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gravée avec un réseau triangulaire de trous d'air circulaires est équivalente à un réseau en nid d'abeille asymétrique. J'utilise ensuite ce résultat pour concevoir un laser à polaritons à température ambiante sur des états d'interface topologiques dans un guide d'onde ZnO-TiO 2 . Enfin, je montre comment le couplage fort d'un état lié dans le continuum optique avec la résonance excitonique de GaN dans un guide d'ondes GaN-TiO 2 crée un état polaritonique avec une très longue durée de vie. Cet état est propice à la création d'un condensat de Bose-Einstein polaritonique à température ambiante dans une géométrie favorable à l'injection électrique.

Résumé

Résumé

C ette thèse est consacrée à l'étude théorique de la photonique et de la polaritonique topologique.

Dans le premier chapitre, j'introduis les excitons-polaritons topologiques.

Dans le deuxième chapitre, j'étudie les propriétés de la réflexion d'Andreev et des analogues des états liés d'Andreev dans les superfluides gappés de polaritons. En utilisant les équations de Bogoliubov-de Gennes, j'établis une analogie entre les superfluides gappés de polaritons, réalisés dans des microcavités sous pompage résonant au-dessus du seuil bistable, et les supraconducteurs. J'étudie l'analogue de la réflexion d'Andreev d'une onde provenant d'une région non pompée sur une interface avec un superfluide gappé. L'énergie de l'onde réfléchie est symétrique à celle de l'onde incidente par rapport à l'énergie de la pompe, et la réflexion s'accompagne d'une phase due à la phase du superfluide. J'étudie ensuite les jonctions Josephson polaritoniques, où une région normale est entourée de deux superfluides. Je trouve des analogues d'états liés d'Andreev dont l'énergie dépend de la différence de phase entre les deux superfluides, ce qui définit des bandes synthétiques 1D (le paramètre étant la différence de phase). Les bandes apparaissent par paires car le processus d'Andreev crée une bande additionnelle à partir de chaque état lié initial. Lorsqu'une bande normale et une bande d'Andreev sont proches dans l'espace synthétique, le couplage non-Hermitien entre elles conduit à la formation d'une paire de points exceptionnels et à une amplification paramétrique. Le croisement de bandes est topologiquement protégé, comme le montre la phase de Zak.

Dans la dernière partie de ce chapitre, j'étudie les jonctions Josephson polaritoniques multi-terminales qui donnent accès à un nombre arbitrairement grand de dimensions synthétiques (les phases des superfluides). J'étudie une jonction à 5 terminaux, créant un espace des paramètres 4D dans lequel j'observe la création, les trajectoires et l'annihilation des singularités de Weyl. Ces singularités donnent un nombre de Chern non nul aux bandes synthétiques, et certains sous-espaces des paramètres 3D présentent une signature de brisure de la symétrie par inversion du temps.

Dans le troisième chapitre, j'étudie les points exceptionnels dans une microcavité, en collaboration avec l'Université de Varsovie. Nous nous concentrons sur le mouvement et l'annihilation des points exceptionnels. La combinaison de l'éclatement TE-TM, de la grande biréfringence, et de la non-Hermiticité due aux différentes durées de vie des modes H et V divise chaque point de Dirac en une paire de points exceptionnels reliés par un arc de Fermi, dont la longueur est contrôlée par une tension appliquée. Les points exceptionnels créés à partir de différents points de Dirac peuvent se rencontrer et s'annihiler, un effet jamais observé auparavant. Je montre que cette annihilation ne peut se produire que si la topologie Hermitienne du système est triviale, prouvant que les transitions topologiques Hermitiennes et non-Hermitiennes sont liées.

Dans le dernier chapitre, je présente mes activités consacrées à la conception de lasers à polariton à température ambiante basés sur des couches de cristaux photoniques et des semiconducteurs à large bande interdite. Je montre d'abord qu'une couche de cristal photonique In the last part of this chapter, I study polaritonic multi-terminal Josephson junctions, which give access to an arbitrarily large number of synthetic dimensions (the phases of the superfluids). I study a 5-terminal junction, creating a 4D parameter space, where I observe the creation, motion, and annihilation of Weyl singularities. Those singularities give a nonzero Chern number to the synthetic bands, and some 3D parameter subspaces show a signature of broken time-reversal symmetry.

In the third chapter, I present a study of exceptional points in a microcavity, performed in collaboration with the University of Warsaw. We focus on the motion and the annihilation of exceptional points. The combination of TE-TM splitting with huge birefringence gives rise to multiple Dirac points. Non-Hermiticity is brought by the different lifetimes of H and V modes. It splits each Dirac point into a pair of exceptional points connected by a Fermi arc whose length is ultimately controlled by an external voltage. Exceptional points created from different Dirac points can meet and annihilate, a phenomenon never reported before. I show that this annihilation can occur only if the Hermitian topology of the system is trivial, which links Hermitian and non-Hermitian topological transitions.

In the last chapter, I present my activities dedicated to the design of realistic roomtemperature polariton devices based on photonic crystal slabs and wide-bandgap semiconductors. I first show how I went beyond the existing literature on topological interface states. I show that a photonic crystal slab etched with a triangular lattice of circular air holes is equivalent to a staggered honeycomb lattice. I then use this result to design a room-des emplois du temps souvent chargés. Je remercie aussi toutes les personnes qui m'ont aidé durant ces années de thèse, et notamment pour les tâches administratives. Je pense en particulier à Vanessa, Sabrina, Emilie, Guillaume, Pierre, Françoise et Charlène. Si tout le personnel administratif de l'université, de l'école doctorale et du laboratoire avait votre rigueur, cela m'aurait épargné beaucoup de temps et de peine ! Je n'en apprécie que davantage la qualité de votre travail. Je remercie les différentes personnes que j'ai pu rencontrer grâce à cette thèse, Rémi, Sergei, Hassen, Jean-Yves, Léa, Pierre, Thierry, Elizier, Frédérique, Juliette, Dario, Ismaël, Alé, Léo, Gabin, Olha, etc.

Je remercie ma famille et surtout ma maman qui a toujours cru en moi malgré mes réticences face à la scolarité. J'ai toujours détesté l'école, et ce fut un immense soulagement de la quitter après le master pour découvrir cet environnement de recherche plus libre et moins strict, mais il fallait bien passer par ces 20 années de scolarité pour en arriver là. Malgré les difficultés, merci de m'y avoir poussé, j'ai l'impression de pouvoir m'épanouir peu à peu dans un domaine qui me plaît, et ce, grâce à toi. Merci pour tout.

Claire-Anaïs, ma Petite, vivre éloigné de Toi est immensément douloureux, et c'est sincèrement réconfortant de T'avoir à mes côtés. Tu es merveilleuse et vivre avec Toi me rend heureux. Merci d'être là pour moi maintenant, merci de m'aimer, merci pour tout. J'ai eu la chance d'avoir deux encadrants remarquables, et le regret de ne pas les connaître suffisamment. Hai Son, Xavier, nous n'avons pas encore eu la chance de tisser des liens aussi forts que je le voudrais. La faute incombe à une époque impropice aux rencontres, mais je vous remercie pour ce que vous m'avez apporté, bien que j'aie conscience que j'ai encore beaucoup à apprendre de vous. En plus de deux formidables encadrants, j'ai l'immense privilège d'avoir eu deux directeurs de thèse hors de commun. Je remercie énormément Dima et Guillaume d'avoir accepté que je fasse parti de leur groupe, d'abord en stage, puis en thèse. Avec Charly et Pavel, j'ai le sentiment qu'on formait une équipe, une horde oserai-je dire, un pack en progression vers l'Extrême-Amont. En première ligne se tient Dima, notre Golgoth à nous, qui avance toujours. En plus de nous tracter vers l'avant, il s'occupe toujours de nous et s'assure que tout va bien. Je ne peux que rêver d'atteindre un jour ta maturité scientifique. Merci pour ta bonne humeur et ton accent auvergnat. Merci pour tout. Pour l'épauler, il y a Pavel et Charly. Loin d'être jumeaux, ils ont cependant tous deux toutes les qualités pour devenir d'excellents chercheurs, et ils sont déjà pour moi d'excellents amis. Charly est une personne incroyable, d'une gentillesse super-héroïque. Tu as des capacités que tu ne soupçonnes même pas. Merci Charly de m'avoir accepté chez toi au début de ma thèse quand je n'avais pas de logement, merci de m'avoir soutenu la première année, aussi. Sans toi . . . Merci pour tout. Pavel, c'est autre chose : si vous voulez discuter avec lui mais qu'il n'en a pas envie, il vous ignore tout simplement ! Et pourtant, j'ai l'impression qu'il m'a accepté, un peu, et qu'on s'entend bien. En tout cas, moi je l'aime bien. J'envie ses connaissances et son intelligence, sa probité et son intégrité, et j'envie aussi ses amis qui parviennent à le faire sourire si fort, je rêve d'un jour y parvenir, moi aussi. Merci pour tout (et merci pour ta fascinante culture russe). Derrière tout le monde se cache Guillaume. Un peu en recul, il a la position idéale pour corriger nos erreurs, toujours à bon escient. Malgré un caractère attachant, presque enfantin, il renferme une grande sagesse. Il n'avance que sur des appuis solides, et s'il sent qu'un point est mal compris, il se posera (et nous posera) la question jusqu'à ce que le mystère s'éclaircisse, quitte à poser deux cents fois la même question. Merci de m'avoir fait sourire au quotidien. Merci pour tout. Q uantum mechanics appeared at the beginning of the XXth century from the will to explain black-body radiation. The idea of a photon, a light corpuscle carrying a well-defined quantity of energy -a quantum of energy, was necessary to explain this phenomenon. The success of this theory to explain the fundamental behaviour of the universe is outstanding, and the resulting applications deeply modified our society to end up with the over-connected world we live in nowadays.

The quantization of energy levels gave rise to the band theory. This theory allows to determine the energies available for an electron in a given material. It divides materials into different classes. The materials for which there is a huge band gap (typically several eVs) between the valence band (below the Fermi level) and the conduction band (above the Fermi level) are insulators. It would require a very high temperature for an electron in the valence band to reach the conduction band. Plastics are usually insulating materials. On the contrary, conductors are materials in which there is no band gap at the Fermi level, and so there is a non-zero carrier density and conductivity at all temperatures. Metals are typically conductors. Between those two extremes lie the semiconductors. Their band structure presents a band gap, so they are insulators at low temperature, but the gap is small enough for them to become "slightly" conducting at room temperature (300 K). The conduction can actually be controlled by appropriately doping the structures, as in PN junctions and transistors. Those components are present in every electronic device, so we can say without exaggerating that the understanding of quantum mechanics shaped the world we live in now. This understanding has been improved at the end of the XXth century. The band theory has been extended by taking into account the discoveries of topology -a major branch of mathematics. It tells us to take into account not only the eigenenergies of the systems (that is, the bands themselves), but also the evolution of the eigenstates along the bands. Topology provides additional classes of materials. For instance, topological insulators form an interesting topological class of materials. It includes the materials that are insulating in their bulk and conducting at their edges. They were first considered as exotic materials, but further studies have shown that a significant part of known materials cannot be fully considered as insulators, conductors, or semiconductors, but rather using a topological classification.

Topological physics is not exclusive to electronics. In photonics, it is possible to mimic the confinement of electrons in a lattice of atoms using photonic crystals. They are fabricated structures at the micrometric to the nanometric scale. Depending on the application wanted, the structures can be designed to be an insulator, meaning that the light cannot propagate at certain energies (the energies in the photonic band gap), or a topological insulator. In photonic topological insulators, the light can propagate only at the edge of the sample, and only in one direction, which prevents leakage in the bulk and strongly enhances the performance of the device to transport light. Purely photonic systems are, however, not perfect, because of the lack of interactions between photons and the high power needed to observe nonlinearities. Those drawbacks can be compensated by using exciton-polaritons I n this chapter, we introduce the basic ingredients that are needed to understand the main works carried out during this thesis. We first give an introduction to the field of topological physics. We chose to explain topological physics by the mean of topological invariants in famous examples. We study the Su-Schrieffer-Heeger chain in 1D, described by the Zak phase; graphene in 2D, characterised by the winding number of Dirac points and the valley Chern number; the Weyl points in 3D; and the exceptional points in non-Hermitian systems. The different models we introduce give the opportunity to become familiar with key concepts linked with topological physics, such as topological phases, protection, and edge states. We tackle both Hermitian and non-Hermitian physics and finally discuss the existence of topology in synthetic parameter spaces. After that, we introduce exciton-polaritons, on which the majority of the works carried out during this thesis are based. We explain the advantages and a few features of this platform making it very promising, mainly because of the nonlinear effects made possible by the interactions, and the access to the polarisation of light, intrinsically linked to topological effects. Based on this, we elaborate more on the development of topological physics in the fields of photonics and polaritonics, which are strongly interconnected.

Introduction to topological exciton-polariton

Topology in physics

History of topological physics

Topology is a major branch of mathematics. It is itself ramified in general, algebraic, or differential topology [1]. To put it in a nutshell, it provides concepts to describe complex 0 hole 1 hole Singularity Figure 1.1: Topology with 3D objects. A sphere can be deformed by squeezing its poles to the center. The deformation is first smooth, and the topological invariant called genus (the number of holes) remains invariant. There is a singularity at the meeting point when the two poles meet. If we continue squeezing, we open a hole in the sphere, which becomes a torus (with a doughnut shape). After that, increasing the size of the hole does not change the number of holes. The singularity separates the two topologically distinct cases but cannot be formally classified in any of the two cases, it forms a separate class.

mathematical entities by numbers that are invariant under a smooth deformation of the systems. For instance, if we take a three-dimensional (3D) object, we can characterise its topology by the genus, which is the number of holes inside the object. It is sometimes very easy to calculate just by looking at the shape of the 3D object. In Fig. 1.1, we represent a ball. It is a 3D object with no hole inside. If we now squeeze a little the two poles of the sphere, which is a continuous deformation, we obtain a different 3D object that has still no hole, so it belongs to the same topological class as the ball. The topological invariant describing them has not changed. Now, if we continue squeezing, the poles will finally meet exactly at the center of the initial sphere. Here, the situation is different. There is still no hole in the object, but there is just one point separating the object from being drilled. This point is a singular point. If we continue squeezing, the hole will really open and we will have one hole in the object. We can increase the size of the hole, but there will still be only one hole, so the topological invariant is the same. In the end, we clearly see that the singular case where the two poles meet, creating a singular point in the space, separates the two topologically distinct cases of 0 and 1 holes in the object. The singularities, like this singular point, are at the heart of topology, and subsequently topological physics. Topology is certainly a complicated field of mathematics, but it also applies to simple objects. We gave the example of holes in 3D objects but twists and knots also have topological properties. A very famous example is the Möbius strip, which can be mapped to an everyday life situation. If you fasten your belt with a twist, the only way to remove the twist is to open the belt. In physics, we will go a bit further than those concepts, but definitely not enter too much into the mathematical details in this manuscript. We will mostly use topological arguments to explain the physical properties of the systems, hopefully in a very clear and readable way.

The first steps of topological physics can be traced back to the 19 th century [2]. Several developments can be interpreted as belonging to topological physics, such as the laws of electrodynamics using the integration over a closed loop or closed surface [3]. Other examples of topological physics were found in the study of magnetic monopoles [4], which link the quantization of the electric charge with a topological invariant, different in practice from the genus we introduced previously but very close in essence. The Aharonov-Bohm effect [5,6] exemplifies perfectly the role of geometry, by the accumulation of a phase due to the motion of an electron in presence of a vector potential, and topology, because integrating this phase along a closed loop gives a quantized phase. The description of the electron motion under a magnetic field is also at the origin of the birth of modern topological physics, with the phenomenon of the quantum Hall effect [START_REF] Klitzing | New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[END_REF][START_REF] Klitzing | The quantized Hall effect[END_REF], a discovery leading to the Nobel prize in Physics in 1985. After that, the examples of topological physics become more common, but still, give impressive results. The Nobel prize in Physics in 2016 was awarded for the research on topological phases of matter. The study of topological materials reveals that topological phases are far from being fragile cases, but rather represent a massive number of phases of matter [START_REF] Bradlyn | Topological quantum chemistry[END_REF].

In this section, we will present different key models in the development of topological physics. We will begin with the Su-Schrieffer-Heeger chain, which can be characterized by the Zak phase, a topological invariant. We then introduce graphene, a famous two-dimensional material with topological properties, which is a very good platform to introduce topology because we can define different invariants, namely the winding number and the Chern number (more specifically the valley Chern number). We then describe Weyl semimetals, a threedimensional topological phase. Finally, we give an insight into non-Hermitian topological phases and introduce the rich concept of synthetic parameter space.

1D. The Su-Schrieffer-Heeger chain and the Zak phase

Historically, the Su-Schrieffer-Heeger chain (SSH chain) is referred to as the first study of non-trivial topological band gaps. We will study the topology of the chain and its implications in terms of topological invariant and topological edge states, following the concepts developed in Ref. [START_REF] Dalibard | Atomes et rayonnement[END_REF].

The system consists of a long polymer chain. There are two different links between neighbouring carbon atoms, either simple or double covalent bonds, as represented in Fig. 1.2(a). We call it a dimer chain because the periodicity is achieved by taking two neighbouring carbon atoms. We can model this molecule by a dimer chain with two different sites A and B, which are linked by strong links (double bonds) through the coupling coefficient J 1 and weak links (simple bonds) through J 2 , as represented in Fig. 1.2(b). The lattice constant is a. Note that there is no intrinsic difference between sites A and B by themselves. The only difference comes from the coupling to the other sites: The A sites are coupled to the B sites from the left by a weak link and from the right by a strong link, and reversely for B sites.

The Hamiltonian describing the chain can be written as:

H SSH = -J 1 j |B j ⟩⟨ A j | -J 2 j |B j-1 ⟩⟨ A j | + h.c., 1.1
where j runs over all sites in the chain. h.c. means Hermitian conjugate. Of course, the infinite system can be treated through Bloch's theorem which considers modulated plane waves. Thus, we write the wave function |ψ⟩ as a plane wave e ikr with a modulation u k (r) that follows the period of the lattice:

ψ k = e ikr u k (r), 1.2
with u k (r + a) = u k (r). k is the wave vector and i is the imaginary unit i 2 = -1. Thus, the Hamiltonian can be rewritten in the {|A⟩ , |B⟩} basis in a matrix form:

H SSH = 0 J 1 + J 2 e -ika J 1 + J 2 e ika 0 . 1.3
The eigenvalues of the Hamiltonian are:

E ± SSH = ± J 2 1 + J 2 2 + 2J 1 J 2 cos(ka). 1.4
With the eigenvalues, we can plot the band structure (the dispersion E(k)) for any parameters J 1 and J 2 , as in Fig. 1.3. Depending on the ratio J 1 /J 2 , the bands can be either separated as in panels (a,c) for J 1 /J 2 ̸ = 1, or they can cross as in (b) for J 1 = J 2 . Note that this case corresponds to a monomer chain, so there is only one true branch in this case. We can notice that the band structure of the two cases J 1 < J 2 (a) and J 1 > J 2 (c) look very similar. To see the difference between them, we have to take into account the topological properties of the chain. Indeed, the variation of the wave function along the bands is different between the two cases J 1 < J 2 and J 1 > J 2 . This cannot be seen by the analysis of the eigenvalues themselves but can be seen by studying the eigenvectors. Along the band, we can quantify precisely the variation of the eigenstates |Ψ(k)⟩ by computing the Berry In (a), J 1 = J 2 /2, so J 1 < J 2 , which is the topological configuration as shown by the π Zak phase (see the Berry connection in green, which is always positive). In (b), the couplings are equal J 1 = J 2 and the bands cross linearly at ka = π. In (c), J 1 = 3J 2 /2, so J 1 > J 2 , the bands are well-separated but are not topological because their Zak phase is 0 (see the Berry connection in green, which takes both positive and negative values that compensate each other when integrated over the full band).

connection defined as:

A = ⟨Ψ|i∂ k Ψ⟩ . 1.5
This quantity measures the overlap between the eigenstate and its derivative with respect to the wave vector. As aforementioned, this quantity varies all along the band, so it characterizes the geometry of the band, that is, its local behaviour. On the contrary, the global properties of the bands come from their topology, which consists in integrating the geometrical entity along the whole band. In the case of the SSH chain, the topology is given by the Zak phase [START_REF] Zak | Berry's phase for energy bands in solids[END_REF][START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF], which is the integral of the Berry connection along the bands:

Φ Zak = 1 2 BZ Adk. 1.6
The Zak phase is a topological invariant. Its value is quantized, being either 0 mod 2π or π mod 2π, which distinguishes between trivial phases (Φ Zak = 0) and topological phases (Φ Zak = π). We can see that in both the trivial and the topological configurations, the bands do not cross and there is a gap between them. However, going from one configuration to the other necessarily requires the gap to close. This is a general property of topological phases: Topologically distinct phases are separated by crossing points. Those crossing points are topological singularities. They are critical points where both the eigenvalues and the eigenvectors vary abruptly, which has a strong consequence on the topological properties of the system. Moreover, this prevents us from calculating the geometry of the band (for instance the Berry connection) at a degeneracy point. We will see in the next subsection that degeneracy points can be characterized by different topological invariants from gapped phases.

In our case, we calculated the band structure in the case of an infinite chain, which is very handy, but the non-zero Zak phase we find tells us about the properties of a finite chain. This is the bulk-boundary correspondence that allows us to infer the properties of a finite chain from the calculations made on an infinite chain [START_REF] Hatsugai | Chern number and edge states in the integer quantum Hall effect[END_REF]. More precisely, calculating the topological invariant on an infinite chain often gives information about the presence of topological edge states. Those states are very peculiar because they appear at the edge of the structure, and benefit from topological protection. We will come back to it later on.

To understand the physical origin of the presence of edge states in the finite SSH chain, we will use the model of the semi-infinite chain as depicted in Fig. 1.4 for the two configurations (trivial (a) and topological (b)). The chain is infinite for x → ∞ and ends at x = 0. We note that the semi-infinite chain is strictly equivalent to an infinite chain with a positiondependent value of the coupling J 2 (x) (which couples the B site in position j -1 to the A site in position j). If the coupling J 2 is null for x < 0 and takes a positive value for x > 0, we end up with a chain that is united for x > 0 and breaks at x = 0, exactly as in the figure. We can represent it using the Heaviside step function U such that:

J 2 (x) = J 2 U(x).
1.7

The left part of the chain is in the trivial phase, because J 2 = 0 and J 1 ̸ = 0, so we have

J 1 > J 2
, which corresponds to the condition of the trivial phase indeed. If the right part of the chain is also in the trivial phase, as represented in panel (a), there will be no edge state. In the scheme, we emphasize the strong links by encircling in red the strongly-bond dimer it forms. We can see that the edge of the semi-infinite chain is exactly the same as its bulk. The chain is composed only of strongly-bond dimers. However, the situation is critically different in the configuration, represented in panel (b). Now, the link between the A-site at the edge of the lattice is weak, whereas the B-site at the edge of the lattice is strongly linked to the A-site on its right-hand side. Thus, it forms a strongly-bond dimer with this site instead of the other, which leaves the A-site located at the edge alone. This site is thus isolated from the rest of the chain, and it is the only site in the chain that will not be part of a dimer. In this case, this site will host a state that is completely different from the bulk states, which we call an edge state because it is strongly localized at the edge of the chain. We can speak about either edge or interface states. We often speak about edge states when the structure ends at its edge, and we speak about interface states when states appear at the interface between two structures. However, both are actually equivalent. As we demonstrated, the edge of a structure can be seen as an interface between two domains (grey and white domains in the figure). The semi-infinite chain hosts an edge state if we consider that it ends at x = 0, but hosts an interface state if we consider that the chain continues with a different value of hopping.

We want to stress that what is important to determine whether edge states exist or not is not the topology of the chain alone, but rather the difference in the topology of the two parts of the chain. There exists an edge state because the left side is trivial and the right side is not, but there would not be an edge state if the two sides were topological (which would be equivalent to an infinite topological chain, without any edge).

In this subsection, we presented the Zak phase, which is a topological invariant widely used in 1D systems because it can predict the existence of interface states, despite being known as a fragile invariant. We will now study the topological properties of graphene and explore two other topological invariants, the winding number of the pseudospin and the Chern number. Edge states in the semi-infinite SSH chain. The semi-infinite chain is equivalent to an infinite chain with a position-dependent coupling J 2 . (a) Semi-infinite chain in the trivial configuration, where no edge states exist. (b) Semi-infinite chain in the topological configuration, as predicted by the non-zero Zak phase in an infinite chain. In this configuration, there exists an edge state. The red loops emphasize the strongly-bond dimers whereas the orange loop emphasizes the left-alone site where an edge state emerges.

Graphene and Chern number

Graphene is a perfectly two-dimensional sheet of carbon atoms. It is the first 2D material discovered and is now very widely studied. Its experimental realization in 2004 [START_REF] Novoselov | Electric field effect in atomically thin carbon films[END_REF] led to the 2010 Nobel prize in physics. Graphene is a promising 2D material because it gives access to a 2D electron gas of Dirac fermions [START_REF] Novoselov | Two-dimensional gas of massless dirac fermions in graphene[END_REF].More basically, graphene layers make pencils work [START_REF] Castro Neto | The electronic properties of graphene[END_REF], because graphite is decomposed on several layers of graphene when put on a sheet of paper. In this subsection, we will calculate the band structure of graphene, as it was already done in 1947 [START_REF] Wallace | The band theory of graphite[END_REF], and study its topological properties.

In Fig. 1.5(a) we show a sketch of a sheet of graphene, and in panel (b) we represent the model of graphene, where carbon atoms are represented as A and B sites in a honeycomb lattice.

As in the SSH model, the sites A and B are intrinsically equivalent but become different because they couple differently to their neighbours. In the case of graphene, the coupling amplitude to the different neighbours is the same and will be noted t, but the 2D structure complexifies the writing of the Hamiltonian. If we write the Hamiltonian of an infinite graphene sheet in the {|A⟩ , |B⟩} basis, using a tight-binding approximation and considering only the nearest-neighbours hoppings, it takes the form:

H graphene = 0 f (k) f (k) * 0 , 1.8
where the * means complex conjugate. f (k) = t j e ikd j results from the coupling to the 3 neighbouring sites. In the (x, y) basis, the three hopping lengths can be decomposed as:

d 1 = a/2(1, √ 3), d 2 = a/2(1, - √ 3), d 3 = -a(0, 1), 1.9
where a is the period of the lattice. Solving the eigenvalue problem gives the energy bands of graphene:

E graphene = ±t 3 + 2 cos √ 3k y a + 4 cos(3k x a/2) cos √ 3k y a/2 . 1.10
The band structure of graphene is plotted in Fig. 1.6(a). We see that the two bands cross at 6 different points in the dispersion. From Eq. 1.10 , it is possible to find the positions in the reciprocal space where those crossings occur. They correspond to two points (in one unit cell) named K and K ′ whose position is:

K = 2π 1 3a , 1 3 √ 3a , K ′ = 2π 1 3a , -1 3 √ 3a .

1.11

It is possible to make a Taylor expansion of the dispersion close to the degeneracy points. We note k (0) = (k

(0) x , k (0)
y ) the coordinates of the degeneracy points. We can define a wave vector q close to the degeneracy points such that k = k (0) + q. Finally, the effective Hamiltonian reduces to:

H eff graphene = ℏv F 0 q x -iξq y q x + iξq y 0 , 1.12
where ξ defines the point close to which we make the development (ξ = ±1 for K and K ′ points, respectively) and v F is the Fermi velocity. The eigenvalues thus transform into:

E eff graphene = ±ℏv F q, 1.13
where q = q 2 x + q 2 y . The dispersion close to the degeneracy point is plotted in Fig. 1.6(b) where the linear behaviour in all directions is visible. The dispersion is the same close to K and K ′ , but as in the SSH chain, the dispersion does not hold all the information. The eigenvectors have to be taken into account to fully describe the system, and make a distinction between the K and K ′ points. Those two points are called Dirac points. Their name comes from the Dirac equation describing relativistic particles [START_REF] Dirac | The quantum theory of the electron[END_REF]. Here, we see that the linear dispersion close to the Fermi energy (the zero in the plotted dispersions) implies a massless behaviour of electrons close to the Fermi energy. Graphene is not the only material with this behaviour. Materials whose dispersion contains Dirac points at the Fermi level belong to the class of Dirac semimetals. The term "semimetal" refers to the dispersion that is metallic because any nonzero temperature gives the possibility for electrons from the valence band to be excited into the conduction band. However, close to the Fermi level, there are only a few states available [START_REF] Castro Neto | The electronic properties of graphene[END_REF]. It can also be seen as a semiconductor with a zero band gap.

Dirac points are topological singularities associated with a topological invariant, called the winding number. Its definition is:

w = 1 2π A dϕ. 1.14
We remind that A is the Berry connection that can be expressed, in a 2D parameter space, as:

A = ⟨Ψ|i∇ k Ψ⟩ . 1.15
The winding number counts the number of rotations of the pseudospin on a closed loop, as we will see below. In the case of a point singularity, like Dirac points, it counts the number of rotations of the pseudospin when encircling the singularity. The pseudospin is defined by analogy with a true spin, because of the vectorial shape of the eigenvectors of a 2 × 2 Hamiltonian [START_REF] Feynman | Geometrical representation of the Schrödinger equation for solving maser problems[END_REF]. To make clearly appear the winding of the pseudospin, we write the eigenvectors of the effective Hamiltonian of graphene as:

|Ψ ± ⟩ = 1 √ 2 ±e -iθq 1 , 1.16
where θ q = arctan q y /q x . With this very simple expression, the winding number can be expressed as:

w = 1 2π ξ DP dθ q , 1.17
where the integration path encircles a Dirac point, and ξ was defined previously (see Eq. 1.12 ). We immediately see that the winding number of the K points is w K = +1 and the winding number associated with K ′ points is w K ′ = -1. This winding number is a local property associated with a well-defined singularity. If we sum the winding numbers over all singularities in the Brillouin zone, we find:

w tot = j∈BZ w j = w K + w K ′ = 0. 1.18
We find that overall, graphene is topologically trivial. However, the topological singularities carry a topological charge affecting locally the transport properties (of electrons in the case of graphene). We consider the three components of the pseudospin associated to the two eigenstates Ψ ± :

S x = |Ψ + | 2 -|Ψ -| 2 |Ψ + | 2 +|Ψ -| 2 , S y = Im Ψ -Ψ * + , S z = Re Ψ + Ψ * -, 1.19 
where Im and Re denote the imaginary and real parts and the * exponent indicates the complex conjugation. In Fig. 1.7, we plot the pseudospin in the reciprocal space close to the Dirac points of graphene. We clearly see the winding of the pseudospin is positive for the K points because the arrows rotate in the anticlockwise direction, while the winding is negative for the K ′ points. This is particularly visible in panels (c,g). We moreover see that depending on the gauge used, the pseudospin texture is really different [START_REF] Bena | Remarks on the tight-binding model of graphene[END_REF]. However, the intrinsic reality of the associated eigenvectors does not change with the gauge, and neither does the winding number, which is a gauge-invariant.

In the SSH chain, we studied 3 different configurations of the coupling coefficients leading to three different phases. J 1 < J 2 corresponds to separated topological bands; the bands cross for J 1 = J 2 ; and for J 1 > J 2 the bands are separated and trivial. In the case of graphene, we studied the phase with crossings between the bands and understood that the crossings are Dirac points, topological singularities linked with the winding of the pseudospin. We will now consider configurations where a gap is opened in the dispersion of graphene, and study the topological properties associated with them. A straightforward way to open akx akx akx akx aky aky The 4 panels correspond to different gauges, we plot (S x , -S y ) in (a,e), (S x , S y ) in (b,f ), (S y , S x ) in (c,g) and (S y , -S x ) in (d,h). The winding number is not affected by the gauge, it is gauge-invariant. The K/K ′ points are represented by yellow/blue circles respectively.
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a gap is to add a mass term m in the Hamiltonian. This term appears for instance when graphene is put on a substrate (which breaks the symmetry in the z direction). Close to a Dirac point, the effective Hamiltonian becomes:

H eff graphene = m ℏv F (q x -iξq y ) ℏv F (q x + iξq y ) -m . 1.20
For m = 0, we have the situation considered previously (Dirac points) while any m ̸ = 0 opens a gap between the upper and lower bands. In the gapped phases, we can calculate a geometrical quantity all along the band, which is impossible in the case where bands cross because the crossing points are critical singularities. The relevant geometrical quantity is here the Berry curvature, which is derived from the Berry connection:

B = ∇ q × A(q) = i∇ q × ⟨Ψ(q)|∇ q Ψ(q)⟩ . 1.21
The Berry curvature is linked to the evolution of the eigenvectors in reciprocal space. The Berry curvature of the upper/lower band of the massive Dirac Hamiltonian 1.20 can be determined analytically:

B ± (q) = ±ξ (ℏv F ) 2 m 2 ((ℏv F ) 2 q 2 + m 2 ) 3/2 . 1.22
We plot in 

C K ′ = -1/2.
anti-crossing and that the Berry curvature is positive for the lower band at the K point and negative for the lower band at the K ′ point.

If we integrate the Berry curvature, the geometrical quantity, over the full band, we obtain the Chern number, another topological invariant:

C = 1 2π BZ Bdk. 1.23
The Chern number can be defined for a band or for a band gap. The Chern number of a band gap determines the number of edge states that will be observed in a finite system, as stated by the bulk-boundary correspondence [START_REF] Hatsugai | Chern number and edge states in the integer quantum Hall effect[END_REF]. We will consider the Chern number of the lower band in our 2-band case, which corresponds to the Chern number of the band gap as well. The Berry curvature is strong only close to the anti-crossing points, which means that the topology is determined only by the K and K ′ points in graphene. The positive Berry curvature close to the K point makes this point associated with a positive Chern number

C K = +1/2 while it is negative for the K ′ point C K ′ = -1/2.
Thus, the Chern number of the lower band being the sum of the Chern numbers at the K and K ′ points, it is 0, so the band is globally topologically trivial despite being locally nontrivial. However, if we create an interface between two sheets of graphene with inverted K and K ′ points (as given by inverted A and B sites in real space), we see the Chern number difference between the different valleys will be ±1, and that two counter-propagating topological interface states will appear. This is called the quantum valley Hall effect.

In our short study of graphene, we did not take into account the spin-orbit coupling. Taking into account the intrinsic spin-orbit coupling opens a gap in the band structure [START_REF] Kane | Quantum spin Hall effect in graphene[END_REF][START_REF] Kane | Z 2 topological order and the quantum spin Hall effect[END_REF]. This means that the spin-orbit-coupling moves graphene from a 2D Dirac semimetal to a spin-Hall insulator [START_REF] Young | Dirac semimetals in two dimensions[END_REF][START_REF] Jin | Two-dimensional Dirac semimetals without inversion symmetry[END_REF].

The study of graphene is a good introduction to different concepts of topology. The topological singularities named Dirac points are associated with a topological invariant, the winding number, which can be either positive or negative. This invariant is genuinely linked with the singularity itself, and looking at the whole band requires considering the winding numbers of all singularities. Then, the gapped Dirac points are linked with a topological invariant named Chern number, derived from the geometrical quantity named the Berry curvature. In two-dimensional systems, those two topological quantities are very often used to characterise the topology and the geometry of the bands, for instance, to predict the existence of edge (or interface) states in the presence of nonzero (valley) Chern numbers. 2D Dirac semimetals are protected against perturbations that translate into a σ x or σ y term in the Hamiltonian. However, a term along the σ z term removes the Dirac point. Such perturbation is not rare, for instance, putting graphene on a substrate can gap the Dirac points and change the topological phase. In the next subsection, we will introduce Weyl semimetals, which benefit from more robust topological protection.

Weyl semimetals

Together with Dirac semimetals, Weyl semimetals form a topological phase where bands cross at singularities and are not separated by gaps. The singularities present in Weyl semimetals are Weyl points (also called nodes), by analogy with the Weyl particles studied in particle physics, for which this Hamiltonian was first introduced [START_REF] Weyl | Gravitation and the electron[END_REF][START_REF] Yan | Topological materials: Weyl semimetals[END_REF].

The first difference between Weyl and Dirac points is the dimension of the parameter space in which they exist. For Dirac points, we have shown that the Hamiltonian can be put in the form (in natural units c = ℏ = 1)

H DP = k x σ x + k y σ y = 0 k x -ik y k x + ik y 0 , 1.24
whereas the Hamiltonian of Weyl points is:

H WP = k x σ x + k y σ y + k z σ z = k z k x -ik y k x + ik y -k z , 1.25
where k x,y,z are the wave vectors in the three dimensions and σ x,y,z are the Pauli matrices, defined as:

σ x = 0 1 1 0 ; σ y = 0 -i i 0 ; σ z = 1 0 0 -1 . 1.26
The obvious difference is the absence of the k z σ z term in the Dirac point Hamiltonian, whereas it is present in the Weyl point one. This term is at the origin of complex features associated only with Weyl points but creates a major problem in the representation of the dispersion. If we look at Fig. 1.6, the dispersions of Dirac points are plotted in 3D: Two axes for the two wave vectors k x and k y and one for the energy. For the Weyl points, we face the problem that there must be three axes for the three wave vectors k x,y,z and one axis for the energy, that is, four axes in total. Rather than this, we can plot the position of the singularities in the reciprocal space. For graphene, Fig. 1.9(a) shows the dispersion, basically the same as in Fig. 1.6(a) but each degeneracy point is marked with a yellow/blue point. In Fig. 1.9(b), we represent the 2D reciprocal space, and the colours represent the energy difference between the upper and lower bands. We see that the degeneracy points appear as minima of the energy difference (darkest areas). In Fig. 1.9(c), we show the final representation of the singularities in the reciprocal space. Here, we forget about the energy and the precise shape of the dispersion and focus only on the position of the singularities in the reciprocal space. Note that in graphene, all six Dirac points are at the same energy, but the representation of the singularities in the reciprocal space does not take into account the energy at which the bands cross. This means that if the Dirac points of graphene were not at the same energy, the final representation Fig. 1.9(c) would be the same. For a 2D system, there is limited interest to go from the dispersion to the position of the singularities in reciprocal space (from panel (b) to panel (c)). However, for 3D systems and Weyl semimetals, this becomes crucial. We cannot plot the full dispersion in one figure. We need to use several dispersions to fully depict the behaviour of the system. As an illustration, we will consider the 2-band Hamiltonian of a Weyl semimetal with two Weyl points (it is a toy model not related to a realistic implementation, and presented in natural units):

H WSM = k z (k x -ik y ) 2 -k 2 0 (k x + ik y ) 2 -k 2 0 -k z , 1.27
whose eigenvalues are:

E ± WSM = ± k 2 x -k 2 0 -k 2 y 2 + (2k x k y ) 2 + k 2 z . 1.28
The Weyl points are the degeneracy points where E + WSM = E - WSM , and are located at the points: k = (±k 0 , 0, 0). The representation of the Weyl points in the k x,y,z space is shown in Fig. 1.10(a), where we see that the two Weyl points are indeed located at k y,z = 0 and k x = ±k 0 . From this figure, we understand that setting one wave vector to a given value consists in making a 2D cut of the 3D reciprocal space. This restricts the wave vector dimensions to 2 and allows plotting the dispersion in 3D (the third dimension is the energy). The dispersion is plotted for different values of k z in panels (b-d). We see that for all k z ̸ = 0, there is a band gap separating the two bands, whereas for k z = 0 there is no band gap but rather two linear band crossings, at the Weyl points.

The geometrical quantity associated with Weyl nodes is the Berry flux, the 3D equivalent of the 2D Berry curvature. Weyl points are either sources or sinks of Berry flux. The topological charge associated with this Berry flux is the Chern number, as for the Berry curvature. Integrating the Berry flux over a sphere surrounding a Weyl point gives the Chern number [START_REF] Young | Dirac semimetal in three dimensions[END_REF], an integer and a topological invariant. In a periodic system, the sum of the charges of all Weyl points in the Brillouin zone should be zero. In Fig. 1.10(a), we represented the Chern number of the Weyl points by colours, red for positive and blue for negative. This topological charge is linked with the famous chiral anomaly [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF] whose effects are purely 3D and have no counterpart in lower dimensionality.

A condition for the existence of Weyl points lies in the symmetries of the system. Weyl points appear in systems with broken inversion and/or time-reversal symmetries. Timereversal symmetry consists in mapping the positive direction of time to the negative one t → -t. Inversion symmetry maps each direction of space into its opposite (x, y, z) → (-x, -y, -z). If one of those two symmetries is broken, Weyl points can appear. However, if chiral symmetry is broken (which can be seen as an incomplete inversion symmetry breaking), that is, if (x, y, z) → (-x, y, z) for instance, then Weyl points cannot be present in the system. In this case, topological line singularities named nodal lines can appear [START_REF] Yu | Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu 3 PdN[END_REF][START_REF] Kim | Dirac line nodes in inversionsymmetric crystals[END_REF][START_REF] Xie | A new form of Ca 3 p 2 with a ring of Dirac nodes[END_REF][START_REF] Fang | Topological nodal line semimetals[END_REF][START_REF] Sun | Conversion rules for Weyl points and nodal lines in topological media[END_REF][START_REF] Gao | Experimental observation of photonic nodal line degeneracies in metacrystals[END_REF][START_REF] Xia | Observation of hourglass nodal lines in photonics[END_REF]. In theoretical physics, we can verify that a system preserves a symmetry by checking the symmetries of the Hamiltonian describing the system.

The number of Weyl singularities depends on the types of symmetry breaking. Breaking the time-reversal symmetry can lead to the formation of pairs of Weyl points, whereas breaking the inversion symmetry can only lead to multiples of 4 Weyl points [START_REF] Nielsen | Absence of neutrinos on a lattice:(I). Proof by homotopy theory[END_REF]. This means that a topological phase with an even number of Weyl points that is not a multiple of 4 (2, 6, 10, 2 + 4n, n ∈ N) is a signature of time-reversal symmetry breaking. This can be understood in the following way. The total Chern number in reciprocal space should be zero for a periodic system. We consider that there is a Weyl point of positive charge at k (0) . If the time-reversal symmetry is preserved, it requires that there be a second Weyl point of the same charge at -k (0) . So, the total Chern number is 2, and we need two more Weyl
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Broken time-reversal symmetry Broken inversion symmetry (c) points to fulfil the condition that the total Chern number should be zero. We can conclude that Weyl points appear in multiples of 4 when the time-reversal symmetry is preserved. On the contrary, if the inversion symmetry is preserved, a positive Weyl point with a positive charge at k (0) requires that there be a Weyl point with a negative charge at -k (0) . The total topological charge is then zero, and there is no need for additional singularities to fulfil the condition. So, when the time-reversal symmetry is broken, only two Weyl points are needed (but it is possible and even frequent to have more than one pair of Weyl points).

In 4-band systems where both inversion symmetry and time-reversal symmetry are preserved, it is possible to have 3D Dirac semimetals, which are in essence different from 3D Weyl semimetals. Indeed, 3D Dirac points are closer to what is considered directly in the initial Dirac equation with 4 bands, whereas Weyl points can be observed in two-band systems [START_REF] Young | Dirac semimetal in three dimensions[END_REF][START_REF] Armitage | Weyl and Dirac semimetals in threedimensional solids[END_REF].

