
Π(F c

n) = o(n−(D(K0)+t)/2). (3.26)
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Using Markov inequality and assumption A4,

Π(P (Θc
n) > ηδn) ≤ G0(‖θ‖ ≥ (log n)a)

ηδn

=
G0(e

a1‖θ‖a2 ≥ ea1(log n)aa2 )

ηδn

!
exp(−a1(log n)aa2)

δn

! n−(D(K0)+2t)/2

by choosing a > 1/a2 large enough so that the last equation holds, which in turn
proves that (3.26) is verified. We now prove (3.25).

Using Lemma 3.7, we have that for all fP ∈ Fn,ℓ, if ℓδn ≤ ǫ0 for some ǫ0 > 0
small enough,

P (A0) +
K0∑

j=1


|pj − p0

j | + ‖µ(Pj) − θ0
j ‖ +

ˆ

B(θ0
j
,ǫ)

‖θ − θ0
j ‖2dP (θ)


 ≤ (ℓ + 1)δn

c(f0)

(3.27)
where µ(Pj) :=

´

B(θ0
j
,ǫ)

θdP (θ)/pj, pj = P (B(θ0
j , ǫ)).

Let ξ > 0, we consider a covering of A0,n = A0 ∩ Θn with balls Ui,0 with center
ϑi and radius ξ and N0(ξ), the number of such balls, is bounded by (C|Θn|/ξ)d.
Define Ũ1,0 = U1,0 and Ũi,0 = Ui,0 \ ∪i−1

j=1Uj,0 for i ≥ 2. Consider P, P ′ such that
fP , f ′

P ∈ Fn,ℓ,

ˆ

∣∣∣∣∣

ˆ

A0

fθ(x)(dP − dP ′)(θ)

∣∣∣∣∣ dx

≤
ˆ

∣∣∣∣∣∣

N0(ξ)∑

i=1

{
ˆ

Ũi,0

(fθ(x) − fϑi
(x))(dP − dP ′)(θ)

+

ˆ

Ũi,0

fϑi
(x)(dP − dP ′)(θ)

}∣∣∣∣∣ dx

≤
ˆ N0(ξ)∑

i=1

{
ˆ

Ũi,0

|fθ(x) − fϑi
(x)|d[P + P ′](θ)

+fϑi
(x)

∣∣∣∣∣

ˆ

Ũi,0

d(P − P ′)(θ)

∣∣∣∣∣

}
dx

≤ ||H1(·)||1ξ [P (A0) + P ′(A0)] +
N0(ξ)∑

i=1

∣∣∣P (Ũi,0) − P ′(Ũi,0)
∣∣∣

≤ Cξ(ℓ + 1)δn +
N0(ξ)∑

i=1

∣∣∣P (Ũi,0) − P ′(Ũi,0)
∣∣∣ ,

where the third and last inequalities come from Assumption A1 and equation (3.27)
respectively.
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Hence if for all i ≤ N0(ξ), |P (Ũi,0) − P ′(Ũi,0)| ≤ δnξ/N0(ξ),
∥∥∥∥∥

ˆ

A0

fθ(·)(dP − dP ′)(θ)

∥∥∥∥∥
1

≤ Cξℓδn.

Moreover for each j = 1, . . . , K0, writing Pj = P1B(θ0
j
,ǫ)/P (B(θ0

j , ǫ)) and
pj =

∑
i:θi∈B(θ0

j
,ǫ) ̟i and defining P ′

j and p′
j in a similar way,

ˆ

B(θ0
j
,ǫ)

fθ(x)(dP − dP ′)(θ) =

ˆ

B(θ0
j
,ǫ)

{
fθ0

j
(x) + (θ − θ0

j )T ∇fθ0
j
(x)

+
1

2
(θ − θ0

j )T D2fθ0
j
(x)(θ − θ0

j )

+ O
(
‖θ − θ0

j ‖2+δ
) }

[dP − dP ′] (θ)

=
[
fθ0

j
(x) − θ0

j
T ∇fθ0

j
(x)

] (
pj − p′

j

)

+
[
pjµ(Pj) − p′

jµ(P ′
j)

]T ∇fθ0
j
(x)

+
1

2
tr

[
D2fθ0

j
(x)

ˆ

(θ − θ0
j )(θ − θ0

j )T d(Pj − P ′
j)(θ)

]

+ O

(
ˆ

‖θ − θ0
j ‖2+δd(Pj − P ′

j)(θ)

)
.

Hence if |pj − p′
j| ≤ ξ(ℓ + 1)δn , ‖µ(Pj) − µ(P ′

j)‖ ≤ ξ(ℓ + 1)δn and

∥∥∥∥∥

ˆ

(θ − θ0
j )(θ − θ0

j )T d(Pj − P ′
j)(θ)

∥∥∥∥∥
F

≤ ξ(ℓ + 1)δn,

∥∥∥∥∥∥

ˆ

B(θ0
j
,ǫ)

fθ(·)(dP − dP ′)(θ)

∥∥∥∥∥∥
1

≤ ξ(ℓ + 1)δn

(
1 + ‖H1(·)‖1(ǫ + 1) +

‖H2(·)‖1

2

)
+ O(ǫδξ(ℓ + 1)δn)

≤ Cξℓδn.

So that ‖fP − fP ′‖1 ≤ Cξℓδn.

Since for all j, when fP ∈ Fn,ℓ, µ(Pj) ∈ B(θ0
j , Cℓδn), the covering number for

{µ(Pj); fP ∈ Fn,ℓ} by balls of radius is ξℓδn is bounded by C(ξ)−d and similarly
the covering numbers for the terms

´

(θ − θ0
j )(θ − θ0

j )T dPj(θ) and pj are bounded
respectively by C(ξ)−d(d+1)/2 and C(ξ)−1.
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This implies that by choosing ξ and small enough,

Nn,ℓ ! ξ−K0[1+d+d(d+1)/2](N0(ξ)/ξ)N0(ξ)

≤ exp
[
C (|Θn|/ξ)d log(|Θn|/ξ) + log(1/ξ)

]

≤ exp
[
C (|Θn|/ξ)d (log(|Θn|) + log(1/ξ))

]

≤ exp
[
C ((log n)a/ξ)d (log((log n)a) + log(1/ξ))

]

since |Θn| ≤ (log n)a and (3.25) holds, by choosing q large enough such that ad < 2q,
which in turns proves that (3.24) holds.

3.A.3 Proof of Corollary 3.2

By Theorem 3.1, if f0 = fP0 ∈ MK0 , then for all 0 < t < ζ,

mDP (y) ! n−D(K0)/2−t/2

with Pf0-probability going to 1. Since MK0 is regular we also have with probability
going to 1,

mK0(y) " n−D(K0)/2

so that with probability going to 1,

mDP (y)

mK0(y)
! n−t/2 −→

n.→∞
0 under Pf0 .

Moreover using Rousseau and Mengersen 2011, for K > K0, if α < d/2, then

mK(y) " n−D(K0)/2−(K−K0)α/2

so that with probability going to 1, if (K − K0)α < ζ,

mDP (y)

mK(y)
! n−t/2+(K−K0)α/2

−→
n.→∞

0 under Pf0 for t such that (K − K0)α < t < ζ.

On the other hand, for K > K0 and α > d/2, then

mK(y) " n−D(K0)/2−d(K−K0)/4

so that with probability going to 1, if d(K − K0)/2 < ζ

mDP (y)

mK(y)
! n−t/2+d(K−K0)/4

−→
n.→∞

0 under Pf0 for t such that d(K − K0)/2 < t < ζ.
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If f0 /∈ MK but Π(KL(f0, fP ) ≤ ǫ) > 0 for all ǫ, then Ghosal et al. 2000 implies
that for all ǫ > 0, with probability going to 1

mDP (y) " e−nǫ

Since inffP ∈MK
KL(f0, fP ) := cK > 0 then with probability going to 1

mK(y) ! e−cKn/2

and Corollary 3.2 is proved.

