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“Everything should be made as simple as possible, but no simpler.”

Albert Einstein (1879-1955)
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Abstract

Geotechnical engineering is a crucial field in the design and construction of foun-
dations, embankments, tunnels, and other structures interacting with soil and rock.
However, the description of the elastoplastic response of soil, with preponderant non-
linear and non-reversible deformations together with a non-associative flow rule, is
complex. The difficulty is even higher in the case of non-monotonous loading paths
where phenomenological constitutive relations require ad-hoc history parameters and
advanced experimental tests for their calibration.

Discrete element method has been proved to be an effective method in predicting
quantitatively the constitutive response of soils, even in the case of complex loadings
(with rotation of principal stress directions, or loading/unloading cycles) where con-
ventional elastoplastic constitutive relations may fail to simulate realistic responses.
For granular soils with a narrow grading, a direct representation of soil grains by
polyhedral particles or with the level set method is possible, whereas for finer soils,
or soils with a wider grading, alternative solutions should be considered. Spherical
particles with enriched contact laws (e.g. by introducing rolling resistance at the
contact) or rather simplified clumps of spheres can be used to keep the model rel-
atively light to tackle further boundary value problems with limited computational
cost. However, even if the models provide satisfying results for direct shear tests or
drained triaxial compression loading paths compared to experimental measurements,
their validation with respect to more complex loading paths as the isochoric com-
pression or the path at constant stress deviator still present difficulties, in particular
for initially loose granular assemblies.

First, this study aims to compare such different approaches in terms of the prediction
abilities at the macroscopic scale of the constitutive responses of soils, particularly
for complex loading paths. Two kinds of discrete models are considered: (i) spherical
particles with rolling resistance, (ii) simple clumps made of 2 to 6 spheres. The mod-
els are calibrated from two drained triaxial compressions on dense and loose Hostun
sand. They are then assessed, according to the macroscopic response, on loading
paths significantly different from the calibration loading paths (isochoric compres-
sions, circular stress paths in the deviatoric plane, constant deviatoric stress path,
etc.).

Then, we investigate the importance of the description of the anisotropy of the initial
fabric and of the inter-particle friction law in the simulated responses of loose gran-
ular assembly to different kinds of loading paths. It shows how the combination of
both can modify importantly the simulated responses to some kinds of loading paths.
This investigation is carried out for a numerical discrete model made of spheres by
comparison with experimental results on sand.

Finally, the model is used to simulate the nonlinear interaction between a shallow
foundation of building structure and the supporting soil during strong seismic load-
ings, as tested experimentally for the TRISEE project with a full scale physical
model. An adaptative discretization technique is implemented to limit the number
of particles in such a boundary value problem and make the computation possible
with a conventional desktop computer. Numerical results are benchmarked against
experimental measurements from the TRISEE project, and FEM numerical simula-
tions or macro-element models.
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Résumé

L’ingénierie géotechnique est un domaine crucial dans la conception et la construc-
tion de fondations, de tunnels, de remblais et autres ouvrages en interaction avec
le sol ou la roche. Cependant, la description de la réponse élastoplastique du sol,
avec des déformations fortement non linéaires et irréversibles ainsi qu’une regle
d’écoulement non associée, reste complexe. La difficulté est encore plus élevée
dans le cas de chemins de chargement non monotones ou les relations constitutives
phénoménologiques nécessitent des parametres d’histoire ad hoc et des essais mé-
caniques avancés pour leur calibration.

La méthode des éléments discrets s’est avérée etre une méthode efficace pour décrire
quantitativement la réponse constitutive des sols, méme dans le cas de chargements
complexes (avec rotation des axes principaux de contraintes ou des cycles de charge-
ment/déchargement) ou les relations constitutives €élastoplastiques conventionnelles
peuvent conduire a des réponses simulées non réalistes. Pour les sols granulaires a
granulométrie étroite, une représentation directe des grains du sol par des particules
polyédriques ou a partir de level set est possible, tandis que pour les sols plus fins ou
a granulométrie plus étalée, des solutions alternatives doivent étre envisagées. Des
particules sphériques avec des lois de contact enrichies ou des agrégats de spheres
peuvent étre utilisées pour conserver un modele numérique relativement 1éger afin de
résoudre des problemes aux limites avec un colit en calcullimité. Cependant, méme si
ces modeles donnent des résultats satisfaisants pour des essais de cisaillement direct
ou des compressions triaxiales drainées par rapport aux mesures expérimentales, leur
validation par rapport a des trajets de chargement plus complexes tels que la com-
pression isochore ou le chemin a déviateur de contrainte constant présente encore
des difficultés, en particulier pour les assemblages granulaires initialement laches.
Dans cette étude, nous proposons tout d’abord de comparer de tels modeles. Cette
comparaison se fait en termes de capacités prédictives a I’échelle macroscopique des
réponses constitutives des sols, en particulier pour des trajets de chargement com-
plexes. Deux types de modeles discrets sont considérés : (i) des particules sphériques
avec une résistance au roulement, (ii) des agrégats simples composés de 2 a 6 spheres.
Les modeles sont calibrés a partir de deux compressions triaxiales drainées sur du
sable d’Hostun dense et lache. Ils sont ensuite évalués, en fonction de la réponse
macroscopique, sur des trajets de chargement nettement différents des trajets de cali-
bration (compressions isochores, chemins de contrainte circulaires dans le plan dévi-
atoire, chemin a déviateur de contrainte constant, etc.).

Ensuite, nous étudions I’importance de la description de 1’anisotropie de la micro-
structure initiale et de la loi de frottement inter-particules dans les réponses simulées
des assemblages granulaires laches pour différents types de chemins de chargement.
Cela montre comment la combinaison des deux peut modifier de maniere importante
les réponses simulées pour certains chemins de chargement. Cette étude est réalisée
avec un modele numérique discret composé de spheres comparé a des résultats ex-
périmentaux réalisés sur un sable.

Enfin, le modele est utilisé pour simuler I’interaction non linéaire entre une fonda-
tion superficielle d’une structure de batiment et le sol lors de sollicitations sismiques
intenses, comme testé expérimentalement pour le projet TRISEE avec un modele
physique aéchelle 1. Une technique de discrétisation adaptative est mise en ceuvre
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pour limiter le nombre de particules dans un tel probleme aux limites et rendre le cal-
cul possible avec un ordinateur de bureau classique. Les résultats numériques sont
comparés aux mesures expérimentales du projet TRISEE, ainsi qu’a des simulations
numériques par éléments finis (FEM) ou des modeles basés sur des macro-éléments.
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Chapter 1

Introduction

1.1 Background

At the present time, soil-structure interaction problems are often modelled using
elasto-plastic constitutive relationships that are easy to implement and work well
with numerical methods such as finite elements and finite differences. However,
these models are not suitable for complex loading paths (for example, highly non-
proportional loading paths involving principal axis rotations or loading/unloading
cyclic loading paths), as demonstrated by the results of the 1987 Cleveland Work-
shop benchmark study (Saada and Bianchini, 1988b). In such cases, the predictions
produced by the elasto-plastic relations can be inaccurate, especially when modelling
geotechnical structures such as wind turbine foundation piles, foundation layers of
heavily loaded transport routes, or deep excavations supported by embedded walls
that may be subject to loading/unloading cyclic loads in both vertical and horizon-
tal directions. Therefore, it is important for engineers to consider the nature of the
loading paths before deciding to use elasto-plastic relations, as this will affect the
accuracy of the predictions.

Numerical models based on the Discrete Element Method (DEM) have been used for
decades to predict the constitutive response of soils from qualitative point of view.
Recent research, based on the results of the Cleveland workshop, has shown that
DEM models can predict the mechanical response of soils with quantitative accuracy
and not only qualitatively, even when subjected to complex loading paths (Sibille
et al., 2019). This prediction capability of the DEM models is remarkable, espe-
cially when compared to the small amount of experimental data needed to calibrate
the models, which often require no more than four or five mechanical parameters.
In contrast, elasto-plastic relations that involve ad hoc history parameters require a
much larger number of parameters and must be calibrated using cyclic tests to de-
scribe the response to non-monotonous loading paths. However, it should be noted
that DEM models have some limitations, such as the inability to accurately model
loose soils subjected to complex loadings paths such as a path involving a constant
stress deviator or an isochoric compression loading path. Additionally, the main lim-
itation of the DEM lies in its computational cost. Moreover, the choice of the DEM
model initial state is not always straight forward. These limitations will be discussed
and addressed in further detail in chapter 3.

This PhD thesis focuses on creating a discrete element model that is numerically
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applicable to engineering projects on various types of soils, by limiting the compu-
tational cost. This model takes into account the structure and initial states of the
granular assembly, and follows a well-defined calibration method. Finally, the DEM
model is validated with a boundary value problem and a laboratory test to ensure its
accuracy.

1.2 Objectives of the thesis

The thesis aims to achieve three primary objectives. In the first part, we investigate
various approaches to enhance the prediction ability of the discrete element model in
the case of complex loadings. In the second part of the thesis, the model is applied
to a soil-structure interaction problem of a shallow foundation subjected to a seis-
mic load, and then benchmarked against experimental measurements and previous
simulations performed with the finite element method embedding phenomenological
constitutive relations. Furthermore, in the third part, the discrete model is applied
to a modified direct shear test to access information that is difficult to obtain experi-
mentally: the local strain field and the local stress state. Thus presenting its practical
applicability and effectiveness in real-world scenarios.

1.2.1 Objectives of part 1

This part of the thesis focuses on developing a light discrete element model that
can be used to study the mechanical behavior of granular materials in geotechnical
engineering project, thus by limiting the increase in computational time. The model
takes into account the particle shape effect, initial states of the granular assembly,
and uses a well-defined calibration method.

The following objectives are covered in this part:

* Proposing a new approach to defining the initial porosity of granular materials
models.

* Examining the impact of particle shape on the mechanical behavior of gran-
ular materials through the use of triaxial tests, by comparing the behavior of
spherical particles and clumps of two or more spheres.

* Introducing the possible impact of roughness by implementing a variable con-
tact friction angle.

» Studying the effect of initial fabric anisotropy on the mechanical behavior of
granular materials.

1.2.2 Objectives of part 2

In the second part of the thesis, the DEM is utilized to simulate a geotechnical appli-
cation that involves a large-scale experiment within a former European Union-funded
research project, the TRISEE project (Faccioli, Vanini, and Paolucci, 1999). This ex-
periment involves a shallow foundation on Ticino sand subjected to seismic loading
modeled using adaptive discretization technique. The aim of this part of the thesis is
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to compare the numerical results obtained from the 3D DEM model with experimen-
tal measurements and previous simulations results from a macro-element model and
other constitutive relations using the finite element method (FEM).

The following objectives are covered in this part:

* Implementation of an adaptive discretization technique to reduce the number
of particles in the simulation of the shallow foundation problem to make the
computation faster on a conventional desktop computer.

* Performing a 3D DEM simulation of a shallow foundation on Ticino sand sub-
jected to seismic loading, by applying the three loading phases defined in the
TRISEE project.

* Comparing the numerical results obtained from the 3D DEM model against
experimental measurements and previous simulations performed with the FEM
and macro-element models.

1.2.3 Objectives of part 3

In the third part of the thesis, the DEM is utilized to simulate a modified direct shear
box test (Reiffsteck, 2022; Arpaia, Heintz, and Reiffsteck, 2015), where the shear
plate consists of teeth with varying spacing. This modification aims to understand
the behavior of the phicometer, which is a probe surrounded by steel teeth penetrating
in a borehole for the measurement of mechanical characteristics such as the cohesion
and the internal angle of friction. The following objectives are covered in this part:

* Modelling the modified direct shear test to understand the behavior of the soil-
phicometer interaction, by testing the effect the modified plate with teeth on
the behavior of soil.

* To obtain the necessary information required for defining an accurate interpre-
tation of the phicometer, by identifying the shear surface and estimating the
local shear stress.

1.3 Outline of the thesis

The thesis consists of six chapters in total. Each chapter is organized as follows:

* In chapter 2, the literature review is presented. It’s divided into two parts:
Part 1: presents a brief history of studies done to investigate and improve the
prediction ability of the DEM.
Part 2: Modeling of boundary value problems and soil structure interaction
using various numerical techniques such as the finite element method (FEM),
macro elements, the discrete element method, and double scale models as the
FEM x DEM.
Advantages and limitations of the different methods are then discussed.

* In chapter 3, we present the development of a discrete element model, inves-
tigating the effects of particles shape, roughness, anisotropy and initial state.
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The results obtained from the micro and macro scale simulations are presented
and discussed.

In chapter 4, we study the application focusing on soil-foundation interaction.
The large scale experiment of the TRISEE project setup is presented. Followed
by the calibration of the model on Ticino sand. Furthermore, the different
steps of preparation of the discrete numerical model are described in details.
Moreover, we compare the results obtained from the numerical model with
experimental measurements, as well as other model based on either the finite
element method (FEM) or macro elements.

In chapter 5, the second boundary value problem is presented, the phicometer.
The experimental setup, based on a modified direct shear test is discussed,
along with the construction of the corresponding numerical model. The results
obtained from the numerical simulations are then presented.

Finally, in chapter 6 we provide a general conclusion summarizing the key
findings and offering perspectives for future research in the field of discrete
numerical models in soil mechanics and their practical applications.



Chapter 2

Literature review

2.1 Introduction

Geotechnical engineering is a branch of civil engineering that deals with the behav-
ior of soil and their interaction with structures. It is a crucial field in designing and
constructing safe and efficient foundations, embankments, retaining walls, tunnels,
and many other structures. Thus, in order to design safe structures it’s important
to understand how soil behaves when subjected to different types of loading. Soils
can be sand, gravel, silt, clay or others. It is basically composed of discrete parti-
cles interacting together at the microscopic level to sustain any applied external load.
These materials can be heterogeneous and irregular (with non-uniform characteris-
tics), which results in different behaviors characterized by stress and deformation
that mainly depend on the particles shape, surface roughness, anisotropy, packing
density, water content, chemo-physical interactions, and other features. The strength
and deformation of soils are measured experimentally using laboratory tests such as
triaxial tests or direct shear tests that measure various characteristics like the internal
friction angle ¢ and cohesion C.

In the past decades, to model the behaviour of granular materials, phenomenolog-
ical constitutive relations became the most used tool. Due to the fast development
and the high computation power of computers it became possible to simulate the soil-
structure interaction with different numerical methods such as: finite element method
(FEM), finite difference method, and macro elements which requires the usage of
phenomenological constitutive relations. Nowadays, another powerful method that
have been used to simulate the mechanical behaviour of soils, and more particularly
granular soils, is the discrete element method (DEM), which enables researchers to
explore and understand different expects and behaviour of granular material on the
micro and macro scales. In the following sections, the chapter is organized into
two parts as follows: The first part begins with an introduction to the Discrete Ele-
ment Method (DEM), covering its history, simulation cycle loop, contact law, par-
ticle shapes, initial state generation, and microscopic properties. Then, the second
part of the chapter presents different methods for modeling Soil-Structure Interaction
problems, including the Finite Element Method (FEM), Macro Elements, Discrete
Element Method (DEM), and the coupling of FEM with DEM.
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2.2 The discrete element method

The discrete element method (DEM), introduced by Cundall and Strack (1979b), is
a numerical method that models the behaviour of assembly of particles. It’s inter-
esting, since this approach makes it possible to explicitly analyze the interactions of
each particle of the assembly. These particles can represent a granular material or
any industrial particles that may have different heterogeneous shapes. DEM makes
it possible to monitor the data at the particle scale, which is a unique and interesting
feature of this method.

In other words, in DEM, properties of each particle of the assembly (for example:
contact forces, position and velocity) can be saved and are updated at each iteration.
To update the properties of the particles, rotational and translational displacements
are determined using Newton’s 2nd law of motion, while the contact forces are com-
puted based on a force-displacement contact law (Mindlin and Deresiewicz, 1953;
Cundall and Strack, 1979b; Ristow, 1997).

To reduce the DEM simulations computational cost, and allowing the usage of large
number of particles, the simplest particle shape to be used is discs or spheres in 2D
(Luding, 1997; Iwashita and Oda, 1998) or 3D (Thornton, 2000) simulations respec-
tively.

2.2.1 History of Discrete element modelling

Cundall and Strack (1978) introduced the first two-dimensional DEM program named
BALL, consisting a linear spring contact law and strain/stress controlled wall bound-
ary options, aiming to show that the DEM can realistically model the behaviour of as-
semblies of discs. Then in 1979, the program was upgraded into a three-dimensional
version named TRUBAL by Cundall and Strack (1979a). Later, this software was
extended by implementing non-linear contact laws and defining the idea of periodic
cell, which allows a particle exiting a cell to move inside the opposite side of the cell,
while carrying all same information except the particle position.

In recent years, both open-source DEM packages such as YADE (Smilauer and
Chareyre, 2010), MULTICOR-3D (Sanni et al., 2010), Oval (Kuhn, 2006), LMGC90
(Dubois et al., 2011), and ESyS Particle (Weatherley, Boros, and Hancock, 2011)
and other commercial ones such as PFC, EDEM, and Rocky have made remarkable
improvement in simulating the mechanical behavior of granular materials. These di-
verse packages empower researchers and engineers to explore the complex behavior
of granular materials across various applications.

2.2.2 The simulation cycle loop of DEM

A typical DEM simulation loop is presented in Figure 2.1. The simulation cycle
involves several engines running in a loop. After the definition of shape, material,
and state of the simulation elements (particles and boundaries), these engines run in
the following sequence repeatedly:

First, new contacts are detected between particles based on their positions. This step
is time-consuming and requires a collision evaluation algorithm that can help filtering
possible contacts, which can be done by dividing the space into a well defined grid
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using the grid algorithms (Munjiza and Andrews, 1998) or by bounding boxes using
the sweep and prune algorithm (Baraff and Witkin, 1992; Cohen et al., 1995) to
determine any overlapping between two bounding boxes. It was later called sort and
sweep in the book Ericson (2004). Then another more time-consuming step is needed
to detect the exact collision. In case of two spherical particles, the contact detection
computational time is significantly reduced compared to other shapes; it is detected
if the distance between their centers is less than the sum of their radii (Figure 2.3.a).
Then, using the force-displacement contact law the normal and tangential contact
forces are computed based on relative displacements. After applying external forces
(example: gravity), equations of motion are then integrated using a certain algorithm
(e.g. leapfrog scheme). The velocities and positions are updated after each step and
forces from previous step are then reset.

qurft:li?:: of Particles
'I state after
~ applied> each
New positions iteration
and velocities
| No |
[ |
Balance of
the forces in SO
— each the contact
particle forces

FIGURE 2.1: The typical DEM simulation loop.

2.2.3 The contact law

Many contact laws exist, but as the goal of this work is to keep the model simple, we
focus in this part on the simplest contact laws taking into account spherical particles.
Cundall and Strack (1979b) defined a frictional contact law (Figure 2.2) between two
spherical particles of radii Ry and R, (Figure 2.3.a,b) in contact with an overlap ¢,
and normal 7 to the tangent contact plane, the normal F, and tangential F, contact
forces are given respectively by:

E, =k, 6,7 .1

AF; = —k; Ail;  with ||ﬁt||§ﬂ||ﬁn|| (2.2)

where k;, and k; are the normal and tangential stiffnesses of the springs connecting
the two particles (Figure 2.3.b), chosen as constant; Aii; is the relative incremental
tangential displacement used to compute the shear force incrementally; and y is the
friction coefficient in the tangential direction.
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» AU,

T -

FIGURE 2.2: Perfect elasto-plastic model defined by Cundall and
Strack (1979b).

b C

5n kn u nrg

O

FIGURE 2.3: Contact between two spheres: (a) frame attached to the
tangent contact plane and particle overlap; (b) contact model with
sliders in the tangential direction and (c) with stiffness and slider

acting with respect to relative rolling motion.

Another authors used a damper (Figure 2.4) defined by the Kelvin-Voigt model
in parallel with the spring in the normal direction by Luding (1997) and in both
normal and tangential directions by Oger et al. (1998) and Iwashita and Oda (2000)
to dissipate energy.

In addition, Walton and Braun (1986) defined a normal law with irreversible normal
displacement (Figure 2.5), where the normal force is given by:

Fn:

{ ki % 0p for loading (2.3)

ko x (6n — o) for unloading /reloading

where Jj is the residual normal displacement after unloading, with ki and kj rep-
resenting the stiffnesses of loading and unloading paths respectively. This model
propose a linear force-overlap relation, with the stiffness during unloading being
greater than the stiffness during loading resulting in an irreversible overlap when the
force diminishes to zero. This model can be used when the collision at the contact is
between inelastic spheres, when plastic deformation effects should be considered.
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| g: dashppot
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FIGURE 2.4: Contact model with damping in both normal and
tangential directions

2| [b]
Fa
ki kz'kl v
3 > 5

FIGURE 2.5: Normal model with irreversible plasticity by (Walton
and Braun, 1986)

Rolling friction

Since contact detection of complex shapes is more complicated and requires more
computation time compared to spherical particles, and since spherical particles tend
to roll naturally, Iwashita and Oda (1998) implemented a contact law with rolling
resistance to limit the rolling mechanism of spheres.

The rolling resistance between particles (Figure 2.3.c) is represented by a contact
rolling moment Z\7Ir (Figure 2.6) defined as:

]\_/L = —k, é} with ||Mr|| < ||ﬁn|| rRmean (2.4)

where k, is a constant rolling stiffness, é} the relative rolling rotation of particles, and
1, the rolling friction coefficient.
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Rolling stiffness is derived from the tangential stiffness such that:

k, = k:R> (2.5)

mean

: 1 1

>

M*

Rolling Moment, M,

Relative rotation, 8,

FIGURE 2.6: Perfect elasto-plastic model including rolling resistance
at the contact with the yielding moment M*

Similarly to the contact model with damping in the normal and tangential di-
rections (Figure 2.4), the contact model proposed by Iwashita and Oda (1998) also
includes rolling damping at the contact. However, Wensrich and Katterfeld (2012)
showed, based on results from Iwashita and Oda (1998), Bardet (1993), and Ai et al.
(2011), that the rolling damping effect is negligible in case of quasi-static conditions.

In a recent study by Rorato et al. (2021), the authors linked the rolling friction
parameter to the sphericity of each grain to simplify the calibration of the model by
decreasing the number of calibrated parameters. Furthermore, it introduces valuable
description of the inherent variability of natural shapes within the model.

Adhesion

To simulate cohesive materials using discrete element method, it’s necessary to im-
plement an adhesion contact law at the interface between particles. This involves
creating a bond between the particles in contact, that can transmit forces to resist the
separation of particles in the perpendicular direction and any opposite movement in
the tangential direction.

In the literature, several adhesion contact models exist. One of the most known
model is the JKR model (Johnson, Kendall, and Roberts, 1971) based on the Hertz-
Mindlin model (Hertz, 1896) with an attractive force introduced based on Van der
Waals effects, where the contact force remains active until a surface gap threshold
is reached. Another very known model is the DMT model (Derjaguin, Muller, and
Toporov, 1975), where the adhesive force between an elastic sphere and a flat layer
is determined by evaluating the change in surface energy as the sphere penetrates the
layer.

More recently, adhesion models have been further developed. For example Luding
(2005) defined a model similar to that of (Walton and Braun, 1986), but with the
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addition of a "cohesive stiffness" parameter k. for the unloading. This parameter
reflects the cohesion in the contact, allowing the implementation of attractive forces.

Roughness

In an experimental study (Santamarina and Cascante, 1998), the authors investigated
the effect of the soil particle surface characteristics on its behavior. They found that
an increase in the surface roughness leads to an increase in the inter-particle friction.
Cho, Dodds, and Santamarina (2006) used experimental databases, that include par-
ticle shape information, to show that the shape of the particle is an important soil
property that should be well characterized. The behaviour does not only depend on
the global form of the particles "sphericity" (defined as the ratio of the diameter of
the largest inscribed sphere to the diameter of the smallest circumscribed sphere), but
also on the local-scale surface curvature "roundness” (defined as the ratio of curva-
ture of surface features relative to the radius of the largest inscribed sphere within the
particle, as well as surface roughness. They proposed a hypothesis that eccentricity,
angularity, and roughness contribute to increased shear resistance.

