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Introduction 

 
One of the purposes of stochastic analysis is to establish connections between deterministic possi- 

bly non-linear evolution problems and stochastic processes. The advantage one can take of these 

connections lies in the possibility to treat well-posedness and regularity problems for Partial Differ- 

ential Equation (PDE) with probabilistic methods. Furthermore, such a correspondence can shed a 

new light on the numerical approximation of solutions, in particular when dealing with equations 

on possibly high dimensional spaces. 

In the specific case of linear second order parabolic Cauchy problems set on [0, T ] × Rd for a given 

time horizon T > 0 and a given state space dimension d ∈ N∗, the probabilistic objects that arise 

are solutions of Markovian Stochastic Differential Equations (SDE for short). Given two functions 

b, σ defined on [0, T ] × Rd being respectively Rd-valued and matrix-valued, we focus on two types of 

PDEs: the forward Kolmogorov (or Fokker-Planck) equation 

∂tu (t) =  
2
 

 

 
 

i

 

,j=1 

 
∂ij σσ-T (t, ·)ij u (t) 

 

 

—
 

i=1 

 

∂i (b (t, ·)i u (t)) ,  t ∈]0, T ] 

 

 
(0.1) 

u (0) = ν, 

where ν is a prescribed measure and the backward Kolmogorov equation 

∂tv (t, ·) + 
2
 

 

 
 

i

 

,j=1 

σσ-T (t, ·)ij ∂ijv (t, ·) + 

 

  

i=1 

 

b (t, ·)i ∂iv (t, ·) = 0,  t ∈ [0, T [ 

 

 
(0.2) 

v (T, ·) = g, 

where g is a prescribed function from Rd to R. It is known that PDEs (0.1) and (0.2) can be represented 

using solutions Xs,x, whenever they exist, of the SDE 

 

Xs,x = x + 
t 

b (r, Xs,x) ds + 
s 

t 

σ (r, Xs,x) dWr,  t [0, T ], (0.3) 
s 

for all (s, x) ∈ [0, T ] × Rd, where W is a Brownian motion. 
More precisely, the function u : t 1→ 

J
Rd Law

 
X ν (dx) provides a measure-valued solution of 
0,x 
 

(0.1). The simplest case b ≡ 0, σ ≡ Id expresses the classical link between the Brownian motion and 
the heat equation. Equations of type (0.1) are conservative PDEs, in the sense that the mass function 

t 1→ 
J

Rd u (t) (dx) is constant. 

1 

t 

d d 

d d 
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T 

        

s 

  

s 

Yt = g XT + F (r, Xr    , Yr , Zr    ) dr − Zr    dWr, t ∈ [s, T ], (0.4) 

v (T, ·) = g, 

1 

t t 

(0.5) 

 

In addition, PDEs of type (0.2) are generally represented by the so called Feynman-Kac formula. 

In particular, if v is a smooth solution of (0.2) then 

v(s, x) = E g  Xs,x , (s, x) ∈ [0, T ] × Rd. 

It is possible to get probabilistic representations of non-linear versions of previous PDEs for which 

other probabilistic objects arise. Among many others, two classes of representation processes are of 

particular importance. 

1. Solutions of McKean SDEs, namely SDEs in which the coefficients depend not only on time 

and position of the particle, but also on the (marginal) laws of the solution. Such objects are 

primarily tailored to provide solutions of non-linear versions of PDE (0.1), see [85]. In Chapter 

3, we will survey how this representation works, with significant extensions to a large class of 

non-conservative PDEs. 

2. Solutions of Forward Backward Stochastic Differential Equation (FBSDE for short). An FBSDE is 

a system of equations, including a forward SDE and a stochastic differential equation with 

prescribed terminal condition, i.e. a backward SDE (BSDE), in the sense of Pardoux and Peng, 

see e.g. [91]. A solution of a BSDE is in general a couple of progressively measurable processes. 

In this introduction we will only mention the case when the (Markovian) forward SDE is of 

type (0.3), i.e. the case when the SDE and BSDE are decoupled. The data concerning the BSDE 

(with terminal condition) are in general the driver F : [0, T ] × Rd × R × Rd → R and the terminal 

function g. More precisely, solving the (Markovian) BSDE with driver F and terminal function 

g consists in finding a pair of progressively measurable processes (Y s,x, Zs,x) such that 

s,x s,x T 
s,x s,x s,x 

T 
s,x 

 

for each (s, x) ∈ [0, T ] × Rd. 

These equations are probabilistic tools adapted to represent viscosity solutions of semi-linear 

generalizations of PDE (0.2), i.e. 

∂tv (t, ·) + 
2
 

 

 

 

i

 

,j=1 

σσ-T (t, ·)ij ∂ijv (t, ·) + 

 

  

i=1 

b (t, ·)i ∂iv (t, ·) + F t, ·, v (t, ·) , σ (t, ·)-T ∇xv (t, ·)   = 0 

 

 

for each t ∈ [0, T [. Under general assumptions, the function v := (s, x) 1→ Y s,x provides a 

viscosity solution of (0.5), see for example [92]. 

If σ is suitably non-degenerate, an important feature of FBSDEs of type (0.3)-(0.4) is the possibility 

one has to change the forward process X (as the solution of an SDE with different drift b) without 

modifying the function v := (s, x) 1→ Y s,x, at the cost of substituting the driver 

F := (t, x, v, z) 1→ F (t, x, v, z) −
 

σ−1
(t, x)

 
 b − b

  
(t, x), z

   
. 

d d 
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d 

→ s T 

∂tv (t, ·) + H 
 
t, ·, v (t, ·) , ∇xv (t, ·) , ∇2 v (t, ·)

  
= 0 

  

 

f 

 

What precedes means that there are infinitely many FBSDE representations for a given semi-linear 

PDE. At the theoretical level, these representations are purely equivalent. At the numerical level, 

the choice of an ad hoc drift is crucial.   Indeed, usual numerical methods to solve FBSDEs lie on 

forward backward schemes. Those schemes consist in simulating paths of the chosen forward process 

and using these paths to approximate, backward in time, conditional expectations by least squares 

Monte Carlo, see e.g. [50]. The FBSDE solution is provided by those conditional expectations which 

are estimated by Monte-Carlo regressions. The forward process paths constitute an estimation grid. 

When the dimension d of the state space increases, one needs to simulate and to store possibly a 

huge number of trajectories of the forward process to obtain a good approximation of the solution. 

Besides, to circumvent the curse of dimension, there is here a need of guiding this process in order to 

explore efficiently the state space. 

A PDE for which the choice of the drift guiding the estimation grid is at first sight natural is the 

Hamilton-Jacobi-Bellman (HJB for short) equation, when it is semi-linear. In its generality, the HJB 

equation is a possibly fully non-linear PDE, which constitutes an important tool to study stochastic 

control problems. This equation reads 

 
x 

v (T, ·) = g, 

where the so called Hamiltonian H has the form 

(0.6) 

H : (t, x, δ, γ) 1→ inf  f (t, x, a) + 
 
 

b (t, x, a)i δi + σσ-T (t, x, a)ij γij  
1 

 
 

 
, (0.7) 

a∈A  
i=1 

2 
i,j=1 

 

with A ⊆ Rk for a given k ∈ N∗. Equation (0.6) is in fact the dynamic programming equation of the 

stochastic control problem whose value function is 

 
v : (t, x) inf E 

α 

    T 
 

 

 
s, Xt,x,α, αs

 

 
ds + g Xt,x,α

  
 
 
, (0.8) 

where Xt,x,α is a solution, whenever it exists, of the following controlled SDE 

dXt = b (t, Xt, αt) dt + σ (t, Xt, αt) dWt, t ∈ [0, T ], (0.9) 

starting at time t ∈ [0, T ] with value x ∈ Rd, given an A-valued progressively measurable control 

process α. 

Under general conditions, v is the unique viscosity solution of (0.6), see for example [108, 42, 94]. 

Equation (0.6) becomes a semi-linear PDE when the control does not intervene in the function σ. 

By previous considerations, the viscosity solutions can be represented using FBSDEs. In that context, 

the natural choice of the drift mentioned earlier can be guided by the stochastic control problem. 

Our idea is to select a drift, which localizes the forward process in regions visited by optimally 

controlled trajectories. Hence, our candidate estimation grid in terms of computational costs is the 

t 

d 
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· 

  

·  
 

∼ 

is also a diffusion process. Moreover, it is shown that X is a solution (in law) of the SDE 

pt  density of ξt,  t ∈]0, T [, 

− 

− − 

(0.11) 

 

optimally controlled process. Nonetheless, this process cannot be simulated forwardly since optimal 

controls are discovered backwardly in time. 

This observation suggests the following strategy to use effectively the optimally controlled pro- 

cess as an estimation grid. If a priori informations are available on its terminal law, one proceeds 

to simulate it backwardly in time. This will allow to bypass memory problems and dimensional- 

ity issues. Doing this, we expect that the number of paths to approximate the value function will 

drastically decrease. 

Coming back to the case of a general semilinear PDE of type (0.5), once an ad hoc drift has been 

chosen to guide the forward process of an FBSDE, a natural way to take into account the terminal 

condition g, consists in simulating backwardly in time the resulting forward process. At the theo- 

retical level, this comes down to derive fully backward representations of semi-linear PDEs, namely 

FBSDEs (Markovian) representations in which the chosen forward process ξ evolves backwardly in 

time. Even though the drift is fixed, the law of the forward process X is not yet determined, since 

no initial condition X0 is fixed. According to previous objective, ξ will be the time-reversal of some 

Markov process X. Time-reversal of Markov processes has been explored by several authors, see for 

instance [55] for the diffusion case in finite dimension, [45] for the diffusion case in infinite dimen- 

sion and [64] for the jump case. We also mention the two very interesting recent preprints [31, 32] in 

relation with entropy. 

Given a diffusion process X with coefficients b, σ, [55] provides sufficient conditions on the coef- 

ficients and on the marginal densities (whenever they exist) (qt)t∈[0,T ] of X to ensure that X := XT −· 
 

   t    t  divy 
 

σσi
-T 
 

T − r, X r 

  
qT −r 

 
X r 

   
    t 

Xt = XT b 
0 

T − r, Xr dr+ 
0  qT −r 

 
X r 

  

i∈[[1,d] 

dr+ σ 
0 

T − r, Xr 

(0.10) 

dβr, 

where β is a Brownian motion. 

To simulate the process X, (0.10) is not usable in practice. Indeed, even choosing properly the law 

of XT compatibly with g, (0.10) involves the unknown marginal laws of X. 

An idea to avoid this limitation consists in substituting Equation (0.10) into a McKean SDE, where 

the marginal laws appearing in the time-reversal dynamics are no longer exogenous parameters but 

a part of the equation solution, i.e. 
    t 

   t  
    

d ivy

 
σσi

-T (T − r, ξr) pr (ξr)
 

t 

ξt = ξ0 − 

ξ0 ν 
 

b(T r, ξr)dr + 
0 0 pr (ξr)  

i∈[[1,d] 

dr + σ(T r, ξr)dβr, 
0 

 

 

 

where ν is  a prescribed  probability  measure, whose solution  is  the couple  (ξ, p) where  p is the 

probability-valued function such that for all t ∈]0, T [, pt has density pt. By [55], the couple
 
X , qT −·
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1 

 

is a solution of (0.11) when ν is the law of XT . Provided that the McKean SDE (0.11) is well-posed 

(in particular it admits a unique solution), the unique solution ξ will be the researched process X. In 

this case (0.11) governs intrinsically the dynamics of X. 

Beyond the scope of time-reversal of diffusions and stochastic control problems, the study of well-

posedness for Equation (0.11) has its own interest. Indeed, it turns out that it can be seen as a 

probabilistic representation of the following Fokker-Planck type PDE with terminal condition 

∂tu (t) =  
2
 

 

 

 

i

 

,j=1 

 

∂ij σσ-T (t, ·)ij u (t) 

 

 

—
 

i=1 

∂i (b (t, ·)i u (t)) ,  t ∈ [0, T [ 

 
 

(0.12) 

u (T ) = ν. 

Final value problems as (0.12) arise in many applications involving inverse problems, especially in 

physical sciences, as heat conduction [14], material science [95] or hydrology [5]. In those applica- 

tions modeled by a diffusion, the terminal configuration of a physical system is observed, so the 

uniqueness (and stability) issue is more important than the existence problem: the goal is to deter- 

mine admissible initial configurations. The possible lack of uniqueness and stability for PDEs with 

given terminal condition, has been handled in the literature especially by regularization techniques, 

see e.g [107, 74]. To the best of our knowledge, a very few uniqueness and approximation results are 

available for the general equation (0.12) and implemented methods are purely analytic. On the other 

hand, a probabilistic representation provides a new light to the study of (0.12) and its approximation. 

In Chapter 1, uniqueness problem for PDE (0.12) is addressed with probabilistic and analytical 

methods. Furthermore, we investigate connections between PDE (0.12) and McKean SDE (0.11) and 

use these connections to derive well-posedness results for the McKean SDE. It turns out that unique- 

ness for (0.12) is a key tool to study the McKean SDE as evidenced by Proposition 1.3.2 which states 

that if (ξ, p) solves (0.11) then pT −· solves PDE (0.12). More precisely, the contributions of the Chapter 

1 are twofold. 

1. Uniqueness for PDE (0.12) is investigated in various classes of coefficients b, σ and different 

classes of measure-valued solutions. We produce essentially three kinds of results. 

Concerning the first one, uniqueness for (0.12) is proved among solutions with initial values 

in a given class C of finite measures, supposing the forward Fokker-Planck PDE (0.1) admits 

at most one solution for initial values in C. In particular, we cover uniqueness among non- 

negative finite measure-valued solutions with initial value in the class of multiples of a Dirac 

mass. We obtain results in the case of Lipschitz possibly degenerate coefficients and in the case 

of bounded, non degenerate possibly irregular coefficients. We use here purely probabilistic 

methods. This is the object of Theorems 1.3.9 and 1.3.10. 

Concerning the second one, uniqueness is proved in the wider class of finite measure-valued 

solutions without supposing uniqueness for the forward PDE. We treat the general case of time- 

homogeneous, bounded, Hölder continuous and non degenerate coefficients with an extension 

d d 
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1 

 

to the piecewise time-homogeneous case. We use here an analytical method lying on a crucial 

property of the semigroup generated by the diffusion operator associated to coefficients b, σ. 

This is the object of Theorem 1.3.13 and Corollary 1.3.16. 

Finally, we deal with the situation of a PDE associated to a time-inhomogeneous Ornstein- 

Uhlenbeck semigroup. Loosely speaking, the method consists here in performing a change of 

variable in the initial PDE that reduces to the case of the backward heat equation for which 

uniqueness is easily derived by the use of Fourier transform as in the forward case, see Theo- 

rem 1.3.19 . 
 

2. We derive well-posedness results for the McKean SDE (0.11). We begin by linking 

separately existence and uniqueness for PDE (0.12) and SDE (0.11). Then, we discuss existence 

and unique- ness in law for (0.11) in the case of bounded regular coefficients, see Theorem 

1.4.15. We finally establish strong existence and pathwise uniqueness result in the Ornstein-

Uhlenbeck case, see Theorem 1.4.19. 

Back to stochastic control and to the considerations after (0.9), well-posedness results obtained 

in Chapter 1 give a theoretical starting point to derive a fully backward FBSDE representation of 

the HJB equation involving the time-reversal of a suitable approximation of the optimally controlled 

process. Nonetheless major challenges arise both at the theoretical and numerical levels. 

1. At the theoretical level, we would need to find a suitable class of drifts approaching reasonably 

the optimally controlled drift and allowing to implement the McKean time-reversal techniques 

of Chapter 1. 

2. At the numerical level, we would need to approach the optimally controlled process. Follow- 

ing our McKean time reversal methods, the appearance of marginal densities in the McKean 

problem is an important obstacle. The cost coming from their (non-parametric) estimation an- 

nihilates the gain obtained in terms of memory and dimension, see e.g. [103]. Secondly one 

would need to have an information about the terminal law. We expect that the extrapolation of 

such an information highly depends on the nature of the optimization problem, especially on 

the terminal cost. 

A suitable class of drifts allowing us to perform previous tasks is the one of affine functions. In 

Chapter 2, we investigate the choice of a time-dependent affine drift b : (s, x) → a (s) x + c (s) where 

a (resp. c) is a piecewise continuous function on [0, T ] with values in Md (R) (resp. Rd). 

As a first step, we derive a fully backward representation for general semi-linear PDEs. of the 

form 

∂tv (t, ·) + 
2
 

 

 

 

i

 

,j=1 

σσ-T (t)ij ∂ijv (t, ·) + H (t, ·, v (t, ·) , ∇xv (t, ·)) = 0,  t ∈ [0, T [ 

 

(0.13) 

v (T, ·) = g. 

d 
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 ν̄Q 

(T ) = Q , 

dt 

  

  

 d m (t) = a (t) m (t) + c (t) ,  t ∈ [0, T [ 

v t, ξt = E H s, ξs, v s, ξs 

 

where σ is a continuous deterministic matrix-valued function. 

Our concept of fully backward representation mentioned before, is based on a process ξ running 

backwardly with respect to the time t of the PDE (0.13). 

To define ξ, we fix a Gaussian Borel measure ν which will be the distribution of ξ0.  Let m̄ ν (resp. 

Q̄ν ) denote the mean (resp. the covariance matrix) of the measure ν. The process ξ will be the unique 

strong solution of 
 

ξt = ξ0 − 
t 

b (T − r, ξr) + σσ-T 
 

(T − r) Q (T − r)−1
 (ξr − m (T − r)) dr + 

t 

σ (T − r) dβr, t ∈ [0, T ], 

(0.14) 

where β is a Brownian motion, t 1→ m(T − t) = E (ξt) and t 1→ Q (T − t), the covariance matrix 

of ξt. Indeed, it is not difficult to show previous well-posedness and the fact that m : [0, T ] 1→ Rd, 

Q : [0, T ] 1→ Sd (R) are respectively solutions of the following backward ODEs 

 
 
 

 

dt 

m (T ) = m̄ ν , 

 d Q (t) = Q (t) a (t)-T + a (t) Q (t) + σσ-T (t) ,  t ∈ [0, T [ 

provided that Q(0) is positive semi-definite. 

(0.15) 

 
 

(0.16) 

Under general assumptions on H, g, Theorem 2.3.10 states that a function v : [0, T ] × Rd 1→ R 

being continuous in time and continuously differentiable in space with polynomial growth gradient 

is a viscosity solution of (0.13) if and only if for all t ∈ [0, T ] 

    T 
 

 
 

where ξ := ξT −·. 

The fully backward representation of (0.13) consists in the coupling (0.14)-(0.17). We remark that 

Lemma 2.3.6 says that ξ is in fact the time reversal of a solution of an SDE of the type 

 

dXt = b (t, Xt) dt + σ (t) dWt, (0.18) 

 
without knowing a priori its initial law. 

In Corollary 2.4.6, this result is applied to the case when the semi-linear PDE (0.13) is an HJB 

equation associated with a control problem when σ is a time-dependent continuous function. In 

that case, the coupling (0.14)-(0.17). becomes a representation formula for the value function of the 

aforementioned control problem. This leads us to suggest a heuristic algorithm to solve this control 

problem, i.e. to approximate its value function and also determine an approximated optimal strategy. 

t 

0 

  

  , ∇xv s, ξs − b s, ξs , ∇xv s, ξs ds + g ξT ξt , 

(0.17) 

0 
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t 0 

 

Our approach consists in determining a process ξ solving (0.14), for which the affine drift coeffi- 

cient b̃ (and therefore a and c) is discovered simultaneously as the value function, in such a way that 

b̃ is determined via a linear regression, at each time step, to be as close as possible to the drift of the 

optimally controlled process. The resulting process ξ will be our estimation grid, which is generated 

backwardly and is supposed to explore efficiently the regions of interest of our problem. Indeed, 

that grid is adaptive in the sense that it exploits as it is generated, informations on the value function 

estimations that were already performed. Therefore, the method meets empirically our initial objec- 

tive of parsimonious state space exploration. It also has the advantage to spare memory since there 

is no need to store the grid. Finally, the accuracy of the procedure is illustrated in the context of a 

stochastic control problem arising in energy management. 

In Chapter 3, we survey the use of McKean SDEs to represent solutions of non conservative (and 

non linear) extensions of Equation (0.1). More precisely, we consider perturbed versions of (0.1) of the 

form 

  ∂tu (t, ·) = 
1 

 
 

2 
i,j=1 

 

∂ij σσ-T (t, ·, u (t, ·))ij u (t, ·) 

 

 

—
 

i=1 

∂i (b (t, ·, u (t, ·))i u (t, ·)) 

 

 
(0.19) 

 
u (0, ·) = ν, 

+Λ (t, ·, u (t, ·) , ∇xu (t, ·)) u (t, ·) ,  t ∈]0, T ] , 

 

where Λ : [0, T ] × Rd × R× Rd 1→ R. The probabilistic object that arises to represent (0.19) are solutions 

of the following McKean type equation 

Y  = Y 
t 

+ σ s, Y , u(s, Y ) dW 

 

t 
+ b s, Y , u(s, Y ) ds 

 0 
s s s s s 

0 

Y0 ∼ ν 

 
     t 

 

  
 

(0.20) 
} l 

 

 
 

for any continuous bounded real valued test function ϕ. The second line appearing in (0.20), is 

denominated the linking equation and can be seen as a path-dependent extension of the dependence of 

the law encountered when dealing with classical McKean SDEs (namely when Λ = 0). This opens 

the way to new numerical methods based on interacting particle systems. We expose those methods 

and give some classes of nonconservative PDEs for which previous representation is of interest. 

, t ∈]0, T ] , ds 
0 

Λ ϕ(Yt) exp 

d d 

ϕ(x)u(t, x)dx = E s, Ys, u(s, Ys), ∇u(s, Ys) 



 

 

2 
ij 

 
 
 
 

Chapter 1 

 
Fokker-Planck equations with terminal 

condition and related McKean 

probabilistic representation 

 
d dThis chapter is the object of the paper [62]. 

 

1.1 Introduction 

 
The main objective of the paper consists in studying well-posedness and probabilistic representation 

of the Fokker-Planck PDE with terminal condition 

  ∂tu = 
1 
 
 

 
2 (σσ-T)i,j(t, x)u — div (b(t, x)u) 

 

(1.1) 
i,j=1 

 u(T )  =   µ, 

where σ : [0, T ] × Rd → Md,m(R), b : [0, T ] × Rd → Rd and µ is a prescribed finite Borel measure 

on Rd. When u(t) admits a density for some t ∈ [0, T ] we write u(t) = u(t, x)dx.   This equation 

is motivated by applications in various domains of physical sciences and engineering, as heat con- 

duction [14], material science [95] or hydrology [5]. In particular, hydraulic inversion is interested in 

inverting a diffusion process representing the concentration of a pollutant to identify the pollution 

source location when the final concentration profile is observed. Those models are often formulated 

by PDE problems which are in general ill-posed because, either the solution is not unique or the so- 

lution is not stable. For this issue, the existence is ensured by the fact that the observed contaminant 

is necessarily originated from some place at a given time (as soon as the model is correct). Several 

authors have handled the lack of uniqueness problem by introducing regularization methods ap- 

proaching the problem by well-posed PDEs, see typically [107] and [74]. A second issue, when the 

problem is well-approximated by a regularized problem, consists in providing a numerical approx- 

 
9 

d 

∂ 
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∂ 

µ(Rd) 

 

    

 

Yt = Y0 − dr + 

  

∈ 

− − 

0 

imating scheme to the backward diffusion process. In particular for (1.1) there are very few results 

even concerning existence and uniqueness. 

Our point of view is that a probabilistic representation of (1.1) can bring new insights to the 

treatment of the two mentioned issues: well-posedness and numerical approximation. To realize this 

objective we consider the renormalized PDE 

  ∂tū 

 

 
1 2 

 

2 ij 

 
(σσ-T)i,j(t, x)ū 

 
— div (b(t, x)ū) 

 
 

(1.2) 

  ū(T )    = 

i,j=1 

µ̄, 

where µ̄ = µ is a probability measure.  We remark that the PDEs (1.2) and (1.1) are equivalent in 

the sense that a solution (1.2) (resp. (1.1)) provides a solution to the other one. The program consists 

in considering the McKean type stochastic differential equation (SDE) 

    t 
 

 

   t     divy (Σi. (T − r, Yr) pr (Yr))
 t

 
 

   
  

pt density law of pt = law of Yt, t ∈]0, T[, 

Y0 ∼ µ̄, 

 

 
(1.3) 

where β is a m-dimensional Brownian motion and Σ = σσ-T, whose solution is the couple (Y, p). 

Indeed an application of Itô formula (see Proposition 1.4.3) shows that whenever (Y, p) is a solution 

of (1.3) then t 1→ pT −t is a solution of (1.2). 

The idea of considering (1.3) comes from the SDE verified by time-reversal of a diffusion. Time- 

reversal of Markov processes was explored by several authors: see for instance [55] for the diffusion 

case in finite dimension, [45] for the diffusion case in infinite dimension and [64] for the jump case. 

Consider a forward diffusion process X solution of 
 

Xt = X0 + 
t 

b(s, Xs)ds + 
0 

t 

σ(s, Xs)dWs, t [0, T ], (1.4) 
0 

where σ and b are Lipschitz coefficients with linear growth and W is a standard Brownian motion on 

Rm.  X̂t  := XT −t, t ∈ [0, T ] will denote the time-reversal process.  In [55] the authors gave sufficient 

general conditions on σ, b and the marginal laws pt of Xt so that Y  := X̂  is a solution (in law) of the 

SDE 
   t t      divy (Σi. (T − r, Yr) pT −r (Yr))

 t
 

Yt = XT − b (T r, Yr) dr + 
0 0 pT −r (Yr) i∈[[1,d] 

dr + σ (T r, Yr) dβr. 
0 

(1.5) 

The key idea to show well-posedness of the McKean SDE (1.3), is the study of uniqueness of the PDE 

(1.2) (or (1.1)). For instance, the trivial case of the heat equation with terminal condition produces 

uniqueness. Suppose indeed that u : [0, T ] 1→ S
 
Rd

 
solves 

∂tu = ∆u 

u (T ) = µ. 

 
(1.6) 

0 i∈[[1,d] 
(Yr) r p 0 

d 

= 

b (T − r, Yr) dr + σ (T − r, Yr) dβr, 



 

 

t 

T 

t 

 d v (t, ξ) = − |ξ|2 v (t, ξ) , (t, ξ) ∈ [0, T ] × Rd 
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Then, the Fourier transform of u, v (t, ·) := Fu (t, ·) , t ∈ [0, T ] solves the ODE (for fixed ξ ∈ Rd) 

dt 

v (T, ·) = Fµ. 
(1.7) 

This admits at most one solution, since setting Fµ = 0 the unique solution of (1.7) is the null function. 

Another relatively simple situation is described below to study uniqueness among the solutions 

of (1.2) starting in the class of Dirac measures. Suppose for a moment that the PDE in the first line of 

(1.2), but with initial condition (see (3.2)) is well-posed. Sufficient conditions for this will be provided 

in Remark 1.3.3.  Let x ∈ Rd and u be a solution of (1.2) such that u(0, ·) = δx.  If Xx is the solution of 

(1.4) with initial condition x, it is well-known that the family of laws of Xx, t ∈ [0, T ], is a solution of 

(1.2).  So this coincides with u(t, ·) and in particular µ̄ is the law of Xx .  To conclude we only need to 

determine x. 

Consider the example when σ is continuous bounded non-degenerate and the drift b is affine 

i.e. b(s, y) = b0 (s) + b1 (s) y, (s, y) ∈ [0, T ] × Rd, b0 (resp.  b1) being mappings from [0, T ] to Rd 

(resp. to Md (R)).  Taking the expectation in the SDE fulfilled by Xx, we show that the function 

t 1→ Ex(t) := E(Xx) is solution of 

 

Ex(t) = 

 

yµ (dy) 
Rd 

T 

(b0(s) + b1(s)E 
t 

 
x(s)) ds. 

Previous linear ODE has clearly a unique solution. At this point x = E(0) is determined. 

Those examples give a flavor of how to tackle the well-posedness issue. However, generalizing 

those approaches is far more complicated and constitutes the first part of the present work. The 

contributions of the paper are twofold. 

1. We investigate uniqueness for the Fokker-Planck PDE with terminal condition (1.2). This is 

done in Section 1.3 in two different situations: the case when the coefficients are bounded 

and the situation of a PDE associated with an inhomogeneous Ornstein-Uhlenbeck semigroup. 

In Section 1.3.3 we show uniqueness when the coefficients are stepwise time-homogeneous. 

In Theorem 1.3.13 the coefficients are time-homogeneous, bounded and Hölder, with non- 

degenerate diffusion. Corollary 1.3.16 extends previous results to the case of stepwise time- 

inhomogeneous coefficients. In Section 1.3.4, Theorem 1.3.19 treats the Ornstein-Uhlenbeck 

case. In Section 1.3.2 we show uniqueness for bounded continuous coefficients for solutions 

starting in the class C of multiples of Dirac measures. In Proposition 1.3.9 we discuss the frame- 

work of dimension d = 1. Theorem 1.3.10 is devoted to the case d ≥ 2. We distinguish the 

non-degenerate case from the possibly degenerate case but with smooth coefficients: we prove 

uniqueness for small time horizon T . 
 

2. We study existence and uniqueness in law for the McKean SDE (1.3), with some specific re- 

marks concerning strong existence and pathwise uniqueness. We differentiate specifically be- 

tween existence and uniqueness. After some preliminary considerations in Section 1.4.1, Sec- 

  

− 
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b 

α ∞ 

             
P

  M   Mf

 

b 

           
B

   S
         

S

  ∈ S
 

    

d 

t 
2 

i 

  

i,j=1 i=1 

tions 1.4.2 and 1.4.3 link the well-posedness of the PDE (1.2) to the well-posedness of the McK- 

ean SDE (1.3). In particular Proposition 1.4.6 (resp. Corollary 1.4.9) links the existence (resp. 

uniqueness) of (1.2) with (1.3). In Section 1.4.4, Proposition 1.4.14 and Theorem 1.4.16 dis- 

cuss the case of bounded coefficients. Theorem 1.4.19 is Section 1.4.5 is devoted to the case of 

Ornstein-Uhlenbeck (with not necessarily Gaussian terminal condition), where strong existence 

and pathwise uniqueness are established. 

 
1.2 Notations and preliminaries 

Let us fix d, m ∈ N∗, T > 0. Cc
∞   Rd    is the linear space of smooth functions with compact support. 

For a given p ∈ N∗, [[1, p] denotes the set of all integers between 1 and p included. Md,m (R) stands 

for the set of d × m matrices. If d = m, we simply use the notation Md (R). For a given A ∈ Md (R), 

Tr (A) (resp. A-T) symbolizes the trace (resp. the transpose) of the matrix A. ||A|| denotes the usual 

Frobenius norm.   ,   denotes the usual scalar product on Rd, with associated norm |.|. For a given 

f : Rp → Rl, p, l ∈ N∗, ∂jfi, (i, j) ∈ [[1, l] × [[1, p] denote the partial derivatives of f being defined in 

the sense of distributions on Rp whenever they exist. We also introduce the mapping Jf from Rp to 

Ml,p (R) such that Jf : z 1→
 

∂jfi (z)
 
 (i,j)∈[[1,l] ×[[1,p] 

. 

Let α ∈]0, 1[, n ∈ N. Cb(Rd) (resp. Cn(Rd)) indicates the space of bounded continuous functions 

(resp. bounded functions of class Cn such that all the derivatives are bounded). Cα(Rd) is the Banach 

space of bounded α-Hölder functions Rd → R equipped with the norm |.|α := ||.||∞ + [.]α , where 

[f ]α 

 

:= sup 
x,y∈Rd,x 

|f (x) − f (y)| 
< .

 

y |x − y| 

If  n is  some  integer  Cα+n(Rd) is  the  Banach  space  of  bounded  functions  f  :  Rd  → R such  that  all 

its derivatives up to order n are bounded and such that the derivatives of order n are α-Hölder 

continuous. This is equipped with the norm obtained as the sum of the Cn(Rd)-norm plus the sum 

of the quantities [g]α where g is an n-order derivative of f . For more details, see Section 0.2 of [82]. If 

E is a linear Banach space, we denote by ||.||E the associated operator norm and by L (E) the space 

of linear bounded operators E → E. Often in the sequel we will have E = C2α(Rd). 

Rd  (resp. + Rd  , Rd ) denotes the set of probability measures (resp. non-negative 

finite valued measure, finite signed measures) on   Rd,     Rd    . We also denote by     Rd   the space 

of Schwartz functions and by         Rd   the space of tempered distributions. For all φ Rd   and 

µ ∈ Mf

 
Rd

 
, we set the notations 

Fφ : ξ 1→ 

 

 e−i ξ,x φ (x) dx, Fµ : ξ 1→ 

 

 e−i ξ,x  µ (dx) . 

 

Given a mapping u : [0, T ] → Mf Rd , we convene that when for t ∈ [0, T ], u (t) has a density, this 

is denoted by u (t, ·). We also introduce, for a given t in [0, T ], the differential operator, 

1 
L f := Σ 

 

(t, ·)∂ 

 

 

f + 
    

b 
 

(t, ·) ∂ f, (2.1) 

d 

ij ij i 

Rd Rd 
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2 

         
∈ 

M  Mf   f

 

t 

    

u (0) = ν 

t 2 ij i,j 

Assumption 4. For all ν ∈ C, the PDE  

− 

    

i,j=1 

 

f  ∈ C2
(Rd) and denote by L∗

t  its formal adjoint, which means that for a given signed measure η 

d 

L∗η := 
1       

∂2 (Σ   (t, x)η) − div (b(t, x)η) . (2.2) 

 

With this notation, equation (1.1) rewrites 

∂tu = L∗
t u 

u (T ) = µ. 

 

 
(2.3) 

 

In the sequel we will often make use of the following assumptions. 
 

Assumption 1. b, σ are Lipschitz in space uniformly in time, with linear growth. 

Assumption 2. b and σ are bounded and Σ is continuous. 

Assumption 3. There exists E > 0 such that for all t ∈ [0, T ], ξ ∈ Rd, x ∈ Rd 

 Σ(t, x)ξ, ξ ≥ E |ξ| . (2.4) 

For a given random variable X on a probability space (Ω, F, P), LP (X) denotes its law under 

P and EP (X) its expectation under P. When self-explanatory, the subscript will be omitted in the 

sequel. 

 

1.3 A Fokker-Planck PDE with terminal condition 

1.3.1 Preliminary results on uniqueness 

In this section, we consider a Fokker-Planck type PDE with terminal condition for which the notion 

of solution is clarified in the following definition. 

Definition 1.3.1. Fix µ Rd . We say that a mapping u from [0, T ] to Rd solves the PDE (1.1), 

if for all φ ∈ Cc
∞

 
Rd

 
and all t ∈ [0, T ] 

 

T 

φ (y) u (t) (dy) = φ (y) µ (dy) Lsφ (y) u (s) (dy) ds. (3.1) 
Rd Rd Rd 

 

We consider the following assumption related to a given class C ⊆ M+ Rd . Later we will 

establish uniqueness results for (1.1) provided that the solution starts in C. 

 
 

∂tu = L∗
t u 

admits at most one solution u : [0, T ] → M+

 
Rd

 
. 

 
(3.2) 
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∈ 

M  → Mf   f

 

0 

   
C 

⊆ P 

    

    

    

    

        
∈ 

M  ∈ P
         

    

We recall that, for a given ν Rd , u : [0, T ] Rd is a solution of the PDE (3.2) if for 

all φ ∈ Cc
∞

 
Rd

 
and all t ∈ [0, T ], 

t 

φ (y) u (t) (dy) = φ (y) ν (dy) + Lsφ (y) u (s) (dy) ds. (3.3) 
Rd Rd Rd 

Suppose there is an M+ Rd -valued solution of (3.2) u and Assumption 4 with respect to some class 

C holds and such that u(0) ∈ C. Then this unique solution will be denoted by uν in the sequel. We 

remark that, whenever Assumption 4 holds with respect to a given Rd , then (3.2) admits at 

most one M+   Rd  -valued solution with any initial value belonging to R∗
+C := (αν)α>0,ν∈C . 

