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Titre : Contr les historiques dans les essais cliniques en oncologie  

Mots clés : contrôle historique, essai clinique, inférence causale, oncologie, données de vie réel 

Résumé : L'essai contrôlé randomisé représente la méthode de référence pour établir l'effet causal des 

traitements expérimentaux par rapport aux traitements de contrôle ou aux placebos. Néanmoins, des 

problèmes éthiques ou de faisabilité peuvent entraver le processus de randomisation, en particulier dans le 

développement de médicaments en oncologie. Les autorités réglementaires reconnaissent ces défis et ont 

accordé des approbations conditionnelles pour des essais à bras unique, avec l'exigence de preuves 

confirmatoires ultérieures à partir d'études post-approbation. 

Dans ce contexte, les bras de contrôle historique ont émergé comme une approche complémentaire aux essais 

cliniques. En fournissant des informations contextuelles et en améliorant l'interprétation des résultats des essais 

à bras unique, les bras de contrôle historique visent à réduire le biais dû au manque de randomisation. Bien 

que diverses méthodes statistiques dans le cadre de l'inférence causale aient été proposées, il existe 

actuellement un manque de directives régissant leur application dans le processus de développement de 

médicaments. L'objectif de cette thèse est d'évaluer la faisabilité des bras de contrôle historique, en mettant 

l'accent sur la disponibilité des données historiques et les méthodes d'analyse statistique appropriées. 

Nous avons d'abord mené une revue systématique de l'application des bras de contrôle historique dans le 

développement de médicaments en oncologie en Europe. Nos résultats indiquent que les contrôles historiques 

ont été activement soumis aux autorités réglementaires ; cependant, ils ne sont pas systématiquement 

considérés comme des preuves favorables. Nous avons identifié des limitations significatives et formulé des 

suggestions correspondantes concernant la conception de l'étude, la sélection des données et l'application des 

méthodes statistiques. 

S'appuyant sur les enseignements tirés de la revue, nous avons mené deux études de cas. La première étude 

de cas examine un essai à bras unique observationnel qui a évalué l'efficacité du bloc du plan du muscle érecteur 

du rachis dans la réduction de la douleur post-opératoire lors de la chirurgie du cancer du sein. Nous avons 

construit un bras de contrôle historique en utilisant des données issues d'essais cliniques précédents et appliqué 

une analyse de score de propension pour réduire le biais de confusion. La deuxième étude de cas se concentre 

sur un essai randomisé contrôlé examinant Olaparib plus Bevacizumab en tant que traitement d'entretien de 

première ligne dans le cancer de l'ovaire. Ici, nous visons à émuler le bras de contrôle en exploitant les données 

observationnelles de la base de données du monde réel ESME, en utilisant le cadre de l'essai cible. 

Cette thèse contribue à faire progresser notre compréhension de la faisabilité et de l'applicabilité des bras de 

contrôle historique, en mettant en lumière leurs avantages potentiels et leurs applications appropriées dans le 

domaine du développement de médicaments en oncologie. 
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Title : Historical control arms in oncology clinical trials  

Keywords : historical control arm, clinical trial, causal inference, oncology, real-world data  

Abstract : Randomized controlled trials are the gold standard for establishing the causal effect of experimental 

treatments compared to reference treatments or placebos. Nevertheless, ethical or feasibility issues can hinder 

the randomization process, especially in oncology drug development. Regulatory bodies acknowledge these 

challenges and have granted conditional approvals for single-arm trials, with the requirement of further 

confirmatory evidence from post-approval studies. 

Within this context, historical control arms have emerged as an approach to complement clinical trials. By 

providing contextual information and improving the interpretation of results from single-arm trials, historical 

control arms aim to reduce the bias due to the lack of randomization. While various statistical methods in the 

framework of causal inference have been proposed, there is currently a lack of guidelines governing their 

application in the drug development process. The objective of this thesis is to evaluate the feasibility of historical 

control arms, focusing on historical data availability and appropriate statistical analysis methods. 

We first conducted a systematic review of the application of historical control arms in oncology drug 

development in Europe. Our findings indicate that the historical controls have been actively submitted to 

regulatory bodies; however, they are not consistently deemed as supportive evidence. We identified significant 

limitations and make corresponding suggestions regarding study design, data selection and the application of 

statistical methods. 

Building upon the insights gained from the review, we conducted two case studies. The first case study 

investigates an observational single-arm trial that evaluated the effectiveness of erector spinae plane block in 

reducing post-operative pain in breast cancer surgery. We constructed a historical control arm using data from 

previous clinical trials and applied propensity score analysis to reduce the confounding bias. The second case 

study focuses on a randomized controlled trial examining Olaparib plus Bevacizumab as first-line maintenance 

therapy in ovarian cancer. Here, we aim to emulate the control arm by leveraging observational data from the 

real-world database ESME, employing the target trial framework. 

This thesis contributes to advancing our understanding of the feasibility and applicability of historical control 

arms, shedding light on their potential benefits and appropriate applications in the field of oncology drug 

development. 





There is only one heroism in the world:

to see the world as it is, and to love it.

Il n’ya qu’un héroïsme au monde :

c’est de voir le monde tel qu’il est et de l’aimer.

— Romain Rolland
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Abstract

Randomized controlled trials are the gold standard for establishing the causal effect of

experimental treatments compared to reference treatments or placebos. Nevertheless,

ethical or feasibility issues can hinder the randomization process, especially in oncol-

ogy drug development. Regulatory bodies acknowledge these challenges and have

granted conditional approvals for single-arm trials, with the requirement of further

confirmatory evidence from post-approval studies.

Within this context, historical control arms have emerged as an approach to com-

plement clinical trials. By providing contextual information and improving the inter-

pretation of results from single-arm trials, historical control arms aim to reduce the

bias due to the lack of randomization. While various statistical methods in the frame-

work of causal inference have been proposed, there is currently a lack of guidelines

governing their application in the drug development process. The objective of this

thesis is to evaluate the feasibility of historical control arms, focusing on historical

data availability and appropriate statistical analysis methods.

We first conducted a systematic review of the application of historical control

arms in oncology drug development in Europe. Our findings indicate that the his-

torical controls have been actively submitted to regulatory bodies; however, they are

not consistently deemed as supportive evidence. We identified significant limitations

and make corresponding suggestions regarding study design, data selection and the

application of statistical methods.

Building upon the insights gained from the review, we conducted two case studies.

The first case study investigates an observational single-arm trial that evaluated the

effectiveness of erector spinae plane block in reducing post-operative pain in breast

cancer surgery. We constructed a historical control arm using data from previous

clinical trials and applied propensity score analysis to reduce the confounding bias.

The second case study focuses on a randomized controlled trial examining Olaparib

plus Bevacizumab as first-line maintenance therapy in ovarian cancer. Here, we aim to



emulate the control arm by leveraging observational data from the real-world database

ESME, employing the target trial framework.

This thesis contributes to advancing our understanding of the feasibility and ap-

plicability of historical control arms, shedding light on their potential benefits and

appropriate applications in the field of oncology drug development.

Key words: historical control arm, clinical trial, causal inference, oncology, real-

world data
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16 Chapter 1. Introduction

Clinical research lays the groundwork for progress in medicine and serves as the

foundation for evidence-based practice. In the evidence hierarchy (Figure 1.1), the

top section consists of filtered (secondary) evidence, including systematic reviews,

meta-analyses, and critical appraisals. The section below includes unfiltered (pri-

mary) evidence, including randomized controlled trials (RCTs), cohort studies, case-

controlled studies, case series, and case reports (Burns et al., 2011; Murad et al.,

2016). Alongside meta-analyses, high-quality RCTs with a low risk of systematic er-

ror provide the highest level of evidence. Randomized controlled trials are considered

the gold standard for effectiveness research by demonstrating the superiority of a new

treatment over an existing standard treatment or a placebo (Hariton & Locascio,

2018). In clinical research RCTs are used to answer patient-related questions, and in

the development of new drugs they form the basis for regulatory authorities’ decisions

on approval (Kabisch et al., 2011).

Figure 1.1: Hierarchy of evidence in evidence-based medicine

This chapter serves as an introduction to randomized controlled trials, focusing on

the rationale behind using historical control arms when randomization is not feasible.

Besides, we provide the definition of historical control arms in various aspects and

discuss the statistical issues associated with historical control arms.
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• Section 1.1 provides an overview of randomized controlled trials and their

conceptual framework, highlighting their advantages and limitations.

• Section 1.2 introduces the definition of historical control arms and discusses

various aspects of their design.

• Section 1.3 succinctly presents the context of the thesis and outlines the struc-

ture of the manuscript.

1.1 Gold standard: randomized controlled trials

1.1.1 General introduction

A randomized controlled trial is a prospective study that measures the efficacy of an

intervention or treatment (Figure 1.2). Subjects are randomly assigned to either an

experimental group or a control group. The control group receives a placebo or sham

intervention, while the experimental group receives the intervention being studied.

Figure 1.2: Randomized controlled trial

The first published RCT in medicine appeared in the 1948 paper entitled “Strep-

tomycin treatment of pulmonary tuberculosis”, which described a Medical Research

Council investigation (Geoffrey, Marshall, 1948). By the late 20th century, RCTs

had been recognized as the standard method for “rational therapeutics” in medicine

(Meldrum, 2000).

In RCTs, the randomization process serves to reduce bias and provides a robust

framework for examining cause-effect relationships between interventions and out-

comes. By balancing participant characteristics between groups, both observed and

unobserved, randomization enables the attribution of any outcome differences to the

study intervention. This distinguishing feature is not feasible with other study de-

signs.
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The advantages of proper randomization in RCTs include:

• Minimization of selection bias: This type of bias can occur if investigators

consciously or unconsciously enroll patients preferentially in certain treatment

arms. An effective randomization procedure should be unpredictable, prevent-

ing investigators from guessing the group assignment for the next subject based

on prior treatment assignments. The risk of selection bias is highest when pre-

vious treatment assignments are known (as in unblinded studies) or can be

inferred (e.g., if a drug has distinct side effects).

• Minimization of allocation bias (or confounding): Allocation bias arises when

covariates that influence the outcome are not evenly distributed between treat-

ment groups, confounding the treatment effect with the effect of the covariates.

If the randomization procedure leads to an imbalance in outcome-related covari-

ates across groups, estimates of effect may be biased if not adjusted for these

covariates, especially when they are unmeasured and impossible to account for.

When designing an RCT, careful consideration should be given to selecting the target

population, interventions to be compared, and the desired outcomes. Power calcula-

tions are performed to determine the number of participants needed to reliably detect

the existence of a relationship. Subsequently, participants are recruited and randomly

assigned to either the intervention or the comparator group.

It is essential to ensure that at the time of recruitment, there is no knowledge of

the participant’s allocation to a specific group. This is achieved through concealment,

often facilitated by automated randomization systems, such as computer-generated

methods. Blinding of participants, doctors, nurses, or researchers is also common

practice in RCTs to further minimize bias by preventing knowledge of the treatment

allocation.

RCTs can be analyzed using various approaches, such as intention-to-treat anal-

ysis, where subjects are analyzed in the groups to which they were randomized, or

per-protocol analysis, which includes only participants who completed the originally

allocated treatment. Intention-to-treat analysis is often regarded as the least biased

approach. All RCTs should have pre-specified primary outcomes, be registered in

clinical trials databases, and obtain appropriate ethical approvals.

The CONSORT (Consolidated Standards of Reporting Trials) 2010 Statement

provides guidelines for reporting parallel two-group RCTs, encompassing four phases:
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enrollment, allocation, intervention, follow-up, and data analysis as shown in Figure

1.3 (Schulz et al., 2010).

Figure 1.3: Four phases (enrollment, allocation, intervention, follow-up,
and data analysis) of a parallel randomized controlled trial

1.1.2 Potential outcome framework

Following a general introduction, we describe a conceptual framework for RCTs.

The fundamental framework to uncover the causal effect of treatment from an

RCT is the potential outcome framework (POF), which is also called the Rubin

Causal Model (Rubin, 1974). In this framework, an experiment has an intervention

or a treatment, and we are interested in its effect on an outcome or multiple outcomes.

In a study with n subjects indexed by i(i = 1, ..., n), considering a treatment with

two levels (1 for the active treatment and 0 for the control treatment), each subject i
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has a pair of potential outcomes: Yi(0) and Yi(1), which are the potential outcomes

under the control treatment and the active treatment, respectively.

There are some hidden assumptions of this notation:

• Assumption 1 - No interference: Subject i’s potential outcomes do not depend

on other subjects’ treatments. This is sometimes called the no-interference

assumption.

• Assumption 2 - Consistency: There are no other versions of the treatment. The

treatment level be well defined, or have no ambiguity at least for the outcome

of interest. This is sometimes called the consistency assumption.

Assumption 1 can be violated in infectious diseases. For instance, if one subject’s

family members receive flu vaccines, the chance of this subject’s getting the flu de-

crease even if he or she does not receive the flu vaccine. Assumption 2 can be violated

for treatment with complex components. For instance, when studying the effect of

chemotherapy on cancer, the components of chemotherapy need to be specified.

The Assumptions 1 and 2 above together are called the Stable Unit Treatment

Value Assumption (SUTVA) (Rubin, 2005).

For each subject, the individual causal effect is defined to be

Ei = Yi(1) − Yi(0).

However, each subject receives only one of the control treatment or the active

treatment and we can only observe either Yi(0) or Yi(1).

Let Zi = {0, 1} be an indicator variable denoting the treatment actually received

(Z = 0 for control treatment and Z = 1 for active treatment) for subject i. Thus,

only one outcome Yi,

Yi = ZiYi(1) + (1 − Z)Yi(0),

is observed for each subject: the outcome under the actual treatment received, i.e. the

experiment only reveals one of subject i’s potential outcomes with the other one miss-

ing. For this reason, the potential outcomes framework is also called the counterfac-

tual framework.

Identifying individual causal effects is not possible, but we can turn our attention
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to an aggregated causal effect: the average causal effect in a population of individuals.

The average treatment effect (ATE) is the average effect at the population level, of

moving an entire population from untreated to treated (Imbens, 2004). The ATE is

defined to be

E[Yi(1) − Yi(0)].

A related measure of treatment effect is the average treatment effect for the treated

(ATT) (Imbens, 2004). The ATT is defined as

E[Y (1) − Y (0)|Z = 1].

The ATT is the average effect of treatment on those subjects who ultimately re-

ceived the treatment. In an RCT these two measures of treatment effects coincide

because the treated population will not differ systematically from the overall pop-

ulation due to randomization. Applied researchers should decide whether the ATE

or the ATT is of greater utility or interest in their particular research context. For

instance, when the barriers to a patient receiving a particular treatment in a study

are substantial, the ATT becomes more relevant and informative than the ATE.

The treatment assignment mechanism, i.e., the probability distribution of Z, plays

an important role in inferring causal effects. In RCTs, treatment is assigned by

randomization. As a consequence of randomization, an unbiased estimate of the ATE

can be directly computed from the study data. An unbiased estimate of the ATE is

E[Yi(1) − Yi(0)] = E[Y |Z = 1] − E[Y |Z = 0].

The aforementioned definition allows one to define the ATE in terms of a difference in

means (continuous outcomes) or a difference in proportions or absolute risk reduction

(dichotomous outcomes).

1.1.3 Limitations of traditional control arms

While randomized controlled trials offer theoretical advantages, they face certain lim-

itations in practical implementation. These include high costs in terms of time and

resources, challenges in generalizability (as volunteer participants may not represent

the wider population), and the issue of loss to follow-up. In addition, a recent study
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reveals that the failure rate for phase III trials stands at approximately 50 percent

(Grignolo & Pretorius, 2016). Consequently, investing substantial resources, time,

and costs into running a confirmatory trial might not always yield a viable and ben-

eficial treatment.

The enrollment of a control arm (placebo or standard of care) in clinical trials can

present significant ethical and practical challenges. This is especially true when few

or no alternative treatments are available, as is often the case in settings such as rare

diseases, oncology, and hematology. In such situations, it can be deemed unethical to

randomize patients to a placebo or standard-of-care treatment known to have limited

efficacy. Even when there is an existing treatment with clinical equipoise, recruitment

challenges may become insurmountable if patients and clinicians are reluctant to risk

randomization to the standard of care when a potentially more effective treatment is

being investigated. These issues are further exacerbated when the population being

studied is not large enough to power two treatment arms, or when there is high

competition for clinical trial patients.

Besides, the RCTs face challenges in precision medicine due to their design, which

is geared towards assessing average treatment effects rather than individual responses.

The heterogeneity of treatment effects, ethical concerns in assigning standard care

when personalized treatments may be superior, and the need for large, diverse sam-

ple sizes for statistical power, are notable limitations (Saad et al., 2017). Additionally,

the rapid pace of scientific discovery in biomarkers and targeted therapies can outpace

the lengthy timelines of RCTs. The clinical practice needs to adapt to the high speci-

ficity of patient selection based on genetic or molecular profiles inherent in precision

medicine (Agarwala et al., 2018).

These limitations have contributed to the increasing prevalence of single-arm trials

(SATs) in the field of drug development. Between December 1992, and May 2017, the

FDA granted accelerated approval to 64 products in hematology or oncology, covering

93 new indications and 53 new molecular entities. The majority of initial indications

were supported by single-arm trial designs (72%), relying on clinical experience to in-

terpret the findings (Beaver et al., 2018). In this context, historical control arms have

emerged as an alternative approach to complement non-randomized studies (Goring

et al., 2019). The primary objective of utilizing historical control arms is to mitigate

bias resulting from the absence of randomization in single-arm trials.
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1.2 Historical control arms

1.2.1 Definition

In an externally controlled trial, the efficacy of an investigational treatment is evalu-

ated by comparing patients receiving the treatment with a group of subjects external

to the study (European Medicines Agency, 2001). This differs from an internal control

arm in which patients from the same population are assigned to a control treatment

within the same study. The external control group can be composed of patients who

were treated prior to the concurrent clinical trial (referred to as the historical control

arm) or patients who were treated during the same period but with a different clinical

condition (illustrated in Figure 1.4).

Figure 1.4: Illustration of historical control arm in andomized con-
trolled trials (RCTs)

Historical control arms can be useful in certain situations, particularly when:

• It may not be ethical or feasible to have a control group, such as in studies

of cancer or rare diseases where it would be challenging to enroll enough par-

ticipants for a control group, or in diseases with high mortality rates where

withholding treatment could be harmful.

• The effects of the condition without treatment are well-known, so comparison

to a control group is unnecessary.

• A new treatment is tested against a well-established standard treatment, and

the results of the standard treatment are predictable.
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Terminology

Regarding terminology, there is some variation among researchers in the definition

of an external control arm. Some researchers consider the external control arm as

a broad term encompassing any control that is not a randomized control (Friends

of Cancer Research, 2019). Historical control arm, on the other hand, is regarded

as a specific subtype of external control, representing a non-concurrent comparator

group of patients who received treatment in the past. This can include patient-level

data or summary information from medical literature or other sources. Synthetic

control is yet another subtype of external control that involves patient-level data

from individuals outside of the trial, selected using statistical methods to account for

baseline characteristic differences.

However, it should be noted that different studies may use the terms “external con-

trol”, “historical control”, and “synthetic control” interchangeably, employing various

data sources and methods for statistical adjustment (Burger et al., 2021; Ghadessi

et al., 2020; Hall et al., 2021; Mack et al., 2019; Thorlund et al., 2020; Viele et al.,

2014).

In this manuscript, we use the term “historical control arm” to specif-

ically focus on situations where the historical data was collected prior to

its inclusion in the final analysis of clinical trials.

Role of historical control arm

In the context of single-arm trials, historical control arms serve as the sole comparator

to establish benchmarks and provide contextual references for the investigational

treatments, which represents the current focus on the application historical control

arms (as illustrated in the upper section of Figure 1.5) (Davi et al., 2020; Ghadessi

et al., 2020).

Besides, there is a growing interest in integrating historical control data into ran-

domized controlled trials. An illustrative example is found in randomized controlled

trials with unequal randomization, where more patients are randomized into the ex-

perimental arm. In such cases, historical control arms can effectively complement the

concurrent control group, forming hybrid control arms that combine both internal

and external control data to achieve a 1:1 ratio (as illustrated in the lower section of

Figure 1.5). This methodological innovation optimizes patient allocation and reduces
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the number of patients assigned to the control arm while ensuring robust comparisons

(Yuan et al., 2019).

Figure 1.5: Illustration of different roles of historical control arms

Data sources

Historical control data can be drawn from various sources, including:

• Previous Clinical Trials: Historical control data from previous clinical trials

can be highly valuable, including the control group or the treatment group which

has already become the standard of care. Utilizing data from trials conducted

for relevant indications and outcomes with similar inclusion and exclusion cri-

teria can strengthen the foundation for new research.

• Patient Registries: Patient registries offer uniform data about specific groups

of patients sharing a common condition or experience. These registries serve

various purposes, such as observing the long-term course of diseases, assessing

treatment cost-effectiveness, monitoring safety, evaluating the quality of care,

and conducting post-marketing surveillance for drugs or devices. Incorporating

data from patient registries into historical control arms can provide valuable

insights.

• Electronic Health Records (EHRs): EHRs are digital repositories contain-

ing comprehensive patient health information, including medical history, diag-
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noses, medications, treatment plans, immunization dates, allergies, radiology

images, laboratory and test results, and more. With the increasing prevalence

of big data in healthcare, EHRs are becoming an essential source of historical

control data. They can be particularly beneficial for indications with a limited

number of patients.

• Disease-specific databases: Specialized databases that track outcomes for

specific diseases can be instrumental in providing historical control data. These

databases often contain long-term follow-up data, enabling the assessment of

treatment durability and long-term effects.

• Claims databases: Claims databases compile information from health in-

surance claims, encompassing diagnoses, procedures, hospitalizations, prescrip-

tions, and other services covered by insurance. Although they may lack some

clinical details, they offer a vast quantity of data from diverse populations,

making them valuable sources for historical control arms.

• Biobanks: Biobanks store biological samples like blood, tissue, DNA, etc.,

along with detailed health information. These repositories are particularly ad-

vantageous for genetic studies or research focused on biomarkers, as they offer

invaluable historical control data for such investigations.

We can categorize the different data sources mentioned above into two primary cate-

gories: clinical trial data and observational data, commonly referred to as real-world

data (RWD) (Franklin & Schneeweiss, 2017). The selection of the data source depends

on the specific research questions under investigation. When the endpoints of interest

require evaluation using specialized techniques, such as key biomarker testing, previ-

ous clinical trial data may be more appropriate due to the controlled and structured

nature of these trials. On the other hand, RWD can be better suited for indications

with limited clinical trial experience, as it reflects real-world patient experiences and

provides insights into the effectiveness and safety of treatments in diverse populations.

By understanding the strengths and limitations of each data source, researchers can

make informed decisions to ensure the most relevant and reliable evidence is used for

their studies.

1.2.2 Statistical issues

Clinical trials incorporating historical control arms share similarities with observa-

tional studies which have two common characteristics:
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1. the objective is to elucidate cause-and-effect relationships;

2. it is not feasible to use controlled experimentation.

By this definition, an observational study has the same intent as a randomized ex-

periment: to estimate a causal effect. However, an observational study differs from

a randomized experiment in one design issue: the lack of randomization to allocate

subjects to treatment and control groups which leads to systematic difference between

treated and untreated subjects.

As illustrated in Figure 1.6, if we directly compare difference in outcomes between

the treatment and control groups E[Y |Z = 1] − E[Y |Z = 0], our conclusion has

no causal interpretation but rather an association relationship. Thus, an unbiased

estimate of the average treatment effect cannot be obtained by directly comparing

outcomes between the two treatment groups: E[Yi(1) − Yi(0)] ̸= E[Y (1) − Y (0)]

because the use of historical control data can introduce systematic biases due to lack

of randomization.

Figure 1.6: Causation versus association

One of the earliest papers to discuss incorporating historical data into both the

design and analysis of a new study is a seminal paper by Pocock in 1976 (Pocock,

1976). This paper considers a design where patients are randomized to both treatment

and control in the current study, even when “acceptable” historical control data are

available. The historical control data are then incorporated into the final analysis of
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the current trial.

Pocock proposed six evaluation criteria to assess the exchangeability between new

and historical trials. These criteria are relevant regardless of whether multiple histor-

ical studies or just one are available. To deem a historical control group acceptable,

the following conditions must be met:

• The group must have received a precisely defined standard treatment which

must be the same as the treatment for the current trial controls.

• The group must have been part of a recent clinical study which contained the

same requirements for patient eligibility.

• The method of treatment evaluation must be the same.

• The distributions of important patient characteristics in the historical group

should be comparable with those in the new trial.

• The previous study must have been performed in the same organisation with

largely the same clinical investigators.

• There must be no other indications leading one to expect different results be-

tween the randomized and historical controls (e.g. differing enrollment rates).

Several of the criteria mentioned are stringent. For instance, insisting that the his-

torical study be conducted within the same organization as the current trial might

exclude other literature data and dismiss a wealth of pertinent information. Similarly,

mandating identical enrollment rates appears redundant unless significant disparities

exist between the trials — a factor often discernible only after the current trial’s

recruitment concludes. Nevertheless, these criteria serve as a good starting point for

identifying relevant historical studies. The FDA has also recognized these criteria

and referenced them in the statistical review for drug approvals (FDA, 2015).

1.3 Context and structure of the manuscript

This thesis is financially supported by the Association Nationale Recherche Technolo-

gie (ANRT) and Sanofi and is undertaken in collaboration between Institut Curie and

Sanofi. Both entities exhibit an interest in the integration of historical control within
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clinical trials. The overall objective is to evaluate the feasibility of incorporating his-

torical control data into clinical trials, specifically within the designated case studies

of interest.

The manuscript is structured as follows:

• Chapter 2 introduces the relevant statistical methods to reduce the bias of

using historical control data.

• Chapter 3 reviews current perspectives on historical control arms in the field

of cancer drug development, highlighting key concerns associated with their

implementation.

• Chapter 4 presents a case study illustrating the creation of a historical control

arm using clinical trial data for a single-arm trial.

• Chapter 5 presents a case study demonstrating the generation of a historical

control arm using observational clinical data, with the application of the target

trial framework.

• Finally, Chapter 6 concludes the thesis, discusses the limitations encountered

throughout the research, and proposes potential areas for future work.
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To reduce biases when including external controls in statistical analyses, various

methods have been developed including both frequentist and Bayesian approaches.

Bayesian approaches consider outcome heterogeneity and discount the historical

control data when incorporating it into the new clinical trial, such as power prior,

commensurate prior, or meta-analytic prior (Hobbs et al., 2011; Lewis et al., 2019;

Schmidli et al., 2014). As these methods borrow information from the historical data,

they are often called “Bayesian borrowing methods”.

On the other hand, frequentist approaches involve two primary steps. First, a bal-

ance score is estimated using selected covariates that may affect treatment assignment

and outcome. Examples of balance scores include propensity score and Mahalanobis

distance (Austin, 2011b; De Maesschalck et al., 2000). Second, the balance score is

used to create comparable external and internal cohorts through methods like match-

ing, inverse probability weighting, and covariate adjustment.

In this chapter, we assume that the historical control data has been well selected

in terms of patient eligibility and characteristics, treatment and outcome evaluation,

and we focus on presenting the state-of-the-art statistical methods to adjust for the

confounding bias in using historical control arms.

• Section 2.1 introduces the Bayesian methods in their general forms.

• Section 2.2 presents the frequentist methods of propensity score analysis.

• Section 2.3 discusses the considerations of choosing statistical methods when

using historical control arms.

2.1 Bayesian methods

To introduce the historical data approaches, we consider a standard trial design com-

paring one experimental treatment to control, assuming historical data are available

for the control arm only. Let Dt, Dc, and Dh denote data from the current treat-

ment group, current control group and historical data, respectively. Let θt denote the

parameter of interest in the treatment group and θc the parameter of interest in the

control groups. Where a method assumes that the true underlying parameters are

different in the historical and current controls, θh denotes the parameter of interest

in the historical controls.
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2.1.1 Pooling

Incorporating historical data into the analysis of a contemporary trial can begin with

the straightforward assumption that the historical control data and the control data

from the current trial are exchangeable. In this approach, the historical data serves as

the prior information for the control arm of the current study. This prior information

is subsequently updated using the control data from the present study, based on

Bayes’ theorem (Viele et al., 2014). We assume an initial prior distribution, denoted

as π0(θc), for the control parameter of interest before considering the historical data,

π0(θc) is updated to form a posterior distribution that incorporates the historical

data, which forms the prior for the current study control parameter, given by,

π(θc|Dh) ∝ L(θc|Dh)π0(θc) (2.1)

where L(θc|Dh) is the likelihood of the historical data. π(θc|Dh) is then updated

with the control data from the current study using Bayes theorem. This results in a

posterior distribution for the control parameter as follows:

π(θc|Dc, Dh) ∝ L(θc|Dc)L(θc|Dh)π0(θc) = L(θc|Dc, Dh)π0(θc),

where L(θc|Dc) is the likelihood of the current control data. This is the same as

pooling the current and historical control data as if they were from the same study.

2.1.2 Power prior

The power prior assumes that the historical data and current control data are esti-

mating the same underlying parameter of interest θc (Chen & Ibrahim, 2000). An

initial non-informative prior π0(θc) is assumed for θc before the historical data are

observed. Then the likelihood of the historical data is raised to a power α0, where the

power quantifies the uncertainty in the similarity between the historical and current

studies. The prior for the current study control arm is then,

π(θc|Dh) ∝ π0(θc)L(θc|Dh)α0

where α0 is a fixed value and lies between zero and one.

α0 is a weight parameter that controls the degree of borrowing. When α0 is zero,
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there is no borrowing from the historical data which means no historical data are

used in the final analysis and the prior reduces to the initial non-informative prior,

π(θc|Dh) = π0(θc)

and when α0 equals to one, all of the historical data are used in the final analysis

which pooling the current and historical controls. In this case, the prior becomes

Equation (2.1). The power can be given a value above one, however, in the area of

historical data, we consider the most reliable information to be the data from the

current randomized controlled trial and are therefore unlikely to want to give the

historical data more weight in the final analysis than the current control data. The

power α0 can be interpreted as a relative precision parameter for the historical data.

2.1.3 Modified power prior

When using the power prior, α0 must be chosen in advance. A natural choice for

π(α0) is a beta distribution, given the desirability of a power between zero and one.

However, there is no agreement in choosing the value of α0 (Neuenschwander et al.,

2009).

A modified power prior was proposed (Banbeta et al., 2019) to estimate α0 using

available data:

π(θc, α0|Dh) ∝ C(α0)π0(θc)L(θc|Dh)α0π(α0),

where C(α0) is a scaling constant that depends only on α0:

C(α0) =
1

∫

θc
L(θc|Dh)α0π0(θc)dθc

.

2.1.4 Commensurate prior

The commensurate prior approach assumes different underlying parameters for the

current and historical controls and the distribution of the parameters of the current

data is centered on the corresponding parameters of the historical data (Hobbs et al.,

2012).