Similarly, in another study (Sandeep and Senetakis, 2018), the influence of surface
characteristics was examined experimentally. The authors also observed that inter-
particle friction increases with surface roughness. In addition they highlighted the
importance in DEM modelling to consider the role of the surface contact area (which
depend on the normal force magnitude) on the inter-particle friction. In the case of
stiff soil, which intrinsically features a smaller contact area than soft soil, a corre-
sponding decrease in inter-particle friction is observed.

In a recent DEM numerical study (Mollon et al., 2020), the authors investigate the
possibility of substituting the roughness of particles by an increase in inter-particle
friction in the simulations.

2.2.4 Particle shapes in DEM

Since the beginning of discrete element modelling, spherical (in 3D) and discs (in
2D) particles are the most common used particles. This is due to the easy contact
detection between particles, and the limited computational time compared to other
shapes.

However, several studies focus on the effect of the particle shape, on the quantitative
behaviour of the assemblies. These studies lead to increase interest in understanding
and developing several new DEM particle shapes as shown Figure 2.7.

In addition to spheres, simple particle shape can be a clump of two or three spheres
(Salot, Gotteland, and Villard, 2009; Kodicherla, Gong, and Wilkinson, 2020), but
it can also be very complex with large number of particles (Ferellec and McDowell,
2012) to overcome the underestimation of the roundness. Similarly in case of poly-
hedral particles, large number of vertices is needed to overcome the overestimation
of the roundness (Lee, Hashash, and Nezami, 2012; Elias, 2013). PFacet particles,
as described in Effeindzourou et al. (2015), are created through the Minkowski sum
of a sphere, cylinders and a triangular facet. Another option is the use of superel-
lipsoid particles (Zhao et al., 2017), but this also can overestimate the roundness.
Non-uniform rational B-splines (NURBS) curves and surfaces (Lim and Andrade,
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2014; Lim et al., 2016; Andrade et al., 2012), which are generalizations of both B-
splines and Bézier curves, in addition to level set methods (VIahini¢ et al., 2014;
Jerves, Kawamoto, and Andrade, 2016; Kawamoto et al., 2018), both can accurately
capture the real shape of the particle. However, these methods are computationally
very expensive.

The computation time of simulations depends on the contact detection algorithm of
each particle shape. For example, using a clump of spheres presents the advantage
that contacts are detected using the same algorithm between two spheres, even if they
belong to different clumps. In case of polyhedral particles, contacts can be detected
using various algorithms and techniques, but it is more complex than spheres due to
the various types of contacts, such as vertex-vertex, vertex-edge or edge-edge inter-
actions. In addition, contact forces are calculated based on intersecting polyhedral
volumes. In PFacets, contact detection includes interactions such as sphere-sphere,
sphere-cylinder, sphere-PFacet, cylinder-cylinder, and cylinder-PFacet. The intro-
duction of virtual spheres at contact points allows the application of conventional
sphere-sphere interaction laws. For superellipsoids, a combination of approximate
contact detection using the axis-aligned bounding box algorithm and exact detection
using spherical bounding boxes is used. For level set particles, contact determination
involves a master-slave approach. The surface of the master particle is discretized
into nodes. Each node of the master particle is compared with the level set function
of the slave particle. If the level set function value is negative for any node, contact
is detected, and forces and moments are computed for each penetrating node.

Thus, there is a trade-off between the computation time and the complexity of the
particles shape.

2.2.5 The initial state generation

The choice of the initial micro-structure of the sample plays a very important and
crucial role in the behaviour of the DEM model. So as soil in nature and experi-
ments exist with different porosities and fabrics (Aris, Benahmed, and Bonelli, 2012;
Kodicherla et al., 2018), the same applies to numerical models depending on prepa-
ration methods.

Usually, the first step in discrete element modelling, is to generate randomly the non-
overlapping particles assembly (following the same real soil particle size distribu-
tion) within a certain specified boundary conditions (rigid walls, soft boundaries, or
periodic limit conditions). Then, several possible ways can be done to reach a speci-
fied initial state including, application of isotropic compression (Wang and Li, 2014),
particles expansion (Plassiard, Belheine, and Donzé, 2009), multi-layer under com-
paction method (Jiang, Konrad, and Leroueil, 2003). These methods can influence
the generation of the sample, especially the initial fabric arrangements, which can
cause significant challenges in modelling the behaviour of soil. This was observed
in a study (Jiang, Zhang, and Fu, 2018), where they show how the different fabric
arrangements can result in different peak shear strengths and volumetric changes.
Moreover, different methods can be followed to choose the initial porosity of the
numerical models, for example:

* Assigning the initial porosity of the numerical assembly similar to the one
of the real reference soil. This was done in several studies such as Cui and
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FIGURE 2.7: Various particle shapes used in DEM
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O’sullivan (2006) and Mohamed et al. (2022). However, drawbacks of this
method exist, especially when the shape of numerical and real particles are
very different, causing different volumetric behaviour for the same initial poros-

ity.

* Choosing the same relative density as the real reference soil (Salot, Gotteland,
and Villard, 2009), which is computed with respect to a maximum and min-
imum initial porosity. Similarly to the previous method, it assumes that the
numerical assembly and the real soil produce at the minimum and maximum
porosity respectively the same volumetric response.

2.2.6 Microscopic properties
Coordination number

The coordination number Z is a microscopic quantity that represents the average of
number of interactions per particle. This quantity describes the structural stability of
an assembly of particles as defined in Thornton (2000) by representing the particle
connectivity. It is defined by:
2N,
N p
where N and N, are the total numbers of contacts and particles respectively. How-
ever, in numerical simulations, particles with no contacts or only one contact do not
contribute to the stable state of stress. Therefore, the coordination number Z*, which
considers only particles involved in more than one contact, is defined as follows:

Z

2.7)

2N, — Ny
7 = < 2.8
N, —No— N 2:8)

With Nj is the number of particles involved in a single contact and Ny the number
of particles without any contact.

It was shown by O’Sullivan, Bray, and Riemer (2002) that an increase in the
value of Z* is usually related to an increase in the packing density or a decrease
in the porosity. Also they show that the relation between the Z* and the material
stiffness is proportional. Thus the stiffness of a granular assembly does not depend
only on its density but also on its connectivity.

Finally, in case of clumped particles, when computing the coordination number,
the contacts between spheres composing the clump are ignored, so a contact is only
counted in case it’s between two clumps.

Fabric tensor

In 1972, (Oda, 1972) used the word "fabric" to define the particles spatial arrange-
ment. In other terms, it could be used to quantify the structural anisotropy of a
granular material (Thornton, 2000) by describing the interparticle connectivity (Sa-
take, 1978). According to (Satake, 1978; Satake, 1982), the fabric anisotropy is



2.2. The discrete element method 15

characterized by the fabric tensor Fi;:

1
i = N, L ni - n; (2.9)

where N is the number of contacts in the assembly, and 7 the normal contact vector
at a contact with 1,j = 1,2,3 (in 3D).

To evaluate the fabric anisotropy, the elements ¢11, ¢pp, and ¢33 of the fabric
tensor are used. Such that if the granular sample is isotropic the following is true:

P11+ P2+ P33 =1 (2.10)

with the principal values ¢11=¢2=¢33=1/3, representing the average of contact orien-
ations that are uniformly distributed in the X, y, and z directions.

Strong and weak contact forces

The study from Radjai et al. (1996) investigated the contact force networks in two-
dimensional numerical simulations of rigid spheres. They found from the probabilis-
tic distributions of the normal contact forces that forces exceeding the average of the
contact forces follow exponential distribution law, while smaller ones follow a power
law.

1
favg = mZﬁ 2.11)

where f; is the normal force of the i" contact in the sample.

P(f) o {f:pﬁf ifj;f<f1> ) (2.12)

with f = Ji (2.13)

In another study (Radjai et al., 1998), the authors divided the contact forces network
into strong (when f>1) and weak (for f<1) sub-networks. They concluded that the
shear stress of a assembly if mostly related to the strong force network.

2.2.7 Summary

As stated in previous parts, different aspects affect the behaviour of the DEM. One
should choose the right initial state (porosity, fabric arrangement) of the assembly
that allows a good representation of the granular behavior. In addition, the particle
shape should be chosen depending on the complexity of the problem to be solved.
For example, in case of large boundary value problems BVPs, it is very expensive
computationally to use complex shapes. Finally, several contact models exist, taking
into account different physical parameters (cohesion, friction, roughness and rolling
resistance) of soil.
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2.3 Soil-structure interaction

As mentioned earlier, different methods are used nowadays to model soil-structure
interaction (SSI) problems. It is important to understand the advantages and disad-
vantages of each method. Therefore, several methods are discussed in the following
parts.

2.3.1 Finite element method

In last decades, the finite element method (FEM) has become one of the most popu-
lar numerical methods used to model SSI problems. Usually, the physics of a prob-
lem is described by partial differential equations (the phenomenological constitutive
relations) that often cannot be solved analytically. Instead, these equations are dis-
cretized and approximated, and then solved using numerical tools such as FEM to
estimate the real solution of the Partial Differential Equations (PDEs). FEM involves
discretizing the simulation domain into smaller finite elements to form a mesh. These
finite elements are connected to each other at nodes, which represent the forces and
moments transferred between elements. At these nodes, force-displacement relation-
ships are defined. These equations are then combined to form a set of equations that
can be solved to provide an exact solution. Between the nodes, the solution is inter-
polated and approximated.

One of the most used phenomenological constitutive relations in FEM is the hard-
ening soil model (HSM) by Schanz, Vermeer, and Bonnier (1999), which is an ad-
vanced model to simulate the behavior of soil with its hardening behavior. It provides
a very good prediction ability at least on monotonous loading path, but in case of ap-
plications involving cyclic loading paths, it may be necessary to calibrate the model
based on cyclic tests (such as cyclic triaxial or cyclic simple shear tests). The Hard-
ening Soil model requires calibration of several parameters, including the friction
angle (¢), cohesion (c), dilatancy angle (), triaxial stiffness (Es), triaxial unload-
ing stiffness (E,;;), oedometer loading stiffness (E,,;), as well as other parameters
such as the unloading/reloading Poisson ratio (v;;) and the coefficient of earth pres-
sure at rest (Kp).

FEM has been used to model several geotechnical problems. Modeling the soil-
wall interaction during excavation (Figure 2.8-a) has been performed and studied by
(Faheem, Cai, and Ugai, 2004; Zdravkovic, Potts, and St John, 2005; Finno, Black-
burn, and Roboski, 2007; Chugh, Labuz, and Olgun, 2016; Ahmadabadi, Hosseini,
and Rezai, 2016), providing an investigation of FEM parametric studies and a better
understanding of the different possible ways for modeling a retaining wall during
excavation using FEM.

Another studies were done to model soil-pile interactions (Figure 2.8-b), such as (Pan
et al., 2002; Khodair and Hassiotis, 2005; Maheshwari et al., 2005; Karthigeyan,
Ramakrishna, and Rajagopal, 2007; Achmus, Kuo, and Abdel-Rahman, 2009; Bour-
geois et al., 2010; Giannakos, Gerolymos, and Gazetas, 2012; Hamouma, Messameh,
and Tallah, 2020; Cheng et al., 2021), offering a better knowledge of the behaviour of
piles of different geometries under different types of loading (monotonic and cyclic).
It is found that numerical results were in good quantitative agreement with experi-
mental results. In addition, it’s important to mention that in case of piles subjected
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to cyclic loading, the constitutive model parameters are calibrated based on cyclic
loading tests.

ﬂ b Lateral load ——

Interface (typical)

Reinforced concrete wall

84.5m (14D)
55m

118m (20D)

FIGURE 2.8: Finite element models of : a-soil-wall
interaction(Chugh, Labuz, and Olgun, 2016) b-soil-pile interaction
(Cheng et al., 2021)

2.3.2 Macro elements

Macro-element modelling is a method used across several disciplines like geotech-
nical engineering, structural analysis, and earthquake engineering to simulate the
macroscopic behaviour of structural elements. The concept of macro-element in
geotechnical engineering has been used since 1991 by Nova and Montrasio (1991) to
simulate the non-linear behaviour of SSI. This method involves simplifying finite el-
ement analysis by substituting several finite elements by a single element. The main
goal of this method is to reduce the number of equations solved in finite element
analysis, leading to more practical analysis of large structural systems.
Nova and Montrasio (1991), investigated the settlements of shallow foundations on
sand, subjected to vertical loads. In their macro-element model, they consider the
soil as an homogeneous elasto-plastic material. To validate their model, a series of
laboratory tests were performed on small-scale footings. The results of these tests
were then compared to the predictions made by the macro-element model. The au-
thors observed a good agreement between the experimental and the model results.
Later on, other studies were done to model shallow foundation behaviour using
macro-element method by Gottardi, Houlsby, and Butterfield (1999), Cremer, Pecker,
and Davenne (2001), Grange, Kotronis, and Mazars (2008), and Grange, Kotronis,
and Mazars (2009). In addition, Martin and Martin (1994) applied the same con-
cept but in case of offshore foundations. Furthermore, macro-element modelling has
been applied in case of deep foundations (Taciroglu, Rha, and Wallace, 2006; Rha
and Taciroglu, 2007; Li et al., 2016) by modelling the SSI of vertical single pile.
The general structure of the macro-element form (Grange, Kotronis, and Mazars,
2009) is presented in Figure 2.9. It’s shown that the soil domain is divided into two
domains, the near-field and the far-field, condensing the non-linear effects of the ma-
terial and structure geometry in the near-field, whereas the system remains linear in
the far-field.
As shown in Figure 2.9-b The total displacement of the foundation is divided into
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three parts (elastic and plastic displacements of the soil with uplift displacement of
the foundation), resulting from three mechanisms (elasticity, plasticity, and uplift,
where uplift is a non-linear and non-reversible mechanism that introduces shallow
foundation overturning rotations and displacements) described in details in (Grange,
Kotronis, and Mazars, 2009). Using macro-element modelling usually requires the
calibration of the model parameters based on the experimental results from the spe-
cific experiment to be modeled itself. For example, the macro-element in (Grange,
Kotronis, and Mazars, 2009) requires the calibration of 17 parameters for one type
of soil under one loading condition.

2.3.3 Discrete element method

The discrete elemnent method stands out as a versatile approach, that can serve as
both a numerical method and a constitutive model representing the physical behavior
of soil. The DEM simulated mechanical behavior at the scale of the Representative
Elementary Volume (REV) depends not only on the contact law, but also on the geo-
metrical shape of the grains and the microstructure of the granular assembly, like no
other method.

It has been applied to several geotechnical applications and laboratory tests involving
soils. Simulating laboratory tests has been done using DEM to investigate the micro-
scopic and macroscopic behaviour of granular material. (Zhang and Thornton, 2002)
investigated the deformations and development of the shear band in a direct shear test
using DEM in 2D with spherical particles. Another study (Cui and O’sullivan, 2006)
explored, using 3D DEM, the microscopic behaviour of spherical steel particles dur-
ing a direct shear test. Recently, (Nitka and Grabowski, 2021) also investigated the
shear band properties and the movement of indvidual particles during shearing in di-
rect shear test. Similarly, the simple shear test is simulated using DEM (Asadzadeh
and Soroush, 2017) under cyclic shearing were they soil behavior is studied at micro
and macro scales. Results of simulations of laboratory tests in the previous stud-
ies agree with experimental results, demonstrating the efficiency of discrete element
modelling in replicating laboratory tests.
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FIGURE 2.10: Discrete element model of the pressuremeter test with
an adaptive size of discretization of the soil domain by (Abdallah
etal., 2022)

DEM has been also used to model large scale problems in geotechnical engineering.
The authors in Herten and Pulsfort (1999), simulated the earth pressure exerted on
vertical shafts. Circular shafts were built as series of segments made up of small flat
walls, whereas the soil domain was made up of spherical particles. They measured
the lateral pressure by gradually moving the shaft wall inward. Then a comparison
of the numerical simulation with experimental data was done. In a recent study (Ab-
dallah et al., 2022), the pressuremeter test was modelled using DEM, and calibrated
from experimental data from a pressuremeter test performed in a calibration cham-
ber. The adaptive discretization technique is implemented as shown in Figure 2.10
to limit the number of particles in the soil domain. Particles with a relatively low
mean size are chosen near the pressuremeter probe to capture macroscopic deforma-
tions, as the relative displacements and rearrangements of particles at the microscopic
scale play a key role. As the distance from the probe increases, particle size gradu-
ally grows. Jenck, Dias, and Kastner (2009), developed a two-dimensional model to
investigate the soil improvement by modelling a granular fill supported by vertical
rigid piles. The DEM results were compared to results from a two-dimensional small
scale model and another continuum model.The results showed that DEM was able to
capture the macroscale response accurately.

A recent study (Zhang et al., 2022), investigated the bearing capacity characteristics
of three foundation models (single pile, raft foundation, and single pile with raft)
through discrete element models and laboratory tests. It was found that numerical
results were in good agreement with laboratory tests.

The behaviour of a shallow foundation on a model slope is studied and analyzed in
(Gabrieli, Cola, and Calvetti, 2009). The authors used an up-scaled grain-size curve
in the DEM model to reduce the number of particles required. The authors evaluated
the performance of the numerical model by comparing both the overall global results
such as load-settlement curves and local results including strain field from the ex-
periments presented in Figure 2.11. Another research (Rocha, Farias, Albuquerque,
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FIGURE 2.11: Global (left) and local (right) results by Gabrieli,
Cola, and Calvetti (2009).

et al., 2019) conducted a numerical simulation of shallow foundations using DEM.
The model parameters were calibrated from a reduced laboratory model. The dis-
crete element method provided accurate qualitative predictions of failure surfaces
and satisfactory quantitative predictions of the ultimate load capacity.

2.3.4 Coupling FEM with DEM

Finite element method and discrete element method are two different separate numer-
ical approaches, but by using the FEM to discretize the macroscopic domain in FEM
meshes and using the DEM at each integration point of the mesh, these two methods
can be combined to solve problems such as BVPs, by creating a hierarchical multi-
scale model. Furthermore in (Guo and Zhao, 2014), FEMXDEM in Figure 2.12 is
used to model the behaviour of monotonic biaxial compression test. DEM is used
to capture the non-linear constitutive behaviour of the granular material at its FEM
Gauss point that serves as input boundary conditions. In this way, phenomenologi-
cal assumptions about the constitutive relation in traditional continuum modeling are
avoided, while maintaining the computational efficiency of FEM in solving BVPs.
Similarly, Guo and Zhao (2015) employ a hierarchical coupling of FEM and DEM to
solve BVPs. In this study, classical problems related to retaining walls and footings
were investigated, showing that simulations could be validated and verified through
analytical solutions.

In addition, Nguyen et al. (2017) used the FEMxDEM modelling to simulate the be-
haviour of a granular material during biaxial and pressuremeter tests.

In another study (Chaudry et al., 2021), the authors couple DEM with FEM in a dif-
ferent way (Figure 2.13) using a multi-domain coupling technique, inspired by the
work of Wellmann and Wriggers (2012) to model the use of a granular material as
a crash-absorber in ship building. This method focuses on modelling the regions
where significant granular deformation occurs using DEM, while using FEM as a
continuum model for other regions. They highlight that the advantage of this method



2.3. Soil-structure interaction 21

Macro continuum (BVP)
B Material point

or Gauss point
in FEM mesh
B 1

By

n

1
=1 111
RO
HH EERRRLEENS
FEM solver
Apply deformation
DEM solver

FIGURE 2.12: The FEMxDEM solution procedure in (Guo and
Zhao, 2014)

is to maintain accurate numerical model results while maintaining computationally
efficient simulations.

2.3.5 Summary

To summarize, different approaches can be used to model the behaviour of geotech-
nical problems. Continuum approaches such as finite element method solve BVPs
by assuming a continuous domain. These approaches solve the problem by mesh-
ing the domain, and by relating the stresses and strains through phenomenological
constitutive relations which usually require ad-hoc history parameters and advanced
experimental tests for calibration in case of complex loadings. Whereas in case of
cyclic loadings, calibration using cyclic tests is necessary. Another drawback with
FEM is the description of large displacements, deformations, and post-failure re-
sponses. It requires the implementation of specific techniques such as remeshing.
An important advantage of this method is that it is computationally cheaper than
other discrete methods. In addition, phenomenological constitutive relations embed-
ded in FEM nowadays, such as the HSM model, demonstrate excellent predictive
abilities, at least on monotonous loading paths.

Moreover, modelling with macro-element is very cheap computationally; However,
it is necessary to calibrate many parameters based on the experiment results of the
experiment being modeled.

Furthermore, the discrete element method solve BVPs by modelling the behaviour of
these problems. The overall system behaviour depends on the discrete particle inter-
actions through simple interaction laws. The main advantages of this method is that it
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requires few parameters for calibration from simple experimental tests such as triax-
ial or direct shear tests. Furthermore, as discontinuities between particles are inherent
in the DEM method, large displacement and post failure responses can be described
without any additional ingredients. It explicitly represents the microstructure, in-
cluding the entire loading history without the need for ad-hoc historical parameters
when dealing with cyclic loading tests. In addition, it is very useful to understand
the behaviour in the microscale. However, this method is usually computationally
expensive compared to continuum methods and involves a more complex calibration
process.

Coupling the FEM and DEM is possible to solve BVPs, by using the DEM to capture
the non -linear stress and strain relationship of the granular material, whereas, FEM
can be used to solve the large BVPs.

One can choose the method to solve a certain problem depending on the complexity
and scale of investigation of the problem, taking into consideration the computation
time of each method.

Although the discrete element model and coupled FEMxDEM element approaches
has been used in geotechnical engineering to model BVPs, the available validation of
the different approaches is still limited, especially in soil-structure interaction prob-
lems subjected to complex cyclic loadings. Therefore, it is important to model and
validate complex soil-structure interaction problems such as those of a geotechnical
structure subjected to a cyclic loading using DEM or FEMxDEM. Finally, we need
to validate and compare these methods with respect to more conventional simulation
methods and their usefulness for studying the behavior of geotechnical structures.
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Chapter 3

Definition of a light discrete model for
quantitative constitutive predictions

3.1 Introduction

The discrete element method (DEM) (Cundall and Strack, 1979b) has been widely
used to predict the constitutive behavior of soils. However, predicting the mechanical
response of some granular soil under some complex loadings can be challenging.

Loose granular soils, as loose sand, can show original constitutive responses
when subjected to loading paths involving generalized loading parameters defined
as linear combinations of strain or stress tensor components (Klisinski, Mroz, and
Runesson, 1992; Nova, 1994; Sibille et al., 2015). In particular, this is the case of the
isochoric loading where the trace of the strain tensor is fixed to zero, or the constant
stress deviator loading where the difference between the major principal stress and
the minor one if fixed to be constant. For an isochoric compression the loose gran-
ular medium may present a static liquefaction (vanishing of all the effective stresses
corresponding to the loss of all the interparticle contacts) occurring strictly within
the Mohr-Coulomb failure envelope (Prisco and Nova, 1994). For a constant stress
deviator path subjected to a decrease of the mean pressure the loose granular assem-
bly may present a plastic dilative response while the stress path is approaching the
Mohr-Coulomb failure envelope (Daouadji et al., 2011).

Hence, the ability of a model to describe the mechanical response of a soil should
be considered with respect to conventional loading paths as “drained” compressions
(i.e compression where the radial stress is kept constant, simple compression is a
particular case with a radial stress fixed to zero) but also with respect to more com-
plex loading paths revealing some more tricky features of the constitutive response
of granular medium and more discriminant with respect to model capabilities (see
for instance the former benchmark of phenomenological constitutive relations real-
ized in the late 80s (Saada and Bianchini, 1988a)). Furthermore, that such paths may
representatives of some real situation, as the undrained response of water saturated
soil layers for the isochoric loading path (where the isochoric constraint is indirectly
imposed by the non-drainage of the pore water), or the rising of the underground wa-
ter table in soil layers (after rainfalls or floods) resulting in a decrease of the effective
mean pressure in the soil while the deviatoric stress is unchanged.