We start with a simple but fundamental observation. 

Proposition 1.3.2. Let us suppose σ, b to be locally bounded, ν be a Borel probability on Rd, α > 0, ξ be a r.v. 

distributed according to ν. Suppose that there is a solution X of SDE 

 

Xt = ξ + 
t 

b (r, Xr) dr + 
0 

t 

σ (r, Xr) dWr, t ∈ [0, T ], P−a.s., (3.4) 

where W is an m-dimensional standard Brownian motion. Then the M+ Rd -valued function t 1→ αL (Xt) 

is a solution of (3.2) with initial value αν. 

Proof. One first applies Itô formula to ϕ(Xt), where ϕ is a smooth function with compact support 

and then one takes the expectation. 

Remark 1.3.3.    1. Suppose that the coefficients b, Σ are bounded. Assumption 4 holds with respect to 

C := M+ Rd as soon as the martingale problem associated with b, Σ admits uniqueness for all initial 

condition of the type δx, x ∈ Rd. Indeed, this is a consequence of Lemma 2.3 in [44]. 

2. Suppose b and σ with linear growth. Let ν          + Rd   not vanishing (resp. ν Rd ). The existence 

of a M+ Rd -valued (resp. P Rd -valued) solution for (3.2) (even on t ≥ 0) is ensured when the 

martingale problem associated to b, Σ admits existence (and consequently when the SDE (3.4) admits 

weak existence) with initial condition ν (resp. ν 
IνI ). This follows by Proposition 1.3.2. We remark that, 

for example, this happens when the coefficients b, σ are continuous with linear growth: see Theorem 

12.2.3 in [104] for the case of bounded coefficients, the general case can be easily obtained by truncation. 

3. The martingale problem associated to b, Σ is well-posed for all deterministic initial condition, for instance 

in the following cases. 

• When Σ, b have linear growth and Σ is continuous and non-degenerate,  i.e. Assumption 3, see 

[104] Corollary 7.1.7 and Theorem 10.2.2. 

• Suppose d = 1 and σ is bounded. When σ is lower bounded by a positive constant on each compact 

set, see [104], Exercise 7.3.3. 

• When d = 2, Σ is non-degenerate and σ and b are time-homogeneous and bounded, see [104], 

Exercise 7.3.4. 

    

0 
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∈ M 

    

   
M
 

    

   
∈ 

P
     

        

∂tui = L∗
t ui 

 

• When σ, b are Lipschitz with linear growth (with respect to the space variable), in which case we 

have even strong solutions of the corresponding stochastic differential equation. 

Lemma 1.3.4. Let T > 0 be arbitrary and ν Rd . We suppose the validity of Assumptions 2 and 3. Then 

there is a unique M+ Rd -valued solution u to (3.2) with u(0) = ν. Moreover uν takes values in P(Rd). 

Proof. Existence follows by items 2. and 3. of Remark 1.3.3. Uniqueness is a consequence of items 1. 

and 3. of the same Remark. 

Below we give two uniqueness results for the PDE (1.2). 

Proposition 1.3.5.  Suppose Assumption 4 holds with respect to a given C ⊆ M+(Rd).  Suppose that for all 

ν ∈ C there exists an M+(Rd)-valued solution of  (3.2) with initial value ν. Then, the following properties are 

equivalent. 

1. The mapping from C to M+(Rd) ν 1→ uν(T ) is injective. 

2. For all µ +(Rd), the PDE (2.3) with terminal value µ admits at most a solution in the sense of 

Definition 1.3.1 among all M+

 
Rd

 
-valued solutions starting in the class C. 

Proof. Concerning the converse implication, consider (ν, ν  ) ∈ C2 such that uν(T ) = uν
i 

(T ) and 

suppose that uniqueness holds for equation (2.3) for all terminal values in M+ Rd in the sense of 

Definition 1.3.1 among non-negative measure-valued solutions starting in the class C. We remark that 

uν, uν
i 
are such solutions and are associated to the same terminal value. Uniqueness gives uν = uν

i 

and in particular ν = ν  . 

Concerning the direct implication, consider u
1, u

2 two non-negative measure-valued solutions of 

equation (1.2) in the sense of Definition 1.3.1, with the same terminal value in      +  Rd  , such that 

ui (0) , i ∈ {1, 2} , belong to C and suppose that ν 1→ uν (T ) is injective from C to M+ Rd . Setting 

νi := ui (0), we remark that for a given i ∈ {1, 2} 

 

ui (0) = νi, 
(3.5) 

 

in the sense of identity (3.3). Then, the fact u1 (T ) = u
2 (T ) gives uν1 (T ) = uν2 (T ) . By injectivity 

ν1 = ν2 and the result follows by Assumption 4. 

Proceeding in the same way as for the proof of Proposition 1.3.5 we obtain the following. 

Proposition 1.3.6. Suppose that for all ν ∈ Mf   Rd , there exists a unique solution uν : [0, T ] → Mf   Rd 

of (3.2) with initial value ν. Then, the following properties are equivalent. 

1. The mapping ν 1→ uν(T ) is injective. 

2. For all µ ∈ Mf (Rd), the PDE (1.1) with terminal value µ admits at most a solution in the sense of 

Definition 1.3.1. 
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t 

t 

s s 

T T T T 

bs = ∂xb (s, aXs  + (1 − a)Xs ) da, σs = ∂xσ (s, aXs  + (1 − a)Xs ) da. 
0 0 

0 
E 

0 

Remark 1.3.7.  1. Suppose that the coefficients Σ, b are bounded. Then, any measure-valued solution u : 

[0, T ] → M+(Rd) of  (3.2) such that u(0) ∈ P(Rd) takes values in P(Rd).  Indeed, this can be shown 

approaching the function ϕ ≡ 1 from below by smooth functions with compact support. 

2.  Replacing M+(Rd) with P(Rd) in Assumption 4, item 2. in Proposition 1.3.5 can be stated also replac- 

ing M+(Rd) with P(Rd). 

1.3.2 Uniqueness: the case of Dirac initial conditions 

In  this  section  we  give  examples  of  functions  b, σ  for  which  uniqueness  of  (2.3)  among  M+(Rd)- 

valued solutions is ensured, supposing Assumption 4 is in force with respect to C := (αδx)α>0,x∈Rd . 

Remark 1.3.8. Let α ≥ 0. Let x ∈ Rd. Suppose that there is a solution Xx of SDE (3.4) with ξ = x. 

1. By Proposition 1.3.2, the M+

 
Rd

 
-valued mapping t 1→ αL (Xx) is a solution of (3.2) with initial 

value αδx. 

2. t 1→ αL (Xx) can be identified with uαδx and in particular 
J

Rd uαδx (t) (dy) = α, ∀t ∈ [0, T ]. 

If Assumption 1 holds, Xx denotes the unique solution of equation (3.4) with initial value x ∈ Rd. 

We start with the case of dimension d = m = 1. 

Proposition 1.3.9. Suppose the validity of Assumption 4 with C = (αδx)α>0,x∈R and 1 with d = m = 1. 

Then, for all µ ∈ M+ (R), equation (1.2) with terminal value µ admits at most one solution in the sense of 

Definition 1.3.1 among the M+ (R)-valued solutions starting in C. 

Proof. Fix (x, y) ∈ R
2 and α, β ≥ 0 such that 

uαδx  (T ) = uβδy  (T ) . (3.6) 

It suffices to show that α = β and x = y to conclude, thanks to Proposition 1.3.5. By item 2. of 

Remark 1.3.8, we have α = β and consequently LP (Xx) = LP 
 
Xy 

 
. In particular E (Xx) = E 

 
Xy 

 
. 

Since b, σ are Lipschitz in space, they have bounded derivatives in the sense of distributions that we 

denote by ∂xb and ∂xσ. 

Set Zx,y := Xy − Xx. We have 
 

x,y 

   t   
x,y    x,y 

   t    
x,y    x,y 

Zt = (y − x) + 

where for a given s ∈ [0, T ] 

bs  Zs    ds + 
0 

σs     Zs    dWs, ∀t ∈ [0, T ], (3.7) 
 

x,y 
1 

y x x,y 
1 

y x 
 

The unique solution of (3.7) is well-known to be 

 
Zx,y 

 
= exp 

    . 

 
 
bx,yds 

    . 
 

 
σx,ydWs

 (y − x), 

0 
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s s 

   
∈ 

M
     

j=1 

m 

Zx,y = y − x + Bx,y Zx,ydr + 
Cx,y,jZx,ydWj,  t ∈ [0, T ], (3.8) 

Br := Jb (r, aXr  + (1 − a)Xr ) da, Cr := Jσ.j (r, aXr + (1 − a)Xr ) da, ∀ j ∈ [[1, m] . 

0 
E 

0 

0 0 

 

where E (·) denotes the Doléans exponential. Finally, we have 

 
E exp 

    T 

 
 
bx,yds 

    . 
 

 
σx,ydWs

 

T 

(y − x) = 0. 

Since the quantity appearing in the expectation is strictly positive, we conclude x = y. 

We continue now with a discussion concerning the multidimensional case d ≥ 2. The uniqueness 

result below only holds when the time-horizon is small enough. Later, in Section 1.3.3 we will present 

in a framework of piecewise time-homogeneous coefficients results which are valid for any time- 

horizon. Theorem 1.3.10 distinguishes two cases: the first one with regular possibly degenerate 

coefficients, the second one with non-degenerate possibly irregular coefficients. 

Theorem 1.3.10. We suppose Assumption 4 with C = (αδx)α>0,x∈Rd and the validity of either item (a) or (b) 

below. 

(a) Assumption 1. 

(b) Assumptions 2 and 3. 

There is T > 0 small enough such that the following holds. For all µ + Rd , equation (1.2) admits at 

most one solution in the sense of Definition 1.3.1 among the M+ Rd -valued solutions starting in C. 

The proof of item (a) of Theorem 1.3.10 relies on a basic lemma of moments estimation. 

Lemma 1.3.11. We suppose Assumption 1. Let (x, y) ∈ Rd × Rd. Then, sup E
 

|Xx − Xy|
2

    

≤ 

|y − x|2 eKT , with K := 2Kb +  
   m     

  
Kσ,j

 2
, where 

t∈[0,T ] t t 

 

 

and for all j ∈ [[1, m] 

Kb :=  sup 
s∈[0,T ] 

|| ||Jb (s, ·)|| ||∞ 

 

 
Proof (of Lemma 1.3.11). 

Kσ,j :=  sup 
s∈[0,T ] 

|| ||Jσ.j (s, ·)|| ||∞ . 

For a given (x, y) ∈ Rd × Rd we set 

Zx,y := Xy − Xx, t ∈ [0, T ]. 

 
We have 

t t t 
 
 

   t t 
 

t 
 

with, for all r ∈ [0, T ] 

 

r r r r r 
0 j=1   0 

x,y 
1 

y x x,y,j 
1 

y x 
 



Chapter 1.   Fokker-Planck equations with terminal condition and related McKean probabilistic 
representation 18 

 

s 

x,y 2 

m 

C Z 

] 2 

|Z |     

t r 

x,y 2 x,y x,y,j x,y 

0 
 Br    Zr    , Zr       dr +  Cr Zr dr + 2 

≤   T 
x,y 2 
r 

t 
r r r r r 

  

2   

j=1 0 i=1 

j=1 

σ,j ) 
2 

|Z | 

k=1 

By the classical existence and uniqueness theorem for SDEs with Lipschitz coefficients we know that 
 

E(sup |Xz|2
) < ∞, (3.9) 

 
for all z ∈ Rd. This implies 

s≤T 

 
 

E( sup 
t∈[0,T ] 

 
|Zt  | ) < ∞. (3.10) 

Now, Itô’s formula gives, for all t ∈ [0, T ] 

   t 
 

 

 
 

 

 
 

     t   

 

 

 
 2   

 

 

where, for a given i ∈ [[1, d] , Mx,y,i denotes the local martingale 
J · Zx,y,i   

   m
 
 

Cx,y,j Zx,y 
 

 dWj.  

Consequently, for all i ∈ [[1, d] , we have 

0    s j=1 s s 
i 

s 

J 
x,y,i 

 
  m

 
   T    

 

 x,y,i  2   

 

 x,y,j x,y 
  2 

[M ]T =   Zr 
j=1   0 

Cr Zr dr, 
i 

 
  m

 
   T 

 
 
 
 x,y,j x,y   

 

x,y 2 

≤ 
j=1 

 
    
 
 

 

 

    r r 

 

 

 

|Zr | 

 

 

 

dr, (3.12) 
 
 
 

 
 

 
By the latter inequality and (3.10), we know that E x,y,i 

1 
 

 
 

< ∞, so for all i ∈ [[1, d] , 

 
Mx,y,i is a 

true martingale. Taking expectation in identity (3.11), we obtain 

   t    2
  

E x,y 2 
= |y − x|2 

+ E 2  Bx,y Zx,y, Zx,y 
   + 

 

Cx,y,kZx,y 
 

dr. 

Hence, thanks to Cauchy-Schwarz inequality and to the definition of Kb and Kσ,j for all j ∈ [[1, m] 

E  |Zx,y|
2
 

 ≤ |y − x| + K 

 
t 

E  |Zx,y|2   dr 
 

and we conclude via Gronwall’s Lemma. 
 

Proof (of Theorem 1.3.10). 

Fix (x1, x2) ∈ Rd × Rd, α, β ≥ 0 such that 

uαδx1 (T ) = uβδx2  (T ) . (3.13) 

 
To conclude, it suffices to show α = β and x1 = x2 thanks to Proposition 1.3.5. 

0 

0 

T 

. 

x,y x,y + 2 
2 

= |y − x| |Zt    | 

d 

2 

m 

m 

  

x,y,i 
Mt , (3.11) 

(K sup 
r∈[0,T ] 

0 

[M 
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p 

∀ ∈ × 

T T 

XT    − XT 

0 
E|Xr    − Xr |dr 

2 
2 1 

Xt = xi + s, Xs ds + s, Xs dWs, P −a.s., t ∈ [0, T]. 

T T 

t, Xt = φ (0, xi) + 
s, Xs ds + s, Xs σ s, Xs dWs, P −a.s. (3.16) 

  

0 

0 0 

0 0 

 

1. We suppose first Assumption 1. Once again, item 2. of Remark 1.3.8 gives α = β and 

E
 

Xx1 
    

= E
 

Xx2 
   

. (3.14) 
 

Adopting the same notations as in the proof of Lemma 1.3.11, a similar argument as in (3.12), 

together with (3.10) allow to show that the local martingale part of Zx1,x2 = Xx2 − Xx1 defined 

in (3.8) is a true martingale. So, taking the expectation in (3.12) with x = x1, y = x2, by Lemma 

1.3.11 we obtain 

x2 x1   
T 

x2 x1 

   T J 
x x 2 

≤ Kb E (|Xr 2 − Xr 1 |) dr 

K K T 

 

Remembering (3.14), this implies 

Te 2 

2 
|x2 − x1| . 

 

1 − 
K 

Te 
K T 

    

|x — x | ≤ 0. 
 

K M K K T 

Taking T such that 

0. 

2 T < M with Me < 1, we have 1− 2 Te 2 > 0, which implies |x2 −x1| = 

 

2. We suppose here Assumptions 2 and 3. Firstly, point 1. of Theorem 1. in [112] ensures the 

existence of probability spaces Ωi, Fi, Pi , i ∈ {1, 2} on which are defined respectively two m-

dimensional Brownian motions W 1, W 2 and two processes X1, X2
 such that 

i 
t 

 
i
 

t 

 

i
 

i i 

 

Once again, item 2. of Remark 1.3.8 implies α1 = α2 and 

LP1  

  

X1
  

= LP2  

  

X2
  

. (3.15) 
 

Secondly, point b. of Theorem 3 in [112] shows that for every given bounded D ⊂ Rd, for all 

φ : [0, T ] × Rd → Rd belonging to W 1,2 ([0, T ] × D) (see Definition of that space in [112]) for a 

given p > d + 2, we have for all t ∈ [0, T ], i ∈ {1, 2}, 

i
 

t 

 

i
 

t 

 

i
 

i
 

i i 

where the application of ∂t + Lt, t ∈ [0, T ] has to be understood componentwise. 

Thirdly, Theorem 2. in [112] shows that if T is sufficiently small, then the system of d PDEs 

(t, x) [0, T ] Rd, 
∂tφ (t, x) + Ltφ (t, x) = 0, 

φ (T, x) = x, 

 
(3.17) 

E — (x2 − x1) ≤ Kb 

2 

b σ 

φ 
(∂t + Ls) φ Jφ 

≤ 
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p 

T 

    

2 

    

        

∈ Mf  

    

T T 

admits a solution φ in W 1,2 ([0, T ] × D) for all p > 1 and all bounded D ⊂ Rd. Moreover the 

partial derivatives in space of φ are bounded (in particular Jφ is bounded) and φ (t, ·) is injective 

for all t ∈ [0, T ]. 

Combining now (3.17) with identity (3.16), we observe that φ ., Xi , i ∈ {1, 2} , are local mar- 

tingales. Using additionally the fact that Jφ and σ are bounded, it is easy to show that they are 

true martingales. Taking the expectation in (3.16) with respect to Pi, i = 1, 2, gives 

φ (0, xi) = EPi  

  

φ 
 
T, Xi 

    
, i ∈ {1, 2} . 

 

In parallel, identity (3.15) gives 

 
EP1  

 

φ 
 
T, X1

 
   

= EP2  

  

φ 
 
T, X2

 
   

. 
 

So, φ (0, x1) = φ (0, x2). We conclude that x1 = x2 since φ (0, ·) is injective. 

 

 

1.3.3 Uniqueness: the case of bounded, non-degenerate coefficients 

In this section we consider the case of time-homogeneous, bounded and Hölder coefficients in di- 

mension d ≥ 1. We suppose that Assumption 3 holds and consider the following one. 

Assumption 5. 1. b, σ are time-homogeneous and bounded. 

2. For all (i, j) ∈ [[1, d] 
2, bi, Σij ∈ C2α 

  
Rd

 
, for a given α ∈]0, 1 [. 

We refer to the differential operator (2.1) Lt and we simply set here L ≡ Lt. 

Remark 1.3.12. Suppose the validity of Assumptions 3, 5. 

1. Let T > 0. Proposition 4.2 in [44] implies that for every ν ∈ Mf Rd , there exists a unique Mf Rd - 

valued solution of equation (3.2) with initial value ν. This unique solution will be denoted by uν. In the 

sequel T will be omitted. 

2. We remark that the uniqueness result mentioned in item 1. is unknown in the case of general bounded 

coefficients. In the general framework, only a uniqueness result for non-negative solutions is available, 

see Remark 1.3.3 point 1. 

3. Since L is time-homogeneous, taking into account Assumptions 3, 5, operating a shift, uniqueness of 

(3.2) also holds replacing the initial time 0 by any other initial time, for every initial value in Mf Rd , 

with any other maturity T . 

Theorem 1.3.13. Suppose the validity of Assumptions 3 and 5. Then, for all µ Rd , equation (1.2) 

with terminal value µ admits at most one Mf

 
Rd

 
-valued solution in the sense of Definition 1.3.1. 
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D C ⊂ C 1→ C 

    

J 

    

   
Cc

 

J 

   
∈ 

Cc

 
   

Mf

     

    

  

  

 

By Theorems 3.1.12, 3.1.14 and Corollary 3.1.16 in [82] the differential operator L suitably extends 

as a map (L)  = 
2α+2

(Rd) 
2α(Rd) 

2α Rd and that extension is sectorial, see Definition 

2.0.1 in [82]. We set E := C2α   Rd . By the considerations below that Definition, in (2.0.2) and (2.0.3) 

therein, one defines Pt := etL, Pt : E → E, t ≥ 0. By Proposition 2.1.1 in [82], (Pt)t≥0 is a semigroup 

and t 1→ Pt is analytical on ]0, +∞[ with values in L (E), with respect to ||.||E. 

Before proving the theorem, we provide two lemmata. 

Lemma 1.3.14. Suppose the validity of Assumptions 3 and 5. Then, for all φ ∈ E and all ν ∈ Mf Rd , the 

function from R∗
+  to R 

 
 

is analytic. 

t 1→ 

 

 Ptφ (x) ν (dx) 

 

Proof. The result can be easily established using the fact that φ 1→ Ptφ with values in L(E) is analytic 

and the fact that the map ψ 1→ Rd ψ(x)ν(dx) is linear and bounded. 
 

Lemma 1.3.15. Suppose the validity of Assumptions 3 and 5. Let T > 0. Then for all ν ∈ Mf  Rd , t ∈ [0, T ] 

and φ ∈ E we have the identity 
 

Ptφ (x) ν (dx) = φ (x) uν (t) (dx) , (3.18) 
Rd Rd 

where uν was defined in point 1. of Remark 1.3.12. 

Proof. Let ν ∈ Mf 
  
Rd

 
. We denote by vν the mapping from [0, T ] to Mf 

  
Rd

   
such that ∀t ∈ [0, T ], 

∀φ ∈ E 

Rd 

 
φ(x)vν (t) (dx) = 

 
Ptφ(x)ν(dx). (3.19) 

Rd 

Previous expression defines the measure vν(t, ·) since φ 1→  Rd  Ptφ(x)ν(dx) is continuous with respect 

to the sup-norm, using IPtφI∞ ≤ IφI∞, and Lebesgue dominated convergence theorem. 

By approximating elements of E with elements of ∞ Rd , it will be enough to prove (3.18) for 

φ ∞ Rd . 

Our goal is to show that vν is a Rd -valued solution of (3.2) with initial value ν to conclude 

vν = uν via point 1. of Remark 1.3.12 and so to prove (3.18) for φ ∈ Cc
∞ Rd . 

Let t ∈ [0, T ] and φ ∈ Cc
∞ Rd . On the one hand, point (i) of Proposition 2.1.1 in [82] gives 

LPtφ = PtLφ, (3.20) 

since Cc
∞ 

  
Rd

   
⊂ D (L) = C2α+2  

  
Rd, R

 
. On the other hand, for all s ∈ [0, t], we have 

|LPsφ|E  = |PsLφ|2α 

≤ ||Ps||E |Lφ|E 
ωs 

≤ M0e |Lφ|E , 

Rd 
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0 

    

u(T ) = µ 

.T 

    

— 

  

Ptφ = φ + PsLφds. 

= φ (x) ν (dx) + 
0 Rd 

with M0, ω the real parameters appearing in Definition 2.0.1 in [82] and using point (iii) of Proposition 

2.1.1 in the same reference. Then the mapping s 1→ LPsφ belongs obviously to L1
([0, t]; E) and point 

(ii) of Proposition 2.1.4 in [82] combined with identity (3.20) gives 

   t 
 

 

Back to our main goal, using in particular Fubini’s theorem, we have 
 

 

Ptφ (x) ν (dx) = 
Rd 

 

φ (x) ν (dx) + 
Rd Rd 

t 

PsLφ (x) dsν (dx) 
0 

 

= φ (x) ν (dx) + 
Rd 

 

 

   t   

   t   

 

 

PsLφ (x) ν (dx) ds 

 
ν 

This shows that vν is a solution of equation (3.2). 
 

Proof (of Theorem 1.3.13). 

Let ν, ν ∈ Mf

 
Rd

 
such that 

 
 

µT := uν (T ) = uν
i 

(T ) . 

Thanks to Proposition 1.3.6, it suffices to show that ν = ν i.e. 

∀φ ∈ Cc
∞ 

 

Rd

  
,  

 

 

 
φ (x) ν (dx) = 

Rd 

 
φ (x) ν (dx) . 

Since T > 0 is arbitrary, by Remark 1.3.12 we can consider uν,2T and uν
i,2T , defined as the corre- 

sponding uν and uν
i 
functions obtained replacing the horizon T with 2T . They are defined on [0, 2T ] 

and by Remark 1.3.12 1. (uniqueness on [0, T ]), they constitute extensions of the initial uν and uν
i 
. 

By Remark 1.3.12 3., the uniqueness of an Mf Rd -valued solution of (3.2) (for t ∈ [T, 2T ], with T as 

initial time) holds for 

∂tu(τ ) = L∗u(τ ),  T  ≤ τ  ≤ 2T 

Now, the functions uν,2T and uν
i,2T solve (3.21) on [T, 2T ]. This gives in particular 

 
(3.21) 

∀τ ≥ T, ∀φ ∈ Cc
∞

 

Rd

 
,  

 

 

 

φ (x) uν,2T (τ ) (dx) = 
Rd 

φ (x) uν
i,2T (τ ) (dx) . (3.22) 

Fix φ ∈ Cc
∞ Rd . Combining now the results of Lemmata 1.3.14 and 1.3.15, we obtain that the func- 

tion 

τ 1→ 

 

 φ (x) uν,2T (τ ) (dx) 
Rd 

φ (x) uν
i,2T (τ ) (dx) (3.23) 

defined on [0, 2T ], is zero on [T, 2T ] and analytic on ]0, 2T ]. Hence it is zero on ]0, 2T ]. By (3.18) we 

obtain 

Pτ φ (x)
 

ν − ν
 

(dx) = 0, ∀t ∈]0, 2T ]. (3.24) 

Rd 

0 

Lφ (x) v (s) (dx) ds. 

Rd 

Rd 

  

Rd 

  

Rd 

Rd 
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2 ij i i 

∂tv = (Ln)∗ v 

i,j=1 i=1 

 

Separating ν and ν in positive and negative components, we can finally apply dominated conver- 

gence theorem in (3.23) to send τ  to 0
+

.  This is possible thanks to points (i) of Proposition 2.1.4 and 

(iii) of Proposition 2.1.1 in [82] together with the representation (3.18). Indeed Pτ φ (x) → φ (x) for 

every φ ∈ E, x ∈ Rd when τ  → 0
+

. This shows ν = ν   and ends the proof. 
 

 

For the sake of applications it is useful to formulate a piecewise time-homogeneous version of Theo- 

rem 1.3.13. 

Corollary 1.3.16. Let n ∈ N∗. Let 0 = t0 < . . . < tn = T be a partition. For k ∈ [[2, n] (resp. k = 1) we 

denote Ik =]tk−1, tk] (resp. [t0, t1]). Suppose that the following holds. 

1. For all k ∈ [[1, n] , the restriction of σ (resp. b) to Ik × Rd is a time-homogeneous function σk : Rd → 

Md(R) (resp. bk : Rd → Rd). 

2. Assumption 3. 

3. Assumption 5 is verified for each σk, bk and Σk, where we have set Σk := σkσk
-T

. 

Then, for all µ ∈ Mf Rd , equation (1.2) with terminal value µ admits at most one Mf Rd -valued solution 

in the sense of Definition 1.3.1. 

Proof. For each given k ∈ [[1, n] , we introduce the PDE operator Lk defined by 
 

Lk := 
1

 

 

   
Σk ∂ 

 

 

 

+  
    

bk∂ . (3.25) 
 

 

Let now u1, u2 be two solutions of (1.2) with same terminal value µ. 

The measure-valued functions vi := ui (· + tn−1) , i ∈ {1, 2} defined on [0, T − tn−1] are solutions of 

 

v (T − tn−1, ·) = µ, 
(3.26) 

 

in the sense of Definition 1.3.1 replacing T by T − tn−1 and L by Ln. Then, Theorem 1.3.13 gives 

v
1 = v

2 and consequently u1 = u
2 on [tn−1, T ]. To conclude, we proceed by backward induction. 

 

 

1.3.4 Uniqueness: the case of Ornstein-Uhlenbeck semigroup 

In this section, we consider the case b := (s, x) 1→ C(s)x with C continuous from [0, T ] to Md (R) and 

σ continuous from [0, T ] to Md,m (R). We set Σ := σσ-T. We also denote by D (t) , t ∈ [0, T ], the unique 

solution of 

D(t) = I − 
t 

C(s)-T 
0 

D(s)ds, t ∈ [0, T ]. (3.27) 

d d 

ij 
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∈ 

Mf

 

  
d 

    

F 

0 

    

0 

    

0 

  

    

− 

0 

We recall that for every t ∈ [0, T ], D(t) is invertible and 

D−1 

 

(t) = I + 

 

t 

−1
(s)C(s)-T 

0 

ds, t ∈ [0, T ]. (3.28) 

For previous and similar properties, see Chapter 8 of [28]. 

In that setting, the classical Fokker-Planck PDE for finite measures reads 

∂tu (t) = 

 
 

i

 

,j=1 

 
Σ(t)ij∂iju (t) − 

 

  

i=1 

 
∂i ((C(t)x)i u (t)) 

 

 
(3.29) 

u(0) = ν ∈ Mf 
 
Rd

  
. 

Proposition 1.3.17. For all ν ∈ Mf Rd , equation (3.29) with initial value ν admits at most one Mf Rd - 

valued solution. 

Proof. 

1. Let ν Rd and u be a solution of (3.2) with initial value ν. Identity (3.3) can be extended 

to S
 
Rd

 
since for all t ∈ [0, T ], u (t) belongs to Mf

 
Rd

 
. Then, t 1→ Fu (t) verifies 

Fu (t) (ξ) = Fν(ξ) + 

   t   
 

 
C (s)-T ξ, ∇F u (s) 

1 t 

ds − 
2
  Σ (s) ξ, ξ  Fu (s) ds, (t, ξ) ∈ [0, T ] × R . 

(3.30) 

In fact, the integrand inside the first integral has to be understood as a Schwartz distribution: in 

particular the symbol ∇ is understood in the sense of distributions and for each given s ∈ [0, T ], 

C (s)-T ξ, ∇F u (s) denotes the tempered distribution 
 

ϕ 1→ 

 

  

i=1 

∂iFu (s) ξ 1→ C (s)-T ξ 

 

ϕ (ξ) . 
i 

Indeed, even though for any t, u (t) is a function, the equation (3.30) has to be understood in 

S  Rd
 
. Hence, for all φ ∈ S 

 
Rd

 
, this gives 

φ (ξ) Fu (t) (ξ) dξ −

 

φ (ξ) Fν (ξ) dξ (3.31) 
 

= −i 

 

 

k

 

,l=1 

t 

C (s)kl 

0 

1 t 

ξlFφk (ξ) u (s) (dξ) ds − 
2
  Σ (s) ξ, ξ  Fu (s) (ξ) φ(ξ)dξds 

 

 

= − 
k,l=1 

t 

C (s)kl 

0 

1 t 

F (∂lφk) (ξ) u (s) (dξ) ds − 
2
  Σ (s) ξ, ξ  Fu (s) (ξ) dξds 

t 

= divξ 
Rd 

C (s)-T ξφ (ξ) 
1 

+ 
2

 Σ (s) ξ, ξ  φ (ξ) Fu(s)(ξ)dξds, 

 

where φk : ξ 1→ ξkφ (ξ) for a given k ∈ [[1, d] . 

d 

d 

d 

d d 

  

0 

  

  

D 

Rd Rd 

Rd Rd 

Rd Rd 
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D

 

dt 

  
d 

| | 

  

J t 

0 

 

2. Let now v : [0, T ] → Mf

 
Rd

  
defined by 

 
φ (x) v (t) (dx) = 

Rd Rd 

φ 
 
D (t)-T x

  
u (t) (dx) , (3.32) 

 

t ∈ [0, T ], φ ∈ Cb(Rd). For every ξ ∈ Rd, we set φ(x) = exp(−i ξ, x ) in (3.32) to obtain 

Fv (t) (ξ) = Fu (t) (D (t) ξ) , (3.33) 
 

for all ξ ∈ Rd, for all t ∈ [0, T ]. 

3. We want now to show that, for each ξ, t 1→ Fv (t) fulfills an ODE. To achieve this, suppose for 

a moment that (t, ξ) 1→ Fu (t) (ξ) is differentiable with respect to the variable ξ. Then, on the 

one hand, we have for all (t, ξ) ∈ [0, T ] × Rd, 

Fu (t) (ξ) = Fν (ξ) + 

   t   
 

 
C (s)-T ξ, ∇ξFu (s) (ξ) 

1 t 

ds − 
2
  Σ (s) ξ, ξ Fu (s) (ξ) ds, (3.34) 

 

thanks to identity (3.30). This means in particular that, for each given ξ ∈ Rd, t 1→ Fu (t) (ξ) is 

differentiable almost everywhere on [0, T ]. 

On the other hand, for almost every t ∈ [0, T ] and all ξ ∈ Rd, we have 
 

∂tFv (t) (ξ) = ∂tFu (t) (D (t) ξ) + 

 

  

i=1 

 
d 

( (t) ξ) 
dt 

∂iFu (t) (D (t) ξ) , 
 

 

= ∂tFu (t) (D (t) ξ) − 

1 

  

i=1 

C (t)-T D (t) ξ 
i 

∂iFu (t) (D (t) ξ) , 

= − 
2 

 Σ (t) D (t) ξ, D (t) ξ Fv (t) (ξ) , (3.35) 

where from line 1 to line 2, we have used the fact d (D (t) ξ) = −C (t)-T D (t) ξ for all (t, ξ) ∈ 

[0, T ] × Rd and from line 2 to line 3, the identity (3.34). Since t 1→ Fv (t) (ξ) is absolutely 

continuous by (3.33), (3.35) implies 
 

1 t 

Fv (t) (ξ) = Fν (ξ) − 
2

  Σ (s) D (s) ξ, D (s) ξ  Fv (s) (ξ) ds, ξ ∈ R , (3.36) 

 

for all t ∈ [0, T ]. 

4. Now, if (t, ξ) 1→ Fu (t) (ξ) is not necessarily differentiable in the variable ξ, we will be able to 

prove (3.36) still holds by making use of calculus in the sense of distributions. 
 

5. Suppose that (3.36) holds. This gives 

 
Fu (t) (ξ) = e−  0 

 
 

σ(s)Tξ 
2

 

2 dsFν 

 
D−1 (t) ξ 

 

 
. (3.37) 

d 

i 

d 

0 

0 
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J 

   

dϕ ∈ S  R 

dt 

S
 

∩C 
    

        

6. The proof is now concluded after we have established the (3.36). Since both sides of it are con- 

tinuous in (t, ξ), it will be enough to show the equality as S (Rd)-valued. This can be done differ- 

entiating (3.30), considered as an equality in S (Rd). For this we will apply Lemma 1.3.18 setting 

Φ := Fu (t) for every fixed t ∈ [0, T ] and differentiating in time. We set Φt(ξ) = Fv(t)(ξ), ξ ∈ 

Rd and Φt(ϕ) = Rd ϕ(ξ)Φt(ξ)dξ, ϕ ∈ S(Rd). We remark that Φt is compatible with the one 

defined in (3.38). (3.36) will the directly follow from Lemma 1.3.18. 
 
 
 

 
 
 

Lemma 1.3.18. Let Φ ∈ S
i  

Rd
 

, t ∈ [0, T ]. We denote by Φt the element of S
i  

Rd
  

such that for all 

 

 
 

Then, for all t ∈ [0, T ] 

Φt (ϕ) := det
 

D−1 (t)
 

Φ
 

ϕ
 

D−1 (t) ·
  

. (3.38) 

 

 
Φt(ϕ) = Φ(ϕ) − 

 

  

i=1 

 
t 

(∂iΦ)s 

0 

 

x 1→ C (s)-T D (s) x 

 
ϕ(x) 

i 

 
ds. (3.39) 

 

Proof. We begin with the case Φ ∈ S
 

Rd
   

(or only C∞ 
  
Rd

 
). In this case, 

Φt (x) = Φ (D (t) x) , x ∈ Rd, t ∈ [0, T ]. 