In Fig. 1.11, we consider the two different cases. In panel (a), we show the position of the 2 Weyl points in reciprocal space, as an example of a Weyl semimetal with broken time-reversal symmetry. In panel (c), we consider a different configuration, typical for broken-inversionsymmetry Weyl semimetals, with 4 Weyl points in reciprocal space. In those sketches, the Weyl nodes are chosen to be aligned in the k z direction but at different k z values. We can consider k z as a parameter, and consider the bands existing in the (k x , k y ) subspace. We consider first the case with two Weyl points. For k z = 0, the Chern number of the band gap is zero, and the bands do not cross. The band structure is typical of an insulator. When we increase k z and reach the first Weyl point, we are in a situation close to a 2D Dirac semimetal, because the bands cross linearly. Increasing k z gives another phase, the 2D topological insulator phase. Indeed, after increasing k z and "meeting" the plane where there is a negative Weyl point, the bands inherent from the Chern number -1 associated with this node, and the Chern number of the band gap becomes -1. After meeting the second and positive Weyl point, at a higher value of k z , the Chern number increases and goes back to 0. This evolution is depicted in Fig. 1.11(b). For the case with 4 Weyl points, the situation is a bit richer, but the idea is the same: When k z reaches the plane where there is a Weyl point, the Chern number of the gap inherits from the one of the Weyl point encountered, as depicted in Fig. 1.11(d).

As for 2D topological insulators, the topology associated with Weyl points also has repercussions on the transport properties at the edge of the material. In the case of Weyl points, that is, in 3D, the "edge" is rather the surface of the material. In Weyl semimetals, there are additional surface states called Fermi arc surface states that appear. Weyl points are actually connected by a Fermi arc, that has implications only on the surface states. The surface states can propagate along those Fermi arcs whereas the bulk states follow the linear dispersion induced by the Weyl singularities [START_REF] Wan | Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[END_REF][START_REF] Xu | Observation of Fermi arc surface states in a topological metal[END_REF][START_REF] Noh | Experimental observation of optical Weyl points and Fermi arc-like surface states[END_REF][START_REF] Takane | Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi[END_REF]. However, the Fermi arc is exactly at the energy of the crossing, which means that the surface states are protected from scattering into the bulk only by momentum conservation, which constitutes very weak protection. If chiral symmetry is preserved and one or several nodal lines exist, the surface states that exist are called drumhead surface states due to their peculiar shape in reciprocal space [START_REF] Bian | Drumhead surface states and topological nodal-line fermions in TlTaSe 2[END_REF][START_REF] Chan | Ca 3 P 2 and other topological semimetals with line nodes and drumhead surface states[END_REF][START_REF] Belopolski | Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet[END_REF].

We can say that Weyl points benefit from greater topological protection than Dirac points because any Hermitian perturbation of the Hamiltonian only moves a Weyl point, while it can easily destroy a Dirac point (and create a gap between the bands instead). We consider a generic Hermitian perturbation Hamiltonian:

H Hpert = ϵ x σ x + ϵ y σ y + ϵ z σ z ,
1.29 ϵ x,y,z being the strength of the perturbation in each direction. If we apply it to the Hamiltonian of a Weyl point, for instance, the Hamiltonian 1.27 , we only move the band crossings, which instead of occurring at k = (±k 0 , 0, 0) will now occur at k = (±k 0 + ϵ x , ϵ y , ϵ z ). However, even if Dirac points remain when a perturbation along the x and y directions is applied, a perturbation in the z direction creates a gap. This is exactly what we have shown in the previous subsection, in the case of a massive Dirac Hamiltonian. The mass term opens a gap in the band structure, and this term is actually very hard to prevent because even putting graphene on a substrate can create it. We conclude that Weyl points are truly topologically protected against Hermitian perturbations, up to a certain point. Indeed, there is a way for Weyl points to disappear. When two Weyl points of opposite topological charge meet in reciprocal space, they disappear [START_REF] Zhang | Magnetic-tunnelling-induced Weyl node annihilation in TaP[END_REF][START_REF] Sie | An ultrafast symmetry switch in a Weyl semimetal[END_REF][START_REF] Crippa | Nonlocal annihilation of Weyl fermions in correlated systems[END_REF][START_REF] Belopolski | Signatures of Weyl fermion annihilation in a correlated kagome magnet[END_REF], and since they always appear in pairs, it should always be possible to remove all Weyl points. Both Dirac and Weyl points are Hermitian singularities, in the sense that the Hamiltonians describing them are Hermitian operators whose eigenvalues are real. However, many physical systems are intrinsically lossy, implying non-Hermitian terms in the Hamiltonians describing them and ultimately complex eigenvalues. In the next subsection, we will study the topology of non-Hermitian systems.

Non-Hermitian topological phases

The theoretical treatment of quantum mechanics requires that the operators used be Hermitian operators, leading to real-valued observable. This is in stark contrast with real systems, where losses are intrinsically present. This explains the need for using non-Hermitian operators in quantum mechanics.

Historically, non-Hermiticity was introduced timidly through the preservation of the parity-time symmetry. In parity-time symmetric systems, the eigenvalues remain real even if the Hamiltonian is non-Hermitian. In those systems, parity symmetry can be broken, as well as time-reversal symmetry, but applying the two operators together gives back the initial system, restoring the symmetry. PT-symmetric systems are very close to Hermitian systems [START_REF] Mostafazadeh | Exact PT-symmetry is equivalent to Hermiticity[END_REF]. For more information, we refer to Ref. [START_REF] Zyablovsky | PT-symmetry in optics[END_REF][START_REF] El-Ganainy | Non-Hermitian physics and PT symmetry[END_REF].

In this thesis, we are not only interested in parity-time symmetric non-Hermitian systems but also in topological non-Hermitian physics. We will now look at the impact of non-Hermiticity on topological singularities. We begin from a Hermitian singularity, a Dirac point in 2D, as shown in Fig. 1.12(a) (the same features can get transposed straight-forwardly to a Weyl point). The Dirac point considered can be represented by the Hamiltonian of a single Dirac point 1.24 . The dispersion consists of a linear crossing between the two bands. Now, if we add to this Hermitian Hamiltonian an imaginary perturbation, it becomes non-Hermitian. We introduce an imaginary perturbation along the x (or y) direction such as, for instance:

H NHpert,x = iϵ x σ x .
1.30

The eigenvalues of the Hamiltonian H EP = H DP + H NHpert,x are then:

E EP = ± k 2 x + k 2 y -ϵ 2 x + 2ik x ϵ x . 1.31
The dispersion is plotted in Fig. 1.12(b). We see that the unique Dirac point, associated with a winding number +1, splits into two singularities, each one being associated with a winding number of +1/2. At the same time, the bands that were degenerate at only one point in the Hermitian case (in the Hermitian limit) are now degenerate along a line, called the real Fermi arc (green line). On the contrary, looking at the imaginary part of the eigenvalues, we see that they are not degenerate along the real Fermi arc. They are degenerate along what is called the imaginary Fermi arc (grey line). There are two points where both the real part and the imaginary part of the energies are degenerate. Those points are called exceptional points [START_REF] Kato | Perturbation theory for linear operators[END_REF][START_REF] Heiss | The physics of exceptional points[END_REF][START_REF] Miri | Exceptional points in optics and photonics[END_REF], and are equivalent to Voigt points in optics [START_REF] Voigt | On the behaviour of pleochroitic crystals along directions in the neighbourhood of an optic axis[END_REF]. Now, instead of applying an imaginary perturbation in the x direction, we apply it in the z direction:

H NHpert,z = iϵ z σ z .
1.32

The resulting Hamiltonian H REP = H DP + H NHpert,z has the eigenvalues:

E REP = ± k 2 x + k 2 y -ϵ 2 z . 1.33
The resulting dispersion of the real and imaginary parts of the eigenvalues are plotted in Fig. 1.12(c). Here, we see that the real parts of the energies are degenerate around a closed loop, a circle, as well as the imaginary part of the energies. Actually, the two circles strictly coincide. The exceptional points are the points where both the real parts and the imaginary parts are degenerate. In this case, the exceptional points form a ring, called a ring of exceptional points (or an exceptional ring) because each point of the ring is actually an exceptional point [START_REF] Zhen | Spawning rings of exceptional points out of Dirac cones[END_REF][START_REF] Cerjan | Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges[END_REF][START_REF] Cerjan | Experimental realization of a Weyl exceptional ring[END_REF]. In both cases, we can see that the dispersion close to an exceptional point is not linear contrary to what happens in the vicinity of Dirac or Weyl points. The dispersion close to exceptional points rather follows a square root law. It can be interpreted as a tachyonic dispersion [START_REF] Szameit | PT-symmetry in honeycomb photonic lattices[END_REF], and enhances the sensing because of the increased sensitivity to any perturbation (including noise, which ultimately limits the interest of the system) [START_REF] Chen | Exceptional points enhance sensing in an optical microcavity[END_REF][START_REF] Hodaei | Enhanced sensitivity at higher-order exceptional points[END_REF]. Exceptional points are ubiquitous in physics, they appear in many different branches, sometimeswith different names. For instance, the bifurcations observed in the study of chaos physics [START_REF] Chen | Bifurcation and chaos in engineering[END_REF] can be interpreted as exceptional points [START_REF] Yin | Unidirectional light propagation at exceptional points[END_REF][START_REF] Huang | Unidirectional reflectionless light propagation at exceptional points[END_REF][START_REF] Djorwe | Frequency locking and controllable chaos through exceptional points in optomechanics[END_REF].

For a more general understanding of the exceptional points, we consider a very general case of a Hamiltonian H NH . We can decompose it on the Pauli matrices and the identity matrix (noted σ 0 ) as follows [START_REF] Bergholtz | Exceptional topology of non-Hermitian systems[END_REF]:

H NH = d 0 σ 0 + d • σ, 1.34
where d = (d x , d y , d z ) = d r + id i is the effective field acting differently on the different components of the system, σ = (σ x , σ y , σ z ) is a vector of Pauli matrices and d 0 acts on every component of the system (it is not an effective field, and it only shifts the real and imaginary parts of all eigenvalues by the same value). The eigenvalues of this Hamiltonian are:

E NH = d 0 ± d 2 r -d 2 i + 2id r • d i . 1.35
As explained previously, exceptional points appear when both the real and imaginary parts of the energy are degenerate. This means that one has to cancel the square root, which is a complex number. Thus, it gives two conditions for the existence and position of the exceptional points, that lead to a set of 4 equations (in the most general case) because of the vectorial form of the second condition: Of course, this applies to the two simple cases we considered previously. The case of exceptional points gives d r = (k x , k y , 0) T and d i = (ϵ x , 0, 0) T where T means transpose. In this case,

d 2 r -d 2 i = 0 d r • d i = 0 . 1.36 k x k y (a) � x � x �� x �� x d r 2 =d i 2 d r . d i =0 d r . d i =0 Imaginary Fermi arc Real Fermi arc k x � x �� x (b)
d 2 r = d 2 i gives k 2 x + k 2 y = ϵ 2
x , that is, a circle in reciprocal space of radius ϵ x . d r • d i = 0 gives k x ϵ x = 0, that is, the axis k x = 0. We plot the two conditions in that case in reciprocal space in Fig. 1.13(a), as well as the corresponding real and imaginary Fermi arcs. Note that the stronger the non-Hermiticity, the further the exceptional points are from the initial Dirac point located at k = 0, and the stronger the non-Hermitian effects are [START_REF] Wiersig | Response strengths of open systems at exceptional points[END_REF].

If we now take the case of the ring of exceptional points described by the same real field d r = (k x , k y , 0) T and the imaginary field d i = (0, 0, ϵ z ) T , the first condition is k 2

x + k 2 y = ϵ 2 z while the second d r • d i = 0 is simply trivial and verified everywhere in the reciprocal space. Thus, the first condition fully dictates the position of the exceptional points, which form a circle as already mentioned. The sketch corresponding to this situation is depicted in Fig. 1.13(b).

Formally, at the exceptional points, there are still two eigenenergies, but one of the two eigenvectors coalesces [START_REF] Heiss | The physics of exceptional points[END_REF]. In this sense, exceptional points are genuinely singular points for the evolution of the eigenvectors. We can see it easily using a simple Hamiltonian [START_REF] Bergholtz | Exceptional topology of non-Hermitian systems[END_REF]:

H ev = 0 ε 1 0 , 1.37
whose eigenvalues are:

E ev = ± √ ε. 1.38
The eigenvectors of the Hamiltonian can be determined. Note that, contrary to the case of Hermitian Hamiltonian, the left eigenvector ψ L is not in general the transpose conjugate of the right eigenvector ψ L :

ψ L ̸ = ψ † R .
1.39

In our simple example, the eigenvectors read:

ψ L = 1 ± √ ε ; ψ R = ± √ ε 1 . 1.40
When the value ε → 0, the two eigenenergies become degenerate E ev = 0, and the two eigenvectors coalesce, there is just one eigenvector left. This is an effect strongly linked to the non-Hermitian nature of the Hamiltonian, as we have just demonstrated.

Exceptional points and Weyl points share several properties. First, both Weyl points and exceptional points appear in pairs (even if unpaired exceptional points are predicted to exist [START_REF] König | Braid protected topological band structures with unpaired exceptional points[END_REF]), the points of the same pair being connected by a Fermi arc. In the case of exceptional point, this is the real Fermi arc. It is also often called "bulk Fermi arc" to explicitly distinguish it from the Fermi arc connecting two Weyl points, because the latter appears only at the surface of the material, whereas the bulk Fermi arc appears in the bulk band structure. Hence, the real Fermi arc connecting exceptional points is not linked with the presence of surface states. Moreover, both Weyl and exceptional points can be annihilated only by making two points of opposite topological charge meet. With isolated exceptional points, this is done by reducing the real Fermi arc connecting them, ultimately retrieving the Dirac point from which the exceptional points emerged [START_REF] Ding | Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization[END_REF].

In Hermitian physics, we need to compute the eigenvectors and study their variation in reciprocal space to determine the topological properties of a system. In non-Hermitian systems, the energy spectrum contains much more information than in the Hermitian case, so it can be very efficient to look only (or as a priority) at the complex energy spectrum to determine the topological properties of the system. We will see it by the example of exceptional points. The topological charge of an exceptional point can be calculated using the winding number of the pseudospin, as in the case of Dirac points. However, we see that the winding number of each exceptional point is 1/2 for an initial Dirac point of winding 1 (see Fig. 1.12(b)). This means that encircling in reciprocal space the two exceptional points leads to a winding number of 1. This is consistent because the Dirac point is the Hermitian limit of exceptional points, in the sense that if the non-Hermiticity is too weak or the resolution of the measurements too low, one would miss the exceptional points and get the properties of a Dirac point instead. However, we see that both exceptional points are associated with the same value of winding, which does not allow one to distinguish between them. On the contrary, Ref. [START_REF] Su | Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system[END_REF] shows that considering the winding of the complex energy around an exceptional point actually leads to opposite winding numbers for the two connected exceptional points. We will note the winding number of the complex energy w i to avoid confusion with the winding number linked with the pseudospin of the eigenstates defined in a previous subsection (Eq. 1.17 ). We define it as:

w i = 1 2π π -π dk • ∇ k arg E(k), 1.41
where E denotes the complex energy with both real and imaginary parts. In Fig. 1.14(a), we plot the dispersion of the real part of the energy, and the colours represent its imaginary part. We can see that the two branches cross and that they act as Riemann sheets, which creates a winding of the complex energy. To see this, we plot in Fig. 1.14(b) the argument of the complex energy spectrum composed of a real part noted E and an imaginary part noted Γ. We see that the phase is ill-defined along the crossing of the bands (the real Fermi arc), but we can clearly see that close to the exceptional points, there is a winding of the argument of the complex energy. More precisely, the two exceptional points have opposite winding. To go from -π/2 to π/2, the phase increases following a clockwise path for the lower exceptional point (see Fig. 1.14(b)) and anti-clockwise for the upper exceptional point, meaning that the lower/upper exceptional point is linked with a positive/negative winding. Note that the half-integer values of the winding are not a mistake, and come from the fact that to return to the same point, one has to rotate twice precisely because of the Riemannian sheet form of the dispersion.

The question of topological invariants describing accurately non-Hermitian topological phases of matter is still open. Among the plethora of proposals, we refer to Ref. [START_REF] Gong | Topological phases of non-Hermitian systems[END_REF][START_REF] Kawabata | Classification of exceptional points and non-Hermitian topological semimetals[END_REF][START_REF] Kawabata | Symmetry and topology in non-Hermitian physics[END_REF][START_REF] Kawabata | Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics[END_REF] which seriously tackle the main issues encountered when studying non-Hermitian topological phases, but there are still grey areas. The concepts of point-gap, line gap, real or imaginary gap as well as the non-Hermitian skin effects [START_REF] Okuma | Topological origin of non-Hermitian skin effects[END_REF][START_REF] Li | Critical non-Hermitian skin effect[END_REF][START_REF] Mandal | Nonreciprocal transport of exciton polaritons in a non-Hermitian chain[END_REF][START_REF] Zhang | Observation of higherorder non-Hermitian skin effect[END_REF][START_REF] Mandal | From the topological spin-Hall effect to the non-Hermitian skin effect in an elliptical micropillar chain[END_REF][START_REF] Wang | Non-Hermitian morphing of topological modes[END_REF] are very interesting 1.1.6 Synthetic topology features that are currently under study both from the theoretical and experimental point of view and will certainly attract most research interest of the field of non-Hermitian physics in the future years.

Going from the same Hermitian Hamiltonian, it is possible to construct different non-Hermitian Hamiltonians, with different properties, which increases the number of possible topological phases as well as topological effects. In the next subsection, we will study synthetic topology, which enriches the possibility to observe topology in various systems.

Synthetic topology

In the previous examples and definitions, we always considered the reciprocal space as the parameter space in which the eigenstates and eigenvalue evolve, and we considered their evolution in the reciprocal space to compute the geometrical and topological quantities such as topological invariants. This restricts the parameter space to three dimensions representing the wave vectors in the three dimensions of space. Interestingly, it is possible to define the topology in a different parameter space. The parameters can be quantities involved in the model, for instance, a hopping amplitude or a geometrical parameter [START_REF] Dutt | A single photonic cavity with two independent physical synthetic dimensions[END_REF]. We first study the example of Ref. [START_REF] Kraus | Topological states and adiabatic pumping in quasicrystals[END_REF]. The structure studied is a waveguide array, as depicted in Fig. 1.15(a). The waveguides are not straight so the coupling between them is not constant in the z direction. It is very similar to what is done in the Aubry-André model [START_REF] Aubry | Analyticity breaking and Anderson localization in incommensurate lattices[END_REF]. The Hamiltonian H wg linking the n-th waveguide to its neighbours reads:

H wg ψ n = t (1 + λ cos(2πbn + ϕ(z))) ψ n+1 + t (1 + λ cos(2πb(n -1) + ϕ(z))) ψ n-1 , 1.42
where t and λ dictate the strength of the couplings, ψ n is the wave function of a mode in the waveguide n, b determines the spatial variation of the coupling (it is irrational so that the structure is quasiperiodic), and ϕ is the phase (the offset) of the coupling. It is constant for a given z value but varies with z so that the propagation of light along the z direction corresponds to changing the value of ϕ. This phase is actually a synthetic parameter: It is a geometrical quantity and not a wave vector. However, the properties of the modes depend on this phase. In panel (b), we show the dispersion of the structure, which has several band gaps inside which there are edge states. We can recognize the edge states because of their profile in real space (see insets), where we see that light is strongly localised at the edges. In this dispersion, the phase is the parameter instead of a wave vector, so we call them synthetic bands. Because of the presence of a wave vector along the x direction and an additional parameter ϕ, it is possible to define a 2D hybrid parameter space containing both the wave vector and the parameter, which gives a situation where the 2D quantum Hall effect can be observed in a 1D structure. Moreover, in [START_REF] Kraus | Four-dimensional quantum Hall effect in a two-dimensional quasicrystal[END_REF][START_REF] Zilberberg | Photonic topological boundary pumping as a probe of 4D quantum Hall physics[END_REF], the setup is approximately similar, but instead of a 1D array of waveguides, there is a 2D lattice. This gives access to two wave vectors and two phases because the links are modulated in both x and y directions. In the end, the hybrid parameter space is 4D and allows studying the 4D quantum Hall effect, which is impossible with only wave vectors which are limited to 3. The 4D quantum Hall effect has been predicted and observed in the field of cold atoms [START_REF] Price | Fourdimensional quantum Hall effect with ultracold atoms[END_REF][START_REF] Lohse | Exploring 4D quantum Hall physics with a 2D topological charge pump[END_REF], and a proposal for 6D quantum Hall effect is still open for experimental realisation [START_REF] Petrides | Six-dimensional quantum Hall effect and three-dimensional topological pumps[END_REF]. Another possibility [START_REF] Nguyen | Magic configurations in moiré superlattice of bilayer photonic crystals: Almost-perfect flatbands and unconventional localization[END_REF] (a) (b) (c) is to superimpose several 1D waveguides, which gives access to synthetic parameters linked with the matching of the lattice constants. A recent realization concerns a 4D Hilbert space created in microlaser experiments [START_REF] Zhang | Spin-orbit microlaser emitting in a four-dimensional Hilbert space[END_REF].

Note that synthetic parameter spaces are different from Floquet periodic systems, as the ones studied in Refs. [START_REF] Rechtsman | Photonic Floquet topological insulators[END_REF][START_REF] Maczewsky | Observation of photonic anomalous Floquet topological insulators[END_REF][START_REF] Maczewsky | Nonlinearity-induced photonic topological insulator[END_REF][START_REF] Weidemann | Topological triple phase transition in non-Hermitian Floquet quasicrystals[END_REF]. In a synthetic parameter space, the definition of the energy is not changed, only the quasi-momenta can be either parameters or wave vectors. In Floquet systems, the periodicity of the potential is not only spatial (Bloch periodicity) which leads to a periodicity in quasi-momenta but the potential also varies periodically in time (Floquet periodicity) [START_REF] Cayssol | Floquet topological insulators[END_REF]. The wave functions can be written in terms of periodic wave functions both in space and time, which leads to quasi-energies that are periodic. The similarity between synthetic parameter spaces and Floquet periodicity is the certain artificiality of the systems, but topological effects are genuinely appearing in such systems, which present intrinsic interest. For instance, edge states in anomalous Floquet insulators are more robust than edge states of topological insulators [START_REF] Zhang | Superior robustness of anomalous non-reciprocal topological edge states[END_REF].

In this section, we introduced key concepts of topological solid-state physics, such as topological invariants, topological singularities, or bulk-boundary correspondence. We considered both Hermitian and non-Hermitian systems, as well as synthetic parameter spaces. In the next section, we will present the exciton-polaritons, which represent a very promising platform to study and observe topological effects in both Hermitian and non-Hermitian systems, with the possibility to study topology in hybrid or fully synthetic parameter spaces [START_REF] Solnyshkov | Microcavity polaritons for topological photonics[END_REF].

Exciton-polaritons

Semiconductor excitons

An exciton is a quasiparticle. It is a strongly-bond pair formed by a quasi-electron and a quasi-hole. It is a boson because its spin is an integer. The term quasiparticle refers to a collective phenomenon whose behaviour is comparable to a particle. We do not consider In both panels, the grey discs represent the crystal in which the electrons (in red, e -) and the holes (in blue, h + ). Their interaction is represented as a red-shaded area.

every single entity, but rather the global trend of the group, which is similar to a particle, and we name it quasiparticle. In the following, we may forget about the usage of "quasi" as a prefix before the quasiparticles (for instance, we write simply "electrons" instead of "quasielectrons" or "quasiparticles of the Fermi liquid"). We anyway rarely deal with elementary particles in condensed matter physics, so this will not lead to any confusion.

There exist two different models for the exciton. The first one is called the Frenkel model, where the electron and the hole are spatially close to each other [START_REF] Frenkel | On the transformation of light into heat in solids. I[END_REF][START_REF] Frenkel | On the transformation of light into heat in solids. II[END_REF]. On the contrary, the Wannier-Mott model considers the case where the electron and the hole are spatially far from each other [START_REF] Wannier | The structure of electronic excitation levels in insulating crystals[END_REF]. The two models are schematically depicted in Fig. 1.16. In this thesis, we consider the model of Wannier-Mott excitons, well-suited for inorganic materials. The energy of the excitons can be found from the energy of the electron and the one of the hole, taking into account their Coulomb interaction:

H X = - ℏ 2 2m e - ∇ re - ℏ 2 2m h + ∇ r h + e 2 ϵ|r e -r h | 2 1.43
The energies of electrons and holes close to the Γ point (corresponding to k = 0) are shown in Fig. 1.17(a), where we clearly see the quadratic form of the dispersion of electrons in the conduction band and holes in the valence band:

E e -(k) = E g + ℏ 2 k 2 2m e - , E h + = - ℏ 2 k 2 2m h + , 1.44
where E g is the energy of the gap (which depends on the material) and m e -,h + are the masses of electrons and holes, respectively. The energy of excitons can be found approximately from the Hamiltonian 1.43 :

E X (k) = E (0) X + ℏ 2 k 2 2m X - E b n 2 X , 1.45
where m X ∼ 0.4 m 0 is the exciton effective mass, E b is the exciton binding energy and n 2 X is the quantum number of the mode. We recognize the hydrogenoid model that is useful and appropriate in the case of excitons, which are essentially electron-hole pairs, analogous to the hydrogen atom (electron-proton pair). The bottom of the exciton dispersion E

X is determined by the band gap of the material. For the lowest exciton level n X = 1, we combine the two constant terms of the dispersion for simplicity into a single term determining the energy reference:

E X ≡ E (0) X - E b n 2 X , 1.46
The dispersion of excitons is plotted in Fig. 1.17(b), taking the top of the valence band as a zero reference. In this thesis, we study excitons mainly in III-V semiconductors like GaAs, GaN, and in II-VI semiconductors like ZnO.

We introduced the quasiparticles named excitons, which are pairs of electrons and holes in semiconductors. We will now study their coupling to light (photons) and their interesting properties.

Exciton-polaritons

An exciton-polariton is a quasiparticle arising from the strong coupling between a photon and an exciton, both being quasiparticles. We may refer to exciton-polaritons using the noun polaritons or the adjective polaritonic, which is not confusing in the context of this thesis where excitons-polaritons are the only polaritons studied (we do not study surface plasmon polaritons for instance).

We can distinguish between two types of exciton-polaritons that will be studied in this thesis. The first type would be bulk exciton-polaritons [START_REF] Hopfield | Theory of the contribution of excitons to the complex dielectric constant of crystals[END_REF][START_REF] Agranovich | Dispersion of electromagnetic waves in crystals[END_REF] and the other type is 2D exciton-polaritons [START_REF] Weisbuch | Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[END_REF][START_REF] Kavokin | Cavity polaritons[END_REF][START_REF] Kavokin | Microcavities[END_REF] that we find in optical microcavities. In the latter case, the active region usually contains quantum wells, so that excitons are confined in one direction (usually the z direction). Light is confined in the same direction, so exciton-polaritons are confined in one direction and can propagate in the two others (in-plane). In both cases, the excitons take the advantage of both their light and matter parts, because of the strong coupling between them. In the {photon, exciton} basis, this strong coupling can be expressed by the Hamiltonian:

H sc = E P (k) ℏΩ R /2 ℏΩ R /2 E X (k) , 1.47
where E P,X (k) are the dispersions of the bare photon and exciton, respectively, and ℏΩ R is the Rabi splitting. Its value is typically of the order of tens of meV for the materials considered in this thesis. The exciton dispersion is quadratic, and the exciton mass m X is very high (close to the electron rest mass) at the scale of the dispersion of the photonic modes, so we can consider it as a constant when it couples to light:

E X (k) ≈ E X . 1.48
The dispersion of the photonic mode can be either approximately linear for guided modes or quadratic for cavity photons. We will come back to it later.

The eigenvalue problem of the strong-coupling regime can be solved analytically. It gives two branches, namely the lower and upper polariton branches, whose dispersion is:

E U/L = E X + E P (k) 2 ± 1 2 (E X -E P (k)) 2 + (ℏΩ R ) 2 . 1.49
The Rabi splitting determines the minimum energy difference between the two branches.

The eigenvectors of the Hamiltonian are:

ψp L,U = P L,U (k) X L,U (k) . 1.50
where X L,U (k) and P L,U (k) are the Hopfield coefficients. In this thesis, we are mostly interested in the lower polariton branch. The light and matter proportions of the lower polariton branch can be calculated from the Hopfield coefficients, which read for the lower polariton branch:

X L (k) = E P (k) -E X -(E P (k) -E X ) 2 + (ℏΩ R ) 2 (ℏΩ R ) 2 + E X -E P (k) + (E P (k) -E X ) 2 + (ℏΩ R ) 2 2 , 1.51 P L (k) = - ℏΩ R (ℏΩ R ) 2 + E X -E P (k) + (E P (k) -E X ) 2 + (ℏΩ R ) 2 2 .

1.52

|X L | 2 and |C L | 2 correspond to the excitonic and photonic fraction of the mixed upper polariton state at a particular k. One can verify that they satisfy the relation:

|X L (k)| 2 + |P L (k)| 2 = 1, 1.53
which means that one polariton is actually a mixed state of a photon and an exciton.

In the following, we will introduce the exciton-polariton platform. We will first study the properties of polaritons in bulk semiconductors where semiconductor excitons couple to guided photonic modes. We then study microcavity polaritons, that is, the exciton-polaritons arising when a material with an excitonic resonance is embedded in an optical microcavity. We finally give insights into the non-linear phenomena enabled by exciton-polaritons as well as their quantum dynamics. Note that we neglect the polarisation effects of light during this section. We will introduce it just after.

Guided polaritons

In this subsection, we will study the strong coupling between excitons of bulk semiconductors and photons in a waveguide. Polaritons can be guided in GaAs [START_REF] Walker | Exciton polaritons in semiconductor waveguides[END_REF][START_REF] Rosenberg | Electrically controlled mutual interactions of flying waveguide dipolaritons[END_REF] at low temperature and even at room temperature in materials such as GaN [START_REF] Ciers | Propagating polaritons in III-nitride slab waveguides[END_REF] or ZnO [START_REF] Jamadi | Edge-emitting polariton laser and amplifier based on a ZnO waveguide[END_REF]. We will first explain the basics of planar waveguides using silicon and then show that in materials with a strong excitonic response, the guided photonic modes can couple to the excitons.

We consider, as an illustration, a planar silicon waveguide operating at 1.55 µm, the so-called telecommunication wavelength (chosen precisely because of the properties of this material). The structure is given in Fig. 1.18(a). The Si waveguide is isolated from the substrate by a cladding layer, typically SiO 2 , whose refractive index is much lower than the Si refractive index n SiO 2 ≈ 1.4 < n Si ≈ 3.5 [START_REF] Malitson | Interspecimen comparison of the refractive index of fused silica[END_REF][START_REF] Pierce | Electronic structure of amorphous si from photoemission and optical studies[END_REF], which enables guiding light in the Si slab. The photonic modes dispersion in the waveguide takes the form:

E P (k) = ℏck n eff , 1.54
where c is the velocity of light in vacuum and n eff is the effective refractive index of the mode which actually varies with the energy/wave vector. We plot in Fig. 1.18(b) the dispersion typical for such a planar waveguide. First, there are three different light cones (or light lines). They correspond to the dispersion of a bare photon on a material of the given refractive index.

For instance, the light cone corresponding to Si corresponds to the equation E = ℏck/3.5, the one of SiO 2 is E = ℏck/1.4 and the air light cone is E = ℏck/1. Light can be confined in a layer only if its effective refractive index n eff is comprised between the one of the guiding (core) layer n g and of the cladding n c :

n c < n eff ≤ n g . 1.55
In this plot, the allowed region in energy/wave vector for a mode to be in the Si layer is represented as the red area. The green area corresponds to possible modes guided in the Si layer, and the blue region above the air light cone contains the modes "confined in the air", that is, the radiative modes. On the contrary, the grey region below the light cone of Si corresponds to modes whose energy is too small to be confined even in the highest-refractiveindex material. There are no guided modes in this region.

The guided modes we are interested in are represented as black lines. They are in the red area, meaning that they are guided in Si as expected. We can see that there are different modes (4 modes in total in this figure). The modes appear at certain wavelengths λ m , which are approximately given by the condition:

h g = m λ 2n g , 1.56
where m ∈ N * and h g the thickness of the guiding layer. This relation allows estimating the thickness of a waveguide for a precise purpose (a more precise solution can be obtained by solving a transcendental equation). For instance, if we want the waveguide to be monomode and run at the wavelength λ = 1.55 µm, the thickness of the Si layer would be around 250 nm. The condition can be understood very easily. λ/2 is half the wavelength, so it corresponds to a single peak in the transverse mode profile, which is the first mode. Then, λ corresponds to the wavelength, so the transverse profile contains two peaks (anti-nodes) and one node (one full oscillation). Finally, the mode corresponding to mλ/2 has m peaks and m -1 nodes. If we look at the dispersion of Fig. 1.18(b), we see that there are 4 guided modes. The shape of their dispersion is clearly nontrivial, but as the wave vector increases, it rapidly reaches an asymptotically linear regime. It follows the dispersion typical for massless particles, with a well-defined effective refractive index for each mode m:

E ∞ m = ℏck n ∞ eff .

1.57

We moreover see that the high-wave vector effective index n ∞ eff is higher for the first modes and increases with the mode number m. This is because of the larger penetration of the transverse profile of the higher modes into the regions with a lower refractive index. For the first mode, the effective index is approximately linear at all energies and very close to the guiding layer refractive index n eff,m ≈ n g . We now consider a ZnO waveguide. ZnO is a material containing excitons, whose energy will be considered as E X ≈ 3380 meV for this short example. The ZnO waveguide is isolated from the substrate (the substrate being typically bulk ZnO) by a cladding layer, namely ZnMgO, where the proportion of Zn/Mg is not stoichiometric (typically Zn 0.8 Mg 0.2 O). Such a waveguide is sketched in Fig. 1. 19(a). The linear dispersion of the lowest guided photonic mode is approximately given by:

E P (k) = ℏck n ZnO , 1.58
where n ZnO ≈ 2.2. The coupling to the exciton has to be considered. There are usually two methods to take it into account. The first one is very straightforward and consists in introducing the photonic dispersion into the strong exciton-photon coupling Hamiltonian 1.47 . This gives the dispersion of the polaritonic modes 1.49 , as represented in Fig. 1.19 (b). If we follow the lower polariton branch from low wave vectors to high wave vectors, we notice that it first follows the bare photon dispersion, and is thus mostly photonic. Then, it reaches an intermediate regime, where the polaritonic dispersion is neither mainly photonic nor mainly excitonic, but rather a mixed state. After that, the polariton follows the bare exciton dispersion and is mostly excitonic.

The second method consists in considering the Maxwell's equations with an energydependent permittivity of ZnO taking into account the exciton resonance. This can be made by using [START_REF] Hopfield | Theory of the contribution of excitons to the complex dielectric constant of crystals[END_REF]:

ϵ ZnO = ϵ ∞ ZnO + f X E 2 -E 2 X , 1.59
where ϵ ∞ ZnO is the background relative permittivity of ZnO and f X is the oscillator strength of the exciton. We remind that the permittivity is the square of the refractive index ϵ = n 2 . The oscillator strength encodes the strength of the excitonic resonance and can be linked to the Rabi splitting [START_REF] Kavokin | GaN microcavities: Giant Rabi splitting and optical anisotropy[END_REF]. The two methods are equivalent, but the first one is more often used because it is usually more convenient.

In this section, we considered the strong coupling between a guided photonic mode and 1.2.4 Exciton-polaritons in microcavities an exciton from a bulk semiconductor. We found the dispersion of the upper and lower polaritonic branches, which differ from the bare photon and exciton especially close to the anti-crossing between them. In the next section, we consider exciton-polaritons in microcavities whose properties differ strongly from the properties of guided polaritons.

Exciton-polaritons in microcavities

In this subsection, we will study the properties of microcavity polaritons. Cavity excitonpolaritons arise from the strong coupling between cavity photons and semiconductor excitons. We will first introduce the properties of cavity photons and then present their properties when coupled to semiconductor quantum well excitons.

A cavity photon is different from a bare photon because the properties of photons are altered when embedded in cavities. An optical microcavity is depicted in Fig. 1.20(a). We see that cavity photons are confined in the z direction by distributed Bragg reflectors (DBRs). This creates Fabry-Pérot modes that are equally spaced in wavelength. The distributed Bragg reflectors can be engineered to have a reflectivity very close to 1 at the desired wavelength, depending on the materials used, their thickness, and the number of layers. Typical materials used are TiO 2 and SiO 2 , although other materials can be used depending on the application. Because of the confinement of light in the z direction, we separate the z and in-plane wave vector components in the expression for the energy of the photon:

E P (k) = ℏck n C = ℏc n C k 2 z + k 2 // , 1.60
where n C is the refractive index inside the cavity and k // is the in-plane component. The confinement of the photon between the DBRs leads to the quantization of the wave vector in the z direction:

k z = j π n C L , 1.61
where j ∈ N * , and L is the thickness of the cavity (see Fig. 1.20(a)). We can deduce that, at low wave vectors, the dispersion of the cavity photons becomes:

E P (k) ≈ E P (k z ) + ℏ 2 k 2 // 2m C , 1.62
where m C is the effective mass of cavity photons:

m C = j ℏπn C cL . 1.63
Interestingly, cavity photons earn a mass from their confinement in the z direction, as shown by the quadratic form of their dispersion. This mass scales as the mode number j, meaning that higher-order modes have a higher mass. However, the mass is anyway very small compared to the electron rest mass m 0 , of the order of 10 -5 m 0 . The dispersion of cavity photons is plotted in Fig. 1.20(b).

For cavity polaritons, the light confined by DBRs couples with the excitons of the embedded material. This can be done either by putting a bulk semiconductor or a quantum well The strong coupling between the excitons and photons can be calculated from Eq. 1.47 by inserting the dispersion of cavity photons 1.62 . An example of dispersion is plotted in Fig. 1.21(b), where we see the lower and upper polariton branches (LPB/UPB) in green/purple. Fig. 1.21(c) shows the exciton and photon fractions of the lower polariton branch. We see that at low wave vectors, the LPB is very far from the bare exciton dispersion, and its dispersion is strongly influenced by the photonic mode, which explains a relatively high photon fraction (50%), while at high wave vectors, the LPB gets closer and closer to the exciton branch, and the exciton fraction goes to 1.

Exciton-polaritons combine the advantages of both cavity photons and semiconductor excitons. Their effective mass is typically 5 orders of magnitude smaller than the electron rest mass due to their photonic part. Indeed, it is possible to calculate the polaritonic effective mass m pol from the dispersion 1.49 , which gives, at low wave vectors:

1 m pol ≈ 1 2 1 m X + 1 m C . 1.64
The exciton effective mass is close to the electron rest mass, typically m X ≈ 0.4 m 0 , while the cavity photon mass is of the order of m C = 10 -5 m 0 . In the end, we deduce that the mass of the polaritons is of the order of the mass of cavity photons:

m pol ≈ 2m C . 1.65
Likewise, the velocity of polaritons is close to the speed of cavity photons. Their wave function can also be measured by the polarisation of light, which is crucial in topology. We will discuss this particular point later. Moreover, the excitonic part of the exciton-polaritons brings them interactions and nonlinear effects, through the Coulomb interaction between charged particles such as electrons.

In the following, we will present several examples of nonlinear and quantum effects possible with exciton-polaritons, for instance, superfluidity, optical parametric oscillation, or Bose-Einstein condensation.

Non-linear and quantum effects

In this section, we will introduce several effects that can be achieved using excitonpolaritons. The wave function of exciton-polaritons ψ(r, t) can be accurately described by the Gross-Pitaevskii equation [START_REF] Gross | Structure of a quantized vortex in boson systems[END_REF][START_REF] Pitaevskii | Vortex lines in an imperfect Bose gas[END_REF]:

iℏ∂ t ψ(r, t) = - ℏ 2 2m pol ∇ 2 r + V + α|ψ(r, t)| 2 -iΓ pol ψ(r, t), 1.66
where t is the time variable, ∇ r ≡ (∂ x , ∂ y , ∂ z ) T , α denotes the interactions between polaritons (α > 0 for repulsive interactions), 2Γ pol is the polariton decay rate, that we always neglected previously, and V is the term accounting for the potential. This equation is also called the non-linear Schrödinger equation. Indeed, if we remove the non-linear interactions term α|ψ(r, t)| 2 , this equation is exactly the Schrödinger equation [START_REF] Schrödinger | An undulatory theory of the mechanics of atoms and molecules[END_REF]. However, the term of non-linear interactions is crucial because it precisely takes into account the interactions between polaritons that give access to non-linear effects with exciton-polaritons. Of course, this equation is very general, and we may add or remove terms if appropriate, as well as introduce simplifications (such as neglecting the lifetime).

Without pumping, the population of the polariton states is zero (at least at zero temperature). This means that the bare cavity is empty of polaritons. The density of polaritons increases (non-linearly) with the pump amplitude, and the interactions increase with the density of polaritons. To sum up, for no pumping, there are no polaritons; for weak pumping, there are polaritons between which interactions are negligible; and for strong enough pumping, the interactions between polaritons become non-negligible. These interactions give rise to non-linear effects which can be used to gain access to quantum features, such as the generation of entangled photon pairs [START_REF] Cuevas | First observation of the quantized exciton-polariton field and effect of interactions on a single polariton[END_REF]. We will begin by studying the bistability, which is a consequence of the interactions between polaritons under pumping [START_REF] Baas | Optical bistability in semiconductor microcavities[END_REF][START_REF] Baas | Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: Analogy with the optical parametric oscillator[END_REF][START_REF] Gippius | Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering[END_REF][START_REF] Whittaker | Effects of polariton-energy renormalization in the microcavity optical parametric oscillator[END_REF][START_REF] Gippius | Polarization multistability of cavity polaritons[END_REF].

Bistability

To study a simple example where the phenomenon of bistability appears, we consider no additional potential V = 0 and quasi-resonant pumping with E p = ℏω p being the energy of the laser with respect to the bottom of the polariton dispersion. Moreover, we consider a spatially homogeneous wave function for the exciton-polaritons, so that the kinetic energy term -∇ 2 r ψ(r, t)/2m pol vanishes. In this case, the Gross-Pitaevskii equation becomes:

iℏ∂ t ψ = α|ψ| 2 -iΓ pol ψ + P e -iωpt , 1 . 
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where P is the pump amplitude. The stationary solution of this equation has the frequency of the driving laser ψ ∝ e -iωpt . Simplifying by the term e -iωpt , we find:

P = α|ψ| 2 + ℏω p -iΓ pol ψ. 1.68
The dependence of the polariton density |ψ| 2 on the pump amplitude P > 0 can thus be determined. It is plotted in Fig. 1.22(a). The bistability can be understood as follows.

Thanks to the non-linearities, a given pump amplitude gives two different polariton densities achievable. The density that will be observed depends on the history of the system. We illustrate it in Fig. 1.22(b). First, the system is not pumped, so the polariton density is low.

We increase the pump intensity (red dotted line and red arrows) and reach the first turning point of the curve (red point). Increasing infinitesimally the pump power from this point immediately creates a jump (big red arrow) in the polariton density, which jumps from low density to high intensity. Moreover, when the pump power is decreased (blue dashed line and blue arrows), the polariton intensity decreases gradually to the second turning point (blue point). From this point, the polariton density decreases abruptly when the pump amplitude is decreased (big blue arrow). This creates a hysteresis loop, and the polariton density jumps at the two thresholds are strongly non-linear phenomena.