Besides, response of loose granular assemblies is very sensitive (probably more
than dense soils) to the initial packing state in terms of porosity, distribution of poros-
ity, initial fabric ... (Benahmed, Canou, and Dupla, 2004; Uthayakumar and Vaid,
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1998). This is true for “real” granular assemblies but also for discrete numerical
models, based on the discrete element method , for which the description of the
constitutive response of loose granular assemblies is still challenging. Even if the
DEM model is properly calibrated on a certain loading path (such as drained triaxial
compression), it may fail to predict the soil’s response under more complex loading
pathways (Aboul Hosn et al., 2017; Sibille, Benahmed, and Darve, 2021) and for a
wide range of initial soil densities (Gu, Zhang, and Huang, 2020).

The objective of the work presented in this chapter is to define a discrete nu-
merical model and in particular a preparation process controlling the initial state to
investigate how this initial state affects the model responses and what are the mini-
mal ingredients in the constitution of the model itself, but also in the reproduction of
the initial state, which are required for a faithful description of the soil responses to
complex loading paths.

The particle shape (angularity — anisotropy — roughness) plays an important role
in the constitutive behavior of soils. Recent studies (Kawamoto et al., 2018) offer
the possibility to reproduce the real grain shape. However, such approach is very
expensive in computational cost. Thus, proposing a light DEM model with the min-
imum required complexity is also one of the objectives in order to limit the com-
putational cost and make possible to address easily boundary values problems such
that the continuously increasing computing performance is dedicated to tackle more
and more complex or extended boundary value problems and not used to integrate
a complex model at the scale of a representative elementary volume. In particular,
the way to describe the grain shape and roughness in a discrete model is determinant
with respect to the prediction ability of the model but also with respect to the com-
putational cost. Particle shape can be described either explicitly by complexifying
the particle geometry by using clumps of spheres (Suhr and Six, 2020), polyhedral
particles (Mohamed et al., 2022) or even level set based particles (Kawamoto et al.,
2018), or indirectly via inter-particle contact laws representing the effect of the shape
of particles. Therefore, the goal of this work is to check on one hand if more complex
particle shapes than spheres (as clumps) are able to improve the predictions of the
models and, on the other hand to check the trade-off between the rolling resistance,
which has to be associated to spherical particles, and the use of clumps in terms of
prediction ability. Effectively, it has been shown that the use of a rolling resistance
contact law can represent the limitation of the relative rotation of particles in con-
tact that would be due to their non-spherical shape (Iwashita and Oda, 2000; Martin,
Thornton, and Utili, 2020; Jiang, Zhang, and Li, 2019). Furthermore, the role of
a non-constant inter-particle contact friction angle is also investigated in order to
represent the effect of the roughness of particles (Mollon et al., 2020) subjected to
different ranges of mean pressures.

In this chapter, Hostun sand is chosen as the reference soil to assess the predic-
tion ability of the models. Therefore, the first part of this chapter is dedicated to
the presentation of the experimental data used to calibrate and validate the differ-
ent numerical models. Following this, the different discrete models investigated in
the chaper are presented. In particular, we detail the contact laws, the choice of the
particle shapes, and the way to identify the initial porosities of the numerical assem-
blies. Subsequently, a first class of models, considering initial isotropic fabric and
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conventional dry friction at contact (constant contact friction coefficient), is investi-
gated and assessed with respect to the experimental data on Hostun sand. Then, this
investigation is extended to a second class of models, close to the previous one but
considering a non-constant friction coefficient at contact. Finally, the last part of the
chapter is devoted to the particular case of describing the constitutive response of
loose Hostun sand only. The impact of the initial fabric, in terms of the anisotropy of
contact orientations, is examined in addition to the other factors previously consid-
ered. The analysis is performed at both the macroscopic scale and the contact scale.
In conclusion, we discuss the main findings of this chapter.

3.2 Reference soil and experimental data

Calibration and validation of the DEM models in this chapter are performed with
respect to experimental data on the Hostun sand “HN31” (formely referred as “RF”).

3.2.1 Hostun sand “RF”’ description

The Hostun sand consists of sub-angular to angular grains with a uniform grain size
distribution (Figure 3.1) (Flavigny, Desrues, and Palayer, 1990) characterized by a
uniformity coefficient (C,) of 1.8 and a mean grain size (D5g) of 0.35 mm. Depend-
ing on the technique used, it was determined that the minimum void ratio is within
the range of ey, € [0.624,0.648], while the maximum void ratio was found to be in
the range of emax € [0.961,1.041].

All along this work two initial densities of sand samples are considered. An initial
dense state with a relative density D, ~ 1.0 and an initial loose state with D, ~ 0.1.
It is worth noting that the range of density between the dense and loose states is rather
important which constitutes an additional challenging point for the assessment of the
models discussed in this chapter.

0.8 4

0.6 4

0.4 4

Fraction smaller than

0.2 4

—A— Hostun sand RF PSD
—e— Numerical sample PSD

0.0

01 02 03 0.4 0s 06 0.7 08
Sieve opening D (mm)

FIGURE 3.1: Particle size distribution of Hostun sand “HN?31”

It is important to mention that experimentally the sand samples were prepared ac-
cording to two different methods, depending on the initial density required for the
subsequent mechanical loadings. Beyond the difference in terms of global porosity,
these methods lead also to different sand fabrics.
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* For initially dense sand samples with a relative density of approximately D, ~
1.0, which were used for drained compression tests, cyclic extension/compression
tests, and circular loading path, the samples were prepared by pouring the sand
into a mould and tamping it layer by layer. This preparation method resulted in
samples with relatively isotropic macroscopic properties. This was confirmed
in (Zitouni, 1988) through comparisons of the sand’s response to drained triax-
ial compression tests performed in different directions relative to the direction
of gravity (or tamping).

* Loose sand samples with a relative density of approximately D, ~ 0.1, used
for both drained and undrained compression tests, as well as constant stress
deviator loadings, were prepared using the moist tamping technique. This
methodology led to slightly more anisotropic sand samples compared to the
denser ones described earlier (Aris, Benahmed, and Bonelli, 2012). Addition-
ally, the moist tamping method may result in the presence of "macropores"
alongside smaller inter-particle spaces (Benahmed, 2001).

(A) Prepared by moist tamping (B) Prepared by dry pluviation

FIGURE 3.2: Microphotographs of Hostun sand RF aggregates and
macropores, showing two different structures.

3.2.2 Experimental tests for calibration and validation

Triaxial tests in drained condition (Figure 3.3) performed on loose (confining pres-
sure pg = 300 kPa) (Bousquet et al., 1994) and dense samples (po = 200, 350, and
500 kPa) (Lanier and Zitouni, 1988) are used for the calibration of the model.
Cyclic compression/extension (Zitouni, 1988) and circular stress (Lanier and Zitount,
1988) loading paths performed on dense sand samples were considered to validate
and discuss the characteristics of the numerical models and their simulated responses
in same conditions. Then undrained (Benahmed, 2001) (or isochoric) and constant
stress deviator (Daouadji et al., 2011) loading paths performed on loose sand samples
are considered in case of loose numerical samples.
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FIGURE 3.3: Drained triaxial compression tests used for calibration
(grey curve represents the test on loose sand, and black curves
represent the ones on dense sand).

3.3 Definition of the discrete element models

3.3.1 Inter-particle contact law

An open-source DEM software YADE is used to create the 3D discrete element mod-
els and to perform all the numerical simulations in this thesis. The 3D discrete ele-
ment models in this chapter are created within periodic limit boundary conditions.
The inter-granular contact law between particles is governed by a classical dry fric-
tion model characterized by a normal and tangential stiffnesses and a contact friction
coefficient. As mentioned in the literature review, the simplest particle shape used in
DEM is the spherical shape.

Considering two spherical particles with radii Ry and R; (as shown in Figure 3.4)
in contact, with an overlap J,, and a normal vector 7 to the tangent contact plane, the
normal contact force F, and tangential contact force F; are expressed as follows:

E, =k, 0,7 3.1

AF, = —k; Aily  with  ||E]| < ul||E]| (3.2)

where k;, and k; are constant stiffness values in the normal and tangential directions
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respectively. Aii; is the relative incremental tangential displacement used to calculate
the tangential force incrementally; and y is the friction coefficient in the tangential
direction.

H m@

O

FIGURE 3.4: Contact between two spheres: (a) frame attached to the
tangent contact plane and particle overlap; (b) contact model with
sliders in the tangential direction and (c) with stiffness and slider

acting with respect to relative rolling motion.

In this research, the contact friction coefficient u is considered either constant
(leading to a constant internal friction angle at the macroscopic scale) or non-constant
and varying with the normal contact stress, as suggested in (Sibille, Benahmed, and
Darve, 2021) (leading in a slightly non-linear failure surface with respect to the mean
pressure at the macroscopic scale as the internal angle of friction increases with a
decrease in the mean pressure). In the latter case, the contact friction coefficient u
is defined as a function that varies based on the normal contact stress ¢, which is
derived from the normal contact force associated with each individual contact (Suhr
and Six, 2017):

W= iy + e = Bmin q’”i” (3.3)
okt
. ||Eul| RiR,
th: o, = il d Ry =2-—182 3.4
Wit e = o M mean = SR TR, 34

The parameters i, and py4y in the contact law represent the minimum and maxi-
mum values of the friction coefficient, respectively. For a nil normal contact stress,
the friction coefficient is set to its maximum value, # = HMy,y and as the contact
stress increases it decreases asymptotically to 4,,,. (TCR is a reference contact stress
chosen arbitrarily as the mean normal contact stress that would occur in an ideal-
ized isotropic granular assembly subjected to a reference isotropic confining stress
of 100 kPa. Assuming a granular medium of porosity 0.4, a rough estimation of
Uf is then given thanks to the mixture theory by 100/(1 - 0.4) =~ 167 kPa (Sibille,
Benahmed, and Darve, 2021).
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Considering Spherical particles can lead to excessive rolling which might affect
the shear strength. Thus, rolling resistance parameter is considered to prevent exces-
sive rotations that cause unrealistic shear strengths. The rolling resistance between
particles (as shown in Figure 3.4c) is represented by a contact rolling moment M,,
which is defined as:

AM, = —k, A6, with ||M,|| < ||E,|| % min(Ry, Ry) (3.5)

where k, represents a constant rolling stiffness, é} the particles relative rolling rota-
tion, and 7, stands for the rolling friction coefficient.

The normal, tangential and rolling stiffness are derived from the stiffness modu-
lus E. by introducing dimensionless tangential and rolling coefficients a; and a, as
follows:

ky = E¢ Rmean; ki = arky; ky = a; Ry Ra kt (3.6)

In the following sections, different models are considered: spherical particles
with rolling friction, and clumps of spheres with and without rolling friction.

3.3.2 Identification of basic particle shapes

Shear strength of granular matter at residual state (i.e. at large deformation or critical
state) depends mainly on the shape of the particle and is insensitive to the initial state
of the granular assembly. Hence, the choice of shapes of clumps is made by looking
for clumps resulting to a realistic shear strength at residual state with respect to what
is typically obtained for a sand; but also by considering that the shape of the clump
can be easily tuned to fit this shear strength.

Different clumps of spheres were investigated to assess the shear strength at residual
state (characterized by the residual friction angle @) based on simulation of triaxial
compression tests. In order to investigate the effect of particle shape only on ¢,
simulations were performed by considering identical particle size distributions (PSD)
for the packings made with different particle shapes.

We followed several steps to create clumps:

1. Create an assembly of spheres of a certain PSD.

2. Define the desired geometry of the clump by clumping spheres together.

3. Replace the spheres in the assembly by the defined clump of the same volume.
4. Update the particles properties (mass, volume and inertia).

5. Verity that the assembly of clumps has the same PSD as that of spheres.

The residual friction angle of these clumps was evaluated with a constant contact
friction angle of 19° (high enough to get a critical shear strength independent of the
contact friction angle (Aboul Hosn et al., 2017)), and without rolling friction at con-
tact (only the rheological model b) in Figure 3.4 is activated). The results presented
in Figure 3.5 indicate that, with the exception of the clump of 6 spheres (3x2), all
tested clumps exhibited a ¢y below 30°, which is the ¢q of the Hostun sand used for
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FIGURE 3.5: Comparison of residual friction angles simulated with
different shapes of clumps.

calibration of the models (It should be noted that samples of spheres without rolling
friction resulted a @( of approximately 19.5°). In other words, it is not possible
with such clumps to describe the residual shear strength of a typical sand as Hostun
sand. In contrast, the clump of 6 spheres (clump 3x2) displayed a higher ¢q of ap-
proximately 33.5°. Moreover, the shape of the clump 3x2 can be easily configured
according to a single scalar representing the distance between the centres of the par-
ticles, as discussed further in this section. As a result, the clump of 6 spheres (3x2)
has been chosen for further investigations to replace spheres with rolling friction.
Additionally, we made the choice to consider mixing rolling resistance and clumps
in order to increase the shear strength providing by clumps only. For that, we con-
sidered one of the simplest clump consisting of two non overlapping spheres (clump
C1) which has already been used in several previous studies, but without rolling re-
sistance (Villard and Chareyre, 2004; Salot, Gotteland, and Villard, 2009; Villard,
Huckert, and Briangon, 2016).

Therefore, three discrete element models are considered in the following. These
models vary based on the shape of the particles as illustrated in Figure 3.6 and the
consideration, or not, of rolling resistance. The names of the particles (sphere, clump
C1 and clump 3x2) are used to label the three different models.

The three discrete models are described as follows:

1. The "Sphere" model consists of single elementary spheres with the addition of
a rolling moment at contact acting against the relative rotation of the particles.

2. The "C1" model is composed of clumps formed by two juxtaposed spheres
involving in addition a rolling moment at the contact (as for the Sphere model)
between two spheres of two different clumps.
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3. The "3x2" model consists of clump aggragating six spheres. There is no need
to introduce an inter-granular rolling moment, since the shape of the six clus-
tered spheres is already sufficiently non spherical to overcome the issue of
unrealistic shear strength as it is shown in Figure 3.5. To control the shape
of the clump 3x2, we define the shape parameter D representing the distance
between the particle centres, as shown in Figure 3.7. For D=0 the particle re-
sumes to a sphere and the most elongated particle is obtained for D=2R (where
R is the radius of the particles composing the clump).

Sphere

Clump C1 Clump 3x2

FIGURE 3.6: Particles shapes (from left to right): sphere - clump of
two spheres - clump of six spheres

2R

1 D=R

(A) D=2R

(B) D=R

FIGURE 3.7: Controlling the shape of the Clump 3x2 particle with
the shape parameter D (R is the radius of the spheres composing the

clump).
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Effect of rolling friction coefficient for Sphere and C1 models

To study the effect of the rolling coefficient, samples with spherical particles were
modelled while varying 77, and p. The critical shear strength depends only on 7,
if the contact friction angle is more than 15° , i.e. u > 0.268 (Aboul Hosn et al.,
2017). But this is just a particular case were 77, = 0.1 as shown in Figure 3.8. As
the residual friction angle is influenced by the increase of the contact friction angle
at higher 7.

40 - .

35 4

30 o ®

25 A
@c=15"°

@oc=19"
@c=20"
@c=25"

Residual friction angle (°)

20 4

0.0 02 0.4 0.6 0.8 1.0
Rolling friction coefficient n,

FIGURE 3.8: The variation of the residual friction angle with respect
to rolling friction coefficient at different contact friction angles,
based on the Spherical model

Effect of the shape parameter (for Clump 3x2 model)

To study the effect of the distance D on the critical shear strength, samples with
Clump 3x2 particles were modelled while varying the distance D. These tests were
done with contact friction angle equal to 19° .

3.3.3 Initial state generation and choice of the initial porosity

In this research we focus on the description of the constitutive response of dense and
loose soils. Thus, the generation of initially both dense and loose numerical granular
assemblies are necessary for the calibration of some of the model parameters. Con-
sequently, two different initial porosities, loose and dense, are considered.

In practice, initially isotropic granular assemblies are generated by randomly gener-
ated non-contacting particles according to a specified particle size distribution. These
assemblies are then subjected to stress-controlled isotropic compression until a de-
sired confining pressure is achieved. The resulting porosity, denoted as ng, is con-
trolled by adjusting the contact friction coefficient during the isotropic compaction
phase.

To achieve a denser initial state, a lower friction coefficient than the nominal value
is assigned during the compaction process. This effectively lubricates the contacts
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FIGURE 3.9: Calibration of the shear strength at the critical state of

clump 3x2 model with respect to a drained triaxial compression on a

loose Hostun sand. D represents the distance between the centres of
the spheres of radius R composing the 3x2 clumps.

between particles, allowing for a more compacted configuration. However, when an
initial loose state is desired, assigning the nominal contact friction coefficient during
compaction (i.e. the friction coefficient that will be used after the generation of the
initial state to simulate the constitutive response of the soil) may not be sufficient to
achieve a very loose state. In such cases, contact adhesion can be introduced during
the compaction phase to mimic the moist tamping technique used in experimental
soil sample reconstitution. Subsequently, the contact adhesion is removed as pro-
posed in (Aboul Hosn et al., 2017) to obtain the desired initial loose state before
simulating the investigated loading paths.

Furthermore, the choice of the initial porosity ng after the compaction phase is cru-
cial to accurately simulate the volumetric deformation observed in real soil during
shearing. The numerical porosity (or void ratio) is carefully adjusted to ensure that
the ratio r defined in Equation 3.7 is equivalent both experimentally and numeri-
cally. This ratio » depend on the state parameter ¢, which represents the difference
between the initial void ratio eg and the void ratio at the critical state e.. By ap-
propriately tuning the initial numerical porosity, the model can replicate the same
volumetric behavior during shearing as observed in real soil samples.

ey — ¢ AV,

I _
"Tlte) (te) Vo @-7)

The relative volume change at the critical state is represented by AV,./ V. Conse-
quently, the initial porosity (or void ratio) required for the numerical assembly is
determined based on the void ratios at the critical state for both the numerical model
and the real soil, as well as the initial porosity of the real soil in the specific intended
state to be modeled.

The parameters of the three chosen discrete element models with their contact law
used are presented in (Table 3.1).
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TABLE 3.1: Parameters of the three 3d discrete numerical models
Model Contact law Parameters to be calibrated
Sphere Classical dry friction Ec-no-at-oar-u-1,
model with rolling friction
Cl Classical dry friction Ec-no-at-oar-pu-1,
Clump  model with rolling friction
3x2 Classical dry friction Ec-ng-at-ar-u-D

Clump model without rolling friction

3.4 Calibration/validation of isotropic models with con-
stant friction coefficient

3.4.1 Calibration Methodology

In this section, the calibration methodology followed to calibrate the different models
(Spheres, Clump C1, Clump 3x2) in this work is defined. The numerical simulations
are carried out by considering a parallelepipedic periodic cell made up of 10,000
particles. The particle size distribution of the numerical assembly is almost identical
to that of the Hostun sand (Figure 3.1). Contact mechanical parameters are calibrated
from drained triaxial compression on dense Hostun sand (D, ~ 1.0) at confining
pressures po = 350 kPa and another on loose Hostun sand at confining pressures pg
= 300 kPa to identify the initial porosities of the numerical models to be chosen to
simulate the constitutive response of sand at these relative densities. In this part all
numerical samples (dense and loose) in the three models are compacted isotropically.
According to (Aboul Hosn et al., 2017), elastic contact parameters, E. or the rolling
stiffness coefficient a,, are just set high enough in order to be sufficiently close the
rigid particle assumption such that they have no effect on the macroscopic plastic
properties of the granular assembly.

The calibration methodology is divided into different steps as follows:

* The first step consists in fitting the shear strength at the critical state. The latter
depends on the rolling friction 7, (if used), the shape of the particles and the
contact friction angle.

The rolling friction of the sphere and clump C1 models is calibrated as shown
in Figure 3.10 for Clump CI1 and similarly for spheres with contact friction
angle equal to 19° i.e. y = 0.344. This calibration is done without choosing
high values of 77, (7, < 0.3) to consider the results of the parametric study
shown in Figure 3.8.

Concerning the 3x2 model, we calibrate the distance D (Figure 3.7) between
the spheres of clump 3x2 to reach the required shear strength at the critical
state (Figure. 3.9).

* The peak shear strength and volumetric deformation of an initially dense gran-
ular assembly depend on factors such as rolling friction (if present), particle
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shape, contact friction angle, and initial porosity. However, the rolling fric-
tion (for sphere and C1 models) and the particle shape (for the 3x2 model)
have already been calibrated in the first step. Thus, the initial porosity of the
numerical model (7g) is determined in a second step to ensure that the ratio r
(Equation 3.7) matches both numerically and experimentally in drained triaxial
compression tests on dense sand.

* Finally, a constant contact friction coefficient (y) is calibrated to accurately
reproduce the peak shear strength observed in the drained triaxial compression
tests on dense sand. It is important to note that the choice of u can impact the
value of r, and therefore, it may be necessary to iterate the last two steps (se-
lection of 1 and calibration of ) to refine the calibration process and improve
the accuracy of the model.
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FIGURE 3.10: Clump C1 model: (a) The variation of the critical
shear strength with respect to rolling friction coefficient at contact
friction angle equal to 19° i.e. u = 0.344 (b) The volumetric
deformation
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3.4.2 Calibrated models

The calibration methodology has been applied to calibrate the parameters from the
two experimental drained triaxial compression. For the three models, the particle
size distribution of the numerical assemblies is almost identical to that of the Hostun
sand. The identified parameters of the models are given in (Table 3.2) and simulated
calibration paths are presented in Figure 3.11. By calibrating the ratio r, we are able
to obtain numerical relative volumetric changes close to the experimental ones.

Note from Figure 3.11c that the numerical porosities (both initially and at the
critical state) differ from the porosities measured on the sand samples. The micro-
structures of the numerical granular assemblies do not replicate the exact character-
istics of the sand samples, including differences in grain shapes. Therefore, it is not
expected for the porosities to be identical between the experiments and numerical
simulations. However, the model is designed to reproduce the ability of the soil to
dilate.

Finally, it is worth mentioning that the porosities of the experimental loose and
dense sand samples at the critical state can vary. This discrepancy arises because,
in experimental measurements, the global porosity is determined without taking into
account the presence of shear bands in dense samples (Zhu et al., 2016). This is
in contrast to the numerical simulations, where the porosities at the critical state
remain the same for both initially loose and dense samples as no meaningful strain
localization occurs.

TABLE 3.2: Parameters of the discrete numerical models identified
from the calibration on dense and loose Hostun sand RF. D
represents the distance between the centres of the spheres of radius R
composing the 3x2 clumps (see Figure 3.9).

Model ngloose mngdense Ec(MPa) war o m Ny D

Sphere  0.419 0.357 500 05 3 0384 0.25 -
Cl1 0.467 0.407 500 05 3 0.767 0.07 -
3x2 0.387 0.322 500 05 3 0754 - 0.7xR

3.4.3 Validation of the models for initially dense Hostun sand

Drained triaxial compressions for different confining pressures

The experimental results of drained triaxial compressions on dense sand used for
validation are shown in Figure 3.12 and compared with the responses simulated with
the model, for two confining pressures (po = 200, 500 kPa). The initial porosity
of each model (different shapes) identified to match the relative volumetric strain
observed experimentally (ratio r) is ng = 0.357, 0.407, and 0.322 (Table 3.2) for
sphere, clump C1, and Clump 3x2 respectively.
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FIGURE 3.11: Calibration of the discrete element models made of
particles with different shapes and based on drained triaxial
compressions on dense and loose Hostun sand.

We observe an overestimation of the peak strength at 500 kPa and underestimatation
at lower confining pressure 200 kPa.

Cyclic compression/extension loading path

This path involves subjecting the sample to cyclic axisymmetric (0 = 03) compres-
sion/extension loading with a constant mean pressure. The mean pressure is set to
200 kPa, and the cycles are performed by controlling the axial strain 1. Each cycle
has a strain amplitude of Ae; = 3.8%, except for the first cycle which has a larger
amplitude. Therefore, the response parameter of interest is ¢7, which represents the
axial stress.