 

Hence, for every t ∈ [0, T ]  

 
d 

dt 
Φt

 
(x) = 

( 
d  

(D (t) x) , ∇Φ (D (t) x)

 

 

= − 
 
C (t)-T D (t) x, ∇Φ (D (t) x)

 
 

 

 

= − 
i=1 

C (t)-T D (t) x 

 

(∂iΦ)t (x) , 
i 

 

Now, coming back to the general case, let Φ ∈ S  Rd and (φ ) >0 a sequence of mollifiers in S Rd , 

converging to the Dirac measure. Then for all E > 0, the function Φ ∗ φ  : x 1→ Φ (φ  (x − ·)) belongs to 
     Rd ∞ Rd . By the first part of the proof, (3.39) holds replacing Φ = Φ*ϕε. Now, this converges 

to Φ in S   
 
Rd

  
when E tends to 0+. (3.39) follows sending E to 0+. Indeed, for all ϕ ∈ S 

 
Rd

 
, t ∈ [0, T ], 

d 

d   
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d 

   
∈ S 

 ∈ 

    

        

| | 

0 

= Φ(ϕ) lim 
→0+ 

i=1 

ϕ ∈ S
 
Rd

 
 

x j 

∗ 

J T 

0 i 
ϕ D−1 (s) · * φ̌  ds 

 

setting φ̌ : y 1→ φ (−y), we have 

 

Φt (ϕ) = lim 
 →0+ 

 

= lim 

ϕ(x) (Φ φ )t (x) dx 
Rd 

 
ϕ(x)Φ ∗ φ (x) dx − lim  

 
 

 
 

 
t 

det 

 
D−1 (s) 

 

 
C (s)-T x 

 
ϕ  D−1 (s) x 

 
∂iΦ ∗ φ (x)dxds 

 →0+    
Rd 

 
 

 
 

     t 

 

 

 →0+ 
i=1

 

  

0 

    

Rd i 

 

 

= Φ(ϕ) − 

 

  

i=1 

t 

det 
0 

D−1 (s) ∂iΦ C (s)-T · 
i 
ϕ D−1 (s) · ds 

= Φ(ϕ) − 

 

  

i=1 

t 

(∂iΦ)s 

0 

x 1→ C (s)-T D (s) x 
 

ϕ (x) 
i 

 

ds. 

 

 

To conclude, it remains to justify the commutation between the limit in E and the integral in time 

from line 3 to line 4 using Lebesgue dominated convergence theorem. On the one hand, for a given 

i [[1, d] , the fact ∂iΦ belongs to Rd implies that there exists C > 0, N N such that for all 

|∂iΦ (ϕ)| ≤ C sup   sup  
  

1 + |x|2
       

|∂αϕ(x)| , N 
 

|α|≤N x∈Rd 

see Chapter 1, Exercise 8 in [100]. On the other hand, the quantities 

sup 
 

1 + |x|2
 N  

 ∂α 
 
x  ϕ(D−1 (s) ·)

  
∗ φ̌    

 

are bounded uniformly in the couple (s, E), for all j ∈ [[1, d] , α ∈ Nd, taking also into account that the 

function s 1→ D−1(s) is continuous and therefore bounded. Since C is also continuous on [0, T ], we 

are justified to use Lebesgue’s dominated convergence theorem. 
 

 

Theorem 1.3.19. For all µ ∈ Mf Rd , equation (1.2) with terminal value µ admits at most one Mf Rd - 

valued solution in the sense of Definition 1.3.1. 

Proof. Let µ ∈ Mf Rd and u a solution of (2.3) with terminal value µ. Then, u solves equation (3.2) 

with initial value u (0). As a consequence, by I (3.37) appearing at the end of the proof of Proposition 

1.3.17, for all ξ ∈ Rd, 

 

 
so that 

Fµ (ξ) = e−  0 

σ(s)Tξ 
2

 

2 dsFu (0) 

|σ(s)Tξ|2 

D−1 (T ) ξ  , 

Fu (0) (ξ) = e
J T

 Fµ (D (T ) ξ) . 

Hence, u (0) is entirely determined by µ and Proposition 1.3.17 gives the result. 

d 

d 

— 
 
 

d 

  

  

x 

ds 

det D−1 (s) ∂iΦ C (s)-T · 

x∈Rd 

  

2 



Chapter 1.   Fokker-Planck equations with terminal condition and related McKean probabilistic 
representation 28 

 

Σ  := σ -Tσ . 

    

  

   τ 
  
divy 

  
Σ i. (r, Yr) pr (Yr)

 

 
 

b (s, y; ps) := 
  

j∈[[1,d] 

— b (s, y) , (s, y) ∈]0, T [×R . 

− 

0 K 

1.4 McKean SDEs related to time-reversal of diffusions 

1.4.1 Preliminary considerations 

In this last section we concentrate on the analysis of the well-posedness of the McKean SDE (1.3). 

Regarding b : [0, T ] × Rd  1→ Rd, σ  : [0, T ] × Rd  1→ Md,m (R), we set  b := b (T − ., ·), σ  := σ (T − ., ·), 

Given a probability-valued function p : [0, T ] → P(Rd), we denote by pt the density of p (t), for 

t ∈ [0, T ], whenever it exists. In this section, µ will denote the terminal condition of (1.1) supposed to 

be a probability. Remarking µ = µ̄, we consider the following notion of solution. 

Definition 1.4.1. On a given filtered probability space Ω, F, (Ft)t∈[0,T ] , P equipped with an m-dimensional 

(Ft)t∈[0,T ]-Brownian motion β, a solution of equation (1.3) is a couple (Y, p) fulfilling (1.3) with Brownian 

motion β, such that Y is (Ft)t∈[0,T ]-adapted and such that for all i ∈ [[1, d] , all compact K ⊂ Rd, all τ < T 
   τ        

divy   Σ i. (r, y) pr (y)    dydr < ∞. (4.1) 
  

Remark 1.4.2. For a given solution (Y, p) of equation (1.3), identity (4.1) appearing in Definition 1.4.1 

implies in particular that, for all i ∈ [[1, d] , all τ < T 

 

0 pr (Yr)   
dr < ∞, P−a.s. 

 

The terminology stating that (1.3) constitutes a probabilistic representation of (1.2) is justified by the 

result below. 

Proposition 1.4.3. Suppose b, σ locally bounded. If (Y, p) is a solution of (1.3) in the sense of Definition 

1.4.1, then p (T − ·) is a solution of  (1.1), with µ = p(0) in the sense of Definition 1.3.1. 

Proof. Let (Y, p) be a solution of (1.3) in the sense of Definition 1.4.1 with a Brownian motion sym- 

bolized by β. Let φ ∈ Cc
∞

 
Rd

 
and t ∈]0, T ]. Itô’s formula gives 

   T −t   
˜ 1 2 

T −t 
-T

 

φ (YT  t) = φ (Y0)+ 
0 

 
with 

b(s, Ys; ps), ∇φ (Ys) +  Tr 
2 

Σ (s, Ys) ∇ φ (Ys) ds+ 
0 

∇φ (Ys) σ (s, Ys) dβs, 

(4.2) 

˜ 
 divy 

 
Σ j. (s, y) ps (y)

  
 

d
 

 

We now want to take the expectation in identity (4.2). On the one hand, Remark 1.4.2, implies that 

for all i ∈ [[1, d] and s ∈]0, T [ 

   T divy 
 
Σ i. (s, Ys) ps (Ys)

 
 

dsE 
p (Y ) 

∂iφ (Ys)  < ∞. 
0 s s 

ps (y) 
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0 

0 

0 

t 

Ω, F, (Ft)t∈[0,T ] , P equipped with an m-dimensional (Ft)t∈[0,T ]-Brownian motion β and a couple 

Ω
1, F1, 

 
F1

 
 
t∈[0,T ] 

Ω
2, F2, 

 
F2

 
 
t∈[0,T ] 

0 0 

    

  

— 

  

T 

    

− 

    

complete filtered probability spaces t , P1 , t , P2 respectively, 

 

On the other hand 
 

T 

E Tr 
0 

Σ (s, Ys) ∇
2φ (Ys)

  }
 

 
ds = 

 

 

i

 

,j=1 

 

T 

 
Rd 

Σ ij (s, y) ∂ijφ (y) ps (y) dyds p.s. 

Previous expression is finite since σ is bounded on compact sets and the partial derivatives of φ have 

compact supports. With similar arguments we prove that 
J T dsE b (s, Ys) , ∇φ (Ys) < ∞, s ∈ 

]0, T [. Moreover, fixing s ∈]0, T [, integrating by parts we have 

E 
  

b̃ (s, Ys; ps) , ∇φ (Ys)
 } 

= 

 

 

∂k 

k,j=1  R
d

 

Σ jk (s, y) ps (y) ∂jφ (y) dy − 
 
 b (s, y) , ∇φ (y) 

 
ps (y) dy 

 
(4.3) 

 
= 

Rd 

Tr 
 

Σ (s, y) ∇2φ (y)
   

ps (y) dy − 

 

 
 
 b (s, y) , ∇φ (y)

   
ps (y) dy. 

Now, the quadratic variation of the local martingale MY  := 
J

0
· 
∇φ (Ys)-T σ (s, Ys) dβs yields 

 
MY 

] 
= 

   · 

∇φ (Ys)-T Σ (s, Ys) ∇φ (Ys) ds. 

We remark in particular that E 
  

MY 
]    

< ∞ since σ is bounded on compact sets and φ has compact 

support. This shows MY is a true (even square integrable) martingale and all terms involved in (4.2) 

are integrable. 

At this point we evaluate the expectation in (4.2) taking into account the considerations above to- 

gether with (1.4.1) and (4.3). We obtain 

E (φ (YT −t)) = 

 

φ (y) µ (dy) 
Rd 

T −t 

Rd 

LT −sφ (y) ps (y) dyds. 

Applying the change of variable t 1→ T − t, we finally obtain the identity 

 
φ (y) pT  t (y) dy = 

Rd 

 
φ (y) µ (dy) 

Rd 

T 

 
Rd 

Lsφ (y) pT −s (y) dyds, 

which means that p (T − ·) solves (1.2) in the sense of Definition 1.3.1 with terminal value µ. 

We also provide the different notions of existence and uniqueness for (1.3) we will use in the sequel. 

Definition 1.4.4. Let A be a class of measure-valued functions from [0, T ] to P
 

Rd
 

. 

1. We say that (1.3) ad mits existence in law in A, if there exists a complete filtered probability space 

 

(Y, p) solution of (1.3) in the sense of Definition 1.4.1 such that p belongs to A. 

2. Let 
 

Y 1, p1
 
,  
 

Y 2, p2
  

be two sol utions of  (1.3)  in the sen se of Definition 1.4.1 assoc iated to some 

equipped with Brownian motions β1, β2 respectively and such that p1, p2 belong to A. We say that (1.3) 

admits uniqueness in law in A, if Y 1, Y 2 have the same law implies that Y 1, Y 2 have the same law. 

d 

d   

0 

Rd 

Rd 

− 

− 
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0 0 

   
C ⊆ P

  AC 

    

    

    

P
 

Rd
 

such that p (T ) belongs to C. Furthermore, for a given measure-valued function p : [0, T ] 1→ 

2 

        

3. We say that (1.3) admits strong existence in A if for any complete filtered probability space (Ω, F, (Ft)t∈[0,T ] , P) 

equipped with an m-dimensional (Ft)t∈[0,T ]-Brownian motion β, there exists a solution (Y, p) of equa- 

tion (1.3) in the sense of Definition 1.4.1 such that p belongs to A. 

4. We say that (1.3) admits pathwise uniqueness in A of if for any complete filtered probability space 

(Ω, F, (Ft)t∈[0,T ] , P) equipped with an m-dimensional (Ft)t∈[0,T ]-Brownian motion β, for any solu- 

tions
 

Y 1, p1
 
,  

 
Y 2, p2

   
of (1.3) in the sense of Definition 1.4.1 such that Y 1 = Y 2, P−a.s. and 

p1, p2 belong to A, we have Y 1
 = Y 2, P−a.s. 

We finally define the sets in which we will formulate existence and uniqueness results in the 

sequel. 

Notation 1. 1. For a given Rd , denotes the set of measure-valued functions p from [0, T ] to 
 

P
 
Rd

 
, we will write  

b(t, ·; pt) := 
 divy Σ i.pt 

   

 
 

, (4.4) 
 pt  

i∈[[1,d] 

for almost all t ∈ [0, T ] whenever pt exists and the right-hand side quantity is well-defined. The function 

(t, x) 1→ b(t, x; pt) is defined on [0, T ] × Rd with values in Rd. 

2. Let A1 (resp. A2) denote the set of measure-valued functions from [0, T ] to P  Rd   p such that, for all 

t ∈ [0, T [, p (t) admits a density pt with respect to the Lebesgue measure on Rd and such that (t, x) 1→ 

b(t, x; pt) is locally bounded (resp. is locally Lipschitz in space with linear growth) on [0, T [×Rd. 

We state now existence and uniqueness results for equation (1.3) in different settings. 

 
1.4.2 PDE with terminal condition and existence for the McKean SDE 

The existence result for equation (1.3) will be based on two pillars: the reachability condition con- 

stituted by the existence of a solution of the Fokker-Planck PDE with terminal condition and the time-

reversal techniques of [55]. More precisely, we suppose that Assumption 4 is in force for a fixed C ⊆ 

P Rd   and consider the following extra assumptions, i.e.   Assumptions 6, 7 and 8, still with respect to 

(C, µ). 

Assumption 6. The backward PDE (1.1) with terminal condition µ admits at least an M+ Rd -valued 

solution u in the sense of Definition 1.3.1 verifying the following. 

1. u (0) belongs to C. 

2. ∀t ∈]0, T [, u (t) admits a density with respect to the Lebesgue measure on Rd (denoted by u (t, ·)) and 

for all t0 > 0 and all compact K ⊂ Rd 
 

T 

 
t0 K 

 

  

|u (t, x)|  + 
i=1 j=1 

|σij (t, x) ∂iu (t, x)| dxdt < ∞. (4.5) 

m d 
2 



1.4.   McKean SDEs related to time-reversal of diffusions 31 
 

 

    

    

    

    

∈ 

 

Remark 1.4.5. Suppose Assumption 1 holds and let u be the measure-valued function appearing in Assump- 

tion 6.  Then (4.5)  implies that the family of densities u (T − t, ·) , t  ∈]0, T [ verifies condition (4.1)  appear- 

ing in Definition 1.4.1. To show this, it suffices to check that for all t0 > 0, all compact K ⊂ Rd and all 

(i, j, k) ∈ [[1, d] 
2
 × [[1, m] 

 

T 

 
t0 K 

|∂j (σik (s, y) σjk (s, y) u (s, y))| dyds < ∞. (4.6) 

The integrand appearing in (4.6) is well-defined. Indeed, in the sense of distributions we have 

 

∂j (σikσjku) = σikσjk∂ju + u (σik∂jσjk + σjk∂jσik) ; (4.7) 

 
moreover the components of σ are Lipschitz, so they are (together with their space derivatives) locally bounded. 

Also u and σjk∂j are square integrable by (4.5). This implies (4.6). 

We introduce two new assumptions. 
 

Assumption 7. Let u be the measure-valued mapping appearing in Assumption 6. We suppose that µ admits 

a density and u (T − ·)  [0,T [×Rd   belongs to A1. 

Assumption 8. Let u be the measure-valued mapping appearing in Assumption 6. We suppose that µ admits 

a density and u (T − ·)  [0,T [×Rd   belongs toA2. 

We remark that Assumption 8 implies 7. 
 

Proposition 1.4.6. Suppose the validity of Assumptions 1, Assumption 4 with respect to C and Assumption 

6 with respect to (C, µ). Then (1.3) admits existence in law in AC. 

In particular if, moreover, Assumption 7 (resp. 8) holds, then (1.3) admits existence in law in AC ∩ A1 (resp. 

strong existence in AC ∩ A2). 

Proof. By Assumption 6, there is an M+ Rd -valued solution u of equation (1.1) in the sense of Def- 

inition 1.3.1 such that u (T ) = µ and u (0) belongs to C. We consider now a filtered probability space 

Ω, F, (Ft)t∈[0,T ] , P equipped with an (Ft)t∈[0,T ]-Brownian motion W . Let X0 be a r.v. distributed 

according to u(0). Under Assumption 1, it is well-known that there is a solution X to 
 

 

Xt = X0 + 
t 

b (s, Xs) ds + 
0 

t 

σ (s, Xs) dWs, t [0, T ]. (4.8) 
0 

Now, by Proposition 1.3.2, t 1→ L (Xt) is a P Rd -valued solution of equation (3.2) in the sense of 

(3.3) with initial value u (0) ∈ C. Then Assumption 4 gives 

L (Xt) = u (t) , t ∈ [0, T ], (4.9) 

since u solves also (3.2) with initial value u (0) ∈ C. This implies in particular that u is probability 

valued and that for all t ∈]0, T [, Xt has u (t, ·) as a density fulfilling condition (4.5) in Assumption 6. 
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Combining this observation with Assumption 1, Theorem 2.1 in [55] states that there exists a filtered 

probability space    Ω, G, (Gt)t∈[0,T ], Q  equipped with the Brownian motion β  and a copy of X̂  (still 

denoted by the same letter) such that X fulfills the first line of (1.3) with β and 

p (t) := u (T − t) , t ∈]0, T [. (4.10) 

Finally, existence in law for (1.3) in the sense of Definition 1.4.1 holds since (X, u (T − ·)) is a solution 

of (1.3) on the same filtered probability space and the same Brownian motion above. This occurs in 

AC since L XT ∈ C thanks to equality (4.9) for t = T . 

We discuss rapidly the in particular point. 

• Suppose  the  validity  of  Assumption  7.   Then  u (T − ·) belongs  to  AC  ∩ A1 and  we  also  have 

existence in law in AC ∩ A1. 

• Suppose the validity of Assumption 8. Then, taking into account (4.10), strong existence and 

pathwise uniqueness for the first line of (1.3) holds by classical arguments since the coefficients 

are locally Lipschitz with linear growth, see [96] Exercise (2.10), and Chapter IX.2 and [96], 

Th. 12. section V.12. of [99]. By Yamada-Watanabe theorem this implies uniqueness in law, 

which  shows  that  u (T − ·) constitutes  the  marginal  laws  of  the  considered  strong  solutions. 

This concludes the proof of strong existence in AC ∩ A2 since u (T − ·) belongs to AC ∩ A2, by 

Assumption 8. 
 

 

Remark 1.4.7.  By (4.10), the second component p of the solution of  (1.3) is given by u (T − ·) . 

1.4.3 PDE with terminal condition and uniqueness for the McKean SDE 

In this subsection we discuss some questions related to uniqueness for equation (1.3). We state the 

following hypothesis related to (µ, C) where C is a given subset of P
 
Rd

 
. 

Assumption 9.  The equation (1.1) with terminal condition µ admits at most a P Rd -valued solution u in 

the sense of Definition 1.3.1 such that u (0) belongs to C. 

We recall that Section 1.3.2 provides various classes of examples where Assumption 9 holds. 

Proposition 1.4.8. Suppose the validity of Assumption 9 with respect to (µ, C) and suppose b, σ to be locally 

bounded. 

Let Y i, pi , i ∈ {1, 2} be two solutions of equation (1.3) in the sense of Definition 1.4.1 such that p1
 (T ) , p2

 (T ) 

belong to C. Then, 

p
1 = p

2. 

Proof.    Proposition  1.4.3  shows  that  p1 (T − ·) , p2 (T − ·)  are  P  Rd  -valued  solutions  of  equation 

(1.2) in the sense of Definition 1.3.1 with terminal value µ. Assumption 9 gives the result since 

p
1 (T ) , p2 (T ) belong to C. 
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As a corollary, we establish some consequences about uniqueness in law and pathwise unique- 

ness results for equation (1.3) in the classes A1 and A2. 

Corollary 1.4.9. Suppose the validity of Assumption 9 with respect to (µ, C). Then, the following results hold. 

1. If b is locally bounded, σ is continuous and if the non-degeneracy Assumption 3 holds then (1.3) admits 

uniqueness in law in AC ∩ A1. 

2. If (b, σ) are locally Lipschitz with linear growth in space, then (1.3) admits pathwise uniqueness in 

AC ∩ A2. 

Proof. If (Y, p) is a solution of (1.3) and is such that p (T ) belongs to C, then by Proposition 1.4.8 p is 

determined by µ = L (Y0). 

To show that item 1. (resp. 2.) holds, it suffices to show that the classical SDE 

 
dXt = 

  
b (t, Xt; pt) − b (t, Xt)

   
dt + σ (t, Xt) dWt, t ∈ [0, T [, (4.11) 

where b was defined in (4.4) and W an m-dimensional Brownian motion, admits uniqueness in law 

(resp. pathwise uniqueness). The mentioned uniqueness in law is a consequence of Theorem 10.1.3 

in [104] and pathwise uniqueness holds by [96] Exercise (2.10), and Chapter IX.2 and [99] Th. 12. 

Section V.12. 

 

1.4.4 Well-posedness for the McKean SDE: the bounded coefficients case 

 
In this section, we state a significant result related to existence and uniqueness in law together with 

pathwise uniqueness for equation (1.3). In particular we obtain existence and uniqueness in law for 

(1.3) in the class A1 

We formulate the following hypotheses. 

 
Assumption 10.      1. Assumption 3 holds. 

 

2. The functions σ is Lipschitz (in space). 
 

3. The functions σ, b, (∇xbi) i∈[[1,d] , (∇xΣij) 
i,j∈[[1,d] 

are continuous bounded and ∇2 Σ is Hölder continu- 

ous with exponent α ∈]0, 1[ in space uniformly in time. 

Assumption 11. Σ is supposed to be Hölder continuous in time 
 

Remark 1.4.10. Under Assumption 10, for every ν ∈ P(Rd) there exists a unique P Rd -valued solution uν 

of (3.2). 

Indeed the assumptions of Lemma 1.3.4 are fulfilled. 
 

We continue with a fundamental lemma whose proof will appear in the Appendix. 



Chapter 1.   Fokker-Planck equations with terminal condition and related McKean probabilistic 
representation 34 

 

   
∈ 

P
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loc 

    

    

Lemma 1.4.11. Suppose the validity of Assumptions 10 and 11. Then, for all ν Rd , uν (t) admits a 

density uν (t, ·) ∈ C1    Rd   for all t ∈]0, T ]. Furthermore, for each compact K of ]0, T ] × Rd, there are strictly 

positive constants CK, CK, CK, also depending on ν such that 
1 2 3 

CK ≤ uν (t, x)   ≤  CK 
 

(4.12) 

 

for all (t, x) ∈ K. 

1 

|∂iu 

2 

(t, x)| ≤ CK, i ∈ [[1, d] , (4.13) 

 

Lemma 1.4.12. Let µ be the probability measure introduced at the beginning of Section 1.4.1. Suppose that µ 

equals uν (T ) for some ν ∈ P Rd . We assume the following. 

1. Assumptions 10. 

2. uν (t) admits a density uν (t, ·) ∈ W 1,1(Rd), for all t ∈]0, T ]. 

3. For each compact K of ]0, T ] × Rd, there are strictly positive constants CK, CK, CK, also depending on 
1 2 3 

ν such that (4.12) and (4.13) hold ∀(t, x) ∈ K. 

Then equation (1.3) admits existence in law in A1. 

Corollary 1.4.13. We suppose the validity of Assumptions 10 and and 11. 
 

1. Suppose the existence of ν ∈ P(Rd) such that uν(T ) = µ. Then, equation (1.3) admits existence in law 

in A1. Moreover, if ν is a Dirac mass, existence in law occurs in A(δx)
x∈Rd 

∩ A1. 

2. Otherwise (1.3) does not admit existence in law. 

Proof. 

1. The first part is a direct consequence of Lemma 1.4.11, Lemma 1.4.12 and expression (4.4). If in 

addition, ν is a Dirac mass, then uν (0) belongs to C := (δx)x∈Rd , hence existence in law occurs 

in AC ∩ A1 again by Proposition 1.4.6. 

2. Otherwise suppose ab absurdo that (Y, p) is a solution of (1.3).  By Proposition 1.4.3 p (T − ·) 

is a solution of (2.3).  We set ν0  = p(T ) so that p(T  − ·) verifies also (3.2) with initial value ν0. 

Since, by Lemma 1.3.4 uniqueness holds for (3.2), it follows that p(T − ·) = uν0  which concludes 

the proof of item 2. 

 

 
Proof (of Lemma 1.4.12). Suppose µ = uν (T ) for some ν ∈ P Rd . 

We recall that Assumption 4 holds with respect to C := P Rd by Remark 1.3.3 1. 

In view of applying Proposition 1.4.6, we need to check that Assumptions 6 and 7 hold with respect 

to (µ, C). 

ν 
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Assumption 6 is verified by u = uν. Indeed the function uν is a P Rd -valued solution of (1.2) with 

terminal value µ and such that uν (0) belongs to C. Condition (4.5) appearing in Assumption 6 is 

satisfied with u = uν thanks to the right-hand side of inequalities (4.12) and (4.13) and the fact that σ 

is bounded. Hence Assumption 6 holds with respect to (µ, C). 

It remains to show Assumption 7 holds i.e. that 
 

divx 
 
Σ i.(t, x)uν(T − t, x)

 
 

 

 

is locally bounded on [0, T [×Rd. To achieve this, we fix i ∈ [[1, d] and a bounded open subset O of 

[0, T [×Rd. For (t, x) ∈ O we have 

  divx 
 
Σ i. (t, x) uν (T − t, x)

 

    |∇x uν (T − t, x)| 

uν (T − t, x)    
≤ divx Σ i. (t, x)   +  Σ i. (t, x)  

uν (T − t, x) 
.
 

 

The latter quantity is locally bounded in t, x thanks to the boundedness of Σ, divx Σi. and inequal- 

ities (4.12) and (4.13). Hence, Assumption 7 holds. This ends the proof. 
 

Proposition 1.4.14. Suppose the validity of Assumption 10 and 11. The following results hold. 

1. Let us suppose d = 1. Suppose µ equals uδx0 (T ) for some x0 ∈ R. Then (1.3) admits existence and 

uniqueness in law in A(δx)
x∈Rd 

∩ A1, pathwise uniqueness in A(δx)
x∈Rd 

∩ A2. 

2. Let d ≥ 2. There is a maturity T sufficiently small (only depending on the Lipschitz constant of b, σ) 

such that the following result holds. Suppose µ equals uδx0 (T ) for some x0 ∈ Rd. Then (1.3) admits 

existence and uniqueness in law in A(δx)
x∈Rd 

∩ A1, pathwise uniqueness in A(δx)
x∈Rd 

∩ A2. 

Proof. By Assumptions 10 and 11, Corollary 1.4.13 implies that (1.3) admits existence in law in the 

two cases in the specific classes. To check the uniqueness in law and pathwise uniqueness results, 

we wish to apply Corollary 1.4.9. It suffices to check Assumption 9 because the other hypotheses 

are included in Assumption 10. Below we verify Assumption 9 with respect to (µ, (δx)x∈R), for the 

separate two cases. 

1. Fix x0 ∈ Rd. This will follow from Proposition 1.3.9 that holds under Assumption 1 which is a 

consequence of Assumption 10. 

2. We proceed as for previous case but applying Theorem 1.3.10 instead of Proposition 1.3.9. 

 

 

We state now the most important results of the section. 

Theorem 1.4.15. Suppose b, σ are time-homogeneous, Assumption 10 and suppose there is ν ∈ P Rd (a 

priori not known) such that µ = uν (T ). 

uν (T − t, x) 
(t, x) 1→ 
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1. (1.3) admits existence and uniqueness in law. Moreover existence in law holds in A1. 

2. (1.3) admits pathwise uniqueness in A2. 

Proof.       1.     (a) First, Assumption 11 trivially holds since b, σ are time-homogeneous. Then, point 1 

of Corollary 1.4.13 implies that (1.3) admits existence in law (in A1) since Assumption 10 

holds. 

(b) Let (Y, p) be a solution of (1.3). Proceeding as in the proof of item 2. of Corollary 1.4.13, 

we obtain that p(T  − ·) = uν0   with ν0 = p (T ).  Then, Lemma 1.4.11 and the fact that σ is 

bounded allow to show that p belongs to A1, see (4.4) in Notation 1. 

(c) To conclude it remains to show uniqueness in law in A1. For this we wish to apply point 

1. of Corollary 1.4.9. To achieve this, we check Assumption 9 with respect to   µ, P Rd . 

This is a consequence of Assumptions 3 and 5 and Theorem 1.3.13 This concludes the proof 

of item 1. 
 

2. Concerning pathwise uniqueness in A2, we proceed as for uniqueness in law but applying 

point 2 of Corollary 1.4.9. This is valid since Assumption 10 implies that b, σ are bounded and 

Lipschitz. 
 

 

In the result below we extend Theorem 1.4.15 to the case when the coefficients b, σ are piecewise 

time-homogeneous. 

Theorem 1.4.16. Let n ∈ N∗. Let 0 = t0 < . . . < tn = T be a partition. For k ∈ [[2, n] (resp. k = 1) we 

denote Ik =]tk−1, tk] (resp. [t0, t1]). Suppose that the following holds. 

1. For all k ∈ [[1, n] the restriction of σ (resp. b) to Ik × Rd is a time-homogeneous function σk : Rd → 

Md(R) (resp. bk : Rd → Rd). 

2. Assumption 3. 
 

3. σ is Lipschitz in space uniformly in time. 

4. The functions σk, bk,
 

∇xbk
 
 
 

i∈[[1,d] 
,  

 
∇xΣk 

 
  
i,j∈[[1,d] 

are continuous bounded and ∇2 Σk is Hölder 

continuous with exponent α ∈]0, 1[. 

Suppose µ equals uν(T ) for some ν ∈ P Rd . Then equation (1.3) admits existence and uniqueness in law. 

Existence in law holds in A1. 

Remark 1.4.17. A similar remark as in Corollary 1.4.13 holds for the Theorems 1.4.15 and 1.4.16. If there is 

no ν ∈ P(Rd) such that uν(T ) = µ, then (1.3) does not admit existence in law. 

Proof of Theorem 1.4.16). We recall that by Lemma 1.3.4, uν0 is well-defined for all ν0 ∈ P
 

Rd
 

. 
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t ∈ ∈ 

0 

J t 
C C 

t t 

t 

    

t 0 

C(t) = I + 
0 

C(s)C(s)ds, t ∈ [0, T ]. 

 

1. We first show that uν0 verifies (4.12) and (4.13). Indeed, fix k ∈ [[1, n] . The restriction uk of 

uν0   to Īk  is a solution v of the first line (3.2) replacing [0, T ] with Īk, L by Lk defined in (3.25), 

with initial condition v(tk−1) = uν0 (tk−1). That restriction is even the unique solution, using 

Lemma 1.3.4 replacing [0, T ] with Īk.  We apply Lemma 1.4.11 replacing [0, T ] with Īk, taking 

into account Assumptions 10 and 11, which holds trivially replacing σ, b, Σ with σk, bk, Σk This 

implies that uν0   verifies (4.12) and (4.13) replacing [0, T ] with Īk,  and therefore on the whole 

[0, T ]. 

2. Existence in law in A1, follows now by Lemma 1.4.12. 

3. It remains to show uniqueness in law. Let (Y, p) be a solution of (1.3). We set ν0 := p (T ). Since 

uν0  and p(T − ·) solve (3.2), Lemma 1.3.4 implies that p is uniquely determined. Similarly as in 

item 1.(b) of the proof of Theorem 1.4.15, item 1. of the present proof and Lemma 1.4.11 allow 

to show that p belongs to A1. 

4. It remains to show uniqueness in law in A1. For this, Corollary 1.3.16 implies Assumption 9 

with C = P(Rd). Uniqueness of (1.3) in the class A1 follows now by Corollary 1.4.9, which ends 

the proof. 

 

 

1.4.5 Well-posedness for the McKean SDE: the Ornstein-Uhlenbeck semigroup 

In this section we consider the case b : (s, x) 1→ C (s) x with C continuous from [0, T ] to Rd and σ 

continuous from [0, T ] to Md,m (R). We also suppose that for all t ∈ [0, T ], σ (t) is invertible. We 

denote by C (t) := D(t)−1 
-T 

, t ∈ [0, T ], where D is the unique solution of (3.27). Evaluating the 

transpose on both sides of (3.28), we remark that C is solution of the matrix-valued ODE 

   t 
 

For a given x0 Rd and a given t ]0, T ], we denote by px0 the density of a Gaussian random vector 

with mean mx0   = C(t)x0 and covariance matrix Qt  = C(t) 
J t 

C−1(s)Σ(s)C−1 (s)-T dsC(t)-T.  Note that 

for all t ∈]0, T ], Qt is strictly positive definite, in particular it is invertible. Indeed, for every t ∈ [0, T ], 

Σ(t) is strictly positive definite.  By continuity in t,  −1(s)Σ(s)  −1 (s)-T ds is also strictly positive 

definite and finally the same holds for Qt. For a given ν ∈ P
 
Rd

 
, t ∈]0, T ], we set the notation 

pν : x 1→

 

px0 (x) ν (dx0) . (4.14) 

At this level, we need a lemma. 
 

Lemma 1.4.18. Let ν ∈ P Rd . The measure-valued function t 1→ pν(x)dx is the unique solution of (3.2) 

with initial value ν and we denote it by uν . Furthermore, uν (T − ·) belongs to A2. 

Rd 
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t 

t 

0 

(t, x) 1→ T , 

T −t 

T 
= − 

T −t 

   
p
 

T −t T −t   p 

T −t 

  

T −t 

2 

   
2

 

t t 

T −t 

ν 
T −t 

Proof.  1. We denote immediately uν (t) (dx) := pν(x)dx, t ∈]0, T ]. By Chapter 5, Section 5.6 in 

[69], for every t ∈]0, T ], px0 is the density of the random variable Xx0 , where Xx0 is the unique 

strong solution of (3.4) with initial value x0. The mapping t 1→ px0 (x)dx is a solution of (3.2) by 

Proposition 1.3.2, with initial condition δx . Consequently, by superposition, uν is a solution of 

(3.2) with initial value ν. 

2. uν is the unique solution of (3.2) because of Proposition 1.3.17. 

3. It remains to show that uν (T − ·) belongs to A2, namely that for all i ∈ [[1, d] 

d ivx

 
Σ (T − t)i· pν −t (x)

 
 

pν 
T −t (x) 

is locally Lipschitz with linear growth in space on [0, T [×Rd. 

Fix i ∈ [[1, d] , t ∈ [0, T [ and x ∈ Rd. Remembering the fact, px0
 

 
 

is a Gaussian law with mean 

mx0 
T −t and covariance matrix QT −t for a given x0 ∈ Rd, we have 

 divx 
 
Σ (T − t)i· pν −t (x)

 
1 Σ (T − t) , Q−1 x − mx0

 px0 (x) ν (dx0) . 
pν 

T −t (x) pν 
T −t (x)  Rd 

i· T −t T −t T −t 

(4.15) 

Let K be a compact subset of ]0, T ] × Rd; then there is MK > 0 such that for all (t, x) ∈ K, 

x0 ∈ Rd, 

 
 
Σ (T − t)i· , Q−1 

T −t 

 
x − mx0

 
x0 
T −t (x) ≤ |Σ (T − t)i· |

 Q−1     x − mx0 x0 
T −t (x) ≤ MK. 

This follows because t 1→ Σ(T − t) and t 1→ Q−1 are continuous on [0, T [ and, setting 

we have 

cK  := inf{t|(t, x) ∈ K}, mK  := sup |a| exp 
a2 

−cK 
2 

, 

x0 x0 
|x − mT −t|pT −t(x) ≤ mK ,  ∀(t, x) ∈ K. 

To show that left-hand side of (4.15) is locally bounded on [0, T [×Rd it remains to show that 

(t, x) 1→ 
J
 d p

x0 
(x)ν(dx0) is lower bounded on K.  Indeed, let I be a compact of Rd.  Since 

(t, x, x0) 1→ px0     (x) is strictly positive and continuous is lower bounded by a constant c(K, I). 

The result follows choosing I such that ν(I) > 0. 