The location commensurate prior for θc is a conditional prior distribution, centered

at the historical parameter θh with a fixed value τ that controls the cross-study
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borrowing. The joint distribution of θc and θh before the current trial is then given

by,

π(θc, θh|Dh, τ) ∝ π(θc|θh, τ)π0(θh)L(θh|Dh),

where L(θh|Dh) is the likelihood of the historical data and π0(θh) is an initial prior

for the historical parameter before the historical data are observed. τ controls the

degree of borrowing. Lower values of τ indicate increased commensurability (reduced

variability) between the current and historical data parameters and induce increased

borrowing from the historical data to inform inference on θc.

Similar to the modified power prior, there is a single parameter that governs how

much historical data are borrowed and incorporated into the final inference on the

current study control parameter τ . τ can also be treated as a random variable rather

than a fixed value. The choice of prior for τ is similar to the prior for the between

study variance parameter in a meta-analysis (Hobbs et al., 2012). It is generally

recommended that an informative prior should be used on the between study variance

parameter in a meta-analysis since the parameter is not well estimated from the data

when there are few studies (Pullenayegum, 2011). An informative prior is required

to induce sufficient borrowing from the historical data.

2.1.5 Meta-analytic-predictive (MAP) prior

The meta-analytic-predictive (MAP) prior assumes model parameters are exchange-

able and drawn from the same distribution (Schmidli et al., 2014). It is a robust

mixture prior composed of a two-component mixture distribution of conjugate priors.

The first component of the mixture distribution is an informative component based

on the historical data and the second component is a weakly-informative component.

The form of the weakly-informative component is dependent on the type of outcome

data. The weights given to each component of the mixture distribution in the prior

are chosen by the study designer based on how relevant the historical data are thought

to be to the current study control data. The prior weight given to the informative

component of the robust mixture distribution based on the historical data can be

interpreted in a similar way to the power chosen in the power prior, when α0 is a

fixed value. The weakly-informative component of the mixture distribution gives a

heavy tailed prior distribution compared to using only the historical data as a prior

and adds robustness against prior-data conflict. Using a mixture prior allows added

flexibility while maintaining the convenience of using a conjugate prior.
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Let π1(θc), ..., πJ(θc) be proper probability density functions. Then given weights,

w1, ..., wJ , where wj > 0 and
∑J

j=1 wj = 1, the mixture distribution,

π(θc) =
J

∑

j=1

wjπj(θc)

is also a proper probability density.

If the individual mixture components are conjugate prior distributions, then the

posterior distribution is also a mixture of conjugate distributions with updated pa-

rameter values and weights. Assuming the prior density for θc of

π
(0)(θc) =

J
∑

j=1

w
(0)
j π

(0)
j (θc),

where the superscript (0) denotes a prior distribution or weight, w
(0)
j are the prior

weights and π
(0)
j (θc) are the individual conjugate prior mixture distribution compo-

nents (for the robust mixture prior, π
(0)
1 (θc|Dh) would be the informative component

of the mixture distribution based on the historical data and π
(0)
2 (θc) would be a

weakly-informative mixture component), the posterior distribution is given by

π
(1)(θc|Dc) =

∑J
j=1 w

(0)
j π

(0)
j (θc)L(θc|Dc)

C
=

J
∑

j=1

w
(1)
j π

(1)
j (θc|Dc)

where the superscript (1) denotes a posterior distribution or weight, L(θc|Dc) is the

likelihood of the current trial control data and C =
∑J

j=1 w
(0)
j cj,

π
(1)
j (θc|Dc) =

w
(0)
j (θc)L(θc|Dc)

cj

,

w
(1)
j =

w
(0)
j cj

∑J
j=1 w

(0)
j cj

,

cj =
∫

∞

−∞

w
(0)
j (θc)L(θc|Dc)dθc,

where θc is either a single parameter or a vector of parameters. The posterior mix-

ture distribution components π
(1)
j (θc|Dc) are then obtained from standard conjugate

Bayesian prior to posterior updates. The updated posterior weights sum to one and
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are calculated using the marginal likelihood of the data for each component of the

mixture prior distribution.

2.2 Propensity score analysis

Propensity score analysis is a statistical method developed in the early 1980s to

address confounding factors and retrieve causal effects in observational (or non-

randomized) studies (Rosenbaum & Rubin, 1983). Rosenbaum and Rubin recognized

the limitations of traditional regression models in studies studies and proposed the

use of propensity scores as a tool to balance observed covariates between treated and

control groups, thereby reducing confounding and enabling more reliable causal in-

ference. The propensity score analysis is built in the potential framework presented

in Section 1.1.2.

Over the years, propensity score analysis has gained popularity and has become

widely used in medical research and other disciplines. Numerous methodological

developments and refinements have been made, addressing issues such as missing

data, multiple treatments, and non-binary treatments (Austin, 2014; Choi et al., 2019;

McCaffrey et al., 2013; Zhao et al., 2020). Various matching algorithms, weighting

methods, and sensitivity analyses have been proposed to improve the robustness of

propensity score analysis (Austin, 2017; Austin & Stuart, 2015; Rudolph & Stuart,

2018).

Propensity score analysis has been increasingly applied in clinical trials featuring

historical control arms to achieve comparability between internal and external patient

groups (Gökbuget et al., 2016).

2.2.1 Propensity score

For subject i(i = 1, ..., n), we have p-dimensional observed covariates Xi, a binary

treatment indicator Zi = {0, 1}, the propensity score is defined to be the probability

of treatment assignment conditional on observed baseline covariates:

ei = Pr(Zi = 1|Xi).

We say the propensity score is a balancing score: conditional on the propensity
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score, the distribution of measured baseline covariates is similar between treated and

untreated subjects:

Z ⊥⊥ X|e.

Thus, in a set of subjects all of whom have the same propensity score, the subjects

have different values ofobserved baseline covariates Xi, but the distribution of Xi will

be the same between the treated and untreated subjects.

The propensity score plays a role in both randomized experiments and observa-

tional studies. In randomized experiments, the true propensity score is known and

determined by the study design itself. For example, the true propensity score is 0.5

in a 1:1 randomized study. On the other hand, in observational studies, the true

propensity score is generally unknown. However, it can be estimated using the avail-

able study data. In practice, the propensity score is most often estimated using a

logistic regression model, in which treatment status is regressed on observed baseline

characteristics. The estimated propensity score is the predicted probability of treat-

ment derived from the fitted regression model. While logistic regression is the most

commonly used method for estimating the propensity score, alternative methods have

been investigated to address the misspecification issue of the regression model. These

include bagging or boosting, recursive partitioning or tree-based methods, random

forests, and neural networks (Setoguchi et al., 2008; Westreich et al., 2010).

Treatment assignment can be strongly ignorable if the following two conditions

hold: (a) treatment assignment is independent of the potential outcomes conditional

on the observed baseline covariates:

(Y (1), Y (0)) ⊥⊥ Z|X

(b) every subject has a nonzero probability to receive either treatment:

0 < P (Z = 1|X) < 1

If treatment assignment is strongly ignorable, conditioning on the propensity score

allows one to obtain unbiased estimates of average treatment effects. The afore-

mentioned first condition is also referred to as the “no unmeasured confounders”

assumption: the assumption that all variables that affect treatment assignment and

outcome have been measured. Given that the assumption of no unmeasured con-

founders influencing treatment assignment is critical in propensity score analyses, it
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is recommended to conduct sensitivity analyses to evaluate the robustness of study

findings to this assumption. It is important to recognize that while the assumption of

strongly ignorable treatment assignment and the absence of unmeasured confounding

is explicitly stated in the context of propensity score analyses, this assumption also

underlies regression-based approaches used to estimate treatment effects in observa-

tional studies.

Four different propensity score methods are used for reducing the confounding

bias when estimating the effects of treatment on outcomes: propensity score match-

ing, stratification (or subclassification) on the propensity score, inverse probability of

treatment weighting (IPTW) using the propensity score, and covariate adjustment

using the propensity score (Austin, 2011b; Rosenbaum & Rubin, 1983). We present

some of the methods in the following subsections.

2.2.2 Variable selection for the propensity score model

The propensity score is defined as the probability of treatment selection conditional

on measured baseline covariates. A natural question that arises is what variables

should be included in the propensity score model. A logical approach would be to

include variables that significantly influence the treatment selection. The primary ob-

jective of propensity score analyses is to ensure balance in observed baseline variables

across treatment groups. However, achieving balance for every covariate isn’t uni-

formly crucial. Balancing covariates that are prognostically significant is of greater

importance than balancing those that solely influence treatment selection without

impacting the outcome. In fact, past research indicates that it’s more beneficial to

incorporate either prognostically significant covariates (those linked to outcomes) or

the confounding covariates (those linked to both treatment and outcomes) into the

propensity score model than to include variables that only influence the treatment-

selection process (Austin et al., 2007).

The set of variables that are either prognostically important or that confound

the treatment-outcome relationship can be identified using causal diagrams, supple-

mented with insights from relevant literature and expert opinions (Hernan & Robins,

2023). Unfortunately, such complete knowledge is often unavailable.

A practical approach was proposed to confounder selection decisions when the

somewhat less stringent assumption is made that knowledge is available for each
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covariate whether it is a cause of the exposure, and whether it is a cause of the

outcome (VanderWeele, 2019). Based on recent theoretically justified developments

in the causal inference literature, the following proposal is made for covariate control

decisions: control for each covariate that is a cause of the exposure, or of the outcome,

or of both; exclude from this set any variable known to be an instrumental variable;

and include as a covariate any proxy for an unmeasured variable that is a common

cause of both the exposure and the outcome.

It’s important to highlight that we don’t recommend using statistical hypothesis

testing in the analytic sample to identify the necessary variables. This recommenda-

tion aligns with the principle of keeping ‘design’ distinct from ‘analysis’ and refraining

from using outcome data in the propensity score process (Austin & Stuart, 2015).

2.2.3 Propensity score matching

Propensity score matching implies forming matched sets of treated and untreated

subjects who share a similar value of the propensity score (Stuart, 2010). Propensity

score matching enables the estimation of the ATT (Imbens, 2004). The most common

implementation of propensity score matching is one-to-one or pair matching, where

treated and untreated individuals are paired based on similar propensity score values.

Once a matched sample has been formed, the treatment effect can be estimated by

directly comparing outcomes between the treated and untreated individuals within

the matched sample. For continuous outcomes, the treatment effect can be estimated

as the difference between the mean outcome for the treated individuals and the mean

outcome for the untreated individuals in the matched sample. For dichotomous out-

comes, the treatment effect can be estimated as the difference in the proportion of

individuals experiencing the event in each group (treated vs. untreated) within the

matched sample. The treatment effect for binary outcomes can also be described

using the relative risk or the Number Needed to Treat (NNT). Therefore, reporting

of treatment effects can be done using the same metrics commonly used in RCTs.

Once the treatment effect has been estimated in the propensity score matched

sample, the variance of the estimated treatment effect and its statistical significance

can be determined. When using a matched estimator, the variance should be calcu-

lated using an appropriate method for paired experiments since the propensity score

matched sample does not consist of independent observations. Instead, treated and
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untreated individuals within the same matched set share similar propensity score

values and their observed baseline covariates are derived from the same multivariate

distribution. In the presence of confounding, baseline covariates are associated with

outcomes, making matched individuals more likely to have similar outcomes com-

pared to randomly selected individuals. Accounting for the lack of independence in

the propensity score matched sample is necessary when estimating the variance of

the treatment effect. Recent studies utilizing Monte Carlo simulations have demon-

strated that variance estimators incorporating matching more accurately capture the

sampling variability of the estimated treatment effect (Austin, 2009a). Therefore,

a paired t-test can be utilized to assess the statistical significance of the treatment

effect on continuous outcomes, while McNemar’s test can be employed for assessing

the statistical significance of a difference in proportions for dichotomous outcomes.

The analysis of a propensity score matched sample can mimic that of an RCT, as

outcomes can be directly compared between treated and untreated individuals within

the propensity score matched sample. In the context of an RCT, it is expected that

the distribution of covariates will be similar on average between treatment groups.

However, individual RCTs may exhibit residual differences in baseline covariates be-

tween treatment groups. Regression adjustment can be employed to mitigate bias

arising from residual differences in observed baseline covariates between treatment

groups. Regression adjustment enhances precision for continuous outcomes and in-

creases statistical power for continuous, binary, and time-to-event outcomes. Simi-

larly, in propensity score matched samples, achieving covariate balance is a property

observed in large samples. Propensity score matching can be combined with addi-

tional matching on prognostic factors or regression adjustment (Imbens, 2004).

The choice of methods for forming matched pairs of treated and untreated individ-

uals when matching on the propensity score should be determined based on different

methods.

Replacement

First, one must choose between matching without replacement and matching with

replacement (Stuart, 2010). When using matching without replacement, once an

untreated subject has been selected to be matched to a given treated subject, that

untreated subject is no longer available for consideration as a potential match for sub-

sequent treated subjects. As a result, each untreated subject is included in at most
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one matched set. In contrast, matching with replacement allows a given untreated

subject to be included in more than one matched set. When matching with replace-

ment is used, variance estimation must account for the fact that the same untreated

subject may be in multiple matched sets (Hill & Reiter, 2006).

Algorithm

A second choice is between greedy and optimal matching (Stuart, 2010). In greedy

matching, a treated subject is first selected at random. The untreated subject whose

propensity score is closest to that of this randomly selected treated subject is chosen

for matching to this treated subject. This process is then repeated until untreated

subjects have been matched to all treated subjects or until one has exhausted the list

of treated subjects for whom a matched untreated subject can be found. This process

is called greedy because at each step in the process, the nearest untreated subject is

selected for matching to the given treated subject, even if that untreated subject would

better serve as a match for a subsequent treated subject. An alternative to greedy

matching is optimal matching, in which matches are formed so as to minimize the

total within-pair difference of the propensity score. Optimal matching did no better

than greedy matching in producing balanced matched samples (Gu & Rosenbaum,

1993).

Distance

There are two primary methods for selecting untreated subjects whose propensity

score is “close” to that of a treated subject: nearest neighbor matching and nearest

neighbor matching within a specified caliper distance. Nearest neighbor matching se-

lects for matching to a given treated subject that untreated subject whose propensity

score is closest to that of the treated subject. If multiple untreated subjects have

propensity scores that are equally close to that of the treated subject, one of these

untreated subjects is selected at random. In this case, no restrictions are placed upon

the maximum acceptable difference between the propensity scores of two matched

subjects. Nearest neighbor matching within a specified caliper distance is similar to

nearest neighbor matching with the further restriction that the absolute difference in

the propensity scores of matched subjects must be below some prespecified threshold

(the caliper distance). Thus, for a given treated subject, one would identify all the

untreated subjects whose propensity score lay within a specified distance of that of
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the treated subject. From this restricted set of untreated subjects, the untreated

subject whose propensity score was closest to that of the treated subject would be

selected for matching to this treated subject. If no untreated subjects had propen-

sity scores that lay within the specified caliper distance of the propensity score of

the treated subject, that treated subject would not be matched with any untreated

subject. The unmatched treated subject would then be excluded from the resultant

matched sample. There are theoretical arguments for matching on the logit of the

propensity score, as this quantity is more likely to be normally distributed, and for

using a caliper width that is a proportion of the standard deviation of the logit of

the propensity score. Recent studies examined optimal caliper widths when estimat-

ing risk differences and differences in means (Austin, 2011a). It was suggested that

researchers use a caliper of width equal to 0.2 of the standard deviation of the logit

of the propensity score as this value (or one close to it) minimized the mean squared

error of the estimated treatment effect in several scenarios.

Propensity score matching can be conducted using a variety of packages in R:

the Matching (Sekhon, 2011), MatchIt (Ho et al., 2011), and Optmatch (Hansen

& Klopfer, 2006) packages allow one to implement a variety of different matching

methods.

2.2.4 Inverse probability of treatment weighting using the

propensity score

Inverse probability of treatment weighting (IPTW) using the propensity score uses

weights based on the propensity score to create a synthetic sample in which the

distribution of measured baseline covariates is independent of treatment assignment.

As mentioned earlier, let Zi be an indicator variable denoting whether or not the ith

subject was treated; ei denotes the propensity score for the ith (i = 1,. . . ,n) subject.

Weights can be defined as

wi =
Zi

ei

+
1 − Zi

1 − ei

.

A subject’s weight is equal to the inverse of the probability of receiving the treatment

that the subject actually received.

Let Yi denote the outcome variable measured on the ith subject. An estimate of
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the ATE is
1

n

n
∑

i=1

ZiYi

ei

−
1

n

n
∑

i=1

(1 − Zi)Yi

1 − ei

.

That variance estimation must account for the weighted nature of the synthetic

sample, with robust variance estimation commonly being used to account for the

sample weights (Joffe et al., 2004).

The weights may be inaccurate or unstable for subjects with a very low probability

of receiving the treatment received. The use of stabilizing weights has been proposed

to address this issue (Robins et al., 2000).

Besides, using weights equal to

wi,AT T = Zi +
(1 − Zi)ei

1 − ei

allows one to estimate the ATT, whereas the use of weights equal to

wi,AT C =
Zi(1 − ei)

ei

+ (1 − Zi)

allows one to estimate the average effect of treatment in the controls.

2.2.5 Comparison of the different propensity score methods

Propensity score methods for reducing the confounding bias when estimating the

effects of treatment on outcomes include propensity score matching, inverse probabil-

ity of treatment weighting using the propensity score, stratification on the propensity

score, and covariate adjustment using the propensity score.

However, several studies indicate that propensity score matching more effectively

eliminates systematic differences in baseline characteristics than other methods

(Austin et al., 2007; Austin & Mamdani, 2006). n some scenarios, both propensity

score matching and IPTW were equally effective at reducing systematic differences

between treated and untreated subjects. However, in other cases, propensity score

matching was slightly more effective than IPTW (Austin, 2009b). A further distinc-

tion among the four propensity score techniques is that both covariate adjustment

using the propensity score and IPTW might be particularly sensitive to the accuracy

of the propensity score estimation (Rubin, 2004).
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Therefore, in this thesis, we focus solely on the methods of propensity score match-

ing and inverse probability of treatment weighting using the propensity score.

2.2.6 Balance diagnostics

The true propensity score is a balancing score: conditional on the true propensity

score, the distribution of measured baseline covariates is independent of treatment

assignment. Therefore, in strata of subjects that have the same propensity score, the

distribution of measured baseline covariates will be the same between treated and

untreated subjects. In non-randomized studies, this exact propensity score remains

unknown, necessitating estimation from the study data. A crucial aspect of any

propensity score analysis is ensuring the model’s appropriate specification.

To determine the adequacy of the propensity score model, one should assess if

the distribution of observed baseline covariates is consistent between treated and

untreated subjects with the same estimated propensity score. If, after conditioning

on the propensity score, there remain systematic differences in baseline covariates

between treated and untreated subjects, this can be an indication that the propen-

sity score model has not been correctly specified. For propensity score matching, this

assessment entails comparing treated and untreated subjects within the matched sam-

ple. For IPTW, it involves comparing the two groups in the sample that’s weighted

by the inverse probability of treatment.

Comparing the similarity of treated and untreated subjects in the matched sample

should begin with a comparison of the means or medians of continuous covariates

and the distribution of their categorical counterparts between treated and untreated

subjects. The standardized difference can be used to compare the mean of continuous

and binary variables between treatment groups (multilevel categorical variables can

be represented using a set of binary indicator variables.

For a continuous covariate, the standardized difference is defined as

d =
(xtreatment − xcontrol)
√

s2

treatment
−s2

treatment

2

where xtreatment and xcontrol denote the sample mean of the covariate in treated and

untreated subjects, respectively, whereas s2
treatment and s2

control denote the sample vari-

ance of the covariate in treated and untreated subjects, respectively.
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For dichotomous variables, the standardized difference is defined as

d =
(p̂treatment − p̂control)

√

p̂treatment(1−p̂treatment)−p̂control(1−p̂control)
2

where p̂treatment and p̂control denote the prevalence or mean of the dichotomous variable

in treated and untreated subjects, respectively.

The standardized difference compares the difference in means in units of the pooled

standard deviation. Furthermore, it is not influenced by sample size and allows for the

comparison of the relative balance of variables measured in different units. Although

there is no universally agreed upon criterion as to what threshold of the standardized

difference can be used to indicate important imbalance, a standard difference that

is less than 0.1 has been taken to indicate a negligible difference in the mean or

prevalence of a covariate between treatment groups (Normand et al., 2001).

The methods described are for use in the context of one-to-one matching on

the propensity score. These methods can be adapted to many-to-one matching and

IPTW using the propensity score [Joffe et al. (2004); morganDiagnosticRoutineDe-

tection2008].

The standardized difference provides a framework for comparing the mean or

prevalence of a baseline covariate between treatment groups in the propensity score

matched sample. However, a thorough examination of the comparability of treated

and untreated subjects in the propensity score matched sample should not stop with a

comparison of means and prevalences. The true propensity score is a balancing score:

within strata matched on the true propensity score, the distribution of observed

baseline covariates is independent of treatment status. Thus, the entire distribution

of baseline covariates, not just means and prevalences, should be similar between

treatment groups in the matched sample. Therefore, higher order moments of co-

variates and interactions between covariates should be compared between treatment

groups (Austin, 2009c; Morgan & Todd, 2008). Similarly, graphical methods such

as side-by-side boxplots, quantile-quantile plots, cumulative distribution functions,

and empirical nonparametric density plots can be used to compare the distribution

of continuous baseline covariates between treatment groups in the propensity score

matched sample (Austin, 2009c).

Balance diagnostics is a pivotal stage within the framework of propensity score

analysis. Approaches to assessing the specification of the propensity score model
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are based on comparing the distribution of measured baseline covariates between

treated and untreated subjects who have similar propensity score values. Balance

diagnostics for assessing the specification of the propensity score are more transparent

than validating the precision of an outcome regression model (Austin, 2011b).

Formulating a propensity score model involves an iterative approach. It begins

with the specification of an initial propensity score model. Subsequently, the compa-

rability between treated and untreated subjects within the resulting matched sample

is evaluated. Should significant residual systematic disparities persist among these

groups, adjustments can be made to the initial propensity score model. These adap-

tations might include the incorporation of supplementary covariates, the introduction

of interactions among existing covariates, or the utilization of nonlinear terms to cap-

ture the nuanced relationship between continuous covariates and treatment status.

This iterative process continues until systematic differences in observed baseline co-

variates between treated and untreated subjects are either eradicated or minimized

to an acceptable degree.

It is important to note that throughout each stage of this iterative procedure, it

is not recommended to rely on the statistical significance of the estimated regression

coefficients in the propensity score model (assuming a logistic regression model is

employed). Instead, the focus should remain directed towards the goal of generating

a matched sample where the distribution of observed baseline covariates is similar

between treated and untreated subjects.

2.3 Discussion

Choosing between Bayesian methods and propensity score methods when using a

historical control arm in clinical trials depends on various factors. Here we discuss

the following factors:

Research objective

Propensity score methods are primarily used to balance covariates between treatment

groups in observational studies, thus may be preferred when the goal is to control

for confounding factors and obtain unbiased estimates of treatment effects. Bayesian

methods can offer the flexibility to incorporate prior beliefs regarding treatment effects
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if the aim is to harness the synergy between historical and current data to enhance

inferences.

Data availability

Implementation of propensity score methods necessitates a comprehensive under-

standing of the covariates influencing treatment assignment. Adequate data avail-

ability, including relevant covariates, is pivotal for effective modeling of treatment

assignment probabilities. Bayesian approaches can gracefully handle data with miss-

ing values or incomplete historical records. It is possible to specify prior distributions

that encapsulate the uncertainty inherent in historical data, providing an advantage

in scenarios where data completeness is a challenge.

Regulatory requirements

Considering regulatory requirements is an imperative step in the decision-making pro-

cess. It is advisable to engage in consultation with regulatory authorities or domain

experts to ensure strict adherence to regulatory guidelines. Additionally, assessing

whether any specific preferences or recommendations exist regarding the selection of

the analytical methodology is crucial.
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3.1 Introduction

Well-designed randomized controlled trials (RCTs) are the gold standard for eval-

uating the efficacy of new treatments (Schulz et al., 2010). RCTs establish causal

conclusions by randomly assigning patients to either an investigational or concurrent

control treatment that usually consists of a placebo or standard of care. Neverthe-

less, ethical or feasibility issues can hinder the randomization process, especially in

oncology drug development (Agarwala et al., 2018). When a new promising treat-

ment is being studied in early-stage clinical trials for cancer with high unmet needs,

enrolling patients into the control arm might be considered unethical. Besides, with

the advances in molecular classification and precision medicine in oncology - further

dividing patient populations into smaller groups - the number of patients available for

a particular clinical trial may be insufficient to produce valid evidence. Regulators

acknowledge these challenges and have granted conditional approvals to submissions

using single-arm trials requiring further confirmatory evidence from post-approval

studies (Goring et al., 2019; Hatswell et al., 2020).

In this context, historical control arms have emerged as an alternative approach

to knowledge production that is more pragmatic than RCTs and can be traced back

to 1970s (Pocock, 1976; Viele et al., 2014). By providing contextual information and

improving the interpretation of single-arm trial results, historical control arms can

help reduce the bias due to the lack of randomization (Davi et al., 2020). Further-

more, increasingly available clinical data from historical clinical trials or real-world

databases provide the potential to expand the use of historical control data to min-

imize patient burden and facilitate study conduct in the drug development process

(Lim et al., 2018).

Advancements in technology and the evolving policy landscape have created an

opportune environment for leveraging real-world data (RWD) to improve clinical evi-

dence generation (Khozin et al., 2017). RWD are qualified by regulators as routinely

collected data relating to patient health status and the delivery of health care other

than traditional RCTs (Cave et al., 2019; FDA, 2018). These data can be gathered

from various sources such as electronic health records (EHRs), claims, registries, or

patient-generated data. Clinical evidence regarding the usage and potential benefits

or risks of a medical product derived from the analysis of RWD is then considered

real-world evidence (RWE).

Regulatory authorities have signaled their support for using RWD to generate
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clinical evidence. In 2018, the US Food and Drug Administration (FDA) published

the framework for RWE underpinned by three pillars: whether RWD are fit for use,

whether the trial or study design can provide adequate evidence, and whether the

study conduct meets regulatory requirements (FDA, 2018). In 2019, the European

Medicines Agency (EMA) published the Operational, Technical, and Methodological

(OPTIMAL) framework for regulatory use of valid RWE in safety, efficacy and benefit-

risk monitoring (Cave et al., 2019). The EMA has also outlined its vision that by

2025, the use of real-world evidence will have been enabled, and the value will have

been established across the spectrum of regulatory use cases (Arlett et al., 2022).

Recent evidence shows that RCT and RWE findings were not always matched

despite attempts to emulate RCT design and confounder adjustment (Franklin et al.,

2021). Thus, challenges remain before historical control arms can be an integrated

part of decision-making (Eichler et al., 2021; Vanderbeek et al., 2019). On the other

hand, researchers proposed the combination of RCTs and RWD for clinical knowledge

generation in the era of precision medicine (Agarwala et al., 2018). Historical controls

leveraging RWD are of particular interest in oncology drug development to foster

patients’ access to innovative therapy in the context of segmentation of tumor entities

and targeted therapy (Rahman et al., 2021). Learning from previous historical control

applications can inform future studies and avoid common pitfalls. However, there

have been few systematic discussions about their use in this field and especially the

feedback of European regulators on it. Therefore, further research and collaboration

are needed to establish frameworks for the use of historical control arms and RWE

to improve the efficiency and effectiveness of oncology drug development.

The objective of this study is to perform a comprehensive analysis of historical

controls in supporting clinical efficacy in oncology drug development and to gain a

deeper understanding of the role of historical controls in regulatory decision-making.

• Section 3.2 defines the search strategy employed to identify qualifying drug

approvals.

• Section 3.3 presents the outcomes of the identification process for the historical

control cases.

• Section 3.5 examines the statistical features of historical controls, their effect

on regulatory decision-making, as well as the principal challenges and solutions

for using historical control data to support clinical development.

• Finally, the study is concluded with a concise summary in Section 3.6.
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3.2 Methodology

3.2.1 Search strategy and findings

To identify regulatory submissions that utilized historical control data to estab-

lish clinical efficacy of investigational treatments, we searched European public as-

sessment reports (EPARs) for human medicines (https://www.ema.europa.eu/en/

medicines). We included original marketing applications for cancer drugs granted

between January 1, 2016, and December 31, 2021, and excluded drugs for diagnostic

use only or those withdrawn from the market. The search was conducted in May

2022.

Of the 113 cancer drugs granted marketing authorization by the EMA between

2016 and 2021, we excluded two drugs for diagnostic use only and eight drugs that

were withdrawn from the market by the time of searching. After screening the EPARs

of the remaining 103 medicines, we identified 18 drug submissions (17%) that utilized

historical control data to support clinical efficacy. Figure 3.1 illustrates the selection

process we utilized.

Figure 3.1: Selection of historical control cases from cancer drug ap-
provals

To display a visual representation of the selection results, Figure 3.2 summarizes

https://www.ema.europa.eu/en/medicines
https://www.ema.europa.eu/en/medicines
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the number of screened cancer drugs and eligible historical control cases each year.

Figure 3.2: Summary of identification results in 2016-2021

Table 3.1 provides a comprehensive summary of 18 drug approvals that have been

selected for further analysis. The table contains information including the drug name,

drug class, approval year, therapeutic area, indication, and conditional marketing

authorization.

Table 3.1: Selected cancer drug approvals using historical controls

Drug Year Class of drug Therapeutic area Conditional

approval

Minjuvi

(tafasitamab)

2021 Monoclonal

antibody

Lymphoma Yes

Abecma

(idecabtagene

vicleucel)

2021 Autologous

cellular

immunotherapy

Multiple Myeloma Yes

Enhertu

(trastuzumab

deruxtecan)

2021 Antibody-drug

conjugate

Breast Neoplasms Yes
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Table 3.1: Selected cancer drug approvals using historical controls (con-
tinued)

Drug Year Class of drug Therapeutic area Conditional

approval

Blenrep

(belantamab

mafodotin)

2020 Antibody-drug

conjugate

Multiple Myeloma Yes

Rozlytrek

(entrectinib)

2020 Kinase inhibitor Non-Small-Cell

Lung Cancer

Yes

Tecartus

(brexucabtagene

autoleucel)

2020 Autologous

cellular

immunotherapy

Lymphoma Yes

Libtayo

(cemiplimab)

2019 Monoclonal

antibody

Squamous Cell

Carcinoma

Yes

Apealea

(paclitaxel)

2018 Mitotic inhibitor Ovarian

Neoplasms

No

Verzenios

(abemaciclib)

2018 Kinase inhibitor Breast Neoplasms No

Bavencio

(avelumabl)

2017 Monoclonal

antibody

Neuroendocrine

Tumors

No

Qarziba

(dinutuximab

beta)

2017 Monoclonal

antibody

Neuroblastoma No

Rydapt

(midostaurin)

2017 Kinase inhibitor Leukemia,

Mastocytosis

No

Tecentriq

(atezolizumab)

2017 Monoclonal

antibody

Non-Small-Cell

Lung Cancer;

Urologic

Neoplasms

No

Ledaga

(chlormethine)

2017 Alkylating agent Mycosis

Fungoides

No

Blitzima

(rituximab)

2017 Monoclonal

antibody

Lymphoma,

Leukemia

No



3.3. Results 55

Table 3.1: Selected cancer drug approvals using historical controls (con-
tinued)

Drug Year Class of drug Therapeutic area Conditional

approval

Truxima

(rituximab)

2017 Monoclonal

antibody

Lymphoma,

Leukemia

No

Darzalex

(daratumumab)

2016 Monoclonal

antibody

Multiple Myeloma No

3.2.2 Data Extraction

We reviewed the clinical efficacy section of the EPARs for the 18 drug approvals and

extracted relevant information on pivotal studies and historical controls. Specifically,

we analyzed the pivotal study design, use of historical controls, source of histori-

cal control data, method of analysis, and the EMA’s decision regarding the use of

historical controls.