The numerical response of the model, using the calibrated parameters obtained
in the previous section, is compared to the experimental test conducted by (Zitouni,
1988) (Figure 3.13). The numerical results closely match the experimental data for
the different particle shapes considered. However, the sphere model provides a more
accurate quantitative prediction, particularly in terms of accurately capturing the vol-
umetric deformation and estimating the overall stiffness throughout the cyclic load-
ing. It is worth noting that conventional elasto-plastic constitutive models typically
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FIGURE 3.12: Validation of the discrete element models with
constant contact friction coefficient on drained triaxial compressions
po =200, 350 and 500 kPa on dense and loose Hostun sand at
different confining pressures.

require additional historical parameters (usually calibrated based on cyclic tests) to
accurately capture the soil response in such tests.
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FIGURE 3.13: Validation on cyclic compression/extension paths
with constant mean pressure on dense Hostun sand: experimental
results are plotted with the continuous magenta lines and simulated

responses are represented with the dashed black lines.

Circular stress loading path

0.10

The calibrated models are also validated on a circular loading stress path in the de-
viatoric stress plane, where the Lode angle ¢, is continuously changed while main-
taining constant the mean pressure and the deviatoric stress (Saada and Bianchini,
1988a). The Lode angle is defined in relation to the axis s1, which represents the
projection of the ¢y axis on the deviatoric plane.

The intensity of the stress deviator is defined by the second stress invariant, which
is given by:

12(7 -

tr (s?)

(3.8)
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Where s is the deviatoric stress tensor.

The initial stage of the circular loading stress path involves isotropic compression of
the soil sample to a mean pressure of p. = 500 kPa. Following that, a compression
is applied in the direction 3 (with ¢, = —120°) while maintaining a constant mean
pressure of p = p, until the stress deviator intensity I, reaches a value of 420 kPa.
Subsequently, the circular loading path is executed, which consists of two revolutions
in the deviatoric stress plane. During this path, the Lode angle ¢ is continuously
changed between —120° and +600°.
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FIGURE 3.14: Validation from a circular stress loading path on
dense Hostun sand: the relative volume change is represented in
terms of the Lode angle (top), the strain response path is projected on
the deviatoric strain plane (bottom).

The responses simulated with the numerical models are compared with the ex-
perimental one obtained by Lanier and Zitouni (1988) in Figure 3.14. All models
underestimate the contractancy observed experimentally, however the sphere and C1
models give a global trend of the volumetric deformations in agreement with the ex-
perimental data. The 3x2 model diverges from the experimental data by describing
a strong dilation of the numerical sample leading to its failure. Finally, the sphere
model underestimates the deviatoric deformations, whereas the C1 model overesti-
mates them, but both models produce a response which is qualitatively realistic.

3.4.4 Validation of the models for initially loose Hostun sand
(Dr ~ 0.1)

Isochoric compression

The responses simulated with the calibrated models to isochoric triaxial compres-
sions for the loose initial state are compared to experimental data from an axisym-
metric undrained compression test on loose and water-saturated sand performed by
Benahmed (2001). In the experiment, the isochoric condition is achieved by pre-
venting drainage of the pore water. In the numerical simulations, the isochoric con-
dition is directly imposed by controlling the radial strains while compressing the
sample in the axial direction. This ensures that the volumetric strain ey is zero, i.e.,
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€y = €3 = €1/2, where ’1’ is the axial direction, such that ey = €1 + €» +¢e3 = 0.
The experimental results and simulated responses are shown in Figure 3.15.
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FIGURE 3.15: Validation on undrained axisymmetric compressions
on loose Hostun sand, comparison with experimental test with p, =
200 kPa .

The comparison between the numerical models and the experimental data reveals
that all three models are unable to accurately predict the observed experimental re-
sponse. In the numerical simulations, a complete liquefaction is observed at low ax-
ial strain and the models fail to capture the peak stress deviator (q-peak) observed in
the experiments. The numerical models provide unrealistic predictions of the stress
deviator peak, significantly underestimating its value compared to the experimental
measurement, where failure occurs at approximately gmax ~ 100 kPa. It is worth
noting that this distinction between the numerical and experimental results was not
observed in the drained compression tests, as shown in Figure 3.11. Furthermore,
experimentally the liquefaction occurred at a larger deformation of the samples.

g-constant path

In the constant stress deviator loading path, the stress deviator q is maintained con-
stant while the mean pressure p is decreased, following a stress state obtained from
a preliminary drained compression. We consider an experimental test performed by
Daouadji et al. (2011) as a reference for this loading path. In the experiment, the ini-
tial confinement pressure was set at p. = 300 kPa, and the stress deviator q reached
a value of 119 kPa after the initial drained compression phase. It is another loading
path (as for the isochoric loading path) where the range of variation in mean pressure
is significant. Experimental observations show that failure occurs when the mean
pressure reaches a value slightly below 150 kPa (Figure 3.16c), where the stress
path intersects the Mohr-Coulomb limit surface. It is important to note that loose
sand samples have the characteristic of dilating during such a constant stress devia-
tor path. This is what is happening experimentally with the positive relative volume
change observed from an axial strain slightly below 0.5% (Figure 3.16b). The pre-
ceding contractive response, resulting in a relative volume change of approximately
-0.3%, corresponds to the initial drained compression of the sample.
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FIGURE 3.16: Validation on constant stress deviator loading paths
on loose Hostun sand, comparison with experimental test with q =
119 kPa.

The comparison between the numerical and experimental responses is shown in
Figure 3.16. The models reproduce correctly the initial drained compression. How-
ever, they behave opposite to the sand response along the g-constant path. The mod-
els present a contraction of the granular assemblies whereas a dilation is observed
experimentally. However the failure stress state in the g-p plane is rather well pre-
dicted by the models (Figure 3.16¢).

3.4.5 Summary

In this section, we investigated two options to improve upon the simplistic shape
of spheres: implementing rolling friction or using non-spherical shapes (but still
simple ones). We also considered a third option, which involved combining both ap-
proaches. In terms of calibration quality, all the models provided similar results, with
the sphere model showing slightly better agreement. In terms of computational cost,
the sphere model was the least demanding, while the 3x2 model was the most compu-
tationally expensive. However, the calibration process complexity was comparable
for all the models.

The models were validated using two different initial density states. When vali-
dated against a dense initial state, the sphere model exhibited better agreement with
experimental data compared to the other models, although it did not fully capture
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the behavior observed in the circular stress loading path. However, when validated
against loose initial states, all the models failed to accurately predict the experimen-
tal data. This could be related to the impact of the significant decrease of the mean
pressure along the considered loading paths on the constitutive soil response which
is not correctly taken into account in the model formulations.

Despite the limitations of the models, the sphere model with rolling resistance
offered a good compromise between computational cost and predictive ability com-
pared to the other models tested. It demonstrated better performance in terms of pre-
diction capability with lower computation cost. Considering the significant changes
in mean pressure along the loading paths, which impact the constitutive response of
the soil, the next section aims to take into account the effect of the mean pressure (or
the normal contact stress) on the contact friction in relation with the particle rough-
ness (Mollon et al., 2020). This could be achieved by introducing a contact friction
angle that varies as a function of the normal contact stress, thus improving the mod-
els’ ability to capture the behavior along loading paths with important changes in
mean pressure.

3.5 Calibration/validation of isotropic models with non-
constant friction coefficient

The calibration of models with non-constant contact friction coefficient is presented
here. In addition to the two drained triaxial compressions (dense state with py = 350
kPa and loose state with with pg = 300 kPa) used in the previous part, another
drained triaxial compressions at different confining pressure are needed to calibrate
the non-constant contact friction parameters 3.3. Thus, Contact mechanical param-
eters are calibrated from three drained triaxial compressions on dense Hostun sand
(Dy =~ 1.0) at different confining pressures (po = 200; 350; 500 kPa).

3.5.1 Calibration Methodology

The calibration of models follows the methodology defined in (Sibille, Benahmed,
and Darve, 2021). The first steps are similar to those followed to calibrate the mod-
els with constant contact friction angles in previous section 3.4. In addition, in this
case where a non-constant contact friction coefficient is considered (Eq. 3.3) an ad-
ditional step consists in substituting the calibrated constant friction coefficient by the
non constant one and thus identifying p,,;; and p;;4, in order to match the change
of the peak shear strength with the confining pressure for the three drained triaxial
compressions on dense sand samples. It may be necessary to reiterate this step (with
different values of p,;, and M;.x) to improve the calibration.
Figure 3.17 present the variation of the contact friction coefficient with the normal
contact stress for parameters calibrated for the spherical model. (y,;, = 0.32 and
Umax = 0.76).

Parameters of the non-constant friction coefficient law calibrated on the Hostun
sand are given in Table 3.3. All the other parameters, including the initial porosities
of the numerical assemblies are kept unchanged, as given in Table 3.2.
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TABLE 3.3: Contact mechanical parameters of the discrete
numerical model calibrated from Hostun sand HN31.

HUmin ~ Hmax

Sphere 0.320 0.760
ClumpCl 055 2.05
Clump 3x2  0.55 2.3

The use of a non-constant contact friction coefficient has a reduced impact only
on the simulation of the drained triaxial compressions. It leads essentially to a better
description of the peaks of the stress deviator g for the dense sand for the different
confining pressures (Figure 3.18). For instance, the peak of g is overestimated for
po = 500 kPa for the model with a constant friction coefficient which is no more the
case with the non-constant friction at the contact. For the loose sand, there is no clear
difference in the simulated responses with or without non-constant contact friction
(Figure 3.18).

3.5.2 Validation of the models
Cyclic compression/extension loading path

The numerical response is compared to the experimental test carried out by (Zitouni,
1988) (Figure 3.19). Predictions of the calibrated models after adding non-constant
contact friction to the contact law where slightly improved in the cases of the com-
pression/extension loading path with respect to the complexity added.
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FIGURE 3.18: Validation of the discrete element models with
non-constant contact friction coefficient on drained triaxial
compressions po = 200, 350 and 500 kPa on dense and loose Hostun
sand at different confining pressures.

Circular stress loading path

The models are also validated on the circular loading stress path in the deviatoric
stress plane. The numerical models response is compared to the experimental one
obtained by Lanier and Zitouni (1988) in Figure 3.20. Similarly to the response in
the case of cyclic compression/extension, the response of the calibrated models after
adding non-constant contact friction to the contact law where slightly improved in
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the cases of circular loading path with respect to the complexity added. In case of
model C1, the deviatoric deformation and volumetric deformation improves quanti-
tatively and qualitatively whereas the 3x2 model still diverges from the experimental
measurements..

Isochoric compression

The experimental results and simulated responses of the different models are shown
in Figure 3.21. Again, the consideration of non-constant contact friction contributes
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FIGURE 3.21: Validation on undrained axisymmetric compressions
on loose Hostun sand, comparison with experimental test with p. =
200 kPa .

300

to delay the liquefaction in terms of axial strain (up to ~ 2% ), but still is not enough
to simulate the realistic behaviour of loose Hostun sand. However the predicted
stress deviator peak is now realistic with respect to the experimental measurement,
in particular for the sphere model.

g-constant path

The comparison between the numerical and experimental responses is shown in Fig-
ure 3.22. The models reproduce correctly the initial drained compression. The de-
scription of the response to the q constant path still need be improved, always, in
particular, concerning the dilatative volumetric response. However, we observe a
slight improvement with respect to the models with constant contact friction where a
small dilation is observed as the constant deviator part start, but then behaves oppo-
site to the experiment as the numerical samples start again to contract.
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FIGURE 3.22: Validation on constant stress deviator loading paths
on loose Hostun sand, comparison with experimental test with q =
119 kPa.

3.5.3 Summary

In this section to improve the prediction ability of the models, we took into account
that the roughness at particle surfaces may result in different friction coefficients
when the stress normal to the contact varies importantly, and in particular for very
low normal contact stresses. This has been done by implementing a contact friction
angle as a function of the normal contact stress.

The response of the models were only slightly improved in the case of the dense sand
(cyclic compression/extension and circular loading paths) compared to the additional
cost of calibrating a more complex contact model requiring additional drained com-
pressions. In the case of the loose sand, we observe for the constant stress deviator
loading path a slight improvement of the models concerning the predicted volumetric
response but still not enough as the model behave opposite to the experiment when
the constant stress deviator loading is pursued.

For the undrained loading path on loose sand we can see the clear improvement in
the description of the peak of the stress deviator, especially for the spheres model
which is much more realistic than the model with constant contact friction. How-
ever, we still observe a complete liquefaction at low axial strain with respect to the
experiment.

In reality, the initial fabric is not perfectly isotropic in the case of the loose sand
samples since the particles or contacts are problably oriented preferentially along a
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particular direction due to their anisotropic shape and the mode of preparation (moist
tamping), thus it is important to check the effect of the initial fabric anisotropy of
the numerical models in the next section. Since the models with clumps 3x2 and C1
(plus rolling resistance) do not offert a better prediction ability at the macroscopic
scale than the model with spheres (plus rolling resistance), only spherical particles
are chosen for the investigation of fabric anisotropy due to their simplicity.

Finally, this investigation will focus essentially on the description of the loose Hostun
sand because it was shown experimentally that the dense Hostun sand samples were
rather isotropic and also because the worst prediction of the discrete model concerns
the sand in its initial loose state.

3.6 Role of initial fabric and non-constant friction co-
efficient in the case of the loose sand

In the case of the loose sample, we specifically examine in this section the impact
of the slight anisotropy observed in the experimental loose sand samples. In this
objective, we apply anisotropic compaction to generate fabrics (i.e. distribution of
contact orientations) with anisotropic characteristics.

3.6.1 Initial state generation of anisotropic models

To generate anisotropic granular assemblies, we simulated an oedometric compres-
sion process on the initial collection of non-contacting spheres generated randomly.
The goal was to achieve a cubical shape for the granular assembly after the compres-
sion. To achieve this, the initial collection of particles occupied a parallelepipedic
volume with a slenderness ratio (height to width ratio) of 7/3. The oedometric com-
pression was applied to this initial configuration until the slenderness ratio reached
1, resulting in a cubical shape for the assembly.

Following the oedometric compression, a stress-controlled isotropic compression
was applied to the assembly to reach an initial isotropic stress state, but with an
anisotropic contact fabric due to the previous oedometric compression. This isotropic
stress state served as the starting point for the various loading paths simulated in this
study.

The initial porosity, ng, is controlled by tuning the contact friction coefficient dur-
ing the oedometric compression and the subsequent stress controlled isotropic com-
pression. In addition, adhesion is considered during the oedometric and isotropic
compressions and removed afterward as proposed by Aboul Hosn et al. (2017).

3.6.2 Anisotropic calibrated models

Concerning the initial loose state, we present in Figure 3.23 a comparison between
the experimental response to the drained triaxial compression under confining pres-
sure of pg = 300kPa and the constitutive responses simulated from two different
initial states obtained after either the isotropic compaction or the anisotropic one,
and with constant or non-constant contact friction coefficient. The initial porosity is
similar in both cases and about 0.42, as shown in Table3.4.
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FIGURE 3.23: The discrete element models during a drained
compression on loose sand of the 4 different cases.

limited impact on the overall response compared to the isotropic compaction mode.
However, there are some remarkable differences. Samples with an initial anisotropy
exhibit a stronger stiffness in the hardening regime, which is closer to the stiffness
observed experimentally (Figure 3.23A). Additionally, anisotropic samples display a
contractive behavior even for large deformations, whereas isotropic samples show a
slight dilation after an axial strain of approximately 0.13, contrary to the experimen-
tal measurements. These differences indicate that the anisotropic compaction mode
captures certain aspects of the experimental behavior more accurately, particularly in
terms of stiffness and contractive response.

Although the benefits of using a non-constant contact friction coefficient and anisotropic
compaction may be limited when considering drained triaxial compressions, their
significance becomes more apparent when applied to other types of loading paths, as
discussed in the subsequent sections. These modeling approaches have the potential
to improve the simulation of various loading conditions and capture more accurately
the behavior of granular assemblies under different stress states. Therefore, while
their impact on drained triaxial compressions may be relatively small, their rele-
vance and effectiveness in capturing the complex behavior of granular materials are
discussed further in the following sections.
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3.6.3 Characterisation of initial states

We provide in this section a characterization of the three initial states considered
in this study: dense compaction (isotropic), loose compaction (isotropic), and loose
compaction (anisotropic). The characterization focuses on three specific properties:
coordination number, particle connectivity in the distribution of contact orientations,
and estimation of the pore size distribution.

The particle connectivity is quantified using the mechanical coordination number Z*
as defined in Thornton et al. (Thornton, 2000). It considers only particles that are
involved in more than one contact. It is defined by the equation:

2N, — Ny

7t = (3.9)
Ny — No — Np

Where N, represents the total number of contacts, Np is the total number of particles,
N denotes the number of particles involved in a single contact, and Ny represents
the number of particles without any contact. The values of Z* for the three initial
states are presented in Table 3.4. It can be observed that the coordination numbers for
the loose initial states, whether compacted isotropically or anisotropically, are nearly
identical. However, the coordination number is higher for the initial dense state.
The anisotropy of the contact fabric in the granular assemblies is analyzed based on
the distribution of the orientations of the unit normal vectors to the contacts. The
distributions for the initial loose states are plotted in Figure 3.25 for the three planes:
‘X-Y’, ‘Y-Z’ and ‘Z-X’. Here, the direction ‘Z’ corresponds to the compression di-
rection for both the anisotropic compaction mode and the triaxial compressions used
in calibrating the model. The distributions indicate a slight anisotropy in the sam-
ples compacted anisotropically, with slightly more contacts aligned in the axial (‘Z’)
directions.

The degree of anisotropy can be quantified using an approximation of the prob-
ability distribution function P(x), where the variable x represents | cos«| and « is
the angle formed by the contact normal with respect to the axial direction ‘Z’. When
« = 0 or 1, the contact is parallel to the axial direction, while for « = 71/2, the
contact is orthogonal to the axial direction. Previous studies (Azéma, Radjai, and
Saussine, 2009; Imole et al., 2014) have shown that P(x) can be adequately approxi-
mated using a Legendre polynomial based on spherical harmonics. This approxima-
tion takes into account the symmetries of the problem and is limited to the 4th order.
The expression for the approximation is given by:

P(x) =1+ ay(3x* — 1) + a4(35x* — 30x% + 3) (3.10)

The coefficient a, provides a measure of the anisotropy along the axial direction. It

is defined as follows: i
2

= — —— 3.11
an 1 (< xX- > 3) ( )

Where the value < x? > represents the mean of x2, which corresponds to the second
moment of the probability distribution P(x). For an isotropic state, < X% >= % and
a; = 0. Thus, a lower value value of |a,| indicates a more homogeneous distribu-

tion of contact orientations and a more isotropy in the contact fabric. The Legendre
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FIGURE 3.24: The contact normal inclination with respect to the
axial direction of compression
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FIGURE 3.26: Probability density function and approximation by
Legendre polynomial of the initial orientation of contacts with
respect to the direction of compression ‘Z’ for the loose isotropic (a)
and anisotropic (b) samples; Icosal varies from O to 1 for contacts
orthogonal and parallel, respectively, to the direction ‘Z’.



3.6. Role of initial fabric and non-constant friction coefficient in the case of the

loose sand >3

TABLE 3.4: Characteristics of the initial states of the numerical
granular assemblies used to simulate Hostun sand constitutive
responses.

Initial Compaction 1y  Z* Anisotropy
state type az

Dense  Isotropic  0.357 54 0.0065
Loose  Isotropic  0.419 3.9 0.007
Loose Anisotropic 0.418 3.8 0.025

polynomial approximations of the contact orientation distributions with respect to the
axial direction (Figure 3.24) are shown in Figure 3.26 for the initially isotropic and
anisotropic loose samples. The corresponding values of a, are presented in Table 3.4
for each initial state. The coefficient a; is very small (around 7 X 103) for both the
isotropically compacted dense and loose samples. In the case of the loose sample
with anisotropic compaction, the value of a5 is slightly higher at 0.025, although it is
still relatively small. This indicates a low but noticeable anisotropy, which is consis-
tent with the characteristics of the Hostun sand sample prepared by moist tamping, as
observed in previous studies (Aris, Benahmed, and Bonelli, 2012) where shear wave
velocities were measured in different directions.

Similarly to the impact of non-constant friction at contacts, the influence of the
initial anisotropic fabric on the response to drained compression is relatively small
compared to the response simulated from the isotropic fabric, as shown in Fig-
ure 3.23. The shear strength of the samples is not significantly affected by the initial
fabric, and only the contractance (negative relative volume change) is slightly less
important for the anisotropic initial state. In the case of the isotropic initial state,
the samples shows higher contractance at low axial strain, but as the deformation
progresses, they undergo a slight dilation.

As illustrated in Figure 3.23, the initial fabric anisotropy has a significant impact
on the behavior of the models. Although the initial fabric anisotropy is low, it is
nevertheless significant, as demonstrated by the validation of the model in the next
section.

Identification of macropores

In Figure 3.27, we investigated the microstructure of Hostun sand numerical samples
at varying initial states (dense, loose isotropic, and loose anisotropic). The goal was
to identify "macropores" alongside smaller inter-particle spaces, as observed exper-
imentally when moist tamping compaction is used (Benahmed, 2001). However, no
specific different type of pores was detectable in loose samples compared to dense
ones.

The distribution of "local" macro porosities in the samples was done using the voxel
porosity function in YADE. The calculation method involves dividing the whole
domain into a dense grid of voxels at a given resolution and counts voxels within
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spheres. This method allows precise porosity calculations within targeted sub-volumes
and excluding parts of spheres that do not fall within the specified volume. By shift-
ing the porosity distribution of the dense sample in order to align it with the mean
porosity of the loose samples (Figure 3.28), the distributions were almost similar.
This suggests that the pores in the loose samples are generally larger, which is ex-
pected due to their higher overall porosity. However, no significant macro-pores
unique to the loose samples are found that were absent in the dense sample.

3.6.4 Validation on isochoric compression path

The constitutive responses of the calibrated model have been simulated for the anisotropic
initial state described in Table 3.4, and compared to the responses obtained for the
isotropic state for the two kind of contact friction coefficient are considered: con-
stant and non-constant. This results in four different simulation cases: "isotropic-
constant", "anisotropic-constant", "isotropic-nonconstant", and "anisotropic-nonconstant".
The experimental results and simulated responses for these four cases are compared
in Figure 3.29.

Firstly, in addition to the "isotropic-nonconstant” case, both anistropic cases pro-
vided a realistic predicted stress deviator peak. Then considering either an anisotropic

initial state or a non-constant friction is enough to simulate a realistic shear strength.
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Moreover, the simulation case labeled as "anisotropic-nonconstant" exhibits a
different behavior compared to the other cases in terms of the axial strain at which
liquefaction occurs, which corresponds to the vanishing of effective stresses. In the
experimental data, complete liquefaction is not observed, but instead a residual stress
deviator of approximately 25 kPa is reached at around 7.5% axial strain.

By considering the initial anisotropic state with a constant contact friction coef-
ficient, the liquefaction is delayed in terms of axial strain, up to approximately 1%,
compared to the "isotropic-constant" case, which experiences liquefaction at around
0.5%.

Furthermore, when both the initial anisotropic state and non-constant friction co-
efficient are taken into account combined, liquefaction is further delayed. In this
case, liquefaction occurs at an axial strain of approximately 12%. Although lique-
faction still occurs at higher axial strains, this prediction is more consistent with the
experimental reference. It is worth noting that a larger initial anisotropy may have
completely prevented liquefaction.

It is important to highlight that achieving a more accurate reproduction of the ex-
perimental results is indeed possible by adjusting contact parameters specifically for
the given initial density or by tuning the initial porosity of the numerical model. The
simulated response is highly sensitive to the initial numerical porosity, especially for
such low porosity values. However, such adjustments or tunings would contradict
the fundamental purpose of a discrete numerical model, which aims to represent a
soil with its inherent characteristics, including particle grading, shape, and rough-
ness, regardless of its initial state. Ensuring that the model accurately represents the
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FIGURE 3.29: Validation on undrained axisymmetric compressions
on loose Hostun sand, comparison with experimental test with p, =
200 kPa (sphere model).

soil’s inherent properties under various loading conditions is essential to maintain the
model’s validity and usefulness.

The greater influence of the non-constant friction coefficient, which is dependent
on the normal contact stress and hence the mean pressure, on the isochoric compres-
sion compared to the drained compression can be explained by the larger range of
mean pressure p variation in the former case (from 200 kPa to 0) compared to the
latter.

