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Particle and data-driven approaches for reactive micrometric processes:
application to CO2 mineral storage with uncertainty quantification

Abstract:
Studying reactive flows in porous media is essential to manage the geochemical effects of

CO2 capture and storage in natural underground reservoirs. Through homogenization of the sub-
micrometer porous medium and appropriate modeling, one can simulate the reactive processes
occurring at the pore scale and predict their impact on the macro-scale properties, namely the
macro-porosity and bulk permeability. Geochemical processes enable understanding of the min-
eral storage mechanisms, CO2 interactions with the aquifer structure, and query reservoir safety.
They encompass CO2 mineral trapping due to carbonate precipitation and crystallization or disso-
lution of the surrounding porous environment associated with flow and transport mechanisms.

Direct Numerical Simulation (DNS) of reactive processes in intricate pore space geometries
is challenging, as this requires efficient numerical methods that withstand multi-scale effects and
strongly coupled Partial Differential Equation (PDE) systems. We adopt a semi-Lagrangian ap-
proach combining a particle description of the chemical transport equations with Eulerian for-
mulation for the hydrodynamics. Flow modeling relies on a micro-continuum description of the
medium, combined with a two-scale Darcy-Brinkman-Stokes formulation. The implementation
benefits from an operator-splitting strategy and is provided in a hybrid CPU-GPU context. The
numerical framework is improved to incorporate particle-based approximation on GPU devices of
heterogeneous diffusion operators, which stems from Archie’s law. This DNS method is used to
investigate the effects of CO2 mineral trapping through a novel two-step model for calcite crystal-
lization.

However, ensuring reliable calibration of the PDE model parameters is crucial to provide
suitable evolution of the macro-scale properties due to geochemical processes. This sometimes
requires intuitive tuning of the model parameters to match laboratory experiments, especially con-
sidering the wide discrepancies observed in mineral reactivity and kinetic parameters in natural
systems. Furthermore, the characterization of the 3D pore-scale geometries by X-ray microtomog-
raphy (CT) is subject to measurement uncertainties and artifacts. These imaging limitations induce
morphological biases, such as unresolved features and approximations in the micro-porosity ac-
quisition, that require embedding uncertainty quantification (UQ). This aims to ensure reliable
pore-scale modeling: quantifying the orders of magnitude of the deviations on the macro-scale
properties becomes essential and establishes UQ methods as complementary partners to DNS.

In this direction, a direct approach based on asymptotic development analysis and slip-length
formalism is developed to quantify the permeability deviation relying on unresolved roughness
and approximated wall position. These deviations are computed from porous geometries derived
from X-ray CT and provide uncertainty ranges at the macro-scale.

We address inverse problems for the microtomography of reactive flows in porous media intro-
ducing a novel data assimilation approach based on Artificial Intelligence tools. The objective is
to combine a data-driven approach, based on dynamical experiments, with physics-based models
to characterize the uncertainties in the micro-porosity field and kinetic parameters by observing
the porous material dissolution.

For this purpose, we develop a novel deep learning strategy that robustly addresses physics-
based and multitask Bayesian inference, assuming unknown priors on the measurement noise dis-
tribution and model adequacy. The Bayesian Physics-Informed Neural Network formulation, in-
volving the PDEs of the model as tasks, has been investigated and a new method of automatic task
balancing, computationally cost-free, is developed in this work. We finally apply this framework
to reactive inverse problems in pore-scale imaging of calcite dissolution to quantify morphological
and chemical uncertainties.





Méthodes particulaires et approches supervisées par les données pour les processus
micrométriques réactifs: application au stockage minéral du CO2 avec

quantification des incertitudes

Résumé:
L’étude des écoulements réactifs dans les milieux poreux est essentielle pour gérer les effets

géochimiques de la capture et du stockage du CO2 dans les réservoirs souterrains naturels. Grâce
à l’homogénéisation du milieu poreux sub-micrométrique et une modélisation appropriée, on peut
simuler les processus réactifs à l’échelle des pores et prédire leur impact sur les propriétés macro-
scopiques. Les processus géochimiques permettent de comprendre les mécanismes du stockage
minéral du CO2 et d’interroger la sécurité du réservoir. Ils englobent la capture minérale du CO2
due à la précipitation et à la cristallisation de carbonates ainsi que la dissolution de l’environnement
poreux environnant, associées aux mécanismes d’écoulement et de transport.

La Simulation Numérique Directe (DNS) des processus réactifs dans les géométries com-
plexes de l’espace poreux est un défi, car nécessite des méthodes numériques efficaces capables
de gérer les effets multi-échelles et systèmes d’Equations aux Dérivées Partielles (EDP) fortement
couplées. On adopte une approche semi-Lagrangienne couplant une description particulaire des
équations de transport chimique avec une formulation Eulérienne de l’hydrodynamique et utilisant
une stratégie de splitting d’opérateurs. La modélisation de l’écoulement repose sur une descrip-
tion à deux échelles de Darcy-Brinkman-Stokes. Le cadre numérique est amélioré pour inclure
une approximation particulaire des opérateurs de diffusion hétérogènes dans un contexte hybride
CPU-GPU. On l’utilise pour étudier les effets de la capture minérale du CO2 à travers un nouveau
modèle en deux étapes pour la cristallisation de calcite.

Cependant, il est essentiel de garantir une calibration fiable des paramètres du modèle d’EDP
pour obtenir une évolution adéquate des propriétés à l’échelle macro due aux processus géochim-
iques. Cela nécessite parfois un réglage intuitif des paramètres du modèle pour correspondre aux
expériences, en particulier compte tenu des importantes disparités observées dans la réactivité
minérale et les paramètres cinétiques dans les systèmes naturels. De plus, la caractérisation des
géométries par micro-tomographie à rayons X est sujette à des incertitudes de mesure et à des
artefacts. Ces limitations induisent des biais morphologiques, tels que des caractéristiques non
résolues et des approximations dans l’acquisition de la microporosité, qui nécessitent de quantifier
les incertitudes. Et ce, afin de garantir une modélisation fiable à l’échelle poreuse : estimer l’ordre
de grandeur des écarts sur les macro propriétés devient essentiel.

Dans ce sens, une approche directe basée sur un développement asymptotique et un formal-
isme de longueur de glissement est développée pour quantifier les écarts de perméabilité dus à
ces incertitudes morphologiques. Ces écarts sont calculés sur des géométries poreuses réelles et
fournissent des plages d’incertitude à l’échelle macro.

Nous abordons des problèmes inverses pour la micro-tomographie des écoulements réactifs
grâce à une nouvelle méthode d’assimilation de données basée sur des outils d’Intelligence Artifi-
cielle. L’objectif est de combiner une approche axée sur les données avec des modèles physiques
pour mesurer les incertitudes sur le champ de microporosité et les paramètres cinétiques, en ob-
servant la dissolution du matériel.

À cette fin, une nouvelle stratégie d’apprentissage profond est développée, qui aborde de
manière robuste l’inférence bayésienne multi-tâches basée sur la physique, en supposant des a
priori inconnus sur la distribution du bruit de mesure et l’adéquation du modèle. La formulation
de Réseau de Neurones Bayésien, impliquant les EPDs du modèle en tant que tâches, a été étudiée,
et une nouvelle méthode d’équilibrage automatique des tâches est développée. On l’applique fi-
nalement à des problèmes inverses réactifs de dissolution de calcite pour quantifier les incertitudes
morphologiques et chimiques.
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Résumé développé en français

Méthodes particulaires et approches supervisées par les données pour les processus
micrométriques réactifs: application au stockage minéral du CO2 avec

quantification des incertitudes

Cette thèse s’inscrit dans l’étude des écoulements réactifs dans les milieux poreux mi-
crométriques et s’intéresse, plus particulièrement, aux problématiques de fiabilisation des modèles
mathématiques à l’échelle des pores et à la quantification des incertitudes qui y sont reliées.

Contexte général:
Dans le contexte environnemental actuel et face à l’urgence de réduire les émissions de gaz à
effet de serre, le stockage du CO2 dans les réservoirs souterrains naturels a émergé comme une
alternative prometteuse pour atténuer l’impact carbone [33]. L’analyse des différents mécanismes
géochimiques impliqués dans ce procédé et l’étude de leurs effets sur la structure poreuse du réser-
voir reste un défi majeur pour prédire le comportement à long terme et ainsi assurer un stockage
perenne et efficace. Entre autres, les enjeux concernent, d’une part, l’évaluation des capacités de
stockage, liées aux phénomènes de capture minérale du CO2 sous forme de précipitation et de
cristallisation, et d’autre part, les problématiques liées à l’altération de la structure par érosion
acide et dissolution.

La modélisation mathématique des différents procédés géochimiques et mécanismes de
piégeage est alors considérée pour réaliser des simulations numériques directes à l’échelle du
réservoir [81]. Ces dernières nécessitent une description de la formation poreuse, sur plusieurs
dizaine de kilomètres, en terme de propriétés macroscopiques telles que des distributions spatiales
de macro-porosité ϕ et de macro-permeabilité κ0. L’avantage de telles prédictions à grande échelle
réside dans une représentativité du comportement global du réservoir. Cependant, la disponibilité
des descriptions macroscopiques de la structure poreuse demeure un sujet de préoccupation qui
a conduit à l’émergence de questionnements quant à la fiabilité de ces prédictions. En ce sens,
les études de sensibilité en terme de structure macroscopique, résultant d’écarts dans les estima-
tions de macro-perméabilité et macro-porosité, semblent primordiales pour assurer une gestion
raisonnée du stockage du CO2 dans les réservoirs naturels [138, 195].

Parallèlement, les procédés réactifs découlant de la capture et du stockage du CO2 impliquent
des intéractions locales avec le milieu poreux pour lesquelles l’échelle des pores demeure une
échelle d’étude pertinente [232, 280]. A cette échelle micrométrique, un volume représentatif élé-
mentaire du milieu poreux, issu par exemple d’une carotte de roche, est considéré et sa géométrie
3D complexe est explicitement décrite. Les propriétés intrinsèques au milieu sont définies locale-
ment en termes de micro-porosité ε et micro-permeabilitéKε, où ε := εf = 1−εs avec εf et εs les
fractions volumiques locales d’espace vide et solide, respectivement (voir Figure 1.1 page 3). Le
passage à l’échelle, aussi appelé homogénéisation ou upscaling, assure la transition des propriétés
microscopiques hétérogènes (ε et Kε) vers une modélisation homogène des macro-propriétés (ϕ
et κ0) du volume représentatif [250, 251]. En ce sens, l’étude des processus réactifs à l’échelle des
pores fournissent, par homogénéisation, une évolution des propriétés à l’échelle macroscopique
due aux mécanismes géochimique du stockage du CO2.

L’échantillon 3D micrométrique est analysé par micro-tomographie à rayons X (µCT), qui
est un procédé d’imagerie fournissant une cartographie initiale du milieu poreux en terme de
niveau de gris [23, 24]. Ces derniers caractérisent la densité locale du matériau et par extension
le champ de micro-porosité ε, jusqu’à une résolution d’un voxel i.e. d’un pixel volumique (voir
Figure 1.3 page 6). La µCT permet ainsi de décrire de manière non-destructive la géométrie lo-
cale de l’échantillon poreux, et est ensuite combinée à des modèles mathématiques et simulations
numériques à l’échelle des pores [204, 220]. Cette échelle d’observation établit ainsi une complé-
mentarité significative entre les expériences réalisées en laboratoire et la modélisation mathéma-
tique, ce qui lui confère un avantage notable dans le contexte des applications en géosciences.
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Motivation et objectifs:
Des limitations sont en prendre en compte découlant d’incertitudes morphologiques issues du
procédé de micro-tomographie, mais aussi d’incertitudes de modélisation dans les modèles réactifs
à l’échelle des pores.

D’une part, plusieurs artefacts d’imagerie perturbent la description de la morphologie de
l’espace poreux, et par conséquent, la détermination des propriétés effectives du milieu qui en dé-
coulent. En effet, la résolution finie des scans de µCT génère des incertitudes géométriques tant au
niveau de la caractérisation des interfaces de pores, qui peuvent apparaître floues dû à des change-
ment d’intensités progressifs s’étendant sur plusieurs voxels, qu’en terme d’hétérogénéités de pe-
tites tailles présentes au sein d’un même voxel (voir Figure 1.3 page 6). Ce dernier phénomène,
connu sous le nom d’effet de volume partiel [214], résulte d’un compromis entre le volume
d’échantillon étudié qui se doit d’être suffisamment large pour être représentatif et la résolution
des scans de µCT, qui se doit d’être suffisamment fine pour capter les différentes échelles de
pores. Il en résulte une micro-porosité ou une rugosité des parois de l’espace poreux non résolues
et par conséquent une approximation de la véritable morphologie de sorte que l’on considère une
borne inférieure sur le champ de porosité avec ε(x, t) ≥ ε0 > 0. Quantifier la porosité sous-
résolue ε0 et mesurer son impact sur la modélisation numérique et la simulation à l’échelle des
pores demeure un enjeu en terme de fiabilisation des modèles prédictifs basés sur les données de
micro-tomographie [69, 172].

D’autre part, l’étalonnage des modèles mathématiques en terme de calibration des paramètres
cinétiques pose un second défi, notamment si l’on considère les écarts significatifs dans les
gammes de réactivités minérales rencontrées dans la littérature [217]. Ces derniers génèrent des
incertitudes considérables dans l’estimation des taux de réactions dans les modèles d’EDP, mettant
en évidence la nécessité de prendre en compte ces incertitudes de modélisation. L’objectif est alors
de fournir des intervalles de confiance robustes sur les paramètres cinétiques par des problèmes
inverses dans un cadre Bayésien et ce afin d’assurer un étalonnage fiable des modèles réactifs.

Cette thèse aborde les deux considérations précédentes et incorpore les préoccupations liées
à la quantification des incertitudes dans le contexte de la modélisation à l’échelle des pores pour
des applications reliées au stockage minéral du CO2. Les divers niveaux d’incertitudes sont traités
dans les différents chapitres du manuscrit et incluent:

• la modélisation et la simulation numérique directe du mécanisme de capture minérale par
précipitation et cristallisation, assumant des incertitudes morphologiques et de modélisation
minimales (Chapitre 2),

• la quantification des déviations de macro-perméabilité κ0 induite par les incertitudes
d’imagerie purement morphologiques et basée sur une approche déterministe découlant de
la théorie mathématique de l’upscaling (Chapitre 3),

• le développement d’une méthodologie robuste d’apprentissage profond pour l’assimilation
de données et les problèmes inverses incorporant des incertitudes inconnues de modélisation
potentiellement couplées à des incertitudes de mesures (Chapitre 4),

• l’étude de problèmes inverses de dissolution permettant une estimation conjointe des incer-
titudes géométrique sur le champ de micro-porosité ε (incluant la porosité sous-résolue ε0)
et des gammes de paramètres cinétiques du modèle réactif (Chapitre 5).

Contributions:
Le développement de modèles mathématiques appropriés et d’une méthode numérique efficace
pour l’étude des écoulements réactifs à l’échelle des pores est l’une des préoccupations de cette
thèse, avec un accent porté sur la précipitation et la cristallisation de carbonates qui assurent
un piégeage minéral du CO2 en milieu basique. Ces processus ont un impact significatif sur
l’écoulement à l’échelle des pores, entraînant une restructuration des trajets d’écoulement et des
changements morphologiques qui altèrent, entre autres, la distribution de la taille des pores et la
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rugosité de l’interface en raison d’un colmatage partiel ou complet de l’espace des pores. Ces al-
térations à l’échelle microscopique influent, par la suite, sur l’estimation des propriétés à l’échelle
macroscopique.

La modélisation de ce phénomène de capture minérale combine un modèle pour
l’hydrodymamique de type Darcy-Brinkman-Stokes, basé sur le formalisme de vitesse superfi-
cielle introduite par Quintard et Whitaker dans les années 1980 [250, 251] et introduisant une
description à deux échelles du milieu, avec un système de convection-diffusion-réaction pour les
intéractions chimiques (Section 2.3 Chapitre 2). En particulier, un nouveau modèle de cristallisa-
tion de calcite est proposé, décomposant le processus chimique en deux étapes: une première étape
déterministe de nucléation initiale utilisant la théorie de l’état de transition et formant des précip-
ités de calcite qui seront transportés dans l’espace des pores, et une deuxième étape probabiliste
d’agrégation de ces nuclei à la surface minérale sous la forme d’une réaction chimique d’auto-
catalyse. Cette deuxième étape introduit une probabilité non-uniforme du taux d’attachement du
précipité à l’interface en fonction d’une fréquence d’adsorption et de la fraction volumique locale
du minéral, impliquant une convolution à support compact de la micro-porosité (Section 2.7.2
Chapitre 2). Ce modèle intègre ainsi la dépendance géométrique du milieu poreux en adoptant
une formulation volumique de la croissance des cristaux de calcite dans des zones préférentielles
situées dans un voisinage fluide de la surface du minéral.

Une approche numérique hybride, dite Semi-Lagrangienne, est utilisée couplant une for-
mulation particulaire de la chimie avec des méthodes Eulériennes pour la résolution de
l’hydrodynamique sur une grille sous-jacente (Section 2.4 Chapitre 2). En particulier, l’équation
de Darcy-Brinkman-Stokes assure une pénalisation de la matrice poreuse en introduisant la micro-
perméabilité Kε, explicitement reliée à la micro-porosité ε par la loi empirique de Kozeny-
Carman (équation 2.2 page 25). De plus, cette équation est résolue dans une formulation vitesse-
tourbillon qui garantit la condition d’incompressibilité du fluide. L’approche Lagrangienne, quant
à elle, présente un avantage significatif pour modéliser les phénomènes de transport des espèces
chimiques, mais aussi dans l’approximation, par une méthode de noyau intégral dite Particle-
Strength-Exchange (PSE), des termes de diffusion hétérogène issus de la loi d’Archie (Section
2.5.3 Chapitre 2). Ces derniers tiennent compte d’une diffusion réduite des espèces chimiques
dans la matrice poreuse, assurant un meilleur contrôle de la diffusion à l’interface, sous certaines
contraintes de stabilités (Section 2.5.4 Chapitre 2). L’ensemble est intégré au sein d’une biblio-
thèque de calcul haute performance, dénommée HySoP [112], qui fournit un cadre efficace pour la
modélisation de l’hydrodynamique réactive en utilisant des méthodes Semi-Lagrangiennes sur des
configurations matérielles hybrides. En particulier, une des contributions de cette thèse consiste
en l’implémentation pérenne d’une méthode PSE pour l’approximation des opérateurs de diffu-
sion hétérogènes sur des accélérateurs GPU. L’implémentation de la méthode numérique est ainsi
réalisée dans un contexte hybride combinant l’utilisation de CPU et GPU.

Cette approche est, finalement, appliquée à la modélisation de capture minérale du CO2 sous
la forme de cristallisation de calcite au sein de géométries issues de micro-tomographie à rayons
X. Nous identifions des effets de colmatage des pores dans la géométrie à l’échelle des pores et
établissons leur impact sur l’évolution des propriétés macroscopiques (Figure 2.9 page 53). En
particulier, nous démontrons l’effet significatif de l’agrégation des cristaux, i.e. de l’adsorption
des noyaux à la surface minérale, sur les formes de réactions. Il a été mis en évidence que
considérer uniquement les taux de transport et de nucléation, à travers les nombres sans dimension
de Péclet et Damköhler usuels, n’est pas suffisant pour caractériser le colmatage des pores
(Figure 2.10 page 54). Dans ce sens, nous proposons une nouvelle caractérisation des régimes de
cristallisation basée sur l’analyse conjointe de trois nombres sans dimension (équations 2.73 page
51), ce qui permet de prendre en compte les taux d’adsorption des noyaux dans la caractérisation
des différents régimes.

Dans un second temps, cette thèse s’intéresse à la caractérisation des déviations induites par
les incertitudes morphologiques issues de l’imagerie µCT. L’objectif est de garantir des évolutions
fiables des propriétés à l’échelle macroscopique, résultant des réactions chimiques à l’échelle des
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pores, en assurant une quantification des biais d’imagerie. Une première approche déterministe est
proposée pour l’étude des déviations de macro-perméabilité κ0 et prend en compte les incertitudes
morphologiques, telles que la rugosité sous-résolue et l’approximation de la position de l’interface,
sous la forme de condition aux limites effective. Un formalisme de longueur de glissement β est
utilisé et nous proposons deux stratégies pour analyser en pratique les déviations de perméabilités
en géométries réelles (Section 3.3.1 Chapitre 3).

La première vise directement à résoudre un écoulement de Stokes dans l’espace poreux avec
des conditions aux limites de Navier caractérisées par une longueur de glissement β prescrite à
l’interface fluide/solide. Il en résulte une estimation de la perméabilité κβ , utilisée pour estimer
la plage d’incertitude [κ0, κβ]. La deuxième établit théoriquement la déviation de perméabilité
comme une extension de κβ par des termes de correction de glissement du premier et du deux-
ième ordre, respectivement notés L0 et L1 et issus de la résolution de problèmes de Stokes à des
ordres successifs. Ces problèmes successifs sont déterminés par une méthode de développement
asymptotique et impliquent des conditions aux limites de type Dirichlet non homogènes, dépen-
dant directement de la solution du problème de Stokes d’ordre inférieur (Section 3.4 Chapitre 3).
On obtient ainsi des gammes de perméabilité basées sur les déviations d’ordre 1 ou 2, respective-
ment données par les intervalles [κ0, κ0 + βL0] et [κ0, κ0 + βL0 +

β2

2 L1].

L’estimation de la longueur de glissement caractéristique est reliée à la taille d’un voxel h,
avec 0 < β ⩽ h, en fonction de l’incertitude associée au niveau de gris et, par conséquent, de
la fraction volumique résiduelle ε0 dans une zone supposée solide (Section 3.6.1 Chapitre 3).
Plusieurs échantillons poreux 3D sont analysés numériquement pour fournir une estimation des
plages d’incertitude sur la perméabilité et nous comparons les déviations linéaires du premier
ordre κ0 + βL0 avec la déviation de perméabilité globale κβ (Section 3.7.1 Chapitre 3). D’une
part, nous identifions un rapport sans dimension (équation 3.53 page 87) dépendant de la déviation
relative de la perméabilité et de la surface spécifique, susceptible de servir de critère de représen-
tativité pour les échantillons poreux. D’autre part, nous observons des effets non-linéaires dans
les estimations de premier ordre, résultant de l’extension de κβ , ce qui nous a amené à considérer
la déviation d’ordre deux (Section 3.7.2 Chapitre 3). Ces résultats soulignent, en particulier, la
pertinence de la déviation du deuxième ordre pour expliquer les effets macroscopiques apparents
sur la perméabilité dans les géométries réelles. Ainsi, nous fournissons un cadre numérique
pertinent pour étudier les écarts de perméabilité générés par les incertitudes d’imagerie dans des
échantillons poreux de µCT, ce qui permet d’interroger la fiabilité de leurs évolutions au cours
d’un procédé réactif.

Cependant, les préoccupations concernant les incertitudes de modélisation, en particulier re-
liée à l’estimation d’intervalle de confiance sur les paramètres réactifs, ainsi les incertitudes mor-
phologique sur le champ de micro-porosité persistent. L’idée développée dans cette thèse est,
alors, de considérer un processus dynamique pour fournir une description locale, précise et ro-
buste, des matériaux poreux en observant leur dissolution à travers des expériences dynamiques
de µCT. Il en résulte une assimilation de données en 4D (3D+temps) dont l’objectif est à la fois
de combiner un modèle d’écoulement réactif a-priori, ayant des paramètres cinétiques inconnus,
avec des données imparfaites et bruitées d’imageries issues du processus dynamique de disso-
lution. Ceci permet d’explorer de manière conjointe les incertitudes morphologiques dues à la
micro-porosité sous résolue ε0, en particulier au sein du milieu poreux initial, ainsi que le prob-
lème inverse de détermination des paramètres du modèle avec leurs incertitudes (Chapitre 5). En ce
sens, il est donc apparu nécessaire de développer une méthodologie dédiée permettant d’aborder
les incertitudes de modélisation dans un contexte d’assimilation de données et de problème in-
verse.

Nous proposons une approche basée sur les réseaux de neurones informés par la physique dans
un contexte Bayésien, communément appelée B-PINN [173, 328], qui tient compte de manière
robuste des considérations multi-tâches et multi-échelles pour les problèmes d’inférence Bayési-
enne couplant principes physiques et données (Chapitre 4). L’objectif est d’échantillonner à l’aide
d’un processus de Markov la distribution cible a-posteriori, notée P(Θ|D,M), d’un ensemble
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de paramètres Θ (paramètres du réseau de neurones et paramètres inverses) qui sont vus comme
des variables aléatoires ayant des distributions a-priori P(Θ). La distribution cible se décompose,
alors, suivant la règle de Bayes P(Θ|D,M) ∝ P(D|Θ)P(M|Θ)P(Θ) introduisant des termes
stochastiques de vraisemblance aux données D et d’adéquation au modèleM, pondérés par leurs
incertitudes respectives. L’échantillonnage est assuré par une méthode de Monte Carlo Hamiltoni-
enne qui offre des propriétés de mise à l’échelle efficaces pour des problèmes d’inférence en haute
dimension, ce qui est essentiel dans le cadre des B-PINN [48].

Néanmoins, cet échantillonneur introduit une énergie potentielle U(Θ) qui est directement re-
liée à la distribution cible par la relation U(Θ) = −lnP(Θ|D,M). Il en résulte une expression
pondérée et multi-objectifs de l’énergie potentielle pour laquelle garantir une inférence Bayési-
enne robuste repose sur une estimation correcte des poids des différentes tâches, intégrant les
différentes sources d’incertitudes. En particulier, une pondération inadéquate dans des problèmes
impliquant des tâches conflictuelles ou des préoccupations multi-échelle favorisera, a fortiori, le
sur-entrainement ou sous-entrainement de certains termes et générera un échantillonnage biaisé.

Dans cette thèse, une nouvelle formulation de la méthode de Monte-Carlo Hamiltonien est
donc proposée, avec une pondération automatique et adaptative de la distribution a-posteriori
basée sur l’exploitation des variances de gradient des différentes tâches (Section 4.4.1 Chapitre 4).
Cela permet de concentrer, après la procédure d’adaptation, l’échantillonnage sur l’exploration du
front de Pareto et évite ainsi le déséquilibre entre les tâches tout en garantissant un coût de calcul
raisonnable, allant dans le sens de la sobriété énergétique des méthodes d’apprentissage profond.
Notre approche, appelée AW-HMC, bénéficie d’une convergence et d’une stabilité accrues par
rapport aux échantillonneurs conventionnels et réduit le biais d’échantillonnage en évitant le
réglage manuel des paramètres de pondération critiques. Cette nouvelle alternative a également
démontré son efficacité dans la gestion de la sensibilité à l’échelle des différents termes, que
ce soit par rapport aux distributions de bruit ou aux problèmes multi-échelles (respectivement
Sections 4.6.1 et 4.5 Chapitre 4). En effet, les poids ainsi adaptés fournissent des informations
intrinsèques sur les incertitudes des tâches distinctes. Cela améliore la fiabilité des estimations
liées au bruit et à l’adéquation du modèle, car les incertitudes sont quantifiées avec un minimum
d’hypothèses a-priori sur leur échelle.

Dans une perspective globale d’Intelligence Artificielle (IA), cette thèse démontre la néces-
sité et l’efficacité du développement d’une stratégie de pondération adaptative qui renforce la
robustesse des BPINNs et offre ainsi une alternative prometteuse en tant que stratégie globale
d’assimilation de données. Cela permet d’étendre les applications des BPINNs à des problèmes
d’inférence complexes et d’obtenir une inférence Bayésienne fiable dans des problèmes inverses
multi-tâches du monde réel.

En particulier, nous utilisons cette nouvelle stratégie pour aborder des problèmes inverses
réactifs intégrant la quantification des incertitudes, comme évoqué précédemment. Nous exam-
inons une formulation multi-tâche des problèmes inverses de dissolution de calcite et établissons
une méthode de renforcement séquentiel qui incorpore successivement les contraintes du sys-
tème d’EDP dans le procédé d’assimilation de données (Section 5.5 Chapitre 5). En complément
de l’estimation de l’incertitude morphologique sur le champ de micro-porosité ε, nous carac-
térisons les taux de réaction expérimentaux et les régimes de dissolution en identifiant les nom-
bres sans dimension appropriés (Section 5.4 Chapitre 5). Par conséquent, nous dérivons des plages
d’incertitude sur les paramètres cinétiques en combinant des modèles d’EDP prescrits et des ex-
périences de dissolution, ce qui rend fiable l’étalonnage des taux de réaction pour les simulations
numériques directes. Cela évite également d’utiliser des paramètres réactifs estimés uniquement
à partir d’expériences en laboratoire, qui peuvent ne pas être représentatifs de la dynamique à
l’échelle des pores ou être sujets à de larges incertitudes. Nous appliquons cette méthodologie à
des problèmes de dissolution de noyau de calcite en 1D+Temps et 2D+Temps basés sur des images
de µCT synthétiques, bruitées et présentant des niveaux de micro-porosité variables (Sections 5.6
et 5.7 Chapitre 5). Finalement, nous estimons à partir de la dynamique de dissolution des inter-
valles de confiance sur la micro-porosité sous-résolue ε0, et des incertitudes locales sur le champ
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ε qui peuvent ensuite se traduire par des distributions sur la macro-porosité ϕ à l’échelle de Darcy.
Comparé aux alternatives d’IA en géosciences, la principale nouveauté de ce travail, en ce qui

concerne les problèmes inverses réactifs du dernier Chapitre 5, réside dans l’évaluation robuste des
incertitudes liées aux caractéristiques morphologiques non résolues et à la réactivité minérale en
intégrant des modèles basés sur la physique avec des techniques d’assimilation de données. Dans
cette perspective, cela offre une compréhension plus approfondie de la relation entre les données
expérimentales et la théorie de la modélisation mathématique à l’échelle des pores. A terme, nous
pourrions accroître la fiabilité des approches de simulation numérique directe pour la modélisation
du stockage de CO2, en proposant des distributions réalistes des macro-propriétés ϕ et κ0. Ces
distributions pourraient ainsi être exploitées dans des analyses de sensibilité menées à une large
échelle et s’appuyant sur une estimation des incertitudes à l’échelle des pores.
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1.1 General context and motivation

1.1.1 CO2 mineral storage

Current concerns about climate change have raised an urgent need to develop efficient solutions
for sustainable and low-carbon alternative energy sources. Meanwhile, emissions of greenhouse
gases and their release into the atmosphere have emerged as one of the most significant aspects of
managing environmental issues. In 2021, the International Energy Agency (IEA), which regularly
provides official and public data on energy-related topics, published a report projecting scenarios
to achieve carbon neutrality by 2050. The latter, entitled "Net Zero Emission by 2050: A Roadmap
for the Global Energy Sector" [136], established the critical need to reduce the concentration of
carbon dioxide (CO2) released into the atmosphere as part of an overall ecological transition.
By 2030, it is estimated that net-zero emissions will require 1.6 gigatons (Gt) of captured CO2
per year, reaching 7.6 Gt of annual storage by 2050 to cope with the increasingly severe rise of
emissions. Indeed, the IEA reported 2021 as the year with the highest increase in global CO2
emission, facing a jump of 1.9 Gt for the energy sector. This resulted in total emissions of 36.6 Gt
CO2, and the predictive trends are not declining.

The idea of carbon sequestration in natural formations has consequently appeared as a viable
and promising strategy to facilitate the elimination of excess CO2 from the atmosphere, reduce
the carbon footprint, and mitigate its impact on global warming. Over the past decades, extensive
studies have been conducted on these crucial environmental solutions involving, inter alia, CO2
mineral storage [7, 70, 81, 196]. Such a research field aims to understand and predict long-term
carbon sequestration in underground geological reservoirs, often referred to as Carbon Capture
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and Storage (CCS) or Carbon Capture, Use and Storage (CCUS) technologies. The geological
structures involved in this sequestration process are of a wide variety and currently range from
depleted oil or gas reservoirs to coal seams and deep saline aquifers. Depending on the kind of
sink formations, the main features commonly discussed include the geological storage assessment
and trapping capabilities, although safety likewise raises sensitive issues. Overall, suitable sites
should be equipped with an impermeable cap rock to prevent CO2 leakage, unlike the porous
environment of the reservoir should present high porosity and permeability to ensure efficient
storage and high injection capacity. In this regard, saline aquifers offer ideal sequestration sites
with a broad geographical distribution and a promising potential to store up to several thousand Gt
of CO2 [33, 181].

Saline reservoirs generally consist of heterogeneous porous media, like sandstones and lime-
stones, saturated with salty water that occupies the pore space (or void space) delimited by the
rock matrix. Regarding carbon sequestration in these geological structures, multiple physical and
chemical mechanisms occur, requiring consideration of a range of simultaneous factors. For in-
stance, part of the injected CO2 will migrate upward, due to its density difference with the saline
fluid, and become trapped by the low-permeability cap rock: this is known as structural or physical
trapping. Other parts will dissolve in the aqueous phase leading to permanent solubility trapping,
and interact with the chemical environment of the brine and the reservoir rocks. Such reactions
will eventually result in solid carbonate precipitation, also called CO2 mineral trapping, occurring
at various time scales. Finally, supercritical CO2 can also be trapped in the aquifer pore spaces as
droplets through the physical effect of capillary trapping. Studying the previous trapping effects is
a major concern of CO2 storage in natural reservoirs. Another critical aspect of CO2 mineral stor-
age lies in safety issues in the sense that dissolution of the carbonate species already present in the
aquifer, due to an acidification of the medium, may compromise the cap rock integrity. In addition
to the previous mechanisms, the underlying physic usually falls within the framework of multi-
component, multi-phase flows, coupled with geochemical and thermal effects. The study of the
overall system in these porous environments is thereby challenging as it suffers from non-linearity,
high complexity of the fluid-rock interactions, and involves multiple phenomena.

Understanding the impact of CO2 sequestration on the reservoir’s intrinsic properties, as well
as its interactions within the geological sinks, is essential for predicting long-term behaviors and
wisely managing storage potential. To meet such requirements, research is conducted in a com-
plementary way on laboratory experiments, mathematical modeling, and numerical simulations
of the related hydro-chemical processes. On the one hand, in situ experiments offer the oppor-
tunity to study these phenomena under reservoir conditions, with high pressure and temperature
constraints, and provide comprehensive baselines for comparison or validation [20, 317]. For ex-
ample, this enables the characterization of structural and petrophysical changes during chemical
reactions, reaction rate assessment, and stress management in real-world conditions. On the other
hand, numerical simulations rely on appropriate mathematical models derived from physical prin-
ciples to abstract complex natural behaviors. They intend to generate long-term predictions and
benchmarks, which are of key importance for reservoir risk management and efficiency [168, 225].
Nonetheless, the challenge remains to implement appropriate modeling hypotheses and to estab-
lish their sufficiency to explain the overall mechanisms. And, mathematical-based models remain
intrinsically related to experiments in the sense experimental data can be either used for poste-
rior validations or prior identifications of physical parameters. These two lines of research have,
therefore, emerged as complementary approaches for a wide range of real-world applications in
geosciences.

At an applicative level, this thesis investigates, on the one hand, the ability to compute and
predict the trapping process of CO2 into calcite in an alkaline medium and, on the other hand, the
characterization, stability, and alteration of calcite due to acidic erosion and dissolution. In this
spirit, we especially explore the relationship between laboratory experiments and mathematical
modeling theory. This thesis has been conducted at the Laboratory of Mathematics and their
Applications of Pau (LMAP, UMR CNRS 5142, UPPA), in the context of the I-Site project E2S-
UPPA Energy, Environment and Solutions.
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Figure 1.1: From the pore-scale to the reservoir scale: an upscaling principle. Schematic representation
of a reservoir scale structure, on the left, with its inherent averaged macro-properties ϕ and κ0 computed
on a representative elementary volume (REV). Local micro-continuum description of the pore-scale het-
erogeneities in this REV, on the right, along with its intrinsic micro-scale properties. These properties are
the local micro porosity field ε (lower bounded by a sub-resolved porosity ε0 > 0 in the porous matrix ΩS)
and the micro-scale permeability Kε, based on the Kozeny-Carman relationship developed in equation 2.2
of Chapter 2 (page 25).

1.1.2 A question of scale

The meaningful combination of laboratory experiments and mathematical modeling has to be con-
sidered to investigate the mechanisms of CO2 mineral storage and assess their global implications
on the sequestration process. The question of the scales on which these analyses are carried out,
however, remains fundamental.

Indeed, part of the trapping processes, like capillary and mineral trapping, involve local inter-
actions with the aquifer rocks. These reactions occur in the pore space, which can be of varying
sizes and distributions, although it commonly refers to small scales (e.g., from a few nanometers
to centimeters). Inferring the behavior of these mechanisms has thereby required the development
of pore-scale models, in addition to efficient scientific computing tools, to perform predictive
numerical simulations [232, 280]. Such pore-scale phenomena are also particularly convenient
for experimental studies, which are naturally limited, in some sense, to human physical size and
time [21]. In contrast, the long-term predictions of CO2 storage are rather interesting to study at
the field scale, corresponding to the entire aquifer behavior over several kilometers. 3D reservoir
simulations thereby represent another attractive research area and aim to evaluate global phenom-
ena such as injection capacities, pressure changes, or CO2 plume migration over several hundred
years [146, 150].

At first sight, two worlds differ: a pore-scale environment and a large reservoir structure re-
spectively endowed with micro and macro-scale properties. At the sub-micrometer scale, the
hydro-chemical implications are finely described based on local characterizations of the medium.
On the contrary, the porous medium relies on a continuum description at the field scale, and
mathematical models require averaged evaluations of its main properties. However, these two
worlds provide crucial insights and are directly related to each other through homogenization tech-
niques that offer an efficient mathematical framework for bridging the gap between these scales
(e.g. see Figure 1.1). Indeed, upscaling of the governing equations remains an intrinsic and ac-
tive field of research since the pioneering work in volume averaging developed by Quintard and
Whitaker [26, 250, 251, 316]. Volume averaging introduces the concept of Representative Ele-
mentary Volume (REV) as the characteristic minimal volume on which the microscopic variables
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can be averaged [32]. It allows the transfer from the pore scale to the Darcy scale by referring to
representative criteria of the domain in terms of averaged properties, such as the macro-porosity
ϕ, permeability K, specific surface area As, etc. These bulk parameters are derived from the
evolving micro-structures through upscaling principles, as illustrated in Figure 1.1. Indeed, at the
continuum Darcy scale, the upscaled porosity and permeability are respectively defined by:

ϕ =< ε >Ω and µϕ < u >ΩF
= K < f >ΩF

where K ∈M3,3(R), (1.1)

where < . > represents the average on the respective fluid domain ΩF and porous matrix ΩS ,
described at the pore scale in a representative volume Ω. The notation ε refers to the corresponding
micro-porosity field, u is the pore-scale velocity, µ is the dynamic viscosity, and f is the volumic
driving force of the flow. In the case of an isotropic permeability, where K = κ0I , it is sufficient
to consider the flow in a main direction. For example, along the z-axis, this yields:

κ0 =
µϕ < uz >ΩF

< fz >ΩF

, (1.2)

where uz and fz represent the vertical components of the velocity and driving force, respectively.
The micro-porosity field description at the pore scale can either account for each individual solid
grain or consider a hybrid pore scale-continuum scale formalism, referred to as micro-continuum.
In the hybrid case, the pore space is explicitly described, unlike sub-resolved features present
within the porous matrix ΩS that are, meanwhile, regarded as averaged volume fractions of the
material — introducing the local volume-averaged porosity — and characterized by a lower bound
on the residual porosity ε ⩾ ε0 > 0 in Figure 1.1 [204, 227, 279]. Despite a straightforward
conceptualization, the notion of REV can, however, become ambivalent and challenging when
dynamical reactions occur. In particular, the alterations in the pore space may affect its unique
definition over time and require special considerations [220, 275].

Determining the proper size of this REV is also critical for applications to Digital Rock
Physics, which has appeared as a performing approach in porous media studies and combines
imaging experiments with pore-scale modeling [52]. The experimental part is supported by ad-
vances in X-ray microtomography (X-ray µCT) which non-destructively describes a representa-
tive volume of the material. Such imaging techniques are becoming increasingly valuable tools
for providing appropriate internal descriptions of microstructural properties. Indeed, X-ray mi-
crotomography reconstructs a high-resolution 3D image of the heterogeneous structure that can
be used straightforwardly as complex geometrical input in pore-scale simulations. The micromet-
ric sample geometry serves, for instance, as a basis to perform numerical predictions of reactive
flows within the porous media and, afterward, measure their impact on the macro-scale proper-
ties through homogenization. Dynamical scans may also be performed over time to directly track
evolving interfaces during reactive experiments such as mineral dissolution or precipitation. Af-
terward, 4D µCT is either coupled with pore-scale simulations for comparisons [204, 220] or is
used to experimentally evaluate reactivity and kinetic parameters [62, 218].

The present thesis explores the pore-scale considerations of CO2 mineral storage through, on
one side, the mathematical modeling and Direct Numerical Simulation (DNS) of reactive micro-
metric processes. Besides, it intends to investigate the relationship between micro-tomography
experiments (stationary or dynamic), modeling, and numerical applications. The focus is on en-
hancing the reliability of direct predictions by building models on experimental data wherein the
uncertainties are quantified. The essence of this work, thereby, finds its place in the proper balance
between µCT experiments and mathematical modeling theory.

1.1.3 From a microtomography perspective: the imaging challenges

Independently of the modeling considerations, pore-scale simulations are intrinsically related to
X-ray µCT as the latter provides, beforehand, scans of the complex shape geometry on a repre-
sentative elementary volume. Pore-scale numerical simulations of reactive dynamical processes
are then performed on this REV initial geometry tracking the dynamical interface evolutions and
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Figure 1.2: X-ray µCT data acquisition principle [170]: The porous sample is positioned on a rotating
panel between the X-ray source and the detector, which acquires a series of 2D projections over a rotation
of 360°corresponding to the intensity of the transmitted X-ray beam through the sample. The 3D grey
scale dataset is subsequently reconstructed from these projections based on, for instance, a back-projection
algorithm [119].

micro-properties changes. These afterward translate into petrophysical evolutions through upscal-
ing principles, as introduced in Sect. 1.1.2. Therefore, trustable measurement of the impact of the
reactive processes on the porous medium macro-properties requires ensuring reliable quantifica-
tion of the changes in the micro-properties. This can be achieved under the constraint of having a
fine description of the pore space, with correct knowledge of the surrounding solid matrix defined
by the local micro-porosity field ε. An efficient representation of the porous sample at the pore
scale is necessary to guarantee reliable estimation of the macro-properties evolutions along the
reactive processes.

Advances in X-ray microtomography offer such an opportunity. X-ray µCT is regarded as a
powerful non-invasive and high-resolution imaging technique able to determine the inner structure
of a porous sample up to a characteristic scale, which defines the voxel size. The voxels are small
elementary volumes (of a few µm) that compose the overall 3D reconstructed sample geometry
and are identified by different grey levels characterizing the local attenuation of the material. The
µCT workflow, illustrated in Figure 1.2, describes the intensity of the transmitted X-ray beam,
which is material-dependent and determines the absorption ability of the different components
through the sample. The resulting 3D dataset can either be segmented to separate the pore space
— namely the fluid phase ΩF — from the surrounding solid matrix ΩS or directly benefit from
the information related to the greyscale values of the different voxels. The segmented images lend
themselves to numerical simulations that require an explicit representation of the fluid-solid in-
terfaces (e.g. Lattice-Boltzmann [4]) or directly account for the voxel greyscale estimations (e.g.
Darcy-Brinkman Stokes formulation [59, 279]). Indeed, these grey-level shades, depicting the ma-
terial local attenuation, are correlated to the micro-porosity field description and can be taken into
account in the Darcy-Brinkman Stokes formulation. The latter is a hybrid model that combines
continuum-scale and pore-scale approaches and relies on the micro-continuum representation of
the medium, as introduced in the previous Sect. 1.1.2, along with the empirical Kozeny Carman
relationship for the micro-scale permeability (see Sect. 2.3.1 from Chapter 2). This introduces
Digital Rock Physics applications as the joint use of high-resolution X-ray computed microto-
mography and advanced simulation techniques to characterize, inter alia, the rock petrophysical
properties and their evolutions [23, 24]. Pure imaging alternatives readily regard the resulting
dataset to derive the sample’s effective physical properties (porosity, permeability, dispersivity...)
but also geochemical rates and mineral reactivity in dynamical processes [217, 276]. Therefore,
X-ray microtomography is both a complementary means to numerical modeling at the pore scale
and a fundamental imaging process on its own to study the CO2 storage implications on porous
material.

However, limitations in the µCT imaging process may affect the determination of the medium
effective properties, and query the reliability of the predictive models based on these datasets. In
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Figure 1.3: High-resolution X-ray scans of two samples. Data are numerically magnified up to voxel
scale using successive interpolated zoom up to the final zoom on the right, at the physical size of the pixel
(voxel sizes are respectively 1.5µm and 1µm for the Sandpack and the limestone). This illustrates the
presence of a grey-scale gradient instead of a sharp interface.

fact, several imaging artifacts exist and disrupt the efficient description of the pore space mor-
phology. Firstly, the finite resolution of the µCT pipeline is challenging, as the interfaces appear
blurry and do not manifest themselves as sharp intensity steps in the images, but rather as gradual
intensity changes spanning over several voxels [266] (see Figure 1.3). Actually, the local attenu-
ation signal within a voxel is influenced by the material heterogeneity in its neighborhood, then
the resulting grey scale value represents averaged properties: this is known as the Partial Vol-
ume Effect [214]. This phenomenon is also involved when morphological features of interest are
smaller than the characteristic voxel size, resulting in unresolved micro-porosity or roughness of
the pore space walls. Quantifying sub-resolution porosity, which is a prevalent imaging artifact in
µCT, and measuring its impact on numerical modeling and simulation is identified as critical for
geosciences applications [69, 172, 276]. Such an issue is well-known and arises from a compro-
mise between the sample volume being investigated and the scan resolution. For porous media
covering a wide range of pore scales, this trade-off can readily result in voxel sizes that are not
able to capture fully resolved morphological features of the pore space. Finally, in the presence of
sharp density transitions, the different refraction index at either side of the interface furthermore
leads to so-called edge enhancement which manifests itself as an over- and undershoot of the grey
level immediately next to the interface [37]. Consequently, the position of the material interface is
prone to uncertainty, in addition to the roughness of the pore space walls, and therefore results in
an approximation of the true morphology.

While the mentioned effects can be minimized, they cannot be eliminated and add uncertain-
ties to the estimation of the effective properties, the characterization of the void/solid interfaces,
and the reliability of the numerical models. In addition, the accuracy of X-ray µCT images is chal-
lenged by additional artifacts coming from both inherent physical and technical limitations [144].
It includes, among them, instrumental noise, beam hardening [318] which results in cupping (an
underestimation of the attenuation at the center of the object compared to its edges) or drag/streak
appearances (due to an underestimation between two areas of high attenuation), beam fluctua-
tions along the scanning process and scatter radiations coming from the object and/or the detector.
These variations can manifest as noise, ring or streak artifacts, and halos that are often hard to
distinguish from real features and therefore hinder the identification of sample heterogeneities at
multiple scales. Ubiquitous limiting factors remain in the X-ray µCT imaging process, and the
assessment of their related uncertainties is fundamental to developing more accurate predictive
models.

Incorporating Uncertainty Quantification (UQ) in the workflow of pore-scale modeling is,
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therefore, a major concern of the present thesis. In this sense, this intends to improve the rel-
evance of dynamical forecasts through reliable quantification of the macro-properties changes
along geochemical transformations in CO2 mineral storage. We especially want to ensure that the
evolving petrophysical properties observed through DNS of reactive flows at the pore-scale result
from meaningful chemical interactions rather than µCT imaging biases previously introduced.
Quantifying uncertainties in image-based models from a pore-scale perspective is, therefore, of
considerable interest and can provide a better understanding of both the modeling aspects and
experimental datasets.

Moreover, scaling and stiffness issues, the use of simplified models, and the coarse or inaccu-
rate description of the porous medium, inter alia, lead to uncertainties in the numerical results that
can be estimated over several DNS approaches as an inherent UQ analysis. Consequently, together
with UQ methodologies, confronting several DNS methods also provides insights into the numeri-
cal uncertainties, and benchmarks involving multiple numerical methods still contribute to gaining
confidence in numerical results and parameter estimations. Nonetheless, a misleading calibration
of the mathematical model parameters, namely in the mineral reactivities and kinetic parameters,
cannot be identified and quantified in this way. This highlights the need to robustly calibrate reac-
tive Partial Differential Equation (PDE) models by inverse problems integrating confidence in the
estimations.

1.2 State of the art

1.2.1 Hydrodynamics at the pore scale: modeling and numerical considerations

Many mathematical models and DNS methods have been developed to investigate reactive mi-
crometric processes and establish the relationship between pore scale phenomena and continuum
macro-scale parameters. However, modeling reactive hydrodynamics in the 3D pore structures
arising from X-ray µCT experiments and understanding how pore-scale heterogeneity affects the
reaction rates are currently still challenging.

Firstly, the complexity of the pore structure adds significant intricacy to the flow and transport
modeling within these materials. In pore-scale modeling of hydrodynamics, two prominent cate-
gories exist: one entails conceptual simplification of the pore structure such as Pore Network mod-
els (PNM), while the other directly incorporates the proper 3D morphology of the medium [198].
In particular, PNM rely on a simplified representation of the intricate pore geometry, which is
approximated as a network of interconnected pores bodies — represented by nodes — and throats
— represented by links (see Figure 1.4). The accuracy of such modeling, however, depends to
a large extent on how well the pore network approximation corresponds to the actual pore struc-
ture of the medium [323]. In return, their computational efficiency, inherent to the morphological
simplifications, and their ability to include numerous heterogeneity in larger rock volumes make
PNM popular in porous media research. In particular, a Python open-source framework — called
OpenPNM [125, 126] — has been developed to address pore-network models for simulating vari-
ous processes in porous media including, inter alia, transport, single-phase and multiphase flows,
and reactive phenomena [169, 197, 257].

On the contrary, explicit descriptions of the complex pore-scale geometry can be incorporated
into DNS through conventional discretization methods based on Eulerian formulation.

These DNS approaches intend to discretize and approximate the solutions of PDE systems
that arise from mathematical modeling of the fundamental laws governing fluid dynamics. In
particular, the hydrodynamics of a single-phase Newtonian fluid within a porous medium can
be accurately described, in the fluid domain ΩF , by the Navier-Stokes or Stokes equations —
depending on the flow regime — associated with the continuity equation derived from mass con-
servation. These models are coupled with appropriate boundary conditions, reactive or not, and
can also incorporate the time dependency of the porous medium. An important aspect, therefore,
lies in modeling the interactions at the fluid-solid interfaces, which can explicitly describe each
solid grain’s boundaries within the pore space. This results in a two-domain formulation, which
divides the domain into a fluid region and a solid one. Such a modeling approach requires special
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Figure 1.4: Pore-network abstraction of a porous medium [125]: a) Unstructured meshing of the porous
complex morphology used in Finite Element Methods (FEM). b) Pore-network model (PNM) approxima-
tion of the medium, which is reduced to interlinked nodes.

consideration of the surface boundary conditions for accurately capturing the dynamic behavior of
the overall system [203].

Meanwhile, other mathematical models consider a volumic description of the micro-scale het-
erogeneities, introducing the local volume-averaged porosity ε within control volumes — e.g.
representing the voxels of the µCT images — of the pore space. Instead of solving a full Navier-
Stokes or Stokes equation in the fluid domain, these approaches account for the micro-continuum
description of the medium through the Darcy-Brinkman Stokes (DBS) equation, which models
Stokes flow in the void regions ΩF and a Darcy addendum in the region of the porous matrix
ΩS . This consists of a single set of equations imposed over the whole domain without distinc-
tion and, therefore, relies on a penalization principle of the porous matrix [26, 65]. In particular,
the empirical Kozeny-Carman permeability-porosity relationship, which is explicitly detailed in
equation (2.2) page 25, acts as a moderate penalization term (though physical) in the DBS formu-
lation that facilitates the transition from Darcian regime to Stokes flow as the micro-porosity field
changes [128, 278]. Such micro-continuum models lie on the volume averaging theory developed
in the late 1980s by Quintard and Whitaker [250], which introduces the superficial velocity u,
also known as Darcy velocity or filtration velocity. The latter is defined as ϕ < v >ΩF

≃< v >Ω

with <v>ΩF
the interstitial velocity or intrinsic velocity, that is to say the pore-scale velocity v

averaged over the fluid domain ΩF .
Moreover, Bousquet et al. [56] established a superficial model that completes the DBS equa-

tion with the second Brinkman correction that explicitly involves the micro-porosity gradients,
for heterogeneous porous media exhibiting substantial changes of the porosity rates. Besides,
the diffusion part of the DBS model can be considered, in practice, under its conservative [305]
or non-conservative formulation [128, 278]. Whether the formulation is conservative or not, the
formulation is equivalent in the fluid region but differs where the porosity is spatially variable.
While both these formulations are acceptable, we can notice that the conservative form is more
convenient to Galerkin methods based on the variational formulation of these models, and the
non-conservative form is more suitable to grid-based and hybrid Lagrangian methods such as the
one developed in Chapter 2.

Furthermore, thermal, mechanical, rheological effects, chemical potential effects at the
nanometer scale, and fluid-structure interaction (FSI) can also be incorporated to complete the
mathematical modeling of hydrodynamics. The coupling with chemistry and reactive processes,
especially, are developed below in Sect. 1.2.2, in Sect. 2.3 from Chapter 2 and in Chapter 5.

Conventional discretizations of such mathematical models, in Eulerian formalism, include
Computational Fluid Dynamics (CFD) well-established methods such as finite elements [6, 309],
or finite volumes [64, 235] which have been extended to hydrodynamic simulations at the pore
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scale. In particular, the use of such traditional CFD methods in pore-scale reactive flow has been
supported by the development of efficient open-source libraries such as OpenFOAM [279, 315],
Chombo [3, 303] and PoreFlow [295]. These numerical methods combine efficiently with un-
structured meshing strategies that allow efficient capture of the pore interfaces (e.g. see Figure
1.4a) but require successive mesh adaptations when investigating dynamical interfaces. On the
contrary, structured meshes are more computationally efficient and easy to implement, rendering
them widely used in practice. However, this requires dedicated methodologies to handle the pore
interface representation such as the immersed boundary or the embedded boundary methods. The
immersed boundary method, initially developed by Peskin in the 1970s [239], has been recognized
as a useful and efficient approach to fluid-structure interaction problems, wherein the interfaces
are represented using a Lagrangian formulation [44, 63, 248]. Indeed, this allows for modeling
complex and moving interfaces without the need for mesh adaptation or refinement but by directly
enforcing the effects of the immersed boundaries on the flow. These methods have subsequently
been generalized by LeVeque et al. [166] in 1994 to the so-called immersed interfaces, which
currently encompass a broad range of discrete forcing methods [121, 324]. The embedded bound-
ary method also allows for the utilization of structured meshing while simultaneously capturing
intricate surface geometries [201]. Unlike immersed boundary methods, this introduces cut cells
of smaller size, which result from intersecting the intricate interfaces with structured meshing and
account for fluid partial volumes along with fractions of interfacial area [206, 303].