To conclude, it remains to show that the functions 1→  
divx(Σ(T −t)i·pν (x)) 

∈ de- 
pT −t(x) 

fined on [0, T [×Rd has locally bounded spatial derivatives, which implies that they are Lipschitz 

with linear growth on each compact of [0, T [×Rd. By technical but easy computations, the result 

follows using the fact the real functions a 1→ |a|m exp − a , m = 1, 2, are bounded. 
 

 

We give now a global well-posedness result for equation (1.3). 

a∈R 

R 

(t, x) , i [[1, d] 
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t 

t 

 

Theorem 1.4.19.    1. Suppose the initial condition µ equals uν (T ) for some ν ∈ P Rd . Then, equation 

(1.3) admits existence in law, strong existence, uniqueness in law and pathwise uniqueness. 

 
2. Otherwise (1.3) does not admit any solution. 

 
Proof. Item 2. can be proved using similar arguments as for the proof of Corollary 1.4.13. Let (Y, p) 

be a solution of (1.3) and set ν0  = p(T ).  By Proposition 1.4.3, p (T − ·) is a solution of (2.3), so that 

p(T  − ·) verifies  also  (3.2)  with  initial  value  ν0.   Since,  by  Proposition  1.3.17,  uniqueness  holds  for 

(3.2), it follows that p(T − ·) = uν0  which concludes the proof of item 2. 

We prove now item 1. For this, taking into account Proposition 1.4.8 and Yamada-Watanabe theorem 

and related results for classical SDEs, it suffices to show strong existence and pathwise uniqueness. 

We set C := P
 
Rd

 
 

1. Concerning the strong existence statement, we want to apply Proposition 1.4.6.   For this we 

have to check the validity of Assumption 1, Assumption 4 with respect to C and Assumptions 

6, 8 hold with respect to (µ, C). 

Since b, σ are affine, Assumption 1 trivially holds. Furthermore, Assumption 4 holds with re- 

spect to C thanks to Proposition 1.3.17. 

Now, uν is a probability valued solution of (1.1) with terminal value µ. Furthermore, Lemma 

1.4.18 shows that uν, being the unique solution of solution of (3.2), is such that, for all t ∈]0, T ], 

uν(t) admits pν (see (4.14)) for density. Then, relation (4.5) holds since, by the considerations 

above (4.14) (t, x) 1→ pν(x) is locally bounded with locally bounded spatial derivatives. Hence, 

Assumption 6 holds with respect to (µ, C). Finally, Lemma 1.4.18 implies that uν (T − ·) belongs 

to A2. Hence, Assumption 8 holds with respect to (µ, C). At this point Proposition 1.4.6 implies 

existence in law. 

 

2. Let (Y, p) be a solution of equation (1.3).  Proposition 1.4.3 implies that p (T − ·) solves (1.2). 

Then, Proposition 1.3.17 gives p (T − ·) = uν0  with ν0 = p (T ). Lemma 1.4.18 implies p belongs 

to A2. 

 
3. It remains to show pathwise uniqueness in A2. Assumption 9 holds with respect to (µ, C) thanks 

to Theorem 1.3.19. Now, point 2 of Corollary 1.4.9 implies pathwise uniqueness in A2 since b, σ 

are locally Lipschitz with linear growth in space. 
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1 

i,j=1 i=1 

i,j=1 i=1 i=1 

u : (t, x) 1→ Γ (x, t, ξ, τ ) H (τ, ξ) dξdτ, 

Appendix 

1.4.6 Proof of Lemma 1.4.11 

Let ν Rd . For each given t [0, T ], we denote by Gt the differential operator such that for all 

f ∈ C2
 
Rd

 
 

1   
G f  = ∂   (Σ   (t, ·) f ) − ∂  (b  (t, ·) f ) . 

Assumption 10 implies that for a given f ∈ C2 
  
Rd

 
, Gtf can be rewritten in the two following ways: 

1     1 
G f  = Σ   (t, ·)∂   f + ( ∂ Σ   (t, ·) − b (t, ·))∂ f + c  (t, ·)f, (4.16) 

 

with 

t 
2  

ij 

i,j=1 

ij 

i=1 

 

d 

i   ij i i 

j=1 

 

d 

c1
 : (t, x) 1→ 

1    
∂  Σ  (t, x) − 

  
∂ b (t, x). 

2 
ij    ij 

i,j=1 
d 

i  i 

i=1 
d d 

1        
G f  = ∂  (∂ Σ   (t, ·)f + Σ   (t, ·)∂ f − b (t, ·)∂ f ) − ∂ b (t, ·)f. (4.17) 

On the one hand, combining identity (4.16) with Assumption 10, there exists a fundamental solution 

Γ (in the sense of Definition stated in Section 1. p.3 of [47]) of ∂tu = Gtu, thanks to Theorem 10. 

Section 6 Chap. 1.   in the same reference.   Furthermore, there exists C1, C2 > 0 such that for all 

i ∈ [[1, d] , x, ξ ∈ Rd, τ ∈ [0, T ], t > τ , 

|Γ (x, t, ξ, τ )| ≤ C1 (t − τ ) 

 
— 2 exp 

C2 |x − ξ|2
 

 

4 (t − τ ) 

 
, (4.18) 

 

|∂xi Γ (x, t, ξ, τ )| ≤ C1 (t − τ ) 

 
d+1 

 

2    exp 
C2 |x − ξ|2

 

4 (t − τ ) 

 

, (4.19) 

thanks to identities (6.12), (6.13) in Section 6 Chap. 1 in [47]. 

On the other hand, combining Identity (4.17) with Assumption 10, there exists a weak fundamental 

solution Θ of ∂tu = Gtu thanks to Theorem 5 in [3]. In addition, there exists K1, K2, K3 > 0 such that 

for almost every x, ξ ∈ Rd , τ ∈ [0, T ], t ≥ τ 

  1   

K 
(t − τ ) 

— 2 exp 
K2 |x − ξ|2

 

4 (t − τ ) 
≤ Θ (x, t, ξ, τ ) ≤ K1 (t − τ ) — 2 exp 

K3 |x − ξ|2
 

4 (t − τ ) 

 

, (4.20) 

thanks to point (ii) of Theorem 10 in [3]. 

Our goal is now to show that Γ and Θ coincide. To this end, we adapt the argument developed at the 

beginning of Section 7 in [3]. Fix a function H from [0, T ] × Rd belonging to Cc
∞ [0, T ] × Rd . Identity 

(7.6) in Theorem 12 Chap 1. Section 1. of [47] implies in particular that the function 

   t   
 

  

− 

  

0 Rd 

− 

− 

− − 
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0 
    

        

d d 

2 

  

∂tu (t, x) = Gtu (t, x) + H (t, x) ,  (t, x) ∈]0, T ] × Rd, 

    

1 

    

(t, x) 1→ Θ (x, t, ξ, τ ) H (τ, ξ) dξdτ 

 

is continuously differentiable in time, two times continuously differentiable in space and is a solution 

of the Cauchy problem 

 

u (0, ·) = 0. 
(4.21) 

It is consequently also a weak (i.e. distributional) solution of (4.21), which belongs to E 2(]0, T ] × Rd) 

(see definition of that space in [3]) since u is bounded thanks to inequality (4.18) and the fact that H 

is bounded. Then, point (ii) of Theorem 5 in [3] says that 
   t   

 

is the unique weak solution in E 2(]0, T ] × Rd) of (4.21). This implies that for every (t, x) ∈]0, T ] × Rd 
we have 

t 

 
Rd 

(Γ − Θ) (x, t, ξ, τ ) H (τ, ξ) dξdτ = 0. 

Point (i) of Theorem 5 in [3] (resp inequality (4.18)) implies that Θ (resp. Γ) belongs to Lp ]0, T ] × Rd 

as a function of (ξ, τ ), for an arbitrary p ≥ d + 2. Then, we conclude that for all (t, x) ∈]0, T ] × Rd, 

Θ (x, t, ξ, τ ) = Γ (x, t, ξ, τ ) , dξdτa.e. (4.22) 

for all (τ, ξ) ∈ [0, t[×Rd. This happens by density of Cc
∞ [0, T ] × Rd in Lq ]0, T ] × Rd , q being the 

conjugate of p. 

This, together with (4.20) and the fact that Γ is continuous in (τ, ξ) implies that (4.20) holds for all 

(τ, ξ) ∈ [0, t[×Rd and therefore 

  1   

K 
(t − τ ) 

 
— 2 exp 

K2 |x − ξ|2
 

4 (t − τ ) 
≤ Γ (x, t, ξ, τ ) ≤ K1 (t − τ ) 

 
— 2 exp 

K3 |x − ξ|2
 

4 (t − τ ) 

 

. (4.23) 

We introduce 

 

By (4.23), with τ = 0 we get 

qt := x 1→ 

 

 

 
 

Γ (x, t, ξ, 0) ν (dξ) . 

 

1 
qt (x) ≥ 

K
 

 
t− d 

Rd 

 
exp 

K2 |x − ξ|2
 

 

4t 

 
ν (dξ) . (4.24) 

We denote now by vν the measure-valued mapping such that vν (0, ·) = ν and for all t ∈]0, T ], vν (t) 

has density qt with respect to the Lebesgue measure on Rd.  We want to show that vν is a solution 

of (3.2) with initial value ν to conclude uν = vν thanks to the validity of Assumption 4 because 

of Remark 1.3.3 1. and 3. To this end, we remark that the definition of a fundamental solution for 

∂tu = Gtu says that u is a C1,2 solution and consequently also a solution in the sense of distributions. 

In particular for all φ ∈ Cc
∞

 
Rd

 
, for all t ≥ E > 0 

t 

φ (x) vν (t) (dx) = φ (x) vν (E) (dx) + Lsφ (x) vν (s) (dx) ds. (4.25) 
Rd Rd Rd 

    

1 

  

0 Rd 

− − 

Rd 

  

− 
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d 

4t 

    

i 1 2 

    

  

  

To conclude, it remains to send E to 0
+

. Theorem 15 section 8. Chap 1. and point (ii) of the definition 

stated p. 27 in [47] imply in particular that for all φ ∈ Cc
∞

 
Rd

 
, ξ ∈ Rd, 

 

Γ (x, E, ξ, 0) φ (x) dx 
 
−
→
→
0+  

φ (ξ) . 

Fix now φ ∈ Cc
∞ Rd . In particular thanks to Fubini’s theorem, (4.20) and Lebesgue’s dominated 

convergence theorem we have 
 

φ (x) vν (E) (dx) = φ (x) 
Rd Rd Rd 

Γ (x, E, ξ, 0) ν (dξ) dx 
 

= 
Rd      Rd 

Γ (x, E, ξ, 0) φ (x) dxν (dξ) 

 
−
→
→
0+  

 

Rd 

 

φ (ξ) ν (dξ) . 

By (4.25) vν is a solution of (3.2) and consequently uν = vν, so that, for every t ∈]0, T ], uν (t) admits 

uν(t, ·) = qt for density with respect to the Lebesgue measure on Rd. Now, integrating the inequalities 

(4.18), (4.19) with respect to ν and combining this with inequality (4.24), we obtain the existence of 

K1, K2, C1, C2 > 0 such that for all t ∈]0, T ], for all x ∈ Rd, for all i ∈ [[1, d] 

1 
t− d 

K1 Rd 

 
exp 

K2 |x − ξ|2
 

4t 
ν (dξ) ≤ u (t, x) ≤ K1t 

 
— 2 , 

 

∂ uν (t, x)| ≤ C t− 
d+1 

. 

Consequently, the upper bounds in (4.12) and (4.13) hold. Concerning the lower bound in (4.12), let 

I be a compact subset of Rd such that ν(I) > 0, the result follows since (t, x, ξ) 1→ exp − 
K2|x−ξ|2 

is 

strictly positive, continuous and therefore lower bounded by a strictly positive constant on K × I for 

each compact K of ]0, T ] × Rd. 

  

| 

Rd 

− 
ν 



 

 

2 x 

v(T, x) = g(x), 

 
 
 
 

Chapter 2 

 
A fully backward representation of 

semilinear PDEs applied to the control of 

thermostatic loads in power systems 

 
This chapter is the object of the paper [60]. 

 

2.1 Introduction 

The numerical resolution of non-linear PDEs is a crucial issue in many applications. In particular, 

stochastic control problems can be formulated by mean of the Hamilton-Jacobi-Bellman (HJB) equa- 

tions with terminal condition. In this paper, we focus more particularly on control problems raised by 

demand-side management in power systems. The difficulties come especially from the high dimen- 

sionality of the state space, which motivates the use of probabilistic representations. The main issue 

of numerical schemes is then to concentrate the computing effort in specific regions of interest in the 

state space. In classical regression Monte-Carlo approaches, the solution is evaluated backwardly in 

time from the final time to the initial time, while the regression grid is generated forwardly from the 

initial time to the final one. In this paper, we propose a fully backward probabilistic approach which 

allows to generate adaptively the regression grid, as the solution is evaluated, taking advantage of 

the calculations already performed. Besides, there is no need to store the entire grid, since the points 

are generated as they are used for calculations. Our grid will be indeed simulated according to the 

time-reversal of some diffusion starting from a judicious terminal distribution. 

We are interested in semilinear PDEs of the type 

   
∂tv(t, x) + H(t, x, v(t, x), ∇xv(t, x)) + 

1 Tr[σσ-T(t)∇2 v(t, x)] = 0,  (t, x) ∈ [0, T [×Rd 
 

 
(1.1) 

 

where in particular σ is a deterministic non-degenerate matrix-valued function. Under suitable con- 

ditions, there exists a unique viscosity solution v of (1.1) in the class of continuous functions with 

43 



Chapter 2.   A fully backward representation of semilinear PDEs applied to the control of thermostatic 
44 loads in power systems 

 

  

s 

    

n 

 
   
 

 

  
δt 

k+1 tk tk 

polynomial growth. One classical probabilistic representation of v is provided by Forward-Backward 

SDEs (FBSDEs), see e.g. [91]. First a forward diffusion is fixed, with an arbitrary drift b̃ 

dXt = b(t, Xt)dt + σ(t)dWt. (1.2) 

Then the solution of (1.1) is represented by v(s, x) = Y s,x, where (Y, Z) = (Y s,x, Zs,x) is the unique 

solution of the BSDE  
Yt = g(XT ) + 

 
T 

F (r, Xr, Yr, Zr)dr 
t 

 
T 

ZrdWr, (1.3) 
t 

with X = Xs,x being the solution of (1.2) starting at time s with value x and F being related to H by 

F (t, x, y, z) := H(t, x, y, 
 
σ−1 (t)

 -T 
z) −

 
 b(t, x), 

 
σ−1 (t)

 -T 
z
   

. (1.4) 
 

Considering a time discretization mesh tk = kδt, with δt = T and k = 0, · · · , n, for a given positive 

integer n, [48] proved that one can approximate (Ytk , Ztk ) by (Ŷk, Ẑk) such that Ŷn  = g(XT ) and for 

k = 0, · · · , n − 1 

  Ŷk =    E 

 
n 

 
 

 =k+1 
F (t , Xt , Ŷ , Ẑ −1)δt + g(XT )

 
Xtk 

 

 
(1.5) 

  Ẑ
 

= 
1 

E 
 

Ŷ (W — W ) X 
 

. 

Most of probabilistic numerical schemes (see e.g. regression Monte-Carlo [50, 20], Kernel Monte- 

Carlo [25], Quantization [38]) rely on that representation. The common idea is then articulated in 

two steps. First, one generates a grid discretizing the forward process (1.2) in space and time on 

[0, T ], (by Monte-Carlo simulations or Quantization, etc.). Then, one calculates the conditional ex- 

pectations (1.5) on the grid points in order to estimate (Ŷ , Ẑ).  These techniques have generally two 

limitations. 

1. The degree of freedom in the choice of the forward diffusion X is difficult to exploit although 

it  has  a  major  impact  on  the  numerical  scheme  efficiency:  how  to  chose  a  reasonable  drift b̃ 

without a priori information on v ? 

2. The entire grid discretizing the forward process has to be stored in memory to be revisited 

backwardly in time in order to compute the solution process (Y, Z). This approach naturally 

raises some huge memory issues which in general limit drastically the number of Monte-Carlo 

runs and time steps, hence the accuracy of the procedure. 

To overcome such limitations some approaches were proposed in the domain of mathematical fi- 

nance, in particular for the evaluation of American style options.   One technique, intended to deal 

with the memory problem, relies on bridge simulation, see e.g. [97, 101]. However, this approach 

requires specific developments for each price model (based for instance on the Brownian bridge for 

Brownian prices or on the gamma bridge for variance gamma prices) and remains difficult to gen- 

eralize to a wide class of models. To address the efficiency issue, [18] developed a scheme based on 

Picard’s type iterations that avoids the use of nested conditional expectations backwardly in time, 

k tk+1 

− 



 

 

 

− 

− 
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which are replaced by nested conditional expectations along the iterations. In the same line, [49] 

proposes an adaptive variance reduction technique which combines Picard’s iterations and control 

variate to solve the BSDE. A parallel version of that algorithm was proposed in [73]. However, those 

approaches require, at each iteration, to approximate the solution on the whole time horizon. Simi- 

larly, importance sampling and Girsanov’s theorem, were considered to force the exploration of the 

space towards areas of interest [19]. In particular, this type of approach was derived in the case of 

stochastic control in [41] providing an iterative scheme that is capable of learning the optimally con- 

trolled drift. Here again, that method requires several estimations of the value function on the whole 

time horizon. Besides [52] proposed an adaptive importance sampling scheme for FBSDEs allowing 

to select the drift adaptively, as the calculations are performed backwardly. Unfortunately, that ap- 

proach is limited to situations where the driver F does not depend on Z. In the present paper, we 

introduce a new adaptive approach to address both the memory problem and the efficiency issue 

(related to the drift selection) in the general case where the driver may depend on X, Y and Z. 

We propose to choose adaptively the drift b̃ at the same time as we discover the function v such that 

v (t, Xt) = E

 

b (s, Xs) , ∇xv (s, Xs)   ds + g (XT ) Xt , (1.6) 
T   

H (s, Xs, v (s, Xs) , ∇xv (s, Xs)) − 

by simulating the time-reversal of a solution X of (1.2) starting from the distribution of XT . More 

specifically,  to take advantage of the Ornstein-Uhlenbeck setting,  we choose the drift b̃ to be affine 

w.r.t. the space variable. We fix a Gaussian distribution ν and look for solutions ξ of the McKean SDE 

ξ0 ∼ ν, 

ξt = ξ0 − 

 

 
t 

 b (T − s, ξs) + σσ-T 
 

 
(T − s) Q (T − s)−1 

 
(ξs − m (T − s)) ds + 

 
 
 

t 

σ (T s) dβs, 
0 

m(T t) = E (ξt) , 

Q(T − t) = Cov (ξt) for t ∈]0, T ]. 

 

 
(1.7) 

By Proposition 2.3.7, (1.7) admits exactly one solution ξ, provided Assumption 12 in Section 2.3.1 is 

verified.  That assumption depends on the covariance matrix of ν, the drift b̃ and the volatility σ.  In- 

deed, one important limitation is that the covariance matrix should be chosen carefully to ensure that 

the process is well-defined until T . Point 2. of Proposition 2.3.7 and Lemma 2.3.6 say that the time- 

reversal process ξ̂, i.e. ξ̂t  := ξT −t, is an Ornstein-Uhlenbeck process solution of (1.2) such that the law 

of X0 is Gaussian with mean m(0) and covariance Q(0). This leads to the first result of this paper 

which consists of the fully backward representation stated in Theorem 2.3.10. The proof is based on 

Feynman-Kac type formula instead of BSDEs and it does not require explicitly the uniqueness of vis- 

cosity solution of the PDE (1.1). The second contribution of the paper is Corollary 2.4.4 which is the 

“instantiation” of Theorem 2.3.10 in the framework of stochastic control, i.e. the representation of its 

value function (solution of a Hamilton-Jacobi-Bellman equation). This holds when the running and 

terminal cost have polynomial growth with respect to the state space variable. We also suppose that 

the value function is of class C0,1 whose gradient has polynomial growth. In particular, we derive in 

0 

t 
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q 

d 

        

√   
k=0 k! √   

x∈Rd,|x|=1 

given A ∈ S+
 (R), 

k 

d A denotes the unique element of S+ (R) such that ( A)
2
 = A. 

Corollary 2.4.6, a representation involving the gap between the optimally controlled drift and the in- 

strumental drift b̃. In Section 2.5, we present a fully backward Monte-Carlo regression scheme, where 

the instrumental drift is adaptively updated in order to mimic the optimally controlled dynamics, see 

Algorithm 1. We expect that this approach is particularly well-suited when the final cost has a strong 

impact on the global cost and when the terminal cost function is localized in a small region of the 

space, so that the initial distribution ν can be chosen in an appropriate way. Finally, in Section 2.6 we 

illustrate the interest of this new algorithm applied to the problem of controlling the consumption 

of a large number of thermostatic loads in order to minimize an aggregative cost. We compare our 

approach to the classical regression Monte-Carlo scheme based on a forward grid. 

 
 

2.2 Notations 

Let us fix T > 0, d, k ∈ N∗. For a given p ∈ N∗, [[1, p] denotes the set of all integers between 1 and 

p included. ·, · denotes the usual scalar product on Rd and |·| the associated norm. Elements of Rd 

are supposed to be column vectors. Md (R) stands for the set of d × d matrices, Sd (R) for the subset 

of symmetric matrices, S+ (R) the subset of symmetric positive semi-definite matrices (in particular 

with  non-negative  eigenvalues)  and  S++
 (R)  for  the  subset  of  strictly  positive  definite  symmetric 

matrices. For a given A ∈ Md (R), A-T will denote its transpose, Tr (A) its trace, Sp (A) its spectrum, 

i.e.  the set of its eigenvalues, eA :=   
  ∞ A     its exponential and ||A|| := sup |Ax|. For a 

For  a  given  continuous  function  f   :  [0, T ]  1→  Rd  (resp.    g  :  [0, T ]  1→  Md (R)),  we  set  ||f ||∞   := 

supt∈[0,T ] |f (t)| (resp.  ||g||∞  :=  supt∈[0,T ] ||g (t)||).  C1,2    [0, T ], Rd   (resp.  C0,1    [0, T ], Rd  ) denotes the 

set of real-valued functions defined on [0, T ] × Rd being continuously differentiable in time and twice 

continuously differentiable in space (resp. continuous in time and continuously differentiable in 

space). C0 [0, T ] × Rd (resp C1 Rd ) denotes the set of continuous (resp continuously differentiable) 

real-valued functions defined on [0, T ] × Rd (resp.   Rd).   ∇x will denote the gradient operator and 

∇2 the Hessian matrix. For each p ∈ N, Pp Rd denotes the set of polynomial functions on Rd with 

degree p. 

In the whole paper, we say that a function v : [0, T ] × Rd 1→ R has polynomial growth if there exists 

q, K > 0 such that for all (t, x) ∈ [0, T ] × Rd 

|v (t, x)| ≤ K (1 + |x| ) . 

When v verifies previous property with q = 1, we say that it has linear growth. 

For a given random vector X defined on a probability space (Ω, F, P), EP (X) (resp. CovP (X) := 

EP (X − EP (X)) (X − EP (X))-T ) will denote its expectation (resp. its covariance matrix) under P. 

When self-explanatory, the subscript will be omitted in the sequel. For a given (m, Q) ∈ Rd × S+ (R), 

N (m, Q) denotes the Gaussian probability on Rd with mean m and covariance matrix Q. 
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   ν ν̄Q   

(T ) = Q , 

d 

dt 

   A (t) = a (t) A (t) , t ∈ [0, T ] 

 −1A (0)

 = I  ,d 

dt 

 d mν (t) = a (t) mν (t) + c (t) , t ∈ [0, T ] 

ν 

ν 

 

For any stochastic process X, FX will denote its canonical filtration. X will denote the time-reversal 

process XT −·. 

 
2.3 Representation of semilinear PDEs 

 
2.3.1 Around two backward ODEs 

Let a (resp. c) be Borel bounded functions from [0, T ] to Md (R) (resp. Rd). 

In the sequel we will fix a Gaussian Borel probability ν on Rd with mean m̄ ν  and covariance matrix 

Q̄ν .  We consider the functions mν  :  [0, T ]  1→ Rd and Qν  :  [0, T ]  1→ Sd (R) denoting respectively the 

unique solutions of the backward ODEs 
 

 
 

dt 

mν (T ) = m̄ ν , 

 d Qν (t) = Qν (t) a (t)-T + a (t) Qν (t) + Σ (t) , t ∈ [0, T ] 

for which existence and uniqueness hold since they are linear. 

We introduce an hypothesis on ν which will be used in the sequel. 
 

Assumption 12. Qν(0) ∈ S+ (R). 

Easy computations imply for all t ∈ [0, T ] 

(3.1) 

 
 
 

(3.2) 

 

m (t) = A (t) A (T )−1 m̄ ν − 
T 

(s)−1 
t 

 

c (s) ds , (3.3) 

 

Q  (t) = A (t) A (T ) −1 Q̄ν 
 

 A (T ) −1
 -T 

− 
T 

(s)−1 
t 

 
Σ (s) A (s) 

−1
   -T 

ds A (t)-T 

 
, (3.4) 

where A (t) , t ∈ [0, T ] is the unique solution of the matrix ODE 

d 
dt 

A (0) = Id. 

 

 

(3.5) 

 

We recall that for all t ∈ [0, T ], A (t) is invertible and the matrix valued function t 1→ A(t)−1 solves 

the ODE 

 d A (t)−1 = −A (t)−1 a (t) , t ∈ [0, T ] 

see Chapter 8 in [28] for similar and further properties. 

 
(3.6) 

  

  

A 

A 
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ν 

2 
  

Note that in the case a (t) = a, t ∈ [0, T ] for a given a ∈ Md (R), then A : t → eat and identities (3.3), 

(3.4) simplify as follows: 

mν (t) = e −a(T −t)m̄ ν  − 
T 

e−a(s−t) 

t 
c (s) ds, (3.7) 

 
for all t ∈ [0, T ]. 

Qν (t) = e −a(T −t)Q̄ν e−aT(T −t) − 
T 

e−a(s−t) 

t 
Σ (s) e −aT(s−t) ds, (3.8) 

Remark 2.3.1.  Suppose that Qν (0) belongs to S+
 (R). Identity (3.4) gives in particular 

Q  (t) = A (t) 

 

Qν (0) + 
t 

(s)−1 
0 

 

Σ (s) A (s) 
−1

   -T 
ds A (t)-T , t ∈ [0, T ]. (3.9) 

Combining (3.9) and the fact σ (t) is invertible for all t ∈ [0, T ], we remark that Qν (t) belongs to S++
 (R) for 

all t ∈]0, T ]. 

Finally we give a condition depending on A, σ, Q̄ν  and T to ensure the measure ν fulfills Assumption 

12. 

Proposition 2.3.2. Suppose that 

  
¯ν

 T 2   
 

 −1
   -T

    
2
 

 
Then, 

min Sp Q ≥ ||σ (s)|| 
 

A (T ) A (s) ds. (3.10) 

Qν (0) ∈ S+
 (R) . (3.11) 

Proof. Since A (T ) is invertible and Qν (0) belongs to Sd (R), (3.11) is equivalent to 

A (T ) Qν (0) A (T )-T ∈ S+
 (R) . (3.12) 

To prove (3.12), taking into account (3.4), it suffices to show that the matrix 

Q̄ν  − 

 

T 

A (T ) A (s)−1
 

 

 

Σ (s) A (T ) A (s) 
−1

 -T
 ds ∈ S+ (R) , 

or, equivalently, that for all x ∈ Rd 

 

Let x ∈ Rd, 

 

λ := x -TQ̄ν x − 
T 

x-T 

0 
A (T ) A (s)−1 

 

Σ (s) A (T ) A (s) −1
 -T

 xds ≥ 0. (3.13) 

λ ≥ min Sp 
 
Q̄ν 

  
|x| − 

T 

σ (s) 
0 

-T   
A (T ) A (s) 

−1
 -T

 
2 

x ds, 

  
¯ν 

  
   T  

   -T    2 
  
 

 −1
   -T

    
2 

2 

≥ 

≥ 0, 

min Sp   Q 
0 

σ (s) A (T ) A (s) ds |x| , 

since (3.10) holds. This ends the proof. 

0 

0 

  

  

  

  

   

A 

− 
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∈ 

 

Remark 2.3.3. In the case a (t) = a, t ∈ [0, T ] for a given a ∈ Md (R), Condition (3.10) is satisfied in 

particular if 

 
 

is verified. 

min Sp 
 
Q̄ν 

  
≥ σ -T   ∞ 

T 

 
0    

   
aTs  

2
 

   ds (3.14) 

 

Remark 2.3.4. Let X be a solution of 

 
Xt = X0 + 

 

 

 
t 

b (s, Xs) ds + 
0 

 

 

t 

σ (s) dWs, t [0, T [, (3.15) 
0 

where σ is a deterministic matrix-valued function and b the piecewise affine function 
 

b(t, x) = a(t)x + c(t), t ∈ [0, T ], 

and X0 be a square integrable r.v.  It is well-known that X  is a square integrable process.  Let, for every 

t ∈ [0, T ], m(t) = E (Xt) and Q(t) the covariance matrix of Xt. Setting m̄ ν  = E (XT ) and Q̄ν  the covariance 

matrix of XT . Then 

m = mν, Q = Qν. (3.16) 

Indeed, by Problem 6.1 in Chapter 5 in [69] m (resp. Q) is solution of (3.1) (resp. (3.2)). (3.16) follows by 

uniqueness of previous ODEs. 

 
2.3.2 The representation formula for a general semilinear PDE 

In the whole paper σ will be a continuous function defined on [0, T ] with values in Md (R) such that 

for all t ∈ [0, T ], σ (t) is invertible. We will set Σ := σσ-T. 

Let b : [0, T ] × Rd 1→ Rd and bc : [0, T ] × Rd × Rd × S++
 (R) 1→ Rd defined by 

bc : (t, x, m, Q) 1→ Σ(t)Q−1 (x − m) , b : (t, x) 1→ a (t) x + c (t) , (3.17) 

where a, c were defined at Section 2.3.1. Let H : [0, T ] × Rd × R × Rd → R and g : Rd → R. The goal of 

this subsection is to provide a probabilistic representation of viscosity solutions, being continuous in 

time and continuously differentiable in space, of the semilinear PDE 

 
   

∂tv (t, x) + 
1 Tr 

 
Σ (t) ∇2 v (t, x)

  
+ H (t, x, v (t, x) , ∇xv (t, x)) = 0, (t, x) ∈ [0, T [×Rd  (3.18) 

2 x 

v (T, ·) = g. 
 

To formulate the result we consider the following assumption. 
 

Assumption 13. g is continuous and has polynomial growth. 

Let ν be a Gaussian Borel probability on Rd with mean m̄ ν and covariance Q̄ν . Let t 1→ mν(t) defined 

in (3.3), t 1→ Qν(t) be given by (3.4) and suppose that ν fulfills Assumption 12. 

e 

  



Chapter 2.   A fully backward representation of semilinear PDEs applied to the control of thermostatic 
50 loads in power systems 

 

    

    
 
 

  

  

  

 =   

d 

(T − s) , Q (T − s)) ds+ 

Lemma 2.3.6. 1. The process ξ := ξT −· solves the SDE 

prove the first statement, it suffices to show that the laws of ξ and X coincide. For this it is 

bc s, ξs, m (s) , Q 

≤ ||Σ||∞ 

  

    Qν (t)−1
    

J

Qν (t)−1 
  

ξ t − mν (t)
 

  

∈ 

ξt = ξ0− 
0 0 

Proof. 1. The SDE (3.20) admits in particular existence in law. Let X be a solution of (3.20). To 

0 

 
 

We fix a filtered probability space Ω, F, (Ft)t∈[0,T ] , P on which are defined a d-dimensional Brow- 

nian motion β and a random vector ξ0 distributed according to ν and independent of β. 

Let ξ be the unique strong solution of 

   t 
 
 

 

ν ν 
t
 

 

Remark 2.3.5. (3.19) admits a unique strong solution on [0, T [ since its drift is affine with time-dependent 

continuous coefficients. 

 

 
 

Xt = X0 + 
t 

b (s, Xs) ds + 
0 

t 

σ (s) dWs, t [0, T [, (3.20) 
0 

where W  is an F ξ -Brownian motion and X0 ∼ N (mν (0) , Qν (0)). 

2. ξ extends continuously to [0, T ]. 
 

 

enough to prove that X = XT −· and the solution ξ of (3.19) are identically distributed. By 

Problem 6.1 in Chapter 5 in [69] and by uniqueness of the ODE (3.1) (resp. (3.2)) with initial 

condition mν (0) (resp. Qν (0)), we get E (Xt) = mν(t) and Cov (Xt) = Qν(t) for all t ∈ [0, T ]. 

By Problem 6.2, Chapter 5 in [69]) X is a Gaussian process so 
 

ξt ∼ N (mν (t) , Qν (t)) , t ∈ [0, T ]. (3.21) 

By (3.21) and Theorem 2.1 in [55], X is a solution (in law) of (3.19) on [0, T [. Pathwise unique- 

ness for (3.19) implies uniqueness in law on [0, T [ and the first statement of Lemma 2.3.6 is 

established. 

2. It remains to prove the second statement. For this we show 

    T
 ν ν 

 

On the one hand, for all t ∈]0, T ], 

 bc 
 

t, ξ t, mν (t) , Qν (t)
 
  =  Σ (t) 

J

Qν (t)−1

J

Qν (t)−1 
 

ξ t  − mν (t)
 

  
 
 

 

 

 

||Σ||∞  
J

Qν (t)−1 
 

ξ − mν (t)
 
   , 

t 

||Qν (t)|| 

remembering that Qν (t) belongs to S++ (R). 

  

  

b (T − s, ξs)+bc (T − s, ξs, m σ (T − s) dβs, t ∈ [0, T [. (3.19) 

E (s) ds < ∞. (3.22) 
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J  
  

 

 

 

  

      

t→0 

t 
≥  A (t) 

t 
A (t)    − A (t) A (s)      −t→

→
0  

+∞, 

d t 0 

0 

− 

m (T − t) = E (ξ0) − 
0 

a (T − s) m (T − s) + c (T − s) ds, (3.25) 

 
 

 

On the other hand, by (3.21) Qν (t)−1
   ξt − mν (t) ∼ |Z| where Z ∼ N (0, Id). Then, (3.22) 

is verified if we show 
T 1   

||Qν (t)|| 
dt < ∞.

 (3.23) 
0 

If Qν (0) = 0, then for all t ∈]0, T ], for all t ∈]0, T ], Remark 2.3.1 implies 

Qν (t) 

t 
= A (t) 

1 t 
1
 

t 
A (s) Σ (s) A (s) 

−1
   -T 

ds A (t)-T −
t→
→

0  
Σ (0) . 

If Qν (0) /= 0, then for all ]0, T ], again Remark 2.3.1 yields 

||Qν (t)|| 
 

Qν (0) 
 

 

-T   
  

1 
    t 

−1 

  

−1
 -T

 -T     

where we have also used the fact A (0) = I  and the fact 
1
 
J t 

A (s)−1
 Σ (s) 

 
A (s)−1

  T 
ds tends 

to Σ (0) as t tends to 0 thanks to the continuity of Σ, A−1 on [0, T ]. 

Hence, for all t ∈]0, T ], 

√
t  √ 

 

1 
||Σ(0)|| 

 

, if Qν (0) = 0 
 

(3.24) 
lim  

||Qν (t)|| 
= 

 
 

0, otherwise. 
 

This yields (3.23) which implies (3.22); consequently the solution X of (3.19) prolongates to 

t = T and item 2. is proved. 
 

 

Though, this will not be exploited in the algorithm proposed at Section 2.5, it is interesting to note 

that the process ξ introduced in (3.19) can also be seen as the solution of a McKean SDE. Proposition 

2.3.7 below shows that (1.7) admits existence and uniqueness if and only if Assumption 12 is verified. 

In particular we have the following. 