3.A.4 Tables

Tuning parameters
n = 6 n = 36 n = 82

Chib T1 = 3 · 104 T1 = 5 · 104 T1 = 105

burnIn = 2 · 103 burnIn = 5 · 103 burnIn = 104

T2 = 2 · 103 T2 = 2 · 103 T2 = 2 · 103

RLR-SIS T1 = 3 · 104 T1 = 5 · 104 T1 = 105

burnIn = 2 · 103 burnIn = 5 · 103 burnIn = 104

T2 = 2 · 103 T2 = 2 · 103 T2 = 2 · 103

RLR-Prior T1 = 3 · 104 T1 = 5 · 104 T1 = 105

burnIn = 2 · 103 burnIn = 5 · 103 burnIn = 104

T2 = 2.8 · 104 T2 = 4.5 · 104 T2 = 9 · 104

Arithmetic Mean T = 3 · 104 T = 2 · 105 T = 5 · 105

Table 3.1: Choice of tuning parameters for Figure 3.3



Chapter 4
Distributed and in parallel evidence

computation

Abstract

In this chapter, we consider the challenge of distributing the computation of the
marginal likelihood of a finite mixture model. Buchholz et al. 2022 provides a very
convenient solution to the problem of computing the marginal likelihood of a model
when batches of data are distributed across several computing servers. Unfortunately,
their approach cannot be applied to finite mixtures and we here develop ad hoc
solutions for using their method on such models, as well as a new approach based
on Sequential Monte Carlo. The latter is very promising given it does not rely on
any conjugacy assumption and can be applied to other models that finite mixtures.
We also provide an empirical study that highlights the decrease in computational
time that is gained with respect to classical marginal likelihood estimates computed
on the full dataset.
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4.1 Introduction

Distributed computation has emerged as a powerful paradigm for tackling complex
problems in machine learning and statistical inference, where the amount of data is
too large to be processed by a single machine. This approach involves breaking down
the inference task into smaller sub-problems that can be solved independently by
multiple machines or processors, and then combining the results to obtain a global
solution to the initial problem. This not only reduces the computational burden on
individual machines but also facilitates parallel computation, enabling faster and
more efficient inference.

From a Bayesian inference perspective, this strategy, usually called divide and
conquer, is mainly composed of three steps. First, the data y is divided into S
non-overlapping batches y1, . . . , yS and the full posterior distribution is decomposed
as

π(ϑ|y) ∝ p(y|ϑ)π(ϑ)

=
S∏

s=1

p(ys|ϑ)π(ϑ)1/S

∝
S∏

s=1

π̃(ϑ|ys) (4.1)

for a likelihood function p(y|ϑ) and a prior π(ϑ), where for all s = 1, . . . , S, π̃(ϑ|ys)
is called the sub-posterior distribution of parameter ϑ on batch ys. Posterior
inference is then conducted on each subset of the data independently, possibly in
parallel, running MCMC algorithms across several computing units. Lastly, the
different sub-posterior samples are recombined to approximate a sample from the
full posterior distribution. This last step is usually complex as there exists no
exact way to transform a collection of samples {ϑ

(s)
t }t from each sub posterior

π̃(ϑ|ys) into a sample {ϑt}t that is distributed according to π(ϑ|y). Based on the
Bernstein-von Mises theorem, Huang and Gelman 2005 and Scott et al. 2016 use
normal approximations to the sub-posterior distributions to reconstruct a sample
from the full posterior as a weighted average of the sub-posterior samples. Still
assuming normality of the sub-posterior distributions, Neiswanger et al. 2014 uses
kernel density estimation to reconstruct the full posterior. Other approaches consist
in recombining the sub-samples through their barycenter in a Wasserstein space of
probability measures (Srivastava et al. 2018), or their geometric median (Minsker
et al. 2014). Applications of a divide and conquer strategy are numerous. First
and foremost, it can be used in order to significantly reduce the cost of posterior
inference when the amount of data at hand is very large by reducing memory
and computational bottle necks. Another immediate application is inference on a
distributed data architecture, in which data is stored at different locations, either
for privacy issues, for instance with health data (Hallock et al. 2021), or simply
because the data set size is too large to be stored on a single machine.

Despite its popularity, the application of the divide and conquer paradigm to
mixture modeling remains largely unexplored so far. Indeed, while conducting
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inference on each data batch ys is generally not an issue, the usual assumption of
asymptotic normality used for recombination of the S MCMC samples does not
hold for the posterior distribution of mixture models.

From a Bayeseian model selection perspective, the issue of computing the marginal
likelihood of the data y, defined as

m(y) =

ˆ

Θ

p(y|ϑ)ß(ϑ)dϑ

is crucial. Indeed, the Bayesian paradigm offers a straightforward way of comparing
two competing models M0 and M1 through the Bayes Factor (Jeffreys 1935), defined
as the ratio of the marginal likelihoods of the data under each model. The issue
of distributed computation of the marginal likelihood of a model in a divide and
conquer fashion remains largely unexplored so far. The issue being that while there
exists a convenient way of linking the full posterior distribution and the sub-posterior
distribution through (4.1), such an identity does not hold for the marginal likelihood.
Indeed,

m(y) =

ˆ S∏

s=1

p(ys|ϑ)π(ϑ)1/Sdϑ

-=
S∏

s=1

ˆ

p(ys|ϑ)π(ϑ)1/Sdϑ.

This calls for a different approach to combining marginal likelihoods estimates
computed on each batch ys separately. Very recently, an identity bridging the gap
between m(y) and {m̃(ys)}

S
s=1 has been derived by Buchholz et al. 2022, where

m̃(ys) is the marginal likelihood associated to posterior π̃(ϑ|ys). Unfortunately,
this identity is not suited for the intrinsic complexity of finite mixture models and in
particular their lack of identifiability. In this chapter, we first propose an adaptation
of the framework set by Buchholz et al. 2022 before deriving a new identity linking
the full data marginal likelihood and the batch marginal likelihoods. This new
identity enables the implementation of a Sequential Monte Carlo strategy for a fully
distributed computation of the marginal likelihood.
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4.2 A simple identity for distributed computation

of marginal likelihoods

4.2.1 Notation

Assume that some data y ∈ R
d can be splitted into S non-overlapping, non-empty

batches (y1, . . . , yS). For a finite mixture model with K components as specified
in Chapter 2, given the component parameters θ = (θ, . . . , θK) ∈ R

dK and weights
̟ = (̟1, . . . , ̟K) ∈ ∆K−1, with ∆K−1 the (K − 1)-dimensional simplex, the
likelihood p(y|ϑ) can be factorized as

p(y|ϑ) =
S∏

s=1

p(ys|ϑ)

where ϑ = (θ, ̟). The posterior density can thus be derived up to a constant as

π(ϑ|y) ∝ p(y|ϑ)π(ϑ)

=
S∏

s=1

p(ys|ϑ)π(ϑ)1/S

∝
S∏

s=1

π̃(ϑ|ys)

where for all s = 1, . . . , S, the densities π̃(ys|ϑ) are the so-called sub-posterior
densities, that is the posterior distribution arising from the batched likelihood
p(ys|ϑ) and the prior distribution π̃(ϑ) ∝ π(ϑ)1/S. The following section presents
the work of Buchholz et al. 2022 which provides a useful expression of the marginal
likelihood on the full data m(y) as a function of the batched marginal likelihoods
{m̃(ys)}

S
s=1.