3.3 Results

3.3.1 Characteristics of historical controls

Table 3.2 presents the characteristics of the identified historical controls. It should

be noted that some of the drug submissions used multiple historical controls for a

single pivotal study or conducted pivotal studies for multiple indications, resulting in

a total of 24 historical controls being used across the 18 submissions.

Though all drugs were approved by EMA, some historical controls were not

deemed supportive. We evaluated the EMA’s decision regarding the use of histor-

ical controls and classified it as “accepted” if historical controls were considered as

supportive evidence to demonstrate efficacy and “rejected” if they were deemed in-

adequate for decision-making.
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Table 3.2: Historical controls used in cancer durg authorizations

Drug Pivotal study

design

Use of

historical

control

Source of

historical

control data

Method of

analysis

EMA’s

decision

Minjuvi Phase 2,

single-arm,

open-label,

multicentre

Comparative

efficacy

analysis

RWD Confounding

adjustment

Rejected

Abecma Phase 2,

single-arm,

open-label,

multicentre

Comparative

efficacy

analysis

RWD Confounding

adjustment

Rejected

Enhertu

- 1

Phase 2,

single-arm,

open-label,

multicenter,

2-part

Comparative

efficacy

analysis

RWD Confounding

adjustment

Rejected

Enhertu

- 2

Phase 2,

single-arm,

open-label,

multicenter,

2-part

Understanding

the natural

history of

disease

Published

observational

studies

Meta-

analysis

Accepted

Blenrep Phase 2, two-arm,

randomized,

open-label,

multicentre

Historical

benchmark

Published

observational

studies

Descriptive Accepted

Rozlytrek Phase 2,

single-arm,

open-label,

multicenter,

basket study

Comparative

efficacy

analysis

RWD Confounding

adjustment

Rejected
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Table 3.2: Historical controls used in cancer durg authorizations (con-
tinued)

Drug Pivotal study

design

Use of

historical

control

Source of

historical

control data

Method of

analysis

EMA’s

decision

Tecartus

- 1

Phase 2,

single-arm,

open-label,

multicentre

Historical

benchmark

Published

observational

studies

Descriptive Accepted

Tecartus

- 2

Phase 2,

single-arm,

open-label,

multicentre

Historical

benchmark

Published

observational

studies

Meta-

analysis

Rejected

Libtayo Phase 2,

single-arm,

3-group,

multicenter

Comparative

efficacy

analysis

RWD Descriptive Accepted

Apealea Phase 3, parallel

group,

randomised,

comparator-

controlled,

open-label,

non-inferiority

study

Defining

margin of

non-

interiority

Historical

clinical trials

Meta-

analysis

Accepted

Verzenios

- 1

Phase 2,

single-arm,

open-label,

multicentre

Historical

benchmark

Unspecified Descriptive Accepted

Verzenios

- 2

Phase 2,

single-arm,

open-label,

multicentre

Comparative

efficacy

analysis

RWD Confounding

adjustment

Rejected
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Table 3.2: Historical controls used in cancer durg authorizations (con-
tinued)

Drug Pivotal study

design

Use of

historical

control

Source of

historical

control data

Method of

analysis

EMA’s

decision

Yescarta Phase 2,

single-arm,

open-label,

multicentre

Comparative

efficacy

analysis

RWD and

historical

clinical trials

Meta-

analysis

Accepted

Bavencio Phase 2,

single-arm,

open-label,

multicentre

Understanding

the natural

history of

disease

RWD Descriptive Accepted

Qarziba

- 1

retrospective data

analysis under a

compassionate use

program

Comparative

efficacy

analysis

RWD Descriptive Accepted

Qarziba

- 2

retrospective data

analysis under a

compassionate use

program

Comparative

efficacy

analysis

Historical

clinical trials

Descriptive Accepted

Rydapt Phase 2,

single-arm,

multicentre

Comparative

efficacy

analysis

Historical

clinical trials

Confounding

adjustment

Rejected

Tecentriq

- 1

Phase 2,

single-arm,

multicentre

Historical

benchmark

Historical

clinical trials

Descriptive Rejected

Tecentriq

- 2

Phase 2,

single-arm,

multicentre,

two-cohort

Historical

benchmark

RWD Confounding

adjustment

Rejected
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Table 3.2: Historical controls used in cancer durg authorizations (con-
tinued)

Drug Pivotal study

design

Use of

historical

control

Source of

historical

control data

Method of

analysis

EMA’s

decision

Ledaga phase 2,

multicenter,

randomized,

comparator-

controlled, third

party (observer)

blinded,

non-inferiority

study

Defining

margin of

non-

interiority

Unspecified Descriptive Accepted

Blitzima Phase 1,

randomized,

controlled,

multicentre,

2-arm,

parallel-group,

double-blind

Comparative

efficacy

analysis

Historical

clinical trials

Descriptive Accepted

Truxima

- 1

Phase 1,

randomized,

controlled,

multicentre,

2-arm,

parallel-group,

double-

Comparative

efficacy

analysis

Historical

clinical trials

Descriptive Accepted

Truxima

- 2

open-label,

single-arm,

maintenance

study

Defining

margin of

non-

interiority

Historical

clinical trials

Descriptive Accepted
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Table 3.2: Historical controls used in cancer durg authorizations (con-
tinued)

Drug Pivotal study

design

Use of

historical

control

Source of

historical

control data

Method of

analysis

EMA’s

decision

Darzalex Phase 2,

open-label,

multicentre,

2-arm

Historical

benchmark

Published

observational

studies

Descriptive Accepted

The characteristics of historical controls in terms of their use for clinical efficacy,

data source, analysis method, and EMA’s decision are summarized in Table 3.3, Table

3.4, Table 3.5 and Table 3.6 respectively.

Table 3.3: Summary of historical control characteristics (Use of histor-
ical control)

Use of historical control N %

Comparative efficacy analysis 12 50.0

Defining margin of non-interiority 3 12.5

Historical benchmark 7 29.2

Understanding the natural history of disease 2 8.3

Table 3.4: Summary of historical control characteristics (Source of his-
torical control data)

Source of historical control data N %

Historical clinical trials 7 29.2

Published observational studies 5 20.8

RWD 9 37.5

RWD and historical clinical trials 1 4.2

Unspecified 2 8.3
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Table 3.5: Summary of historical control characteristics (Method of
analysis)

Method of analysis N %

Confounding adjustment 7 29.2

Descriptive 13 54.2

Meta-analysis 4 16.7

Table 3.6: Summary of historical control characteristics (EMA’s deci-
sion)

EMA’s decision N %

Accepted 15 62.5

Rejected 9 37.5

3.3.2 EMA’s decision on historical controls

The decisions made by the EMA regarding the use of historical controls are presented

in Table 3.7 and Table 3.8, respectively, categorized based on data sources and analysis

methods.

Table 3.7: EMA’s decision on historical controls by source of historical
control data

Source of external control data Accepted Rejected

Real-world data (RWD) 3 (33%) 6 (67%)

Historical clinical trials 5 (71%) 2 (29%)

RWD and historical clinical trials 1 (100%) 0 (0%)

Published observational studies 4 (80%) 1 (20%)

Unspecified 2 (100%) 0 (0%)

Table 3.8: EMA’s decision on historical controls by method of analysis

Method of analysis Accepted Rejected

Descriptive 12 (92%) 1 (8%)
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Table 3.8: EMA’s decision on historical controls by method of analysis
(continued)

Method of analysis Accepted Rejected

Confounding adjustment 0 (0%) 7 (100%)

Meta-analysis 3 (75%) 1 (25%)

Table 3.9 displays the limitations recognized by EMA that led to the rejection of

historical controls as a valid form of evidence for establishing clinical efficacy.

Table 3.9: Limitations identified by EMA on historical controls

Drug Source of

external

control data

Method of

analysis

Limitations identified by EMA

Minjuvi RWD Confounding

adjustment

Heterogeneous patient

populations, differences in

standard of care received

during treatment, suboptimal

statistical methodology

Abecma RWD Confounding

adjustment

Selection bias of the study

population, missing data of

prognostic factors

Enhertu - 1 RWD Confounding

adjustment

Selection bias of the study

population, missing assessment

of response, differences in the

measurement of endpoint, not

optimal statistical methodology

Rozlytrek RWD Confounding

adjustment

Limitations of the study design,

limited data

Tecartus - 2 Published

observational

studies

Meta-

analysis

Heterogeneous patient

populations, limited

information on the study design

Verzenios - 2 RWD Confounding

adjustment

Heterogeneous patient

populations
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Table 3.9: Limitations identified by EMA on historical controls (con-
tinued)

Drug Source of

external

control data

Method of

analysis

Limitations identified by EMA

Rydapt Historical

clinical trials

Confounding

adjustment

Limited information on the

baseline characteristics, no

correction for the time of

initiation of treatment

Tecentriq - 1 Historical

clinical trials

Descriptive Limited information on the

determination of historical

response rates

Tecentriq - 2 RWD Confounding

adjustment

Heterogeneous patient

populations

3.4 Examining selected cases

In order to provide a comprehensive evaluation of historical control arms as assessed

by regulatory authorities, we examined two selected cases that involved different data

sources, analysis methods, and outcomes during the EMA’s evaluation process. The

first case study focused on Enhertu and included two historical controls. The EMA

rejected the historical control based on real-world data and propensity score match-

ing analysis, while accepting the historical control that utilized meta-analysis based

on literature. The second case study involved Minjuvi and included one historical

control using observational data and propensity score matching analysis, which was

ultimately rejected by the EMA. Each case study provided details on the indication,

pivotal study conducted, historical controls submitted, and relevant comments from

EMA reviewers. All information was extracted from the European public assessment

reports for initial marketing authorization.
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3.4.1 Enhertu (trastuzumab deruxtecan)

Enhertu is an antibody-drug conjugate and as monotherapy is indicated for the treat-

ment of adult patients with unresectable or metastatic HER2 positive breast cancer

who have received two or more prior anti-HER2 based regimens. The EMA granted

Enhertu a conditional marketing authorization (CMA) in 2021.

Pivotal study in clinical efficacy

The assessment of trastuzumab deruxtecan’s efficacy primarily relies on the pivotal

study U201, which is a phase 2, two-part, open-label, single-arm cohort study. The

EMA accepted the single-arm, open-label design of the pivotal study in the context

of the conditional marketing authorization. The trial’s primary endpoint was the

objective response rate (ORR). Secondary endpoints included the duration of response

(DoR), progression-free survival (PFS), and overall survival (OS). A total of 184

HER2-positive breast cancer patients were treated with the recommended dose of 5.4

mg/kg. In this treatment group, the ORR was 60.3% (95% CI: 52.9, 67.5), and the

median DoR, median PFS, and median OS were not reached.

Historical controls

Two historical controls were included as supportive studies to provide context for the

results of the pivotal study: the Unicancer study and a literature-based study.

Historical control 1: Unicancer study

The Unicancer study utilized a French real-world database containing approxi-

mately 60,000 patients, of which 19,867 were treated for metastatic breast cancer

at 18 cancer centers. From this database, two cohorts were created: the Reference

Cohort and the Matched Cohort.

The Reference Cohort consisted of 721 patients with metastatic HER2-positive

breast cancer who received treatment between January 2008 and December 2016,

with at least one therapy after TDM1 as of September 17, 2018.

To generate the Matched Cohort, patients from the Reference Cohort were

propensity-score matched to subjects from Study U201 based on similar baseline

characteristics, such as prior treatment with pertuzumab, HR status, presence of
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visceral disease, and number of previous treatment lines. The matching was done at

a 1:1 ratio without replacement, but due to a limited number of patients within the

caliper, not all subjects from Study U201 could be matched. Ultimately, 137 patients

from the Reference Cohort were matched with 137 subjects from Study U201.

The primary objective of both the Reference Cohort and Matched Cohort was to

describe patient characteristics and clinical features, and a secondary objective was

to describe the treatment strategies for these patients. In the Matched Cohort, the

ORR was 12.2% (95% CI: 6.2, 18.2), the median PFS for patients was 4.7 months

(95% CI: 3.8, 6.0), and the median OS evaluated using the start date of the line of

therapy after TDM1 as the reference date was 24.1 months (95% CI: 18.5, 26.4).

Historical control 2: Literature based meta-analysis

A literature-based analysis was conducted to understand the historical context of

expected response rates of trastuzumab deruxtecan in the post-trastuzumab setting.

The analysis had two main objectives: to review literature on trials involving patients

with advanced or metastatic breast cancer who had previously received trastuzumab

and chemotherapy, and to perform a model-based meta-analysis to determine the

objective response rate, median progression-free survival time, and median overall

survival time in this population.

Based on the study’s inclusion and exclusion criteria, a total of 8,827 subjects

from 37 studies were included in the analysis of ORR, median PFS, and median OS.

The results indicated that the overall mean ORR was estimated to be 25.5% (95%

prediction range: 17.1, 36.1), and the median PFS was estimated to be 5.8 months

(95% prediction range: 3.2, 10.5). In the subgroup of studies that included patients

with a median of at least 2 prior chemotherapies or at least 2 prior anti-HER2-based

regimens, the median ORR was estimated to be 15% (95% CI: 9, 30), and the median

PFS was estimated to be 4.8 months (95% CI: 3.3, 5.5).

EMA review

The analysis of historical data from the real-world database Unicancer and the lit-

erature revealed lower efficacy compared to the results observed in the pivotal study

U201. However, the EMA acknowledged that the real-world data should be considered

exploratory due to several uncertainties. These uncertainties encompass non-optimal

matching, which introduces uncertainty in the comparability of patient populations,
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as well as the absence of response assessment in 16% of the matched subjects. Fur-

thermore, cohort selection based on post-baseline variables may introduce selection

bias, and there are differences in timing and measurement of endpoints (ORR and

PFS) between the historical cohort and the pivotal study.

Nevertheless, despite these uncertainties, when comparing the literature data

of currently used anti-HER2 regimens in the same setting and target population,

trastuzumab deruxtecan still demonstrates a significant therapeutic advantage in

terms of efficacy. For instance, the median duration of response (DoR) of 20.8 months

is approximately three times longer than the reported median DoR (6.0-8.5 months)

or median PFS (4.9-7.8 months). This difference was considered significant enough to

outweigh the uncertainties related to the lack of an active comparator arm and allow

for indirect comparisons, especially within the context of the requested conditional

marketing authorization (European Medicines Agency (EMA), 2020).

3.4.2 Minjuvi (tafasitamab)

Minjuvi is a cancer medication primarily used in combination with lenalidomide

(LEN) and subsequently as a monotherapy to treat adults diagnosed with diffuse

large B-cell lymphoma (DLBCL) that has relapsed or become unresponsive to other

treatments and who are ineligible for autologous stem cell transplantation. The EMA

granted Minjuvi a conditional marketing authorization in 2021. Given the rarity of

DLBCL, Minjuvi was designated by the EMA an ‘orphan medicine’ in 2015.

Pivotal study in clinical efficacy

The evaluation of tafasitamab’s efficacy primarily relies on the pivotal phase 2 study

MOR00208 (L-MIND), which was a multicenter trial with an exploratory hypothesis.

It was designed as a single-arm, open-label study. The primary endpoint of the

trial was the objective response rate (ORR), while secondary endpoints included

the duration of response (DoR), progression-free survival (PFS), and overall survival

(OS). A total of 81 patients were enrolled in the trial, with one patient receiving

tafasitamab monotherapy. The observed ORR was 56.8% (95% CI: 45.3, 67.8), the

median DoR was 34.6 months (95% CI: 26.1, NR), the median PFS was 12.1 months

(95% CI: 5.7, NR) and the median OS was 31.6 months (95% CI: 18.3, NR).
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Historical control

Among the submitted supportive studies, Study MOR208C206 (RE-MIND) is a ret-

rospective observational study whose objectives were to characterize the effectiveness

of LEN monotherapy in the treatment of R/R DLBCL patients and to compare the

effectiveness of LEN monotherapy with the efficacy outcomes with tafasitamab-LEN

combination therapy.

The RE-MIND study included a multicenter cohort of patients and used similar

efficacy endpoints as the pivotal study L-MIND. The eligibility criteria for the obser-

vational cohort in the RE-MIND study were the same as those in the L-MIND study,

including histological subtypes, number of prior therapy lines, prior therapy types

allowed, and ineligibility for autologous stem cell transplantation (ASCT). However,

unlike L-MIND study, the RE-MIND study included primary refractory patients and

did not require a specific ECOG score at baseline. Additionally, certain laboratory

values were not pre-specified in the LEN monotherapy study.

To compare the efficacy between the two treatment cohorts, patients were matched

using a propensity score approach based on several variables, including age, Ann

Arbor stage, refractoriness to last therapy line, number of prior lines of therapy,

history of primary refractoriness, prior ASCT, elevated lactate dehydrogenase (LDH),

neutropenia, and anemia.

A total of 76 patients were matched (1:1) to the L-MIND patients. Some baseline

characteristics, such as age and refractoriness to the last prior therapy, were similar

between the groups. However, there were notable differences in other factors which

are of vital importance for the response and prognosis in DLBCL. For estimates of

efficacy, patients from the two treatment cohorts were considered as independent sets.

As such, analyses for unpaired data were conducted. However, matched data are not

independent and analysis methods for paired (correlated) data were also included as

sensitivity analyses.

A comparison of endpoints was conducted between the tafasitamab+LEN (L-

MIND) and LEN-mono (RE-MIND) groups. The best ORR was 51 patients (95%

CI: 55.4, 77.5) for L-MIND and 26 patients (95% CI: 23.7, 46.0) for RE-MIND. The

median DoR was 20.5 months (95% CI: 3.3, 13.9) for L-MIND and 4.1 months (95%

CI: 1.5, 5.2) for RE-MIND. The median PFS was 12.1 months (95% CI: 5.9, NR) for

L-MIND and 4.0 months (95% CI: 3.1, 7.4) for RE-MIND. The median OS estimated
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using the Kaplan-Meier method was not reached (95% CI: 15.5, NR) for L-MIND and

9.4 months (95% CI: 5.1, 20.0) for RE-MIND.

EMA review

In the single-arm study of tafasitamab + LEN, it was considered difficult to isolate

the treatment effect of tafasitamab. The retrospective, observational study RE-MIND

study was submitted as a historical comparator to contextualise the results of the

pivotal study. However, due to the heterogeneity in the study populations in the

tafasitamab+LEN (L-MIND) and LEN-mono (RE-MIND) groups, uncertainties in

the matching analysis, and differences in standard of care received during treatment,

the interpretation of the results is limited. Therefore, the findings from the RE-MIND

study can only be regarded as exploratory (EMA, 2021).

3.5 Discussion

3.5.1 Use of historical control

We identified that the majority of historical controls (50%) were utilized for compar-

ative efficacy analysis, while 29% served as historical benchmarks in the superiority

study design. Additionally, a small percentage of historical controls (8%) provided

contextual information on the natural history of disease in rare indications. Fur-

thermore, some historical controls (13%) were used to establish the margin of non-

inferiority for the non-inferiority hypothesis. All identified approvals using historical

controls were conducted in single-arm trials. No historical controls supplementing the

concurrent control arm in RCTs were found. Although there have been discussions

about combining external with internal data in RCTs (Gray et al., 2020; Schmidli et

al., 2020; Xu et al., 2020), the hybrid control arm has not been used for EMA submis-

sions. Nonetheless, this design enables the assessment of population comparability

and may be considered in future historical control studies.
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3.5.2 Source of historical control data

The study discovered that historical controls primarily came from individual RWD

(38%) and historical clinical trials (29%) for comparable disease settings. In some

cases, the historical controls were based on published studies (21%), which included

both prospective and retrospective observational studies. A small fraction of cases

(8%) did not provide information about the source of the historical control data. Only

one case (4%) utilized both individual RWD and historical clinical trial data. These

findings indicated that RWD was commonly used in historical controls for cancer drug

approvals in recent times.

3.5.3 Method of analysis

Our findings indicate that 54% of the cases relied on descriptive analysis and sim-

ple comparison. Furthermore, 17% of the cases utilized meta-analysis with either

aggregate or patient-level data. In addition, 29% of the submissions incorporated

comparative efficacy analysis, which accounted for confounding covariates by utiliz-

ing matching and inverse probability weighting techniques based on propensity score

or Mahalanobis distance, using individual patient data from RWD or historical clinical

trials.

3.5.4 Regulators’ feedback on historical controls

The EMA accepted 63% of the historical controls to shed light on the treatment

effect. However, Table 3 shows that only a tiny part of historical controls using RWD

(33%) was considered supportive evidence. By contrast, the majority of historical

controls using data from historical clinical trials (71%), both RWD and historical

clinical trials (100%), published studies (80%), or unknown sources (100%) received

positive reviews. Regarding the analysis method, the EMA accepted most historical

controls using descriptive analysis (92%) or meta-analysis (75%). In comparison, no

case applying methods of confounding adjustment (0%) was considered supportive

evidence. These results indicate that the EMA primarily considered the main study

results in decision-making, and various data sources or analysis methods did not

mitigate the concerns about the systematic bias of historical controls.

The limitations of the historical controls cited by EMA (Table 3.9) primarily con-
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cerned the Pocock criteria (Pocock, 1976). Heterogeneity in the external and internal

patients was a significant issue. It was caused by differences in standard of care or

limited information from the sponsors on the baseline characteristics, especially on

significant prognostic factors. The regulators also pointed out that missing or dif-

ferent assessment of endpoints was an essential downside of using RWD in historical

controls. Besides, unclear study design and selection bias hindered regulators’ under-

standing and thus their acceptance of the historical controls. Unluckily, these biases

were hardly compensated through statistical methodology as the regulators deemed

the sponsor applied suboptimal statistical analysis.

3.5.5 Recommendations on historical controls for decision-

making

Based on the results of our study, we propose several relevant solutions to enhance

the utilization of historical controls in regulatory decision-making.

• Firstly, we recommend a priori trial planning that takes historical controls into

account. Sponsors should engage in early discussions with regulatory authorities

to align on study design, thus minimizing selection bias and avoiding cherry-

picking of data.

• Secondly, we suggest evaluating external data sources using Pocock’s criteria to

ensure comparability of study populations and reliable assessment of outcomes.

• Thirdly, we advise appropriate statistical analysis with adjustment for con-

founders to reduce potential bias. we advise applying appropriate statistical

analysis techniques that account for confounding factors, thereby reducing po-

tential biases. For frequentist methodology, propensity score analysis can be

applied with step-by-step clarification. The doubly robust estimation method

can be added for propensity score methods, as propensity score estimation is

susceptible to model misspecification (Funk et al., 2011; King & Nielsen, 2019).

Additionally, leveraging individual RWD to emulate target trials can ensure the

availability of fit-for-purpose data and effective control of confounding factors

(Hernán et al., 2022).

• Lastly, we encourage collaboration between sponsors and regulators to develop

regulatory guidance on historical controls, covering study design, data selection,

and analysis plans.
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3.5.6 Limitations of the study

Our study was conducted in a systematic manner with in-depth extractions of histori-

cal control characteristics and objective discussions on the issues of historical controls.

Despite this, our study was subject to several limitations. First, we limited our scope

with a prespecified inclusion period of 2016-2021 under the presumption that histor-

ical control using RWD is a recently emerging research interest in oncology. Second,

our data extraction was limited to the EMA’s public assessment reports rather than

the sponsors’ original submission documents. As a result, some details on historical

controls may have been omitted. Finally, we did not scrutinize the impact of historical

control on regulatory pathways, such as conditional marketing authorization. Besides,

the prespecified period of 2016-2021 may limit the assessment of post-authorization

changes. It can be interesting for future work to study the use of historical controls

for diverse regulatory pathways.

3.6 Conclusion

There has been growing research interest in leveraging historical controls to facilitate

oncology clinical trials. Medical regulatory agencies have begun to endorse the use

of RWD and historical controls and published relevant frameworks. However, there

are few systematic discussions about the current applications of historical controls in

oncology drug development and the relevant regulatory feedback. In this study, we

identified and summarized the characteristics of European oncology drug approvals

using historical control data in clinical efficacy. Eighteen eligible submissions lever-

aging 24 historical controls were included. We discussed the use of historical control,

data sources, methods of comparison, and the regulators’ feedback.

We found that the historical controls had been actively submitted to the EMA

and increasingly used RWD and advanced statistical analysis methods, showing the

potential for informing future clinical development. However, some historical controls

were not deemed supportive evidence by EMA due to significant limitations regarding

heterogeneous patient populations, missing RWD of outcome assessment, and subop-

timal study design. This study highlighted that the proper use of historical controls in

oncology clinical trials requires carefully assessing data availability and determining

the optimal clinical and statistical methodology. For better use of historical controls

in oncology clinical development, we suggest a priori study design to avoid selection
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bias, sufficient baseline data to ensure the comparability of study populations, con-

sistent endpoint measurements to enable outcome comparison, optimal application

of statistical methods for comparative analysis, and collaborative efforts of sponsors

and regulators to establish frameworks on historical control arms.
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4.1 Introduction

The establishment of reliable historical control arms relies heavily on the availability

and quality of data (Burger et al., 2021). In this context, two primary sources of

data are pivotal: clinical data and observational data. Each data source has unique

methodological considerations that must be carefully addressed during the research

design process. This chapter will primarily focus on methodological considerations

pertaining to clinical data, while the subsequent chapter will delve into observational

data.

Using data from previous clinical trials as sources for historical control arms

presents several advantages. The most notable advantage is the superior data quality

typically associated with rigorous monitoring and compliance to the study protocols.

The baseline characteristics of patients, treatment regimens, and outcome measures

are defined prospectively, ensuring standardized data collection. Consequently, clin-

ical trials tend to have limited missing data and better data completeness (Franklin

& Schneeweiss, 2017).

Nevertheless, clinical trial data can be limited by relatively smaller sample sizes

compared to observational databases. Particularly in the realm of diseases with high

unmet medical needs, late-stage clinical trials frequently involve a limited cohort size,

typically ranging from a few hundred participants to less than a hundred. This could

potentially limit the statistical power and generalizability of the derived historical

control arm.

Clinical trial data has long been a subject of statistical research, particularly in the

context of model-based meta-analysis where aggregated data from multiple trials are

analyzed (Chan et al., 2022). When considering historical control arms, aggregated

data can serve as an external comparator providing contextual information for the

new trial. However, utilizing individual-level data can offer additional insights into

the baseline characteristics of patients. Consequently, our study aims to leverage

individual-level data from previous clinical trials to construct a historical control arm

within a single-arm trial.

The primary objectives of this study are: (1) to build a historical control arm by

employing data from previous clinical trials while appropriately addressing between-

trial heterogeneity; (2) to assess the effectiveness of propensity score analysis in mit-

igating bias when utilizing historical control arms.
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By achieving these objectives, we aim to study the validity and reliability of

utilizing historical control arms in clinical research while accounting for potential

confounding factors and sources of variability across trials.

This chapter is structured as follows:

• Section 4.2 introduces the motivating trial and discusses the selection of his-

torical control data utilized in our case study.

• Section 4.3 presents the propensity score methodology used to reduce the bias

in leveraging historical control arms.

• Section 4.4 outlines the results derived from our analysis.

• Lastly, in Section 4.5, we delve into a detailed discussion of our study.

4.2 Motivating data

4.2.1 Motivating trial: the EPSB study

Acute post-surgical pain (PSP) following breast cancer surgery affects approximately

70% of patients, impacting their quality of life and increasing the risk of develop-

ing chronic PSP (Gärtner et al., 2009). Therefore, devising effective pain mitigation

strategies is crucial for these patients. Recent data show the effectiveness of re-

gional anesthesia (RA) within multimodal analgesia programs in reducing acute PSP

and postoperative opioid usage. Thoracic paravertebral block (TPVB), extensively

researched and recognized as the standard for extensive breast cancer surgery, has

demonstrated safety under ultrasound guidance (Albi-Feldzer et al., 2021). Alterna-

tively, the erector spinae plane block (ESPB), introduced in 2016, uses a superficial

interfacial block in the erector spine muscle plane, distinguishing it from the paraver-

tebral space (Forero et al., 2016). ESPB offers procedural simplicity, speed, and safer

injection sites due to more distal anatomical landmarks compared to TPVB. Despite

its proven efficiency in preventing acute PSP in spinal and thoracic surgeries, the

reliability of this diffusion process remains controversial, especially in the context of

breast surgery, where the efficacy of ESPB remains unproven.

In response to this uncertainty, a prospective observational study was conducted

to evaluate the safety and efficacy of ESPB with ropivacaine in reducing morphine

consumption in the post-anesthesia care unit (PACU) following major breast cancer
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surgery. Conducted by the Department of Anesthesiology at Institut Curie, this ob-

servational, single-arm trial enrolled 120 patients between December 2018 and August

2019, and included 102 patients in the analysis. The primary outcome was the propor-

tion of patients requiring morphine titration in the PACU. Key secondary outcomes

included the total morphine dose in the PACU and the incidence of RA complications.

The following data was collected during the study: age, weight and height, the type of

surgery, the injected volume and dose of ropivacaine, the occurrence of ESPB-related

complications, the rest and mobilization VAS measured during the hospital stay and

24 hours after surgery, the need for rescue morphine, and the overall morphine dose

(mg) administered in the PACU.

Existing studies comparing ESPB to TPVB have been limited by their small

patient numbers, and their results pooled in multiple meta-analyses have presented

conflicting conclusions (Huang et al., 2020; Leong et al., 2021; Xiong et al., 2021).

Therefore, the role of ESPB in analgesia strategies for breast surgery is not clearly

defined, necessitating a robust comparison of ESPB with TPVB. In this context, we

propose to construct a historical control arm for the ESPB trial by leveraging clinical

data from previous TPVB trials.