Proposition 2.3.7. 1. There is at most one solution (ξ, m, Q) of (1.7). 

2. Suppose the validity of Assumption 12. Let ξ be the unique solution of (3.19). Then (ξ, mν, Qν) is a 

solution of (1.7). 

Proof.       1. Let (ξ, m, Q) be a solution of (1.7).   By definition, ξ solves an SDE of type (3.20) re- 

placing a by aΣ : s 1→ −a (T − s) − Σ (T − s) Q (T − s)−1 and c by cΣ : s 1→ −c (T − s) + 

Σ (T − s) Q (T − s)−1
 m (T − s). 

By Problem 6.1 Section 5 in [69], the function t 1→ E (ξt) (= m (T − t)) (resp. t 1→ Cov (ξt) (= 

Q (T − t))) solves the first line of (3.1) (resp. (3.2)) replacing a by aΣ and c by cΣ. Then, the 

following identities hold for all t ∈]0, T ]: 

   t 

0 t 
Σ (s) A (s) ds A (t) 
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 ξ ξ ξ    ∼T 

 N 

 

2 

Yt = Y0 − b (T − r, Yr) dr + dr + 

− 

ij 

0 

Q (T − t) = Cov (ξ0)− 

remarking that 

t 

Q (T − s) a (T − s)-T 
 

+a (T − s) Q (T − s) ds− 
t 

Σ (T s) ds,  (3.26) 
0 

 

aΣ
 (t) m (T − t) + cΣ

 (t) = −a (T − t) m (T − t) − c (T − t) , 

Q (T − t) aΣ (t)-T + aΣ (T − t) Q (t) = −Q (T − t) a (T − t)-T − a (T − t) Q (T − t) − 2Σ (T − t) . 

Applying the change of variable t 1→ T − t in identities (3.25) and (3.26), we show that m 

(resp.  Q) solves the backward ODE (3.1) (resp.  (3.2)), which is well-posed.  We recall that ξ0 is 

distributed according to ν. Then, m = mν and Q = Qν, see the beginning of Section 2.3.1. As 

a consequence, ξ solves (3.19) and is uniquely determined thanks to Remark 2.3.5. This shows 

the validity of item 1. 

 
2. Let be the unique solution of (3.19). Then, the time-reversed process solves (3.20) and 

(mν (0) , Qν (0)), thanks to item 1. of Lemma 2.3.6. Now, by Remark 2.3.4, we have E
 

ξt

   
= 

mν (t), Cov 
  

ξ t

   

= Qν (t) for all t ∈ [0, T [. This concludes the proof of item 2. 
 

Remark 2.3.8. 1. In [62] we have discussed existence and uniqueness of more general McKean problems 

involving the densities of the marginal laws instead of expectation and covariance matrix, where the 

solution is the time-reversal of some (not necessarily Gaussian) diffusion. 

2. In particular, in Section 4.5 of [62] we have investigated existence and uniqueness of 

    t 
˜
 

 

 

   t      divy (Σi. (T − r) pr (Yr))
 t

 
 

   
  

pt density law of pt = law of Yt, t ∈]0, T[, 

Y0 ∼ pT = ν, 

 

 
(3.27) 

where β is a m-dimensional Brownian motion and Σ = σσ-T, whose solution is the couple (Y, p). 

Moreover, when the solution exists, there is a probability-valued function u defined on [0, T ] solution of 

the Fokker-Planck equation 

  ∂tu = 
1 
 
 

 
2 (σσ-T)i,j(t)u 

 
— div 

 
b̃(t, x)u 

 
 

(3.28) 
i,j=1 

 u(T )  =   ν. 

3. Suppose that ν is a Gaussian law on Rd. It is possible to show that Assumption 12 is equivalent to the 

existence of a probability-valued solution u of (3.28). In this case the McKean problems (1.7) and (3.27) 

are equivalent. In particular the component Y of the solution of (3.27) is Gaussian. 

0 i∈[[1,d] 
(Yr) r p 0 

0 

    

d 

∂ 

σ (T − r) dβr, 
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t 

    

T r 

        

s 

s 

J
∈ ∈ · 

J 

x 

H (r, Xr  , v (r, Xr  ) , ∇xv (r, Xr    )) dr + g XT 

∈ 

− 

v (s, x) = E 

 

We continue with a preliminary lemma. Let W be a Brownian motion. For each (s, x) ∈ [0, T ] × Rd, 

Xs,x will denote below the process 
 

Xs,x := x + 
t 

σ(r)dWr, t [s, T ]. 
s 

 

Lemma 2.3.9. Suppose the validity of Assumption 13. Let v : [0, T ] × Rd → R of class C0,1 [0, T ], Rd , with 

polynomial growth and such that the function Hv : (t, x) 1→ H (t, x, v (t, x) , ∇xv (t, x)) is continuous with 

polynomial growth. Then, the following assertions are equivalent. 
 

1. v is a viscosity solution of (3.18). 
 

2. For each (s, x) ∈ [0, T ] × Rd, 

    T 
 

 

 
 
 
 
 
 
 

s,x 

 
 
 
 
 
 
 

s,x 

 
 
 
 
 
 
 

s,x 

 
s,x 
 

 

 

3. v is of class C1,2
 
[0, T [, Rd

 
and is a (classical) solution of (3.18). 

Proof. Let v as in the lemma statement. 

a) We set  
wv(s, x) := E 

 
g(Xs,x) + 

 
 

T 

Hv(r, Xs,x)dr 
s 

 
, (s, x) ∈ [0, T [×Rd. (3.30) 

We show first that wv is a (classical) solution in C1,2 [0, T [, Rd ∩C0 [0, T ] × Rd with polynomial 

growth of the linear PDE 
   

∂tw (t, x) + 
1 Tr[σσ-T(t)∇2 w (t, x)] + Hv (t, x) = 0, (t, x) ∈ [0, T [×Rd  (3.31) 
2 x 

w(T, ·) = g. 
 

Indeed wv can be rewritten as 

     T 
v d

 

w (s, x) = g (z) pT (s, z x) dz + 
Rd s 

H   (r, z) pr (s, z − x) dzdr, (s, x) ∈ [0, T [×R , 

(3.32) 

where for each r [0, T ], s [0, r[, pr (s, ) is the density of the r.v. r σ(u)dWu, i.e. a Gaussian 

r.v. with mean zero and covariance r Σ (u) du. Moreover, it is well-known, see e.g. Remark 3.2 

in [39], that for each r ∈ [0, T ], pr : [0, r[×Rd → R is a smooth solution of 

1 
∂tpr(t, z) + 

2 
Tr Σ (t) ∇2 pr (t, z) = 0, (t, z) ∈ [0, r[×Rd. (3.33) 

Consequently, by usual integration theorems allowing to commute derivation and integrals, 

one shows (3.31). 

b) Consequently wv is a viscosity solution (3.31). 

s 

  

  

. (3.29) 

Rd 
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v 

  

  

 t, ξt = E 

− 

c) If 1. holds then v is also a viscosity solution of (3.31). By point 1. of Remark 2.3.12, equation (3.31) 

admits at most one continuous viscosity solution with polynomial growth. So v = wv which 

means 2. 

 

d) If 2. holds then v = wv and by b) v is a viscosity solution of (3.31) and therefore of (3.18). 

 
e) 3. implies obviously 1. Viceversa, if item 1. holds, a) implies that wv is a classical solution of 

(3.31); b) and the uniqueness of viscosity solutions for previous linear equation implies v = wv 

and finally item 3. 

 

 

We state now the announced representation result. 

 
Theorem 2.3.10. Suppose the validity of Assumption 13. Let ν be a Gaussian probability fulfilling Assump- 

tion 12 with associated functions mν and Qν. 

Let v ∈ C0,1 [0, T ], Rd; R with polynomial growth and such that Hv : (t, x) 1→ H (t, x, v (t, x) , ∇xv (t, x)) 

is continuous with polynomial growth. Then, v is a viscosity solution of (3.18) if and only if for all t ∈ [0, T ] 

    t 
 

 
ν ν 

t
 

ξt = ξ0 − b (T − s, ξs) + bc (T − s, ξs, m 

ξ0 ∼ ν, 

(T − s) , Q (T − s)) ds + σ (T s) dβs, 
0 

 
T 

 

(3.34) 

 
Remark 2.3.11. The affine drift b remains a degree of freedom of the representation. In Section 2.5, in the 

framework of the Hamilton-Jacobi-Bellman PDEs are given elements to choose rationally b. 

Remark 2.3.12. We remark that previous representation (3.34) is valid even if uniqueness does not hold for the 

semilinear PDE (3.18). In that case even the equation (3.34) does not admit uniqueness. However, we provide 

below some typical situations for which (3.18) admits at most one viscosity solution, within different classes of 

solutions. 

1. Suppose the validity of Assumption 13. Suppose also that H is continuous with polynomial growth in x 

and linear growth in (y, z). In addition, we suppose that H is Lipschitz in (y, z) uniformly in (t, x) and 

suppose that for all R > 0, there exists mR : R → R
+, tending to 0 at 0+

 such that 

 H 
  

t, x , y, z
 

− H (t, x, y, z) ≤ mR 
 
 x − x (1 + |z|)

 
, 

for all t ∈ [0, T ], z ∈ Rd and |x| , |x | , |y| ≤ R. Then, by Theorem 5.1 in [93], implies that (3.18) 

admits at most one continuous viscosity solution with polynomial growth. In fact that theorem states 

uniqueness even in a wider class of solutions. 

  
t 

H s, ξs, v s, ξs , ∇xv s, ξs − b s, ξs , ∇xv s, ξs ds + g ξT ξt . 

0 
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s 

  

T 

r 
  

      

where ξ 0 ∼ N (mν (0) , Qν (0)). In particular 

dP i=1 0 s s 
T 

σ (s) dWs, t ∈ [0, T ], (3.38) 

  ∈ 

  

t, ξt = EQ H s, ξs, v s, ξs 

0 

H 
0 

s, ξs, v(s, ξs), ∇xv s, ξs ds + g(ξT ), 

(3.40) 

 

2. The first theorem in [65] formulates a uniqueness result in a suitable class of bounded uniformly con- 

tinuous solutions. Alternative assumptions are available to ensure uniqueness in different classes of 

unbounded functions, for fully non-linear parabolic Cauchy problems. See for instance Corollary 2 in 

[59], Theorem 3.1 in [88], [33], [58]. 

Proof (of Theorem 2.3.10). 

Let v as in the statement. 

1. Lemma 2.3.6 implies that there exists an F ξ -Brownian motion W  such that, under P, 

ξ t = ξ 0 + 
t 

b s, ξs 
0 

 

ds + 
t 

σ (s) dWs, t [0, T ], (3.35) 
0 

 

 
E sup 

t∈[0,T ] 
 ξ 

p
    

< ∞, ∀p ≥ 1. (3.36) 

This, together with Assumption 13 and the polynomial growth of Hv also imply that the r.v. 

T 

H s, ξs, v 
0 

s, ξ s

 
 , ∇xv s, ξ s

   

− 
 
 b 
  

s, ξ s

 
 , ∇xv s, ξ s

  
 ds + g(ξ 

T ) 

is square integrable. 

2. We give now an equivalent formulation of (3.34) using a change of probability measure. 

We set Ls := σ (s)−1
  b 
 

s, ξ s
  

,  s ∈ [0, T ]. We denote by Q, the probability equivalent to P on F
ξ 

 

defined by dQ = E 
 
− 

  d 
J · Li dWi

    
, being well-defined thanks to Lemma 2.7.1. 

The goal is to show that v fulfills (3.34) if and only if it fulfills for all t ∈ [0, T ] 
    T 

 

 
 

   t 
r

 

 

 

W := W + 
· 

Lsds, (3.39) 
0 

which is a Brownian motion under Q thanks to Girsanov’s Theorem 5.1 in [69]. By item 1. 
   T 

 

is obviously also square integrable under Q. 

We set Hs := H
 

s, ξs, v
 

s, ξs

 
, ∇xv 

  
s, ξs

   
, s ∈ [0, T ], for the sake of brevity. 

We remark first that for each given s ∈ [0, T ], 
 
 b 

 
s, ξ s

   

, ∇xv 
  

s, ξ s

     

= 
  

σ (s) σ (s)−1 b 
  

s, ξ s

   

, ∇xv 
  

s, ξ s

      

= 
  

Ls, σ (s)-T ∇xv 
  

s, ξ s

      

. 

t 

    

  v 
 

We remark that, 

, ∇xv s, ξs ds + g ξT ξt . (3.37) 

where 

ξt = ξ0 + 
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r 

r 

Then, (3.40) combined with the Markov property of ξ implies that (3.34) is equivalent to 

Hs − Ls, σ (s) ∇xv s, ξs ds + g ξT  Ft 

Hs − Ls, σ (s) 

Mt = EQ Hsds + g ξT  Ft 

i=1 0 s s 

0 0 

[M, 

   · 
Li dW i] = [v 

 
·, ξ 

  
, 

   · 
Li dW i] 

s 
i 

t 

v t, ξt = Mt − 
0 

Hs − Ls, σ (s) ∇xv s, ξs ds, 

0 

0 

s s s s 

= 

0 

 
    T 

-T ξ 
  

 

which can be rewritten 

     t -T 

 

where M is the P-martingale 

    T 
-T

 

 

 

ξ 
  

Similarly, (3.37) is equivalent to 

 
 
 

where M̄  is the Q-martingale 

v t, ξ t

 
 

 
= M̄ 

t  − 

 

 

t 

Hsds, 
0 

¯ 
T 

ξ 
  

 

To show the aforementioned equivalence, it suffices now to show 

Mt − M̄ 
t  = 

  

Ls, σ (s)-T ∇xv   s, ξ s ds,  t ∈ [0, T ]. t      
 

 

On the one hand, Theorem 1.7 Chapter 8 in [96] implies that the process Mr := M +
 d

 [M, 
J · Li dWi] 

 

 

 

= 

    · 

Li 
  

σ (s)-T ∇xv 
  

s, ξ s

      

ds, 
 

combining (3.42) with the usual properties of covariation for semimartingales. This means that 

Mr = M + 

   ·  
Ls, σ (s)-T ∇xv 

 
s, ξ s

   
ds 

 
 

is a Q-local martingale. Now, 

 
MT = MT + 

   T 
 

 
 

   T    
 

 

 
 

Ls, σ (s)-T 

 
  
  

 

  
 

 
∇xv s, ξ s

      

ds 

thanks to (3.41). Since M̄  and M are Q-local martingales being equal at t = T , we have M̄ 

This shows the validity of point 2. 

= Mr. 

, ξT 
0 

0 

0 

is a Q-local martingale. On the other hand, for each i ∈ [[1, d] by Proposition 3.10 in [54] we have 

0 

  

v t, ξt = E , 

Mt = E ∇xv s, ξs ds + g ξT  Ft , t ∈ [0, T ]. (3.41) 

, t ∈ [0, T ]. (3.42) 

Hsds + g 
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J 
r r 

r r r T 

s 

s 

t 

Indeed this follows by the freezing lemma of the conditional expectation, the fact that ξ t is 

0 

H 

 

3. For each (s, x) ∈ [0, T ] × Rd, we set Xs,x := x + s
· σ (r) dWr where W is the Q-Brownian motion 

defined in (3.39). Associated with v, we consider the continuous function 

 
wv (t, x) := EQ 

    T 
 

 

 
r, Xt,x, v r, Xt,x

  , ∇xv r, Xt,x
   

 
dr + g Xt,x

  
 , (t, x) ∈ [0, T ] × Rd. 

 

We observe that v fulfills (3.37) if and only if for all (t, x) ∈ [0, T ] × Rd 

v(t, x) = wv (t, x) . (3.43) 
 
 

independent of the random field 
 
Xt,x

 
 
 

t≤s≤T,x∈Rd 

 
and the flow property 

 

Xt,ξ
 

t = ξ s, s ∈ [t, T ]. 

 

4. It remains to show that (3.43) is satisfied if and only if v is a viscosity solution of (3.18). This 

is the object of Lemma 2.3.9 applied under the probability Q, in particular to the equivalence 

between item 1. and item 3. 

 

 
 

2.4 Representation of stochastic control problems 
 

Let us briefly recall the link between stochastic control and non-linear PDEs given by the Hamilton- 

Jacobi-Bellman (HJB) equation. We refer for instance to [42, 94, 108] for more details. 

Let A ⊂ Rk compact and denote by A0 the set of all A-valued progressively measurable processes 

(αt)t∈[0,T ], namely the set of admissible controls. 

We consider now state processes (Xs,x,α)s≤t≤T,α∈A  starting at time s  ∈ [0, T ] with value x  ∈ Rd, 

solutions of the controlled SDE 

 
dXt = b (t, Xt, αt) dt + σ (t) dWt, (4.1) 

 

where W is a d-dimensional Brownian motion and b : [0, T ] × Rd × A 1→ Rd is supposed to fulfill the 

following. 

Assumption 14. The function b is continuous and there exists K ≥ 0 such that 

|b (t, x2, a) − b (t, x1, a)| ≤ K |x2 − x1| ,  (t, x1, x2, a) ∈ [0, T ] × Rd × Rd × A. 

Note that Assumption 14 implies b to have linear growth in space uniformly in time and in the 

control. Consequently, (4.1) starting at time s with value x admits a unique solution for each α ∈ A0, 

for each (s, x) ∈ [0, T ] × Rd, by the same arguments as in Theorem 3.1 in [108]. 

t 
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T r 

m d 

a∈A 

We also introduce the cost function J : [0, T ] × Rd × A0 → R defined by 
 

 

J(s, x, α) := E g(Xs,x,α
) +

 
T 

f r, Xs,x,α, αr dr 
s 

, (s, x, α) ∈ [0, T ] × Rd × A0, (4.2) 

 

where the function f : [0, T ] × Rd × A 1→ R (running cost) is supposed to fulfill what follows. 

Assumption 15. The function f is continuous and there exists m, M ≥ 0 such that 

|f (t, x, a)| ≤ M (1 + |x|  ) ,  (t, x, a) ∈ [0, T ] × R  × A. 

Supposing the validity of Assumptions 14 and 15 together with Assumption 13 on the function g : 

Rd 1→ R (terminal cost), we are interested in minimizing, over control processes α ∈ A0 the functions 

α 1→ J (0, x, α) for every x ∈ Rd. 

To tackle this finite horizon stochastic control problem, the usual approach consists in introducing 

the associated value (or Bellman) function v : [0, T ] × Rd → R representing the minimum expected 

costs, starting from any time t ∈ [0, T ] at any state x ∈ Rd, i.e. 
 

v(t, x) :=   inf 
α∈A0 

J (t, x, α) , (t, x) ∈ [0, T ] × Rd . (4.3) 

Note that the terminal condition is known,  which fixes v (T, ·)  =  g,  whereas v (0, ·) corresponds to 

the solution of the original minimization problem. 

 
Remark 2.4.1. Suppose the validity of Assumptions 13, 14 and 15. 

1. The function v is continuous on [0, T ] × Rd and has polynomial growth, see Theorem 5. Chapter 3. in 

[71]. 

2. The value function v is a viscosity solution of the Hamilton-Jacobi-Bellman equation 
   

∂tv(t, x) + H(t, x, ∇xv(t, x)) + 
1 Tr[σσ-T(t)∇2 v(t, x)] = 0,  (t, x) ∈ [0, T [×Rd  (4.4) 

2 x 

v(T, ·) = g, 
 

where H denotes the real-valued function defined on [0, T ] × Rd × Rd by 

H(t, x, δ) := inf {f (t, x, a) + b(t, x, a), δ } , (t, x, δ) ∈ [0, T ] × Rd × Rd, (4.5) 

see for example Theorem 7.4 in [108]. 

3. By definition, it is obvious that (x, z) 1→ H(t, x, z) has polynomial growth uniformly with respect to t. 

It is also clear that H is continuous. 

4. Under Assumptions 13, 14 and 15, the PDE (4.4) admits at most one viscosity solution in the class of 

continuous solutions with polynomial growth, see Theorem II.3 in [80]. Since v has polynomial growth, 

the value function v is the unique viscosity solution of (4.4) in the considered class. 
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T T r r 

r s s 

j 

∇ 

 

We formulate below another assumption for the value function v. 

Assumption 16. v is of class C0,1 
 
[0, T ], Rd

 
such that ∇xv has polynomial growth. 

Remark 2.4.2. Under Assumption 16, using Remark 2.4.1 3. that the function (t, x) 1→ Hv (t, x) := 

H (t, x, ∇xv (t, x)) is continuous with polynomial growth. 

Remark 2.4.3. 1. Assumption 16 is not so restrictive, since whenever g and f are locally Lipschitz with 

polynomial growth gradient (in space), then v is locally Lipschitz in the space variable. To prove this, 

it suffices to show that J is locally Lipschitz in x uniformly in t and α. A proof of this fact is given in 

Lemma 2.7.2 stated in the Appendix. 

In that context, the value function v is in particular absolutely continuous and for every t ∈ [0, T ], for 

almost every x ∈ Rd, v (t, ·) is differentiable and ∇xv(t, ·) exists. 

2. Suppose in addition that the functions f, g and b are of class C1 (in the space variable) and the validity of 

Assumption 17.  Then ∇xv(t, ·) has polynomial growth as we show below.  Indeed, by usual dominated 

convergence arguments, we can show that for each (t, α) ∈ [0, T ] × A0, x 1→ J (t, x, α) is differentiable 

with gradient 

∇xJ (t, x, α) = E Y t,x,α∇xg Xt,x,α
   

+
 

 

T 

Y t,x,α    
xf 

t 

 
r, Xt,x,α, αr  dr 

 

, (4.6) 

where Y t,x,α is the unique matrix-valued process fulfilling 
 

Y t,x,α = Id +
 

r 

xb  s, Xt,x,α, αs 
t 

Y t,x,αds, r ∈ [t, T ], 

where ∇xb :=
 
∂x bi

 
 
(i,j)∈[[1,d] 2 . 

Combining what precedes with Lemma 2.7.3 stated in the Appendix, we deduce that for all t ∈ [0, T ], for 

almost every x ∈ Rd 

∇xv (t, x) = ∇xJ (t, x, α∗ (t, x)) , (4.7) 

where α∗ is the Borel function introduced in Assumption 17. In view of (4.6) and (4.7), ∇xv has 

polynomial growth. 

Corollary 2.4.4. Let ν be a Gaussian probability measure fulfilling Assumption 12 with associated functions 

mν and Qν. We suppose the validity of Assumptions 13, 14, 15. Among the functions v : [0, T ] × Rd → R 

fulfilling Assumption 16, the value function is the unique one which is solution of (3.34). (In this framework 

H only depends on ∇xv and not on v). 

Proof. We recall that Hv has polynomial growth by Remark 2.4.2 1. Otherwise, on the one hand, by 

Remark 2.4.1 and the direct implication in Theorem 2.3.10, v fulfills (3.34). On the other hand, if a 

function v fulfills (3.34) then, by the converse implication of Theorem 2.3.10 v is a viscosity solution 

of (4.4). By Remark 2.4.1 3., v can only be the value function. 
 

  

  

∇ 



Chapter 2.   A fully backward representation of semilinear PDEs applied to the control of thermostatic 
60 loads in power systems 

 

    

T0 r r 

  

r 

t 

  

We introduce a supplementary hypothesis on the value function v. 

Assumption 17. There exists a Borel function α∗ : [0, T ] × Rd → A such that 

H (t, x, ∇xv (t, x)) =  b (t, x, α∗ (t, x)) , ∇xv (t, x)  + f (t, x, α∗ (t, x)) , (t, x) ∈ [0, T ] × Rd. 

We state (and show below) a verification type result involving α∗ without any further regularity as- 

sumptions on the value function. That result is somehow classical, but it is not obvious to find it in 

the literature (see e.g. Chapter 5 of [108] or [53]), with our assumptions. So, for the consistency of 

the paper we provide a proof. Note to begin that the Borel function b∗ : (t, x) → b (t, x, α∗ (t, x)) has 

linear growth thanks to Assumption 14. As a consequence, the closed loop equation 

dX̄t  = b∗ 
 
t, X̄t

  
dt + σ (t) dWt, (4.8) 

admits a unique strong solution X̄ x  starting at time 0 with value x, for each x ∈ Rd, see Theorem 6 in 

[110]. 

 
Proposition 2.4.5.  Suppose the validity of Assumptions 13, 14, 15. Let v be the value function defined in 

(4.3) supposed to be of class C0,1 such that (t, x) 1→ H (t, x, ∇xv (t, x)) has polynomial growth. 

Then, the Borel function α∗ introduced in Assumption 17 defines an optimal feedback function for the consid- 

ered control problem in the sense that for each x ∈ Rd, 

v (0, x) = J 
 
0, x, α∗ 

 
·, X̄ x

   
. (4.9) 

Proof   (of Proposition 2.4.5). Let x ∈ Rd. 

1. v is a continuous viscosity solution with polynomial growth of (4.4) and so of (3.18), with 

(t, x, y, z) 1→ H (t, x, z) for the non linearity. By Remark 2.4.1 we know that Hv is continu- 

ous and by assumption it has polynomial growth. So we apply Lemma 2.3.9 to deduce that v is 

of class C1,2
 
[0, T [, Rd

 
and is a classical solution of (4.4). 

2. Applying Itô’s formula to v   ·, X̄ x    between 0 and T0 ∈ [0, T [ and using the fact v is a classical 

solution of (4.4) combined with Assumption 17, we obtain 
 

 
 
 

where 

 

v (0, x) = v T0, X̄ x  
  

+ 

T0 

f   r, X̄ x, α 
0 

*  
r, X̄ x

   
dr − MT0 , (4.10) 

Mt = xv   r, X̄ x   -T
 

0 

σ (r) dWr, t ∈ [0, T [. 

By the usual BDG (Burkholder-Davies-Gundy) and Jensen’s arguments, supt∈[0,T ] |X̄ x| has all 

its moments. So, (4.10) implies that the local martingale M extends continuously to a true 

martingale on [0, T ] still denoted by M verifying supt∈[0,T ] |Mt| ∈ L1. Indeed v is continuous 

on [0, T ] × Rd and v (resp. f ) has polynomial growth in space (resp. in the second and third 

  

∇ 

t 
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r r 

t 

    

 

v 

n 

T  and v 
 
T0, X̄ x  

  
replaced by g 

 
X̄ x 

 
. Taking the expectation, we obtain 

 t, ξt = E f s, ξs, α s, ξs − b s, ξs — b 

k+1 k+1 

tk 
e k  Σ (s) e k+1 k   ds ∈ Sd (R) . By Corollary 2.4.6, 

− 

t 

 

variable). Therefore M is a true martingale. Sending T0 to T , (4.10) holds with T0 replaced by 
 

T0 

 
 

v (0, x) = E 

 

T 
 

 

g 
 
X̄ x 

  
+ 

 

 

 
T 

f   r, X̄ x, α 
0 

 
* 
 
r, X̄ x

   
dr 

 

 
. (4.11) 

 

3. The process αt
∗  := α∗   t, X̄ x    ,  t ∈ [0, T ], belongs to the set A0 of admissible controls and X  = 

X̄ x, is a solution of (4.1).  Invoking pathwise uniqueness for (4.1), we obtain X0,x,α
∗  

coincides 

with X̄ x. Then, (4.11) implies (4.9). 
 

 

 
 

We formulate now a corollary in which is given a representation formula for the value function v 

involving the optimal feedback function α∗. 

 
Corollary 2.4.6. Let ν be a Gaussian probability measure fulfilling Assumption 12 with associated functions 

mν and Qν. We suppose the validity of Assumptions 13, 14, 15. Among the functions fulfilling Assumptions 

16 and 17, the value function v is the unique one which is solution of 

 
   t 

 

 
ν ν 

t
 

ξt = ξ0 − b (T − s, ξs) + bc (T − s, ξs, m   (T − s) , Q   (T − s)) ds + 

ξ0 ∼ ν, 

σ (T s) dβs, 
0 

 
T 

∗
 ∗   

 

 

for all t ∈ [0, T ]. 

Proof. The result is a direct consequence of Corollary 2.4.4, replacing the function H by its expression 

given in Assumption 17. 

 

 

2.5 A heuristic algorithm 

 
In this section, we propose a heuristic algorithm to solve the control problem described in Section 

2.4. In what follows, the terminal cost function g is supposed to belong to C1
 
Rd

 
. 

Consider a regular time grid with time step δt := T and grid instants tk = kδt for any k ∈ [[0, n] . For 
k = n − 1, n − 2, · · · , 0, select arbitrarily m̄ k+1 , ck+1 ∈ Rd and Q̄k+1  ∈ S+

(R), ak+1 ∈ Md(R) such that 

−a δt −aT   δt 

   tk+1     
−a

 
(s−t ) −aT 

 

(s−t ) + 
 

applied  substituting  [0, T ] with  [tk, tk+1],  the  solution  of  (4.4)  on  [tk, tk+1],  with  terminal  condition 

d 

  s, ξs , ∇xv s, ξs ds + g ξT ξt , 

(4.12) 

Qk(tk) := e Q̄k+1e − k+1 

0 
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    t 

  

d 

d 

a∈A 

n 

 ∼   N 

 
       

    
  

 ξ̄k+1 ∼   N (m̄ k+1, Q̄k+1) 

 

 v(t, ξk,t)   =   E s, ξk,s, ∇xv(s, ξk,s) ds + Yk+1 ξk,t 

¯ ¯ ¯ ¯ 

k k+1 

k k+1 

T T 

t 

v(tk+1, ·), can be represented for t ∈ [tk, tk+1] by 

 

Yk+1 =    v(tk+1, ξ̄k+1) 

 
mk(t) =   e −ak+1 (tk+1 −t) m̄ k+1 − ck+1 

tk+1 

e−a 
 

k+1 (s−t)ds 

 
t 

tk+1 

Qk(t) =    e−ak+1(tk+1−t)Q̄k+1e−ak+1(tk+1−t) − e−ak+1(s−t)Σ (s) e−ak+1(s−t)ds 
 

T −t 
t
 (5.1) 

ξk,T −t = 

 

ξ̄k+1 − 

   T −t 

 
tn−(k+1) 

ak+1ξk,s + ck+1 + bc(T − s, ξk,s, mk(T − s), Qk(T − s))  ds 

 ξ̂ 

+ 
tn−(k+1) 

= ξ 

σ(T − s)dβs 

k,t 

 ˆ 

k,T −t 
k+1 

ˆ ˆ ˆ 
 

In the above recursion, β denotes a d-dimensional Brownian motion on [0, T ]; for any k ∈ [[0, n − 1]], 

(ξk,t)t is a d-dimensional process defined on [tn−(k+1), tn−k] while (ξ̂k,t)t denotes the associated time 

reversal defined on [tk, tk+1]; the driver Fk defined on [tk, tk+1] × Rd × Rd is such that, 

Fk(t, x, δ) := H(t, x, δ) − ak+1x + ck+1, δ = min {f (t, x, a) +  b(t, x, a), δ } − ak+1x + ck+1, δ  .  (5.2) 

The idea now is to apply a classical numerical method based on linear regressions to approximate the 

solution to (5.1) recursively in time from k = n − 1 to k = 0. For each time instant k, select arbitrarily 

m̄ k+1 , ck+1 ∈ Rd and Q̄k+1  ∈ S+
(R), ak+1 ∈ Md(R) such that 

Qk = e−ak+1δtQ̄k+1e−a
T
k+1δt  − Σ(tk+1)δt ∈ S+

(R) . (5.3) 

Then  we  propose  to  approximate  v(tk, ·) by  vk  obtained  by  an  explicit  time  discretization  scheme 

of (5.1) with time step δt = T as follows. 

ξ̄k+1 (m̄ k+1, Q̄k+1) 

  Yk+1 =    vk+1(ξ̄k
 
+1) 

 
√ (5.4) 

ξk =    ξk+1 −  ak+1ξk+1 + ck+1 + bc(tk+1, ξk+1, m̄ k+1, Qk+1) δt + σ(tk+1)   δtεk 

vk(ξk)    =    E  Fk  tk+1, ξ̄k+1, ∇xvk+1(ξ̄k+1)  δt + Yk+1 ξk   , 

where (εk)0≤k≤n−1 are i.i.d. d-dimensional standard Gaussian variables. As in the classical litera- 

ture, see e.g. [50], we propose to approximate the conditional expectation appearing in (5.4) using 

Monte-Carlo least squares regression based on a grid constituted by N independent simulations 

(ξi , ξ̄i )1≤i≤N  for k ∈ [[0, n − 1]]. In that literature, one generally simulates forwardly that grid. 
The interest of such fully backward representations (5.1)-(5.4), where the grid (ξi , ξ̄i

 )1≤i≤N is defined 

backwardly in time, (like the value function), is twofold. 
k k+1 

 

• In terms of computer memory: at each time instant k +1, the values of the grid are generated on 

the fly, (ξi , ξ̄i )1≤i≤N .  Contrary to the standard approach, there is no need to store the whole 

grid over the whole set of grid instants k ∈ [[0, n − 1]]. 

Fk . 
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k 

k 

k 
    

− 

2 

|vk (ξk) − vk(ξk)| ≤ E   
0 ∂δ  

(tk+1, ξk+1, ∇xvk+1(ξk+1) + θh)dθ , h   

= E   
0 

tk+1, ξk+1, a  (tk+1, ξk+1, ∇xvk+1(ξk+1) + θh) dθ − (ak+1ξk+1 + ck+1) , h   

≤ |h| E  tk+1, ξk+1, a  (tk+1, ξk+1, ∇xvk+1(ξk+1) + θh) dθ − (ak+1ξk+1 + ck+1)  
0 

 

• In terms of the relevance of the grid: at each grid instant, k + 1 the information acquired on 

the value function v(tk+1, ·) and optimal control strategy α∗(tk+1, ·) can be used to adaptively 

optimize the grid parameter (ak+1, ck+1, m̄ k+1, Q̄k+1) in order to explore relevant regions of the 

state space. 

We develop some arguments to justify the relevance mentioned above. Indeed, as already announced, 

the target idea is to generate the grid used for regression computations according to the optimally 

controlled process dynamics. If this were possible, the sensitivity of the driver Fk w.r.t. the third 

variable ∇xv would vanish. In fact the driver sensitivity w.r.t. ∇xv is known to be one major cause of 

the propagation of numerical errors in approximation schemes, see e.g. [51]. Replacing ∇xvk+1(ξ̄k+1) 

by a perturbation ∇xvk+1(ξ̄k+1) + h in the last equation of (5.4) we obtain 

vh(ξk) := E
 

Fk

 
tk+1, ξ̄k+1, ∇xvk+1(ξ̄k+1) + h

 
δt + Yk+1 | ξk

 
. 

The impact on vk(ξk) can crudely be evaluated by computing the error E[|vh(ξk)−vk(ξk)|2]. Supposing 

that no perturbation is impacting Yk+1, fact which will be heuristically justified in Remark 2.5.2 1., 

we have 

E(|vh(ξk) − vk(ξk)|2)    ≤   E
  

Fk

 
tk+1, ξ̄k+1, ∇xvk+1(ξ̄k+1)

  
− Fk

 
tk+1, ξ̄k+1, ∇xvk+1(ξ̄k+1) + h

   2
 

. 

Suppose from now on the existence of a Borel function (t, x, δ) 1→ a∗(t, x, δ), such that 

H(t, x, δ) := {f (t, x, a∗(t, x, δ)) +  b(t, x, a∗(t, x, δ)), δ } , (t, x, δ) ∈ [0, T ] × Rd × Rd. (5.5) 

In this case one has α∗(t, x) = a∗(t, x, ∇xv(t, x)), (t, x) ∈ [0, T ] × Rd × Rd, where α∗ was defined in 

Assumption 17. Coming back to (5.2) we get 

Fk(t, x, δ) := H(t, x, δ)− ak+1x+ck+1, δ  = {f (t, x, a∗(t, x, δ)) +  b(t, x, a∗(t, x, δ)), δ }− ak+1x+ck+1, δ . 