Superfluidity

Another interesting behaviour of exciton-polaritons is superfluidity. A superfluid is a peculiar state achieved when all the particles of a system begin to be correlated to each other. It is very similar to a superconductor. For superconductors, the collective behaviour of quasiparticles leads to zero resistance; in the case of superfluids, it leads to zero viscosity of the "fluid". Interestingly, polaritons can be called a quantum fluid of light [START_REF] Carusotto | Quantum fluids of light[END_REF], and it is possible to observe superfluidity in cavity exciton-polaritons.

We now consider the Gross-Pitaevskii equation 1.66 with no potential V = 0. We neglect the lifetime of polaritons, and we set the energy reference at the level of the chemical potential µ, which gives the equation:

iℏ∂ t ψ(r, t) = - ℏ 2 2m pol ∇ 2 r + α|ψ(r, t)| 2 -µ ψ(r, t). 1.69
First, the wave function ψ s = √ n, corresponding to a stationary homogeneous solution, is a solution of this equation.

We now consider the weak excitations of this solution, which depend both on space and time:

ψ(r, t) = ue ik•r e -iωt + v * e -ik•r e iωt , 1.70
where u, v are called the Bogoliubov coefficients, accounting for the proportion of the excitation that is at positive and negative energy respectively. Inserting this wave function in the Gross-Pitaevskii equation 1.69 gives a set of two equations (keeping only the first-order terms), that can be put in a matrix form for convenience. It reads:

ϵ k + αn αn -αn -ϵ k -αn u v = E u v , 1.71 with ϵ k = ℏ 2 k 2 /2m
pol . E = ℏω represents the energy of a particle with respect to the pump energy E p . Note that the matrix is non-Hermitian. The equations obtained are the Bogoliubov-de Gennes equations. The quasiparticles described are called bogolons. They are the weak excitations of the density of polaritons. In other words, there is a huge homogeneous stationary density of polaritons, and the bogolons describe the small variations of the density.

We can find the eigenvalues from the dispersion relation:

E 2 = ϵ k (ϵ k + 2αn) . 1.72
For small wave vectors, the dispersion can be approximated by:

E ≈ ℏc s k, 1.73
where c, which represents the "sound velocity", reads:

c s = αn m pol . 1.74
We clearly see that the low vector dispersion is linear. On the contrary, in the high wave vector limit, the dispersion is approximately given by:

E ≈ ϵ k 1.75
In the high wave vector limit, the dispersion is quadratic. The dispersion is plotted in Fig. 1. 23(a), where the two regimes are clearly distinguishable. The dispersion is plotted in blue, and the linear approximation is in orange dashed line. We see that the linear approximation fits very well with the full dispersion at low wave vectors. At higher wave vectors, the dispersion becomes quadratic and is not well-fitted by the linear approximation. The energy becomes higher than the linear fitting, which can be interpreted as a supersonic regime of the excitations, because their group velocity at those energies is higher than the previously defined sound velocity c s .

Using exciton-polaritons, it is possible to reach the superfluid regime using another configuration [START_REF] Carusotto | Probing microcavity polariton superfluidity through resonant Rayleigh scattering[END_REF][START_REF] Ciuti | Quantum fluid effects and parametric instabilities in microcavities[END_REF][START_REF] Carusotto | Quantum fluids of light[END_REF]. Indeed, if we pump the cavity quasi-resonantly, the Gross-Pitaevskii equation can be written:

iℏ∂ t ψ(r, t) = - ℏ 2 2m pol ∇ 2 r -iΓ pol + α|ψ(r, t)| 2 ψ(r, t) + P e -iωpt . 1.76
The polariton decay is taken into account in the equation by the term -iΓ pol . Physically, losses are always present. From the mathematical point of view, without them, the amplitude of driven oscillations grows to infinity. However, it is handier to remove this term for the analytical calculations of the Bogoliubov modes, and the analytical results found are not strongly affected by this approximation. The only difference is that these losses add a constant imaginary part to the energy. So, in the following, we neglect the losses, but keep in mind their existence for the analysis of the physical results (for example, the mode stability).

We consider that the pump amplitude P allows passing the bistability threshold. The stationary homogeneous solution now involves a well-defined superfluid phase ϕ, that comes from the phase of the laser: The case in blue is the same as in panel (a) but obtained under quasi-resonant pumping if α n = E p . The red dispersion is the gapped superfluid regime, achieved for αn > E p . There is a gap of amplitude 2∆ between the upper and the lower branches (between the two horizontal black dashed lines). The parameters used in this panel are E p = 0.5 meV, m pol = 2.10 -5 m 0 , αn = 0.3 meV for the green curves, αn = 0.5 meV for the blue curves, and αn = 0.6 meV for the red curves. In (a), the zero is the chemical potential whereas in (b), the zero is the pump energy E p .

ψ s = √ ne iϕ . 1.77 0.2 -0.
Considering the small perturbations around this stationary solution, we insert in this equation the same wave function as previously (see Eq. 1.70 ). Keeping only first-order terms, we find the Bogoliubov-de Gennes equations:

L αψ 2 s -αψ * 2 s -L u v = E u v , 1.78
where L = ϵ k + 2αn -E p . We see that the equations are different. They make appear the pumping energy, as well as the phase of the superfluid. The dispersion can be found by cancelling the determinant of the matrix, which gives:

E 2 = (ϵ k + 3αn -E p ) (ϵ k + αn -E p ) . 1.79
Thanks to the pumping term, the dispersion is not unique but can take several typical forms. The dispersion is plotted in Fig. 1.23(b) for different values of αn, for the same pump energy E p . First, we note that when αn = E p , the dispersion becomes exactly the same as the one obtained without pumping E 2 = ϵ k (ϵ k + 2αn) (in blue). The same sound velocity can be defined, and the situation is globally the same as previously. A second configuration would consist of lower interaction αn < E p (in green). Contrary to the other cases, the dispersion is not fully real but has an imaginary part when the real parts are equal (along the flat part in the real dispersion). The imaginary parts (not shown in the figure) are both positive and negative, which can be interpreted as instability or as gain. Note that we can interpret the ends of the flat parts of the dispersion as exceptional points, even a ring of exceptional points in two dimensions. The third case is represented in red. For larger interactions αn > E p , we observe that a gap opens in the dispersion (the space between the two black dashed lines).

The size of the gap can be determined analytically from the dispersion:

∆ = (αn -E p ) (3αn -E p ). 1.80
This configuration is called a gapped superfluid because it is a superfluid, where the dispersion presents a gap (like in superconductors). There is quite a debate in the literature on whether this regime can or cannot be labelled superfluid [START_REF] Juggins | Coherently driven microcavity-polaritons and the question of superfluidity[END_REF]. In this regime, the excitation of the fluid approximately verifies the Landau criterion of superfluidity, the remaining dissipation being due to the imaginary part of bogolon energies [START_REF] Cancellieri | Superflow of resonantly driven polaritons against a defect[END_REF][START_REF] Berceanu | Drag in a resonantly driven polariton fluid[END_REF]. However, a non-zero imaginary part is present due to the Beliaev decay of phonons [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF] even in conservative condensates, which are perfectly superfluid. We think that this regime can therefore be called a gapped superfluid regime, but with a remark that the pumped mode shows original rigid behaviour against perturbations [START_REF] Juggins | Coherently driven microcavity-polaritons and the question of superfluidity[END_REF].

Exciton-polaritons in the superfluid regime have been observed experimentally [START_REF] Amo | Superfluidity of polaritons in semiconductor microcavities[END_REF] and give access to interesting phenomena, such as the formation of solitons [START_REF] Amo | Polariton superfluids reveal quantum hydrodynamic solitons[END_REF].

Optical parametric oscillator

Exciton-polaritons can also reach the regime of optical parametric oscillation [START_REF] Savvidis | Angle-resonant stimulated polariton amplifier[END_REF][START_REF] Baumberg | Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation[END_REF]. Optical parametric oscillations [START_REF] Akhmanov | Observation of parametric amplification in the optical range[END_REF][START_REF] Giordmaine | Tunable coherent parametric oscillation in LiNbo 3 at optical frequencies[END_REF][START_REF] Ciuti | Theory of polariton parametric interactions in semiconductor microcavities[END_REF], together with optical parametric amplification [START_REF] Baumgartner | Optical parametric amplification[END_REF][START_REF] Cerullo | Ultrafast optical parametric amplifiers[END_REF], have important practical applications, in particular the generation of entangled photon pairs [START_REF] Sharping | Generation of correlated photons in nanoscale silicon waveguides[END_REF]. The term "optical parametric oscillation" (OPO) can be decomposed to better understand its meaning. First, the term "optical" refers to the use of light, in other words, photons. Then, the term "oscillation" refers to the round trips of light in the nonlinear medium, which gives the amplification. This means that light has to be confined, in some way. Finally, the term "parametric" means that the oscillator is driven not by an external force, but by modulation of one of its parameters (e.g. frequency).

We will illustrate this phenomenon in the polariton platform using a simple example, as depicted in Fig. 1.24(a). In this example, a pump drives a non-linear medium at the frequency ω p and with a wave vector k p . As a result of the non-linear processes, the light is decomposed into two parts, one which we want to use, called signal (at the frequency ω s and with a wave vector k s ) and the other part is called the idler (at the frequency ω i and with a wave vector k i ). This phenomenon is called the parametric down-conversion. We consider a 1D system, so the wave vectors are colinear.

The parametric process has to fulfill two conditions. The first one is the conservation of energy, which reads:

ω p = ω s + ω i . 1.81
This condition is illustrated in Fig. 1.24(b). Note that in general, we are not interested in the idler produced by the process, but this idler exists precisely because of the fulfilment of the condition of energy conservation. The second condition is the phase-matching condition. Pumping (red arrow) a non-linear medium (yellow box) gives rise to oscillations of light in the medium, which emits at each oscillation a signal (blue arrow) and an idler (green arrow). (b) Illustration of the energy conservation condition. A quantum of energy from the pump ω p (red) is converted into a quantum of energy ω s and another one ω i so that energy is conserved. (c) Illustration of the phase-matching conditions. The wave vector of the pump is equal to the sum of the wave vectors of the signal and of the idler.

This corresponds to the conservation of the momentum, in other words, the wave vector:

k p = k s + k i . 1.82
This condition is illustrated in Fig. 1.24(c). When both conditions are fulfilled, the parametric process can take place, and the oscillations of light in the non-linear medium give rise to amplification. This very general phenomenon can take place using exciton-polaritons because of their non-linearities.

We will explain the parametric process in the case of an OPO with exciton-polaritons. The system considered is a microcavity with embedded quantum wells, as sketched in Fig. 1.25(a). To observe the OPO, there is a need for a pump and a probe that will stimulate the process. We consider being below the bistability threshold (we do not have a superfluid). The microcavity acts as a non-linear medium where the exciton-polaritons can oscillate. The dispersion of microcavity polaritons is shown in Fig. 1.25(b). The wave vector is here represented as an angle θ, because experimentally the dispersion is resolved thanks to the variation of the angle of the detector. The wave vector can be deduced from the detection angle by the relation:

k = ω c sin(θ), 1.83
where E = ℏω is the energy of the detected wave. The probe is represented in panel (a) as an arrow at normal incidence so that θ = 0. On the contrary, the pump is at a non-normal incidence, at the angle θ p ̸ = 0. The excitation in the reciprocal space is schematically shown in panel (b). The angle of the pump where the parametric amplification occurs is located at the bottleneck of the dispersion, which allows getting resonant with the bottom of the dispersion. Fig. 1.25(c) sketches the result of the detection, where the signal, pump, and idler are depicted in blue, red, and green respectively. Finally, panel (d) shows the parametric process that occurs in terms of energies. From two quanta of energy at the pump frequency ω p , the parametric process creates two waves, the signal at the frequency ω s and the idler form one quantum at ω s , (the signal, in blue) and one quantum at ω i (the idler, in green). The process is stimulated by a probe at the signal frequency ω s .

(at larger wave vector and energy) at ω i . The conservation of energy can be expressed as:

2ω p = ω s + ω i .
1.84

However, as depicted in the figure, there is a need for stimulation at the signal frequency for the parametric process to occur. This parametric, which involves four frequencies, two of them being degenerate, is called degenerate four-wave mixing.

Polariton Bose-Einstein condensate and polariton lasing

We end this subsection on non-linear and quantum polaritonics with the most famous effect, namely the polariton Bose-Einstein condensation. Note that the condensates obtained using microcavity polaritons are actually quasi-condensates because they are intrinsically 2D while genuine Bose-Einstein condensates can only be 3D. The observation of Bose-Einstein polariton condensates requires non-resonant pumping. In non-resonant pumping, the goal is to create a large exciton reservoir at a high energy/wave vector, from which the excitons will relax to end in the most favorable state (the lower energy state, the ground state). This state is precisely the bottom of the polariton branch in the most simple case [START_REF] Kasprzak | Bose-Einstein condensation of exciton polaritons[END_REF], but it can occur at nonzero wave vector in patterned cavities [START_REF] Solnyshkov | Kibble-zurek mechanism in polariton graphene[END_REF][START_REF] Solnyshkov | Domain-wall topology induced by spontaneous symmetry breaking in polariton graphene[END_REF].

We can describe the polariton Bose-Einstein condensation using the following form of the Gross-Pitaevskii equation [START_REF] Wertz | Propagation and amplification dynamics of 1D polariton condensates[END_REF][START_REF] Solnyshkov | Hybrid Boltzmann-Gross-Pitaevskii theory of bose-Einstein condensation and superfluidity in open drivendissipative systems[END_REF]:

iℏ∂ t ψ(r, t) = (iΛ -1) ℏ 2 2m pol ∇ 2 r + α|ψ(r, t)| 2 + iγ r -iΓ pol ψ(r, t), 1.85
where Λ denotes the k-dependent (quadratic) losses, recently measured experimentally [START_REF] Fontaine | Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate[END_REF], and γ r = γ r,0 e -n/nmax is a saturated gain. We can understand the phenomenon of polariton Bose-Einstein condensation as follows. The non-resonant pumping creates a large exciton reservoir at high energy. The excitons will relax (their energy will decrease) following the excitonic dispersion. When their energy decreases, they can couple to light to form excitonpolaritons, so that they finally follow the polaritonic dispersion (the lower polariton branch). When they get to the lowest part of the dispersion, they cannot relax even more. This explains the loss profile encoded in Λ and Γ, which is giving a minimum of losses at the bottom of the polariton dispersion. So, the exciton-polaritons accumulate at the lower part of the dispersion, but their lifetime is finite. The pumping power of the reservoir has to be high enough (equal or higher than a threshold P th ) so that, at a given moment of time, there are more polaritons arriving at the ground state than polaritons decaying or out of this state. However, there is a maximum density of polaritons that can be reached, as encoded in the saturated gain term. Note that the interactions can favour Bose-Einstein condensation, because a collision between two particles at a high wave vector can scatter one of the two towards a lower wave vector.

Exciton-polaritons have the property that a polariton Bose-Einstein condensate is also a polariton laser [START_REF] Imamoglu | Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers[END_REF][START_REF] Deng | Polariton lasing vs. photon lasing in a semiconductor microcavity[END_REF]. Indeed, polariton Bose-Einstein condensates are formed in lossy cavities and they emit light, as shown in Fig. 1.26. Polariton lasing is close to the polariton Bose-Einstein condensation, but polariton lasing is a more general term. The main difference is that polariton Bose-Einstein condensation, according to its definition as a thermodynamic phase transition, requires thermalisation [START_REF] Kasprzak | Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes[END_REF]. When a macrooccupied polariton mode forms without thermalization, one can only speak about polariton lasing, but not about condensation. The properties of polariton lasers are, however, strongly different from the properties of conventional lasers. The latter require population inversion, which is not the case in polariton lasers.

In this section, we studied the properties of the quasiparticles named exciton-polaritons, which are mixed states between semiconductor excitons and cavity or guided photons. They inherit the advantages of both their photonic part (wave guiding, low effective mass, high velocity) and their excitonic part (interactions, non-linearities). We have shown that excitonpolaritons demonstrate strong non-linearities and quantum effects by studying several examples. In all examples, the non-linearities are associated with phase coherence, which proves that polariton non-linearities truly come from quantum many-body interaction processes. In the next section, we will explain the common development of topological photonics and polaritonics.

Topological photonics and polaritonics

Polarisation of light and topology

Before giving a rather historical introduction to topological photonics, we introduce the concept of polarisation of light and study its implications on the eigenstates of microcavities.

In the previous sections, we neglected the effect of the polarisation of light. Polarisation is a property of light that we can see as an additional degree of freedom. This means that each photonic mode of a cavity is actually a doublet of polarisation. The polarisation of light can be interpreted as the orientation (in real space) of the oscillations of the electromagnetic field. For instance, we represent in Fig. 1.27 the electric field component of the electromagnetic field (the magnetic field is not represented). We see that there are 4 linear polarisations (a-d). The first one is vertical (a), which is orthogonal to horizontal polarisation (b). From those two linear polarisations, it is possible to construct the anti-diagonal (c) and diagonal (d) polarisations, which are essentially the half-difference and half-sum of the horizontal and vertical polarisations. That is why we call those 4 polarisations linear. On the contrary, the two circular polarisations (e,f) are not just linear combinations of the previous one, but there should be a phase between the x and y oscillations. The left (e) and right (d) circular polarisations are different, because the electric field rotates counter-clockwise for the left circular polarisation and clockwise for the right circular polarisation. We clearly see that there is a qualitative difference between the linear and circular polarisations, notably because of the phase associated with the circular polarisations. The polarisation can be noted |H⟩ for horizontal, |V ⟩ for vertical, |D⟩ for diagonal, |A⟩ for anti-diagonal, |σ -⟩ for left circular polarisation, and |σ + ⟩ for right circular polarisation.

We will now demonstrate that the polarisation (the Stokes vector) of light can be interpreted and used as a pseudospin. Indeed, it is very analogous to the spin of an electron, for instance. A very handy way to represent the spin of an electron is to use the Bloch sphere. We represent the spin up by |↑⟩ and the spin down by |↓⟩. We can represent the spin on the Bloch sphere, as done in Fig. 1.28(a). The spin-up and spin-down states are located at the poles of the sphere while their linear combinations are on the equator. Then, for any linear combination of spin up and down, there exists a corresponding position on the Bloch sphere. Moreover, the Bloch sphere allows representing the field acting on the spins. For instance, we can represent a positive magnetic field in the vertical direction B z > 0 as an arrow going from the center of the sphere to the top of the sphere. Then, we understand that a given spin, represented as an arrow as well, will tend to align with the magnetic field.

In the example of a positive magnetic field along z, the spin tends to become up. On the contrary, a negative magnetic field along the z direction tends to turn the spin down.

For photons, that are bosons and have an integer spin (but with only two allowed projections on the propagation direction), the same sphere is called the Poincaré sphere. It allows to represent the polarisation degree of freedom instead of the spin. Fig. 1.28(b) shows the Poincaré-Bloch sphere with the six polarisations. The circular polarisations are located at the poles, while the linear ones lie in the equatorial plane. As for the spin, it is possible to represent the true polarisation of the light we study as an arrow, so the polarisation is a pseudospin. The arrow can point in any direction, and as for the spins, there can be an effective field acting on it. If we take a very general Hamiltonian of the form:

H = d 0 σ 0 + d • σ, 1.86
then d is the effective field acting on the system. It has three components, and if normalized, it can be represented at the Poincaré-Bloch sphere. Moreover, we can define the three pseudospin components:

1 2 ( ) -i 1 2 ( ) +i 1 2 ( ) + 1 2 ( ) - (a) (b) H � - � + V D A
S x = I H -I V I H + I V , S y = I D -I A I D + I A , S z = I + -I - I + + I - , 1 . 
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where I is the intensity of the field (measured intensity of light for instance) in a given polarisation. We understand easily that a wave polarised horizontally will have S x = 1, S y = S z = 0, while a wave polarised σ -will have S x = S y = 0, S z = -1. Furthermore, it is possible to predict the time evolution of the pseudospin S = (S x , S y , S z ), which follows the precession equation [START_REF] Kavokin | Optical spin Hall effect[END_REF]:

∂ t S = S × d. 1.88
In waveguides, the guided modes can be decomposed into transverse electric (TE) and transverse magnetic (TM) modes in 2D. They correspond to the condition of vanishing outof-plane electric/magnetic fields, respectively. However, in 3D waveguides, it is impossible to have purely TE or purely TM modes, but a given mode can be interpreted as quasi-TE or quasi-TM when its out-of-plane electric/magnetic field is negligible compared to the in-plane components. TE and TM polarisations are linear polarisations.

An important consequence of the polarisation of light in microcavities is the TE-TM splitting [START_REF] Kavokin | Optical spin Hall effect[END_REF]. As aforementioned, the cavity photons form quadratic bands. Taking into account the polarisation, each quadratic band splits into two quadratic bands, one whose polarisation is transverse electric, and another whose polarisation is transverse magnetic. The Hamiltonian of the two modes can be written, in the {TE,TM} linear basis:

H TETM = ℏ 2 k 2 2m TE 0 0 ℏ 2 k 2 2m TM , 1.89
where m TE and m TM are the effective masses of the TE and TM modes, respectively. The Hamiltonian is diagonal, so that eigenvalues appear directly on the diagonal. If we want to express it in the circular polarisation basis {+,-}, we use the transition (change of basis) matrix:

T l→c = 1 √ 2 e iθ k e -iθ k ie iθ k -ie -iθ k , 1.90
where θ k = tan -1 (k y /k x ). We can then change the basis by the transformation:

H LR = T l→c H TETM 1.91
we can express the Hamiltonian in the circular polarisation basis {+, -}:

H LR = ℏ 2 k 2 2m * βk 2 e -2iθ k βk 2 e 2iθ k ℏ 2 k 2 2m * , 1.92
where m * is the effective mass of the parabolic dispersion in the circular polarisation, linked with the TE and TM effective masses by the relation:

1 m * = 1 2 1 m TE + 1 m TM , 1.93
and the coefficient β is given by:

β = ℏ 2 4 1 m TE - 1 m TM , 1.94
β denotes the strength of the TE-TM splitting. If it is large (in absolute value), it means that the effective masses of TE and TM modes strongly differ.

The Hamiltonian can be written to make appear the Pauli matrices:

H LR = d 0 σ 0 + d r • σ, 1.95
where d 0 = ℏ 2 k 2 /2m * is the coefficient of the identity matrix, while the effective field acting on the system can be expressed as:

d r =    βk 2 cos(2θ k ) βk 2 sin(2θ k ) 0    . 1.96
The eigenvalues of the Hamiltonian are given by:

E LR = ℏ 2 k 2 2m * ± βk 2 . 1.97
The dispersion is plotted in Fig. 1.29(a), where we show the TE and TM branches in blue/red respectively. Note that the two bands cross quadratically at k = 0. The fact that the band touching is quadratic can be better seen by plotting the energy difference between the two bands, as in panel (b). We clearly see that the bands touch quadratically, which is different from a Dirac point where the bands cross linearly. This can be attributed to the winding 2 of the pseudo-spin, and more generally, a topological singularity associated with a winding number w = m leads to a band touching of order m (that is, at the power m). The quadratic crossing point is the only degeneracy point in the dispersion, which means that the total winding number is indeed +2, meaning that the situation is globally topologically non-trivial. Moreover, we plot in Fig. 1.29(c) the pseudospin of the lower band. We clearly see, with the arrows, that the pseudospin rotates twice when rotating around the singular point at k = 0. This leads to a winding number w = +2, which is different from the winding number ±1 present in graphene. This is a very important result, that the TE-TM splitting induces a topological configuration in a basic optical microcavity, just because of polarisation effects.

In other words, the TE-TM splitting in microcavities is topological. With cavity photons, the TE-TM splitting splits the parabolic photonic modes into polarisation doublets. With cavity polaritons, there are already two branches (UPB and LPB). This means that the TE-TM splitting will split the lower polariton branch into a doublet, and the upper polariton branch as well, so that there will be four branches in total.

If we want our model to be more realistic, we can add a term accounting for linear birefringence [START_REF] Terças | Non-Abelian gauge fields in photonic cavities and photonic superfluids[END_REF]. The Hamiltonian becomes:

H bir = ℏ 2 k 2 2m * β 0 e -iφ + βk 2 e -2iθ k β 0 e iφ + βk 2 e 2iθ k ℏ 2 k 2 2m * , 1.98
where β 0 is the term accounting for the linear birefringence (we set φ = 0 in the following). This linear birefringence comes from an anisotropy of refractive indices in the x and y directions, which is ubiquitous in real microcavities (it can in principle be small or zero, but it is often not negligible). The effective field can be modified by adding the term of linear birefringence along σ x : The resulting eigenvalues can be found analytically:

d r =    β 0 + βk 2 cos(2θ k ) βk 2 sin(2θ k ) 0    . 1.99
E LR = ℏ 2 k 2 2m * ± (β 0 + βk 2 ). 1.100
The effect of linear birefringence on the eigenvalues can be understood easily. Before this term was added, there were only quadratic terms in k in the Hamiltonian for both polarisations. So, the bands were touching at k = 0. With birefringence, there is a constant term (that does not depend on k) that is taken positively for one polarisation and negatively for the other. Thus, the term splits the bands at k = 0. We can see it on the dispersion plotted in Fig 1 .30(a). However, the mass of the lower band is lower than the mass of the upper band, which creates two other crossing points at k ̸ = 0. It is easy to understand that each point has a winding number 1 because the original degeneracy of winding 2 splits into degeneracies of winding 1, which conserves the total winding number. We can find the position of degeneracy points from the dispersion. This gives the degeneracy points at position (k x , k y ) = (k D , 0), k D being defined as:

k D = β 0 β . 1.101
Making a Taylor expansion close to the degeneracy points, we find the linear dispersion typical for Dirac points, which explains the name k D . It is harder to see than in the case of graphene because the Dirac points are tilted here. The linear crossings are associated with a winding number 1, as can be seen in the pseudospin texture plotted in Fig. 1.30(c).

The previous effects were possible in an optical microcavity even without polaritons. Nevertheless, it is possible to take advantage of the excitonic part of the exciton-polaritons, which gives them a sensitivity to magnetic fields. Indeed, applying a magnetic field along the z direction splits the energy of the exciton in two:

E X (B z ) = E X ± ∆ z (B z ) 2 , 1.102 (b) (a) Energy (meV) Energy k x (µm -1 )
k y (µm -1 ) 0 1. where ∆ z is the Zeeman splitting induced by the applied magnetic field B z :

2∆ z (B z ) = gµ B B z , 1.103
where µ B is the Bohr magneton and g is called the g-factor. It characterises the magnetic moment of the exciton. The largest g is, the strongest is the response to an applied magnetic field (the larger the Zeeman splitting is). The splitting of the excitonic energy levels is sketched in Fig. 1.31(a). The splitting between the two final energy levels is ∆ z , but the shift in energy with respect to the initial energy level is ±∆ z /2. This splitting in energy transfers to the polaritons because the excitons with an out-of-plane angular momentum J z = ±1 couple to the light with the right/left circular polarisation σ ± .

If we now consider an optical microcavity with a quantum well and an external magnetic field, we have the addition of the three effects [START_REF] Gianfrate | Measurement of the quantum geometric tensor and of the anomalous Hall drift[END_REF]. First, TE-TM splitting lifts the degeneracy between TE and TM modes, creating a quadratic band touching at k = 0 associated with a winding number 2. Then, the birefringence splits the quadratic degeneracy into two Dirac points, with a linear dispersion and a winding number 1. Finally, the external magnetic field gaps out the Dirac points which separate the bands. We can see in Fig. 1.31(b) the dispersion in this case where the bands split, with a polaritonic Zeeman splitting of 50 µeV, corresponding to an applied magnetic field of approximately 8 T. When we plot the energy difference between the two bands, it never reaches zero (panel (c)), so we can conclude that there is no degeneracy point anymore.

In this first subsection about topological photonics, we introduce the concept of polarisation of light. We show that in microcavities, the introduction of polarisation of light splits the TE and TM modes, which creates topological singularities (Dirac points) in the dispersion. In a microcavity hosting exciton-polaritons, the excitonic part gives the possibility to remove the singularities and split the TE and TM modes. The short example we introduced is very representative of the field of topological photonics and polaritonics. Indeed, the interesting properties of light polarisation give rise to topological effects, that are exalted by the presence of excitonic effects, as we will see in the next subsection. 

History of topological photonics and polaritonics

In this section, we present the most remarkable results on topological photonics, from its birth to the current state-of-the-art. We however do not pretend to give a comprehensive review of the field.

The topological photonics started with the seminal theoretical works [START_REF] Raghu | Analogs of quantum-Hall-effect edge states in photonic crystals[END_REF][START_REF] Haldane | Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[END_REF]. It was understood that it was possible to observe Dirac points in photonic crystals, that is, in patterned waveguides. The patterned waveguide consists of a 2D hexagonal lattice of nanorods, as shown in Fig. 1.32(a). It is possible to find the TE band structure of an infinite triangular lattice of dielectric rods (sensitive to a magnetic field) in a background of air by solving numerically Maxwell's equations, and the dispersion actually contains two Dirac points. The dispersion is plotted in Fig. 1.32(b), where we can indeed see the two linear crossing points. The presence of Dirac points suggests that the system is potentially topologically non-trivial. Indeed, if a magnetic field perpendicular to the 2D plane of the structure is applied (the field note B z , in the z direction), it opens a topological band gap between the upper and lower bands. Indeed, the lower/upper band is associated with a Chern number ±1. Moreover, the bulk-boundary correspondence states that the gap Chern number of +1 gives one edge state propagating in the positive direction. Of course, simulations of a finite system (that contains an edge) validate this assumption. We show in Fig. 1.32(c) the band structure of a finite structure under a magnetic field B z . It shows that there is a photonic band gap for the bulk of the structure (the space between the two horizontal dashed blue lines). Meanwhile, there are edge states that exist in the gap of the bulk states, and which propagate in only one direction (the slope of the dispersion of the two edge states is positive, they propagate to the right). This means that those edge states are protected from scattering into the bulk because, at their energy, there is no state available in the bulk of the structure. At their energy, the only states that can propagate do it at the edge of the structure, which provides them "topological protection". This topological protection was demonstrated experimentally soon after the first theoret- ical publications [START_REF] Wang | Reflection-free one-way edge modes in a gyromagnetic photonic crystal[END_REF][START_REF] Wang | Observation of unidirectional backscattering-immune topological electromagnetic states[END_REF][START_REF] Lu | Topological photonics[END_REF]. A sketch of the experimental setup is shown in Fig. 1.33(a). In a macroscopic gyromagnetic waveguide under a strong magnetic field, there are two antennas marked A for the injection and B for the detection. The two antennas are located at the edge of the waveguide, and they are separated by an obstacle that can be removed.

In panel (b), we show the result of the simulations of propagating topological photonic edge states. The edge states begin to propagate from injection point A in the right direction, following very well the edge of the waveguide. Then, if the obstacle is present (panel (c)), we see that the edge state is neither back-scattered, nor scattered in the bulk. Indeed, at the energy of the edge states (as in the previous example), only the edge states are available, and no state from the bulk or counter-propagating exists. This explains that the wave bypasses the obstacle and finally continues its propagation at the edge of the waveguide, to the right. In panel (d), we show the transmission from A to B (in blue) and from B to A (in red). We see that in the band gap (yellow area), the transmission from B to A is almost suppressed.

On the contrary, it is still possible to go from A to B without much loss. This confirms the absence of propagative states for one direction and their presence for the other.

After those theoretical and experimental breakthroughs, the field of topological photonics has become very broad. The plethora of advances in the field has become hard to follow, but we will try to list some key steps in its development, despite being far from exhaustive [START_REF] Ozawa | Topological quantum matter in synthetic dimensions[END_REF].

First, we want to point out that the propagating edge states themselves are not observed in Ref. [START_REF] Wang | Observation of unidirectional backscattering-immune topological electromagnetic states[END_REF]. On the contrary, a famous example of measurement of propagating topological edge states has been done in an exciton-polariton system. It is possible to pattern an optical microcavity with embedded quantum wells in the shape of a honeycomb lattice, which forms a polaritonic graphene [START_REF] Jacqmin | Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons[END_REF], as shown in Fig. 1.34(a). The patterning gives touching micropillars, as shown in panel (b). Moreover, the degeneracy points of the polariton graphene (with a quadratic band touching, similar to what can be found in graphene with a Rashba spin-orbit coupling [START_REF] Zarea | Rashba spin-orbit interaction in graphene and zigzag nanoribbons[END_REF][START_REF] Van Gelderen | Rashba and intrinsic spin-orbit interactions in biased bilayer graphene[END_REF] or bilayer graphene [START_REF] Novoselov | Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene[END_REF][START_REF] Mccann | Asymmetry gap in the electronic band structure of bilayer graphene[END_REF][START_REF] Zhang | Direct observation of a widely tunable bandgap in bilayer graphene[END_REF][START_REF] Mccann | The electronic properties of bilayer graphene[END_REF]) can be gapped by an applied magnetic field, letting appear unidirectional edge states [START_REF] Nalitov | Polariton Z topological insulator[END_REF]. This phenomenon is very close to the one predicted in the previous examples but in a patterned optical microcavity. The edge states in blue/red can be seen on panel (c). The edge states are unidirectional, and the colour shows the edge on which they are propagating (an edge state propagating counter-clockwise at the edge of a rectangular structure will go to the top at the right side and to the bottom at the left side of the structure). The advantage of microcavities is that both the dispersion and the states are experimentally accessible [START_REF] Klembt | Exciton-polariton topological insulator[END_REF]. Indeed, we see in panels (d-g) the corresponding experiments. In panels (d,e), we show the experimentally observed images of the polariton graphene. In panel (f), we clearly see the propagation of the edge state (red areas at the edge, white arrows are a guide for the eyes). Furthermore, the dispersion can also be measured (see panel (g)). However, the dispersion is not very conclusive, because the gap is not very well resolved, and the edge states are not clearly visible in the dispersion. To summarize, despite those results being really impressive and groundbreaking, some aspects are still elusive, because the edge states are not resolved in reciprocal space. Moreover, it is known in the community that those experimental results are very hard to reproduce.

The photonic part of exciton-polaritons not only makes it possible to observe the propagation of topological edge states, but we will see that it also facilitates the achievement of lasing. A topological laser uses the outstanding properties of a topologically protected state, such as topological protection from back-scattering and scattering into the bulk, and high localisation, and the non-linearities of the medium to reach lasing on modes with interesting properties. The first example of a topological laser was a topological polariton laser based on the SSH chain [START_REF] Solnyshkov | Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars[END_REF][START_REF] St-Jean | Lasing in topological edge states of a one-dimensional lattice[END_REF][START_REF] Solnyshkov | Microcavity polaritons for topological photonics[END_REF]. The theoretical proposal uses two polarisations (diagonal/anti-diagonal) [START_REF] Solnyshkov | Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars[END_REF]. We see in Fig. 1.35 that there is a possibility to have one (a) or two (b) edge states, depending on the geometry of the chain. However, the edges are strongly polarised, meaning that the edge states have a well-defined A/D polarisation. In panel (c), we clearly see the effect of a pump: the two dimers adjacent to the pump show a strong density of states with diagonal/anti-diagonal polarisation, depending on the orientation of the dimer. The polariton laser was achieved by pumping specifically one edge, where the polariton lasing (or polariton condensation) occurs. The principles exposed in this theoretical work have been exploited soon after in the first experimental implementation of a topological polariton laser [START_REF] St-Jean | Lasing in topological edge states of a one-dimensional lattice[END_REF]. In this case, the diagonal/anti-diagonal polarisations are replaced by the diagonal/anti-diagonal p orbitals, but the effect is very similar. We see in Fig. 1.35(d) the polaritonic SSH chain obtained by patterning an optical microcavity with embedded quantum wells. It consists of a chain of overlapping pillars. The resulting band structure is shown in panels (e,f) for two different pumping configurations. In the first one (e), the bulk of the chain is pumped. We see the s band at the lowest energy, then the two p bands separated by a band gap, and then higher energy bands. On the contrary, when the edge of the chain is pumped, we see additional states in the dispersion (encircled in blue).

If we look at the shape of the states in real space, as reproduced in panel (g), we notice that the additional states are localized at the edge of the chain. They appear only in the case of edge pumping precisely because the spatial overlap between a pump on the edge and an edge state is very good, whereas it is very low if the pump is focused on the bulk. Pumping the edge not only allowed probing the topological edge states, but also made it possible to observe lasing from those states, as theoretically predicted.

The previous example is a 1D chain so the edge states on which lasing occurs are 0D and they do not propagate. It is however possible to implement lasing in 2D topological structures. Thus, the interface or edge states are 1D and can propagate. This has been proposed [START_REF] Harari | Topological lasers[END_REF] and realised experimentally [START_REF] Bahari | Nonreciprocal lasing in topological cavities of arbitrary geometries[END_REF][START_REF] Bandres | Topological insulator laser: Experiments[END_REF]. We will explain this strong achievement in detail in the last chapter of the manuscript.

In parallel to the development of topological edge states and lasers, most of the topological singularities we presented have been observed in topological photonics. A ring of exceptional points was observed in a photonic crystal, where the non-Hermitian term is brought by the radiative losses inherent to photonics [START_REF] Zhen | Spawning rings of exceptional points out of Dirac cones[END_REF]. The observation of Weyl points in a photonic 3D structure consisting of laser-written waveguides followed [START_REF] Noh | Experimental observation of optical Weyl points and Fermi arc-like surface states[END_REF]. Exceptional points and their bulk Fermi arcs have been observed in photonics [START_REF] Zhou | Observation of bulk Fermi arc and polarization half charge from paired exceptional points[END_REF] and polaritonics [START_REF] Richter | Voigt exceptional points in an anisotropic ZnO-based planar microcavity: Square-root topology, polarization vortices, and circularity[END_REF], and the prediction [START_REF] Cerjan | Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges[END_REF] and observation [START_REF] Cerjan | Experimental realization of a Weyl exceptional ring[END_REF] of a Weyl ring in a photonic system were also done. We see that both Hermitian and non-Hermitian singularities are accessible in photonic and polaritonic systems.

In this chapter, we presented the key concepts that are needed to understand the works that we will present in the manuscript. In the next chapters, we will develop the works carried out during this thesis. The following chapter is devoted to an original study of the Andreev reflection and bound states in a polaritonic system. 

Polaritonic Josephson junctions

Chapter 2: Polaritonic Josephson junctions I n this chapter, we begin to develop the works carried out during the thesis. A huge part of this thesis is devoted to studying analogue physics in the exciton-polariton platform. After introducing Andreev reflection, Andreev bound states, and multi-terminal Josephson junctions for superconductors, we draw an analogy between the gapped superfluid regime achievable with microcavity polaritons and the superconducting phase of matter. We demonstrate that this analogy allows predicting the phenomenon of Andreev reflection for polaritons. Next, we extend the analogy to polaritonic Josephson junctions, showing that the energy of Andreev bound states depends on the phase difference between the two superfluids forming the junction. This gives rise to synthetic bands (the energy versus the phase difference), which can be topological, characterised by the Zak phase. We predict analytically and verify numerically the existence of topologically protected interface states with possible parametric amplification. Moreover, we study multi-terminal Josephson junctions, where the number of terminals dictates the number of dimensions of the parameter space. In a 4D parameter space, we study the motion, creation, and annihilation of Weyl points, which are linked with the appearance of a Chern number for synthetic bands.

Andreev reflection and Andreev bound states in superconducting Josephson junctions

Andreev reflection

The phenomenon of Andreev reflection consists in the reflection of an electron as a hole [START_REF] Andreev | The thermal conductivity of the intermediate state in superconductors[END_REF]. It occurs at the interface between a non-superconducting region and a superconducting one (an NS interface). The phenomenon of Andreev reflection can be understood qualitatively as follows. A superconductor is characterised by a band gap between electrons of the conduction and valence band, as sketched in Fig. 2.1(a). Inside the gap, only Cooper pairs can exist [START_REF] Cooper | Bound electron pairs in a degenerate Fermi gas[END_REF][START_REF] Bardeen | Microscopic theory of superconductivity[END_REF][START_REF] Bardeen | Theory of superconductivity[END_REF][START_REF] Bogoliubov | A new method in the theory of superconductivity. 1[END_REF]. Suppose there is an electron incident from a normal metal toward a superconductor, with its energy inside the gap. In that case, it can only be transmitted as a Cooper pair, a pair of electrons. However, if we create from an incident particle at the energy E two particles with a total energy 2E, the energy is not conserved. So, to conserve the energy, it is mandatory that one particle at -E be created as well so that the energy is well-conserved:

E = 2E -E. 2.1
In this case, a particle at negative energy is a hole excitation. In a nutshell, the Andreev reflection is the reflection of an electron as a hole, as represented in Fig. 2.1(a), and it appears because of the Cooper pairs existing in the superconductors.

To describe the phenomenon quantitatively, we use the equations determining the evolution of the electronic wave function, which can be written as [START_REF] Blonder | Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion[END_REF]:

iℏ∂ t f = - ℏ 2 2m ∇ 2 r -E F + V (x) f (x, t) + ∆(x)g(x, t), 2.2 iℏ∂ t g = -- ℏ 2 2m ∇ 2 r -E F + V (x) g(x, t) + ∆(x)f (x, t), 2.3
where f, g are the wave function of the electron and hole respectively, E F is the Fermi level,

V the potential (taken equal to zero in both regions in the following), and ∆(x) = ∆ 0 e iϕ U(x) the coupling between the electron and the hole. This last term is zero in the normal region, so the equations are simplified into the Schrödinger equations for an electron and its timereversed version for a hole. In the superconductor, it is nonzero, so it creates a gap in the dispersion. The coupling ∆ is linked with an amplitude of the gap ∆ 0 and a phase ϕ corresponding to the order parameter of the Bose-Einstein condensate of Cooper pairs.

We now write the wave functions f and g as conjugated plane waves of wave vector k and energy E: f (x, t) = ũe ikx e -iEt/ℏ , g(x, t) = ṽ * e -ikx e iEt/ℏ , 2.4

where ũ and ṽ are the Bogoliubov coefficients. Inserting this ansatz into the equations 2.2 and 2.3 , we find the coupled equations (keeping only first-order terms):

(ϵ k -E F ) ũ + ∆ṽ * = E ũ -(ϵ k -E F ) ṽ * + ∆ũ = Eṽ * , 2.5
where we use the notation ϵ k = ℏ 2 k 2 /2m, m being the effective mass of the electrons. Those equations are the Bogoliubov-de Gennes equations, which can be written in a matrix form:

ϵ k -E F ∆ ∆ * -ϵ k + E F ũ ṽ = E ũ ṽ , 2.6
Note that in this case, the matrix is Hermitian. In the normal region where the coupling is null ∆ = 0, the matrix becomes diagonal:

ϵ k -E F 0 0 -ϵ k + E F ũ ṽ = E ũ ṽ , 2.7
so the dispersion of the electrons and holes can be found as follows:

E = ± (E F -ϵ k ) . 2.8
However, there is only one actual branch because the negative energy of the holes appears only in the time-reversed Schrödinger equation (see Eq. 2.4 , 2.6 ). The dispersion in the normal (metallic) region is plotted in Fig. 2.1(b), where we can see the branch that crosses the Fermi energy. The electrons are located above the Fermi energy (in blue), while the holes are below (in red). We can write the expressions of the wave vectors q ± versus the energy:

q ± = 2m(E F ± E) ℏ .

2.9

In the superconductor, we can find the dispersion relation by cancelling the determinant of the full matrix of the eigenvalue problem 2.6 , which gives:

E = ± (E F -ϵ k ) 2 + ∆ 2 0 . 2.10
Reversely, we can express the wave vectors (that we note k in the superconductor and q in the normal region) versus the energy:

k ± = 2m E F ± E 2 -∆ 2 0 ℏ .