Meanwhile, grid-based methods such as finite differences involve discrete operators on struc-
tured grids, that can either use collocation or staggered arrangements. In the former, all the vari-
ables (e.g. velocity, pressure, density ...) are located at the same grid points while, in the latter,
these variables are stored at different locations within the grid cells (e.g. in the cell centers or at
the edges). Grid-based methods can subsequently combine with other dedicated approaches to ad-
dress particular flow features in the context of hybrid formalism, coupling Eulerian and Lagrangian
formulations, for instance.

In contrast with the previous Eulerian approaches, Lagrangian methods wherein the fields are
evaluated on moving particles have, indeed, garnered considerable interest in modeling transport-
dominant regimes. They offer robust alternatives to address complex fluid dynamics, multi-phase
flows, and reactive transport in complex porous media geometries and include, inter alia, vortex
methods [72] or smoothed particle hydrodynamics [296]. These meshless Lagrangian formula-
tions rely on the description of the fluid motion as the tracking along time of a large number
of particles, carrying information about their position, velocity, mass, and other intrinsic prop-
erties. Due to their ability to follow the movement of individual particles, these approaches are
particularly effective in advection-dominated regimes and alleviate stability issues inherent to the
discretization of transport terms in structured grid methods. Such numerical models can also
effectively handle complex interactions between particles such as collisions, chemical reactions,
surface growth, and precipitation [297]. However, particle methods can be computationally expen-
sive, especially for large systems involving numerous interacting particles, and therefore, require
massive parallelization using High-Performance-Computing (HPC) devices.

Finally, the development of hybrid formalism, mixing Eulerian and Lagrangian approaches,
has also garnered considerable interest in modeling micrometric processes in porous me-
dia [74, 113, 202]. This effectively combines particle-based techniques, usually used for advection
phenomena, with an underlying grid structure and is commonly referred to as semi-Lagrangian
methods [71, 73, 88, 110]. The latter allows the interpolation and remeshing of the particle loca-
tions directly on the grid and makes it possible to mitigate the accumulation or scarcity issues in the
particle distribution [189]. Besides, the underlying mesh facilitates the computation of differen-
tial operators through dedicated grid-based solvers, resulting in an operator-splitting formulation
of the overall PDE system. This hybrid Lagrangian formalism simultaneously overcomes stabil-
ity conditions related to transport and addresses the ill-conditioning of the linear systems used to
discretize the remaining operators in the splitting formulation.

Similar to particle hybrid formalism, the Lattice Boltzmann method has emerged as an al-
ternative to the resolution of Navier-Stokes equations by accounting for the Boltzmann equation
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derived from gas kinetic theory [149]. Indeed, this approach is not meant to solve continuum fluid
mechanics equations but relies on a distinct conceptualization. The latter describes the flow mo-
tion by tracking statistical particle distributions at given locations in space. An underlying lattice is
considered to describe the probabilities of particles moving in specific directions at certain veloci-
ties, but also to account for particle collisions based on kinetic interactions [31, 142]. The Lattice
Boltzmann method has, therefore, emerged as an efficient DNS alternative to address pore-scale
modeling of reactive flows [152, 293].

Overall, all the previous modeling and numerical approaches present intrinsic advantages and
drawbacks, and in this sense, their variety is a valuable strength in porous media research. Indeed,
this variety offers the opportunity to perform extensive cross-validation and benchmarks while
comparing the numerical simulations with laboratory experiments. Besides, HPC considerations
and computational efficiency remain a significant part of the development of effective numerical
simulations. Finally, recent concerns have also emerged about managing the energetic resources
of the HPC numerical libraries themselves, and this is also an important aspect not to neglect when
developing new methodologies.

1.2.2 Geochemical modeling and reactive processes

Incorporating geochemical interactions in the previous numerical approaches introduces additional
challenges, which require careful consideration in the modeling and numerical aspects.

Firstly, such reactive processes often involve multiple species with complex chemical inter-
actions, which can manifest as reversible equilibrium reactions or irreversible non-equilibrium
reactions. Modeling these geochemical processes hence requires a deep understanding of the reac-
tion patterns, rate constants, and their interactions with the surrounding porous medium. Indeed,
morphological features of the pore space, including the pore size and distribution, sub-resolved
micro-porosity, and reactive surface area, can have a significant impact on the dynamical reaction
rates [42, 104]. Mineralogical heterogeneity also plays a crucial role and affects reactive processes
such as mineral dissolution or precipitation [183]. Modeling reactive hydrodynamics presents an-
other substantial challenge due to the intricate interplay between the transport and flow of chemical
species, the alterations in pore-scale structures, and the evolution of petrophysical properties. In-
deed, alterations of the pore morphology and connectivity due to the chemical reactions affect
the porosity, permeability, and tortuosity, which in turn impact the flow and solute transport. In
this sense, dynamical tracking of the evolving rock-water interfaces is essential in geochemical
modeling at the pore scale in order to manage the petrophysical property changes [220].

Historically, mathematical modeling of chemical reactions has been investigated according to
two formulations, namely under the assumption of local equilibrium or kinetic reactions [285].
The local equilibrium approximation strongly assumes that the chemical system has locally
reached an equilibrium state, wherein the rates of forward and reverse reactions are equal, and
the reactant species concentrations remain constant over time. Local equilibrium reactions, there-
fore, simplify the modeling of reactive transport by assuming that variations in concentrations and
reaction rates can be neglected within a given spatiotemporal region. In particular, this approach
seems reasonable for modeling homogeneous reactions between aqueous species, for which the
chemical reactions tend to occur much more rapidly than the solute transport by the fluid flow.
Such modeling assumption also presents a significant computational advantage in the sense that it
makes it possible to considerably decrease the number of chemical species in the overall reactive
system. In this sense, in large chemical systems involving numerous species, local equilibrium
assumption can be a relevant partner to kinetic formulations which are more relevant to handling
heterogeneous water-rock interactions. Such trade-off is commonly applied when considering
fully coupled reactive systems for CO2 storage in reservoir simulations, and results in a partition-
ing of the system between primary and secondary chemical species [5, 116, 282].

Kinetic formulations, on the other hand, consider detailed chemical reaction rates of the pri-
mary species, describing their dependence on factors such as reactant concentrations, tempera-
ture, mineral morphological features, etc. They offer more suitable modeling of long-term or
mineral reactions and are commonly based on laboratory experiments, theoretical chemical kinet-
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ics, or a combination thereof [77, 156]. In particular, the Transition State Theory (TST), origi-
nally developed by Erying in 1935 and popularized by Lasaga in the 1980s, is a well-established
theoretical framework for understanding the fundamental expressions of kinetic reaction rates
and the factors influencing them. Since then, this formalism has been widely applied in DNS
to model reactive processes related to CO2 storage, including mineral dissolution and precipita-
tion [206, 222, 286, 327]. It has also been extensively used to experimentally determine reaction
rate constants of ground mineral samples in fluidized bed reactors [77], which are subsequently
used in pore-scale models as surface rates using the reactive surface area.

Nonetheless, the bulk TST formulation also presents some limitations that have raised queries
about its applicability, in particular, to capture the complex transition patterns of precipitation and
crystal growth phenomena [131, 240, 286]. Indeed, the kinetics of mineral precipitation involve
a combination of several factors and phenomena. This includes inter alia the supersaturation
state, the transport rate of the chemical species to the mineral surface, and the attachment rate of
ions on this surface — including the consideration of preferentially growing sites — but also the
probabilistic nucleation, which is the first stage of any crystal growth process. In this sense, clas-
sical nucleation theory has also emerged as a valuable theoretical framework for developing new
probabilistic models for mineral nucleation and crystallization [223, 320]. Investigating proper
precipitation and crystallization models at the pore scale in the context of CO2 mineral storage is,
therefore, challenging as this needs to account for the kinetics of nucleation, growth, and crystal
aggregations while considering the role of the porous medium interfaces.

Besides, experimental identification of mineral reactivities remains a major concern in the
geochemical modeling of reactive processes for CO2 mineral storage. Reaction rate parameters
measured in laboratory experiments are associated with considerable uncertainties and may not
align with field rates observed in natural systems [190]. Among the factors that influence such
discrepancies, one can find the effects of surface-controlled parameters at the pore scale, particu-
larly reactive surface areas, which can significantly affect the reaction rates. Accounting for these
uncertainties in the kinetic reaction rates is, therefore, crucial to ensure reliable calibration of the
pore-scale modeling and comparison with laboratory experiments.

From a numerical perspective, there exists several open-source software dedicated to geochem-
ical modeling, namely CrunchFlow [283] developed by Steefel in the early 2000s to address reac-
tive transport or PHREEQC [228], to name just a few of them [282]. This has subsequently led to
the development of flow and reactive transport HPC libraries coupled to these geochemical pack-
ages such as, for instance, Chombo-Crunch [302] developed by Trebotich et al. since 2010 [205].
However, such coupling of existing software requires special programming considerations to deal
with communication interfaces between the libraries and, therefore, alleviate compatibility issues.

1.2.3 Machine learning and data-driven approaches in geosciences

Recent advances in developing new Artificial Intelligence (AI) systems that can perform tasks
typically requiring human intelligence, such as natural language processing or facial recognition,
have drawn attention in the research community for their ability to solve complex problems in a
wide range of applications. As subsets of the AI overarching concept, machine learning, and deep
learning technologies are the most commonly investigated approaches in geosciences (see Figure
1.5). Machine learning, in particular, is described as the development of new algorithms and mod-
els that enable computers to learn from data and make predictions or decisions [13]. Advances in
this domain have been motivated by the growth in available data and the continuous emergence
of increasingly powerful computing resources. In this sense, data-driven inferences have become
valuable partners to merely theory-driven paradigms and traditional DNS approaches. Deep learn-
ing, on the other hand, is a dedicated subset of machine learning that focuses on Artificial Neural
Networks (ANN), inspired by brain-like logical structures and consisting of interconnected layers
of artificial neurons [124]. Currently, numerous deep-learning methodologies exist, ranging from
Physics-Informed Neural Networks (PINNs) [254], Convolutional Neural Networks (CNN) [262]
and Generative Adversarial Neural Networks (GAN) [210] to Autoencoders [336].

Machine learning and data-driven approaches have, therefore, garnered increasing interest in
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Figure 1.5: From Artificial Intelligence to Deep Learning: hierarchical relationship and conceptualiza-
tion.

geosciences to analyze large datasets generated from laboratory experiments or simulations, but
also improve the predictive capabilities through fast surrogate modeling techniques [103]. We
subsequently introduce some of the current concerns and developments of AI methodologies for
geosciences, depending on the amount of data available, together with physical assumptions on
the underlying PDE models.

First, machine learning offers the opportunity to accelerate image and data treatment analyses
to predict the petrophysical properties of a porous material. Extensive investigations have been
carried out on the development of fast and efficient deep learning computational methodologies
for estimating permeability and porosity based on X-ray µCT images [15, 28, 299]. This can be
achieved through CNN, which is a powerful image analysis and recognition framework able to
extract hierarchical features from the data using convolution principles. In particular, CNN are
well-suited for image classification and segmentation, capturing spatial patterns, and are thus of
great interest for mapping morphological pore-scale structures with material properties [14, 241].
In this sense, they have also been extended to multi-scale feature extraction, such as heterogeneous
porosity, to provide super-resolved segmentation of µCT images that aim to identify sub-resolution
porosity [16]. Finally, multi-scale image reconstruction from low-resolution µCT scans can also be
performed using GAN, which are particularly efficient for data augmentation problems [271, 330].
Overall, these methodologies fall into pure image treatment analysis and regard the measurement
data independently of any physical consideration.

Meanwhile, unlike traditional modeling techniques that historically rely on deriving governing
equations, predictive physical-based models can sometimes hardly be available or reliable, and
this encourages the shift to data-driven approaches. In this sense, deducing governing equations
directly from data when no physical priors exist is also a major research area of machine learning.
It covers inference approaches such as symbolic regression, automated model selection, ensemble
methods, and sparse regression that aim to identify a parsimonious symbolic structure of the PDE
model from (noisy) data [141, 233, 265]. These methods emphasize the improvement of the
models’ generalizability and interpretability while eventually inferring hidden physics principles
directly from the observations. This highlights, at the same time, concerns about the PDE model
reliability, whose partial prior knowledge can be associated with intrinsic uncertainties.

Finally, PINNs are among the machine learning paradigms allowing for the integration of
physics-based PDE models with available measurement data [254]. These versatile models pro-
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vide an effective alternative to purely data-driven methods by embedding known physical laws
directly into their neural network architecture. They learn from available measurements, making
them data-driven while ensuring that the predictive solutions satisfy the underlying physics of the
problem. In particular, this is achieved by considering a multi-objective optimization problem
that involves a weighted combination of tasks related to the data and physics constraints. PINNs
also offer computational efficiency compared to traditional numerical methods in the sense that
they can be used as fast surrogate models — also called proxies — to perform extensive sen-
sitivity analyses for instance, which require a large number of evaluations of the PDE model.
Moreover, PINNs are particularly suitable for inverse problems, model parameter estimations, and
data assimilation problems, making them a promising framework for a broad spectrum of scien-
tific applications [39, 18, 100, 120]. Apart from machine learning methodologies, traditional data
assimilation techniques based on well-established mathematical frameworks, such as variational
data assimilation, remain extensively studied [17, 129]. Variational data assimilation relies on
solving an adjoint problem that investigates the sensitivity of an objective function with respect
to the model parameters or initial conditions of the system. This is used to adjust the mismatch
between the model predictions and observations, and overall improve the accuracy of the predic-
tions. This can, however, become highly demanding in computational resources, and machine
learning can thus be a valuable alternative for addressing complex data assimilation problems,
where back-propagation plays a crucial role in evaluating gradients with respect to the model pa-
rameters. Besides, sequential data assimilation and online learning also offer the opportunity to
continuously update the model as new measurements become available and incorporate recent
observations into the machine learning framework.

Overall, machine learning methodologies have increasingly drawn interest in geoscience for
various applications, including purely data-driven methods, model inference, physics-based in-
verse problems, and data assimilation. Nonetheless, intrinsic uncertainties in terms of model ac-
curacy, reliability of the predicted inverse parameters, and data corruption with noise or imaging
artifacts also query the necessity of uncertainty quantification in the previous methodologies.

1.2.4 Uncertainty Quantification and Bayesian Inference for data assimilation

Developing efficient data assimilation techniques is crucial to performing extensive parameter es-
timations, uncertainty quantification, and improving the reliability of model predictions. In partic-
ular, inverse problems are often subject to various sources of uncertainty that need to be quantified
to ensure trustable estimations. This includes approximate model accuracy whose reliability can
be questioned, with sparse or noisy data exhibiting measurement variability. Integrating physi-
cal principles, such as conservation laws or PDE models, in these inverse problems can though
compensate for the lack of massive or accurate measurements through additional regularization
constraints [199]. At the same time, embedding these physical regularizations allows address-
ing model accuracy in the total uncertainty quantification, especially when misleading a-priori
uncertainty is assumed on the physical constraints [249]. Combining physics-based and data-
driven methods can efficiently overcome the limitations of each approach individually, making
them complementary partners in data assimilation and inverse modeling incorporating uncertainty
quantification.

Several approaches were developed to address uncertainty concerns in the context of data
assimilation. These uncertainty quantification problems either require stochastic PDE mod-
els [35, 137] widely used in sensitivity analysis, or probabilistic approaches such as Markov
Chain Monte Carlo (MCMC) methods. The latter can be used in Bayesian Inference, which is
a formal framework for addressing uncertainties and making probabilistic statements about model
predictions, to sample from a target posterior distribution that usually requires numerous eval-
uations of the forward PDE model. In this sense, developing efficient MCMC methodologies
remains challenging since repeatedly solving a complex coupled PDE system is computation-
ally expensive and therefore can quickly become prohibitive for uncertainty assessments. These
computational concerns have motivated the emergence of surrogate models in Bayesian Infer-
ence to speed up the forward model evaluation. This covers methods ranging from Polynomial
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Chaos Expansions [193, 325] which rely on a representation of the physical model by a series of
low-order polynomials of random variables, to neural network proxies previously introduced in
Sect. 1.2.3 [8, 326]. Both approaches present the advantage of creating a surrogate model that
can be evaluated inexpensively compared to solving the forward problem through usual DNS.
Nonetheless, Polynomial Chaos expansions suffer from truncation errors due to the low order of
the polynomials yielding inaccurate estimates of the posterior distributions [180]. On the contrary,
deep learning methods have shown effectiveness in building surrogate models for a wide range of
complex and non-linear PDEs encoding the underlying physical principles. Developing fast surro-
gate models based on machine learning has garnered increasing interest in accelerating Bayesian
inference for scientific applications [86, 103].

A popular framework in deep learning integrating physics regularization, measurement data,
and uncertainty quantification is Bayesian Physics-Informed Neural Networks (BPINNs) [173,
328]. BPINNs benefit from the combined advantages of neural network structures in building
parameterized surrogate models based on physical principles and Bayesian inference standards in
integrating uncertainty quantification. This paradigm, therefore, offers the opportunity to query
the confidence in the predictions, the reliability in the estimations of inverse parameters, and the
model adequacy in inverse problems incorporating UQ. Efficiently sampling from the posterior
distribution in the BPINNs paradigm is essential for performing probabilistic inference and is
commonly achieved through Variational Inference [322] or MCMC methods. In particular, one of
the most popular MCMC schemes for BPINNs is the Hamiltonian Monte Carlo (HMC) which is
a gradient-based MCMC sampler that provides efficient scaling properties for high-dimensional
inference problems [48].

Despite their effectiveness, BPINNs can be difficult to use correctly in complex real-world
Bayesian inference as they are prone to a range of pathological behaviors. These instabilities arise
in multi-objective inverse problems which likely involve conflicting tasks or multiscale issues.
In particular, such a multi-objective paradigm directly translates to a weighted multitask posterior
distribution for which achieving successful and unbiased sampling is challenging. Ensuring robust
Bayesian inference in this context hinges on properly estimating the distinct task weights, which
integrate the various sources of uncertainties. For instance, the tasks referring to the determinis-
tic PDE model are completed by stochastic representations of the model adequacy and physical
constraint discrepancies, and the data-fitting likelihood terms are supplemented by stochastic mod-
eling of the experimental noise. In this sense, BPINNs intend to capture and estimate the various
sources of uncertainties whether aleatoric — arising from variability or randomness in the obser-
vations like sensor noise — or epistemic — caused by imperfect modeling hypothesis or ignorance
in the model adequacy.

Automatic management of these uncertainties, though, remains challenging as this relies on the
appropriate setting of the critical weighting parameters arising from the expression of the multitask
or multi-objective problem. Unsuitable choices of these weights can result in biased predictions,
vanishing task behavior, or substantial instabilities in the HMC formalism. This can even prevent
the sampler from identifying the highest posterior probability region, namely the Pareto front
neighborhood, corresponding to predictions that correctly balance all the different tasks and are
close to the optimum. While manual calibration of the critical weights is still commonplace [173,
199, 207], robust Bayesian inference strategies should not rely on a-priori hand-tuning or biased
calibration of the posterior distribution. Appropriately setting these parameters is neither easy
nor computationally efficient, especially for multi-objective inverse problems arising from real-
world data. Indeed, Psaros et al. recently investigated an alternative for adjusting the noise-related
weight parameters [249], but this suffers, inter alia, from additional computational costs related
to the pre-training of a Generative Adversarial Neural Network (GAN). Developing an alternative
that accounts for this multitasking consideration becomes crucial to ensure robust sampling when
dealing with coupled physics-based and data-driven inference.
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1.2.5 Machine learning software and libraries

From a numerical perspective, several popular software libraries and tools are commonly used for
developing, training, and deploying machine learning models, among which TensorFlow [298]
and PyTorch [151] are the most widely spread. Both libraries present similar accuracy and effi-
ciency, are open-source, and can leverage Graphics Processing Unit (GPU) devices to accelerate
the training. While TensorFlow has an extensive library of pre-built deep learning models includ-
ing, for instance, Convolutional Neural Networks (CNN) and, in this sense, is widely used for
production applications, PyTorch is an easier and more flexible framework for developing new
AI tools. Indeed, the latter mainly relies on the Python underlying libraries and object-oriented
paradigm, which renders the library especially attractive for developers.

In particular, an open-source library designed for probabilistic programming and Bayesian in-
ference, which is called Hamiltorch, was developed within the PyTorch framework by Cobb in
the late 2010s [82, 83, 84]. This combines the flexibility and automatic differentiation capabili-
ties of PyTorch to achieve back-propagation of the gradients with Bayesian inference approaches
for sampling from complex posterior distributions. Various sampling schemes are part of the
library among them stochastic MCMC methods such as Hamiltonian Monte Carlo [48], Rieman-
nian Manifold Hamiltonian Monte Carlo [123] and No-U-Turn Sampler [132], but also Variational
Inference [177, 322]. Unlike MCMC, the latter is a deterministic technique in Bayesian Infer-
ence that aims to approximate the target posterior distribution by minimizing the Kullback-Leibler
divergence between the target and the parameterized approximation of the distribution. In this
sense, Hamiltorch offers the opportunity to perform Bayesian Inference over neural networks and
is, therefore, a valuable support to address BPINNs implementation within a well-suited PyTorch
environment. This also presents the flexibility to compare several sampling strategies but also
readily incorporate new samplers as part of the library.

Nonetheless, the sampling schemes implemented within the Hamiltorch package do not ac-
count for the task-splitting of the posterior distribution and, therefore, neglect the consideration of
balanced sampling around the maximum posterior probability region. Indeed, the weighted pos-
terior distribution is regarded as a single-term expression where the weights are manually tuned
and a priori estimated. As introduced in Sect. 1.2.4, this can be particularly challenging and prone
to biased predictions when considering Bayesian Inference on a multi-objective data assimilation
problem, including a PDE model, physical law constraints (e.g. incompressibility condition), and
data measurements. Such considerations are, however, crucial to ensure robust Bayesian Inference
since multitasking becomes a common issue when considering PDE physics-based and data-driven
formalism.

1.3 Contributions

1.3.1 Toward an efficient DNS method for reactive flows at the pore scale

The development of suitable mathematical models and efficient DNS methods for modeling re-
active hydrodynamics at the pore scale is an essential aspect in investigating and managing CO2
mineral storage and, therefore, stands as one of the major concerns of the present thesis. In this
spirit, we first investigate the modeling and numerical simulation of CO2 mineral trapping mech-
anisms within the pore space of a porous medium.

To achieve this, we have devised a novel model for calcite crystallization that hinges on a
two-step chemical process. This process first accounts for the nucleation of precipitates within the
pore space and then nuclei aggregation at the pore interface, ultimately facilitating crystal growth.
In the model, we integrate a deterministic Transition State Theory (TST) formulation to describe
the initial nucleation step with a probabilistic model, which represents the aggregation step. The
latter includes a non-uniform probability of attachment rate to the pore interface, depending on
local mineral volume fraction and adsorption frequencies (see Sect 2.7.2 page 47 in Chapter 2).
This attachment probability, therefore, hinges on a volumic formulation of the surface crystal
growth in preferential areas (adapted from a validated surface model, see Sect. 2.7.2 page 47).
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The reactive model is subsequently integrated into a semi-Lagrangian framework that employs a
micro-continuum Darcy-Brinkman Stokes (DBS) formulation for the hydrodynamics, hence the
need for volumic modeling.

Reactive flow modeling of calcite crystallization at the pore scale is subsequently performed
according to this model in order to quantify the macro-properties changes on the upscaled macro-
porosity ϕ and the permeability κ0 introduced in equations (1.1) and (1.2) page 4. We identify
pore-clogging effects within the pore-scale geometry and establish its impact on the macro-scale
properties (see Figure 2.9 page 53 in Chapter 2). In particular, we demonstrate the significant effect
of crystal aggregation — or nuclei adsorption to the mineral surface — on the reactive patterns and
highlight that merely considering the transport and nucleation rates is not sufficient to characterize
pore-clogging (see Figure 2.10 page 54 in Chapter 2). In this sense, we propose a new characteri-
zation of the overall crystallization regimes based on three dimensionless numbers, which makes
it possible to account for the nuclei adsorption rates in the different regime characterization (see
Sect. 2.7.3 page 50 in Chapter 2).

A numerical formulation of hybrid grid-particle methods has been adapted from the dissolution
set of PDEs to the nucleation and crystallization (see Sect. 2.7.2 page 47), involving the modeling
of preferential areas for surface crystal growth. The related space-variable diffusion operator has
been formulated under a particle-based approach, namely the Particle-Strength-Exchange (PSE)
scheme, detailed in Sect. 2.5 page 32.

Finally, we enhance the existing HySoP library [112] (Hybrid Simulation with Particles),
which is an efficient HPC framework for modeling reactive hydrodynamics using semi-Lagrangian
methods across hybrid hardware setups. Specifically, our efforts are directed toward implement-
ing heterogeneous diffusion operators on GPU accelerators, employing the Open Computing Lan-
guage (OpenCL) standard and the Particle-Strength-Exchange method (see Sect. 2.5.3 page 35 and
2.6.3 page 42 in Chapter 2). This results in an implementation of reactive flows that encompasses
both Central Processing Unit (CPU) and GPU devices. Furthermore, such improvement makes it
possible to account for spatially varying diffusion in the porous medium in the hybrid two-scale
formalism, namely the Darcy-Brinkman Stokes model, based on the micro-continuum description
of the sample. In this sense, this enables better control of the diffusion of the chemical species
within the porous matrix ΩS , under some stability constraints identified in Sect. 2.5.4 page 37 of
Chapter 2.

The numerical improvements developed in the present thesis are validated and applied to ad-
dress CO2 mineral trapping under the form of calcite crystallization within 3D pore scale geome-
tries arising from µCT images (see Sect 2.7 page 44 in Chapter 2).

1.3.2 Robust Artificial Intelligence methodology for Uncertainty Quantification in
BPINNs

A second major concern hinges on ensuring the reliability of the pore-scale modeling of CO2
mineral storage and quantifying the inherent uncertainties of the macro-scale properties evolution.
To achieve this, the present thesis aims to provide mathematical formulations of Deep Learning
methodologies and enhance their reliability by incorporating robust uncertainty quantification as-
sessment to avoid using Artificial Intelligence tools as merely "black boxes".

We investigate this concern within the framework of Bayesian Physics-Informed Neural Net-
works (BPINNs) and address the actual issue of appropriately setting the weight parameters in the
context of multi-objective Bayesian Inference problems, as introduced in Sect. 1.2.4 page 13. In
particular, we develop in Chapter 4 a deep-learning alternative that robustly accounts for the mul-
titask considerations which is crucial when considering coupled physics-based and data-driven
inference.

In this sense, we propose a novel strategy for the BPINNs that relies on an adaptive and au-
tomatic weighting of the target posterior distribution based on an Inverse Dirichlet control of the
weights, which leverages gradient variance information of the different tasks (see Sect. 4.4.1 page
105 in Chapter 4). This results in an alternative Markov Chain Monte Carlo (MCMC) sampler
that we have named Adaptively Weighted Hamiltonian Monte Carlo (AW-HMC), detailed on Al-
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Sect. 4.4.3 
& 4.4.4

Challenges Complexity Applications
Multi-objective regression

 Multiscale issues and stiffness 
 Sobolev training benchmarks 

Sect. 4.6.1

Multi-objective physics-based data assimilation
 Partial and noisy data measurements with unknown noise distribution
 Prescribed PDE model with unknown model adequacy

 Inpainting CFD problem in Stenotic flow

Sect. 4.5

Data assimilation in inverse problems with unknown PDE parameters
 Physics-based inverse problem with potential strong tasks imbalance
 Uninformative priors on the inverse parameters scaling

 Lotka-Volterra multiscale inverse problem

Sect. 4.6.2
& Chapter 5

Data assimilation with unknown PDE parameters and latent field recovery
 Combining partial and noisy data measurements with prescribed physics-based PDE model 
 Identify the unknown inverse parameters, latent field along with their uncertainties
 Guarantee balance sampling between the distinct tasks and robust uncertainty quantification

 Stenotic flow inverse problem
with Reynolds UQ and pressure recovery

 Reactive inverse problem of calcite dissolution
with regime identification and latent concentration field

Figure 1.6: Hierarchic complexity of the data-assimilation problems handled by our novel sampling
strategy. The main challenges corresponding to each problem are presented on the left, along with the
different sections and chapters that address them throughout this thesis. And, their related applications are
briefly described on the right.

gorithm 1 page 108. It concentrates its sampling on the Pareto front exploration after the adaptive
procedure and avoids imbalanced conditions between the different tasks. It also benefits from en-
hanced convergence and stability compared to conventional samplers and reduces sampling bias
by avoiding manual tuning of critical weighting parameters. Furthermore, this guarantees rea-
sonable computational costs compared to the recent alternative of Psaros et al. that requires the
pre-training of a Generative Adversarial Neural Network (GAN) with a large number of additional
parameters. On the contrary, our approach keeps a similar efficiency as the standard Hamiltonian
Monte Carlo (HMC) sampler since it merely relies on the gradient information of the distinct tasks,
and therefore goes in the direction of the energy sobriety of deep learning approaches.

This new alternative also demonstrated efficiency in managing the scaling sensitivity of the
different terms either to noise distributions or multi-scale issues. In fact, the adjusted weights bring
intrinsic information on the distinct task uncertainties. This improves the reliability of the noise-
related and model adequacy estimates as the uncertainties are quantified with minimal a-priori
assumptions on their scaling. From an overall AI perspective, this thesis focuses on developing a
robust adaptive weighting strategy to address complex real-world Bayesian inference within the
BPINNs framework.

We incorporate this novel alternative in PyTorch by performing an extensive reformulation of
the Hamiltorch library so that it now accounts for the multitask formulation of the target posterior
distribution. We subsequently implement the AW-HMC sampler within this improved framework
and, therefore, benefit from its original flexibility to compare with other sampling strategies and
address Bayesian inference on CPU or GPU devices.

Finally, our novel sampling strategy demonstrates outstanding performances on several levels
of complexity. This covers applications ranging from data-fitting predictions based on sparse
measurements, physics-based data-assimilation problems, data-assimilation in inverse problems
with unknown PDE model parameters, and data-assimilation in inverse problems with unknown
parameters and latent fields (see Figure 1.6). Indeed, this adaptive weighting sampling presents
the ability to effectively address multiscale and multitask inverse problems, to couple uncertainty
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quantification with physical priors, and to handle sparse noisy data. It also showed effectiveness
in addressing stiff dynamics problems including latent field reconstruction and deriving unbiased
uncertainty information from the measurement data (see Sect. 4.6.2 page 129 in Chapter 4 and
Chapter 5). Taken together, the AW-HMC sampler enhances BPINNs robustness and offers a
promising alternative as an overall data-assimilation strategy. This makes it possible to extend
its applications to more complex inference problems and achieve reliable Bayesian inference in
multitask inverse problems.

1.3.3 Reliability estimates: the macro-scale permeability

Ensuring reliable changes in the petrophysical properties, namely the macro-porosity ϕ and per-
meability κ0, hinges on correctly estimating the micro-scale evolutions due to CO2 geochemical
interactions with the porous environment. We investigate that changes in the macro-scale proper-
ties, observed through DNS of reactive flows at the pore-scale, result from meaningful geochem-
ical interactions rather than intrinsic uncertainties. This aims to query the reliability of the DNS
given the uncertainties arising from the X-ray µCT imaging process, along with discrepancies in
the estimations of kinetic parameters and reaction rates.

Consequently, we firstly address the macro-scale permeability deviations resulting from µCT
limitations, namely uncertainties related to the unresolved morphological features and the pore
interface location, as introduced in Sect. 1.1.3 page 4. This is achieved in Chapter 3 through an
upscaling direct approach based on a slip-length formalism that models both the unseen roughness
effects and the approximation in the interface position.

While the idea of using slip formalism has been extensively studied to theoretically approx-
imate surface roughness, we propose two strategies to investigate in practice the permeability
deviations on real rock geometries (see Sect. 3.3.1 page 60 in Chapter 3). The first one directly
aims to solve for a Stokes flow in the pore space with Navier boundary conditions characterized
by a prescribed slip length at the fluid/solid interface. The second one theoretically establishes
the permeability deviation as a correction of the permeability κ0 by slip-correction terms of first
and second order, arising from the solution of Stokes-like closure problems at successive orders.
These successive problems are determined by a two-scale asymptotic expansion analysis and in-
volve non-homogeneous Dirichlet boundary conditions involving a prescribed slip (see Sect. 3.4
page 65 in Chapter 3).

However, such formalism requires a proper estimation of meaningful slip coefficients which
are related to the µCT uncertainties, and an effective management of the slip boundary condition at
the pore interface. The first point is addressed in Sect. 3.6.1 page 74 by modeling the effects, within
a voxel, of periodic roughness patterns of different shapes on the slip length values. The second
point, however, needs to develop a numerical solver for Stokes that properly handles slip boundary
conditions. While the Darcy-Brinkman Stokes formulation of the hydrodynamics accounts for
flow penetration within the porous matrix and therefore intrinsically introduces a residual slip,
this approach is unsuitable to study Stokes flow with a prescribed slip (see Sect. 3.5.1 page 69 in
Chapter 3). Similarly to penalization techniques, the Darcy-Brinkman Stokes (DBS) model indeed
generates a transition layer depending on the micro-porosity that makes it difficult to properly
manage the slip at the interface. Hence, we develop an in-house code, based on a Generalized
Minimal Residual Method (GMRES) solver, to address Stokes flow with slip and demonstrate that
this ensures a robust control of the boundary conditions (see Sect. 3.5.2 page 70 in Chapter 3). In
this sense, one makes sure that the permeability deviations computed are representative of slip-
length values characterizing the µCT uncertainties.

This numerical code is validated and applied to quantify uncertainty ranges on the permeability
κ0 of several 3D porous samples, for which we compare the first-order linear and full permeability
deviations (see Sect. 3.6 page 74 in Chapter 3). We emphasize, in Sect. 3.7 page 87, the significant
relevance of the second-order deviation in explaining the apparent macroscopic effects on perme-
ability in rock geometries arising from µCT images. Finally, we identify a dimensionless ratio
depending on the relative permeability deviation and the specific area, which is likely to serve as
a representative criterion for the porous samples. Overall, this provides a numerical framework to
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investigate permeability uncertainties and query its significant evolution along a reactive process.

1.3.4 Reliability estimates: porosity fields and reactive parameters

Beyond the morphological aspects described in the previous section, this thesis targets data as-
similation and field reconstruction to provide an accurate local description of porous materials
by observing their dissolution through dynamical µCT experiments. The objective is to explore
the morphological uncertainties that stem from X-ray µCT limitations and to quantify the sub-
resolved micro-porosity within the initial porous medium by incorporating information derived
from the dynamical process (see Chapter 5). This guarantees reliable quantification of the micro-
porosity changes during the geochemical transformation of calcite dissolution.

In addition to the morphological uncertainty assessment on the micro-porosity field ε at
the pore scale, this aims to characterize the experimental reaction rates and dissolution regimes
by identifying the proper dimensionless numbers through an inverse problem approach (see
Sect. 5.4.3 page 143 in Chapter 5). Therefore, we derive uncertainty ranges on the kinetic param-
eters by combining prescribed PDE models and dissolution experiments, which afterward renders
reliable the calibration of the reaction rates for the direct numerical simulations. This also avoids
using DNS reactive parameters merely estimated from laboratory experiments, which may not be
representative of the pore scale dynamics and are subject to wide discrepancies.

Considering standard variational data assimilation approaches on such reactive flow problems
would be challenging, mainly due to the computational cost and complexity hinging on the direct
numerical simulation of these phenomena. In this sense, relying on a robust AI methodology to
achieve data assimilation and inverse problems coupling complex and non-linear physics-based
PDE with noisy µCT dissolution images is a worthwhile alternative.

Consequently, we exploit the efficient data assimilation framework developed in Chapter 4 to
address reactive inverse problems integrating uncertainty quantification. We investigate a mul-
titask formulation of calcite dissolution inverse problems and establish a new methodology of
sequential reinforcement approach that successively incorporates additional PDE constraints into
the data assimilation workflow (see Sect. 5.5.2 page 146 in Chapter 5). Besides, we highlight
computational efficiency related to suitable formulations of complex and non-linear differential
operators, especially when considering heterogeneous diffusion within the porous matrix (see
Sect. 5.5.3 page 149 in Chapter 5). We apply this methodology to 1D+Time and 2D+Time calcite
dissolution problems based on synthetic µCT images encompassing varying porosity levels. This
demonstrates successful uncertainty quantification on the kinetic parameters and the estimation of
the micro-porosity field (see Sect. 5.6 page 151 and 5.7 page 159 in Chapter 5). The later un-
certainties on the field ε can subsequently translate into distributions on the macro-porosity ϕ at
Darcy’s scale.

Compared to machine learning alternatives in geosciences, the main novelty of this work lies
in the robust assessment of uncertainties related to unresolved morphological features and min-
eral reactivity by integrating physics-based models with data-driven techniques. In this sense, this
would provide deeper insights into the relationship between experimental data and mathemati-
cal modeling theory, significantly enhancing the confidence in DNS approaches for CO2 mineral
storage modeling.

1.4 Manuscript outline

The manuscript is organized into six chapters as follows:
Chapter 2 establishes the DNS framework and mathematical models for investigating reactive

flows at the pore scale in complex geometries arising from X-ray µCT experiments. In particular,
we describe the hybrid micro-continuum DBS reactive model and the semi-Lagrangian methodol-
ogy along with the improvements addressed in this thesis. We subsequently present our two-step
crystallization model and apply it in the context of CO2 mineral trapping in real rock geometries.
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We investigate macro-properties alterations, different precipitation regimes, and pore-clogging ef-
fects.

The rest of the manuscript focuses on the reliability concerns of pore-scale modeling of reac-
tive flows. We address the macro-scale permeability deviations, quantification of the uncertainties
on the sub-resolved micro-porosity field, and robust calibration of the kinetic parameters along
with their uncertainty ranges.

Chapter 3 is dedicated to characterizing the reliability of the macro-scale permeability subject
to unresolved morphological features and the approximated location of the pore interface. We
develop the upscaling approach based on slip-length formalism and present its practical use in 3D
complex geometries arising from µCT images.

In Chapter 4, we develop our novel data assimilation framework which relies on the automatic
sampling of weighted multi-objective problems, arising from the coupling of physics-based PDE
systems with data-driven approaches. This results in a robust deep learning methodology for
uncertainty quantification within the BPINNs that is extensively validated on several benchmarks
and test cases of different complexities.

In Chapter 5, this novel framework serves as a basis to address Bayesian Inference in reactive
inverse problems of calcite dissolution. We target data assimilation and field reconstruction of the
potentially sub-resolved micro-porosity through the observation of the dynamical dissolution of
synthetic calcite cores. We estimate reliability ranges on the dimensionless numbers characterizing
the dissolution regime (including the chemical kinetic coefficients and molecular diffusion) along
with local uncertainties on the micro-porosity field.

Chapter 6 recalls the various outcomes of the current thesis and presents several perspectives
and possibilities for, inter alia, improving the present DNS methodology and broadening the ap-
plications of our data assimilation framework within the context of CO2 mineral storage.

Different highlights or questions addressed in every chapter are recalled in their respective
Context and positioning sections.
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2.1 Motivation

Studying reactive flows in porous media is essential to manage the geochemical effects arising
from CO2 capture and storage in natural underground reservoirs. While long-term predictions are
commonly modeled at the field scale [81], pore-scale approaches meanwhile provide insights into
local geochemical interactions between the injected CO2 and the aquifer structure [232]. Through
mathematical homogenization of the sub-micrometer porous medium and appropriate modeling,
one can simulate the reactive processes that occur at the pore scale and predict their impact on the
macro-scale properties [11, 12]. Geochemical processes are critical components for understanding
the mineral trapping mechanisms and local evolving interfaces within the porous environment.
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In this sense, investigating the impact of such reactive processes provides insight into reservoir
safety submitted to chemical interactions that may compromise the aquifer structure. Pore-scale
modeling of reactive flow hence appears as a complementary mean to field scale studies wherein
homogenization theory bridges the gap between these scales.

In this context, several geochemical mechanisms play a critical role in the CO2 sequestration
process and mainly involve precipitation, crystallization, and dissolution phenomena. On one side,
carbonate precipitation and crystallization ensure efficient capture of the injected CO2 in the form
of minerals such as calcite, aragonite, or dolomite: this is referred to as mineral trapping, which
informs about the storage capacities of the reservoir. These processes significantly impact the flow
within the porous sample at the pore scale, leading to restructuring of the flow path and morpholog-
ical changes that alter, inter alia, the pore size distribution and the roughness of the interface due to
partial or complete clogging of pore throats. Such alterations at the micro-scale subsequently alter
the estimation of the macro-scale properties, namely the porosity and permeability, and thereby
require investigations to ensure wise management of the underground reservoir structures. On the
other side, the reverse chemical process can also occur, resulting in carbonate mineral dissolution
due to an acidification of the aqueous solution. This may compromise not only the efficiency of
the trapping mechanisms, leading to an increase of both porosity and permeability, but also the in-
tegrity of the reservoir cap rock, and is, therefore, of great interest to prevent acute leakage issues.
In this sense, one needs reliable estimations of the macro-properties changes due to these overall
geochemical processes at the pore scale, to manage their impact on the reservoir scale modeling of
CO2 storage. This can be achieved through, first, efficient DNS of reactive flows at the pore-scale
and, subsequently, by embedding uncertainty concerns on the quantification of the petrophysical
properties. In the present chapter, we address the first point with a focus on precipitation and
crystallization modeling for CO2 mineral storage into carbonate porous media.

2.2 Context and positioning

Pore-scale investigation of reactive geochemical systems has garnered interest over the past
decades based on imaging processes and laboratory experiments [200, 218, 273], numerical simu-
lations [232, 280], and a combination thereof [204, 220]. In this sense, image-based DNS coupling
µCT characterization of a porous sample REV with efficient scientific computing and numerical
method appears as a promising tool to query the impact of reactive processes on real rock geome-
tries. While some pore-scale modeling approaches consider conceptual simplification of the pore
structure [169, 198], we account throughout this thesis for the complex 3D morphology of the
porous medium. The latter can subsequently be incorporated into mesh-based or grid-based meth-
ods, as presented in Sect. 1.2.1 from Chapter 1, or eventually combined with particle methods. In-
deed, Lagrangian and particle methods exhibit significant advantages to model transport-dominant
regimes, and therefore, hybrid formalisms coupling grid-based approaches with particles present
an interesting alternative to purely Eulerian or Lagrangian models [41, 71, 88]. The current chap-
ter relies on such a semi-Lagrangian approach, which handles a Lagrangian description of the
chemistry with underlying grid methods for the hydrodynamic, based on the superficial velocity
formalism introduced in the 1980s by Quintard and Whitaker [250]. The latter makes it possible
to account for the involvement of the porous matrix in the overall flow process through a micro-
continuum description of the medium. In this sense, one considers an intermediate state between
the full resolution of each individual solid grain and the completely averaged continuum repre-
sentation of the porous media at Darcy’s scale. This establishes two-scale models that are widely
used in hydrodynamics pore-scale modeling and µCT image-based DNS [204, 227, 279].

The present semi-Lagrangian formalism has been successfully employed in the context of
carbonate dissolution at the pore scale [113] and extensively benchmarked against state-of-the-art
numerical alternatives [204]. In this chapter, we rely on this existing numerical model to build
some improvements, particularly in the management of highly heterogeneous diffusion arising
from Archie’s law in the two-scale description of the medium. We first demonstrate the relevant
use of particle-based approaches in the approximation of Archie’s law term that accounts for a



2.2. Context and positioning 23

reduced diffusion of the chemical species in the porous matrix. We subsequently incorporate such
a particle formulation within the numerical framework through a dedicated implementation for
HPC on hybrid architectures, coupling CPU and GPU devices.

The other contributions of this chapter lie in the modeling aspects of CO2 mineral trap-
ping under the form of calcite crystal aggregates at the pore scale. Precipitation kinetics of
calcite have been historically studied since the 1970s from the experimental and theoretical
sides [77, 156, 245], and this has commonly established Transition State Theory (TST) as an
efficient and straightforward way of predicting mineral reaction rate. Indeed, the determin-
istic TST is currently one of the most widely used models in reactive transport codes and
DNS [206, 219, 222, 282]. However, several doubts have risen in the research community about
using such a deterministic approach for predicting crystal growth rates. In particular, compar-
ison with experimentally determined growth rates has highlighted a wide range of discrepan-
cies, querying the reliability of the TST model for overall crystallization processes [131, 240].
Meanwhile, probabilistic approaches, which find their origins in classical nucleation theory and
the probabilistic nature of the precipitation and crystal growth mechanisms, have been devel-
oped [194, 223, 320]. These models make it possible to incorporate, inter alia, the effects of
induction time characterizing the onset of the nucleation, the ionic affinities of the growing sites,
and attachment frequencies of the ionic species involved in the reaction. Such attachment fre-
quencies are, especially, significant for modeling surface adsorption and crystal aggregation that
largely hinges on the surrounding porous structure in the sense that kinks or corners, for instance,
are experimentally identified as preferential growing sites. However, such a geometrical depen-
dency of the crystal aggregation is commonly neglected in most models, which makes it difficult
to predict the spatial distribution of the new crystals.

Therefore, we developed a two-step crystallization process wherein nuclei generation relies
on a deterministic TST model before considering the probabilistic mineral aggregation — crystal
growth — into the pore interface. The latter accounts for adsorption frequencies of the precipitate
to the growth sites, which is weighted by a non-uniform probability of attachment rate depending
on local mineral volume fraction. In this sense, we incorporate local geometrical dependency at
the pore scale in the overall crystallization model, which is crucial to ensure reliable prediction
of pore clogging. We subsequently use this model for calcite crystallization into a carbonate
porous medium, arising from µCT observations, and investigate both the impact on the macro-
scale properties evolution and the effects of several dominant regimes on the precipitation and
crystal growth patterns. In this sense, we propose a characterization of the crystallization regime
based on three distinct dimensionless numbers, including, for the first time, the effects of nuclei
adsorption — or crystal aggregation — in this regime characterization. We demonstrate that the
first nucleation process and the crystal aggregation through surface adsorption play a critical role
in the pore-clogging and precipitation patterns.

Overall, the main contributions of this chapter can be summarized as follows:

1. A two-step crystallization model is developed, accounting for preferential areas of surface
crystal growth through a probabilistic nuclei aggregation rate.

2. Using three dedicated dimensionless numbers improves the usual classification of precipi-
tation/crystallization regimes. Different reactive patterns are identified, eventually leading
to pore-clogging.

3. We adapt and improve the hybrid Semi-Lagrangian method from dissolution to precipita-
tion/crystallization processes, integrating a PSE formulation of the spatially varying dif-
fusion operator. A GPU implementation is provided within the Hybrid Simulation with
Particles (HySoP) numerical framework.

4. We monitor the macro-scale properties evolution resulting from CO2 mineral trapping, mod-
eled by calcite precipitation and crystallization at the same time.

The chapter is organized as follows: In Sect. 2.3, we present the pore scale hydrodynamics
model and describe the governing equations of reactive transport and diffusion based on the two-
scale representation of a heterogeneous porous medium. Sect. 2.4 explains the semi-Lagrangian
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formalism on which we rely for the DNS of CO2 mineral storage, along with the splitting operator
strategy that efficiently combines with such a hybrid grid-particle approach. In Sect. 2.5, we estab-
lish the particle-based approximation of the heterogeneous diffusion arising from Archie’s law and
query the stability concerns of this term in complex pore-scale geometries. Sect. 2.6 is dedicated
to the HPC numerical framework and the implementation of the previous particle formulation for
GPU devices along with its validation and performance analyses. Finally, in Sect. 2.7 we develop
our new crystallization model and apply it to DNS of CO2 mineral trapping into carbonate porous
media. The evolution of the macro-scale properties and the effects of crystallization regimes on the
clogging is especially investigated in Sect. 2.7.3. Sect. 2.8 concludes this analysis and highlights
future challenges regarding uncertainty quantification for application to CO2 mineral storage.

2.3 Reactive hydrodynamics at the pore scale

The present section focuses on the modeling of reactive hydrodynamics in the context of CO2
mineral storage and presents the mathematical model used to simulate reactive processes at the
pore scale. We first introduce the so-called Darcy-Brinkman-Stokes formulation for microfluidic
flows based on superficial velocity formalism. We subsequently incorporate transport-reaction-
diffusion equations modeling the geochemical interactions between the different species involved.
Finally, we present an alternative formulation in velocity-vorticity for the hydrodynamics equation,
which ensures the fluid incompressibility condition.

2.3.1 Darcy-Brinkman-Stokes formulation at the pore scale: a superficial velocity
formalism

We introduce a spatial domain Ω ⊂ Rn, n = 1, 2, 3 which corresponds to the porous medium
described at its pore scale. This sample description involves a pure fluid region ΩF , also called
void-space and assumed to be a smooth connected open set, and a surrounding solid matrix ΩS

itself considered as a porous region. This region is seen as complementing the full domain Ω,
which in practice represents the computational box of the numerical simulations such that ΩF =
Ω∖ ΩS , and the internal fluid/solid interface is denoted Σ. We denote the computational domain
boundary by ∂Ω and use ΓF = ∂Ω ∩ ΩF and ΓS = ∂Ω ∩ ΩS to refer to the fluid and solid parts
of the computational domain boundary, respectively, such that ∂Ω = ΓF ∪ΓS (e.g. see Figure 1.1
in Chapter 1 or Figure 3.1 in Chapter 3).

The boundary conditions at the inlet and outlet faces, typically for a cubic computational do-
main Ω =]0, l[3 but not exclusively, either impose a prescribed flow rate u on the velocity or
satisfy periodic boundary conditions for a prescribed driving force f . The boundary conditions on
the other lateral faces are systematically periodic since rock samples are commonly constrained
in an impermeable solid casing when µCT experiments are conducted. In this sense, it ensures a
consistent numerical representation of the sample compared to the experiments. This also guaran-
tees C∞ regularity on the boundary even if the domain exhibit corners, since the problem can be
formalized by considering the equivalence relationship with the quotient space Ω ≡ Q/G where
Q = R2×]0, l[ and G = lZ2 × {0} (e.g. see [261] for detailed configurations of acceptable
domains).

From the µCT images, we can also characterize the static pore-space structure, corresponding
to the sample’s initial state before any geochemical interactions. In this sense, we denote by
ε = εf = 1 − εs the micro-porosity field defined on Ω, given εf and εs respectively the volume
fractions of void and solid according to usual notations [279]. This defines a micro continuum
description of the porous medium such that ε = 1 in the pure fluid region ΩF and takes a small
value in the surrounding matrix ΩS . In fact, the local micro-porosity ε is assumed to have a strictly
positive lower bound ε(x, t) ⩾ ε0 > 0 for all (x, t) in the spatiotemporal domain Ω × [0, Tf ] for
a final real-time Tf > 0 in the reactive process. This lower bound ε0 characterizes the residual
porosity of the porous matrix, potentially unresolved due to X-ray µCT imaging limitations as
introduced in Sect. 1.1.3 of Chapter 1 (see also Figure 1.1). In practice, we assume throughout
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this chapter ε0 = 5%. Considerations on the estimation of this residual porosity bound will,
however, be investigated in Chapter 5 in the context of uncertainty quantification and reliability of
the pore-scale models. This micro-continuum formulation at the pore scale relies on a two-scale
representation of the sample characterized by its micro-porosity field ε.

Such a two-scale description of the local heterogeneities in the carbonate rocks is appropriate
to simulate the pore-scale physics and establish the governing flow and transport equations in
each distinct region. Indeed, although the hydrodynamic of a viscous flow in a pure fluid region
is commonly quantified through the Navier-Stokes equation, we can formulate the problem on
the whole domain Ω based on the two-scale micro continuum description of the medium. We,
therefore, consider the model on the superficial velocity u introduced and derived rigorously by
Quintard and Whitaker in the late 80s [250] and commonly used until nowadays [159, 204, 279,
321]:

ε−1∂ρu

∂t
+ ε−1div(ε−1ρu⊗ u)− ε−1div(2µD(u)) + µ∗K−1

ε u = f −∇p (2.1)

along with the divergence-free condition div u := ∇ · u = 0. It is noticeable that this incom-
pressibility condition should be changed when considering evolving porous structures to account
for density variations, especially in the context of fast dissolution or nucleation [280]. Indeed, this
only depicts that crystal nucleation within a liquid volume, for instance, drastically increases the
density and induces divergence effects in its neighborhood. Nevertheless, the divergence-free con-
dition can be assumed to remain if the characteristic time of fluid/solid interface changes is way
larger than the hydrodynamics time scale [279], which is the case for our study. In equation (2.1),
the notation D(u) refers the shear-rate tensorD(u) = (∇u+∇uT )/2, µ is the dynamic viscosity,
p is the volumic pressure, f the volumic driving force and ρ the fluid density. The related viscosity
µ∗ usually coincides with the fluid viscosity µ but may be different in order to account for viscous
deviations.

The quantities ρ, µ, µ∗ and f are assumed to be constant. The quantities ε, ρ, µ and p are
scalar fields, u, its rotational ω = ∇ × u, f and ∇p are vector fields, while D(u) and Kε are
matrices.

The permeability Kε refers to the micro-scale permeability and depends on the local micro-
porosity field ε. In fact, the permeability of the micro-porous domain is modeled by the empirical
Kozeny-Carman relationship [67, 68, 147]:

K−1
ε = κ−1

b

(1− ε)2

ε3
(2.2)

where κb is the bulk permeability, which can be taken as a coarse estimation of the reference
macro-scale permeability κ0. For instance, Soulaine et al. [279] estimated that four orders of
magnitude below the permeability are required for κb to ensure adherent boundary conditions at
the pore interface. In this chapter, we consider both Kε, κb and κ0 as scalars, meaning we restrict
ourselves to the isotropic case although this formalism can be extended to anisotropic porous
media. The superficial velocity formulation (2.1) defines a two-scale model that can be solved
on the overall domain Ω — using, for instance, penalization principles — and retrieves the usual
Navier-Stokes equation in the pure fluid region ΩF (since K−1

ε = 0 for ε = 1). Depending on
the flow regime hypothesis, one can also encounter simplified versions of equation (2.1) wherein
some terms can be neglected. In the context of pore-scale simulations, in particular, the inertial
effects become negligible compared to viscous forces due to low Reynolds number, denoted Re.
The latter is a characteristic dimensionless number defined as:

Re = ρuL/µ, (2.3)

where u and L are respectively the characteristic velocity and length of the sample. The charac-
teristic length L can be related to average pore throat diameters and, therefore, we typically fall
within the assumption Re≪ 1 throughout this chapter.

At low Reynolds numbers and for highly viscous Darcian flows, equation (2.1) hence reduces
to the following DBS model:

−div(2µD(u)) + µκ−1
b

(1− ε)2

ε2
u = ε(f −∇p), in Ω (2.4)
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where µ∗ = µ for sake of readability. In the present work, we consider this DBS equation (2.4),
which is adequate in the flow regime hypothesis of low Reynolds number representative in pore-
scale modeling. The DBS equation based on the superficial velocity is an efficient formalism to
model the hydrodynamic in multi-scale porous media, and account for heterogeneous porosity
levels.