(5.6) 

A suitable application of the envelope theorem gives 

∂Fk 
(t, x, δ) = b(t, x, a∗(t, x, δ)) (a 

∂δ 

 

 

 
k+1 

 

 

x + c 

 

 

 
k+1 

 
 

) , (5.7) 

which yields 

h 2
 

   
   1 ∂Fk ¯ ¯   

  
   1 

¯ ∗ ¯ ¯ ¯   

2      
    1 

 
¯ ∗ ¯ ¯ ¯   

The above relation highlights the fact that the original idea consisting in generating the grid according 

to a dynamics approaching the optimally controlled process dynamics reduces the propagation of the 

error induced by the Monte-Carlo regression scheme in terms of least square criteria. 

2 

2 

E 

b 

b . 
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k+1 k+1 k+1 

d 

k+1 k+1 

k+1 k+1 k+1 

+ 

N i=1 k+1 k+1 k+1 

Sd (R) 

)1≤i≤N  i.i.d.  ∼ N (m̄ k+1, Q̄k+1); set Y i 

k k+1 k+1 k+1 k 

k+1 k+1 k+1 k+1 k+1 k 

k k+1 k+1 k+1 k+1 k+1 

  

Remark 2.5.1. The above relation also shows that previous idea can be read in the more general perspective 

of the probabilistic representation of a solution v to a semilinear PDE of the type (1.1), via an FBSDE. In that 

general context, one expects the selected drift of the forward process in the FBSDE to reduce the impact of the 

sensitivity of the FBSDE driver with respect to ∇xv. 

Based on that observation, we propose a heuristic algorithm where parameters (ak+1, ck+1) are adap- 

tively chosen as 

 
(ak+1 

 

, ck+1 

 

) arg min E b t 
a,c 

 

 
k+1 , ξ̄k+1 

 

, a∗(t 

 
 

k+1 , ξ̄k+1 , ∇x 

 
vk+1 (ξ̄k+1 

 

2 

)   − (aξ̄k+1 + c)   . 

 
(5.8) 

 

In the above algorithm, the random variables (εi , k ∈ [[0, n − 1]] , i ∈ [[1, N ]]) are i.i.d. according to 
 

Algorithm 1 Fully Backward Monte-Carlo Regression scheme 
 

Initialization Set vn = g; k = n − 1; select arbitrarily (m̄ n, Q̄n) ∈ Rd × S+
 (R); generate (ξi )1≤i≤N i.i.d. 

d n 
∼ N (m̄ n, Q̄n); set Y i = g(ξi ), for all i ∈ [[1, N ] . 

n n 

while k ≥ 0 do 

1. αi
k+1 = arg min 

 
f 

 
tk+1, ξi , a

  
+ 

 
b 
 
tk, ξi , a

  
, ∇xvk+1 

 
ξi 

   
, for all i ∈ [[1, N ] . 

a∈A 

2. (ak+1, ck+1) = arg min 1        N      aξi + c − b
 

tk+1, ξi 

 
, αi 

 
 2 

.
 

 

3. m̄ k = e−ak+1δtm̄ k+1 − ck+1δt. 

4. Qk = e−ak+1δtQ̄k+1e−a
T
k+1δt  − Σ (tk+1) δt. 

• If Qk ∈ S
+

 (R): set Q̄k  = Qk, 

• Else :  set Q̄k   =  P roj  + (Qk);  recompute Q̄k+1  =  eak+1δt
 
Q̄k  + Σ(tk+1)δt

 
eak

T
+1δt; 

   

5. Set ei = ak+1ξi + ck+1 − b
 

tk+1, ξi 
 

i 
k+1 

 
, for all i ∈ [[1, N ] . 

6. ξi = ξi — 
 
ak+1ξi + ck+1 + bc 

  
tk+1, ξi

 , m̄ k+1, Q̄k+1

   
δt + σ (tk+1) εi 

√
δt, for all i ∈ [[1, N ] 

7. vk = arg min 1      N  Y i + 
 
f 

 
tk+1, ξi , αi 

  
−

 
ei

 
, ∇xvk+1 

  
ξi

 
    

δt − P
 

ξi
 

 2 
. 

 

8. Y i = Y i + 
 
f 

 
tk+1, ξi , αi 

  
−

 
ei

 
, ∇xvk+1 

  
ξi

 
    

δt, for all i ∈ [[1, N ] 
 

9. k − 1 ← k. 

end while  
 

N (0, Id); ProjS+(R) : Sd (R) 1→ Sd   (R) denotes the Frobenius projection operator on the closed and 
d 

convex space of semidefinite matrices; for each p ∈ N, Pp 

on Rd with degree p. 

Rd
  

denotes the set of polynomial functions 

= vk+1(ξi k+1 regenerate (ξi 

, α 

(a,c)∈Md(R)×Rd 

), for all i ∈ [[1, N ] . 

P ∈Pp(Rd) 
N i=1 



2.6. Stochastic control of thermostatically controlled loads 65 
 

 

d 

k+1 

k+1 

d 

d 

d 

d 

d k+1 

 

Remark 2.5.2. 1.  Note that in Step 4, as soon as Qk ∈ S+
 (R) then (Y i )1≤i≤N  results from the update 

made at previous iteration at Step 8. That updating rule corresponds to the multi-step forward dynamic 

programming approach [51] which is well-known for not inducing any additional bias error that would 

propagate  backwardly  during  iterations.   However,  when  Qk  ∈/  S+ (R),  in  Step  4,  then  we  have  to 

modify Q̄k+1,  re-generate new variables (ξi )1≤i≤N  i.i.d.   ∼  N (m̄ k+1, Q̄k+1) and use the update 
i 

k+1 = vk+1(ξi ) which adds a bias error. Fortunately, in our numerical simulations it appeared easy 

to chose a first covariance matrix Q̄n  so that for all k ∈ [[0, n − 1]] we had Qk  ∈ S+.  In that situation, 

the error propagation is only due to the sensitivity of the driver w.r.t. ∇xv which is precisely minimized 

by our heuristics. 

2. The complexity of Algorithm 1, is comparable to the traditional Monte-Carlo Regression scheme using a 

forward grid. Indeed, Algorithm 1 requires an additional linear regression calculation of order O(d2N ) 

at Step 2 which is negligible w.r.t. the polynomial regression computations at Step 7 (operated by both 

algorithms) inducing O(d4N ) operations in the specific case considered in simulations where the max- 

imum degree of polynomials is p = 2.  When Qk  ∈/  S+, Algorithm 1 requires in addition, at Step 4, to 

implement: a Frobenius projection ProjS+(R)(Qk) (O(d3
)), N multiplications of matrices d × d with 

vectors d × 1 (O(d2N )); and N independent generations of d-dimensional Gaussian random variables. 

These additional operations induce a complexity of O(d2N ) which does not increase the original O(d4N ) 

complexity. 

3. In terms of memory, as already mentioned, we do not have to store the whole regression grid on the whole 

time horizon constituted of ndN reals but only to consider dN reals at each instant. 

Remark  2.5.3.  Suppose  that  at  each  time  step  k  ∈  [[0, n − 1]]  the  matrix  Qk  belongs  to  S+ (R).   Then, 

Algorithm 1 is based on the representation formula appearing in Corollary 2.4.6, on the whole time interval 

[0, T ] with piecewise constant coefficients a, c such that a(t), c(t) = ak+1, ck+1 for each t ∈]tk, tk+1], for each 

k ∈ [[0, n − 1]]. 

 
2.6 Stochastic control of thermostatically controlled loads 

2.6.1 Model description 

With the massive integration of variable renewable energies (like wind farms or solar panels) into 

power systems, balancing supply and demand in a real time basis requires to develop new leverages. 

A technical solution is to develop load control schemes in order to automatically adapt consumption 

to generation. In this section, we propose to apply Algorithm 1 in order to control a large heteroge- 

neous population of air-conditioners on a time horizon [0, T ] such that the overall consumption of 

the population follows a given target profile, while preserving the rooms temperatures within users 

comfort bounds. 

We consider a hierarchical control scheme introduced in [30], where the population is aggregated 

into d clusters of N i homogeneous loads (with same air-conditioners and rooms characteristics) 

Y 
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max 

s 

s 

N 

out max 

i 2 

max   
N P 

j=1 N P ∗ 

  
N P 

Ni j=1 t 

i ∈ [[1, d] .   (Xi,j)0≤t≤T is supposed to follow the usual thermal dynamics (see [102] and references 

Xt = x0  + — θ (Xs  − xout) − κ Pmaxαs Wt    , t ∈ [0, T ], (6.1) 

Xt = x0 + — θ (Xs − xout) − κ Pmaxαs ds + σ Wt , t ∈ [0, T ], (6.2) 

0 Ni j=1 0 2 
i 

j=1 1≤i≤d 

d i=1 

  
1   

0 

for i∈ [[1, d] . For each cluster i ∈ [[1, d] , a local controller decides at each time step to turn ON or 

OFF optimally some air-conditioners of cluster i, in order to satisfy a prescribed proportion of devices 

with status ON in the cluster. The prescribed proportion of devices ON in each cluster, at each time 

step, is computed by a central controller controlling the average rooms temperatures in each cluster, 

Xi  :=  1    
  Ni 

 
 

Xi,j, where Xi,j is the room temperature associated to load j ∈ [[1, Ni] of cluster 

therein)  
 

i,j 

 

 
i,j 

   t  
 

 

 
 

i i,j i i   i i,j 
  

 

 
i,j 

 

 
i,j 

where for any j ∈ [[1, Ni], σi,j > 0, W i,j) are independent real Brownian motions representing model 

errors and temperature fluctuations inside the room due to local behavior (window, door opening 
etc.); xi,j is the initial temperature; κi is the heat exchange parameter; xi denotes the outdoor air 

0 out 

temperature; 1/θi > 0 is the thermal time constant; P i  > 0 denotes the maximal power consump- 

tion; αi,j ∈ {0, 1} is the status OFF or ON of load (i, j) at time instant s ∈ [0, T ]. 

We are interested in the problem of the central controller who considers the aggregated state process 

X := (Xi)1≤i≤d, whose dynamics is obtained by averaging dynamics (6.1) over j ∈ [[1, Ni] , for any 
i ∈ [[1, d] , 

i i 
t 

i i i i   i i
 

i i 
 

 

where the control process  
 
αs = (αi )1≤i≤d , s ∈ [0, T ]

   
taking values in [0, 1] prescribes the pro- 

portions of devices ON in each cluster; xi =  1    
  Ni xi,j ; (σi)2  =   1       Ni

 (σi,j)
2;  (Wi) is a 

d-d imensional Brownian motion.The central controller problem can be formulated as a specific instan- 

tiation of problem (4.1)-(4.2) with the following: 

• the controlled process X driven by a drift coefficient b := (bi)1≤i≤d defined on [0, T ] ×Rd ×[0, 1]d 

s.t. for any i ∈ [[1, d] bi(t, x, a) = −θi
 

xi − xi    
  

− κiPi ai, with the notation a := (ai)1≤i≤d 

and x := (xi)1≤i≤d; 

• the terminal cost g(x) :=  
1 
 d |xi − x̄i|2 where x̄ ∈ Rd denotes given target values for the final 

average temperatures of each cluster; 

• the running cost defined on [0, T ] × Rd × [0, 1]d, 

 

f (t, x, a) := λ 
 
 d

 
 

2 

ρiai − rt + 

 
 

γi(ρiai)
2 + ηi(xi − xi )

2 + ηi(xi 
 

 
— x ) , 

 

i=1 
d 

i=1 

max + min + 

where ρi := N
iPi

 ;  
   d ρiai gives the overall current consumption of the population as 

d j=1 j  j max i=1 

a proportion of the maximum consumption   
    d

 
j   j 

max ;  r  :  [0, T ]  1→ R
+ denotes the target 

consumption profile for the overall consumption as a proportion of the maximum consumption 
d 
j=1 

j   j 
max ; λ > 0 quantifies the incentive for the overall consumption to track the target 

consumption profile r; γi > 0 quantifies the quadratic penalty favoring smooth consumption 

d 

0 

t 

ds + σ 
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1 

max 

min 

max min 

max 

t 

0 0 

k 

k 

· · · · · · J 

0 100 T 

T 0 g(X0,x0,αi 

(ωj)) + 
J T  f (r, X0,x0,αi 

(ωj), α )dr   has been computed.   The expected cost has been esti- 

MNgrid i=1 j=1 Ĵ  

Ĵ  MNgrid 

 

profiles for cluster i; ηi > 0 is a parameter penalizing excursions outside of the comfort interval 
i 
min 

i 
max ] for cluster i average temperature. 

 

Note that b verifies Assumption 14, f verifies Assumption 15 and g Assumption 13. 

 

2.6.2 Simulation results 

Consider the central controller problem on a time horizon T = 3600s, with a population of heteroge- 

neous air-conditioners composed of d = 1, 2, 5, 10, 15, 20 clusters with N i = 20 identical loads in each 

cluster. We specify the chosen parameters. In each case, κ = 2.5◦C/J and σi = 0.1◦Cs 2 ; xout = 27◦C; 

θi[s−1
] is chosen arbitrarily in [0.1, 0.97]; P i [W ] is chosen arbitrarily in [0.5, 5]; x0 = x̄[◦C] is chosen 

arbitrarily in [16, 27]; xmin = x̄ − 1.5◦C; xmax = x̄ + 1.5◦C; η = 1(◦C)−2; λ = 20; γi is chosen arbitrarily 

in [0.5, 1.5]. The target profile, r, used in simulations is obtained as the sum of a nominal profile corre- 

sponding to the standard (uncontrolled) behavior of air-conditioners and a deviation: r = rnom
 +dev. 

The standard dynamics of an (uncontrolled) air-conditioner is driven by a cycling rule of ON/OFF 

decisions intended to keep the room temperature in [xi 
i 
max ].   When the air-conditioner is ON, 

it stays ON at P i until the temperature reaches xi then it switches OFF until the temperature 

reaches xi . Then, the air-conditioner turns ON again and begins a new cycle. The nominal profile 

rnom has been generated by averaging the consumption of 1000 sets of d clusters of N i heterogeneous 

air-conditioners simulated independently according to (6.1), with (αi,j)0≤t≤T following the cycling 

rule of ON/OFF decisions and with independent initial conditions for temperature xi,j ∼ N (xi , 1) 

and ON/OFF status αi,j ∈ {0, 1}.  The deviation profile devt = 20  ∗ sin( 
2πt ) induces a maximal de- 

viation of 20% from the nominal profile and integrates to zero on the time horizon [0, T ] so that the 

target profile corresponds to the same energy consumed on the period [0, T ] as the nominal profile. 

The time step is δt = 60s. We have implemented Algorithm 1 with a backward grid initiated 

with N (mn  =  x̄, Qn  =  Id).  For comparison, we have also implemented the standard Monte-Carlo 

regression scheme using a forward grid simulated according to (6.2) with a deterministic control 

αs approximating the nominal dynamics (according to the ON/OFF cycling rule) described pre- 

viously. In both cases, we have used second order polynomials (p = 2) as basis functions for 

regressions. We have considered N = 10
2, 10

3, 5 × 10
3, 10

4, 2 × 10
4, 5 × 10

4, 10
5 Monte-Carlo 

paths for the regression grids. To evaluate the statistical performances of the forward and back- 

ward grids, we have implemented each algorithm independently Ngrid = 100 times for each value 

of N . For each run, i = 1, · · · , Ngrid, the value functions estimate (vi )0≤k≤n (and the correspond- 

ing gradients) was used to implement the associated strategy αi = (αi )0≤k≤n on M = 1000 i.i.d. 

simulations of the Brownian motion W , ω1, , ωj, , ωM .   Then the resulting cost (αi, ωj) := 
 

  

mated as E[J (αi, ωj)] ≈ Ĵ  :=    
1  
 Ngrid   M     J (αi, ωj) . The variance of Ĵ is estimated by σ̂2 ob- 

tained by replacing, expectations and variances by their empirical approximation based on the sam- 

ple, 
 
J (αi, ωj), , i ∈ [[1, Ngrid] j ∈ [[1, M ] 

 
, in the expression σ̂2 ≈ V ar(Ĵ) =    

1  E 
 
V ar

 
J (αi, ωj) |αi

 ]
+ 

r r 

[x , x 

, x 
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Ngrid 

     ]      1 V ar E J (αi, ωj) |αi   , for each i and j. We have reported on Table 2.1 (resp. Table 2.2) the em- 

pirical mean Ĵ and within parenthesis the empirical standard deviation σ̂Ĵ  obtained for each consid- 

ered pair (d, N ) for the forward grid (resp. backward grid). 

One can observe that the backward grid performs surprisingly well providing with high precision 

the lowest expected cost achieved by both methods (or almost) with only N = 5×10
3 paths whatever 

the dimension d of the control problem. This is consistent with our intuition based on the idea that 

localizing the grid around the optimally controlled process paths would bring efficiency and reduce 

the impact of dimension. The particularity of this problem is that the optimally controlled process 

is naturally localized in a small region of the state space because, on the one hand a target value, 

x̄, is prescribed for the terminal temperatures (by the terminal cost) and on the other hand a target 

profile is assigned for the overall power consumption.   The backward grid has the advantage of 

being initiated around the target state and of following dynamics approaching the optimal strategy. 

This allows to concentrate the backward grid in the small region of interest so that restricting the 

regression basis to polynomials of order p = 2 seems already enough to obtain reasonable results. 

However, one can observe some cases where the forward grid (for N = 10
5
 and d ≤ 5) has performed 

slightly better than the backward grid. This can be interpreted by the fact that the forward grid knows 

the initial condition x0 while the backward grid has no information about it. To further improve the 

performances Algorithm 1, an idea would be to find a way to exploit that information on the initial 

condition. This could constitute the subject of future research. 
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d 
2 

      

where X0 is a Gaussian random vector independent of W. Set Lt := σ (t)−1 b (t, Xt) , t ∈ [0, T ]. Then, the 

∈ 

s s 

2 

 
 
 
 
 
 
 

104 7.60(3e−4
) 7.77(1e−3

) 7.69(0.06) 16.06(0.38) 32.20(0.63) 30.66(0.59) 

2 × 104 7.60(3e−4) 7.77(2e−4) 7.37(0.02) 13.58(0.40) 28.97(0.71) 28.17(0.67) 

5 × 104 7.60(3e−4
) 7.79(2e−4

) 7.28(2e−3
) 7.96(0.25) 26.69(0.65) 26.21(0.69) 

105 7.61(3e−4
) 7.78(1e−4

) 7.27(8e−4
) 6.12(0.08) 22.54(0.56) 23.26(0.59) 

Table 2.1: Mean, Ĵ (standard deviation, σ̂Ĵ ) of the simulated cost with the forward grid strategy 

 
 
 
 
 
 
 

104 7.61(3e−4
) 7.77(2e−4

) 7.38(5e−4
) 6.17(1e−3

) 8.15(2e−3
) 7.73(3e−3

) 

2 × 104 7.61(3e−4
) 7.77(2e−4

) 7.38(3e−4
) 6.17(8e−4

) 8.15(1e−3
) 7.73(2e−3

) 

5 × 104 7.60(3e−4) 7.79(1e−4) 7.38(2e−4) 6.16(5e−4) 8.14(8e−4) 7.72(1e−3) 

105 7.61(3e−4) 7.79(1e−4) 7.39(2e−4) 6.16(4e−4) 8.14(7e−4) 7.72(9e−4) 

Table 2.2: Mean Ĵ (standard deviation, σ̂Ĵ ) of the simulated cost with the backward grid strategy 

 
 

2.7 Appendix 

2.7.1 A sufficient condition to obtain an equivalent probability 

Lemma 2.7.1. We recall that b was defined in (3.17). Let W be an (Ft)t∈[0,T ]-Brownian motion and X be a 

solution of 

Xt = X0 + 
t 

b (s, Xs) ds + 
0 

t 

σ (s) dWs, t [0, T ], (7.1) 
0 

 

Doléans exponential E − 
 
 

   · 
Li dWi 

 
:= exp 

   ·  d 
Li dWi − 1 

   · 
 

 

|Ls| ds is an (Ft)t∈[0,T ]- 
 

martingale. 

s s 

i=1  0 
0  i=1 

2  0 

 

Proof. Following Corollary 5.14 in [69], it is sufficient to find a constant time step subdivision (tn)n∈N 

of [0, T ] such that, for all n ∈ N, 

 
E exp 

1 tn+1 

2 tn |Ls| ds < ∞. 

− 

N d=1 d=2 d=5 d=10 d=15 d=20 

102 8.68(0.98) 17.28(1.01) 42.04(1.32) 34.79(0.66) 21.27(0.12) 18.97(0.09) 

103 7.61(6e−4
) 8.24(0.07) 14.83(0.64) 28.14(0.64) 37.91(0.60) 34.83(0.45) 

5 × 103 7.60(3e−4
) 7.78(2e−3

) 8.98(0.21) 19.84(0.52) 35.31(0.71) 33.57(0.52) 

 

N d=1 d=2 d=5 d=10 d=15 d=20 

102 7.61(3e−4
) 7.78(7e−4

) 7.41(6e−3
) 7.31(0.12) 28.14(0.18) 26.01(0.12) 

103 7.61(3e−4
) 7.77(2e−4

) 7.39(1e−3
) 6.18(3e−3

) 8.19(6e−3
) 7.87(1e−2

) 

5 × 103 7.61(3e−4
) 7.77(2e−4

) 7.38(8e−4
) 6.17(1e−3

) 8.15(2e−3
) 7.74(3e−3

) 
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2 

s ∞ ∞ s ∞ 

∞ 

XT XT   ≤  ∇xg aXT + (1 − a) XT    XT − XT 

 ∇xg aXT + (1 − a) XT 

where we have used the estimate Xt,x,α − Xt,y,α   ≤ eKT |x − y|, following from the identity 

Xr − Xr Xs − Xs 

E  ∇xg aXT + (1 − a) XT 

0 

t 

0 

Combining Jensen’s inequality and Fubini’s theorem, this is fulfilled in particular if for all n ∈ N, 

1 tn+1 

E 
δ  tn 

 
exp 

  
δ |Ls|

2 
  

 
 

 
 

ds < ∞, 

where δ := tn+1 − tn. Let s ∈ [0, T ]. Then, 

|L |2 ≤ 2δ  σ−1  2
 

 
||a||2

 |X |2 
+ ||c||2 

  

, P − a.s, 
 

since a, c are bounded and σ−1 is also bounded being continuous on [0, T ]. Furthermore, by item 1. of 

Lemma 2.3.6 and (3.21), X is a Gaussian process with mean function mX (resp. covariance function 

QX) solving the first line of equation (3.1) (resp. (3.2)) with initial condition E (X0) (resp. Cov (X0)). 

Taking into account the fact that mX is bounded (since continuous), it suffices to find a subdivision 
such that 

E 

  

exp 

   
1 

Kδ |Z|2

         

< ∞, 
 

where Z ∼ N (0, Id) and K := 4  σ−1  2
 

 

 

||a||   QX    > 0. This is the case in particular if Kδ < 1, 
 

 

2.7.2 Proof of the local Lipschitz property of the cost functional J 

Lemma 2.7.2. Suppose the validity of Assumption 14. Suppose in addition that the functions g and x 1→ 

f (t, x, α) , (t, α) ∈ [0, T ] × A0 are locally Lipschitz with polynomial growth gradient (uniformly in t and α). 

Then, for each (t, α) ∈ [0, T ] × A0, 

x 1→ J (t, x, α) 

is locally Lipschitz, uniformly in t and α. 
 

Proof. We give here a proof of the local Lipschitz property for the term involving the function g since 

the other term can be treated in the same way. 

Let (t, α) ∈ [0, T ] × A0 and x, y in a compact set of Rd. Let K be the Lipschitz constant of b. Using in 

particular the Cauchy-Schwarz inequality, we get 

t,x,α
  

 t,y,α 
1
 

 
t,x,α t,y,α

 
            t,x,α t,y,α 

 
 

 
 

 

KT  

    1
 

 

 

 
t,x,α t,y,α

 
 
 

 

 

 
 
 

t,x,α 

T 
 

t,y,α  

T 

   r 
 
 

 

 
 
 

t,x,α t,y,α  

together with Gronwall’s lemma. In view of (7.2), the point is proved if 

   1 
t,x,α 

 
t,y,α

 
 
 

 

0 

which ends the proof. 

2 

2 

E 

∞ ∞ 

  g — E g E da 

≤ e E da |x − y| (7.2) 

≤ |x − y| + K 
ds, r ∈ [t, T ], 

da 
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s 

    

 

is bounded uniformly in t, x, y, α. This follows from polynomial growth of ∇xg, classical moment 

estimates for sups∈[t,T ] Xt,z,α , z ∈ Rd (see for example Corollary 2.5.12 in [71]) and the fact x, y lie 

in a compact set. 

 

2.7.3 A simplified version of the envelope theorem 

Lemma 2.7.3. Let Λ be an arbitrary set and O be an open subset of Rd. Let x ∈ Rd. Let F : O × Λ 1→ R such 

that for all λ ∈ Λ, F (·, λ) and V  : x 1→ supλ∈Λ F (x, λ) are differentiable at the point x.  Suppose also that 

Λ∗ (x) = {λ ∈ Λ, V (x) = F (x, λ)} is not empty. Then, 

∇xV  (x) = ∇xF (x, λ∗
x) , 

 

for every λ∗
x  ∈ Λ∗ (x). 

Proof.  Let x as in the proposition statement and h ∈ Rd. Let λ∗
x  ∈ Λ∗ (x). Then, using in particular the 

differentiability of F (·, λ∗
x) at the point x, we get 

V  (x + h) − V  (x) ≥ F (x + h, λ∗
x) − F (x, λ∗

x) 

=  ∇xF (x, λ∗
x) , h  + o0(|h|). (7.3) 

By the differentiability of V at the point x, (7.3) implies 

 ∇xV  (x) − ∇xF (x, λ∗
x) , h  ≥ o0 (|h|) . (7.4) 

Setting h to −h in (7.3) and proceeding as before, we obtain 

 ∇xV  (x) − ∇xF (x, λ∗
x) , h  ≤ o0 (|h|) . (7.5) 

Combining (7.4) and (7.5), we get 
(

∇  V  (x) − ∇  F (x, λ∗) ,  
h  
  

−→ 0, 
x x x 

|h| h→0 

which forces ∇xV  (x) = ∇xF (x, λ∗
x). This ends the proof. 
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 2 ij 

i,j=1 

 
 
 
 

Chapter 3 

 
McKean Feynman-Kac probabilistic 

representations of non-linear partial 

differential equations 

 
This Chapter is the object of the paper [61]. 

 

3.1 Introduction and motivations 

3.1.1 General considerations 

The idea of the present article is to focus on models which have a double macroscopic-microscopic 

face in the form of perturbation of a so called Fokker-Planck type equation that we call generalized 

Fokker-Planck equation. Our ambition is driven by two main reasons. 

1. A modeling reason: the idea is to observe both from a macroscopic-microscopic point of view 

phenomena arising from physics, biology, chemistry or complex systems. 

2. A numerical simulation reason: to provide Monte-Carlo suitable algorithms to approach PDEs. 

The target macroscopic Fokker-Planck equation is 

 ∂tu = 
1 
  

∂2 (σσ-T)i,j(t, x, u)u   − div (b(t, x, u, ∇u)u) 

+Λ(t, x, u, ∇u)u , for t ∈]0, T ] , 
  
u(0, ·)    =    u0, 

where u0 is a Borel probability measure σ : [0, T ] × Rd × R → Md,p(R), b : [0, T ] × Rd × R → Rd, 

Λ : [0, T ] × Rd × R × Rd → R and ∇ denotes the gradient operator. The initial condition in (1.1) means 

that for every continuous bounded real function ϕ we have ϕ(x)u(t, x)dx → ϕ(x)u0(dx) when 

73 

(1.1) 
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Y0 ∼ u0 

0 0 

t → 0. When u0 admits a density, we denote it by u0. The unknown function u :]0, T ] × Rd → R 

is supposed to run in L1
(Rd) considered as a subset of the space of finite Radon measures M(Rd). 

The idea consists in finding a probabilistic representation via the solution of a Stochastic Differential 

Equation (SDE) whose coefficients do not depend only on time and the position of the particle but also 

on its probability law. The target microscopic equation we have in mind is 

 

 Yt = Y0 + 
J t σ

 
s, Ys, u(s, Ys)

 
dWs + 

J t b
 

s, Ys, u(s, Ys)
 

ds 
 

  
   
ϕ(x)u(t, x)dx = E 

 
ϕ(Yt) exp 

     t 
 

 
 

 

s, Ys, u(s, Ys), ∇u(s, Ys) ds
} l

 

 

, for t ∈]0, T ] , 

 

for any continuous bounded real valued test function ϕ. Sometimes we denominate the third line 

equation of (1.2) the linking equation. When Λ =  0, in equation (1.2), the linking equation simply 

says  that  u(t, ·) coincides  with  the  density  of  the  marginal  distribution  L(Yt).   In  this  specific  case, 

equation (1.2) reduces to a McKean Stochastic Differential Equation (MSDE), which is in general an SDE 

whose coefficients, at time t, depend, not only on (t, Yt), but also on the marginal law L(Yt). With 

more general functions Λ, the role of the linking equation is more intricate since the whole history of 

the process (Ys)0≤s≤t is involved. This fairly general type of equations will be called McKean Feynman- 

Kac Equation (MFKE) to emphasize the fact that u(t, x)dx now corresponds to a non-conservative 

Feynman-Kac measure. 

An interesting feature of MSDEs (which means Λ = 0) is that the law of the process Y can of- 

ten be characterized as the limiting empirical distribution of a large number of interacting particles, 

whose dynamics are described by a coupled system of classical SDEs. When the number of particles 

grows to infinity, the particles behave closely to a system of independent copies of Y . This consti- 

tutes the so called propagation of chaos phenomenon, already observed in the literature when the drift 

and diffusion coefficients are Lipschitz dependent on the solution marginal law, with respect to the 

Wasserstein metric, see e.g. [68, 83, 84, 105, 86]. Propagation of chaos is a common phenomenon 

arising in many physical contexts, see for instance [2] concerning Nelson stochastic mechanics. 

When Λ = 0, equation (1.1) is a non-linear Fokker-Planck equation, it is conservative and it is 

known that, under mild assumptions, it describes the dynamics of the marginal probability densi- 

ties, u(t, ·), of the process Y . This correspondence between PDE (1.1) with MSDE (1.2) and interacting 

particles has extensive interesting applications. In physics, biology or economics, it is a way to relate 

a microscopic model involving interacting particles to a macroscopic model involving the dynamics 

of the underlying density. Numerically, this correspondence motivates Monte-Carlo approximation 

schemes for PDEs. In particular, [24] has contributed to develop stochastic particle methods in the 

spirit of McKean to provide original numerical schemes approaching a PDE related to Burgers equa- 

tion providing also the rate of convergence. 

Below we list some situations of particular interest where such correspondence holds. 

(1.2) 

0 

Λ 



 

 

2 

n+1 

2 

d 

∂ 

t 2 xx x 

  

2 ij 

∈ 
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3.1.2 Some motivating examples 

Burgers equation 

We fix d = p = 1 and let ν > 0 and u0 be a probability density on R. We consider two equivalent 

specific cases of (1.1). The first σ ≡ ν, b ≡ 0, Λ(t, x, u, z) = z. The second σ ≡ ν, b(t, x, u) = u , Λ = 0. 

Both instantiations correspond to the the viscid Burgers equation in dimension d = 1, given by 

   
∂ u = ν

2 
∂ u − u∂ u, (t, x) ∈ [0, T ] × R, 

u(0, ·) = u0 . 

Generalized Burgers-Huxley equation 

We fix d = p = 1 and let ν > 0 and u0 be a probability density on R. We consider the partic- 

ular cases of (1.1) where σ ≡ ν, b(t, x, u) = α u
n  

, Λ(t, x, u) = β(1 − un)(un − γ), with fixed reals 

α, β, γ and a non-negative integer n. This instantiation corresponds to a natural extension of Burgers 

equation called Generalized Burgers-Huxley equation or Burgers-Fisher equation which is of great impor- 

tance to represent non-linear phenomena in various fields such as biology [4, 87], physiology [70] 

and physics [111]. These equations have the particular interest to describe the interaction between 

the reaction mechanisms, convection effect, and diffusion transport. Those are non-linear and non- 

conservative PDEs of the form 
 

∂tu = ν ∂xxu − αun∂xu + βu(1 − un)(un − γ), (t, x) ∈ [0, T ] × R, 

u(0, ·) = u0. 

Fokker-Planck equation with terminal condition 

 
(1.4) 

 

The present example does not properly integrate the framework of (1.1). In terms of application, 

we are interested by inverse problems that can be formulated by a PDE with terminal condition 

  ∂tu = 
1
 

2
   (σσt)i,j(t, x)u   − div (b(t, x)u) 

i,j=1 

+Λ(t, x)u , for t ]0, T [ , 
 
u(T, ·)    =    uT, 

(1.5) 

where uT is a prescribed probability measure. Solving that equation by analytical means constitutes 

a delicate task. A probabilistic representation may help for studying well-posedness or providing 

numerical schemes. 

Backward simulation of diffusions is a subject of active research in various domains of physical 

sciences and engineering, as heat conduction [14], material science [95] or hydrology [5]. In particular, 

hydraulic inversion is interested in inverting a diffusion phenomenon representing the concentration of 

a pollutant to identify the pollution source location when the final concentration profile is observed. 

The problem is in general ill-posed because either the solution is not unique or the solution is not 

stable. For this type of problem, the existence is ensured by the fact that the observed contaminant 

  

(1.3) 
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∂tu = γ ∆(H(u − ec)u) 

   
∂tu = γ ∆(H(u − ec)u) + Λ(t, x; ω)u 

has necessarily originated from some place at a given time (as soon as the model is correct). To correct 

the lack of well-posedness two regularization procedures have been proposed in the literature: the 

first one relies on the notion of quasi-solution, introduced by Tikhonov [107], the second one on the 

method of quasi-reversibility, introduced by Lattes and Lions [74]. Besides well-posedness, a second 

crucial issue consists in providing a numerical approximating scheme to the backward diffusion 

equation. A probabilistic representation of (1.5) via the time-reversal of a diffusion could show those 

issues under a new light. 

The stochastic Fokker-Planck with multiplicative noise 

We fix p = d, σ(t, x, u) = Φ(u)Idd , where Φ : R → R and b = Λ ≡ 0. Typical examples are the 

case of classical porous media type equation (resp. fast diffusion equation), when Φ(u) = uq, 1 ≤ q 

(resp. 0 < q < 1).   The (singular) case Φ(u) = γH(u − ec), H being the Heaviside function and ec 

a given threshold in R, appears in the science of complex systems, more precisely in the so called self-

organized criticality, see e.g. [6, 29, 7]. 
 
 

2 

u(0, ·)    =    u0. 
(1.6) 

The phenomenon of self-organized criticality often is described in two scale phases: a fast dynamics 

(of avalanch type) described by the PDE (1.6) and a slower motion of sand storming modeled by the 

addition of a supplementary stochastic noise Λ(t, x; ω). In that case the target macroscopic equation is 

 
2 

u(0, ·)    =    u0, 
(1.7) 

 

where Λ(t, x; ω) is a quenched realization of a space-time colored (ideally white) noise. The SPDE 

will be represented by a MSDE in random environment, see Section 3.6. 

 
3.1.3 Structure of the paper 

In the rest of the paper, to simplify notations, most of the results are stated in the one-dimensional 

setting. The generalization to the multi-dimensional case is straightforward. 

The paper is organized as follows. Next section presents a brief review of basic situations where 

Fokker-Planck equations can be represented by MSDEs which in turn can be represented by interact- 

ing particles systems. Section 3.3, considers the case of generalized Fokker-Planck equations in the 

sense of (1.1) with a non-zero term Λ allowing to take into account non-conservative PDEs including 

a large class of semi-linear PDEs. Section 3.5 highlights the correspondence between MFKEs and 

MSDEs with jumps which paves the way to a great variety of numerical approximations schemes 

for non-linear PDEs. Section 3.4 is devoted to a particular inverse problem which consists in model- 

ing backwardly in time the evolution of a Fokker-Planck equation with a given terminal condition. 