4.2.2 An identity by Buchholz et al. 2022

Proposition 4.1 below is derived in Buchholz et al. 2022 and provides a conve-
nient bridge between the batched marginal likelihoods m̃(ys) and the full marginal
likelihood m(y).

Proposition 4.1 (Buchholz et al. 2022). For some data y and a model P for which
the likelihood function factorizes as p(y|ϑ) =

∏S
s=1 p(ys|ϑ), the marginal likelihood

of the data can be written as

m(y) = ZS
S∏

s=1

m̃(ys)

ˆ S∏

s=1

π̃(ϑ|ys)dϑ (4.2)
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where for each s = 1, . . . , S,

π̃(ϑ|ys) ∝ p(ys|ϑ)π̃(ϑ),

m̃(ys) =

ˆ

p(ys|ϑ)π̃(ϑ)dϑ,

and

Z =

ˆ

π(ϑ)1/Sdϑ

Proof. Using Bayes formula,

π(ϑ|y) =
p(y|ϑ)π(ϑ)

m(y)

=

∏S
s=1 p(ys|ϑ)π(ϑ)1/S

m(y)

= ZS

∏S
s=1 p(ys|ϑ)π̃(ϑ)

m(y)

= ZS

∏S
s=1 m̃(ys)π̃(ϑ|ys)

m(y)

Integrating both sides with respect to ϑ and rearranging,

m(y) = ZS
S∏

s=1

m̃(ys)

ˆ S∏

s=1

π̃(ϑ|ys)dϑ

Roughly speaking, identity (4.2) expresses the marginal likelihood on the full
data as the product of the batched marginal likelihoods, corrected by a measure of
similarity of the batches {ys}, measured by the normalizing constant of the product
of the sub-posterior distributions.
Computing the prior normalizing constant Z is typically straightforward for the
most common choices of mixture priors, provided the hyper parameters are chosen
carefully. Example below gives Z when the mixture weights follow the Dirichlet
distribution D(·|α) a priori and when the mixture components are assumed to arise
from a Normal-Inverse-Gamma N IG(·|µ0, λ, a, b).

Proposition 4.2. Consider a K−component mixture model with prior distribution
on the component weights and parameters (̟, θ) where θ = ((µ1, σ2

1), . . . , (µK , σ2
K))

given by

Π(d̟, dθ) = D(d̟|α) ×
K∏

k=1

N IG(dθk|µ0, λ, a, b)

with density π. Then, for all integer S ≥ 1, π̃(ϑ) ∝ π(ϑ)1/S is distributed as
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D(d̟|α′) × ∏K
k=1 N IG(dθk|µ′

0, λ′, a′, b′) where





α′
k = (αk − 1 + S)/S for k = 1, . . . , K

µ′
0 = µ0

λ′ = λ/S

a′ = (a + 3/2 − (3/2)S)/S

b′ = b/S

provided a > (3/2)(S − 1).

Proof. Proof in Appendix.

Corollary 4.3. For a K−component mixture of Normal distributions with
prior distribution on the component weights and parameters (̟, θ) where θ =
((µ1, σ2

1), . . . , (µK , σ2
K)) given by

Π(d̟, dθ) = D(d̟|α) ×
K∏

k=1

N IG(dθk|µ0, λ, a, b)

with density π, the normalizing constant Z of π1/S for some integer S ≥ 1, is given
by

Z =

(
Γ(

∑K
k=1 αk)

∏K
k=1 Γ(αk)

)1/S ∏K
k=1 Γ((αk − 1 + S)/S

Γ((1/S)
∑K

k=1 αk − 1 + S)

×



( √
λ√
2π

ba

Γ(a)

)1/S √
2π√

λ/S

Γ((a + 3/2 − (3/2)S)/S)

(b/S)(a+3/2−(3/2)S)/S




K

provided a > (3/2)(S − 1).

Proof. Noticing that the normalizing constant of π1/S is given by
ˆ

π(̟, θ)1/Sd̟dθ =

(
ˆ

π(̟)1/Sd̟

)
×

(
ˆ

π(θ)1/Sdθ

)

=

(
ˆ

π(̟)1/Sd̟

)
×

K∏

k=1

(
ˆ

π(θk)1/Sdθk

)

the result is an immediate consequence of Proposition 4.2 above

Corollary 4.4. For a K−component mixture of Normal distribution with
prior distribution on the component weights and parameters (̟, θ) where θ =
((µ1, σ2

1), . . . , (µK , σ2
K)) given by

Π(d̟, dθ) = D(d̟|α) ×
K∏

k=1

N IG(dθk|µ0, λ, a, b)
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then for all s = 1, . . . , S, the augmented sub-posterior distribution of ϑ is

Π̃(d̟, dθ|zs, ys) = D(d̟|αs) ×
K∏

k=1

N IG(dθk|µ0sk, λsk, ask, bsk)

where




αsk = α′
k + Nk(zs)

µ0sk = (Nk(zs)ysk + λ′µ′
0)/(Nk(zs) + λ′)

λsk = λ′ + Nk(zs)

ask = a′ + Nk(zs)/2

bsk = b′ + (1/2)
[∑

i:zsi=k(ysi − ysk)2 + Nk(zs)λ
′/(Nk(zs) + λ′)(ysk − µ′

0)
2
]

where (α′, µ′
0, λ′, a′, b′) are the hyper-parameters of π̃(ϑ) derived in Proposition 4.2,

Nk(zs) = |{i : zsi = k}| and ysk = {ysi : zsi = k}.

Proof. This result is an immediate consequence of the conjugacy of the prior derived
in Proposition 4.2 and of Example 1 in Chapter 2, in which the posterior hyper-
parameters are computed.

Proposition 4.2 above shows that the shape parameter a > 0 of the popular
Normal-Inverse Gamma prior is constrained to increase as the number of batches S
increases.

The product of the marginal likelihoods on the batches of data in the identity
(4.2) can usually be easily estimated. For instance, for a normal mixture kernel
F and a Dirichlet-Normal-Inverse Gamma prior on the weights and parameters
ϑ = (̟, θ), Proposition 4.2 guarantees that estimating m̃(ys) boils down to the
problem of estimating the marginal likelihood of a finite mixture model with a
conditionally conjugate prior for a suitable reparametrization, which was extensively
studied in Chapter 2.

The right-most term of equation (4.2), however, is typically intractable for
mixture models since the posterior density of the parameters and weights ϑ cannot
be written in closed form. Hence, the quantity

I =

ˆ S∏

s=1

π̃(ϑ|ys)dϑ

is also intractable since it is the normalizing constant of a distribution proportional
to the product of S mixture posteriors. To address this issue, Buchholz et al. 2022
gives an estimate of I that is available for general conditionally conjugate parametric
models. As discussed in Chapter 2, finite mixtures of Normal with a Normal-Inverse
Gamma prior belong to this class of models, for which the augmented posterior
π(ϑ|z, y) where z is a latent variable (the cluster allocations in the case of mixtures),
is available in closed-form. Using this convenient property of conditionally-conjugate
models, Buchholz et al. 2022 suggests the following estimator of I given in Proposition
4.5 below.
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Proposition 4.5 (Buchholz et al. 2022). For general conditionally conjugate models,
the integral I :=

´

Θ

∏S
s=1 π̃(ϑ|ys)dϑ can be estimated through

Î =
1

T

T∑

t=1

ˆ S∏

s=1

π̃(ϑ|z(t)
s , ys)dϑ (4.3)

where {z
(t)
s }T

t=1 ∼ π̃(zs|ys) and Î is an unbiased estimator of I.