2.11

The dispersion is plotted in Fig. 2.1(c). We can see that the coupling ∆ induces the existence of a gap 2∆ 0 centred around the Fermi energy, typical for a superconductor.

We now consider the Andreev approximation E F ≫ E, ∆ 0 , which is appropriate in most cases. We will distinguish between two cases. For E > ∆ 0 , the wave vectors k ± are purely real, and there is a transmission. On the other hand, for E < ∆ 0 (inside the gap), the wave vectors have an imaginary part, so the states are evanescent in the superconductor. For conciseness, we will consider only the case of energies inside the gap 0 < E < ∆ 0 , but the developments are similar for negative energies or energies outside the gap.

We can calculate the Bogoliubov coefficients:

ũ± = E ± E 2 -∆ 2 0 2E , ṽ± = E ∓ E 2 -∆ 2 0 2E 2.12
where the ± sign comes from the two roots for the energy. We must remember that since E < ∆ 0 , these coefficients are complex. Since ũ± = ṽ∓ , we only need two coefficients. We take the coefficients with a + sign for ũ and the minus sign for ṽ (that we further note u 0 , v 0 ). We can rewrite these coefficients in the form:

u 0 = ∆ 0 2E e iχ/2 , v 0 = ∆ 0 2E e -iχ/2 , 2.13
where χ = arccos E/∆ 0 . They verify the condition:

u 2 0 + v 2 0 = 1 2.14
Now, we have the essential ingredients that will be used to calculate the Andreev reflection. The next step is to build scattering wave functions to calculate the scattering coefficients, in this case, the reflection coefficients. We consider the configuration where an electron is incident from the normal region toward the superconductor. The corresponding wave function reads:

ψ i = 1 0 e iq + x , 2.15
where we use the spinor form for electrons/holes. In the most general case, this unique incident particle will give rise to two reflections, the specular reflection with the wave function:

ψ rs = r s 1 0 e -iq + x 2.16
and the Andreev reflection which converts the incoming electron into a reflected hole, with a wave function:

ψ rA = r A 0 1 e iq -x
2.17

where r s,A are the reflection coefficients denoting specular and Andreev reflection respectively. The wave vector here is q -and not -q -because the hole is the conjugate of the electron. Moreover, we can see here an interesting feature of the Andreev reflection. If we consider that the incident electron is not at normal incidence but at an arbitrary angle, the reflected electron will be reflected in the same quadrant of space, as represented in Fig. 2.1(a), because the electron is the complex conjugate of the hole. Moreover, to determine the angle of the reflection, we use the relation:

q + sin(θ i ) = q -sin(θ A ), 2.18
where θ i,A are the angle of incidence and reflection with respect to the normal to the interface at the incidence point. This relation comes from the invariance of the problem in the y direction, which imposes the conservation of the y-projection of the wave vector (in absolute value, a minus sign can appear because of the conjugation). Now, if we want to determine the angle of the reflected wave, we just write:

θ A = arcsin E F + E E F -E sin(θ i ) . 2.19
Moreover, if we consider the Andreev approximation stating that the Fermi energy is way larger than the energy E F ≫ E, we end with:

θ A ≈ θ i , 2.20
that is, the reflected beam is exactly opposite to the incident one.

Because we consider energies below the energy of the superconducting gap, there is formally no transmission in the superconductor. The wave vectors in the superconductor are complex, the wave functions are evanescent, and read:

ψ ± k + = η + u 0 e iϕ/2 v 0 e -iϕ/2 e ±ik + x , ψ ± k -= η - v 0 e iϕ/2
u 0 e -iϕ/2 e ±ik -x , 2.21 where η ± is the pseudo-transmission coefficient. We remind that ϕ is the phase of the superconductor. Note that the solutions are partly electron-like and partly hole-like.

To find the expressions of the coefficients, we use the continuity of the wave function at the NS interface, which gives 2 equations (one for positive and one for negative energy); and we use the continuity of the derivative of the wave function at the interface (taking into account the group velocity v g = ∂ k ω of each component to conserve the current density), which gives 2 other equations. We finally have a set of 4 equations with 4 unknowns (r s , r A , and η ± ) that can be solved. To be more realistic, we can at that stage add a delta potential x = 0, describing the properties of the interface. It has no impact on the continuity of the wave function at the interface, and we still have:

ψ L (x = 0) = ψ R (x = 0) ≡ ψ 0 , 2.22
where ψ L,R are the wave functions at both energies in the left/right region (the left region is normal, the right region is a superconductor). The continuity of the derivative of the wave function has to be written:

∂ψ L ∂x - ∂ψ R ∂x = ℏv F Z, 2.23
where v F is the Fermi velocity and Z stands for a non-perfect interface that we describe by the delta potential. If Z = 0, the NS junction is ideal, and we find that the derivatives of the wave functions in the left and right regions at x = 0 are equal.

We can now write the expression for the reflection coefficients under the Andreev approximation, in presence of the delta barrier:

r s = - u 2 0 -v 2 0 ζ Z 2 + iZ , r A = u 0 v 0 ζ e -iϕ ,

2.24

where

ζ = u 2 0 (1 + Z 2 ) -v 2 0 Z 2 .
We see that for an ideal interface, there is no specular reflection r s = 0, and the Andreev reflection coefficient becomes r A = (v 0 /u 0 )e -iϕ . Using the expressions of u 0 and v 0 given in Eqs. 2.13 , we finally find:

r A = e -iχ e -iϕ .

2.25

The superconductor phase ϕ appearing in the Andreev reflection coefficient will be crucial in the next subsection.

We can gather the scattering coefficients into the scattering matrix accounting for the reflection S r . For an ideal interface Z = 0, the matrix reads (in the {electron, hole} basis):

S r = e -iχ 0
e iϕ e -iϕ 0 .

2.26

This means that an electron reflected as a hole acquires a phase -ϕ, while a hole reflected as an electron acquires a phase ϕ.

To sum up, we used the Bogoliubov-de Gennes equations and the scattering formalism to find the scattering coefficients linked with the Andreev reflection phenomenon. This phenomenon consists in the reflection of an electron as a hole at the normal/superconductor interface. The wave vector of the reflected hole is opposite to the wave vector of incidence, if we consider the Andreev approximation. If the interface is ideal, there is only Andreev reflection and no specular reflection at all. Finally, the reflected particle acquires a phase ±ϕ after the Andreev reflection.

The objective of this derivation is triple. First, we now know the main properties of the electronic Andreev reflection. Second, the derivation will follow the same steps when we will do it for our system (polaritons). Finally, the scattering formalism we use for finding the reflection coefficients will be very useful in the next subsection, where we will study Andreev bound states in Josephson junctions.

Andreev bound states and Majorana fermions

We now consider a Josephson junction [START_REF] Josephson | Possible new effects in superconductive tunnelling[END_REF], that is, a superconductor-normal-superconductor (SNS) junction, as sketched in Fig. 2.2(a). Such a junction is made of two NS interfaces, as we studied above. The use of the scattering formalism will make it relatively simple to go from the unique interface case to the SNS junction [START_REF] Beenakker | Universal limit of critical-current fluctuations in mesoscopic Josephson junctions[END_REF]. In such a junction, we are looking for bound states. A bound state exists if, after double scattering one recovers the initial state. The scattering phenomena in the whole junction are gathered in a generic matrix S tot , so the condition of existence of a bound state can be written as:

det (I -S tot ) = 0, 2.27
where I is the identity matrix. The total scattering matrix can be found following each scattering phenomenon separately, as sketched in Fig. 2.2(a). For instance, consider an electron at the right NS interface, propagating in the right direction. It will be reflected at the interface, which is taken into account by the scattering matrix S R r (r for reflection, R for right interface). Then, the hole (if the interface is perfect, otherwise the electron/hole superposition) propagates to the left (scattering matrix S n accounting for the propagation), then it is reflected (scattering matrix S L r ), and then propagates in the right direction (scattering matrix S n accounting for the propagation) to the initial point. The total scattering matrix thus reads:

S tot = S R r S n S L r S n .

2.28

The scattering matrices accounting for the reflection at the interfaces read:

S R,L r = e -iχ 0 e iϕ R,L e -iϕ R,L 0 , 2.29
where ϕ R,L are the superconductor phases of the left/right superconductor respectively. Without losing generality, we set ϕ L = 0 to be the phase reference and ϕ R ≡ ϕ, which becomes the phase difference between the two superconductors. The scattering matrix describing the propagation in the normal region of width a is simply:

S n = e iq + a 0 0 e -iq -a , 2.30
that is, the electrons/holes acquire a phase due to their propagation in the normal region.

In the end, under the Andreev approximation and for an ideal interface, the condition 2.27 reduces to:

e iϕ-2iχ = 1, 2.31
which gives the relation between the energy of a bound state E and the phase difference between the two superconductors ϕ:

E (ϕ) = ±∆ 0 cos ϕ 2 . 2.32
The energy is plotted versus the phase in Fig. 2.2(b). We see that there are energy bands, that we call synthetic bands because the energy is determined by an external parameter rather than versus the wave vector (but it is still a periodic function of this parameter). Moreover, we see that the two bands (red and green) cross at E = 0 (ϕ = π), which is a signature of Majorana bound states, very promising for quantum simulation and computing [START_REF] Mourik | Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices[END_REF][START_REF] Leijnse | Introduction to topological superconductivity and Majorana fermions[END_REF][START_REF] Alicea | New directions in the pursuit of Majorana fermions in solid state systems[END_REF]. Majorana fermions are particles that are their own antiparticles [START_REF] Majorana | Teoria simmetrica dell'elettrone e del positrone[END_REF], which becomes possible here thanks to the degeneracy at E = 0. The states that cross at the Fermi energy are known as solid-state physics Majorana fermions, because they are the superposition of an electron and a hole. This situation is achievable only using topological superconductors, the presence of Majorana fermions being topologically protected there.

If the NS interfaces are not ideal, we have to take it into account, and the synthetic bands become:

E (ϕ) = ±∆ 0 1 -T int sin 2 ϕ 2 , 2.33
where T int accounts for the imperfectness of the interface, similar to the Z in the previous subsection. For T int = 1, the interface is ideal and we find back the previous bands. For

T int ̸ = 1, the bands do not cross anymore, as shown in Fig. 2.2(b), and the periodicity is 2π here. Those bands correspond to Andreev bound states.

In this subsection, we used the results found in the case of a single NS interface to study the SNS junction. We have written the condition for the existence of bound states in the junction and found that the energy of bound states depends on the phase difference between the superconductors. We have plotted synthetic bands and shown that some bands cross, linked with Majorana fermions useful in quantum computing, whereas some other bands do not cross (they are Andreev bound states). In the following, we will see that the topological band crossings can be achieved using several trivial superconductors surrounding a normal region: a multi-terminal Josephson junction.

Multi-terminal Josephson junctions

We now consider a Josephson junction composed of more than two superconducting links connected together by a unique normal region [START_REF] Riwar | Multi-terminal Josephson junctions as topological matter[END_REF], as shown in Fig. 2

.3(a). A m-terminal

Josephson junction connects together m superconducting links with their own phase ϕ j with j ∈ [[1; m]], leading to (m-1) independent phases, one of the phases being the phase reference (we set ϕ 1 = 0 as the phase reference). The scattering in the normal region is an arbitrary scattering matrix S describing a disordered normal region. Using the scattering formalism, we can write the condition of existence of bound states in the junction as:

Weyl point � 1 =0 � 2 � 2 /� � 3 � 4 ��� Normal (a) (b) (c) E/� -1 -1 0 0 1 1 � 2 /� -1 0 1
det 1 -e -2iχ Se iΦ S * e -iΦ = 0, 2.34
where Φ is a matrix that assigns a phase ϕ m to the m th superconducting lead. This is very similar to the formula describing a 2-terminal junction but adapted to the multi-terminal case (scattering matrix in the normal region connecting several links, and several phases).

The synthetic space formed by the phases is of dimensions m -1, which can be arbitrarily large in principle. The dispersion corresponding to the variation of one particular phase is plotted in Fig. 2.3(b), where we see different bands for E < ∆ 0 . The other phases are set at arbitrary values for this example. If we tune the values of these phases, we can reach a different configuration, where the energy of the Andreev bound states will cross the zero energy, as in panel (c). This band crossing is a synthetic Weyl point, and because the energy of the Weyl point is zero, it is a Majorana fermion.

The possibility to obtain topologically protected Majorana fermions with topologically trivial superconductors raised a huge activity in the field [START_REF] Yokoyama | Singularities in the Andreev spectrum of a multiterminal Josephson junction[END_REF][START_REF] Meyer | Nontrivial Chern numbers in three-terminal Josephson junctions[END_REF][START_REF] Eriksson | Topological transconductance quantization in a four-terminal Josephson junction[END_REF][START_REF] Xie | Topological Andreev bands in threeterminal Josephson junctions[END_REF][START_REF] Deb | Josephson junctions of multiple superconducting wires[END_REF][START_REF] Houzet | Majorana-Weyl crossings in topological multiterminal junctions[END_REF][START_REF] Xie | Topological supercurrents interaction and fluctuations in the multiterminal Josephson effect[END_REF][START_REF] Gavensky | Topological phase diagram of a threeterminal Josephson junction: From the conventional to the Majorana regime[END_REF][START_REF] Klees | Microwave spectroscopy reveals the quantum geometric tensor of topological Josephson matter[END_REF][START_REF] Klees | Ground-state quantum geometry in superconductor-quantum dot chains[END_REF][START_REF] Weisbrich | Second Chern number and non-Abelian Berry phase in topological superconducting systems[END_REF][START_REF] Gavensky | Multi-terminal Josephson junctions: A road to topological flux networks[END_REF]. So far, it has not been observed experimentally. Nevertheless, this platform not only gives the possibility to observe Weyl singularities, but also to reach a very high (arbitrarily large) dimensionality of the synthetic parameter space. This is by itself an interesting feature of the seminal proposal [START_REF] Riwar | Multi-terminal Josephson junctions as topological matter[END_REF], which has no restrictions (at least theoretically) in the number of dimensions of the parameter space. For instance, we can see in Fig. 2.4(a) the Weyl singularities in a 3D parameter space. We remind that the full dispersion is hard to represent, because the parameter space is 3D, which together with the energy gives 4 dimensions. That's why one usually just shows the position of the Weyl singularities in the 3D parameter space, conserving the most crucial information, the position of the points. The details of the dispersion are less important, because it is known to be linear close to Weyl points, where the Fermi level is usually located.

In panel (b), the authors of Ref. [START_REF] Riwar | Multi-terminal Josephson junctions as topological matter[END_REF] show the Chern number (calculated in the 2D subspace (ϕ 2 , ϕ 3 )) when ϕ 4 is varied. If one starts at ϕ 4 = -π, the Chern number is zero. Then, increasing ϕ 4 , one meets one Weyl point of positive charge, which increases the Chern number to 1. After meeting a negative Weyl point, the Chern number goes back to zero for ϕ 4 = 0, and similarly for 0 < ϕ 4 < π. In the end, the use of the 2D Chern number allows one to simplify the situation and to plot a picture in 1D (Chern number against ϕ 4 ), even if some information is lost again (the position of the Weyl point in the (ϕ 2 , ϕ 3 ) subspace).

The authors of Ref. [START_REF] Riwar | Multi-terminal Josephson junctions as topological matter[END_REF] then consider a 5-terminal Josephson junction with 4 independent phases. The parameter space is 4D, and it is impossible even to show the position of Weyl points in the parameter space. Instead, one can calculate the 2D Chern number in the (ϕ 2 , ϕ 3 ) subspaces, and plot it in 2D as shown in panel (c). In this plot, the vertical axis is ϕ 4 , while the horizontal one is ϕ 5 . Thus, each point corresponds to a unique position in the 2D subspace (ϕ 4 , ϕ 5 ), and this position is associated with a unique 2D Chern number calculated in the (ϕ 2 , ϕ 3 ) subspace. From this figure, it is possible to determine the position of the Weyl points (only the (ϕ 4 , ϕ 5 ) coordinates). These points correspond to the places where the Chern number changes. However, no topological charge can be associated with those Weyl singularities in the 4D parameter space. To define a topological charge, one has to come back to a 3D parameter space. Figure 2.4 shows two examples. In the first example, one sets ϕ 4 = 2π/3. This corresponds to the horizontal orange line in Fig. 2.4(c). Then, if one starts from ϕ 5 = -π and increases it, the Chern number goes from 0 to -1, which signifies that one has encountered a Weyl point of negative Charge. After that, the Chern number goes from -1 to 0, which means that one has encountered a Weyl point with a positive sign. The Chern number then goes from 0 to +1, and to 0 again, which means a positive Weyl point and then a negative one. In the end, in the 3D subspace (ϕ 2 , ϕ 3 , ϕ 5 ) associated with ϕ 4 = 2π/3, there are 4 Weyl points.

The authors of ref. [START_REF] Riwar | Multi-terminal Josephson junctions as topological matter[END_REF] then consider a different situation. One sets ϕ 5 = -2π/5 and works in the (ϕ 2 , ϕ 3 , ϕ 4 ) subspace, corresponding to the purple vertical line in Fig. 2.4(c). One starts with ϕ 4 = -π and increases it. The Chern number goes from 0 to +1 (a positive Weyl point). Then, the Chern number goes from +1 to 0, meaning that one has encountered a negative Weyl point. In the end, there are only two Weyl points in that case. It is an indication of time-reversal symmetry breaking of this specific 3D synthetic subspace (this will be discussed later). Moreover, the second Weyl point in this case corresponds to the third Weyl point of the previous case. However, the topological charge associated with the point is the opposite for the two configurations. This is possible, because a constant charge can be attributed only in a 3D parameter space.

Multi-terminal Josephson junctions represent a promising platform to find topologically protected Majorana fermions using trivial superconductors. Moreover, it gives access to a synthetic parameter space of arbitrarily large dimension, its dimension being controlled by the number of superconducting leads. In the following section, we will study an analogue of 
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Chern number this system using polariton superfluids instead of superconductors. We will build the multiterminal Josephson junction step by step. We will begin by studying the Andreev reflection on a polaritonic superfluid, then we will study polaritonic Andreev bound states, and finally Weyl singularities in polaritonic multi-terminal Josephson junctions.
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Polaritonic Josephson junctions: From Andreev reflection

to multi-terminal Josephson junctions

Polaritonic Andreev reflection

It is well-established that a driven-dissipative system of exciton-polaritons under quasiresonant pumping can operate in a gapped superfluid regime [START_REF] Carusotto | Probing microcavity polariton superfluidity through resonant Rayleigh scattering[END_REF][START_REF] Ciuti | Quantum fluid effects and parametric instabilities in microcavities[END_REF], as presented in the introduction of the manuscript. However, the similarities between this gapped superfluid and a superconductor, if ever noticed, have never been used to study the Andreev reflection on a gapped superfluid. More generally, the phenomenon of Andreev reflection is not widely studied in bosonic systems. A proposal [START_REF] Zapata | Andreev reflection in bosonic condensates[END_REF] mentioned the possibility to observe Andreev reflection on a Bose-Einstein condensate in a specific regime, which we estimate to be difficult to reach. This proposal has not been followed by experimental observations. We theoretically predicted the possibility of an Andreev reflection on a polaritonic superfluid and studied its properties and consequences in Refs. [199,200]. In this subsection, we will present the results of these studies, after a preliminary discussion on the gapped superfluid regime. 

Propagative and evanescent bogolons

We consider a planar microcavity with an embedded quantum well, so that cavity photons can couple to excitons and form exciton-polaritons [START_REF] Carusotto | Quantum fluids of light[END_REF][START_REF] Goblot | Phase-controlled bistability of a dark soliton train in a polariton fluid[END_REF][START_REF] Kavokin | Microcavities[END_REF], and we consider that this cavity is under quasi-resonant pumping, as sketched in Fig. 2.5(a). We neglect polarisation effects. The originality of our work is that we consider not only the propagative states (as we did in the introduction), but also the evanescent states in the superfluid, which, in particular, exist in the gap. It is crucial to consider those states to describe the reflection processes.

We remind that the excitons-polaritons are in this case well-described by the Gross-Pitaevskii equation:

iℏ ∂ψ ∂t = - ℏ 2 2m ∇ 2 -iγ + α|ψ| 2 ψ + P.

2.35

We consider γ = 0 to facilitate the analytical calculations, but we will verify numerically that a finite lifetime does not prevent our predictions to be valid, and we consider the laser pump to be at normal incidence. We consider the wave function of a spatially homogeneous solution ψ s = √ ne iϕ e -iωpt where ϕ is the phase of the superfluid, to which we add small complex-conjugated perturbations (bogolons), which gives the complete wave function:

ψ = e -iωpt ψ s + ue ikr e -iωt + v * e -ikr e iω * t , 2.36
Inserting this wave function into the 2D Gross-Pitaevskii equation gives, at first order in k, the Bogoliubov-de Gennes equations:

L αψ 2 s -αψ * 2 s -L * u v = E u v , 2.37
where L = (ϵ k -E p + 2αn) (still with ϵ k = ℏ 2 k 2 /2m and |k| = k). E = ℏω denotes the energy of a particle with respect to the pump energy E p . We will not insist on all differences and similarities between our study and the study of Andreev reflection in the field of superconductors. However, a crucial difference already appears in the form of the matrix. Because of the particular types of the interactions involved, our matrix is non-Hermitian, while the matrix in the electronic case is Hermitian. We will show later that it is possible to take advantage of this peculiar property of our system. Moreover, the superfluid phase will appear with a factor 2, instead of a factor 1 in the electronic case.

The dispersion can be found by canceling the determinant of the full eigenvalue problem matrix, which gives:

E 2 = (ϵ k + αn -E p ) (ϵ k + 3αn -E p ) . 2.38
Reversely, the dependence of the wave vectors on the energy can be calculated:

k ± = 2m E p -2αn ± (αn) 2 + E 2 ℏ .

2.39

For a sufficiently large polariton density n, the regime αn > E p can be achieved, which leads to the formation of a gapped superfluid. The dispersion, in this case, is plotted in Fig. 2.5(b) in solid lines, and we can see the gap 2∆ (grey area) separating the two branches, centered around the pump energy E p (thick pink line). The amplitude of the gap can be found analytically by calculating the energy difference between the upper and lower branch at k = 0: ∆ = (αn -E p )(3αn -E p ).

2.40

As mentioned above, the configuration of a gapped superfluid is known for decades now in polaritonic systems, but the evanescent states in the superfluid gap have never been considered before our works (to our knowledge). The evanescent states are associated with puraly imaginary wave vectors that correspond to purely real inverse decay lengths. Indeed, from Eq. 2.39 , we see that the condition αn > E p gives purely imaginary wave vectors for certain energies, that is, evanescent states. More precisely, the wave vector k -is imaginary for all energies, while the wave vector k + is real only for E > ∆. This means that instead of the wave vectors 2.39 , one should use inverse decay lengths:

κ ± = 2m 2αn -E p ∓ (αn) 2 + E 2 ℏ .

2.41

The inverse decay length κ -should be used for all energies, because the corresponding wave vector is imaginary for all energies, while κ + should be used only for energies inside the gap.

We have shown the inverse decay lengths κ ± in Fig. 2.5(b) in dashed lines. We see that κ + indeed continues the dispersion of the propagative states k + inside the gap, while κ -exists for all energies as a separate evanescent solution.

There are similarities between the gapped superfluid regime and superconductors. The dispersion includes a gap in both cases. In the superfluid regime, the center of the gap is at the pump energy E p , while it is at the Fermi energy E F in superconductors. Moreover, in both cases, the interactions require the use of Bogoliubov formalism, which couples a particle to its complex conjugate due to interactions. We can map the electron/hole symmetry of superconductors to the positive/negative energies in the case of a gapped superfluid.

We can find analytically the expressions of the Bogoliubov coefficients u and v, which denote the parts of the wave function oscillating at frequencies ±E/ℏ respectively from the Bogoliubov-de Gennes equations, using an appropriate normalisation condition. We can use two different normalisation conditions. A bogolon is a particle of energy E (which can be positive or negative) with fractions |u| 2 at E and |v| 2 at -E. For a positive energy E, we have E|u| 2 -E|v| 2 = E, whereas for a negative energy E, we have E|u| 2 -E|v| 2 = -E. The first possibility is to set |u| 2 -|v| 2 = 1 for both positive and negative energies, and set E > 0, so that a bogolon of negative energy will be at the energy -E, leading to E|u| 2 -E|v| 2 = -E. We do not choose this condition. We rather choose that a bogolon is a particle of energy E which can be positive or negative, and use the normalisation condition:

|u| 2 -|v| 2 = 1 for E > 0, |u| 2 -|v| 2 = -1 for E < 0.

2.42

This means that in the case E > 0, the amplitude of the mode at +E denoted |u| 2 will be larger than the amplitude at -E which is |v| 2 (|u| > |v|) and vice versa for a negative energy, which is self-consistent:

E > 0 =⇒ |u| > |v|, E < 0 =⇒ |u| < |v|. 2.43
The form of the Bogoliubov coefficients can then be determined analytically:

u ± = (αn) 2 + E 2 ∓ E √ 2E e iϕ , v ± = ± (αn) 2 + E 2 ± E √ 2E e -iϕ , 2.44
The superfluid phase ϕ appears in the u and v with opposite signs (positive in u and negative in v). This is due to the complex conjugation present in the wave function 2.36 . The ± sign means that u ± and v ± are associated with k ± respectively (at k + correspond u + and v + and at k -correspond u -and v -).

We now have introduced properly the gapped superfluid and the corresponding states, which can be either propagative or evanescent. We drew the analogy between a gapped superfluid and a superconductor. We will now demonstrate that it is possible to observe the Andreev reflection on a polaritonic superfluid.

1D reflection

For that purpose, we still consider a microcavity with embedded quantum wells, but the quasi-resonant pumping is now limited to a semi-infinite region, going from x = 0 to x → ∞. As shown in Fig. 2.6(a), the left part is not pumped (normal region), while the right part is pumped so that it enters into the gapped superfluid regime. The interactions are negligible in the left part where the pump is absent, whereas both interactions and pumping terms are present in the pumped area. This creates an interface at x = 0 between the normal region and the superfluid region (NS interface), analogous to the normal-superconductor interface. In the normal region, the Gross-Pitaevskii equation reduces to the Schrödinger equation:

iℏ∂ t ψ = - ℏ 2 2m ∇ 2 ψ. 2.45
This equation admits solutions in the form of plane waves:

ψ(x < 0, y, t) = e ±iq.r e -iϵqt/ℏ , 2.46
where q is the wave vector in the normal region. The dispersion of those plane waves is quadratic: ϵ q = ℏ 2 q 2 /2m. We will use this kind of wave function in our calculations. To distinguish between waves at positive and negative energies in the normal region, we define the wave vectors:

q ± = 2m (E p ± E) ℏ .

2.47

We now define the scattering states for an incident wave at positive energy. We will use the spinor form for the wave functions: e -iE/ℏt ≡ 1 0 ; e +iE/ℏt ≡ 0 1 .

2.48

First, the incident wave has a wave function:

ψ I = 1 0 e iq + r .

2.49

The reflected waves have the wave function:

ψ rN = 1 0 e -iq + r 2.50
for the normal (specular) reflection associated with a reflection coefficient r N and

ψ rA = 0 1 e -iq -r 2.51
for the Andreev reflection, associated with a scattering coefficient r A . The scattering coefficients are schematically depicted in Fig. 2.6(b) at each energy. Now, in the superfluid region, there are two cases that have to be distinguished. First, if the energy of the incident wave is lower than the gap |E| < ∆ (since E > 0, because we chose the incident wave to be at positive energy, we can write E < ∆), there is no transmitted wave in the superfluid. Indeed, we can see in Fig. 2.6(c) the dispersions in the normal and superfluid regions. We see that for an incident particle at positive energy (blue dashed line), there is no propagative state in the superfluid precisely because of the gap. There are only evanescent states in the superfluid.

On the contrary, we show in panel (d) the situation where E > ∆. In this case, there are propagative states at the energy of the probe (blue dashed line) in the superfluid, so that there is a transmission. However, we clearly see that the wave function 2.36 is suitable only for propagative states and cannot be used in the case of imaginary wave vectors (evanescent states), because the complex conjugation in 2.36 is written assuming real k. So, we have to adapt this wave function to the case of evanescent states to correctly describe this situation.

To study the Andreev reflection, we will first calculate the angle of the Andreev reflection and transmission. Then, we will compute the analytical expressions for the scattering coefficients in the different configurations (allowed or forbidden transmission). We will finally discuss the experimental conditions (fully encoded in the energy E and angle θ I of the incident wave), that lead to Andreev reflection or transmission, and see the impact in the shape of the states in real space.

2D reflection angle

We first consider the dependence of the Andreev reflection on the angle of incidence of the probe. We define the angle of incidence θ I with respect to the normal incidence, as represented in Fig. 2.7(a). This unique incident wave is reflected both at the same energy and at the opposite energy with respect to the pump energy E p . Because of the energy conversion, the angles of Andreev reflected waves and transmitted waves are different from the angle of incidence, as we can see in Fig. 2.7(b). In the (q x , q y ) plane, the norm of the wave vectors q ± are circles (blue for q + , red for q -). The radius of the circles is determined by the energy of the incident particle and not by the angle of incidence. The angle of incidence θ I determines the arrow accounting for the incident wave. It determines the wave vector in the y direction that we note k y , which is represented as a horizontal dashed black line. To determine the angle of the normal reflection θ N , we stay on the blue circle (because the energy is the same) but we look for a negative wave vector in the x direction because the wave propagates to the left as can be seen in panel (a). We end up with the relation:

θ N = -θ I , 2.52
which is simply the Snell-Descartes law for reflection. We can do a similar analysis for the Andreev reflection. Because the energy changes, we have to look at the red circle corresponding to q -. Since the wave propagates to the left, the wave vector in the x direction is negative. Moreover, the wave vector in the y direction is negative as well because there is a conjugation to go from the frequency of the probe to the Andreev frequency. In the end, we can conclude that the angle of the Andreev reflection is different from the angle of incidence.

Normal Superfluid To obtain the relation between the angle of incidence and the angle of the Andreev reflected and transmitted waves, we decompose the different wave vectors in real space: q + = (q x + , q y + ) = q + (cos(θ I ), sin(θ I )) 2.53 q -= (q x -, q y -) = q -(cos(θ A ), sin(θ A )) 2.54

k + = (k x + , k y + ) = k + (cos(θ T ), sin(θ T )) . 2.55
Moreover, the problem is invariant by translation along the y direction. In other terms, the components of the wave vectors along y are fully determined by the component of the incident wave vector along y. We can express it as:

q y + = q y -= k y + ≡ k y = q + sin(θ I ).

2.56

For the Andreev reflection, we obtain the relation:

θ A = arcsin E p + E E p -E sin θ I .

2.57

For positive energies, the Andreev reflection is at a bigger angle than the angle of incidence while it is the contrary for negative energies. The angle of the Andreev reflection with respect to the angle of incidence is plotted in Fig. 2.7(c) for different energies of incident particles.

In our system, we can see that the angle of the reflected wave is far from being equal to the angle of incidence, contrary to the electronic case. Indeed, the equivalent of the Andreev approximation in our system would be E p ≫ E, which is not the case in our system where they are typically of the same order of magnitude E p ∼ 2∆ ∼ E/2. Moreover, can notice that for E > E p (blue curves), the curve stops for a given angle of incidence. This means that there is a critical angle of incidence above which no Andreev reflection can occur. It can be found analytically and reads:

θ I,Rc = arcsin E p -E E p + E . 2.58
Finally, in the case where there is a possible transmission, its angle is determined by the relation:

θ T = arcsin E p + E E p -2αn + (αn) 2 + E 2 sin θ I .

2.59

Similarly to the case of reflection, we can find the critical angle of incidence above which no transmission in the superfluid can occur:

θ I,Tc = arcsin E p -2αn + (αn) 2 + E 2 E p + E . 2.60
The angle of the transmitted wave against the angle of incidence is plotted in Fig. 2.7(d) for different energies of the incident wave.

We will now compute the different scattering coefficients in the two configurations The wave vectors q ± are represented as circles in this space (blue/red circles for q ± respectively). For a low k y , that is, close to normal incidence, it is possible to have Andreev reflection (the dashed lines cross the red circle). On the contrary, if the angle of incidence is too large, this gives a larger k y , for instance the dotted lines, which do not cross the red circle, meaning that no Andreev reflection can be observed. (c) Angle of the Andreev reflection with respect to the angle of incidence for different energies of the incident wave. The difference is not negligible, because the Andreev approximation (∆ ≪ E p ) does not hold. (d) The angle of the transmitted wave with respect to the angle of incidence for different energies of the incident wave. where transmission is impossible and E > ∆ where there is a possibility of transmission.

E < ∆ Normal Superfluid θ A θ A θ I θ I θ I θ N θ N θ T x y (a) (b) q - q y k y q x q + 0 π/4 π/2 0 π/4 π/2 θ I θ T 0 π/4 π/2 -π/2 0 π/2 θ I θ A -θ I E=0 E=�/2 E=-�/2 E=3�/2 E=-3�/2 E=-2� E=2� E=� E=-2� (c) (d) 

2D reflection: forbidden transmission case

We begin by describing the case E < ∆. In this case, there are no propagative states in the superfluid region. Thus, the wave function that should be used in the superfluid region reads: ψ(x > 0, y, t) = e -iωpt ψ s + ue ikyy e -κx e -iωt + v * e -ikyy e -κx e iωt .

2.61

Note that we consider only real frequencies. κ is the inverse decay length and k y is the wave vector in the y direction, directly inherited from the incident wave. The propagative form of this term is responsible for the lateral shift of finite-size beams upon reflection in the Goos-Hänchen effect [START_REF] Goos | Ein neuer und fundamentaler versuch zur totalreflexion[END_REF] and its analogues. Inserting the solution 2.61 into the equation 2.35 , we find:

E 2 = ϵ ky -ϵ κ + αn -E p ϵ ky -ϵ κ + 3αn -E p .

2.62

From this relation, we can find that there are two different inverse decay lengths at each energy, different from the situation where the quasi-resonant pump is infinite (Eq. 2.41 ) because it takes into account the interface and the invariance along y:

κ ∓ = k 2 y + 2m 2αn -E p ± (αn) 2 + E 2 ℏ 2 .

2.63

Note that this is completely consistent with the inverse decay lengths defined previously, in Eq. 2.41 , but because of the semi-infinite pumped region and the probe sent from left to right the states have to be evanescent when x → ∞. The term k y in κ takes into account the decay induced by the transverse motion of the wave in the superfluid.

To determine the reflection coefficients, we consider the wave functions in the normal region Ψ N and superfluid region Ψ S . In the normal region, we have:

Ψ N = 1 √ w + (ψ I + r N ψ rN ) + 1 √ w - r A ψ rA , 2.64
where w ± = ℏ m q ± • r are the group velocities in the x direction at ±E. They are used to conserve the current density. In the superfluid region, we use the wave function denoting only evanescent waves:

Ψ S = * ≡± η * e -κ * x u * e ikyy v * e -ikyy , 2.65
where the coefficients η ± denote the part of the wave function that will exist in the superfluid as evanescent states. They are not scattering coefficients because they refer to non-scattering states (decaying states). We insist again on the fact that the apparent propagative form of the wave function in the y direction is consistent with an exponential decay in the x direction because it is taken into account in the inverse decay lengths.

The scattering coefficients are found from the continuity of the wave function and its derivative at the interface for both energies, which gives a system of 4 equations with 4 unknowns:

Ψ N (x = 0) = Ψ S (x = 0) ∂ x Ψ N (x = 0) = ∂ x Ψ S (x = 0) , 2.66
which can be written in a complete form composed of 4 equations:

1 √ w+ [1 +
rN ]e iky y 1 0 + rA √ w-e -iky y 0 1 = η+ u+e iky y v+e -iky y + η-u-e iky y v-e -iky y , 2.67

iq x + √ w+ [1 -rN]e iky y 1 0 - iq x -rA √
w-e -iky y 0 1 = -κ+η+ u+e iky y v+e -iky y -κ-η-u-e iky y v-e -iky y . 2.68

The normal and Andreev reflection coefficients are then determined analytically:

r N = (q x -+ iκ -)(q x + -iκ + )u + v --(q x + -iκ -)(q x -+ iκ + )u -v + (q x -+ iκ -)(q x + + iκ + )u + v --(q x + + iκ -)(q x -+ iκ + )u -v + , 2.69 r A = 2iq x + (κ + -κ -)v -v + (q x -+ iκ -)(q x + + iκ + )u + v --(q x + + iκ -)(q x -+ iκ + )u -v + √ w - √ w + . 2.70
where we use the notation q x ± = q ± • x. It is possible to express the scattering coefficients in this case, where only reflection is possible. In the {E, -E} basis, the scattering matrix reads:

S r = r N r * A r A r N . 2.71
The unitarity of this matrix gives the relation:

|r N | 2 + |r A | 2 = 1, 2.72
which is valid only when there are no propagative states in the superfluid.

The expression of the reflection coefficients cannot be easily extended to the case of E > ∆. Instead, we need to compute the scattering coefficients from the start, by considering a propagating wave function.

2D reflection: allowed transmission case

The derivation in the case of possible transmission is very similar, but we have to take a wave function in the superfluid allowing for propagative states. Moreover, the calculations will give not only reflection coefficients but also the transmission coefficient t denoting the part of the wave function from the incident wave that will be transmitted in the superfluid, as depicted in Fig. 2.6(b) and shown in the dispersion of panel (d). We remind that even for E > ∆, there are still evanescent states in the superfluid in addition to the propagative states. Thus, the wave function in the superfluid should be written as:

Ψ S,t = t u * e i(k + x+kyy) v * e -i(k + x+kyy) + η -e -κ -x u * e ikyy v * e -ikyy .

2.73

If we now use again the continuity of the wave function and its derivative at both energies 2.66 , which gives:

1 √ w + [1 + r N ]e ikyy 1 0 + r A √ w - e -ikyy 0 1 = t u + e ikyy v + e -ikyy + η -
u -e ikyy v -e -ikyy , 2.74

iq x + √ w + [1 -r N ]e ikyy 1 0 - iq x -r A √ w - e -ikyy 0 1 = ik + t √ w T u + e ikyy v + e -ikyy -κ -η - u -e ikyy v -e -ikyy ,2.75
where w T = ξℏk x + /m is the group velocity of the waves transmitted in the superfluid. It differs from the standard group velocity w = ℏk/m from a factor ξ that can be calculated from w = ∂ k ω, which gives:

ξ = 2αn -E p + ϵ k + E 2.76
We can finally solve the equations and find the scattering coefficients:

r N = (q x -+ iκ -)(q x + -k x + )u + v --(q x + -iκ -)(q x --k x + )u -v + (q x -+ iκ -)(q x + + k x + )u + v --(q x + + iκ -)(q x --k x + )u -v + , 2.77 r A = 2k x + (k x + + iκ -)v -v + (q x -+ iκ -)(q x + + k x + )u + v --(q x + + iκ -)(q x --k x + )u -v + √ w - √ w + , 2.78 t = 2k x + (q x -+ iκ -)v - (q x -+ iκ -)(q x + + k x + )u + v --(q x + + iκ -)(q x --k x + )u -v + √ w T √ w + 2.79
If we use the relations u + = -v -e 2iϕ and v + = u -e 2iϕ and define u = |u -| and v = |v -|, the scattering coefficients can be rewritten as:

r N = (q x -+ iκ -)(q x + -k x + )v 2 + (q x + -iκ -)(q x --k x + )u 2 (q x -+ iκ -)(q x + + k x + )v 2 + (q x + + iκ -)(q x --k x + )u 2 ,

2.80

r A = 2q x + (k x + + iκ -)uv (q x -+ iκ -)(q x + + k x + )v 2 + (q x + + iκ -)(q x --k x + )u 2 √ w - √ w + e -2iϕ , 2.81 t = 2q x + (q x -+ iκ -)v (q x -+ iκ -)(q x + + k x + )v 2 + (q x + + iκ -)(q x --k x + )u 2 √ w T √ w + e -iϕ 2.82
The scattering coefficients can be plotted against the energies for different experimental conditions, which are fully determined by the energy of the incident particle and the angle of incidence θ I in our model. We plot these scattering coefficients in Fig. 2.8(a), and we will come back to discuss them later.

We clearly see that the phase of the superfluid acts on the scattering coefficients. It appears with a factor of 2 in the Andreev reflection coefficient, and with a factor of 1 in the transmission coefficient. However, we also have to take into account the superfluid phase e ±iϕ , contained in the u and v coefficients of the wave function. In the end, the superfluid phase does not appear in the transmitted wave at positive energy (the same as the probe), whereas it appears with a factor (-)2 in the transmitted wave at the opposite energy, similar to the Andreev reflection coefficient in superconductors. Thus, we can interpret the polaritonic Andreev reflection as a parametric process. The parametric process is very similar to what is obtained in a polariton optical parametric oscillator [START_REF] Savvidis | Angle-resonant stimulated polariton amplifier[END_REF] discussed in chapter 1. Two "particles" from the pump at frequency ω p are converted into one particle at (dotted), r A (solid), and t (dashed lines) with respect to the energy for different angles of incidence θ I = {0, π/6, π/4} in pink, blue and green respectively. The grey lines (and corresponding points) show the energy (and corresponding angles) for which are calculated the states in Fig. 2.9. Note the peaks in the remaining coefficients when one vanishes. (b) Illustration of the parametric process in Andreev reflection. The pump is at energy E p with phase ϕ. Positive energies are at E p + E with no phase (we disregard the phase of the incident wave) whereas negative energies at E p -E gain a phase -2ϕ because of the parametric process (the minus sign appears because of the conjugation, see Eq. 2.36 ). 2 "particles" from the pump are converted into one "particle" at +E and no phase, and one "particle" at -E with a phase -2ϕ according to the phase-matching condition. positive energy ω p + ω and one particle at negative energy ω p -ω, as shown schematically in Fig. 2.8(b). The parametric process is described by the conservation of the energy:

2ω p = (ω p + ω) + (ω p -ω) , 2.83
while the phase-matching condition reads:

2iϕ = 0 + ((-2ϕ)i) * , 2.84
where the complex conjugation appears because of the form of the wave function 2.36 .

The parametric process, similarly to the historical polariton parametric oscillator [START_REF] Savvidis | Angle-resonant stimulated polariton amplifier[END_REF], has to be stimulated by a probe to take place. In our case, the incident wave plays the role of the stimulation, which then starts the scattering process involving the pump and the transmitted and/or reflected waves. In the frame of the scattering process, the signal is the normal reflection/transmission, while the Andreev reflection/transmission plays the role of an idler.