4.2.2 Historical data: the MIRs03 study

The MIRs03 study (NCT02408393) was a large, prospective, multicenter, 1:1 ran-

domized, double-blind, placebo-controlled study that compared the efficacy of TPVB

with ropivacaine to a thoracic paravertebral injection of saline in preventing acute and

chronic PSP (Albi-Feldzer et al., 2013). Conducted by the Department of Anesthe-

siology at Institut Curie between March 2015 and June 2018, the study randomized

352 patients undergoing partial or complete mastectomy with or without lymph node

dissection to receive a preoperative paravertebral block with either ropivacaine (178

patients in the experimental group) or saline (174 patients in the control group). The

procedure of the study is shown in Figure 4.1.
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Figure 4.1: Flow chart of the MIRS03 study

The primary outcome was the incidence of chronic pain 3 months after breast

cancer surgery, which was reported in 93 of 178 (52.2%) and 83 of 174 (47.7%) pa-

tients in the paravertebral and control groups, respectively (odds ratio, 1.20 [95% CI:

0.79-1.82], P=0.394). The secondary outcomes were acute pain, analgesic consump-

tion, nausea and vomiting, chronic pain at 6 and 12 months, neuropathic pain, pain

interference, anxiety, and depression.

The general information of the ESPB and MIRs03 studies are summarized in Table

4.1. We plan to use the data from the experimental group of the MIRS03 study to

establish a TPVB cohort, serving as the historical comparator for the ESPB study.

Table 4.1: Summary of the motivating trials

Study ESPB study MIRs03 study

Design Prospective observational,

single-arm

Placebo-controlled

randomized, two-arm

Injection Technique Erector spinae plane

nerve block (ESPB)

Thoracic paravertebral

block (TPVB)

Outcome of interest Incidence of morphine

titration after breast

cancer surgery

Incidence of morphine

titration after breast

cancer surgery
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Table 4.1: Summary of the motivating trials (continued)

Study ESPB study MIRs03 study

Primary completion

date

2019 2018

Enrollment 120 380

4.3 Methodology

4.3.1 Evaluation of trial comparability

The first step of incorporating historical control arm is to evaluate the comparability of

the trials. Differences in patient populations or other trial-specific circumstances can

lead to bias when using a historical control arm. Therefore, the possible heterogeneity

between the trials should be considered in the analysis.

We apply the Pocock criteria (Pocock, 1976) to evaluate the comparability of the

ESPB and MIRs03 studies:

1: The historical controls must have received a precisely defined standard treatment

which must be the same as the treatment for the randomized controls. In both trials,

the experimental arms were administered Ropivacaine, albeit with distinct injection

techniques.

2: The historical controls must have been part of a recent clinical study which

contained the same requirements for patient eligibility. The ESPB and MIRs03 studies

were conducted in 2019 and 2018, respectively. Based on the insights of clinical

investigators, we assume that there have been no significant advancements in pain

management and evaluation within this one-year span.

3: The methods of treatment evaluation must be the same. Both studies measured

the fraction of patients necessitating morphine titration in the PACU post-breast

cancer surgery.

4: The distributions of important patient characteristics in the historical controls

should be comparable with those in the new trial. We focus on three salient patient

attributes, which are prognostic indicators for acute postoperative pain: age, BMI
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(Body Mass Index), and the type of breast surgery. The characteristics are compared

using statistical tests and calculation of standardized mean differences (SMDs) As

shown in Table 4.2, there are significant differences between trials in the distributions

of breast surgery type (p < 0.001 and SMD > 0.1) and BMI (SMD > 0.1).

5: The previous studies must have been performed in the same organization with

largely the same clinical investigators. Both trials were initiated by the same principal

investigator and sponsored by Institut Curie.

6: There must be no other indications leading one to expect differing results be-

tween the randomized and historical controls. As discussed in criterion 2, we maintain

that pain management and evaluation methodologies remained static during the tri-

als’ execution. To the best of our understanding, there are no other indications for

substantial differences between the trials.

Table 4.2: Baseline characteristics of patients between ESPB and
MIRs03 trials

Baseline characteristic ESPB (n=102) TPVB (n=165) p-value SMD

Age (years), mean (SD) 56.5 (12.9) 57.3 (14.1) 0.65 0.057

Weight (kg), mean (SD) 67.20 (13.83) 68.85 (13.87) 0.35 0.119

BMI (kg/m2), mean (SD) 25.2 (5.0) 25.8 (5.0) 0.34 0.122

Surgery, n (%) <0.001 0.466

Mastectomy 74 (72.5) 143 (86.7)

Tumorectomy 20 (19.6) 22 (13.3)

Axillary lymph node dissection 8 (7.8) 0 (0.0)

The evaluation of comparability of the ESPB and MIRs03 trials using Pocock cri-

teria is summarized in Table 4.3. While most criteria are satisfied, the one concerning

the distribution of pivotal patient characteristics stands as an exception. Given our

accessibility to the individual patient data from both trials, we opt to use propensity

score analysis to adjust for the heterogeneity observed in the trials’ patient charac-

teristics.
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Table 4.3: Summary of comparability evaluation of ESPB and MIRs03
trials

Criterion Evaluation

1. Same treatment Yes

2. Same eligibility criteria Yes

3. Same outcome evaluation Yes

4. Same organization and investigators Yes

5. Recent trial Yes

6. Comparable patient characteristics No

4.3.2 Selection of confounders

The propensity score is defined as the probability of treatment selection conditional on

measured baseline covariates. Before estimating the propensity scores, it’s essential

to select the covariates to incorporate into the estimation. Based on the practical

principles of confounder selection (VanderWeele, 2019), we adjust for any covariate

that is a cause of the exposure or of the outcome.

In this study, we assume that no confounder is a cause of the exposure to the

treatment because the patients in the ESPB and MIRs03 trials were enrolled sep-

arately with the same eligibility criteria. Thus, we only focus on the confounders

related to the outcome, specifically the significant prognostic factors for acute post-

operative pain. According to medical expertise and published evidence on predictors

of pain after breast cancer surgery (Wang et al., 2016), we include age, BMI and

breast surgery type as listed in Table 4.2. The causal directed acyclic graph of the

treatment (ESPB vs. TPVB), the outcome (acute pain after breast cancer surgery)

and the confounders is depicted in Figure 4.2.
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Figure 4.2: Directed acyclic graph of ESPB-MIRs03 study

Note that the selection of confounders should not be based solely on analyzing the

correlation between the variables and the outcome using the available data (Austin

& Stuart, 2015). During the propensity score estimation, the outcome data ought to

remain obscured and should only be accessible at the subsequent stage of outcome

analysis.

4.3.3 Adjustment for confounders with propensity score

matching

Propensity score estimation

To balance the patient characteristics between the ESPB and TPVB cohorts, we con-

ducted a propensity score matching analysis. The propensity scores were estimated

by a multivariable logistic regression model in which the probability of receiving the

intervention (ESPB vs. TPVB) was regressed conditional on age, BMI, and breast

surgery type.

Matching algorithms

Patients were matched on the logit of the propensity score using a calliper of width

equal to 0.2 of the standard deviation of the logit of the estimated propensity scores.
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Matching was performed without replacement (i.e., each subject was available for

matching only once) in a greedy manner (i.e., at each step in the matching process,

the nearest TPVB subject was selected for matching to the given ESPB subject).

Balance diagnostics

Balance diagnostics is a key step for assessing the specification of the propensity score.

The balance of covariates between the two arms was checked using standardized mean

differences (SMDs) before and after matching. A standardized mean difference of less

than 0.1 is considered to indicate a negligible difference in the mean or prevalence of

a covariate between groups.

Treatment effect estimation

The risk difference in acute PSP with a 95% confidence interval was estimated as the

difference between the probability of receiving morphine titration of TPVB patients

and that of ESPB patients in the matched sample. The standard errors were estimated

using cluster-robust standard errors to account for pair membership.

Comparisons of patient characteristics of ESPB placement details according to the

need for morphine titration were performed with the Mann–Whitney or Student’s t

test after testing for normality with the Shapiro–Wilk test.

Sensitivity analysis

Estimating the propensity score using logistic regression has the risk of model mis-

specification. Thus, we built a random forest model in addition to the logistic re-

gression model to assess the sensitivity of the matching result to the propensity score

estimation. The random forest model was constructed using the intervention (ESPB

vs. TPVB) as the output and the baseline characteristics as inputs. Matching was

performed with the same parameters as described above. Note that the true propen-

sity scores are unknown and it is not possible to evaluate directly the model speci-

fication. We assess the robustness of the results through balance diagnostics of the

confounders.

All tests were two-sided. A P value of less than 0.05 was considered to indicate sta-

tistical significance. All analyses were conducted using R statistical software, version
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4.0.2 (R Foundation for Statistical Computing, Vienna, Austria).

4.4 Results

4.4.1 Main results

Data collection

Figure 4.3: Flow chart of the ESPB study

In the ESPB cohort, 120 patients were enrolled between December 2018 and August

2019, and 102 patients were included in the analysis. The reasons for secondary

exclusion of the 18 patients are detailed in Figure 4.3. Data from all 178 patients in

the experimental arm were employed, of which 13 patients were excluded because of

missing data on morphine consumption.

The study sample consisted of 102 ESPB patients and 165 TPVB patients. As

shown in Table 4.2, there were statistically significant differences in baseline charac-

teristics regarding breast surgery type (ESPB patients underwent more total mastec-

tomies, p<0.001 and SMD > 0.1) and BMI (ESPB patients had lower BMI, SMD >

0.1).
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Propensity score matching

The propensity scores were estimated by a multivariable logistic regression model.

The standard deviation of the logit of the propensity score is equal to 0.1251. Thus,

the caliper is set to be 0.2 of this width and is equal to 0.025.

Figure 4.4 presents the estimated propensity scores using a logistic regression

model. The overlapping area of propensity scores of the two groups implies that

there are patients who share similar propensity scores and can thus be considered

matched pairs.

Figure 4.4: Distribution of the estimated propensity scores using a
logistic regression model

Propensity score matching formed 94 matched pairs, which means that 94 of

102 ESPB patients were matched with a TPVB patient. Eight ESPB patients who

received axillary lymph node dissection were thus excluded from further analysis.

Balance diagnostics

The baseline characteristics of ESPB and TPVB patients in the propensity score-

matched sample are described in Table 4.4. The mean and prevalence of continuous
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and categorical variables were very similar between the two groups (all SMDs < 0.1).

Table 4.4: Baseline characteristics of patients after propensity score
matching

Baseline characteristic ESPB (n=94) TPVB (n=94) p-value SMD

Age (years), mean (SD) 56.0 (12.7) 55.2 (14.3) 0.72 0.053

Weight (kg), mean (SD) 67.05 (14.08) 67.65 (13.59) 0.77 0.043

BMI (kg/m2), mean (SD) 25.1 (5.1) 24.9 (4.5) 0.78 0.041

Surgery, n (%) 0.71 0.080

Mastectomy 74 (78.7) 77 (81.9)

Tumorectomy 20 (21.3) 17 (18.1)

Axillary lymph node dissection 0 (0.0) 0 (0.0)

The Figure 4.5 below provides a visualized comparison of covariate balance before

and after matching. Propensity scores and all covariates are balanced in the matched

sample.

Figure 4.5: Covariate balance before/after propensity score matching
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Treatment effect

The primary endpoint of this study was the effect of ESPB on the need for morphine

titration after breast surgery in the PACU (indicated in both cohorts when VAS >

3). Table 4.5 shows that in the propensity score-matched sample, the percentage

of patients who required morphine titration was significantly higher in the ESPB

group than in the TPVB group (74.5% vs. 41.5%, p<0.001). The observed difference

between the two groups was 33.0% (95% confidence interval [CI] 19.3%, 46.7%).

Regarding secondary outcome, among all the propensity score-matched patients, the

overall morphine dose was significantly higher in the ESPB group than in the TPVB

group (3.7 mg vs. 2.2 mg, p=0.02).

Table 4.5: Primary and secondary outcomes in propensity score-
matched patients

Outcome ESPB (n=94) TPVB (n=94) p-value

Need for morphine titration, n(%) 70 (74.5) 39 (41.5) < 0.001

Morphine dose (mg), mean (SD) 3.7 (3.3) 2.2 (3.2) 0.02

4.4.2 Sensitivity analysis

Figure 4.6 presents the distributions of the estimated propensity scores using the

random forest model, which are similar to those estimated by the logistic regression

model in Figure 4.4.
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Figure 4.6: Distribution of the estimated propensity scores using a
random forest model

Table 4.6 presents the comparisons of the baseline characteristics of patients

matched on propensity scores estimated by the random forest model. Ninety-five

out of 102 ESPB patients were matched with a TPVB patient. Seven ESPB patients

who received axillary lymph node dissection without breast surgery were excluded

from matching. Across the baseline covariates, the absolute SMDs of age and BMI

were below 0.1, indicating a negligible difference. The SMD of the performed surgery

type was 0.169, which slightly exceeded the preset threshold of 0.1 but was lower

than the value of 0.466 before matching. The matching process created two groups

of patients with more comparable covariates.

Table 4.6: Baseline characteristics patients matched on propensity
scores estimated by the random forest model

Baseline characteristic ESPB (n=95) TPVB (n=95) p-value SMD

Age (years), mean (SD) 55.7 (12.9) 56.3 (14.1) 0.776 0.041

BMI (kg/m2), mean (SD) 25.1 (5.0) 25.2 (4.5) 0.897 0.019

Surgery, n (%) 0.510 0.169

Mastectomy 74 (77.9) 78 (82.1)
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Table 4.6: Baseline characteristics patients matched on propensity
scores estimated by the random forest model (continued)

Baseline characteristic ESPB (n=95) TPVB (n=95) p-value SMD

Tumorectomy 20 (21.1) 17 (17.9)

Axillary lymph node dissection 1 (1.1) 0 (0.0)

Table 4.7 presents the comparisons of the outcomes of patients matched on propen-

sity scores estimated by the random forest model. The percentage of patients who

required morphine titration was significantly higher in the ESPB group than in the

TPVB group (74.7% vs. 38.9%, p<0.001). The observed difference between the two

groups was 35.8% (95% CI [22.7%, 48.9%]). Among the patients who received mor-

phine titration, the overall morphine doses were similar between the two groups (5.1

ml vs. 5.8 ml, p=0.14). The results of propensity score matching analysis with the

random forest model are consistent with those of the logistic regression model.

Table 4.7: Outcomes of patients matched on propensity scores esti-
mated by the random forest model

Outcome ESPB (n=95) TPVB (n=95) p-value

Need for morphine titration, n(%) 71 (74.7) 37 (38.9) < 0.001

Overall morphine dose (mg), mean (SD) 5.1 (3.0) 5.8 (2.7) 0.14

4.5 Discussion

In this study, we built a historical control arm for the single-arm observational trial

(ESPB study) which assessed the effectiveness and safety of ESPB in preventing acute

PSP following major breast cancer surgery. To establish a historical control group,

we utilized data from the experimental arm of a randomized clinical trial (MIRs03

study) that evaluated the efficacy and safety of TPVB. Comparatively few studies

have directly compared ESPB to TPVB, and the existing results are contradictory.

Therefore, our study represents one of the largest clinical investigations comparing

the efficacy and safety of ESPB and TPVB.

We discuss several limitations in this study. Firstly, the ESPB study is an obser-



4.5. Discussion 89

vational cohort study, relying on a historical group for comparison. Using historical

data can introduce concerns related to differences between studies. However, we miti-

gated this issue by ensuring that the ESPB and TPVB trials shared identical designs,

including eligibility criteria and perioperative management protocols. This similar-

ity allowed for comparable patient characteristics, intervention effects, and outcome

measurements. Furthermore, we performed propensity score matching analysis to bal-

ance three significant prognostic factors of acute PSP (age, BMI, and breast surgery

type) between the groups. To the best of our knowledge, there were no remaining

systematic differences in the baseline covariates that could potentially affect acute

PSP outcomes in the propensity score-matched subjects. Since the completion dates

of both studies were in 2018 and 2019, respectively, we assumed that there were no

substantial changes in clinical practice during this time. Additionally, we obtained

consistent results when using propensity scores estimated by both logistic regression

and random forest models, demonstrating the robustness of our conclusions.

Nonetheless, it should be noted that unmeasured confounding factors in observa-

tional studies may introduce bias. For instance, while the care protocols in the ESPB

cohort matched those of the MIRs03 study, the multicenter nature of the latter could

theoretically introduce heterogeneity in practice. Table 4.8 shows the number of pa-

tients on the experimental arm who received postoperative morphine titration at the

five centers in the MIRs03 study. There was no significant difference in the inci-

dences of morphine consumption between centers in the MIRs03 study (p-value = 0.5

of Kruskal-Wallis test). It is worth mentioning that recruitment for the ESPB cohort

began in December 2018, following the completion of the MIRs03 study’s patient

recruitment period, which spanned from March 27, 2015, to June 3, 2018. Therefore,

from December 2018 to August 2019, all patients undergoing major breast surgery at

Institut Curie were treated with ESPB.



90 Chapter 4. Historical control arms with clinical data

Table 4.8: Incidence of morphine titration among centers in the MIRs03
study

Outcome Center

01

(n=120)

Center

02 (n=7)

Center

03

(n=25)

Center

04 (n=3)

Center 05

(n=10)

p-value

Need for

morphine

titration, n

(%)

45 (38%) 2 (29%) 12 (48%) 0 (0%) 5 (50%) p=0.5

In our research, each arm comprises approximately a hundred patients, which is

notably fewer than large-scale observational studies that typically involve several hun-

dreds of participants. In the context of small sample sizes, one study found substantial

differences in the ATT estimate according to the model selected for propensity score

estimation and subsequent matching based on a cohort of 66 children with sickle cell

anemia who received either allogeneic bone-marrow transplant or chronic transfusion

(Andrillon et al., 2020). This study underlined the importance of thorough sensitiv-

ity analyses when using propensity score matching in smaller trial cohorts. We thus

conducted sensitivity analyses using a different method for propensity score estima-

tion. We used random forest as an alternative method to logistic regression. We

found consistent results of balance diagnostics and treatment effects in our analyses.

In both scenarios, the balances were achieved across all covariates. Moreover, the

results conclusively indicated that a significantly higher proportion of ESPB patients

required morphine titration compared to their TPVB counterparts.

Through this case study, we established a protocol to create a historical control

arm for a single-arm trial using data from previous clinical trials. The initial step

involves evaluating the comparability of the target trial and historical data based

on criteria such as standard treatment, patient eligibility, treatment evaluation, dis-

tributions of patient characteristics and completion time. It is imperative to select

prognostic patient traits (i.e., the confounders) grounded in medical expertise and

causal relationships rather than mere internal data exploration. Once discrepancies

between trials are identified, appropriate statistical methods should be employed to

account for confounding factors. Individual-level data can be analyzed using propen-

sity score analysis, which helps address potential biases. Additionally, conducting
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sensitivity analyses is crucial to assess the robustness of the results, particularly in

terms of propensity score estimation and determination of confounding variables.

We acknowledge several advantageous facets inherent to this study’s context. The

eligibility criteria of patients are consistent in ESPB and MIRs03 studies; and the

historical control data from the MIRs03 study are proper and complete. These ad-

vantages allowed us to dedicate effort towards appropriate data selection and imple-

mentation of propensity score analysis. Based on the insights from this study, we can

continue our investigation on historical control arms in clinical trials. The ensuing

steps can include:

• Broadening the data source from clinical trial data to real-world observational

data;

• Refining the analysis protocol within a causal conceptual framework akin to

randomized controlled trials.

Consequently, in the subsequent chapter, we explore the feasibility of historical con-

trol arms using larger observational database and target trial framework (Hernán &

Robins, 2016).
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5.1 Introduction

With increasing data availability, the observational data which is also referred to real-

world data (RWD) provides a big opportunity to substitute for randomized controlled

trials (Franklin & Schneeweiss, 2017). RWD are data relating to patient health sta-

tus and/or the delivery of healthcare routinely collected from different sources (FDA,

2018). These data find utility across numerous domains, such as therapeutic advance-

ment, comparative analysis of effectiveness and safety, reimbursement strategies, reg-

ulatory decision-making, and the formulation of clinical guidelines. The reflection of

‘diverse real-world practices’ enhances the applicability and generalizability of RWD

compared to data derived from randomized controlled trials (RCTs). And the abun-

dant availability of RWD positions it as a promising data source for constructing

historical control arms in clinical studies. However, these elements also indicate that

RWD is less structured and more challenging to analyze. Moreover, the risk of inac-

curacies in methodological applications and a shortage of adequate expertise in this

area are potential threats to the validity and reliability of RWD studies (Collins et

al., 2020).

Defining the research question using a causal inference framework is a crucial

step to generate robust evidence for RWD studies (Gokhale et al., 2020). Several

causal inference frameworks are employed to aid in defining precise scientific questions.

These include the Estimand Framework (EF) and Target Trial Emulation Framework

(TTF).

The EF has been progressively used by health authorities and pharmaceutical

firms since its introduction in 2017 (ICH, 2021). The framework provides a sys-

tematic approach to the definition of the treatment effect under investigation in a

clinical trial. An estimand consists of five attributes: treatment, population, vari-

able, population-level summary, and handling of intercurrent events. Each of these

attributes is defined in an interdisciplinary discussion during the trial planning phase,

based on the clinical question being asked. Intercurrent events are those occurring

after treatment initiation and can affect the interpretation or existence of endpoint-

associated measurements. In defining the estimand, the primary focus lies on the

scientific objective of the trial or study, with due consideration to missing data. Al-

though the EF primarily targets RCTs, its principles can also be applied in estimating

treatment effect in single arm trials or observational studies. However, it’s worth not-

ing that estimating a causal effect from observational data often presents unique
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challenges compared to RCTs. These challenges may include biases resulting from

baseline confounding and selection, missing data, and the complexity of determining

the comparison’s index date.

The TTF represents an additional causal framework capable of refining the speci-

ficity of scientific queries within comparative assessments (Bigirumurame et al., 2023;

Hernán et al., 2022; Hernán & Robins, 2016). The TTF addresses gaps in the analysis

of observational data by applying principles of RCTs to non-randomized comparative

assessments. This involves defining a hypothetical randomized trial to address a spe-

cific scientific question, followed by specifying how non-randomized data can emulate

this trial. Crucial components of a target trial protocol include eligibility criteria,

treatment strategies, treatment allocation, initiation and termination of follow-up,

outcomes, causal contrasts, and the analytical approach (estimator). This framework

can be deployed when combining clinical trial and observational data, as may occur

when creating an external comparator to a single-arm trial with observational data.

In this study, we aim to investigate the application of the target trial framework

for building a historical control arm using observational data for a target trial in

ovarian cancer.

• Section 5.2 introduces the motivating trial and the source of observational

data in this study.

• Section 5.3 presents the application of the target trial framework in creating

historical control arms.

• Section 5.4 outlines the results derived from our preliminary analysis.

• Finally, Section 5.5 provides a discussion about the challenges encountered in

this study.

5.2 Motivating data

5.2.1 Motivating trial: the PAOLA study

Patients with newly diagnosed, advanced ovarian cancer undergo cytoreductive

surgery and platinum-based chemotherapy with curative intent. Olaparib, a PARP

inhibitor, has shown significant benefits as maintenance therapy in women with

newly diagnosed advanced ovarian cancer who carry a BRCA mutation.
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The PAOLA-1 trial (NCT02477644) is a randomized, double-blind, international

phase III trial designed to assess the efficacy of olaparib maintenance therapy in con-

junction with bevacizumab in patients with newly diagnosed advanced ovarian cancer

(Harter et al., 2022; Ray-Coquard et al., 2019). Eligible patients had newly diagnosed

advanced high-grade ovarian cancer and were responding to first-line platinum-taxane

chemotherapy plus bevacizumab, regardless of surgical outcome or BRCA mutation

status. Patients were randomly assigned in a 2:1 ratio to receive either olaparib

tablets or a placebo for up to 24 months. The trial enrolled a total of 806 patients, of

which 537 received olaparib and 269 received the placebo. After a median follow-up

of 22.9 months, the median progression-free survival (PFS) was 22.1 months in the

olaparib plus bevacizumab group and 16.6 months in the placebo plus bevacizumab

group (hazard ratio for disease progression or death, 0.59; 95% confidence interval

[CI], 0.49 to 0.72; P<0.001). The Kaplan–Meier estimates of progression-free survival

is shown in Figure 5.1.

Figure 5.1: Kaplan–Meier estimates of investigator-assessed
progression-free survival in the PAOLA-1 study

We noted that the PAOLA-1 study adopted a randomization ratio of 2:1 in favor of

patients receiving the innovative treatment. This indicates an underlying motivation

of investigating the feasibility of creating a historical control arm for the PAOLA-1

study, as well as other studies operating under similar circumstances. Specifically,

the patients assigned to the control arm received the standard of care for ovarian

cancer treatment predating the approval of olaparib. Therefore, we propose to use
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real-world data in ovarian cancer to create the historical control arm, serving as the

comparator for evaluating the outcomes of the experimental treatment.

5.2.2 Observational data: ESME database

Initiated in 2014 by Unicancer R&D and backed by all French Comprehensive Cancer

Centres (FCCCs), the Épidémio-Stratégie Médico-Economique (ESME) programme

represents an independent academic endeavor aimed at aggregating real-world pa-

tient data pertaining to cancer treatment in France. The primary goal of ESME is

to chronicle the progress of patient management and modifications in therapeutic

strategies over time, framed within an extensive medico-economic perspective. To

date, three data platforms have been constructed, encompassing metastatic breast

cancer, ovarian cancer, and lung cancer.

The ESME Ovarian Cancer (ESME-OC) database is a comprehensive, real-world,

retrospective, multicentric database that centralizes the clinical data of all consecutive

patients undergoing treatment for ovarian cancer since 1 January 2011 in any of the 18

French Comprehensive Cancer Centers within the Unicancer network. The ESME-OC

database encompasses prospectively collected data from electronic medical records,

inpatient hospitalization records, and pharmacy records (Figure 5.2).

Figure 5.2: ESME data platform

Several recent investigations have used the ESME-OC database to describe the

natural disease history of ovarian cancers and to evaluate the optimal timing of de-
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bulking surgery (Bini et al., 2022; De Nonneville et al., 2021; Thomas et al., 2022).

Therefore, this observational database has the potential to reflect the outcomes of the

PAOLA-1 study in routine patient care.

5.3 Methodology

Emulating a target trial involves a systematic approach that aims to replicate, as

closely as possible, the conditions and design of a hypothetical randomized controlled

trial using non-randomized data. The general steps include:

1. Formulate the research question: Clearly define the clinical question of interest

as if we were designing an actual RCT.

2. Define eligibility criteria: Specify inclusion and exclusion criteria for study par-

ticipants, similar to patient selection in a trial.

3. Specify the interventions of interest: Clearly define the interventions or expo-

sures to be studied; and determine the point in time at which participants would

hypothetically be randomized (the so-called “index time”).

4. Determine the start of follow-up (time zero): Define the time of starting ob-

serving outcomes in relation to the index time.

5. Specify outcomes: Define primary and secondary outcomes of interest; and

determine how these outcomes will be measured and verified within the obser-

vational data.

6. Determine the end of follow-up: Define when the observation of study partici-

pants will end, whether it’s after a certain period of time, upon the occurrence

of a certain event, or another pre-specified criterion.

7. Plan to address confounding: Identify potential confounders that could bias the

relationship between exposure and outcome; and decide on methods to adjust

for these confounders, such as stratification, matching, propensity scores, or

other statistical techniques.

8. Plan the Analysis: Specify the statistical methods to estimate the effects of

the intervention or exposure; and address potential issues like missing data,

measurement error, and model assumptions.

9. Execute the study and analyze data: Use the observational data to “mimic” the

hypothetical trial, following the pre-specified analysis plan.

10. Interpret results: Discuss findings in the context of the hypothetical RCT de-
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sign; and reflect on the limitations of using observational data, any potential

sources of bias, and how well the target trial was emulated.

5.3.1 Application of the target trial framework

The objective of the PAOLA-1 study was to evaluate maintenance therapy with a

PARP inhibitor (olaparib) as compared with placebo in patients with newly diagnosed

advanced ovarian cancer who were receiving chemotherapy plus bevacizumab followed

by bevacizumab, regardless of BRCA mutation status.

With the real-world data, we define the scientific research question as “Is there

be a difference in progression free survival (PFS) and overall survival (OS) between

patients with newly diagnosed advanced ovarian cancer receiving olaparib mainte-

nance therapy in combination with bevacizumab in PAOLA-1 study versus patients

with newly diagnosed advanced ovarian cancer who received bevacizumab as part of

routine care?”

Then we apply the target trial framework to design a historical control arm for

the PAOLA-1 study using ESME data. Table 5.1 illustrates the TTF attributes

that define the estimand aligned with the scientific research question. The average

treatment effect on the treated (ATT) is the estimand of primary interest. This is the

treatment effect difference of using olaparib + bevacizumab in a clinical trial versus

using bevacizumab in clinical practice, and hence the target population is defined by

the clinical trials population.

Table 5.1: Application of the target trial framework to design a histor-
ical control arm for the PAOLA-1 study using ESME data

TTF component Target trial (PAOLA-1

study)

ESME cohort

Patient

population

(Eligibility

criteria)

Eligibility criteria of

PAOLA-1

Same as the target trial

Treatment Olaparib maintenance

therapy in combination with

bevacizumab

Bevacizumab as part of

routine care
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Table 5.1: Application of the target trial framework to design a histor-
ical control arm for the PAOLA-1 study using ESME data (continued)

TTF component Target trial (PAOLA-1

study)

ESME cohort

Assignment

procedure

Participants were randomly

assigned to one of the two

treatment settings

Randomization is emulated

by mathching or weighting

observations for the inverse

probability of treatment

Outcomes Progression free survival

(PFS) and overall survival

(OS)

Same as the target trial

Start of follow-up Start of follow-up occurs at

the time when the treatment

is assigned

Same as the target trial (the

real-world start of follow-up

occurs at the time when the

treatment is initiated in

routine care)

Analysis plan Hazard ratio (HR) with 95%

confidence interval (CI)

Same as the target trial

5.3.2 Selection of the real-world cohort

We use the eligibility criteria of the PAOLA-1 study to select the real-world cohort.

In the PAOLA-1 study, eligible patients were 18 years of age or older and had newly

diagnosed advanced (International Federation of Gynecology and Obstetrics [FIGO]

stage III or IV), high-grade serous or endometrioid ovarian cancer, primary peri-

toneal cancer, or fallopian-tube cancer. Patients with other nonmucinous epithelial

ovarian cancers were eligible, provided they had a deleterious germline BRCA1 or

BRCA2 mutation. Patients were eligible irrespective of previous surgical outcome

(residual macroscopic disease or no residual macroscopic disease after upfront or in-

terval surgery). After first-line treatment with platinumtaxane chemotherapy plus

bevacizumab, patients were required to have no evidence of disease or to have had a

clinical complete or partial response. Patients had an Eastern Cooperative Oncology

Group performance status of 0 or 1 (on a 5-point scale in which higher numbers re-

flect greater disability), and a tumor sample had to be available for central testing to
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determine BRCA mutation status.

To select the historical control cohort from the ESME database with comparable

characteristics of patients in the PAOLA-1 study, we first search the variables that

correspond with the PAOLA-1 eligibility criteria. In instances where corresponding

variables are absent, we resort to using surrogate characteristics guided by expert

clinical knowledge.