Proof. Using the latent variable representation, we write

S∏

s=1

π̃(ϑ|ys) =
S∏

s=1

ˆ

π̃(ϑ|zs, ys)π̃(zs|ys)dzs

By independence,

=

ˆ S∏

s=1

π̃(ϑ|zs, ys)π̃(zs|ys)dz1 . . . dzS

Integrating both sides with respect to ϑ, we get

I =

ˆ ˆ S∏

s=1

π̃(ϑ|zs, ys)π̃(zs|ys)dz1 . . . dzSdϑ

which yields by Fubini

I =

ˆ

(
ˆ S∏

s=1

π̃(ϑ|zs, ys)dϑ

)
S∏

s=1

π̃(zs|ys)dz1 . . . dzS

= Eπ̃(z1:S |y1:S)

[
ˆ S∏

s=1

π̃(ϑ|zs, ys)dϑ

]

where we define π̃(z1:S|y1:S) :=
∏S

s=1 π̃(zs|ys).
The proof is then concluded by a simple Monte-Carlo argument.

This is summarized in Algorithm 14, which again holds for any conditionally
conjugate parametric model. A full derivation of the augmented sub-posterior
distribution π̃(ϑ|zs, ys) is given in Proposition 4.9 in Appendix.

Unfortunately, despite their conditionally conjugate nature, we highlight in the
next section why the data augmentation trick for estimating I proposed by Buchholz
et al. 2022 is not suited to conditionally conjugate finite mixture models.

4.2.3 Unapplicability to conditionally conjugate finite mix-
tures

To understand why the estimator Î cannot be directly applied to conditionally
conjugate finite mixtures, recall that, as extensively discussed in Chapter 2, the
values taken by the latent cluster allocation variables zi for i = 1, . . . , n are completely
non-informative when considered individually. That is, the numerical value taken
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Algorithm 14 : Distributed marginal likelihood computation for condi-
tionally conjugate parametric models (Buchholz et al. 2022)

Input : For all s = 1, . . . , S, {ϑ
(t)
s , z

(t)
s }T

t=1 samples from a MCMC sampler
with stationary distribution π(ϑ, zs|ys), possibly run in parallel.

1 Do in parallel

2 Estimate m̃(ys), possibly using the sample {ϑ
(t)
s , z

(t)
s }t, for s = 1, . . . , S;

3 end

4 Compute Î using (4.3);

5 Return m̂S,Î = ZS ∏S
s=1

̂̃m(ys) × Î;

by a single zi is irrelevant if taken out of the context of the whole vector of
allocations z = (z1, . . . , zn). In fact, for any permutation σ of the set {1, . . . , K},
z̃ = (σ(z1), . . . , σ(zn)) induces the same clustering structure of the observations
as z and thus conveys exactly the same information. This leads to a permutation
invariance of the posterior distribution of the allocations z which severely hinders
the estimation of I through Î. Indeed, for all t = 1, . . . , T , where T is the number of
simulations performed in each MCMC algorithm targeting one of the S sub-posterior
distributions, estimator Î requires to evaluate the integral

ˆ

Θ

S∏

s=1

π̃(ϑ|z(t)
s , ys)dϑ

where for all s = 1, . . . , S, the vector z
(t)
s is distributed according to π̃(zs|ys).

While Î remains an unbiased estimator of I for finite mixture models, its variance
heavily depends on the properties of the MCMC chains targeting the mixture sub-
posteriors π̃(zs|ys) and in particular the presence of a label switching phenomenon
(or rather lack thereof), as illustrated on Figure 2.4 of Chapter 2 and its subsequent
discussion. In an ideal scenario, the Gibbs sampler would visit evenly all K!
modal configurations of π̃(zs|ys), since they are all equiprobable a posteriori for an
exchangeable prior distribution. This is hardly ever the case for a finite number
of simulations T . Moreover, this idealistic behavior of the Gibbs sampler should
happen for all S MCMC chains, which is an even more demanding assumption.

To illustrate the inefficiency of Î for finite mixtures we provide the following
example.

Example 1. We generate n = 2000 i.i.d data points y from the following two-
component mixture of Normal distributions 0.5N (0.5, 1) + 0.5N (3, 1) and use a
location-scale finite normal mixture for K = 1, 2, 3, 4 and 5. For the full model
(i.e using the full data y), we choose the conditionally conjugate Dirichlet Normal
Inverse-Gamma prior as specified in Proposition 4.2 with hyperparameters αk =
1, µ0k = ȳ, λk = 2.6/(y(n) − y(1)), ak = 4, bk = 0.36(y2 − y

2), for all k = 1, . . . , K.
We choose to split the data into S = 3 batches and use the prior π̃(ϑ) ∝ π(ϑ)1/3

which, by Proposition 4.2, is still the product of a Dirichlet distribution and a
Normal Inverse-Gamma with a suitable reparametrization. The simulation results
are presented in Figure 4.1. Note that each repetition used to create the boxplots
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Figure 4.1: Example 1 : Boxplots of 10 repetitions of distributed marginal likeli-
hood estimates for different values of K where I is estimated through Î and the
batch marginal likelihoods m̃(ys) are estimated by the permuted Chib’s estimator
m̂ChibP erm(ys) (cf Equation (2.22) of Chapter 2). For each K, the reference red
dashed line is computed on the whole dataset y using m̂ChibP erm(y).

are done with a different random partition of the data y into 3 batches (y1, y2, y3),
so that the observed variance is due both to the Monte Carlo sampler and the effect
of using different partitions of the full data y.

For K = 1, we see that the distributed marginal likelihood estimator using Î is
perfectly aligned with the reference line, which is expected since the latent allocation
variables z can only take one value and hence the labels of the zs are necessarily
coherent across the batches. However, as soon as K > 1, a pathological variance
can be observed, leading to a downward bias in the log-scale.

It is interesting to remark that the variance is the greatest for the case K = 2,
which in fact is the chosen number of components in the Data Generating Process
(DGP). At first, this can seem quite paradoxical since well-specified mixtures are
usually more easily estimated. However, in this situation, while it is true that
within each batch the Gibbs sampler shows good mixing properties, a lack of label
switching implies that sub-posterior samples typically represent a single modal
configuration. If this modal configuration is coherent across the 3 batches, then Î
is a good approximation of I. The outlier point that lies almost perfectly on the
reference line on the plot K = 2 is an example of this phenomenon, which happens in
about (1/K!)S = (1/2)3 of the scenarios for this well-specified finite mixture example
with rather distant components. However, the remaining cases in which the Gibbs
samplers are not label-consistent across batches pay a heavy penalization through
the integral

´

Θ

∏S
s=1 π̃(ϑ|z(t)

s , ys), which explains the low value of the estimate of
the marginal likelihood for K = 2. The ill-specified cases K = 3, 4 and 5 are more
prone to label switching and are less penalized by the integral above for incoherent
labels, which explains their ‘better’ performance.

What Example 1 helps us understand is that a perfect mixing of the MCMC
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algorithms targeting the sub-posterior distributions is necessary for Î to be a valuable
estimate of I. By perfect mixing, it is implied that a balanced label-switching
phenomenon should take place both within and across each S MCMC chains which
is an unrealistic expectation. Nevertheless, this intuition is at the core of the idea
behind the estimator Îperm that we derive in the next section, that enforces a perfect
label switching phenomenon to improve the performance of Î.

4.3 Permuted estimator of I

Keeping in mind the previous considerations, and remembering the mixture posterior
permutation-invariance explained in Section 2.2.3 of Chapter 2, an easy fix can be
derived using the identity

π̃(ϑ|ys) = π̃((ϑσ(1), . . . , ϑσ(K))|ys)

for all s and all permutation σ of the set {1, . . . , K}. Hence, trivially,

π̃(ϑ|ys) =
1

K!