2.3.2 Reactive flow model: general formulation

The DBS flow model (2.4) needs to be complemented by transport-reaction-diffusion equations of
the different species involved in the geochemical processes. These equations are derived from the
mass balance of the chemical species [279], and can be written under the form:

∂εC̃k

∂t
+ div(uC̃k)− div

(
αk(ε)ε∇C̃k

)
= ṁk/Mk, (2.5)

where C̃k = ρfωf,k/Mk is a concentration per unit of fluid with Mk the molar mass and ṁk the
rate of mass transfer for the kth species. We here follow the notations introduced by Quintard
and Whitaker in [250], and afterward used by Soulaine and al. in [279], where ρf is the fluid
density and ωf,k is the mass fraction of the kth component averaged on the fluid phase. The term
αk(ε) is a space-variable effective diffusion coefficient and accounts for a reduced diffusion in the
surrounding porous matrix due to the tortuosity effect, which is usually quantified using Archie’s
law [29]:

αk(ε) = Dm,kε
η. (2.6)

In this empirical relationship, η refers to the tortuosity index and Dm,k to the molecular diffusion
of the considered species [311]. We finally introduce Ck = εC̃k, so that the equation (2.5) is
written:

∂Ck

∂t
+ div(ε−1uCk)− div

(
Dm,kε

1+η∇(ε−1Ck)
)
= Rk(C), (2.7)

which is no more than a superficial modeling of the chemistry, that is to say Ck is the amount of
moles per unit of volume while C̃k is the amount of moles per unit of fluid volume. The notation
Rk(C) refers to a function (without differential operators) that models the rate contribution of
the chemical reactions for the kth component, where we denote by C ∈ RNs the vector of the
concentrations Ck of all the Ns chemical species. The kth rate contribution Rk(C) is, practically,
the balance of kinetics of all reactions involving the kth species. The sign of individual reaction
rates lies in the nature of the species k considered, either positive for a chemical product or negative
for a reactant.

The model (2.7) is the formalism that we retain for the aqueous species in the liquid phase. In
particular, this model highlights a superficial gradient operator denoted∇ε := ε∇ε−1 involved in
the heterogeneous diffusion arising from the Archie’s law. One should notice that the superficial
gradient can become highly sensitive at the mineral boundary, mainly due to jumps in the porosity
levels on either side of the interface, and thus will require special considerations to adequately
manage evolving medium under reactive processes.

Concerning the solid phase of concentration C(s) (e.g. the kth component in vector C), which
we assume contains only one chemical species of molar volume υ, it is not subject to transport or
diffusion, so that

∂C(s)

∂t
= Rk(C). (2.8)

This solid concentration is subsequently linked to the micro-porosity ε by the relation C(s) =
(1− ε)/υ, so one gets

∂ε

∂t
= −υRk(C). (2.9)

In the case of a typical reaction involving a unique solid X(s) of molar volume υ, and two
aqueous species Y and Z in the liquid phase, with their respective positive stoechiometric
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coefficients χi and following, for instance, the general chemical reaction:

χ1X(s) + χ2Y −−⇀↽−− χ3 Z, (2.10)

we define the vector of concentrations C := (C1, C2, C3)
T =

(
[X(s)], [Y], [Z]

)T ∈ R3. Since
there is only one reaction, one gets a unique kinetic balance written as Ri(C) = ±χiR(C), with
R(C) the kinetic rate. By default, we assume a positive sign for the solid species, so that one
follows the convention R(C) < 0 for the forward reaction corresponding to the solid X(s) dissolu-
tion (see Sect. 5.3.1 from Chapter 5), while R(C) > 0 for the reverse reaction (e.g. precipitation
and crystallization processes whose models are detailed in Sect. 2.7). The sign for the aqueous
species subsequently depends on its interaction with the solid X(s): we get a plus sign for species
Y, which is either consumed or produced in the same way as the solid, and a minus sign for species
Z, which behaves oppositely. The reaction rate R(C) can involve many concentrations, specific
areas, chemical activities, equilibrium constants, etc. (see Sect. 2.7 for practical examples and
further details).

Along with its boundary and initial conditions, the model for reaction (2.10) defines a set of
partial differential equations modeling reactive flows at the pore scale:

−div(2µD(u)) + µκ−1
b

(1− ε)2

ε2
u = ε(f −∇p), in Ω×]0, Tf [

∂C1

∂t
= χ1R(C), in Ω×]0, Tf [

∂C2

∂t
+ div(ε−1uC2)− div

(
Dm,2ε

1+η∇(ε−1C2)
)
= χ2R(C), in Ω×]0, Tf [

∂C3

∂t
+ div(ε−1uC3)− div

(
Dm,3ε

1+η∇(ε−1C3)
)
= −χ3R(C), in Ω×]0, Tf [

ε = 1− υC1, in Ω×]0, Tf [

+ adequate boundary and initial conditions, along with div u = 0

(2.11)

which is strongly coupled, since u and C depend on each other by means of the micro-porosity
changes ε during the chemical process. It is also possible to straightforwardly substitute C1 with
ε in this system (2.11). Finally, one can notice that the reactive system (2.11) is valid on the whole
domain Ω, whether the local state is fluid or not. In the pure fluid region, this system indeed con-
verges toward a Stokes hydrodynamic model coupled with a standard transport-diffusion equation.
Mathematical modeling of reactive hydrodynamics at the pore-scale can be expressed under the
general form of the PDE system (2.11) coupling DBS with transport-diffusion-reaction equations.

One can notice that ε ⩽ 1 by definition (the 5th equation of (2.11)) as long as the system
remains physically admissible — with positive concentrations — which is guaranteed by a mean-
ingful reaction rate R(C). Moreover, if ε evolves too close to 0, the reactants no longer reach
the residual fluid space located in the porous matrix — with minimal porosity ε0 > 0 — due
to tortuosity effects, so the reaction rate R(C) is supposed to stop by reaching an equilibrium.
These properties are satisfied for all the reactions considered in the present thesis, for example,
in the crystallization or dissolution reaction rates given by the relations (2.71) page 49, or (5.3)
page 139. Consequently, the micro-porosity ε remains in the range [ε0, 1] which provides a well-
posed Darcy-Brinkman-Stokes equation for the flow (the 1st equation of (2.11)).

This can be extended naturally to systems of reactions involving as many aqueous species in
the liquid phase as needed, and involving potentially several solid — in this case the porosity is
a linear combination of solid species. In the present thesis, we mainly focus on carbonate porous
media and thereby target chemical reactions such as dissolution or precipitation of calcite. Indeed,
investigating heterogeneous mineral structures with more complex interactions like dolomitiza-
tion [183], where dissolved calcite is replaced by dolomite crystals in contact with magnesium-
rich water, would require integrating a more efficient numerical library dedicated to chemistry
within the computational framework. Specific reaction terms will be detailed, case-by-case, in
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the different chemical processes throughout the thesis. Most of the configurations studied in this
thesis involve solid calcite — or calcium carbonate — whose concentration is denoted CCaCO3(s)

or [CaCO3], and whose molar volume is given by υ = 36.93e−3L.mol−1.

2.3.3 A velocity-vorticity formulation

Two distinct approaches are successfully used in the literature to solve numerically the DBS equa-
tion (2.4), namely the velocity-pressure or velocity-vorticity formulations [135, 154, 204, 242].
The latter, inherited from vortex methods [72, 92, 110, 130] introduces the vorticity field ω which
is intrinsically related to the fluid velocity u through the relation:

ω = ∇× u. (2.12)

Several advantages arise when considering the velocity-vorticity formulation that regards the PDE
unknowns (u, ω) and can be interpreted as describing the local spinning motions generated by the
flow constraints. First of all, one can benefit from the velocity projection on divergence-free fields,
and thereby analytically ensures the incompressibility condition div u = 0. Secondly, this formal-
ism can be effectively coupled with splitting strategies that sequentially separate the resolution of
distinct physical phenomena, such as convection and diffusion (see Sect. 2.4.3). Finally, this also
makes it possible to eliminate the pressure unknown from the momentum equation by applying
the curl operator on the DBS equation, which reads as follows:

−µ∆ω + µκ−1
b ∇×

(
(1− ε)2

ε2
u

)
= ∇ε× (f −∇p) (2.13)

given the assumption ∇ × f = 0. Developing the curl of the Kozeny-Carman term, one gets the
following expression:

∇×
(
(1− ε)2

ε2
u

)
=

(1− ε)2

ε2
ω + 2(ε− 1)ε−3∇ε× u (2.14)

which, in practice, exhibits terms that become dominant compared to∇ε×(f−∇p). In this sense,
the right-hand side in the vorticity formulation of the DBS equation (2.13) is usually neglected (e.g.
see [113, 204]).

Equation (2.13) is then supplemented with an equation that retrieves the velocity field from
the related vorticity, and results in the relation:

−∆u = ∇× ω (2.15)

based on the incompressibility condition. In practice, the previous Poisson equation (2.15) is not
straightforwardly considered, and one relies on an alternative using a stream function ψ : Ω ⊂
R3 → R3 (a vector potential) solution of:{

−∆ψ = ω, in Ω
+ boundary conditions such that divψ = 0 on ∂Ω.

(2.16)

The condition divψ = 0 on ∂Ω is essential to ensure the overall incompressibility condition
of the stream function on Ω and thereby identify u = ∇ × ψ. This requires satisfying appropri-
ate boundary conditions, namely the following combination of homogeneous Dirichlet/Neumann
conditions for a computational cubic domain Ω =]xmin, xmax[× ]ymin, ymax[× ]zmin, zmax[:

x = xmin or x = xmax : ψy = ψz =
∂ψx

∂n
= 0,

y = ymin or y = ymax : ψx = ψz =
∂ψy

∂n
= 0,

z = zmin or z = zmax : ψx = ψy =
∂ψz

∂n
= 0.

(2.17)
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Such boundary conditions ensure (∇ × ψ) · n = 0, divψ = 0 and ψ × n = 0 at the same time,
where n is the normal field at the interface, and consequently lead to a zero average velocity field
lifted by a prescribed flow rate u oriented in the flow direction. Indeed, given u = u+∇×ψ, one
gets:

< u >Ω=
1

|Ω|

∫
Ω
udv = u+

1

|Ω|

∫
∂Ω
ψ × n ds = u, (2.18)

which replaces the setting of the driving force f by a prescribed flow rate, managed through the
lifted vector u.

Finally, using the stream function ψ, one analytically ensures the divergence-free condition
on the velocity as div u = div (∇ × ψ) = 0. Overall, the velocity-vorticity formulation (2.13)
of the DBS equation is subsequently coupled with the transport-reaction-diffusion PDE system
developed in Sect. 2.3.2 to model reactive hydrodynamics at the pore-scale. Detailed models for
applications to the calcite dissolution or precipitation/crystallization processes can be encountered
respectively in Sect. 5.3.1 from Chapter 5 and in Sect. 2.7.

2.4 A Semi-Lagrangian approach

The present thesis relies on a semi-Lagrangian numerical method, mixing Eulerian and Lagrangian
formalism, to tackle dynamically evolving porous media due to reactive micrometric processes.
Such a semi-Lagrangian approach has been successfully used for simulations of calcite dissolu-
tion at the pore scale [113] and extensively benchmarked against state-of-the-art numerical alter-
natives [204].

This section is dedicated to presenting this hybrid formalism, which is subsequently improved
to account for the heterogeneous diffusion of the chemical reactants through the porous matrix. In
the following, we also extend this approach to the modeling of precipitation and crystallization in
the context of CO2 mineral storage.

2.4.1 A hybrid grid-particle framework

A Lagrangian formalism consists of describing the flow motion through the observation along time
of a large number of fluid particles, with their attached intrinsic properties and spatially varying
positions [57, 93]. Each particle is then tracked throughout the evolving mechanism (transport,
diffusion, ...) to measure variations in the main properties (velocity, concentration, ...). On the
contrary, from the Eulerian point of view, the previous property changes are characterized on a
predetermined spatial grid along the dynamical process.

The particle formulation is especially well-suited for transport-dominant phenomena as it
avoids the explicit discretization of convective terms and alleviates the consideration of their re-
lated stability constraints — namely the Courant–Friedrichs–Lewy (CFL) conditions which con-
strains the time step for a given spatial discretization. The lack of regularity in the particle dis-
tributions throughout the dynamic process is, however, a recurring problem of Lagrangian meth-
ods. Indeed, as the particle positions move according to the flow field gradients, accumulation or
scarcity issues in the particle repartition commonly occur. This, thereby, requires periodic remesh-
ing steps to avoid this problem and not to lose information: namely, one proceeds two successive
interpolations from the disorganized particle structure to a regular grid and subsequently from the
grid to the new particle distribution [72, 91, 189].

This is particularly suitable for hybrid approaches, wherein dedicated solvers can be straight-
forwardly implemented in the Eulerian context before performing the remeshing step. This also
allows a representation of the Quantity of Interest (QoI) on the grid, which can be coupled
with domain decomposition or mesh adaptation methods. Hybrid grid-particle formalism has,
thereby, garnered considerable interest in addressing multiple complex phenomena in CFD and
geosciences [41, 71, 73, 88]. Besides, incorporating high-order and compact support interpolation
kernels makes it possible to reduce the overall computational complexity of the remeshing steps
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while keeping accurate predictions of the numerical solution. The choice of the interpolation ker-
nels is, however, important to ensure a robust numerical method and guarantee properties such
as mass conservation and sign-preservation of the interpolated quantities [189]. Improvements
of the interpolation kernels, especially for applications to dissolution processes at the pore scale,
have been investigated by Etancelin et al. in [113]. Such improvements focused on sign preserva-
tion and accurate high-order interpolation through a correction step of the potential over-diffusive
effects resulting from the remeshing step. This provides a well-established hybrid grid-particle
framework that can robustly address pore-scale reactive flows.

In the present work, we aim to benefit from the main advantages of both approaches to model
reactive hydrodynamics at the pore scale. We will, thereby, use a Lagrangian description for the
chemical equations — including the heterogeneous diffusion operator and reactant transport —
with an underlying regular grid for solving the DBS equation in its velocity-vorticity formulation.

2.4.2 Reactive dynamical system with particles

In this section, we present the Lagrangian formulation dedicated to the resolution of the reactive
dynamical system (2.11) detailed in Sect. 2.3.2, and more specifically to the transport-reaction-
diffusion equation (2.7).

We define a set of Np fluid particles covering the computational domain Ω and characterize
as triplets (Ck,i, xk,i, vk,i) of species concentrations Ck,i, positions xk,i ∈ Ω and volumes vk,i,
where i and k respectively refers to the particle and species indexes. This mathematically intro-
duces the particle description, denoted Ch

k , of the concentration fields Ck that reads as follows:

Ch
k (t) =

Np∑
i=1

Ck,i(t) vk,i(t) δxk,i
(t) (2.19)

which only depends on time t, and where δ refers to the Dirac function. The Lagrangian formula-
tion of equation (2.7) can then be written using the particle description (2.19):

dCk,i

dt
= Rk(Ci(t)) +

[
div(αk(ε)∇εCk)

]
xk,i(t)

dxk,i
dt

=
[
ε−1u

]
xk,i(t)

dvk,i
dt

= 0

(2.20)

given the incompressibility condition div u = 0 and the notations introduced in Sect. 2.3.2. This
results in a dynamical system over the particles whose positions are controlled by the field ε−1u,
and volumes remain constant under divergence-free conditions. The main advantage of such a
Lagrangian formulation (2.20) is that the transport term div(ε−1uCk) vanishes along with its sta-
bility condition and, thereby, the method presents the ability to use arbitrary large time steps. This
is, especially, of great interest when the CFL condition on the transport term induces a stronger
constraint on the time step compared to the diffusion stability condition.

The velocity field u in (2.20) arises from the solution of the DBS equation which is solved on
an underlying Cartesian grid and coupled with the Lagrangian formulation of the chemical PDE
system. Regarding such a strong coupling between these equations, one needs to interpolate on the
grid the particle description of the solid chemical species — namelyCh

CaCO3(s)
— which is related

to the micro-porosity field ε and consequently involved in the DBS model. Similarly, the velocity
field subsequently needs to be interpolated on the particles to solve the Lagrangian set of chemical
equations. This requires, as introduced in the previous Sect. 2.4.1, convolution with high-order
remeshing kernels with compact supports (e.g. see [113, 189]). The dynamical system (2.20) is
finally integrated using standard numerical methods for Ordinary Differential Equation (ODE),
such as explicit Runge-Kutta, while the diffusion term div(αk(ε)∇εCk) is approximated through
the PSE method, detailed in Sect. 2.5.
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In the present thesis, we incorporate in the semi-Lagrangian workflow the consideration of
robustly estimating Archie’s law term through such a particle-based PSE method. In this sense,
we make it possible to fully address the superficial gradient∇ε approximation with heterogeneous
diffusion throughout the porous matrix (see Sect. 2.5.3).

2.4.3 Splitting operator strategy

The semi-Lagrangian formalism introduced in the previous Sect. 2.4.1 and 2.4.2 intrinsically relies
on splitting strategies. Time-splitting methods, also known as fractional time-step algorithms, arise
in many fields of computational science related to physics-based models and have been developed
by Chorin in the 1970s [76] in the context of vortex methods for the Navier-Stokes equation. Such
methods have been widely investigated afterward to separate the resolution of distinct physical
phenomena and render more efficient algorithms [40, 91, 110, 115]. Indeed, one of the main
advantages of splitting strategies is one can use different approaches for the distinct parts of the
overall model, namely either a Lagrangian or Eulerian formulation. This also straightforwardly
extends to the choice of the numerical solver available for each component, allowing the use of
the most efficient, accurate, and robust schemes independently.

The first natural splitting arising in workflow, thereby, lies in the semi-Lagrangian formalism
itself, wherein we do not consider solving the overall PDE system at once. We rather separate the
transport-diffusion-reaction dynamics in its Lagrangian formulation from the pore-scale hydrody-
namic resolved on the underlying Cartesian grid. The hydrodynamic part, composed of the DBS
equation in the velocity-vorticity formulation, is also solved through a time-splitting method. In
this sense, we approximate the solution of (2.13) by the limit in time of the evolution equation

∂ω

∂t
− µ∆ω + µκ−1

b ∇×
(
(1− ε)2

ε2
u

)
= 0, (2.21)

together with ω = ∇ × u, using a three-step operator splitting strategy coupled with a fixed-
point algorithm. This means that considering a sequence (um, ωm) of velocity-vorticity we aim
to successively perform, over a time interval [tm, tm+1] with tm = mδt, Brinkman penalization,
diffusion, and projection on divergence-free fields. The latter is achieved through the reconstruc-
tion of the velocity field u based on the stream function ψ (see Sect. 2.3.3). In practice, these three
steps are specifically defined as:

• The Brinkman iteration given by the ordinary differential equation
∂u

∂t
+µλ(ε)(u+ u) = 0

with prescribed flow rate u and λ(ε) := κ−1
b (1− ε)2ε−2, whose exact solution after a δt is

generated by
Λ(u) := e−µλ(ε)δt(u+ u)− u

• The vorticity diffusion iteration,
∂ω

∂t
− µ∆ω = 0, solved using an implicit Euler scheme

given by the operator
Dω(u) := [I − µδt∇]−1 (∇× u)

• The projection step Π(ζ) = ∇ ×
(
(−∆−1)ζ

)
which takes as ζ the right-hand side of the

Poisson equation −∆ψ = ζ satisfying the boundary conditions (2.17), and followed by
u = ∇× ψ.

Overall, this leads to the full iteration of the Brinkman-Diffusion-Projection splitting Π ◦ Dω ◦ Λ
over a time step [tm, tm+1], which reads as follows:

um+1 = Π ◦ Dω ◦ Λ(um) (2.22)

and whose consistency has been theoretically discussed in [135]. One should notice that this
projection step is not a projection by pressure gradient correction (e.g. see [73]), but an operator
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that takes the vorticity field ω and retrieves a divergence-free velocity field whose mean velocity
is zero. The final velocity field is subsequently given by

u = u+ lim
m→∞

um (2.23)

whose average is u and satisfies the Kozeny-Carman relation inside the solid region.
From a numerical perspective, we consider the exact treatment of the Brinkman term, fourth-

order finite difference scheme for the discrete curl operator, and Fast Fourier Transform (FFT)
solvers for the vorticity diffusion and stream function recovery. Using FFT avoids matrix assembly
procedure and, therefore, consists of efficient solvers in terms of computational time and memory
storage requirements. Besides, the complexity of such algorithm scales as O(Np log(Np)), where
Np is recalled to refer to the number of particles. A stopping criterion on this fixed point algorithm
is also defined based on the relative residual norm on the velocity, which manages the convergence
of the pore-scale hydrodynamics toward a stationary state.

The updated velocity um+1 is subsequently interpolated from the grid to the particles and used
for solving the Lagrangian reactive system, which is split into convective/remeshing and diffu-
sive/reactive steps. Regarding the convection, the particle trajectories are pushed to the next step
through a directional advection, given the field ε−1u according to the Lagrangian formulation
(2.20), and are then remeshed to avoid stagnation issues (see Sect. 2.4.1). The purpose of such
a directional splitting is to reduce the dimensionality of the overall advection problem by con-
sidering several one-dimensional equations [90, 189]. The particle remeshing is also addressed
using directional treatment of the multidimensional convolution. This means that within a time
step [tm, tm+1], the joint step of advection/remeshing of the particles is successively performed
by alternating the spatial directions [111, 143]. This presents the advantage of significantly im-
proving the computational efficiency of the method and allows the use of high-order remeshing
kernels with large stencils while maintaining a minimal cost compared to multidimensional cases.
This is also well-suited to parallel implementation on GPU architecture. The dimensional splitting
is addressed, in practice, by a second-order Strang formula [288] and coupled with a second-
order Runge-Kutta for time integration. The diffusion/reaction step is finally solved by means of
a second-order explicit Runge-Kutta scheme along with PSE approximation of the heterogeneous
diffusion operator. Once the Lagrangian formulation of the chemistry has been fully updated and
remeshed on the underlying grid, one starts pushing the DBS hydrodynamics to the next sequential
step of these temporal iterations.

Such an operator splitting strategy, in the context of a semi-Lagrangian approach, has been ap-
plied to the modeling of dissolution processes on a 2D synthetic calcite core and validated against
state-of-the-art alternatives and experiments [204]. This has also been used in [113] on real porous
media structures at the pore scale to investigate the dissolution of 3D carbonate rocks arising from
µCT scans. Nonetheless, these previous works assumed that the superficial gradient ∇ε involved
in the heterogeneous diffusion could be approximated by the gradient operator, and subsequently
addressed this Archie’s law term with standard finite differences schemes. In Sect. 2.5, we intend
to alleviate this assumption and, therefore, improve the semi-Lagrangian method by incorporating
in the workflow a PSE approximation of the heterogeneous diffusion.

2.5 Particle-Strength-Exchange method and Archie’s law approxi-
mation

This section concerns the theoretical aspects of the PSE method that finds its essence in estimating
diffusion in a Lagrangian context with meshless and scattered particle structures. Since the original
article from Degond and MasGallic [101] in 1989, the PSE approach has appeared as an efficient
numerical method for solving convection-diffusion problems with particles [268] and has been
successfully used in vortex methods [92, 243].

Several reviews have also extended its application to the Eulerian context, with structured
grids, but also to hybrid grid-particles formalism while enhancing the accuracy of the original
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method by replacing continuous integration with discrete one [47, 88, 246, 267]. These novel
PSE approaches, therefore, enable us to efficiently evaluate the heterogeneous diffusion operator
arising from Archie’s law in a Semi-Lagragian context. In the following, we briefly review the
general principles of this original method along with an overview of its successive improvements
using discretization corrections. We finally demonstrate the relevant use of the PSE approach to
approximate Archie’s law term and account for a reduced diffusion in the porous matrix of the
porous medium.

2.5.1 Classical PSE formulation

The PSE method consists in the approximation of a diffusion operator div(L∇f)(x) with x ∈ Ω ⊂
Rn and L a positive symmetric matrix, accounting for heterogeneous diffusion for instance. The
main idea is then to approximate the diffusion by an integral operator, more suitable for particle
methods:

Qξ · f(x) =
∫
Ω
σξ(x, y)

(
f(y)− f(x)

)
dy (2.24)

where the kernel σξ is supposed to be symmetric and satisfies some moment conditions, detailed
thereafter. In the Lagrangian formulation, a particle approximation of the function f , denoted fh,
is also introduced based on the particle triplet (fi, xi, vi), such that:

fh =

Np∑
i=1

fi vi δxi where fi = f(xi) (2.25)

where xi and vi are respectively the particle positions and volumes, while δxi refers to the Dirac
measure at position xi. With such aNp-particle representation of the function f , a discrete version
of the operator Qξ is obtained by using the particles as quadrature points where h refers to the
characteristic distance between particles. This results in the following quadrature expression,
called Particle-Strength-Exchanges:

Qξ · fh(xk) =
∑
xl ∈S

σξ(xk, xl)
(
fl − fk

)
vl. (2.26)

where S := supp(σξ) refers to the set of points in the support of the kernel function σξ.
The PSE scheme is then completely determined once the kernel σξ is defined and exhibits its

relation with the diffusion matrix L. The original approach from Degond and MasGallic [101]
suggests the following kernel choice

σξ(x, y) =
1

ξ2

n∑
i,j=1

Mij(x, y)ψ
ξ
ij(y − x), (2.27)

where

ψξ
ij(x) =

1

ξn
ψij

(
x

ξ

)
is a matrix cutoff function with ψij symmetric and even, and M = (Mij(x, y)) a symmetric
matrix to be determined. These hypotheses are of great interest as they guarantee the conservation
property of the operatorQξ based on symmetric exchanges. We then introduce the matrix m(x) :=
M(x, x) and the moments of the cutoff functions ψij given by:

Zα
ij =

∫
ψij(x)x

αdx, (2.28)

for any i, j and multi-index α. It has been proved by Degond and Mas-Gallic that if some moment
conditions are satisfied, namely the hypotheses (i) and (ii), we obtain the following convergence
result [101]:
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Property 1 We assume that there exists an integer r ≥ 2 such that :
(i) Zα

ij = 0 for 1 ⩽ |α| ⩽ r + 1 and |α| ≠ 2

(ii) for any integer k,l in [1, n], we have
n∑

i,j=1

mij(x)Z
ek+el
ij = 2Lkl(x).

In addition of the previous hypotheses on matrices M, m and ψ, we assume the following regular-
ities M ∈ W r+1,∞(Rn × Rn), m ∈ W r+1,∞(Rn) and (1 + |x|r+2)ψ(x) ∈ L1(Rn). There exists
a positive constant C = C(M, ψ) such that for any function f ∈W r+2,∞(Rn)

∥div(L∇f)−Qξ · f∥0,∞ ⩽ Cξr ∥f∥r+2,∞. (2.29)

Several matrix cutoff functions have been investigated in [101] but we mainly focus on the
most suitable for practical use, which reads as:

ψij = xixjθ(x) (2.30)

with θ a smooth spherically symmetric function with fast decreasing, also called the stencil gener-
ator. Finally, one needs to define the second moments’ matrix of θ, denoted A = (akl), and given
by

akl =

∫
x2kx

2
l θ(x)dx, k, l ∈ [1, n]. (2.31)

In this case, one gets the existence of a matrix m(x) such that the hypotheses (i) and (ii) of
Property 1 are satisfied if and only if A is an invertible symmetric matrix and, for any k,l k ̸= l,
we have ak,l ̸= 0. The matrix m(x) is then defined by (see Lemma 1 in [101]):

mkl(x) = a−1
kl Lkl(x), for k, l ∈ [1, n], k ̸= l (2.32)

n∑
i=1

akimii(x) = 2Lkk(x), for k ∈ [1, n] (2.33)

which is a fundamental result of the original PSE article. In 3D applications, for instance, one can
compute the matrix A coefficients using spherical coordinates to obtain akk = 3γ and akl = γ, if
k ̸= l, with γ expressed by:

γ =
4π

15

∫ ∞

0
θ̃(r)r6dr (2.34)

where the spherically symmetric function θ is written θ(x) = θ̃(|x|). Solving the problem given
by equations (2.32) and (2.33) then explicitly provides

mkl = γ−1Lkl, if k ̸= l, and mkk = γ−1Lkk −
γ−1

5
Tr(L), (2.35)

which also writes

m = γ−1L− γ−1

5
Tr(L)Id3. (2.36)

When the conditions (2.32) and (2.33) are satisfied and in the case of a kernel defined with a
spherical-symmetric function θ such as in (2.30), the method provides at least second order ap-
proximation of the diffusion operator (see Property 1) which is suitable for any particle distribution
in a Lagrangian context. One should notice that in practice the method is limited to second-order
convergence for positive kernel σξ (e.g. see [87, 101]).

Finally, to make the approximation operational, it remains to define the relation between M,
m, L, and θ. A usual approach is to consider the matrix M under the forms:

M(x, y) = m

(
x+ y

2

)
or M(x, y) =

1

2

(
m(x) +m(y)

)
, (2.37)

and for ψ given by (2.30), one gets the following kernel formula:

σξ(x, y) =
1

ξn+4
θ

(
y − x
ξ

)
M(x, y) : (x− y)⊗2. (2.38)

This entirely specifies the numerical scheme by combining the equations (2.26), (2.38), and (2.36).
This original formalism is based on continuous integration of the second moments of θ through
the equation (2.34) and is second order consistent in the sense O[(h/ξ)2].
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2.5.2 Discrete renormalized PSE scheme

The previous second-order consistency, however, raises concerns about the practical implementa-
tion of the original PSE formulation. This arises from the strong relationship between the inter-
particle spacing h and the width ξ of the kernel σξ, which commonly implies choosing the ratio
h/ξ to be constant. Otherwise, small kernel sizes require a large number of particles to guarantee
the method’s consistency, and a small number of particles alternatively leads to large stencils for
the diffusion kernel. Neither option is affordable from a computational efficiency perspective and,
therefore, induces a strong constraint on the choice of the ratio h/ξ.

Alternatives relaxing this constraint result in replacing the continuous moment integration with
discrete moment conditions, which is referred to as discretization correction of the PSE scheme.
The latter has been successfully developed for several state-of-the-art applications including mesh-
free scenarios with arbitrary particle distributions, uniform Cartesian grids, and also in hybrid
formulations involving both an underlying grid along with the particles [47, 55, 267, 342]. In
particular, such a discrete renormalized version of the PSE appears to adequately combine with a
semi-Lagrangian formulation, ensuring low computational cost and equivalent accuracy compared
to a pure Lagrangian approach. Indeed, this can benefit from the advantages of using the Cartesian
underlying grid through the redistribution of the particles with remeshing kernels. In this sense,
we focus in the following on a discrete correction formulation which holds both in the Eulerian
and Lagrangian context.

The consistency of the original PSE scheme can be improved to O(h2) by using discrete
integration when particles are distributed over a uniform grid [246]. The main idea is to replace
(2.31) by the matrix of discrete second-order moments, which subsequently leads to a distinct
evaluation of the matrix m. One introduces the following coefficients using discrete integration:

γ1 =
∑
x∈J

x4kθ(x)h
3, k ∈ [1, 3] (2.39)

γ2 =
∑
x∈J

x2kx
2
l θ(x)h

3, k, l ∈ [1, 3] (2.40)

for J ⊂ hZ3 a three-dimensional lattice, including at least one neighborhood of the current mesh
point. One then gets similar equations as (2.32) and (2.33) with respect to the coefficients γ1 and
γ2, resulting in the characterization of m. We introduce the matrix H = Hij given by

Hij =

(
γ21 − γ1γ2 − 6γ22

γ2(γ21 + γ1γ2 + 2γ22)

)
(1− δij)Lij

where δij is the Kronecker symbol, such that the matrix H is zero when L is diagonal or when
γ1 = 3γ2. We thus obtain a discrete renormalization of the matrix m which reads as follows:

m =
2(γ1 + 2γ2)

γ21 + γ1γ2 − 2γ22
L − 2γ2

γ21 + γ1γ2 − 2γ22
Tr(L)Id3 + H (2.41)

and replaces the equation (2.36) in the original PSE version. Finally, this formulation with discrete
integration is completely defined through the formula (2.38). This also leads to a better accuracy
since this scheme is consistent in h2 whereas the classical PSE method has a convergence in the
sense that the error is of order (h/ξ)2. In this sense, this alleviates the considerations of properly
choosing the kernel width ξ and therefore makes it possible to consider a ξ-neighborhood of the
current particles, previously redistributed on the Cartesian grid of mesh size h through remeshing
(in practice, we have ξ ∈ hN∗). In the next section, we will use the present formalism to evaluate
the heterogeneous diffusion operator arising from Archie’s law within the semi-Lagrangian context
introduced in Sect. 2.4.

2.5.3 PSE scheme for an Archie’s law of index η

While the discrete renormalization of PSE method can be assimilated to a Finite Differences (FD)
stencil on a uniform Cartesian grid and satisfies the same order of accuracy as standard FD
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schemes, one can query the motivation for using this seemingly complex approach. First of all,
behind appearances, this method is easy to implement and not computationally expensive in the
context of uniformly distributed grids. In 3D applications, for instance, one can summarize the
PSE discrete formulation as follows

Qξ · fh(xk) =
1

ξ7

∑
l∼k

fl − fk
1 + |xl−xk

ξ |p

 3∑
i,j=1

Mij(xk, xl)(xl − xk)i(xl − xk)j

 vl (2.42)

with the spherically symmetric function θ taken as:

θ(x) =
1

1 + |x|p
, (2.43)

where | . | is the Euclidean norm in R3. The formula (2.42) basically involves all the contributions
of the mesh points of index l in the ξ-neighborhood of the current mesh point xk, representing
namely 26 neighbors in 3D for ξ = h compared to merely 6 neighbors with standard crossed
FD scheme. In practice, ξ is taken equal to h or 2h, and the numerical results presented in this
thesis are given with p = 10 along with the matrix M taken under the form M(x, y) =

(
m(x) +

m(y)
)
/2.

Besides, we also aim to estimate Archie’s law term of tortuosity index η through this PSE
formalism. When considering the heterogeneous diffusion operator

Di(ε, C) := div
(
ε1+η∇(ε−1C)

)
(2.44)

involved in the PDE system (2.11), one gets a particular expression for the matrix L which reads
L = ε1+η I3 with I3 the identity matrix in R3. This accounts for the spatially varying coefficient
ε1+η of the diffusion operator even if the matrix L is diagonal. In this case, we end up with a
diagonal matrix m, and denoting c0 and c1 respectively the coefficients:

c0 =
2(γ1 + 2γ2)

γ21 + γ1γ2 − 2γ22
and c1 =

2γ2
γ21 + γ1γ2 − 2γ22

(2.45)

which only depend on the choice of the function θ defined in (2.43), we obtain the contributions
of each diagonal term of m through mii = c0Lii − c1Tr(L) from (2.41). This implies that the
matrix M is also diagonal with its coefficient expressed by

Mii(xk, xl) =
(c0 − 3c1)

2

(
ε1+η(xk) + ε1+η(xl)

)
. (2.46)

Overall, the discrete renormalization of the PSE scheme approximating the Archie’s law diffusion
operator (2.44) reads as follows:

Qξ · fh(xk) =
1

ξ7

∑
l∼k

fl − fk
1 + |xl−xk

ξ |p
(c0 − 3c1)

2

(
ε1+η(xk) + ε1+η(xl)

)
|xl − xk|2vl (2.47)

where | . | is the Euclidean norm in R3 and f• := ε−1(x•)C(x•). The overall formula (2.47)
accounts for the heterogeneous diffusion and ensures the accurate management of the chemical
reactant penetration, given by its concentration field C, within the porous matrix. Indeed, one
of the main advantages of the PSE scheme is that it includes all the lattice neighborhoods in
the computation of the heterogenous diffusion, unlike crossed FD. Finally, this guarantees the
conservation of the reactant exchanges between the fluid portion and the porous matrix due to the
symmetry hypotheses on M and the matrix cutoff function ψij when defining the PSE scheme (see
Sect. 2.5.1). Taken together, this motivates the use of the discrete renormalization of PSE method
to robustly address the approximation of Archie’s law of tortuosity index η.
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2.5.4 Stability analysis of the Archie’s law term with superficial gradient

Considering the heterogeneous diffusion of the chemical species with superficial gradient ∇ε for-
malism, however, leads to additional stability concerns that need to be investigated. In this section,
we focus on the necessary conditions of stability of the diffusion equation arising from Archie’s
law. To do so, we proceed in stability analysis of the usual FD discrete operators of the following
evolution equation:

∂C

∂t
−Dmdiv

(
ε1+η∇(ε−1C)

)
= 0 (2.48)

on a restricted spatiotemporal domain Ω × [0, Tf ] with Ω ⊂ R for sake of readability. Extension
of the present work to multi-dimensional spatial domains Ω should be explored in the future with
PSE approximation of the heterogeneous diffusion term.

First, we introduce a spatiotemporal grid (xk, tn) with xk = kδx, k ∈ [0, Nx] and tn =
nδt, n ∈ [0, Nt] and define the discrete approximation Cn(xk) := C(xk, tn) of the concentration
field C. Considering a forward Euler-Explicit scheme, the discrete formulation of equation (2.48)
subsequently reads as:

Cn+1(xk) = Cn(xk) + δtDmdivh
(
ε1+η(xk)∇h(ε

−1(xk)C
n(xk))

)
= 0, (2.49)

where the subscript h defers to discrete operators. One should notice that, in the previous equation,
the micro-porosity field ε is merely regarded as spatially dependent since a diffusion/reaction
splitting is also considered in practice. In this sense, we do not account for the micro-porosity
variations over time when diffusing the chemical species concentration in equation (2.48). We
define Y n := ε−1Cn and divide by ε the equation (2.49) to study the stability analysis of the
equivalent problem:

Y n+1(xk) = Y n(xk) + δtDmε
−1(xk)divh

(
ε1+η(xk)∇hY

n(xk)
)
= 0. (2.50)

We subsequently introduce the following notations, dedicated to the present section:

x+k = xk + δx/2 and x−k = xk − δx/2

x++
k = xk + δx and x−−

k = xk − δx

along with λ = Dmδt/δx
2, such that the spatial discretization considered explicitly reads:

Y n+1(xk) = Y n(xk) + δt(δx)−1Dmε
−1(xk)

[
ε1+η(x+k )∇hY

n(x+k )− ε
1+η(x−k )∇hY

n(x−k )
]

= Y n(xk) + λε−1(xk)
[
ε1+η(x+k )

(
Y n(x++

k )− Y n(xk)
)]

− λε−1(xk)
[
ε1+η(x−k )

(
Y n(xk)− Y n(x−−

k )
)]
.

(2.51)
Finally, we set Y n(xk) := γnei ξk δx — with i the complex number — and use the Fourier method
to determine the amplification factor γ of the discrete scheme (2.51), such that

Y n+1(xk) = γY n(xk). (2.52)

Denoting by Θ := cos(ξδx), one obtains:

γ = 1+λε−1(xk)
[
(Θ−1)

(
ε1+η(x+k )+ε

1+η(x−k )
)
+i sin(ξδx)

(
ε1+η(x+k )−ε

1+η(x−k )
)]

(2.53)

for which requiring |γ|2 ⩽ 1, with | · | the complex number modulus, ensures the stability of the
numerical scheme. In our case, this condition eventually writes |γ|2 = 1 − f(Θ) ⩽ 1 with f(Θ)
defined by:

f(Θ) = (1−Θ)
[
2α1 − α2

1 − α2
2 +Θ(α2

1 − α2
2)
]

(2.54)

where α1 := λε−1(xk)
(
ε1+η(x+k ) + ε1+η(x−k )

)
and α2 := λε−1(xk)

(
ε1+η(x+k )− ε

1+η(x−k )
)
.
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Considering a general form of the function f given by f(Θ) = (1−Θ) [c1 +Θc2], the neces-
sary conditions for the stability satisfy the constraints c2 > 0 and c1/c2 ⩾ 1 — with the resulting
implication c1 ⩾ 0. These conditions subsequently provide α2

1 > α2
2 (for c2 > 0) along with

2α1 − α2
1 − α2

2 ⩾ 0 (for c1 ⩾ 0) which can be combined to obtain α2
2 ⩽ α1, while c1/c2 ⩾ 1

straighforwardly provides α1 ⩾ 1. Overall, the two stability conditions related to the equation
(2.48) with heterogeneous diffusion are:

1) α1 ⩽ 1 and 2) α2
2 ⩽ α1. (2.55)

Finally, these conditions can be expressed in terms of the spatial variations of the micro-porosity
field ε such that:

1) λε−1(xk)
(
ε1+η(x+k ) + ε1+η(x−k )

)
⩽ 1,

2) λ ⩽
ε(xk)

(
ε1+η(x+k ) + ε1+η(x−k )

)(
ε1+η(x+k )− ε1+η(x−k )

)2 , if α2 ̸= 0.
(2.56)

Assuming, in the spirit of the PSE formalism, the following averaged combinations of the micro-
porosity in the grid points:

ε1+η(x+k ) =
1

2

(
ε1+η(x++

k ) + ε1+η(xk)
)

and ε1+η(x−k ) =
1

2

(
ε1+η(x−−

k ) + ε1+η(xk)
)
,

(2.57)

the second stability condition from (2.56) can, especially, be written on the grid points such that:

2b) λ ⩽ 2ε(xk)
ε1+η(x++

k ) + ε1+η(x−−
k ) + 2ε1+η(xk)(

ε1+η(x++
k )− ε1+η(x−−

k )
)2 . (2.58)

This analysis highlights several stability constraints depending on the distinct domain areas
and the micro-porosity values. In particular, when ε is constant — for instance when considering
the diffusion in the fluid of the chemical species — the first condition 1) is sufficient to guarantee
the stability of the numerical scheme. In the fluid domain, we recover as expected the usual CFL
condition of a diffusion operator λ ⩽ 1/2, while in the porous matrix, we obtain the condition
λ ⩽ 1/2εη for ε constant, that is already satisfied due to the necessary condition arising in the
fluid region, since λ ⩽ 1/2 ⩽ 1/2εη.

At the pore interface, however, the numerical stability is constrained by the second condition
2b) and depends on the micro-porosity jump and the tortuosity index η, which leads to a more
restrictive constraint on the time step δt. For instance, the worst configuration occurs when xk is
in the first layer of solid whose porosity is denoted εs. That is, xk and one of its neighbors are
in the porous matrix and the other neighbor is in the fluid, in a 1D configuration. Let us denote
[ε1+η] = 1− ε1+η

s the jump of ε1+η at the interface. The condition 2b) then reduces to:

λ ⩽ 2εs
4− 3[ε1+η]

[ε1+η]2
. (2.59)

The strongest constraint occurs asymptotically when εs → 0, that is to say [ε1+η]→ 1, so that the
effective constraint is

λ ⩽ 2εs. (2.60)

In practice, for a 5% porous solid matrix, this condition is λ ⩽ 0.1 which is a bit more con-
strained than condition λ ⩽ 0.5 : this is not orders of magnitude different, but requires a time step
reduction.

The stability constraints presented in this section show more restrictive constraints arising from
the consideration of heterogeneous diffusion of the chemical species within the porous matrix.
Therefore, we account for these constraints in the numerical simulation, using the stability con-
ditions 1) and 2) developed here. The stability analysis of the general case for multi-dimensional
PSE methods in the context of such heterogeneous diffusion models will be investigated in the
future.
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2.6 High-Performance-Computing framework

One of the major constraints when dealing with a semi-Lagrangian formulation lies in the ability
of the computational framework to handle an overall hybrid approach in terms of grid-particle
formalism, numerical methods, multi-grid resolutions, and hardware devices. Indeed, Cottet et
al. suggested in [89] a semi-Lagrangian method coupled with hybrid grid resolutions to address a
multi-scale transport problem of a passive scalar. The scalar is, indeed, discretized on a sub-grid
compared to the velocity and vorticity fields and enables the accurate prediction of the small-scale
effects. Finally, considering hybrid computing methodologies makes it possible to distribute the
distinct parts of an overall problem to different types of hardware architectures. This formalism,
therefore, exploits the advantages of each method individually according to the characteristics of
the problem.

Nonetheless, implementing such a hybrid approach requires a highly flexible computational
framework that gathers a wide range of numerical methods and, therefore, benefits from their
intrinsic strengths. One also needs libraries incorporating effective parallel computing tools and
able to address, inter alia, hybrid CPU-GPU programming. In this section, we present the HPC
framework considered to address the DNS of pore-scale reactive flows for CO2 mineral trapping
into carbonate rocks.

2.6.1 The HySoP library

HySoP is a high-performance computing platform [112], jointly developed at LMAP (Laboratoire
de Mathématiques et de leurs Applications, UMR 5142 CNRS, UPPA), LJK (Laboratoire Jean
Kuntzmann, Alpes-Grenoble University, UMR 5224 CNRS), and M2N (Laboratoire Modélisa-
tion mathématique et numérique, Conservatoire National des Arts et Métiers – CNAM, Paris, EA
7340 CNRS). The library, originally developed to address flow simulations based on remeshed
particle methods, was initiated by the work of Etancelin in 2014 [111] and has been successfully
extended to a larger scope of HPC applications. This includes the investigation of passive control
of flows around a hemisphere that targets drag reduction by introducing a porous coating at the
body surface [202], but also sediment flow simulations subject to instabilities [143].

The overall library relies on a Python interface incorporating the object-oriented programming
paradigm that provides a flexible framework for both code development and usage. Several numer-
ical solvers can, however, be directly implemented in other compiled languages including Fortran,
C or C++, and OpenCL — which is a C++ library that provides high-level interfaces for program-
ming multi-architectures, in the same way as Compute Unified Device Architecture (CUDA).
Interface wrappers, such as f2py for instance, enable the integration of external dependencies aris-
ing from these compiled backends. A dynamical library gathering all the Fortran dependencies is
also generated allowing access to efficient Fortran libraries implementing the FFT solver — used
in the DBS fixed-point algorithm for instance (see Sect. 2.4.3). Python is particularly suitable
as an interface with the compiled languages and, therefore, enables the use of several computing
backends.

Another key point in the library design lies in its semantic decomposition into several levels
of abstraction that separate the abstract concepts — such as problems, operators, variables, and
domains — from the resolution methods. In this sense, the highest level of abstraction allows the
user to manipulate objects that closely resemble mathematical concepts, regardless of the archi-
tecture or discrete models. The lower levels of abstraction, on the contrary, address the concerns
of variable discretization, resolution algorithms, method implementations, data storage aspects,
etc. The advantage of such decomposition is that there is a strong cohesion between each level
of abstraction but a weak coupling in the sense that various implementation methods can coexist
to ensure higher flexibility of the overall code. For instance, the available implementations for a
diffusion solver are FFT in Fortran, Python, and OpenCL, while the abstract concept of diffusion
operator exists independently of these implementations. This makes it particularly convenient and
flexible to investigate several combinations of numerical methods from the user side, but also to
develop efficiently new features from the developer’s perspective.
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Figure 2.1: Comparison between a multi-core CPU and GPU architecture [143].

The entire code is, therefore, structured around the operator-splitting strategy that defines the
different operators involved in a problem (at a high level of abstraction), and afterward, enables the
discretization of these operators, which are solved using the most appropriate numerical method (at
a lower level of abstraction). The overall problem is, afterward, described through an acyclic graph
that formalizes the operator interactions in the splitting formulation (e.g. see [111, 113, 143]).

From the code development perspective, one has to deal with the lower levels of abstraction,
which means defining the operator class and methods with their inherited properties regarding the
object-oriented programming concept. The operator backends are also implemented in parallel as,
for instance, a Python and OpenCL backend of a given operator can coexist at the same time. At
this stage, one encounters, inter alia, the operator discretization including ghost-point manage-
ment (especially useful for parallelization based on domain decomposition), memory request pol-
icy with temporary buffer requirements, and memory order (C-contiguous or Fortran-contiguous).
In the OpenCL context, the compute backend of the operator can also drive memory exchanges
between the several hardware architectures (see Sect. 2.6.2). Finally, HySoP also integrates nu-
merous unit tests whose purpose is to provide a validation of the class or operator implementations
with respect to analytic expressions or other implementations. These unit tests can be performed
after the library installation, and are useful to check whether the continuous integration of addi-
tional classes within the platform does not disrupt the existing ones.

Overall, HySoP is a highly flexible HPC framework well-suited for solving algorithms based
on operator splitting strategy, and semi-Lagrangian formalism. On top of that, the library handles
high-order remeshing methods including directional splitting, as introduced in Sect. 2.4.3, that can
be supported on GPU devices using OpenCL standard.

2.6.2 A hybrid CPU-GPU computational framework

The library also offers the possibility to deal with parallelism on hybrid architectures, including
various computing devices such as CPU and GPU. In addition to its high flexibility developed
in Sect. 2.6.1, HySoP holds promise as an effective computational framework able to handle an
overall hybrid approach. This resulted from successive developments of the original library, which
have rendered possible the integration of OpenCL standard and the implementation on hardware
accelerators [90, 143, 287]. This was also made possible by the emergence, in the 2000s, of
the so-called General-Purpose computing on Graphics Processing Units (GPGPU) concept, which
integrates the GPU as a CPU processing partner targeting accelerated performances.

First of all, one needs to understand the main characteristics of a hybrid architecture providing
multiple computing devices, along with the differences between the CPU and GPU. A GPU device
allows a very high speed of elementary and independent tasks that are carried out in parallel by
the numerous computing units, namely the Arithmetic Logical Unit (ALU) in Figure 2.1. While
a GPU device presents a much larger number of cores than a CPU, the available memory on a
GPU is usually smaller and gathered between several ALU, which puts forward the motivation
to use hybrid architecture. Indeed, the CPU processors benefit on the contrary from access to
the overall system memory, also called the host memory directly accessible from the host proces-
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Figure 2.2: Micro-benchmarking strategy on OpenCL kernels [143].

sor. Memory exchanges between the host CPU processor and the OpenCL devices are achieved
through a Peripheral Component Interconnect Express (PCIe) connection, which can lead to some
latency due to sending back-and-forth computational data. The efficient management of such data
exchanges is an intrinsic part of the overall performance analysis in hybrid computing frameworks.

Direct GPU programming requires specific languages and among the most widely developed
are CUDA and OpenCL [107, 165, 300]. Currently, the latter is mainly used within the HySoP
platform: first, it benefits from an open-source version of the standard even if optimized im-
plementations are developed for specific devices (NVIDIA, Intel, ...), and also presents higher
portability across a variety of hardware. Indeed, OpenCL not only handles GPU programming
but also presents the advantage of supporting more heterogeneous devices, including multi-core
processors. Such a standard makes it possible to consider several levels of parallelism, namely
tasks and data parallelization.

Overall performance can largely vary across the different OpenCL platforms such that optimal
kernels need to be tuned depending on the target device, where a kernel here commonly refers
to a function executed on an OpenCL device. Optimizing the kernel parameters is, however, a
challenging problem and widely dependent on the hardware architecture [106]. In this sense, a
major improvement of the HySoP platform was to integrate automatic code generation and perfor-
mance auto-tuning in the OpenCL backends of the GPU targeted operators [143]. This involves
a micro-benchmarking strategy performed at the code runtime, which provides the best kernel
parameters according to the target OpenCL device and, thereby, ensures optimal use of the avail-
able resources. Such an auto-tuning process principle is illustrated in Figure 2.2 and guarantees
performance-portability and flexibility of the HySoP library. Once the kernel optimal parameters
are determined, one gets compiled OpenCL sources generated at the runtime, also called Just-
in-time compilation (JIT), through a code generation framework. Several methods can be used
to address code generation, among them Abstract Syntax Trees (AST) which is mostly used to
generate and vectorize code based on symbolic expressions (see Sect. 2.6.3).

Finally, data parallelization on distributed architectures is also handled within the HySoP li-
brary through domain decomposition, which splits the overall domain into multiple sub-grids
distributed to several processes [85]. Communication patterns between each process, and con-
sequently each sub-domain, are ensured via Message Passing Interface (MPI) and ghost layers
data exchanges. The latter is particularly useful for stencil-based numerical methods such as finite
differences or discrete renormalized PSE that require evaluation on the neighbors’ vertices. In this
sense, the sub-domain boundaries are extended with these additional ghost layers, whose number
depends on the stencil requirements.

The numerical simulations presented in Sect. 2.7.3 are conducted on the Pyrene Cluster at
the UPPA and benefit from the ability of the HySoP library to handle hybrid architecture. The
GPU accelerators available are 2 NVIDIA Tesla P100 graphic cards, whose memory bandwidth
for host-to-device and device-to-host exchanges relies on a PCIe of 16Gb/s, and device memory is
estimated at around 16GB. The simulations are performed using a single GPU node, and we also
account for data parallelization based on MPI domain decomposition involving four processes.
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2.6.3 OpenCL implementation of the PSE for heterogeneous diffusion

One of the objectives of this thesis consists in the improvement of the semi-Lagrangian method
presented in Sect. 2.4 to account for the heterogeneous diffusion of the chemical reactants through
a porous matrix in the context of reactive flow processes. In this section, we thus address the imple-
mentation within the HySoP platform of the discrete renormalized version of the PSE algorithm,
as introduced in Sect. 2.5.2. This aims to provide an efficient approximation for Archie’s law in
the context of CO2 mineral storage and, more broadly, to develop an overall DiffusionPSE class
in HySoP that could be extended to other applications. A GPU targeted version of the method is
developed with the OpenCL standard to benefit from the hybrid architecture of the computational
framework, as introduced in Sect. 2.4.1. The latter is validated against a reference CPU implemen-
tation based on the Python host backend, along with a unit test to guarantee the proper continuous
integration of this additional numerical method in HySoP.

The implementation process is, therefore, decomposed into several steps: a Python operator
was first integrated into the host backend, involving the lower levels of abstraction of the library.
One needs to develop the operator class that will be common to both Python and OpenCL imple-
mentations and, therefore, defines the main attributes of the operator independently of the compute
backend. These common attributes include the input and output fields — which are the concen-
tration fields Ck and the micro-porosity ε when considering the Lagrangian equation (2.20) —,
the diffusion matrix L, the support of the kernel σξ, the space steps in each direction and the
coefficients (c0, c1) of the matrix m introduced in equation (2.45). Indeed, as the latter matrix
coefficients mainly depend on the choice of the function θ (see Sect. 2.5.3), they can be regarded
as constant in the different implementations of the operator.

Concerning the Python backend, the class is inherited from the parent class HostOperator and
the main concerns are the ghost-point management and the implementation of the Python method,
which contains the proper execution of the PSE scheme. First, the number of ghost points in each
direction is constrained by the kernel support attribute — providing the minimal number of ghost
points required — and is processed individually for each field through the HySoP automatic ghost-
point management. This takes into account that only the input and diffusion matrix fields will
require ghost points, in this particular case, and also makes it possible to update their numbers with
respect to boundary conditions or domain decomposition constraints. The implementation of the
diffusion operator along with a PSE approximation is performed using a stencil data structure —
similar to finite differences schemes — along with Python slices depending on the kernel support
and indexing the local neighbors of the current mesh point. This can afterward be coupled with a
second-order Runge-Kutta scheme to address the overall diffusion problem.

For the OpenCL backend, and as introduced in Sect. 2.6.2, we focus on the code generation
technique which relies on symbolic representations of the operator variables and expressions. This
offers the possibility to efficiently generate stencil schemes on GPU devices based on elementwise
operations, allowing their distribution over the elements of the OpenCL index space. In this sense,
the OpenCL kernel consists of an instruction sequence, grouped in a list of symbolic expressions,
that will be executed on subdivisions of the compute resolution through data parallelism. Memory
coherency between the OpenCL index space and the host grid resolution is maintained thanks to
the pyOpenCL package, thus rendering communication easier between the discrete fields on the
host process and the OpenCL multidimensional buffers. This is especially significant because
structured data is not necessarily arranged in the same manner on the host and devices.