Besides, ovarian cancer patients follow one of two treatment regimens in clinical

practice:

(1) Primary Debulking Surgery (PDS) followed by Adjuvant Chemotherapy (CA),

or

(2) Neoadjuvant Chemotherapy (CNA) followed by Interval Debulking Surgery

(IDS) and then CA.

To ensure an accurate outcome analysis, it’s important to evaluate each treatment

regimen separately. For this purpose, we categorize patients based on their treatment

regimen using available variables in the ESME database.

5.3.3 Statistical analysis

We implement the inverse probability of treatment weighting (IPTW) on propensity

score to balance baseline patient characteristics between the clinical trial arm and the

historical control arm. Propensity scores are estimated through a multi-logistic model,

defined as probabilities of allocation to the treatment group conditional on selected

confounders. Propensity score estimation using other machine learning methods,

such as random forest and neural network, is also conducted as sensitivity analysis

(Westreich et al., 2010). These confounders are determined a priori based on clinical

expert knowledge and the availability of relevant variables in the ESME database.

As our objective focuses on the average treatment effect on the treated, patients

from the PAOLA-1 trial are assigned a weight of one, while weights for patients in

the ESME database are computed as the ratio of the estimated propensity score

to the complement of the estimated propensity score (i.e., odds of being treated in

the clinical setting). After IPTW, differences in baseline characteristics are evaluated

through standardized mean differences (SMDs) with patient characteristics considered
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equilibrated if SMD is less than 0.10. The weighted cohort is then deployed for

subsequent outcome analyses.

The treatment effects are estimated by weighted survival analysis. Specifically,

we estimate the hazard ratio (HR) using a IPTW weighted Cox proportional hazard

model and the 95% CI for the HR using bootstrap approach (Schaubel & Wei, 2011).

We also use the IPTW weighted Kaplan–Meier method to calculate survival function

estimates and weight log-rank test for intergroup comparisons.

5.4 Results

We have access to the data of 596 patients treated in Institut Curie cancer center,

including information on basic characteristics, diagnosis, surgery, received treatment,

etc.

Our current work is focused on the selection stage of the real-world cohort. Ovar-

ian cancer patients follow one of two treatment schemas: (1) Primary Debulking

Surgery (PDS) + Chemotherapy Adjuvant (CA) or (2) Chemotherapy Neoadjuvant

(CNA) + Interval Debulking Surgery (IDS) + CA. Our primary objective is to sepa-

rate patients based on their respective treatment schema.

Within the ESME database, all surgical information is encapsulated within the

SURGERY table. Nonetheless, this table lacks a specific variable to unequivocally

identify whether a surgery is classified as debulking or not. As a workaround, we

propose to utilize pertinent medical characteristics and select relevant variables from

the table. The sequencing of surgical intervention and chemotherapy will also be

compared to differentiate between PDS and IDS.

We are currently engaged in the identification of debulking surgery data with the

aim of refining our selection of patients who meet the PAOLA-1 eligibility criteria.

This work is ongoing, and we will report the analytical findings at a later stage.

5.5 Discussion

The rising interest in historical control arms has led to several studies suggesting

frameworks and guidelines for their appropriate use.
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One study introduced an evaluation framework for real-world data external com-

parator studies, allowing for a thorough assessment of existing evidence and associ-

ated biases. This four-step process ensures the proper conduct of external comparator

studies (Gray et al., 2020). Step 1 includes an assessment of sources of bias and ex-

changeability. Step 2 adjusts for measured confounders using analytical approaches.

Step 3 uses quantitative bias analysis to quantify the impact of potential bias. Step

4, applicable only to augmented randomised controlled trials, combines outcomes be-

tween the internal and external comparator groups dependent upon the similarity of

the two cohorts.

Another study presented a three-step guideline designed as a robust tool for the

critical evaluation of comparisons between external control groups and single-arm

trials (Lambert et al., 2022). Step 1 defines an estimand that mirrors a clinical ques-

tion. This estimand encompasses the treatment effect and the targeted population.

Step 2 focuses on the appropriate selection of external controls, whether from previ-

ous RCTs or real-world patient data sources such as cohorts, registries, or electronic

patient records. Step 3 involves selecting the statistical method that targets the pre-

viously defined treatment effect. The chosen method will depend on the nature of

the available data, be it individual-level or aggregated external data.

The primary objective of the frameworks and guidelines examined parallels that

of the target trial framework: they all aim to ensure the validity of incorporating

historical control data in clinical trials. The target trial emulation has a broad scope,

aiming to mimic the entirety of a hypothetical RCT in observational data. Thus,

we were interested in using this framework as a potential method to evaluate the

feasibility of historical control arms.

Target trial emulation has most commonly been used for hypothesis generation

and confirmatory studies (Bacic et al., 2020; Hernán & Robins, 2016; Huitfeldt,

2015). In contrast to other observational study paradigms, no standardized guidelines

currently exist to enhance research transparency and ensure reproducibility in target

trial emulation. Practical guides on how to conduct emulated trials are also not

widely available.

In this study, we have defined the methodology to emulate a target trial for the

PAOLA-1 study using observational data from the ESME database. During the ini-

tial phases, we encountered challenges in selecting patient variables and discerning

distinct treatment schemas. To address these challenges, we are collaborating with
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clinicians to identify surrogate variables, thereby allowing the creation of an observa-

tional cohort based on pre-established eligibility criteria.

We would like to draw attention to lack of initiatives aimed at enhancing the data

quality within real-world databases. Our exploration revealed that the granularity of

these databases might not adequately represent clinical practices, potentially compli-

cating the extraction of clear answers to research queries. It’s imperative to collabo-

rate closely with clinicians to interpret the data, enhance its quality, and streamline

real-world data analysis.
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Conclusion

6.1 General discussion

Well-designed randomized controlled trials are the gold standard for evaluating the

efficacy of new treatments. RCTs establish causal conclusions by randomly assigning

patients to either an investigational or concurrent control treatment that usually con-

sists of a placebo or standard of care. Nevertheless, ethical or feasibility issues can

hinder the randomization process, especially in oncology drug development. Histori-

cal control arms have emerged as an alternative approach to knowledge production.

By providing contextual information and improving the interpretation of single-arm

trial results, historical control arms can help reduce the bias due to the lack of ran-

domization (Lim et al., 2018). Furthermore, increasingly available clinical data from

historical clinical trials or real-world databases provide the potential to expand the

use of historical control data to minimize patient burden and facilitate study conduct

in the drug development process (Khozin et al., 2017). Regulatory authorities have

signaled their support for using real-world data to generate clinical evidence (Cave et

al., 2019; FDA, 2018). However, recent evidence shows that RCT and RWE findings

were not always matched despite attempts to emulate RCT design and confounder

adjustment (Franklin et al., 2021). Thus, challenges remain before historical control

arms can be an integrated part of decision-making.

In this context, this thesis aims to evaluate the feasibility of incorporating histor-

ical control arms into clinical trials, drawing from combined perspectives of different

stakeholders in drug development.
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We realized that historical control arms in clinical trials have increasingly garnered

the attention of various stakeholders in drug development and evaluation. Their rel-

evance and application have often been scrutinized from a multitude of perspectives.

Within this ambit, there are four primary roles that shape the discourse around his-

torical controls: sponsors, regulators, clinical investigators, and biostatisticians. The

varied interpretations from these groups underscored the necessity to initiate our

study with a comprehensive summary and understanding of the historical control

concept. Thus, in Chapter 1, we provided an overview of randomized controlled trials

and their conceptual framework, highlighting their advantages and limitations. And

we introduced the definition of historical control arms with various aspects of their

design.

The main concern of using historical control arms revolves around the potential

for biases, given that past patients might differ in various ways from current patients.

There might also be differences in diagnostic methods, care standards, or other factors

that could influence outcomes. Properly accounting for these potential differences is

critical to ensure the validity of study findings using historical controls. Therefore,

we reviewed the developed statistical methods related to historical control arms in

Chapter 2. There are two major frameworks: Bayesian and frequentist methods.

Bayesian borrowing methods consider outcome heterogeneity and discount the his-

torical control data when incorporating it into the new clinical trial, such as power

prior, commensurate prior, or meta-analytic prior. Frequentist approaches involve

two primary steps. First, a balance score is estimated using selected covariates that

may affect treatment assignment and outcome. Second, the balance score is used

to create comparable external and internal cohorts through methods like matching,

inverse probability weighting, stratification and covariate adjustment. Propensity

score is one balance score that is being widely used in medical research. We thus

presented the concept and main methods of propensity score analysis. Note that

Bayesian methods are suitable for aggregate outcome data from one or several pre-

vious trials without directly considering the information on patient characteristics.

On the other hand, propensity score analysis methods can be applied to individual

data with patient-level characteristics. The choice of statistical methods should be

corresponding to the available data type.

One of the pivotal stakeholders in the drug development process is the regulator.

Despite numerous guidelines that regulators have published over the years, the feed-

back they provide on specific applications is of utmost importance to many in the
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industry. Our investigation in Chapter 3 focused on examining real drug approval

cases in recent years wherein historical controls were used. In this review, we identi-

fied and summarized the characteristics of European oncology drug approvals using

historical control data in clinical efficacy. Eighteen eligible submissions leveraging

24 historical controls were included. We discussed the use of historical control, data

sources, methods of comparison, and the regulators’ feedback.

It emerged that sponsors are increasingly relying on historical control data as

supplementary evidence in their drug approval submissions, reflecting the currently

emerging research interests in this field. In their applications, sponsors often incor-

porated individual data from clinical trials as well as RWD, and they have applied

the statistical methods we have discussed in the outset of the thesis.

However, we surprisingly found that most of the historical controls were not

deemed supportive evidence by EMA due to significant limitations regarding het-

erogeneous patient populations, missing RWD of outcome assessment, and subopti-

mal study design. The regulators have maintained stringent views concerning his-

torical control arms in the face of emerging research trends. Two primary reasons

underscored this cautious approach. Firstly, the historical control data submitted by

sponsors frequently failed to demonstrate the comparability of internal and external

patients, making it challenging to assure consistent and reliable outcomes. Secondly,

even though many statistical methods have been developed to reduce bias, the appli-

cation of these methods was often found to be imprecise, falling short in addressing

and mitigating biases. This study highlighted that the proper use of historical controls

in oncology clinical trials requires carefully assessing data availability and determin-

ing the optimal clinical and statistical methodology. The insights gained from the

review directed our following studies to focus on evaluation of comparability of in-

ternal and external populations, reasonably selection of confounders and appropriate

implementation of statistical analysis when incorporating historical control arms into

clinical trials.

Recognizing the inherent challenges associated with historical control arms, we

embarked on two case studies. These were primarily grounded in individual data

sourced from clinical trials and RWD, respectively. These case studies further eluci-

dated the nuances of using historical control arms in different contexts and added a

practical dimension to our theoretical discussions.

In Chapter 4, the first case study investigated an observational single-arm
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trial that evaluated the effectiveness of erector spinae plane block in reducing

post-operative pain in breast cancer surgery. We constructed a historical control arm

using data from a previous clinical trial. We first evaluated the comparability of the

new trial and historical data using Pocock criteria in terms of standard treatment,

patient eligibility, treatment evaluation, distributions of patient characteristics

and completion time. We identified between-trial unbalance in two of the three

confounders selected based on medical knowledge. Then we successfully balanced

these characteristics with well-implemented propensity score matching analysis:

propensity score estimation using pre-selected confounders, balance diagnostics and

sensitivity analysis for propensity score estimation. This case study illuminated how

rigorous data screening and apt statistical methods can eliminate discrepancies from

external data, establishing a robust historical control.

Additionally, the inherent strengths of this study were evident: consistent eligibil-

ity criteria between the new and historical trials, and superior quality and accessibility

of historical control data from the prior trial. These benefits permitted us to cen-

ter on the pivotal steps of using historical controls: appropriate data selection and

propensity score analysis execution. However, an inherent limitation was that our

analysis was retrospective, making it supplementary to the concluded clinical trial.

Based on the insights from the first case study, we aimed to advance our investi-

gation into a more prospective setting and to examine the feasibility of historical con-

trols under more intricate data sources. We believe that historical controls shouldn’t

merely supplement clinical trials but should be integrated into clinical trial design

and methodologies. With the theoretical backing of the potential outcome frame-

work and systematic guidance from the Estimand Framework (EF), recent studies

have proposed the Target Trial Framework (TTF) for observational studies (Hernán

et al., 2022). Therefore, we sought to incorporate the TTF into historical controls

while broadening our data source from clinical trial data to RWD.

In Chapter 5, the case study focuses on a randomized controlled trial examining

Olaparib plus Bevacizumab as first-line maintenance therapy in ovarian cancer. The

objective is to emulate the control arm by leveraging observational data from the real-

world database ESME within the target trial framework. Though the RWD database

has the advantage of larger sample size, it presents challenges in data management

and data preprocessing. Working with clinicians, we are currently engaged in the

identification of debulking surgery data with the aim of refining our selection of

patients who meet the PAOLA-1 eligibility criteria.
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Meanwhile, it’s pertinent to note that while the key issue with historical controls

is attributed to bias from inconsistent internal and external patients, our journey

through this thesis highlighted another “real-world” challenge – data access.

Our primary obstacle was accessing target trial data. Each case study required a

target trial in need of historical control support, but soliciting such trials for feasibil-

ity evaluation was complex. Given the collaborative nature of this thesis between a

corporate entity and a research institute, we went through a more intricate legal and

administrative process within the regulatory framework surrounding data governance

and patient confidentiality. Additionally, there’s the elephant in the room – commer-

cial confidentiality. Initially the thesis set on using a clinical trial associated with

one of Sanofi’s oncology products as the target trial. We identified several potential

candidates from Sanofi’s oncology pipeline: Clinical trial NCT04191382, which inves-

tigated the drug Amcenestrant for breast cancer; Clinical trial NCT02990338, which

investigated Isatuximab for refractory or relapsed and refractory multiple myeloma;

and Clinical trial NCT03367819 which explored the efficacy of Isatuximab in combi-

nation with REGN2810 for prostate cancer or non-small cell lung cancer. However,

due to constraints related to data privacy and time limitations, none of these projects

could be materialized. Consequently, we shifted to the PAOLA-1 study as our target

trial.

The secondary obstacle was the acquisition of historical control data. In

our first case study, we used data from a previous clinical trial as the historical

control data and thus faced the same challenge mentioned above. For the sec-

ond case study, we considered the real-world databases that Sanofi had licensed,

such as Optum’s Real-World Data (https://www.optum.com/business/life-

sciences/real-world-data.html/) and Flatiron’s Clinico-Genomic Database

(https://flatiron.com/real-world-evidence/clinico-genomic-database-

cgdb/). However, the publication of findings gained from these vendor databases

required further deliberation. Therefore, we ultimately turned to the ESME database

to conduct our case study.

In retrospect, these challenges highlight the intricate issues faced when academic

institutions partner with corporations in healthcare research. On one hand, research

aims for open access and transparency. On the other, businesses and regulators often

require confidentiality and thorough checks. Finding the right balance between these

differing needs is crucial. Our experience in this thesis serves as a small example of

navigating these complexities. It emphasizes the importance of open communication,

https://www.optum.com/business/life-sciences/real-world-data.html/
https://www.optum.com/business/life-sciences/real-world-data.html/
https://flatiron.com/real-world-evidence/clinico-genomic-database-cgdb/
https://flatiron.com/real-world-evidence/clinico-genomic-database-cgdb/
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adaptable regulations, and innovative approaches to overcome such hurdles in the

future.

In conclusion, the exploration of historical control arms in clinical trials under-

scores the dynamic and evolving landscape of drug development. While they offer a

promising opportunity to advance clinical research, the practicalities of their integra-

tion into clinical trials face challenges — from data access to statistical methodolo-

gies. This thesis, rooted in collaboration between academia and corporate spheres,

contributes to advancing our understanding of the feasibility and applicability of

historical control arms, shedding light on their potential benefits and appropriate

applications in the field of oncology drug development.

6.2 Perspectives

In our studies, our primary tool was propensity score analysis tailored for individual

data. Further statistical methods can be considered. Alternative methods to deduce

efficacy involve comparing outcomes from single-arm patients with machine-learning

projections for control patient outcomes, such as G-computation, doubly robust es-

timation and doubly debiased machine learning (Chernozhukov et al., 2018; Funk et

al., 2011; Snowden et al., 2011).

G-computation operates on a counterfactual framework, suggesting that patient

outcomes can be predicted if they had been part of the control rather than the exper-

imental group, paving a way to infer causality (Snowden et al., 2011). Doubly robust

estimation combines propensity score method and outcome regression method (Funk

et al., 2011). Outcome regression method estimates the treatment effect by modeling

the outcome as a function of the treatment and the confounders. Doubly robust es-

timator is consistent (meaning the estimate converges to the true effect) if either the

propensity score model or the outcome regression model is correctly specified. The

modern evolution of causal inference in machine learning has reinvigorated interest in

the counterfactual framework, leading to the methods like doubly debiased machine

learning, aiming to rectify the bias in machine learning estimates (Chernozhukov et

al., 2018).

A comparative evaluation of various statistical techniques like propensity score

matching, inverse probability of treatment weighting, G-computation, and doubly

debiased machine learning was conducted (Loiseau et al., 2022). This evaluation illu-
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minated that doubly debiased machine learning exhibited minimal bias, outperform-

ing G-computation. Furthermore, techniques rooted in outcome prediction models

surpassed propensity score approaches in reducing estimation errors and bolstering

statistical power. Therefore, these methods can be applied in our future work.

Besides, notable advancements were recently observed in the regulatory landscape

pertaining to using of historical control arms for drug authorization. In 2023, key

regulatory bodies have issued publications highlighting the pivotal role of historical

control arms in the evaluation of medicinal products. The EMA published a reflection

paper on single-arm trials as pivotal evidence for the authorisation of medicines in the

EU (EMA, 2023). In parallel, the FDA issued a guidance document on considertaions

for design and conduct of externally controlled trials (FDA, 2023). Additionally,

Haute Autorité de Santé (HAS) published a paper on rapid access to innovative

medicinal products mentioning historical control arms (Vanier et al., 2023).

These publications collectively highlight a growing interest in integrating histor-

ical control data into the drug development process. They stress the importance of

establishing a comprehensive framework that involves all stakeholders, including reg-

ulatory authorities, industry experts, researchers, and statisticians. These regulatory

documents resonate closely with the core messages and objectives of this thesis. It is

crucial to note that historical control arms are not intended to completely replace ran-

domized control arms but rather to complement them in appropriate clinical settings.

Therefore, we propose the development of a relevant framework to ensure the proper

utilization and validation of historical control arms. This framework aims to enhance

the efficiency and effectiveness of clinical trials and expedite the authorization of

innovative medicines.

Further projects

Within the context of PhD CIFRE, in addition to my thesis projects, I worked at the

Sanofi Development Real-World Evidence team, guided by the expertise of Dr. Ramon

Hernandez. The team conducts RWE projects within four strategic pillars: indica-

tion identification, optimization of clinical development plan, drug combination and

supporting regulatory submissions.

I contributed to the data analysis segment for diverse RWE projects

spanning indications in oncology, neurology, and immunology. Data anal-
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ysis included real-world cohort creation and comparisons, survival analysis

(Kaplan-Meier plots, log-rank test, Cox proportional hazards regression),

etc. The analyses were conducted using developed RWE analytics platforms,

such as the Aetion Evidence Platform (https://aetion.com/) and TriNetX

(https://trinetx.com/). The real-world databases I worked with include

Flatiron’s Clinico-Genomic Database (https://flatiron.com/real-world-

evidence/clinico-genomic-database-cgdb/) and Optum’s Real-World Data

(https://www.optum.com/business/life-sciences/real-world-data.html/).

https://aetion.com/
https://trinetx.com/
https://flatiron.com/real-world-evidence/clinico-genomic-database-cgdb/
https://flatiron.com/real-world-evidence/clinico-genomic-database-cgdb/
https://www.optum.com/business/life-sciences/real-world-data.html/
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Abstract

Background

Preventing acute postsurgical pain (PSP) following breast cancer surgery is a major issue.

Thoracic paravertebral block (TPVB) has been widely studied for this indication. Erector spi-

nae plane block (ESPB) has been assumed to be effective. We aimed to compare the effi-

cacy and safety of ESPB over TPVB in preventing acute PSP.

Methods

In this prospective observational study, 120 patients admitted for unilateral major oncologic

breast surgery received T2/T3 ESPB (ropivacaine 0.75%, 0.35 ml.kg-1), and 102 were ana-

lysed. Then, the ESPB cohort was compared to a TPVB cohort from the experimental arm

of a randomized controlled study with the same protocol (NCT02408393) using propensity

score matching analysis. The primary outcome was the need for morphine consumption in

the PACU. Secondary outcomes were the morphine total dose, the incidence of ESPB and

TPVB complications, and discontinuous visual analogue scale measurement trends at rest

and at mobilization in the 24 hours after surgery.

Results

A total of 102 patients completed the study between December 2018 and August 2019. Pro-

pensity score matching formed 94 matched pairs. The proportion of morphine titration in the

PACU was higher in the ESPB group than in the TPVB group (74.5% vs. 41.5%, p 0.001),
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with a between-group difference of 33.0% (95% CI [19.3%, 46.7%]). No ESPB-related com-

plications were observed.

Conclusion

ESPB is less effective in preventing morphine consumption in the PACU than TPVB. Our

findings do not support the use of ESPB as the first-line regional anaesthesia for major

breast cancer surgery. Randomized trials comparing ESPB and TPVB are needed.

Introduction

The incidence of acute postsurgical pain (PSP) following breast cancer surgery is as high as

70% [1]. Acute PSP impacts quality of life and may increase the risk of chronic PSP [2,3].

Thus, any PSP reducing strategy is highly beneficial for patients.

Recent evidence suggests that regional anaesthesia (RA) in a multimodal analgesia program

can efficiently minimize acute PSP and opioid consumption after breast cancer surgery [4–6].

Thoracic paravertebral block (TPVB) has been widely studied and considered the “gold stan-

dard” for major breast cancer surgery. In addition, this technique has recently been proven to

be safe when performed under ultrasound guidance [1,7,8]. Erector spinae plane block

(ESPB), described in 2016 as an alternative to TPVB, is an interfacial block performed in the

plane of the spine erector muscles, which is more superficial than the paravertebral space [9].

Clinical and cadaveric studies suggest that ESPB may act on the ventral rami of the spinal

nerves in the paravertebral space via a diffusion process through the costotransverse foramen

and the costotransverse ligament [10,11]. ESPB is more advantageous than TPVB because it is

a simpler, faster procedure [12], and because of easily identifiable landmarks, it may be safer

because of more distant injection sites from the pleura and perimedullary space [13] (Fig 2).

Although ESPB has been shown to be efficient in preventing acute PSP after spine and tho-

racic surgery [14,15], the reliability of this diffusion process remains controversial, and ESPB

has been proposed for breast surgery without evidence supporting its efficacy [16–18]. More-

over, the clinical relevance of its benefits has been questioned [19].

In breast surgery, ESPB has been shown to be superior to general anaesthesia alone and to

placebo [16,20–23].

However, there is no large study comparing ESPB to TPVB for major breast surgery. The

available studies comparing ESPB to TPVB have shown analyses of a relatively low number of

patients, and their results are pooled in several meta-analyses that have shown conflicting

results [24–27]. Thus, the role of ESPB in the strategy of analgesia for breast surgery is not

clearly defined, and the comparison of ESPB performance with that of TPVB will provide

some answers.

Hence, we conducted a prospective observational study to evaluate the safety and efficacy of

ESPB with ropivacaine for minimizing morphine consumption in the postanesthesia care unit

(PACU) after major breast cancer surgery. Then, we aimed to compare these results to an

external control arm of TPVB by leveraging a historical cohort from a multicentric random-

ized trial, the MIRs03 study (NCT02408393) [1], which compared the efficacy of TPVB with

ropivacaine to a thoracic paravertebral injection of saline in preventing acute and chronic PSP

(Institut Curie, Saint-Cloud, France, Numéro EudraCT: 2014-002436-13). For our primary

aim, we tested the hypothesis that ESPB increases the incidence of acute PSP when compared

to TVPB. We performed a propensity score matching analysis to compare the endpoints of

interest while accounting for between-study heterogeneity.
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Methods

Study design

This prospective observational study was approved and registered by the Institutional Review

Board (IRB) of the Curie Institute of Paris-Saint Cloud in December 2018. Information was

provided orally, and oral consent was obtained. The IRB waived the need for written consent.

To allow the comparison to TPVB, we compared the outcomes of the ESPB cohort to those

of patients in the experimental arm of the MIRs03 study [1].

Patient management

We used the same inclusion criteria as MIRs03: female patients aged 18–85 years with an

American Society of Anaesthesiologists status of I to III who were admitted for mastectomy

with or without axillary lymph node or sentinel lymph node dissection or partial mastectomy

with axillary lymph node dissection.

The exclusion criteria were as follows: male sex; life expectancy less than 2 years; active

malignant disease; pregnancy; breastfeeding; bilateral surgery; ipsilateral breast surgery in the

past 3 years; chronic pain; allergy to local anaesthetics (LA), steroids and morphine; reported

history of substance abuse; local skin inflammation at the puncture area; and inability to com-

ply with the protocol for any reason.

Procedure

The medical protocol of the ESPB study was the same as that of MIRs03 and is summarized in

Fig 1.

No premedication was given.

Upon arrival at the PACU, ECG, NIBP and SpO2 were installed, and oxygen (2 l.min-1) was

delivered. Patients were placed in the lateral position and received target-controlled infusion

of remifentanil with a targeted 2 ng.ml-1 effect-site concentration.

Fig 1. Study protocol.

https://doi.org/10.1371/journal.pone.0279648.g001
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Under aseptic conditions, single-level T2 or T3 (T2/T3) ESPB was placed by senior clini-

cians with significant experience in thoracic wall blocks. The probe (Model Alpinion E-cube i7

with a 2–5 MHz ultrasound probe linear array L3-8H) was placed in the parasagittal plane at a

90-degree angle to the transverse process after determining the T2 and T3 transverse processes

by ultrasound. The needle (22-gauge 80-mm Pajunk, SonoTAP) was advanced in the plane of

the ultrasound (US) beam with the bevel oriented in a cranial direction (Fig 2). When the nee-

dle tip was positioned between the erector spinae muscle and transverse process, a hydrodis-

section was carried out with 1–3 ml of saline solution to confirm erector spinae muscle fascia

plane dissection. Then, 0.35 ml.kg-1 ropivacaine 0.75% without exceeding 30 ml was injected

(Fig 2).

During the MIRs03 trial, the TPVB was performed as follows: the patients were placed in

the lateral position on the opposite side from surgery, and remifentanil administration was

started with an IV targeted effect-site concentration objective to reach a concentration of 2 ng.

ml-1. The second thoracic paravertebral space (T2) was scanned by ultrasonography (Model

Alpinion E-cube i7 [Alpinion Medical Systems, Korea]) with a 2- to 5-MHz ultrasound probe

(linear array L3-8H). The probe was positioned on the transverse plane against the spinal pro-

cess. Under aseptic conditions, a 22-gauge 80-mm needle (SonoTAP [Pajunk, Germany]) was

advanced in an “in-plane” direction towards the paravertebral space, immediately above the

pleura and below the costotransverse ligament. The position of the needle was confirmed by

the descent of the pleura when injecting 2 to 3 ml of saline solution for hydrolocalization.

Then, 0.35 ml.kg-1 ropivacaine 0.75% was injected with intermittent negative aspiration tests

every 5 ml, without exceeding a total of 30 ml or an equivalent volume of saline. Immediately

after the paravertebral block injection procedure was completed in the preoperative holding

area, remifentanil injection was discontinued, and the patients were transferred to the operat-

ing room 30 min later [1].

The anaesthesia management is detailed in Fig 1. After completion of the surgery, all

patients were awake, breathed spontaneously and transferred to the PACU.

PSP intensity at rest and upon elevation of the arm ipsilateral to the surgery was measured

upon arrival in the PACU and then every 30 minutes during the first 2 hours and every 6

hours for the first 24 hours using a VAS ranging from 0 (no pain at all) to 10 (worst imaginable

pain). In the case of a resting VAS> 3/10 in the PACU, intravenous morphine titration was

administered using boluses of 2 mg every 5 minutes (no upper limit of dose) until the VAS

Fig 2. Technique description. A. Probe and needle placement. B. Echoanatomy and injection site (red arrow).

https://doi.org/10.1371/journal.pone.0279648.g002
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dropped! 3/10. All patients stayed at least 2 h, and then they were allowed to leave the PACU

if VAS was! 3/10 for 30 min and the modified Aldrete Score reached at least 9. The PSP man-

agement is detailed in Fig 1.

The concentration of ropivacaine, the injected volume, the sedation and general anaesthesia

protocol, the acute PSP management protocol and the postoperative nausea and vomiting

(PONV) management protocol were the same as those performed with TPVB in the MIRs03

study.

Data collection

The recorded data included age, weight and height, the type of surgery, the injected volume

and dose of ropivacaine, the occurrence of ESPB-related complications, the rest and mobiliza-

tion VAS measured during the hospital stay and 24 hours after surgery, the need for rescue

morphine, and the overall morphine dose (mg) administered in the PACU.

The same data on TPVB were collected during the MIRs03 study. The consent given for the

MIRs03 study included the reuse of data.

Outcomes

The primary outcome was the percentage of patients who needed morphine titration in the

PACU. The secondary outcomes were the total dose of morphine in the PACU, the incidence

of RA complications, and discontinuous VAS measurement trends at rest and at mobilization

during the first 24 hours after surgery.

Statistical analysis

Evidence shows that approximately 25% of patients required morphine titration after TPVB

[7]. The sample size was calculated based on the accuracy of the estimate of the efficacy. For an

expected rate of patients requiring morphine titration of 50%, the inclusion of 106 patients

produces a two-sided 95% confidence interval with a width equal to 20%.

Baseline and outcome comparisons were performed by chi-square or Fisher’s exact test for

categorical variables and Student’s t test for continuous variables. The ESPB and TPVB cohorts

were compared for age, body mass index (BMI), and surgery type, which are potential prog-

nostic factors of acute PSP [28].

To balance the patient characteristics between the ESPB and TPVB cohorts, we conducted a

propensity score matching analysis. The propensity scores were estimated by a multivariable

logistic regression model in which the probability of receiving the intervention (ESPB vs.

TPVB) was regressed conditional on age, BMI, and surgery type.

Patients were matched on the logit of the propensity score using a calliper of width equal to

0.2 of the standard deviation of the logit of the estimated propensity scores [29]. Matching was

performed without replacement (i.e., each subject was available for matching only once) in a

greedy manner (i.e., at each step in the matching process, the nearest TPVB subject was

selected for matching to the given ESPB subject). The balance of covariates between the two

arms was checked using standardized mean differences (SMDs) before and after matching. A

standardized mean difference of less than 0.1 is considered to indicate a negligible difference

in the mean or prevalence of a covariate between groups [29].