∑

σ∈SK

π̃((ϑσ(1), . . . , ϑσ(K))|ys) (4.4)

where Sk denotes the set of all permutations of {1, . . . , K}. Equation (4.4) makes
it possible to consider all possible modal configurations of the sub-posterior distri-
butions. Without loss of generality, if we set batch 1 as reference and consider all
possible permutations across all S − 1 remaining batches, then the cluster label
matching issue described above can be addressed. The trick here is not to consider
separately all possible permutations σs ∈ Sk of the labels of batch s = 2, . . . , S, but
rather to consider them jointly as a vector σ = (σ2, . . . , σS) on the product space
S

S−1
K . Such a vector σ shall be called a configuration thereafter, or in other words,

a combination of permutations.
Hence we introduce the following fully permuted estimator which effectively

circumvents the issue of cluster labeling.

Proposition 4.6 (Permuted estimator of I). Let S be an integer larger than 1 and
let {z

(t)
s }T

t=1 ∼ π̃(zs|ys) for s = 1, . . . , S. Then

Îperm =
1

TK!S−1

T∑

t=1

∑

σ2,...,σS∈SK

ˆ

π̃(ϑ|z(t)
1 , y1)

S∏

s=2

π̃(ϑ|σs(z
(t)
s ), ys)dϑ (4.5)

is an unbiased estimator for I.



4.3. Permuted estimator of I 125

Proof. Using the posterior permutation invariance,

S∏

s=1

π̃(ϑ|ys) = π̃(ϑ|y1)
S∏

s=2

1

K!

∑

σs∈SK

π̃((ϑσs(1), . . . , ϑσs(K))|ys)

=
1

K!S−1

∑

σ2,...,σS∈SK

π̃(ϑ|y1)
S∏

s=2

π̃((ϑσs(1), . . . , ϑσs(K))|ys)

=
1

K!S−1

∑

σ2,...,σS∈SK

(
ˆ

π̃(ϑ|z1, y1)π̃(z1|y1)dz1

)

×
S∏

s=2

(
ˆ

π̃((ϑσs(1), . . . , ϑσs(K))|zs, ys)π̃(zs|ys)dzs

)

by independence and noticing that π̃((ϑσs(1), . . . , ϑσs(K))|zs, ys) = π̃(ϑ|σs(zs), ys),

=
1

K!S−1

∑

σ2,...,σS∈SK

ˆ

π(ϑ|z1, y1)
S∏

s=2

π̃(ϑ|σs(zs), ys)

×
S∏

s=1

π(zs|ys)dz1, . . . , dzs

integrating both sides with respect to ϑ and using Fubini’s theorem,

I =
1

K!S−1

∑

σ2,...,σS∈SK

ˆ

(
ˆ

π(ϑ|z1, y1)
S∏

s=2

π̃(ϑ|σs(zs), ys)dϑ

)

×
S∏

s=1

π(zs|ys)dz1, . . . , dzs

=
1

K!S−1

∑

σ2,...,σS∈SK

Eπ̃(z1:S |y1:S)

[
ˆ

π(ϑ|z1, y1)
S∏

s=2

π̃(ϑ|σs(zs), ys)dϑ

]
.

Thus,

Îperm =
1

K!S−1

∑

σ2,...,σS∈SK

1

T

T∑

t=1

ˆ

π(ϑ|z(t)
1 , y1)

S∏

s=2

π̃(ϑ|σs(z
(t)
s ), ys)dϑ

=
1

TK!S−1

T∑

t=1

∑

σ2,...,σS∈SK

ˆ

π(ϑ|z(t)
1 , y1)

S∏

s=2

π̃(ϑ|σs(z
(t)
s ), ys)dϑ

where {z
(t)
s }T

t=1
i.i.d∼ π̃(zs|ys) for all s = 1, . . . , S is an unbiased estimator for I.

Algorithm 15 below gives a pseudo-code implementation of Îperm.
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Algorithm 15 : Distributed fully permuted marginal likelihood computa-
tion for conditionally conjugate finite mixture models

Input : For all s = 1, . . . , S, {ϑ
(t)
s , z

(t)
s }T

t=1 samples from a MCMC sampler
with stationary distribution π(ϑ, zs|ys), possibly run in parallel.

1 Do in parallel

2 Estimate m̃(ys), possibly using the sample {ϑ
(t)
s , z

(t)
s }t, for s = 1, . . . , S;

3 end

4 Compute Îperm using (4.5);

5 Return m̂S,Îperm
(y) := ZS ∏S

s=1
̂̃m(ys) × Îperm;

Example 1. (continued) Reusing the same 2-component Normal mixture setting
with S = 3 batches and its numerical simulations, we add estimates of the distributed
marginal likelihood estimates using Îperm. For the sake of easing comparison, we
choose the same number of Gibbs sub-posterior simulations T for each method.
More precisely, T is set to 1000, 51000 and 101000 for K = 1, 2 and 3 respectively,
with a burn-in of 5%.

The improvement in the estimation of I through Îperm over Î is tremendous,
as shown on Figure 4.2. This is especially true for the well-specified case K = 2
in which the marginal likelihood estimates lie almost exactly on the reference line.
This is also true for the case K = 3. However, this great performance come at a
heavy computational cost, as expected. Figure 4.3 illustrates this phenomenon by
plotting the log of the computational time required to get one of the repetitions of
the boxplots for each K. Remember that the cost of estimating Î is O(T ) while it
is O(TK!S−1) for Îperm. This explains why the computational times are similar for
K = 1, but differ greatly for K = 2 and 3.

Figure 4.2: Example 1 : Boxplots of 10 repetitions of distributed marginal likelihood
estimates for different values of K where I is estimated through Î and Îperm and the
batch marginal likelihoods m̃(ys) are estimated by the permuted Chib’s estimator
m̂ChibP erm(ys) (cf Equation (2.22) of Chapter 2). The same number of Gibbs
sampling iterations T is used for both methods. For each K, the reference red
dashed line is computed on the whole dataset y using m̂ChibP erm(y).
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distribution on S
S−1
K , an importance sampling strategy could be derived and reduce

significantly the computational cost of Îperm.

4.4 Importance Sampling estimate of I

Based on the intuition that most of the K!S−1 integrals at each iteration t are not
relevant for evaluating Îperm, we derive in this section an Importance Sampling (IS)
strategy to reduce the explosive computational cost of Îperm.

The problem of constructing a probability distribution over the discrete space
S

S−1
K that puts high probability on configurations σ that results in large values

of χ(z; σ) is not straightforward. Indeed, it is not possible to determine a priori
such configurations without computing χ(z; σ) for all σ ∈ S

S−1
K . However, assume

that ϑ ∼ π̃(ϑ|z1, y1), then it is reasonable to assume that
∏

i:zsi=l p(ysi|ϑk) is a good
approximation to the probability that cluster l of batch s and cluster k of batch 1
‘match’. The general idea of our approach is to use the values of the parameters ϑ

sampled from the reference sub-posterior as anchor points that will help reconstruct
a coherent labeling of the clusters across the batches. Therefore, define for each
s = 2, . . . , S the matching matrix

Ps =




ps11 · · · ps1K
...

...
...

psK1 · · · psKK




where
pslk =

∏

i:zsi=l

p(ysi|ϑk)

for k, l = 1, . . . , K. For a given batch s, the l−th row of matrix Ps gives the matching
probabilities of cluster l of batch s with each cluster of batch 1.

Then consider the discrete probability distribution defined for all σ ∈ SK by

qσs
(σ) ∝

K∏

k=1

pskσ(k) (4.6)

that measures the probability that each cluster k of batch s is matched with cluster
σ(k) of batch 1. An importance distribution on the configurations (σ2, . . . , σS) ∈
S

S−1
K can then be defined as

qσ(σ2, . . . , σS) =
S∏

s=2

qσs
(σs) (4.7)

for all σ = (σ2, . . . , σS) ∈ S
S−1
K .