To provide an explanation for the observed results in Figure 3.29 and the dif-
ferences between the four cases, a detailed micro-structural analysis is presented in
further subsections. This analysis focuses on the fabric, including connectivity and
anisotropy, as well as the mobilized friction at contacts, and the weak and strong
contact networks. The analysis is carried out until the liquefaction of the samples in
the isotropic-constant, anisotropic-constant, and isotropic-nonconstant cases, which
occur at axial strains of 0.4%, 0.8%, and 1.8% respectively.

3.6.5 Validation on q-constant path

The simulated response using the previously calibrated models (isotropic and non-
constant) with anisotropic models, are compared with the experimental results in
Figure 3.30.

It is observed that the initial isotropic fabric with a constant contact friction coef-
ficient fails to capture the characteristic dilatancy observed along the constant stress
deviator path. Dilatancy is only simulated when either the initial anisotropic fabric
or the non-constant friction coefficient is considered. Furthermore, it is the combina-
tion of both initial anisotropy and non-constant friction that yields the best agreement
with the experimental measurements in terms of volume change. Additionally, this
combined case accurately predicts the stress state at failure (near p = 150 kPa in
Figure 3.30a). In contrast, the other cases either overestimate or underestimate the
mean pressure at failure.
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FIGURE 3.30: Validation on constant stress deviator loading paths
on loose Hostun sand, comparison with experimental test with q =
119 kPa.

These findings confirm the importance of consideration of the initial fabric anisotropy
and pressure-dependent friction coefficient, which are often neglected in discrete el-
ement models, for accurately describing the constitutive behavior of granular materi-
als such as sand, both qualitatively and quantitatively. In order to better interpret the
results and the effect of the anisotropy, a more refine study at the micro-scale level is
done and presented in the next section based on the isochoric compression.

3.6.6 Micro-scale characterization

This micro-scale characterization has been performed in the case of the isochoric
loading path. Consequently, the results discussed here after refer to the simulations
and the macroscopic results presented in section 3.6.4.

Fabric anisotropy and coordination number

Figure 3.31 illustrates the evolution of contact orientation anisotropy (coefficient a,,
defined in Eq. 3.10 and 3.11) as a function of axial strain. The initial anisotropy is
higher for samples initially subjected to oedometric compression compared to those
initially compacted isotropically. However, during the isochoric compression, the
anisotropy increases gradually at a slow rate as more contacts align parallel to the
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compression direction. This increase continues until liquefaction occurs, except for
the anisotropic-nonconstant case, where the rate of increase in anisotropy gradually
decreases beyond the liquefaction point observed in other cases.

Changes in microstructure as liquefaction approaches can also be observed through
the evolution of the coordination number (Eq.3.9), as shown in Figure3.32. The coor-
dination number experiences a sudden drop for all cases as the axial strain approaches
the point where stress vanishes. This is consistent with the definition of liquefaction
as a state where effective stress becomes zero due to the loss of interparticle contacts.
However, the global loss of interparticle contacts occurs at a much larger axial strain
in the anisotropic-nonconstant case.

These findings indicate that anisotropy combined with a non-constant contact
friction coefficient creates a more stable initial fabric, which progressively adapts
to the deviatoric stress loading under constant volume constraint. Although the ob-
served evolutions of anisotropy and coordination number align with the macroscopic
stress response computed, they do not fully explain the distinct behavior observed in
the anisotropic-nonconstant case compared to other cases.

Mobilized contact friction angle and bi-modal contact network

Since the usage of constant or non-constant contact friction directly affects the slid-
ing behavior of particles at contact, we examine the mobilized friction. Mobilized
friction, for a specific contact, is defined as the ratio of the tangential contact force to
the maximum tangential force resulting due to friction:

[1E]
il Eall

A mobilized friction equal to 1 indicates that the frictional forces at the contact are
fully mobilized, resulting in sliding between the particles with irreversible relative

(3.12)
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tangential displacement.

Figure 3.33 displays the distribution of mobilized friction for the different cases
at the initial state, as well as at axial strains of 0.5% and 2.0% (if liquefaction did not
occur earlier).

We observe that the presence of fully mobilized contacts, indicating sliding con-
tacts, is more notable in the cases with constant contact friction compared to those
with non-constant friction, even at the initial state when the deviatoric stress is nil.
Furthermore, the combination of anisotropic compaction and non-constant friction
yields the lowest proportion of fully mobilized contacts, representing a more stable
fabric at the initial state. Another particular observation is the presence of a local
maximum number of contacts with a mobilized friction around 0.5 for cases with
non-constant friction. This distribution remains relatively constant during the shear-
ing of samples at constant volume, while nearly all contacts turn to slide (mobilized
friction of 1) when the friction coefficient is constant. This point is highlighted in
Figure 3.34, which shows the ratio of fully mobilized contacts (or sliding contacts) as
a function of axial strain. It is clear that the failure in cases with constant friction co-
efficient is characterized by the sliding of the majority of contacts, whereas the ratio
of sliding contacts does not exceed about 20% for non-constant friction coefficient,
regardless of whether the initial compaction is isotropic or anisotropic. Furthermore,
the ratio of sliding contacts decreases as complete failure is approached. These re-
sults demonstrate that the introduction of a contact friction model dependent on the
normal contact stress, and thus the mean pressure, leads to a qualitatively different
response of the soil microstructure to the isochoric compression path.

The analysis continues by considering the distinction between the strong and weak
contact phases as defined by (Radjai et al., 1996; Radjai et al., 1998), which play dif-
ferent roles in the load-bearing capacity of a granular assembly. The strong contact
phase consists of contacts with a contact force higher than the mean contact force,
while the weak contact phase consists of contacts with a contact force lower than the
mean contact force.

Figure 3.35 presents the ratios of the number of weak and strong contacts at the



60 Chapter 3. Definition of a light discrete model for quantitative constitutive

predictions
15
10
B
Q
5
0
0 0.2 04 06 08 1
|ft)/pfn
(A)
15 15
10 10
B B
Q Q
5 5
0 0
0 0.2 04 06 08 1 0 0.2 04 06 08 1
|ft)/pfn |ftl/pfn
(B)
15 15
10 10
B B
Q Q
5 5
0 0
0 0.2 04 06 08 1 0 0.2 04 06 08 1
|ft)/pfn |ftl/pfn
(©
15 15 15
10 10 10
B B B
Q Q Q
5 5 5
0 0 0
0 0.2 04 06 08 1 0 0.2 04 06 08 1 0.2 04 06 08
|ft)/pfn |ftl/pfn |ftl/pfn
(D)

FIGURE 3.33: Probability distribution function of the mobilized
friction angle. (a)Isotropic model- constant friction angle
(b)Anisotropic model - constant friction angle. (c)Isotropic model -
non constant friction angle. (d)Anisotropic model - non constant

friction angle.

left(e = 0%)-middle(e = 0.5%)-right(e = 2%)



3.6. Role of initial fabric and non-constant friction coefficient in the case of the

loose sand 61

=3
=3

T T T
—@-|sotropic-constant
—-O-Anisotropic-constant
—@-|sotropic-nonconstant
—@- Anisotropic-nonconstant

©
=]
T

©
S
T

~
=]
T

=3
=)
T

IS
=)

©
=]

N
=]

Percentage of totally mobilized contacts

o 1 > % 3 4 s s 1 s
Axial Strain(%)

FIGURE 3.34: Percentage of totally mobilized friction contacts in the
4 models

initial state and their evolution with axial strain for each case. Initially, the ratios of
strong contacts (slightly less than 40%) and weak contacts (slightly more than 60%)
are similar in all cases, in agreement with the reference value given in the literature
(60% of weak contacts). One remarkable difference is how the importance of each
phase changes during the isochoric compression. The weak phase becomes more
prominent at the expense of the strong phase, especially when the friction coefficient
at contacts is constant.

As the deviatoric stress results from the strong contact forces only (Radjai et al.,
1998), the reduction in the relative number of strong contacts reflects the degradation
of the shear strength of the granular assembly. In cases with non-constant contact
friction, the ratio of strong contacts remains closer to 40%, even if it slightly de-
creases. Furthermore, the decrease in deviatoric stress observed at the macroscopic
scale, when the axial strain exceeds approximately 1%, is not accompanied by a re-
duction in the ratio of strong contacts.

Figures 3.36 and 3.37 display the distribution of mobilized friction for the weak
and strong contact phases, respectively, at different axial strains. In the weak con-
tact phase, the mobilization of friction is influenced by the choice between constant
or non-constant contact friction. When the friction coefficient remains constant, a
significant proportion of weak contacts are already close to the sliding condition at
the initial state, and this proportion increases further during isochoric compression.
In contrast, when using a non-constant coefficient of friction, the occurrence of fully
mobilized contacts is relatively less common, and a significant portion of contacts
fall within the half of the full range of friction mobilization. This pattern is no-
tably distinct from the strong contact phase, where the choice between constant or
non-constant friction coefficient has a lesser impact on the distribution of mobilized
friction (the distribution diagrams of mobilized friction are quite similar for a zero
axial strain in all cases).

In other words, the implementation of a contact friction coefficient that depends
on the normal contact stress has a more significant impact on the behavior of weak
contacts. This can be attributed to Equation 3.12, which describes the dependence
of contact friction. The relationship has a more significant impact on the contacts
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with a relatively low normal stress, particularly the weak contacts, by assigning them
higher friction coefficients as represented in Figure 3.17 with respect to normal con-
tact stress for the calibrated parameters considered here.

The role of initial fabric anisotropy can be observed by comparing the distribu-
tions of mobilized friction for initially isotropic and anisotropic samples in both
the weak contact phase (Fig.3.36) and the strong contact phase (Fig.3.37). For the
weak contact phase, the ratio of contacts with fully mobilized friction is slightly
higher for initially isotropic fabric (Fig.3.36a,c) compared to initially anisotropic fab-
ric (Fig.3.36b,d). Similarly, for the strong contact phase, the ratio of contacts with
fully mobilized friction is slightly higher for initially isotropic fabric (Fig.3.37a,c)
compared to initially anisotropic fabric (Fig.3.37b,d).

The orientations of contact, specifically the normals to the contacts, aligning with
the direction of the major principal stress during compression, contribute also to the
limitation of the occurrence of sliding by favouring the inter-granular force trans-
mission between particles in the normal direction of the contact, rather than in the
tangential direction.

3.7 Conclusion

In summary, the use of the model made of spheres with rolling friction for modeling
dense sand has shown better predictive performance and computational efficiency
compared to other simple clump models. By introducing a contact friction angle
that varies with the normal contact stress, the model was able to slightly improve the
response of the sand under complex loadings such as cyclic compression/extension
and circular loading paths. However, this improvement came at the cost of additional
complexity in the model, requiring calibration through additional drained compres-
sions. While the calibrated model provided better predictions, the calibration process
required additional computational resources. Therefore, the decision to use a contact
friction angle that varies with the normal contact stress should consider the trade-off
between improved accuracy and the additional effort and cost required for calibra-
tion.

In order to improve the predictions of the calibrated loose models, in addition to
the implementation of non-constant contact friction, modifications were made to the
sample preparation method. The latter was achieved by generating numerical sam-
ples using a technique similar to the experimental moist tamping.

The findings of the study demonstrate that a more detailed consideration of inter-
particle friction, specifically related to particle roughness, plays a critical role in the
response of granular materials to loading paths where the range of mean pressure is
important. Simply accounting for particle shape, by implementation of rolling fric-
tion, may not be sufficient.

Indeed, the initial fabric of the granular material has a significant impact on its con-
stitutive response. Even slight anisotropy in the distribution of contact orientations
can influence the mechanical behavior of the material. Additionally, the combina-
tion of both fabric anisotropy and a non-constant friction coefficient is necessary to
achieve a simulated response that closely matches experimental responses in case of
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isochoric compressions and constant deviator loading path.

A micro-scale study showed that the ratio of sliding contacts in the weak contact
phase, which includes lower contact forces, is more influenced by the introduced
non-constant friction model compared to the strong contact phase. However, it is im-
portant to note that the weak phase serves as a confining element for the strong con-
tact phase and supports the contact force chains. Therefore, limiting sliding within
the weak phase is crucial for the global stability of the granular assembly.

Finally, it is important to note that the effects of introducing a contact friction angle
that varies with the normal contact stress and considering initial fabric anisotropy
may not be essential for all loading paths. In the present study, their impact was
magnified due to the significant variation in mean pressure during the specific load-
ing conditions investigated. Different loading scenarios with smaller variations in
mean pressure may exhibit different sensitivities to these factors. Therefore, their
necessity and influence should be evaluated in the context of the specific loading
conditions and desired level of accuracy in the model predictions.
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Chapter 4

Soil-foundation interaction

4.1 Introduction

The behavior of shallow foundations under seismic loading is a complex phenomenon
that is affected by various factors, including the soil properties, the foundation ge-
ometry, and the loading conditions. The description of the soil response in inter-
action with such a foundation is also complex due to preponderant non-linear and
non-reversible deformations together with a non-associative flow rule (Darve, 1990).
Furthermore, the use of continuum approaches, with phenomenological constitutive
relations embedded in a finite element, or finite difference, numerical model, re-
quires to introduce ad-hoc history parameters for a satisfying description of the soil
response along the cycles of the seismic loading. Then, advanced experimental tests
(including cyclic loading themselves) are necessary to calibrate these kinds of con-
stitutive relations.

Thanks to an explicit description of the micro-structure of the soil, the discrete ele-
ment method (DEM) (Cundall and Strack, 1979b) presents a good ability to describe
the behaviour of granular soils under complex loadings (as cyclic loadings but not
only) without the addition of specific history parameters and with a calibration per-
formed from simple monotonous experimental tests only (as direct shear tests or
triaxial compressions) (Sibille et al., 2019; Sibille, Benahmed, and Darve, 2021). In
contrary to FEM, The discrete element method stands out as a versatile approach,
that can serve as both a numerical method and a constitutive model when modelling
boundary value problems. However, DEM usually requires higher computational
cost, with respect to numerical continuum approaches, in particular when boundary
value problems are considered.

This study aims to assess the relevance and the accuracy of the prediction of the
response of a shallow foundation on Ticino sand under seismic loading with a nu-
merical discrete model. The experimental data collected during the TRISEE project
(a European Union-funded research project) on a physical model of the foundation
carried out on both dense and medium dense sand, with relative densities of 85% and
45% respectively (at scale 1) constitutes the reference case in this study (Faccioli,
Vanini, and Paolucci, 1999; Faccioli, Paolucci, Vanini, et al., 1998).

In this objective, the numerical discrete model of soil is calibrated from two exper-
imental triaxial compressions performed on dense (Dr = 75%) and medium dense
(DR = 45%) Ticino sand and validated with triaxial compressions performed under
two different confining pressures. Then, a numerical model of the foundation and the
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soil system is defined with an adaptative discretization technique of the soil (Abdal-
lah et al., 2022) to limit the number of the particles involved in the model and thus
the computational cost. Finally, the ability of the model to describe the response of
the foundation to the seismic loading is discussed by comparison of the simulations
results with the experimental measurements from the TRISEE project. Results are
also compared with simulations from the literature based either on the finite element
method or the representation of the soil-structure interaction by a macro element, to
highlight pro and con with respect to more conventional modelling approaches.

4.2 The TRISEE project

The TRISEE project is a European Union-funded research project conducted from
1996 to 1999 that aimed to improve the understanding of how 3D site effects and
soil-foundation interaction occur during earthquakes, and the assessment of the per-
manent deformation development and bearing capacity of soil-foundation systems
subjected to seismic loadings.

The project focused on two main areas of work: the development of mathemati-
cal tools for seismic wave propagation analysis and laboratory tests on large-scale
soil foundation models. In the first area, the project aimed to create new tools for
accurate calculations of 2D and 3D seismic wave propagation in heterogeneous geo-
logic media and also explored the use of artificial intelligence methods to predict the
risk levels of ground motion hazard on complex geologic configurations and iden-
tify the parameters that control it. The second area involved large-scale laboratory
experiments of soil-foundation system under earthquake loading to investigate the
non-linear interaction behavior during a strong earthquake. The objective was to im-
prove the understanding of the induced motion of the foundation characterized by
both the rotation of the foundation during the loading ("rocking foundation") and its
permanent settlement.

4.2.1 The large scale experiment setup

The experiment was carried out at the European Laboratory for Structural Analysis
(ELSA) in Italy and consisted of a shallow foundation placed on a mass of cohesion-
less soil (Ticino sand) with known properties, and was subjected to a time-varying
horizontal force and moment. The experiment simulated the inertial forces trans-
mitted to the foundation by the superstructure and was designed to investigate the
non-linear interaction behavior between the foundation and the soil during strong
earthquake loading.

The experimental setup included:

* a concrete caisson (Figure 4.1) filled with Ticino sand, with dimensions of 4.6
m by 4.6 m in plan and 4 m in height.

* arigid mock-up of a concrete shallow foundation (Figure 4.2), 1 m by 1 m in
plan, and a height of 0.2 m. It’s made of steel, while the interface with the sand
was made up of concrete.
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* the foundation was embedded 1 meter deep in the sand to create an overburden
of about 16 kPa.

* a l-meter tall steel formwork was placed around the foundation to hold the
sand in place (Figures 4.2 and 4.3).

FIGURE 4.1: Filling the Caisson with the sand spreader from
(Faccioli, Paolucci, Vanini, et al., 1998).

Two large-scale experiments were done using two different soil relative densities,
around Dg = 85% and Dg = 45%, to gather information about shallow foundation
response under dense or medium dense soil conditions, respectively.

The foundation was subjected to a constant vertical force (Fy) (applied initially by
steps) equal to 300 kN for the dense sand or 100 kN for the meduim dense sand
using an air cushion system (Figure 4.3). In addition, before reaching the constant
vertical load, an unloading-reloading was also performed as shown in Figure 4.4.
During the initial application of the vertical force, the foundation settled vertically
by approximately 7 mm for the dense sand and approximately 16 mm for the medium
dense sand.
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FIGURE 4.2: The shallow foundation on the underlying Ticino sand
layer (Negro et al., 1999) without (left) and with (right) 1 meter top
layer.
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FIGURE 4.3: Scheme of the physical model of foundation with the
instrumentation and the vertical and horizontal loading systems.

Then a seismic loading is simulated by a cyclic horizontal displacement or hori-
zontal force applied by a hydraulic actuator at a height of 0.9 m from the soil/foundation
interface (Figure 4.3) resulting in an overturning moment at the base of the founda-
tion. The three following phases were applied:

* Phase I: a series of force-controlled cycles with relatively small amplitudes
is applied, as shown in Figure 4.5. The amplitude of the horizontal force Fy
gradually increases up to 15 kN and 5 kN (5% of the vertical load Fy ) for dense
sand and medium-dense sand, respectively.

* Phase II: an earthquake-like time history of the horizontal force and overturn-
ing moment as shown in Figure 4.6, with a peak of Fy equal to 60 kN and
20 kN (20% of the vertical load) for dense sand and medium-dense sand, re-
spectively.
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* Phase III: a controlled displacement sine-shaped cycles is applied with increas-
ing amplitude as shown in Figure 4.7, until reaching the threshold limit of the
foundation resistance. The test was done using displacement control to enable
the foundation to reach its ultimate capacity without experiencing excessive
movements. Pairs of cycles were used for the dense sand test, while single
cycles were used for the medium dense sand test.

When subjected to such loadings, the foundation experiences settlement along
with a partial cyclic rotation, commonly known as a "rocking foundation."
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4.2.2 Drainage conditions and loading rate

The soil was saturated up to a height of 3 meters (Figure 4.3); however, complete sat-
uration could not be achieved (Negro et al., 2000). Consequently, the tests reflected
drained conditions, where pore water drainage was possible at any point during the
various loading phases. So, from a modelling point of view, solid-fluid interaction
as occuring in undrained condition is discarded. Instead, only the buoyant specific
weight of the soil below the foundation was considered (2690-1000=1690 kg/m?).

The experimental loading system was designed to apply relatively slow variations of
force or displacement. In other words, the loading was treated as quasi-static, and
both experimentally measured and simulated responses were considered as indepen-
dent of the loading rate. In particular, during phase II (Figure 4.6) , the experimental
signal was dilated and applied on the foundation over a period much longer than that
of an actual seismic signal ((Faccioli, Vanini, and Paolucci, 1999)). The original
time scale was expanded by a factor of 6 for dense sand (resulting in a duration of 80
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seconds) and by a factor of 3 for medium dense sand (resulting in a duration of 40
seconds).

As the loading rate and thus time do not affect the response, experimental results are
represented in terms of a dimensionless time, such that the time of application for a
given phase is equal to 1 (see Figures 4.5 to 4.7). Simulated results will be presented
in the same way.

4.3 Model calibration on Ticino sand

A 3D periodic discrete element model of 10,000 spherical particles have been cre-
ated using the DEM software YADE to simulate the mechanical behavior of Ticino
sand. The contact law involved rolling friction as defined in 3.3.1. The particle size
distribution of the DEM numerical sample was chosen as that of the Ticino Sand
shown in Figure 4.8. The model calibration has been performed by following the
procedure defined in 3.4.1, using a constant friction angle at the contact level with
an initial porosity ny chosen such that the ratio r, defined in 3.3.3, is equivalent
experimentally and numerically so the model can accurately simulate the volumetric
behavior of the soil during shearing. The soil model was calibrated using experimen-
tal data from drained triaxial compressions on Ticino sand (Calvetti, 2008) with two
different relative densities (Dr=75% and Dr=45%) under a confining pressure of
300 kPa. Table 4.1 presents the calibrated parameters of the soil model. The model
is then validated under two other confining pressures (100 kPa and 200 kPa). The
drained triaxial compressions were simulated and the soil behavior was characterized
in terms of the stress-strain behavior, the volumetric strains, and the shear strength
parameters as shown in Figure 4.9. Figure 4.9a shows the results of the calibration
where the model reproduces successfully the stress-strain behavior and the volumet-
ric deformation of the Ticino sand for a confinement of 300 kPa. As can be noticed,
the model succeeded in reproducing the stress-strain behavior and the volumetric de-
formation of the Ticino Sand at confining pressures of 100kPa and 200 kPa as shown
in Figure 4.9b.  As mentioned in previous sections the experiment was done using
two different relative densities, Dg=45% and Dgr=85%. Triaxial tests for Ticino sand
calibration at Dr=85% doesn’t exist. The initial porosity of the sand representing the
dense sand in the TRISEE Soil-foundation experiment (Dgr=85%) is chosen equal to
0.366. This value was estimated using linear interpolation based on the numerical
porosities of sand at Dr=45% and Dr=75% (Table 4.1).

The calibrated parameters are used in simulating the soil-structure interaction in the
TRISEE large experiment between Ticino sand and the shallow foundation in the
following sections.

TABLE 4.1: Parameters of the discrete numerical model identified
from the calibration on dense and medium Ticino sand.

Particle Dg no Ec MPa) w5 «a, U Ny

Sphere 45% 0.411 500 05 3 0477 0.35
Sphere  75% 0.381 500 05 3 0477 0.35
Sphere 85% 0.366 500 05 3 0477 0.35
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4.4 Soil-foundation discrete model

The main difference between the experimental tests lies in the magnitude of vertical
and horizontal loading. In the case of medium dense soil (Dr=45%), the constant
vertical loading reaches 100 kPa, while for dense soil (Dg=85%), it is equal to 300
kPa. Moreover, the loading conditions in the different models replicate those in the
experiments. In the following sections, we will present the characteristics of the Soil-
foundation discrete model by describing its geometry and the process of generating
its initial state.

4.4.1 Model geometry and specificities

The model geometry and specificities are defined by the following:

* the size of the caisson is identical to the experimental one (see Figures 4.3 and
4.10), where a box with six walls is created. In addition, these walls are fixed
and smooth (i.e. ¥ =0 and 7, = 0).

* the box is filled with spheres having the buoyant weight as Ticino sand equal
to 1690 kg/m> (specific weight equal to 2690 kg/m?).

FIGURE 4.10: Top (left) and side (right) view of the DEM of the
Ticino sand assemblies (increasing mean particle diameters from top
to bottom).