We analyze the possibility to observe Andreev reflection and transmission in the superfluid for different experimental conditions in Fig. 2.9(a). The limit angles determined by the relations 2.58 and 2.60 are drawn as thick red and blue lines, respectively. The red and blue areas represent the experimental conditions of energy E and angle of incidence θ I that lead to Andreev reflection and transmission, respectively. We moreover see that there are conditions that lead neither to Andreev reflection nor transmission, especially at high energy/angle (usual specular reflection is always allowed). We will look at the profile of the states in real space for three different configurations. The first one is shown in panel (b). The energy is inside the gap, so there is no transmission, but the angle of incidence is small, so there is an Andreev reflection. We see that at the energy of the incident wave, in the normal region, there are interferences between the incident and reflected waves. On the contrary, at the Andreev frequency, there is only one wave. It corresponds to the wave reflected by Andreev reflection. In the superfluid, all the waves are evanescent. In Fig. 2.8(a), this situation corresponds to the blue points (the crossings of a vertical grey line and the blue lines). We see that the normal and Andreev reflection coefficients are nonzero, while the transmission coefficient is null. We now consider the case plotted in Fig. 2.9(c). We see that there is a normal reflection, but no Andreev reflection and no transmission. This leads to the formation of a surface state at the Andreev frequency, because the states are evanescent on both sides of the interface. In Fig. 2.8(a), this corresponds to the green line. The grey line crosses the green line at high energies, and we see that only the normal reflection coefficient is nonzero (it is 1) so there is only normal reflection. On the contrary, in Fig. 2.9(d), we see that there is a normal and an Andreev reflection and that there are transmitted waves. There are transmitted waves at both energies, the amplitude at each energy being determined by the Bogoliubov coefficients. In Fig. 2.8(a), we see that the vertical grey line crosses the grey line at three points, which correspond to normal reflection, Andreev reflection, and transmission.

To sum up, we performed analytical calculations which allow predicting the phenomenon of Andreev reflection on a polaritonic superfluid. The properties of the reflected and transmitted waves are explicitly given by the energy of the incident wave E and the angle of incidence θ I . Now, we will show that simulations of the 2D Gross-Pitaevskii equation 2.35 support the analytical calculations and pave the way to a possible experimental observation. In the simulations, we used the parameters m = 8 × 10 -5 m 0 (m 0 is the free electron mass), α = 3.6 µeV•µm 2 . We do not neglect the lifetime of polaritons, we take γ = ℏ/2τ with τ = 15 ps.

We consider a 2D square area of side 256 µm with a grid of side 0.5 µm to simulate the in-plane distribution of light in the cavity. A pump under normal incidence covers half of the space x > 0. The pump energy E p is 0.5 meV above the polariton energy at k = 0. The polariton density injected by the pump creates a gap in the bogolon spectrum 2∆ ≈ 0.5 meV. Fig. 2.10(a) shows the gapped bogolon spectrum in the pumped area, which is computed by sending a weak delta pulse in time and space. Such gapped bogolon spectrum has been recently measured experimentally [START_REF] Claude | Spectrum of collective excitations of a quantum fluid of polaritons[END_REF]. Because of the interactions, the superfluid created by the resonant pump flows into the normal region, so its density is not zero in the normal region, and neither is the blue shift, as shown in Fig. 2.10(b). Indeed, contrary to the analytical calculations, where the interactions have a step profile (green dashed line), in the simulations the interactions are also present in the normal region (black curve), even if they are much lower than in the superfluid region, because of the decay, which is not compensated by direct pumping.

The main numerical experiment is based on having both the pump in the x > 0 region (to create the superfluid) and a probe sent from the normal region x < 0 at a given energy E -E p = 0.4∆ = 0.1 meV and given angle of incidence θ I towards the superfluid (the incident wave toward the superfluid). The probe needs to be sent from a reasonably short distance (15 µm), because of the polariton decay (the position is shown as a blue dashed line in Fig. 2.10(b)). Fig. 2.10(c) shows the distribution of the probability density in the reciprocal space at the Andreev frequency (the conjugate of the frequency of the incident wave). We can see that the interactions in the normal region make appear several intensity peaks not expected in the ideal analytical picture. These peaks correspond to several phenomena. First, the pump at the energy E p is clearly visible at -E because of its finite broadening. This frequency broadening comes both from the finite time window used in the simulation. The peak is located in reciprocal space at q y = 0, with a broadening along q x . It shows a maximum at a negative q x value, which corresponds to the superfluid particles accelerated to the left by the abrupt density gradient at the interface. These particles ballistically propagate in the normal region with a kinetic energy equal to the interaction energy in the superfluid. Then, the incident wave is the only one in the positive q x range. It is centered at the energy +E but it remains visible in log scale at the energy -E. This allows us to well visualize the angle of incidence θ I . At the same k y as the incident wave, we see a signal corresponding to the normal reflection with the reflection angle θ N . Again, it is centered at +E and is therefore only weakly visible at the energy -E.

At negative k y , we find two bright peaks which this time are centered at the energy -E. The one in red is the Andreev reflection. Its q x is slightly different from the one of the normally reflected signal, as predicted analytically (θ A ̸ = θ I ). Our simulations show that this small difference should be experimentally accessible: it becomes more important at larger energies and larger incidence angles (see Fig. 2.7(a)). Finally, the last peak called "Image of r N " is the idler state of a parametric scattering process taking place in the normal region between the pump flow and the normally reflected signal. This is a result of the deviation from the perfect interface picture, which however does not compromise the observation of the Andreev reflected signal.

We quantitatively verify the agreement between theoretical and numerical results in Fig. 2.10(d). The difference between the angle of Andreev reflection and the angle of incidence is plotted with respect to the energy for different angles of incidence. We show both analytical results (lines) and numerical results (points with error bars). We also plot the angle of transmission (dashed green line). We use the broadening of the peaks observed in the reciprocal space as an estimate for the uncertainty. Indeed, the shape of those peaks is asymmetric, and it is therefore not clear without deep analysis, whether the "true" value of the wave vector corresponds to the maximum of the intensity, to the center of mass of the distribution, or to some other, more complicated quantity taking into account the different nature of the sources of broadening (finite duration, finite system size, etc). Choosing the overall broadening for uncertainty guarantees that the real value of the wave vector falls inside the error bars. We can see that there is a good agreement between analytics and numerical experiments, even if the latter were performed in a realistic case (finite lifetime, pump flow in the normal region, etc).

We studied the configuration of a planar microcavity, leading to angular-dependent polaritonic Andreev reflection. If we consider a wire whose extension in the y direction is limited to approximately 2 µm, we can apply the results found before to the case of normal incidenceθ I = 0. Indeed, as mentioned above, the observation of the Andreev reflection requires a distance between the probe and the interface of approximately 15 µm, so that the incident wave is close to normal incidence and k y = 0. In the scattering coefficients, we can replace q x ± ≡ q ± and k x + ≡ k + . Similarly, we can approximate the angle of the Andreev reflection as well as the angle of the transmission by 0 (normal incidence). The scattering coefficients corresponding to this situation are plotted in Fig. 2.8(a) as pink lines. We see that inside the gap, the amplitudes of the specular and Andreev reflections are comparable, which means that the Andreev reflection is quite strong.

The interest in going from 2D Andreev reflection to 1D is that it facilitates the description of superfluid-normal-superfluid junctions (SNS junctions). In the following subsection, we will demonstrate that a polaritonic SNS junction is analogous to an electronic Josephson junction, and can host Andreev bound states. We will then show that the bands can be topological, characterised by the Zak phase, and that the non-Hermiticity of the Bogoliubovde Gennes matrix in our system leads to a parametric amplification that is completely absent in electronic Josephson junctions.

Polaritonic Josephson junctions and topological Andreev bound states

We now treat the problem of an SNS junction, following our approach in Ref. [199]. Two superfluids surround a normal region, as shown in Fig. 2.11(a,b). The superfluids have different phases, ϕ L = 0 and ϕ R ≡ ϕ, that are fully controlled by the phases of the pumping lasers. The density n in both superfluids is equal, only the phase is different. The width of the normal region is noted a.

We consider only the case where no transmission is possible, that is, |E| < ∆. In the absence of Andreev reflection, this SNS junction is nothing but a potential well. The central (normal) region can host bound states depending on its width. For a thin enough central region, there is only one bound state with a single peak, which corresponds to an s state. If we increase the width of the normal region, the energy of the states decreases and new states of higher energy will be confined in the structure. Their energy also decreases when the size of the trap is increased. We can understand the presence of bound states as follows. We take a given state and look at its propagation in the structure. First, it encounters the right interface and is reflected to the left. It then propagates in the normal region, then is reflected at the left interface, then propagates to the right in the normal region, and goes back to its initial position, as depicted in Fig. 2.11(a). Since there is no Andreev reflection, the only reflections considered are normal reflections, which do not change the energy. In the end, we find a bound state with a well-defined energy E. This energy can be found using the scattering formalism, which involves the propagation in the normal region and usual specular reflection at the interfaces. However, in the full picture, we do not study a simple quantum well, but a superfluidnormal-superfluid junction, so we have to take into account the Andreev reflection. We can follow the scattering processes described hereafter in Fig. 2 and is reflected both by normal reflection with amplitude r N and by Andreev reflection with amplitude r A (associated with an energy conversion). Then, the two parts of the states propagate at their respective energies in the normal region. At the left interface, the two parts are both normally and Andreev reflected, then they propagate in the normal region and go back to the initial point. Finally, at positive energy, the state is composed of an amplitude r 2 N similar to the case without Andreev reflection, but also a correction r 2 A because the state that is reflected by Andreev reflection on both interfaces is finally at the initial energy. This term is only a correction because the Andreev reflection is usually weaker than the normal reflection in our system. Moreover, at negative energy, the state is composed of the parts of the initial state that underwent one Andreev reflection and one normal reflection. Indeed, the part of the initial state that was Andreev reflected at the first interface, then normally reflected at the second has to be added to the part of the initial state that was normally reflected at the first interface, then Andreev reflected at the second to form the state at negative energy. Furthermore, the superfluid phase difference ϕ can be interpreted as a quasi-momentum. When it varies, the energy of a bound state varies as well. As we can see in Fig. 2.11(c), the majority component (solid line) that was a well-defined energy level now forms a synthetic band, where the quasi-momentum is here a parameter, the superfluid phase difference. In addition, the Andreev reflection leads to the formation of a second band (the minority component, dashed line), which is the strict symmetric of the first one with respect to the pump energy.

To summarise, the Andreev reflection has two qualitative effects on the bound states of the potential well. First, it adds a small correction to the bound state. Second, it creates an image of the bound state at the energy symmetric with respect to the pump energy E p . Thus, the bound state has two parts (energy or frequency components). What we call the majority component is the bound state of the initial potential well, with its small but non-negligible correction. Then, we call the minority component or Andreev counterpart the part of the bound state that exists only because of the Andreev reflection process. This part is not just a correction to a previously existing effect in usual potential wells, but is a true originality of our system. Furthermore, we will see in the following that a key ingredient of our system is the effect of the the superfluid phase, more precisely the difference between the two phases of the left and right superfluids, noted ϕ, that acts as a quasi-momentum.

To determine the energy of the bound states, we can describe what we discussed previously using the scattering formalism. The reflections on the left and right interfaces are denoted by the matrices:

S L/R = r N r * A (L,R) r (L,R) A r N . 2.85
As mentioned above, the only difference between the left and right interfaces is the superfluid phase. The scattering of the states in the normal region is taken into account by the scattering matrix:

S N = e iq + a 0 0
e iq -a .

2.86

Indeed, the propagation at positive energy is made at the wave vector q + , while the propagation at negative energy is made at the wave vector q -. The existence of a bound state of energy E is possible if the following relation is true:

det (I 2 -S N S L S N S R ) = 0, 2.87
where det is the determinant of the matrix and I 2 is the 2 × 2 identity matrix.

Alternatively, we can write the solutions in each region with arbitrary coefficients and use the continuity equations to determine these coefficients, finding both the eigenvalues and the eigenvectors. We can write the wave function in the normal region as:

Ψ N = Ae iq + x + Be -iq + x Ce iq -x + De -iq -x , 2.88
while it can be defined in the left/right superfluid as:

Ψ L,R = α L,R e ±κ + x u + v + + β L,R e ±κ -x u - v - . 2 

.89

The coefficients A, B, C, D, α L,R , β L,R can be determined by the continuity of the wave function and its derivative at the two energies and at the two interfaces, which gives a set of 8 equations and 8 unknowns. This allows finding the coefficients and ultimately the wave function in the complete real space (the normal region and the superfluids). We note that the normalisation of this wavefunction is different from the usual condition: here, |ψ| 2 dx ̸ = 1.

First, there are two components, whose difference is normalised to 1. Second, we ensure the normalisation of the amplitudes in the central region, in order to have a convenient spinor for topological analysis (see below).

Since the reflection coefficients make appear the superfluid phases of the left/right super- fluids, the energy of the bound state depends on the difference between the two superfluid phases ϕ. The energies are π-periodic, because the phase ϕ appears with a factor 2. In Fig. 2.12, we see the variation of the shape of the wave function (probability density) for different superfluid phases. We see that no matter the phase difference, the majority component stays approximately unchanged. Its shape shows one peak, it is approximately an s state, which corresponds to the first state confined in a quantum well. On the contrary, the shape of the minority component depends strongly on the phase. For zero phase difference (panel (a)), this state has approximately an s shape. For ϕ = π/4 (panel (b)), the minority component is approximately flat in the normal region and exponentially decaying in the superfluids. Finally, for ϕ = π/2 (panel (c)), the minority component has the shape of a p state, with two peaks and one node. We can understand that the minority component is more sensitive to the phase difference. Indeed, the majority component is determined mostly by the state that has been reflected normally on both interfaces, but only marginally by the state that has been reflected by Andreev reflection on both interfaces. On the contrary, the minority component is composed of the states that are reflected by normal then Andreev reflections and reversely Andreev then normal reflections, so the Andreev reflection is not a correction, but really dictates the shape of this component.

To quantify the change of the wave function with the superfluid phase, we calculate the Zak phase, as we did in the study of the SSH chain in Chapter 1. We define the Zak phase with respect to the superfluid phase, which is our quasi-momentum. Moreover, we will use the pseudospins:

X + = A B ; X -= C D , 2.90
where X ± is the pseudospin of a bound state at positive/negative energy respectively, and A, B, C, D are the coefficients defined in the wave function 2.88 . We can then define the Zak phase as:

Φ ± Zak = X ± i ∂X ± ∂ϕ dϕ.

2.91

What we notice is that the Zak phase associated with minority component is always π, while the one associated with the majority component is always 0. This is coherent with the observations we make on the change of the states with the superfluid phase. Indeed, the shape of the majority components is only weakly perturbed by the change of the phase, while the shape of the minority components changes dramatically, going from an s shape for ϕ = 0 to a p shape for ϕ = π/2, as shown in Fig. 2.12. This explains why only the second one has a nonzero Zak phase and is topological.

We previously considered a simple example, where there was one majority band and its Andreev counterpart. We will now investigate the interplay between several bands. As in a usual potential well, one can increase the size of the trap a. If we increase the size of the normal region, the energy of the states already confined will decrease, and higher energy states will become confined. We show in Fig. 2.13 the energy of the bound states versus a for ϕ = 0 (a) and ϕ = π/2 (b). The majority/minority components are in solid/dashed lines. We see that when one majority and one minority components get closer to each other, they do not cross, but rather merge. This merging of the bands is actually a real Fermi arc connecting two exceptional points in this parameter space. This means that when two bands get closer and merge, the energies are not purely real, but complex, with an imaginary part that can be interpreted as an amplification (we will come back to it later). If we look at the panel (a), we can see that the first bound state marked 1 (which has one peak, it has an s shape) meets its minority component at the energy of the pump E p and the two bands merge. Then, they separate again and meet the bound state marked 2, but they do not interact with it at all. On the contrary, we see that each majority component interacts with its own Andreev counterpart at the pump energy E p . Moreover, the majority/minority components of states 2 and 4 interact with the minority/majority components of states 4 and 2. We can conclude that for zero superfluid phase difference, interactions between bands can only occur for states with the same parity. States 1 and 3 cannot interact, because state 1 is not confined in the structure anymore when state 3 begins to be confined in it (they do not exist for the same range of parameter a).

If we now look at panel (b), we see that the situation is completely the opposite: Only states of different parities can interact (1 and 2, 2 and 3, etc), while the states of the same parity do not interact. In particular, a state cannot interact with its own Andreev counterpart for ϕ = π/2. We can explain it as follows. Introducing a phase difference between the two superfluids breaks the central symmetry of the system. As we saw with the states plotted in Fig. 2.12, the minority component has the same parity as the majority component for ϕ = 0. Thus, the overlap between the minority component of a mode and of another mode of the same parity will be large, and the bands can merge. On the contrary, for ϕ = π/2, the minority component has a symmetry opposite to the majority component. It will thus have a tiny overlap with the majority components of modes of the same parity, and they will not interact, while the overlap with modes of an opposite parity will be large and the bands will merge. We can determine an approximate formula for the critical size a c for which the bands will merge: where m ∈ N. We remind that k 0 = 2mE p /ℏ. We insist that only bands of different nature will cross and merge. Bands of the same nature (majority/majority or minority/minority) will never cross, because the states are not degenerate in a 1D problem. This becomes possible in higher dimensions (see below).

a c = m + 2ϕ -π 2π π k 0 , 2.92 E/� -1 0 1 ak 0 �� ak 0 �� ��� ����� 1 2 1 2 (a) (b) 1/1' 2/1' 1/2' 3/2' 2/3' 2/2' 3/3' 4/2' 2/4'
We now focus on the synthetic bands, where the synthetic dimension is represented by the superfluid phase difference, as shown in Fig. 2.14. We can see in Fig. 2.14(a) that for a given normal region width a < a c , there are two majority bands in the polaritonic Josephson junction and their respective Andreev counterparts. Moreover, the position of the bands depends on the size of the normal region a. Indeed, if a increases, the energy of the bound states decreases, meaning that the majority components will go down in the energy scale, while the minority components will go up. If we look at the panel (a), we see that the majority component of the bound state at positive energy is close to the minority component of the bound state at negative energy. Moreover, the majority component has a zero Zak phase while the minority component has a π Zak phase. If we now increase a so that we end up in the situation depicted in panel (c), we see that the majority component at positive energy is below the minority component at positive energy. The lower band previously had a π Zak phase and now the lower band has a 0 Zak phase. Topology forces the bands to cross between those two configurations. Actually, as we discussed previously, the bands will not only cross, but merge because polaritonic Josephson junctions are non-Hermitian (the non-Hermiticity we speak about here is brought by the interactions, not by the finite lifetime). If we start from panel (a) and increase gradually a, the bands will touch, then they will begin to merge. Two exceptional points linked by a real Fermi arc will form, and the real Fermi arc will grow up to the point where the bands are fully degenerate, as in panel (b). On the contrary, the imaginary parts are different all along the bands in that case. Increasing further a, the bands disconnect gradually, the real Fermi arc shrinks and the exceptional points get closer to each other. Finally, the bands become separate again as in panel (c). When the bands are separated, the Zak phase can be used, while it is ill-defined when the bands begin to merge (other topological invariants are used for non-Hermitian bands). The crossing of the bands is however obligatory between these two configurations because of the change of the topological invariant.

E/� -1 0 0 1 1/2 1 ��� 0 1 1/2 ��� 0 1 1/2 ��� � � � � � � Imaginary part � � a<a c a>a c a=a c (a) (b) (c)
A unique advantage of our platform compared to superconducting Josephson junctions is that the topological non-Hermitian band merging leads to a parametric amplification. We already discussed in the previous subsection that the Andreev reflection is a parametric process where a probe at positive energy triggers the conversion of two particles from the pump to one particle at positive energy (specular reflection) and one particle at negative energy (Andreev reflection). So far, this effect was not accompanied by amplification, but it is known to be possible since the parametric process is the basis of parametric amplification [START_REF] Savvidis | Angle-resonant stimulated polariton amplifier[END_REF]. We will now use this effect together with the gain provided by the imaginary part inherited from the exceptional points when the bands merge to demonstrate parametric amplification. We consider an SNS junction as depicted in Fig. 2.15(a). The size of the normal region is tuned to a c and the superfluid phase is set to π/2, so the system is at a well-defined position in the synthetic bands in Fig. 2.15(b) and the energy levels against the size of the normal region in Fig. 2.15(c), noted by arrows. From two particles from one superfluid (for instance the right superfluid), the parametric process creates one particle at positive energy and one at negative energy in the normal region. This energy conversion is linked with amplification, as can be seen in the positive imaginary part of the energy (the negative imaginary part leads to a decay of one state, but the other one grows anyway. Not neglecting the polariton lifetime would just decrease the effective gain. After travelling through the normal region, the states of positive and negative energies are reflected at the left interface. Because we are precisely at the resonance condition, the Andreev reflection of the states at positive/negative energy will not be lost but will contribute to the state at negative/positive energy. This is why those parameters allow for achieving parametric amplification.
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The previous discussion may give the impression that this parametric amplification results from fine-tuning the size of the junction and the superfluid phases. To circumvent it, we designed a setup that does not need any fine-tuning of the parameters and verified numerically its validity. We construct an SNS junction where the size of the normal region is varied in one direction (the y direction for instance, while the junction itself is in the x direction), as shown in Fig. 2. 16(a). In this way, the normal region width a will take all possible values between its minimal and maximal values, so that for any superfluid phase, the critical width a c will be reached at some point (if the wedge is sufficient). We numerically solve the 2D Gross-Pitaevskii equation over time with a weak probe exciting the bogolon states, and a finite lifetime τ = ℏ/2γ = 30 ps. The width a varies versus y as: a(y) = a c + y/l, where l = 64 µm. The spectrum calculated for a < a c and ϕ = π/2 is shown in panel (b). We can see that two states are present at a relatively large amplitude (majority components), while two others are present at a lower amplitude (minority components). Thus, the condition of resonance is not achieved. The spectrum corresponding to a = a c is shown in panel (c). This time, we can only distinguish two states and cannot distinguish between majority and minority components, because we are at the resonance between the majority and minority components of the states. Note that in panel (c), the polariton density is approximately two orders of magnitude higher than in panel (b) (see colour bars). Panel (a) shows the spatial distribution of emission, where the strong amplification is clearly visible around y = 0 (for y = 0 we have a = a c ). γ should be 5-10 times smaller than the gap for the amplification to be experimentally observable, which is perfectly realistic (the gap is 0.5 meV, and the linewidth can be of the order of 0.05 meV. We stress that in this simulation the normal region is a non-interacting medium, otherwise, solitons form [START_REF] Goblot | Phase-controlled bistability of a dark soliton train in a polariton fluid[END_REF][START_REF] Koniakhin | Stationary quantum vortex street in a driven-dissipative quantum fluid of light[END_REF][START_REF] Claude | Taming the snake instabilities in a polariton superfluid[END_REF], and the approximations we used become invalid. This configuration is a good example of topological interface states obtained with synthetic topology. Even if synthetic topology is often said to be completely disconnected from the edge properties that are so important in topological physics, we can see here that it is far from being true. The Zak phase calculated in the synthetic parameter space is linked with true interface states, whose existence is guaranteed by topology.

In this subsection, we studied a polaritonic superfluid-normal-superfluid Josephson junction. We derived the condition on the energy to observe polaritonic Andreev bound states. The energy of the bound states varies with the difference between the superfluid phases, which allows defining synthetic bands. Andreev bound states have two parts. The majority component is very close to the bound state coming from the quantum confinement in the junction, while the minority component is entirely coming from the Andreev reflection. The latter is associated with a π Zak phase in the synthetic parameter space, so the minority components are topological. We designed a setup to observe topological interface states on which there is a parametric amplification due to the presence of exceptional points in the synthetic bands because the system is non-Hermitian.

In the next subsection, we consider the extension of the polaritonic Josephson junctions studied previously to the case of more than 2 terminals. This gives access to a higher number of synthetic dimensions determined by the number of terminals used. We will see that there can be Weyl singularities in such junctions, and we will study the creation, motion and annihilation of Weyl singularities in a synthetic parameter space.

Weyl singularities in polaritonic multi-terminal Josephson junctions

In this subsection, we will study polaritonic multi-terminal Josephson junctions, as we did in Ref. [206]. An example of a polaritonic multi-terminal Josephson junction is depicted in Fig. 2.17(a). The junction is made of a patterned microcavity where N leads are connected together by a common link. The leads are pumped so that they are in the gapped superfluid regime while the link is not pumped (it is not a superfluid, but a normal region). We can easily see that the system is very similar to the Josephson junctions considered previously, however, the high number of leads makes analytical calculations very complicated. For that reason, we will first resort to numerical simulations of the Bogoliubov-de Gennes equations. We will study the presence and implications of Weyl singularities in a 3D parameter space, and then build an effective Hamiltonian based on our understanding of the underlying physics acquired previously to study the behavior of the Weyl points in synthetic spaces of higher dimensionality.

We consider the modified Bogoliubov-de Gennes equations as follows:

L αψ 2 s (r) -αψ * 2 s (r) -L * u(r) v(r) = ℏω u(r) v(r) , 2.93
where

L = (ϵ k -E p + 2αn + V(r)) with ϵ k = ℏ 2 k 2 /2m. V(r)
is a step-like potential accounting for the etched pattern of the microcavity. We assume that the stationary wave function ψ s is zero in all regions without pumping. In the N pumped areas, the stationary wave function is given by the solution of the Gross-Pitaevskii equation for a spatially homogeneous system and reads: ψ s,j = √ ne iϕ j , where n is the superfluid density and ϕ j its phase. A sketch of a top view of the 5-terminal junction we will consider in the following is shown in Fig. 2.17(b), where the potential V(r) corresponds to the green areas, the superfluids are in brown, and the normal region in grey. Each superfluid has its own phase. The normal region forms a regular pentagonal prism (a regular pentagon in the (x, y) plane) around which the superfluid regions are regularly positioned. Solving numerically the Bogoliubov-de Gennes equations 2.93 allows finding the energy E and the real space profiles u(r), v(r) of the parts of the state at positive and negative energy. Exactly as in a 2-terminal junction studied in the previous subsection, a bound state at the energy E has two parts, one at E and one at -E denoted by the Bogoliubov coefficients u and v.

If we solve the Bogoliubov-de Gennes equations without the off-diagonal terms, we obtain the states shown in Fig. 2.18(a-f). We will mark those states s state (a), px state (b), py state (c), dx 2 -y 2 state (d), dxy state (e), and 2s state (f). If we look at the energy levels of those states, as plotted in panel (g), we can see that the two p states are degenerate, which is a central point of our study.

If we now go back to our full study (including the off-diagonal terms in the Bogoliubovde Gennes equations), we can find bound states |Ψ⟩ that can be decomposed on a basis of elementary states: where {|ψ j ⟩} form a basis of states and c j = ⟨Ψ|ψ j ⟩. We assume that the first six states are sufficient to form an approximate basis for the states, which is valid for a trap of small size (we stay in this limit in the following). Thus, Ψ is rather defined as:

|Ψ⟩ = ∞ j=1 c j |ψ j ⟩ , 2.94 � � � � � � � � � � ��
|Ψ⟩ = c s |ψ s ⟩ + c px |ψ px ⟩ + c py ψ py + c d x 2 +y 2 ψ d x 2 +y 2 + c dxy ψ dxy + c 2s |ψ 2s ⟩ , 2.95
and we take:

|c s | 2 + |c px | 2 + |c py | 2 + |c d x 2 +y 2 | 2 + |c dxy | 2 + |c 2s | 2 = 1 2.96
This equation approximately holds in our numerical simulation up to the 5th decimal.

We focus on the majority components of the two isolated p states of the pentagonal potential trap. In this case, the p states can be decomposed on a (p x ,p y ) basis which naturally leads to three pseudospin components S 1,2,3 , defined as:

S 1 = |c px | 2 -|c py | 2 |c px | 2 + |c py | 2 , 2.
97

S 2 = |c px+py | 2 -|c px-py | 2 |c px+py | 2 + |c px-py | 2 , 2.
98

S 3 = |c px+ipy | 2 -|c px-ipy | 2 |c px+ipy | 2 + |c px-ipy | 2 , 2.99
where c j is the scalar product of the bound state with the state j, as defined above. For instance, a px state shows |c px | 2 = 1 giving S 1 = 1 while an anti-vortex state px -ip y shows |c px-ipy | 2 = 1 and S 3 = -1. Qualitatively, the components denote linear, diagonal, and circular (vortex) shape of the state, respectively. Indeed, by tuning the superfluid phases, it is possible to have bound states which take the form of vortices, which are 2D topological singularities in real space. Their profile is shown in Fig. 2.19. It is possible to define a topological invariant associated with vortices. It is called the winding number and is defined as:

w φ = 1 2π arg ψ(r)dr, 2.100
where we integrate on a closed loop around the centre of the phase singularity (abrupt change of 2π) in the counter-clockwise direction. We can see that a positive/negative winding is associated with vortex/anti-vortex. In the figures where the pseudospin is represented, we plot (S 2 , S 1 ) by arrows and S 3 by colours.

As mentioned earlier, the representation of parameter spaces in more than 3 dimensions is not easy. For that reason, we will first study a 3D parameter space in our 5-terminal junction by setting the relation:

ϕ 2 = -ϕ 5 .
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We choose this configuration because it attributes symmetric roles to ϕ 3,4 and facilitates the numerical study. This reduces the number of parameters to 3, which will be enough for the beginning of our study. We set ϕ 1 = 0 as a phase reference and study the 3D parameter space (ϕ 2 = -ϕ 5 , ϕ 3 , ϕ 4 ). We plot in Fig. 2.20(a) the 2D dispersion in the (ϕ 3 , ϕ 4 ) subspace of the two p bands for ϕ 2 = π/2. Note that we will only consider those bands in this study We focus on the pseudospin of the lower bands, as represented in Fig. 2.21(a) for ϕ = π/2 and Fig. 2.21(b) for ϕ = π/2 -π/20. If we look at the in-plane pseudospin texture (arrows) in both figures, we see that there are 4 singularities encircled in black and white. Those 4 singularities of the in-plane pseudospin texture correspond to 4 Weyl points. However, the bands cross only in two points for ϕ 2 = π/2 and do not cross at all for ϕ 2 = π/2 -π/20. The points where the bands cross are encircled as black solid lines, while the pseudospin singularities corresponding to Weyl points that are gapped for this set of parameters are (c) encircled by dashed lines. At the crossing points, we can see that the third pseudospin component is ill-defined because of the crossing of the bands, which leads to a green colour in the area encircled by black solid lines. On the contrary, gapped Weyl points are associated with a strong third pseudospin component. For instance, the gapped Weyl points encircled in white are associated with S 3 = ±1, as we can see by the dark red/blue colour. For the Weyl points that are not gapped for ϕ 2 = π/20, we can see that tuning ϕ 2 from this position immediately gaps the Weyl point, and the third pseudospin texture becomes welldefined (red for the two points encircled by black dashed lines in panel (b)). In the end, as expected, Weyl points act as monopoles of the effective field. Panel (c) shows the texture of the effective field on a spherical isoenergetic surface surrounding one of the two Weyl points, which exhibits the expected monopolar texture. Note that the two Weyl points shown in Fig. 2.20(a) possess the same monopolar texture, so we can conclude that their topological charges are equal.
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To calculate the topological properties of the bands, we use the Berry curvature that, if integrated along the band, gives the Chern number. The method we use starts by calculating the overlap between the states that we find numerically by solving the Bogoliubov-de Gennes equations and a basis of eigenstates. The basis of states we choose is composed of the six states shown in Fig. 2.18(a-f), which is largely sufficient for our study. The states are computed for a given set of phases, so that each point in the parameter space gives 6 values, giving the overlap with the six states that form our basis. Then, the Berry curvature is calculated from the 6-component spinor using the definition from Chapter 1: B = i∇ q × ⟨Ψ(q)|∇ q Ψ(q)⟩ .
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This is done numerically using the method from Ref. [START_REF] Fukui | Chern numbers in discretized Brillouin zone: efficient method of computing (spin) Hall conductances[END_REF].

Finally, the Chern number in the 2D subspace (ϕ 3 , ϕ 4 ) is obtained by integrating this Berry curvature over the synthetic Brillouin zone

S ϕ = [0, π[ 2 : C = 1 2π S ϕ B (ϕ 3 , ϕ 4 ) dϕ 3 dϕ 4 .
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The Chern number of the gap is the Chern number of the lower band in this 2-band system. Indeed, in our system, there is an even number of bands, half of them being below the pump detuning E p and half of them being above it. The Andreev counterpart of a band with Chern number C has a Chern number -C. Moreover, for the two p bands, topological singularities when removed let appear a gap separating bands of opposite Chern numbers, meaning that the sum of the Chern numbers in the bands below the pump energy is 0 (as well as the sum of the Chern numbers of the bands above the pump energy). Thus, the Chern number of a gap separating the two p bands is always equal to the Chern number of the lower band.

The Berry curvature of the lower band in the (ϕ 3 , ϕ 4 ) subspace is plotted in Fig. 2.22(a,b) for ϕ 2 = π/2 (a) and ϕ 2 = π/2 -π/20 (b). They correspond to the panels (a,b) of Fig. 2.21 where the pseudospin texture is plotted. If we look at the Berry curvature plotted in panel (a) where there is a band crossing, we can see that there are two major poles of Berry curvature. The two that are on the diagonal are the points where the bands cross, encircled by black solid lines. They do not lead to a nonzero Chern number because they compensate each other, precisely because of the crossings. On the contrary, we can see that the gapped Weyl points (encircled by white dashed lines) contribute positively and negatively to the Berry curvature. In this case, their contributions exactly compensate. When all 4 Weyl points are gapped (see panel (b)), the contributions of the different poles of Berry curvature do not compensate, which gives rise to a Chern number of -1. We can complete the study by looking at the Chern number for all values of ϕ 2 , as done in panel (c). We can see the situations corresponding to panel (a) (central black point), where there is no Chern number, or to panel (b) (blue point), for which the Chern number is -1. Changes in the value of the gap Chern number are linked with gap closings at Weyl points. This occurs at ϕ 2 = -ϕ 5 = π/2, as shown before, with the Chern number changing from -1 to +1 (because there are two Weyl points). The two other transitions occur at ϕ 2 ≈ ±π/4.5. They are each associated with a decrease by 1 of the Chern number because they correspond to a band crossing occurring through a single (negative) Weyl point. Panel (d) summarizes the previous results by showing the coordinates of the 4 Weyl points in the parameter subspace (ϕ 2 = -ϕ 5 , ϕ 3 , ϕ 4 ). We can see that there are indeed four Weyl points in total. We can explain it by the symmetries of our geometry. We remind that Weyl points can exist only if inversion or time-reversal symmetry is broken. In our case, the pentagonal geometry breaks the inversion symmetry. On the other hand, time-reversal symmetry, which maps ϕ j to -ϕ j , imposes that Weyl points appear in multiples of 4 [START_REF] Nielsen | Absence of neutrinos on a lattice:(I). Proof by homotopy theory[END_REF][START_REF] Riwar | Multi-terminal Josephson junctions as topological matter[END_REF]. They can appear in multiples of two only if this symmetry is broken.

In general, Weyl singularities are robust against perturbations. If we change slightly the phases, the Weyl points in the 3D parameter space will not disappear (unless Weyl points of opposite charge meet), they will only move. So far, we have studied a specific 3D subspace of the 5-terminal junction. We will now study the full 4D parameter space and observe the motion of the Weyl singularities. Solving numerically Bogoliubov-de Gennes equations is very time-consuming, so we will construct an effective model based on our understanding of the physics of polaritonic Josephson junctions that we will apply to the multi-terminal case (restricted to the study of the two p bands). We will then compare this model in the case ϕ 2 = -ϕ 5 that we studied numerically previously, and after that, we will explore the full 4D parameter space using the simplified model.

The simplified model takes the form of an effective 2-band Hamiltonian:

H MJJ = Ω • σ, 2.104
where σ is the 3-component vector of Pauli matrices. Ω is the effective field that we construct based on simple concepts that we understood from the study of 2-terminal junctions. Note that our Hamiltonian is valid only for the p bands. To construct our simplified model, we use two ingredients that give the in-plane and out-of-plane components of the effective field, respectively. The first one considers that the synthetic bands are a cosine of twice the phase difference between the two superfluids. It is a very good approximation in the case of 2terminal junctions, where the bands are exactly a cosine of twice the phase difference between the two superfluids [199]. In the 5-terminal junction, there are more than two superfluids, which complicates the study. We plot in Fig. 2.23 the profile of the px,y and (anti-)diagonal states. By looking at the profiles of the states, we can decompose the 5-terminal junctions into differently oriented 1D junctions. For instance, if we look at Fig. 2.23(a), we see that the px band will be the combination of the 1D bands formed by two junctions: one between ϕ 1 and ϕ 3 , and the other between ϕ 1 and ϕ 4 . We can thus write the effective field associated with the px state as:

Ω px = -cos(2ϕ 1,3 ) -cos(2ϕ 1,4 ), 2.105
where we use the notation ϕ j,l = ϕ j -ϕ l . We can do the same reasoning for the py band (b), which gives:

Ω py = -cos(2ϕ 2,5
) -cos(2ϕ 3,4 )/4.
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Max Indeed, we see that the state py can be decomposed as part of two 1D junctions, the first one between ϕ 2 and ϕ 5 and the second one between ϕ 3 and ϕ 4 , but the second one is more marginal than the first one, which translates into a 1/4 factor. The total contribution associated with px and py is:

|ψ| 2 0 � 1 � 2 � 3 � 4 � 5 � 1 � 2 � 3 � 4 � 5 � 1 � 2 � 3 � 4 � 5 � 1 � 2 � 3 � 4 � 5 x/2a y/2a y/2a -1 -1 1 1 0 0 -1 1 0 x/2a -1 1 0 (a) (b) (c) (d)
Ω x = Ω px -Ω py = cos(2ϕ 2,5 ) + cos(2ϕ 3,4 )/4 -cos(2ϕ 1,3 ) -cos(2ϕ 1,4 ).
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Similarly, looking at the diagonal (c) and anti-diagonal (d) states allows finding the total contribution associated with them:

Ω y = cos(2ϕ 2,4
) -cos(2ϕ 3,5 ).
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To determine the out-of-plane component, we will consider the scattering processes in the 5-terminal junction. Indeed, the origin of this term is linked to the Josephson current that we found in the 1D junctions. We consider the path of a wave starting from face 1 and going towards face 3 (follow the path plotted in Fig. 2.24 for two different configurations of the phases). On face 3, the wave is reflected both by normal and by Andreev reflections. For the two configurations of phases shown in Fig. 2.24, we can see that the Andreev reflection (grey arrows) on the successive faces leads to an overall nonzero current due to the Josephson current, as emphasized by the black rotating arrows. This current is at the origin of the vorticity of the states. This vorticity is described by a real-space topological invariant (the winding number), and it explains the topology of the system in the parameter space and, in particular, the presence of Weyl points and nonzero Chern number. Even though the superfluids are topologically trivial, using several superfluids allows the creation of a current that will translate into topological singularities in the real space and in the parameter space.
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The out-of-plane contribution associated with Josephson currents reads:

Ω z = i sin(2ϕ i,i+2
).
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If we combine the in-plane components obtained by studying the profile of the states and the out-of-plane component coming from the Josephson currents, we obtain the complete Hamiltonian of Eq. 2.104 .

To compare this Hamiltonian with our previously obtained results, we calculate its eigenvalues and eigenvectors in the 3D parameter space we considered before (with ϕ 2 = -ϕ 5 ). The pseudospin texture for ϕ 2 = π/2 is plotted in Fig. 2.24(a,b) for the numerical calculations (a) and the simplified Hamiltonian (b). We see that there are differences, especially in the details, but the overall texture is reproduced accurately. In particular, the peculiar texture close to the Weyl singularities is well-reproduced. From this Hamiltonian, we not only have access to the pseudospin, but we can also calculate the Berry curvature and the Chern number. This enables comparing the gap Chern number computed from numerical simulations (c) and from the effective Hamiltonian (d). We see again a very good agreement, especially for the Weyl points located at ϕ 2 = π/2, but the agreement for the other Weyl points is excellent as well.

As discussed above, the advantage of this simplified model is that the calculations are much faster. Calculations that last one week solving the Bogoliubov-de Gennes equations (using parallel calculations) are reproduced well by the simplified Hamiltonian which takes a few seconds to be solved in a 3D parameter space. This is why we chose to resort to this Hamiltonian to study the 4D parameter space. We decide to focus on the topology of the 4D parameter space (rather than the dispersion for instance), in particular on the Chern number and on the behavior of Weyl singularities. First, we plot in Fig. 2.26(a) the 2D Chern number in the (ϕ 3 , ϕ 4 ) subspace for different values of the other phases ϕ 2 and ϕ 5 . One point in this plot corresponds to a 2D subspace (ϕ 3 , ϕ 4 ) for well-defined values of ϕ 2 and ϕ 5 . For instance, the dispersions shown in Fig. 2.20(a) correspond to the central point of this figure, when ϕ 2 = ϕ 5 = π/2. There are indeed two Weyl points for those phases, as represented by the two red points in the figure. We see that the topologically non-trivial situations leading to nonzero Chern numbers (red/blue areas, for positive/negative Chern numbers) are not scarce, but represent a significant part of the 4D parameter space.

If we look at a line rather than a point, then it defines a 3D parameter space. For instance, the light blue line along the anti-diagonal corresponds to the condition ϕ 2 = -ϕ 5 , which is the particular 3D parameter space we studied before. Following this line from the top left corner to the bottom right corner is the exact same as following the line in Fig. 2.25(d) from bottom to top. Indeed, the gap Chern number is first 0, then becomes -1 after meeting a negative Weyl point, then becomes +1 after meeting two positive Weyl points at ϕ 2 = π/2, and finally, the gap Chern number goes back to zero after meeting the last Weyl point. The advantage of this figure with respect to the previous one is that we have access to many different 3D subspaces. Indeed, each line is a specific 3D subspace. In particular, horizontal/vertical lines are 3D subspaces where ϕ 5 /ϕ 2 is set to a given value. We can see that some 3D subspaces are even more peculiar. For instance, we take the example given by the horizontal pink line. We can see that there are 6 Weyl points in this specific 3D subspace, which corresponds to the breaking of time-reversal symmetry. Indeed, a Weyl point at coordinates (ϕ (0) 2,3,4,5 ) has its Kramers partners at (-ϕ (0) 2,3,4,5 ), whereas when setting ϕ 5 to a given value (which is what we do by looking at a horizontal line), the Weyl point at (ϕ (0) 2,3,4 , ϕ 5 ) will have its twin at (-ϕ (0) 2,3,4 , -ϕ 5 ) and thus will not be met since ϕ 5 ̸ = -ϕ 5 . To complete our study, we plot the Weyl points in the 3D parameter space (ϕ 2 , ϕ 3 , ϕ 4 ) in Fig. 2.26(b) for all values of ϕ 5 . The trajectories of Weyl singularities form lines. Because we are in a 3D subspace for each value of ϕ 5 , we can attribute Weyl points a topological charge (red/blue points denote Weyl points with positive/negative topological charges). We can see that there are some points where blue and red lines meet, which correspond to the formation (hearts) or annihilation (stars) of Weyl points. That is why we can have 3D subspaces with 6 Weyl points and others with only 4 Weyl points.