Several remarks can be made about the probability distribution (4.7) above. First,
it assumes that the choice of the permutations σs is made independently for all
s = 2, . . . , S. Hence, simulating a proposal configuration σ from qσ is equivalent to
sampling for each s = 2, . . . , S a permutation from qσs

which has a computational
complexity of about O(K!) once the matrix Ps is computed. Second, the definition
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qσs
in (4.6) implies that two different clusters in batch s cannot be matched to the

same cluster in the reference batch. Finally, any other batch than batch 1 can be
chosen as reference. In practice, it is possible that at an iteration t the allocation
vector of z

(t)
s only induces K+

s < K non-empty clusters. At each iteration, it is then
recommended to choose as the reference batch the one that has the largest number
of non-empty clusters.

From a computational point of view, due to the discreteness of the importance
distribution qσ, it is sensible to choose the number M of importance simulations
at each iteration t according to the number of configurations σ with non-negligible
weights w.r.t qσ. For each s, define

ESSs =

(∑
σ∈SK

qσs
(σ)

)2

∑
σ∈SK

qσs
(σ)2

(4.8)

which is a measure of the number of permutations with non-negligible qσs
probability.

Notice that in the particular case where qσs
(σ) ∝ 1 for all permutations σ, then

ESSs = K!, whereas if only one qσs
(σ) has non-zero value, then ESSs = 1. Then,

at each iteration t, a sensible choice for M (t) is given by, for example,

M (t) =
S∏

s=2

⌈ESSs⌉ .

This whole procedure has a considerably reduced computational cost compared
to m̂S,Îperm

(y). At each iteration t, each column of Ps requires n/S likelihood
evaluations, which makes a total cost of about O(Kn/S) for evaluating Ps. Note
that computing the matrices Ps, for s = 2, . . . , S should be done within each
worker separately and in parallel. Then, computing the K! weights of the discrete
importance distribution qσs

simply requires K! simple operations. Finally, sampling
from the global discrete importance distribution is done in M (t) basic operations.
This adds up to a global cost of O

(
T (Kn/S + K! + M̄)

)
operations compared to

O
(
TK!S−1

)
, where M̄ denotes the maximum number of importance simulations.

In addition, notice that this importance sampling strategy satisfies the desirable
requirement that data is not shared across the workers, the only communication
being the parameters sampled from the reference sub-posterior distribution.

The above strategy yields the following estimator ÎIS, which is unbiased for I by
Proposition 4.9. The whole procedure for deriving this estimator is summarized in
Algorithm 16.

Proposition 4.7. Let {z
(t)
s }T

t=1 ∼ π̃(zs|ys) for s = 1, . . . , S. Then

ÎIS =
1

TK!S−1

T∑

t=1

1

M (t)

M(t)∑

m=1

1

qσ(σ
(t,m)
2 , . . . , σ

(t,m)
S )

χ(z(t); σ
(t,m)
2 , . . . , σ

(t,m)
S ) (4.9)

where for all t, {(σ
(t,m)
2 , . . . , σ

(t,m)
S )}M(t)

m=1
i.i.d∼ πσ, is an unbiased estimator for I.
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Proof. For all t = 1, . . . , T ,

E


 1

M (t)

M(t)∑

m=1

1

πσ(σ
(t,m)
1 , . . . , σ

(t,m)
S )

χ(z(t); σ
(t,m)
2 , . . . , σ

(t,m)
S )

∣∣∣∣∣∣
z

(t)




=
∑

σ1,...,σS∈SK

χ(z(t); σ2, . . . , σS)

Hence,

E

[
ÎIS

]
= E


 1

TK!S−1

T∑

t=1

∑

σ1,...,σS∈SK

χ(z(t); σ2, . . . , σS)




= E

[
Îperm

]
= I

Algorithm 16 : Importance sampling for distributed marginal likelihood
computation

Input : For all s = 1, . . . , S, {ϑ
(t)
s , z

(t)
s }T

t=1 samples from a MCMC sampler
with stationary distribution π(ϑ, zs|ys), possibly run in parallel.

1 Do in parallel

2 Estimate m̃(ys), possibly using the sample {ϑ
(t)
s , z

(t)
s }t, for s = 1, . . . , S;

3 end
4 for t = 1, . . . , T do
5 Do in parallel
6 Compute the p.m.f of qσs

for all s using (4.6);
7 end

8 Choose M (t) adaptively for using ESSs defined in (4.8);

9 Draw M (t) configurations {σ
t,m
2 , . . . , σ

(t,m)
S }M

m=1 from qσ;
10 end

11 Compute ÎIS using (4.9);

12 Return mÎS,IS
(y) := ZS ∏S

s=1
̂̃m(ys) × ÎIS;

Example 2. In this example, we generate n = 1000 i.i.d observation from the
standard normal distribution. The choice of the prior distribution and prior hyper-
parameters is identical to the setting of Example 1. Figure 4.4 indicates that ÎIS is
a good approximation to Îperm with a considerably reduced computational time, in
particular for K ≥ 3, as shown by Figure 4.5. However, despite being very good at
approximating Îperm, it seems that the latter suffers from a pathological variance
leading to a downward bias in the log scale. A better understanding of the situation
at hand can be provided by the variance of Î given in Buchholz et al. 2022 as

V(Î) =
I2

T
Vπ̃(z1:S |y1:S)

(
π(z1:S|y1:S)

π̃(z1:S|y1:S)

)

where as before π̃(z1:S|y1:S) =
∏S

s=1 π̃(zs|ys).
This expression indicates that if the tails of π̃(z1:S|y1:S) happen to be thinner than
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that of π(z1:S|y1:S), then it is possible that the variance of Î be infinite. As intuited
by Buchholz et al. 2022, as the number of splits S increases, it should be expected
that the approximation of the full posterior given by π̃(z1:S|y1:S) worsens. In practice,
it is difficult to understand the behavior of this discrete distribution and how it
reacts to an increase in S and/or K, in our model specification. This discrepancy
between π̃ and π could be at the origin of the observed better performance of Îperm

and ÎIS in the well-specified scenario (K = 2) compared to the ill-specified cases. In
any case, this observation calls for a new approach to the problem and, in particular,
the derivation of a new identity with hopefully better theoretical properties when
confronted to mixture models.

Figure 4.4: Example 2 : Boxplots of 10 repetitions of distributed marginal likelihood
estimates for different values of K where I is estimated through Î, Îperm and ÎIS

and the batch marginal likelihoods m̃(ys) are estimated by the permuted Chib’s
estimator m̂ChibP erm(ys) (cf Equation (2.22) of Chapter 2). The same number of
Gibbs sampling iterations T is used for all methods. For each K, the reference red
dashed line is computed on the whole dataset y using m̂ChibP erm(y).
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Proof.

m(y) = ZS
S∏

s=1

m̃(ys)

ˆ S∏

s=1

π̃(ϑ|ys)dϑ

= ZS
S∏

s=1

m̃(ys)ZS

= ZS

[
S∏

s=1

m̃(ys)

] [
S∏

s=2

Zs

Zs−1

]

= ZS × m̃(y1)
S∏

s=2

m̃(ys)
Zs

Zs−1

= ZS × m̃(y1)
S∏

s=2

m̃(ys)

Zs−1

ˆ

[
s−1∏

l=1

π̃(ϑ|yl)

]
π̃(ϑ|ys)dϑ

= ZS × m̃(y1)
S∏

s=2

ˆ

π̃s−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ

The third equality is a consequence of the fact that Z1 =
´

π̃(ϑ|y1)dϑ = 1.