* the foundation is also identical to the experimental one (see Figure 4.11). It
is represented by a parallelepipedic structure of dimensions equal to 1m x Im
and thickness equal to 0.2m, with a density of p = 4587 kg/m®, chosen such
that the self-weight of the foundation exerts a vertical stress of 9 kPa, same as
the experiment. The value of the soil-structure contact friction angle is taken
as equal to 2/3 of the internal friction angle of the dense Ticino sand (u =0.511
in case of Dr=45% and y = 0.414 in case of Dr=45%).

* the overburden soil layer is represented by a layer of large spheres with the
same equivalent mass resulting in an overburden pressure of approximately
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16 kPa. Moreover, instead of replicating the high steel formwork that was
placed around the foundation to retain the sand, the spheres representing the
overburden soil layer were not allowed to move in the horizontal plane (by
blocking the translations of particles horizontally).

FIGURE 4.11: Global view of the discrete numerical model of the
Ticino sand - shallow foundation interaction.

* an important drawback of DEM is the high computation time compared to

other methods, thus to solve this issue, several strategies could be followed.
Coupling DEM with FEM is possible, however we consider adaptative dis-
cretization (Abdallah et al., 2022), in order to limit the number of spheres
and consequently the computational time, which consisted in dividing the do-
main into 4 horizontal layers (brown and yellow particles have same particle
diameters) having the same relative particle size distribution and porosity but
different mean particle diameters. Therefore, particles in the layers closer to
the foundation were smaller than those in other layers.

The rate at which the mean particle size changes throughout the domain is
limited to ensure that the Terzaghi filter criterion is satisfied. This criterion
prevents finer particles near the foundation from migrating downward, where
particles are coarser. When using variable discretization of the domain, it is
necessary to define contact stiffnesses as a function of the particles’ radii in-
volved in a contact (equation 3.4). Consequently, the effective macroscopic
properties of the granular assembly remain unaffected by the particle sizes.

In our models, we investigated soil discretization using different numbers of
particles, ranging from about 9,000 to 100,000, where the ratio of the foun-
dation width to the mean particle size near the foundation varied from 7.6 to
16.4.
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4.4.2 Generation of the initial state

The generation of the initial state of the model involves several phases, including
particle compaction, particle growth, gravity application, addition of the foundation,
etc., as detailed below and shown in Figure 4.12. This figure illustrates the soil
porosity, stresses at boundaries, and unbalanced forces during the whole generation
process. The unbalanced force is a dimensionless parameter computed as the ratio of
the mean resultant particle force to the mean contact force. In a perfect static equilib-
rium, this value tends to zero. It is used to assess the equilibrium of the model during
the generation of the initial state. For our study, a value between 0.01 and 0.02 was
considered here as representative of a state sufficiently close to static equilibrium.
The generation of the initial state of the model consists of the following steps:

* The granular assembly representing the soil is generated as a cloud of parti-
cles initially not in contact. Then, the compaction of the granular assembly
was done by growing the spherical particles until reaching an isotropic stress
of 300 kPa (higher confining pressure resulted in more effective growing pro-
cess), while controlling the initial porosity by tuning the contact friction angle
during the growing particle phase (reducing the friction angle during this phase
lubricates the contacts and results in higher densities). Once the particle grow-
ing is finished the contact friction angle is changed to its nominal value (i.e.
the calibrated one) and the mean pressure is reduced down to 5 kPa thanks to
a slight shrinking of the particles. In this process, the initial porosity remained
almost unchanged (see Figure 4.12). Experimentally, there was no external
confining pressure applied to the soil. However, numerically to create the sam-
ple we needed to apply at least a small confining pressure to avoid the lost
of inter-particle connectivity. The local porosity at this step, for the different
soil layers as represented in Figure 4.10, is shown in Figure 4.13 for a target
relative density Dgr = 85% and a computed average porosity for the whole
sample equal to 0.366. These porosity profiles correspond to simulations per-
formed with a number of particles ranging from 8903 to 96736. Porosity is
relatively constant accross the different soil layers with a different refinement
of discretization.

* The control of the mean pressure is stopped and gravity is then applied, and
equilibrium of the system is checked by verifying that the vertical stress on the
bottom wall equals the pressure due to the particles’ weight.

* Then the top wall is removed, and the overburden top layer is added.
* Finally, the foundation is added at the middle of the top of the box domain.

Throughout the various steps, the porosity remained nearly unchanged. Moreover,
the stress on the bottom wall (stress-Y) equaled the pressure resulting from the par-
ticles’ weight after applying gravity. Subsequently, when the top overburden layer
was added, the stress increased again due to its weight. Finally, there was a slight
increase in stress after adding the foundation.

The earth pressure at rest, which represents the in situ lateral pressure of soil, is
typically determined by multiplying the vertical stress by the coefficient Ky. Ky is
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referred to as the coefficient of earth pressure at rest. Jaky’s formula is commonly
used to calculate this coefficient.

Ko=1-sin¢’ 4.1)

where ¢’ is the effective internal friction angle of the soil. Using this formula, K is
estimated to be equal to 0.35 (¢’ = 40.5°).
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below the foundation down to the bottom wall (at 3 m depth).

4.5 Parametric study: soil discretization and loading
rate

The objectives of this section are to determine the minimum number of particles
needed to discretize the soil and to choose the appropriate loading rate for each load-
ing phase of the foundation.

Five numerical models presented in this section are built with different numbers of
particles to represent the dense sand (Dr=85%), to perform a parametric study con-
cerning the number of particles used in order to study the feasibility of the description
of the large scale experiment of the soil-foundation interaction. During the paramet-
ric study, the DEM models are prepared with spheres having a specific weight equal
to 2690 kg/m>, Whereas K is around 0.76 for all models. Table 4.2 presents the
number of spheres and the corresponding ratio between the width of the foundation
Wi and the average particle size dsy below the foundation for different models.

TABLE 4.2: Number of particles and Wgr /dsg ratio of the different
models

Model Number of particles W/ d5) ratio

1 8,903 7.6
2 20,540 10.2
3 32,449 11.2
4 51,732 13.1
5 96,736 16.4

4.5.1 Monotonous loading

First, the shallow foundation is subjected to a vertical force equal to 300 kN for the
dense sand.
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Experimentally, this loading was applied by steps of 50 kN, with an intermediate
unloading-reloading cycle before reaching a total of 300 kN. After each step of 50
kN, the loading procedure was paused until the creep deformations reached a state of
full stabilization.

This loading protocol was similarly applied in the DEM model. The numerical load
undergoes increments of 1 kN every 50 numerical iterations. After each increment
of 50 kN, the simulation is run 2000 iterations by keeping the loading constant to
reach complete stabilization of vertical settlement (settlement converges and shows
no further increase with additional iterations). As demonstrated in Figure 4.14-B, as
the number of particles increases, the model might necessitate a greater number of it-
erations to achieve full stabilization. This was verified by conducting tests with 5000
iterations (Figure 4.15) and similarly with 15000 iterations for each step, producing
very similar results to those with 2000 iterations per step, as shown in Figure 4.15-B,
where the settlement after each step clearly converges to its stable state.

Furthermore, as shown in Figure 4.14-A, it is expected that the settlement converges
toward a given global value as the number of particles increases. However, this
is not the case, and consequently, the minimum number of particles to consider is
not known. Therefore, in Figure 4.14-C, the modulus Eg, representing the rate at
which force changes with settlement is considered, showing an increasing trend with
more particles during the initial loading. However, during reloading, this modulus
remains relatively constant in all models. This behavior could be due to the contact
between the shallow foundation and the underlying sand being less stable during the
initial loading with less particles, with increased stability attained during reloading.

Numerically the settlement was measured at the middle of the foundation, whereas
experimentally it is measured at the four corners. The numerical models slighlty un-
derestimates the experimental settlement by 1 to 3 mm among the different models,
which may be considered relatively small in some engineering applications.
Therefore, for the application of additional loading phases, only a comparison of the
responses among models 1, 4, and 5 is being taken into consideration.

4.5.2 Cyclic Phase I

During Phase I, a sequence of force-controlled, small-amplitude cycles in the hori-
zontal direction was applied to the foundation as shown in Figure 4.16. The cycles
are sine-shaped with amplitude increasing up to 5% of the vertical load.

Model 1: In case of Model 1, four different loading rates where considered for the
application of phase I loading, presented in Figure 4.17. The rate (designated as 50,
100, 200 or 300 in Figure 4.17) indicates the number of numerical iterations taken for
every 1 degree of variation of the angle used as argument of the sine function defining
the magnitude of the horizontal force applied at anytime on the foundation. Hence,
for instance, a value of 300 represents a slower loading rate than 50. Figure 4.17-B
presents the ratio of the total resultant horizontal forces computed on the foundation
to the maximum applied horizontal force. In other words, as this value approaches 0,
it indicates that the shallow foundation tends to a static equilibrium state. Hence, a
loading rate of 200 will be considered for Phase I because the cumulative settlement
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is independent of the loading rate at lower rates of horizontal force application. Ad-
ditionally, it is estimated that the ratio in Figure 4.17-B is sufficiently small at this
rate.
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FIGURE 4.16: Cyclic loading Phase I: numerical and experimental
loadings.
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FIGURE 4.17: Response of Model 1 subjected to cyclic Phase I
loading

Model 4: In case of Model 4, two different loading rates (200 and 400) where
considered for the application of phase I loading, presented in Figure 4.18. It is
shown in Figure 4.18-B, that when the number of particles increases, a higher rate
should be used to achieve a more stable simulation. This could be explained by the
fact that as "information" (for instance change of the contact force due to the motion
of a given particle) can be transmitted from one particle to another only in a single
time step a higher number of time steps is required when there is more particles (and
thus more particles to reach a given depth below the foundation for instance). Thus,
a loading rate equal to 400 could be considered in this case.
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FIGURE 4.18: Response of Model 4 subjected to cyclic Phase I
loading

Model 5: Also in Model 5, two different loading rates (200 and 400) where consid-
ered for the application of phase I loading, presented in Figure 4.19. Figure 4.19-A
illustrates that for settlement, the influence of the loading rate is somewhat more
noticeable compared to Model 4, although the impact is not significant.
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FIGURE 4.19: Response of Model 5 subjected to cyclic Phase I
loading

4.5.3 Cyclic Phase II

After Phase I, the shallow foundation is subjected to an earthquake-like loading in
Phase II. As shown in Figure 4.20, the ratio of the horizontal force to the vertical one
on the foundation reached a peak of about 0.20 corresponding to an horizontal force
peak of almost 60 kN.

Model 1: In case of Model 1, four different loading rates (100, 200, 300 and 400)
where considered for the application of loading phase II, presented in Figure 4.21.
Similarly to phase I loading, the rate indicates the number of iterations taken for
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FIGURE 4.20: Cyclic loading Phase II: numerical and experimental
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every 1 degree of the oscillation. Based on the same considerations as for the pre-
vious loading phases, a rate of 200 will be considered for the loading Phase II from
Figure 4.21.
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FIGURE 4.21: Response of Model 1 subjected to cyclic Phase II
loading

Models 4-5: In case of Models 4 and 5, a loading rate equal to 200 is considered for
the application of loading phase II, presented in Figures 4.22 and 4.23 respectively.
As shown in Figures 4.22-C and 4.23-C, a higher rate could be used to achieve a
more stable models. But, a loading rate equal to 200 was be considered in these
cases.

Likewise as in phase I, in comparison to Model 1, the settlement and horizontal
displacement values in Models 4 and 5 are very similar, with no noticeable impact
observed from using a larger number of particles on the response of the DEM model.
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Considering these results, in cyclic loading phases I and II, only Model 1 was chosen
for the application of loading phase III.
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FIGURE 4.23: Response of Model 5 subjected to cyclic Phase II
loading

4.5.4 Cyclic Phase II1

During the final experimental phase, the foundation underwent displacement con-
trolled cycles following a sin-shaped pattern, with amplitudes progressively increas-
ing, until reaching large settlements of the foundation (soil failure). The testing
process was displacement controlled, enabling the structure to achieve its ultimate
capacity without excessive foundation movements.

Numerically, since in YADE software the foundation is made up of 3 clumped paral-
lelepipeds, it was not possible to impose a displacement on a unique member of the
clump representing the top part of the pilar above the foundation (as in the experi-
ment). Thus, we have applied to our model the experimental measured horizontal
force shown in Figure 4.24 aiming to get the same horizontal displacement imposed
on the top part of the foundation.
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As previously indicated, only Model 1 is taken into account for the application of
phase III loading (Figure 4.25), with four different loading rates considered (200,
500, 1000, and 2000). Just like in loading phases I and II, the rate represents the
number of iterations performed for each 1-degree oscillation. As presented in Fig-
ure 4.25, a rate of 1000 was considered providing a simulated response rather inde-
pendent of the loading rate in regime sufficient close to the quasi static condition.
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4.5.5 Summary of the parametric study

In summary, a parametric study was conducted to determine the minimum number
of particles required to discretize the soil and to select the appropriate loading rate
for each loading phase applied to the foundation. The study demonstrated that the
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responses of models with different numbers of particles were very similar. Conse-
quently, we selected Model 1 with 8903 particles for comparison with experimental
results and other numerical models.

Regarding the loading rate, it was observed that for monotonous loading, apply-
ing increments of 1 kN every 50 numerical iterations and running the simulation
for 2000 iterations at each 50 kN increment, while keeping the loading constant,
was sufficient. Additionally, for Model 1, a loading rate of 200 was found to be
adequate for cyclic Phase I to achieve settlement independent of the loading rate.
Similarly, a rate of 200 was sufficient for cyclic Phase II. For cyclic Phase III, a
rate of 1000 was considered, providing a simulated response relatively independent
of the loading rate.

4.6 Simulated response for the dense sand compared
with experiments and other numerical models

In this section, we present a comparison of the discrete model’s response in the case
of the dense sand (Dr=85%) to both experimental data and various numerical stud-
ies, including Finite Element Models (FEM) and Macroelement Models (Table 4.3).
The soil below the foundation is saturated, consequently, to represent more closely
the vertical effective stress in the soil, the discrete model is prepared in this section
by considering soil particles with a buoyant specific weight equal to to that of Ticino
sand (1690 kg/m3), as described in Section 4.4, resulting in Ky=0.88.

It’s worth noting that previous researches have not provided complete modeling of
all phases and for both densities (dense and medium dense) for a given single model.
Therefore, in this section, we thoroughly examine our results for each loading phase
separately and each soil relative density, comparing them to experimental data and
the results of a numerical study that specifically addressed that particular phase.
Thus, in the following sections, we provide a comparison of our model with other
previous numerical simulations for each phase. This includes the presentation of the
other numerical models, such as the constitutive model used, the number of parame-
ters involved, and the requirements for calibration.

We then conclude by discussing the advantages and limitations of each approach.

TABLE 4.3: Summary of different models used in comparison with
the discrete model for the dense Ticino sand for Phases I, II, and I1I

Phase I Phase 11 Phase 111
Macroelement model Macroelement model Finite element model
Leblouba et al., 2016 Figini et al., 2012 Anastasopoulos et al., 2011
Based on the Based on the Based on a
Bouc-Wen-Baber-Noori linear visco-elasticity, kinematic hardening
constitutive model foundation uplift, and soil constitutive model

involving 14 parameters plasticity with 14 parameters involving 4 parameters
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4.6.1 Monotonous loading

A vertical force is applied on the shallow foundation, resulting on a vertical stress
of 300 kPa below the foundation, and the induced settlement is checked as shown in
Figure 4.26.

The model gives a good estimation of the final settlement of about 7 mm. During
the inital loading, the inital force/settlement slope (up to 1 mm of settlement) is un-
derestimated by the model while the subsequent slope (until the unloading-reloading
cycle) is fairly well reproduced. Again, the stiffness of the soil/foundation interac-
tion is underestimated during the unloading-reloading cycle. Initial and unloading-
reloading stiffnesses of the soil/foundation interaction are probably more closely re-
lated to the elastic properties of the soil (there is almost no irreversible deformation
during the unloading-reloading cycle experimentally and numerically).

The calibration of the discrete model takes particular attention to the description of
the plastic response of the soil while elastic properties are not directly considered
since the elastic parameters (in particular the contact stiffness) are just chosen high
enough to assume the particles as almost rigid. The later may explain the underesti-
mation of the initial stiffness of soil-foundation system.
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FIGURE 4.26: Monotonous loading on dense Ticino sand: numerical
response of Model 1 compared to the experiment

4.6.2 Cyclic Phasel

In phase I, we compare our Model 1 response with the TRISEE experimental results
and results of a macroelement model (Leblouba et al., 2016). The model’s founda-
tion representation in Figure 4.27 involves three different spring elements: nonlin-
ear horizontal, nonlinear rotational, and linear vertical springs. In their study, they
employed Baber and Noori’s extension to the Bouc-Wen model, known as the Bouc-
Wen-Baber-Noori constitutive model, which involves 14 parameters.

The calibration of the parameters for the macroelement model was performed by
using experimental data from moment-rotation and horizontal force-horizontal dis-
placement curves. However, the authors did not provide any specific details about
these curves.
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In Figure 4.28, we observe a settlement equal to 0.2 mm in the DEM model, twice
the experimental settlement 0.1 mm. This differences in terms of and settlement can
be considered negligible in geotechnical engineering applications. In addition, the
settlement of the macroelement was not provided by Leblouba et al. (2016).

Actual soil-foundation system  Proposed macroelement model

FIGURE 4.27: Rheological sketch of the Macroelement model used
by Leblouba et al. (2016)

w— Settlementumerical !
m— Settlementexperimental

0.00

|
o
o
a

—0.10

Settlement(mm)
|

|
e
N
o

0.0 0.‘2 0.‘4 Oj6 0.‘8 1.0
Dimensionless time

FIGURE 4.28: Cyclic Phase I loading: Comparison of numerical
DEM and experimental settlement.

It’s important to note that while the macro element model accurately replicates
the rocking angle and horizontal displacement of the foundation, the DEM model
tends to overestimate the rocking angle (Figure 4.29), with the overestimation be-
ing approximately twice that of the experimental measurements with an order of
magnitude equal to 10~# radians. Furthermore, the DEM model overestimates the
horizontal displacement (Figure 4.29) compared to the experiment, with the DEM
model showing double the displacement, resulting in an order of magnitude of ap-
proximately 10~! millimeters. These differences can be considered as negligible in
geotechnical engineering applications.

It’s worth considering that the macro element model was calibrated using experi-
mental moment-rotation and horizontal force-displacement curves data, whereas the
discrete model was calibrated based on monotonous triaxial tests.
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FIGURE 4.29: Cyclic Phase I loading on dense sand simulated with
Model 1: Comparison with (left) the experimental and (right) the
macroelement model (Leblouba et al., 2016)

4.6.3 Cyclic Phase I1

In phase 11, we compare our model 1 response with the TRISEE experimental results
and results of the macroelement model used by Figini, Paolucci, and Chatzigogos
(2012) (Figure 4.30). In this macroelement, an update of an elasto-perfectly plastic
formulation of the NM91 model (Nova and Montrasio, 1991) model was intoduced,
incorporating elements of bounding surface plasticity along with Wolf’s (1988) up-
lift formulation and NM91 bounding surface. The model parameters are based on
principles of linear viscoelasticity, foundation uplift behavior, and soil plasticity.
This model involves the calibration of 14 parameters based on Phase I TRISEE ex-
perimental results. Then the model is validated on Phase II.

We can observe in Figure 4.31 that the DEM model underestimated the final settle-
ment compared to the experiment by 1 mm, whereas the macroelement model suc-
cessfully predicted the final settlement. Nevertheless, the discrete model provided a
good estimation of settlement until a dimensionless time of about 0.3 (i.e., until the
third cycle of loading). This initial phase of settlements is almost not described by
the macroelement model. Then, beyond this third loading cycle, the discrete model
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FIGURE 4.30: Rheological sketch of the Macroelement model used
by Figini, Paolucci, and Chatzigogos (2012)

presents a stabilization of settlements whereas this stabilization occurs experimen-
tally only around a time of 0.6 (so approximately after the 6th cycles over a total
of nine cycles. It is worth noting such a stabilization of settlements is not predicted
by the macroelement model which predicts almost constant irreversible settlements
for all the cycles. To resume, even if the discrete model underestimates the final
settlement, it predicts correctly the initiation of strong settlements (from a time of
0.2, during the second cycle) and the amplitude of irreversible settlements after this
initiation. It also predicts settlement stabilisation but too early.

In terms of horizontal displacement (Figure 4.31-C), the model is able to capture ac-
curately the highest and lowest peak displacements.

The DEM model precisely captured the peak values, in contrast to the macroelement
model even if the differences remain rather low.

Similarly, the discrete model captured accurately the rocking angle (Figure 4.31-B-
D) positive peak. However, after the third cycle the model overestimates the nega-
tive rocking angle values, but here again, the differences with the experiment or the
macroelement model remain pretty small. In addition, we observe a ’sudden shift’ in
the rocking angle after the third cycle. However, the exact cause of this phenomenon
remains uncertain. It may be due to the foundation not settling uniformly on all soil
particles, causing it to tilt suddenly from one equilibrium position to another when
the horizontal force vanishes. Further investigation is needed to determine the under-
lying reason for this behavior.

4.6.4 Cyclic Phase II1

In phase III, we compare our model 1 response with the TRISEE experimental results
and results of a FEM model from Anastasopoulos et al. (2011).

The FEM considers a simplified constitutive model based on kinematic hardening,
utilizing the Von Mises failure criterion. This model is integrated into commercial
finite element software ABAQUS. Notably, the parameters of this FEM model have
been calibrated using results derived from experimental results of cyclic simple shear
tests (Vucetic and Dobry, 1991; Ishibashi and Zhang, 1993).

In Figure 4.32, we can see that the horziontal force applied resulted with the discrete
model in almost the same experimental horziontal displacments applied at the top
piston of the shallow foundation. Nevertheless the discrete model describes a global
shift of the fondation (accumulated irreversible horizontal sliding of the foundation)
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FIGURE 4.31: Cyclic Phase II loading on dense sand simulated with
Model 1: comparison with (left) the experiment and (right) the
macroelement model (Figini, Paolucci, and Chatzigogos, 2012)

in one horizontal direction whereas experimentally this shift is less important and
measured in the other direction.

In Figure 4.33, the discrete model significantly underestimates the settlement (up to
Smm instead of 20 mm experimentally), whereas the FEM model overestimates it
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FIGURE 4.32: The horizontal force applied with the piston
displacement obtained with the discrete model for the third loading
phase on the dense Ticino sand.

(up to 25 mm after 7 pairs of cycles). The discrete model didn’t predict accurately
the experimental settlement. This discrepancy could be attributed to the numerically
obtained value of Ky, which might be a contributing factor to the underestimated
settlement or to the fact that the porosity of the sample was estimated by linear inter-
polation (a higher porosity may result in larger settlement).

Additionally, concerning the rocking angle, the DEM model successfully predicts the
peak values similarly to the FEM model. However, in terms of horizontal displace-
ment, the DEM model exhibits a sliding behavior at high horizontal loadings.
Horizontal displacement of the foundation is still described in Figure 4.34 while slid-
ing at particle/foundation contact is locked. This means that the simulated displace-
ment is probably the result of deformations within the soil itself below the foundation
and not due to direct sliding of the foundation on the soil. However, in this latter case
the simulated horizontal displacement is underestimated, while it was overestimated
when sliding at soil particle-foundation contacts was allowed with a contact friction
angle of 27° (Figure 4.33). Consequently, the horizontal displacement of the foun-
dation may be the consequence of two mechanisms:

1. the sliding of the foundation on the soil.
2. the deformation of the soil below the foundation.

Thus, further investigation maybe be done on the choice of the interface contact
friction.
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4.7 Simulated response for the medium dense sand
compared with experiments and other numerical
models

In this section, we present a comparison of the DEM model’s response in the case

of the medium dense sand (Dgr=45%) to both experimental data and various nu-

merical studies, including Finite Element Models (FEM) and Macroelement Models
(Table 4.4).