This problem can be related to a time-reversed SDE which in turn can be represented by a MSDE. 

In Section 3.6 we analyze the well-posedness of generalized Fokker-Planck equation where the term 



 

 

 

 

µ = 

Y   ∼ u0  0 

∂tµ = 
2 

∂xx(σ (t, x)µ) − ∂x(b(t, x)µ) 

N 

 t 

j=1 

δ j . 
t 

∈ 

∗ ∗ 
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Λ in (1.1) may involve an exogenous noise resulting in a stochastic non-linear PDE. Finally, in Sec- 

tion 3.7, we consider a stochastic control problem for which the associated Hamilton-Jacobi-Bellman 

equation can be represented by a MFKE. 

 
3.2 McKean representations of non-linear Fokker-Planck equations 

In this section, we recall some standard situations where a Fokker-Planck PDE can be represented by 

an SDE which in turn can be approached by an interacting particles system. 

 
3.2.1 Probabilistic representation of linear Fokker-Planck equations 

Suppose there exists a solution (Yt)t∈[0,T ] (in law) to the SDE 

  

Yt = Y0 + 

 

t 

σ(s, Ys)dWs + 
0 

 

t 

b(s, Ys)ds, t [0, T ], 
0 

 
(2.1) 

Y0 ∼ u0 , 

where W is a real valued Brownian motion on [0, T ] and u0 is a probability measure on R. A direct 

application of Itô formula shows that the marginal probability laws (µ(t, ·) := L(Yt))t∈[0,T ]  generate 

a distributional solution of the linear Fokker-Planck PDE 
 

1   2 2 
 

µ(0, dx) = u0(dx). 
 

This naturally suggests a Monte Carlo algorithm to approximate the above linear PDE, consisting in 

simulating N i.i.d. particles (ξi)i=1,···N  with N i.i.d. Brownian motions (W i)i=1,···N  i.e. 

 
i

 
i 

t i i 
t 

i 
ξt = ξ0 +  σ(s, ξs)dWs  + b(s, ξs)ds 

 i 0  0 

ξ0 i.i.d.  ∼ u0 

 1   
 

 

  

(2.3) 

 

Then the law of large numbers provides the convergence of the empirical approximation µN − − → 

µ(t, ·), the solution of the Fokker-Planck equation (2.2). 

t 
N →∞ 

 

3.2.2 McKean probabilistic representation of non-linear Fokker-Planck equation 

We consider the non-linear SDE in the sense of McKean (MSDE) 

  Yt = Y0 + 

 

 
t 

σ  s, Ys, (K µ)(s, Ys) 
0 

 

dWs + 

 
t 

b  s, Ys, (K µ)(s, Ys)  ds 
0 

 
 

(2.4) 

  µ(t, ·) is the probability law of Yt , t ∈ [0, T ], 

ξ N 

    

N 

    

(2.2) 
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J 

dx 

 

 

µ = 

t 

∂tµ = 
2 

∂xx σ (t, x, K ∗ µ)µ 

N 

 t 
j=1 

δ j,N , 
t 

t N j=1 t 

whose solution is a couple (Y, µ). Here σ, b are Lipschitz, K : R × R → R denotes a Lipschitz contin- 

uous convolution kernel such that (K ∗ µ)(t, y) :=    K(y, z)µ(t, dz) for any y ∈ R. We emphasize that 

this type of regularized dependence of the drift and diffusion coefficients on µ is essentially different 

(and in general easier to handle) from a pointwise dependence where the coefficients b or σ may de- 

pend on the value of the marginal density at the current particle position dµ (s, Ys). This regularized 

or non-local dependence on the time-marginals µ(t, ·) is a particular case of the framework when the 

diffusion and drift coefficients are Lipschitz with respect to µ(t, ·) according to the the Wasserstein 

metric. 

Again, by Itô formula, given a solution (Y, µ) of (2.4), µ solves the non-local non-linear PDE 
 

1   2 2 
 

µ(0, dx) = u0(dx), 

in the sense of distributions. In this setting, the well-posedness of (2.4) relies on a fixed point argu- 

ment in the space of trajectories under the Wasserstein metric, see e.g. [105], at least in the case when 

the diffusion term does not depend on the law. We will denominate this situation as the traditional 

setting. 

Deriving a Monte-Carlo approximation scheme from this probabilistic representation already be- 

comes more tricky since it can no more rely on independent particles but should involve an interact- 

ing particles system as initially proposed in [68, 105]. Consider N interacting particles (ξi,N )i=1,···N 

with N i.i.d. Brownian motions (Wi), i.e. 
 

i,N i,N 
t
 

 
i,N 

 
N i,N 

i 
t  

i,N 
 

N i,N 
ξt = ξ0 + σ s, ξs     , (K ∗ µs  )(ξs    )  dWs + b s, ξs  , (K ∗ µs  )(ξs    )  ds 

 
i,N 

0  0 

ξ0 i.i.d.  ∼ u0 

 1   
 

 

  

(2.6) 

with (K ∗ µN )(y) =   
1  
 N K(y, ξj,N ) . The above system defines a so-called weakly interacting par- 

ticles system, as pointed out in [89]. This terminology underlines the fact that any particle interacts 

with the rest of the population with a vanishing impact of order 1/N . In this setting, at least when the 

diffusion coefficient does not depend on the law, [105] proves the so called chaos propagation which 

means that (ξi,N )i=1,···N  asymptotically behaves as an i.i.d. sample according to µ(t, ·) as the number 

of particles N grows to infinity, where µ is the solution of the regularized non-linear PDE (2.5). This 
in particular implies the convergence of the empirical measures µN  − − → µ(t, ·) with the rate C/

√
N 

inherited from the law of large numbers. 

t 
N →∞ 

As already announced, the case where the coefficients depend pointwise on the density law u(t, ·) 

of µ(t, ·), t > 0, is far more singular.  Indeed the dependence of the coefficients on the law of Y  is no 

more continuous with respect to the Wasserstein metric. In this context, well-posedness results rely 

generally on analytical methods. One important contribution in this direction is reported in [66], 

where strong existence and pathwise uniqueness are established when the diffusion coefficient σ 

ξ N 

N 

— ∂x b(t, x, K ∗ µ)µ (2.5) 
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u = t 

t 

t  

Nε 

N 

∂tu = 
2 

∂xx σ 

0 

 

and the drift b exhibit pointwise dependence on u but are assumed to satisfy strong smoothness 

assumptions together with the initial condition. In this case, the solution u is a classical solution of 

the PDE 
 

1   2 2 

u(0, x) = u0(dx), 

which is formally derived from (2.5) setting K(x, y) = δ0(x − y).   Let us fix Kε being a mollifier 

(depending on a window-width parameter ε), such that Kε(x, y) =
 1 

φ( 
x − y 

) −→ δ (x − dy) . As 

εd 

in (2.6), we consider the N interacting particles (ξi,N )i=1,···N solving 
ε ε→0 

 
i,N i,N 

   t
 

 
 

i,N N,ε i,N i 
t 

 
 

i,N N,ε i,N 
ξt = ξ0 + σ s, ξs     , us    (ξs  ) dWs + b s, ξs  , us    (ξs  )  ds 

 
i,N 

0  0 

ξ0 i.i.d.  ∼ u0 
 1   

(2.8) 

N,ε 

 t 
 

 

N 
j=1 

Kε(·, ξj,N ). 

 

Under the smooth assumptions on b, σ, u0 mentioned before and non-degeneracy of σ, [66] proved 

the convergence of the regularized particle approximation uN,ε to the solution u of the pointwise 

non-linear PDE (2.7) as soon as ε(N )  −
N
−

→
−
∞
→ 0 slowly enough.  According to   [89],  the system (2.8) 

defines a so-called moderately interacting particle system with uN,ε(x) =    
1   
 N φ( x   

−ξ
j,N  

). Indeed 
t Nεd j=1 ε 

as the window width of the kernel, ε, goes to zero, the number of particles that significantly impact 

a single one is of order Nεd with a strength of interaction of order 
1
 d . In contrast, when ε is fixed, 

we recover the weakly interacting situation in which case the strength of interaction of each particle 

is of order 1
 which is smaller than 

1
 d .   In this case of moderate interaction,  the propagation of 

N ε√   
chaos occurs with a slower rate than C/ N and depends exponentially on the space dimension. [66] 

constitutes an extension of the weak propagation of chaos of moderately interacting particles proved 

in [89] for the limited case of identity diffusion matrix. 

The peculiar case where the drift vanishes and the diffusion coefficient σ(u(t, Yt)) has a pointwise 

dependence  on  the  law  density  u(t, ·) of  Yt  has  been  more  particularly  studied  in  [17]  for  classical 

porous media type equations and [22, 10, 16, 15, 9] who obtain well-posedness results for measur- 

able and possibly singular functions σ. In that case the solution u of the associated PDE (1.1), is 

understood in the sense of distributions. 

 

3.3 McKean Feynman-Kac representations for non-conservative and non- 

linear PDEs 

The idea of generalizing MSDEs to MFKEs (1.2) was originally introduced in the sequence of pa- 

pers [76, 75, 77], with an earlier contribution in [12], where Λ(t, x, u, ∇u) = ξt(x), ξ being the sample 

of a Gaussian noise random field, white in time and regular in space, see Section 3.6. The goal was 

N 

(t, x, u(t, x))u — ∂x b(t, x, u(t, x))u 
(2.7) 
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J 

0 

t 0 0 s s s s 0  ξi,N  = ξi,N + 
J t σ

 
s, ξi,N , uN,ε(ξi,N )

 
dW i + 

J t b
 

s, ξi,N , uN,ε(ξi,N )
 

ds 

ωt :=   exp r, ξr , ur (ξr ), ∇ur (ξr ) 

= ωs exp r, ξr , ur (ξr ), ∇ur (ξr ) 

2 xx 

 

s 

to provide some probabilistic representation for non-conservative non-linear PDEs (1.1) by introduc- 

ing some exponential weights defining Feynman-Kac measures instead of probability measures. An 

interesting aspect of this strategy is that it is potentially able to represent an extended class of second 

order non-linear PDEs. One particularity of MFKE equations is that the probabilistic representation 

involves the past of the process (via the exponential weights). In this context, it is worth to quote the 

recent paper [63] which proposes a probabilistic representation, which also includes a dependence 

on the past, in relation with Keller-Segel model with application to chemiotaxis. 

It is important to consider carefully the two major features differentiating the MFKE (1.2) from 

the traditional setting of MSDEs. To recover the traditional setting one has to do the following. 

1. First, one has to put Λ = 0 in the third line equation of (1.2) Then u(t, ·) is explicitly given by 

the third line equation of (1.2) and reduces to the density of the marginal distribution, L(Yt). 

When Λ /= 0, the relation between u(t, ·) and the process Y  is more complex.  Indeed, not only 

does Λ embed an additional non-linearity with respect to u, but it also involves the whole past 

trajectory (Ys)0≤s≤t of the process Y . 

2. Secondly, one has to replace the pointwise dependence b(s, Ys, u(s, Ys)) in equation (1.2) with 

a mollified dependence b(s, Ys,   Rd K(Ys − y)u(s, y)dy), where the dependence with respect to 

u(s, ·) is Wasserstein continuous. Here K : R → R is a convolution kernel. 

One interesting aspect of probabilistic representation (1.2) is that it naturally yields numerical 

approximation schemes involving weighted interacting particle systems. More precisely, we consider 

N interacting particles (ξi,N )i=1,···N with N i.i.d. Brownian motions (Wi)i=1,···N , i.e. 

 

  ξi,N  i.i.d.  ∼ u0 
 

 uN,ε(ξi) = 
  

ωj,N Kε(ξi,N − ξj,N ) , 

 

   

 

(3.1) 

t t 
j=1 

 

where the mollifier Kε is such that Kε(x) = 
1 φ( x )   −→ δ0 and the weights ωj,N for j = 1, · · · , N 

  

verify 
 
 
 

 
j,N 

     t 

εd 

 
 
 
 

j,N 

ε 
 
 
 

ε,N 

ε→0 

 

j,N 

 
 
 
 

ε,N 

t 
 
 
 
 

j,N 
 

 
j,N 

     t 

 

 

 
j,N 

 

 
ε,N 

 

 
j,N 

 

 
ε,N 

 

 
j,N 

 

[78, 77] consider the case of pointwise semilinear PDEs of the form 

   
∂tu = 

1 ∂2 (σ2
(t, x)u) − ∂xb(t, x)u) + Λ(t, x, u, ∇u)u 

 
(3.2) 

s s s 

N 

0 

Λ dr 

Λ dr . 

u(0, x) = u0(x), 

t t t 
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J 

 

Y0 ∼ u0 

0 0 

2 xx 

    

    
∇

 

 

for which the target probabilistic representation is 

 Yt = Y0 + 
J t σ

 
s, Ys

 
dWs + 

J t b
 

s, Ys

 
ds 

 

 

 
 

We set 

  
   

ϕ(x)ut(x)dx := E 

 
ϕ(Yt) exp 

     t 
 

 
 

 
 

s, Ys, us(Ys), ∇us(Ys) ds
} l

. 

1  2 

Ltf := 
2 

σ (t, x)f (x) + b(t, x)f (x), t ∈]0, T [, for any f ∈ C 2(R). (3.4) 

Let us consider the family of Markov transition functions P (s, x0, t, ·) associated with (Lt), see [78]. 

We recall that if X is a process solving the first line of (3.1) with Xs ≡ x0 ∈ R, then R P (s, x0, t, x)f (x)dx = 

E(f (Xt)), t ≥ s, for every bounded Borel function f : R → R. u : [0, T ] × R → R will be called mild 

solution of (3.2) (related to (Lt)) if for all ϕ ∈ C0
∞(R), t ∈ [0, T ], 

 

ϕ(x)u(t, x)dx   = ϕ(x) u0(dx0)P (0, x0, t, dx) 
Rd Rd Rd 

 

+ ϕ(x)P (s, x0, t, dx)  Λ(s, x0, u(s, x0), u(s, x0))u(s, x0)dx0ds. 
[0,t]×Rd Rd 

The following theorem states conditions ensuring equivalence between (3.3) and (3.2) together with 

the convergence of the related particle approximation (3.1). 

Theorem 3.3.1. We suppose that σ and b are Lipschitz with linear growth and Λ is bounded. 

1. Let u : [0, T ] × R → R ∈ L1
([0, T ]; W 1,1(Rd). u is a mild solution of PDE (3.2) if and only if u verifies 

(3.3). 

2. Suppose that σ ≥ c > 0 and Λ is uniformly Lipschitz w.r.t. to u and ∇u. There is a unique mild solution 

in L1
([0, T ]; W 1,1(R) ∩ L∞([0, T ] × R) of (3.2), therefore also of (3.3). 

3. Under the same assumption of item 2., the particle approximation uN,ε (3.1) converges in L1
([0, T ]; W 1,1(R) 

to the solution of  (3.2) as N → ∞ and ε(N ) → 0 slowly enough. 

Item 1. was the object of Theorem 3.5 in [78]. Item 2. (resp. item 3.) was treated in Theorem 3.6 

(resp. Corollary 3.5) in [78]. 

Remark 3.3.2. The error induced by the discrete time approximation of the particle system was evaluated in 

[77]. 

[79] considers the case where b is replaced by b + b1 where b is only supposed bounded Borel, 

without regularity assumption on the space variable. In particular they treat the pointwise semilinear 

PDEs of the form 

  ∂tu =  
1 ∂2  (σ2

(t, x)u) − ∂x

  
b(t, x) + b1(t, x, u)

 
u
  

+ Λ(t, x, u)u 

 u(0, x) = u0(x), 

0 

Λ 

(3.3) 

(3.5) 
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1 

 

Y0 ∼ u0 

0 0 

for which the target probabilistic representation is 

 Yt = Y0 + 
J t σ(s, Ys)dWs + 

J t  b(s, Ys) + b1

 
s, Ys, u(s, Ys)

 ]
ds 

 

  
   
ϕ(x)ut(x)dx := E 

 
ϕ(Yt) exp 

     t 
 

 
 

 

 
s, Ys, us(Ys) ds

} l

. 

 

The following theorem states conditions ensuring equivalence between (3.6) and (3.5) together with 

well-posedness conditions for both equations. 

Theorem 3.3.3. We formulate the following assumptions. 
 

1. The PDE in the sense of distributions ∂tu  =  L∗
t ut  admits as unique solution u  ≡ 0, where Lt  was 

defined in (3.4). 

 

2. b is bounded measurable and σ is continuous σ ≥ c > 0 for some constant c > 0. 

3. b1, Λ : [0, T ] × R × R → R is uniformly bounded, Lipschitz with respect to the third argument. 

4. The family of Markov transition functions associated with (Lt), are of the form P (s, x0, t, dx) = p(s, x0, t, x)dx,, 

i.e. they admit measurable densities p. 
 

5. The first order partial derivatives of the map x0 1→ p(s, x0, t, x) exist in the distributional sense. 

6. For almost all 0 ≤ s < t ≤ T and x0, x ∈ R there are constants Cu, cu > 0 such that 

p(s, x0, t, x) ≤ Cuq(s, x0, t, x) and |∂x0 p(s, x0, t, x)| ≤ Cu √
t − s

q(s, x0, t, x) , (3.7) 

  
c  (t−s) 

  1    

− 
 

|x−x0|2 

where q(s, x0, t, x) := u
 

 

The following results hold. 

e cu 
t−s is a Gaussian probability density. 

 

1. Let u ∈ (L1 ∩ L∞)([0, T ] × R). u is a solution of PDE (3.5) in the sense of distributions if and only if u 

verifies (3.6) for a solution Y in the sense of probability laws. 
 

2. There is a unique solution u ∈ (L1 ∩ L∞)([0, T ] × R) in the sense of distributions of PDE (3.5) (and 

therefore of (3.6)). 

 
The result 1. (resp. result 2.) was the object of Theorem 12. (resp. Proposition 16., Theorems 13., 

22.) of [79]. 

Remark 3.3.4. Under more restrictive assumptions on b, item 3. of Theorem 13. in [79] states the well- 

posedness of (3.6)) in the sense of strong existence and pathwise uniqueness. 

0 

Λ 

2 

(3.6) 

π 



 

 

2 

 

x 

 Yt = Y0 + 
J t σ

 
s, Ys, K ∗ us(Ys)

 
dWs + 

J t b
 

s, Ys, K ∗ us(Ys)
 

ds 

0 

2 xx 

l 

ij 
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[76] and [75] studied a mollified version of (1.1), whose probabilistic representation falls into the 

Wasserstein continuous traditional setting mentioned above. Following the spirit of [105], a fixed 

point argument was carried out in the general case in [76] to prove well-posedness of 

  

Y0  ∼ u0 

 

0 

     t 
 

  

 

 
(3.8) 

} 
 

  

where K : R → R is a mollified kernel. We remark that if (Y, u) is a solution of (3.8), then u is a 

solution (in the sense of distribution) of 

   
∂tu = 

1
 ∂2

 (σ2
(t, x, K ∗ u)u) − ∂x(b(t, x, K ∗ u)u) + Λ(t, x, K ∗ u)u 

 
(3.9) 

u(0, x) = u0(x). 

Remark 3.3.5. 1. Existence and uniqueness results (in the strong sense and in the sense of probability 

laws) for the MFKE (3.8) are established under various technical assumptions, see [75]. 

2. Chaos propagation for the interacting particle system (3.1) providing an approximation to the regularized 

PDE (3.9), as N → ∞ (for fixed K), [76]. 

 
3.4 McKean representation of a Fokker-Planck equation with terminal 

condition 

Let us consider the PDE with terminal condition (1.5) and Λ = 0. 

  ∂tu = 
1 
 
 

 
2   (σσt)i,j(t, x)u 

 
— div (b(t, x)u) 

 

 
(4.1) 

i,j=1 

u(T, dx)  =   uT(dx), 
 

where uT is a given Borel probability measure. In the present section we assume the following. 

Assumption 1. Suppose that (4.1) admits uniqueness, i.e. that there is at most one solution of (4.1). 

Remark 3.4.1. Different classes of sufficient conditions for the validity of Assumption 1 are provided in [62]. 

In particular one significant result is Theorem 4.14 of [62] which states that previous Assumption 1 holds if 

σ, b are time-homogeneous and the following holds. 

 

Assumption 2.     1. Σ = σσ∗ is strictly non-degenerate. 

2. The functions σ is Lipschitz in space. 
 

3. The functions σ, b, (∇xbi) i∈[[1,d] , (∇xΣij) 
i,j∈[[1,d] 

are continuous bounded and ∇2 Σ is Hölder continu- 

ous with exponent α ∈]0, 1[. 

, ds Λ K(x − Yt) exp 

d 

∂ 

(K ∗ ut)(x) := E s, Ys, K ∗ us(Ys) 

0 
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˜
   

s 

    

  

 

   
˜
   

 
divy 

  
σσt (T − s, y) vs (y)

 
 

E b (s, Ys; vs) φ (Ys) + 
2

 σ (T − s, Ys) φ (Ys) 

0 

∈ 

− 

Rd 0 

Generalizations to the time-inhomogeneous setup are also available. 

A natural representation of (4.1) is the following MSDE, where β is a Brownian motion. 

  Yt = ξ − 

 

t 

b (s, Ys; vs) ds + 
0 

 

t 

σ (T − s, Ys) dβs, t ∈ [0, T ] 

 
J

Rd vt(x)ϕ(x)dx = E(ϕ(Yt)), t ∈ [0, T ] 
(4.2) 

ξ ∼ uT, 

where b̃(s, y; vs) = (b̃1
(s, y; vs), . . . , ̃bd(s, y; vs)) is defined as 

 

b̃ (s, y; v  ) := 

 
For d = 1 previous expression gives 

j. 

vs (y) 
j∈[[1,d] 

— b (T − s, y) . (4.3) 

 

b̃(s, y; vs) := 
σ2

(T − s, ·)vs  
 
 

 

vs 
(y) − b (T − s, y) . (4.4) 

Remark  3.4.2.  (4.2)  is in particular fulfilled if Y  is the time reversal process X̂t   :=  XT −t  of a diffusion 

satisfying the SDE 
  

Xt = X0 + 

t 

b(s, Xs)ds + σ(s, Xs)dWs, t [0, T ] 
0 

 

(4.5) 

X0 ∼ u0 ∈ P(R). 

This happens under locally Lipschitz conditions on σ and b and minimal regularity conditions on the law 

density pt of Xt. Indeed in [55], the authors prove that 

X̂t  = XT  + 

t 

b   s, X̂s; pT   s 
0 

t 

ds + σ 
0 

T − s, X̂s

 
 dβs, t ∈ [0, T ], (4.6) 

where ̃b is defined in (4.3) and pt is the density of Xt. We emphasize that the main difference between (4.2) and 

(4.6) is that in the first equation the solution is a couple (Y, v), in the second one, a solution is just Y , p being 

exogeneously defined by (4.5). 

We observe now that a solution (Y, v) of (4.2) provides a solution u of (4.1). This justifies indeed 

the terminology of probabilistic representation. 

Proposition 3.4.3. 1.  Let (Y, v) be a solution of (4.2). Then u(t, ·) := v(T − t, ·), t ∈ [0, T ]), is a solution 

of (4.1) with terminal value uT. 

2. If (4.1) admits at most one solution, then there is at most one v such that (Y, v) solves (4.2). 

Proof. In order to avoid technicalities which complicate the task of the reader we express the proof 

for d = 1. We prove 1. since 2. is an immediate consequence of 1. 

Let φ ∈ C∞ (R) with compact support and t ∈ [0, T ]. Itô formula gives 
   T −t 

˜
 

 

1    2 
l
 

 
 E [φ (YT −t)] − φ (y) uT (dy) = ds. 
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t 
− 

    

R 0 R 

0 

 

Fixing s ∈ [0, T ], we have 

E 
 

b̃(s, Ys; vs)φ (Ys)
    

=    

 

 (σ2
(T − s, ·)vs) (y)φ (y)dy − 

 

 

 
b(T − s, y)φ (y)vs(y)dy 

 

 
Hence, we have the identity 

=  − 

 

 

  

 

(σ2
)(T − s, y)φ (y)vs(y)dy − 

 

 

   T −t   
 

b(T − s, y), φ (y)vs(y)dy. 

Applying the change of variable t 1→ T − t, we finally obtain the identity 

 
φ (y) vT  t (y) dy = 

R 

 
φ (y) uT (dy) 

R 

T 

 
Rd 

Lsφ (y) vT −s (y) dyds. 

This means that t 1→ ut is a solution of (3.1.2) with terminal value uT. 
 

 

Remark 3.4.4. Precise discussions on existence and uniqueness of (4.2) are provided in [62]. In particular we 

have the following. 

1. There is at most one solution (in law) (Y, v) of  (4.2) such that v is locally bounded in [0, T [×Rd. 

2. There is at most one strong solution (Y, v) of (4.2) such that v is locally Lipschitz in [0, T [×Rd. 

Item 1. is a consequence of Theorem 10.1.3 of [104]. Item 2. is a consequence of usual pathwise uniqueness 

arguments for SDEs. 

 
3.5 Probabilistic representation with jumps for non-conservative PDEs 

In this section, we outline the link between non-conservative PDEs and non-linear jump diffusions. 

This kind of representation was emphasized in [37, 34] to design interacting jump particles systems 

to approximate time-dependent Feynman-Kac measures. For simplicity, we present this correspon- 

dence in the simple case of the non-conservative linear PDE (1.1) when the coefficients do not depend 

on the solution, see (1.1). However, the same ideas could be extended to the non-linear case where 

the coefficients σ, b, Λ may depend on the PDE solution. 

Let us consider the SDE 
dXt = b(t, Xt)dt + σ(t, Xt)dWt 

X0 ∼ u0, 
(5.1) 

where W is a one-dimensional Brownian motion. Assume that (5.1) admits a (weak) solution. Let Λ 

be a bounded and negative function defined on [0, T ] × R. For any t ∈ [0, T ], we define the measure, 

γ(t, ·) such that for any real-valued Borel measurable test function ϕ 
γ(t, dx)ϕ(x) = E  ϕ(Xt) exp

 l 

(5.2) 
t 

Λ(s, Xs)ds . 

  

E [φ (YT −t)] = φ (y) uT (dy) − LT −sφ (y) vs (y) dyds. 

R R 

R R 

− 
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J 
γ(t, dx) 

0 

 
J J 

2 xx 

  ∂tη =  
1 ∂xx(σ2

(t, x)η) − ∂x(b(t, x)η) + 
 

Λ(t, x) − 
J 

η(t, dx)Λ(t, x)
 

η 

0 

We recall that by Section 3.3 we know that γ is a solution (in the distributional sense) of the linear 

and non-conservative PDE 
   

∂tγ = 
1 ∂2 (σ2

(t, x)γ) − ∂x(b(t, x)γ) + Λ(t, x)γ 
 

(5.3) 
γ(0, ·) = u0. 

Remark 3.5.1. If uniqueness of distributional solutions of (5.3) holds, then γ defined by (5.1,5.2) is the unique 

solution of (5.3). 

Let γ(t, ·) be a solution of (5.2) which for each t is a positive measure.  We introduce the family 

of probability measures (η(t, ·))t∈[0,T ], obtained by normalizing γ(t, ·), such that for any real valued 

bounded and measurable test function ϕ we have 
   

η(t, dx)ϕ(x) := 

J 
γ(t, dx)ϕ(x) 

. (5.4) 

By simple differentiation of the above ratio and using the fact that γ satisfies (5.3), we obtain that η is 

a solution in the distributional sense of the integro-differential PDE 

 
 

 

2 

 η0 = u0 . 
(5.5) 

Besides one can express γ(t, ·) as a function of (η(s, ·))s∈[0,t]. Indeed, since γ solves the linear PDE (5.3) 

then in particular approaching the constant test function 1, yields 
 

∂t 

    

γ(t, dx) = 

    

γ(t, dx)Λ(t, x) = 

     

γ(t, dx) 

    

η(t, dx)Λ(t, x) , 

which gives 
J 

γ(t, dx) = exp
 J t J 

η(s, dx)Λ(s, x)ds
 

. Then by definition (5.4) of η, 

 
γ(t, ·) = 

 
γ(t, dx) 

 
η(t, ·) = exp 

    t   

 
 
η(s, dx)Λ(s, x)ds η(t, ·) . (5.6) 

We already know that for any solution γ of (5.3) one can build a solution η to (5.5) according to rela- 

tion (5.4). Conversely, for any solution η of (5.5), by similar manipulations one can build a solution γ 

of (5.3) according to (5.6). Hence well-posedness of (5.3) is equivalent to well-posedness of (5.5). 

We propose now an alternative probabilistic representation to (5.1) and (5.2) of (5.3). Let us in- 

troduce the non-linear jump diffusion Y (if it exists), which evolves between two jumps according 

to the diffusion dynamics (5.1) and jumps at exponential times with intensity −Λt(Yt) ≥ 0 to a new 

point independent of the current position and distributed according to the current law, L(Yt). More 

specifically, we consider a process Y solution of the following non-linear (in the sense of McKean) 

SDE with jumps 

dYt = b(t, Yt− )dt + σ(t, Yt− )dWt +   R x1|x|>1Jt(µt− , Yt− , dx)dt +   R x1|x|≤1(Jt − J̄t)(µt− , Yt− , dx)dt 

Y0 ∼ u0 

  µt−  = L(Yt− ) , 

(5.7) 
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J 

0 

E b(s, Ys− )ϕ (Ys− ) + 
2 

σ (s, Ys− )ϕ (Ys− ) 
l 

0 

=  exp 
0 

E[Λ(s, Ys)]ds 

 

where J denotes the jump measure and J¯ is the associated predictable compensator such that for any 

probability measure ν on R 

J̄t(ν, y, d(y  − y)) = −Λt(y)ν(dy ) , for any y , y  ∈ R . 

Note that well-posedness analysis of the above equation constitutes a difficult task. In particular, [67] 

analyzes well-posedeness and particle approximations of some types of non-linear jump diffusions. 

However, contrarily to (5.7), the nonlinearity considered in [67] is concentrated on the diffusion ma- 

trix (assumed to be Lipschitz in the time-marginals of the process w.r.t. Wasserstein metric) and does 

not involve the jump measure which is assumed to be given. 

Assume that MSKE (5.7) admits a weak solution. By application of Itô formula, we observe that 

the marginals of Y are distributional solutions of (5.5). Indeed, for any real valued test function in 

C0
∞(R) 

 

E[ϕ(Yt)] =  E[ϕ(Y0)] 

   t 
1  2 

l 

 
t 

+ E ϕ(Ys−  + x)J̄s(µs− , Ys− , dx)   ds 
0 

 

 
Conclusion. 

t 

E  ϕ(Ys− )J̄s(µs− , Ys− , R) 
0 

ds . (5.8) 

Suppose that (5.3) admits a unique distributional solution γ; let η defined by (5.4). Suppose the 

existence of a (weak) solution X (resp. Y ) of (5.1) (resp. (5.7)). 

1. η is the unique solution (in the sense of distributions) of (5.5).   Moreover   R ϕ(x)η(t, dx) = 

E[ϕ(Yt)], t ≥ 0. 

2. We obtain the following identities for γ and η: 

γ(t, dx)ϕ(x)    =    E
 
ϕ(Xt) exp 

    t   

    t 

 

 

Λ(s, Xs)ds

   
]
 

  

= exp 
 
 

    t 

 

η(s, dx)Λ(s, x)ds 

  
 

ηt(ϕ) 

 

Using the above identities allows to design discrete time interacting particles systems with geo- 

metric interacting jump processes. In particular, in [36] the authors provide non asymptotic bias and 

variance theorems w.r.t. the time step and the size of the system, allowing to numerically approxi- 

mate the time-dependent family of Feynman-Kac measures γ. 

0 

  

+ ds 

E[ϕ(Yt)]. (5.9) 

− 
] 
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Y0 ∼ u0 

0 

i=0 t t 

0 R 

3.6 McKean SDEs in random environment 

3.6.1 The (S)PDE and the basic idea 

 
Let (Ω, F, (Ft), P) be a filtered probability space. We consider a progressively measurable random 

field (ξ(t, x)). We want to discuss probabilistic representations of 
 

∂tu = 
1 ∆(β(u)) + ∂tξ(t, x)u(t, x) , with β(u) = σ2

(u)u. 

u(0, ·)    =    u0. 

Suppose for a moment that ξ has random realizations which are smooth in time so that 

 
(6.1) 

 

∂tξ(t, x) = Λ(t, x; ω). (6.2) 

 
Under some regularity assumptions on Λ, (6.1) can be observed as a randomization of a particular 

case of the PDE (1.1). For each random realization ω ∈ Ω, the natural (double) probabilistic represen- 

tation is 

 Yt = Y0 + 
J t σ

 
u(s, Ys)

 
dWs 

 

  
  

ϕ(x)u(t, x)dx = Eω 

 

 

 
ϕ(Yt) exp 

     t 
 

 
 

 

 
s, Ys; ω) ds

} l

 

 

, for t ∈ [0, T ], 

where Eω denotes the expectation with frozen ω. However the assumption (6.2) is not realistic and 

we are interested in ∂tξ being a white noise in time. Let N ∈ N∗. Let B1, . . . , BN be N independent (Ft)-

Brownian motions, e1, . . . , eN be functions in C2
(R). In particular they are H−1-multiplier, i.e. 

the maps ϕ → ϕei are continuous in H−1
. 

We define the random field ξ(t, x) =   
   N

 
 

 
 

ei(x)Bi, where B0 ≡ t and we consider the SPDE (6.1) 

 

ϕ(x)u(t, x)dx = 
R 

1 t 

ϕ(x)u0(dx) + 
R 

 

ϕ (x)σ2 
R 

 

(u(s, x))dsdx + 

   t   

 
 

ϕ(x)u(s, x)ξ(ds, x)dx, 

(6.4) 

where the latter stochastic integral is intended in the Itô sense. 

 
3.6.2 Well-posedness of the SPDE 

The theorem below contains results taken from [11, 98]. 
 

Theorem 3.6.1. Suppose that β is Lipschitz. 

• Suppose that u0 ∈ L2
(R). There is a solution to equation (6.1). 

• Assume further that β is non-degenerate, i.e. β(r) ≥ ar2, r ∈ R, where a > 0. Then, there is a solution 

u to (6.1) for any probability u0(dx) (even in H−1
(R)). 

in the sense of distributions, i.e. 

(6.3) 

0 

Λ 

  

2 



 

 

2 

0 

t 

 

 J   

0 t 
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• There is at most one solution in the class of random fields u such that 
J

[0,T ]×R u
2
(t, x)dtdx < ∞ a.s. 

Remark 3.6.2.       • Previous result extends to the case of an infinite number of modes ei and for d ≥ 1. 

• We remark that the ∂tξ(t, x) is a colored noise (in space). The case of space-time white noise seems very 

difficult to treat. 

 
3.6.3 McKean equation in random environment 

Given a local martingale M , E(M ) denotes the Doléans exponential of M i.e. exp(Mt − 1 [M ]t), t ≥ 0. 

We say that a filtered probability space (Ω0, G, (Gt), Q) is a suitable enlarged space of (Ω, F, (Ft), P ), 

if the following holds. 
 

1. There is a measurable space (Ω1, H) with Ω0 = Ω × Ω1, G = F ⊗ H and a random kernel 

(ω, H) 1→ Qω(H) defined on Ω × H → [0, 1] such that the probability Q on (Ω0, G) is defined by 

dQ(ω, ω1) = dP(ω)Qω(ω1). 