The advantages of the new identity derived in Proposition 4.8 are twofold. First,
it allows to bypass the estimation of all sub-posterior marginal likelihoods by reducing
the problem to the estimation of m̃(y1) only. Note that the choice of the first batch
as a reference in the statement of Proposition 4.8 is completely arbitrary and that
any other batch can be used instead. Second, one should notice that the product of
integrals on the left-hand side of equation 4.8 can be regarded as the product of the
expected value of the unnormalized sub-posterior distributions with respect to the
successive product densities π̃s(ϑ). That is,

S∏

s=2

ˆ

π̃s−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ =
S∏

s=2

Eπ̃s−1(ϑ) [p(ys|ϑ)π̃(ϑ)]

This representation calls for a (sequential) importance sampling strategy making use
of the successive distributions π̃s(ϑ), s = 1, . . . , S as importance distributions. More
precisely, suppose that at step s − 1, {ϑ

(m)}M
m=1 is distributed according to π̃s−1(ϑ),

then compute the importance weights proportional to the ratio π̃s(ϑ
(m))/π̃s−1(ϑ

(m)),

w(m)
s =

∏s
l=1

[
p(yl|ϑ

(m))π̃(ϑ(m))
]

∏s−1
j=1

[
p(yj|ϑ

(m))π̃(ϑ(m))
] = p(ys|ϑ

(m))π̃(ϑ(m)). (4.11)

Then notice that

1

T

T∑

t=1

w(m)
s ≈

ˆ

π̃s−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ = Eπ̃s−1(ϑ) [p(ys|ϑ)π̃(ϑ)] .

The particles {ϑ
(m)}m are then usually resampled according to their normalized

weights W (m)
s ∝ w(m)

s and to avoid the potential particle degeneracy phenomenon
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typical of Sequential Monte Carlo samplers, {ϑ
(m)}m should be moved according to

a πs-invariant MCMC kernel. Assuming samples from the sub-posterior distributions
π̃(ϑ|ys) were collected in parallel with a Gibbs sampler, we propose a Metropolis
Hasting step using as a proposal the sub-posterior distribution π̃(ϑ|ys). That is, at
iteration s, for particle ϑ

(m), propose a new particle ϑ
′ from the MCMC sample with

invariant distribution π̃(ϑ|ys). Then compute the Metropolis Hasting acceptance
probability,

α(ϑ′, ϑ
(m)) =

π̃s(ϑ
′)

π̃s(ϑ
(m))

π̃(ϑ(m)|ys)

π̃(ϑ′|ys)

=

∏S
s=1 π̃(ϑ′|ys)∏S

s=1 π̃(ϑ(m)|ys)

π̃(ϑ(m)|ys)

π̃(ϑ′|ys)

=

∏S−1
s=1 π̃(ϑ′|ys)∏S−1

s=1 π̃(ϑ(m)|ys)

=

∏S−1
s=1 p(ϑ′|ys)π̃(ϑ′)

∏S−1
s=1 p(ϑ(m)|ys)π̃(ϑ(m))

. (4.12)

Finally, at step S, compute the estimate

S∏

s=2

1

M

T∑

m=1

w(m)
s ≈

S∏

s=2

Eπs(ϑ) [p(ys|ϑ)π̃(ϑ)]

which is to be plugged into 4.8 to obtain an estimate m̂S,SMC(y) of m(y). Note that
computing the Metropolis acceptance ratio (4.12) can be done in parallel, without
sharing any data across the workers. Indeed, at each iteration s = 2, . . . , S of the
SMC sampler, the candidates ϑ

′ are chosen in advance among the MCMC sample
{ϑ

(t)
s }T

t=1 targeting π̃(ϑ|ys). Then, the set of candidates is sent to each worker which
in turn returns all the ratios constituting (4.12). The above procedure is summarized
in Algorithm 17 below.
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Algorithm 17 : SMC for distributed marginal likelihood computation

Input : For all s = 1, . . . , S, {ϑ
(t)
s }T

t=1 samples from a MCMC sampler with
stationary distribution π̃(ϑ|ys), possibly run in parallel.

1 Do in Worker 1

2 Estimate m̃(y1), possibly using the sample {ϑ
(t)
1 }t;

3 Initialize the particles {ϑ
(m)}M

m using a subsample of size M from the

sample {ϑ
(t)
1 }t;

4 Compute w
(m)
1 = p(ϑ(m)|y1)π̃(ϑ(m));

5 end
6 for s = 2, . . . , S do

/* Reweight */

7 Compute the weights w(m)
s of the particles {ϑ

(m)} using (4.11) in Worker
s;

/* Resample */

8 Resample the particles multinomially according to their weights w(m)
s ;

/* Move */

9 Choose M candidates {ϑ
′(m)}M

m among the sample {ϑ
(t)
s }T

t ;
10 Do in parallel

11 Compute the ratio p(ϑ′(m)|ys)π̃(ϑ′(m))/p(ϑ(m)|y1)π̃(ϑ(m))
12 end
13 for m = 1, . . . , M do
14 Compute the Metropolis acceptance ratio α given in (4.12);
15 Accept ϑ

′(m) with probability α;
16 end

17 end

18 Return m̂S,SMC(y) = ZS ̂̃m(y1)
∏S

s=2
1

M

∑M
m=1 w(m)

s ;

Example 2. (continued) Reusing the same data as in the previous example,
we add to our analysis the distributed SMC marginal likelihood estimator derived
in Algorithm 17. Once again, the data y is splitted into S = 3 batches and the
distributed marginal likelihood estimates are displayed on Figure 4.6. Note that
all the considered algorithms require as a starting point S samples of size T from
the sub-posterior distributions π̃(ϑ|ys). For fair comparison, the same value of T
is chosen for all methods. More precisely, we choose T = (K − 1)10000 + 1000 for
all values of K considered in this experiment. The number of particles M chosen
for the SMC algorithm is set to (K − 1)5000 + 200. Note that the estimate of the
marginal likelihood based on estimator Îperm is not included for K = 5 due to its
prohibitive computational cost of O(5!2T ).

It can be seen that SMC clearly outperforms the other approaches based either on
Î, ÎIS or Îperm and this no matter the value of K. The resulting marginal likelihood
estimates consistently fall much closer to the reference value given by ChibPerm
with S = 1 (red dashed line). Moreover, the required computational time to obtain
the SMC estimates is comparable to the other algorithms for K ≤ 2, but clearly
much lower for greater values of K.
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4.6 Simulation Study

4.6.1 Experiment 1. The effect of the number of splits S

The aim of this experiment is to assess the distributed marginal likelihood estimates
based on ÎIS, Îperm and SMC on a moderately large data set of n = 20000 observa-
tions and to study the effect of the number of splits S both on the computing time,
and on the Monte-Carlo variance of the estimates. To do so, we sample data y from
the 2-component mixture

0.5N (2, 1) + 0.5N (5, 1)

which histogram is plotted on Figure 4.8.

Figure 4.8: Histogram of the data used for Experiment 1. n = 20000.