The approach developed in [111] and [143] when dealing with OpenCL stencil schemes, in
remeshing kernels implementation for instance, was to use a directional splitting to only treat one-
dimensional stencils in each spatial direction successively. This choice was relevant in the sense
that, for the remeshing formula, the n-dimensional case can be treated as a tensor product of one-
dimensional kernels. For the PSE method with spherically symmetric function θ, given by formula
(2.43), the directional splitting is, however, not suitable. Indeed, this would require a tensorial
PSE formulation that allows the splitting in efficient one-dimensional stencils, which is not the
case with the present formulation. We, therefore, use a prototype of a three-dimensional stencil
which is inherited from the stencil generator class and goes through the overall ξ-neighborhood in
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Figure 2.3: Mesh convergence analysis of the OpenCL implementation of the PSE method: Error
norm ∥Err∥RMS with respect to the mesh step size h for heterogeneous diffusion operator with a spatially
varying diffusion matrix L. The convergence analysis is performed for mesh resolutions going from 323 to
2563.

the PSE formulation (2.42).
A first unit test is developed to validate the Python backend implementation of the PSE opera-

tor using an analytic expression. We consider the approximation of a diffusion operator div(L∇f)
on a domain Ω ⊂ R3 with a spatially varying diffusion matrix

L(x, y, z) = (1 + cos2(x))I3

and a function f given by f(x, y, z) = sin(x) sin(y) sin(z). This ensures three-periodic boundary
conditions on the domain Ω =]− π;π[3. Direct computation of the exact solution provides

div(L∇f)(x, y, z) = −3f(x, y, z)− 5 cos2(x)f(x, y, z)

and a mesh convergence analysis is performed, studying the error norm against the mesh step h,
for mesh resolutions going from 323 to 2563. Introducing the discrete error vector Err, defined for
each point Xk ∈ R3 of the grid by

Errk := div(L∇f)(Xk)−Qξ · fh(Xk),

we compute for each mesh resolution the Root Mean Square (RMS) norm ∥Err∥RMS inherited
from the functional L2-norm on Ω. The value of Qξ · fh is defined on every particles by formulae
(2.26) or (2.42), despite the fact that fh is a measure function, that is to say a combination of Dirac
functions.

As theoretically expected in Sect. 2.5, we retrieve a second-order convergence curve presented
in Figure 2.3. Finally, the unit test was completed to include the validation of the OpenCL imple-
mentation. In this case, the test is performed with respect to the Python backend reference. These
kinds of unit tests are conducted for small mesh resolutions since they consist of short checks per-
formed right after the HySoP install. It does not break down if: first, the Python implementation
provides an error norm ∥Err∥RMS less than a given tolerance, and then if the OpenCL implemen-
tation provides an error norm — compared to the reference version in Python — less than a given
tolerance, for the discrete ℓ∞-norm.

The OpenCL operator performances have also been investigated on this unit test, measuring
the computational time of the diffusion operator approximation for several mesh refinements of
the 3D computational domain Ω. The measured times include kernel execution on GPU but do not
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Figure 2.4: Computational time analysis of the OpenCL implementation of the PSE method: The
analysis is performed for mesh resolutions going from 323 to 2563, for heterogeneous diffusion operator
with a spatially varying diffusion matrix L. All the measured times are expressed in milliseconds (ms) and
averaged over several evaluations of the PSE operator.

account for the communication latency due to data exchanges between the host process and the
GPU devices. The results are presented in Figure 2.4 and highlight a complexity in O(N), with
N the total number of grid points. Such a linear complexity is also characteristic of the particle
remeshing and Lagrangian advection steps in the general algorithm.

Overall, we benefit from the capacities of the HySoP library to generate efficient and ac-
celerated elementwise PSE operators based on symbolic and code generation approaches. The
OpenCL backend of the DiffusionPSE class, can subsequently approximate an overall diffusion-
reaction problem with spatially varying diffusion coefficients, coupling the previous PSE imple-
mentation with second-order Runge-Kutta numerical schemes. This makes it possible to address
the Lagrangian formulation of the chemistry, given by equation (2.20), globally on the GPU de-
vices. Indeed, in the operator splitting strategy developed in Sect. 2.4.3, the advection/remeshing
step can already be handled on GPU due to efficient directional splitting implemented within the
HySoP platform. In this sense, the DBS equation in its velocity-vorticity formulation is solved
in an Eulerian context through a fixed-point algorithm implemented on the host CPU while the
chemical convection-diffusion-reaction equations are fully implemented on GPU devices in their
Lagrangian formulation.

2.7 Precipitation and crystallization modeling for CO2 mineral stor-
age at the pore-scale

CO2 mineral storage in natural underground reservoirs, such as saline aquifers, involves competing
geochemical phenomena occurring at a large variety of scales. Among them, mineral dissolution
and precipitation play crucial roles. On one side, studying the dissolution of native carbonate
species, already present in the aquifers, provides insight into potential leakage issues and queries
the reservoir safety. On the other side, CO2 trapping under the form of carbonate precipitates
and crystals informs on the storage capacities of the reservoir. These geochemical processes also
induce changes in the macro-scale properties of the subsurface material, including permeability
and porosity evolutions, that need to be investigated to ensure sustainable management of the
reservoir structures.

In this section, we develop mathematical models for calcite precipitation and crystallization
at the pore scale, with special considerations on the reaction rate expressions arising in the PDE
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Figure 2.5: Distribution diagram of aqueous carbonate species against pH solution [53, 304]. Species
distributions are represented as a fraction of total dissolved carbonate. The grey dotted lines highlight the
transition pH of the chemical equilibria from equation (2.61).

system (2.11). Numerical simulations are performed within the HySoP platform along with PSE
treatment of the heterogeneous diffusion on accelerated GPU devices and address porous sample
arising from X-ray µCT observations. This enables the investigations of macro-scale property
changes along the CO2 mineral trapping on real 3D rock geometries, which is an important com-
ponent in the overall study of CO2 storage.

2.7.1 The Transition State Theory: from Dissolution to Precipitation Modeling

Dissolution of the injected CO2 in the aqueous phase of deep underground reservoirs will affect
the pH of the formation water through the following series of chemical reactions:

CO2 (g) −−⇀↽−− CO2 (aq) (2.61a)

H2O+CO2 (aq) −−⇀↽−− H2CO3 (2.61b)

H2CO3 −−⇀↽−− H+ +HCO3
− (2.61c)

HCO3
− −−⇀↽−− H+ +CO3

2−. (2.61d)

Indeed, once the CO2 has dissolved into water and established a first equilibrium under the form
of the weak acid H2CO3, the H2CO3 species dissociates successively to bicarbonate HCO3

– and
carbonate CO3

2 – ions as the pH increases. These chemical reactions are pH-dependent, and the
distribution evolutions of all these carbonate species are displayed in Figure 2.5 against the pH of
the solution. In alkaline media, the chemical reactions (2.61c) and (2.61d) can, therefore, join
together to read as follows:

H2CO3 + 2OH− −−⇀↽−− CO3
2− + 2H2O (2.62)

such that carbonate ions are the main carbonate species present in the solution. Such transforma-
tions in the ionic species composition of the aquifer water will considerably impact the original
mineral structure through chemical rock-water interactions such as carbonate dissolution and pre-
cipitation.

Historically, the dissolution and precipitation kinetics of calcite in the context of CO2 injection
have been studied since the 1970s, both from the experimental and theoretical sides. Plummer
et al. investigated the influence of several parameters on the forward reaction rates of calcite
dissolution under far-from-equilibrium conditions [245]. Among these parameters, one finds the
partial pressure of CO2 denoted PCO2 , the hydrogen ions activities denoted aH+ — directly related
to the pH — and the temperature. Their experimental work was subsequently extended by Chou et
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al. in 1989 using a fluidized bed reactor to compare the dissolution kinetics mechanisms between
various carbonate minerals — involving inter alia calcite, aragonite, and dolomite — at 25℃ [77].
One should notice that these experiments were conducted under laboratory conditions in terms of
pressures and temperatures, in opposition to the current abilities of in situ experiments to manage
realistic reservoir conditions [20, 317]. Nonetheless, these experimental studies have highlighted
three kinetic mechanisms occurring simultaneously in the process of calcite dissolution due to
CO2 injection. Such mechanisms are given by the following chemical reactions:

CaCO3 (s) + H+ K1−−⇀↽−− Ca2+ +HCO3
− (2.63a)

CaCO3 (s) + H2CO3
K2−−⇀↽−− Ca2+ + 2HCO3

− (2.63b)

CaCO3 (s)
K3−−−⇀↽−−−
K−3

Ca2+ +CO3
2− (2.63c)

where the notations Ki, i = 1...3 refer to forward reaction rate constants, depending on the tem-
perature [61, 245, 244], andK−3 is the backward reaction rate corresponding to the reverse calcite
precipitation process in equation (2.63c). They experimentally identified both the forward and
backward reaction rates and established the validity of kinetic models for carbonate dissolution
and precipitation in comparison to thermodynamics theoretical considerations.

Meanwhile, mineral reaction rates were, indeed, theoretically investigated by Lasaga in
1981 [156] using the Transition State Theory (TST), originally formulated by Erying in
1935 [114]. Since then, this formalism has successfully been extended [1, 157, 285] and widely
accepted in current kinetic geochemical models [113, 206, 282]. In this context, the reaction rates
are commonly expressed as the product of far-from-equilibrium terms, involving the activities
of the chemical species in solution, with an affinity term written as a function of the Gibbs free
energy change ∆G for close to the equilibrium conditions. Considering the chemical model of
calcite dissolution (2.63) suggested by Plummer et al. [245] and Chou et al. [77] and the vector of
concentrations C, the reaction rate arising from TST writes:

R(C) = As(K1aH+ +K2aH2CO3 +K3)

(
aCa2+ aCO3

2−

Keq
− 1

)
(2.64)

where Keq is the equilibrium constant of the reaction, also called the solubility product, As is the
reactive surface area of the mineral — in m−1. The notations a• = γ•C• refer to the dimensionless
species activities with γ• and C•, respectively, their activity coefficients and molar concentrations
— whose unit is mol.m−3. It follows that the micro-porosity changes reads as:

∂ε

∂t
= −υR(C), (2.65)

given equation (2.8) from Sect. 2.3.2 and the relation CCaCO3(s) = (1 − ε)/υ. Denoting by
Q = aCa2+ aCO3

2− the ion activity product, one obtains the following relation between Q and the
Gibbs energy change [1, 157]:

∆G = RT ln

(
Q

Keq

)
(2.66)

with T the temperature in Kelvin K, andR the universal gas constant in J.mol−1.K−1. The sign of
the reaction termR(C) in (2.64) is driven by the sign of ln

(
Q/Keq

)
that is negative for dissolution

and positive for precipitation, which is consistent with the convention from Sect. 2.3.2.
From now on, we focus on the concern of calcite precipitation and crystallization resulting

from CO2 injection based on the series of homogeneous reactions (2.61) along with the mineral-
solute interaction given by equation (2.63c). In practice, we enforce a pH greater than 10.33 such
that the carbonate ions CO3

2 – are the predominant species (see Figure 2.5). This enables the re-
striction of the overall set of chemical reactions (2.61) to merely consider the equation (2.63c) in
the sense that we assume the intermediate reactions as instantaneous and conservative — without
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loss of quantity of matter. Such an assumption is acceptable, in practice, since fluid-mineral reac-
tion rates are usually slower than intra-aqueous reaction rates. Therefore, the initial concentration
of carbonate ions, denoted CCO3

2−(x, t = 0) for (x, t) ∈ Ω× [0, Tf ] following the notations intro-
duced in Sect. 2.3, is directly related to the partial pressure of injected CO2 by means of the Henry
law. The latter states, at a constant temperature, the relation between the amount of dissolved gas
in a solute and its partial pressure based on Henry’s law constant denoted KH , which depends on
the gas and temperature, such that for the CO2 at 25℃ one gets:

CCO2(aq) =
PCO2

KH
≃ CCO3

2−(x, t = 0) (2.67)

where KH = 29.41L.atm.mol−1. Considering such an alkaline medium — with pH > 10.33 —
also results in the treatment of the chemical reaction (2.63c) as completely irreversible which cor-
responds to far-from-equilibrium conditions modelling the calcite precipitation chemical reaction:

Ca2+ +CO3
2− K−3−−−→ CaCO3 (p) (2.68)

where the subscript p here refers to the precipitate form of the calcite product. In this case, the rate
constants K1 = K2 = 0 in (2.64) and the affinity term dependent on the Gibbs energy satisfies
the condition ln

(
Q/Keq

)
≫ 0 — corresponding to a supersaturated solution — so that we obtain

an overall reaction rate for the calcite precipitation which reads as:

Rprec(C) = K−3As aCa2+ aCO3
2− (2.69)

where K−3 = K3/Keq, which theoretically results from the TST law in equation (2.64) and has
been experimentally validated, inter alia, by Chou et al. in [77].

Therefore, in the following, we rely on the kinetic formulation of the mineral precipitation
given by equation (2.69), considering the rate laws determined by laboratory experiments [77]
and normalized by the reactive surface area of the mineral As [245]. As the geometry evolves,
the micro-porosity ε and the reactive specific area As, associated with the porous structure, also
change. These evolutions are taken into account in the reaction rates management and the hydro-
dynamic modeling of the reactive process (see the overall PDE system (2.11) in Sect. 2.3.2). The
calcite precipitation reaction is subsequently supplemented with a crystallization model which is
elaborated in the next Sect. 2.7.2.

2.7.2 Crystal growth modeling: a two-step process

Crystal growth kinetics involves complex mechanisms occurring simultaneously and depending,
inter alia, on the concentration of the constituent ions in the solute, but also on attachment fre-
quencies of the ions or precipitates to lattice growth sites [216, 320]. Indeed, the growth rate is first
controlled by advection and diffusion of the Ca2+ and CO3

2− ions to the crystal surface coupled
with a surface adsorption process that largely hinges on the crystal lattice shape. For instance,
the growth of crystal aggregates is more likely to occur near kinks or corners [216, 334]. Mineral
heterogeneity of the pore interface is also an important factor that influences the crystal growth
location and morphology, providing preferential sites [174]. This first process is commonly called
primary heterogeneous nucleation, for which the crystallization reaction is catalyzed by the solid
surface of the porous medium. In the absence of solid interface, crystal clusters can also form
spontaneously in the solute, which is known as primary homogeneous nucleation and is closely
related to the supersaturation state of the solution in order to initiate the nucleation — namely
satisfying the condition ln

(
Q/Keq

)
≫ 0. Finally, secondary nucleation occurs in the presence

of existing crystals and is more likely to generate large crystal aggregates at the mineral surface.
Overall, calcite crystallization results from a combination of all these previous phenomena.

In this section, we consider a two-step crystallization process wherein calcite precipitates,
also referred to as nuclei and denoted CaCO3(p), are first generated within the solute during
the so-called nucleation stage according to the chemical equation (2.68). These precipitates are
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Figure 2.6: Overall reactive diagram of the reversible chemical equation (2.63c) and two-step calcite
crystallization process. This diagram represents the chemical interactions between the different ionic
species (Ca2+ and CO3

2 – ), the calcium carbonate precipitate CaCO3(p) and mineral crystal CaCO3(s) and
accounts for both dissolution, precipitation crystal growth processes. In the numerical applications (see
Sect. 2.7.3), we mainly address the green part of this diagram that highlights the two-step modeling of the
calcite crystallization process.

subsequently aggregated at the mineral surface through adsorption phenomena during the crystal
growth step. This sequential crystallization process is described in Figure 2.6, where the notation
CaCO3(s) stands for the calcite crystal. In the applications developed in Sect. 2.7.3, we consider
that the solid matrix of the 3D porous sample has a similar carbonate nature to the calcite crystal
generated, though rock mineral heterogeneities can be integrated into the numerical framework as
prospects. From now on, we refer to precipitation as the primary homogeneous nucleation and we
investigate the surface attachment of the calcite precipitate, CaCO3(p), based on an autocatalytic
process to model calcite crystal growth, referred to as the secondary surface nucleation in Figure
2.6. In the reaction scheme from Figure 2.6, we account for the precipitate diffusion and advection
until the solid boundary where it leads to crystal growth through adsorption phenomena. Besides,
we neglect the direct crystallization process induced by the solute diffusion to the solid matrix and
the so-called primary heterogeneous nucleation.

In the literature, two distinct approaches are mainly developed when considering precipitation
and crystal growth modeling altogether. The former can be regarded as "deterministic models"
relying on the TST modeling developed in Sect. 2.7.1. Noiriel et al., for instance, investigated the
effects of pore-scale precipitation on permeability through a combination of X-ray µCT experi-
ments and "deterministic" modeling [219, 222]. They also derived crystal growth rates directly
from the µCT through an imaging comparison between the beginning and end of the precipitation
experiment. In this case, only two µCT scans were performed, and therefore, the process should be
understood as distinct from 4D µCT experiments incorporating time dynamics. Such experimen-
tal identification of crystal growth rates can, however, be prone to intrinsic imaging limitations
introduced in Sect. 1.1.3 from Chapter 1 and result in wide discrepancies in the reaction rate
estimations. Nonetheless, their results showed satisfactory agreement between the experiments
and numerical experiments for precipitation processes into fractures [219]. Alternative modeling
approaches lie in the probabilistic nature of nucleation or crystal growth and are referred to as
"probabilistic models" [118, 194, 223]. Wolthers et al., for instance, developed a probabilistic
approach for calcite crystal growth based on the nature of the kink sites depending on their ionic
affinities and attachment frequencies of the constituent ions [320]. Estimations of such adsorp-
tion frequency ranges can also be found in the literature [79, 215]. Finally, while it is commonly
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Figure 2.7: Impact of the probability of attachment rate Pad for crystal growth modeling. Synthetic
representation of a porous medium, at the voxel size, with a residual micro-porosity in the porous matrix
ΩS estimated to ε0 = 5%. The probability values are computed based on equation (2.70) and include the
one-neighborhood — e.g. the red square — of the current mesh point — marked by the red value.

established experimentally that crystal growth occurs preferentially at kinks and corners of the
surface lattice, few models incorporate the geometrical dependency of the crystal aggregation in
the reaction rates [310].

In the present thesis, we propose a new approach coupling a deterministic model for the pre-
cipitation, which directly depends on the supersaturation ratio following the TST formalism, and
a probabilistic formulation of the crystal growth process. The latter accounts for the adsorption
frequencies of the precipitate to the growth sites with a coefficient, quantifying the physical proba-
bility of attachment rate, denoted Pad, which relies on a locally averaged mineral volume fraction.
This makes it possible to include the geometrical dependency in the crystal growth reaction rate
through the relation

Pad = (1− ε)ε, (2.70)

where ε is the micro-porosity average on the one-neighborhood of the current point. If we denote
by Wh = 1[−h,h]/2h the averaging kernel over [−h, h], then ε = ε ∗ W⊗3

h so that (1 − ε)ε
is enhanced in the layer close to the fluid/solid interface and depending on the solid proportion
in the neighborhood (see Figure 2.7). This is a convolution-based formulation appropriate for
a crystallization process and inspired by the gradient-based technique from [182] and [279] that
locates the first layer on the solid side and is suitable for dissolution processes. In practice, the
local averaging kernelWh is approximated by its pointwise discretization W̃h = (δ−h+δ0+δh)/3.

The resulting probability values are represented in Figure 2.7 for a synthetic example, where
the residual micro-porosity in ΩS is estimated to ε0 = 5%. In this formalism, one obtains the
crystal growth reaction rate, which is expressed as:

Rcrys(C) = KcCCaCO3(p)(1− ε)ε (2.71)

with Kc the adsorption frequency — in s−1. The adsorption coefficient Kc can have several
meanings, based either on surface or volume balance. It can be a front velocity (in m.s−1) times
a specific area (in m−1), or a volume production rate of crystal (in m3.s−1) per unit of volume (in
m3). Depending on the formulation, the coefficient Pad has to be normalized accordingly. In order
to keep a general formulation, the present study will focus on the impact of the term Kc(1− ε)ε,
so that the possible normalization of Pad is hold by the coefficient Kc. Moreover, we can see a
posteriori on Figure 2.7 that coefficient Pad is in the range 0.3–0.7, which is close to unity, hence
does not require a strong normalization. If needed, such a normalization can be done using the
method given in section 2.2 of [279].
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Finally, we define the vector of concentrations C =
(
CCaCO3(s), CCaCO3(p), CCO3

2− , CCa2+
)

and consider the reactions rates Rprec(C) and Rcrys(C) respectively given by formula (2.69) and
(2.71). Overall, the calcite crystallization modeled as a two-step process of precipitation and
crystal growth, according to the reaction scheme from Figure 2.6, writes:

−div(2µD(u)) + µκ−1
b

(1− ε)2

ε2
u = ε(f −∇p), in Ω×]0, Tf [

∂CCO3
2−

∂t
+ div

(
F (CCO3

2−)
)
= −Rprec(C), in Ω×]0, Tf [

∂CCa2+

∂t
+ div

(
F (CCa2+)

)
= −Rprec(C), in Ω×]0, Tf [

∂CCaCO3(p)

∂t
+ div

(
F (CCaCO3(p))

)
= Rprec(C)−Rcrys(C), in Ω×]0, Tf [

∂CCaCO3(s)

∂t
= Rcrys(C), in Ω×]0, Tf [

ε = 1− υCCaCO3(s), in Ω×]0, Tf [

+ adequate boundary and initial conditions, along with div u = 0

(2.72)

where F (C•) = ε−1uC• − α•(ε)∇εC• is the advective and diffusive flux given the notations
from Sect. 2.3.2. The reactive hydrodynamic model (2.72) ensures that part of the precipitate,
generated in the solute through homogeneous nucleation, is transferred to the mineral surface by
adsorption. One should notice that in this model the precipitate CCaCO3(p) is both advected and
diffused. Such diffusion enables to account for the interaction of the precipitates with potential
unresolved roughness or features in the porous matrix ΩS .

In the next Sect. 2.7.3, we apply this two-step crystallization model to DNS of CO2 mineral
trapping into a real rock geometry at the pore-scale. We investigate the morphological changes
in the porous matrix structure, the clogging of pore throats, and the evolution of the macro-scale
properties, namely the porosity and permeability.

2.7.3 DNS of CO2 mineral trapping into calcite

The present section focuses on the effects of calcite crystallization on changes in the pore geom-
etry, macro-properties, and flow at the pore scale in the context of CO2 mineral trapping. We
consider a pore-scale geometry obtained by microtomography measurements from Sheppard and
Prodanovic in 2015 and freely available on the Digital Rocks data portal, which includes inter
alia µCT datasets of limestone, glass bead pack, and Castlegate sandstone [272]. The numerical
simulations are performed on the Castlegate geometry at a resolution of 1283 with a voxel size
of 5.6µm, which represents a numerical sub-sample of about L = 0.7168mm. We assume, as
previously introduced in Sect. 2.7.2, that the porous matrix is of identical mineral nature as the
crystal generated along the reactive process and, thereby, consider that the sub-sample is com-
posed of calcite. While including mineral heterogeneities as perspectives, we here hypothesize the
homogeneity of the mineral structure within the sample. Finally, the specific area is numerically
estimated for this sample to get, at the initial state,As = 8300m−1, and is afterward updated along
the reactive process.

Numerical simulations are performed under atmospheric conditions in terms of pressure and
temperature and rely on the experimental identification of the reaction rate constants, arising from
the literature [77]. We consider isothermal conditions with a temperature of T = 25℃ and an
injection of CO2 with a partial pressure of PCO2 = 3.15e−2 bar = 2.96e−2 atm — which is
about 100 times greater than the partial pressure of CO2 in the atmosphere. Given Henry’s law
constant for the CO2 at 25℃, and under the assumption of a highly alkaline medium — with
pH > 10.33 — we estimate from equation (2.67) that the initial concentration of carbonate ions
is given by CCO3

2−(x, t = 0) = 1e−3mol.L−1.
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The calcium initial concentration is subsequently determined based on the equilibrium con-
stant Keq = 10−8.48 [77, 244] to ensure a far-from-equilibrium precipitation regime given by
the supersaturation condition Q ≫ Keq. In this sense, we assume that the medium pore space
is initially filled with a saturated solution wherein the initial concentration of calcium ions is
CCa2+(x, t = 0) = 1e−1mol.L−1. Therefore, in our case, the saturation in calcium ions Ca2+

initially present in the domain is not a limiting factor of the precipitation reaction, and we consider
a continuous calcium injection that maintains the supersaturation constraint. Actually, in order to
maintain this supersaturation, we will assume that the concentration in Ca2+ remains constant at its
initial value. Comparable initial conditions and assumptions have been employed in investigating
dissolution experiments by Maes et al. [188], wherein the sample core was initially flooded with
a brine solution that had previously reached equilibrium with supercritical CO2.

Regarding the reaction rate constant for the precipitation, we rely on the experimental identi-
fication from Chou et al. [77] such that:

K−3 =
K3

Keq
=

6.6e− 7

10−8.48
= 199mol.m−2.s−1

while adsorption frequencies Kc commonly encountered in the literature range from 1e3 to
1e8 s−1 [79, 215, 310, 320]. In practice, we set for the numerical simulations Kc = 1e3 s−1,
the molecular diffusion Dm = 1e−9m2.s−1 for all the species and the prescribed flow rate
u = 1e− 3m.s−1.

Investigating the different precipitation patterns and regimes relies on the definition of well-
established characteristic dimensionless numbers, namely the Peclet and (second or catalytic)
Damköhler numbers respectively denoted Pe and DaII [219, 279, 284]. However, in the context
of the joint precipitation and crystal growth modeling, we define two distinct Damköhler num-
bers characterizing each process and respectively denoted Da

prec
II and Da

crys
II . These dimensionless

numbers are subsequently defined as:

Pe =
uL

Dm
, Da

prec
II =

K−3γCO3
2−AsL

2

Dm
and Da

crys
II =

KcL
2

Dm
(2.73)

where u and L are respectively the characteristic velocity and length of the sample, and the activity
coefficient of the carbonate ions is γCO3

2− = 1e−3m3.mol−1. The characteristic length L can
be related to pore size [284], though it is commonly set as L =

√
κ0 provided an experimental

or numerical estimation of κ0 [279]. The latter alternative is applied here, with an estimation of
κ0 = 2e−11m2 for the porous sample considered.

Therefore, the first crystallization regime we investigate is characterized by the following di-
mensionless numbers Pe = 4.47, Da

prec
II = 33.034 and Da

crys
II = 20. Precipitation and crystalliza-

tion of calcite lead to a significant decrease in the macro-scale permeability and porosity, resulting
from flow path disruptions at the micro-scale through partial or complete clogging of pore throats.
This can also affect the roughness of the mineral interface and the pore-size distribution of the
sample and, thereby, contribute to influencing the sample hydrodynamics properties. In particular,
we observe these effects at the pore scale in Figure 2.8 along the reactive process and for sev-
eral physical times t going from 2h45 to Tf = 6h56. On the right side of Figure 2.8, we depict
partial views of the porous sample’s morphology, illustrating the changes in pore structure over
the reaction time, along with the micro-porosity field ε within the porous matrix ΩS . On the left
side, we represent along a slice in the main flow direction (taken at z = −0.0168mm), the local
variations on the micro-porosity with respect to the initial state — before the reaction process —
given by ε(t) − ε(0). Initially, we notice that higher micro-porosity variations are more likely
localized at the mineral interfaces but also near thin pore throats. These variations subsequently
lead to pore-clogging and reorganization of the main flow pathway (see Figure 2.8c). In Figure
2.9b, we investigate the effects of such micro-scale changes on the evolution of the petrophysi-
cal properties at the macro-scale, namely the porosity ϕ and permeability κ0 defined in equations
(1.1) and (1.2) from Chapter 1. The results are consistent with the expected decrease along the
CO2 mineral trapping process but also highlight sharp permeability drops, which characterize the
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a) Time t = 2h45

b) Time t = 5h30

c) Time t = Tf = 6h56

Figure 2.8: Time evolution of the sample geometry and micro-porosity at the pore scale, illustrating
pore-clogging effects. Slice at z = −0.0168 of the porosity variations ε(t)− ε(0) in the fluid region of the
pore space for various times t, on the left (dark color displays the initial solid matrix). Partial view of the
pore space structure as an isosurface of ε(t) for several times t, sliced with the micro-porosity values inside
the porous matrix, on the right.
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a) Micro-porosity evolution

b) Macro-scale porosity ϕ
and permeability κ0

Figure 2.9: Evolution of the sample properties along the reactive process: a) Micro-porosity evolution
represented by an isosurface of the porosity variation ε(Tf ) − ε(0) at half of its maximum value. Results
after nearly 7h of precipitation and crystal growth, illustrating a non-uniform compact regime following the
natural ramification of the sample. b) Evolution of the macro-scale properties, porosity ϕ and permeability
κ0, along the two-step crystallization process from Figure 2.6.

pore-clogging phenomena. Finally, in order to identify more clearly the crystallization pattern
in this particular regime, we display in Figure 2.9a an isosurface of the micro-porosity variation
between the final and initial times. This illustrates that micro-scale variations occur preferentially
in a compact and non-uniform manner in the first inlet part of the domain while following the
individual ramifications in the pore structure.

We subsequently investigate the impact of different dominant regimes on the overall two-step
crystallization process. To do so, we consider both transport dominant cases with Pe = 4.47 > 1
and diffusion dominant cases with Pe = 0.447 < 1, coupled with two different crystal growth
regimes characterized by Da

crys
II = 2 and Da

crys
II = 20. One should notice that the effect of

precipitation Damköhler Da
prec
II changes are not analyzed since this number, characterizing the

first homogeneous nucleation regime, is a limiting factor of the crystallization process from Figure
2.6. In this sense, we assume in all the previous cases that Da

crys
II < Da

prec
II which guarantees a

supersaturation state suitable to the development of crystal aggregates on the mineral surface.
To the best of our knowledge, considering that the crystallization regime can be driven by three

distinct dimensionless numbers is one of the contributions of the present thesis. Indeed, most of
the regime diagrams presented in the literature mainly characterize precipitation patterns accord-
ing to the Pe and Da

prec
II dimensionless numbers, which implies neglecting the effects of nuclei

adsorption at the mineral surface in the different regime configurations [297, 327]. However, our
results indicate that both homogeneous calcite nucleation (the precipitation step in Figure 2.6)
and growth stages are important in the development of precipitation and crystallization patterns.
In particular, we establish that the crystal growth Damköhler number Da

crys
II has a non-negligible

impact on precipitation pattern and porosity variations along the reactive process, regardless of
the other dimensionless numbers Pe and Da

prec
II commonly investigated. Indeed, Figures 2.10b

and 2.10d highlight two distinct crystallization regimes at similar Pe and Da
prec
II , but with a ten

times smaller adsorption frequency Kc in Figure 2.10b which impact the Da
crys
II . Figure 2.10b

shows that, for a small adsorption frequency Kc, the calcite precipitate is uniformly generated and
advected along the main flow path direction (due to the transport dominant regime with Pe > 1)
while the micro-porosity changes are minimal. This illustrates that the main flow path is main-
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a) Pe < 1 and Dacrys
II = 2 b) Pe > 1 and Dacrys

II = 2

c) Pe < 1 and Dacrys
II = 20 d) Pe > 1 and Dacrys

II = 20

Figure 2.10: Impact of the different crystallization regimes, with respect to the dimensionless num-
bers Pe and Dacrys

II , on the precipitate patterns and porosity changes along time. Slice integrals of the
precipitates and macro-porosity — computed over 2D YZ directional slices — plotted with respect to the
main flow path direction coordinates x (in millimeters mm) and where each curve represents a distinct time
in the reactive process.
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tained since few calcite nuclei aggregate to the mineral surface. By increasing the adsorption
frequency in Figure 2.10d, the precipitate formation concentrates on the inlet of the domain and is
less subject to advection, while the micro-porosity changes become significant. On one side, this
highlights pore-clogging that prevents further transport of the calcite nuclei. On the other side, we
also notice a backward increase in calcite precipitates that accumulate behind the clogging after
some time. The same analysis holds for Figure 2.10a and 2.10c, except we consider a diffusion
dominant regime with Pe < 1, which means that the precipitate transport is reduced so that the nu-
clei formation and micro-porosity changes are even more constrained to the inlet boundary of the
domain. The results presented in Figure 2.8 and 2.9 correspond to the crystallization regime iden-
tified by Pe > 1 and Da

crys
II = 20 in Figure 2.10d. In this sense, this confirms that the permeability

drops observed in Figure 2.9b are characteristics of pore-clogging effects.

2.8 Concluding remarks and toward Uncertainty Quantification

The current chapter focused on developing an efficient DNS framework to address reactive flows
at the pore scale in the context of CO2 mineral storage. Indeed, the injected CO2 will interact with
the aquifer structure and eventually lead to mineral trapping in the form of calcite precipitates and
crystals. These processes are interesting to study at the pore scale to ensure a comprehensive anal-
ysis of the local rock-fluid interactions and evolving pore structures. This can subsequently trans-
late into meaningful estimations of the macro-scale properties changes and measure the impact of
the geochemical processes on the natural underground reservoirs. In particular, precipitation and
crystallization lead to a significant reduction in the macro-scale permeability and porosity, which
result from partial or complete pore clogging and thus from a reorganization of the flow path at
the micro-scale.

In this chapter, we present a reactive hydrodynamic model that consistently couples a La-
grangian formulation for the reaction equations with a grid-based approach for the flow using the
DBS equation with the superficial velocity formalism. This semi-Lagrangian method is addressed
through a splitting operator strategy coupled with high-order remeshing steps for grid-particle in-
terpolations. This efficiently incorporates into the hybrid numerical framework HySoP and results
in a CPU-GPU implementation of the method. From this perspective, one of the main contribu-
tions of this chapter is to incorporate in this existing workflow a robust estimation of the hetero-
geneous diffusion operator arising from Archie’s law term in the reactive system. This is achieved
through a particle-based method, namely a discrete renormalized PSE scheme, that makes it pos-
sible to fully address the superficial gradient approximation under some stability constraints.

From a conceptual perspective, we developed a new crystallization model that efficiently com-
bines a classical deterministic TST approach of the nucleation process with a probabilistic view of
the crystal aggregation to the pore surface. This enables us to account for spatial and geometrical
dependency in the crystal growth modeling through a probabilistic attachment rate depending on
local mineral volume fraction. In this sense, we integrate the modeling of preferential growing
sites that largely hinge on the surrounding pore arrangement. To the best of our knowledge, such
considerations are here accounted for the first time to model crystallization processes in complex
3D geometries at the pore scale. Investigating probabilistic attachment rates based on the sur-
rounding pore structure also ensures reliable prediction of pore-clogging at the pore scale. Finally,
we demonstrate that the proper characterization of crystallization regimes both depends on the
nucleation process and crystal aggregation. Indeed, we exhibit that the two commonly considered
dimensionless numbers, Pe and Da

prec
II , are not sufficient to explain clogging effects and precipi-

tation patterns. A novelty of the present manuscript is, therefore, that the crystallization regimes
are characterized by three dimensionless numbers that include the effects of nuclei adsorption to
the pore surface.

At the same time, this chapter also demonstrated strong implications in the overall reactive
system of several parameters that can be subject to a wide range of discrepancies. In particular,
morphological features and kinetic parameters, such as the micro-porosity ε, specific area As, rate
constants Ki, and adsorption frequencies Kc, have a significant impact on the reaction rates and
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the dynamical patterns. Experimental determination of these parameters can range over several
orders of magnitude (e.g. the adsorption frequencies) and result in highly different regimes that
drastically affect the estimation of the macro-scale properties. As mentioned above, the adsorption
frequencies Kc commonly found in the literature range from 1e3 to 1e8 s−1 [79, 215, 310, 320].

Considerable uncertainties are, therefore, associated with the reaction rate estimates [190,
205]. In this sense, one needs to account for these uncertainties to ensure a reliable calibration of
the morphological and kinetic parameters to match with laboratory experiments. This also aims
to guarantee trustable macro-property changes due to the geochemical process of CO2 mineral
storage. The rest of the manuscript addresses such uncertainty quantification concerns. In order
to investigate such estimations under the perspective of inverse problems and uncertainty analysis,
Chapter 4 develops a methodological framework, and Chapter 5 applies it to calcite dissolution for
uncertainty quantification on the micro-porosity field ε and kinetic parameters. Future work will
focus on the crystallization/precipitation process with this methodology. Uncertainty assessment
on the macro-scale permeability deviation is developed in the next Chapter 3.
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3.1 Motivation

Ensuring reliable calibration of model parameters in Direct Numerical Simulation (DNS) of reac-
tive flows is crucial to provide suitable evolution of the macro-scale properties due to geochemical
processes. Indeed, it is commonly established that discrepancies in the permeability estimates,
for instance, will strongly affect the flow and overall behavior of the aquifer for CO2 storage as-
sessment. In this sense, detailed reservoir characterization, especially in terms of permeability
and porosity distributions, is required for proper DNS of CO2 storage at the macro-scale. The
availability of such data is, however, generally restricted in the literature, time-consuming, and
difficult to obtain from laboratory measurements [212]. Uncertainty quantification assessment of
the reservoir spatial heterogeneities has thus garnered increasing interest over the past decades.
The effects of these uncertainties at the reservoir scale can be achieved, inter alia, through sensi-
tivity analysis of the (relative or absolute) permeability distribution in the aquifer structure. This
aims to study and characterize potential leakage issues resulting from permeability discrepancies
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in highly heterogeneous aquifers or to assess reservoir performances submitted to these uncertain-
ties [138, 195].

Meanwhile, spatial variations in microscopic morphology at the pore scale also have a consid-
erable influence on the upscaled permeability [27, 278]. This consequently raises concerns about
quantifying reliable permeability ranges resulting from pore-scale imaging techniques, such as X-
ray microtomography (X-ray µCT). Zhao et al. [339], for instance, parametrized the randomness
of reconstructed pore space through Karhunen-Loève expansions and evaluated the permeability
response to this variability in the micro-pore structures. Sub-resolved pores are, indeed, one of
the X-ray µCT imaging issues that can induce significant bias in the petrophysical properties es-
timations. Several methods can though overcome this challenge by accounting for the effects of
under-resolved morphological characteristics. This ranges from downsampling [109] and deep
learning approaches providing super-resolved segmented µCT images [16] to uncertainty esti-
mates. We focus on the latter approach since permeability distributions obtained by uncertainty
quantification could, afterward, be efficiently transferred at the field scale for sensitivity analy-
ses in reservoir simulations. Investigating the impact of pore-scale morphological bias and how
microscopic uncertainties propagate to the petrophysical properties is a fundamental topic neces-
sary to ensure reliable management of CO2 storage at the macro-scale. This is, however, still a
challenging task that raises concerns in the research community.

This chapter describes how the upscaled absolute permeability is impacted by slip effects at
the fluid/solid interface, in the context of single-phase flow at the pore scale. While this effect is
well quantified in microchannels or simple geometries, the present study focuses on its average
effect in real rock matrix geometries, by means of high-resolution X-ray microtomography. Due
to the inherently finite resolution of the technique, uncertainties exist on the true position of the
fluid/solid interface and its morphological features below the image resolution, namely the unseen
roughness. We demonstrate that both these morphological uncertainties can be interpreted as a slip
condition, and consequently focus on how a characteristic slip length can impact the computed
absolute permeability. To that extent, we provide an estimation of meaningful bounds on the
slip coefficient estimations which makes it possible to quantify permeability deviations submitted
to pore-scale imaging limitations. In this chapter, uncertainty assessment mainly relies on an
upscaling approach of the sub-resolved features, and two strategies are employed to quantify the
permeability deviations: the full deviation based on slip boundary conditions, and the theoretically
established deviations from asymptotic analysis. Three high-definition 3D geometries are used as
practical examples of the methodology and as a baseline for comparison of the two permeability
deviation ranges. Results are discussed in terms of relative deviation versus specific surface area
and lead to quantities of interest involving the linear deviation of permeability. We eventually
confirm apparent macroscopic effects arising from the second-order deviation on the permeability
in real rock geometries.

Two of these geometries were acquired by µCT scans performed at the DMEX Center for X-
ray Imaging at UPPA (UAR 3360 CNRS), by Professor Peter Moonen. Part of the work presented
in this chapter has been published in Transport in Porous Media with Prof. Peter Moonen and
Prof. Philippe Poncet [238].

3.2 Context and positioning

According to Encyclopædia Britannica, permeability is "the capacity of a porous material for
transmitting fluid; it is expressed as the velocity with which a fluid of specified viscosity, under
the influence of a given pressure, passes through a sample having a certain cross-section and
thickness" [45]. This deceivingly simple definition hides a complex reality at the pore scale, even
when only a single-phase fluid is involved. In particular, this hinges on correctly characterizing
the complex 3D morphology of real porous media whose local heterogeneities can spread over
multiple length scales [153].

Advances in X-ray µCT makes it possible to non-destructively determine the inner morphol-
ogy of the porous samples considered, characterizing by distinct grey levels the local X-ray atten-
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uation of the medium (see Sect. 1.1.3 in Chapter 1). As the attenuation is material-dependent, the
pore space can easily be separated from the surrounding matrix through a segmentation process.
The resulting dataset subsequently combines with pore-scale numerical models [211, 264, 318].

Pore-scale models of flow and transport roughly fall into one of two broad categories: a) Direct
Numerical Simulations and b) Pore Network models (PNM) [198] (see Sect. 1.2.1 in Chapter 1).
At low Reynolds numbers, both solve the same fundamental governing equations, although in the
first DNS case, the true geometry of the porous medium is employed. On the contrary, in PNM the
actual pore space is regarded as a simplified structure with a number of pores interlinked by flow
channels (see Figure 1.4 in Chapter 1). Consequently, DNS based on Stokes and Navier-Stokes
equations promises to be more precise, at the cost of being computationally more expensive. On
the other hand, PNM models based on Hagen-Poiseuille formula are highly efficient, and their way
of conceptualizing the true geometry offers a mental framework for transposing the conclusions
of fundamental research on idealized flow channels, into real rock geometries. Combining high-
resolution X-ray µCT scans and advanced DNS approaches offers the opportunity to study the
evolving petrophysical characteristic under geochemical processes.

However, as introduced in Sect. 1.1.3, limitations exist in the X-ray µCT imaging process that
may affect the medium effective properties computation, independently of the numerical method
choice. In this chapter, we focus on the morphological uncertainties arising from these imaging
limitations, namely the presence of unresolved features and the approximation in the location of
the pore space walls induced by blurred interfaces (e.g. see Figure 1.3 in Chapter 1).

In particular, we address the question of the reliability of the permeability value induced by
these morphological uncertainties, both mathematically translating into models of slip flows. The
unseen roughness of a channel wall and the exact position of that wall — and hence the channel
dimensions — will generally be visible only in an approximate sense on an X-ray µCT scan of
a Representative Elementary Volume (REV) of the material. This is not to say that sufficient
resolution cannot be obtained, but rather that real pore media covering a wide range of pore scales
generally requires a compromise between the volume being investigated and the scan resolution.
The former has to be large enough to be representative, whereas the latter has to be small enough
to observe enough details.

The present chapter consequently focuses on quantifying the uncertainty of the computed per-
meability by providing a range of possible values instead of a single value and accounting for
the deviation between the true morphology of the pore space and the assumed one. We focus on
absolute permeability, which means that we consider the single-phase flow of a Newtonian fluid
through the pore space in an impermeable rock matrix. We will employ a slip length formalism
and use the variation in slip length as a way to represent the uncertainty of the geometry. While
slip formalism has been intensively studied [95, 229] and developed for porous media [158, 160],
we focus on its practical aspects and use for real three-dimensional rock geometries.

The main contributions of this work are summarized below:

1. We quantify uncertainty on the absolute macro-scale permeability by means of a slip length
formalism on µCT scans of porous samples.

2. The first-order linear and second-order deviations on the permeability are established
asymptotically and compared to the full deviation based on Navier boundary conditions.

3. The ratio between the relative linear deviation and the specific area is defined as a non-
dimensional quantity of interest, likely providing a representativeness criterion of the porous
samples.

4. We show that the second-order deviation is meaningful to explain the apparent permeability
macroscopic effects.

5. We provide a numerical framework to investigate, in 3D complex porous geometries, the
uncertainty ranges on the permeability due to X-ray µCT imaging limitations, wherein we
define the absolute permeability in terms of intervals instead of explicit values.

The remainder of the chapter is organized as follows: In Sect. 3.3, we introduce the slip
formalism for upscaling unresolved features and exhibit the two methods considered to get the
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permeability ranges. The governing equations, namely the stationary 3D Stokes equation in the
pore space involving the slip condition, are defined in Sect. 3.3.2, along with the construction of
the tangent and normal fields on the fluid/solid interface. The numerical method developed for
solving efficiently the Stokes system with slip boundary conditions is detailed in Sect. 3.5 and
validated in Sect. 3.5.3 on a cylindrical synthetic geometry, including a convergence study and a
global analysis of the absolute permeability deviation. In Sect. 3.4, the focus is given on estab-
lishing the first-order linear deviation by means of a two-scale asymptotic development. Sect. 3.6
first provide insight on the choice of a representative slip length value β based mainly on the voxel
size and adjusted to account for the unresolved solid fraction or the biased interface location. We
finally investigate several types of real porous rock with very different pore structures, briefly pre-
sented in Sect. 3.3.3. The samples considered for this study are an unconsolidated Sandpack, and
two types of sandstone: a Bentheimer sandstone and Castlegate outcrop sandstone. A discussion
on the relative deviation for representative samples, and non-dimensional quantities of interest in-
troduce Sect. 3.7. We also compare the permeability range resulting from the full deviation and
the theoretically established linear deviation and exhibit non-linear effects on the apparent macro-
scale permeability. Sect. 3.7.2, thereby, concludes our analysis by considering the second-order
deviation on the Castlegate sandstone.

3.3 Upscaling unresolved features with slip formalism

This section motivates the use of slip length formalism for upscaling the unresolved morphological
features arising from X-ray µCT limitations. This aims to provide a mathematical framework for
managing uncertainties on the upscaled absolute permeability.

3.3.1 Slip modeling and permeability uncertainties

In an isolated flow channel, fluid flow encounters a resistance caused by viscous shear stresses
which are dependent, among many things, on the roughness of the channel material. The per-
meability of the channel wall itself also plays a role [58, 204, 289], with more permeable walls
increasing the slip velocity on the porous wall. Furthermore, chemical effects and hydrophobic
properties may also cause slip [162, 269], as well as trapped gas or liquid along the pore walls [46],
clearly quantified for fully wetting films [99]. Although these situations involve slip conditions
illustrating physical processes, the idea of using a slip-length formalism to describe flow over
a rough surface has also been investigated for years. Slip modeling hence is available for both
physical applications and formal upscaling of sub-resolved pore features.

Historically, the relation between roughness and slip length had been proposed by Navier as
early as 1823 [213] and established via computation by Achdou et al. [2]. Nowadays, for an ideal
impermeable rock matrix whose pore space is filled with a Newtonian fluid, the linear formulation
of the slip, based on the Stokes equations with no-slip-through u · n = 0 at the solid boundary, is
quite conventional [162, 163, 229]. In particular, its tangential components are inherited from the
relation

u− βD(u)n = 0 (3.1)

where D(u) = (∇u + ∇uT )/2 is the shear-rate tensor, that is to say, the symmetric part of the
velocity gradient, n is the unit vector field normal to the fluid/solid interface and directed toward
the fluid region, and β is the slip length. The hydrophobic and/or slip length reported in literature
ranges typically from 200nm [78] to 700nm for multi-phase flows [46] and even 950nm [140].
Slip lengths in the range 500 − 860nm have also been observed on a mica/water interface with a
roughness of 15nm [162].

Meanwhile, many researchers since Navier have attempted to elucidate the precise relationship
between permeability and roughness. Numerical studies have focused on various, mostly periodic,
roughness patterns such as trenches (ridges, transverse or not) [43, 97, 163], pillars [98, 140] or
holes [333]. This highlighted that for a given kind of pattern, the pitch and the liquid-solid contact
area are the two most important parameters for determining the slip length, i.e. the extrapolated
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distance relative to the surface where the tangential velocity component vanishes [164]. Degruyter
et al. [102] showed that the permeability of laminar and turbulent gas escape during the ascent
of rhyolitic magma in volcanic conduits depends on the - unresolved - surface roughness. Sim-
ilarly, Noiriel et al. [222] found that permeability changes are linked to changes in pore surface
roughness, induced by calcite precipitation. As the surface roughness itself was difficult to ob-
serve directly, they use the ratio between the surface areas before and after calcite precipitation
as a proxy and rely on thresholding coupled with erosion–dilatation to separate the different ma-
terials and define the surface area [221]. Permeability deviations resulting from under-resolved
roughness are intrinsically related to slip modeling and can thus be investigated through upscaling
approaches.

Overall, the uncertainties on the geometrical features of pore space, whether it is unresolved
roughness or approximate pore wall position, can be modeled using a slip length. When both
uncertainties occur simultaneously, as is generally the case, Daly and Roose [96] showed by means
of homogenization that the surface roughness is the key property of the micro-scale geometry
which determines the hydraulic conductivity at the macro-scale. Consequently, we intend to study
the morphological uncertainties arising from X-ray µCT and quantify its impact on the absolute
permeability deviations for single-phase flow using slip modeling.

The present method provides permeability ranges according to two strategies based on the
following formalism. Firstly, we estimate the reference absolute permeability κ0 by solving nu-
merically the Stokes problem (3.4) — introduced in the next Sect. 3.3.2 — with adherent boundary
conditions. We then evaluate the permeability deviation κβ using the slip interface condition (3.1)
with a meaningful characteristic slip length. Such a choice of a value for a maximum slip length
is developed in Sect. 3.6.1, and leads to the confidence interval δK := [κ0, κβ] for the computed
permeability. We naturally call this first uncertainty estimation the raw permeability deviation or
the full permeability deviation.

Furthermore, another method to evaluate such an uncertainty interval is to consider the linear
momentum L0 of κβ for a given porous material of permeability κ0. This is introduced in the
linear expansion of the permeability κβ , given by:

κβ = κ0 + βL0 +O(β2). (3.2)

The range of permeability then writes δK := [κ0, κ0 + βL0], which is denoted as the linear
permeability deviation. This approach is especially convenient when one needs to change the value
of β or apply a different coefficient of security to it. Although it could be possible to estimate L0

numerically by its approximation (κβ − κ0)/β, this method can be unreliable due to strong noise
in the estimation of κβ with respect to β, inducing non-linear effects (e.g. see Figure 3.11 for the
Castlegate sandstone in Sect. 3.6.3). The latter approach can be clarified by considering Poisson’s
equation on the 1D domain [0, l] of length l with a constant driving force f , an adherent condition
in l and a slip condition u − βu′ = 0 in 0. In this toy example, we readily find κ0 = l2/12, its
linear deviation L0 = l/4, and a remainder scaling as β2.

More generally, our aim is to provide from a representative slip value β the two uncertainty
ranges

δK = [κ0, κβ] or δK = [κ0, κ0 + βL0] (3.3)

for the absolute macro-scale permeability, instead of a single value κ0 whose confidence level is
often questionable [105]. Each of our practical study cases is performed with a single meaningful
slip length value β since any other deviation induced by a different slip length can be resolved by
extrapolation, especially with the linear expansion feature. We formally establish in Sect. 3.4 the
asymptotic analysis method for determining the linear deviation L0.

3.3.2 Governing equations

We introduce a computational domain Ω divided into a solid part ΩS , representing the solid matrix
of the porous medium, and a fluid part ΩF = Ω∖ΩS , corresponding to the pore space (Figure 3.1).
The latter is assumed to be a smooth connected open set. In practice, real rock geometries can
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Figure 3.1: General representation of the computational domain Ω. The notations are introduced in
Sect. 3.3.2. The geometry is laterally constrained by a solid layer, the top and bottom surfaces by a fluid
layer to be able to impose periodic boundary conditions on ∂Ω = ΓS ∪ ΓF in the three spatial directions.
The image shows some apparently unconnected pores. This is because it presents a 2D slice through the
3D connected pore network. In practice, the full 3D geometry is considered.

present unconnected pores, yet they do not contribute to the flow. The preceding hypothesis,
therefore, remains valid and avoids computing a (zero) velocity field in the unconnected pores. We
denote the computational domain boundary by ∂Ω and use ΓF = ∂Ω ∩ ΩF and ΓS = ∂Ω ∩ ΩS

to refer to the fluid and solid parts of the computational domain boundary, respectively, such that
∂Ω = ΓF ∪ ΓS . The internal fluid/solid continuous interface is defined by Σ = ∂ΩF ∖ ΓF . The
inward normal vector n at each point of the pore interface is oriented towards the fluid part of the
sample and is well-defined, assuming sufficient regularity on ΩF . This condition is satisfied if the
voxel sizes are sufficiently small in comparison to the pore dimensions.

In this chapter, we focus on the reliable numerical simulation of microfluidic slip flows in
three-dimensional porous rocks. For typical fluids and given the small dimensions of pore throats
(micrometer scale or less), we are dealing with very low Reynolds number flows. In this flow
regime, the dynamic momentum conservation law for the fluid phase, known as the Navier-Stokes
equation, simplifies to the quasi-stationary Stokes equation. On the other hand, the fluid/solid
interface featuring unresolved surface roughness can be elegantly modeled by a smooth interface
with a slip boundary condition [229]. This formal approach, however, requires an accurate descrip-
tion of the boundary conditions at the fluid/solid interface, relying for instance on a two-domain
formulation, as introduced in Sect. 1.2.1 in Chapter 1.

We, therefore, consider the following three-dimensional incompressible Stokes equation in the
fluid domain ΩF , subjected to a downward pointing force field f , with a slip boundary condition
at the interface Σ: 

−µ∆u+∇p = f, in ΩF

div u = 0, in ΩF

u− βTD(u)n = 0, on Σ

u and p periodic on ΓF

(3.4)

with u the fluid pore-scale velocity, p the pressure, T = I − n ⊗ n the projection operator on
the tangential components, µ the dynamic viscosity assumed to be constant, and β > 0 the slip
coefficient. We impose three-dimensional periodic boundary conditions on ∂Ω since rock samples
are typically constrained in a solid casing with a fluid layer on top and bottom when permeability
tests are conducted (see Figure 3.1). Provided the considered volume is sufficiently large to be
representative, the lateral solid boundaries do not impact the results. The boundary conditions at
the pore interface Σ are split according to the normal and tangential parts of the velocity and en-
sure, respectively, the impermeability of the interface and the slip along the tangential directions.
In literature, two formulations can be found for the slip condition on the tangential velocity com-
ponents: using either the velocity gradient whose formalism was detailed in [2] and [54], or the
Navier condition involving the shear tensor, as considered in (3.4).
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After segmentation of the µCT data, a binary dataset is obtained, with 1 for the solid phase and
0 for the liquid phase, that can mathematically be described by the function χS . This separates
the pore space from the surrounding matrix for each voxel and defines the pore interface on a
computational grid directly based on the µCT scans. In this sense, the cells of the computational
domain coincide with the voxels of the images. In order to express the slip in equation (3.4), we
then define the normal field n from the characteristic function of the solid phase χS . In fact, the
normal vector computation at the interface relies on the convolution principle with a Gaussian
kernel chosen as

Gσ(X) = e−(X·X)/2σ2
(3.5)

with (X · X) the usual scalar product on R3 and a given standard deviation σ = h or 2h, where
h is the computation grid step. An approximation of the inward unit normal n — oriented toward
the fluid domain ΩF — is then given by

n|Σ ≃ −
∇(χs ∗ Gσ)
∥∇(χs ∗ Gσ)∥

. (3.6)

with ∇(χs ∗ Gσ) = χs ∗ ∇Gσ. Assuming that Ωs bounded, we indeed have χs ∈ L1(R3) and
on the other hand, Gσ ∈ C∞(R3) with all its partial derivatives of order one which are bounded.
Theoretically, χs ∗ ∇Gσ is thus C1(R3) and the normal vector is well-defined at each point of the
interface Σ.