TABLE 4.4: Summary of different models used in comparison with
the discrete model for the medium dense Ticino sand for Phases I, 11,

and III
Phase I Phase 11 Phase II1
Macroelement model Finite element model Finite element model
Leblouba et al., 2016 Brandis, et al., 2021  Anastasopoulos et al., 2011
Based on the Based on the Based on the
Bouc-Wen-Baber-Noori Takeda hysteretic kinematic hardening
constitutive model model constitutive model

involving 14 parameters involving 4 parameters

In the case of medium dense soil Dr=45%, a model was developed following a
procedure similar to that used for the dense soil model, resulting in Ky=0.86. Since
Model 1 (with 8,903 particles and ratio Wgp/dsg = 7.6) demonstrated promising re-
sults for dense soil with significantly lower computational time compared to other
models with a finer discretization of the soil, it was chosen for the study of the
medium dense sand.

We present in Figure 4.35 the distribution of the local porosity in different horizontal
layers below the foundation at the initial state (i.e. just before the application of the
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loading on the foundation). The vertical distribution of the porosity in the granular
assembly below the foundation is rather well homogeneous.
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FIGURE 4.35: The local porosity of the medium-dense granular
assembly built with adaptive discretization technique.

4.7.1 Monotonous loading

A vertical force is applied on the shallow foundation, resulting on a vertical stress
of 100 kPa below the foundation, and the induced settlement is checked as shown
in Figure 4.36. The discrete model underestimates importantly the final settlement.
In particular, the model describes a linear response while the experimental one is
much more non linear with an important reduction of the global stiffness of the soil-
foundation system for a settlement around 1 mm. Such a non-linear response can be
described by the model but for a higher vertical force (not shown in the figure). Only
the slope of the unloading/reloading cycle is satisfyingly reproduced by the model.
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FIGURE 4.36: Monotonous vertical loading: response simulated
with Model 1 compared to the one measured experimentally.
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4.7.2 Cyclic Phase I

In Phase [, in case of medium dense soil, we compare our Model 1 response with the
TRISEE experimental results and results of a macroelement model used by Leblouba
et al. (2016) (the same model used in Phase I for dense soil in section 4.6.2) in
Figure 4.37.

The discrete model globally overestimates settlement, horizontal displacement, and
rocking angle. Concerning horizontal displacement, as discussed in the case of dense
sand, this may be due to an inaccurate estimation of friction at the soil/foundation
interface. However, these predictions remain reasonable in the context of a blind
prediction. The description of the macroelement is quantitatively in better agreement
with the experiments in terms of horizontal displacement and rocking angle, whereas
the settlement was not provided. As mentioned previously, the macroelement model
was calibrated using moment-rotation and horizontal force-displacement curves (not
specified).
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FIGURE 4.37: Cyclic Phase I loading on medium dense sand
simulated with Model 1: comparison with the experiment and the
macroelement model (Leblouba et al., 2016)
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FIGURE 4.38: Cyclic Phase I loading on medium dense sand
simulated with Model 1: comparison of settlement with the
experiment

4.7.3 Cyclic Phase I1

In the case of Phase II, we compare the response of our discrete model with a Finite
Element Method (FEM) model used by Brandis, Kraus, and Petrov¢ic¢ (2021). The
Takeda hysteretic model (Takeda, Sozen, and Nielsen, 1970) was chosen to simulate
the soil-foundation interaction in this FEM model, whereas, the shallow foundation
itself was modeled using elastic frame and shell elements. In addition, it’s important
to mention that the Phase II from the TRISEE experiment was used for calibrating
the model. However, the authors did not provide detailed information about the cal-
ibration process. The recorded loading curve is integrated into the FEM numerical
model as a time history load.

In Figure 4.39, we compare the response of our DEM model with the experimental
and the FEM results.

The final settlement simulated with the discrete model (up to 3.6 mm) is much lower
than the one measured experimentally (of about 10 mm). The FEM model provides
a closer estimation of the final settlement with 8.5 mm. However, the FEM model
predicts a strong development of the settlement since the very initiation of the cycles,
whereas experimentally they develop progressively during the first loading cycle (be-
fore a dimensionless time of 0.2) and more strongly after. The discrete model gives
a better description of this initiation of the settlement than the FEM model. Then, as
for the dense sand, the discrete model predicts a strong reduction of the development
of irreversible settlements pretty early (at a time around 0.3, during the third loading
cycle) compared to the experiments where the settlements continue to develop along
all the cycles. The FEM model predicts a complete stop of the settlement as soon as
a time of 0.3 (third loading cycle).

Concerning the horizontal displacement, as discussed previously the discrete model
describes a global shift of the foundation horizontally which is not observed experi-
mentally. However, for the FEM model, the authors do not provide information about
the horizontal displacement of the foundation.

Finally, the rocking angle is fairly well estimated by the discrete model while an ir-
reversible tilting of the foundation is described by the FEM model (the model was
tilted before the loading by around 2°).
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simulated with Model 1: comparison with the experiment and the
FEM (Brandis, Kraus, and Petrov¢ic, 2021)

4.7.4 Cyclic Phase I11

In Phase III, we compare our Model 1 response with the TRISEE experimental results
and results of the FEM model by Anastasopoulos et al. (2011) (the same model used
in Phase III for dense soil in section 4.6.4). The shallow foundation is subjected to
the loading shown in Figure 4.40, with the resulting displacement (measured exper-
imentally and simulated) at the top of the pilar above the foundation. In the discrete
model, we impose the horizontal force that produces a corresponding horizontal dis-
placement at the piston, which characterizes the system’s response. However, the
experimental and numerical responses were different in this case.
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The response of our model is compared with the experiment and FEM in figure 4.4 1.
In this last case, the discrete model fails to provide a reasonnable description of the
response of the soil-foundation system. A final settlement of about 5 mm only is pre-
dicted while it reaches more than 60 mm experimentally. Moreover, large hystere-
sis were observed experimentally on the force-displacement plot and the moment-
rocking angle plot. Such hysteresis are poorly recovered with the discrete model:
concerning the horizontal displacement, the results are still affected by a global ac-
cumulated horizontal displacement probably due to a sliding of the foundation on the
granular assembly. However, even if this global horizontal shift is discarded, only a
weak hysteresis is expected on the force-displacement plot. Similarly, the hysteresis
is largely underestimated for the moment-rocking angle plot. In other words, the soil
below the foundation is subjected to important irreversible deformations and dissi-
pative mechanisms that are almost discarded by the discrete model. On the contrary,
The FEM model provides a very good description of the response observed experi-
mentally.
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FIGURE 4.40: Cyclic loading Phase III: horizontal force applied on
the system at the top of the pilar above the foundation (top) and
resulting horizontal displacement at this same point (bottom).
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FIGURE 4.41: Cyclic Phase III loading on medium dense sand
simulated with Model 1: comparison with the experiment and the
FEM (Anastasopoulos et al., 2011)

4.8 Conclusion

In conclusion, the discrete model presented in this chapter has been calibrated on
a single monotonous drained triaxial compression test only for the identification of
the contact parameters. An additional compression test was used to identify the ini-
tial numerical porosity representing the medium dense Ticino sand. Such a calibra-
tion requires few experimental data compared to an experimental characterization
of the cyclic properties of a soil, which is a significant advantage in engineering
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applications. On the other hand, the Finite Element Method (FEM) often necessi-
tates more advanced experimental tests, including the direct incorporation of cyclic
loading data, to accurately calibrate constitutive relations. Moreover, macroelement
models typically require an existing physical model as a reference for parameter cal-
ibration.

Additionally, the use of an adaptative discretization has made possible to address
this boundary value problems for a relatively low computational cost (6 days of com-
putation on a 3.70GHz four core of a conventional desktop computer to simulate
the whole process including the generation of the initial state, the first monotonous
loading and the three cyclic phases), making the approach practical for engineering
applications if more advanced computational facilities are considered.

It was quite challenging objective to describe with the discrete model all the loading
phases for the two initial sand densities, since numerical modellings published in the
literature always focus on either some of the loading phases and/or a unique initial
porosity. To summarize on dense sand, the discrete model gives the following results:

* A good description of the settlement under the application of the vertical force.

* It provides fair prediction of settlement, horizontal displacement and rocking
angle for phases I and II. In particular, concerning the settlements in phase II
the model predicts well the initiation of settlements and the fact that settlements
stabilize after a given number of cycles despite the fact that this stabilization
occurs too early with the model compared to the experiment. The macroele-
ment model considered in this phase II fails in describing the initiation of the
settlement and the final stabilization even it is assessing correctly the final set-
tlement value.

* For phases I and II, the macroelement models could be considered as providing
a better description of the experiments than the discrete model but actually it
is worth noting that for phase I the response simulated is of a macroelement
model that is calibrated using experimental moment-rotation and horizontal
force-horizontal displacement curves. For phase II it is a true predictive sim-
ulation but for a calibration on the phase I (so a physical model, or in-situ
measurement on an existing structure are necessary to calibrate the model,
etc...).

* Concerning the phase III, even if the response simulated with the discrete
model remains realistic, it underestimates the settlement and the hysteresis
of the moment-rocking angle and the force-displacement curves. The FEM
model used for comparison overestimates the settlement but provides good de-
scriptions of those hysteresis. Nevertheless, the constitutive relation used in
the FEM model was calibrated on cyclic tests, contrary to the discrete model
which considers only a monotonous compression.

For the medium dense sand: the ability of the discrete model to catch the response of
the soil-foundation interaction should be improved. It globally underestimates im-
portantly the irreversible and non-linear mechanisms occurring in the soil below the
foundation, except for the loading phase I.
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As the way to calibrate the discrete model focuses more on the macroscopic plas-
tic response of the Ticino sand than on its elastic properties, we expected a possible
lower accuracy in the predictions for the first loading phases (when the mechanical
state in the soil is far from the failure state) than for the third loading (where the
loading is increased in such a way to trigger the failure of the soil).

Consequently, this unexpected trend has to be investigated and we present here af-
ter some first results obtained with investigations made in this direction. Therefore,
Granular assembly with anisotropic fabric are simulated using oedometric compres-
sion, similar to the method described in Chapter 3 as illustrated in Figure 4.42. This
approach resulted in granular assemblies characterized by a different Ky value at the
initial state (ie at the state just before the application of the loading program with the
foundation). Specifically, in case of assemblies compacted isotropically the coeffi-
cient Ky is equal to 0.85, while anisotropic compactions led to different Kg values
equal to 0.75 and 0.65 for two different anisotropic compactions.

From Figure 4.43, we can conclude that final settlement is highly dependent on the
initial fabric of the granular assembly. Thus, further investigation of the initial fabric
conditions should be carefully considered for the modeling of the foundation prob-
lem, to understand their impact on the settlement behavior.

Furthermore, we compare the response of two simulations (spheres of density equal
to 2690 kg/m3) with different n and K, during all loading phases as shown in Fig-
ure 4.44. We can observe how settlement increases with the increase of initial poros-
ity, even though the Ky value is greater for the same simulation with higher porosity.
Thus, in addition to Ky, we observe that even a small change in initial porosity may
affect the settlement response. Therefore, we should be careful when estimating the
initial porosity. In our dense model, we estimated the initial porosity through linear
interpolation since no models were calibrated for soil of Dg = 85%.

FIGURE 4.42: Sample preparation using oedometric compression to
generate anisotropic fabrics



104 Chapter 4. Soil-foundation interaction

100 -
= 80
V4
S
D 60
o
o
@ 40
(0]
U .
‘5 == 1y =0.409 - Ko = 0.84 - Isotropic
w207 —e— 1 =0.413 - Ko = 0.85 - Isotropic
== ng=0.416 - Ko = 0.75 - Anisotropic
04 == 1y =0.416 - Ko = 0.65 - Anisotropic

0 20 4|0 60 8|O l(I)O
Settlement (mm)

FIGURE 4.43: Monotonus load response on medium dense samples
with different n and K.

3001 0.00
—~ 250 ~0.05
= —
x € -010
200 4 e
8 T -015
= c
O 150 2 o0
© 9
© 100 B 0259
V] Q
5 WV 030
W 504
—e— 1y =0.366 - Ko =0.76 —0.35 1 === g =0.366 - Ko =0.76
0 —e— 1y =0.382 - Ko =0.85 0404 m— o =0.382 - Ko =0.85

T 0.0 0.2 0.4 0.6 0.8 1.0
8 . . .
Dimensionless time

2 4 6
Settlement (mm)

-5

|
o
o

Settlement(mm)
Settlement(mm)

=15
—— 19 =0.366 - Ky=0.76

—— 1 =0.366 - Ky =0.76
—— 19=0.382-Ko=0.85

—— 19 =0.382-Ko=0.85

=20

“0.0 02

0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

0.4 0.6
Dimensionless time Dimensionless time

FIGURE 4.44: Settlement of the foundation simulated for different
initial porosity n and Ky for all the loading phases



105

Chapter 5

Numerical interpretation of the
phicometer

5.1 Introduction

In geotechnical engineering, the determination of soil mechanical properties is essen-
tial when it comes to evaluating the stability of construction projects and structures.
Thus, the measurement of shear resistance, characterized by both the internal friction
angle and the cohesion is important. In practice, the determination of these param-
eters is often done using laboratory-based triaxial tests or direct shear tests carried
out on field samples. However, the reliability of these measurements depends on the
careful sampling, preservation, and preparation of these samples to ensure that they
accurately represent the in-situ conditions.

In addition to that, it’s important to mention that many types of soils and materi-
als present challenges for geotechnical engineers because they don’t meet these strict
conditions. These include medium to coarse sand, chalks, sand stones, etc. Given this
context, it becomes crucial to consider in-situ testing methods, which offer a valu-
able alternative for assessing shear resistance and other critical properties of soils
and materials under realistic, field-like conditions. Classical field tests as Standard
Penetration Test (SPT), Cone Penetration Test (CPT) or Pressuremeter Test, provides
reliable information about the shear strength of soil but do not give directly access to
the parameters defining the Mohr-Coulomb criterion.

The phicometer test (Philipponnat, 1986) offers direct access to intrinsic strength
parameters: internal friction angle and cohesion. It consists of a probe constructed
as a slotted tube with metal teeth as shown in Figure 5.1. These teeth designed to
penetrate in the borehole when the probe is inflated as a pressuremeter probe. As
the probe expands laterally, its geometry undergoes changes, specifically affecting
the width of openings in between the teeth. The presence of these teeth and their
complex behaviour during lateral expansion when the probe is inflated results in un-
known or unidentified shear surface. Thus, Arpaia, Heintz, and Reiffsteck (2015)
studied the effect of the change of the geometry of the phicometer probe on the re-
sults using a modified version of the direct shear experiment in (Reiffsteck et al.,
2007), by equipping the plate with teeth and lateral grooves.

In this experimental study, the determination of the friction angle and cohesion ap-
pears to be significantly influenced by the interpretation methodology considered. In
particular, different assumptions can be made regarding the shear surface at the in-
terface between the probe and the soil. Considering this shear surface as constant or
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allowing it to evolve during the test (due to probe inflation) can impact the results.
However, experimentally identifying the shear surface and its shape is challenging;
it would, for instance, require determining the strain field from X-ray tomographies.
Alternatively, the discrete element method can be used to investigate numerically
how the shear surface is affected by the radial dilation of the slotted tube and whether
the locally developed shear stress in the sheared zone differs from the macroscopic
one deduced by assuming a given shape of the shear surface. This investigation con-
stitutes the main objective of this work.

The outline of this chapter is as follows: the first part is dedicated to describing the
Phicometer test, including its procedure and interpretation. Following this, the ex-
perimental investigation of soil-teeth interactions is presented, involving a modified
direct shear test conducted with a plate featuring teeth. Next, the numerical model
of the modified direct shear test is introduced. A parametric study is performed to
analyze the impact of teeth and direct shear test box geometry. Additionally, a shear
surface 1s proposed. Finally, the local shear stress in the sheared zone is determined
using different assumptions and compared with the macroscopic stress. In conclu-
sion, the main findings of this chapter are discussed.

This work was carried out within the framework of the master internship of Merhebi
(2022), which I co-supervised during this PhD.

Spacing

Teeth

FIGURE 5.1: Phicometer: View of the expandable probe and its teeth
(Arpaia, Heintz, and Reiffsteck, 2015)

5.2 Principle of phicometer test and interpretation

The Phicometer was developed in 1986 (Philipponnat, 1986) with a similar concept
to the “borehole shear test”. It allows in situ shearing tests to be carried out with a
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pressuremeter and accessories as presented in Figure 5.2, in accordance with the XP
P94-120 AFNOR standard. It measures the shear strength characteristics of the soil,
the internal friction angle, ¢ and the cohesion, C. Its advantages are the possibility of
performing tests on ground which cannot be sampled or which is difficult to sample
and the low cost of this test method. Therefore the tests are faster and simpler than
laboratory shear tests. A drawback of the phicometer with respect to SPT or CPT is
that, as for the pressuremeter test, a borehole has to been realized prior to making the
shear test, which may present difficulties for some kinds of soils.

5.2.1 Description of the Phicometer apparatus

The Phicometer apparatus, consists of three key components, as shown in Figure 5.2:

* Phicometer Probe: a hollow cylindrical slotted tube with a radially expand-
able cell. The central part of the probe features a series of annular teeth to form
the cylindrical shearing surface.

* Link and Connection Devices: rods and tubes for connecting the phicometer
probe to control and measurement equipment located at the ground surface,
including fluid injection.

* Control and Measurement Equipment: situated at ground level, this equip-
ment includes a pressure-volume controller to measure cell volume and control
ground pressure, two bearing plates for apparatus stability, a hollow jack for
applying pull-out shearing effort, and a force measuring device to measure the
shear force.
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FIGURE 5.2: Scheme of the phicometer (Arpaia, Heintz, and
Reiffsteck, 2015)
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5.2.2 Procedure of phicometer test

The phicometer shear test involves inserting the phicometer probe into a pre-drilled
borehole at a specified depth. The probe is then inflated so that the teeth penetrate
into the surrounding soil in the borehole. The normal stress ¢ is applied to the cir-
cumscribed surface S. Afterward, the soil is sheared by pulling the probe slowly from
the ground surface at a controlled speed.This results in the mobilized limit force T,
which corresponds to the shear stress 7.

Throughout the pull-out shearing process, the probe’s internal pressure is maintained
at a constant level. The test consists of performing multiple shears at the same level
and at different normal stress levels, allowing for the determination of the mechan-
ical properties of soils, including the internal friction angle and soil cohesion from
the relationship between applied normal pressure and the corresponding shearing re-
sistance of the tested material. The AFNOR standard XP P94-120 provides detailed
guidelines on the test procedure and the loading steps program.

5.2.3 Calculation of the limit shear stress

To determine the characteristics of resistance of a soil layer according to XP-94-
120 standard we need to consider a shear surface area. The parameters ¢ and C are
determined for each selected measurement step in the representative test zone, thanks
to a key value being the shear stress 7. The conventional limiting shear stress T is
calculated using the following formula:

Ty,
7l d

T= (5.1)

Where:
* Tt = Limit pull-out force.
¢ [, = Conventional length of the measurement area.

* dg = Overall outside diameter of the measurement area after the injection of a
volume deduced from the calibration curve V = f(d;).

The term 77 [ ds represents the sheared surface, which is dependent only on ds. This
means that the sheared area considered during the tests increases with the diameter
of the probe ds (which varies with the expansion of the probe).

The determination of the friction angle ¢ and the cohesion C measured in situ with
the phicometer involves considering the linear regression curve (Figrue 5.3) using
the least square method:

C = arctan npo’ —poyot (5.2)
ny o2 — (20)2
For cases where C > 0, we calculate ¢ as:
_ nYoctrt—Y o)t
¢ = arctan ( Yo (20)2 ) (5.3)
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For cases where C < 0, we calculate ¢ as:

Z T
¢ = arctan 7‘7 (5.4)
Where:
* T: conventional limiting shear stress.

* 71: number of tests.

e ¢0: normal stress.
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FIGURE 5.3: Interpretation of ¢ and c: constant vs variable shear
surfaces

However, it’s important to note that during probe inflation, the space in the teeth
increases (Figure 5.1). Thus, Equation 5.1 takes into account an increasing shear
area during the test, whereas a non-negligible part of it is not actually occupied by
the shear expansion tube. As a result, a new formula has been proposed to consider
a constant shear surface corresponding to dyy, which is the surface occupied by the
teeth of the probe, regardless of the injected volume.

The new formula for the conventional limiting shear stress T is:

TL

T= T de (5.5

Where dg is the overall external diameter of the unexpanded measurement zone. The
results from (Heintz, 2001) show that assuming shearing only occurs on the surface
of the teeth (with a diameter of dy) leads to an increase in ¢ and a decrease in C, and
can even yield a negative value for C. However, limiting the shear to the teeth tends to
reduce result variability. In conclusion, it is necessary to carry out reliable modeling
tests of the physical phenomenon and sufficiently precise experimental verification
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of the exact shearing surface, to be able to propose the modification of the XP-94-120
standard (Arpaia, Heintz, and Reiffsteck, 2015). Therefore, an experimental direct
shear test done by Arpaia, Heintz, and Reiffsteck (2015) was done to understand the
effect of the increase in the teeth spacing during the phicometer test and more details
will be addressed in the following sections. In addition, a discrete element model
could help in identifying the shape of the shear surface.

5.3 The experiment: modified direct shear test

To understand the influence of groove and teeth geometry on the measured shear
characteristics of the phicometer, a study was conducted by Reiffsteck (2022), us-
ing customized version of the direct shear test described in (Reiffsteck et al., 2007).
This research was carried out at the "Laboratoire Régional des Ponts et Chaussées
of Rouen". The goal of this investigation was to assess the influence of various pa-
rameters, including tooth size, inter-tooth spacing, and the particle size distribution
of granular materials.

To achieve this goal, a series of test plates with different configurations were created
for the modified direct shear test. Two reference soils, a fine grained (Fontainebleau
sand) and coarse grained (Criquebeuf gravel), were selected to stay within the de-
vice’s range of applications (Reiffsteck, Nguyen Pham, and Arbaut, 2007).

5.3.1 Description of the modified direct shear test

The modified direct shear test is presented in Figure 5.4. It is made up of a large
square sectioned box with dimensions measuring 500 mm in length, 500 mm in
width, and a total height of 300 mm, increased by a gap between the two half boxes.
The apparatus consisted of a lower half-box containing the soil and a plate with teeth
placed in the top box. The shear resistance is measured at the interface between the
soil and the plate with teeth.

FIGURE 5.4: The direct shear test (Reiffsteck et al., 2007)
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5.3.2 The geometry of the plate

The dimensions used to define the shape of the metal plates, mimicking the phicome-
ter probe, are illustrated in Figure 5.5. According to the Phicometer standard XP P
94-120, the teeth on the plate were supposed to be shaped with trapezoidal profile.
However, for the sake of simplicity, the plates were equipped with teeth with a rect-
angular cross section.

Four plates with different groove spacing are created. The teeth are distributed along
the whole width of the plate, rather than matching the probe’s unrolled perimeter.
These plates are made according to the phicometer’s standard dimensions, which are
as follows:

* gap between teeth: 2 =22.5 mm

tooth height: b =5 mm

tooth width: ¢ = 2.5 mm

* groove spacing: s =0, 4, 8, and 12 mm

ANANNN

FIGURE 5.5: The plate geometry with different Groove spacing s:
(a) s = 0 mm. (b) s = 4, 8, and 12 mm after Reiffsteck (2022)

5.3.3 Outcomes of the modified direct shear test

The influence of the geometric parameters of the plate, particularly the spacing of
the Phicometers’ grooves, showed that cohesion tended to increase while the friction
angle decreased with increase in the grooves spacing. The grooves’ spacing had a
noticeable impact, making it seem like the probe’s expansion resulted in an over-
estimation of cohesion and an underestimation of the friction angle. However, it’s
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important to note that these effects, although significant, were relatively small when
considering the precision of the measurements.

In addition, significant differences are observed depending on whether a constant or
variable shear surface is considered (Figrue 5.3).