For S = 1, . . . , 10, we successively fit a mixture of K Normal distributions for
K = 2, . . . , 5. We choose the conditionally conjugate Normal-Inverse Gamma prior.
That is, for all k = 1, . . . , K, we assume σ2

k ∼ Γ−1(a, b) and µk|σ2
k ∼ N (µ0, σ2

k/λ)
where Γ−1 is the inverse gamma distribution in the shape and scale parametrization.
The hyperparameters (a, b, µ, λ) are derived empirically following recommendations
from Raftery 1996 : b = 0.36(y2 − y2), µ0 = ȳ, 1/λ = (ymax − ymin)/2.6. Finally the
prior on the mixture weights is chosen to be Dirichlet with concentration parameter
α = 1K . Note that this choice of prior ensures that π(ϑ|y, z) := π(µ, σ

2|y, z) is
available in closed form, which is a prerequisite for the tractability of estimators ÎIS

and Îperm. The choice of hyperparameter a, however, is constrained by the number
of splits S since it must be greater than (3/2)(S − 1), as given by Proposition 4.2.
In order to assess the effect of S on the estimation of the marginal likelihood, it
is not desirable to choose one value of a for each scenario. Therefore, we choose
a = 15 so that it is compatible with the greatest value of S that we consider in this
experiment, namely 10. The number of Gibbs sampling iterations T targeting the
sub-posterior distributions π̃(ϑ, zs|ys) of the Gibbs sampler, a prerequisite to all
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the methods considered, is chosen to depend solely on K so as to isolate the effect
of S. We choose T = 50000(K − 1) + 1000 with a burn in of 5%. Whenever the
estimation of the marginal likelihood of a batch m̃(ys) is necessary, the permuted
Chib’s estimator (m̂ChibP erm(y)) is used. In order to assess the precision of our
estimates, the scenario S = 1 is represented as a red dashed line, computed with the
same number T of Gibbs sampling iterations. Indeed, note that all three estimator
m̂S,ÎIS

, m̂S,Îperm
(y) and m̂S,SMC(y) reduce to m̂ChibP erm(y) whenever S = 1.

Figure 4.9 shows the resulting distributed marginal likelihood estimators for each
S and K. The estimator mS,Îperm

(y) is not always displayed as its computational

cost O
(
TK!S−1

)
is too high for some of the values of S and K considered. Note

that each repetition used to construct the boxplots uses a different partitioning of
the data (y1, . . . , yS) into S batches, so that the observed variation is mostly due
to the Monte Carlo variance.

For K = 2, i.e the well-specified scenario, we see that estimators m̂S,ÎIS
(y) and

m̂S,Îperm
(y) show rather good performance despite a slight increase in variance can

be observed for larger number of splits. The SMC estimate, despite showing a larger
variance, does not seem too much affected by the number of splits.

For values of K > 2 however, m̂S,SMC(y) is consistently closer to the true value
showed by the reference line. The other estimates, on the other hand, show a
pathological variance. It is interesting to observe that increasing the number of splits
tends to introduce some variance in the estimates. Intuitively, this phenomenon can
be understood as the price paid for recombining an increasing number of marginal
likelihood estimates through I, or in the case of SMC, converting samples from
the sub-posterior distributions into the distribution πs(ϑ) (4.10). This observed
variance, however, is much smaller for m̂S,SMC(y). Furthermore, as in Example 2,
we observe that while m̂S,ÎIS

(y) is a good approximation to m̂S,Îperm
(y), it does not

correct the intrinsic pathological variance of the latter.
The estimated Bayes Factors on Figure 4.10 show that SMC consistently leads to

the selection of the appropriate number of components (K0 = 2). Moreover, its ap-
proximation to the reference values of the Bayes Factor estimated with m̂ChibP erm(y)
(S = 1) is rather satisfactory, despite a slight increase in the observed variance
when the number of splits increases. It is to be noted that while the Bayes Factors
estimated through m̂S,ÎIS

(y) and m̂S,Îperm
(y) also lead to a consistent selection of

the right number of components, their approximation to the reference Bayes Factor
is quite poor and quickly deteriorates as S increases.

In terms of computational time, the information conveyed by Figure 4.11 is
twofold. First, using SMC always brings a computational advantage compared to
S = 1 (red dashed line) in all scenarios considered. Its computational time does not
seem to explode with the number of splits. This is not the case for m̂S,ÎIS

(y) and
m̂S,Îperm

(y). Second, for all methods, there seems to be an optimal number of splits
beyond which the computational time stops decreasing. This value does not seem to
depend on K so it is reasonable to assume that it is a function of the sample size n.
This clearly highlights a trade-off between the computational time and the number
of splits. On the one hand, increasing S clearly reduces the completion time of the
parallel MCMC algorithms. On the other hand, the recombination step gets more
costly as the number of estimates to merge increases. Note however that SMC seems
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to have a recombination step more robust to an increase in S. In fact, looking at
the implementation of Algorithm 17, it can easily be seen that its cost is linear in S.

Figure 4.9: Experiment 1. Boxplots for the different methods considered, 10
repetitions each.
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Figure 4.9: Experiment 1 (continued). Boxplots for the different methods considered,
10 repetitions each.
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4.7 Conclusion and perspectives

In this Chapter, we noticed that the distributed marginal likelihood estimation pro-
cedure given in Buchholz et al. 2022 is not readily applicable to finite mixture models
due to the poor mixing of MCMC samplers caused by their lack of identifiability and
highly multimodal posterior. We provided an adapted version of their estimation
strategy which directly addresses these issues, and a subsequent version with a
more reasonable computational time. Lastly, we derived a new identity bridging the
gap between the full marginal likelihood and the batch marginal likelihoods that
can be estimated straightforwardly using a Sequential Monte Carlo approach. Be-
sides showing much enhanced performance in the empirical experiments considered,
this estimator happens to be valid for all kind of parametric models and relaxes
hypotheses such as conjugacy, for instance.

An interesting research avenue would be to find new ways to perform the MCMC
step inside the SMC procedure that still preserve the requirement that no data can
be shared across the batches. Studying the behavior of this estimator for other
models than mixtures could also be interesting. Given its very promising results in
such complex scenarios, we are hopeful it could greatly ease the task of Bayesian
model selection in the context of tall data for all kind of models.
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4.A Appendix

4.A.1 Proof of Proposition 4.2

Proof. Notice that

π(̟, θ)1/S = π(̟)1/S × π(θ)1/S

= π(̟)1/S ×
K∏

k=1

π(θk)1/S.

Now,

π(̟)1/S ∝
K∏

k=1

π
(αk−1)/S
k =

K∏

k=1

π
(αk−1+S)/S−1
k

hence π(̟)1/S is Dirichlet with parameters (αk −1+S)/S, which are always positive
for S ≥ 1.
Moreover,

π(θk)1/S ∝
(

1

σ2
k

)(a+3/2)/S

exp

{
−2b + λ(µk − µ0)

2

S × 2σ2

}

∝
(

1

σ2
k

)(a+3/2−(3/2)S)/S+3/2

exp

{
−2(b/S) + (λ/S)(µk − µ0)

2

2σ2

}

hence π(θk)1/S is still Normal-Inverse Gamma with hyper-parameters as given above,
provided (a + 3/2 − (3/2)S)/S > 0 ⇔ a > (3/2)(S − 1).

4.A.2 Distribution of the product of the augmented sub-
posteriors

Proposition 4.9. For a K−component mixture of Normal distributions with
prior distribution on the component weights and parameters (̟, θ) where θ =
((µ1, σ2

1), . . . , (µK , σ2
K)) given by

Π(d̟, dθ) = D(d̟|α) ×
K∏

k=1

N IG(dθk|µ0, λ, a, b)

then
S∏

s=1

Π̃(d̟, dθ|zs, ys) ∝ D(d̟|α̃) ×
K∏

k=1

N IG(dθk|µ̃0k, λ̃k, ãk, b̃k)
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where for all k = 1, . . . , K,





α̃k =
∑S

s=1 αsk

µ̃0k =
(∑S

s=1 λskµ0sk

)
/

∑S
s=1 λsk

λ̃k =
∑S

s=1 λsk

ãk =
∑S

s=1 ask + (3/2)(S − 1)

b̃k =
∑S

s=1 bsk + (1/2)
(∑S

s=1 λskµ2
0sk −

(∑S
s=1 λskµ0sk

)2
/

∑S
s=1 λsk

)

and (αsk, µ0sk, λsk, ask, bsk) are the sub-posterior hyper parameters derived in Corol-
lary 4.4.

Proof. The result is obtained by direct calculation.
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