We also introduce τk, k ∈ {1, 2} the tangential vectors to set the Robin/Navier boundary
condition on the tangential velocity components. These vectors are computed such that (n, τ1, τ2)
is a direct orthonormal basis locally on the interface, meaning that if n × ek ̸= 0 with ek ∈
(e⃗x, e⃗y, e⃗z) a generator, we get:

τ1 =
ek × n
∥ek × n∥

and τ2 = n× τ1, (3.7)

where (e⃗x, e⃗y, e⃗z) are the R3 usual canonical basis vectors. These normal and tangential fields are
used to define the projection operator T = I − n ⊗ n in the system (3.4), which is equivalent to
Tu = −n× n× u with n variable in space along the fluid/solid interface. It is noticeable that the
slip condition u− βTD(u)n = 0 in (3.4) expresses the tangential slip

u · τk = β(D(u)n) · τk

on the two tangential directions of the fluid/solid interface Σ (for k = 1, 2), and at the same time
one obtains the no-slip-through condition

u · n− β(TD(u)n) · n = u · n = 0

on the normal direction.
Furthermore, we consider a dimensionless formulation of the Stokes system (3.4) using the

non-dimensional spatial variables X∗ = X/L referred to as relative coordinates, where X =
(x, y, z) are the absolute coordinates and L is a characteristic length linked to the physical scale
of the problem. The dimensionless Stokes problem is thus written:

−∆u∗ +∇p∗ = f∗, in ΩF

div u∗ = 0, in ΩF

u∗ − β∗TD(u∗)n = 0, on Σ

u∗ and p∗ periodic on ΓF

(3.8)

where u∗ = u/U depends on the characteristic velocity U , p∗ = Lp/µU , f∗ = fL2/µU and
β∗ = β/L.

The macro-scale permeability tensors K∗ ∈ M3,3(R) are then determined from the dimen-
sionless pore-scale simulations through homogenization by:

ϕ < u∗ >ΩF
= K∗ < f∗ >ΩF

(3.9)
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Figure 3.2: Probability density function of the grey levels in the raw µCT image of the Sandpack
sample: the dashed line provides the segmentation threshold between the pore space and the solid matrix.
The signal is normalized so that the image sensor values range from 0 to 1 for the maximum measurable
intensity.

where< . >ΩF
represents the average in the fluid domain, ϕ the sample porosity, and ϕ < u∗ >ΩF

are the so-called superficial velocities [250] corresponding to their respective Stokes problems:
the velocity u∗ can be obtained by adherent (β = 0) or slip (β > 0) boundary conditions at the
fluid/solid interface. The definition (3.10) involves the source term f∗ of the equation (3.8), for
which∇p∗ has zero mean value due to the periodic boundary conditions. An alternative definition
of the permeability could be ϕ < u∗ >ΩF

= K∗ < −∆u∗ >ΩF
, but most of the works in the

literature consider the driving force. If the driving force is included in the pressure with shearing-
sheet or hydrostatic Dirichlet boundary conditions, then the permeability can be expressed by
ϕ < u∗ >ΩF

= K∗ < ∇p∗ >ΩF
.

The porosity is numerically estimated by taking NF /NV with NF the number of grid points
such that χs = 0 in the reference computational domain Ω and NV the total number of mesh
points in the sample, excluding the casing.

In this work, we focus on the permeability estimate in the main flow direction, namely we
consider an isotropic permeability case K∗ = κ∗I , and we can thus estimate κ∗ induced by a
vertical driving force fz based on the vertical velocity component uz:

κ∗ =
ϕ < uz >ΩF

< fz >ΩF

, (3.10)

yielding to κ∗0 or κ∗β . This is compatible with the solid casing constraint on the lateral domain
boundaries. The permeability estimations are obtained using such a dimensionless formulation
and the absolute permeabilities are then computed based on the dimensional relation κ• = L2κ∗•.
From this point forward on, we will work on the non-dimensional problem but the star notation
will be omitted for the sake of readability.

3.3.3 Test cases for validation and sample geometries

Several porous sample geometries are considered to quantify the permeability uncertainties in
Sect. 3.6. The geometries considered are of different natures, each having its own interest and
objective. First, a single-pore corresponding to a cylindrical test case is studied. As an analytical
solution exists for this particular geometry, this offers an interesting opportunity for validation
of the numerical method developed in Sect. 3.5.3. Next, three real geometries are considered: a
Bentheimer sandstone (in Sect. 3.6.2), a Castlegate sandstone (in Sect. 3.6.3) and a Sandpack (in
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Sect. 3.6.4). All three datasets are obtained by X-ray tomography and are of comparable quality.
Two of them were acquired at the DMEX Center for X-ray Imaging at UPPA (UAR 3360 CNRS),
namely the Bentheimer and Sandpack samples, while the Castlegate is freely available in the
Digital Rocks data portal [272].

The primary objective of these test cases is to illustrate the model performance on a range
of real samples featuring different morphological characteristics. The key difference between
both sandstone samples lies in the average pore size, which is much larger for the Bentheimer
than for the Castlegate. Besides, the Sandpack has the advantage to present a pore space that
is topologically very different from both sandstones along with a much higher porosity. Both
aspects are interesting to study for comparisons on permeability deviations and enable verifying
the robustness of the model for different flow configurations.

Apart from the morphological differences, the selected samples also present differences in
terms of representativeness. In particular, the considered volume of the Bentheimer sandstone was
intentionally selected smaller than the REV. On the contrary, both other material geometries were
representative: e.g. with 512 cells in each direction and a voxel size of 5.6µm for the Castlegate.
In addition to the first objective, we aim to investigate whether the analyzed sample volume must
have a representative size and to which extent this impacts the permeability deviations.

The X-ray µCT imaging technique is used to characterize the morphologies of each porous
medium in 3D at the micron scale. This technique relies on the material-specific attenuation of
an X-ray beam when traversing a sample. By probing the sample from different angles and, each
time, recording the intensity of the transferred beam, one can spatially reconstruct the regions with
higher and lower attenuation. These results are represented under the form of a three-dimensional
tensor containing the local attenuation coefficients, whereby each tensor entry corresponds to a
voxel, i.e. a three-dimensional pixel having a given lateral dimension. In a greyscale tomographic
scan, the minimum signal then corresponds to the least attenuating areas, namely the pore space,
while the maximum signal refers to the most attenuating areas characterizing the solid matrix.
At the DMEX center for X-ray imaging, one disposes of two tomographs, a Bruker Skyscan 1172
and a Zeiss Xradia Versa 510, respectively used to obtain the Bentheimer and the Sandpack dataset
(source: https://imagingcenter.univ-pau.fr).

The X-ray dataset of the Bentheimer rock has a physical voxel size of around 2.2µm and
consists of 1000 images of 1000 × 1000 voxels. The numerical sample studied in Sect. 3.6.2 is
extracted from this experimental dataset and the simulations are performed at a resolution of 256
cells in each direction. The numerical sample has thus a physical size of about L = 0.56mm con-
strained in an impermeable casing. The 3D Sandpack dataset itself is based on 3201 independent
X-ray images of a 0.768mm sample, acquired over an angular range of 360◦ with a 24s exposure
time per image. The reconstructed geometry has a voxel size of around 1.5µm and results in a
grid-based dataset sizing 512 cells in each direction, which is used in the application Sect. 3.6.4.

The datasets used were filtered and segmented prior to being used as input for the model. The
filtration was done with an edge-preserving 3x3 median filter and aimed to reduce the image noise
while avoiding smoothing the interfaces. The segmentation into phases was based on threshold-
ing, where the threshold corresponds to the local minimum of the (normalized) histogram of the
dataset. This is illustrated in Figure 3.2 for the Sandpack sample. More sophisticated image pro-
cessing techniques exist, but in the scope of this chapter, we favored a minimalist approach to data
processing to demonstrate that this is sufficient for the proposed model.

3.4 Linear deviation of permeability and asymptotic expansion

The first approach to quantify the uncertainty on the permeability is (i) to estimate the permeability
to no-slip flow κ0, and then (ii) to impose a small slip length β — compared to the domain size
— and estimate the resulting permeability κβ . The permeability interval δK = [κ0, κβ] can
be used directly as a first type of confidence range whether the value taken as the slip length is
considered realistic. The second type of confidence range relies on the linear deviation which can
be approximated as L0 ≃ (κβ − κ0)/β, provided that the slip length is sufficiently small in order

https://imagingcenter.univ-pau.fr
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to avoid the noise in the evaluation of κβ .
The aim of this section is to show that linear deviation can also be computed accurately in a

straightforward fashion by solving a Stokes equation with non-homogeneous Dirichlet boundary
conditions. To do so, we focus on the asymptotic development of the solution to the Stokes
equation subject to a Navier boundary condition, with β a small parameter compared to the image
size, so as to obtain

κβ = κ0 + βL0 + β2R(β) (3.11)

with a bounded remainder R(β). This results in an estimation of the uncertainty interval δK =
[κ0, κ0 + βL0] for the absolute permeability subject to a possible slip length β.

3.4.1 Asymptotic expansion problem setup and notations

To simplify the readability, we will set the problem in the fluid part ΩF with the no-slip-through
condition on its boundary Σ and slip one on the tangential components. This gives the following
equations:

−∆uβ +∇pβ = f, in ΩF (3.12a)

div uβ = 0, in ΩF (3.12b)

Tuβ − βTD(uβ) · n = 0, on Σ (3.12c)

uβ · n = 0, on Σ. (3.12d)

The goal of the asymptotic expansion is to provide a formal development of uβ and pβ with
respect to the slip length β. So, we need to consider a second-order asymptotic expansion given
by

uβ = U0 + βU1 + β2rβ (3.13)

for the velocity and
pβ = P 0 + βP 1 + β2qβ (3.14)

for the pressure, where the profiles U j and P j are obtained from Stokes problems at successive
orders, and rβ , qβ designate the respective remainders.

To characterize these profiles, we first introduce φ : ΩF → R+ the Euclidean distance to the
boundary φ(x) = dist(x,Σ). Assuming sufficient regularity on ΩF , typically a smooth bounded
open set, φ is smooth in the neighborhood ω ⊂ ΩF of Σ. In addition, it can be shown using
differential geometry tools that ∀x ∈ ω, ∥∇φ∥ = 1 and ∀x ∈ Σ, ∇φ(x) = n(x), where we recall
that n is the inward unit normal at the interface, oriented towards the fluid region. We can also
extend n by setting n(x) = ∇φ(x). As a formal step, we look for the velocity and the pressure in
the usual form of a two-scale asymptotic expansion [9, 65]:

uβ(x) ≃
∑
j≥0

βjU j

(
x,
φ(x)

β

)
, with U j(x, z) = U

j
(x) + Ũ j(x, z) (3.15a)

pβ(x) ≃
∑
j≥0

βjP j

(
x,
φ(x)

β

)
, with P j(x, z) = P

j
(x) + P̃ j(x, z) (3.15b)

where the boundary layer terms Ũ j and P̃ j and their derivatives must tend to 0 when z → +∞
and the interior terms U j and P

j depend only on x, that is at the limit of U j and P j when
z → +∞. We plug the asymptotic expansions (3.15a) and (3.15b) in the system of equations
(3.12) and formally assume that x and z are independent to identify the powers of β and thereafter
characterize the profiles U j and P j , for j = 0 and 1.

In order to differentiate the main operators involved, we introduce a generic function ψ, whose
values belong to R3 and R for the velocity and pressure profiles respectively, defined by ψ(x) =
Ψ
(
x, φ(x)β

)
. Simple calculations of the first derivatives provide for x ∈ R3:

∂ψ

∂xj
(x) =

∂Ψ

∂xj

(
x,
φ(x)

β

)
+

1

β

∂Ψ

∂z

(
x,
φ(x)

β

)
∂φ

∂xj
(x) (3.16)
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which can be written using standard notations as

∇ψ = β−1∇φ ∂zΨ+∇Ψ. (3.17)

In the same way, we can obtain the other operators as follows:

∆ψ = β−2∥∇φ∥2 ∂zzΨ+ β−1 (2∇φ · ∇∂zΨ+∆φ ∂zΨ) +∆Ψ (3.18)

divψ = β−1∇φ · ∂zΨ+ divΨ (3.19)

D(ψ) · n = β−1 1

2
(∂zΨ+ (∂zΨ · n)n) +D(Ψ) · n, on Σ. (3.20)

3.4.2 Stokes problems at successive orders

Along with the notations introduced in the previous Sect. 3.4.1, we identify the terms with the
same power in β for each equation of (3.12). We thereby characterize the Stokes problems at
successive orders satisfied by the profiles U j and P j .

We first consider (3.12a). At order β−2, it holds that−∂zzU0(x, z) = −∂zzŨ0(x, z) = 0 with
the assumption that Ũ0(x, z)→ 0 when z → +∞. Thus we get Ũ0 = 0 in ΩF × R+ and

U0(x, z) = U
0
(x). (3.21)

At order β−1 and considering directly that Ũ0 = 0, we infer that

−∂zzU1(x, z) +∇φ ∂zP 0(x, z) = 0. (3.22)

At order β0, we find that−∆U0−2∇φ·∇∂zU1−∆φ ∂zU1−∂zzU2+∇P 0+∇φ ∂zP 1 = f , hence
taking the limit z → +∞ and based on the assumption that tilda terms and all their derivatives
tend to 0 when z tends to +∞, we recover the Stokes equation

−∆U0 +∇P 0 = f, in ΩF (3.23)

and by taking the difference with the previous, we also have

−∂zzU2 − 2∇φ · ∇∂zU1 −∆φ ∂zU
1 +∇φ ∂zP 1 = 0. (3.24)

The latter can be generalized at any order k ≥ 1 given the following set of equations

−∆Uk +∇P k = 0, (3.25)

−∂zzUk+2 − 2∇φ · ∇∂zUk+1 −∆φ ∂zU
k+1 +∇φ ∂zP k+1 = 0. (3.26)

For equation (3.12b) at order β0, we get divU0 +∇φ · ∂zU1 = 0, noting that the term in β−1

involving only Ũ0 vanishes with (3.21). Taking the limit z tends to +∞, we infer the two relations:
divU0 = 0 in ΩF first and then,∇φ · ∂zU1 = 0. For the latter, we take∇φ = n and assume that
Ũ1(x, z) → 0 when z → +∞ to obtain Ũ1 · n = 0 in ΩF × R+. We can easily generalize and
thus the divergence-free condition provides the following set of equations for k ≥ 0:

divUk = 0, in ΩF (3.27)

Ũk+1 · n = 0. (3.28)

For equation (3.12d), we directly obtain Uk · n = 0 on Σ for k ≥ 0 and (3.12c) at order β0

provides U0 + 1
2

(
∂zU

0 + (∂zU
0 · n)n

)
= 0 which according to (3.21) reduces to

U0(x, 0) = U
0
(x) = 0, for x ∈ Σ. (3.29)

Finally, at any order k ≥ 1 we can obtain:

Uk(x, 0) +
1

2

(
∂zU

k(x, 0) + (∂zU
k(x, 0) · n)n

)
= D(Uk−1) · n, for x ∈ Σ. (3.30)
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At this step, we are able to characterize the profiles U j and P j . We have already obtained from
equations (3.23), (3.27), (3.29) that (U0, P 0) satisfy a no-slip Stokes problem with U0(x, z) =

U
0
(x) and P 0(x, z) = P

0
(x) for any z. This implies that the profiles (U0, P 0) do not depend on

z and hence reduce to one space variable.
Then, the tangential component of (3.22) reduces to −∂zzT (U1) = 0 (as a reminder T is

the projection operator on the tangential components as defined in Sect. 3.3.2). Hence, in the
same way as before, we obtain T (Ũ1) = 0. Combined with (3.28) for k = 0 we have Ũ1 = 0
in ΩF × R+ (since the tangential and normal parts are both equal to 0). On the normal part of
(3.22), there remains ∇φ∂zP 0 = 0 which gives, since P̃ 0(x, z) = 0 for any z, P̃ 0 = 0 and
thus P 0(x, z) = P

0
(x), as introduced before. Furthermore, equation (3.24) can now reduce to

−∂zzU2 +∇φ ∂zP 1 = 0 which resembles equation (3.22), so we can check in the same way that
P̃ 1 = 0.

Taking k = 1 in equations (3.25), (3.27) and (3.30), we obtain profiles (U1, P 1) that satisfy
a Stokes problem with slip: there exist functions U1 and P

1 such as U1(x, z) = U
1
(x) and

P 1(x, z) = P
1
(x). This implies that the profiles (U1, P 1) also reduce to one variable of space

and do not depend on z.
Assuming sufficient regularity on ΩF , supposed to be simply connected, and regularity of

the source function f , the Stokes problems respectively satisfied by the profiles (U0, P 0) and
(U1, P 1) admit unique weak solutions, up to additive constants for P 0 and P 1. They also satisfy
regularity results not developed here. We refer inter alia to the De Rahm theorem and to usual
elliptic regularity theorems for the existence, uniqueness, and regularity demonstrations of such
variational problems (e.g. see Sect. 4 in [19] and Sect. 3 in [10]). Finally, one would also have to
characterize the remainders rβ and qβ and provide higher order estimations, so that the first-order
asymptotic expansion can be strictly justified.

3.4.3 Linear deviation results summary

Overall, we have considered the second order asymptotic expansion of the solution to the Stokes
problem (3.12), with uβ = U0 + βU1 + β2rβ and pβ = P 0 + βP 1 + β2qβ . We have found that
the profiles U j and P j are characterized by the results from Sect. 3.4.2. The functions (U0, P 0)
hence satisfy the dimensionless no-slip Stokes problem written as follows

−∆U0 +∇P 0 = f, in ΩF

divU0 = 0, in ΩF

U0 = 0, on Σ

(3.31)

and the profiles (U1, P 1) satisfy the following Stokes problem:
−∆U1 +∇P 1 = 0, in ΩF

divU1 = 0, in ΩF

T U1 = T D(U0) · n, on Σ

U1 · n = 0, on Σ.

(3.32)

Finally, we obtain the dimensionless absolute permeability and its linear deviation by the first
order Taylor development (3.11) of (3.10), i.e.

κ0 =
ϕ < U0

z >ΩF

< fz >ΩF

(3.33)

and

L0 =
ϕ < U1

z >ΩF

< fz >ΩF

(3.34)

where U1 is the solution of (3.32) involving non-homogeneous Dirichlet boundary conditions,
i.e. a prescribed slip velocity. Similarly, we obtain R(β) ∝< rβ >ΩF

. One can recover the
dimensional permeability and its first order deviation respectively by κ0L2 and L0L.



3.5. Numerical method 69

3.5 Numerical method

Quantifying the permeability uncertainty ranges, whether it arises from the global or linear devia-
tion, requires accurately solving Stokes problems in complex 3D geometries with adherent or slip
boundary conditions. In particular, when considering the linear deviation, one needs to evaluate
the solution of coupled closure problems at successive orders to compute the slip correction terms.
We, therefore, require an efficient numerical method that reliably manages the interface boundary
conditions. In this section, we present the methodology used within the thesis and first validate it
on an analytical test case.

3.5.1 Boundary layer issues prevent effective management of slip

Many numerical methods exist to solve the Stokes equation in a domain with complex morphol-
ogy, including inter alia mesh-based and grid-based approaches (see Sect. 1.2.1 in Chapter 1
for an overview). Mesh-based methods include conventional finite elements [6, 34], finite vol-
umes [64, 206, 235], Lattice Boltzmann (LBM) [204], Arbitrary-Lagrangian-Eulerian (ALE) [281]
or Boundary Element methods [38, 175, 247]. Grid-based methods involve discrete operators on
structured grids such as finite differences, staggered [209] or not [135], spectral methods [230],
or finite volume [279] and LBM [145] on structured meshes. For successive evaluations of dif-
ferential operators — typically gradient and divergence — grid-based methods can either use a
collocation formulation or staggered grids. While the latter can allow a gain in accuracy, the
use of collocated grids easily aligns the computational points to the experimental datasets. Opti-
mized grid-based methods can also be coupled to other methods dedicated to the flow features to
be investigated: transport based on particle methods [36, 73] (e.g. see Sect. 2.4.2 in Chapter 2),
anisotropic diffusion for space-variable medium [113, 261], phase-field description of multi-phase
flows [159, 280] and its upscaling [158, 252], complex fluid and rheology [261], etc.

Furthermore, a common way to deal with flow modeling around obstacles or flowing inside a
complex geometry, especially the solid matrix of a porous medium, lies in penalized methods [25,
73, 135]. The latter avoids specific meshing constraints, such as separated meshes for the solid
and fluid parts or mesh refinement at the interface as illustrated in Figure 1.4a, by considering
the problem in the overall domain Ω. In particular, the Brinkman term used for the reactive flow
formulation in Chapter 2 acts as a penalization of the solid domain related to the micro-porosity
field ε through the Kozeny-Carman relationship (2.2). In the porous matrix, where the porosity
field value decreases until the residual lower bound, ε≪1 becomes a small penalization parameter,
which disappears in the pore space (see Sect. 2.3.1 of Chapter 2).

Penalization, however, gives rise to transition layer — scaling as
√
ε for a penalization in 1/ε

— at the solid/liquid interface that has been widely studied theoretically using asymptotic ex-
pansions [26, 65, 66]. Such a transition layer introduces a residual slip, due to the penalization,
possibly used to model flow onto a porous domain or roughness [95, 279]. However, this is unsuit-
able to study Stokes flows with prescribed slip boundary conditions. Indeed, penalization controls
the slopes only inside the solid region, but discontinuity of slopes of velocity at the fluid/solid
interface forbids satisfying the Navier boundary condition on the fluid side. Furthermore, the
slope in this boundary layer is O(

√
ε) while we need a quantitative setting of this coefficient in

order to quantify the impact of roughness and wall positioning on the macroscopic estimates. One
thus needs to evaluate the shift induced by the penalization at the interface to compare it to the
effective slip length, implicitly leading to constraints on the slip value β. In the context of the
present chapter, the Darcy-Brinkman-Stokes formalism hence presents a major disadvantage and
prevents effective management of the slip boundary condition. In this sense, we will not rely on
the numerical method presented in Chapter 2 but rather developed an alternative that mitigates
such boundary layer issues.
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3.5.2 A GMRES grid-based approach with fluid/solid interface description

In the present work, we consider a grid-based approximation of the stationary Stokes problem,
with the velocity and pressure fields as unknowns, using the restarted GMRES to solve the linear
system inherited from centered and one-sided finite difference schemes. In this formalism, detailed
hereafter, we encode and satisfy the Navier or Dirichlet boundary condition at the fluid/solid in-
terface, the Stokes equation in the fluid region, and a trivial identity inside the solid region, since
these points are not connected to the fluid and interface set of grid points. This makes it possible
to alleviate the boundary layer issues from penalization approaches, introduced in Sect. 3.5.1, and
ensures proper management of the slip boundary conditions.

Review of the GMRES method

In the following, we briefly review the general principles of the GMRES method, originally de-
veloped in 1986 by Saad and Schultz [260]. GMRES is an iterative method that aims at solving
a non-symmetric system of linear equations Aξ = b, with A ∈ RN×N a non-symmetric square
matrix and b ∈ RN . The method approximates the solution by a vector in a Krylov subspace with
a minimal residual. We define the Krylov subspace of order m related to this problem with respect
to the initial residual r0 by

Km(A, r0) = Span
{
r0, Ar0, ..., A

m−1r0
}

where r0 = b−Aξ0 and ξ0 ∈ RN is the initial iterate.
The GMRES algorithm provides an approximate solution that minimizes, at every time step,

the Euclidean norm denoted by ∥.∥ of the residual vector. The next iterate ξk is sought in the form
ξk = ξ0 + qk where qk ∈ Kk(A, r0) is the solution of the least squares problem:

min
q∈Kk(A,r0)

∥b−A(ξ0 + q)∥ = min
q∈Kk(A,r0)

∥r0 −Aq∥. (3.35)

First, the modified Gram-Schmidt Arnoldi algorithm is applied to build an orthonormal basis
{v1, ..., vk} for the Krylov subspace Kk(A, r0). It provides the following relationship:

AVk = Vk+1Hk, (3.36)

where Hk ∈ R(k+1)×k is an upper Hessenberg matrix whose only non-zero entries are the hij
elements generated by the Arnoldi process, and Vk+1 ∈ RN×(k+1) is an orthogonal matrix whose
columns are the orthonormal basis {v1, ..., vk+1}. Using this relation, it has been shown in [260]
that by setting q = Vky, the solution of the problem (3.35) is given by ξk = ξ0 + Vkyk, with yk
the solution of

min
y∈Rk

∥∥ ∥ro∥ e1 −Hky
∥∥ , (3.37)

where e1 is the first canonical vector of Rk+1. The above problem is generally solved using a
(Givens) QR decomposition of the Hessenberg matrix. The iterative process carries on until a
convergence criterion is reached, usually related to the residual norm.

Among the main convergence results of the GMRES method, we reiterate the following propo-
sition from [260]:

Property 2 Let A be diagonalizable such that A = XDX−1 and we denote Pm the space of all
polynomials of degree ≤ m and σ the spectrum of A. Then, the residual norm provided at the mth

step of GMRES satisfies
∥rm+1∥ ≤ ∥X∥ ∥X−1∥ ε(m) ∥r0∥, (3.38)

with ε(m) = min
p∈Pm,p(0)=1

max
λi∈σ

|p(λi)|.

Regarding memory requirements, the cost of the method rises as the Krylov subspace grows,
so in practice restarted methods are used to reduce the storage and orthogonalization costs. This
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means that the algorithm is restarted every m step, with m a fixed integer that sets the Krylov
subspace size, where the initial guess chosen for the restart is the final previous one, obtained
by minimizing the residual norm. This can be regarded as a preconditioning that speed up the
convergence. The convergence of the restarted GMRES(m) algorithm is also proven when A is a
positive real with an error bound derived from the above proposition. However, this result is not
consistent when A is not positive real, in which case the following theorem has been proven:

Property 3 Assuming that there are ν eigenvalues λ1, λ2, ..., λν of A with non-positive real parts.
Let the other eigenvalues be enclosed in a circle centered on C with C > 0 and with a radius R
where C > R. Then,

ε(m) ≤
(
R

C

)m−ν

max
j=ν+1,N

ν∏
i=1

|λi − λj |
|λi|

≤
(
D

d

)ν (R
C

)m−ν

(3.39)

with D = max
i=1,ν; j=ν+1,N

|λi − λj | and d = min
i=1,ν
|λi|.

In any case, the convergence is closely linked to the condition number of X and the eigenvalue
distribution: in particular, extremely small eigenvalues slow down the convergence.

Implementation choices

We introduce a uniform Cartesian grid, with a mesh step h, and a resolution of Nx, Ny, and
Nz points in each direction respectively. We also use a renumbering index to convert from 3D
numbering, with respect to the indices (i, j, k), to 1D labeling of the mesh points indexed by
l = i+Nx(j+Nyk). As stated before, the raw datasets are segmented to obtain the characteristic
function χS on the Cartesian grid points. We then construct a discrete version of the continuous
interface Σ, which is only visible in an approximated way due to the uncertainties of the pore wall
position and unseen roughness. To do so, we identify the mesh points Xijk := (xi, yj , zk) ∈ R3

which lie in the solid matrix ΩS and have at least one neighbor in the pore domain. We denote this
discrete set as the first solid layer ΣS , such that

ΣS =
{
(i, j, k) ∈ ΩS such that ∃(in, jn, kn) ∈ Bf||.||∞((i, j, k), 1) with χs(Xinjnkn) = 0

}
(3.40)

and impose the pore interface boundary conditions on this interface layer. As the computational
grid is aligned with the µCT images — up to the dimensioning factor L (see Sect. 3.3.2) — one
gets an effectively close link between the two versions Σ and ΣS of the interface.

At this point, we detail the implementation procedure of the linear system solving the Stokes
problem (3.4) with a GMRES-based method. Let us define the unknowns vector ξ ∈ R4N , with
N = NxNyNz the total number of mesh points, such that ξ = (ux, uy, uz, p)

T . Then, depend-
ing on the mesh point identification, we define the numerical product function Aξ, from R4N to
R4N , representing the discretization of equation (3.4) extended by 0 for both the velocity and the
pressure fields inside the solid domain. This is given as follows:

Aξ(Xijk) =



−∆hu(Xijk) +∇hp(Xijk), if χs(Xijk) = 0,

divh u(Xijk), (⇐⇒ Xijk ∈ ΩF )

u(Xijk) · τ1(Xijk)− βDh(u)n(Xijk) · τ1(Xijk), if Xijk ∈ ΣS

u(Xijk) · τ2(Xijk)− βDh(u)n(Xijk) · τ2(Xijk),

u(Xijk) · n(Xijk),

divh u(Xijk),

u(Xijk), if χs(Xijk) = 1,

p(Xijk), (⇐⇒ Xijk ∈ ΩS)

(3.41)
where the subscript h denotes the usual discrete operators defined below. The evaluation of the
differential operators, including Laplacian, divergence and gradient, is performed using straight-
forward finite difference schemes of order two. The formalism used in this study lies in the fact
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a) Error on velocity b) Error on permeability

Figure 3.3: Mesh convergence analysis in a cylindrical geometry for β = 0.1: a) Velocity error in RMS
norm with respect to the grid size h for 32 to 512 cells in the lateral directions. b) Absolute permeability
error with respect to the grid size h, given the theoretical permeability (3.45).

that the solid and fluid domains are disconnected and can be considered as two independent parts
in the linear system. We are, therefore, interested in decoupling the problem between the solid
on the one hand, and the fluid/interface parts on the other hand, such that the computational size
of the problem could be reduced to just the latter. Consequently, we use centered schemes in the
whole fluid part, even for the interface neighbors, and non-centered schemes in the normal di-
rection on the first solid layer ΣS . Concerning the right-hand-side of the problem, and denoting
by (fx, fy, fz) ∈ R3N the components of the driving force f in the Stokes problem, we have the
following expressions for b:

b(Xijk) =

{
(fx, fy, fz, 0), if χs(Xijk) = 0,

(0, 0, 0, 0), otherwise
(3.42)

noting that the last components of the vector b ensure the incompressibility condition, on the fluid
and first solid layer parts. On the solid domain, this also imposes a zero value for both the velocity
field and the pressure. Moreover, this method presents the advantage of algebraically ensuring the
divergence-free condition.

We use the restarted GMRES approach to solve the linear systemAξ = b introduced above. In
this study, the stopping criterion for the GMRES convergence is given with respect to the relative
residual norm at the iterate ξk such that

∥rk∥ =
∥b−Aξk∥
∥b−Aξ0∥

< εtol (3.43)

for a given tolerance εtol, but it also includes a maximum number of iterations for the restarted
algorithm. Furthermore, we do not use an assembly procedure for the matrixA but rather focus on
the implementation of a matrix-vector product function. From a numerical point of view, we use a
Fortran subroutine for the GMRES restarted method and a C implementation of the main program
including the definition of the matrix-vector product function computing Aξ, with A the matrix
representing the Stokes problem and ξ the main unknowns vector, which contains the velocity and
pressure fields. This makes it possible to reduce the operating costs related to the full or sparse
matrix assembly procedure.

3.5.3 Validation on a cylindrical domain with analytical solution

In this section, we first perform convergence analysis by studying the Stokes flow in a vertical
cylinder of radius R, with slip boundary conditions along the lateral boundary. The goal is to
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Figure 3.4: Permeability deviation (non-dimensional) with respect to β for the cylindrical domain:
we set a grid of 64 cells in each direction and compare the real deviations κβ — given by equation (3.45)
— with the computed permeability deviations. A theoretical slope of R/2 is expected for the permeability
deviation. The error bounds represent the numerical uncertainty on the computed permeability deviations.

validate the numerical method presented in this work and detailed in Sect. 3.5.2, and at the same
time exhibit the features of a pore with simple geometry.

The exact solution of the velocity profile is analytically computed and depends on β through
the relation:

u(r, θ, z) =
(R2 − r2)

4µ
f + β

fR

2µ
, (3.44)

given in cylindrical coordinates with f = −e⃗z , which means we consider a downward point-
ing force. Given the permeability estimation (3.10) derived from Darcy’s law, one also gets the
analytical expression for the dimensionless permeability as a function of β, which reads as:

κβ =
R2

8
+ β

R

2
. (3.45)

The analytical permeability (3.45) is computed by regarding the cylinder as the whole porous
domain, meaning we assume here that ϕ = 1. In this case, the linear deviation is exact and
the development of κβ contains no remainder after the first order term. The full permeability
deviation κβ corresponds to κ0 + βL0, with L0 = R/2, and hence this first test case provides a
single confidence interval δK. One should notice that, for homogenization purposes, we can also
consider a cylindrical pore in a domain of a given size l. The domain porosity is then given by
ϕ = πR2/l2, and all the analysis performed in the case ϕ = 1 can be straightforwardly extended.

The computational domain is the unit box [−1, 1]3 and the cylindrical geometry is defined by
all the grid points whose distance from the vertical axis is smaller than 0.9, which statistically
corresponds to a cylinder of radius R = 0.922 — the solid being strictly outside, this gives an
effective radius larger than 0.9. In the present work, we are dealing with two different diagnostics:
on the one hand, we set β = 0.1 and investigate mesh convergence for the velocity errors in RMS
norm and the permeability estimates. On the other hand, we monitor the permeability deviation
with respect to β for a given mesh resolution. The convergence diagnostics, presented in Fig-
ure 3.3, are performed with a Krylov space size set to m = 50, a given tolerance of εtol = 1e−6
and up to a resolution of 512 cells, except in the main flow direction where we set 32 cells. In
fact, since both the analytic and numerical solutions are invariant with respect to the vertical axis,
we consider only a thin layer of the cylindrical domain for this validation study — without loss of
generality — and thereby we limit the memory requirements to below 8GB of RAM.

We observe a convergence order in O(h1.2) for the velocity, given h the mesh step. This
is slightly smaller than in the adherent pore interface case — wherein the convergence is of or-
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der O(h1.5) — since slip boundary conditions tend to disrupt the GMRES convergence. More-
over, this convergence is lower than the order two finite difference schemes used in the numerical
method, mainly because of the cramming effect on this cylindrical test case. Concerning the per-
meability estimate, we get an order one convergence with respect to the mesh resolution with an
error on the permeability of 1.9% for the coarsest resolution grid and 0.09% for the finest one. We
also verify that the permeability deviation due to slip boundary conditions is not merely related to
the numerical errors. To do so, we represent in Figure 3.4 the permeability evolution as a function
of β, with the slip coefficient taking values between 0 and 0.1. We recover a linear deviation
on the permeability close to the theoretical slope of L0 = R/2 confirming the robustness of the
implementation, while the numerical uncertainty related to the cramming effect — i.e. to the dif-
ference between the effective radius R and the theoretical one — provide larger error bounds (see
Figure 3.4).

Another meaningful investigation that was performed on this validation case is the monitoring
of the boundary condition at the interface: it is satisfied with an error of 1e−3 even for the coarsest
considered grid, which means that the slip boundary condition is properly controlled with the
present method. This observation highlights the ability of this direct approach to robustly deal
with slip flows.

3.6 Absolute permeability deviation analysis on real geometries of
porous rocks

This section is dedicated to applications on the real porous sample geometries introduced in
Sect. 3.3.3. We quantify the full permeability deviation interval δK = [κ0, κβ] based on meaning-
ful slip length values β, accounting for morphological imaging bias on the µCT scans.

3.6.1 Slip value estimation and link to multi-scale modeling

Estimating the slip length values, which appropriately represent the uncertainties associated with
the µCT imaging process, is crucial for quantifying permeability deviations on rock geometries.
In order to carry out possible slip lengths and exhibit their bounds, we consider periodic roughness
patterns — as introduced by Achdou, Pironneau, and Valentin in [2] — in a computational box
of size h3 representing one voxel. The periodic sinusoidal geometry has a mean height δ, an
amplitude γ and a pitch L such that

φ(x, y) = δ +
γ

2
sin(2πx/L) sin(2πy/L). (3.46)

The solid portion of the cell is then defined as the domain below the graph of the function φ
(that is to say the point (x, y, z) such that z < φ(x, y)), and the fluid portion is located above its
graph. This formalism makes it possible to estimate properly the slip length bounds resulting from
unresolved morphological features within the voxel, whether it is unseen roughness or mineral
interface approximation.

The usual approach when modeling a roughness or its homogenization is to set a Navier/Robin
boundary condition that quantifies the slip at a given height relative to the top, mean line, or bottom
of the roughness pattern [54]. This leads to the relation (3.1) on the tangential velocity introduced
previously:

u− βD(u)n = 0 on Γ (3.47)

where Γ is the smooth — or flat — reference surface on which a model of roughness effect is used
or a homogenization of the roughness pattern is performed. After averaging along the crosswise
directions in this reference voxel, the above equation writes u(ζ) − βu′(ζ) = 0, which merely
depends on the roughness pattern height.

A practical example of surface roughness from [140] is displayed in Figure 3.5, for which
one observes that the pitch and amplitude can be easily determined from microscopy imaging.
The related slip length can also be computed from such realistic roughness patterns based on the
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a) 5× 5 roughness patterns, b) Equivalent pitch/base/height
extracted from (c) sinusoidal pattern

c) Roughness imaging from [140]

30
µ
m

46.4µm

d) Resulting averaged crosswise velocity

Figure 3.5: Slip induced by realistic surface roughness: Roughness geometry from [140] exhibiting an
amplitude of γ = 0.56µm and a pitch L = 3.5µm. The domain is adjusted so that its height and its related
variable z agree with the pitch and the ratio solid/volume is 0.25.

a) Averaged velocity profile b) Slip length induced by a 2D
sinus roughness pattern

Figure 3.6: Slip length bounds estimation on periodic roughness patterns at the voxel size: a) Av-
erage velocity profile along the crosswise directions plotted with respect to the z-axis in non-dimensional
coordinates, for a roughness (3.46) with γ/h = 0.5, L/h = 1/6 and δ/h = 0.5. The slip coefficient is
about β/h = 0.306 when using a definition based on the box boundary velocity, and β/h = 0.046 when
based on the roughness head velocity. b) Evaluation of the slip coefficients with respect to the roughness
amplitude and pitch for a low X-ray absorption level, corresponding to a light grey voxel with unresolved
micro-porosity and δ/h = 0.25. Comparison to the flat case with no roughness. The slip coefficient esti-
mation ranges from β/h = 0.617 to β/h = 0.766.



76 Chapter 3. Reliability in the computation of absolute permeability

averaged velocity along the crosswise directions (see Figure 3.5d). In Figure 3.6a, we can see that
the reference height ζ — or equivalently the position of the surface Γ — can be chosen very closely
to the effective rough surface. Actually, the head of the roughness pattern is usually considered
in nano-fluidics experiments to describe this effective surface. In our case, we choose to consider
the edge of the voxel as a meaningful boundary condition for the neighboring voxel. Despite a
difference in use between a slip at the roughness head, intrinsic to the surface, and a slip at the
voxel edge, pertinent in image processing and related to the voxel size, there is only one concept
and definition of the slip condition and slip length.

However, whatever the choice of the reference velocity on this surface, as long as it is cho-
sen above the solid, we can see in Figure 3.6a that the velocity gradient remains constant in the
fluid part, which is quite a conventional result [99]. Consequently, the slip velocity based on the
voxel size is proportional to the slip based on the head of the roughness pattern obtained by mi-
croscopy or nano/micro-fluidics experiments. Such experiments can therefore evaluate slip lengths
depending on the typology of the roughness pattern for applications on porous sample geometries.
Moreover, according to different studies involving ridges or trenches [43, 163], pillars [98] and
holes [333], or carbon nanotube coatings [140], for a given kind of pattern, the pitch and the solid
fraction are the two most important parameters for determining slip lengths [164].

A direct consequence of the proportionality of the slip velocity is a shift in the slip length: an
intrinsic slip length βexp at the top of the rough surface evaluated at 50% of the voxel width (at
position h/2), results in an effective slip at the voxel boundary equal to

β ≃ βexp + h/2 (3.48)

since u(h) = βu′(h) = u(h/2) + hu′(h/2)/2 = βexpu
′(h/2) + hu′(h/2)/2 ≃ βu′(h/2) due to

u′(h) ≃ u′(h/2) (e.g. see Figure 3.6a).
At a quantification level, Figure 3.6b presents the slip lengths for a range of roughness am-

plitudes 0.1 ⩽ γ/h ⩽ 0.4 and a range of pitches 1/6 ⩽ L/h ⩽ 1. The mean solid position is
set at δ/h = 0.25, corresponding to a light grey voxel due to its low absorption, which charac-
terizes unresolved micro-porosity features. Numerically, we used the GMRES method, detailed
in Sect. 3.5.2, with a Krylov subspace size m = 20, a given tolerance of εtol = 1e−4 and a grid
resolution of 64 cells in each direction, leading to a residual error of 5e−5. In such a situation, the
maximum slip length value tends to β/h = 0.766, but in most cases, the slip length belongs to the
range β/h ≃ 0.6− 0.7.

Beyond these estimations based on a case study of roughness, the hydrophobic and/or slip
length reported in the literature for multi-phase flows conventionally ranges from 200nm [78]
to 700nm and even 950nm [140]. For a mica/water interface with a roughness of 15nm, slip
lengths in the range of 500 − 860nm have been observed [162]. Moreover, Yao et al. [332]
report roughness heights up to 400nm, for quartz sand, observed using optical interferometry. We
note that Krinsley [148] reports different roughness patterns for quartz grains, depending on their
depositional environment (aqueous, high energy beach, desert, hill, fjord). The resolution h of the
samples considered in the present study ranges from 1.5µm for the Sandpack and 2.2µm for the
Bentheimer sandstone to 5.6µm for the Castlegate sandstone. For fine resolutions, choosing a slip
length of β/h in the range 0.5 − 0.8 is then coherent for both the under-resolved roughness and
the blur of fluid/solid interface, especially when the blur is limited to one voxel. It is nevertheless
possible to consider larger slip lengths to quantify the uncertainty induced by wider blurred layers.
Within the applications presented in the following sections, we mainly consider slip lengths of
β/h = 0.5 and 0.76.

3.6.2 Flow inside a Bentheimer sample

This section is dedicated to an initial application on a real porous rock: the Bentheimer sandstone
sampled at a resolution of 2563, corresponding to a physical size of L = 0.56mm with 2.2µm
wide voxels, whose acquisition details are provided in Sect. 3.3.3.

We are first interested in analyzing the memory storage requirements in order to identify the
Krylov subspace size we can afford in practice, using the numerical method detailed in Sect. 3.5.2.
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Figure 3.7: Permeability deviation on the Bentheimer geometry: permeability deviation values are
computed through relation (3.49) and plotted with respect to the different slip coefficients related to the
voxel size h = 2.2µm. For β/h = 0.5, the permeability deviation is about 8.56%.

Figure 3.8: Bentheimer geometry with a slip coefficient of β/h = 0.5: Relative velocities in the fluid
domain (to the left) and at the fluid/solid interface (to the right). Resolution of 256 cells per direction. The
grey part represents the solid matrix constrained in an impermeable solid casing.
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Figure 3.9: Relative velocities in the main flow direction and on a sectional profile (taken at y = 0 and
z = −0.5 in relative coordinates) on the Bentheimer geometry: comparison between the adherent and
slip boundary conditions for β/h = 0.5. The z = −0.5 slice for a slip length of β/h = 0.5 is displayed on
the left image. The white and magenta lines respectively show the cut, at relative coordinate y = 0, for the
whole and zoomed curves on the right.
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The memory cost mainly depends both on the grid resolution and the Krylov subspace size, so we
will present it as a function of the total number of mesh points N and the Krylov size m. Five
tables, mainly, are used to call the Fortran GMRES(m) subroutine: a table to store the unknowns,
one for the result of the matrix-vector product function, one for the right-hand-side and which are
all of size 4N . Additionally, one needs a vector of size 4N(m+ 1) to store the orthonormal basis
{v1, ..., vk+1} of the Krylov subspace obtained by Arnoldi’s process and finally one table of size
N to identify each mesh point with respect to its nature — either solid, fluid or first layer. Then, the
GMRES algorithm itself requires the storage of the Hessenberg matrix of size (m+1)m (defined
in Sect. 3.5.2) and four additional tables (three of sizem and one of sizem+1) for solving the least
squares problem (3.37). This leads to a total storage space of 14N+4N(m+1)+(m+1)2+3m.

The simulations are then performed using 16GB of RAM, such that the Krylov space is set to
m = 20. However, it must be noted that the Krylov subspace size has an effect on the convergence
rate. This highlights the difficulty in choosing an appropriate value of m, especially when the sys-
tem size grows. Therefore, in the next section, we propose a strategy for improving convergence
in high-resolution simulations.

As the physical parameters, the dynamic viscosity is set to µ = 1e−3 N.m−2.s and the driving
force to f = 5000N.m−3. To study the impact of the under-resolved roughness on the perme-
ability, the slip coefficient range is taken between 0 and h with a particular interest in β/h = 0.5
which helps provide an upper bound for the permeability deviation when the X-ray absorption
level is estimated to one half.

The permeability with an adherent pore interface denoted κ0, is taken as a reference for the
computation of the relative deviation of absolute permeability, given by

|κβ − κ0|
κ0

(3.49)

where κβ is the permeability with slip boundary condition on the pore interface. In the adherent
case, after 100 iterations we obtained a dimensional permeability of 2.87e−11m2, noticing that the
usual values obtained from experimental measurements for this type of porous medium are around
1e−12m2, and this actual Bentheimer sample at a representative scale has been measured at 2-
3µm2 [22]. The difference is not necessarily significant, as the numerical porosity of the sample
considered is about ϕ = 28.75%, while typical values for the Bentheimer sandstone are rather
around 24% [338]. Finally, the pore interface represents about 7.18% of the sample geometry,
excluding the solid casing. In order to provide a physical characterization of the pore interface, we
introduce the specific area of the porous medium defined as the ratio of the pore interfacial surface
area per unit volume, expressed in m−1. This quantity is numerically estimated and provides a
specific area of about As = 25027m−1.

The relative residual norms quantifying the convergence of the numerical method, and the per-
meability changes with respect to the iterations are displayed in Figures 3.10a and 3.10b, on which
we compare β/h = 0 for β/h = 0.5. For the latter, the relative residual norm and the permeabil-
ity estimation scale respectively around 1e−2 and 3.11e−11m2 which represents a permeability
deviation of 8.56% for such a slip coefficient. This deviation increases to about 12%, as illustrated
in Figure 3.7 by the full permeability deviation analysis performed with slip coefficients between
0 and h. Both the 3D sample geometry and the final relative velocity field with slip pore interface,
in the case β/h = 0.5, are shown in Figure 3.8.

This example highlights that even a small slip coefficient induces a significant permeability
deviation since the pore boundary condition induced by an invisible roughness leads to a different
evaluation of the flow rate, as illustrated in Figure 3.9. Actually, we present a sectional profile of
the relative velocities in the main flow direction for adherent and slip boundary conditions with
β/h = 0.5 (see Figure 3.9, on the right). The related 2D pore slice and the exact 1D segments
for the main profile and its zoomed version are also displayed on the left in Figure 3.9. It remains
that one should carefully consider this uncertainty on the permeability estimate to provide a per-
meability range thanks to a tomographic dataset rather than a single value, especially when the
absorption level does not enable us to precisely capture the pore interface roughness.
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a) Relative residual norm b) Permeability evolution

Figure 3.10: Convergence analysis on the Bentheimer geometry for adherent and slip boundary con-
ditions: a) Relative residual norm quantifying the convergence of the GMRES numerical method. b)
Evolution of the permeability estimation with respect to the iterations of the numerical method.

Figure 3.11: Permeability deviation on the Castlegate sandstone sample for the coarse grid: deviations
are plotted with respect to the slip coefficients for a resolution of 256 cells per direction. The reference
permeability κ0 is given by 2.09e−11m2.

3.6.3 High-resolution flow inside a Castlegate sample

The second real geometry considered is a highly porous Castlegate rock whose numerical poros-
ity is estimated to be ϕ = 25.10%. This sandstone outcrop was sampled in southeastern Utah,
USA [272]. The numerical sample is extracted from the experimental X-ray dataset — accessible
in the Digital Rocks data portal — using a physical voxel size of 5.6µm and has a physical size
of L = 2.8mm. This Castlegate sandstone is segmented between fluid and solid points on a 5123

grid: the pore interface, characterized by the grid points among the solid ones which are in contact
with fluid points, denoted ΣS , represents about 12.63% of the sample geometry without the casing.
Finally, the specific area is also numerically estimated for this sample to get As = 15678m−1.

In such high-resolution simulations on a fine grid, the Krylov subspace size is clearly limited
regarding memory storage, and consequently, the convergence slows down in comparison with a
lower-resolution grid. We thus use preconditioning to obtain convergence results that are reason-
able for well-resolved real geometries.

Regarding the sample geometry that contains various small pores, we consider the precondi-
tioning on a grid twice as coarse, with a grid size of 256 cells per direction. The process consists
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a) Rock matrix and in-pore velocity,
no-slip (β/h = 0)

b) Rock matrix and in-pore velocity, c) Interpolated slip at interface,
slip length β/h = 0.76 slip length β/h = 0.76

Figure 3.12: Flow in the Castlegate geometry for the fine resolution (5123): a) With adherent boundary
condition, and b) slip coefficient β/h = 0.76 corresponding to the light-grey case with low X-ray absorption
(see Sect. 3.6.1). c) Interpolated slip at fluid/solid interface. Flow pictures are colored by the norm of
relative velocity with the same scale (0-0.8), with respect to relative coordinates (from -1 to 1).
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Figure 3.13: Relative velocities in the main flow direction and on a sectional profile (taken as z = 0
and y = −0.5 in relative coordinates) on the Castlegate geometry: comparison between adherent and
slip boundary conditions for β/h = 0.5 for the fine resolution (5123). The slice z = 0 for a slip length
β/h = 0.5 is displayed on the left-hand image. The white and magenta lines show the respective locations
of the cuts, at relative coordinate y = 0, for the whole and zoomed curves on the right.
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in computing the velocity and pressure fields on the coarser grid, with a Krylov size that ensures
proper convergence results for the residual norm. Indeed, we reach a relative residual of around
1e−4 after 100 iterations for a 56GB RAM simulation with a Krylov size of m = 100, which
speeds up dramatically the global simulation.

We then perform an interpolation of these fields to obtain their approximation on the finer grid
using an interpolation kernel such that the interpolated pressure and velocity fields are taken as
initial guesses for the computation on the whole grid. We use tilde notations when dealing with
the refined grid variables and fields, so we denote the interpolated velocity and pressure by ũ and
p̃, respectively. We also respectively introduce x̃q and xp in R3 as the space variables on the refined
and coarse grids. Afterward, the interpolated velocity is computed using the convolution:

ũ(x̃q) = (u ∗M ′
4
h
)(x̃q) =

∫
R3

u(x)M ′
4
h
(x̃q − x)dx =

∑
p∈S

upM
′
4
h
(x̃q − xp)vp (3.50)

where S = {p such that x̃q − xp ∈ supp(M ′
4
h)} and vp the volume element of the coarse grid.

Moreover, M ′
4
h is defined with respect to the classical 1D interpolation kernel M ′

4

M ′
4(x) =


(3x3 − 5x2 + 2)/2 if 0 ⩽ x ⩽ 1
(2− x)2(1− x)/2 if 1 ⩽ x ⩽ 2

0 if x ≥ 2
(3.51)

and is written as the following tensor product, with h referring to the coarse grid mesh step:

M ′
4
h
(x) =

1

h3
M ′⊗3

4

(x
h

)
. (3.52)

For the physical parameters, we take µ = 1e−3 N.m−2.s for the dynamic viscosity and
f = 2000N.m−3 for the driving force. The full permeability deviation analysis, as displayed
in Figure 3.11, with a slip coefficient between 0 and h, is performed on the coarse grid with the
256 resolution per direction. For high-resolution simulations, we only consider two main slip
coefficient values: β/h = 0.5 and β/h = 0.76 previously justified in Sect. 3.6.1. The refer-
ence permeability on the adherent pore interface, obtained through the preconditioning process
detailed before, is about κ0 = 1.59e−11m2 after 200 iterations. The Krylov subspace size is
set to m = 50 on the thinner grid such that this permeability estimate is provided with a relative
residual norm of less than 1e−6. In this case, both the evolution of the relative residual norms and
the permeability changes with respect to the number of iterations are presented in Figures 3.14a
and 3.14b respectively, on which we compare the adherent case with slip pore boundary by taking
β/h = 0.5. Figure 3.12 also shows the final relative velocity field at the full resolution, obtained
in the adherent and slip pore boundary cases.

By considering a slip coefficient of β/h = 0.5, we reach after the preconditioning process a
final relative residual norm of around 1e−5, which is larger than for the adherent case. This can
be explained by the fact that slip boundary conditions tend to disrupt the convergence since the
slip may induce a lack of coercivity in the variational formulation. The permeability evolution
scales at about 2.57e−11m2 which represents a permeability deviation of 61.63% compared to
the adherent case.

Finally, a slip coefficient of β/h = 0.76, corresponding to light grey voxels, provides a per-
meability of 3.05e−11m2 with a final relative residual norm of 1e−5. It represents a permeability
deviation of 91.82% which means that κβ is nearly twice the reference permeability κ0 for such a
slip coefficient. We note that we get substantially higher permeability deviations on the Castlegate
sandstone sample compared to the Bentheimer sample. This can be explained by a higher pro-
portional pore interface: the pore interface represents 7.18% on the Bentheimer and 12.63% on
the Castlegate. In fact, since the Castlegate geometry presents a large variety of small pores, the
slip boundary conditions on the pore interface more significantly impact the velocity and thereby
the permeability. In that regard, Figure 3.13 shows the relative velocities, for β/h = 0 and 0.5,
on a sectional profile taken as z = 0 and y = −0.5 in relative coordinates. On the left, we also
represent the related 2D pore slice and the exact 1D segment where the velocity profiles and their
zoomed versions are represented — to the right.



84 Chapter 3. Reliability in the computation of absolute permeability

a) Relative residual norm b) Permeability evolution

Figure 3.14: Convergence analysis on the Castlegate sandstone sample for adherent and slip bound-
ary conditions up to the fine resolution (5123): a) Relative residual norm quantifying the convergence of
the GMRES numerical method. b) Evolution of the permeability estimation with respect to the iterations
of the numerical method. Preconditioning on the coarse grid with a resolution of 256 cells per direction is
performed until the 100th iteration, while the final iterations address the global high-resolution grid.