2. The processes B1, . . . , BN are (Gt)- Brownian motions where Gt = Ft ∨ H. 

Definition 3.6.3. We say that the non-linear doubly-stochastic diffusion 

  Yt =    Y0 + 
J t 

Φ(u(s, Ys))dWs, 
J 

ϕ(x)u(t, x)dx    =    EQω   
ϕ(Y (ω, ·))E  J

0

 ξ(ds, Ys)(ω, ·)
   

, (6.5) 

 
ξ − Law(Y0) =    u0(dx), 

admits weak existence on (Ω, F, (Ft), P) if there is a suitably enlarged probability space (Ω0, G, (Gt), Q) an 

(Gt)-Brownian motion W such that (6.5) is verified. The couple (Y, u) will be called weak solution of (6.5). 

Remark 3.6.4. • We remark that the second line in (6.5) represents a sort of ξ-marginal weighted law 

of Yt. 
 

• Let (Y, u) be a solution to (6.5). Then u is a solution to (6.1). 

• Such representation allows to show that u(t, x) ≥ 0, dPdtdx a.e. and, at least if e0 = 0, E R u(t, x)dx = 

1, so that the conservativity is maintained at the expectation level. 
 

Definition 3.6.5. Let two measurable random fields ui : Ω × [0, T ] × R → R, i = 1, 2 on (Ω, F, P, (Ft)), and 

Y i, on a suitable extended probability space (Ωi , Gi, (Gi), Qi), i = 1, 2, such that (Y i, ui) are (weak) solutions 

of (6.5) on (Ω, F, (Ft), P). If we always have that (Y 1, B1, . . . , BN ) and (Y 2, B1, . . . , BN ) have the same 

law, then we say that (6.5) admits weak uniqueness (on (Ω, F, (Ft), P)). 

Theorem 3.6.6. Under the assumption of Theorem 3.6.1 equation (6.5) admits (weak) existence and unique- 

ness on (Ω, F, (Ft), P). 

t 
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0 

t 
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t0,x,α 
t0 
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0 s 

g(X 0 ) + f s, Xs
0
 , α(s, Xs

0
 ) ds 

X =  x , 

3.7 McKean representation of stochastic control problems 

3.7.1 Stochastic control problems and non-linear Partial Differential Equations 

There are several connections between stochastic control and McKean type SDEs, see e.g. [1]. Here, 

we propose an original (and maybe unexpected) point of view. Let us briefly recall the link between 

stochastic control and non-linear PDEs given by the Hamilton-Jacobi-Bellman (HJB) equation. We 

refer for instance to [108, 94, 42] for more details. Consider a state process (Xt0,x,α
) t0≤s≤T on [t0, T ]×Rd 

solution to the controlled SDE 
   

dXt0,x,α 

 

=    b
  

s, Xt0,x,α, α(s, Xt0,x,α
)
  

ds + σ
  

s, Xt0,x,α, α(s, Xt0,x,α
)
  

dW 
 

 

where W denotes the Brownian motion on [t , T ] × Rd, and α(s, Xt0,x,α
) represents Markovian control 

in the sense that the control at time t is supposed here to depend on t and on the current value of the 
state process: 

α ∈ At ,T := 
  

α : (t, x) ∈ [t0, T ] × Rd 1→ α(t, x) ∈ A ⊂ Rk

} 
, (7.2) 

A being a subset of Rk. For a given initial time and state (t0, x) ∈ [0, T ] × Rd, we are interested in 

maximizing, over the Markovian controls α ∈ At0,T , the criteria 

t ,x,α 
T 

t ,x,α t ,x,α
 

l
 

 
 

In the above criteria, the function f is called the running gain whereas g is called the terminal gain. 

Remark 3.7.1. At first glance, the set of control processes of the form αt = α(t, Xt) defined in (7.2) may 

appear too restrictive compared to a larger set of non-anticipative controls (αt) which may depend on all the 

past history of the state process (Xt). However, in the framework of Markov control problems (for which the 

state process (Xt0,x,a
) is Markov, as soon as the control is fixed to a deterministic value αt = a ∈ A, for all 

t ∈ [t0, T ]), it is well-known that the optimal control process (αt) lies in the set of Markovian controls verifying 

αt = α(t, Xt). Hence, considering controls of the particular form (7.2) is done here without loss of generality. 

To tackle this finite horizon stochastic control problem, the usual approach consists in introducing 

the associated value (or Bellman) function v : [t0, T ] × Rd → R representing the maximum gain one 

can expect, starting from time t at state x, i.e. 
 

v(t, x) :=   sup 
α∈At,T 

J(t, x, α) , for t ∈ [t0, T ] . (7.4) 

Note that the terminal condition is known, which fixes v(T, x) = g(x), whereas the initial condition 

v(t0, x) corresponds to the solution of the original minimization problem. The value function is then 

proved to verify the Dynamic Programming Principle (DPP) which consists in the backward induction 

  
   τ  t,x,α  t,x,α t,x,α 

] 
v(t, x) =  sup  E 

α∈At,τ 

f (s, Xs , α(s, Xs ))ds + v(τ, Xτ ) 
t 

, for any stopping time τ ∈]t, T ] . 

(7.5) 

t0 
T 

s 
(7.1) 

J(t0, x, α) := E . (7.3) 
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∇

 

tk 

 

Under continuity assumptions on b, σ, f , g, using DPP together with Itô formula allows to character- 

ize v as a viscosity solution of the HJB equation 
 

v(T, x) = g(x) 

∂tv(t, x) + H(t, x, ∇v(t, x), ∇2v(t, x)) = 0 , 
(7.6) 

where ∇ and ∇2 denote the gradient and the Hessian operators and the so-called, Hamiltonian, H 

denotes the real valued function defined on [0, T ] × Rd × Rd × Sd (Sd denoting the set of symmetric 

matrices in Rd×d), such that 
 

-T 1 
H(t, x, δ, γ) := sup 

a∈A 
f (t, x, a) + b(t, x, a) δ(t, x) + Tr[σσ (t, x, a)γ(t, x)] 

2 
. (7.7) 

Note that (7.6) is a non-linear PDE because of the nonlinearity in the Hamiltonian induced by the 

supremum operator. Besides, assuming that, for all (t, x) ∈ [t0, T ] × Rd, the supremum in (7.7) is 

attained at a unique maximizer, then the optimal control α∗ is directly obtained as a function of the 

Bellman function and its derivatives, i.e. 

α∗(t, x) = arg max f (t, x, a) + b(t, x, a)-T 
a∈A 

v(t, x) + Tr[σσ-T 
2 

(t, x, a) ∇2v(t, x)]

     

. (7.8) 

Except in some very concrete cases such as the Linear Quadratic Gaussian (LQG) setting (where the 

states dynamics involve an affine drift with Gaussian noise and the cost is quadratic both w.r.t. the 

control and the state), there is no explicit solution to stochastic control problems. To numerically 

approximate the solution of equation (7.6), several approaches have been proposed, mainly differing 

in the way the value function v is interpreted. Indeed, as pointed out, v can be viewed either as the 

solution to the control problem (7.4), or as a (viscosity) solution of the non-linear PDE (7.6). 

1. When v is defined as the solution to the control problem (7.4), a natural approach consists in dis- 

cretizing the time continuous control problem and apply the time discrete Dynamic Program- 

ming Principle [21]. Then the problem consists in maximizing over the controls, backwardly in 

time, the conditional expectation of the value function related to (7.5). The maximization at time 

step tk can be done via a parametrization of the control x 1→ αθ (x) via a parameter θ so that 

parametric optimization methods such as the stochastic gradient algorithm could be applied 

to maximize the expectation over θ. It remains to approximate the conditional expectations by 

numerical methods such as PDE, Fourier, Monte Carlo, Quantization or lattice methods. . . A 

great variety of numerical approximation schemes has been developed in the specific Bermu- 

dan option valuation test-bed [27, 81, 8, 109, 35, 26]. Alternatively, one can use Markov chain 

approximation method [72] which consists in a time-space discretization designed to obtain a 

proper Markov chain. 

2. In the second approach we recall that v is viewed as the solution of (7.6). The problem amounts 

then to discretize a non-linear PDE. Then one can rely on numerical analysis methods (e.g. 

finite differences, or finite elements) and use monotone approximation schemes in the sense 

  

1 



Chapter 3.   McKean Feynman-Kac probabilistic representations of non-linear partial differential 
equations 92 

 

 

  dXt0,x,α  
= −α(t, Xt0,x,α

)dt + σdWt 

g(X 0 α(t, Xt 
0

 ) − Dt + h(Xt 
0

 ) 

t 4 x 2 xx t x 

t0 

u(0, x)   =   g(x). 

of Barles and Souganidis [13] to build converging approximation schemes, e.g. [23, 46]. This 

type of approach is in general limited to state space dimension lower than 4. To tackle higher 

dimensional problems, one approach consists in converting the PDE into a probabilistic setting 

in order to apply Monte Carlo types algorithms. To that end, various kinds of probabilistic 

representations of non-linear PDEs are available. Forward Backward Stochastic Differential 

Equations (FBSDE) were introduced in [92] as probabilistic representations of semi-linear PDEs. 

Then various types of numerical schemes for FBSDE have been developed. They mainly differ 

in the approach of evaluating conditional expectations: [25] (resp. [50], [38, 90]) use kernel (resp. 

regression, quantization) methods. Recently, important progresses have been done performing 

machine learning techniques, see e.g. [40, 57]. Branching processes [85, 56] can also provide 

probabilistic representations of semi-linear PDEs via Feynman-Kac formula. Non-linear SDEs 

in the sense of McKean [84] are another approach that constitutes the subject of the present 

paper. 

3. Other approaches take advantage of both interpretations see for instance [43] and in [106]. 

 
3.7.2 McKean type representation in a toy control problem example 

In order to illustrate the application of MFKEs to control problems, we consider a simple example cor- 

responding to an inventory problem, for which the Hamiltonian maximization (7.7),(7.8) is explicit. 

The state (Xt)t∈[t0,T ] denotes the stock level evolving randomly with a control of the drift α: 

 

t t 

t ,x,α 
 

   T     
 

t  ,x,α 2 t  ,x,α  
 
 

 

Bound constraints on the storage level are implicitly forced by the penalization h. A target terminal 

level is indicated by the terminal gain g, supposed here to be Lebesgue integrable. The objective is 

then to follow a deterministic target profile (Dt)t∈[0,T ], on a given finite horizon [t0, T ]. When the 

admissible set in which the controls take their values A = R, one can explicitly derive the optimal 

control as a function of the value function derivative 

α∗(t, · 

which yields the following HJB equation 

1 
) = Dt + 

2 
(∂xv)(t, ·) , 

 

1 2 

∂tv + 
4 

(∂xv) 

 

+ Dt∂xv + 
σ2 

2 
∂xxv − h = 0 . 

 

Reversing the time, (with t0 = 0) gives (t, x) 1→ u(t, x) := v(T − t, x) solution of 

   
∂ u = 

1 (∂ u)
2 + σ

2 
∂ u + D ∂ u − h, 

 

T J(t0, x, α) = sup 
α∈At0,T 

E ) − dt . 

(7.9) 
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J 

 

R }   

 

We recover the framework of (1.1), with Λ(t, x, y, z) = 
1 |z|

2 

− 
h(x) and b(t, x, y) = −D . Consequently 

4   y y t 

the Bellman function v can be represented via 

 Yt = Y0 + σWt − 
J t Dsds 

  Y0  ∼ 
0 

g(x)dx 
g(y)dy  J 

J 
ϕ(x)v(t, x)dx = 

 for t ∈ [0, T ]. 

R g(y)dy E ϕ(YT −t) exp J T 
Λ

 s, YT −s, v(s, YT −s), ∇v(s, YT −s) ds , 

 
(7.10) 
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Introduction 

 
Une des visées de l’analyse stochastique est d’établir des connexions entre problèmes déterministes 

d’évolution potentiellement non linéaires et processus stochastiques. L’avantage que l’on peut tirer 

de ces connections réside dans la possibilité de montrer qu’une équation aux dérivées partielles 

(EDP) est bien posée ou de discuter la régularité de ses solutions, en utilisant des méthodes prob- 

abilistes. De plus, une telle correspondance peut apporter un éclairage nouveau sur l’approximation 

numérique des solutions, en particulier lorsque ces équations sont posées sur un espace de grande 

dimension. 

Dans le cas particulier des problèmes de Cauchy paraboliques du second ordre posés sur [0, T ] × 

Rd, étant donnés un horizon de temps T > 0 et une dimension spatiale d, les objets probabilistes qui 

émergent sont solutions d’équations différentielles stochastique markoviennes (EDS). Etant données 

deux fonctions b, σ définies sur [0, T ] × Rd à valeurs respectivement Rd et matrices, nous nous con- 

centrons sur deux types d’EDP: L’équation de Kolmogorov progressive (ou équation de Fokker-Planck) 

∂tu (t) =  
2
 

 

 

 

i

 

,j=1 

 

∂ij σσ-T (t, ·)ij u (t) 

 

 

—
 

i=1 

∂i (b (t, ·)i u (t)) ,  t ∈]0, T ] 

 
 

(1.2) 

u (0) = ν, 

où ν est une mesure donnée et l’équation de Kolmogorov rétrograde 
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σσ-T (t, ·)ij ∂ijv (t, ·) + 

 

  

i=1 

b (t, ·)i ∂iv (t, ·) = 0,  t ∈ [0, T [ 

 
 

(1.3) 

v (T, ·) = g, 

où g est une fonction definie sur Rd à valeurs dans R. Il est bien connu que les EDP (1.2) et (??) 

peuvent être représentées en utilisant les solutions Xs,x, lorsqu’elles existent, de l’EDS 

Xs,x = x + 
t 

b (r, Xs,x) ds + 
s 

t 

σ (r, Xs,x) dWr,  t [0, T ], (1.4) 
s 

pour tout (s, x) ∈ [0, T ] × Rd, où W est un mouvement brownien. 
Plus précisément, la fonction u : t 1→ 

J
Rd Law

 
X ν (dx)  fournit une solutions à valeurs 

0,x 
 

mesures de (1.2).   Le cas b ≡ 0, σ ≡ Id donnant le lien classique entre mouvement brownien et 
équation de la chaleur. Les équations du type (1.2) sont des EDP conservatives, dans le sens où la masse 

de la fonction t 1→ 
J

Rd u (t) (dx) est constante. 

t 

d d 

d d 
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s 

  

s 

Yt = g XT + F (r, Xr    , Yr , Zr    ) dr − Zr    dWr, t ∈ [s, T ], (1.5) 

v (T, ·) = g, 

1 

t t 

(1.6) 

De plus, les EDP du type (1.3) sont généralement représentées par une formule de type Feynman- 

Kac. En particulier, si v est une solution régulière de (1.3) alors 

v(s, x) = E g  Xs,x , (s, x) ∈ [0, T ] × Rd. 

Il est possible d’obtenir des représentations probabilistes de versions non-linéaires des précédentes 

EDP. Dans ce cas, d’autres objets probabilistes émergent. Parmi beaucoup d’autres, deux classes de 

processus de représentation sont d’une importance particulière. 

1. Les solutions d’EDS de McKean, à savoir des EDS dans lesquelles les coefficients ne dépen- 

dent pas uniquement du temps et de la position des particules, mais également de leurs lois 

(marginales). De tels objets fournissent des solutions de versions non-linéaires de l’EDP (1.2), 

voir [85]. Dans le Chapitre 3, nous étudierons le fonctionnement de telles représentations, avec 

d’importantes extensions à une grande classe d’EDP non conservatives. 

2. Les solution d’ Equations différentielles stochastiques progressives rétrogrades (EDSPR). Une EDSPR 

est un système d’équations composé d’une EDS progressive et d’une équation différentielle 

stochastique avec condition terminale, i.e. une EDS rétrograde (EDSR), dans le sens de Pardoux 

et Peng, voir par exemple [91]. Une solutions d’EDSR est en général un couple de processus 

progressivement mesurables.   Dans cette introduction nous ne mentionnerons que le cas où 

l’EDS progressive (markovienne) est du type (0.3), i.e. le cas où EDS et EDSR sont découplées. 

En général, l’EDSR est définie par un driver F : [0, T ] ×Rd ×R×Rd → R et une fonction terminale 

g. Plus précisément, résoudre la BSDE (markovienne) avec driver F et fonction terminale g se 

réduit à trouver un couple de processus progressivement mesurables (Y s,x, Zs,x) tels que 

s,x s,x T 
s,x s,x s,x 

T 
s,x 

 

pour tout (s, x) ∈ [0, T ] × Rd. 

Ces équations sont des outils probabilistes permettant de représenter les solutions de viscosité 

de généralisations semi-linéaires de (0.2), i.e. 

∂tv (t, ·) + 
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σσ-T (t, ·)ij ∂ijv (t, ·) + 

 

  

i=1 

 

b (t, ·)i ∂iv (t, ·) + F t, ·, v (t, ·) , σ (t, ·)-T ∇xv (t, ·)   = 0 

 

 

pour tout t ∈ [0, T [. Sous des hypothèses générales, la fonction v := (s, x) 1→ Y s,x fournit une 

solution de viscosité de (1.6), voir par exemple [92]. 

Si σ est non-dégénérée, une importante particularité des EDSR de type (1.4)-(1.5) réside dans la pos- 

sibilité de changer le processus progressif X (devenant solution d’une EDS avec une autre dérive b) 

sans modifier la fonction v := (s, x) 1→ Y s,x, à condition de remplacer le driver F par 

F := (t, x, v, z) 1→ F (t, x, v, z) −
 

σ−1
(t, x) 

 
 b − b

   
(t, x), z

   
. 

d d 

 



 

x 

 

→ s T 

  

 

f 

Ce qui précède signifie qu’une EDS semi-linéaire donnée peut être représentée par différentes EDSR. 

Sur le plan théorique, ces représentations sont équivalentes. Sur le plan numérique, le choix d’une 

dérive ad hoc est cruciale. En effet, les méthodes numériques classiques permettant de résoudre des 

EDSR reposent sur des schémas progressifs rétrogrades. Dans ces schémas sont simulées des trajectoires 

du processus progressif choisi, ces trajectoires étant utilisées pour estimer, de manière rétrograde en 

temps, des espérances conditionnelles par moindres carrés Monte-Carlo, voir e.g. [50]. 

La solution de l’EDSR est donnée par ces espérances conditionnelles, estimées par régressions 

Monte-Carlo. Les trajectoires du processus progressif constituant une grille d’estimation. Lorsque la 

dimension d de l’espace d’état augmente, il est nécessaire de simuler et de garder en mémoire un 

grand nombre de trajectoires du processus progressif de manière à obtenir une bonne approximation 

de la solution. Pour contourner le problème de la dimension, il est nécessaire de guider le processus 

progressif de manière à explorer efficacement l’espace d’état. 

Une EDP pour laquelle le choix de la dérive guidant la grille d’estimation est naturel, est l’équation 

d’Hamilton-Jacobi-Bellman (HJB), lorqu’elle est semi-linéaire. En toute généralité, l’équation de HJB est 

une EDP potentiellement non-linéaire utilisée pour étudier des problèmes de contrôle stochastique. 

L’équation s’écrit 

∂tv (t, ·) + H 
 
t, ·, v (t, ·) , ∇xv (t, ·) , ∇2 v (t, ·)

  
= 0 

 
(1.7) 

v (T, ·) = g, 

où le hamiltonien H s’écrit 

H : (t, x, δ, γ) 1→ inf  f (t, x, a) + 
 
 

 
 
 

1 
b (t, x, a)i δi + σσ-T (t, x, a)ij γij  

 
 

 
, (1.8) 

a∈A  
i=1 

2 
i,j=1 

avec A ⊆ Rk, étant donné k ∈ N∗. L’équation (1.7) est en fait l’équation de la programmation dy- 

namique associée au problème de contrôle stochastique avec fonction valeur 

 
v : (t, x) inf E 

α 

    T 
 

 

 

s, Xt,x,α, αs
 

 
ds + g Xt,x,α

  
 
 
, (1.9) 

où Xt,x,α est une solution, lorsqu’elle existe, de l’EDS contrôlée 

dXt = b (t, Xt, αt) dt + σ (t, Xt, αt) dWt, t ∈ [0, T ], (1.10) 

débutant au temps t ∈ [0, T ] avec valeur x ∈ Rd, étant donné un processus progressivement mesurable 

α à valeurs dans A. 

Sous des hypothèses générales, v est l’unique solution de viscosité de (0.6), voir par exemple 

[108, 42, 94]. 

L’équation (1.7) est une EDP semi-linéaire lorsque le contrôle n’intervient pas dans la fonction σ. 

Par ce qui précède, les solutions de viscosité peuvent alors être représentées à l’aide d’EDSR. Dans 

ce contexte, le choix naturel de dérive mentionné auparavant est guidé par le problème de contrôle 

stochastique. 
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·  

  

− 

Notre idée est de sélectionner une dérive qui localise le processus progressif dans les régions 

visitées par les trajectoires optimalement contrôlées. Ainsi, le processus optimalement contrôlé est 

un bon candidat pour notre grille d’estimation, en terme de coût de calcul. Toutefois, ce processus ne 

peut être simulé de manière progressive puisque les contrôles sont découverts de manière rétrograde 

en temps. 

Cette observation suggère la stratégie suivante pour utiliser effectivement le processus optimale- 

ment contrôlé en tant que grille d’estimation. Si des informations sont disponibles sur sa loi ter- 

minale, l’idée est de le simuler de manière rétrograde en temps. Ceci permettra en particulier de 

contourner les problèmes de mémoire et de dimension. 

Avec cette approche, nous nous attendons à ce que le nombre de trajectoires nécessaires pour 

estimer la fonction valeur décroisse significativement. 

Dans le cas général d’EDP semi-linéaires du type (1.6), une dérive ad hoc ayant été choisie pour 

guider le processus progessif d’une EDSR, une manière de tenir compte de la condition terminale g 

est de le simuler de manière rétrograde en temps. Sur le plan théorique, ceci requiert la mise en place 

de representations complètement rétrogrades d’EDP semi-linéaires, à savoir des représentations à base 

d’EDSR (markoviennes) dans lesquelles le processus progressif choisi ξ évolue de manière rétrograde 

en temps. Bien que la dérive soit fixée, la loi du processus X n’est pas déterminée, puisqu’aucune 

condition initiale X0 n’est fixée. En accord avec le précédent objectif, ξ sera le retourné en temps d’un 

processus markovien X. 

Le retournement des processus markoviens a été exploré par de nombreux auteurs, voir par ex- 

emple [55] pour le cas des diffusions en dimension finie, [45] pour le cas des diffusions en dimension 

infinie et [64] pour le cas des processus à sauts. Nous mentionnons également les deux preprints 

récents [31, 32] en relation avec l’entropie. 

Etant donné un processus de diffusion X avec coefficients b, σ, [55] fournit des conditions suff- 

isantes sur les coefficients et sur les densités marginales (si elles existent) (qt)t∈[0,T ] de X garantissant 

que X := XT −· soit également un processus de diffusion. De plus, il est prové que X est une solution 

(en loi) de l’EDS 
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i∈[[1,d] 

dr+ σ 
0 

T − r, Xr 

(1.11) 

dβr, 

où β est un mouvement brownien. 

Pour simuler X, (1.11) ne peut être utilisée en pratique. En effet, même en choisissant une loi 

terminale XT compatible avec g, les lois marginales inconnues de X apparaissent dans (1.11). 

Une idée pour dépasser cette limitation consiste à remplacer l’équation (1.11) par une EDS de type 

McKean, dans laquelle les lois marginales apparaissant dans la dynamique du retourné en temps ne 
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(1.12) 

sont plus des paramètres exogènes mais une partie de la solution, i.e. 
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où ν est une probabilité donnée, dont la solution est le couple (ξ, p) où p est la fonction à valeurs 

probabilités telle que pour tout t ∈]0, T [, pt admet pt pour densité. Par [55], le couple   X, qT −·    est 

une solution de (1.12) lorsque ν est la loi de XT . 

Si l’EDS de Mckean (1.12) est bien posée, l’unique solution ξ coincidera avec le processus recher- 

ché X. Dans ce cas, (1.12) fournit une dynamique intrinsèque pour X. 

Au delà du retournement des processus de diffusion et des problèmes de contrôle stochastique, 

l’étude des questions d’existence et d’unicité pour l’équation (1.12) a son intérêt propre. En effet, 

cette equation fournit une représentation probabiliste de l’équation de Fokker-Planck avec condition 

terminale 

∂tu (t) =  
2
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,j=1 

 

∂ij σσ-T (t, ·)ij u (t) 

 

 
—

 

i=1 
∂i (b (t, ·)i u (t)) ,  t ∈ [0, T [ 

 
 

(1.13) 

u (T ) = ν. 

Les problèmes d’évolution avec condition terminale tels que (1.13) émergent dans de nombreuses 

applications impliquant des problèmes inverses, en particulier en sciences physiques, avec l’exemple 

de la conduction de chaleur [14], des exemples en science des matériaux [95] ou encore en hydrologie 

[5]. Dans ces applications, la configuration terminale d’un système physique (modélisé par un pro- 

cessus de diffusion) est observée; ainsi les questions d’unicité (et de stabilité) sont plus importantes 

que la question de l’existence: le but est de determiner des configurations initiales admissibles. Les 

problèmes d’unicité et de stabilité ont été en particulier traités dans la littérature par des techniques 

de régularisation, voir e.g [107, 74]. Toutefois, un faible nombre de résulats concernant l’unicité 

et l’approximation des solutions de l’équation générale (1.13) sont disponibles et les méthodes de 

preuves sont purement analytiques. Trouver une représentation probabiliste pourrait apporter un 

regard nouveau sur (1.13) et l’approximation de ses solutions. 

Dans le Chapitre 1, le problème de l’unicité pour l’EDP (1.13) est abordé avec des méthodes ana- 

lytiques et probabilistes. De plus, nous étudions les connections entre l’EDP (1.13) et l’EDS de type 

McKean (1.12). Ces connections sont utilisées pour obtenir des résultats d’existence et d’unicité pour 

(1.12). Il apparaît en particulier que l’unicité pour (0.12) est un outil fondamental pour étudier l’EDS 

de type McKean; ceci mis en évidence par la Proposition 1.3.2 qui établit que si (ξ, p) est une solution 

de (1.12) alors pT −· est une solution de l’EDP (1.13). Plus précisément, les contributions du Chapitre 

1 sont de deux natures: 

d d 

 



 

 

1. L’unicité pour l’EDP (1.13) est abordée dans différentes classes de coefficients b, σ et différentes 

classes de solutions à valeurs mesures. Nous obtenons essentiellement trois types de résultats: 

S’agissant du premier, l’unicité pour (1.13) est prouvée parmi les solutions ayant valeur ini- 

tiale dans une certaine classe C de mesures finies, supposant que l’équation de Fokker-Planck 

progressive (1.2) admet au plus une solution avec valeur initiale dans C. En particulier nous 

traitons l’unicité parmi les solutions à valeurs mesures positives finies, ayant un multiple d’une 

masse de Dirac pour valeur initiale. Nous obtenons des résultats dans le cas de coefficients 

Lipschitz potentiellement dégénérés et dans le cas de coefficients bornés, non-dégénérés et po- 

tentiellement irréguliers. Nous utilisons ici des méthodes purement probabilistes. Ces résultats 

sont l’objet des Theorèmes 1.3.9 et 1.3.10. 

S’agissant du deuxième, l’unicité est prouvée dans la classe des solutions à valeurs mesures 

finies, sans supposer l’unicité pour l’EDP progressive. Nous traitons le cas général de coef- 

ficients indépendants du temps, bornés, Hölder et non-dégénérés avec extension au cas de 

coefficients indépendants du temps par morceaux. Nous utilisons ici une méthode analytique 

reposant sur une propriété cruciale du semigroupe généré par l’opérateur de diffusion associé 

aux coefficients b, σ. Ces résultats sont l’objet du Théorème 1.3.13 du Corollaire 1.3.16. 

Finalement, nous abordons la situation d’une EDP associée à un semigroupe inhomogène en 

temps de type Ornstein-Uhlenbeck. Ici, la méthode consiste à opérer un changement de variable 

dans l’EDP initiale qui permet de se ramener au cas de l’équation de la chaleur rétrograde pour 

laquelle l’unicité est aisément obtenue en utilisant la transformée de Fourier comme dans le cas 

progressif, voir Théorème 1.3.19 . 

2. Nous prouvons des résultats d’existence et d’unicité pour l’EDS de type McKean (1.12). Nous 

commençons par lier existence et unicité pour l’EDP (1.13) et l’EDS (1.12). Ensuite, nous dis- 

cutons existence et unicité en loi pour (1.12) dans le cas de coefficients bornés réguliers, voir 

Théorème 1.4.15. Finalement, nous établissons des résultats d’existence forte et d’unicité trajec- 

torielle dans le cas Ornstein-Uhlenbeck, voir Théorème 1.4.19. 

Revenant au contrôle stochastique et aux considérations suivant (1.10), les résultats d’existence et 

d’unicité obtenus dans le Chapitre 1 donnent un point de départ théorique pour obtenir une représen- 

tation totalement rétrograde de l’équation d’Hamilton-Jacobi-Bellman impliquant le retourné en temps 

d’une approximation du processus optimalement contrôlé. Toutefois, ceci amène des défis tant sur 

le plan théorique que numérique. 

1. Sur le plan théorique, Il est nécessaire de trouver une classe ad hoc de dérives approchant 

raisonnablement celle du processus optimalement contrôlé et nous permettant d’utiliser les 

résultats obtenus dans le Chapitre 1. 

2. Sur le plan numérique, nous souhaitons approcher le processus optimalement contrôlé. Suiv- 

ant les méthodes développées dans le Chapitre 1, l’apparition de densités marginales dans le 



 

  

 

    
 
 

  

 

 ν̄Q 

(T ) = Q , 

dt 

 d m (t) = a (t) m (t) + c (t) ,  t ∈ [0, T [ 

1 

v t, ξt = E H s, ξs, v s, ξs 

problème de McKean est un important obstacle; le coût de leur estimation (non paramétrique) 

compensant le gain obtenu en termes de mémoire et de dimension, see e.g. [103]. Par ailleurs, 

il s’avère nécessaire d’avoir des informations sur la loi terminale; une telle information étant 

hautement dépendante de la nature du problème d’optimisation en jeu, en particulier du coût 

terminal. 

La classe des dérives affines nous permet de remplir les précédents objectifs. Dans le Chapitre 2, 

nous nous intéressons au choix d’une dérive affine dépendant du temps b : (s, x) → a (s) x + c (s) où 

a (resp. c) est une fonction continue par morceaux définie sur [0, T ] à valeurs dans Md (R) (resp. Rd). 

Dans un premier temps, nous obtenons une représentations totalement rétrograde pour des EDP 

semi linéaires générales du type 

∂tv (t, ·) + 
2
 

 

 

 

i

 

,j=1 

σσ-T (t)ij ∂ijv (t, ·) + H (t, ·, v (t, ·) , ∇xv (t, ·)) = 0,  t ∈ [0, T [ 
 

(1.14) 

v (T, ·) = g. 

où σ est une fonction déterministe continue à valeurs matricielles. 

Le concept de représentation totalement rétrograde évoqué auparavant, repose sur un processus 

ξ évoluant de manière rétrograde vis à vis du temps de l’EDP (1.14). 

Pour définir ξ, nous fixons une mesure gaussienne ν qui sera la loi de ξ0.  Soit m̄ ν  (resp.  Q̄ν ) la 

moyenne (resp. la matrice de covariance) de la mesure ν. Le processus ξ sera alors l’unique solution 

forte de 

ξt = ξ0 − 
t 

b (T − r, ξr) + σσ-T 
 

(T − r) Q (T − r)−1 (ξr − m (T − r)) dr + 
t 

σ (T − r) dβr, t ∈ [0, T ], 

(1.15) 

où β est un mouvement brownien, t 1→ m(T − t) = E (ξt) and t 1→ Q (T − t), la matrice de covariance 

de ξt. Il est aisé de prouver existence et unicité pour l’EDS (1.15) et le fait que m : [0, T ] 1→ Rd, 

Q : [0, T ] 1→ Sd (R) soient solutions des EDO rétrogrades suivantes 

 

 
 

dt 

m (T ) = m̄ ν , 

 d Q (t) = Q (t) a (t)-T + a (t) Q (t) + σσ-T (t) ,  t ∈ [0, T [ 

à condition que Q(0) soit définie positive. 

(1.16) 

 

 
(1.17) 

Sous des hypothèses générales concernant les fonctions H, g, le théorème ?? établit qu’une fonc- 

tion v : [0, T ] × Rd 1→ R continue en temps et continûment différentiable en espace avec gradient à 

croissance polynomiale, est une solution de viscosité de (1.14) si et seulement si pour tout t ∈ [0, T ] 
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  , ∇xv s, ξs − b s, ξs , ∇xv s, ξs ds + g ξT ξt , 

(1.18) 
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t 0 

where ξ := ξT −·. 

La représentation totalement rétrograde de (1.14) consiste en le couplage (1.15)-(1.18). Remar- 

quons ici que le lemme 2.3.6 établit que ξ est en fait le retourné en temps de la solution d’une EDS du 

type 

 
 

avec loi initiale non fixée. 

dXt = b (t, Xt) dt + σ (t) dWt, (1.19) 

Dans le corollaire 2.4.6, ce résultat est appliqué au cas où l’EDP (1.14) est l’équation de HJB associé 

à un problème de contrôle avec coefficient de diffusion σ. Dans ce cas, le couplage (1.15)-(1.18) 

devient une formule de représentation pour la fonction valeur du problème de contrôle mentionné ci- 

dessus. Ceci nous mène à suggérer un algorithme heuristique pour résoudre ce problème de contrôle, 

i.e. pour approcher sa fonction valeur et déterminer une stratégie optimale. 

Notre approche consiste à déterminer un processus ξ solution de (1.15), dont la dérive affine b̃ (et 

donc a et c) est découverte simultanément avec la fonction valeur, b̃ étant déterminée par régression 

linéaire, à chaque pas de temps, de manière à être aussi proche que possible de la dérive du proces- 

sus optimalement contrôlé. Le processus ξ obtenu sera notre grille d’estimation, générée de manière 

rétrograde and supposée explorer efficacement les régions d’intérêt du problème de contrôle. Cette 

grille est adaptative dans le sens où elle utilise, à chaque pas de temps, l’estimation obtenue de la 

fonction valeur, en particulier de son gradient. Ainsi, cette méthode remplit l’objectif d’exploration 

parcimonieuse de l’espace d’état. Elle a aussi l’avantage de contourner le problème de mémoire 

puisqu’il n’est pas nécessaire de stocker la grille d’estimation. Finalement, la précision de la procé- 

dure est illustrée sur un problème de contrôle stochastique intervenant dans le contexte de la gestion 

de la demande dans les réseaux électriques. 

Dans le Chapitre 3, nous nous concentrons sur l’utilisation des solutions d’EDS de type McKean 

pour représenter les solutions d’extensions non-conservatives (et non linéaires) de l’équation (1.2). 

Plus précisément, nous considérons des versions perturbées de (1.2) de la forme 
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(1.20) 

 
u (0, ·) = ν, 

+Λ (t, ·, u (t, ·) , ∇xu (t, ·)) u (t, ·) ,  t ∈]0, T ] , 

 

où Λ : [0, T ] × Rd × R × Rd 1→ R. Les objets probabilistes qui émergent pour représenter (1.20) sont 

solutions de l’EDS de type McKean suivante 
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(1.21) 
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, t ∈]0, T ] , ds 
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Λ ϕ(Yt) exp 

d d 

ϕ(x)u(t, x)dx = E s, Ys, u(s, Ys), ∇u(s, Ys) 



 

pour toute fonction test à valeurs réelles ϕ continue bornée. La seconde ligne apparaissant dans 

(1.21), est appelée linking equation et peut être vue comme une extension trajectoire-dépendante de la 

dépendance vis à vis de la loi observée dans les EDS de type McKean usuelles (à savoir lorsque 

Λ = 0). Ceci ouvre la voie à de nouvelles méthodes numériques fondées sur des systèmes de particules 

en interaction. Nous détaillons ces méthodes et donnons certaines classes d’EDP non-conservatives 

pour lesquelles la précédente représentation présente un intérêt. 
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