The risk difference in acute PSP with a 95% confidence interval was estimated as the differ-

ence between the probability of receiving morphine titration of TPVB patients and that of

ESPB patients in the matched sample. The standard errors were estimated using cluster-robust

standard errors to account for pair membership [30].
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In addition, we built a random forest model in addition to the logistic regression model to

assess the sensitivity of the matching result to the propensity score estimation [31]. The ran-

dom forest model was constructed using the intervention (ESPB vs. TPVB) as the output and

the baseline characteristics as inputs. Matching was performed with the same parameters as

described above.

Comparisons of patient characteristics of ESPB placement details according to the need for

morphine titration were performed with the Mann–Whitney or Student’s t test after testing

for normality with the Shapiro–Wilk test.

The outcomes and baseline characteristics of patients were compared according to the

injected volume (<25 ml vs."25 ml).

All tests were two-sided. A P value of less than 0.05 was considered to indicate statistical sig-

nificance. All analyses were conducted using R statistical software, version 4.0.2 (R Foundation

for Statistical Computing, Vienna, Austria).

Results

In the ESPB cohort, 120 patients were enrolled between December 2018 and August 2019, and

102 patients were included in the analysis. The reasons for secondary exclusion of the 18

patients are detailed in Fig 3.

As there was no significant between-centre difference in the incidence of morphine con-

sumption in the MIRs03 study (S4 Table), data from all 178 patients in the experimental arm

were employed, of which 13 patients were excluded because of missing data on morphine

consumption.

The study sample consisted of 102 ESPB patients and 165 TPVB patients. There were statis-

tically significant differences in baseline characteristics regarding breast surgery type (ESPB

patients underwent more total mastectomies, p<0.001 and SMD> 0.1) and BMI (ESPB

patients had lower BMI, SMD> 0.1).

Propensity score matching formed 94 matched pairs, which means that 94 of 102 ESPB

patients were matched with a TPVB patient. Eight ESPB patients who received axillary lymph

node dissection were thus excluded from further analysis. The distributions of the estimated

propensity scores by logistic regression are presented in the Supplementary Materials (S2 Fig).

The baseline characteristics of ESPB and TPVB patients in the propensity score-matched

sample are described in Table 1. The mean and prevalence of continuous and categorical vari-

ables were very similar between the two groups (all SMDs< 0.1).

Fig 3. Flow chart.

https://doi.org/10.1371/journal.pone.0279648.g003
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The primary endpoint of this study was the effect of ESPB on the need for morphine titra-

tion after breast surgery in the PACU (indicated in both cohorts when VAS> 3). In the pro-

pensity score-matched sample, the percentage of patients who required morphine titration

was significantly higher in the ESPB group than in the TPVB group (74.5% vs. 41.5%,

p<0.001). The observed difference between the two groups was 33.0% (95% confidence inter-

val [CI] 19.3%, 46.7%).

Regarding secondary outcomes, as shown in Table 2, among all the propensity score-

matched patients, the overall morphine dose was significantly higher in the ESPB group than

in the TPVB group (3.7 mg vs. 2.2 mg, p = 0.02). Among those who received morphine titra-

tion, there was no difference in the morphine dose (5.1 mg vs. 6.1 mg, p = 0.07).

The mean injected volume and dose of ropivacaine in the ESPB and TVPB groups were

22.4 ml ± 4.2 vs. 23.3 ml ± 3.6 (p = 0.03) and 166 mg ± 35 vs. 174 mg ± (p = 0.07), respectively.

In the ESPB cohort, the VAS score was reported every 30 minutes in the PACU during the

first 2 hours and then every 6 hours during 48 hours; the highest score was reported 30 min-

utes after surgery (mean VAS 3.9 ± 2.2) (S1 Fig).

No ESPB-related complications were observed. In the TPVB cohort, 5 cases of Claude Ber-

nard Horner syndrome, 1 case of nausea and 1 case of refractory hypotension during surgery

were observed (p = 0.001).

There was no significant difference in the incidence of the need for morphine between the

LA volume<25 ml group and the LA volume"25 ml group (70.0% vs. 81.0%, p = 0.32;

S2 Table).

In the sensitivity analysis, matching of propensity scores estimated by the random forest

model obtained consistent results with those of the logistic regression model (S3 Fig).

Discussion

Our study is one of the largest clinical studies in which the efficacy and safety of ESPB in pre-

venting acute PSP after major breast cancer surgery are evaluated [25,32].

Table 1. Baseline characteristics of patients before and after propensity score matching.

All patients Propensity score-matched patients

ESPB
(n = 102)

TPVB
(n = 165)

P SMD ESPB
(n = 94)

TPVB
(n = 94)

P SMD

Age (years),
mean (SD)

56.5 (12.9) 57.3 (14.1) 0.65 0.057 56.0 (12.7) 55.2 (14.3) 0.72 0.053

Weight (kg),
mean (SD)

67.20 (13.83) 68.85 (13.87) 0.35 0.119 67.05 (14.08) 67.65 (13.59) 0.77 0.043

BMI (kg/m2), mean (SD) 25.2 (5.0) 25.8 (5.0) 0.34 0.122 25.1 (5.1) 24.9 (4.5) 0.78 0.041

Surgery, n (%) < 0.001 0.466 0.71 0.080

Mastectomy 74 (72.5) 143 (86.7) 74 (78.7) 77 (81.9)

Tumorectomy 20 (19.6) 22 (13.3) 20 (21.3) 17 (18.1)

Axillary lymph node dissection 8 (7.8) 0 (0.0) 0 (0.0) 0 (0.0)

https://doi.org/10.1371/journal.pone.0279648.t001

Table 2. Primary and secondary outcomes in propensity score-matched patients.

ESPB
(n = 94)

TPVB
(n = 94)

P

Need for morphine titration, n (%) 70 (74.5) 39 (41.5) < 0.001

Morphine dose (mg), mean (SD) 3.7 (3.3) 2.2 (3.2) 0.02

RA placement complication incidence, n (%) 0 (0) 7 (7.4) 0.001

https://doi.org/10.1371/journal.pone.0279648.t002
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Regarding efficacy, ESPB was less likely to prevent morphine consumption in the PACU

than TPVB, with an observed difference of 33%. The incidence of morphine titration was as

high as 74.5% after ESPB, and the overall morphine dose was significantly higher in the ESPB

group than in the TPVB group (3.7 mg vs. 2.2 mg, p = 0.02).

Although there are no placebo-controlled studies evaluating the effect of ESPB on prevent-

ing acute PSP after breast surgery, many controlled studies comparing ESPB to standard care

were conducted and showed that both TPVB and ESPB were superior to their control groups.

Because ESPB seems to be safer than TPVB and takes less time for novice practitioners to learn

[12], many authors have proposed ESPB as a standard-of-care RA for breast surgery.

Of interest, there are some reports suggesting the efficacy of ESPB in preventing acute PSP

in this indication; some of them are randomized. In three meta-analyses, researchers com-

pared the effect of ESPB to that of TPVB, but 2 also included thoracic surgery patients [25,27].

One meta-analysis included patients undergoing total mastectomies and found no statistically

significant difference in morphine consumption at 24 hours [24]. In a more recently published

randomized study, researchers were unable to demonstrate the noninferiority of ESPB to

TPVB in minor breast surgery [33]. All these studies were conducted on small groups of

patients.

The diffusion process of LAs to the paravertebral space has been shown to be impacted by

the injected volume [10,11], but it seems to be inconsistent [34].

In the present T2/T3 ESPB evaluation, the median LA-injected volume was> 20 ml, which

is quite a large volume when compared to other studies. Regarding the impact of the injected

volume, receiving more or less than 25 ml of LAs did not influence the morphine titration inci-

dence (70% vs. 81%, p = 0.32). Additionally, the injected volume was similar between ESPB

patients who received and those who did not receive morphine titration. Rather than testing

fractionated volumes of LAs at multiple levels, we decided to use a single-site large LA volume

injected at T2/T3 to reinforce a possible volume effect allowing sensory nerve roots arising

from T2 to be blocked.

Moreover, the LA concentration seems to matter [17], suggesting that a large volume and

high concentration should be used to increase the probability of efficacy. In this setting and

considering its rapid and extensive rate of absorption [35], safety remains to be demonstrated.

With no complications reported, US-guided ESPB placement seems to be a safe technique.

However, regarding the low rate of RA technique complications, including TPVB, our sample

size may be insufficient to exclude the possibility of rare complications.

Overall, there are few studies comparing ESPB to TPVB, and the results are conflicting.

These differences may be attributed to several factors. First, regarding the type of surgery, we

only studied the analgesic effect following major breast surgery (e.g., mastectomy with or with-

out axillary node dissection), rather than that following minor breast surgery (e.g., lumpec-

tomy and partial mastectomy). Second, the pain treatment strategy in the PACU is as follows:

the threshold to trigger morphine titration in our centre is a VAS score" 3, while some

authors used a VAS score"4 and others used patient-controlled analgesia with or without

continuous infusion of opioids. Third, regarding the concentration and volume of the LAs

used, we used ropivacaine 0.75%, and one may hypothesize that using a higher volume of a

solution with a lower concentration may change the results.

Different limitations in this work should be noted. First, this is an observational cohort

study compared with a historical group. When involving historical data, between-study differ-

ences can be a major concern [36]. In our study, the identical design (same eligibility criteria

and protocol for perioperative management) of the ESPB and TPVB trials is the main advan-

tage supporting comparable patient characteristics, intervention effects, and outcome mea-

surements. In addition, we balanced three important prognostic factors of acute PSP (age,
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BMI and breast surgery type) between the groups by conducting a propensity score matching

analysis. To the best of our knowledge, there were no remaining systematic differences in the

baseline covariates that could be prognostic of acute PSP in propensity score-matched subjects.

The completion dates of the two studies were 2018 and 2019, so we assumed that there was no

substantial evolution of clinical practice. In addition, we obtained consistent results when

matching propensity scores estimated by the logistic regression model and random forest

model, which showed the robustness of our conclusion. On the other hand, unmeasured con-

founders in observational studies may cause bias. For instance, although the care protocols

used in the ESPB cohort were identical to those used in the MIRs03 study, the multicentre

nature of the latter could theoretically generate heterogeneity of practice. However, in the

MIRs03 study, the centre had no impact on morphine consumption (S4 Table). Of note, in the

MIRs03 study, patients were recruited fromMarch 27, 2015, to June 3, 2018, and recruitment

for the ESPB cohort began in December 2018. Thus, from December 2018 to August 2019, all

patients admitted to our centre for major breast surgery were treated with ESPB.

Second, our primary endpoint, the incidence of the need for morphine consumption in the

PACU, can be discussed. Such a criterion allows us to evaluate the effectiveness of the block in

preventing low early postoperative pain peaks. To completely understand the effects of this

block, other parameters could be evaluated, such as the late consumption of analgesics or late

mobilization. Indeed, some authors have hypothesized a delayed diffusion of the local anaes-

thetic from the injection zone to the paravertebral space with spontaneous respiratory move-

ments, which could be responsible for delayed efficiency [37]. Next, in this study, we did not

evaluate functional criteria or patient satisfaction. Finally, the other RA techniques used in

breast surgery, such as PECs or serratus blocks, were not evaluated in this study.

These data suggest that ESPB should not be proposed as the first-line treatment over TPVB

for the prevention of acute low-peak PSP after major breast cancer surgery. However, because

of these limitations, a randomized trial is necessary to confirm these results. Hence, we are

conducting a multicentric double-blind randomized trial to test the non-inferiority of ESPB

compared to TPBV (ER-One, NCT04827030). The process of patient inclusion has already

started, and the estimated completion date is August 2023.

Conclusions

In this comparative study using a propensity score matching analysis with a historical arm,

US-guided ESPB at the T2/T3 level was not effective in preventing morphine consumption in

the PACU after major breast surgery compared with TPVB.

Despite its easy implementation, the use of ESPB as the standard of care for radical breast

cancer surgery is not justified over TPVB.

Supporting information

S1 Fig. VAS boxplot. Both rest and mobilization VAS peaks were encountered at 30 min of

PACU stay.

(DOCX)

S2 Fig. Distribution of the estimated propensity scores using a logistic regression model.

The overlapping area of propensity scores of the two groups implies that there are patients

who share similar propensity scores and can thus be considered matched pairs.

(DOCX)

S3 Fig. Distribution of estimated propensity scores using the random forest model. S3 Fig

presents the distributions of the estimated propensity scores using the random forest model,
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which are similar to those estimated by the logistic regression model in S2 Fig.

(DOCX)

S1 Table. Baseline characteristics and injected volume according to morphine titration

need status in the ESPB cohort. There was no statistically significant difference in patient

characteristics or ESPB injected volume between patients who required morphine titration

and those who did not. at test when the Shapiro–Wilk test and q-q plots do not reject normal-

ity. bMann–Whitney test when the Shapiro–Wilk test or q-q plots reject normality.

(DOCX)

S2 Table. Baseline characteristics and outcomes according to the injected volume in the

ESPB cohort. There was no significant difference in the need for morphine titration, overall

morphine dosage or VAS at rest or mobilization according to BMI. VAS, visual analog scale. at

test when the Shapiro–Wilk test and q-q plots do not reject normality. bMann–Whitney test

when the Shapiro–Wilk test or q-q plots reject normality.

(DOCX)

S3 Table. Baseline characteristics and outcomes of patients matched on propensity scores

estimated by the random forest model. This table shows the comparisons of the baseline

characteristics and outcomes of patients matched on propensity scores estimated by the ran-

dom forest model. Ninety-five out of 102 ESPB patients were matched with a TPVB patient.

Seven ESPB patients who received axillary lymph node dissection but no breast surgery were

excluded from matching. Across the baseline covariates, the absolute SMDs of age and BMI

were below 0.1, indicating a negligible difference. The SMD of the performed surgery type was

0.169, which slightly exceeded the preset threshold of 0.1 but was lower than the value of 0.466

before matching. The matching process created two groups of patients with more comparable

covariates. The percentage of patients who required morphine titration was significantly

higher in the ESPB group than in the TPVB group (74.7% vs. 38.9%, p<0.001). The observed

difference between the two groups was 35.8% (95% CI [22.7%, 48.9%]). Among the patients

who received morphine titration, the overall morphine doses were similar between the two

groups (5.1 ml vs. 5.8 ml, p = 0.14). The results of propensity score matching analysis with the

random forest model are consistent with those of the logistic regression model.

(DOCX)

S4 Table. Incidence of morphine titration among centers in the MIRs03 study. a Kruskal-

Wallis test. S4 Table shows the number of patients on the experimental arm who received post-

operative morphine titration at the five centers in the MIRs03 study. There was no significant

difference in the incidences of morphine consumption between centers in the MIRs03 study.

(DOCX)
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ABSTRACT 

Leveraging external control data, especially real-world data (RWD), has drawn particular attention in recent years for 

facilitating oncology clinical development and regulatory decision-making. Medical regulators have published 

guidance on accelerating the use of RWD and external controls. However, few systematic discussions have been 

conducted on external controls in cancer drug submissions and regulatory feedback. 

This study aimed to identify European oncology drug approvals using external control data to demonstrate clinical 

efficacy. We included 18 eligible submissions employing 24 external controls and then discussed the use of external 

 

The external controls have been actively submitted to the European Medical Agency (EMA) recently. We found that 

17% of the EMA-approved cancer drugs in 2016-2021 used external controls, among which 37% of the cases 

leveraged RWD. However, nearly one-third of the external controls were not considered supportive evidence by EMA 

due to limitations regarding heterogeneous patient populations, missing outcome assessment in RWD, and 

inappropriate statistical analysis.  

This study highlighted that proper use of external controls requires a careful assessment of clinical settings, data 

availability, and statistical methodology. For better use of external controls in oncology clinical trials, we recommend: 

prospective study designs to avoid selection bias, sufficient baseline data to ensure the comparability of study 

populations, consistent endpoint measurements to enable outcome comparison, robust statistical methodology for 

comparative analysis, and collaborative efforts of sponsors and regulators to establish regulatory frameworks. 

 

KEYWORDS 

external control; historical control; oncology; clinical trial; real-world data  



 

2 

1. Introduction 

Randomized controlled trials (RCTs) are the gold standard for evaluating the efficacy of new treatments[1]. RCTs 

establish causal conclusions by randomly assigning patients to either an investigational or concurrent control 

treatment that usually consists of a placebo or standard of care. Nevertheless, ethical or feasibility issues can hinder 

the randomization process in oncology clinical trials. For example, when a promising new therapy is being studied in 

early-stage clinical trials for cancer with high unmet needs, enrolling patients into control arms may cause ethical 

issues and unwillingness to participate[2]. Besides, with the advances in molecular classification and precision 

medicine in oncology - further dividing patient populations into smaller groups - the number of patients available for 

a particular clinical trial may be insufficient to produce valid evidence [3,4]. Medical regulators acknowledge these 

challenges and have granted conditional approvals to submissions with single-arm trials[5,6]. 

External controls have been introduced as a pragmatic approach to knowledge production, which can improve the 

interpretation of single-arm trial results and reduce the bias due to the lack of randomization[6]. Data from historical 

clinical trials or real-world databases expand the use of external controls to minimize patient burden and facilitate 

drug development[7 9].  

Recent technological advances and a dynamic policy landscape have created a fertile ground for using real-world 

data (RWD) to improve clinical evidence generation[10]. RWD are qualified as routinely collected data relating to 

patient health status and the delivery of health care other than traditional RCTs such as electronic health records 

(EHRs), claims, registries, or patient-generated data[11,12]. Clinical evidence regarding the usage and potential 

benefits or risks of a medical product derived from the analysis of RWD is then considered real-world evidence (RWE). 

The regulatory authorities have signaled their support for using RWD to generate clinical evidence. In 2018, the US 

Food and Drug Administration (FDA) published the framework for RWE underpinned by three pillars: whether RWD 

are fit for use, whether the study design can provide adequate evidence, and whether the study conduct meets 

regulatory requirements[11]. In 2019, the European Medicines Agency (EMA) published the OPTIMAL framework for 

RWE, consisting of operational, technical and methodological[12]. Besides, the EMA outlined the vision for 

establishing the value of RWE for various regulatory uses by 2025[13].  

Recent evidence shows that RCT and RWE findings were not always matched despite attempts to emulate RCT design 

and confounder adjustment[14]. Thus, challenges remain before external controls can be an integrated part of 

decision-making[15]. On the other hand, researchers proposed the combination of RCTs and RWE data for clinical 

knowledge generation in the era of precision medicine[4]. External controls leveraging RWD are of particular interest 

in oncology drug development to foster patients' access to innovative therapy in the context of segmentation of 

tumor entities and targeted therapy [16,17]. Learning from previous external control applications can inform future 

studies and avoid common pitfalls. So far, however, few systematic discussions have been conducted about external 

controls in oncology drug development. 

This study aims to systematically review the external controls in oncology clinical development and understand their 

impact on regulatory decision-making. Section 2 defines external control and reviews statistical considerations. 

Sections 3 and 4 describe the study methodology and outline the search findings. Section 5 discusses the statistical 

characteristics of external controls, their impact on regulatory decision-making, and recommendations for using 

external controls. Finally, Section 6 concludes the study. 

 

2. External controls and Statistical considerations 

In an externally controlled trial, patients receiving the investigational treatment are compared with patients external 

to the study. The external control can consist of patients treated earlier than the concurrent clinical trial (historical 

control) or during the same period on different clinical conditions[18]. External control is also known as synthetic 

control, implying the control data have been selected and processed before being incorporated into the analysis. 

"External control", "historical control", and "synthetic control" are used interchangeably in practice[7,19 22]. This 

study uses "external control" to refer to data derived outside the concurrent clinical trial. 

In single-arm or parallel-group trials, external controls serve as the sole comparator to provide benchmarks and 

contextualize the new treatment[9,21]. In RCTs with unequal randomization, external controls can augment the 

concurrent control to form hybrid control arms composed of internal and external control data, which allows 

randomizing fewer patients to the control arm[3,23 25]. 

Clinical data for creating external controls fall into two major categories: clinical trial data and real-world data (RWD). 

The choice of data sources depends on the research questions. For example, for the endpoints of interest measured 
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in a specialized manner such as key biomarker testing, previous clinical trial data can be appropriate. On the other 

hand, RWD might be better suited for cancers with limited experience from clinical trials. 

 

External controls are subject to systematic biases due to the absence of randomization. The validity of external 

control lies in its exchangeability with the internal patients, for which Pocock proposed six evaluation criteria in 1976:  

(1) the same defined standard treatment; (2) the same patient eligibility; (3) the same treatment evaluation; (4) 

comparable distributions of essential patient characteristics; (5) performed in the same organization; (6) no other 

observed confounders[22]. While these criteria are stringent in non-randomized clinical conditions, applying them 

to the most significant degree possible can minimize the risk of substantial biases. The FDA cited these criteria in the 

statistical review for drug approvals[26]. 

Statistical analysis methods have been developed to mitigate the biases of incorporating external controls. 

Frequentist approaches ensure between-group comparability of baseline characteristics by following two main steps: 

(1) estimate a balance score (e.g., propensity score, Mahalanobis distance) using a selection of covariates that can 

impact the treatment assignment and outcome, (2) employ the balance score to obtain comparable external and 

internal cohorts through analysis such as matching, inverse probability weighting, and covariate adjustment[27,28]. 

Bayesian approaches account for the outcome heterogeneity by incorporating and discounting the external control 

data into the new clinical trial, using power prior, commensurate prior, or meta-analytic prior[29,30]. 

 

3. Search methodology and data extraction 

We searched European public assessment reports (EPARs) for human medicines 

(https://www.ema.europa.eu/en/medicines) to identify regulatory submissions referring to external control data in 

clinical efficacy. We included original marketing applications for cancer drugs in 2016-2021 and excluded drugs for 

diagnostic use only or withdrawn from the market. The search was conducted in 31 May 2022. 

From January 1, 2016, to December 31, 2021, 113 cancer drugs were granted marketing authorization by EMA (Figure 

1). Two drugs for diagnostic use and eight withdrawn from the market were excluded from the study. After screening 

the EPARs of the eligible 103 medicines, we identified 18 (17%) drug submissions using external controls. Figure 2 

presents the number of screened cancer drugs and eligible external control cases. 

We examined the characteristics of the drug approvals concerning: drug name, class of drug, approval year, marketing 

authorization holder, therapeutic area and indication. We scrutinized the clinical efficacy section in the EPAR of such 

approvals to extract information on pivotal studies and external controls: pivotal study design, use of external control, 

source of external control data, method of analysis, and EMA's decision on the external controls. 

 

Figure 1 Selection of external control cases from cancer drug approvals 
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Figure 2 Summary of identification results in 2016-2021 

 

4. Results 

Table 1 lists the identified drugs and external controls. 7 (39%) of the 18 identified drugs were granted conditional 

approval, all of which were submitted after 2019. Note that six drug submissions have used multiple external controls 

for one pivotal study or have conducted pivotal studies for multiple indications; therefore, the 18 submissions 

leveraged 24 external controls. Though all drugs were approved by EMA, some external controls were not deemed 

supportive. were included as supportive 

 were deemed inadequate for decision-

making.  

 

Table 1: Cancer drug approvals using external controls 

Drug Year 
Class of 

drug 

Therapeutic 

area 

Conditio

nal 

approval 

Pivotal study design 
Use of external 

control 

Source of 

external 

control data 

Method of 

analysis decision 

Minjuvi 

(tafasitamab) 
2021 

Monoclona

l antibody 
Lymphoma Yes 

Phase 2, single-arm, 

open-label, multicentre 

Comparative 

efficacy analysis 
RWD 

Confounding 

adjustment  
Rejected 

Abecma 

(idecabtagene 

vicleucel) 

2021 

Autologous 

cellular 

immunoth

erapy 

Multiple 

Myeloma 
Yes 

Phase 2, single-arm, 

open-label, multicentre 

Comparative 

efficacy analysis 
RWD 

Confounding 

adjustment 
Rejected 

Enhertu 

(trastuzumab 

deruxtecan) - 1 

2021 

Antibody-

drug 

conjugate 

Breast 

Neoplasms 
Yes 

Phase 2, single-arm, 

open-label, multicenter, 

2-part 

Comparative 

efficacy analysis 
RWD 

Confounding 

adjustment 
Rejected 

Enhertu 

(trastuzumab 

deruxtecan) - 2 

2021 

Antibody-

drug 

conjugate 

Breast 

Neoplasms 
Yes 

Phase 2, single-arm, 

open-label, multicenter, 

2-part 

Understanding the 

natural history of 

disease 

Published 

observational 

studies 

Meta-

analysis 
Accepted 

Blenrep 

(belantamab 

mafodotin) 

2020 

Antibody-

drug 

conjugate 

Multiple 

Myeloma 
Yes 

Phase 2, two-arm, 

randomized, open-label, 

multicentre 

Historical 

benchmark 

Published 

observational 

studies 

Descriptive Accepted 

Rozlytrek 

(entrectinib) 
2020 

Kinase 

inhibitor 

Non-Small-

Cell Lung 

Cancer 

Yes 

Phase 2, single-arm, 

open-label, multicenter, 

basket study 

Comparative 

efficacy analysis 
RWD 

Confounding 

adjustment 
Rejected 

Tecartus 

(brexucabtagene 

autoleucel) - 1 

2020 

Autologous 

cellular 

immunoth

erapy 

Lymphoma Yes 
Phase 2, single-arm, 

open-label, multicentre 

Historical 

benchmark 

Published 

observational 

studies 

Descriptive Accepted 

Tecartus 

(brexucabtagene 

autoleucel) - 2 

2020 
Autologous 

cellular 
Lymphoma Yes 

Phase 2, single-arm, 

open-label, multicentre 

Historical 

benchmark 

Published 

observational 

studies 

Meta-

analysis 
Rejected 
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immunoth

erapy 

Libtayo 

(cemiplimab) 
2019 

Monoclona

l antibody 

Squamous 

Cell 

Carcinoma 

Yes 
Phase 2, single-arm, 3-

group, multicenter 

Comparative 

efficacy analysis 
RWD Descriptive Accepted 

Apealea 

(paclitaxel) 
2018 

Mitotic 

inhibitor 

Ovarian 

Neoplasms 
No 

Phase 3, parallel, 

randomized, 

comparator-controlled, 

open-label, non-

inferiority study  

Defining margin of 

non-interiority 

Historical 

clinical trials 

Meta-

analysis 
Accepted 

Verzenios 

(abemaciclib) - 1 
2018 

Kinase 

inhibitor 

Breast 

Neoplasms 
No 

Phase 2, single-arm, 

open-label, multicentre 

Historical 

benchmark 
Unspecified Descriptive Accepted 

Verzenios 

(abemaciclib) - 2 
2018 

Kinase 

inhibitor 

Breast 

Neoplasms 
No 

Phase 2, single-arm, 

open-label, multicentre 

Comparative 

efficacy analysis 
RWD 

Confounding 

adjustment 
Rejected 

Yescarta 

(axicabtagene 

ciloleucel) 

2018 

Autologous 

cellular 

immunoth

erapy 

Lymphoma No 
Phase 2, single-arm, 

open-label, multicentre 

Comparative 

efficacy analysis 

RWD and 

historical 

clinical trials 

Meta-

analysis 
Accepted 

Bavencio 

(avelumabl) 
2017 

Monoclona

l antibody 

Neuroendocri

ne Tumors 
No 

Phase 2, single-arm, 

open-label, multicentre 

Understanding the 

natural history of 

disease 

RWD Descriptive Accepted 

Qarziba 

(dinutuximab 

beta) - 1 

2017 
Monoclona

l antibody 

Neuroblasto

ma 
No 

retrospective data 

analysis under a 

compassionate use 

program 

Comparative 

efficacy analysis 
RWD Descriptive Accepted 

Qarziba 

(dinutuximab 

beta) - 2 

2017 
Monoclona

l antibody 

Neuroblasto

ma 
No 

retrospective data 

analysis under a 

compassionate use 

program 

Comparative 

efficacy analysis 

Historical 

clinical trials 
Descriptive Accepted 

Rydapt 

(midostaurin) 
2017 

Kinase 

inhibitor 

Leukemia, 

Mastocytosis 
No 

Phase 2, single-arm, 

multicentre 

Comparative 

efficacy analysis 

Historical 

clinical trials 

Confounding 

adjustment 
Rejected 

Tecentriq 

(atezolizumab) - 

1 

2017 
Monoclona

l antibody 

Non-Small-

Cell Lung 

Cancer 

No 
Phase 2, single-arm, 

multicentre 

Historical 

benchmark 

Historical 

clinical trials 
Descriptive Rejected 

Tecentriq 

(atezolizumab) - 

2 

2017 
Monoclona

l antibody 

Urologic 

Neoplasms 
No 

Phase 2, single-arm, 

multicentre, two-cohort 

Historical 

benchmark 
RWD 

Confounding 

adjustment 
Rejected 

Ledaga 

(chlormethine) 
2017 

Alkylating 

agent 

Mycosis 

Fungoides 

No 

 

phase 2, multicenter, 

randomized, 

comparator-controlled, 

third party (observer) 

blinded, non-inferiority 

study  

Defining margin of 

non-interiority 
Unspecified Descriptive Accepted 

Blitzima 

(rituximab) 
2017 

Monoclona

l antibody 

Lymphoma, 

Leukemia 
No 

Phase 1, randomized, 

controlled, multicentre, 

2-arm, parallel-group, 

double-blind 

Comparative 

efficacy analysis 

Historical 

clinical trials 
Descriptive Accepted 

Truxima 

(rituximab) - 1 
2017 

Monoclona

l antibody 

Lymphoma, 

Leukemia 
No 

Phase 1, randomized, 

controlled, multicentre, 

2-arm, parallel-group, 

double- 

Comparative 

efficacy analysis 

Historical 

clinical trials 
Descriptive Accepted 

Truxima 

(rituximab) - 2 
2017 

Monoclona

l antibody 

Lymphoma, 

Leukemia 
No 

open-label, single-arm, 

maintenance study 

Defining margin of 

non-interiority 

Historical 

clinical trials 
Descriptive Accepted 

Darzalex 

(daratumumab) 
2016 

Monoclona

l antibody 

Multiple 

Myeloma 
No 

Phase 2, open-label, 

multicentre, 2-arm 

Historical 

benchmark 

Published 

observational 

studies 

Descriptive Accepted 

 

Table 2 summarizes the characteristics of external controls regarding use for clinical efficacy, data source, analysis 

 

 

Table 2: Summary of external control characteristics 

 n 

Total=24 
% 
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Use of external control  
 

 

Comparative efficacy analysis 12 50% 

Historical benchmark 7 29% 

Defining margin of non-interiority 3 13% 

Understanding nature history of disease 2 8% 

 

Source of external control data  
 

 

Real-world data (RWD) 9 37% 

Historical clinical trials 7 29% 

RWD and historical clinical trials 1 4% 

Published observational studies 5 21% 

Unspecified 2 8% 

 

Method of analysis 
 

 

Descriptive analysis 13 54% 

Comparative analysis with confounding adjustment 

(matching, inverse probability weighting) 
7 

29% 

Meta-analysis 4 17% 

 

decision on external control 
 

 

Accepted 15 63% 

Rejected 9 37% 

 

Table 3 summarizes . 