3.6.4 High-resolution flow inside a Sandpack sample

The numerical study of the Sandpack considered in this last test case involves a grid resolution
of 512 cells in each direction so that the numerical sample extracted from the X-ray dataset has
a physical length of L = 0.768mm with 1.5µm wide voxels. The acquisition details concerning
this sample are provided in Sect. 3.3.3. Porosity and specific area are computed, respectively, at
ϕ = 45.43% and As = 93174m−1. In this case, the pore interface represents about 20.04% of the
grid points that model the sample geometry.

As described in the previous Sect. 3.6.3, preconditioning starts on a twice coarser grid with a
Krylov space size ofm = 100, followed byM ′

4 interpolation and computations on the refined grid
with m = 50. The physical parameters involving the dynamic viscosity and the driving force are
taken as in Sect. 3.6.3.

The reference permeability on the adherent pore interface is about κ0 = 1.02e−11m2 after
200 iterations, obtained with a relative residual norm around 1e−6. In Figures 3.17a and 3.17b we
compare both the evolution along the preconditioning process of the relative residual norm and the
permeability for β/h = 0, 0.5 and 0.76. The permeability reaches 2.48e−11m2 and 2.98e−11m2,
respectively, for these two slip coefficient values. This means that on such geometries the perme-
ability deviations are even greater than in the previous applications and scale at about 143% and
192%.

As for the previous samples, Figure 3.15 shows the 3D geometry at full resolution with the
final velocity fields obtained in the adherent and slip pore boundary cases. Moreover, a 2D pore
slice, taken in the main flow direction, is also illustrated on the left-hand side of Figure 3.16 to
characterize the sectional profiles presented on the right. It shows the impact of the slip boundary
condition on the flow rate, in the particular case β/h = 0.5.

Furthermore, we verify in this case that the permeability variation does not reflect the residual
errors of the numerical scheme: Figure 3.17a shows that the relative residual is the same for
the two slip lengths β/h = 0.5 and 0.76. Overall, our methodology shows large permeability
deviations due to slip boundary conditions that account for the unresolved features of the µCT
imaging technique. These deviations, thereby, need to be considered when investigating the impact
of geochemical processes of CO2 storage in underground natural reservoirs. One should provide
reliable evolutions of the upscaled petrophysical properties arising from dynamical effects rather
than measuring uncertainties related to imaging morphological bias.
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a) Rock matrix and in-pore velocity,
no-slip (β/h = 0)

b) Rock matrix and in-pore velocity, c) Interpolated slip at interface,
slip length β/h = 0.76 slip length β/h = 0.76

Figure 3.15: Flow in the compact Sandpack geometry for the fine resolution (5123): a) With adherent
boundary condition, and b) slip coefficient β/h = 0.76. c) Interpolated slip at pore boundaries. We use the
same color legend as for Figure 3.12.
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Figure 3.16: Relative velocities in the main flow direction and through a sectional profile (taken at
z = −0.75 and y = 0 in relative coordinates) on the Sandpack geometry: comparison between the
adherent and slip boundary conditions for β/h = 0.5. The slice z = −0.75 for a slip length β/h = 0.5 is
displayed on the left-hand image. The white and magenta lines show the location, respectively, of the cuts
for the whole and zoomed curves of the velocity profiles on the right.

a) Relative residual norm b) Permeability evolution

Figure 3.17: Convergence analysis on the Sandpack sample for adherent and slip boundary con-
ditions up to the fine resolution (5123): a) Relative residual norm quantifying the convergence of the
GMRES numerical method. b) Evolution of the permeability estimation with respect to the iterations of
the numerical method. Preconditioning on the coarse grid with a resolution of 256 cells per direction is
performed until the 100th iteration, while the final iterations address the global high-resolution grid. Com-
parisons are performed for β/h = 0, 0.5 and 0.76.
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3.7 Toward the second order deviation of the permeability

In addition to the full permeability deviation analysis performed throughout the application
Sect. 3.6, we also investigate the impact of the linear deviation on the real porous sample ge-
ometries. We use the methodology developed in Sect. 3.5 to solve the Stokes closure problems
at successive orders resulting from the two-scale asymptotic expansion (see equations (3.31) and
(3.32) in Sect. 3.4.3). The apparent permeability is thereby regarded as the combination of the
intrinsic permeability κ0 and the slip-correction first order term L0 according to equation (3.11).
The related permeability ranges δK = [κ0, κβ] and [κ0, κ0+βL0] are then compared and analyzed
for each geometry.

3.7.1 First-order linear deviation on real geometries: results summary

Table 3.2 summarizes the results obtained for both the raw deviations and the linear deviations for
all considered samples from Sect. 3.6. The permeability ranges account for the sample resolution,
its permeability, and its geometry at the pore scale. The main features of each sample are described
in Table 3.1.

Overall, we observe the permeability deviations using the raw values — namely the full devia-
tion based on the PDE system (3.8) — and the values based on the linear momentum resulting from
the asymptotic development are consistent. However, when performing the permeability deviation
analysis for several slip length values, we notice small non-linear effects (e.g. see in Figures 3.4
and 3.11). These non-linear effects can also be observed in Table 3.2, where the linear deviations
are usually underestimated compared to the global permeability uncertainty ranges. This suggests
that macroscopic effects, especially on the upscaled permeability, may arise from higher-order
developments of the asymptotic expansion which involve additional slip-correction terms. While
this statement has already been pointed out in several studies on analytical test cases and synthetic
geometries [158, 161], we also show that this impacts the apparent permeability estimation for
real applications. This motivates the investigation of the second-order deviation, developed in the
subsequent Sect. 3.7.2, to confirm such macroscopic effects resulting from higher-order correction
terms.

Furthermore, to compare the permeability deviations based on the pore structure of the distinct
samples, we compute a dimensionless ratio from the slip-independent relative deviations and the
specific area As that both have the same units (mm−1). This provides respectively the following
dimensionless ratios for the full and linear deviations:

κβ − κ0
κ0βAs

and
L0

κ0As
(3.53)

which are displayed in Table 3.3 for the different samples. This dimensionless number is theoret-
ically equal to 2 for the cylinder and could be of great interest since it appears to be independent
through the homogenization process in this theoretical case. One should also notice that when
considering a foam structure with a cylindrical pore surrounded by a solid domain of size l, this
dimensionless ratio writes 2l2/πR2. In fact, in this case, the porosity and specific area are re-
spectively given by ϕ = πR2/l2 and As = 2πR/l2. This gives insight into how the pore space
structure impacts this dimensionless ratio, as a smaller pore radius R will enhance the slip devia-
tion effect.

In this sense, it also appears that the Bentheimer sandstone, which is of size 2563 and too
coarse to be a representative sample, has dimensionless ratios given by the expressions in (3.53)
around 2-3 which is close to the cylindrical case (see Table 3.3). On the contrary, representative
samples of their media, namely the Castlegate sandstone and the Sandpack, have ratios in the
range 12-17, even though their porosity values are highly different. This dimensionless number
may thereby appear to provide a criterion for representative porous samples. Future work will
investigate whether or not sandstones with porosities in the range of 20-25% correlate with a
universal dimensionless ratio and whether this is related to sample representativity.
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Computed Grain Charact. Sample Sample Sample

Sample porosity ϕ size length
√
κ0 width resolution volume

Unit — µm mm µm — mm3

Bentheimer 28.75% 200-330 5.3 563 2563 0.131

Castlegate 25.1% ≃150 4.0 2867 5123 17.30

Sandpack 45.4% ≃50 3.2 768 5123 0.332

Table 3.1: Rock and numerical sample features. Orders of magnitude of grain size are taken from [22,
234] and [135]. The sample volume excludes the digital cell surrounding the rock matrix.

Full deviation Linear deviation
Sample Slip No-slip Relative Permeability Relative Permeability

length permeability deviation range deviation range
β κ0 (κβ − κ0)/κ0 [κ0, κβ ] βL0/κ0 [κ0, κ0+βL0]

Unit µm µm2 — µm2 — µm2

Cylinder — R2/8 4β/R [κ0, κ0+βR/2] β4/R [κ0, κ0+βR/2]

Bentheimer 1.1 28.7 8.56% [28.7, 31.1] 6.97% [28.7, 30.7]

Castlegate 4.26 15.9 91.82% [15.9, 30.5] 79.25% [15.9, 28.5]

Sandpack 1.14 10.2 192.15% [10.2, 29.8] 179.22% [10.2, 28.4]

Table 3.2: Summary of absolute permeability ranges obtained for the three samples and the ideal
cylindrical pore: results are both presented in terms of the full deviation and linear deviation models. The
results for the Castlegate and Sandpack samples are provided for the finest resolution of 5123.

3.7.2 Second order deviation: the Castlegate example

To quantify the non-linear effects observed in the previous Sect. 3.7.1, we consider the gener-
alization of the Stokes-like closure problems up to the second-order profile to account for addi-
tional slip-correction terms. We thereby extend the two-scale asymptotic expansion developed in
Sect. 3.4 such that the formal developments of uβ and pβ writes:

uβ =
2∑

j=0

βjU j + β3rβ and pβ =
2∑

j=0

βjP j + β3qβ (3.54)

following the notations previously introduced. This enables us to address the second-order slip
momentum, denoted L1, given the following Taylor development of (3.10):

κβ = κ0 + βL0 +
β2

2
L1 +O(β3) (3.55)

and afterward provides the second-order deviation on the permeability. Similarly to the analysis of
Sect. 3.4, we obtain that the profiles (U2, P 2) satisfy a Stokes problem with an intrinsic slip-flow
correction resulting from non-homogeneous Dirichlet boundary conditions, written as follows:

−∆U2 +∇P 2 = 0, in ΩF

divU2 = 0, in ΩF

T U2 = T D(U1) · n, on Σ

U2 · n = 0, on Σ.

(3.56)

Accounting for the second-order deviation on the permeability, therefore, requires solving succes-
sively the Stokes problems (3.31), (3.32) and (3.56) that respectively identify the intrinsic perme-
ability κ0, its first-order linear deviation L0 and the second-order momentum L1. The latter is
given by the following relation:

L1 =
ϕ < U2

z >ΩF

< fz >ΩF

(3.57)
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Computed Specific Relative Dimensionless Relative Dimensionless
Sample porosity area deviation ratio linear deviation ratio

ϕ As K ′/κ0 K ′/κ0As L0/κ0 L0/κ0As

Unit — mm−1 mm−1 — mm−1 —

Cylinder 100 % 2/R 4/R 2 4/R 2
Bentheimer 28.75% 25 78 3.1 63.7 2.5
Castlegate 25.1% 15.7 215.5 13.7 186 11.9
Sandpack 45.4% 93 1 684 18.1 1 561 16.8

Table 3.3: Dimensionless ratios characterization for the several samples and ideal cylindrical pore:
Comparison of relative deviations with respect to specific areas for the different samples. We use the
notation K ′=(κβ − κ0)/β. The relative deviations are slip-independent.

Figure 3.18: Comparison between full, first-order, and second-order permeability deviations on the
Castlegate sandstone sample: absolute deviations (in m2) plotted with respect to the slip coefficients (in
m) on the coarse grid with a resolution of 256 cells per direction. The analysis is performed for slip length
values between β/h = 0 and 0.5. Data for the full permeability deviations result from Figure 3.11 in
Sect. 3.6.3.

such that the second-order permeability range writes

δK =

[
κ0, κ0 + βL0 +

β2

2
L1

]
. (3.58)

The analysis is performed on the Castlegate sample, on the coarse grid with a resolution of
2563, to compare with the full permeability deviation from Figure 3.11 and requires using fourth-
order finite difference stencils. In this case, we obtain a reference permeability κ0 = 2.09e−11m2,
a linear deviation L0 = 1.8338e−6m and a second-order momentum L1 = 0.708364. We repre-
sent in Figure 3.18 the comparison between the full deviation — obtained from Sect. 3.6.3 — the
first and second-order permeability deviations with respect to the slip length. Overall, this con-
firms the macroscopic effects resulting from the non-linear correction of the apparent permeability
and shows that the second-order deviation improves the uncertainty estimation resulting from the
first-order linear approximation. Accounting for the second-order slip correction term, indeed,
results in a relative permeability deviation of 37.7% compared to the 43.2% for the global devia-
tion and 24.57% for the linear deviation. This validates for applications to porous samples what
was anticipated in [158] for simplified 2D geometries and confirms the importance of properly
considering slip effects at the macro-scale, especially on the absolute permeability deviation.
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3.8 Concluding remarks

Pore-scale modeling and numerical simulations of flow in porous media are commonly based on
sample datasets obtained through X-ray micro-tomography. Imaging limitations, however, exist in
this process. The finite resolution of these tomographic scans, for instance, leads to an uncertainty
on the position and morphology of the pore interfaces, which subsequently impacts the estimation
of the effective petrophysical properties of the porous medium. Unresolved morphological features
also play a role in the flow within the sample, while these effects are difficult to incorporate in the
workflow and thereby generate uncertainties. The current chapter attempts to assess the impact of
such imaging artifacts on the computed permeability of the medium.

To do so, we relied on a slip length formalism [54, 163], whose idea is closely related to
homogenization principles. It aims to approximate the actual surface roughness or its position
subject to uncertainty by a smooth interface supplemented with slip boundary conditions. The
underlying Stokes problem with Robin/Navier boundary condition is then solved using a restarted
GMRES method that ensures precise monitoring of the velocity at the pore interface, after which
the permeability tensor is obtained by Darcy’s law. Two approaches are proposed to evaluate the
absolute permeability ranges, namely the full deviation based on slip boundary conditions and the
theoretically established deviations from asymptotic analysis. The latter regards the permeability
deviation induced by morphological uncertainties as the combination of the reference permeability
κ0 and slip-correction terms of first and second-order, arising from the solutions of Stokes-like
closure problems at successive order. This reformulation of the global deviation hence requires
solving a classical Stokes problem with adherent interfaces, followed by coupled problems with
non-homogeneous Dirichlet boundary conditions involving a prescribed slip that depends on the
immediate lower-order profile.

We compared the full permeability deviation interval δK = [κ0, κβ] and its first-order approx-
imation δK = [κ0, κ0 + βL0] on sample geometries with different morphological characteristics
and heterogeneous porosity distributions. We also estimated meaningful slip length values β that
adequately represent the µCT imaging uncertainties. We showed that considering β proportional
to the voxel size h is relevant to characterize the not fully resolved solid fraction within a voxel or
the biased interface location.

For the porous samples considered in this chapter, we observed that within the range β/h < 1,
both the full deviation and the linear deviation provided comparable results. Some non-linear
effects, however, appear as soon as β nears the voxel size. At this point, the global permeability
deviation and its estimation based on the first-order linear deviation begin to differ. Slip-correction
terms beyond the first-order linear deviation are thus considered to capture these non-linear effects
on the apparent macro-scale permeability. This resulted in the development of the second-order
deviation on the Castlegate sandstone with δK = [κ0, κ0 + βL0 + β2L1/2], and we showed the
importance of considering such higher-order slip-correction terms in porous media applications.

Absolute permeability analysis on real porous rock applications highlighted that geometrical
uncertainties induce a significant deviation, which can lead to discrepancies of twice the reference
permeability. It must be noted that the permeability deviation is sensitive to the structure of the
pore space and its effect increases for geometries with a large proportion of small pores. We also
provided dimensionless ratios quantifying the relative permeability deviations versus the specific
area to provide a geometrical-independent characterization of the permeability uncertainties. Rep-
resentative samples have been shown to exhibit similar ratios in the range of 12− 17, even though
their morphological characteristics were highly different. On the contrary, the non-representative
Bentheimer sample presented a dimensionless ratio close to the theoretical value obtained for the
single cylindrical pore.

Overall, one must be careful with the permeability estimation in which the geometrical uncer-
tainty should be rendered by a range of permeability resulting from tomographic measurements.
In this sense, this chapter provided a numerical and mathematical framework to investigate the
uncertainty ranges on the permeability in 3D complex porous geometries. This makes it possi-
ble to understand how pore-scale morphological bias, arising from µCT imaging, propagates to
upscaled permeability uncertainties. We can, thereby, provide reliable quantification of the macro-
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properties changes based on geochemical processes and ensure that these variations are not merely
biased due to imaging limitations. These results were obtained for a few samples covering a di-
verse distribution of morphological features and exhibited interesting characteristics that would be
interesting to investigate in the future. Another prospect could be to extend the approach developed
in this chapter to multi-phase flows at low Reynolds regimes to monitor the relative permeability
deviations of each phase.
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4.1 Motivation

In Chapter 3, we demonstrated that uncertainty assessment on the macro-scale absolute perme-
ability can be addressed through upscaling principles of the sub-resolved features resulting from
X-ray µCT images. This makes it possible to characterize the impact of imaging morphological
biases on the macro-scale properties and, subsequently, ensures reliable quantification of the per-
meability evolution. Nonetheless, upscaling approaches do not straightforwardly provide insight
into the sub-resolved porosity but rather consider the morphological biases as averaged properties.
In this sense, we do not capture the micro-porosity field uncertainties. This, however, presents a
great interest for field-scale sensitivity analyses as this can provide a range of macro-porosity dis-
tributions in reservoir simulations. Thus, quantifying the macro-porosity deviations due to these
local uncertainties on the microscopic features remains challenging and requires developing other
alternatives.

Machine learning, for instance, offers an interesting framework to investigate the unresolved
features through image treatment analysis of the µCT scans. Efforts have been directed to-
ward developing deep learning methodologies such as Convolutional Neural Networks (CNN)
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and Generative Adversarial Neural Networks (GAN) that provide super-resolved segmented im-
ages [16, 330]. Meanwhile, differential imaging techniques based on comparisons between several
enhanced contrast scans [172] or statistical studies based on µCT histograms [341] have also gar-
nered interest. Nonetheless, these approaches present the main disadvantage of solely considering
the imaging dataset to address an overall data assimilation problem.

On the contrary, the following two chapters aim to develop a robust data assimilation method
incorporating both physic-based principles through PDE models and µCT imaging data. The
motivation is to compensate for their respective limitations by finding a proper balance between
experiments and physical principles. This should provide reliable insights into the uncertainty
quantification issues related to reactive pore-scale modeling. In the sequel, we mainly focus on the
methodological development of such an alternative for reliable data assimilation, while Chapter 5
will address the porous media application for inverse problems in pore-scale imaging.

This chapter presents a novel methodology for automatic and adaptive weighting of Bayesian
Physics-Informed Neural Networks (BPINNs), and we demonstrate that this makes it possible
to robustly address multi-objective and multiscale AI problems. We intend to develop a reliable
framework for data assimilation that merges Uncertainty Quantification (UQ), physics-informed
PDE models, and data-driven methods. BPINNs, in particular, have recently emerged as a popular
framework combining the constraints of UQ and PDE. The relative weights of the BPINN target
distribution terms are directly related to the inherent uncertainty in the respective learning tasks.
Yet, these weights are usually manually set a-priori, which can lead to pathological behavior,
stability concerns, and to conflicts between tasks which are obstacles that have deterred the use of
BPINNs for inverse problems with multiscale dynamics.

The present weighting strategy automatically tunes the weights by considering the multitask
nature of target posterior distribution. We show that this remedies the failure modes of BPINNs
and provides an efficient exploration of the optimal Pareto front. This leads to better convergence
and stability of BPINN training while reducing sampling bias. The determined weights moreover
carry information about task uncertainties, reflecting noise levels in the data and adequacy of the
PDE model. We demonstrate the effectiveness of the present methodology on an extensive Sobolev
training benchmark wherein this solves stiffness and instability issues altogether while comparing
to analytically ε-optimal baseline. We further perform validation on a multiscale Lokta-Volterra
inverse problem. We eventually apply this framework to an inpainting task and an inverse problem,
involving latent field recovery for incompressible flow in complex geometries.

This research topic has led to a three-month doctoral mobility at the Max Planck Institute
of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden (Germany), where I have been
hosted in the MOSAIC Group, headed by Professor Ivo F. Sbalzarini. I have enhanced my under-
standing of data-driven and deep-learning methodologies, which align with the MOSAIC Group’s
expertise, and initiated a collaboration to develop such a robust data assimilation framework with
UQ. This has resulted in a joint publication in the Journal of Computational Physics with Prof.
Ivo F. Sbalzarini, Dr. Suryanarayana Maddu, and Prof. Philippe Poncet [237].

4.2 Context and positioning

Direct numerical simulation relies on appropriate mathematical models, derived from physical
principles, to conceptualize real-world behavior and provide an understanding of complex phe-
nomena. Experimental data are mainly used for parameter identification and a-posteriori model
validation. However, a wide range of real-world applications are characterized by the absence of
predictive physical models, notably in the life sciences. Data-driven inference of physical models
has therefore emerged as a complementary approach in those applications [185]. The same is true
for applications that rely on data assimilation and inverse modeling, for example in geosciences.
This has established data-driven models as complementary means to theory-driven models in sci-
entific applications.

Depending on the amount of data available, several data-driven modeling strategies can be cho-
sen. An overview of the state of the art in data-driven modeling, as well as of the remaining chal-
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lenges, has recently been published [103] with applications focusing on porous media research.
It covers methods ranging from model inference using sparse regression [60, 117, 184, 265],
where the symbolic structure of a Partial Differential Equation model is inferred from the data,
to equation-free forecasting models based on extrapolation of observed dynamics [186, 231, 307].
Therefore, model inference methods are available for both physics-based and equation-free sce-
narios.

A popular framework combining both scenarios are Physics-Informed Neural Networks
(PINNs) [254]. They integrate potentially sparse and noisy data with physical principles, such
as conservation laws, expressed as mathematical equations. These equations regularize the neural
network while the network weights θ ∈ Rd and unknown equation coefficients Pinv ∈ Rp are
inferred from data. This has enabled the use of PINNs as surrogate models, for example in fluid
mechanics [226, 290]. Overall, PINNs provide an effective alternative to purely data-driven meth-
ods, since a lack of high-fidelity data can be compensated by physical regularization [176, 199].

Despite their effectiveness and versatility, PINNs can be difficult to use correctly, as they are
prone to a range of training instabilities. This is because their training amounts to a weighted
multi-objective optimization problem for the joint set of parameters Θ = {θ,Pinv},

Θ̂ = argmin
Θ

K∑
k=0

λkLk(Θ), (4.1)

where each term Lk(Θ) of the loss function corresponds to a distinct inference task. For typical
PINNs, these tasks include: data fitting, PDE residual minimization, boundary and initial condi-
tion matching, and additional physical constraints such as divergence-freeness of the learned field.
Such a combination of measurement and physical constraints, usually encountered in the PINN
formulation, readily results in multi-objective problems with tens of different tasks. Proper train-
ing of this multitask learning problem hinges on correctly setting the loss term weights λk [187].
An unsuitable choice of weights can lead to biased optimization [253], vanishing task-specific
gradients [80, 270], or catastrophic forgetting [187]. Automatically optimizing the loss weights is
crucial and not straightforward, especially if the multi-objective problem is highly nonlinear and
suffers from multiscale issues.

The problem of how to tune the loss weights of a PINN is widely known and several po-
tential solutions have been developed to balance the objectives [75, 187, 312, 313]. This offers
criteria to impartially optimize the different tasks and provide a good exploration of the opti-
mal Pareto front [258]. While it improves reliability by reducing optimization bias, several open
questions remain regarding the confidence in the predictions, noise estimates, and model ade-
quacy [199, 127, 329]. These questions motivate a need for uncertainty quantification to ensure
trustworthy inference, extending PINNs to Bayesian inference in the form of Bayesian Physics-
Informed Neural Networks [173, 328]. How to adapt successful PINN weighting strategies to
BPINNs and integrate them with UQ, however, is still an open problem.

BPINNs benefit from the combined advantages of neural network structures in building pa-
rameterized surrogate models based on physical principles and Bayesian inference standards in
estimating target distribution. They enable integration of UQ by providing posterior distribution
estimates of the predictions — also known as Bayesian Model Averages [319] — based on Markov
Chain Monte Carlo (MCMC) sampling. One of the most popular MCMC schemes for BPINNs
is Hamiltonian Monte Carlo (HMC), which provides a particularly efficient sampler for high-
dimensional inference problems with smooth (physical) dynamics [48]. Although HMC has been
shown to be more efficient for BPINNs, its formulation implies potential energy that is closely
related to the cost function of the PINN. The multi-objective loss of a PINN directly translates
to multi-potential energy and thus to a weighted multitask posterior distribution for BPINN sam-
pling. Sampling from such a target posterior distribution resulting from dozens of distinct tasks,
which may be conflicting or involve different scales, is not straightforward. Unsuitable weights
can even prevent the sampler from identifying the mode neighborhood in the parameter space that
maximizes the overall posterior density. Therefore, it suffers from the same difficulties as a PINN
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to avoid bias in the sampling and provide an efficient exploration of the Pareto front, characterizing
the region of the highest posterior probability.

This often causes HMC to not correctly explore the Pareto front neighborhood during BPINN
training. Efficient exploration of a high-dimensional Pareto front remains challenging for mul-
titask and multiscale learning problems incorporating UQ and has not yet been addressed in
the Bayesian case. The challenge arises because each term of the multi-potential energy is
weighted within the Bayesian framework by parameters that relate to scaling, noise magni-
tude, and ultimately the inherent uncertainties in the different learning tasks [80]. While these
weights are recognized as critical parameters in the sampling procedure, they are mostly hand-
tuned [173, 199, 207], introducing hidden priors when the true uncertainties are not known. Not
relying on such a-priori manual calibration of the posterior distribution becomes critical when
considering multitask inference problems with potential nonlinear and multiscale effects. In such
cases, appropriately setting these parameters is neither easy nor computationally efficient and can
lead to either a biased estimation of the uncertainties or a considerable waste of energy in ineffec-
tive tuning. Properly optimizing these weights is therefore essential to ensure that HMC samples
from the posterior distribution around the Pareto front. This is not only required for robust BPINN
training but also for enhanced reliability of the UQ estimates, not subject to biased priors.

In order to robustly handle multitask UQ inference in BPINNs, the open questions addressed
in this chapter are:

1. How can we automatically adjust the weights in BPINNs to efficiently explore the Pareto
front and avoid bias in the UQ inference?

2. How can we manage sensitivity to the noise distributions (homo- or hetero-scedastic) and
their amplitude, without imposing hidden priors, to ensure reliable uncertainties estimates?

We intend to provide a reliable framework to address multitask Bayesian inference problems,
with potential multiscale effects, stiffness, or competing tasks, such that we do not rely on a-
priori hand-tuning or biased calibration of the posterior distribution. We aim to automatically and
adaptively build the weighted posterior distribution that concentrates on the region of highest pos-
terior probability, localized in the Pareto front neighborhood. The main novelty is here to address
the problem of appropriate weighting in multitask inference problems from the posterior distri-
bution perspective, which becomes crucial when dealing with physics-based inference. On the
contrary, related state-of-the-art adaptive methods regard the problem from the adaptation of some
hyperparameters (e.g. the leapfrog parameters in the No-U-Turn sampler [132]) or the adapta-
tion of the momentum based on local geometrical information (e.g. Riemann Hamiltonian Monte
Carlo [123]). Other strategies aim to speed up the Bayesian inversion and reduce the computa-
tional cost of evaluating the forward model itself, with some adaptations based on multi-fidelity
surrogate models either computed through polynomial chaos expansion [325] or neural network
proxies [326]. These adaptations are usually performed through online and local refinement of
the surrogate models using only a few simulations from the high-fidelity model. However, all
these adaptive methods do not consider the case where we face multi-objective problems with
potentially conflicting tasks or multiscale issues.

In this chapter, we start by characterizing potential BPINN failure modes, which are particu-
larly prevalent for multiscale or multitask inverse problems. We then propose a modified HMC
sampler, called Adaptively Weighted Hamiltonian Monte Carlo (AW-HMC), which avoids the
problem by balancing gradient variances during sampling. We show that this leads to a weighted
posterior distribution that is well suited to exploring the Pareto front neighborhood, since it con-
centrates on the region of highest posterior probability by leveraging gradient information of the
different tasks during the adaptation procedure. Our benchmarks show that this strategy reduces
sampling bias and enhances the BPINN robustness. In particular, our method improves the sta-
bility along the leapfrog steps during training, since it ensures optimal integration and frees the
sampling from excessive time step decrease. Moreover, it is able to automatically adjust the po-
tential energy weights and with them, the uncertainties according to the sensitivity to noise of each
term and their different scaling. This considerably improves the reliability of the UQ by reducing
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the need for hyperparameter tuning, including the prior distributions, and reducing the need for
prior knowledge of noise levels or appropriate task scaling. We show that this improves BPINNs
with respect to both the convergence rate and the computational cost. Moreover, we introduce a
new metric for the quality of the prediction, quantifying the convergence rate during the marginal-
ization step. We finally demonstrate that our proposed approach enables the use of BPINNs in
multiscale and multitask Bayesian inference over complex real-world problems with sparse and
noisy data. Therefore, we establish the present AW-HMC method for the BPINNs as an efficient
data assimilation framework incorporating robust uncertainty quantification.

The main contributions of this chapter can be summarized as follows:

1. Automatic and adaptive weighting of BPINNs enables their use for multitask and multiscale
inverse problems in the Bayesian context. This avoids manual tuning of noise and model
adequacy hyper-parameters when facing unknown priors.

2. We prevent BPINNs training failure mode and improve the formulation robustness by pro-
viding unbiased uncertainty quantifications, independently of the noise level in the data.

3. We develop a computational cost-free method, ensuring automatic task balancing, by
straightforwardly leveraging gradient information of the different tasks within the BPINNs.

4. A new metric, namely the Bayesian Model Average Cumulative Error (BMA-CE), is intro-
duced and used to quantify the convergence of individual tasks in the AW-HMC method.

The chapter is organized as follows: In Sect. 4.3, we review the general principles of BPINNs
with a focus on the HMC sampler and characterize their failure mode in Sobolev training. Sect. 4.4
describes the proposed adaptive weighting strategy for UQ using BPINNs. We validate this strat-
egy in a benchmark with a known analytical solution in Sect. 4.4.3 and 4.4.4. We then demon-
strate the effectiveness of the proposed AW-HMC algorithm on a Lotka-Volterra inverse problem
in Sect. 4.5, focusing on a multiscale inference of dynamical parameters. We then illustrate the use
of AW-HMC in a real-world problem from fluid dynamics in Sect. 4.6. This particularly demon-
strates, in Sect. 4.6.1, successful inpainting of incompressible stenotic blood flow from sparse and
noisy data, highlighting UQ estimates consistent with the noise level and noise sensitivity. Finally,
Sect. 4.6.2 considers an inverse flow problem in a complex geometry, where we infer both the flow
regime and the latent pressure field from partial velocity measurements. Sect. 4.7 provides a sum-
mary of our results and highlights future challenges for real-world data assimilation inferences in
porous media research.

4.3 From Uncertainty Quantification to Bayesian Physics-Informed
Neural Networks: concepts and limitations

Real-world applications of data-driven or black-box surrogate models remain a challenging task.
Predictions often need to combine prior physical knowledge, whose reliability can be questioned,
with sparse and noisy data exhibiting measurement uncertainties. These real-world problems also
suffer from non-linearity [173], scaling [84], and stiffness [139] issues that can considerably im-
pact the efficiency of the usual methodologies. This needs the development of data-driven model-
ing strategies that robustly address these issues.

At the same time, the need to build upon Bayesian inference raises the question in the research
community of ensuring trustable intervals in the estimations. This is important for quantifying
uncertainties on both the underlying physical model and the measurement data, although it may
be challenging in the context of stiff, multiscale, or multi-fidelity problems. Therefore, embed-
ding UQ in the previous data-driven methodologies is essential to effectively manage real-world
applications.

4.3.1 HMC-BPINN concepts and principles

The growing popularity of Bayesian Physics-Informed Neural Networks [171, 173, 207, 328]
offers the opportunity to incorporate uncertainty quantification into PINNs standards, and benefit
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from their predictive power. It features an interesting Bayesian framework that claims to handle
real-world sparse and noisy data and, as well, it bestows reliability on the models together with
the predictions.

The basic idea behind a BPINN is to consider each unknown, namely the neural network and
inverse parameters, Θ, as random variables with specific distributions instead of single parameters
as for a PINN. The different sampling strategies all aim to explore the posterior distribution of Θ

P (Θ|D,M) ∝ P (D|Θ)P (M|Θ)P (Θ) (4.2)

given some measurement data D and a presumed modelM, rather than looking for the best ap-
proximation satisfying the optimization problem (4.1). The posterior distribution expression (4.2)
is obtained from Bayes theorem and basically involves a data-fitting likelihood term P (D|Θ) eval-
uating the distance to the experimental data, a PDE-likelihood term P (M|Θ) characterizing the
potential modeling discrepancies and a joint prior distribution P (Θ). These specific terms are
detailed, case-by-case, in the applications, along with the different sections. Through a marginal-
ization process, the posterior distribution (4.2) on the parameters Θ then transfers into a posterior
distribution of the predictions, also called a predictive Bayesian Model Average (BMA) distribu-
tion (e.g. see [319]):

P (y|x,D,M)︸ ︷︷ ︸
predictive BMA distribution

=

∫
P (y|x,Θ)︸ ︷︷ ︸

prediction for Θ

P (Θ|D,M)︸ ︷︷ ︸
posterior

dΘ (4.3)

where x and y respectively refer to the input (e.g. spatial and temporal points) and output (e.g. field
prediction) of the neural network. In this equation, the different predictions arising from all the Θ
parameters sampling (4.2) are weighted by their posterior probability and averaged to provide an
intrinsic UQ of the BPINN output. Overall, BPINNs introduce a Bayesian marginalization of the
parameters Θ which forms a predictive distribution (4.3) of the QoI, namely the learned fields and
inverse parameters.

Different approaches were developed for Bayesian inference in deep neural networks includ-
ing Variational Inference [177, 322] and Markov Chain Monte Carlo methods. In fact, the later
can efficiently combine with surrogate models based on deep learning approaches and, therefore,
significantly speed up the sampling from the posterior distribution. A particular MCMC sampler
based on Hamiltonian dynamics — the Hamiltonian Monte Carlo — has drawn increasing atten-
tion due to its ability to handle high-dimensional inference problems by taking into account the
geometric properties of the posterior distribution. Betancourt explained the efficiency of HMC
through a conceptual comprehension of the method [48] and theoretically demonstrated the er-
godicity and convergence of the chain [50, 178]. From a numerical perspective, Yang et al. [328]
highlighted the out-performance of BPINNs-HMC formulation on forward and inverse problems
compared to its Variational Inference declination. This has established HMC as a highly effective
MCMC scheme for the BPINNs, both theoretically and numerically and, therefore, as an efficient
data-assimilation alternative coupling physics-based with data-driven approaches, and incorporat-
ing intrinsic uncertainty quantification.

In the following, we briefly review the basic principles of the classical BPINNs-HMC and
point out their limitations, especially in the case of multi-objective and multiscale problems.

The idea of HMC is to introduce a fictive particle of successive positions and momenta (Θ, r)
which follows the Hamiltonian dynamics on the frictionless negative log posterior (NLP) geome-
try. This requires the auxiliary variable r to immerse the sampling of (4.2) into the exploration of
a joint probability distribution π(Θ, r) in the phase space

π(Θ, r) ∼ e−H(Θ,r). (4.4)

The latter is related to a conservative system whose the Hamiltonian energy, denoted H(Θ, r),
is the sum of a potential energy U(Θ) which characterize the problem formulation and a kinetic
energy K(r) accounting for stochastic momentum perturbations. This relies on the particular
decomposition of the Hamiltonian, where the potential and kinetic energies are chosen such that

π(Θ, r) ∝ P (Θ|D,M)N (r|0,M) (4.5)
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where the momentum follows a centered multivariate Gaussian distribution, with a covariance —
or mass — matrix M often scaled identity. The Hamiltonian of the system is thus given by

H(Θ, r) = U(Θ) +
1

2
rTM−1r (4.6)

where the potential energy directly relates to the target posterior distribution. Indeed, the potential
energy definition relies on a Bayesian probabilistic formulation of the problem such that it de-
pends on the posterior distribution (4.2) by the relation U(Θ) = −lnP (Θ|D,M), which results
in a multi-potential energy as detailed in the following Sect. 4.3.2. Along with this Euclidean-
Gaussian assumption for the kinetic energy, this ensures that the marginal distribution of Θ pro-
vides immediate samples of the target posterior distribution

P (Θ|D,M) ∼ e−U(θ) (4.7)

since an efficient exploration of the joint distribution π(Θ, r) directly projects to an efficient ex-
ploration of the target distribution, as described by Betancourt [48]. The HMC sampling process
alternates between deterministic steps, where we solve for the path of a frictionless particle given
the Hamiltonian dynamical system {

dΘ = M−1r dt
dr = −∇U(Θ) dt,

(4.8)

and stochastic steps through kinetic energy perturbations, where the momentum is sampled accord-
ing to the previously introduced Gaussian distribution. As Hamilton’s equation (4.8) theoretically
preserves the total energy of the system, each deterministic step is then constrained to a specific
energy level while the stochastic steps enable us to diffuse across the energy level set for efficient
exploration in the phase space. This theoretical conservation of the energy level set during the
deterministic steps requires numerical schemes that ensure energy conservation.

A symplectic integrator is thus commonly used to numerically solve for the Hamiltonian dy-
namics (4.8): the Störmer-Verlet also known as the leapfrog method. However, these integrators
are not completely free of discretization errors that may disrupt, in practice, the Hamiltonian con-
servation through the deterministic iterations. Hence, a correction step is finally added in the
process to reduce the bias induced by these discretization errors in the numerical integration: this
results in a Metropolis-Hasting criterion based on the Hamiltonian transition. This acceptance cri-
terion tends to preserve energy by rejecting samples that lead to divergent probability transition.
The exploration of the deterministic trajectories though remains sensitive to two specific hyperpa-
rameters managing the integration time: the step size δt and the number of iterations L used in the
leapfrog method. Tuning these parameters can be challenging, especially if the posterior distribu-
tion presents pathological or high curvature regions [48], yielding instability, under-performance,
and poor validity of the MCMC estimators. Despite the use of numerical schemes that preserve
the Hamiltonian properties, a conventional HMC-BPINN can be confronted with pathological dis-
crepancies.

To counteract these divergence effects, efforts have been put into developing strategies to either
adaptively set the trajectory length L [133] while preserving detailed balance condition or use
standard adaptive MCMC approaches to adjust the step size δt on the fly [49]. In this regard, one
of the most popular adaptive strategies is the No-U-Turn Sampler (NUTS) from Hoffmann and
Gelman [132]. Nonetheless, these divergent trajectories indicate significant bias in the MCMC
estimation even if such adaptive methods may offer an alternative to overcome them. This raises
the question of the validity of this adaptation when facing multi-potential energy terms that lead
to significantly different geometrical behaviors or different scaling in the posterior distribution.
In fact, the adaptive strategy mostly tunes the leapfrog parameters so that the most sensitive term
respects the energy conservation, which may result in poorly-chosen hyper-parameters for the
other potential energy terms, and then the whole posterior distribution. This reflects the limitations
of such adaptive strategies that rely on adjusting the leapfrog hyperparameters.
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When these divergent pathologies become prevalent, another approach suggested by Betan-
court [48] is to regularize the target distribution, which can become strenuous in real-world appli-
cations and lead to additional tuning. Nevertheless, it offers a great opportunity to investigate the
impact of each learning task on the overall behavior of the target distribution and paves the way
for novel adaptive weighting strategies.

In the next sections, we focus particularly on the challenges arising from real-world multitasks
and multiscale paradigms. We show that present BPINN methods result in major failures in these
cases and we identify the main pathologies using powerful diagnostics based on these divergent
probability transitions.

4.3.2 The multi-objective problem paradigm

As for the issue of the multi-objective optimization problem in a PINN, sampling of the target
posterior distribution (4.2) arising from a direct or inverse problem requires the use of a multi-
potential energy term U(Θ). Furthermore, in real-world applications, we have to deal with sparse
and noisy measurements whose fidelity can also cover different scales: this is the case of multi-
fidelity problems with multi-source data [176, 199].

For sake of generality, we introduce a spatio-temporal domain Q = Ω × T with Ω ⊂ Rn,
n = 1, 2, 3 and we assume a PDE system in the following form:

F(u(t, x), Pinv) = 0, (t, x) ∈ Q
H(u(t, x), Pinv) = 0, (t, x) ∈ Q
B(u(t, x), Pinv) = 0, (t, x) ∈ Q∂ := ∂Ω× T
I(u(t, x), Pinv) = 0, (t, x) ∈ QI := Ω× T0

(4.9)

where u is the principal unknown, F the main differential equation (e.g. the Navier-Stokes equa-
tion),H an additional constraint (e.g. incompressibility condition), B and I the boundary and ini-
tial conditions respectively, and Pinv the PDE model parameters, either known or inferred. Some
partial measurements of the solution field u may also be available in a subset Qu ⊂ Q. Such a
continuous description of the spatio-temporal domain is then discretized to enable the selection of
the training dataset, which is used in BPINNs sampling.

We first define the dataset D of training data, as a subset of Q, which is decomposed into
D = DQ ∪ D∂ ∪ DI ∪ Du and includes scattered and noisy measurements sampled in their
respective sets Q, Q∂ , QI , and Qu. Regarding data corruption, we consider independent Gaussian
noise for the sparse observations on u, such that Du is defined as

Du = {(ti, xi) ∈ Qu, i = 1...Nu with ui := u(ti, xi) + ξu(ti, xi)} (4.10)

where the noise ξu ∼ N (0, σ2uI) and the standard deviation σu might be estimated from the sen-
sor fidelity, if accessible. The neural network component of the BPINN then provides a surrogate
model of u denoted uΘ for each sample of the parameters Θ = {θ,Pinv}, whose prior distribution
is referred to as P (Θ). The latter takes into account both the priors on the neural network param-
eters θ, which are assumed to be centered and independent Gaussian distributions, and the priors
on the model parameters Pinv, so that P (Θ) = P (θ)P (Pinv) under the independence condition.
In the case of a forward problem, where the PDE model parameters are prescribed, the prior dis-
tribution reduces to P (θ). When some measurements of the unknown are available, meaning Du

is not an empty set, which is the case in inverse or inpainting problems, then the surrogate model
uΘ should satisfy a data-fitting likelihood term in the Bayesian framework. This consists in quan-
tifying, over the setDu, the fit between the neural network prediction and the training data defined
by:

P (Du|Θ) ∝
Nu∏
i=1

exp

(
− (uΘ(ti, xi)− ui)2

2σ2u

)
. (4.11)

Similarly, the boundary conditions of the model output are imposed on the set D∂

D∂ =
{
(ti, xi) ∈ Q∂ i = 1...N∂ with B(ui) := B(u(ti, xi)) + ξb(ti, xi)

}
(4.12)
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by satisfying the following boundary-likelihood term

P (D∂ |Θ) ∝
N∂∏
i=1

exp

(
− (B(uΘ(ti, xi))− B(ui))2

2σ2b

)
. (4.13)

The noise sensitivity on the boundary condition term is also characterized by independent Gaus-
sian distributions in the sense that ξb ∼ N (0, σ2b I) where the standard deviation σb needs to be
estimated. Such a distinction between ξu and ξb is prescribed since there is no guarantee that the
data corruption is uniform: in fact, the measurement distribution variances can differ locally when
facing heteroscedastic noise. This is the case in geosciences, where data-driven modeling based
on X-Ray microtomography images require special attention on this boundary noise estimation
ξb. This is mainly due to the artifact limitations (e.g. partial volume effect, edge-enhancement)
that tend to enhance the blurring effects at the material interface and therefore impact the quantifi-
cation of the medium effective properties, such as the permeability and micro-porosity [16, 238].
The same holds for the initial condition with potentially a different sensitivity ξi. In a BPINN, the
previous data-fitting terms are complemented with physical principles that regularize the neural
network predictions, given the PDE system (4.9).

Concerning the PDE-likelihood term, theDQ dataset is defined as the training points on which
we force the PDE and the additional physical constraint to be satisfied by the surrogate modeling:

DQ =
{
(ti, xi) ∈ Q, i = 1...NQ with F(uΘ(ti, xi)) = ξf (ti, xi)

and H(uΘ(ti, xi)) = ξh(ti, xi)}
(4.14)

with ξf and ξh standing for the model uncertainty in both equations, which are usually unknown
and can easily lead to physical model misspecification. According to these notations, a forward
problem consists in Du = ∅ and Pinv is known to perform a direct prediction of the field uΘ on
Q based only on the PDE physical assumptions. On the contrary, an inverse problem aims to infer
Pinv using together the PDE model with the partial and noisy information Du of the predictive
field u. Finally, an inpainting problem relies on these partial measurements to complement and
recover some missing information on the predictive field, in addition to the PDE-based priors.

Finally, the target posterior distribution of Θ, given by equation (4.2), is decomposed according
to the Bayes rule, into a sequence of multitask likelihood terms — involving data-fitting and PDE
likelihood — and the priors:

P (Θ|D,M) ∝ P (Du|Θ)P (D∂ |Θ)P (DI |Θ)P (DQ,F|Θ)P (DQ,H|Θ)P (θ)P (Pinv) (4.15)

which results, for the HMC sampler, in the multi-potential energy

U(Θ) =
∥uΘ − u∥2Du

2σ2u
+
∥B(uΘ)− B(u)∥2D∂

2σ2b
+
∥I(uΘ)− I(u)∥2DI

2σ2i

+
∥F(uΘ)∥2DQ

2σ2f
+
∥H(uΘ)∥2DQ

2σ2h
+
∥θ∥2Rd

2σ2θ
+
∥Pinv − µP∥2Rp

2σ2P

(4.16)

according to equation (4.7). The notation ∥ · ∥ refers to either the RMS norm — inherited from
the functional L2-norm on the open set Q — for the log-likelihood terms or to the usual Euclidean
norm for the log-prior terms. In addition, the multi-potential (4.16) is written here, in a general
framework, based on the prior assumptions P (θ) ∼ N (0, σ2θId) and P (Pinv) ∼ N (µP , σ

2
PIp).

We note that the log-prior term on θ can be regarded as a L2-regularization in the equivalent con-
strained optimization problem. Nonetheless, suitable selection of these prior distributions — hence
appropriate tuning of the parameters σθ, µP , and σP — is usually not straightforward and is time-
consuming. Overall, equation (4.16) highlights that, even in a simple problem setup, a BPINN
may face a potential energy term that closely resembles a weighted multi-objective loss appearing
in a PINN. This multi-potential energy results, according to equation (4.7), in a multitask weighted
posterior distribution for which an appropriate adaptive weighting strategy is critical.
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Therefore, the main challenge is to sample near the Pareto-optimal solution such that the
BPINNs provide efficient and reliable prediction and UQ. Otherwise, the risk is that the sam-
ples obtained gravitate around a local minimum, corresponding to one of the multi-potential terms
at the cost of the others. The present work focuses on how to estimate a well-fitted weighted pos-
terior distribution that concentrates on the region of the highest posterior probability. The latter,
localized in the Pareto front neighborhood, should ensure balanced conditions for all the different
terms in equation (4.16) and therefore provide robust Bayesian inference for multitask problems
with multiscale or multi-objective issues. Effectively dealing with multitask Bayesian inference
problems is a distinct concern from capturing multi-modal distributions. In this chapter, we intend
to address the first issue, while the second one is out of consideration. This comes from the obser-
vation that the HMC formulation, which serves as a basis of the present work, is prone to struggle
with multi-mode scenarios while having excellent performances in sampling single-mode distri-
butions. The main reason is that HMC relies on local gradient information that may ignore other
isolated modes [191]. Efficiently sampling from multi-modal distributions requires other sam-
plers. These alternatives include, for instance, Variational Hybrid Monte Carlo [292], wormhole
Hamiltonian Monte Carlo [155], and augmented Markov Chain Monte Carlo with normalizing
flow methods for adapting the proposal distribution (transition kernels) during sampling [122],
but this is beyond the scope of this work. A way to handle likely multi-modal distributions with
the HMC sampler is to consider different initializations of the neural network parameters or in-
verse parameters in order to incorporate sampling variability. This chapter focuses on providing a
robust sampling strategy for multitask weighted posterior distributions in single-mode scenarios,
with potentially multiscale inference in the inverse parameters.

Secondly, while the standard deviations σ• in (4.16) are critical parameters to select and are
related to the uncertainties on the inherent tasks, most of the authors either assign them a given
value or train them as additional hyperparameters [173, 207, 291]. This can lead to highly bi-
ased predictions, especially when setting the PDE-residual standard deviations σf and σh which
introduce strong priors on the model adequacy. Recently Psaros et al. [249] discussed, inter alia,
alternatives generalizing the adjustment of some of these parameters — mainly the data-fitting
standard deviations — in the context of unknown and heteroscedastic noise distributions. They
either rely on offline learning at the cost of a pre-trained GAN or online learning of the weights
based on additional parameter training. In particular, the number of these additional parameters
may increase drastically when considering location-dependent variances, as suggested in [249],
for realistic applications and consequently suffer from computational costs. The open question re-
mains on how to deal with such unknown (homo- or hetero-scedastic) noise distributions without
adding computational complexity by learning additional hyperparameters. Finally, although the
question of physical model misspecification was pointed out in the total uncertainty quantification,
the latter has not been addressed in [249] when misleading model uncertainty is assumed on the
physical constraints F and H. As a result, the issue of not introducing strong priors on the model
adequacy by hand-tuning the hyperparameters σf and σh, usually unknown or prescribed, is still
a challenging task. Therefore, we consider the question of how to adaptively set the weights in
multitask Bayesian inference problems such that we do not rely on a-priori manual calibration of
the noise magnitude, task scaling, or model adequacy.

In view of this, we test in the next Sect. 4.3.3 the robustness of the usual BPINNs-HMC
approach, as introduced in Sect. 4.3.1, on a test case demonstrating the issues arising from the
multi-objective and multiscale nature of the sampling using Sobolev training of neural networks.

4.3.3 Sobolev training for BPINNs failure mode

Sobolev training is a special case of multi-objective BPINN sampling that likely leads to stiff learn-
ing due to the disparate scales involved [187]. Nevertheless, it is commonly used in the machine
learning community to improve the prediction efficiency and generalization of neural networks,
by adding information about the target function derivatives to the loss or its equivalent potential
energy [94, 277, 308, 335]. This special training provides a baseline for testing the robustness
of the present BPINNs-HMC method against the failure mode of vanishing task-specific gradi-
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Figure 4.1: HMC uniform-weighting failure mode for Sobolev training up to second-order deriva-
tives: a) Variances of the effective gradient ∇ΘLk distributions (k = 0, 1, 2), plotted with respect to the
(Ns×L) HMC iterations, showing strong imbalances between the tasks. b) Non-conservative Hamiltonian
that illustrates the resulting instabilities issues. c) Extremely poor approximation of the function and non-
existent uncertainty estimates due to the massive rejection.

ents [187]. It also offers the opportunity to benchmark against the analytically ε-optimal weights
that are known for Sobolev multi-objective optimization [187].

The BPINNs-HMC sampling is tested here on a Sobolev regression task, which means the
dataset is restricted to D = Du involving measurements of a function and its derivatives Dk

x,
k ≥ 1 up to order K, such that the target posterior distribution is

P (Θ|D) ∝
K∏
k=0

P (Du, Dk
xu|Θ)P (Θ) (4.17)

and the potential energy hence has the general form

U(Θ) =
K∑
k=0

[
λk
2σ2k
∥Dk

xuΘ −Dk
xu∥2

]
+

λK+1

2σ2K+1

∥Θ∥2 :=
K+1∑
k=0

λkLk(Θ) (4.18)

where Lk = λkLk refers to the weighted kth objective term, with λk some positive weighting
parameters to define (see Sect. 4.4.1). In this section, we use only a uniform weighting strategy,
with λk = 1, ∀k, which corresponds to the classical BPINNs-HMC formulation. For sake of read-
ability, equation (4.18) gathers the log-prior terms of the neural network and inverse parameters,
assuming they all have the same prior distribution.

We first introduce a 1D Sobolev training up to second-order derivatives, with a test function
u(x) = sin3(ωx) defined on the spatial domain Ω = [−0.7, 0.7] for ω = 6. We use 100 training
points, set the leapfrog parameters L = 100 and δt = 1e−3 for the number of iterations and time
step respectively, and performNs = 200 sampling iterations. We also restrict the test to a function
approximation problem so that subsequently Θ refers only to the neural network parameters. In
the following and unless otherwise indicated, all the σk are equal to one since in practice we do
not have access to the values of these parameters for the derivatives or residual PDE terms, but
rather to the observation noise on the data field u only, if available.

Similarly to PINNs , this test case with uniform weights λk leads to imbalanced gradient vari-
ances between the different objective terms. In particular, the higher-order derivatives present
dominant gradient variances that contribute to the vanishing of the other tasks and lead to biased
exploration of the posterior distribution. In Figure 4.1a we see that the term Var{∇ΘL2} corre-
sponding to the higher-order derivative quickly develops two orders of magnitude greater than the
other effective gradient variances. In addition to inefficient exploration of the Pareto front, we also
face instability issues, generated by the highest order derivative terms, that result in a lack of con-
servation of the Hamiltonian along the leapfrog trajectories (see Figure 4.1b). The HMC sampler
with uniform weighting strategy fails on this test case, resulting in poor prediction of the surrogate
model uθ (see Figure 4.1c). Indeed, none of the proposed samples are accepted according to the
Metropolis-Hasting criterion. Hence, there are neither uncertainty estimates nor adjustments of the
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Figure 4.2: Failure mode of NUTS step-size adaptation in Sobolev training up to second order deriva-
tives: a) Variances of the effective gradient ∇ΘLk distributions, showing task imbalances. b) Hamiltonian
evolution along the sampling, resulting in a weak exploration of the energy levels. The vertical dotted line
delimits the number of adaptive steps in the NUTS sampler. c) BMA signal reconstruction with its uncer-
tainty. d) Pointwise error between the surrogate BMA reconstruction uΘ and the function u, highlighting
the linear deviation of uΘ and biased inference of the distinct tasks.

predictive BMA distribution. Both are solely based on the surrogate model corresponding to the
prior distributions of the neural network parameters (Figure 4.1c). As specified in Sect. 4.3.1, such
divergence pathologies on the classical HMC with uniform weighting are powerful diagnostics of
bias in the resulting estimators and raise suspicions about the validity of the latter.

An alternative to counteract these effects consists in reducing the time step δt to balance the
order of magnitude of the derivative terms and improve the Metropolis-Hasting acceptance rate
of the BPINNs-HMC. However, a small time step within the leapfrog iterations is more likely
to generate pathological random walk behaviors or biased sampling [48, 132]. To this aim, we
attempt an adaptive strategy by using the No-U-Turn sampler (NUTS) with step-size adaptation,
as detailed in Algorithm 5 from Hoffmann and Gelman [132] and implemented in the Python
Open Source package Hamiltorch [84]. We consider the same exact set of leapfrog parameters
as previously — in order to comply with the same assumptions — and we impose N = 20
adaptive steps that lead to a final adapted time step of δt = 1.29e−4. In this case, we again
reached a configuration where we were not efficiently exploring the Pareto front, as evidenced
by the variances of the effective gradients in Figure 4.2a. This resulted in a better approximation
of the second derivative compared to the signal itself and demonstrated biased sampling in the
sense that the signal u is determined up to a linear function due to the prevalence of the higher
derivative term. This linear deviation is also shown in Figure 4.2d. This confirms that the NUTS
time-step adaptation focuses rather on the prevailing conservation of the higher-order derivative
which induced the stiffness.
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In short, even a simple 1D Sobolev training with trivial uniform weights induces major failure
of the classical BPINNs-HMC approaches because of the sensitivity of the posterior distribution
to the higher-order derivatives that generate instabilities. Consequently, such divergence in the
Hamiltonian conservation renders the sampling approach inoperative. Moreover, the alternatives
ensuring the Hamiltonian conservation are ineffective because they face either inefficient explo-
ration of the energy levels or a strong imbalance in the multitask and multiscale sampling. This
suggests that the Hamiltonian Markov chain cannot adequately explore the Pareto front of the tar-
get distribution resulting from this potential energy and that strong imbalanced conditions cannot
be overcome with the usual methodologies.