5.4 Numerical model of the direct shear test

To model the modified direct shear test, a similar procedure as the experiment was
followed, but instead of having the plate with teeth on the top part of the box we place
it on the bottom part and gravity is not taken into account. In the simulation, the plate
with teeth is defined as a rigid wall. The granular assembly of particles was modeled
using spheres, and the inter-granular contact law between particles was governed by
the classical dry friction model with rolling resistance limiting the relative rotation
of particles. The particle size distribution of the numerical sample was chosen as that
of the Fontainebleau sand and represented in Figure 5.6.
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FIGURE 5.6: Particle size distribution reference soils and one used in
DEM model

5.4.1 Model geometry

To numerically model the modified direct shear box based on experimental data, it’s
crucial to determine the appropriate number of particles for an accurate representa-
tion. Having too few particles would make the model non-representative, while an
excessive number would make the simulation inefficient.

Firstly, to minimize the box’s size and reduce the number of particles, we reduced
the number of teeth in both horizontal directions. We configured the box initially
with 5 rows of teeth (3 rows below the sample initially) with 2 spacings (if any) on a
given row as shown in Figure 5.7. The specific geometry of these teeth and the box,
configuration is detailed in Table 5.1.

To determine the suitability of these geometries for detecting the shear surface area
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accurately, we conduct a parametric research based on strain field induced by the
shearing. An initial cloud of 29,000 particles is used in the simulations.

(A) Groove spacings = 0 mm

(B) Groove spacing = 4 mm

FIGURE 5.7: Discrete numerical model of the modified direct shear
test

TABLE 5.1: Geometry of the teeth and box used in a modified direct

shear box (DEM).
Teeth Box
height width gap length Height Width Length
(b) (e) (a) (c) (H) (W) L)

(Bxe)+(Bxa) @Bxc)
Ilmm Imm 225mm 3.04mm | 9.12 mm 7.5 mm 9.12 mm
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5.4.2 Simulation procedure

The simulations included three main stages: sample preparation, application of axial
stress until reaching the desired stress level, and finally shearing under a constant
normal stress as shown in Figure 5.8.

First we start with the creation of a box containing a plate at the bottom, featuring
rectangular-shaped teeth. Groove spacings "s" equal to 0 mm and 4 mm are consid-
ered in the model. Following this, a cloud of spherical particles is generated, with the
size distribution found in Fontainebleau sand. The sample was then compacted by
applying normal stress until the target normal stress equal to 50 kPa is reached, and
the equilibrium is sufficiently close to the static state. This equilibrium was verified
by assessing the unbalanced force which is the ratio of the mean resultant particle
force to the mean contact force (Figure 5.8). The initial porosity ng reached after
compaction is around 0.39 for all models in this chapter. Subsequently, the shearing
phase is applied until a 10% displacement of bottom plate is achieved. The shear
forces were computed at the plate-soil interface by dividing the sum of the forces by
the total area of the plate.
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FIGURE 5.8: Evolution of the dimensionless unbalanced force

5.5 Parametric study

Selecting optimal values for various numerical parameters relevant to this application
required thorough evaluation. However, it was not possible to calibrate the model as
no experimental volumetric deformation data is available. Thus, the parameters in
Table 5.2 served as a reference point for making these selections. Rolling friction
was not considered in the contact law during the Parametric study.
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TABLE 5.2: Reference parameters of the DEM model.

100 0.3 30

5.5.1 Shear velocity

During the shearing phase, the normal stress remains constant. The direct shear
test starts by imposing a velocity perpendicular to the direction of the teeth (in the
horizontal plane). Selecting an appropriate shearing velocity is important, as it affect
the computation time and may also affect the simulated shear strength due to inertial
effects. Several simulations were conducted, each with varying shearing velocity
values, to determine the optimal choice as shown in Figure 5.9.
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FIGURE 5.9: a- variation of normal stress, b- variation of shear
stress, and (for three different velocities)

During the shearing phase, a velocity of 0.01 m/s has negligible impact on the normal
stress. However, velocities greater than 0.01 m/s result in a noticeable variation in
the normal stress and in an overestimation of the shear stress. Thus, a value of 0.01
m/s has been selected for use in subsequent simulations.

5.5.2 Effect of the teeth and box geometry

After completing the sample preparation and applying the load, an evaluation will be
performed to examine the influence of teeth and shear box size on the shear surface
to identify the optimal configuration and possible effects of boundaries if the box
is too small. Various scenarios were examined, considering different dimensions
of teeth height, and shear box height and length. To assess their effects, the strain
field resulting from these configurations was analyzed utilizing Paraview, a multi-
platform open-source application designed for interactive scientific visualization. In
the following subsections, we define the microstrain field and consider its application
in examining these scenarios.
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Microstrain definition

The microstrain is defined at the scale of particle-centered subdomains as shown
in Figure 5.10 by Catalano, Chareyre, and Barthélemy (2014). The sketch in Fig-
ure 5.10 is in 2D for the sake of readability but the computation is actually per-
formed in 3D. The microscale strain tensor for one particle is defined as a function of
the displacements of the particles adjacent to that particle in the regular triangulation,
which defines the polyhedral domain V.. The average displacement gradient in an
equivalent continuum that would be contained in V, is given by:

1 1
(Vdx) = A ( . dedv) =W ( v, dx®nds) (5.6)

where the displacement dx on the contour dV is defined as a piecewise linear func-
tion equal to the displacement of the particles at the vertices and linear on each facet.
Then, as the symmetric portion of the gradient, the microstrain is obtained:

€= % ((de) + (de>T> (5.7)

FIGURE 5.10: Domain surrounding the particle used to define
microstrain from (Catalano, Chareyre, and Barthélemy, 2014).

Effect of the teeth height

To investigate how the teeth height impact the development of the shear surface,
we investigated three different teeth heights (h = 0.1, 0.5 and 1.0 mm) while all the
other sizes are kept unchanged and as given in Table 5.1. Enabling an exploration
of its influence on the shear surface area. We maintained a fixed ratio dsy /e, where
ds5o = 0.23 mm represents the median particle size, and e is the width of the teeth.
The shear strength is importantly improved for h = 0.5 mm with respect to h = 0.1
mm (Figure 5.11). Nevertheless, considering higher teeth height, with h = 1.0 mm
does not affect more the shear strength of the soil-plate interface.
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To analyze the deviatoric strain field results, a cross-section is considered in the mid-
dle of the sample perpendicular to the main axis of the teeth (X-direction, see Fig-
ure 5.7), the shearing direction. Figure 5.12 presents the deviatoric strain field for
three different teeth heights for a displacement of the plate of 10%. Maximum devia-
toric strain values are observed at the teeth edges. Additionally, there is a noticeable
decrease in shear deformation at the gap between the teeth as shown for greater teeth
heights. However, a height of the teeth of h =0.5 mm is sufficient to localize the
shear surface within the granular assembly and not only at the direct interface with
the plate. The shear surface obtained with h=0.5 mm is rather similar with the one
obtained for h=1.0 mm which explains why the shear strengths simulated for these
two heights are identical. Consequently, a teeth height of 0.5 mm appears sufficient
to capture the shear surface area.

20 1

Shear Stress KPa
S &

w
i

0 2 a 6 8 10
displacement %

FIGURE 5.11: Simulated shear stress displacement for the three
different heights of teeth h.

FIGURE 5.12: Deviatoric strain field identified from the discrete
model for a displacement of 10% with different teeth heights.
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Effect of the box height

To ensure that the development of the shear surface is not influenced by the presence
of the top rigid boundary, we investigated three different box heights H = 4.56 mm
(14000 particles), 9.12 mm (29000 particles), and 18.2 mm (58000 particles). The
geometry for the teeth and box, as outlined in Table 5.1, was maintained, with only
the box heights being varied. The height of the teeth was kept chosen equal to 0.5
mm, ensuring a fixed ratio of dsq/h across all simulations.

The shear surface area is shown in the region around the teeth, as shown in Fig-
ure 5.13. At the lowest height 4.56 mm, due to the proximity of the teeth to the top
boundary, the shear surface area comes in contact with the later which may influence
its development. However, at greater heights, the shear surface does not develop up
to the top wall, and its typical shape of an inverted U is very similar for H=9.12 mm
and H = 18.24 mm. From this observation, we conclude that a height exceeding 9.12
mm is unnecessary.

H=4.56 mm

FIGURE 5.13: Deviatoric strain field simulated with different box
heights for a displacement of 10%.

Effect of the box length

By maintaining a fixed box height equal 9.12 mm and a teeth height equal to 0.5
mm, and varying the length L of the box containing the granular assembly, the length
of the teeth, and the spacing s between the grooves, multiple simulations were con-
ducted to assess their impact on the distribution of the deviatoric strain in the assem-
bly. In Figure 5.14, only one row of teeth is present at the center of the box (L=
9.12 mm) containing the granular assembly, the high strain is concentrated in this
area. In contrast, when L= 18.24 mm, three rows of teeth are present (with double
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teeth length), leading to a larger distribution of the shearing across the teeth. Con-
sequently, the shearing is observed both at the middle and beyond the boundaries of
the teeth.

This effect is also demonstrated in Figure 5.15, indicating that the shear stress mea-
sured at the boudaries is lower for a length of 9.12 mm compared to a length of 18.24
mm when the groove spacing is 4 mm.

FIGURE 5.14: Strain field identified from the discrete model with
different box length.
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FIGURE 5.15: Simulated shear stress for the two different box length
and spacing between teeth s = 4 mm.

The same analysis has been performed for a spacing s = 0 between teeth, as
presented in Figure 5.16, it is evident that the shear deformation is concentrated all
along the teeth boundaries, whatever the length of the box containing the granular
assembly, resulting macroscopically in the same shear stress as shown in Figure 5.17.
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FIGURE 5.16: Strain field identified from the discrete model with
different teeth heights.

20 1

Shear Stress KPa
5 ]

(]

L=9.12 mm
— L=18.24 mm

0 2 4 6 8 10
displacement %

FIGURE 5.17: Simulated stress resistance with different box length
and for spacing equal to s = 0 mm.

Summary of the parametric study

In conclusion, a parametric study was conducted to determine the dimensions of the
discrete model box and teeth. Consequently, a teeth height # = 0.5 mm appears suf-
ficient to capture the shear surface, not only at the soil-plate interface. Additionally,
a box height H = 9.12 mm and length L = 18.24 mm are enough to identify the
shear surface, resulting in 58,000 particles to be considered. This provides a good
compromise between the number of particles and the computation time.
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5.6 Numerical characterization of the shear surface
and shear stress

Finally, after the identification of the different parameters of the teeth and box ge-
ometries through the parametric study, two simulations are done with spacing 0 mm
and 4 mm between the teeth taking into account rolling friction between the particles
equal to 0.25. Then, the shear surface is identified at different cross sections of the
granular assembly in X, Y and Z directions.

It’s shown in Figure 5.18 that the shear strength of the model with spacing s equal to
0 mm is higher than for s = 4 mm. The granular assembly is sheared all along the
teeth which are continuous resulting in higher shear resistance than the case of spac-
ing equal to 4 mm where the shearing is much limited within the spaces in between
the teeth. We present in the following subsections the different cross sections of the
sample in X, Y and Z directions for a displacement of 3.5%.
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FIGURE 5.18: The modified direct shear test model behaviour with
two different spacing equal to 0 and 4 mm

5.6.1 Deviatoric strain field for s = 4 mm
Cross section perpendicular to Z direction

Figure 5.19 presents the distribution of the deviatoric strain in cross sections normal
to Z. At the teeth-soil interface, this distribution appears similar to a horizontal plane.
However, between the different teeth, we can see the inverted U-shaped distribution.
In addition, between the teeth it appears that no shear deformation is obtained. Thus
we can propose that the shear failure area is limited in the Z-direction (perpendicular
to the direction of shearing) to the length of the teeth.

Cross sections perpendicular to Y direction

It’s shown in Figure 5.20 that the deviatoric strain is distributed and concentrated
between the teeth in the direction of shearing (X-direction), as proposed in the previ-
ous subsection. From the bottom view, some particles with high deviatoric strain are
visible, but this is limited to a few particles at the boundary. However, as the height
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FIGURE 5.19: Deviatoric strain field computed with the numerical
model in different cross sections perpendicular to Z-direction for a
spacing s = 4 mm.

(in the y-direction) increases, no high strain appears between the teeth and the top
boundary.

Cross sections perpendicular to X direction

Similar to the Z direction, we observe in Figure 5.21 an inverted U-shaped high de-
viatoric strain near the edge of the teeth in the direction of shearing (X-direction). At
the soil-teeth interface particles with high strain form a horizontal failure surface.

To resume, in the case of a spacing between teeth of 4 mm we propose to consider
the shear surface correspond to the one represented in Figure 5.22. This surface
corresponds to "waves" jumping from one tooth to another in the X direction (the
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FIGURE 5.20: Simulated deviatoric strain field in cross sections
perpendicular to Y-direction for a spacing s = 4 mm.
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FIGURE 5.21: Deviatoric strain field in cross sections perpendicular
to X direction for a spacing s = 4 mm.
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shearing direction) while we assume there is no shearing in the zone corresponding
to the spaces between the teeth in the Z direction. This result is in agreement with
the conclusion given in (Arpaia, Heintz, and Reiffsteck, 2015) suggesting to con-
sider all along the phicometer test a shearing surface constant by excluding the area
corresponding to the opening of the spaces in between the teeth.

FIGURE 5.22: Shear surface proposed in the case of a spacing
s =4 mm

5.6.2 Deviatoric strain field for s = 0 mm
Cross sections perpendicular to Y direction

It’s shown in Figure 5.23 that the deviatoric strain is distributed and concentrated
between the teeth in the direction of shearing (X direction), similar to the distribution
in case of s = 4 mm. From the bottom view, particles with high deviatoric strain are
visible, but this is limited to few particles at the boundary. Thus, the distribution is
similar to that in case of s = 4 mm, but as no spacing exist between the teeth , the
deviatoric strain distribution is continuous in the Z-direction.

Cross sections perpendicular to X direction

We observe in Figure 5.24 at the soil-teeth interface particles with high deviatoric
strain forming a horizontal failure surface. As the distance increases away from the
teeth we observe that the failure surface is localized above the teeth.

To resume, in the case were no spacing exist between the teeth (s = 0 mm),
we propose to consider the shear surface correspond to the one represented in Fig-
ure 5.25.
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FIGURE 5.23: Simulated deviatoric strain field in cross sections
perpendicular to Y-direction for a spacing s = 0 mm.
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FIGURE 5.24: Deviatoric strain field in cross sections perpendicular
to X direction for a spacing s = 0 mm.
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FIGURE 5.25: Shear surface proposed in the case of a spacing
s = 0 mm

5.7 Local and global shear stress estimation

After successfully describing the shear band in the previous section, the stress devi-
ator within the shear band will be determined and compared with the one calculated
from the shear forces divided by the area of the plate.

5.7.1 Definition of the stress tensor at the particle scale

The microscopic stress associated with one particle contained in Vj, is defined as a
sum over the contacts, as described (Catalano, Chareyre, and Barthélemy, 2014), and
shown in Figure 5.26. It is given by:

1

= ¢k c,k

0= — E Xt 5.8

VO’ k f ( )
where x°* is a contact point, and f ck represents the corresponding force. V; is the

reference volume linked to the particle within the Voronoi tessellation.

FIGURE 5.26: Domain surrounding the particle used to define
microstress from (Catalano, Chareyre, and Barthélemy, 2014).

From the body stress tensor given in equation 5.8, it is possible to calculate for each
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particle the maximum stress deviator and therefore compute the average stress devi-
ator of the particles in the shear band.

5.7.2 Comparison of assumptions for the determination of the
shear stress

The average microscopic shear stress is computed for an elementary volume in the
shear band, shown in Figure 5.27-B and represented by the green points in Fig-
ure 5.27-A, for the case of s = 4 mm at displacements equal to 0.5%, 1.5%, 2.5%,
and 3.5% (corresponding to the peak shear stress).

The locally computed shear stress within the elementary volume in the shear band
was estimated to be 23 kPa, 34 kPa, 39.2 kPa, and 42 kPa at displacements of 0.5%,
1.5%, 2.5%, and 3.5%, respectively. In contrast, the globally computed shear stress
yielded values of 16.2 kPa, 28.5 kPa, 31.5 kPa, and 32.5 kPa, assuming a constant
shear surface area. However, using the proposed modified surface area, the globally
computed shear stress equals 21.4 kPa, 37 kPa, 41 kPa, and 42 kPa. This comparison
highlights the differences in shear stress values between the local and global scales
when considering particles in the shear band. It also confirms the importance of a
precise description of the shear surface to accurately calculate shear stresses.
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FIGURE 5.27: Comparison of shear stresses: (A) Macroscopic vs.
microscopic (computed within an elementary volume in the shear
band) (B) The elementary volume in the shear band.

5.8 Conclusion and perspective

In conclusion, the discrete element method was used to investigate how the shear sur-
face is affected by the expansion of the phicometer probe. We successfully identified
the shear surface and made the following observations about its shape:

* In the cases of the two considered spacings, s = 0 mm and s = 4 mm, the
shear surface appears as *waves,” jumping from one tooth to another.

* When a sufficiently large spacing s = 4 mm is considered, there is no shearing
in the zone corresponding to spaces between the teeth.



128 Chapter 5. Numerical interpretation of the phicometer

However, if the spacing between the teeth is reduced, there might be a threshold
where the shear surface jumps from one tooth to another (in the direction parallel to
the teeth). Thus, it is essential to consider cases with smaller spacings.

Additionally, the discrete element method provides the opportunity to estimate
shear stress at both local and global scales. The shear stresses obtained for an ele-
mentary volume element in the shear band at different displacements were similar to
those estimated globally using a proposed shear surface area. These results highlight
the importance of considering a modified shear surface area in the interpretation of
the phicometer. For future work, it is necessary to consider different ratios of particle
size to teeth size.
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Chapter 6

Conclusion and Perspectives

This thesis explored various approaches to enhance a light discrete element model
capable of predicting complex loading paths. The model’s "light" design is essential
to tackle boundary value problems within acceptable computation time. Our inves-
tigation began by exploring different approaches to enhance the predictive ability of
the light model. These approaches included defining a new approach for choosing
the initial porosity, using more complex particles, considering the possible impact of
roughness by implementing a variable contact friction angle, and the effect of initial
fabric anisotropy.

Following the development of the discrete light model, it was applied to a problem
involving the interaction between a shallow foundation and sand, subjected to seis-
mic loadings. The results were benchmarked against experimental measurements
and previous numerical simulations.

Additionally, the model was used to simulate a modified direct shear test, providing
valuable information that is challenging to obtain experimentally.

In conclusion, the following findings can be highlighted:

To investigate various approaches to improve the light discrete model: We
defined a new method for choosing the initial porosity based on the state parameter
. This allows the model to replicate the behavior observed during shearing in real
soil samples.

Discrete models with simple shapes, such as a clump of 2 spheres and another with 6
spheres, were created. The model made of spheres with rolling friction for modeling
dense sand, under complex loadings such as cyclic compression/extension and circu-
lar loading paths, showed better predictive performance and computational efficiency
compared to other models. However, we observed when modeling loose soil under
isochoric compressions and constant deviator loading paths that all models failed.

A non-constant contact friction angle was implemented into the model as a possible
way to account for the complex interplay between varying normal forces (and thus
the mean pressure) and the contacts frictional behavior. This adjustment led to a
slight enhancement in the response of dense sand under complex loadings. However,
this improvement came with increased model complexity, necessitating calibration
through additional drained compressions. Furthermore, the consideration of inter-
particle friction, plays a critical role in the response of granular materials to loading
paths where the range of variation of the mean pressure is important. Despite a slight
enhancement observed when modeling loose soil with spheres, all models still fail in
predicting the response accurately

Thus, it was necessary to consider different approaches to improve the modeling of
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loose soil. Modifications were made to the sample preparation method by consid-
ering initial fabric anisotropy, achieved through generating numerical samples using
a technique similar to experimental moist tamping. We found that the initial fabric
of the granular material significantly impacts its constitutive response. Additionally,
the combination of both fabric anisotropy and a non-constant friction coefficient is
necessary to achieve a simulated response that closely matches experimental results
in the case of isochoric compressions and constant deviator loading paths.

A micro-scale study based on isochoric compressions shows that failure develops
differently at the contact scale depending on the type of contact friction considered.
When a constant friction coefficient is used, failure is characterized by the loss of
connectivity of the granular assembly, together with the plastic sliding of the major-
ity of contacts. However, with a non-constant contact friction, failure is characterized
by the loss of connectivity in the granular packing alone, showing a significant im-
pact on the weak contact phase and only a slight effect on the strong contact phase.
Considering initial fabric anisotropy, when contact normals are initially oriented in
the direction of the major principal stress, the inter-granular force transmission is
more likely to occur along the normal contact direction rather than in the tangential
contact direction. This orientation may also limit sliding at the particle contacts.

The discrete element method was used to simulate the behavior of the shal-
low foundation-sand interaction subjected to seismic loading. In contrast to other
numerical methods employed for modeling soil-shallow foundation interaction, the
Discrete Element Method (DEM) demonstrates notable capabilities in describing the
behavior of soil-shallow foundation under cyclic loading scenarios, without the need
for additional specific historical parameters. DEM achieves this with calibration
based on simple monotonous compression test. On the other hand, to calibrate the
Finite Element Method (FEM) often, cyclic loading data is needed to calibrate con-
stitutive relations. Furthermore, to calibrate macroelement models, it is necessary to
have a pre-existing physical model as a reference during the parameter calibration
process. Moreover, using adaptive discretization has allowed for the resolution of
these boundary value problems at a relatively low computational cost.

In summary, in case of dense sand, the model accurately describes settlement under
vertical force and provides reasonable predictions for settlement, horizontal displace-
ment, and rocking angle during phases I and II. In contrast, the macroelement model
used in phase II fails to describe both the initiation and final stabilization of settle-
ments, despite correctly predicting the final settlement value. During phases I and
II, the macroelement models offer a better response prediction of the experiments
than the discrete model in terms of rocking angle and horizontal displacement. How-
ever, in phase I, the model was calibrated based on experimental moment-rotation
and horizontal force-horizontal displacement curves (the authors did not specify the
phase from which these curves originate). In addition, in case of phase II, another
macroelement model was calibrated based on phase I experimental data.
Furthermore, in case of phase IlII, the discrete model presents a realistic response
but underestimates settlement and the hysteresis of moment-rocking angle and force-
displacement curves. In comparison, the Finite Element Method (FEM) model over-
estimates settlement but accurately captures hysteresis behaviors, taking into account
that constitutive relation used is calibrated on cyclic simple shear tests.
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In case of medium dense sand, the ability of the discrete model to describe the re-
sponse of the soil-foundation interaction should be improved. Apart from loading
phase I, The model clearly underestimates the irreversible and non-linear mecha-
nisms occurring in the soil beneath the foundation.

In perspective, granular assemblies with initial anisotropic fabrics should be explored
to control the soil pressure at rest, as demonstrated in preliminary results where the
settlement response clearly depended on the earth pressure coefficient at rest. Addi-
tionally, choosing the contact friction angle at the interface between the foundation
and the sand should be done thoughtfully to enhance the accuracy of predicted hori-
zontal displacement.

Finally, the discrete element method was used to investigate the impact of the
expansion of the phicometer probe on the shear surface and the assessment of
the induced shear stress. Our findings revealed different patterns within the shear
surface, with waves’ observed when considering spacings of s = 0 mm and s = 4
mm, in the direction of shearing. Moreover, for a sufficiently large spacing (s = 4
mm), no shearing was observed in the areas corresponding to the spaces between the
teeth. However, if the spacing between the teeth is reduced, a threshold might be
reached where the shear surface jumps from one tooth to another (in the direction
parallel to the teeth). Thus, it becomes essential to explore cases with smaller spac-
ings as a potential area for future research.

Moreover, the discrete element method allowed for the estimation of shear stress at
both local and global scales. Specifically, we observed locally (within an elementary
volume element in the shear band) at different displacements, values similar to those
obtained at the global scale, assuming a modified shear surface area. This enabled the
determination of shear stresses associated with the shear band. These results allow
us to highlight the importance of precisely using the appropriate shear surface when
calculating shear stresses and to determine a ratio that can be applied to accurately
adjust the shear surface when interpreting the phicometer test.

Additionally, exploring different particle size distributions could enrich our under-
standing of the effect of the change of the geometry of the phicometer probe.
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