 

decision on external controls 

  EMA's decision on external controls 

  Accepted Rejected Total 

Source of external control data    

Real-world data (RWD) 3 (33%) 6 (67%) 9 (100%) 

Historical clinical trials 5 (71%) 2 (29%) 7 (100%) 

RWD and historical clinical trials 1 (100%) 0 (0%) 1 (100%) 

Published observational studies 4 (80%) 1 (20%) 5 (100%) 

Unspecified 2 (100%) 0 (0%) 2 (100%) 

Method of analysis    

Descriptive 12 (92%) 1 (8%) 13 (100%) 

Confounding adjustment 0 (0%) 7 (100%) 7 (100%) 

Meta-analysis 3 (75%) 1 (25%) 4 (100%) 

Total 15 (63%) 9 (37%) 24 (100%) 
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Table 4 presents the limitations cited by EMA for rejecting external controls to support clinical efficacy. 

 

Table 4: Limitations identified by EMA on external controls 

Drug Year 

Source of 

external 

control data 

Method of 

analysis 
Limitations identified by EMA 

Minjuvi 

(tafasitamab) 
2021 RWD 

Confounding 

adjustment  

Heterogeneous patient populations, differences in 

standard of care received during treatment, suboptimal 

statistical methodology 

Abecma 

(idecabtagene 

vicleucel) 

2021 RWD 
Confounding 

adjustment 

Selection bias of the study population, missing data of 

prognostic factors 

Enhertu 

(trastuzumab 

deruxtecan) - 1 

2021 RWD 
Confounding 

adjustment 

Selection bias of the study population, missing 

assessment of response, differences in the measurement 

of endpoint, not optimal statistical methodology 

Rozlytrek 

(entrectinib) 
2020 RWD 

Confounding 

adjustment 

Limitations of the study design, limited data 

Tecartus 

(brexucabtagene 

autoleucel) - 2 

2020 

Published 

observational 

studies 

Meta-analysis 

Heterogeneous patient populations, limited information 

on the study design 

Verzenios 

(abemaciclib) - 2 
2018 RWD 

Confounding 

adjustment 

Heterogeneous patient populations 

Rydapt 

(midostaurin) 
2017 

Historical 

clinical trials 

Confounding 

adjustment 

Limited information on the baseline characteristics, no 

correction for the time of initiation of treatment 

Tecentriq 

(atezolizumab) - 1 
2017 

Historical 

clinical trials 
Descriptive 

Limited information on the determination of historical 

response rates 

Tecentriq 

(atezolizumab) - 2 
2017 RWD 

Confounding 

adjustment 

Heterogeneous patient populations 
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5. Discussion 

We identified that 50% of external controls were used for comparative efficacy analysis, and 29% served as historical 

benchmarks in the superiority study design. Moreover, 8% of external controls provided contextual information on 

the natural history of disease in rare indications. Besides, 13% of external controls were included in defining the 

margin of non-inferiority for non-inferiority hypotheses. All external controls were employed in single-arm trials. 

We did not find external controls supplementing the concurrent control arm in RCTs. Though there have been 

discussions on combining external with internal data in RCTs[21,31], the hybrid control arm has yet to be applied for 

EMA submissions. Nevertheless, the hybrid design allows one to evaluate population comparability and can be 

considered in future external control studies[25]. 

We observed that the external controls used most individual RWD (38%) and historical clinical trials (29%). 21% cited 

published studies, including prospective or retrospective observational studies. 8% did not specify the data source. 

One case (4%) employed individual RWD and historical clinical trial data. The results highlighted the broad usage of 

RWD in external controls in recent cancer drug approvals. 

We found that 54% of the external controls used descriptive analysis and naive comparison, and 17% applied meta-

analysis using aggregate or patient-level data. Besides, 29% performed comparative efficacy analysis with 

adjustment for confounding covariates, including matching and inverse probability weighting (based on propensity 

score or Mahalanobis distance) with individual patient data from RWD or historical clinical trials. 

The EMA accepted 63% of the external controls for demonstrating clinical efficacy. However, Table 3 shows that 

only 33% of external controls using RWD were considered supportive evidence. By contrast, the majority of external 

controls using data from historical clinical trials (71%), both RWD and historical clinical trials (100%), published 

studies (80%), or unknown sources (100%) were accepted. Regarding the analysis method, the EMA accepted most 

external controls using descriptive analysis (92%) or meta-analysis (75%). In comparison, no case applying methods 

of confounding adjustment (0%) was considered supportive evidence. These results indicate that the EMA primarily 

considered the pivotal study results in decision-making, and various data sources or analysis methods did not 

mitigate the concerns about the systematic bias of external controls. 

The limitations of external controls cited by EMA (Table 4) primarily concerned the Pocock criteria discussed in 

Section 2.2. Heterogeneity in the external and internal patients was a significant issue. It was caused by differences 

in the standard of care or limited information from the sponsors on baseline characteristics, especially on significant 

prognostic factors. The regulators also pointed out that missing or different assessment of endpoints was an 

essential downside of using RWD in external controls. Besides, unclear study design and selection bias hindered 

through statistical methodology as the regulators deemed the sponsors applied suboptimal analysis. 

To improve the use of external controls in regulatory decision-making, we first suggest a priori trial planning 

considering external control data. Sponsors should engage with regulators early to align the acceptability of external 

control for the target population, the study design, and the methodology to avoid selection bias. Secondly, we 

assessment. Thirdly, we advise robust statistical analysis with adjustment for confounders to reduce potential bias. 

For example, use doubly robust estimation for propensity score methods because propensity score estimation is 

subject to model misspecification[32,33]. Besides, using individual RWD to emulate target trials can help ensure fit-

for-purpose data and confounding control[34]. Fourthly, we suggest performing sensitivity analysis to validate data 

quality and study results. Finally, we encourage sponsors to work with regulators to develop regulatory guidance on 

external controls for study design, data selection, and analysis plans. 

Our study was conducted in a systematic manner with in-depth extractions of external control characteristics and 

objective discussions on the issues of external controls. Despite this, our study was subject to several limitations. 

First, we limited our scope with a prespecified inclusion period of 2016-2021 under the presumption that external 

control using RWD is a recently emerging research interest in oncology. Second, our data extraction was limited to 

details on external controls may have been omitted. Finally, we did not scrutinize the impact of external control on 

regulatory pathways, such as conditional marketing authorization. Besides, the prespecified period of 2016-2021 
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may limit the assessment of post-authorization changes. It can be interesting for future work to study the use of 

external controls for diverse regulatory pathways.  

  

6. Conclusion 

There has been growing research interest in leveraging external controls to facilitate oncology clinical trials. Medical 

regulatory agencies have published frameworks on accelerating the use of RWD and external controls for regulatory 

decision-making. However, few systematic discussions were conducted about current applications of external 

controls in oncology drug development and regulatory feedback. This study identified 18 EMA-approved oncology 

drugs leveraging 24 external controls. We discussed the use of external control, data sources, analysis methods, and 

decision. 

We found that external controls had been actively submitted to the EMA. 17% of the EMA-approved cancer drugs in 

2016-2021 used external controls, among which 37% of the cases leveraged RWD. However, nearly one-third of the 

external controls were not considered supportive evidence by EMA due to limitations regarding heterogeneous 

patient populations, missing outcome assessment in RWD, and inappropriate statistical analysis. This study 

highlighted that the validity of external controls requires carefully assessing data availability and determining the 

optimal clinical and statistical methodology. 

Our findings highlighted that proper use of external controls requires a careful assessment of clinical settings, data 

availability, and statistical methodology. For better use of external controls in oncology clinical development, we 

suggest: a priori study designs to avoid selection bias, sufficient baseline data to ensure the comparability of study 

populations, consistent endpoint measurements to enable outcome comparison, robust statistical methodology for 

comparative analysis, and collaborative efforts of sponsors and regulators to establish frameworks on external 

controls. 
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Résumé en français

L’essai contrôlé randomisé représente la méthode de référence pour établir l’effet

causal des traitements expérimentaux par rapport aux traitements de contrôle ou

aux placebos. Néanmoins, des problèmes éthiques ou de faisabilité peuvent entraver

le processus de randomisation, en particulier dans le développement de médicaments

en oncologie. Les autorités réglementaires reconnaissent ces défis et ont accordé des

approbations conditionnelles pour des essais à bras unique, avec l’exigence de preuves

confirmatoires ultérieures à partir d’études post-approbation. En outre, à l’ère du

séquençage du génome et de la médecine de précision, les essais randomisés compara-

tifs peuvent devenir peu réalisables dans certaines situations, notamment lorsqu’il

s’agit de rares anomalies génétiques.

Dans ce contexte, les bras de contrôle historique ont émergé comme une approche

complémentaire aux essais cliniques. En fournissant des informations contextuelles

et en améliorant l’interprétation des résultats des essais à bras unique, les bras de

contrôle historique visent à réduire le biais dû au manque de randomisation. Bien que

diverses méthodes statistiques dans le cadre de l’inférence causale aient été proposées,

il existe actuellement un manque de directives régissant leur application dans le pro-

cessus de développement de médicaments. L’objectif de cette thèse est d’évaluer la

faisabilité des bras de contrôle historique, en mettant l’accent sur la disponibilité des

données historiques et les méthodes d’analyse statistique appropriées.

Afin de réduire les biais lors de l’inclusion de contrôles externes dans les analyses

statistiques, diverses méthodes ont été développées, comprenant à la fois des ap-

proches fréquentistes et bayésiennes. Les approches bayésiennes prennent en compte

l’hétérogénéité des résultats et réduisent le poids des données de contrôle historique

lors de leur incorporation dans le nouvel essai clinique, telles que la méthode “power

prior”, la méthode “commensurate prior”, ou la méthode “meta-analytic prior”. Étant

donné que ces méthodes empruntent des informations aux données historiques, elles
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sont souvent appelées “méthodes d’emprunt bayésiennes”. En revanche, les approches

fréquentistes impliquent deux étapes principales. Tout d’abord, un score d’équilibre

est estimé en utilisant des covariables sélectionnées qui peuvent affecter l’attribution

du traitement et le résultat. Des exemples de scores d’équilibre incluent le score de

propension et la distance de Mahalanobis. Ensuite, le score d’équilibre est utilisé

pour créer des cohortes externes et internes comparables à l’aide de méthodes telles

que l’appariement, la pondération par inverse de la probabilité et l’ajustement des

covariables.

Dans un premier temps, nous avons réalisé une revue systématique de l’application

des bras de contrôle historique dans le développement de médicaments en oncolo-

gie en Europe. Cette revue a été menée afin d’identifier les autorisations accordées

par l’Agence européenne des médicaments (EMA) entre 2016 et 2021, basées sur

l’utilisation de contrôles historiques pour démontrer l’efficacité en oncologie. Parmi

les 113 autorisations délivrées par l’EMA au cours de cette période, nous avons iden-

tifié 18 soumissions utilisant 24 contrôles externes. Ces soumissions ont été analysées

en examinant plusieurs aspects, tels que l’utilisation des contrôles externes, les sources

de données, les méthodes d’analyse et les retours des régulateurs. Il est à noter que

37% des bras de contrôle historique ont utilisé des données de vie réelle. Cependant,

près d’un tiers de ces contrôles externes n’ont pas été considérés par l’EMA comme

apportant un niveau de preuve suffisant en raison de limitations liées à l’hétérogénéité

des populations de patients, à l’absence d’évaluation des résultats dans les données

de vie réelle et à une analyse statistique jugée inappropriée. Les limitations associées

à cette revue ont également été identifiées. Nos résultats indiquent que, bien que

les contrôles historiques aient été activement soumis aux autorités réglementaires, ils

ne sont pas systématiquement considérés comme des preuves favorables. Nous avons

identifié des limitations significatives et formulé des suggestions correspondantes con-

cernant la conception de l’étude, la sélection des données et l’application des méthodes

statistiques. Cette étude souligne que la validité des contrôles externes nécessite une

évaluation minutieuse de la disponibilité des données et la détermination préalable

d’une méthodologie et d’une stratégie d’analyse statistique optimale.

S’appuyant sur les enseignements tirés de la revue, nous avons ensuite réalisé

deux études de cas pour approfondir notre compréhension de l’utilisation des bras

de contrôle historique dans des contextes plus complexes. La première étude de cas

examine un essai à bras unique observationnel qui a évalué l’efficacité du bloc du

plan du muscle érecteur du rachis dans la réduction de la douleur post-opératoire
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lors de la chirurgie du cancer du sein. Le bloc paravertébral thoracique (BPVT) est

une technique d’anesthésie locorégionale qui a démontré son intérêt dans le cadre des

chirurgies “extensives” pour le cancer du sein. Une technique alternative, dénom-

mée bloc érecteur du rachis, a été développée au milieu des années 2010. Cette

procédure est plus simple, plus rapide et moins risquée que le bloc paravertébral.

Étant donné que le bloc érecteur du rachis était initialement controversé, une étude

monobras prospective (ESPB) a été réalisée pour évaluer la sécurité et l’efficacité de

cette approche, impliquant 120 patients. L’objectif de cette étude était de réaliser

une comparaison historique à partir de l’étude ESPB et d’une étude randomisée an-

térieure évaluant deux modalités pour le bloc paravertébral (MIRO3). La première

étape a consisté à appliquer les critères de Pocock pour évaluer la comparabilité des

deux études. Les caractéristiques des patients ont été comparées entre les groupes à

l’aide de la différence standardisée. Les facteurs de confusion associés au critère de

jugement (le taux de patients recevant de la morphine en post-opératoire) ont été

pris en compte. Un score de propension a été déterminé par régression logistique,

suivi de l’appariement des patients à l’aide de la technique du caliper. Les différences

standardisées moyennes (SMD) ont été présentées avant et après l’appariement. Les

résultats ont montré que le taux de patients nécessitant de la morphine était plus

élevé dans le groupe recevant le bloc érecteur du rachis. De plus, une analyse de

sensibilité a été réalisée en utilisant une méthode de score de propension basée sur la

forêt aléatoire. Cette étude a illustré comment un processus rigoureux de sélection

des données et l’utilisation de méthodes statistiques appropriées peuvent éliminer

les divergences des données externes, établissant ainsi un solide contrôle historique.

Cependant, il convient de noter qu’une limitation inhérente était que notre analyse

était rétrospective, ce qui la rend complémentaire à l’essai clinique conclu.

Basés sur les enseignements tirés de la première étude de cas, nous avons cherché à

approfondir notre recherche dans un cadre plus prospectif et à examiner la faisabilité

des contrôles historiques dans des sources de données plus complexes. Nous croyons

que les contrôles historiques ne devraient pas simplement compléter les essais clin-

iques, mais devraient être intégrés dans la conception et les méthodologies des essais

cliniques. Avec le soutien théorique du cadre des résultats potentiels et les directives

systématiques du Cadre d’Estimand (EF), des études récentes ont proposé le Cadre

d’Essai Cible (TTF) pour les études observationnelles. Par conséquent, nous avons

cherché à incorporer le TTF dans les contrôles historiques tout en élargissant notre

source de données des essais cliniques aux données de la vie réelle. La deuxième étude

de cas se concentre sur un essai randomisé contrôlé examinant Olaparib en association
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avec Bevacizumab en tant que traitement d’entretien de première ligne dans le cancer

de l’ovaire. Ici, nous avons cherché à émuler le bras de contrôle en utilisant les données

observationnelles de la base de données du monde réel ESME, en utilisant le cadre de

l’essai cible. L’exécution de l’essai émulé est actuellement en cours. Bien que la base

de données des données de la vie réelle présente l’avantage d’une plus grande taille

d’échantillon, elle pose des défis en matière de gestion des données et de prétraitement

des données. En collaboration avec les cliniciens, nous sommes actuellement engagés

dans l’identification des données de chirurgie de débulking, dans le but de raffiner

notre sélection de patients répondant aux critères d’éligibilité de l’étude PAOLA-1.

En conclusion, l’exploration des bras de contrôle historique dans les essais cliniques

met en lumière le paysage dynamique et évolutif du développement de médicaments.

Bien qu’ils offrent une opportunité prometteuse pour faire progresser la recherche clin-

ique, les aspects pratiques de leur intégration dans les essais cliniques sont confrontés

à des défis, allant de l’accès aux données aux méthodologies statistiques. Cette thèse,

ancrée dans la collaboration entre le monde académique et l’industrie, contribue à

faire avancer notre compréhension de la faisabilité et de l’applicabilité des bras de

contrôle historique, éclairant ainsi leurs avantages potentiels et leurs applications ap-

propriées dans le domaine du développement de médicaments en oncologie.

De plus, des avancées notables ont été récemment observées dans le paysage régle-

mentaire concernant l’utilisation des bras de contrôle historique pour l’autorisation de

médicaments. En 2023, les principales autorités réglementaires comme EMA, FDA

et HAS, ont publié des documents mettant en évidence le rôle crucial des bras de

contrôle historique dans l’évaluation des produits médicamenteux. Ces publications

soulignent collectivement un intérêt croissant pour l’intégration des données de con-

trôle historique dans le processus de développement de médicaments. Elles insistent

sur l’importance de mettre en place un cadre complet impliquant tous les acteurs,

y compris les autorités réglementaires, les experts de l’industrie, les chercheurs et

les statisticiens. Ces documents réglementaires font écho de près aux messages et

objectifs fondamentaux de cette thèse.

Il est crucial de noter que les bras de contrôle historique ne sont pas destinés

à remplacer complètement les bras de contrôle randomisés, mais plutôt à les com-

pléter dans des contextes cliniques appropriés. Par conséquent, nous proposons le

développement d’un cadre pertinent visant à garantir une utilisation adéquate et une

validation des bras de contrôle historique. Ce cadre vise à améliorer l’efficacité et

l’efficacité des essais cliniques et à accélérer l’autorisation de médicaments innovants.
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En fin de compte, cette thèse illustre les progrès et les défis liés à l’utilisation

des bras de contrôle historique dans le développement de médicaments en oncologie.

Elle met en lumière l’importance de l’évaluation rigoureuse des données historiques,

de la sélection appropriée des données et de l’application de méthodes statistiques

adaptées. Grâce à une approche multidisciplinaire et à une collaboration entre les

parties prenantes de l’industrie et de la recherche, cette thèse contribue à éclairer

le potentiel des bras de contrôle historique pour améliorer la recherche clinique en

oncologie et à ouvrir la voie à une utilisation plus répandue et efficace de ces approches

novatrices dans le développement de médicaments.

En somme, les avancées dans le domaine des bras de contrôle historique témoignent

de l’évolution constante du paysage de la recherche clinique et de la réglementa-

tion dans le domaine du développement de médicaments. Ces avancées promettent

d’améliorer la validité et l’efficacité des essais cliniques en oncologie, tout en main-

tenant des normes de sécurité et d’efficacité rigoureuses.





References

Agarwala, V., Khozin, S., Singal, G., O’Connell, C., Kuk, D., Li, G., Gossai, A.,

Miller, V., & Abernethy, A. P. (2018). Real-World Evidence In Support Of Pre-

cision Medicine: Clinico-Genomic Cancer Data As A Case Study. Health Affairs,

37 (5), 765–772. https://doi.org/10.1377/hlthaff.2017.1579

Albi-Feldzer, A., Dureau, S., Ghimouz, A., Raft, J., Soubirou, J.-L., Gayraud, G., &

Jayr, C. (2021). Preoperative Paravertebral Block and Chronic Pain after Breast

Cancer Surgery: A Double-blind Randomized Trial. Anesthesiology, 135 (6), 1091–

1103. https://doi.org/10.1097/ALN.0000000000003989

Albi-Feldzer, A., Mouret-Fourme E, E., Hamouda, S., Motamed, C., Dubois, P.-Y.,

Jouanneau, L., & Jayr, C. (2013). A Double-blind Randomized Trial of Wound

and Intercostal Space Infiltration with Ropivacaine during Breast Cancer Surgery:

Effects on Chronic Postoperative Pain. Anesthesiology, 118 (2), 318–326. https:

//doi.org/10.1097/ALN.0b013e31827d88d8

Andrillon, A., Pirracchio, R., & Chevret, S. (2020). Performance of propensity score

matching to estimate causal effects in small samples. Statistical Methods in Med-

ical Research, 29 (3), 644–658. https://doi.org/10.1177/0962280219887196

Arlett, P., Kjær, J., Broich, K., & Cooke, E. (2022). Real-World Evidence in EU

Medicines Regulation: Enabling Use and Establishing Value. Clinical Pharmacol-

ogy & Therapeutics, 111 (1), 21–23. https://doi.org/10.1002/cpt.2479

Austin, P. C. (2009a). Balance diagnostics for comparing the distribution of baseline

covariates between treatment groups in propensity-score matched samples. Statis-

tics in Medicine, 28 (25), 3083–3107. https://doi.org/10.1002/sim.3697

Austin, P. C. (2009b). Type I Error Rates, Coverage of Confidence Intervals, and

Variance Estimation in Propensity-Score Matched Analyses. The International

https://doi.org/10.1377/hlthaff.2017.1579
https://doi.org/10.1097/ALN.0000000000003989
https://doi.org/10.1097/ALN.0b013e31827d88d8
https://doi.org/10.1097/ALN.0b013e31827d88d8
https://doi.org/10.1177/0962280219887196
https://doi.org/10.1002/cpt.2479
https://doi.org/10.1002/sim.3697


146 References

Journal of Biostatistics, 5 (1). https://doi.org/10.2202/1557-4679.1146

Austin, P. C. (2009c). The Relative Ability of Different Propensity Score Meth-

ods to Balance Measured Covariates Between Treated and Untreated Subjects

in Observational Studies. Medical Decision Making, 29 (6), 661–677. https:

//doi.org/10.1177/0272989X09341755

Austin, P. C. (2011a). Optimal caliper widths for propensity-score matching when

estimating differences in means and differences in proportions in observational

studies. Pharmaceutical Statistics, 10 (2), 150–161. https://doi.org/10.1002/

pst.433

Austin, P. C. (2011b). An Introduction to Propensity Score Methods for Reducing

the Effects of Confounding in Observational Studies. Multivariate Behavioral

Research, 46 (3), 399–424. https://doi.org/10.1080/00273171.2011.568786

Austin, P. C. (2014). The use of propensity score methods with survival or time-to-

event outcomes: Reporting measures of effect similar to those used in randomized

experiments. Statistics in Medicine, 33 (7), 1242–1258. https://doi.org/10.

1002/sim.5984

Austin, P. C. (2017). Double propensity-score adjustment: A solution to design bias

or bias due to incomplete matching. Statistical Methods in Medical Research,

26 (1), 201–222. https://doi.org/10.1177/0962280214543508

Austin, P. C., Grootendorst, P., & Anderson, G. M. (2007). A comparison of the

ability of different propensity score models to balance measured variables between

treated and untreated subjects: A Monte Carlo study. Statistics in Medicine,

26 (4), 734–753. https://doi.org/10.1002/sim.2580

Austin, P. C., & Mamdani, M. M. (2006). A comparison of propensity score methods:

A case-study estimating the effectiveness of post-AMI statin use. Statistics in

Medicine, 25 (12), 2084–2106. https://doi.org/10.1002/sim.2328

Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using

inverse probability of treatment weighting (IPTW) using the propensity score to

estimate causal treatment effects in observational studies. Statistics in Medicine,

34 (28), 3661–3679. https://doi.org/10.1002/sim.6607

Bacic, J., Liu, T., Thompson, R. H., Boorjian, S. A., Leibovich, B. C., Golijanin, D.,

& Gershman, B. (2020). Emulating Target Clinical Trials of Radical Nephrectomy

https://doi.org/10.2202/1557-4679.1146
https://doi.org/10.1177/0272989X09341755
https://doi.org/10.1177/0272989X09341755
https://doi.org/10.1002/pst.433
https://doi.org/10.1002/pst.433
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1002/sim.5984
https://doi.org/10.1002/sim.5984
https://doi.org/10.1177/0962280214543508
https://doi.org/10.1002/sim.2580
https://doi.org/10.1002/sim.2328
https://doi.org/10.1002/sim.6607


References 147

With or Without Lymph Node Dissection for Renal Cell Carcinoma. Urology, 140,

98–106. https://doi.org/10.1016/j.urology.2020.01.039

Banbeta, A., van Rosmalen, J., Dejardin, D., & Lesaffre, E. (2019). Modified power

prior with multiple historical trials for binary endpoints. Statistics in Medicine,

38 (7), 1147–1169. https://doi.org/10.1002/sim.8019

Beaver, J. A., Howie, L. J., Pelosof, L., Kim, T., Liu, J., Goldberg, K. B., Sridhara, R.,

Blumenthal, G. M., Farrell, A. T., Keegan, P., Pazdur, R., & Kluetz, P. G. (2018).

A 25-Year Experience of US Food and Drug Administration Accelerated Approval

of Malignant Hematology and Oncology Drugs and Biologics: A Review. JAMA

Oncology, 4 (6), 849–856. https://doi.org/10.1001/jamaoncol.2017.5618

Bigirumurame, T., Hiu, S. K. W., Teare, M. D., Wason, J. M. S., Bryant, A., &

Breckons, M. (2023). Current practices in studies applying the target trial emula-

tion framework: A protocol for a systematic review. BMJ Open, 13 (6), e070963.

https://doi.org/10.1136/bmjopen-2022-070963

Bini, M., Quesada, S., Meeus, P., Rodrigues, M., Leblanc, E., Floquet, A., Pautier,

P., Marchal, F., Provansal, M., Campion, L., Causeret, S., Gourgou, S., Ray-

Coquard, I., Classe, J.-M., Pomel, C., De La Motte Rouge, T., Barranger, E.,

Savoye, A. M., Guillemet, C., . . . Joly, F. (2022). Real-World Data on Newly

Diagnosed BRCA-Mutated High-Grade Epithelial Ovarian Cancers: The French

National Multicenter ESME Database. Cancers, 14 (16, 16), 4040. https://doi.

org/10.3390/cancers14164040

Burger, H. U., Gerlinger, C., Harbron, C., Koch, A., Posch, M., Rochon, J., & Schiel,

A. (2021). The use of external controls: To what extent can it currently be

recommended? Pharmaceutical Statistics, 20 (6), 1002–1016. https://doi.org/

10.1002/pst.2120

Burns, P. B., Rohrich, R. J., & Chung, K. C. (2011). The Levels of Evidence and their

role in Evidence-Based Medicine. Plastic and Reconstructive Surgery, 128 (1),

305–310. https://doi.org/10.1097/PRS.0b013e318219c171

Cave, A., Kurz, X., & Arlett, P. (2019). Real-World Data for Regulatory Decision

Making: Challenges and Possible Solutions for Europe. Clinical Pharmacology &

Therapeutics, 106 (1), 36–39. https://doi.org/10.1002/cpt.1426

https://doi.org/10.1016/j.urology.2020.01.039
https://doi.org/10.1002/sim.8019
https://doi.org/10.1001/jamaoncol.2017.5618
https://doi.org/10.1136/bmjopen-2022-070963
https://doi.org/10.3390/cancers14164040
https://doi.org/10.3390/cancers14164040
https://doi.org/10.1002/pst.2120
https://doi.org/10.1002/pst.2120
https://doi.org/10.1097/PRS.0b013e318219c171
https://doi.org/10.1002/cpt.1426


148 References

Chan, P., Peskov, K., & Song, X. (2022). Applications of Model-Based Meta-Analysis

in Drug Development. Pharmaceutical Research, 39 (8), 1761–1777. https://

doi.org/10.1007/s11095-022-03201-5

Chen, M.-H., & Ibrahim, J. G. (2000). Power prior distributions for regression models.

Statistical Science, 15 (1), 46–60. https://doi.org/10.1214/ss/1009212673

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., &

Robins, J. (2018). Double/debiased machine learning for treatment and structural

parameters. The Econometrics Journal, 21 (1), C1–C68. https://doi.org/10.

1111/ectj.12097

Choi, J., Dekkers, O. M., & le Cessie, S. (2019). A comparison of different methods to

handle missing data in the context of propensity score analysis. European Journal

of Epidemiology, 34 (1), 23–36. https://doi.org/10.1007/s10654-018-0447-z

Collins, R., Bowman, L., Landray, M., & Peto, R. (2020). The Magic of Randomiza-

tion versus the Myth of Real-World Evidence. New England Journal of Medicine,

382 (7), 674–678. https://doi.org/10.1056/NEJMsb1901642

Davi, R., Mahendraratnam, N., Chatterjee, A., Dawson, C. J., & Sherman, R. (2020).

Informing single-arm clinical trials with external controls. Nature Reviews Drug

Discovery, 19 (12), 821–822. https://doi.org/10.1038/d41573-020-00146-5

De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The Mahalanobis

distance. Chemometrics and Intelligent Laboratory Systems, 50 (1), 1–18. https:

//doi.org/10.1016/S0169-7439(99)00047-7

De Nonneville, A., Zemmour, C., Frank, S., Joly, F., Ray-Coquard, I., Costaz, H.,

Classe, J.-M., Floquet, A., De la Motte Rouge, T., Colombo, P.-E., Sauterey, B.,

Leblanc, E., Pomel, C., Marchal, F., Barranger, E., Savoye, A.-M., Guillemet,

C., Petit, T., Pautier, P., . . . Sabatier, R. (2021). Clinicopathological charac-

terization of a real-world multicenter cohort of endometrioid ovarian carcinoma:

Analysis of the French national ESME-Unicancer database. Gynecologic Oncology,

163 (1), 64–71. https://doi.org/10.1016/j.ygyno.2021.07.019

Eichler, H.-G., Pignatti, F., Schwarzer-Daum, B., Hidalgo-Simon, A., Eichler, I., Ar-

lett, P., Humphreys, A., Vamvakas, S., Brun, N., & Rasi, G. (2021). Randomized

Controlled Trials Versus Real World Evidence: Neither Magic Nor Myth. Clinical

Pharmacology & Therapeutics, 109 (5), 1212–1218. https://doi.org/10.1002/

https://doi.org/10.1007/s11095-022-03201-5
https://doi.org/10.1007/s11095-022-03201-5
https://doi.org/10.1214/ss/1009212673
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1007/s10654-018-0447-z
https://doi.org/10.1056/NEJMsb1901642
https://doi.org/10.1038/d41573-020-00146-5
https://doi.org/10.1016/S0169-7439(99)00047-7
https://doi.org/10.1016/S0169-7439(99)00047-7
https://doi.org/10.1016/j.ygyno.2021.07.019
https://doi.org/10.1002/cpt.2083
https://doi.org/10.1002/cpt.2083
https://doi.org/10.1002/cpt.2083


References 149

cpt.2083

EMA. (2021). Minjuvi : EPAR - Public assessment report. https://www.

ema.europa.eu/en/documents/assessment-report/minjuvi-epar-public-

assessment-report_en.pdf

EMA. (2023, April 21). Single-arm trials as pivotal evidence for the autho-

risation of medicines in the EU | European Medicines Agency. https:

//www.ema.europa.eu/en/news/single-arm-trials-pivotal-evidence-

authorisation-medicines-eu

European Medicines Agency. (2001). ICH E10 Choice of control group in clinical

trials.