To conclude this chapter, we noticed the similarities between superconductors and the gapped superfluid regime achievable with microcavity polaritons under resonant pumping. We constructed an analogy between normal-superfluid interfaces and normal-superconductor interfaces, both being described by Bogoliubov-de Gennes equations, and found the polaritonic analogue of the Andreev reflection. We built analogue polaritonic Josephson junctions
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Numerics Analytics and studied Andreev bound states in such junctions. We found that some states are topological, characterised by a nonzero Zak phase. The non-Hermiticity brought by the interactions leads to the formation of exceptional points in the parameter space formed by the phase difference between the two superfluids forming the junction. The existence of those exceptional points enables parametric amplification of topologically protected Andreev states. Then, in polaritonic multi-terminal Josephson junctions, where more than two superfluids are connected by a common normal region, we have access to arbitrarily large parameter spaces. We construct a 5-terminal junction and demonstrate the presence of Weyl singularities. We show that it can be studied by an effective Hamiltonian which facilitates the calculations, and we demonstrate the motion of Weyl singularities in the 4D parameter space. In particular, we demonstrate the creation and the annihilation of Weyl points, which implies that some 3D subspaces show a broken time-reversal symmetry, hosting 6 Weyl points.
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Future studies may be devoted to the study of polarisation effects on the Andreev reflection and on the bound states. Indeed, in the electronic phenomenon, the Andreev reflected particle has a reversed spin with respect to the incident particle, so we can expect that an incident beam with circular polarisation gives rise to a reflection with a well-defined polarisation. Moreover, the polaritonic Andreev reflection is a quantum phenomenon, and the study of the entanglement of this process would certainly attract much attention. The phenomenon is close to the stimulated Hawking radiation, a phenomenon occurring close to the horizon of black holes [START_REF] Jacobson | On the origin of the outgoing black hole modes[END_REF][START_REF] Faraei | Perpendicular Andreev reflection: Solid-state signature of black-hole horizon[END_REF][START_REF] Manikandan | Andreev reflections and the quantum physics of black holes[END_REF][START_REF] Manikandan | Black holes as Andreev reflecting mirrors[END_REF]. Indeed, analogue physics allows investigating the properties of inaccessible systems such as black holes in this case [START_REF] Unruh | Experimental black-hole evaporation?[END_REF][START_REF] Jacquet | Polariton fluids for analogue gravity physics[END_REF], and further studies on the links between the two phenomena would also be very promising. For multi-terminal junctions, there is now a broad literature on the electronic part, and one could be interested in reproducing with polaritons the results that were predicted for the electronic structures. More interestingly, we could take advantage of the specificities of our system, notably its non-Hermiticity, and study the crossings between modes of different nature (majority/minority components). In the multi-terminal case, it necessarily gives rise to rings of exceptional points. Moreover, the study of synthetic topology in large dimensions is interesting by itself. For instance, studying topological singularities in the 6-torus formed by the Brillouin zone of a 7-terminal junction would give access to Calabi-Yau manifolds in six dimensions, very popular in the string theory of quantum gravity [START_REF] Blau | String theory as a theory of quantum gravity: a status report[END_REF]. The braiding of Weyl singularities and nodal lines is also a very active field of research [START_REF] Bouhon | Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe[END_REF][START_REF] Chen | Non-Abelian braiding of Weyl nodes via symmetry-constrained phase transitions[END_REF] that can surely be examined in our platform. Finally, despite being challenging because the size of the superfluid gap is quite small, experimental observation of the theoretical phenomena we predict would surely raise considerable interest for a broad scientific community. I n this chapter, we investigate the properties of an optical cavity filled with a liquid crystal.

Topological singularities in liquid crystal microcavities

This study was made in collaboration with an experimental group at the University of Warsaw through the project TopoLight. We will first give a brief and general introduction to liquid crystal microcavities. Then, we will describe the investigations we made during this thesis in two steps. The first one will consist in describing the two distinct topological configurations in the Hermitian limit, and in the second one we will show that a particular Hermitian configuration allows observing the annihilation of exceptional points created from different Dirac points, a non-Hermitian topological transition, which demonstrates the strong interplay between Hermitian and non-Hermitian topological properties.

Liquid crystal microcavities

In this section, we give a short introduction to liquid crystal microcavities fabricated and studied in the University of Warsaw [START_REF] Rechcińska | Engineering spin-orbit synthetic hamiltonians in liquid-crystal optical cavities[END_REF]. Such a cavity is shown in Fig. 3.1(a). We see that this is very similar to the other optical microcavities we described previously. the confinement of light is achieved by distributed Bragg reflectors (DBRs). The active region does not contain a quantum well in this case, and there will be no exciton-polaritons in our study, even if liquid crystal microcavities in the strong-coupling regime have already been demonstrated using 2D perovskite [START_REF] Łempicka-Mirek | Electrically tunable berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite[END_REF]. The cavity is sandwiched between two Indium-Tin Oxide (ITO) electrodes so that an external voltage can be applied to the whole cavity. The liquid crystal brings a strong and tunable birefringence to the microcavity. Indeed, the refractive index of the liquid crystal is anisotropic, as shown in Fig. 3.1(b) where the ordinary and extraordinary refractive indices are sketched depending on the orientation of the indicatrix. We see that the refractive indices in the x and z direction are dictated by the angle θ between the x axis and the axis of the extraordinary refractive index. This angle can be controlled by the applied voltage V , as shown in Fig. 3.1(b), so that the birefringence is really controllable, being determined by an easily tunable experimental parameter. We can see in panel (c) the effect of this anisotropy on the energy of the linearly polarised modes (horizontal and vertical polarisations) for k = 0 (the dispersion in both polarisations are quadratic). For zero applied voltage, the H and V modes are degenerate at k = 0, represented by grey points in the figure. We can notice that the cavity is thick, so many cavity modes are visible within the working range of energies. Then, if we increase the applied voltage, we see that the energy of the vertically polarised modes (in purple) does not change, while the energy of the horizontally polarised modes (in green) decreases. The birefringence is so strong that we reach configurations where the H mode of order N + 1 is degenerate at k = 0 with the V mode of order N , as emphasized by blue points. The modes have different parities, hence it gives rise to the Rashba-Dresselhaus spin-orbit coupling [START_REF] Rechcińska | Engineering spin-orbit synthetic hamiltonians in liquid-crystal optical cavities[END_REF], which can be used to engineer the topology of a photonic SSH chain for instance [START_REF] Kokhanchik | Modulated Rashba-Dresselhaus spin-orbit coupling for topology control and analog simulations[END_REF]. We note this configuration (N + 1, N ) because the H mode N + 1 is resonant with the V mode N . If we increase the applied voltage even more, the H-polarised mode of order N + 2 becomes resonant with the V mode of order N we note this configuration (N + 2, N ). The two modes have the same parity here, so there is no Rashba-Dresselhaus spin-orbit coupling. This configuration was studied in Ref. [START_REF] Król | Observation of secondorder meron polarization textures in optical microcavities[END_REF].

After this short introduction to liquid crystal microcavities, we will now focus on the new results we obtained during this thesis. We studied the configuration (N + 2, N ) that we described using an effective Hamiltonian. We conducted this work in strong collaboration with our colleagues in Warsaw, who made the related experiments. We will now present the results we published in Ref. [START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF]. We first demonstrate that the (N + 2, N ) configuration allows reaching two topologically distinct cases. We find that contrary to the usual (N, N ) case which gives 2 Dirac points of the same winding, we can find in the (N + 2, N ) case a dispersion with 4 Dirac points and a total winding number which is zero. Then, we will show that this Hermitian topological transition makes possible a non-Hermitian topological transition, namely the annihilation of the exceptional points appearing in the dispersion when the non-Hermiticity is strong enough.

Hermitian topology in liquid crystal microcavities

In this section, we investigate the topological properties of the (N + 2, N ) configuration of a liquid crystal microcavity in the Hermitian limit. We mainly focus on the theoretical aspects, but we will show the experimental results. The measurements were performed by our colleagues and we analysed, fitted and interpreted the results.

We can model the cavity by the following 2 × 2 effective Hermitian Hamiltonian written on the circular polarisation basis:

H r (N +2,N ) =   E N +2 H +E N V 2 + ℏ 2 k 2 x 2mx + ℏ 2 k 2 y 2my β 0 -β ′ k 2 -β(k x -ik y ) 2 β 0 -β ′ k 2 -β(k x + ik y ) 2 E N +2 H +E N V 2 + ℏ 2 k 2 x 2mx + ℏ 2 k 2 y 2my   , 3.1
where

E N +2
H and E N V are the energies of the H-polarised mode of order N + 2 and of the V -polarised mode of order N respectively (at k = 0), m x and m y are the polarisationindependent masses, β is the magnitude of the TE-TM spin-orbit coupling,

β ′ = ℏ 2 (m H - m V )/4m H m V
denotes the mass difference between H and V modes and

β 0 = (E N +2 H -E N
V )/2 stand for the effective linear birefringence. m H and m V are the masses of the H and V polarised modes, respectively. The term β ′ appears because these masses are different. Indeed, as we already discussed in the introduction of the manuscript, the mass of the mode scales as the order of the mode, so m N ∝ N and m N +2 ∝ N + 2. The mass difference does not come directly from the polarisation H and V of the modes, but because they are of different orders. We call β 0 the effective linear birefringence, because the actual birefringence is the energy difference between the H and V modes of the same order, which is very large in this type of cavity. Here, we consider only the energy difference between the H mode N + 2 and the V mode N , that is why we use the term "effective".

If we decompose the Hamiltonian on the basis of Pauli matrices, we find:

H r (N +2,N ) = Ω 0 σ 0 + Ω r • σ r , 3.2 
where

Ω 0 = E N +2 H +E N V 2 + ℏ 2 k 2 x 2mx + ℏ 2 k 2 y 2my
and Ω r is the effective field, which reads:

Ω r =    β 0 -β ′ k 2 -β(k 2 x -k 2 y ) -2βk x k y 0    . 3.3
In the end, the resulting effective field is very close to the effective field in generic optical microcavities with TE-TM spin-orbit coupling and linear birefringence [START_REF] Terças | Non-Abelian gauge fields in photonic cavities and photonic superfluids[END_REF], but there is an additional term accounting for the mass difference between the H-and V -polarised modes, because they are of different orders.

The eigenvalues of the Hamiltonian read:

E r (N +2,N ) = Ω 0 ± β 0 -β ′ k 2 x + k 2 y -β k 2 x -k 2 y 2 + 4β 2 k 2 x k 2 y .

3.4

We will distinguish between two configurations. The first one is the limit

β > β ′ , in other 0 k x (µm -1 ) k y (µm -1 ) (a) (a) 
Energy (meV) 0 1 k y (µm -1 ) k x (µm -1 ) 0 1.5 words, the TE-TM spin-orbit coupling is stronger than the mass difference between H-and V -polarised modes. This case is very close to the usual situation in optical microcavities: there are two Dirac points with the same winding along one direction of the reciprocal space. We represent in Fig. 3.2(a) the dispersion along k x and k y , and we see that there is a Dirac point only in the k y direction. In Fig. 3.2(b), we show the energy difference between the two bands, which reaches 0 at the Dirac points. Finally, in Fig. 3.2(c), we show the pseudospin texture associated with the two Dirac points (both represented as blue points because their winding is equal). We see that there is a winding of the pseudospin even for large wave vectors, which indicates that this situation is indeed topologically non-trivial. If we calculate the sum of the winding numbers, we find:

w tot (β > β ′ ) = -2.

3.5

We now consider a different configuration where β < β ′ . This situation cannot exist in usual microcavities. It is possible in this cavity only because of the strong birefringence. The dispersion is plotted in Fig. 3.3(a). The bands cross at four points, forming four tilted Dirac points, represented as blue/red points depending on whether the winding is negative/positive. In panel (b), we represent the energy difference between the two bands, and we see clearly that it vanishes at four points. The coordinates of the four Dirac points can be found analytically. Two Dirac points are located along the x axis at the coordinates (0, ±k 0y ) while two other are located along the y axis at the coordinates (±k 0x , 0), which one can find using:

k 0x = β 0 β ′ + β ; k 0y = β 0 β ′ -β 3.6
We see that this is consistent with what we wrote in the introduction of the manuscript (Chapter 1) for β ′ = 0. Moreover, if we apply it to the case β > β ′ , where there are only two Dirac points, we indeed find that the coordinates of two out of four Dirac points are imaginary.

Finally, in panel (c), we represent the pseudospin texture in the case β < β ′ . We see that there are four singularities, the four Dirac points. The Dirac points located at k x = 0 have a positive winding (red points), while the ones located at k y = 0 have a negative winding (blue points). In the end, the situation is globally trivial, because the windings of the Dirac points compensate each other by pairs:

w tot (β < β ′ ) = 0. 3.7
In this case, at large wave vectors, there is no winding of the pseudospin (the arrows are all pointing to the right), which confirms that this situation is globally topologically trivial.

In Fig. 3.4, we show the results of the measurements in a cavity. The spectra were obtained by transmission measurements. We see in panels (a,b) the spectrum and pseudospin texture obtained for the topological configuration β > β ′ corresponding to (N, N ) degeneracy. For the (N + 2, N ) degeneracy, we are rather in the situation where β < β ′ , which is represented in panels (c,d). It is also possible to obtain this topological transition while staying in the (N + 2, N ) configuration, by exploring different regions of the sample with different thicknesses. We can see that the experimental results reproduce very well the results obtained theoretically from the effective Hamiltonian. The dispersions show two Dirac points when β > β ′ and four Dirac points when β < β ′ , and the pseudospin textures are very well reproduced. This topological transition can be understood as follows. The TE-TM spin-orbit coupling is a topological effect because it comes from a non-trivial texture of the polarisation of light. On the contrary, the difference of masses between modes of different orders is a topologically trivial effect. In the end, when the first effect is larger than the second one (β > β ′ ), we find that the situation is topological because polarisation effects are stronger than trivial effects, and the total winding number is nonzero. On the contrary, when the trivial mass difference is larger than the polarisation effect (β < β ′ ), the trivial effect gives a trivial global topology, and the total winding number is zero.

In this section, we demonstrated theoretically and experimentally that the resonance between a H-polarised mode of order N + 2 and a V -polarised mode of order N in a liquid crystal microcavity enables a peculiar Hermitian topological transition. When the TE-TM spin-orbit coupling is weaker than the relative mass difference between H-and V -polarised modes, the situation is globally topologically trivial because of the presence of four Dirac points, two with positive and two with negative windings. This is in stark contrast with the standard situation in optical microcavities, where there are two Dirac points of the same winding, which we can find as well in our case when the relative mass difference is smaller than the strength of the TE-TM spin-orbit coupling. In the next section, we will show that these two topologically distinct configurations in the Hermitian limit lead to completely different situations when the non-Hermiticity of the system is taken into account.

Non-Hermitian topological transition: Annihilation of exceptional points

In this section, we study the properties of the system when the non-Hermiticity is nonnegligible. The non-Hermiticity arises from the difference of losses in the two polarisations. The total non-Hermiticity losses can be written as a sum of two contributions:

H i (N +2,N ) = iΓ 0 I 2 + iδΓσ x , 3.8 
where Γ 0 = (Γ H + Γ V )/2 is the mean decay rate while δΓ = (Γ H -Γ V )/2 is the halfdifference between the losses in the H and V polarisations. This term can be called linear dichroism. Similarly to the relative mass difference term β ′ , it arises because the modes are of a different order. Indeed, we can see in Fig. 3.5(a) the measured intensity (points) in both polarisations. The fitting of the peaks by a Voigt function gives the solid lines, and we can clearly see that the width of the H-polarised mode is larger than the other one. Hence, the losses of H-polarised modes are bigger. We remind that as plotted in Fig. 3.5(b), the effect of the linear dichroism on a single Dirac point is that this point splits into two exceptional The total Hamiltonian of the system H (N +2,N ) = H r (N +2,N ) + H i (N +2,N ) admits for eigenvalues:

E (N +2,N ) = Ω 0 -iΓ 0 ± Ω 2 r -Ω 2 i + 2iΩ r • Ω i , 3.9
where Ω i is the imaginary effective field, which is equal to:

Ω i =    δΓ 0 0    .

3.10

We explained in the introduction that the condition to find exceptional points is twofolded. First, the real and imaginary effective fields are orthogonal at an exceptional point Ω r • Ω i = 0. Applied to our real and imaginary fields, this condition reads:

k 2 x k 2 0x + k 2 y k 2 0y = 1 3.11
which determines an ellipse of possible locations for EPs. Second, the real and imaginary effective fields have to be of equal amplitude Ω 2 r = Ω 2 i . Finally, the verification of both conditions gives the coordinates of the exceptional points in reciprocal space, which are given by:

k e x = ± k 0x √ 2 1 ± 1 -δΓ 2 /β 2 k 2 0x k 2 0y , 3.
12

k e y = ± k 0y √ 2 1 ± 1 -δΓ 2 /β 2 k 2 0x k 2 0y .

3.13

We first consider the Hermitian configuration with 2 Dirac points (β > β ′ ). We plot (b,c) Position of the exceptional points (cyan/magenta points) in reciprocal space for a small (b) and a strong (c) non-Hermiticity. Exceptional points are found at the crossings between the grey and purple lines, which stand for the first and second conditions to find exceptional points. The green/grey lines represent the real/imaginary Fermi arcs respectively. Figure adapted from Ref. [START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF].

(a) (b) (c) k x /k 0x 0 1 -1 k x /k 0x 0 1 -1 k x /k 0x 0 1 -1 k y /k
the position of the Dirac points in reciprocal space in Fig. 3.6(a). The dashed grey line corresponds to the first condition 3.11 . In the case β > β ′ , this equation does not give an ellipse but hyperbolas, because k 0y is imaginary so that k 2 0y is negative. When we add the non-Hermiticity, two exceptional points form at each Dirac point, as shown in panel (b). The grey lines represent the imaginary Fermi arcs, while the green lines represent the real Fermi arcs. Together, they correspond to the first condition. The second condition is plotted as purple closed curves. Exceptional points (cyan and magenta points) are found at the intersection between the two curves. If we increase further the non-Hermiticity, the exceptional points will follow the grey lines and get further and further from each other. In particular, they will never meet, because the hyperbolas are not closed loops.

For comparison, we plot in Fig. 3.7(a) the position of the Dirac points in reciprocal space for β < β ′ , which gives 4 Dirac points. We see in panel (b) that adding non-Hermiticity creates 2 exceptional points out of each Dirac point. In this case, the first condition gives the equation of an ellipse in reciprocal space, so that increasing the non-Hermiticity makes the exceptional points coming from different Dirac points get closer to each other, as indicated by arrows. Finally, at a critical value of non-Hermiticity, the exceptional points created at different Dirac points get at the same position and annihilate. We end with the situation plotted in Fig. 3.7(c), where there are no exceptional points nor Dirac points anymore: The reciprocal space is here empty of topological singularities. Indeed, we see that the second condition in purple lines fully encloses the first condition in green so that the two never cross. Since exceptional points appear at the crossing between the two curves, there are no exceptional points in the reciprocal space anymore. In reduced coordinates, we can understand that this annihilation will occur precisely when the exceptional points are equidistant from their initial Dirac point, on the diagonals and anti-diagonals. We can 11, which gives an ellipse in that case. (b) Position of the exceptional points (cyan/magenta points) in reciprocal space for a small non-Hermiticity. Exceptional points are found at the crossings between the ellipse (grey and green lines) and purple lines, which stand for the first and second conditions to find exceptional points. (c) Increasing further the non-Hermiticity leads to the annihilation of exceptional points created at different Dirac points. When non-Hermiticity is increased, the exceptional points follow the grey lines and finally meet exceptional points coming from Dirac points with opposite winding and annihilate. The green/grey lines represent the real/imaginary Fermi arcs. Figure adapted from Ref. [START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF]. already find this condition in Eq. 3.12 , which also gives the parameters to achieve it: δΓ = βk 0x k 0y .

(a) (b) (c) k x /k 0x 0 1 -1 k x /k 0x 0 1 -1 k x /k 0x 0 1 -1 k y /k
3.14

In the experiments that are performed on this type of cavity, it is hard to control the decay of the different modes. On the contrary, the applied voltage is a parameter that can easily be tuned, and that dictates the effective birefringence β 0 , which enters in the expressions of k 0x and k 0y . It is a very convenient way to tune the relative non-Hermiticity.

We define the relative non-Hermiticity as:

χ = δΓ β β ′2 -β 2 β 0 . 3.15
It is defined so that it equals 0 when the system is Hermitian and equals 1 when the exceptional points annihilate. As mentioned above, to tune the relative non-Hermiticity experimentally, our colleagues resorted to the tuning of the applied voltage, which ultimately affects the value β 0 . The results that we fitted from the measurements are shown in Fig. 3.8(a-l). The first row (a-d) shows the absolute value of the difference between the real part of the energies |∆E|, the second row (e-h) shows the absolute value of the difference between the imaginary parts of the energy |∆Γ|, and the third row (i-l) shows the argument of the difference of complex energies arg(∆E + i∆Γ). In the two first columns, the relative non-Hermiticity is such that the exceptional points are not annihilated χ < 1, and the two last columns are taken after the annihilation of exceptional points χ > 1. The first and third columns are fitted experimental data, while the second and fourth columns show the results obtained theoretically using the parameters extracted from experimental measurements. Note that there is in an overall excellent agreement between experimental and theoretical results. Before the exceptional points annihilate, we can see them marked by white crosses connected by real Fermi arcs (dark blue regions in (a,b)). We can see the imaginary Fermi arcs as well (dark blue regions in (e,f)). Moreover, in the plot of the argument of the difference of complex energies (i,j), we clearly see that the exceptional points are linked with the winding of the complex energy, as emphasized by black loops. The ± signs represent the positive or negative values of the winding of the complex energy (we remind that this winding is half-integer, see Chapter 1). After the annihilation of exceptional points, the real Fermi arc forms a closed loop, while the imaginary parts of the energy are different everywhere in the reciprocal space, which is very consistent with what is found in theory. Moreover, we can see that there is no winding of the complex energy anymore.

It is possible to continuously tune the external voltage to make the exceptional points move in reciprocal space and go from a situation where there are exceptional points to a situation where they are annihilated. We show in Fig. 3.8(m) the length of the real Fermi arcs (in degrees) against the relative non-Hermiticity. A null length corresponds to the Hermitian limit χ → 0, while a length of 90 degrees means that the exceptional points are annihilated. We can see the theoretical prediction (green dashed line) corresponds very well to the measurements from experimental data (points). We moreover see that it is possible to observe a wide range of Fermi arc lengths from 0 to 90 degrees, which ultimately enables choosing the position and control the presence of exceptional points in reciprocal space.

Non-Hermitian transitions in two-band systems through exceptional points merging are typically related to a single Hermitian singularity which transforms into two exceptional points that can be annihilated if they meet again each other by reducing the non-Hermiticity [START_REF] Leykam | Edge modes, degeneracies, and topological numbers in non-Hermitian systems[END_REF][START_REF] Shen | Topological band theory for non-Hermitian Hamiltonians[END_REF][START_REF] Zhou | Observation of bulk Fermi arc and polarization half charge from paired exceptional points[END_REF][START_REF] Bergholtz | Exceptional topology of non-Hermitian systems[END_REF]. On the contrary, in our work, we consider the merging of exceptional points originating from different DPs upon increasing the relative non-Hermiticity, which to our knowledge was not reported before. It can be viewed as a first example of non-Hermitian multivalley physics and demonstrates the link between Hermitian topology and non-Hermitian phase transitions. Indeed, there is no singularity of any type after the transition, as in the transition with the annihilation of 2D Dirac points carrying opposite charges [START_REF] Tarruell | Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice[END_REF].

In Fig. 3.9, we sum up our work [START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF] and compare it to the literature. What has already been considered before Ref. [START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF] is the case shown in panel (a). A single Dirac point transforms into two exceptional points when non-Hermiticity is added. The exceptional points are isolated, so the only way to annihilate them is to shrink the real Fermi arc connecting them by reducing the relative non-Hermiticity, and finally, we find again a Dirac point. On the contrary, what we observed in Ref. [START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF] was the annihilation of exceptional points that are not isolated, as shown in panel (b). Two Dirac points of opposite winding transform into 4 exceptional points. The imaginary Fermi arc (in grey) connects together the exceptional points of different Dirac points. Increasing the relative non-Hermiticity, the exceptional points coming from different Dirac points will meet and annihilate, which is an example where the Dirac valleys are intrinsically connected, which is an interesting feature of our study compared to the previous ones. In this chapter, we studied theoretically and experimentally a liquid crystal microcavity. This type of microcavity has a very strong birefringence which is furthermore tunable at will, being determined by an external voltage. This additional feature compared to standard microcavities enriches the topological phenomenology. In the Hermitian limit, we find that the standard situation where two bands cross at two Dirac points with the same winding is still achievable. However, the large birefringence also gives access to a topologically different situation, where there are 4 Dirac points in total, and where the winding number is zero. Then, if we consider a situation where the non-Hermiticity is not negligible, the strong birefringence makes appear pairs of exceptional points for each Dirac point in the initial Hermitian system. We report the observation of the annihilation of exceptional points coming from different Dirac points. This situation is impossible to observe in the case where there are two Dirac points of the same sign, we can only observe it in the situation with 4 Dirac points with zero total winding. This non-Hermitian topological transition could be realised in other multivalley systems, like artificial graphene with a σ x non-Hermitian contribution. From an applied perspective, our work sets microcavities alongside the waveguide-based photonic systems [START_REF] Wang | Generating arbitrary topological windings of a non-Hermitian band[END_REF] as a reconfigurable platform for exploring non-Hermitian topology. Moreover, we demonstrate the tuning of the coordinates of the exceptional points in reciprocal space by simple modification of an external voltage, in a micro-device, at optical frequencies. This could allow controlling the angle of emission of the modes surrounding the exceptional points, which are known to possess remarkable properties [START_REF] Miri | Exceptional points in optics and photonics[END_REF]. Another interest of the planar cavity platform is that it allows implementing interacting photons modes (exciton-polaritons) [START_REF] Su | Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system[END_REF].
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Design of room-temperature topological polariton lasers in widebandgap semiconductor waveguides I n this last chapter, we focus on the most applied of the works done during the thesis.

We begin by introducing photonic crystal slabs. In photonic crystal slabs, one can create peculiar states with topological properties. We will first discuss a design of a roomtemperature polariton laser where lasing occurs on topological unidirectional interface states. Finally, we propose a scheme to get a polariton laser on bound states in the continuum, which are modes with an infinite lifetime, that we can find in photonic crystals slabs as well.

Photonic crystal slabs

In this section, we introduce the concept of photonic crystal slabs. We then give a few possible implementations of topology in such structures, namely the possibility of observing propagating topologically-protected interface states and bound states in the continuum, which are modes with a theoretically infinite lifetime.

Definition

Atomic crystals are periodic structures in which the electrons can propagate, and it is possible to use Bloch's theorem to study only a single unit cell and understand the properties of the whole crystal. Photonic crystals (PCs) mimic atomic crystals, but for light instead of electrons [START_REF] Yablonovitch | Photonic band structure: The facecentered-cubic case employing nonspherical atoms[END_REF]. The goal is to engineer structures with desired properties of the propagation of light: unidirectionality, high or low velocity, forbidden frequencies, etc. The equivalent of the confining potential of atoms is achieved by dielectric materials, which can be seen as analogue quantum wells for light. In Fig. 4.1(a), we represent a chain of atoms. It creates a periodic potential for electrons. In photonic crystal slabs (PCSs) (b), the dielectric plays the role of atoms, confining the light, and the etched pattern plays the role of the space between atoms.

Photonic crystal slabs are a particular case of photonic crystals based on slab waveguides. For example, a dielectric slab can be pierced to obtain a pattern of air holes inside.

The full arsenal of tools used for characterising electronic band structures can be used for light in photonic crystals. In particular, the topological properties of bands can be computed as well, as we already discussed in the introduction of this manuscript (Chapter 1). In the following subsection, we will show that the topology of the band structure can be linked with the presence of topological interface states.

Topological interface states

In photonic crystal slabs, a clever way to obtain topological interface states is to use what is called quantum spin/valley Hall effect for light. This has notably been used in Refs. [START_REF] Barik | Two-dimensionally confined topological edge states in photonic crystals[END_REF][START_REF] Barik | A topological quantum optics interface[END_REF], strongly inspired by Ref. [START_REF] Wu | Scheme for achieving a topological photonic crystal by using dielectric material[END_REF]. In the simplest scheme, we consider a suspended slab of a dielectric material (GaAs) etched with a hexagonal lattice of triangular holes, as in Fig. 4.2(a). The hexagonal lattice is divided into two parts. On the top, the honeycomb lattice is expanded, meaning that the air holes of a given unit cell are further from each other. On the bottom, the honeycomb lattice is shrunken; that is, the triangular air holes of a given unit cell are closer to each other. There is an interface between the shrunken honeycomb photonic crystal slab (yellow area) and the expanded honeycomb photonic crystal slab (blue area). We show in panel (b) the band structure for the expanded honeycomb lattice as a top blue panel, while the band structure of the shrunken honeycomb lattice is shown in yellow (bottom panel). We see that the two band structures contain a gap. Indeed, the band structure of the genuine honeycomb lattice contains a Dirac point, which disappears if the symmetry of the lattice is broken by expanding or shrinking it. The amplitude and position in the energy scale of the two gaps are different, but there is still an overlap between them, so there are energies for which the light cannot propagate at any side of the interface.

In panel (c), we can see that the band gap actually hosts interface states (marked "edge" in the figure). Note that the bands are topologically trivial, their Chern number is 0, but it does not prevent interface states from appearing. Indeed, a 0 Chern number does not mean that edge states are absent; there can be pairs of counter-propagating edge states. This is the case here and additionally, the polarisation of the modes plays a crucial role in the propagation direction. Indeed, the interface states are circularly polarised; one is left-circularly polarised, and the other is right-circularly polarised. The left/right-circularly polarised modes propagate at the interface in the left/right direction, as shown in panel (a).

In panel (d) is shown the measurement of the transmitted intensity along the interface, and we see a strong peak corresponding to the topological band gap where only interface states can propagate.

One major drawback of this kind of implementation (based on the photonic quantum spin Hall effect) is that etching triangles is quite difficult in nanostructures, especially for very low sizes. Indeed, as already mentioned in Ref. [START_REF] Barik | A topological quantum optics interface[END_REF] and studied in Ref. [START_REF] Okada | Discussion on fabrication accuracy of infrared topological photonic structures using hyperspectral fourier image spectroscopy[END_REF], the corners of the triangles may be more rounded than initially planned, which weakens the topological effects. Moreover, the same structure where triangular holes are converted into circular holes does not give the same band structure, in particular, there is no band gap, as shown in Ref. [START_REF] Barik | Two-dimensionally confined topological edge states in photonic crystals[END_REF].

To go towards smaller scales, it is helpful to consider a very close example of a structure hosting topological interface states based on the photonic quantum valley Hall effect, even if it is very similar to the photonic quantum spin Hall effect. We again start from a dielectric slab in which a honeycomb lattice of circular holes is etched, but this time, the size of the two holes of the unit cell are different, as shown in Fig. 4.3 from Ref. [START_REF] Noh | Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry[END_REF]. We call R ± the radii of the large/small air holes, respectively. The ordinary honeycomb lattice corresponds to the limit R + = R -; otherwise, we call this type of lattice a staggered honeycomb lattice of circular holes. In (a), we see a scanning electron microscope image of the experimentally obtained structure, which consists of a suspended dielectric slabs, where circular holes are etched. There are two different photonic crystals (denoted PhC I and PhC II), and there is an interface between them (red triangle). The unit cell is shown as an inset. The difference between the two photonic crystals I and II is that R 1 > R 2 in one and R 1 < R 2 in the other. The dispersion of the honeycomb lattice R + = R -is shown in dashed lines in Fig. 4.3(b). We can see that the two branches cross at the K point. The crossing is a Dirac point. When the two holes are of different sizes, the staggered honeycomb lattice of air holes has a different dispersion, shown in solid lines. At the Dirac point, a gap opens (grey area) because of the breaking of the inversion symmetry. The band structure is exactly the same for both photonic crystals, and the gap is the same as well; only the eigenstates change between the two. The orange areas mark the light cone, where the states are radiative (not guided). In Fig. 4.3(c), the size of the gap is shown against the difference between the radii of the two holes. For the same size, the gap is null, and increasing the size difference increases the size of the gap. Finally, in panels (d,e), the dispersion of a structure with a topological interface is shown for two different structures. The dispersion of bulk states is shown as grey areas, the interface states are purple lines, and the dotted red line represents the light line (modes above/below are radiative/guided). In panel (d), the size difference is slight, while it is large in panel (e). We can distinguish between different energy ranges in the dispersion. First, the pink area in panel (e) is an energy range where the structure is fully insulating, meaning that no state can propagate in the structure, neither bulk states nor interface states. Then, in the light blue area, the interface states propagate in two opposite directions, which is not favourable for observing unidirectional topological interface states. Indeed, the states of one polarisation can go in both left and right directions, so backscattering is possible. The dark blue and yellow areas are the most promising for applications, because the interface states are unidirectional in this energy range. The two areas are however distinct, because the states in the blue area are above the light line (they are radiative). Only the states in the yellow area are guided unidirectional interface states. This kind of state exists if the holes are sufficiently different in size (panel (e)), but does not exist if the holes are too similar (panel (d)), and in addition, the size of the gap decreases.

The interface states are in fact very similar to the ones of the quantum spin Hall effect we described previously. Exciting the interface with a right/left circular polarisation excites interface states with the corresponding polarization, that will propagate mostly to the right/left, showing a very good unidirectionality [START_REF] Gong | Topological insulator laser using valley-Hall photonic crystals[END_REF]. We gather both the quantum valley and quantum spin Hall effects under the generic name quantum pseudospin Hall effect.

If we look again at panel Fig. 4.3(c), we can see that the size of the gap increases approximately linearly with the difference in size between the two holes. If we keep R + constant and decrease R -continuously, the size of the gap increases linearly as well, up to a limit. The limit is reached when the small air hole vanishes R -= 0. This situation corresponds to a triangular lattice of air holes. It is shown in Refs. [START_REF] Zhou | On-chip unidirectional waveguiding for surface acoustic waves along a defect line in a triangular lattice[END_REF][START_REF] Yang | Evolution of topological edge modes from honeycomb photonic crystals to triangular-lattice photonic crystals[END_REF][START_REF] Davis | Topologically protected edge states in triangular lattices[END_REF] that this triangular lattice not only has the same overall topology as the staggered honeycomb lattice (that is, trivial) but also seems to have the same valley topology. The arguments provided in those works are based on the calculation of symmetry indicators [START_REF] Wen | Designing topological defect lines protected by gauge-dependent symmetry indicators[END_REF], but we will now give our interpretation (see Fig. 4.5 and its discussion below). Even if this is not the central theme of this work, we provide some details about this in Ref. Finite Element Methods (FEM). We restrict our simulations to 2D structures for simplicity, because we focus on the effects of different kinds of patterning, which are already visible in 2D. The software solves the Helmholtz equation (obtained from the Maxwell's equations without free charges by eliminating the magnetic field B):

∇ × (∇ × E(r)) = k 2 ϵ r (r)E(r), 4.1 
where E(r) is the electric field profile, ϵ r (r) the permittivity tensor, and k the wavevector. It finds the spatial profiles and the energies of the eigenmodes. The structure we simulated is schematically shown in Fig. 4.4(a). It is a ribbon in the y direction and an infinite structure in the x direction using Floquet periodicity. The interface is a line in the x direction. We took a ribbon of 16 periods in the y direction both for the PC above and below the interface. We can see that the upper PC has a staggering opposite to the one of the lower PC, as emphasized by the unit cells in red. The dispersion of the TE modes of the structure is plotted in Fig. 4.4(b), where the energy is calculated in reduced coordinates, the radii of the small and big holes being R -= 0.1a 0 and R + = 0.25a 0 respectively.

We see that there is an energy range (green area), where no bulk states (grey areas surrounded by black lines) are present. This area is the band gap. There are two interface states (red and blue lines) inside the gap. Because those states are in the gap of both the upper and lower photonic crystals, they cannot scatter into the bulk, so they propagate only at the interface with the direction of propagation associated with a valley, itself associated with a given polarisation as already discussed.

The size of the gap is crucial in determining how well the interface states will be isolated from bulk states. It is determined by the difference of radius between the two holes, as shown in Fig. 4.3(c): The gap increases, as they become more and more different [START_REF] Wen | Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations[END_REF][START_REF] Noh | Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry[END_REF]. The limit R -= 0 is a triangular lattice of circular holes, as represented in Fig. 4.4(c). It presents a particularity: a straightforward calculation for a tight-binding triangular lattice gives zero Berry curvature, but there is no topological transition separating this limit from the nontrivial phase (with locally-nonzero Berry curvature giving rise to valley Chern numbers) at R -̸ = 0. We compute the dispersion in this case (with the same R + ) and plot it in Fig. 4.4(d), and find that the interface states still exist in the gap, and the gap is much larger, which is consistent with recent numerical and experimental studies [START_REF] Yang | Evolution of topological edge modes from honeycomb photonic crystals to triangular-lattice photonic crystals[END_REF][START_REF] Zhou | On-chip unidirectional waveguiding for surface acoustic waves along a defect line in a triangular lattice[END_REF][START_REF] Wen | Designing topological defect lines protected by gauge-dependent symmetry indicators[END_REF][START_REF] Davis | Topologically protected edge states in triangular lattices[END_REF]. Moreover, we can see that this situation is advantageous because it makes a bigger gap, which leads to an energy range where a mode of a given circular polarisation propagates in only one direction. This can be found as well in a staggered honeycomb of air holes with different parameters [START_REF] Noh | Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry[END_REF], but the region where states are unidirectional is always larger for a triangular lattice of air holes compared to the lattice with two different holes.

In a photonic crystal, staggered honeycomb and triangular lattices are topologically equivalent (the Chern number is zero), and going from one to another represents a continuous deformation. This is demonstrated in Fig. 4.5, which shows the profile of the two bulk modes at the K point in a unit cell of a PC with a staggered honeycomb lattice of air holes (a,b) and with a triangular lattice of air holes (c,d). The profile is determined by the electromagnetic energy density E defined as:

E = B 2 2µ 0 + ϵ 0 E 2 2 , 4.2
where B is the magnetic field, E the electric field, µ 0 the permeability of vacuum, and ϵ 0 the permittivity of vacuum. We see that the profile of the lower energy state Fig. 4.5(b,d) does not change much when the small air hole disappears, as expected, because it is anyway confined mostly in the big air hole. The second modes (of higher energy) in both cases are shown in Fig. 4.5(a,c). They are very similar as well, and we see that the suppression of the small air hole does not drastically change the profile of the mode. We can conclude that in both cases, the appropriate tight-binding description for these modes is provided by a staggered honeycomb lattice. When the two air holes are of the same size, the states confined in both holes have the same energy, and the dispersion shows a Dirac point. When we reduce one air hole, the energy of the two modes becomes different and a gap opens at the Dirac point. The energy difference between the two modes increases when one hole is reduced (it can even be increased beyond the value obtained for a vanishing hole if a higher-index material cylinder is inserted at the hole's location).

To conclude, a pair of circularly polarised topological interface states appear in photonic crystal and photonic crystal slabs with broken inversion symmetry. To achieve this sym-metry breaking, several methods are used. The quantum pseudospin Hall effect consists in modifying a honeycomb lattice of holes whose dispersion contains a Dirac point to open a gap. The recent literature and our contribution show that a triangular lattice of air holes is topologically equivalent to a staggered honeycomb lattice, with the advantages of being more simple to realise experimentally and giving a larger gap, with no drawback to our knowledge. We think that experimental studies comparing the topological protection of photonic crystal slabs with staggered honeycomb and triangular lattices of air holes are still elusive, and it would be an exciting direction for further research.

In the next subsection, we study different kinds of states that can arise in photonic crystals, namely bound states in the continuum.

Bound states in the continuum

Bound states in the continuum (BICs) were first predicted as solutions of the Schrödinger equation in quantum mechanics [START_REF] Neumann | Über merkwürdige diskrete eigenwerte[END_REF]. We will explain the phenomenon following Ref. [START_REF] Hsu | Bound states in the continuum[END_REF]. We show in Fig. 4.6(a) an example of a spectrum of a confined structure and in panel (b) the profile of the modes for different situations. Usual bound states are found as discrete energy levels at low energy (green lines). They are confined in space (for instance in a quantum well) and evanescent in the barriers. At energies higher than the confining potential, the modes form a continuum (blue area), the corresponding modes being extended in space. Within the continuum, we can find some resonances (yellow line). Resonances occur at welldefined energies, but not everywhere in the continuum. Finally, there can be, inside the continuum, some bound states (red line). Their profile is very close to the one of a regular bound state, and they are not coupled to the continuum, contrary to the resonances. Those states are BICs. Since they are disconnected from the continuum, their losses are very small (theoretically infinite).

In photonics, one often deals with more complicated multi-dimensional configurations. The mechanisms suppressing the coupling with the continuum can also be different from the original work of [START_REF] Neumann | Über merkwürdige diskrete eigenwerte[END_REF]: instead of a complicated potential, it is the mode interaction which can be responsible for the effect. To understand further the existence of such states, we will consider a simple model, where two leaky modes of frequencies ω 1,2 and decays γ 1,2 are coupled together by a coupling term κ [START_REF] Friedrich | Interfering resonances and bound states in the continuum[END_REF]. The modes are also coupled by a dissipative coupling √ γ 1 γ 2 via the continuum [START_REF] Devdariani | Crossing of quasistationary levels[END_REF][START_REF] Suh | Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[END_REF] (emission with immediate absorption). Each of the modes is also independently coupled to the continuum (hence the decay), but we will see that their superposition can become uncoupled from the continuum:

H BIC = ω 1 -iγ 1 κ -i √ γ 1 γ 2 κ -i √ γ 1 γ 2 ω 2 -iγ 2 . 4.3
We can calculate the eigenvalues of this Hamiltonian, which gives: where:

E ± BIC = ω 1 + ω 2 2 -i γ 1 + γ 2 2 ± √ δ 2 , 4 .4 
δ = (ω 1 + ω 2 ) 2 -i(γ 1 + γ 2 ) 2 + 4 (κ -i √ γ 1 γ 2 ) 2 .

4.5

We can simplify this term by considering the destructive interference term:

κ (γ 1 -γ 2 ) = √ γ 1 γ 2 (ω 1 -ω 2 ) . 4. 6 
Indeed, introducing it into Eq. 4.5 , we find:

δ = κ (γ 1 + γ 2 ) 2 √ γ 1 γ 2 -i γ 1 + γ 2 2 . 4.7
We can see that the imaginary term is the same as in the dispersion relation 4.4 . With the ± sign, it will make the losses disappear in one of the two eigenenergies:

E + BIC = ω 12 -γ 12 κ √ γ 1 γ 2 ; E - BIC = ω 12 + γ 12 κ √ γ 1 γ 2 -2iγ 12 , 4.8 
where ω 12 = ω 1 +ω 2 2 and γ 12 = γ 1 +γ 2 2 . We can see that Im E + BIC = 0. This corresponds to the BIC, a state with no losses, that is, an infinite lifetime.

Interestingly, BICs can be found in a variety of systems [START_REF] Hsu | Bound states in the continuum[END_REF], including photonic crystals [START_REF] Hsu | Observation of trapped light within the radiation continuum[END_REF]. In photonic crystal slabs, BICs correspond to radiative modes, lying in the light cone, but that are still not leaky, their lifetime being theoretically infinite. We can see an example in Fig. 4.7. We show in panel (a) a sketch of the photonic crystal slab considered, consisting of a square lattice of circular air holes in a Si 3 N 4 dielectric slab, isolated from the Si substrate by a SiO 2 cladding layer. In the previously described structure. We can see that there are guided modes (green lines) outside of the light cone (blue line, grey area). Within the light cone (blue area), there are resonances (orange modes) and interestingly BICs (red points). We can see that the two BICs occur at different positions in the dispersion. First, the BIC at k ̸ = 0 is an accidental BIC [START_REF] Neale | Accidental and symmetry-protected bound states in the continuum in a photonic-crystal slab: a resonant-state expansion study[END_REF]. It can happen that BIC appears due to unexpected fine-tuning of the parameters. The second BIC, located at the Γ point of the dispersion, is a symmetry-protected BIC. The symmetry protection makes it easier to predict. Indeed, in photonic crystal slabs with square, honeycomb, or triangular lattices of air holes, we can expect to get a BIC at the Γ point of the dispersion for the first mode at a nonzero frequency. In Fig. 4.7(c), we show the measured quality factor of the modes, usually defined as:

Q = ω δω , 4.9
where ω is the frequency of the mode and δω its width. Since the lifetime of BICs is theoretically infinite, the modes are theoretically infinitely thin and the quality factor is infinite. In the measured quality factor, we can see a strong increase when getting closer to BICs in the parameter space.