The purpose is therefore to develop a strategy to provide balanced conditions between the
different tasks, independently of their scales, by looking for an appropriate weighting formulation.
This approach is essential regardless of the usual HMC concerns about the adaptive settings of the
leapfrog parameters and presents the advantage of reducing the instabilities without needlessly
decreasing the time step.

4.4 An Adaptive Weighting Strategy for Unbiased Uncertainty
Quantification in BPINNs

Conventional BPINN formulations exhibit limitations regarding multi-objective inferences, such
as stability and stiffness issues, pathological conflicts between tasks, and biased exploration of the
Pareto-optimal front. These problems cannot be tackled merely by adaptively setting the leapfrog
parameters, as in the NUTS sampler, nor by hand-tuning the standard deviations σk, which intro-
duces additional computational costs or energy waste. We, therefore, investigate another adaptive
approach that focuses instead on the direct regularization of the target distribution: it aims to
balance task weighting by automatically adapting the critical σk parameters.

4.4.1 An Inverse Dirichlet Adaptive Weighting algorithm: AW-HMC

The development of a new alternative considering the limits of the HMC-BPINN approach —
previously discussed in Sect. 4.3 — becomes crucial, especially in the case of complex multi-
objective problems arising from real-world data. This strategy must address the main pathologies
identified by: 1) ensuring the exploration of the Pareto front of the target posterior distribution,
2) managing the scaling sensitivity of the different terms, and 3) controlling the Hamiltonian
instabilities.

Independently of these pathological considerations, there remains the issue of setting the crit-
ical σk parameters, particularly when the level of noise on the data and the confidence in the PDE
model are not prior knowledge. While manual tuning of these parameters is still commonplace,
we could rely on the weight adaptations to implicitly determine the noise and inherent task un-
certainties rather than introduce strong priors on the model adequacy that may lead to misleading
predictions. Indeed, the weights λk involved in the following general expression of the multi-
potential energy (4.16):

U(Θ) =
K∑
k=0

λkLk(Θ) + λK+1∥Θ∥2 (4.19)

are positive parameters integrating various sources of uncertainties. In this sense, the deterministic
PDE model is completed by stochastic representations of the model discrepancy, and the data-
fitting likelihood is itself supplemented by stochastic modeling of the experimental noise, both
affecting the critical parameters λk. This intends to capture and estimate the various sources of
uncertainties whether aleatoric — arising from variability or randomness in the observations like
sensor noise — or epistemic — caused by imperfect modeling hypothesis or ignorance in the
model adequacy. Therefore, we suggest considering automatic management of these uncertainties
based on the appropriate and adaptive setting of the critical weighting parameters.
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In order to fulfill all these requirements, we consider an Inverse-Dirichlet based approach that
has demonstrated its effectiveness in the PINNs framework when dealing with balanced training
and multiscale modeling [187]. It relies on adjusting the weights based on the variances of the loss
term gradients, which can be interpreted as a training uncertainty with respect to the main descent
direction in a high-dimensional multi-objective optimization problem. This strategy also offers
considerable improvement in convergence over conventional training and avoids the vanishing of
specific tasks.

The idea of developing an Inverse Dirichlet adaptively weighted algorithm for BPINNs is to
incorporate such training uncertainties on the different tasks within the Bayesian framework so
that it can simultaneously take into account the noise, the model adequacy and the sensitivity of
the tasks, all while ensuring Pareto front exploration. Therefore, we are trying to determine the
positive weighting parameters λk, k = 0, ...,K in such a way that the weighted gradient

∇ΘLk = λk∇ΘLk (4.20)

distributions of the potential energy terms have balanced variances. We propose to ensure gradient
distributions with the same variance

γ2 := Var{λk∇ΘLk} ≃ min
t=0..K

(Var{∇ΘLt}), ∀k = 0, ...,K (4.21)

by setting the weights on an Inverse-Dirichlet based approach:

λk =

 min
t=0..K

(
Var{∇ΘLt}

)
Var{∇ΘLk}

1/2

=

(
γ2

Var{∇ΘLk}

)1/2

(4.22)

such that

λkN (µk,Var{∇ΘLk}) =
(

γ2

Var{∇ΘLk}

)1/2

N (µk,Var{∇ΘLk}) = N (µk, γ
2). (4.23)

Note that we do not discuss here the case of λK+1 corresponding to the prior P (Θ), since the
log-prior term acts rather as a L2-regularization in the equivalent constrained optimization prob-
lem, such that the weight balancing approach focuses essentially on the log-likelihood terms of
the potential energy. In fact, the sampling should enable us to efficiently explore the Pareto front
corresponding to balanced conditions between the data-fitting and the different PDE-based like-
lihood terms. On the contrary, we do not want to rely on a non-informative prior to achieve task
balancing, so we impose the following upper bound

Var{λK+1∇ΘLK+1} ≤ γ2, (4.24)

which can be achieved with setting λK+1 ≤ σK+1, related to the assumption on the prior P (Θ) ∼
N (0, σ2K+1I). This comes from the observation that

λK+1∇ΘLK+1(Θ
tτ ) =

λK+1

σ2K+1

Θtτ (4.25)

such that

Var{λK+1∇ΘLK+1(Θ
tτ )} =

λ2K+1

σ4K+1

Var{Θtτ } ⩽ 1

σ2K+1

Var{Θtτ } (4.26)

with Θtτ the set of parameters sampled at iteration τ . The latter upper bound also provides a
dispersion indicator between the posterior variance of Θ and its prior distribution, that can be used
to set the value of σK+1 given γ2.

We investigate on-the-way methods to deal with the BPINNs-HMC failure mode, so that the
weight adaptation strategy from equation (4.22) depends on the sampling iterations τ . This results
in a modified Hamiltonian Monte Carlo, denoted Adaptively Weighted Hamiltonian Monte Carlo
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(AW-HMC) which is detailed in Algorithm 1. The weighting strategy is carried on until a number
of adaptive iterations N , potentially different from the usual burn-in steps Nburn. It assumes that
N ≤ Nburn, and enables us to reach a weighted posterior distribution well-suited to the explo-
ration of the Pareto front. Indeed, we aim to adaptively estimate a well-fitted posterior distribution
that concentrates on the high probability-density region. This is achieved during the adaptive steps
by leveraging gradient information of the different tasks and their respective sensitivities through
variance-based weighting. Once the adaptive procedure converges, the weights stabilize, and we
effectively sample from a well-fitted target distribution that mainly explores the region of highest
posterior probability, characterized by the Pareto front neighborhood. Finite adaptation preserves
ergodicity and asymptotic convergence of the chain while keeping N ≤ Nburn ensures the poste-
rior distribution is drawn from the same weighted potential energy. In practice, the a-priori burn-in
phase is closely linked to the number of adaptive steps by taking Nburn = N . We also introduce
the notation Hλτ (Θ, r) for the weighted Hamiltonian

Hλτ (Θ, r) =
K+1∑
k=0

λk(τ)Lk(Θ) +
1

2
rTM−1r (4.27)

which defines the new transition probability for the Metropolis-Hasting acceptance criterion.
The question remains how to set the number of adaptive steps N . This is closely related to

characterizing the convergence of the weighted posterior distribution toward the neighborhood
where the posterior density is maximized, that is the Pareto front. To decide when to stop weights
adaptation, we define a systematic stopping criterion based on the evolution of the Hamiltonian
energy in equation (4.27).

In the following, we detail this criterion for stopping the adaptation procedure and activating
the sampling from the weighted target distribution with balanced tasks, which mainly explores
the region of the highest posterior probability. Our method for stopping weights adaptation is to
reach either a maximum number of iterations Nmax or ensuring the local variation of the Hamil-
tonian function, denoted Sτ , to be below a given threshold Smin. Indeed, if there is no significant
variation, there is no more evolution of weights and task values, and therefore adaptation can be
stopped. This local variation is defined by the slope of the Hamiltonian function, which is com-
puted as the averaged linear regression of its early history due to the strongly stochastic nature of
the Hamiltonian transitions. Therefore, the significant variation in the Hamiltonian evolution is
based on the locally averaged best slopes of the Hamiltonian function, whose statistical series is
denoted Hi related to the number of sampling iterations Xi = i. These best slopes Sτ are first
computed by linear regression on a short sampling history, corresponding to the last pslope values
of the Hamiltonian function (e.g. see the light colors curves on Fig 4.4):

Sτ =
Cov

(
{Hi}τi=τ−pslope+1, {Xi}τi=τ−pslope+1

)
Var

(
{Xi}τi=τ−pslope+1

) . (4.28)

Then, these slopes are themselves denoised by local averaging on the last pmean values (e.g. see
the solid colors curves on Fig 4.4) resulting in the following final expression of Sτ :

Sτ =
1

pmean

τ∑
i=τ−pmean+1

Si. (4.29)

In practice, we choose pslope = pmean = 4. The effective number of adaptive steps N is then
the minimum value between Nmax and the number of samplings τ required to reach the threshold
Smin. In addition to this criterion, the user must check that there are effective lower bounds on the
weights (e.g. Figure 4.7 in Sobolev training) to verify that there is no singular behavior. Indeed in
a singular case, the objective and the Hamiltonian could decrease solely by reducing of the weights
to 0. This check is especially important since we allow auto-adaptation of weights. Applications
of this criteria are detailed in Sect. 4.4.3 and Sect. 4.5.1 on the Sobolev benchmarks and Lotka-
Voterra inverse problem.



108 Chapter 4. Multitask BPINNs for multiscale forward and inverse problems

Algorithm 1: Adaptively Weighted Hamiltonian Monte Carlo (AW-HMC)

Input: Initial Θt0 , Ns number of samples, L number of leapfrog steps, δt leapfrog step
size, Nmax maximum number of adaptive iterations, Nburn burn-in steps and M
the mass matrix.

1 Sampling procedure:
2 for τ = 1...Ns do
3 Sample rtτ−1 ∼ N (0,M);
4 Set (Θ0, r0)← (Θtτ−1 , rtτ−1);
5 Weights adaptation:
6 if (τ ≤ Nmax) and (Sτ ≥ Smin) then

7 Compute λk(τ) =

 min
j=0..K

(Var{∇ΘLj(Θ0)})

Var{∇ΘLk(Θ0)}

1/2

∀k = 0..K

8 and λK+1(τ) = 1;
9 else

10 λk(τ) = λk(τ − 1) ∀k = 0..K and λK+1(τ) = 1
11 end
12 Leapfrog:
13 for i = 0...L− 1 do

14 ri ← ri −
δt

2

K+1∑
k=0

λk(τ)∇ΘLk(Θi);

15 Θi+1 ← Θi + δtM−1ri;

16 ri+1 ← ri −
δt

2

K+1∑
k=0

λk(τ)∇ΘLk(Θi+1);

17 end
18 Metropolis-Hastings:
19 Sample p ∼ U(0, 1);
20 Compute α = min(1, exp(Hλτ (Θ0, r0)−Hλτ (ΘL, rL)) using (4.27);
21 if p ⩽ α then
22 Θtτ = ΘL;
23 else
24 Θtτ = Θ0;
25 end
26 Collect the samples after burn-in :

{
Θti
}Ns

i=Nburn

27 end

Moreover, the present Inverse-Dirichlet balancing of the target distribution, based on the mini-
mum variance of the gradients given by equation (4.22), can be interpreted as adjusting the weights
with respect to the most likely or the least sensitive term of the multi-potential energy. It there-
fore offers the advantage of improving the convergence of the BPINNs toward the Pareto-optimal
solution and also enhances the reliability of the uncertainty quantification of the output, whose
samples are drawn from the Pareto front. Indeed, this weighting strategy induces an automatic
increase in the uncertainty of the least likely task by adaptively adjusting the λ parameters. Such
observations arise from the development of upper bounds for each of the gradient variances, as
detailed in the following Sect. 4.4.2, which involves prediction errors and PDE residuals, as well
as sensitivity terms characterizing the variability of the mean gradient descent directions for each
task. In light of this, we were able to provide an upper bound on the joint variance γ2 which is
developed in equation (4.36) in a basic and general perspective.

Last but not least, the Inverse-Dirichlet based adaptive weighting relieves us from an unrea-
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sonable decrease in the time step, which no longer has to meet all the stiff scaling requirements
to ensure Hamiltonian conservation. This approach then renders the sampling free of excessive
tuning adaptation of the leapfrog hyperparameters δt and L. In addition, this prevents pathological
random-walk or divergence behaviors in the sampling since it enables the use of optimal integra-
tion time, both in terms of convergence rate and adequacy of the time step to the distinct learn-
ing tasks. Overall, our novel AW-HMC strategy overcomes the limitations of the usual BPINN
methodologies, and we demonstrate its effectiveness in robustly addressing Bayesian Inference
problems throughout the following sections.

4.4.2 Upper bound on the Inverse-Dirichlet weighting variance

The Inverse-Dirichlet Adaptively Weighted HMC algorithm, developed in Sect. 4.4.1, guarantees
that the gradients of the multi-potential energy terms have balanced distributions throughout the
sampling, with their joint variance γ2 defined in equation (4.21). In this section, we use a general
case to demonstrate that γ2 is upper bound and controlled by a reliability criterion which depends
on the prediction errors or PDE residuals, the dispersion of their mean variability with respect to
Θ and the setting of the σk values.

This first states the necessity to adequately set the σk parameters to avoid biased and imbal-
anced conditions on task gradient distributions, since these parameters critically and arbitrarily
affect the gradient distributions control. This also highlights that manual tuning of the σk values
may be an extremely sensitive task, difficult to achieve in practice. Therefore, in all the appli-
cations presented in this chapter, we chose to set these parameters uniformly and instead rely on
the λ automatic adjustment to ensure, inter alia, the efficient exploration of the Pareto front. It
avoids that these standard deviation parameters imply a strong constraint, potentially biased, on
each gradient distribution — with respect to Θ — and so, impact each task uncertainty. In this
sense, we ensure reliable and robust uncertainty estimates of the distinct tasks through automatic
and adaptive weighing.

For the sake of readability, we used two-task sampling with a data-fitting term from a field u
and a PDE constraint, denoted F , so the data set is decomposed intoD = Du∪DQ, following the
notations introduced in Sect. 4.3.2. The multi-potential energy thus reduces to :

U(Θ) =
λ0
2σ20
∥uΘ − u∥2Du +

λ1
2σ21
∥F(uΘ)∥2DQ +

1

2σ2Θ
∥Θ∥2 :=

K+1∑
k=0

λkLk(Θ) (4.30)

where we choose to keep the σk notation for the demonstration and restrain Θ to the neural net-
work parameters, even if the following holds in an inverse problem paradigm. As a reminder, the
measurement data used for the trainingDu can differ from the collocation points where we impose
the PDE constraint DQ and their respective numbers are denoted Nu and NQ. With the notations
from Sect. 4.3.2, the gradients of the two-tasks potential energy write respectively:

∂L0
∂Θj

(Θ) =
1

σ20N
u

Nu∑
i=0

(
uΘ(xi)− ui

)
∂uΘ
∂Θj

(xi)

∂L1
∂Θj

(Θ) =
1

σ21N
Q

NQ∑
i=0

F
(
uΘ(xi)

)
∂F(uΘ)
∂Θj

(xi)

(4.31)

for Θ ∈ Rp and we can thus decompose the variances VarΘ
[
∇ΘLk

]
, k = 0, 1 with respect to

these gradients. To do so, we first compute their mean with respect to Θ and get respectively

EΘ

[
∇ΘL0

]
=

1

Np

Np∑
j=0

∂L0
∂Θj

(Θ) =
1

σ20N
u

Nu∑
i=0

(
uΘ(xi)− ui

)
EΘ

[
∇ΘuΘ

]
(xi)

=
1

σ20
EDu

[
(uΘ − u)EΘ

[
∇ΘuΘ

]] (4.32)
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and
EΘ

[
∇ΘL1

]
=

1

σ21
EDQ

[
F(uΘ)EΘ

[
∇ΘF(uΘ)

]]
(4.33)

with the special configuration ∇ΘF(uΘ) = F(∇ΘuΘ) if F is linear. Finally, we can extend it to
the variance computations, as follows:

VarΘ
[
∇ΘL0

]
=

1

Np

Np∑
j=0

(
∂L0
∂Θj

− EΘ

[
∇ΘL0

])2

=
1

Np(Nuσ20)
2

Np∑
j=0

[
Nu∑
i=0

(
uΘ(xi)− ui

)(
∂uΘ
∂Θj

(xi)− EΘ

[
∇ΘuΘ

]
(xi)

)]2

=
1

(Nuσ20)
2

Nu∑
i=0

Nu∑
k=0

(
uΘ(xi)− ui

)(
uΘ(xk)− uk

)
CovΘ

[
∇ΘuΘ(xi),∇ΘuΘ(xk)

]
⩽

1

σ40
∥uΘ − u∥2∞,DuCovΘ

[
1

Nu

Nu∑
i=0

∇ΘuΘ(xi),
1

Nu

Nu∑
k=0

∇ΘuΘ(xk)

]
=

1

σ40
∥uΘ − u∥2∞,DuVarΘ

[
EDu

[
∇ΘuΘ

]]
(4.34)

that provides an upper bound for the gradient variance of the data-fitting term. We then obtain, in
the same way, the PDE constraint bound as:

VarΘ
[
∇ΘL1

]
⩽

1

σ41
∥F(uΘ)∥2∞,DQVarΘ

[
EDQ

[
∇ΘF(uΘ)

]]
. (4.35)

The notation ∥ · ∥∞,D• here refers to the discrete ℓ∞-norm on the spatial domain composed of the
D• training points, and ED• introduces the spatial mean on the corresponding data set. Hence, the
gradient variances of the tasks are controlled by the crossed complex components VarΘED• which
can be interpreted as sensitivity terms evaluating the dispersion with respect to Θ of the gradient
descent directions, averaged in space. Finally, since the σk values are uniformly set to one to avoid
biased sampling, it means that the λ values are computed in such a way the joint variance of the
gradient distributions is bounded by:

γ2 ⩽ min
{
∥uΘ − u∥2∞,DuVarΘ

[
EDu

[
∇ΘuΘ

]]
, ∥F(uΘ)∥2∞,DQVarΘ

[
EDQ

[
∇ΘF(uΘ)

]]}
(4.36)

which highlights the fact that the weights are adjusted with respect to the most likely task and thus
improve the reliability in the uncertainty quantification. The present computations can straightfor-
wardly be extended to more complex multi-potential energy terms for direct and inverse real-world
problems, which concludes our analysis.

4.4.3 Sobolev training benchmark and convergence diagnostics

The current AW-HMC algorithm is first validated on a Sobolev training benchmark with different
complexities, which presents the advantage of providing a basis for comparison with ε-optimality
results. This also allows us to establish a new indicator for convergence diagnostics of the BPINNs,
and investigate the performances of the proposed auto-weighted methodology. We first apply this
new Adaptively Weighted strategy to the 1D Sobolev training, up to second-order derivatives,
introduced in Sect. 4.3.3 and then extend it to third-order derivatives Sobolev training.

We consider the same exact set of hyperparameters as in Sect. 4.3.3. In particular, the number
of adaptive steps is set to N = 20, as for the NUTS declination, to ensure an impartial compar-
ison of the distinct sampler methodologies. However, given the stopping criterion developed in
Sect. 4.4, with a threshold set to Smin = 1e−3, we would obtain different numbers of adaptive
steps. Indeed, as shown in Fig 4.4, the Sobolev training with derivatives up to the second order
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Figure 4.3: Adaptively Weighted Hamiltonian Monte Carlo on Sobolev training up to second-order
derivatives compared to ε-optimal weighting. a) Effective gradient distributions variances Var{∇ΘLk}
with balanced conditions between the tasks. b) Hamiltonian evolution throughout the sampling satisfying
energy conservation. c) Resulting field predictions with a comparison between ε-optimal results and AW-
HMC strategy.

would exit after 28 iterations, and its formulation with derivatives up to the third order would
exit after 15 iterations. It is though noticeable that the 28 iterations of the adaptation process —
observed in Fig 4.4a for the second-order case — is a bit overestimated, due to the lag induced
by the backward averaging, so stopping after a maximum number of iterations Nmax = 20 is
totally acceptable, and ensure a fair comparison between the different samplers. Furthermore,
Figure 4.7 confirms that the task weights have reached lower bounds for Sobolev training up to
third-derivative, so all tasks are meaningfully balanced. In this case, the weights stabilization ob-
served for iterations τ > 15, in Figure 4.7, also confirms that the present stopping criterion is
relevant, even if we consider a manual number of adaptive steps for the sake of fair comparisons.

In addition, we compare the predictions with a reference case where the weights λk are set
accordingly to ε-optimal analytical solution [306], which can only be provided for linear problems.
Such analytical ε-optimal weights are available for the optimization problem of minimizing the
multi-potential energy in equation (4.18). In the particular case of Sobolev training, these weights
can be determined based on the following equation (see [187], for instance):

λεk =

∏
j ̸=k

Ij

K∑
k=1

∏
j ̸=k

Ij

such that Ik =

∫
Ω
|Dk

x(u)|2 dx. (4.37)

These theoretical weights, plotted in Figure 4.7b, alleviate stiffness issues that lead to vanishing
gradient phenomena [187]. By doing so, these weights ensures that the objectives — or tasks —
are minimized in an unbiased way, hence reaching Pareto optimal solution. Although we consider
a marginalization process in the Bayesian context, these analytical weights provide an interesting
baseline for comparison on stiff Sobolev problems. Indeed, appropriate weighting of the posterior
distribution based on the ε-optimal rule (4.37) ensures effective sampling that we compare with
our AW-HMC strategy. In this sense, ε-optimal weighting allows us to verify that our adaptive
weighing strategy reaches the Pareto front neighborhood during the adaptive steps and hence effi-
ciently samples the region of the highest posterior probability. We tested our methodology against
this ε-optimal solution assuming observation noise ξu ∼ N (0, σ2uI) such that σk = σu,∀k with
σu = 0.1. It provides good agreement between both approaches with a similar convergence of
the Hamiltonian toward the same energy level, in Figure 4.3b: in fact, the L2-relative error on the
Hamiltonian values between the ε-optimal and AW-HMC methods scales around 1e−4 after the
adaptive steps. The AW-HMC method also provides L2-relative errors, compared to this optimal
solution, ranging around 1e−3 for both the signal and its derivatives. Finally, we also point out
in Figure 4.3a balanced gradient variances in the same way as observed with ε-optimal analytical
weights. The AW-HMC methodology, therefore, provides similar results to ε-optimal solutions



112 Chapter 4. Multitask BPINNs for multiscale forward and inverse problems

Figure 4.4: Hamiltonian averaged slope used as stopping criterion for weight adaptation on 1D
Sobolev training benchmarks. The vertical dashed lines depict the start and the end of the weight adapta-
tion process. a) Sobolev training with derivatives up to second order. b) Sobolev training with derivatives
up to third order.

in terms of balance between the gradient variances, exploration of the Hamiltonian energy levels,
and overall BMA predictions.

Our new approach shows exceptionally balanced conditions between the different tasks: the ef-
fective gradient distribution variances Var{∇ΘLk} present the same orders of magnitude through-
out the training, even with a finite number of adaptive steps. This means that the posterior dis-
tribution reached after the auto-adjustment of the weights is well-suited to converging toward the
Pareto front exploration. This makes the sampling more efficient and comparable to sampling a
weighted posterior based on the ε-optimal rule (4.37). Preventing strong imbalance behavior on
the gradient variances, and therefore task-specific bias has considerably improved the marginal-
ization of such multi-objective potential energy, in comparison with the conventional approaches
that presented major failures in Sect. 4.3.3.

To further demonstrate the robustness of the method, we consider the third-order derivative
extension of this test case, where even a NUTS adaptive strategy on the time step (reaching δt =
1.36e−7) generates, here, pathological random-walk behavior making the sampling completely
defective (see Figure 4.5 top row and Figure 4.6). Such a significant decrease in the time step
is clearly explained by the enhanced stiffness induced by the third-order derivative term in this
multitask learning. Indeed, the Hamiltonian trajectories are more likely to diverge during the
deterministic steps due to this stiffness and require a small δt to compensate for the divergence.
To avoid the resulting pathological random walks, the overall integration time must be increased
but this inevitably leads to excessive computational costs — under such a constraint on the leapfrog
time step. This highlights the main limitation of NUTS when facing stiff multitask sampling that
involves separate scales.

In contrast, our approach overcomes these major failures (see Figure 4.6) without additional
constraints on δt and provides balanced gradient variances between the different tasks as illus-
trated in Figure 4.5 (bottom row). We also compare the results of the AW-HMC methodology
with analytical weights from ε-optimality and show great agreement between the approaches. In
addition, in order to deal with the stochastic-induced process of the BPINNs induced by sampling
variability, we perform various repetitions of the sampling with different initialization of the neural
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Figure 4.5: Comparison between AW-HMC and NUTS samplers on Sobolev training up to third-
order derivative: Effective gradient distribution variances Var{∇ΘLk} and Hamiltonian evolution. The
NUTS formulation (top row) highlights strong imbalances between the learned tasks, on the left, and
random-walk behaviors in exploring the energy level sets, on the right. AW-HMC strategy (bottom row)
compared with ε-optimality.

network parameters and momentum. This leads to averaged weight evolution along the adaptive
steps presented in Figure 4.7 that show similar order of magnitude as the analytical ε-optimal
weights. The slight difference between the computed and analytical weights in Figure 4.7 can
be explained by the difference of nature of both problems, respectively a marginalization process
and an optimization one. Indeed, the weights determined by analytical ε-optimal analysis lead to
the tightest upper bound in the corresponding optimization problem — that minimizes the multi-
objective potential energy (4.18) — but do not incorporate any uncertainty quantification, unlike
the computed weights based on Inverse-Dirichlet weighting in the AW-HMC sampler. Nonethe-
less, the comparison is interesting and illustrates that the overall scaling of the distinct tasks is well
captured during the adaptive steps of AW-HMC (see Figure 4.7). The comparison of our adap-
tive weighting strategy with a posterior distribution weighted by the ε-optimal rule (4.37) shows
similar convergence properties, driving the sampler close to a well-conditioned posterior distribu-
tion (see Figure 4.5 bottom-right). Therefore, the weighted posterior distribution determined by
AW-HMC enables exploring of the optimal Pareto front neighborhood, avoids stiffness issues, and
thus provides an efficient sampling of the highest posterior probability region.

Apart from these qualitative comparisons between the different methodologies and the analyt-
ical solution, we subsequently introduce a new metric that quantifies the quality of the predictions.
This complements the usual metrics with a convergence quantification of the sampling along the
marginalization process. The samples collected after the burn-in steps in the AW-HMC process



114 Chapter 4. Multitask BPINNs for multiscale forward and inverse problems

Figure 4.6: Comparison of the BMA predictions (on the function and its derivatives) between the AW-
HMC and NUTS formulations for 1D Sobolev training up to third-order derivative. The imbalance
between tasks and random walk behavior of NUTS (see Figure 4.5 top row) results in ineffective BMA
predictions. The AW-HMC methodology overcomes these effects and significantly improves the sampling
of the target distribution.

— i.e. all the instances of
{
Θtτ
}Ns

τ=Nburn
— are first used to determine a Bayesian Model Average

estimation as defined in equation (4.3). Each sample provides a prediction P (y|x,Θtτ ), for the
neural network characterised by Θtτ , which is theoretically drawn from the posterior distribution
P (Θ|D,M) such that the BMA is usually approximated by [319]:

P (y|x,D,M) ≃ 1

Ns −Nburn

Ns∑
τ=Nburn

P (y|x,Θtτ ) with Θtτ ∼ P (Θ|D,M). (4.38)

In Sobolev training, we consider as the neural network outputs, the prediction of the function itself
and all its derivatives y =

{
Dk

xuΘ, k = 0...K
}

, such that we can compute, according to equation
(4.38), relative BMA errors with respect to each output defined by :

BMA-Ek =

∥∥P (Dk
xuΘ |x,D,M

)
−Dk

xu
∥∥2

∥Dk
xu∥2

, ∀k = 0...K (4.39)

where the notation ∥·∥ used here refers to the functional L2-norm. Based on the previous definition
and in order to incorporate convergence on the BMA along the marginalization process, we intro-
duce a new diagnostic called (relative) Bayesian Model Average Cumulative Error (BMA-CE),
defined as follows:

BMA-CEk(τ) =

∥∥∥∥∥ 1

τ −N

τ∑
i=N

P
(
Dk

xuΘ |x,Θti
)
−Dk

xu

∥∥∥∥∥
2

∥Dk
xu∥

2 , ∀k = 0...K (4.40)
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Figure 4.7: λ trajectories with AW-HMC and ε-optimal weighting strategies for Sobolev training up
to third-order derivative: a) Evolution of the λk weights along the adaptive steps (τ ≤ N ), averaged
over several repetitions of the AW-HMC sampling. This is induced by different initializations of the neural
network parameters and momentum to take into account sample variability. b) Comparison with analytical
ε-optimal weights. The order of magnitude of the relative weights λ0/λi, i = 1...3, in both methods, are
represented by the double-headed arrows.

Figure 4.8: Convergence diagnostics with the comparison between the HMC, NUTS, and AW-HMC
samplers for Sobolev training up to third-order derivative: a) Cumulative relative BMA errors, com-
puted according to equation (4.40), plotted throughout the sampling iterations τ > N with the AW-HMC
strategy. b) Cumulative relative BMA errors for the classical HMC and NUTS formulations. These quan-
tities remain nearly constant in pathological cases, due either to massive rejection or pathological random
walk, highlighting the lack of convergence in the usual BPINNs-HMC formulations.
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depending on the sampling iterations after the adaptive steps, for τ > N in Algorithm 1. These
formulae can be directly extended to all the neural network outputs, in a more general framework
and quantify the sampling efficiency in terms of convergence rate. The cumulative BMA errors
are represented in Figure 4.8 for the third-order extension of Sobolev training highlighting the
convergence of the AW-HMC sampler for each of the functional tasks (Figure 4.8a). Instead,
these quantities remain nearly constant for the pathological HMC and NUTS formulations, due to
massive rejections and random-walk behavior, respectively (see Figure 4.8b).

4.4.4 2D Sobolev training benchmark

We finally extend the Sobolev training test case from Sect. 4.4.3 to several 2D benchmarks, where
we study the impact of the functional complexity and the number of training points on the Bayesian
Model Average errors. In this sense, we test the robustness and efficiency of the AW-HMC al-
gorithm for the BPINNs on 2D Sobolev training constrained by gradient-based and Laplacian
operators.

We define on the spatial domain Ω = [0, 2π]2 a target functional u, taken under the form:

u(x, y) =

Nrep∑
i=1

Ai
x cos

(
2πL−1

x lixx+ φi
x

)
Ai

y sin
(
2πL−1

y liyy + φi
y

)
(4.41)

which makes it possible to investigate a wide range of shape complexities and sharp interfaces,
in addition to the stiffness introduced by the higher-order derivatives. We set the domain sizes
to Lx = Ly = 2π, the number of repetitions Nrep = 5, while the parameters Ax and Ay are
independently and uniformly sampled from the interval [−2, 2], as are φx and φy from [0, 2π]. In
order to treat several shape complexities, we consider a range of parameter l such that the local
length scales lx and ly are randomly sampled from the set {1, 2, ..., l}. The 2D spatial domain Ω is
covered by a uniform grid with a resolution of 256 × 256, along with randomly-selected training
points defining the dataset D. We then study both the impact of the functional complexity, by
setting different values of l, and the number of training points on the Bayesian Model Average
resulting from our AW-HMC methodology. For this 2D Sobolev benchmark, we consider the
multi-potential energy term defined by:

U(Θ) =
λ0
2σ20
∥uΘ − u∥2D +

λ1
2σ21

∥∥∥∥(∂uΘ∂x +
∂uΘ
∂y

)
−
(
∂u

∂x
+
∂u

∂u

)∥∥∥∥2
D

+
λ2
2σ22
∥∆uΘ −∆u∥2D +

1

2σ2Θ
∥Θ∥2Rp

.

(4.42)

The results on the entire benchmark setup, presented in Figure 4.10, show a convergence trend with
an increasing number of training points, and this independently of the l values, even though the
relative BMA errors reach higher bounds with additional shape complexity. These relative BMA
errors are respectively computed according to the following relations for the functional surrogate
model uΘ, the gradient-based term∇uΘ and the Laplacian ∆uΘ:

BMA-Eu =
∥P (uΘ | (x, y),D,M)− u∥2

∥u∥2
,

BMA-E∇u =

∥∥∥∥P (∂uΘ∂x +
∂uΘ
∂y

∣∣∣∣ (x, y),D,M)− (∂u∂x +
∂u

∂y

)∥∥∥∥2∥∥∥∥∂u∂x +
∂u

∂y

∥∥∥∥2
,

BMA-E∆u =
∥P (∆uΘ | (x, y),D,M)−∆u∥2

∥∆u∥2
,

(4.43)
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Figure 4.9: 2D Sobolev training benchmark: BMA predictions, predicted standard deviation, and relative
MSE, presented locally for each term of the multi-objective potential energy (4.42). We worked on a limited
case l = 8 with about 15% of training points. The global relative mean squared errors, averaged over the
whole domain Ω, scale around 1.69e− 3, 3.42e− 3, and 5.6e− 3 respectively.

where the notation ∥ · ∥ refers to the functional L2-norm. The BMA errors are also average
versions of different repetitions of Sobolev sampling, simultaneously running in parallel. In fact,
in order to deal with the stochastic-induced process that may arise from the sampling variabilities
themselves, we performed several realizations starting with distinct initializations of the neural
network Θt0 and momentum rt0 parameters, which lead to different sampling realizations. We can
potentially take into account these sampling variabilities to compute the standard deviation over
these repetitions, as illustrated by the colored bands in Figure 4.10. We also represent in Figure 4.9
for each term of the multi-potential functional (4.42), respectively, their BMA predictions, their
uncertainties based on the predictive standard deviations throughout the sampling, and the relative
Mean Squared Errors (MSE) errors in the case l = 8 and with 10000 training points, randomly
sampled over the whole domain. The results here show enhanced uncertainties near the boundary
walls where the higher errors are located and highlight the ability of our methodology to capture
complex shape fields of different orders of magnitude at the same time. We can also emphasize that
such a 2D Sobolev training benchmark was previously unachievable with the classical BPINNs-
HMC formulation.
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Figure 4.10: 2D Sobolev training benchmark: comparison of the relative BMA errors, as defined in
equations (4.43), plotted with respect to the number of training points for each term of the multi-potential
energy (4.42). We consider various shape complexities induced by the different values of l. The number of
training points is increased until about 30% of the whole data set is reached, for 20000 training points.

4.5 Validation on a multiscale Lotka-Volterra inverse problem

We demonstrate the use of AW-HMC on a more complex multitask and multiscale dynamical
inverse problem to quantify the impact of the scaling. As Linka et al. [173] pointed out, sensitivity
to scaling may hinder the performance of classical BPINNs, especially when considering nonlinear
dynamical systems. In this section, we therefore compare the distinct BPINN methodologies,
namely the usual HMC and NUTS formulations, with our novel adaptive weighting approach on
a Lotka-Volterra multiscale inverse problem. The multiscale nature and stiffness resulting from
real-world problems, where vanishing task-specific gradients are commonplace, is an interesting
benchmark to quantify the robustness and efficiency of the present AW-HMC method.

4.5.1 Lotka-Volterra inverse problem formulation

In this context, we consider a Lotka-Volterra dynamical system with parameters of highly varying
orders of magnitude defined by the following ODE system:

du

dt
= αu− βuv, t ∈ T

dv

dt
= δuv − γv, t ∈ T

u(0) = u0, v(0) = v0

(4.44)

which characterizes the temporal evolution of predator-prey species. The notations u(t) and v(t)
respectively refer to the prey and predator population size at a given time t, whereas the parameters
α, β, δ, γ ≥ 0 control the population dynamics, as growing and shrinkage rates. Thereafter, we
set the initial populations to u0 = 100 and v0 = 20 with the following parameters α = 1, β =
0.1, δ = 0.01 and γ = 0.5 intentionally selected with different orders of magnitude. This sets up
an inverse problem benchmark based on real-world dynamics with separate scales involved.

The observation data are first numerically generated by solving the ODE system (4.44) on
a uniform temporal grid T = [0, 50] with a thin resolution of 400 points. The data are ran-
domly sampled so as to consider only half in the training phase of the different samplers. The
dataset D then involves these partial measurements of u and v at 200 different times, potentially
with some added noise, and the same collocation points are kept to satisfy the ODE constraints.
In this section, we focus on an inverse problem by inferring the unknown model parameters
Pinv = {α, β, δ, γ} from these measurement data while recovering the whole species evolution
on the original finer resolution. Although the overall Bayesian inference problem is multiscale by
construction, each inverse parameter is assumed to follow single-mode posterior distributions.

Regarding the noticeable scaling difference between the two populations, we consider a
predator-prey split of the tasks such that each field u and v satisfies a data-fitting likelihood term
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Figure 4.11: Hamiltonian averaged slope used as stopping criterion for weight adaptation on Lotka-
Volterra inverse problem. The vertical dashed lines depict the start and the end of the weight adaptation
process. The overall sampling has two sequential steps: first, data-fitting alone in blue (with a preliminary
weight adaptation) and second, data-fitting together with the ODE constraints in red (with an updated weight
adaptation).

and an ODE-residual likelihood term. We also assume log-normal prior distributions onPinv to en-
sure positivity of the inverse parameters, as Yang et al. [328] have shown that such priors improve
the inference, and we set independent normal distributions on the neural network parameters θ. In
practice though, we use a change of variable by introducing Pinv = eP̃inv :=

{
eα̃, eβ̃, eδ̃, eγ̃

}
for

each of the inverse parameters, to infer P̃inv assuming normal prior distributions as well. For this
test case, we impose weakly informed priors, especially on P̃inv, since we expect our methodology
to handle the multiscale inference due to the unbiased auto-weighting of the tasks. We therefore
assume that both the neural network and inverse parameters all gather the same prior distribution,
given by Θ ∼ N (0, σ2ΘIp+d) where we consider the newly set of parameter Θ =

{
θ, P̃inv

}
.

Under these assumptions, we can define the multi-potential energy of the corresponding
Hamiltonian system:

U(Θ) =
λ0
2σ20
∥uΘ − u∥2D +

λ1
2σ21
∥vΘ − v∥2D +

λ2
2σ22

∥∥∥∥duΘdt − αΘuΘ + βΘuΘvΘ

∥∥∥∥2
D

+
λ3
2σ23

∥∥∥∥dvΘdt − δΘuΘvΘ + γΘvΘ

∥∥∥∥2
D
+

1

2σ2Θ
∥Θ∥2Rp+d

(4.45)

where the inferred inverse parameters are defined by (Pinv)Θ = e(P̃inv)Θ :=
{
eα̃Θ , eβ̃Θ , eδ̃Θ , eγ̃Θ

}
.

We also set all the σk equal to one, as we do not wish to impose strong priors on the tasks and
model uncertainty. As mentioned previously in Sect. 4.3.2, the norms are respectively the RMS
and the Euclidean norm for the last term. The prior on the parameters is assumed to follow
a Gaussian distribution with a larger standard deviation σΘ = 10, in the sense that a slightly
diffuse distribution induces weakly informed priors on the Θ parameters. This also ensures that
the constraint (4.24) for a non-informative prior is satisfied (see Sect. 4.4.1).

For such inverse modeling, the sampling is decomposed using sequential training. This means
that:

• First, the neural network parameters are sampled with an AW-HMC strategy to mainly target
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the data-fitting likelihood terms (setting λ2 = λ3 = 0). This is referred to as sampling step
1, in the rest of the manuscript.

• We then introduce the ODE-residual tasks in (4.45) to provide estimations of the missing
inverse parameters, using the AW-HMC algorithm with initial neural network parameters
θt0 resulting from step 1. This is referred to as sampling step 2.

The BMA predictions and uncertainty quantification finally rely on this entire sampling procedure.
In the two-step sequential training, the number of adaptive and sampling iterations are first given
by N = 19 and Ns = 100 in step 1, and N = 48 and Ns = 200 in step 2. The number of
adaptive steps, in particular, are determined according to the stopping criterion for the AW-HMC
sampler developed in the methodological Sect. 4.4. For this Lotka-Volterra inverse problem, the
maximum number of adaptations is set to Nmax = 50. We, however, distinguish the setting of the
threshold Smin for the two sequential steps: in sampling step 1, the weight adaptation threshold
is set to Smin = 1e−3 and in sampling step 2, this threshold is set lower at Smin = 1e−4 due
to good preconditioning from the first sampling step. A new adaptation is still required, though,
since the Hamiltonian function contains two more terms — the two residual values of the ODE
expression. In Figure 4.11, the stopping criteria described above therefore lead to an exit after
N = 19 adaptation iterations for the sampling step 1, and after N = 48 adaptive iterations
for the sampling step 2, corresponding to the third dashed line. Besides, these parameters are
kept identical for the other samplers, namely HMC and NUTS, to ensure impartial comparison
between the distinct methodologies. The leapfrog parameters are meanwhile given by L = 100
and δt = 5e−4 and 2e−4 respectively for the sampling steps 1 and 2. Finally, the neural network
itself is composed of 4 layers with 32 neurons per layer and we use the sin activation function
considering the periodic nature of the solution for the Lotka-Volterra system. Overall, this defines
an interesting validation benchmark querying the impact of multiscale inverse problems and the
robustness of the several Bayesian Inference methods.

4.5.2 Failure of the usual BPINN methodologies on multiscale inverse problem

We first consider the Lotka-Volterra inverse problem, introduced in the previous Sect. 4.5.1, to in-
vestigate the impact of multiscale dynamics on the usual BPINN methodologies as HMC with
uniform weighting and NUTS. The sampling and leapfrog parameters are set accordingly to
Sect. 4.5.1, where N refers here to the burn-in and number of adaptive steps for the HMC and
NUTS formulations, respectively. Therefore, we compare the different samplers assuming that,
first, their time complexity is the same and, then, no informative priors on the inverse parameter
scaling. In fact, the first condition states that different leapfrog parameters might improve the
inference of these conventional methodologies. However, it implies a noticeable decrease in the
leapfrog time step δt, thus slower exploration of the energy levels. Hence, these methods require
either an increase in the integration time — by increasing L — or using a large number of sam-
ples, to obtain suitable predictions. As a reminder, independently of this lack of efficiency in the
posterior distribution sampling, poor choices on the weights of multi-potential energy can bias
the sampler and deviate it from the Pareto front exploration. The second assumption is motivated
by the willingness to address UQ on multiscale dynamics without any prior knowledge of the
separate scales. This arises from an assertion by Linka et al. [173] indicating that sensitivity to
scaling disrupts the performance of the BPINNs-HMC. Finally, we also consider the sequential
training, corresponding to the two successive sampling steps, to provide an appropriate basis for
comparison between the different methods.

We compare the predictive evolution of the populations to the exact solutions and compute
relative BMA cumulative errors for both species to quantify the convergence of the distinct sam-
plers. The results show a lack of convergence of the classical HMC with uniform weighting (in
Figure 4.12c) and also, a strong imbalance between the tasks. The relative BMA-CE errors effec-
tively characterize an extremely poor convergence of the predator population with respect to the
prey population, which translates directly into an inefficient BMA prediction for the two-species
populations (in Figure 4.12a and b). This failure mode is due essentially to the massive rejection
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Figure 4.12: Failure mode of classical HMC, with uniform weighting, on the Lotka-Volterra multi-
scale inverse problem defined in Sect. 4.5.3. a) BMA predictions for the two-species populations along
the physical time with their uncertainties, with a zoomed version in b). c) Relative BMA-CE errors through-
out the sampling iterations illustrate the lack of convergence of the method.

of the samples — with an acceptance rate less than 1% — due to non-conservation of the Hamil-
tonian trajectories along the leapfrog steps. Hence, this confirms the lack of robustness of the
BPINNs-HMC paradigm when facing instability issues due to multiscale dynamics.

The NUTS alternative also struggles to converge on this multiscale inverse problem and results
in inadequate predictions, especially for the predator population. Here the reason is not the massive
sample rejection but rather a prohibitive decrease in the time step, reaching δt = 8.26e−5 and
2.81e−5, respectively, at the end of the adaptive steps — nearly corresponding to a ten-fold drop
in the time step, compared to AW-HMC. The relative BMA-CE errors (in Figure 4.13c) reveal that
this time step adaptation is suitable for the convergence of the prey population since it appears to
be the most sensitive task. This sensitivity should be understood in the sense that small variations
with respect to Θ on the potential energy induce the strongest constraint on the Hamiltonian energy
conservation. However, the time-step adaptation is not satisfactory for the predator population
and even leads to inefficient forgetting of the neural network throughout the sequential training.
This translates into misleading predictions on the evolution of the population (see Figure 4.13a
and b) and unsuccessful inference of the inverse parameters. Indeed, Figure 4.14 represents the
histograms of the marginal posterior distributions for the four inverse parameters, along with the
phase diagrams of their trakectories troughout the sampling. These phase diagrams demonstrate
the difficulties of the NUTS sampler in adequately identifying the modes resulting from separate
scales. Overall, the NUTS sampler suffers from a lack of convergence toward the Pareto front
and a misleading inference of the inverse parameters, subject to weakly-informed priors, due to its
inability to capture multiscale behaviors.

4.5.3 Robust Bayesian Inference on multiscale Lotka-Volterra inverse problem

On such an inverse problem, we demonstrated the classical BPINNs-HMC algorithm faces mas-
sive rejection since the Hamiltonian trajectories are not conserved, which results in inoperative
sampling. Even the adaptive strategies on the time step struggle to deal with the multiscale dy-
namics and require an extreme decrease in the δt value to obtain some stability, as detailed in
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Figure 4.13: Failure mode of HMC with NUTS adaptation on the Lotka-Volterra multiscale inverse
problem defined in Sect. 4.5.3. a) BMA predictions for the two-species populations along the physical time
with their uncertainties, with a zoomed version in b). c) Relative BMA-CE errors throughout the sampling
iterations showing an imbalance between the tasks and preferential adaptation of the prey population.

Figure 4.14: Failure mode of HMC with NUTS on the Lotka-Volterra multiscale inference. Top
pictures show histograms of the marginal posterior distributions for the inverse parameters. Bottom pictures
show phase diagrams of their trajectories throughout the sampling. The biased predictions from Figure 4.13
prevent proper inference of the inverse parameters, leading to random walk pathological behavior in the
updated parameters.
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Figure 4.15: Lotka-Volterra multiscale inference: a) BMA predictions of the two-species populations
along the physical time with their uncertainties, zoomed on b). c) Relative BMA-CE errors for the neural
network outputs y = (uΘ, vΘ) plotted throughout the sampling iterations. The dotted vertical line marks
the introduction of the ODE-likelihood terms in the sequential training.

Figure 4.16: Posterior distributions of the inverse parameters on the Lotka-Volterra multiscale in-
ference. Top pictures show histograms of the marginal posterior distributions for the inverse parameters
(Pinv)Θ = {αΘ, βΘ, δΘ, γΘ}. Bottom pictures show phase diagrams of the parameter trajectories through-
out the sampling that characterized convergence toward their respective modes during the adaptive steps (in
blue) and efficient exploration of the mode neighborhood after the adaptive steps (in red). The ground truth
parameters are respectively Pinv = {α, β, δ, γ} = {1, 0.1, 0.01, 0.5} and establish an inverse problem
with separate scales.
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Seq. step
λk

λ0 λ1 λ2 λ3

Data-fitting (step 1) 3.83e−2 1 — —

Data-fitting + ODE tasks (step 2) 4.87e−2 1 9.16e−3 1.16e−1

Seq. step
σ̃k

σ̃0 σ̃1 σ̃2 σ̃3

Data-fitting (step 1) 5.109 1 — —

Data-fitting + ODE tasks (step 2) 4.531 1 10.45 2.936

Table 4.1: Weight parameters λk obtained after the adaptive steps in the Lotka-Volterra multiscale inverse
problem, for each of the sequential steps (top rows). Effective standard deviations σ̃k resulting from the
weight adaptations and computed as σ̃k =

√
1/λk for each of the sequential steps (bottom rows). This

highlights enhanced uncertainties on the tasks related to the prey species. The splitting of the sequential
steps is detailed in Sect. 4.5.1.

Figure 4.17: Convergence diagnostics on the Lotka-Volterra multiscale inference problem: a) Lag-k
Autocorrelation Functions (ACF) of the inverse parameters (Pinv)Θ = {αΘ, βΘ, δΘ, γΘ}, plotted versus
lag. b) Inverse parameters chain traces along the sampling iterations of the AW-HMC sampler, showing
convergence toward their respective single modes during the adaptive steps. The groundtruth values of each
parameter are respectively represented by the grey horizontal dotted lines.

Sect. 4.5.2. The natural implication of such constraints on the leapfrog time step is lack of con-
vergence toward the Pareto front and poor inference of the inverse parameters, subject to weakly
informed priors (see Figure 4.13 and 4.14 from Sect. 4.5.2). In fact, Linka et al. [173] addressed
the same issue on learning COVID-19 dynamics and imposed (in Sect. 4.3 of [173]) log-normal
prior distributions on the inverse parameters that already rely on appropriate scaling. The need for
such appropriate scaling strongly impacts the inference in the sense that it requires prior knowl-
edge which biases the sampling.

On the contrary, we assume independent priors with respect to the scaling and show that our
AW-HMC approach is able to properly recover all the Pinv parameters as well as predict the
species evolution with minimal tuning and decrease on δt. The recovery of separate scales no
longer requires prior knowledge of the inverse parameter scaling to converge to their respective
single modes. The results shown in Figure 4.16 represent both the marginal posterior distributions
of each inferred inverse parameter (Pinv)Θ and their trajectories when exploring the phase space
distribution π(Θ, r). For the latter, we plotted the entire sampling trajectories that converge toward
their respective mode during the adaptive steps, to finally sample around them as illustrated by the
final trajectories for τ > N . This confirms the ability of AW-HMC to quickly identify the separate
modes of this inverse problem and manage such multiscale dynamics.
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We also ensure that the number of overall samples is sufficient to provide meaningful esti-
mates of the posterior distribution (in Figure 4.16) through a convergence diagnostic based on the
autocorrelation of the samples. Therefore, we compute the lag-k Autocorrelation Function (ACF),
identified as a standard metric for chain convergence characterization [134, 167, 259] and defined
as the correlation between samples k steps apart. We apply it to the AW-HMC chains for the
four inverse parameters in the Lotka-Volterra inference problem. Figure 4.17a shows the results
of lag-k autocorrelation for their respective AW-HMC chain traces from Figure 4.17b. This diag-
nostic rapidly drops as k increases, indicating fast mixing of the chains and a fast decorrelation of
the samples from the non-informative initializations. Hence, it suggests efficient convergence of
the AW-HMC chains toward the inverse parameter modes and reliable estimation of the posterior
distributions.

In order to quantify the effectiveness in identifying the parameters, we also measure the relative
error in the inference of each inverse parameter (Pinv)Θ = {αΘ, βΘ, δΘ, γΘ}, with for instance:

EαΘ =
|αΘ − α|
|α|

(4.46)

where the prediction is given by αΘ =
1

Ns −N

Ns∑
i=N

eα̃Θ
ti . We show that these relative errors

all scale around 5e−2 for the four inverse parameters. The predictive evolution of the species
populations is displayed in Figure 4.15, as a BMA on the neural network outputs y = (uΘ, vΘ),
and compared to the exact solutions in a qualitative and quantitative way. In this sense, we com-
puted relative BMA cumulative errors for both the species, highlighting the convergence of the
sampling, in Figure 4.15c. We see that the insertion of the ODE-residual likelihood terms in the
two-step sequential training improves the convergence of the predictions when compared to pure
data-based sampling.

This test case also reveals higher uncertainties on the evolution of the prey population char-
acterized by effective standard deviations about four times greater (see Table 4.1). The enhanced
uncertainty on these specific tasks is highlighted by smaller values of λ0 and λ2 at the end of the
adaptive steps, compared to λ1 and λ3 in the potential energy (4.45). Therefore, the AW-HMC
strategy benefits from its ability to adaptively weight the λ parameters to intrinsically characterize
the task uncertainties based on their gradient variances.

4.6 Application to Computational Fluid Dynamics: Stenotic Blood
Flow

We illustrate the use of the methodology set out in Sect. 4.4.1 in a real-world problem from fluid
mechanics, more precisely the study of inpainting and inverse problems on incompressible stenotic
flows in asymmetric geometries. The objective is to demonstrate the generalization and perfor-
mance of the present AW-HMC algorithm on more complex 2D geometries and nonlinear PDE
dynamics under noise and sparsity of the data.

The measurement data are generated by randomly sampling the fully resolved CFD solutions
on scattered locations. The direct numerical simulation of vascular flows in asymmetric stenotic
vascular geometries is performed using a meshless solver based on a Discretization-Corrected
Particle Strength Exchange (DC-PSE) method as detailed in [55].

4.6.1 Inpainting problem with sparse and noisy data

Inpainting problems have drawn increasing interest in MRI (Magnetic Resonance Imaging) or
CT (Computed Tomography) medical imaging as an opportunity to reduce artifacts and recover
missing information by using deep learning approaches [30, 192, 301]. Although the usual in-
painting framework incorporates only measurement data in the image processing, Zheng et al.
investigated a physics-informed version of the problem by incorporating the underlying physics
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Figure 4.18: Bayesian Model Average Cumulative Error diagnostics, as defined in (4.51), for the
vorticity physics-informed inpainting problem: a) BMA-CE on the vorticity field prediction throughout
the sampling iterations and for different noise levels. b) BMA-CE on the PDE residual F satisfying (4.48)
for different noise levels. The dotted vertical lines mark the introduction of the PDE constraint in the two-
step sequential training.

as indirect measurements [340]. The present section falls within the same context: the idea is to
infer the whole flow reconstruction based on sparse and noisy measurements while imposing PDE
constraints on some complementary collocation points.

The governing equations of the stenotic flow dynamic are written here in a velocity u = (u, v)
and vorticity ω formulation in two dimensions, satisfying an incompressible steady-state Navier-
Stokes equation given by

(u · ∇)ω = Re−1∆ω, in Ω (4.47)

or equivalently

u
∂ω

∂x
+ v

∂ω

∂y
=

1

Re
∆ω, in Ω (4.48)

where Re refers to the dimensionless Reynolds number, ω is the vorticity field ω =
∂v

∂x
− ∂u
∂y

and

the incompressibility condition ensures divu = 0. We consider the 2D stenotic spatial domain
Ω ⊂ [0, 10]× [0, 1] and assume two different kinds of boundary conditions:

• the stenosis upper and lower walls, denoted ∂Ω1, where we impose no-slip conditions such
that u∂Ω1 = 0 and ω = (∇× u)∂Ω1 ,

• the inlet and outlet boundaries, denoted ∂Ω2, with a prescribed parabolic profile and Neu-
mann condition, respectively, on the velocity in the main flow direction.