European Medicines Agency (EMA). (2020). Enhertu : EPAR - Public as-

sessment report. https://www.ema.europa.eu/en/documents/assessment-

report/enhertu-epar-public-assessment-report_en.pdf

FDA. (2015). Statistical review and evaluation of emtricitabine/ tenofovir alafe-

namide NDA 208215. https://www.fda.gov/media/98523/download

FDA. (2018). Framework for FDA’s Real-World Evidence Program. https://www.

fda.gov/media/120060/download

FDA. (2023, January 31). Considerations for the Design and Conduct of

Externally Controlled Trials for Drug and Biological Products. FDA.

https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/considerations-design-and-conduct-externally-controlled-

trials-drug-and-biological-products

Forero, M., Adhikary, S. D., Lopez, H., Tsui, C., & Chin, K. J. (2016). The Erector

Spinae Plane Block: A Novel Analgesic Technique in Thoracic Neuropathic Pain.

Regional Anesthesia & Pain Medicine, 41 (5), 621–627. https://doi.org/10.

1097/AAP.0000000000000451

Franklin, J. M., Patorno, E., Desai, R. J., Glynn, R. J., Martin, D., Quinto, K.,

Pawar, A., Bessette, L. G., Lee, H., Garry, E. M., Gautam, N., & Schneeweiss,

S. (2021). Emulating Randomized Clinical Trials With Nonrandomized Real-

World Evidence Studies: First Results From the RCT DUPLICATE Initiative.

Circulation, 143 (10), 1002–1013. https://doi.org/10.1161/CIRCULATIONAHA.

120.051718

https://doi.org/10.1002/cpt.2083
https://doi.org/10.1002/cpt.2083
https://doi.org/10.1002/cpt.2083
https://doi.org/10.1002/cpt.2083
https://www.ema.europa.eu/en/documents/assessment-report/minjuvi-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/minjuvi-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/minjuvi-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/news/single-arm-trials-pivotal-evidence-authorisation-medicines-eu
https://www.ema.europa.eu/en/news/single-arm-trials-pivotal-evidence-authorisation-medicines-eu
https://www.ema.europa.eu/en/news/single-arm-trials-pivotal-evidence-authorisation-medicines-eu
https://www.ema.europa.eu/en/documents/assessment-report/enhertu-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/enhertu-epar-public-assessment-report_en.pdf
https://www.fda.gov/media/98523/download
https://www.fda.gov/media/120060/download
https://www.fda.gov/media/120060/download
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products
https://doi.org/10.1097/AAP.0000000000000451
https://doi.org/10.1097/AAP.0000000000000451
https://doi.org/10.1161/CIRCULATIONAHA.120.051718
https://doi.org/10.1161/CIRCULATIONAHA.120.051718


150 References

Franklin, J. M., & Schneeweiss, S. (2017). When and How Can Real World Data

Analyses Substitute for Randomized Controlled Trials?: Real world evidence and

RCTs. Clinical Pharmacology & Therapeutics, 102 (6), 924–933. https://doi.

org/10.1002/cpt.857

Friends of Cancer Research. (2019). Characterizing the use of external controls for

augmenting randomized control arms and confirming benefit. https://www.focr.

org/sites/default/files/Panel-1_External_Control_Arms2019AM.pdf

Funk, M. J., Westreich, D., Wiesen, C., Stürmer, T., Brookhart, M. A., & Davidian,

M. (2011). Doubly Robust Estimation of Causal Effects. American Journal of

Epidemiology, 173 (7), 761–767. https://doi.org/10.1093/aje/kwq439

Gärtner, R., Jensen, M.-B., Nielsen, J., Ewertz, M., Kroman, N., & Kehlet, H. (2009).

Prevalence of and Factors Associated With Persistent Pain Following Breast Can-

cer Surgery. JAMA, 302 (18), 1985. https://doi.org/10.1001/jama.2009.

1568

Geoffrey, Marshall. (1948). Streptomycin Treatment of Pulmonary Tuberculosis.

British Medical Journal, 2 (4582), 769–782. https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC2091872/

Ghadessi, M., Tang, R., Zhou, J., Liu, R., Wang, C., Toyoizumi, K., Mei, C., Zhang,

L., Deng, C. Q., & Beckman, R. A. (2020). A roadmap to using historical controls

in clinical trials – by Drug Information Association Adaptive Design Scientific

Working Group. Orphanet Journal of Rare Diseases, 15 (1), 69. https://doi.

org/10.1186/s13023-020-1332-x

Gökbuget, N., Kelsh, M., Chia, V., Advani, A., Bassan, R., Dombret, H., Doubek,

M., Fielding, A. K., Giebel, S., Haddad, V., Hoelzer, D., Holland, C., Ifrah, N.,

Katz, A., Maniar, T., Martinelli, G., Morgades, M., O’Brien, S., Ribera, J.-M.,

. . . Kantarjian, H. (2016). Blinatumomab vs historical standard therapy of adult

relapsed/refractory acute lymphoblastic leukemia. Blood Cancer Journal, 6 (9),

e473. https://doi.org/10.1038/bcj.2016.84

Gokhale, M., Stürmer, T., & Buse, J. B. (2020). Real-world evidence: The devil is in

the detail. Diabetologia, 63 (9), 1694–1705. https://doi.org/10.1007/s00125-

020-05217-1

https://doi.org/10.1002/cpt.857
https://doi.org/10.1002/cpt.857
https://www.focr.org/sites/default/files/Panel-1_External_Control_Arms2019AM.pdf
https://www.focr.org/sites/default/files/Panel-1_External_Control_Arms2019AM.pdf
https://doi.org/10.1093/aje/kwq439
https://doi.org/10.1001/jama.2009.1568
https://doi.org/10.1001/jama.2009.1568
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2091872/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2091872/
https://doi.org/10.1186/s13023-020-1332-x
https://doi.org/10.1186/s13023-020-1332-x
https://doi.org/10.1038/bcj.2016.84
https://doi.org/10.1007/s00125-020-05217-1
https://doi.org/10.1007/s00125-020-05217-1


References 151

Goring, S., Taylor, A., Müller, K., Li, T. J. J., Korol, E. E., Levy, A. R., & Free-

mantle, N. (2019). Characteristics of non-randomised studies using comparisons

with external controls submitted for regulatory approval in the USA and Europe:

A systematic review. BMJ Open, 9 (2), e024895. https://doi.org/10.1136/

bmjopen-2018-024895

Gray, C. M., Grimson, F., Layton, D., Pocock, S., & Kim, J. (2020). A Framework

for Methodological Choice and Evidence Assessment for Studies Using External

Comparators from Real-World Data. Drug Safety, 43 (7), 623–633. https://doi.

org/10.1007/s40264-020-00944-1

Grignolo, A., & Pretorius, S. (2016). Phase III Trial Failures: Costly, But Pre-

ventable. 25 (8).

Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of Multivariate Matching

Methods: Structures, Distances, and Algorithms. Journal of Computational

and Graphical Statistics, 2 (4), 405–420. https://doi.org/10.1080/10618600.

1993.10474623

Hall, K. T., Vase, L., Tobias, D. K., Dashti, H. T., Vollert, J., Kaptchuk, T. J., &

Cook, N. R. (2021). Historical Controls in Randomized Clinical Trials: Oppor-

tunities and Challenges. Clinical Pharmacology & Therapeutics, 109 (2), 343–351.

https://doi.org/10.1002/cpt.1970

Hansen, B. B., & Klopfer, S. O. (2006). Optimal Full Matching and Related Designs

via Network Flows. Journal of Computational and Graphical Statistics, 15 (3),

609–627. https://doi.org/10.1198/106186006X137047

Hariton, E., & Locascio, J. J. (2018). Randomised controlled trials—the gold stan-

dard for effectiveness research. BJOG : An International Journal of Obstetrics

and Gynaecology, 125 (13), 1716. https://doi.org/10.1111/1471-0528.15199

Harter, P., Mouret-Reynier, M. A., Pignata, S., Cropet, C., González-Martín, A.,

Bogner, G., Fujiwara, K., Vergote, I., Colombo, N., Nøttrup, T. J., Floquet,

A., El-Balat, A., Scambia, G., Guerra Alia, E. M., Fabbro, M., Schmalfeldt, B.,

Hardy-Bessard, A.-C., Runnebaum, I., Pujade-Lauraine, E., & Ray-Coquard, I.

(2022). Efficacy of maintenance olaparib plus bevacizumab according to clinical

risk in patients with newly diagnosed, advanced ovarian cancer in the phase III

PAOLA-1/ENGOT-ov25 trial. Gynecologic Oncology, 164 (2), 254–264. https:

//doi.org/10.1016/j.ygyno.2021.12.016

https://doi.org/10.1136/bmjopen-2018-024895
https://doi.org/10.1136/bmjopen-2018-024895
https://doi.org/10.1007/s40264-020-00944-1
https://doi.org/10.1007/s40264-020-00944-1
https://doi.org/10.1080/10618600.1993.10474623
https://doi.org/10.1080/10618600.1993.10474623
https://doi.org/10.1002/cpt.1970
https://doi.org/10.1198/106186006X137047
https://doi.org/10.1111/1471-0528.15199
https://doi.org/10.1016/j.ygyno.2021.12.016
https://doi.org/10.1016/j.ygyno.2021.12.016


152 References

Hatswell, A., Freemantle, N., Baio, G., Lesaffre, E., & van Rosmalen, J. (2020).

Summarising salient information on historical controls: A structured assessment

of validity and comparability across studies. Clinical Trials, 1740774520944855.

https://doi.org/10.1177/1740774520944855

Hernan, M. A., & Robins, J. M. (2023). Causal Inference: What If.

Hernán, M. A., & Robins, J. M. (2016). Using Big Data to Emulate a Target Trial

When a Randomized Trial Is Not Available. American Journal of Epidemiology,

183 (8), 758–764. https://doi.org/10.1093/aje/kwv254

Hernán, M. A., Wang, W., & Leaf, D. E. (2022). Target Trial Emulation: A Frame-

work for Causal Inference From Observational Data. JAMA. https://doi.org/

10.1001/jama.2022.21383

Hill, J., & Reiter, J. P. (2006). Interval estimation for treatment effects using

propensity score matching. Statistics in Medicine, 25 (13), 2230–2256. https:

//doi.org/10.1002/sim.2277

Ho, D., Imai, K., King, G., & Stuart, E. A. (2011). MatchIt: Nonparametric Prepro-

cessing for Parametric Causal Inference. Journal of Statistical Software, 42, 1–28.

https://doi.org/10.18637/jss.v042.i08

Hobbs, B. P., Carlin, B. P., Mandrekar, S. J., & Sargent, D. J. (2011). Hierarchical

Commensurate and Power Prior Models for Adaptive Incorporation of Historical

Information in Clinical Trials. Biometrics, 67 (3), 1047–1056. https://doi.org/

10.1111/j.1541-0420.2011.01564.x

Hobbs, B. P., Sargent, D. J., & Carlin, B. P. (2012). Commensurate Priors for Incor-

porating Historical Information in Clinical Trials Using General and Generalized

Linear Models. Bayesian Analysis, 7 (3), 639–674. https://doi.org/10.1214/

12-BA722

Huang, W., Wang, W., Xie, W., Chen, Z., & Liu, Y. (2020). Erector spinae plane

block for postoperative analgesia in breast and thoracic surgery: A systematic

review and meta-analysis. Journal of Clinical Anesthesia, 66, 109900. https:

//doi.org/10.1016/j.jclinane.2020.109900

Huitfeldt, A. (2015). Emulation of Target Trials to Study the Effectiveness and Safety

of Medical Interventions. https://dash.harvard.edu/handle/1/23205172

https://doi.org/10.1177/1740774520944855
https://doi.org/10.1093/aje/kwv254
https://doi.org/10.1001/jama.2022.21383
https://doi.org/10.1001/jama.2022.21383
https://doi.org/10.1002/sim.2277
https://doi.org/10.1002/sim.2277
https://doi.org/10.18637/jss.v042.i08
https://doi.org/10.1111/j.1541-0420.2011.01564.x
https://doi.org/10.1111/j.1541-0420.2011.01564.x
https://doi.org/10.1214/12-BA722
https://doi.org/10.1214/12-BA722
https://doi.org/10.1016/j.jclinane.2020.109900
https://doi.org/10.1016/j.jclinane.2020.109900
https://dash.harvard.edu/handle/1/23205172


References 153

ICH. (2021). E9(R1) Statistical Principles for Clinical Trials: Addendum: Estimands

and Sensitivity Analysis in Clinical Trials; International Council for Harmonisa-

tion; Guidance for Industry; Availability. https://database.ich.org/sites/

default/files/E9-R1_Step4_Guideline_2019_1203.pdf

Imbens, G. (2004). Nonparametric Estimation of Average Treatment Effects under

Exogeneity: A Review. Review of Economics and Statistics.

Joffe, M. M., Have, T. R. T., Feldman, H. I., & Kimmel, S. E. (2004). Model

Selection, Confounder Control, and Marginal Structural Models: Review and New

Applications. The American Statistician, 58 (4), 272–279. https://www.jstor.

org/stable/27643582

Kabisch, M., Ruckes, C., Seibert-Grafe, M., & Blettner, M. (2011). Randomized

Controlled Trials. Deutsches Ärzteblatt International, 108 (39), 663–668. https:

//doi.org/10.3238/arztebl.2011.0663

Khozin, S., Blumenthal, G. M., & Pazdur, R. (2017). Real-world Data for Clinical Ev-

idence Generation in Oncology. JNCI: Journal of the National Cancer Institute,

109 (11). https://doi.org/10.1093/jnci/djx187

King, G., & Nielsen, R. (2019). Why Propensity Scores Should Not Be Used for

Matching. Political Analysis, 27 (4), 435–454. https://doi.org/10.1017/pan.

2019.11

Lambert, J., Lengliné, E., Porcher, R., Thiébaut, R., Zohar, S., & Chevret, S. (2022).

Enriching single-arm clinical trials with external controls: Possibilities and pit-

falls. Blood Advances, bloodadvances.2022009167. https://doi.org/10.1182/

bloodadvances.2022009167

Leong, R. W., Tan, E. S. J., Wong, S. N., Tan, K. H., & Liu, C. W. (2021). Efficacy

of erector spinae plane block for analgesia in breast surgery: A systematic review

and meta-analysis. Anaesthesia, 76 (3), 404–413. https://doi.org/10.1111/

anae.15164

Lewis, C. J., Sarkar, S., Zhu, J., & Carlin, B. P. (2019). Borrowing From Historical

Control Data in Cancer Drug Development: A Cautionary Tale and Practical

Guidelines. Statistics in Biopharmaceutical Research, 11 (1), 67–78. https://

doi.org/10.1080/19466315.2018.1497533

https://database.ich.org/sites/default/files/E9-R1_Step4_Guideline_2019_1203.pdf
https://database.ich.org/sites/default/files/E9-R1_Step4_Guideline_2019_1203.pdf
https://www.jstor.org/stable/27643582
https://www.jstor.org/stable/27643582
https://doi.org/10.3238/arztebl.2011.0663
https://doi.org/10.3238/arztebl.2011.0663
https://doi.org/10.1093/jnci/djx187
https://doi.org/10.1017/pan.2019.11
https://doi.org/10.1017/pan.2019.11
https://doi.org/10.1182/bloodadvances.2022009167
https://doi.org/10.1182/bloodadvances.2022009167
https://doi.org/10.1111/anae.15164
https://doi.org/10.1111/anae.15164
https://doi.org/10.1080/19466315.2018.1497533
https://doi.org/10.1080/19466315.2018.1497533


154 References

Lim, J., Walley, R., Yuan, J., Liu, J., Dabral, A., Best, N., Grieve, A., Hampson, L.,

Wolfram, J., Woodward, P., Yong, F., Zhang, X., & Bowen, E. (2018). Minimizing

Patient Burden Through the Use of Historical Subject-Level Data in Innovative

Confirmatory Clinical Trials: Review of Methods and Opportunities. Therapeutic

Innovation & Regulatory Science, 52 (5), 546–559. https://doi.org/10.1177/

2168479018778282

Loiseau, N., Trichelair, P., He, M., Andreux, M., Zaslavskiy, M., Wainrib, G., & Blum,

M. G. B. (2022). External control arm analysis: An evaluation of propensity

score approaches, G-computation, and doubly debiased machine learning. BMC

Medical Research Methodology, 22 (1), 335. https://doi.org/10.1186/s12874-

022-01799-z

Mack, C., Christian, J., Brinkley, E., Warren, E. J., Hall, M., & Dreyer, N. (2019).

When Context Is Hard to Come By: External Comparators and How to Use

Them. Therapeutic Innovation & Regulatory Science, 216847901987867. https:

//doi.org/10.1177/2168479019878672

McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R., &

Burgette, L. F. (2013). A Tutorial on Propensity Score Estimation for Multiple

Treatments Using Generalized Boosted Models. Statistics in Medicine, 32 (19),

3388–3414. https://doi.org/10.1002/sim.5753

Meldrum, M. L. (2000). A Brief History of the Randomized Controlled Trial. https:

//doi.org/10.1016/s0889-8588(05)70309-9

Morgan, S. L., & Todd, J. J. (2008). A Diagnostic Routine for the Detection of

Consequential Heterogeneity of Causal Effects. Sociological Methodology, 38 (1),

231–282. https://doi.org/10.1111/j.1467-9531.2008.00204.x

Murad, M. H., Asi, N., Alsawas, M., & Alahdab, F. (2016). New evidence pyramid.

Evidence Based Medicine, 21 (4), 125–127. https://doi.org/10.1136/ebmed-

2016-110401

Neuenschwander, B., Branson, M., & Spiegelhalter, D. J. (2009). A note on the

power prior. Statistics in Medicine, 28 (28), 3562–3566. https://doi.org/10.

1002/sim.3722

Normand, S.-L. T., Landrum, M. B., Guadagnoli, E., Ayanian, J. Z., Ryan, T. J.,

Cleary, P. D., & McNeil, B. J. (2001). Validating recommendations for coro-

https://doi.org/10.1177/2168479018778282
https://doi.org/10.1177/2168479018778282
https://doi.org/10.1186/s12874-022-01799-z
https://doi.org/10.1186/s12874-022-01799-z
https://doi.org/10.1177/2168479019878672
https://doi.org/10.1177/2168479019878672
https://doi.org/10.1002/sim.5753
https://doi.org/10.1016/s0889-8588(05)70309-9
https://doi.org/10.1016/s0889-8588(05)70309-9
https://doi.org/10.1111/j.1467-9531.2008.00204.x
https://doi.org/10.1136/ebmed-2016-110401
https://doi.org/10.1136/ebmed-2016-110401
https://doi.org/10.1002/sim.3722
https://doi.org/10.1002/sim.3722


References 155

nary angiography following acute myocardial infarction in the elderly. Journal

of Clinical Epidemiology, 54 (4), 387–398. https://doi.org/10.1016/S0895-

4356(00)00321-8

Pocock, S. J. (1976). The combination of randomized and historical controls in clinical

trials. Journal of Chronic Diseases, 29 (3), 175–188. https://doi.org/10.1016/

0021-9681(76)90044-8

Pullenayegum, E. M. (2011). An informed reference prior for between-study het-

erogeneity in meta-analyses of binary outcomes. Statistics in Medicine, 30 (26),

3082–3094. https://doi.org/10.1002/sim.4326

Rahman, R., Ventz, S., McDunn, J., Louv, B., Reyes-Rivera, I., Polley, M.-Y. C.,

Merchant, F., Abrey, L. E., Allen, J. E., Aguilar, L. K., Aguilar-Cordova, E.,

Arons, D., Tanner, K., Bagley, S., Khasraw, M., Cloughesy, T., Wen, P. Y.,

Alexander, B. M., & Trippa, L. (2021). Leveraging external data in the design

and analysis of clinical trials in neuro-oncology. The Lancet Oncology, 22 (10),

e456–e465. https://doi.org/10.1016/S1470-2045(21)00488-5

Ray-Coquard, I., Pautier, P., Pignata, S., Pérol, D., González-Martín, A., Berger,

R., Fujiwara, K., Vergote, I., Colombo, N., Mäenpää, J., Selle, F., Sehouli, J.,

Lorusso, D., Guerra Alía, E. M., Reinthaller, A., Nagao, S., Lefeuvre-Plesse, C.,

Canzler, U., Scambia, G., . . . Harter, P. (2019). Olaparib plus Bevacizumab as

First-Line Maintenance in Ovarian Cancer. New England Journal of Medicine,

381 (25), 2416–2428. https://doi.org/10.1056/NEJMoa1911361

Robins, J. M., Hernán, M. Á., & Brumback, B. (2000). Marginal Struc-

tural Models and Causal Inference in Epidemiology. Epidemiology, 11 (5),

550. https://journals.lww.com/epidem/fulltext/2000/09000/marginal_

structural_models_and_causal_inference_in.11.aspx

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score

in observational studies for causal effects. Biometrika, 70 (1), 41–55. https:

//doi.org/10.1093/biomet/70.1.41

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and non-

randomized studies. Journal of Educational Psychology, 66 (5), 688–701. https:

//doi.org/10.1037/h0037350

https://doi.org/10.1016/S0895-4356(00)00321-8
https://doi.org/10.1016/S0895-4356(00)00321-8
https://doi.org/10.1016/0021-9681(76)90044-8
https://doi.org/10.1016/0021-9681(76)90044-8
https://doi.org/10.1002/sim.4326
https://doi.org/10.1016/S1470-2045(21)00488-5
https://doi.org/10.1056/NEJMoa1911361
https://journals.lww.com/epidem/fulltext/2000/09000/marginal_structural_models_and_causal_inference_in.11.aspx
https://journals.lww.com/epidem/fulltext/2000/09000/marginal_structural_models_and_causal_inference_in.11.aspx
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1037/h0037350
https://doi.org/10.1037/h0037350


156 References

Rubin, D. B. (2004). On principles for modeling propensity scores in medical research.

Pharmacoepidemiology and Drug Safety, 13 (12), 855–857. https://doi.org/10.

1002/pds.968

Rubin, D. B. (2005). Causal Inference Using Potential Outcomes. Jour-

nal of the American Statistical Association, 100 (469), 322–331. https:

//doi.org/10.1198/016214504000001880

Rudolph, K. E., & Stuart, E. A. (2018). Using Sensitivity Analyses for Unobserved

Confounding to Address Covariate Measurement Error in Propensity Score Meth-

ods. American Journal of Epidemiology, 187 (3), 604–613. https://doi.org/10.

1093/aje/kwx248

Saad, E. D., Paoletti, X., Burzykowski, T., & Buyse, M. (2017). Precision medicine

needs randomized clinical trials. Nature Reviews Clinical Oncology, 14 (5), 317–

323. https://doi.org/10.1038/nrclinonc.2017.8

Schaubel, D. E., & Wei, G. (2011). Double inverse-weighted estimation of cumulative

treatment effects under nonproportional hazards and dependent censoring. Bio-

metrics, 67 (1), 29–38. https://doi.org/10.1111/j.1541-0420.2010.01449.x

Schmidli, H., Gsteiger, S., Roychoudhury, S., O’Hagan, A., Spiegelhalter, D., &

Neuenschwander, B. (2014). Robust meta-analytic-predictive priors in clinical

trials with historical control information: Robust Meta-Analytic-Predictive Pri-

ors. Biometrics, 70 (4), 1023–1032. https://doi.org/10.1111/biom.12242

Schmidli, H., Häring, D. A., Thomas, M., Cassidy, A., Weber, S., & Bretz, F. (2020).

Beyond Randomized Clinical Trials: Use of External Controls. Clinical Pharma-

cology & Therapeutics, 107 (4), 806–816. https://doi.org/10.1002/cpt.1723

Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 Statement:

Updated guidelines for reporting parallel group randomised trials. BMJ, 340,

c332. https://doi.org/10.1136/bmj.c332

Sekhon, J. S. (2011). Multivariate and Propensity Score Matching Software with

Automated Balance Optimization: The Matching Package for R. Journal of

Statistical Software, 42 (7). https://doi.org/10.18637/jss.v042.i07

Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., & Cook, E. F.

(2008). Evaluating uses of data mining techniques in propensity score estimation:

A simulation study. Pharmacoepidemiology and Drug Safety, 17 (6), 546–555.

https://doi.org/10.1002/pds.968
https://doi.org/10.1002/pds.968
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1093/aje/kwx248
https://doi.org/10.1093/aje/kwx248
https://doi.org/10.1038/nrclinonc.2017.8
https://doi.org/10.1111/j.1541-0420.2010.01449.x
https://doi.org/10.1111/biom.12242
https://doi.org/10.1002/cpt.1723
https://doi.org/10.1136/bmj.c332
https://doi.org/10.18637/jss.v042.i07


References 157

https://doi.org/10.1002/pds.1555

Snowden, J. M., Rose, S., & Mortimer, K. M. (2011). Implementation of

G-Computation on a Simulated Data Set: Demonstration of a Causal In-

ference Technique. American Journal of Epidemiology, 173 (7), 731–738.

https://doi.org/10.1093/aje/kwq472

Stuart, E. A. (2010). Matching methods for causal inference: A review and a look

forward. Statistical Science : A Review Journal of the Institute of Mathematical

Statistics, 25 (1), 1–21. https://doi.org/10.1214/09-STS313

Thomas, Q. D., Boussere, A., Classe, J.-M., Pomel, C., Costaz, H., Rodrigues, M.,

Ray-Coquard, I., Gladieff, L., Rouzier, R., Rouge, T. D. L. M., Gouy, S., Bar-

ranger, E., Sabatier, R., Floquet, A., Marchal, F., Guillemet, C., Polivka, V.,

Martin, A.-L., Colombo, P.-E., & Fiteni, F. (2022). Optimal timing of inter-

val debulking surgery for advanced epithelial ovarian cancer: A retrospective

study from the ESME national cohort. Gynecologic Oncology, 167 (1), 11–21.

https://doi.org/10.1016/j.ygyno.2022.08.005

Thorlund, K., Dron, L., Park, J. J., & Mills, E. J. (2020). Synthetic and External

Controls in Clinical Trials – A Primer for Researchers. Clinical Epidemiology,

Volume 12, 457–467. https://doi.org/10.2147/CLEP.S242097

Vanderbeek, A. M., Ventz, S., Rahman, R., Fell, G., Cloughesy, T. F., Wen, P. Y.,

Trippa, L., & Alexander, B. M. (2019). To randomize, or not to randomize, that is

the question: Using data from prior clinical trials to guide future designs. Neuro-

Oncology, 21 (10), 1239–1249. https://doi.org/10.1093/neuonc/noz097

VanderWeele, T. J. (2019). Principles of confounder selection. European Journal of

Epidemiology, 34 (3), 211–219. https://doi.org/10.1007/s10654-019-00494-

6

Vanier, A., Fernandez, J., Kelley, S., Alter, L., Semenzato, P., Alberti, C., Chevret, S.,

Costagliola, D., Cucherat, M., Falissard, B., Gueyffier, F., Lambert, J., Lengliné,

E., Locher, C., Naudet, F., Porcher, R., Thiébaut, R., Vray, M., Zohar, S., . . . Gu-

ludec, D. L. (2023). Rapid access to innovative medicinal products while ensuring

relevant health technology assessment. Position of the French National Authority

for Health. BMJ Evidence-Based Medicine. https://doi.org/10.1136/bmjebm-

2022-112091

https://doi.org/10.1002/pds.1555
https://doi.org/10.1093/aje/kwq472
https://doi.org/10.1214/09-STS313
https://doi.org/10.1016/j.ygyno.2022.08.005
https://doi.org/10.2147/CLEP.S242097
https://doi.org/10.1093/neuonc/noz097
https://doi.org/10.1007/s10654-019-00494-6
https://doi.org/10.1007/s10654-019-00494-6
https://doi.org/10.1136/bmjebm-2022-112091
https://doi.org/10.1136/bmjebm-2022-112091


158 References

Viele, K., Berry, S., Neuenschwander, B., Amzal, B., Chen, F., Enas, N., Hobbs, B.,

Ibrahim, J. G., Kinnersley, N., Lindborg, S., Micallef, S., Roychoudhury, S., &

Thompson, L. (2014). Use of historical control data for assessing treatment effects

in clinical trials. Pharmaceutical Statistics, 13 (1), 41–54. https://doi.org/10.

1002/pst.1589

Wang, L., Guyatt, G. H., Kennedy, S. A., Romerosa, B., Kwon, H. Y., Kaushal,

A., Chang, Y., Craigie, S., de Almeida, C. P. B., Couban, R. J., Parascandalo,

S. R., Izhar, Z., Reid, S., Khan, J. S., McGillion, M., & Busse, J. W. (2016).

Predictors of persistent pain after breast cancer surgery: A systematic review and

meta-analysis of observational studies. Canadian Medical Association Journal,

188 (14), E352–E361. https://doi.org/10.1503/cmaj.151276

Westreich, D., Lessler, J., & Funk, M. J. (2010). Propensity score estimation: Neural

networks, support vector machines, decision trees (CART), and meta-classifiers

as alternatives to logistic regression. Journal of Clinical Epidemiology, 63 (8),

826–833. https://doi.org/10.1016/j.jclinepi.2009.11.020

Xiong, C., Han, C., Zhao, D., Peng, W., Xu, D., & Lan, Z. (2021). Postopera-

tive analgesic effects of paravertebral block versus erector spinae plane block for

thoracic and breast surgery: A meta-analysis. PLOS ONE, 16 (8), e0256611.

https://doi.org/10.1371/journal.pone.0256611

Xu, Y., Lu, N., Yue, L., & Tiwari, R. (2020). A Study Design for Augmenting

the Control Group in a Randomized Controlled Trial: A Quality Process for

Interaction Among Stakeholders. Therapeutic Innovation & Regulatory Science,

54 (2), 269–274. https://doi.org/10.1007/s43441-019-00053-x

Yuan, J., Liu, J., Zhu, R., Lu, Y., & Palm, U. (2019). Design of randomized con-

trolled confirmatory trials using historical control data to augment sample size

for concurrent controls. Journal of Biopharmaceutical Statistics, 29 (3), 558–573.

https://doi.org/10.1080/10543406.2018.1559853

Zhao, S., Van Dyk, D. A., & Imai, K. (2020). Propensity score-based methods for

causal inference in observational studies with non-binary treatments. Statisti-

cal Methods in Medical Research, 29 (3), 709–727. https://doi.org/10.1177/

0962280219888745

https://doi.org/10.1002/pst.1589
https://doi.org/10.1002/pst.1589
https://doi.org/10.1503/cmaj.151276
https://doi.org/10.1016/j.jclinepi.2009.11.020
https://doi.org/10.1371/journal.pone.0256611
https://doi.org/10.1007/s43441-019-00053-x
https://doi.org/10.1080/10543406.2018.1559853
https://doi.org/10.1177/0962280219888745
https://doi.org/10.1177/0962280219888745