Due to their very high quality factor, BICs are favoured states for reaching lasing [START_REF] Kodigala | Lasing action from photonic bound states in continuum[END_REF]. The power threshold needed to reach lasing is decreased when using BICs because of their long lifetime, and it is even more true when dealing with polariton lasers [START_REF] Ardizzone | Polariton Bose-Einstein condensate from a bound state in the continuum[END_REF]. Indeed, excitons can couple to optical bound states in the continuum [START_REF] Kravtsov | Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum[END_REF], and the quasi-BICs that are obtained by this coupling benefit from the very high quality factor of the BIC and the gain provided by excitons.

As mentioned above, it is very easy to predict the existence of symmetry-protected BICs in photonic crystal slabs. On the other hand, we can find examples in the literature of photonic crystal slabs used for lasing because of the very high quality factor of a mode, actually, a BIC, even if not interpreted in this way at the moment the articles were published [START_REF] Matsubara | GaN photonic-crystal surface-emitting laser at blue-violet wavelengths[END_REF][START_REF] Solnyshkov | Polariton laser based on a ZnO photonic crystal slab[END_REF]. Moreover, BICs are of topological nature [START_REF] Zhen | Topological nature of optical bound states in the continuum[END_REF][START_REF] Zhang | Observation of polarization vortices in momentum space[END_REF][START_REF] Doeleman | Experimental observation of a polarization vortex at an optical bound state in the continuum[END_REF][START_REF] Jin | Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[END_REF], because they are topological singularities (of the electromagnetic field) carrying a topological charge. However, we insist that the topology describing BICs (topology of the electromagnetic field) is different from the topology we used previously for describing topological interface states (topology of the eigenvectors). In particular, BICs do not benefit from one-way propagation.

In this section, we gave a brief introduction to the physics related to photonic crystal slabs. We discussed two types of topological states found in photonic crystal slabs. First, circularly polarised unidirectional interface states can be found at the interface between two photonic crystals of opposite topology. This is what is called the quantum pseudospin Hall effect, but, based on recent literature, we show that the appropriate tight-binding description of a triangular lattice of air holes is a staggered honeycomb lattice, so we conclude that the interface states between two triangular lattices of air holes are as topological as the ones found in quantum valley Hall effect. Finally, we discussed the presence of symmetryprotected BICs at the Γ point of the dispersions of photonic crystal slabs. Those BICs have a very long (ideally infinite) lifetime, which facilitates lasing. In the following, we will explain our own designs of topological lasing on those kinds of states using wide-bandgap semiconductors.

Polariton lasing on topological interface states

In this section, we describe the design of a topological polariton laser based on topological interface states we proposed in Ref. [238]. We first detail the design of a photonic crystal slab structure with a triangular lattice of circular holes, then we demonstrate that making an interface between two such photonic crystals gives rise to topologically protected unidirectional interface states, and finally we prove that this structure allows getting a polariton laser on topological interface states.

Design of a photonic crystal slab

The photonic crystal slab structure we consider is schematically depicted in Fig. 4.8(a). It consists of a two-layer waveguide isolated from the substrate by a cladding layer (ZnMgO). The waveguide is made of a patterned TiO 2 photonic crystal slab (thickness h 0 ) and a bulk ZnO layer (thickness h ZnO ). The photonic crystal slab consists of a triangular lattice of circular holes. The lattice constant is a 0 and the diameter is 2R. This part of the waveguide provides the topological properties of the guided mode, whereas the ZnO part provides the strong coupling with an excitonic resonance, giving rise to exciton-polaritons. The structure we consider directly comes out of the specifications explained hereafter. We want to build a structure capable of robust lasing behaviour at room temperature so that it could be used in integrated photonics to pump photonic circuits. The lasing mechanism we want to use comes from the bosonic non-linearity of exciton-polaritons, giving rise to polariton lasing in the guided configuration [START_REF] Jamadi | Edge-emitting polariton laser and amplifier based on a ZnO waveguide[END_REF]. Therefore, the photonic crystal slab structure needs to be fabricated on a substrate, and not free-standing, to provide efficient heat dissipation. Moreover, the room temperature specification requires the use of wide-bandgap semiconductors, and the robustness restrains the choice essentially to GaN and ZnO. We have considered both and have finally chosen to focus on ZnO because of the following reasons.

Nowadays, ZnO can be grown on ZnMgO (itself grown on a ZnO or sapphire substrate) with a very good quality [START_REF] Herrfurth | Transient birefringence and dichroism in ZnO studied with fs-time-resolved spectroscopic ellipsometry[END_REF]. The ZnMgO layer serves as an optical cladding for the ZnO core, isolating it from the substrate, and as a buffer improving the growth quality. The best quality is obtained with m-plane ZnO [START_REF] Herrfurth | Transient birefringence and dichroism in ZnO studied with fs-time-resolved spectroscopic ellipsometry[END_REF]. However, the refractive indices of ZnO and ZnMgO are too close to each other, which prevents one from making a photonic crystal slab by patterning directly the ZnO. Indeed, the effective index of the patterned layer is smaller than that of ZnMgO, which suppresses the vertical confinement. Thus, we suggest using an extra layer with a refractive index higher than that of ZnO for patterning. The TiO 2 is a particularly good candidate because of well-developed deposition and etching techniques (for instance, it is very often used in DBRs, together with SiO 2 ).

After deposition, the photonic crystal slab is formed by etching only the TiO 2 layer. Close to the exciton resonance of ZnO (E X ≈ 3380 meV), the refractive index of TiO 2 is high (n TiO 2 ≈ 3) and the losses are sufficiently low (k TiO 2 ≈ 10 -4 ) [238]. Etching it can give a slab with an effective refractive index of about 2.2, close to the one of ZnO at these energies [START_REF] Herrfurth | Transient birefringence and dichroism in ZnO studied with fs-time-resolved spectroscopic ellipsometry[END_REF]. We represent schematically the refractive indices of the different layers in Fig. 4.8(b), showing that the etched TiO 2 layer provides light confinement for the two first TE modes TE 1,2 . A similar analysis is displayed in Fig. 4.8(c) for an AlGaN/GaN/TiO 2 structure. It shows that TE modes are not confined in this structure, because of the excessive value of the AlGaN refractive index (for ∼ 20% of Al). A GaN-based structure would require a dielectric layer with a larger refractive index and small losses around the GaN exciton energy (around 3.5 eV).

In the simulations, we use frequency-dependent anisotropic permittivities for ZnO and ZnMgO layers and isotropic for TiO 2 . For ZnO, the m-plane growth brings in-plane anisotropy of both the background permittivity and the exciton resonances. Thus, in the (x, y, z) basis, we have:

ϵ Zn(Mg)O =     ϵ || Zn(Mg)O (ω) 0 0 0 ϵ ⊥ Zn(Mg)O (ω) 0 0 0 ϵ ⊥ Zn(Mg)O (ω)     .
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The ZnO exciton response is taken into account in the permittivity [START_REF] Hopfield | Theory of the contribution of excitons to the complex dielectric constant of crystals[END_REF]: 

ϵ || ZnO (ω) = ϵ || ∞ + f C ω 2 C -ω 2 ,

4.11

ϵ ⊥ ZnO (ω) = ϵ ⊥ ∞ + j∈{A,B} f j ω 2 j -ω 2 ,

4.12

where A, B, C are the excitons of ZnO, f j their respective oscillator strengths, and ω j their respective resonance frequencies. The non-radiative exciton lifetime can be added as an imaginary part. The permittivity of Zn 1-x Mg x O is taken from [START_REF] Teng | Refractive indices and absorption coefficients of Mg x Zn 1-x O alloys[END_REF] for x ≈ 0.2, while the one of ZnO is extracted from [START_REF] Herrfurth | Transient birefringence and dichroism in ZnO studied with fs-time-resolved spectroscopic ellipsometry[END_REF]. For ZnO, the exciton resonances are located approximately at 3375 meV (A), 3380 meV (B), and 3410 meV (C) at room temperature, while the oscillator strengths are approximately f A = 150000 meV 2 , f B = 250000 meV 2 and

f C = f A + f B .
Because we now consider a 3D structure (Fig. 4.8(a)), TE and TM modes are ill-defined, but we can still distinguish between quasi-TE and quasi-TM modes, the modes that are the 3D extensions of TE and TM modes, respectively. Numerically, COMSOL finds all photonic modes (quasi-TE and quasi-TM), and we only keep the quasi-TE modes by comparing the values of the electric and magnetic fields along the z direction. For TE modes, E z = 0 and for TM modes, H z = 0. So, the 3D modes with a large ratio |E z |/|H z | are the quasi-TM modes, whereas those where the ratio is small are the quasi-TE modes (the ones that we keep).

The dispersion of the quasi-TE polariton modes is plotted in Fig. 4.8(d) for the path Γ -M -K -Γ in the reciprocal space, which follows high-symmetry points of the lattice. Despite the broken symmetry along the z direction and the presence of excitons, the dispersion is quite typical for this kind of photonic crystal slab. Because we work with guided modes, we are interested in the modes that lie below the light cone. Moreover, we notice a gap between the two quasi-TE bands. This gap is centred around 3125 meV and it has an amplitude ∆ ≈ 50 meV. The parameters used to obtain this gap are h ZnO = 50 nm, h 0 = 130 nm, a 0 = 110 nm and 2R = a 0 /2 = 55 nm. We reach these geometrical parameters by optimising (maximising) the size of the gap without losing the guided modes. These dimensions, although challenging to obtain, must be achievable in state-of-the-art realisations, especially because we use a circular geometry for holes. The main challenge is to etch holes of such a small diameter with a depth of more than 100 nm. It could happen that the holes are not completely etched, meaning that they have the correct diameter, but they do not reach the ZnO layer. We performed additional simulations demonstrating that a deviation of the order of a few nanometers of the depth of etching does not affect the results we present below. However, we noticed that under-etching (the situation that is more probable experimentally) is less detrimental than over-etching (which is anyway less probable experimentally). In the following, we consider that the TiO 2 slab is completely etched, and the ZnO layer remains intact.

There are no propagative quasi-TE states at the energies lying inside the gap. However, we show that there is still a quasi-TM mode inside the quasi-TE gap (in Fig. 4.8(d), the dashed green line is the quasi-TM mode which is inside the green area, the quasi-TE gap). It has a very small overlap with the quasi-TE modes, so it will be disregarded as in the other works [START_REF] Barik | Two-dimensionally confined topological edge states in photonic crystals[END_REF][START_REF] Barik | A topological quantum optics interface[END_REF][START_REF] Noh | Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry[END_REF]. A complete band gap for both quasi-TE and quasi-TM modes for the first bands of a triangular lattice of holes requires a very strong anisotropy of the refractive indices between in-plane and out-of-plane components [START_REF] Wen | Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations[END_REF], and the anisotropy that we have in ZnO is still too weak. However, we note that due to the exciton resonance, the second TM mode (the mode TM 2 ) is not present below the exciton resonance. This means that there is an effective TM gap starting from the TM 1 mode up to the next mode, which is above the exciton. This is an interesting feature, that we think may be used to create a photonic crystal slab with a full quasi-TE and quasi-TM band gap.

Topological interface states

We consider the structure discussed before, but the top layer is now composed of two triangular lattices of circular air holes shifted with respect to each other. This shift creates an interface. Thus, the top layer is akin to what we discussed in the introduction of the chapter, see Fig. 4.4(c) for instance. The full 3D structure is represented in Fig. 4.9(a). The broken symmetry along the z direction does not allow us to straightforwardly say that we will observe interface states, as found in the 2D calculations. Instead, we need to simulate the structure using COMSOL. The structure we simulate is a triangular lattice of circular air holes, infinite in the x direction (through Floquet periodicity) and 24 period-large in the y direction. The upper half of the photonic crystal slab is translated in the y direction by δy = -a 0 √ 3/6, which creates an interface between two triangular lattices of air holes. We use the same parameters as before, that is a 0 = 110 nm and 2R = 55 nm.

The knowledge of the permittivity of each material should be sufficient to find the dispersion of the structure, as we did for Fig 4.8(d). However, the strong variation of the permittivity close to the exciton resonance prevents COMSOL from finding the eigenstates properly. Indeed, close to the exciton resonance, the refractive index of ZnO varies rapidly with the energy and acquires large values, so the spatial mesh has to be extremely fine. Moreover, the structure containing an interface is approximately 20 times larger than a unit cell, which explains that the simulation time needed is larger for a structure with an interface than without. To circumvent this problem, we look for the dispersion of purely photonic modes E P (k) (neglecting the exciton resonance), and we post-process them to include properly the coupling to an effective excitonic resonance. For that purpose, we remind the matrix describing the strong coupling of excitons and photons [START_REF] Hopfield | Theory of the contribution of excitons to the complex dielectric constant of crystals[END_REF][START_REF] Kavokin | Cavity polaritons[END_REF][START_REF] Haug | Quantum theory of the optical and electronic properties of semiconductors[END_REF][START_REF] Kavokin | Microcavities[END_REF]:

M SC = E X ρℏΩ R /2 ρℏΩ R /2 E P (k) , 4.13
where ℏΩ R = 125 meV is the estimated Rabi splitting for the thicknesses of ZnO that we deal with [START_REF] Chen | Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature[END_REF][START_REF] Mihailovic | Optical and excitonic properties of ZnO films[END_REF][START_REF] Trichet | One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature[END_REF], E X = 3380 meV is the energy of the exciton (we consider only one exciton resonance of the polarisation corresponding to the TE photonic bands) and ρ is the fraction of the mode confined in the ZnO layer. It is really important to take it into account because the waveguide we consider contains two layers, and thus an important part of the mode is not confined in ZnO, but rather in the photonic crystal slab (etched TiO 2 ), which does not contain any excitons. We simulate this structure in COMSOL and find the dispersion E P (k) of photonic modes and their spatial distribution to extract ρ. The lower energy band (mode TE 1 ) is less confined in ZnO (ρ ∼ 10%) than the upper energy band (mode TE 2 ), for which the fraction in ZnO is approximately ρ ∼ 20%, which is also the case for the interface states. We neglect the wave vector dependence of the exciton energy.

As a next step, we diagonalise the matrix 4.13 and find the dispersion of the lower polariton branch:

E L (k) = E X + E P (k) 2 - 1 2 (ρℏΩ R ) 2 + (E X -E P (k)) 2 4.14
In this very general formula, we have every ingredient. The energy of the excitons is found in the literature [START_REF] Herrfurth | Transient birefringence and dichroism in ZnO studied with fs-time-resolved spectroscopic ellipsometry[END_REF], as well as the Rabi splitting [START_REF] Chen | Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature[END_REF][START_REF] Mihailovic | Optical and excitonic properties of ZnO films[END_REF][START_REF] Trichet | One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature[END_REF]. The photonic dispersion and the fraction confined in ZnO are extracted from COMSOL. The corresponding band structure is plotted in Fig. 4.9(b). It is consistent with the band structure found in Fig. 4.8(d), but the structure is here infinite only in the x direction. We still find a band gap for the bulk states at the same energy and of the same amplitude ∆ ≈ 50 meV, but now there are two modes in the gap of the bulk states, which are localised at the interface between the two triangular lattices of circular air holes. The two states are counter-propagating, one going in the +x direction and the other going in the -x direction, as expected. The group velocity of the interface states is v g = 25 µm/ps, which is of the same order of magnitude as what can be found in the existing literature [START_REF] Ciers | Polariton relaxation and polariton nonlinearities in nonresonantly cw-pumped III-nitride slab waveguides[END_REF].

We note that Eq. 4.13 is written for a single photon polarisation (the one of the bulk modes), which couples to a single exciton. The interface modes are circularly polarised, so they also couple to the other exciton. This aspect is neglected in our calculation because the anisotropy of the exciton response at the frequencies of the interface modes (up to the highest exciton fraction considered) is less than 7%. It is just 1% at the frequency of the interface modes shown in the paper. We consider that such error is negligible with respect to the other uncertainties (including the experimentally measured exciton response itself).

In Fig. 4.9(c,d), we show the spatial profile (obtained from the electromagnetic energy density E) in the (y, z) plane of the mode corresponding to the grey and blue points in Fig. 4.9(b), respectively. We can see that the state corresponding to the grey point is not localised at the interface, but rather spread in the bulk of the photonic crystal slab, while the state corresponding to the blue point is strongly localised at the interface, with a very narrow profile of only a few periods in the y direction. We conclude that the blue line indeed corresponds to interface states, while the bulk states are in the grey regions, as expected.

The interface modes are not just two states of opposite wavevectors propagating in opposite directions, their polarizations are also different. Without that, one could think that they could elastically scatter (by disorder) from one to another, giving rise to Anderson-localised states. However, the interface state propagating to the right (+ states in Fig. 4.9(b)) is circularly polarised σ + on one side of the interface and σ -on the other side. The counterpropagating mode (-states in Fig. 4.9(b)) shows the opposite polarisation pattern. These features can be found both from a tight-binding description of a staggered honeycomb lattice with TE-TM splitting and by examining the electric field pattern of modes numerically computed by COMSOL. These two counter-propagating states are orthogonal from a polarisation point of view which might decrease scattering from one to another by elastic scattering on the structural disorder. This protection from backscattering occurs for the vectorial electromagnetic field (photons) but does not a priori hold for the electronic quantum valley Hall effect.

Next, we further illustrate this crucial property by simulating the propagation of wave packets on the interface. This can be numerically simulated by using the Finite Difference Time Domain (FDTD) method. For the FDTD simulations, we resort to the software Lumerical. We used it to solve time-dependent Maxwell equations (including excitonic contributions in the permittivity given by Eq. 4.10 ) in this structure and probe the existence of interface states. Choosing the excitation position and polarisation makes it possible to excite unidirectional interface states at a topological interface between two photonic crystal slabs [START_REF] Gong | Topological insulator laser using valley-Hall photonic crystals[END_REF]. We use this method and pump the interface with a left-circularly or rightcircularly polarised electric dipole at a frequency f ≈ 755 THz, corresponding approximately to the centre of the gap (see Fig. 4.9(b)). We then observe the propagation of the interface state for a few picoseconds and a few micrometres, as expected by the dispersion. In Fig. 4.10(e-g), we plot the electromagnetic energy density in the middle of the TiO 2 slab, ∼ 100 fs after the beginning of the simulation. The excitation pulse duration is chosen to be sufficiently long (δτ ∼ 1 ps) to be narrow in frequency (δf ∼ 1 THz). We can see from the image that the propagation is mainly at the interface and that the signal propagates to the right (left) of the injection point if the excitation is right-circularly (left-circularly) polarised in Fig. 4.10(a) (left in Fig. 4.10(b)), as expected [START_REF] Gong | Topological insulator laser using valley-Hall photonic crystals[END_REF]. Indeed, we pump below the interface for both images, so that the direction of propagation of the topological interface states is given only by the polarisation of the excitation. Note that exciting above the interface leads to inverted results, meaning that exciting right-circularly (left-circularly) implies propagation to the left (right) because of the preserved chiral symmetry. We calculate the directional selectivity (left-to-right) ratio: f L/R = P L -P R P L + P R , 4.15

where P L,R is the magnitude of the Poynting vector Π far from the injection (∼ 4 µm far) integrated over a narrow 2D zone of few periods in both x and y directions and normalized, where:

Π = E × B µ 0 . 4.16
In the end, we find f L/R = -0.93 ± 0.04 for an excitation with a right circular polarisation and f L/R = 0.93 ± 0.04 for an excitation with a left circular polarisation, which confirms a very high selectivity.

Moreover, we perform an additional simulation to verify that defects at the interface do not prevent topological interface states from propagating. We reproduce the simulation of Fig. 4.10(b), but we double the radius of one hole at the interface (on the path of the propagating topological interface state). The profile of the mode is shown in Fig. 4.10(c), where we can see that despite the defect indicated with a white circle, the profile of the mode is very similar. In this case, we calculate the directional selectivity ratio and find f L/R = 0.90 ± 0.03, which is a bit lower than the one found without defect, but still very close to one, as expected. We estimate that the backscattering on the defect is about 3%, which is very low. This can be attributed to the topological nature of the states. However, it is not completely zero, because scattering to the opposite polarisation is still possible, although reduced by the polarisation properties of the modes.

Regarding this effect, a recent experimental work studied specifically the losses generated by backscattering in quantum valley Hall photonic crystals [START_REF] Rosiek | Observation of strong backscattering in valley-Hall photonic topological interface modes[END_REF]. More precisely, the authors study the backscattering produced by two different effects. First, they study the effects of backscattering when light propagates across a 120 • bend and find no substantial backscattering, as expected because of the topological protection. Second, they study in detail the effect of fabrication inaccuracy. They find that this effect leads to measurable backscattering due to Anderson localisation. They interpret it in the following way. Topological properties are determined at a large scale, where we can see that two adjacent photonic crystals have a different topology (see Fig. 4.4(a,c) for example). So, for large scales, topological protection stands, and the topological interface states can propagate with low backscattering even through sharp bends. On the contrary, at scales smaller than the unit cell (the typical length scale of a structural defect due to fabrication inaccuracy), the topology is ill-defined, and the dominant effect is the disorder. However, this work does not contradict the conclusions of our own work. Indeed, the holes they considered are triangular, and they still use the historical structure for the quantum valley Hall effect where there is a small hole and a large hole. In a structure with circular holes and no small holes, as we propose, we expect that the fabrication inaccuracy is drastically reduced and the consequent localisation effects as well.

To sum up, we design a photonic crystal slab structure hosting topological interface states. The waveguide is composed of a TiO 2 layer etched with two triangular lattices of circular air holes between which there is an interface. This layer is deposited on top of a ZnO layer providing excitons-polaritons. In the next subsection, we prove that polariton lasing can occur specifically on the topological interface states we studied.

Lasing on topological interface states

To prove that polariton lasing can occur on the topological interface states found previously, we perform an analysis of our system and see how it can be compared with the literature where polariton lasing is observed. Indeed, by itself, the presence of interface states does not ensure that there can be lasing from them. There is first a need for gain, which can be electron-hole gain in a standard laser or polaritonic gain in a polariton laser. Room temperature polariton lasing in ZnO cavities [START_REF] Li | From excitonic to photonic polariton condensate in a ZnO-based microcavity[END_REF] and waveguides [START_REF] Jamadi | Edge-emitting polariton laser and amplifier based on a ZnO waveguide[END_REF] has already been reported. In these references, lasing was achieved around 3.2 to 3.25 eV with exciton fractions C X of the order of 20%. In the previous subsections, we considered a structure showing a gap at approximately 3.1-3.15 eV. To increase the position of the gap in the energy scale, we need to reduce the lattice constant a 0 . Fig. 4.11(a) shows the energy of the centre of the gap E ∆ versus the lattice period a 0 for the structure without interface. We find that the upper side of the gap remains below the light cone up to 3.25 eV for the energy of the gap centre. We conclude that a topological gap around 3.2 eV is feasible (a 0 = 107 nm), which allows keeping the interface modes below the light cone, but it is the maximum value that can be achieved. For higher values, the gap is above the light cone and the interface The period a 0 = 110 nm (indicated as a vertical dashed line) is the value taken previously. Below 105 nm, the gap is above the light cone (dashed lines). (b) Electric field profile (square amplitude) of the pump (dashed lines) and states (solid lines) in the y direction. The norm of the electric field of the states is integrated along the x and z directions (and restricted to the ZnO) to give the profile. A broad pump has a good overlap with the interface states while the overlap is smaller for a narrow pump. (c) Ratio between the overlap of the pump profile with the interface Γ int and bulk Γ bulk states with respect to the size of the Gaussian pump, here its full width at half maximum (FWMH). A ratio of 1 is indicated by the dashed line. states would not be guided anymore. For E ∆ ≈ 3.2 eV, the interface state shows an exciton fraction around 0.2, slightly larger than modes with the same energy in bulk cavities, because the overlap between the electric field and the excitons is slightly better in the guided geometry.

The second condition to get topological lasing is that mode competition should favour the topological interface states instead of bulk states. The most efficient approach is to focus the non-resonant pump laser on the topological state (on the interface), as proposed in [START_REF] Solnyshkov | Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars[END_REF] and done in [START_REF] St-Jean | Lasing in topological edge states of a one-dimensional lattice[END_REF]. Fig. 4.11(a) shows the spatial distribution along y of the interface mode at 3.2 eV and of a bulk state. They exhibit a small overlap. The thin dashed lines represent two Gaussian excitations (narrow and broad). The ratio between the pump-to-interface Γ int and the pump-to-bulk Γ pump overlap versus the full width at half maximum (FWHM) of the Gaussian is shown in Fig. 4.11(b). This ratio can be made arbitrarily large by considering a large sample, which only increases the bulk size. The qualitative conclusion is that a typical µm size pump laser excites the interface modes more than the bulk modes. For a pump smaller than ∼ 4 µm, the overlap with the interface states is twice larger than with the bulk states. The overlap between the pump and the interface states is always better than with bulk states (the ratio Γ int /Γ pump is always larger than 1, see the dashed line in Fig. 4.11(b)), which favours lasing specifically on the interface states rather than on bulk states.

Another requirement is that lasing occurs on the interface states lying in the gap, rather than on the interface states outside the gap, which are resonant with bulk modes. Indeed the band gap provides protection against scattering on a defect to the interface states inside the gap, but the interface states resonant with bulk modes do not benefit from this protection: If there is scattering on a defect, the scattered mode can be a bulk mode which weakens the interface states. In other words, interface modes outside of the gap are expected to suffer losses due to their coupling to the bulk modes by elastic scattering on the disorder. On the other hand, both interface modes propagating in opposite directions are expected to be excited by the non-resonant pump, as was the case in previous papers reporting topological lasers based on quantum pseudospin Hall effect [START_REF] Bandres | Topological insulator laser: Experiments[END_REF][START_REF] Parappurath | Direct observation of topological edge states in silicon photonic crystals: Spin, dispersion, and chiral routing[END_REF]. This can be overcome by using a circularly polarised non-resonant pump spatially shifted with respect to the interface, similarly to what is done in this work. Such pumping should favour one of the two interface modes leading to directional propagation, provided the generated exciton reservoir does not lose completely its polarisation.

To conclude, we propose a realistic design for a room-temperature 2D topological polariton laser. We model the full 3D structure of a photonic crystal slab including a ZnMgO cladding, an active ZnO layer, and a patterned TiO 2 layer. The full structure demonstrates a quasi-TE gap for bulk modes and topological interface states in this gap, whose energy and exciton fraction are optimal to get room temperature polariton lasing. We find that the topological interface states have an excellent one-way character upon appropriate excitation because they are protected from backscattering by their polarisation. In the next section, we discuss a design of a polariton laser based on the coupling between bulk excitons in wide-bandgap semiconductors and photonic bound states in the continuum.

Polariton Bose-Einstein condensate in bound states in the continuum

In this section, we demonstrate that we can reach polariton Bose-Einstein condensation (polariton lasing) with a photonic crystal slab structure using a GaN-TiO 2 waveguide. We first demonstrate the presence of a photonic bound state in the continuum in the photonic crystal slab that can couple to excitons to form a polariton quasi-BIC. Then, we show that the presence of a BIC allows reaching condensation in this state.

Polariton quasi-BIC

The structure we study is sketched in Fig. 4.12(a). It comprises a TiO 2 photonic crystal slab deposited on top of a GaN waveguide. The GaN slab is isolated from the substrate, which can be bulk GaN by a cladding layer, typically Al x Ga 1-x N, with x ≈ 0.2. The photonic crystal slab we consider consists of a 1D patterning in steps. The lattice constant is denoted a 0 , divided between parts with TiO 2 denoted a 1 and parts with air holes denoted a 2 (see sketch) so that a 1 + a 2 = a 0 .

We simulate the structure in COMSOL and find the photonic dispersion of the modes, together with their quality factor. The structural parameters we use are a 0 = 140 nm, a 1 = 90 nm, a 2 = 50 nm, h 0 = 70 nm and h GaN = 80 nm. Then, we consider the strong coupling with the excitons in GaN using the matrix for strong coupling M SC with ℏΩ R = 100 meV and E X = 3480 meV [START_REF] Brimont | Strong coupling of exciton-polaritons in a bulk GaN planar waveguide: Quantifying the coupling strength[END_REF][START_REF] Mallet-Dida | The low temperature limit of the excitonic Mott density in GaN: an experimental reassessment[END_REF]. Since the waveguide comprises two layers, we again calculate an effective Rabi splitting based on the ratio of the mode confined in GaN ρ. However, the situation is more favourable here than in the previous design, because we find ρ ∼ 60% for the BIC. We finally find the polaritonic dispersion, which we plot in panel (b). We can see the two bands, the lower one (with a negative mass), whose extremum is the BIC, while the upper one contains only radiative states. We can see that close to k = 0, the dispersion of the two modes is approximately quadratic. In the following, we focus our study on the lower band. We plot in panel (c) the lifetime of the lower photonic branch alone, in log scale. We see that close to k = 0, the lifetime of the photonic modes reaches very high values, associated with a quality factor larger than 10 9 , which is close to the maximum value achievable in COMSOL. However, the ultimate limit of the quality factor of polaritonic modes will be strongly influenced by the lifetime of the excitons, which is lower than the lifetime of photonic modes of a BIC. In panel (d), we plot the losses of the lower photonic modes. We see that the dispersion of the losses is quadratic, as the dispersion of the energies. However, the effective mass is lower and imaginary, as seen in the following.

Bose-Einstein condensation on a polariton quasi-BIC at room temperature

To study the possibility of having a polariton Bose-Einstein condensate at the location of the BIC in reciprocal space, we solve numerically the Gross-Pitaevskii equation of the form [START_REF] Wertz | Propagation and amplification dynamics of 1D polariton condensates[END_REF][START_REF] Solnyshkov | Hybrid Boltzmann-Gross-Pitaevskii theory of bose-Einstein condensation and superfluidity in open drivendissipative systems[END_REF] (presented in Chapter 1) : iℏ∂ t ψ(r, t) = (iΛ -1) ℏ 2 2m pol ∇ 2 r + α|ψ(r, t)| 2 + iγ r -iΓ pol ψ(r, t) + ξ. 4.17

where m pol = -1.4 10 -6 m 0 , Λ = -0.1228 are obtained from parabolic fitting of the real and imaginary parts of the polariton dispersion calculated by COMSOL close to BIC. We add a noise term ξ to simulate the spontaneous scattering into the polaritonic modes from the reservoir. Moreover, we take into account in the saturated gain term γ r mostly the polariton relaxation due to the optical (LO) phonons. Indeed, we chose a configuration where the BIC is resonant with LO phonons to enhance the relaxation towards this state. For that, we set the parameters of the structure such that the energy of the BIC is at E LO = 92 meV (the energy of LO phonons in GaN [START_REF] Celik | Determination of the LO phonon energy by using electronic and optical methods in AlGaN/GaN[END_REF]) below the maximum of the exciton density of states, itself being located at 3k B T /2 above the exciton energy [269] (k B is the Boltzmann constant and T the temperature). In total, we obtain the relation:

E BIC = E X + 3 2 k B T -E LO . 4.18
We had that in mind in the design of the structure presented previously, whose dispersion is shown in Fig. 4.12(b), together with the exciton energy E X . This gives a particularly favourable situation for reaching Bose-Einstein condensation in the BIC. We show the results in Fig. 4.13 after some time for the condensation process to take place. Panel (a) shows the population in the reciprocal space |ψ(k)| 2 when the system has stabilized. We can see that the population is maximal at the top of the dispersion (the dispersion is indicated as a dashed line whose transparency is varied to let appear the intensity peak), which is precisely the position of the BIC. Indeed, the BIC has fewer losses than any other mode, so condensation occurs in this mode. Moreover, the threshold we find for reaching Bose-Einstein condensation is approximately 10 19 m -3 , which is quite good compared to what is found in the literature [START_REF] Das | Room temperature ultralow threshold GaN nanowire polariton laser[END_REF][START_REF] Jayaprakash | Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap[END_REF]. Usually, the states that are the most populated, typically the ones on which there is condensation, are the most bright states of the dispersion, the ones that emit more light (but even for usual polaritons, one has to take into account the photonic fraction in order to determine the polariton population from the emission intensity [START_REF] Kasprzak | Bose-Einstein condensation of exciton polaritons[END_REF]). In the case of BICs, the population is very different from the emission. Indeed, the light emitted by the structure is proportional to the losses: the light that is collected is the light that escaped the waveguide and hit the detector. The emission γ|ψ(k)| 2 is plotted in panel (b). We can see two peaks close to the maximum of the dispersion, which is a typical observation when considering condensation on BICs [START_REF] Ardizzone | Polariton Bose-Einstein condensate from a bound state in the continuum[END_REF]. The population is huge in the BIC, but the emission is very low, precisely because the lifetime is infinite. If not infinite, it is still very high, orders of magnitude larger than modes close in reciprocal space, which still have a very high population. In the end, we only see two peaks of emission close to the BIC, but not the BIC itself.

To conclude, we design a structure for polariton Bose-Einstein condensation (polariton lasing) based on a BIC in a TiO 2 -GaN waveguide. We predict a possible realisation of room temperature polariton Bose-Einstein condensation because of the presence of BIC resonant with LO (lower optical) phonons. This could be implemented using state-of-the-art experimental techniques. It would allow reaching an electrically-injected room-temperature polariton laser with a lasing threshold expected to be very low, which we think could be used as a device in the long term. I n this thesis, we studied different subjects of topological photonics. First, we have constructed an analogue of the Andreev reflection on a polaritonic gapped superfluid regime [199,200]. The analogy is so excellent that we are able to study polaritonic Andreev bound states in analogue Josephson junctions [199]. We characterise the topology of the states by the Zak phase and demonstrate a topological transition occurring when two bands of different nature cross and merge, because of the appearance of exceptional points due to non-Hermiticity. The imaginary part corresponds to the parametric amplification of the state. Next, we study multi-terminal Josephson junctions in which we find Weyl singularities, that are Hermitian, in a 4D synthetic parameter space [206]. We observe the motion of the Weyl points in a 3D subspace, their birth, and annihilation. We moreover find 3D subspaces with 6 Weyl points, not a multiple of 4, which is the signature of broken time-reversal symmetry. Our works may be completed by studying polarisation effects of the polaritonic Andreev reflection. Moreover, understanding more deeply the quantum entanglement and its parallel with stimulated Hawking emission occurring at black hole horizons seems to deserve a serious study. We are pretty sure that multi-terminal Josephson junctions (both polaritonic and electronic) will foster huge works because of the possibility to study topology in arbitrarily large parameter spaces. In our system, the interplay between Weyl singularities, non-Hermiticity, and non-linearities promises a bright future for our first work on the subject. Eventually, the experimental demonstration of any of the effects we predict would surely have a huge impact on the communities of polaritonics, topological physics, and Andreev physics in general.

We then study a photonic microcavity filled with liquid crystal with strong and tunable birefringence. We study the resonance of the horizontally-polarised mode of order N + 2 with the vertically-polarised mode of order N . In the Hermitian limit, we find a topological transition between the well-known two-Dirac-points configuration (topological) towards the original four-Dirac-points case (trivial). Taking into account non-Hermiticity due to linear dichroism induced by the strong birefringence, we study the exceptional points arising from the Dirac points in both configurations. We find that the trivial Hermitian topology allows reaching a non-Hermitian topological transition where the exceptional points of different Dirac points meet and annihilate [START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF]. On the contrary, the Hermitian topological situation forbids Dirac points annihilation. For this work, we made both a theoretical and experimental analysis with the collaboration of our colleagues at the University of Warsaw. The possibility to engineer the position of exceptional points in reciprocal space is very promising in terms of applications. It allows choosing the direction of lasing (for instance) just by tuning an applied voltage because exceptional points are known to trigger lasing under certain conditions. Moreover, studying the interplay between Hermitian and non-Hermitian topology, as we did, is always an exciting and promising direction of research.

Finally, we study some applications of topological photonics and design two different structures. We first clarify the topology of photonic crystal slabs with triangular lattices of air holes by showing that they are topologically equivalent to a staggered honeycomb lattice in a tight-binding model [238]. Then, we build a ZnO-TiO 2 structure, where only the TiO 2 structure is etched with a triangular lattice of air holes, and show that a topological interface between two triangular lattices hosts two unidirectional topological interface states [238]. We demonstrate that polariton lasing can be achieved in this structure. We end with a proposal of a polariton laser based on a photonic bound state in the continuum present in a 1D GaN-TiO 2 waveguide. We simulate the Gross-Pitaevskii equation and show a low-threshold polariton Bose-Einstein condensate on the BIC because of the high quality factor of the photonic mode and the resonance with the LO phonons. This part of our work is really made for experimental implementation. We truly believe that the designs are feasible, even if challenging (especially the first one). Moreover, the experimental demonstrations might be followed in the future by implementations in state-of-the-art devices due to the high performance of our structures. In parallel, implementations similar to the ones we proposed based on wide-bandgap semiconductors ZnO and GaN must be transposable to photonic crystals with perovskites or with monolayer transition metal dichalcogenides, which are very promising materials in terms of excitonic properties. Finally, instead of using the photonic quantum pseudospin Hall effect, the implementation of the photonic quantum anomalous Hall effect in such structures where lasing is achievable could be a major progress in the field of topological polaritonics.
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 112 Figure 1.2: The Su-Schrieffer-Heeger chain and its modelization. (a) Chemical representation of the polyacetylene molecule studied in the Su-Schrieffer-Heeger chain. (b) Model of the polyacetylene molecule as a dimer chain, with sites A and B connected by either strong links (double bonds, strength J 1 ) or weak links (simple bonds, strength J 2 ) represented respectively by solid/dashed lines. The lattice constant a is noted in the figure.
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 13 Figure1.3: Band structure of the SSH chain for different configurations. In (a), J 1 = J 2 /2, so J 1 < J 2 , which is the topological configuration as shown by the π Zak phase (see the Berry connection in green, which is always positive). In (b), the couplings are equal J 1 = J 2 and the bands cross linearly at ka = π. In (c), J 1 = 3J 2 /2, so J 1 > J 2 , the bands are well-separated but are not topological because their Zak phase is 0 (see the Berry connection in green, which takes both positive and negative values that compensate each other when integrated over the full band).
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 14 Figure 1.4: Edge states in the semi-infinite SSH chain. The semi-infinite chain is equivalent to an infinite chain with a position-dependent coupling J 2 . (a) Semi-infinite chain in the trivial configuration, where no edge states exist. (b) Semi-infinite chain in the topological configuration, as predicted by the non-zero Zak phase in an infinite chain. In this configuration, there exists an edge state. The red loops emphasize the strongly-bond dimers whereas the orange loop emphasizes the left-alone site where an edge state emerges.
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 15 Figure 1.5: Graphene, a two-dimensional sheet of carbon atoms. (a) Sketch of a graphene sheet, the black spheres represent the carbon atoms connected together by bonds in a honeycomb lattice. (b) Model of graphene, where two sites A and B can be distinguished because of their different hoppings to their neighbours. A sites are coloured in purple while B sites are coloured in green. The lattice constant a and the three hopping lengths d 1,2,3 are noted on panel (b).
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 16 Figure 1.6: Band structure of graphene. (a) Full band structure of graphene, obtained from the tight-binding Hamiltonian considering only nearest-neighbours hoppings. Note the 6 linear crossing points. (b) Dispersion close to the Dirac points, calculated from the effective Hamiltonian. The linear behaviour in both directions is clearly visible.
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 17 Figure 1.7: Winding number in graphene.(a-d) Pseudospin texture close to the K ′ point where the winding w K ′ = +1 is measurable as the full rotation of the arrows along one circle. (e-h) Pseudospin texture close to the K point. The winding number w K = -1 is found because the arrows rotate in the opposite direction with respect to the previous case. The 4 panels correspond to different gauges, we plot (S x , -S y ) in (a,e), (S x , S y ) in (b,f ), (S y , S x ) in (c,g) and (S y , -S x ) in (d,h). The winding number is not affected by the gauge, it is gauge-invariant. The K/K ′ points are represented by yellow/blue circles respectively.

Fig. 1 .Figure 1 . 8 :

 118 Figure 1.8: Dispersion of the massive Dirac Hamiltonian and Berry curvature distribution. (a) Dispersion close to the K point, where the lower/upper band is associated with a positive/negative (red/blue) Berry curvature. The subsequent Chern number associated with the band gap at K is C K = 1/2. (b) Dispersion close to the K ′ point, where the lower/upper band is associated with a negative/positive Berry curvature. The subsequent gap Chern number is C K ′ = -1/2.
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 19 Figure 1.9: Position of the Dirac points of graphene in the reciprocal space. (a) Band structure of graphene calculated from Eq. 1.13 . Note the K and K ′ Dirac points in yellow/blue respectively. (b) Energy difference between the upper and lower band of graphene in the 2D reciprocal space. The darkest areas correspond to degeneracy points, in this case, the Dirac points at K and K ′ . (c) Position of the 6 Dirac points in the reciprocal space.
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 110 Figure 1.10: Representation of Weyl points. (a) 3D parameter space (k x , k y , k z ) in which there exist two Weyl points at k = (±k 0 , 0, 0). The red/blue colour represents the positive/negative topological charge associated with each Weyl point, respectively. The grey planes correspond to the (k x , k y ) subspaces where the dispersions are plotted. (b-d) Dispersion in (k x , k y ) subspaces for k z = 2k 0 (b), k z = 0 (c) and k z = -2k 0 (d). Note the band crossings in (c) and the band gaps in (b,d).
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 111 Figure 1.11: Weyl points and Chern number. (a) Sketch of the position of Weyl points in the reciprocal space when time-reversal symmetry is broken (2 Weyl points). (b) 2D Chern number in the (k x , k y ) subspace of the corresponding band gap, k z being taken as a parameter. (b) Sketch of the position of Weyl points in the reciprocal space, typical of inversion symmetry breaking (4 Weyl points). (d) 2D Chern number in the (k x , k y ) subspace of the corresponding band gap, k z being taken as a parameter.

Figure 1 . 12 :

 112 Figure 1.12: 2D Dirac point subject to different non-Hermitian perturbations. (a) An isolated Dirac point (emphasized in blue) is associated with a winding number w = +1. (b) Two exceptional points in cyan/magenta emerge from a Dirac point because of a non-Hermitian perturbation iϵ x σ x in the Hamiltonian. They are connected by a real Fermi arc (in green). Note the imaginary Fermi arc (in grey) in the imaginary part of the energies. (c) A ring of exceptional points emerges of a Dirac point because of the non-Hermitian perturbation iϵ z σ z .
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 21132 Figure 1.13: Real and imaginary Fermi arcs and the existence of exceptional points. (a,b) Position of exceptional points in reciprocal space for the case of exceptional points (a) and rings of exceptional points (b). The first condition d 2 r = d 2 i is represented as a pink line, a circle in both cases. The second condition d r • d i = 0 is represented as a green line in (a) and as a green area in (b) (because it is verified in the whole reciprocal space). The real/imaginary Fermi arcs are represented in solid/dashed lines, respectively. In (b), the second condition coincides with the ring of exceptional points.
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 114 Figure 1.14: Winding of the complex energy. (a) Dispersion of a Dirac Hamiltonian with a non-Hermitian perturbation, giving birth to two exceptional points. (b) Argument of the complex energy. We can clearly see its winding at the exceptional points. The two exceptional points are linked with opposite windings w i = ±1/2.
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 115 Figure 1.15: Synthetic parameter spaces in coupled waveguides. (a) 1D array of waveguides, giving access to the 2D quantum Hall effect. The light enters from the bottom right and escapes from the upright corner. (b) Synthetic bands with respect to the phase ϕ. Insets show the localisation of light. (c) 2D lattice of coupled waveguides, giving access to the 4D quantum Hall effect. Panels (a,b) adapted from Ref. [82], and panel (c) adapted from Ref. [84].
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 116 Figure 1.16: Semiconductor excitons. (a) In the Wannier-Mott model, excitons are electronhole pairs far from each other. (b) In the Frenkel model, excitons are electron-hole pairs that are close to each other.In both panels, the grey discs represent the crystal in which the electrons (in red, e -) and the holes (in blue, h + ). Their interaction is represented as a red-shaded area.
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 117 Figure 1.17: Dispersion of semiconductor excitons. (a) Dispersion of the valence (blue) and conduction (red) bands of a "fictitious" semiconductor (with a rather narrow bandgap). Electrons/holes lie on the conduction/valence bands. (b) Dispersion of the exciton.
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 2118 Figure 1.18: A planar waveguide. (a) Sketch of a photonic planar waveguide made of Si as a waveguide and SiO 2 as a cladding. (b) Band structure of a typical Si planar waveguide. The different light cones are represented in red, green and blue. The modes confined in the Si waveguide are in the red-shaded area, and their dispersion is plotted as black lines. The modes in the green areas are confined in the SiO 2 , and the modes in the blue-shaded area are radiative. Below the light cone of Si, there are no modes.
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 119 Figure 1.19: A polaritonic planar waveguide. (a) Sketch of a polaritonic planar waveguide. The core of the waveguide is made of ZnO (in pink) and the cladding of ZnMgO (in purple). (b) Dispersion of the polaritons. The lower/upper band are represented as solid green/purple lines respectively. The bare photon (dashed blue line) and exciton (orange dotted line) are represented as well.
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 120 Figure 1.20: Cavity photons. (a) Optical microcavity, where the confinement in the z direction is achieved by DBRs, letting the cavity photons propagate in the plane. The thickness of the cavity is noted L. (b) Typical dispersion for cavity photons. We see that there are 3 bands, and the mass of the associated photons is proportional to the mode number m C ∝ m.
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 121 Photon fraction
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 122 Figure 1.22: Polariton bistability. (a) Typical dependence of the polariton density |ψ| 2 on the pump intensity P > 0 for different polaritons lifetimes Γ pol = 0 (blue), Γ pol = 0.1 (pink) and Γ pol = 0.2 (orange). We considered ℏω p = α = 1. (b) Illustration of the bistability phenomenon. Increasing the pump amplitude (following the red dotted line and red arrows), the polariton density reaches a local maximum (red point), then jumps (big red arrow) to the upper bistability branch. Decreasing the pump amplitude (following the blue dashed line and blue arrows), the polariton density reaches a local minimum (blue point), then jumps (big blue arrow) to the lower bistability branch. In (b), ℏω p = α = 1 and Γ pol = 0.2. The orange curves in panels (a) and (b) are identical.
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 123 Figure 1.23: Polariton superfluidity. (a) Bogolon dispersion obtained from Eq. 1.72 solid blue line). The linear dispersion 1.73 is plotted as an orange dashed line. Note the good agreement at low wave vectors. The parameters used in the plot are αn = 0.55 meV and m pol = 2.10 -5 m 0 . (b) Bogolon dispersion under quasi-resonant pumping. Three regimes are depicted. The regime αn < E p is shown in green. The energy is complex, its imaginary part is nonzero along the flat part of the dispersion. The black points represent exceptional points.The case in blue is the same as in panel (a) but obtained under quasi-resonant pumping if α n = E p . The red dispersion is the gapped superfluid regime, achieved for αn > E p . There is a gap of amplitude 2∆ between the upper and the lower branches (between the two horizontal black dashed lines). The parameters used in this panel are E p = 0.5 meV, m pol = 2.10 -5 m 0 , αn = 0.3 meV for the green curves, αn = 0.5 meV for the blue curves, and αn = 0.6 meV for the red curves. In (a), the zero is the chemical potential whereas in (b), the zero is the pump energy E p .
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 124 Figure 1.24: Optical parametric oscillator. (a) Sketch of an optical parametric oscillator.Pumping (red arrow) a non-linear medium (yellow box) gives rise to oscillations of light in the medium, which emits at each oscillation a signal (blue arrow) and an idler (green arrow). (b) Illustration of the energy conservation condition. A quantum of energy from the pump ω p (red) is converted into a quantum of energy ω s and another one ω i so that energy is conserved. (c) Illustration of the phase-matching conditions. The wave vector of the pump is equal to the sum of the wave vectors of the signal and of the idler.
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 125 Photon
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 126 Figure 1.26: Polariton Bose-Einstein condensate. (a) Polariton dispersion (black solid lines).The exciton reservoir (blue area, on the top) is at higher energies. It is pumped (blue arrow) and the excitons relax (orange arrows) along the exciton dispersion, and finally gather in the bottom of the exciton-polaritons dispersion (bottom of the LPB, red-shaded area). Due to finite lifetime, there is an emission of exciton-polaritons (red arrow) (b) Emission intensity in reciprocal space. From left to right, the pump intensity is increased. There is no condensation before the pump reaches the pump threshold P th (middle panel), where the ground state becomes macroscopically occupied. The dispersion is shown as pink dashed lines (guides for the eyes) whereas the emission becomes strongly localized at the bottom of the dispersion with the increase of the pumping power. Figure adapted from the first observation of polariton Bose-Einstein condensate, Ref.[START_REF] Kasprzak | Bose-Einstein condensation of exciton polaritons[END_REF].
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 127 Figure 1.27: Polarisation of light. Electric field oscillations for the linear (a-d) and circular (e-f ) polarisations. The panels represent the vertical (a), horizontal (b), anti-diagonal (c), diagonal (d), left circular (e), and right circular (f ) polarisation of light.
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 128 Figure 1.28: Poincaré-Bloch sphere. (a) Representation of the spin of an electron on the Bloch sphere. (b) Representation of the polarisation of light on the Poincaré sphere.
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 129 Figure 1.29: TE-TM splitting in an optical microcavity. (a) Dispersion of a cavity photon mode with TE-TM splitting so there are two modes in the end (m TE > m TM in this example). The TE and TM bands are degenerate at k = 0. (b) Energy difference between the TE and TM bands. The difference is null for k = 0, which corresponds to the degeneracy point. Note the quadratic behaviour. (c) (S x , S y ) pseudospin texture (arrows) in the 2D reciprocal space. Colours represent S x . Note that in (a,b), both k x and k y are represented in the horizontal axis.
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 130 Figure 1.30: TE-TM splitting and birefringence in an optical microcavity. (a) Dispersion of a cavity photon mode with TE-TM splitting (m TE > m TM ) and birefringence (β 0 > 0). The TE and TM bands are degenerate at (k x , k y ) = (±k D , 0), which are tilted Dirac points. (b) Energy difference between the TE and TM bands. The difference is null for (k x , k y ) = (±k D , 0), which corresponds to two Dirac points. Note the linear behaviour. (c) (S x , S y ) pseudospin texture (arrows) in the 2D reciprocal space. Colours represent S x . Note the winding 1 around each Dirac point. Note that in (a,b), both k x and k y are represented in the horizontal axis. DP means Dirac points.
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 131 Figure 1.31: Zeeman splitting of exciton-polaritons. (a) Sketch of the Zeeman effect on excitons energy levels. The degenerate energy level E X splits in two E X ± ∆ z /2 due to the applied magnetic field. (b) Dispersion of polaritons with TE-TM splitting, birefringence, and Zeeman splitting. Note the gap opening at the Dirac point. (c) Energy difference between the two bands. Note it is never zero, the bands do not cross. Note that in (b,c), both k x and k y are represented in the horizontal axis.
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 132 Figure 1.32: Photonic topological edge states. (a) 2D photonic crystal as used in the simulations. The unit cell of the honeycomb lattice is shown in blue. The orange discs represent the dielectric rods and the gray background is the air. (b) Simulated TE band structure for an infinite structure and for a zero magnetic field. Note the two Dirac points. (c) Simulated TE band structure for a finite structure (with an edge) and a nonzero magnetic field. There is a band gap for the bulk modes (between the two dashed blue lines) and there are unidirectional edge states, as indicated by the red arrows. Panels (b,c) are adapted from Ref. [151].
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 133 Figure 1.33: Topological protection of photonic edge states. (a) Sketch of the macroscopic waveguide considered. It consists of a photonic crystal (blue rods) sandwiched between two copper plates. There is a metal wall at the edge. (b,c) Simulated propagation of the edge mode from the injection point A to the right direction without (b) and with (c) an obstacle. (d) Measured transmission coefficient against the frequency. The forward transmission (from A to B) is plotted in blue while the backward transmission (from B to A) is plotted in red. The band gap is the yellow-shaded area. Note the good forward and bad backward transmission in this gap, emphasizing the unidirectionality of the edge states. Adapted from Ref. [154].
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 134 Figure 1.34: Topological polaritonic edge states. (a) Sketch of the polariton graphene. An applied magnetic field creates edge states. (b) Sketch of the two pillars A and B forming a unit cell of the lattice. (c) Calculated band structure for a finite structure and an applied magnetic field. Bulk states are represented in black while edge states on the right/left edge are coloured in red/blue. (d,e) Scanning electron microscope images of the experimentally obtained polariton graphene. (d) is a top-view and (e) a side-view. (f ) Emission of light in real space. The strong emission at the edge is the signature of the propagation of the topological edge state. (g) Measured band structure with a fitting of the experimental data (red dashed lines). Note the gap opening, which is present in the fitting but hard to distinguish in the measured data. Figure adapted from Ref. [164] (theory) and Ref. [165] (experiments).
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 135 Figure 1.35: Topological polariton laser. (a-c) Simulations of the Gross-Pitaevskii equation for a polaritonic SSH chain. In (a), there is one edge state. In (b), there are two edge states of opposite polarisations. In (c), the pump in the middle of the chain leads to a Bose-Einstein condensate of both polarisations. (d) Experimentally obtained polariton SSH chain of micropillars. (e,f ) Band structure measured when the chain is pumped in the bulk (e) and at the edge (f ). In this case, note the presence of edge states in the dispersion (encircled in blue). (g) Measured profile for the s, p, and edge states. The edge state is strongly localized at the edge because of the topology of the SSH chain. Figure adapted from Ref. [166] (theory) and Ref. [167] (experiments).
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 21 Figure 2.1: Andreev reflection. (a) Sketch of the Andreev reflection of an electron as a hole, with the transmission of a Cooper pair in the superconductor. N: normal, S: superconductor. (b,c) Dispersion of a metal-superconductor junction. The dispersion in (b) is the one of a normal metal, where the Fermi energy falls within a conduction band. The dispersion in (c) is typical for a superconductor, where two bands are separated by a gap 2∆ 0 centred at the Fermi energy. For the plots, we used natural units and E F = 100 and ∆ 0 = 25 (for (c)) so the gap can be visible.
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 12 Andreev bound states and Majorana fermions

Figure 2 . 2 :

 22 Figure 2.2: Andreev and Majorana bound states. (a) Sketch of a Josephson junction, that is, a superconductor-normal-superconductor (SNS) junction. The normal region is of length a and the junction is characterised by a phase difference ϕ. The scattering matrics S account for the reflections and propagations. (b) Synthetic bands of Majorana (red and green) and Andreev (blue) bound states.
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 23 Figure 2.3: Superconducting multi-terminal Josephson junctions. (a) Sketch of a multiterminal Josephson junction. A normal region (red) is connected to m superconducting regions (blue) with their own phases ϕ j , j ∈ [[1; m]]. (b,c) Synthetic bands of the energy against the phase ϕ 2 , where the other phases are tuned arbitrarily (b) or to a Weyl singularity (c).In this last case, note the gap closing near zero energy and the linear dispersion associated with a Weyl point (encircled by a red dashed circle). Figure adapted from Ref.[START_REF] Riwar | Multi-terminal Josephson junctions as topological matter[END_REF].
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 2 Polaritonic Josephson junctions: From Andreev reflection to multi-terminal Josephson junctions (a) (b)
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 24 Figure 2.4: Weyl singularities in multi-terminal Josephson junctions. (a) Weyl singularities (points) in the 3D parameter space. The red/blue points stand for Weyl points with a positive/negative topological charge. (b) 2D Chern number calculated in the (ϕ 2 , ϕ 3 ) subspace, when the phase ϕ 4 is varied. The change of the Chern number by ± is linked with the presence of a Weyl point of positive/negative topological charge. (c) 2D Chern number calculated in the (ϕ 2 , ϕ 3 ) subspace, when the phases ϕ 4 and ϕ 5 are varied. Red/blue areas correspond to a Chern number of ±1 respectively. The horizontal orange line shows the 3D subspace for which ϕ 4 = 2π/3 while the vertical purple line shows the 3D subspace for which ϕ 5 = -2π/5. The Chern number increases/decreases by 1 each time a Weyl point of positive/negative sign (red/blue points). In (a,b), the junction is 4-terminal while it is 5-terminal in (c).Figure adapted from Ref. [185].
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 25 Figure 2.5: Gapped superfluid of exciton-polaritons. (a) Sketch of a planar optical microcavity with distributed Bragg reflectors (DBRs) and a quantum well (QW) to host exciton-polaritons. The external quasi-resonant driving is provided by a laser at energy E p . (b) Dispersion of the propagative (solid lines) and evanescent (dashed lines) states in the gapped superfluid regime. Propagative states are associated with a wave vector k + while evanescent states are associated with inverse decay lengths κ ± . The pump represents the energy reference (thick pink line). Positive/negative energies are represented in blue/red. k 0 = 2mE p /ℏ Figure adapted from Ref. [200].

Figure 2 . 6 :

 26 Figure 2.6: Polaritonic Andreev reflection. (a) Sketch of the situation leading to Andreev-like reflection on a polaritonic superfluid. An optical microcavity with embedded quantum wells is quasi-resonantly pumped for x > 0 creating a gapped superfluid with strong interactions but not for x < 0. A probe (blue beam) is sent from the normal region towards the interface (white dashed line). (b) Sketch representing the scattering processes and the scattering coefficients at each energy and in each region. (c,d) Dispersions in the normal (left, green) and superfluid (right, blue and orange) regions in the configurations E < ∆ (c) and E > ∆ (d). The incident wave is at positive energy (blue dashed line) from the normal region. The waves at positive/negative energies are represented as blue/red points, associated with an arrow denoting the sign of their group velocity. The gap is emphasized by the dashed black lines and centered at the pump energy. Panels (a,b) adapted from Ref. [200].
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 27 Figure 2.7: Angular-dependent polaritonic Andreev reflection. (a) Sketch of the incident and transmitted waves in real space. Note the different angles, and the constant k y . (b) Reciprocal space.The wave vectors q ± are represented as circles in this space (blue/red circles for q ± respectively). For a low k y , that is, close to normal incidence, it is possible to have Andreev reflection (the dashed lines cross the red circle). On the contrary, if the angle of incidence is too large, this gives a larger k y , for instance the dotted lines, which do not cross the red circle, meaning that no Andreev reflection can be observed. (c) Angle of the Andreev reflection with respect to the angle of incidence for different energies of the incident wave. The difference is not negligible, because the Andreev approximation (∆ ≪ E p ) does not hold. (d) The angle of the transmitted wave with respect to the angle of incidence for different energies of the incident wave. Figure adapted from Ref. [200].
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 28 Figure 2.8: Scattering coefficients and parametric process. (a) Scattering coefficients r N(dotted), r A (solid), and t (dashed lines) with respect to the energy for different angles of incidence θ I = {0, π/6, π/4} in pink, blue and green respectively. The grey lines (and corresponding points) show the energy (and corresponding angles) for which are calculated the states in Fig.2.9. Note the peaks in the remaining coefficients when one vanishes. (b) Illustration of the parametric process in Andreev reflection. The pump is at energy E p with phase ϕ. Positive energies are at E p + E with no phase (we disregard the phase of the incident wave) whereas negative energies at E p -E gain a phase -2ϕ because of the parametric process (the minus sign appears because of the conjugation, see Eq. 2.36 ). 2 "particles" from the pump are converted into one "particle" at +E and no phase, and one "particle" at -E with a phase -2ϕ according to the phase-matching condition. Figure adapted from Ref. [200].
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 29 Figure 2.9: Possibility of Andreev reflection and transmission. (a) Phase diagram showing the experimental conditions {E, θ I } leading to Andreev reflection (red area) and/or transmission (blue areas). The domains are limited by red/blue thick lines respectively which stand for the critical angles. (b-d) Real space profile of the states at positive (blue) and negative (red) energy for three different experimental conditions. (b) θ I = π/6, E = ∆/2 = 0.125 meV leads to Andreev reflection but no transmission, all states are evanescent in the superfluid. (c) θ I = π/4, E = 0.45 meV, where there are only evanescent states at the negative energy, which implies the existence of a surface state. (d) θ I = 0, E = 0.3 meV> ∆, which gives both an Andreev reflection and transmission in the superfluid. Note that specular reflection is present in all cases, which leads to interferences (with the incident probe) in the amplitude at positive energy in the normal region. Figure adapted from Ref. [200].
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 210 Figure 2.10: (a) Bogolon dispersion in numerical experiments. Note the presence of a gap of 0.5 meV, as in the analytical calculations. (b) Numerical profile of the interactions αn(x) (black line). The plateau around 0.55 meV indicates the superfluid region. The analytical profile (step profile) is indicated as a green dashed line for comparison. The probe is located at 15 µm from the superfluid region (blue dashed line, the arrows indicate the direction of propagation of the probe, which is sent towards the superfluid). (c) The intensity distribution in the reciprocal space (measured in the normal region) at the "Andreev" frequency (-E for an incident probe at +E) in a realistic configuration, where interactions are also present in the "normal" region. The angles are indicated directly in the figure.The difference in q x between normal and Andreev reflections is visible. (d) Left axis: Difference between the angle of incidence and the angle of Andreev reflection with respect to the energy for θ I = {45 • , 20 • , 10 • } (resp. purple/brown/green). Right axis: angle of transmission. Lines represent theory (solid for reflection angle, dashed for transmission angle) and points (encircled by a solid/dashed line for reflection/transmission angles respectively) are the results from numerical experiments. The error bars correspond to the reciprocal space broadening. Figure adapted from Ref. [200].
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 211 Figure 2.11: Polaritonic superfluid-normal-superfluid junctions. (a) SNS junction without Andreev reflection, which is essentially a potential well. A bound state is found at a welldefined energy level E. (b) Polaritonic SNS junction leading to the formation of Andreev bound states.If we take into account the Andreev reflection, there are two energies to consider. The scattering processes include the propagation in the normal region and the reflections, which can be normal or Andreev reflections. This leads to the formation of synthetic band (c), the quasi-momentum being the phase difference between the two superfluids. The majority component is close to the solution of the potential well whereas the minority component only appear because of the Andreev reflection.
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 212 Figure 2.12: Polaritonic Andreev bound states. Probability density of Andreev bound states for ϕ = 0 (a), ϕ = π/4 (b) and ϕ = π/2 (c). The solid/dashed lines represent the majority/minority components respectively. The vertical black dashed lines indicate the position of the interfaces between normal and superfluid junctions, and the superfluid phases are noted directly in the figure.Figure adapted from Ref. [199].
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 213 Figure 2.13: Energy levels versus the normal region size a for ϕ = 0 (a) and ϕ = π/2 (b). The colour of the lines represents the energy of the majority component of the bound state (blue for positive, red for negative). The majority/minority components are represented as solid/dashed lines. When two bands of a different nature (majority/minority) meet and merge, we indicate by numbers the order of the states (the number of peaks), and the primes denote the minority components. Figure adapted from Ref. [199].
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 214 Figure 2.14: Synthetic Andreev bands. Dispersion of the energy against the superfluid phase difference for a < a c (a), a = a c (b), and a > a c (c). The 0 and π are the Zak phase of the associated bands. The colour of the lines represents the energy of the majority component of the bound state (blue for positive, red for negative). The majority/minority components are represented as solid/dashed lines. When the bands meet and merge in (b), there is a formation of exceptional points associated with an imaginary part of the energy (orange).Figure adapted from Ref. [199].
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 215 Figure 2.15: Parametric amplification of Andreev bound states. (a) Sketch of the parametric amplification.For a normal region of critical width a = a c , the majority and minority components of two states become resonant, so that the Andreev reflection of the one is a gain for the other, and reversely. (b) Synthetic bands for a = a c . The bands are at an equal distance from the pump, which allows the parametric process to take place. (c) Energy levels against a for ϕ = π/2. Not that for the critical width, the energy levels are at an equal distance from the pump energy. The colour of the lines represents the energy of the majority component of the bound state (blue for positive, red for negative). The majority/minority components are represented as solid/dashed lines. When the bands meet and merge in (b), there is a formation of exceptional points associated with an imaginary part of the energy (orange lines in Fig.2.14(b))). Panels (b,c) are adapted from Ref.[199].
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 216 Figure 2.16: Numerical simulation of parametric amplification. (a) Numerically calculated emission intensity for a structure that consists of two superfluids (orange areas) surrounding a normal region (blue area) whose size a varies in the y direction. For y = 0, a = a c (horizontal dashed black line), and the parametric amplification can occur (note the high polariton density, in red). (b) The numerically calculated spectrum of the Andreev states for a < a c and ϕ = π/2. Note that the majority component of the states 1/2 are not resonant with the minority components of the other state 2'/1'. (c) The spectrum of the resonantly amplified states at y = 0 for a = a c and ϕ = π/2. The laser energy is cut out for all images (grey boxes in the spectra). The false colours show the polariton density. The figure is adapted from Ref. [199].
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 217218 Figure 2.17: Polaritonic multi-terminal Josephson junctions. (a) Sketch of the analogue multi-terminal Josephson junction (here 5-terminal) organised in a microcavity with a quantum well (QW) and distributed Bragg reflectors (DBR) on a substrate. (b) Top view of the junction. The superfluid density (brown) with 5 different phases ϕ j and the potential V(r) (green) profiles. In the normal region, pumping and potential are absent. Figure adapted from Ref. [206].
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 21911 Figure 2.19: Vortex and anti-vortex states in polaritonic 5-terminal junctions. (a,b) Probability density of the vortex (a) and anti-vortex (b) bound states in a polaritonic multi-terminal Josephson junction. (c,d) The phase of the vortex (a) and anti-vortex (b) states in a polaritonic multi-terminal Josephson junction. Note the winding of the phase w φ = ±1
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 220 Figure 2.20: Weyl points in a polaritonic multi-terminal Josephson junction. (a) The energy spectrum of the two p bands for ϕ 2 = -ϕ 5 = π/2. Note the 2 linear crossing points (encircled in black). (b-d) Energy spectra close to a Weyl point for ϕ 2 = -ϕ 5 = π/2 + ε(π/20) with ε = -1 (b), ε = 0 (c), and ε = 1 (d). In (a-d), false colours show the pseudospin S 3 . Note the gap closing and opening between (b,c,d) with opposite S 3 at the extrema of the bands.Figure adapted from Ref. [206].
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 221 Figure 2.21: Pseudospin texture close to Weyl singularities. (a,b) S 3 pseudo-spin texture for ϕ 2 = π/2 (a) and ϕ 2 = π/2 -π/20 (b). Arrows: (S 2 , S 1 ) pseudo-spin. Black (white) ellipses surround Weyl points along the diagonal (anti-diagonal) direction. Dashed ellipses surround gapped Weyl points. (c) Numerically calculated 3D pseudo-spin texture centred around a Weyl point. The sphere represents points at an equal distance from the singularity. φ = (ϕ -ϕ (0) )/(π/20) is the reduced parameter space in the vicinity of a WP of coordinates ϕ (0) . Figure adapted from Ref. [206].

Figure 2 . 22 :

 222 Figure 2.22: Topology of the 3D parameter space. (a,b) Berry curvature distribution for ϕ 2 = π/2 (a) and ϕ 2 = π/2 -π/20 (b). Black/white ellipses surround Weyl points along the diagonal/anti-diagonal direction. Dashed ellipses indicate that the point is gapped for this set of parameters. The numbers 0 and ±1/2 indicate the contribution to the Chern number of the band. (c) Gap Chern number while varying the control phase ϕ 2 = -ϕ 5 . The black point a and blue point b show the position corresponding to the panels (a) and (b) respectively. (d) Weyl points positions in the 3D parameter space. Colours denote the sign of their topological charge (red/blue colour for positive/negative). Figure adapted from Ref. [206].

Figure 2 . 23 :

 223 Figure 2.23: In-plane contributions in the simplified Hamiltonian come from the interplay of the px,y and (anti-)diagonal states and the phases of the superfluids. (a) px state parametrised by ϕ 1,3 and ϕ 1,4 . (b) py state parametrised by ϕ 2,5 and ϕ 3,4 . (c) Diagonal state parametrised by ϕ 3,5 . (d) Anti-diagonal state parametrised by ϕ 2,4 . We use the notation ϕ j,l = ϕ j -ϕ l . Figure adapted from Ref. [206].

Figure 2 . 24 :

 224 Figure 2.24: Out-of-plane contributions in the simplified Hamiltonian. The formation of the nonzero angular momentum px ± ip y superposition due to the Josephson currents giving rise to the σ z term opening the gaps at the Weyl points. (a) and (b) show 2 different configurations where the phase patterns imply the existence of a global superfluid current circulation. The phases noted in the figure are twice the superfluid phases. Figure adapted from Ref. [206].
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 225 Figure 2.25: Comparison between numerical results from Bogoliubov-de Gennes equations and results from the simplified Hamiltonian. (a,b) Third pseudo-spin component S 3 for ϕ 2 = -ϕ 5 = π/2 calculated from numerical simulations (a) and our analytical model 2.104 (b). The direction of the arrows indicates the (S 2 , S 1 ) pseudospin. (c,d) Gap Chern number with respect to ϕ 2 = -ϕ 5 calculated from numerical simulations (c) and our analytical model 2.104 (d). Note the excellent agreement. Figure adapted from Ref. [206].

Figure 2 . 26 :

 226 Figure 2.26: Weyl singularities in the 4D parameter space. (a) Chern number of the lowest band in the (ϕ 3 , ϕ 4 ) subspace for all possible values of the phases ϕ 2 and ϕ 5 . The light blue line corresponds to ϕ 2 = -ϕ 5 whereas the pink one represents a 3D subspace with broken time-reversal symmetry because of the presence of 6 Weyl points. (b) (ϕ 2 , ϕ 3 , ϕ 4 ) parameter space for ϕ 5 ∈ [0; π[. Arrows represent the direction of the trajectories of Weyl singularities in parameter space. The hearts represent the birth of Weyl singularities and the stars their annihilation. Weyl points of positive/negative topological charge are drawn in red/blue. Figure adapted from Ref. [206].
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Figure 3 . 1 :

 31 Figure 3.1: Liquid crystal microcavities. (a) Sketch of an optical microcavity filled with liquid crystal. The light is confined in the z direction by distributed Bragg reflectors (DBRs), and the cavity is filled with liquid crystal with strong birefringence. Their indicatrix is controlled by an applied voltage V applied between the ITO (Indium Tin Oxide) electrodes. (b) Indicatrix of the liquid crystal molecules. The applied voltage V changes the orientation of the indicatrix, which modifies the birefringence of the cavity. (c) Energy of the H-and V -polarised modes against the rotation of the indicatrix. The V polarisation is not affected while the energy of the H-polarised modes decreases. This puts in resonance modes of the same order for no rotation (grey points), a configuration called (N, N ), but for nonzero rotation, the H and V modes of different orders can be put in resonance (N + 1, N ) and (N + 2, N ) as shown by the blue/red points respectively. Figure adapted from Refs.[START_REF] Rechcińska | Engineering spin-orbit synthetic hamiltonians in liquid-crystal optical cavities[END_REF][START_REF] Król | Observation of secondorder meron polarization textures in optical microcavities[END_REF] 

Figure 3 . 2 :

 32 Figure 3.2: Dispersion in the (N + 2, N ) case for β > β ′ . (a) Dispersion of the energy in the reciprocal space. Note the band crossing. (b) Energy difference between the two bands. (c) Pseudospin texture in the 2D reciprocal space. Blue points denote Dirac points with a negative winding.

Figure 3 . 3 :

 33 Figure 3.3: Dispersion in the (N + 2, N ) case for β < β ′ . (a) Dispersion of the energy in the 2D reciprocal space. Note the presence of 4 Dirac points (red/blue points). (b) Half-sum and half-difference of the energies in the 2D reciprocal space. (c) Pseudospin texture in the 2D reciprocal space. In all panels, red/blue points denote Dirac points with a positive/negative winding. Figure adapted from Ref. [221].
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 34 Figure 3.4: Experimental results in the Hermitian limit. (a,c) Measured and fitted reflectance spectra for β > β ′ (a) and β < β ′ (c). (b,d) Measured pseudospin textures for β > β ′ (b) and β < β ′ (d). The blue and red points represent Dirac points of negative and positive winding respectively. Figure adapted from Ref. [221].

Figure 3 . 5 :

 35 Figure 3.5: Linear dichroism. (a) Reflectivity measurement for H and V polarisation in a liquid crystal microcavity in the configuration (N + 2, N ). The width of the peaks can be determined by fitting the experimental data (points/squares) with a Voigt function (solid lines). The losses in the H polarisation are larger than in the V polarisation Γ H > Γ V , which induces an additional imaginary term in the Hamiltonian along the Pauli matrix σ x . (b) The effect of an imaginary term applied on σ x on a Dirac point (dark blue point) is that it splits into two exceptional points (pink/cyan points) connected by a real Fermi arc (green line). Figure adapted from Ref. [221].
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 36 Figure 3.6: Exceptional points for β > β ′ . (a) Position of the Dirac points (DPs) in the reciprocal space. They are both of negative winding. The dashed lines represent Eq. 3.11. (b,c) Position of the exceptional points (cyan/magenta points) in reciprocal space for a small (b) and a strong (c) non-Hermiticity. Exceptional points are found at the crossings between the grey and purple lines, which stand for the first and second conditions to find exceptional points. The green/grey lines represent the real/imaginary Fermi arcs respectively. Figure adapted from Ref.[START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF].
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 37 Figure 3.7: Exceptional points for β < β ′ and their annihilation. (a) Position of the Dirac points (DPs) in the reciprocal space. Blue/red points denote Dirac points of positive/negative winding. The dashed line represents Eq. 3.11, which gives an ellipse in that case. (b) Position of the exceptional points (cyan/magenta points) in reciprocal space for a small non-Hermiticity. Exceptional points are found at the crossings between the ellipse (grey and green lines) and purple lines, which stand for the first and second conditions to find exceptional points. (c) Increasing further the non-Hermiticity leads to the annihilation of exceptional points created at different Dirac points. When non-Hermiticity is increased, the exceptional points follow the grey lines and finally meet exceptional points coming from Dirac points with opposite winding and annihilate. The green/grey lines represent the real/imaginary Fermi arcs. Figure adapted from Ref.[START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF].
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 3839 Figure 3.8: Annihilation of exceptional points: Experiments. (a-d) Absolute value of the difference between the real part of the energies |∆E|. (e-h) Difference between the imaginary parts of the energy |∆Γ|. (i-l) Argument of the difference of complex energies arg(∆E + i∆Γ). (a-b,e-f,i-j) consider the situation before the annihilation of exceptional points χ = 0.52 < 1 while (c-d,g-h,k-l) are after the annihilation of exceptional points χ = 1.20 > 1.(a,c,e,g,i,k) Fitted experimental data. (b,d,f,h,j,l) Results obtained theoretically using the parameters extracted from experimental measurements. Note the excellent agreement between experimental and theoretical results. White crosses in (a,e) are the positions of exceptional points, each exceptional point being a singularity around which there is a winding of the argument of the complex energy, as shown by black loops in (i). (m) Fermi arc length against the relative non-Hermiticity χ. The Green dashed line stands for theoretical calculation while the blue/purple points, together with their error bars, are experimental data from two different samples. The horizontal red dashed line represents the annihilation of exceptional points, for which the Fermi arc covers an angle of 90 degrees. Figure adapted from Ref.[START_REF] Król | Annihilation of exceptional points from different Dirac valleys in a 2D photonic system[END_REF].
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Figure 4 . 1 :

 41 Figure 4.1: Photonic crystals mimic atomic crystals. (a) Schematic of a 1D atomic crystal (grey discs) and the corresponding confining potential V (x). (b) Schematic of a 1D photonic crystal (grey rectangles) and the corresponding confining potential. The higher refractive index regions (the dielectric) confine the light and represent the equivalent of potential wells in quantum mechanics. Note, that the potential can be represented as being proportional to the susceptibility χ: V ∼ -χ = -(n 2 -1), where n is the refractive index.
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 42 Figure 4.2: Topological interface states in photonic crystal slabs: Quantum spin Hall effect. (a) Scanning electron microscope images of the structure, containing an interface between the shrunken (yellow) and expanded (blue) photonic crystal slabs etched with a honeycomb lattice of triangular holes. (b) Measured dispersions of the bulk photonic crystals of the bulk states of the shrunken/expanded (yellow/blue) photonic crystals. Note the presence of a gap (yellow/blue regions). (c) Simulated band structure showing topological interface states (red lines). (d) Measured intensity of light transmitted through the interface, where we see a peak corresponding to the propagation of topological interface states in the gap of bulk states.Figure adapted from Ref. [229].

  [238]. Fig.4.4(a,b) shows the TiO 2 2D photonic crystal (PC) we simulate (a) together with its dispersion (b) obtained by 2D simulations using COMSOL Multiphysics, a software solving Maxwell's equations using

Figure 4 . 3 :

 43 Figure 4.3: Topological interface states in photonic crystal slabs: Quantum valley Hall effect. (a) Scanning electron microscope images of the structure containing an interface (red triangle) between two photonic crystals PhC I and II. An inset shows the unit cell, where the radii of the upper left and lower right holes are defined as R 1 and R 2 respectively. (b) Calculated dispersion relation for a photonic crystal without interface. A honeycomb lattice of circular air holes (blue dashed lines) gives a Dirac point, while a staggered honeycomb lattice (black solid lines) gives a band gap (grey area). Orange areas are above the light lines and contain radiative modes. (c) Size of the gap against the size difference between the two air holes.(d,e) Band structure for a structure containing an interface with a small (d) and large (e) size difference between the two air holes. The bulk states are represented as grey areas, and the interface states are the purple lines. The light cone is represented by the red dotted line. There are no interface states nor bulk states in the pink region. In the light blue region, the interface states of one polarisation propagate in two directions. In the blue region, the interface states propagate in only one direction, but are above the light cone. Only in the yellow region, interface states are unidirectional and guided. Figure adapted from Ref.[START_REF] Noh | Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry[END_REF].
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 44 Figure 4.4: Topological interface states in a triangular lattice of air holes.(a,c) Photonic crystal of circular air holes in a dielectric matrix and topological interface using a staggered honeycomb (a) and a triangular (c) lattice of air holes. The unit cell is emphasized in red, showing the difference between the upper and lower photonic crystals. The triangular lattice of air holes is obtained by continuously reducing and ultimately removing the small hole of the staggered honeycomb lattice. A ribbon of a 0 width along the x direction and several periods in the y direction, as used in the simulations to emulate an infinite system in the x direction, is surrounded by black lines. (b,d) Band structures with interface states (blue/red line excited by a σ ± polarised pump) in the gap (green area) of the structures with topological interfaces staggered honeycomb (b) and triangular (d) lattices of air holes. The bulk modes (grey areas) are delimited by black thick lines. Note that interface states exist in both cases whereas the gap is much larger in the triangular photonic crystal. Figure adapted from Ref. [238].
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 45 Figure 4.5: Equivalence between a staggered honeycomb and triangular lattice of air holes. (a,b) Electromagnetic energy density in a unit cell for R -= 0.1a 0 and R + = 0.25a 0 at the K point. This corresponds to a staggered honeycomb lattice of air holes. (c,d) Electromagnetic energy density in a unit cell for R -= 0 and R + = 0.25a 0 at the K point. This corresponds to a triangular lattice of air holes. (a,c) are the higher energy states while (b,d) are the lower energy states. Note the continuous deformation from (a) to (c).
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 46 Figure 4.6: Existence of bound states in the continuum (BICs). (a) Spectrum of energy of different modes in a confined structure. (b) Mode profile of different modes of the structure. BICs (in red) have an energy in the continuum (blue area) but are not leaky. Their profile is close to the one of a regular bound state (green).Figure adapted from Ref. [241].

  Fig. 4.7(b), we show the dispersion simulated for
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 47 Figure 4.7: Photonic bound states in the continuum. (a) Sketch of the photonic crystal slab structure considered. A square lattice of holes is etched in a Si 3 N 4 slab, itself grown on SiO 2 and Si as a substrate. (b) Typical dispersion for this type of structure. The light line (blue line) separates the states in two. Below the light line (grey area), the states are confined (regular bound states, green line). Within the light cone, there are resonances (orange lines) in the continuum (blue area), and also BICs (red points). (c) Predicted (line) and measured (points) quality factor against the wave vector. Note the two divergences of the quality factor at k = 0 and k ̸ = 0 corresponding to symmetry-protected and accidental BICs respectively. Figure adapted from Ref. [241], itself adapted from Ref. [245].
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 48 Figure 4.8: ZnO-TiO 2 photonic crystal slab. (a) Scheme of the photonic crystal slab structure studied. A two-layer waveguide (TiO 2 in yellow and ZnO in pink) is separated from the substrate by a cladding layer (ZnMgO in purple). Only the TiO 2 layer is etched with a triangular lattice of circular holes. The thicknesses of the TiO 2 layer h 0 and ZnO layer h ZnO are indicated. The 3D unit cell is shown in black and a 2D cut of it in the TiO 2 layer is shown in the inset with the geometric parameters of the lattice R and a 0 . (b,c) Refractive indices of the different layers in the z direction for a structure using ZnO (b) and GaN (c). The effective indices of the TE 1,2 modes are indicated in blue. (d) Dispersion of the three modes below the exciton energy. There are two quasi-TE modes (blue solid lines) and one quasi-TM mode (green dashed line). The TE gap is emphasised by the light green area. Black lines represent the light cones, only modes below them are guided. Excitons energies are close and represented as a unique thick red line. Figure adapted from Ref. [238].
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 49 Figure 4.9: Topological interface states in a ZnO-TiO 2 photonic crystal slab. (a) Sketch of the 3D photonic crystal slab structure hosting topological interface states. The slabs are the same as previously (TiO 2 in yellow, ZnO in pink, and ZnMgO in purple), but the top layer now contains an interface between two PCSs of triangular lattices of circular holes (emphasised in red), where interface states can propagate in the left (blue) or right (red) direction. The black lines mark the 3D ribbon used in the simulations. (b) Polaritonic band structure calculated for a finite ribbon in the y direction and infinite structure in the x direction, including the interface. Note the interface states that can propagate in the gap formed by the bulk modes. A right/left-circularly polarised excitation leads to a propagation in the right/left direction (red/blue lines). (c,d) Electromagnetic energy density profiles of a bulk state (c) and an interface state (d) calculated from COMSOL. The corresponding states of these profiles in the dispersion (b) are indicated by the grey (blue) point for the bulk (interface) state. Figure adapted from Ref. [238].
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 410 Figure 4.10: Unidirectional topological interface states in a ZnO-TiO 2 photonic crystal slab. (a,b) Profiles of the interface states calculated by FDTD under a right-circularly polarised excitation (a) and a right-circularly polarised excitation (b) located below the interface. Note the propagation occurs mainly in the right/left direction (dashed white line). (c) Same as (b), but with a defect at the interface. Note the similarity between (c) and (b).Figure adapted from Ref. [238].

  Figure 4.10: Unidirectional topological interface states in a ZnO-TiO 2 photonic crystal slab. (a,b) Profiles of the interface states calculated by FDTD under a right-circularly polarised excitation (a) and a right-circularly polarised excitation (b) located below the interface. Note the propagation occurs mainly in the right/left direction (dashed white line). (c) Same as (b), but with a defect at the interface. Note the similarity between (c) and (b).Figure adapted from Ref. [238].
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 23411 Figure 4.11: Polariton lasing on topological interface states. (a) Energy of the centre of the gap E ∆ and exciton fraction of interface states C X versus the period of the lattice a 0 .The period a 0 = 110 nm (indicated as a vertical dashed line) is the value taken previously. Below 105 nm, the gap is above the light cone (dashed lines). (b) Electric field profile (square amplitude) of the pump (dashed lines) and states (solid lines) in the y direction. The norm of the electric field of the states is integrated along the x and z directions (and restricted to the ZnO) to give the profile. A broad pump has a good overlap with the interface states while the overlap is smaller for a narrow pump. (c) Ratio between the overlap of the pump profile with the interface Γ int and bulk Γ bulk states with respect to the size of the Gaussian pump, here its full width at half maximum (FWMH). A ratio of 1 is indicated by the dashed line. Figure adapted from Ref. [238].

  Figure 4.11: Polariton lasing on topological interface states. (a) Energy of the centre of the gap E ∆ and exciton fraction of interface states C X versus the period of the lattice a 0 .The period a 0 = 110 nm (indicated as a vertical dashed line) is the value taken previously. Below 105 nm, the gap is above the light cone (dashed lines). (b) Electric field profile (square amplitude) of the pump (dashed lines) and states (solid lines) in the y direction. The norm of the electric field of the states is integrated along the x and z directions (and restricted to the ZnO) to give the profile. A broad pump has a good overlap with the interface states while the overlap is smaller for a narrow pump. (c) Ratio between the overlap of the pump profile with the interface Γ int and bulk Γ bulk states with respect to the size of the Gaussian pump, here its full width at half maximum (FWMH). A ratio of 1 is indicated by the dashed line. Figure adapted from Ref. [238].
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 412 Figure 4.12: Polariton quasi-BIC. (a) Sketch of the photonic crystal slab structure studied. A two-layer waveguide (TiO 2 in yellow and GaN in pink) is separated from the substrate by a cladding layer (AlGaN in purple). Only the TiO 2 layer is etched with a step-like profile, the width of the steps being a 1 . The thicknesses of the TiO 2 layer h 0 and GaN layer h GaN are indicated as well as the lattice constant a 0 and the geometrical parameter a 2 . (b) Polaritonic dispersion of the two coupled branches. The lower (blue) branch contains the BIC and has a negative mass contrary to the upper (yellow) one. The thick red line stands for the exciton energy of GaN. (c) Lifetime against wave vector for the lower branch. Note the high values reached close to k = 0. (d) Imaginary part of the energy of the lower branch versus wave vector. The red curve is a quadratic fitting of the numerical data from which we extract the value of Λ. In (b-d), the BIC at k = 0 is indicated with a black arrow.

Figure 4 . 13 :

 413 Figure 4.13: Polariton Bose-Einstein condensate in a BIC. (a,b) Numerical results of the simulation of the Gross-Pitaevskii equation 4.17 for the lower branch of the polaritonic dispersion containing a polariton quasi-BIC at k = 0. (a) Population in the reciprocal space. Note the unique intensity peak at the maximum of the dispersion (at the BIC). (b) Numerically calculated emission in the reciprocal space. Note the two peaks surrounding k = 0. In both panels, the dispersion is indicated as a white dashed line (transparent close to the intensity peaks not to cover it), and a white arrow shows the position of the BIC in reciprocal space.
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