These boundary conditions are detailed in Sect. 4.4 of the DC-PSE article [55]. We also first con-
sider that the Reynolds number is known and set to Re = 200 according to the CFD simulations,
such that the set of parameters to infer Θ is restricted here to the neural network weights and bias.

The measurement dataset, D, is composed of noisy vorticity data on D∂1 and D∂2 , defined
as in (4.12) respectively for the boundary sets ∂Ω1 and ∂Ω2. We also consider sparse and noisy
vorticity data on 1282 interior collocation pointsDω that cover less than 2% of all the data required
for the full vorticity field reconstruction on the spatial domain Ω. We finally definedDΩ the dataset
of 6408 interior points, representing 6% of the entire reconstructed data field, wherein the PDE
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Figure 4.19: Uncertainty quantification on the physics-informed inpainting problem: BMA prediction
of the vorticity field ωΘ in asymmetric stenosis without noise, compared to the ground truth solution ω
(top row). The black dots on the exact field correspond to the training measurements of the dataset D.
Comparison of the uncertainty standard deviations (Std) and mean squared errors (MSE) on the predicted
vorticity field ωΘ for different noise levels (σ = 0, 0.1, 0.2), shown in the bottom rows.

(4.48) is satisfied in this physically-constrained inpainting formulation. The multi-potential energy
is then defined by:

U(Θ) =
λ0
2σ20
∥ωΘ − ω∥2Dω +

λ1
2σ21
∥ωΘ − ω ∂Ω1∥

2
D∂1 +

λ2
2σ22
∥ωΘ − ω ∂Ω2∥

2
D∂2

+
λ3
2σ23

∥∥∥∥un∂ωΘ

∂x
+ vn

∂ωΘ

∂y
− 1

Re
∆ωΘ

∥∥∥∥2
DΩ

+
1

2σ2Θ
∥Θ∥2Rp

(4.49)

with un and vn noisy evaluations of the velocity field on the DΩ set. We then used sequential
training by adding the PDE-residual likelihood term in the second sampling phase, such that the
AW-HMC parameters are given first by N = 50 and Ns = 200, and then N = 50 and Ns = 250
for a leapfrog path length L = 150 and time step δt = 5e−4. As for the previous benchmarks, we
set all the σk equal to one and assume a centered normal distribution with the standard deviation
σΘ = 10 for the neural network parameters prior. The neural network is composed of 4 layers
with 32 neurons per layer and is based on the hyperbolic tangent activation function. The velocity
and vorticity CFD solutions (u, ω) are both corrupted by additive Gaussian noise such that

•n = •+ σξ where ξ ∼ N (0, ψ2) (4.50)

is a vector of element-wise independent and identically-distributed Gaussian random numbers
with mean zero and variance ψ2 = Var{•}, and σ refers to the level of added noise.

In this physics-informed inpainting problem, we investigate the impact of the level of noise σ
on the BMA predictions of the vorticity field, as well as on the physical constraint by extending the
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Noise level
λk

λ0 λ1 λ2 λ3

σ = 0 1 0.46 0.88 0.51

σ = 0.1 1 0.19 0.35 0.29

σ = 0.2 1 0.12 0.39 0.27

Noise level
σ̃k

σ̃0 σ̃1 σ̃2 σ̃3

σ = 0 1 1.47 1.07 1.40

σ = 0.1 1 2.29 1.69 1.86

σ = 0.2 1 2.89 1.60 1.92

Table 4.2: Final λk weight parameters for each noise level σ in the physics-informed inpainting prob-
lem (top rows). Effective σ̃k standard deviations resulting from the weight adaptations and computed as
σ̃k =

√
1/λk for each noise level (bottom rows). This highlights the overall adaptation of the effective

standard deviations to the noise magnitude and the task sensitivities to the noise level. In particular, the
wall-boundary conditions associated with λ1 present the highest noise sensitivity.

notion of BMA convergence to the PDE residual. Hence, we compute the BMA-CE diagnostics
for the field ω and the PDE constraint based on

BMA-CEω(τ) =

∥∥∥∥∥ 1

τ −N

τ∑
i=N

P
(
ωΘ |x,Θti

)
− ω

∥∥∥∥∥
2

BMA-CEF (τ) =

∥∥∥∥∥ 1

τ −N

τ∑
i=N

P
(
F(ωΘ) |x,Θti

)∥∥∥∥∥
2

(4.51)

with F(ωΘ) the evaluation of the PDE residual from equation (4.48). The comparative curves for
different noise levels are represented in Figure 4.18a and show sampling convergence toward final
BMA errors on ω that scale about 1.05e−3, 2.9e−3 and 4.08e−3, respectively, for noise levels
σ = 0, 0.1 and 0.2. In addition, we see in Figure 4.18b that the PDE residual constraints converge
independently to the noise level, reaching final BMA errors around 2e−3 in all cases.

To supplement the performance quantification of the inpainting formulation in recovering the
entire vorticity field along with its uncertainty, we also use the Prediction Interval Coverage Prob-
ability (PICP) metric as defined by Yao et al. [331]. This consists of a quality indicator of the
posterior approximation, which evaluates the percentage of the ground truth observations con-
tained within 95% of the prediction interval, as given by:

PICP =
1

Nobs

Nobs∑
i=1

1(ωl
Θ)i ≤ωi ≤ (ωh

Θ)i
(4.52)

where ωl
Θ and ωh

Θ are respectively the 2.5% and 97.5% percentiles of the predictive distribution
on the vorticity. In this case, the notation Nobs refers to the total number of observations in the
predictive dataset, in other words, the grid resolution of the computational domain Ω. In our
application, this PICP metric shows that more than 99% of the vorticity ground truth observations
are covered by the posterior distribution of the neural network output ωΘ, independently of the
level of noise.

We also expect our self-weighted adaptation of λk to be able to capture noise sensitivity with
respect to the value of σ, and intrinsic task sensitivities to noise level without imposing any a-
priori on the noise level estimation. This is the key point of our methodology since we intention-
ally decouple the setting of the parameters σk in (4.49) from the noise magnitude, and rely on the
self-weighted strategy to quantify their related uncertainties. On the contrary, when dealing with
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Figure 4.20: Bayesian Model Average Cumulative Errors diagnostics for the CFD inverse problem:
a) BMA-CE throughout the sampling iterations for the velocity field components u = (u, v) and the
divergence-free condition H(u). b) BMA-CE on the PDE residuals F(u) and F(v). The dotted curve
represents the a-posteriori checking of pressure gradient norm BMA-CE error as defined in equation (4.57).
The dotted vertical lines, in both figures, delimit the two stages of sequential training.

noisy measurement data in applications one frequently assumes the fidelity of each sensor to be
known and sets the standard deviations σk accordingly. They can also be defined as additional
learnable parameters to be inferred. The latter is usually subject to additional computational costs
in online learning or requires alternative neural network formalism used as pre-training in offline
learning [249]. In contrast, the strength of the AW-HMC methodology relies on its similar com-
putational cost compared to classical BPINNs-HMC. Moreover, AW-HMC improves convergence
by drawing attention to exploring the Pareto front with optimal integration time. Therefore, it can
shorten overall sampling requirements making this a competitive strategy in terms of computa-
tional cost.

The results presented in Figure 4.19 demonstrate the noise resistance of the AW-HMC ap-
proach and highlight sensitivity consideration with respect to the noise and tasks (see Table 4.2).
We first noticed differences in the auto-adjustment of the lambda values relative to noise levels,
leading to global enhanced uncertainties with increasing noise. We also observed various uncer-
tainty adjustments depending on the sensitivity of the different tasks to the noise. In fact, the
comparison of the local standard deviations on the vorticity field in Figure 4.19 shows that the
wall boundary conditions are the most sensitive to noise, automatically increasing the uncertain-
ties in these areas. The inlet and outlet boundaries are rather less sensitive. This is highlighted by
a lower adaptation of their uncertainties to the noise level. In short, this application has shown the
ability of our new adaptive methodology to automatically adjust the weights, and with them the
uncertainties, to the intrinsic task sensitivities to the noise and to adapt the uncertainty to the noise
magnitude itself.

4.6.2 Inverse problem with parameter estimation and latent field recovery

As a second CFD application, we consider a multi-objective flow inverse problem in an asym-
metric and steep stenosis geometry. This aims to provide both a parameter estimation of the
flow regime and recover a hidden field using our adaptively weighted strategy. Such consider-
ations, motivated by real-world applications, use incomplete or corrupted measurement data in
an attempt to derive additional information, which remains challenging or impractical to obtain
straightforwardly.

With an emphasis on physical and biomedical problems, Raissi et al. investigated the ex-
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traction of hidden fluid mechanics quantities of interest from flow visualizations, using physics-
informed deep learning [255, 256]. The authors relied only on measurements of a passive scalar
concentration that satisfied the incompressible Navier-Stokes equations, to infer the velocity and
pressure fields in both external and internal flows.

In this direction, we focus on the velocity u = (u, v) and pressure p formulation of the stenotic
flow dynamics such that the continuity and momentum governing steady-state equations are writ-
ten: {

(u · ∇)u = −∇p+Re−1∆u, in Ω

divu = 0, in Ω
(4.53)

under the incompressibility condition on the stenotic domain Ω ⊂ [0, 10] × [0, 1]. We impose
adherent boundary conditions on the wall interfaces such that u∂Ω1 = 0, and the following in-
let/outlet boundary conditions respectively:

u = 4y − 4y2, v = 0 ∀(x, y) ∈ {0} × [0, 1]

∂u

∂x
= 0, v = 0 ∀(x, y) ∈ {10} × [0, 1].

(4.54)

The direct numerical simulation is performed using the DC-PSE formulation [55] with a Reynolds
number set to Re = 200, as in the previous section. It is used to generate the observation data on
Ω with a thin resolution. The D dataset is then composed of partial measurements of u randomly
sampled to consider 9559 training points, representing less than 3% of the entire target resolution
and respectively defining Du and D∂ the sets of interior and boundary points. The same collo-
cation points define DΩ, where we impose the PDE constraints from the model (4.53), denoted
F(u) := (F(u),F(v)), as well as the diverge-free conditionH(u).

Finally, we set up the inverse problem by inferring the flow regime, considering the Reynolds
number as an unknown model parameterPinv = {Re}. At the same time, we address the multitask
problem to recover the latent pressure field pΘ based upon partial measurements of the velocity
field and fluid flow dynamics assumptions. The pressure field prediction, in particular, is adjusted
throughout the sampling in such a way that its gradient satisfies the governing equations (4.53).
As commonly established by the nature of the Navier-Stokes equation, the pressure is though
not uniquely defined and, given the lack of precise boundary conditions on this field, is thus
determined up to a constant.

Besides, the steep stenosis geometry considered in this problem generates sharp gradients
at the wall interface. The latter needs to be adequately captured to obtain consistency in the
inference of the latent pressure and inverse parameter. Hence, we complemented the training with
some partial measurements of the first-order derivatives of the velocity. This enables us to ensure
that the convective terms, in the PDE constraints (4.53), are consistent with the velocity data and
therefore infer the corresponding pressure field. The multi-potential energy is thus written as:

U(Θ) =
λ0
2σ20
∥uΘ − u∥2Du +

λ1
2σ21
∥vΘ − v∥2Du +

λ2
2σ22
∥uΘ − u∥2D∂ +

λ3
2σ23
∥vΘ − v∥2D∂

+
λ4
2σ24
∥∂xuΘ − ∂xu∥2Du +

λ5
2σ25
∥∂xvΘ − ∂xv∥2Du +

λ6
2σ26
∥∂xuΘ − ∂xu∥2D∂

+
λ7
2σ27
∥∂xvΘ − ∂xv∥2D∂ +

λ8
2σ28
∥∂yuΘ − ∂yu∥2Du +

λ9
2σ29
∥∂yuΘ − ∂yu∥2D∂

+
λ10
2σ210

∥∥Re−1
Θ ∆uΘ − (uΘ∂xuΘ + vΘ∂yuΘ)− ∂xpΘ

∥∥2
DΩ +

λ11
2σ211

∥div uΘ∥2DΩ

+
λ12
2σ212

∥∥Re−1
Θ ∆vΘ − (uΘ∂xvΘ + vΘ∂yvΘ)− ∂ypΘ

∥∥2
DΩ +

1

2σ2Θ
∥Θ∥2Rp+1

(4.55)

where the notation ∥·∥ refers to either the RMS norm onD• or the usual Euclidean norm on Rp+1.
Finally, the predictions of each of the QoI, namely the surrogate models on the velocity and pres-
sure, are then recovered on the original finer resolution in Figure 4.21. As in Sect. 4.5.3, we select
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Figure 4.21: Uncertainty quantification on the CFD inverse problem: BMA predictions of the velocity
field uΘ = (uΘ, vΘ) in asymmetric stenosis along with their uncertainty standard deviations (Std) and
mean squared errors (MSE), at the top. BMA and uncertainty on the inferred latent pressure field with the
pressure evolution plotted along the central line y = 0.5, leading to an average pressure drop of 1.78 —
bottom.

Figure 4.22: Reynolds number posterior distribution and convergence diagnostic in CFD inverse
problem: a) Histogram of the marginal posterior distribution for the inverse Reynolds parameter. b) Phase
diagram of its trajectory throughout the sampling, with the adaptive steps trajectories (in blue) and effective
sampling (in red). c) BMA-CE error using the absolute relative norm as defined in (4.56). The relative
BMA-CE error on ReΘ is plotted over all the τ iterations of the second step sampling in the sequential
training.
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a log-normal prior distribution for the physical parameter and independent normal distributions
for the neural network parameters, and we also use a sequential training approach, incorporating
the PDE constraints in the second sampling phase.

The validation of the inference is first performed by computing the BMA-CE diagnos-
tics for the velocity field components, the PDE constraints, and the incompressibility condi-
tion written in the same way as in equation (4.51). The results are provided in Figure 4.20
and highlight the convergence of each term toward final BMA errors scaling respectively about
BMA-CEu(Ns) = 6.4e−3, BMA-CEv(Ns) = 1e−3, BMA-CEF(u)(Ns) = (4.2e−2, 4.7e−2)
and BMA-CEH(u)(Ns) = 2.9e−2. The Bayesian Model Average predictions of the velocity field
are then compared in Figure 4.21 with the ground truth observations providing local MSE that are
embedded in their uncertainties and show enhanced standard deviations at the regions with higher
errors. The PICP metric also enables to estimate that more than 95% of the velocity field ground
truth is recovered by the posterior distribution of uΘ.

For the inverse parameter, we computed a BMA cumulative error based on the relative norm
defined as follows

BMA-CERe(τ) =

∣∣∣∣∣1τ
τ∑

i=1

ReΘti −Re

∣∣∣∣∣
|Re|

, ∀τ = 1...Ns (4.56)

where ReΘti refers to the prediction of the Reynolds number for the sample characterized by the
parameters Θti . We show in Figure 4.22c that this relative error converges, reaching at the end of
the sampling a residual of 5.4e−2. We also represent in Figure 4.22 the histogram of the marginal
posterior distribution of ReΘ and its trajectory in the phase space illustrating the convergence
toward its mode during the adaptive steps τ < N . In fact, our approach leads to an estimate of
the Reynolds number, inferred from the measurements data D, which is consistent with the exact
value and results in the following predictive interval ReΘ ∈ [182.82, 208.06].

The latent pressure field BMA, inferred up to constant, is illustrated in Figure 4.21 with its
uncertainty and is able to capture a sharp pressure drop — estimated in average to 1.78 — arising
from the steep stenosis geometry. In fact, it has been emphasized by Sun et al. in symmetric
geometries, that such pressure drops turn to become nonlinear as the stenotic geometry becomes
narrower [290], which is in line with what we obtain in our asymmetric case. As the pressure
ground truth is unknown in this application, we complement the validation of the inverse problem
with a-posteriori checking on the pressure gradient. In this sense, we provide a PICP estimate
on the pressure recovery which stands around 91% for its gradient norm, but also introduce the
following posterior diagnostic on the pressure BMA-CE error:

BMA-CE∇p(τ) =

∥∥∥∥∥ 1

τ −N

τ∑
i=N

∣∣P (∇pΘ |x,Θti
)∣∣− |∇p|∥∥∥∥∥

2

(4.57)

where | · | denotes the vector norm, and ∇p is the evaluation of the exact gradient pressure from
equation (4.53). The results are plotted, in dotted line, throughout the sampling iterations in Fig-
ure 4.20, and reach a residual error of 7.6e−2. This illustrates good agreement between the ground
truth and the predictive pressure gradient arising from our adaptively-weighted strategy.

Overall, the present AW-HMC methodology relies on multitask sampling to identify the flow
regime through partial measurements of the velocity field and thus handles a complex flow inverse
problem with latent field recovery that satisfies nonlinear physical PDE constraints.

4.7 Concluding remarks

BPINNs have recently emerged as a promising deep-learning framework for data assimilation and
a valuable tool for uncertainty quantification [328]. This offers the opportunity to merge the pre-
dictive power of Physics-Informed Neural Networks with UQ in a Bayesian inference framework
using Markov Chain Monte Carlo sampling. This makes it possible to quantify the confidence
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in predictions under sparse and noisy data with physical model constraints, which is especially
appealing for applications in complex systems. For this, Hamiltonian Monte Carlo has been es-
tablished as a powerful MCMC sampler due to its ability to efficiently explore high-dimensional
target distributions [48]. With it, BPINNs have extended the use of PINNs to a Bayesian UQ
setting.

As we have shown here, BPINNs, however, share similar failure modes as PINNs: the multi-
objective cost function translates to a multi-potential sampling problem in a BPINN. This presents
the same difficulties in balancing the inference tasks and efficiently exploring the Pareto front
as found in standard PINNs [258]. We illustrated this in a Sobolev training benchmark, which
is prone to stiffness, disparate scales, and vanishing task-specific gradients. We emphasized that
BPINNs are sensitive to the choice of the λweights in the potential energy, which can possibly lead
to biased predictions or inoperative sampling. Hence, the standard weighting strategy appears to be
inefficient in multiscale problems and multitask inference, while it turns out to be unsustainable to
manually tune the weights in a reproducible and reliable way. Recently proposed alternatives [249]
are subject to additional hyper-parameter tuning or pre-training of the weights with GAN, at the
expense of increased computational complexity. Also, previous approaches mainly focused on
measurement noise estimation and did not include physical model misspecification concerns which
are also critical, especially when UQ modeling is the goal.

Robust automatic weighting strategies are therefore essential to apply BPINNs to multiscale
and multitask problems and improve the reliability of the UQ estimates. Here, we have there-
fore proposed the AW-HMC BPINN formulation, which provides a plug-in automatic adaptive
weighting strategy for standard BPINNs. AW-HMC effectively deals with multi-potential sam-
pling, energy conservation instabilities, disparate scales, and noise in the data, as we have shown
in the presented benchmarks.

We have shown that the present strategy ensures a weighted posterior distribution well-fitted
to explore the Pareto front, providing balanced sampling by ensuring appropriate adjustment of
the λ weights based on Inverse Dirichlet weighting [187]. The weights can therefore directly
be interpreted as training uncertainties, as measured by the variances of the task-specific train-
ing gradients. This leads to weights that are adjusted with respect to the model to yield the least
sensitive multi-potential energy for BPINN sampling. This results in improved convergence, ro-
bustness, and UQ reliability, as the sampling focuses on the Pareto front. This enables BPINNs to
effectively and efficiently address multitask UQ.

The proposed method is also computationally more efficient than previous approaches since
it does not require additional hyperparameters or network layers. This also ensures optimal in-
tegration time and convergence in the leapfrog training. This prevents time steps from tending
to zero or becoming very small, avoiding a problem commonly encountered in NUTS when at-
tempting to avoid the pathologically divergent trajectories characteristic of HMC instabilities. The
present methodology improves the situation since the time step no longer needs to meet all of the
stiff scaling requirements to ensure energy conservation. As a result, it shortens overall integra-
tion time and sample number requirements, combining computational efficiency with robustness
against sampling instabilities.

Our results also show that AW-HMC reduces bias in the sampling, since it is able to automati-
cally adjust the λ parameters, and with them the uncertainty estimates, according to the sensitivity
of each term to the noise or inherent scaling. In classical approaches, this is prohibited by the bias
and implicit prior introduced by manual weight tuning. In fact, we demonstrated the efficiency
of the present method in capturing inverse parameters of different orders of magnitude in a mul-
tiscale problem, assuming completely independent priors with respect to the scaling. Previously,
this would have been addressed by imposing prior distributions on these parameters that already
rely on appropriate scaling. Otherwise, the classic BPINN formulation is prone to failure. The
proposed adaptive weighting strategy avoids these issues altogether, performing much better in
multiscale inverse problems.

We have demonstrated this in real-world applications from CFD of incompressible flow in
asymmetric 2D geometries. We showed the use of AW-HMC BPINNs for CFD inpainting and
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studied the impact of noise on multi-potential energy. This highlighted the robustness of the
present approach to noisy measurements, but also its ability to automatically adjust the λ values
to accurately estimate the noise levels themselves. In this sense, we were able to show enhanced
uncertainty with increasing noise, without any prior on the noise level itself, and to capture distinct
intrinsic task sensitivities to the noise. Overall, this offers an effective alternative to automatically
address multi-fidelity problems with measurements resulting from unknown heteroscedastic noise
distributions.

Taken together, the present results render BPINNs a promising approach to scientific data as-
similation. They now have the potential to effectively address multiscale and multitask inference
problems, to couple UQ with physical priors, and to handle problems with sparse and noisy data.
In all of these, the presented approach ensures efficient Pareto front exploration, the ability to cor-
rectly scale multiscale and stiff dynamics, and to derive unbiased uncertainty information from
the data. Our approach involves only minimal assumptions on the noise distribution, the different
problem scales, and the weights, and it is computationally efficient. This extends the applica-
tion of BPINNs to more complex real-world problems that were previously not straightforwardly
addressed.

Applications we expect to particularly benefit from these improvements include porous media
research, systems biology, and the geosciences, where BPINNs now offer promising prospects for
data-driven modeling. They could support and advance efforts for the extraction and prediction
of morphological geometries [241, 271], upscaling and coarse-graining of material properties [14]
and physical properties [263] directly from sample images. However, capturing these features
from imperfect images remains challenging and is usually subject to uncertainties, e.g., due to
unavoidable imaging artifacts. This either requires the development of homogenization-based
approaches [135] to bridge scales and quantify these uncertainties [238] or the use of data as-
similation to compensate for the partial lack of knowledge in the images. The present BPINNs
formulation with AW-HMC offers a potential solution.
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5.1 Motivation

In contrast to the straightforward upscaling method employed for assessing permeability devia-
tions in Chapter 3, a more elaborate approach is necessary to evaluate the uncertainties on the
micro-porosity field associated with µCT unresolved morphological features. In this sense, the
current thesis, especially, targets data assimilation to provide an accurate local description of the
porous medium by observing its dynamical dissolution through µCT experiments.

Pore-scale modeling of reactive flow offers, indeed, a valuable opportunity to investigate the
evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging
limitations arising from the associated X-ray microtomography process, which induces discrep-
ancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as
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reactive coefficients are critical parameters that can cover a wide range of values. We account for
these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical µCT
images, by integrating uncertainty quantification in the workflow. In particular, we aim to combine
µCT measurements, which come with their inherent deficiencies, with physics-based PDE models
of reactive flows, which introduce uncertainties in the calibration of kinetic parameters to mitigate
the limitations of each approach separately.

In this chapter, we present a novel data assimilation strategy in pore-scale imaging, based
on the efficient framework developed in Chapter 4, and demonstrate that this makes it possi-
ble to robustly address reactive inverse problems incorporating Uncertainty Quantification. The
present method is based on a multitasking formulation of reactive inverse problems combining
data-driven and physics-informed techniques in calcite dissolution. This allows quantifying mor-
phological uncertainties on the porosity field and estimating reactive parameter ranges through
prescribed PDE models with a latent concentration field and dynamical µCT. The data assimila-
tion strategy relies on sequential reinforcement incorporating successively additional PDE con-
straints and suitable formulation of the heterogeneous diffusion differential operator leading to
enhanced computational efficiency. We guarantee robust and unbiased uncertainty quantification
by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks, ensuring
reliable micro-porosity changes during geochemical transformations.

5.2 Context and positioning

Pore-scale modeling in porous media is intrinsically related to X-ray µCT experiments. Advances
in this imaging technique coupled with efficient numerical simulation offer a valuable opportu-
nity to investigate dynamical processes and study the evolving macro-scale properties, such as
the upscaled porosity and permeability [24, 211]. This is of great importance in the risk man-
agement perspective of CO2 storage, and therefore ensuring the reliability of pore-scale modeling
and simulation appears as crucial. Uncertainties, however, arise from the microtomography imag-
ing process where artifacts, noise, and unresolved morphological features are intrinsic limitations
inducing important deviations in the estimation of petrophysical properties [69, 238]. In partic-
ular, quantifying the impact of sub-resolution porosity in µCT images is identified as critical for
geosciences applications [172, 276]. This limiting factor arises from the compromise between the
field of view being investigated and the image resolution. For multi-scale porous media such as
carbonate rocks, this trade-off can readily result in scan resolutions that do not fully resolve mor-
phological features of the pore space. Intrinsic limiting factors remain in the X-ray µCT imaging
process, as developed in Sect. 1.1.3 of Chapter 1, and investigating their effects and related uncer-
tainties is fundamental to developing more accurate predictive models at the pore scale.

In addition to these imaging uncertainties, proper assessment of the kinetic parameters raises
challenges in the pore-scale modeling of reactive flows. Mineral reactivities, including reactive
surface area, are critical parameters to account though they commonly suffer from discrepancies
of several orders of magnitude [217]. Providing uncertainty estimates on these kinetic parameters
is essential to ensure reliable calibration of pore-scale models for CO2 mineral storage assess-
ment. Unsuitable characterization of the reactive surface area, for instance, will considerably
affect the numerical model generating highly distinct behaviors that can become inconsistent with
experimental investigations. Such concern is widely known, and several experimental works have
developed potential solutions that address dynamical µCT imaging processes of carbonate disso-
lution [200, 218]. This relies on 4D µCT and differential imaging techniques to derive averaged
reaction rates and provide local maps of mineral reactivity at the porous medium surface. How-
ever, dynamical µCT scans also suffer from trade-off issues that may disrupt the identification of
these parameters [337]. In addition to potential sub-resolved porosity, one needs to consider the
compromise between the acquisition time capturing the dynamical process and the image qual-
ity. This may result in noisy observation data or non-physical variations leading to misleading
estimations of the kinetic parameters. Querying the reliability of reactive parameters involved in
pore-scale modeling is crucial, and time-resolved experiments of dynamical processes offer such
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an opportunity while suffering from imaging limitations.

Overall, we identify two current challenges to address reliable pore-scale modeling of reactive
flows based on µCT images and ensure trustable evolutions of the macro-scale properties. The
first challenge aims to quantify morphological uncertainties on the porous medium sample due to
unresolved features resulting from X-ray µCT. Investigating the uncertainties in the micro-porosity
field is a major concern, and neglecting these uncertainty effects can bias the determination of the
evolving petrophysical properties in geological applications. The second challenge concerns the
uncertainty quantification of the kinetic parameters for reactive processes. In this sense, providing
reliable mineral reactivity from dynamical µCT remains critical in order to perform relevant direct
numerical simulation at the pore scale. The present chapter addresses these two challenges and
incorporates Uncertainty Quantification (UQ) concerns in the workflow of pore-scale modeling.

Accounting for these concerns, however, requires developing efficient data assimilation tech-
niques to perform extensive parameter estimation studies, uncertainty quantification assessments,
and improve model reliability. In fact, uncertainty quantification is commonly achieved through
stochastic PDE models [86, 137] or probabilistic Markov Chain Monte Carlo (MCMC) methods
embedding Bayesian inference [208, 274]. The main drawback being this requires numerous eval-
uations of the PDE model and can thus quickly become computationally expensive. To overcome
such computational constraints, machine learning methods have appeared as a popular framework
in geosciences and have shown effectiveness in building efficient surrogate models in PDE-based
data assimilation problems [100, 314]. This offers alternatives and complementary means to tra-
ditional numerical methods to improve predictive modeling based on observation data and inves-
tigate uncertainty quantification within a Bayesian context. The development of machine-learning
surrogate modeling incorporating uncertainty has, therefore, garnered increasing interest for a
wide range of scientific applications [86, 103].

A popular framework combining physics-based techniques, data-driven methodology,
and intrinsic uncertainty quantification are Bayesian Physics-Informed Neural Networks
(BPINNs) [328]. This benefits from the advantages of neural network structures in building param-
eterized surrogate models and Bayesian inference standards in estimating probabilistic posterior
distribution. BPINNs can, however, be prone to a range of pathological behaviors, especially in
multi-objective and multiscale inverse problems, as developed in Chapter 4. This is because their
training amounts to sample from a weighted multitask posterior distribution for which the setting
of the weights parameters is challenging. Ensuring robust Bayesian inference, indeed, hinges on
properly estimating these distinct task weights. We thus rely on the efficient BPINNs framework
developed in the previous Chapter 4, which robustly addresses multi-objective and multiscale
Bayesian inverse problems including latent field reconstruction. The strategy relies on an adap-
tive and automatic weighting of the target distribution parameters and objectives. It benefits from
enhanced convergence and stability compared to conventional formulations and reduces sampling
bias by avoiding manual tuning of critical weighting parameters [187]. The adjusted weights
bring information on the task uncertainties, improve the reliability of the noise-related and model
adequacy estimates and ensure unbiased uncertainty quantification. All these characteristics are
crucial to address reliable reactive inverse problems of calcite dissolution, and we thus built the
present methodology upon this efficient data-assimilation framework.

In this chapter, we focus on a multitask inverse problem for reactive flows at the pore scale
through data assimilation that incorporates uncertainty quantification by means of the Bayesian
Physics-Informed Neural Networks framework presented in Chapter 4. We intend to develop a
novel approach for pore-scale imaging problems that combines dynamical microtomography and
physics-based regularization induced by the PDE model of dissolution processes, for which the
images are substantially noisy. To the best of our knowledge, investigating morphological and
mineral reactivity uncertainties from the perspective of coupling physics-based models with data-
driven techniques is the main novelty of this work. This formulation presents the joint ability
to infer altogether kinetic parameters and quantify the residual micro-porosity generated by un-
resolved features in the µCT images. Overall, we aim to ensure reliable calibration of the PDE
model and account for the morphological imaging uncertainty to provide meaningful evolution of
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the petrophysical properties due to the reactive process.
The present methodology relies on sequential reinforcement of the target posterior distribution,

which successively incorporates additional constraints from the PDE model into the data assimila-
tion process. This sequential splitting formulation arises from the strong coupling, in the reactive
model, between the micro-porosity field related to the µCT observations and the solute concen-
tration, which is a latent field. Therefore, we consider successive sampling steps dedicated to 1)
preconditioning the micro-porosity surrogate model with pure regression on the dynamical µCT
images, 2) preconditioning the latent reactive fluid and inferring a first reactive parameter through
PDE-constrained tasks, and 3) considering the overall data assimilation problem with two inverse
parameters, a predictive posterior distribution on the micro-porosity and insight on the latent con-
centration field. We also propose a differentiation strategy wherein we consider a reformulation
of the heterogeneous diffusion differential operator involved in the PDE model. This enhances
the computational efficiency of the BPINNs surrogate model and shows that suitable differential
operator expressions considerably improve the computational cost, especially when dealing with
complex non-linear operators.

The main contributions of this chapter are summarized below:

1. We infer reactive inverse parameter uncertainty ranges in prescribed PDE models through
suitable dimensionless formulations in inverse problems, for which we identify and define
the corresponding dimensionless numbers.

2. We couple image-based and physics-informed techniques in dynamical dissolution pro-
cesses from a pore-scale perspective.

3. We improve the relevance and reliability of predictions in dynamical systems through data-
driven approaches and robust Bayesian Inference methodology.

4. We provide reliable quantification of the micro-porosity changes during geochemical trans-
formations, with a focus on calcite dissolution processes, whose image acquisition is subject
to a strong noise level.

5. We built an intrinsic data assimilation strategy for pore-scale imaging inverse problems rely-
ing on a sequential reinforcement approach and a formulation of the heterogeneous diffusion
differential operator, which is suitable for an efficient HPC framework.

The remainder of this chapter is organized as follows: In Sect. 5.3, we review the current chal-
lenges arising from uncertainty quantification concerns in pore-scale modeling of reactive flows,
with a focus on µCT limitations and model reliability issues. We also develop in Sect. 5.3.1 the
direct formulation of pore-scale modeling of reactive flows we consider to study the dynamical
dissolution of calcite. Sect. 5.4 describes the dimensionless expressions of the dissolution PDE
model for direct and inverse problems. We identify the main differences in their formulations
and establish in Sect. 5.4.3 the dimensionless inverse problem on calcite dissolution we address
in the data assimilation approach, which ends up with equation (5.12). Sect. 5.5 is dedicated to
describing the proposed data assimilation strategy for pore-scale imaging inverse problems, with
sequential reinforcement of the target posterior distribution and computational strategy for the
differential operator expressions. This relies on the efficient adaptive framework for Bayesian
Physics-Informed Neural Networks, which has been developed in the previous Chapter 4. We
validate this strategy in Sect. 5.6 on several 1D+Time test cases of calcite dissolution based on
synthetic µCT images. This particularly demonstrates successful Bayesian inference of the reac-
tive parameters with posterior distributions on the dimensionless numbers. This also highlights
consistent UQ on the micro-porosity field with uncertainty ranges on the residual micro-porosity,
potentially unresolved, arising from the µCT dynamical images. Finally, we apply in Sect. 5.7 our
methodology to a more realistic 2D+Time data assimilation problem of calcite dissolution with
heterogeneous porosity levels and synthetic µCT dynamical observations.
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5.3 Uncertainty Quantification in pore-scale modeling of reactive
flows: context and motivation

Pore-scale modeling of reactive flows plays a crucial role in the long-term management of CO2
capture and storage in natural underground reservoirs. Understanding the local geochemical in-
teractions between the injected CO2 and the aquifer structure and how it impacts the reservoir
macro-scale properties is an active field in porous media research [21, 169, 197, 286]. These geo-
chemical effects include mineral trapping through precipitation and crystallization but also disso-
lution reactions associated with flow, and transport mechanisms [7, 232]. Mathematical models
of such processes, at the pore scale, are usually combined with direct numerical simulations of
highly coupled and non-linear Partial Differential Equations. Such PDE systems characterize the
local evolving interfaces and provide insight into reservoir safety submitted to chemical interac-
tions [200, 205, 220]. In this risk management perspective, ensuring the reliability of pore-scale
modeling and simulation of reactive flows is therefore essential, and this requires embedding UQ
concerns.

5.3.1 Modeling of pore-scale dissolution

The study of geochemical processes related to CO2 capture and storage is crucial in the context
of risk management and investigation of the coupled mechanisms occurring within aquifers. In
particular, the dissolution of the carbonate rock architecture by the injected CO2 may compromise
the integrity of the geological reservoir. Pore-scale modeling of dissolution phenomena in porous
media, therefore, remains an extensive research area [204, 280]. These mathematical models
require a thin description of the highly heterogeneous pore structure in order to account for local
interactions. The present chapter focus on the pore-scale dissolution of calcite subject to acidic
transport in the subsoil. We, therefore, target the following irreversible chemical reaction with
uniform stoichiometric coefficients:

CaCO3 (s) + H+ −−→ Ca2+ +HCO3
− (5.1)

In this section, the mathematical model used to simulate the calcite dissolution process (5.1)
at the pore scale will rely on a two-scale description of the local heterogeneities trough the Darcy-
Brinkman Stokes formulation with superficial velocity, developed in Chapter 2 (see equation
(2.11) from Sect. 2.3.2). We use the same notations as in Sect. 2.3.1 to define the spatial do-
main Ω corresponding to the porous medium description at the pore scale, which is decomposed
into the void-space ΩF , the porous matrix ΩS and the internal interface Σ (e.g. see Figure 1.1).
The micro-porosity field ε, defined on Ω, is also assumed to have a strictly positive lower bound
ε(x, t) ⩾ ε0 > 0 for all (x, t) in the spatiotemporal domain Ω× [0, Tf ]. In fact, this lower bound
ε0 characterizes the residual, potentially unresolved, porosity of the porous matrix.

In the context of the current chapter, we are not interested in monitoring the dissolution prod-
ucts of (5.1) (i.e the Ca2+ and HCO3

– ions), hence we mainly focus on the concentrations of the
acid and calcium carbonate species respectively denoted C(x, t) = [H+] and CCaCO3(s)(x, t).
The solid concentration is linked to the porosity through the molar volume of calcite υ by the
relation CCaCO3(s) = (1− ε)/υ with υ = 36.93 cm3.mol−1. The evolution of the acid phase (i.e
the concentration field C) follows the equation (2.7) from Chapter 2, and the evolution of the solid
phase with superficial concentration CCaCO3(s) is given by the same equation without transport
nor diffusion, recalled here:

∂CCaCO3(s)

∂t
= R(C). (5.2)

The reaction rate R(C) — related to the chemical reaction (5.1) — is written:

R(C) = −KsAsγH+C1{(1−ε)>0} (5.3)

where Ks is the dissolution rate constant, As the specific reactive area, and γH+ the activity coef-
ficient of the acid, whose physical units are respectively mol.m−2.s−1, m−1 and m3.mol−1 (such
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that the chemical activity aH+ = γH+C is dimensionless). Such reaction rates for the calcite dis-
solution are commonly established by the Transition State Theory [156] and involve both far-from
equilibrium terms coupled with a term which express the dependence on the Gibbs free energy ∆G
for close to the equilibrium conditions (e.g. see [190, 205]). In our work, we consider far-from
the equilibrium assumption on the dissolution process and, therefore, the reaction rate reduces
to the expression (5.3) previously introduced. One should also notice that the dissolution rate is
normalized by the reactive surface area of the mineral As, which is often considered a calibration
parameter to match with the experiments. However, this can readily generate significant discrep-
ancies in the modeling of the chemical processes and bias the predictions. The notation 1 refers
to a characteristic or activation function and ensures the rate of the chemical reaction is non-zero
only in the presence of solid minerals. Along with boundary and initial conditions, we define the
pore-scale direct formulation of the calcite dissolution problem (5.1) through the following PDE
system [206, 285]:

−div(2µD(u)) + µκ−1
b

(1− ε)2

ε2
u = ε(f −∇p), in Ω×]0, Tf [

∂C

∂t
+ div(ε−1uC)− div

(
Dmε

1+η∇(ε−1C)
)
= −KsAsγH+C1{(1−ε)>0}, in Ω×]0, Tf [

∂ε

∂t
= υKsAsγH+C1{(1−ε)>0}, in Ω×]0, Tf [

+ adequate boundary and initial conditions, along with div u = 0
(5.4)

where Dm is the molecular diffusion of the acid.
Appropriate model calibration of the kinetic input parameters, such as the specific surface area

As or the dissolution rate constant Ks, that compare with experimental results remains challeng-
ing. This comes from the observation these reactive constants can span over a wide range of orders
of magnitude, inducing highly different behaviors in the chemical PDE system. Quantifying the
uncertainties on these kinetic parameters thereby appears as a necessity to provide reliable reactive
flow models at the pore scale.

5.3.2 Dynamical microtomography: mineral reactivity and imaging morphological
uncertainties

Accounting for the µCT morphological uncertainties and sub-resolution porosity, introduced in
Sect 1.1.3 of Chapter 1, is essential in providing reliable pore-scale simulations of reactive flows.
This is of primary importance when considering risk assessment and predicting meaningful evo-
lution of the rock macro-properties under geochemical effects. The study of these overall X-ray
imaging limitations, therefore, raises concerns in the research community, and investigations are
conducted on quantifying their implications on the effective properties. In fact, sub-resolution
porosity may lead to a misleading estimation of the pore-space connectivity that disrupts the
flow description within the REV and induces significant deviations in the computed permeabil-
ity. Several modeling approaches, mainly based on upscaling principles, aim at quantifying these
deviations. They cover DBS formulation altogether with the Kozeny-Carman equation (see equa-
tion (2.2) in Chapter 2), which estimates the permeability of the micro-porous domain through a
heuristic relation with the residual micro-porosity [278]. However, in the absence of prior knowl-
edge of this unresolved residual porosity, the setting of the micro-porous permeability becomes
controversial. Alternatives rely on appropriate boundary conditions to model the unresolved
features and wall roughness through slip-length formalism, and range from theoretical implica-
tions [2, 159, 161] to the practical computation of the permeability deviations on real 3D µCT
scans as developed in Chapter 3. Apart from the modeling quantification of the effective properties
uncertainties, experimental and imaging approaches are developed to resolve the sub-resolution
porosity. This involves differential imaging techniques based on comparisons between several en-
hanced contrast scans [172], statistical studies based on µCT histograms [341], or deep learning
methodologies such as CNN and GAN that provide super-resolved segmented images [16, 330].
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Overall, uncertainty quantification of the X-ray µCT limitations either relies on appropriate math-
ematical modeling with the estimation of computed deviations or experimental approaches based
on image treatment analysis of the µCT scans.

The reliability of pore-scale modeling related to X-ray µCT scans is questioned due to its in-
herent imaging limitations and morphological uncertainties. At the same time, proper assessment
of the kinetic parameters in dynamic phenomena, including mineral reactivity and reactive surface
area, also raise challenges. Actually, mineral reactivity is a critical parameter to account for in
many geosciences applications though discrepancies of several orders of magnitude can be found
in the literature [51, 108]. However, these parameters are usually regarded as input in the numeri-
cal models and eventually tuned to aggregate experimental results. Providing reliable uncertainty
estimates on these kinetic parameters is, therefore, of great interest to provide trustable pore-scale
reactive simulations. Such concern has received attention over the past decades, and consider-
ing dynamic imaging processes subsequently appears as a necessity. Several experimental works
have already focused on 4D imaging techniques of carbonate dissolution to provide fundamental
information on mineral reaction rates [218]. These kinetic characterization studies mostly rely
on voxel-to-voxel subtraction of consecutive images in order to quantify the change of greyscale
values, hence the evolution of the dissolution process and calcite retreat. This is referred to, in the
literature, as differential imaging techniques and has been investigated for different imaging tech-
niques such as X-ray µCT and Atomic Force Microscopy (AFM) [172, 273]. These approaches
enable to capture heterogeneous spatial distributions of calcite dissolution rates through successive
real-time measurements. They provide local maps of mineral reactivity at the crystal surfaces and
quantification of their morphological evolutions [217, 273]. Menke et al. [200] also performed
in situ time-resolved experiments of carbonate dissolution under reservoir conditions (in terms of
pressure and temperature) to derive averaged reaction rates and evaluate dynamical changes in
the effective properties. Investigation of mineral surface reactivity is another challenging concern
to ensure reliable calibration of pore-scale models for CO2 dissolution and is usually achieved
through dynamical µCT experiments.

Nonetheless, dealing with dynamical µCT images brings its own challenges [337]. In addition
to the unresolved features, dynamical imaging of chemical processes requires making a com-
promise between the acquisition time and the image quality. Indeed, capturing fast-dissolution
processes, for instance, imposes short acquisition times and could result in highly noisy data since
statistically, the number of photons reaching the detector would be reduced. In such a case, dif-
ferential imaging makes it difficult to distinguish between true morphological changes and the
derivation of highly noisy data. On top of that, any additional movement in the sample, not related
to the dissolution process but rather resulting from instrumentation artifacts, makes it challeng-
ing to work with dynamical samples only to characterize µCT errors and uncertainty. Indeed,
Zhang and al. [337] identified on a Bentheimer sampler that about 32% of the voxels have at
least a 2% difference in greyscale values between two consecutive fast scans. These differences
are not physical-based variations but rather intrinsic uncertainties measurements. They also show
that such artifacts’ uncertainties can be reduced by using slower acquisition time, though this is
not always feasible to capture fast-dynamical processes. Time-resolved experiments of dynamical
processes can provide insights into kinetic dissolution rates, though this also suffers from imaging
limitations that can lead to misleading estimations.

Inferring reliable mineral reactivity from dynamical microtomography and quantifying imag-
ing morphological uncertainties are identified as the major issues that can bias the determination
of evolving petrophysical properties in geological applications. Current methodologies address-
ing these problems mainly fall into two categories: on one side, purely model-related approaches
based on static µCT scans and upscaling principles, and on the other side, image treatment anal-
ysis relying on experimental static or dynamical images. Nonetheless, neither morphological un-
certainty nor reaction rate quantification has been investigated from the perspective of coupling
physics-based models with data-driven techniques. To the best of our knowledge, the development
of data assimilation approaches on pore-scale imaging problems that combine dynamical microto-
mography and physical regularization induced by the PDE model of reactive processes is the main
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novelty of the present chapter. The motivation for this formulation lies in its joint ability to infer
mineral reactivity parameters and quantify the residual micro-porosity generated by unresolved
features in the microtomography imaging process. Therefore, we assert that a proper balance
between dynamical microtomography imaging and their PDE-based physical formulation could
provide insights into the uncertainty quantification issues related to reactive pore-scale modeling.
In this direction, we propose a novel methodology that uses a physics-based dissolution model
as regularization constraints to dynamical data-driven microtomography inference. This aim at
quantifying both the uncertainties on kinetic parameters to perform reliable model calibration and
the morphological imaging uncertainty on the unresolved micro-porosity field.

5.4 Direct and inverse problem setup

This section is dedicated to setup the dimensionless versions of the dissolution PDE model for
direct and inverse problems. We establish the main differences in their dimensionless formulations
and define the modeling assumptions used in the present chapter.

5.4.1 Usual dimensionless formulation of the direct problem

The overall calcite dissolution PDE system, defined in equation (5.4), can model a wide range
of dissolution regimes and patterns characterized by well-established dimensionless numbers. By
setting x∗ = x/L and t∗ = tDm/L

2 and following the notations of Sect. 5.3.1 and Chapter 2, one
can introduce the so-called Peclet and Reynolds numbers

Pe = uL/Dm and Re = ρuL/µ (5.5)

where u and L are respectively the characteristic velocity and length of the sample. In the context
of pore-scale simulations, the inertial effects become negligible compared to viscous forces due to
low Reynolds numbers — typically we have the assumption Re≪ 1 throughout this chapter. Re-
garding the chemical reactions, two dimensionless numbers are defined: the catalytic Damköhler
number denoted DaII and its inherited convective number DaI, expressed as

DaII =
KsAsγH+L2

Dm
and DaI =

DaII

Pe
=
KsAsγH+L

u
. (5.6)

The characteristic length L is usually related to average pore throat diameters or L2 can be set
as the surface of a section divided by the average number of grains (e.g. see [135] for practical
cases). Otherwise, it is possible to set the characteristic length of the problem as L =

√
κ0,

provided an experimental or numerical estimation of κ0 [279]. All these dimensionless numbers
are meaningful in direct dissolution problems to qualify the different dominant regimes in terms
of diffusion, reaction, and advection.

Using the dimensionless variables (x∗, t∗), the normalized concentration C∗ = C/C0 and
velocity u∗ = u/u, one finally gets the dimensionless formulation of the overall reactive flow
system (5.4) on the dimensionless spatiotemporal domain Ω∗ × [0, T ∗

f ]. This leads to the usual
PDE model:

−∆u∗ + L2κ−1
b

(1− ε)2

ε2
u∗ = ε(f∗ −∇p∗), in Ω∗×]0, T ∗

f [

∂C∗

∂t∗
+ Pediv(ε−1u∗C∗)− div

(
ε1+η∇(ε−1C∗)

)
= −DaIIC

∗1{(1−ε)>0}, in Ω∗×]0, T ∗
f [

1

υC0

∂ε

∂t∗
= DaIIC

∗1{(1−ε)>0}, in Ω∗×]0, T ∗
f [

+ adequate boundary and initial conditions, along with div u∗ = 0
(5.7)

obtained by means of multiplying the hydrodynamic DBS equation by L/ρu2 and the chemical
equations in (5.4) by L2/C0Dm. The notations f∗ and p∗ in the dimensionless DBS equation are
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defined by f∗ = fL2/(µu) and p∗ = pL/(µu), and finally C0 is a characteristic constant for the
acid concentration field. This PDE system defines the overall dimensionless formulation of the
direct problem of calcite dissolution.

5.4.2 Modeling assumptions on the direct and inverse problems

In the applications Sect. 5.6 and 5.7, we consider inverse problems in the dissolution process of
calcite cores with heterogeneous porosity levels for 1D and 2D spatial configurations. Although
the 1D+Time test case is purely synthetic and aims to validate the method developed in Sect. 5.5,
the 2D+Time application addresses a more realistic problem that can be applied to isotropic porous
samples. Several modeling assumptions are, though, made to address both the reactive direct and
inverse problems. These modeling assumptions are detailed hereafter and determine the dissolu-
tion regime considered in the applications.

The dimensionless numbers Re and Pe are common to both the direct and inverse formulations
and respectively establish the viscosity-dominated regime and the convective or diffusive transport
regime. At the initial state in the dynamic imaging process, we assume that the porous medium is
completely saturated with the acid by capillary effect. The amount of reactant at the pore interface
is initially homogeneously distributed, and therefore we expect, at first, a cylindrical dissolution
regime of the calcite core with spherical symmetry. Subsequently, the dissolution process may
deviate from this cylindrical pattern due to local heterogeneities in the micro-porosity field ε. We
also suppose a low Peclet hypothesis Pe ≪ 1, so that the reactant diffusion is dominant over
the advection phenomena resulting in more homogeneous dissolution rates at the interface (e.g.
see [279] for the dissolution regimes characterization). In this sense, continuous acid injection is
maintained at a given fluid flow rate to ensure a diffusive-dominated regime for the dissolution.
Consequently, we neglect the advection effects in the present chapter and focus on the following
reaction-diffusion system:



∂C∗

∂t∗
− div

(
ε1+η∇(ε−1C∗)

)
= −DaIIC

∗1{(1−ε)>0}, in Ω∗×]0, T ∗
f [

1

υC0

∂ε

∂t∗
= DaIIC

∗1{(1−ε)>0}, in Ω∗×]0, T ∗
f [

C∗ = 1, on ∂Ω∗×]0, T ∗
f [

C∗(x, 0) = Cinit(x)/C0 := C∗
init, in Ω∗ × {0}

(5.8)

written in its dimensionless form with the normalized concentration field C∗ = C/C0. The con-
tinuous acid injection is modeled through non-homogeneous Dirichlet boundary conditions onC∗,
with the characteristic constant C0 chosen as the value of the Dirichlet boundary conditions on C.
The initial condition on the micro-porosity field ε arises from the dry microtomography scan or the
initial synthetic porous medium. Ultimately, we obtain a PDE model driven by one dimensionless
number, namely the catalytic Damköhler number, characterizing the ratio of the reaction rate over
the diffusion effects. The system (5.8) is, therefore, consistent with the standard dimensionless
formulation of the direct problem, subject to a diffusive-dominated transport regime.

However, we merely cannot consider the dimensionless temporal variable t∗ = tDm/L
2 in

a reactive inverse problem as it strongly depends on molecular diffusion Dm, which is among
the unknown kinetic parameters to be estimated. In the next section, we focus on the challenge
arising from the dimensionless formulation of a reactive inverse problem in the context of calcite
dissolution.

5.4.3 Dimensionless inverse problem on calcite dissolution

In this chapter, we address pore-scale imaging inverse problems in dissolution processes. We aim
to recover and quantify uncertainties both on the micro-porosity field description ε and the reactive
parameters involved in the diffusion-reaction system. Among these inverse kinetic parameters,
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one can find the molecular diffusion Dm, the tortuosity index η, the dissolution rate constant Ks,
and even the specific surface area As — usually estimated on the dry µCT scan. Consequently,
these parameters – in particular Dm – cannot be used for the non-dimensionalization of the model
since they are to be determined. Apart from special considerations of the tortuosity index of the
sample, the other inverse parameters characterize the dissolution regime of the dynamical µCT
experiment. In this sense, they provide insight into the physical catalytic Damköhler number
DaII, though the direct dimensionless formulation (5.8) is inappropriate for an inverse problem.
The dimensionless temporal variable t∗ in the PDE system (5.8) is, indeed, closely related to the
unknown molecular diffusion, compromising its application to inverse modeling. Establishing the
dimensionless formulation of the inverse dissolution problem is not straightforward and therefore
requires a different dimensionless time.

In the inverse problem, we consequently introduce the new temporal variable

t∗ =
tDref

L2
, (5.9)

where Dref is a scaling factor of the dimensionless formulation for the chemical kinetics. This
scaling factor can also be defined as Dref = L2/T introducing T the characteristic time for the
dimensionless problem, which is not the physical characteristic time for the diffusion since the
latter is unknown. In practice, we can rely on a rough estimation of physical dissolution time
Tf — determining the dynamical process end — and a given dimensionless final time — usually
T ∗
f = 1 — to set the factor Dref . The estimations of this scaling parameter will be detailed

on a case-by-case basis throughout the applications developed in Sect. 5.6 and 5.7. Using the
new dimensionless variables (x∗, t∗), the normalized concentration C∗ = C/C0 along with the
definition of Dref , one can obtain the dimensionless formulation of the reaction-diffusion system
in the context of inverse modeling, which leads to:

∂C∗

∂t∗
−D∗

mdiv
(
ε1+η∇(ε−1C∗)

)
= −Da∗IIC

∗1{(1−ε)>0}, in Ω∗×]0, T ∗
f [

1

υC0

∂ε

∂t∗
= Da∗IIC

∗1{(1−ε)>0}, in Ω∗×]0, T ∗
f [

C∗ = 1, on ∂Ω∗×]0, T ∗
f [

C∗(x, 0) = C∗
init, in Ω∗ × {0}.

(5.10)

In reactive inverse problems, we thus obtain a PDE model driven by two dimensionless numbers
denoted Da∗II and D∗

m which are defined as:

Da∗II := KsAsγH+T =
KsAsγH+L2

Dref
and D∗

m :=
DmT

L2
=
Dm

Dref
. (5.11)

Finally, the physical Damköhler number corresponding to the dynamical µCT experiment is re-
covered as the a-posteriori ratio DaII = Da∗II/D

∗
m. From now on, we consider this dimensionless

formalism and forget the star notation on the differential operator, domains, and field descriptions
for the sake of readability. This results in the following inverse dimensionless PDE system:

∂C

∂t
−D∗

mdiv
(
ε1+η∇(ε−1C)

)
= −Da∗IIC1{(1−ε)>0}, in Ω×]0, Tf [

1

υC0

∂ε

∂t
= Da∗IIC1{(1−ε)>0}, in Ω×]0, Tf [

C = 1, on ∂Ω×]0, Tf [

C(x, 0) = Cinit, in Ω× {0}

(5.12)

with Da∗II and D∗
m the inverse parameters to estimate, and C0 and υ constant parameters. The

tortuosity index η is either set through a-priori estimation on the porous sample, modeling through
the empirical Archie law, or regarded as an additional inverse parameter. Especially, the index
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η = 1 is often considered for porous media with strong pore connections [279, 311] although
practical upscaling of the diffusion can result in intermediate index values [135].

In addition to inferring the reactivity parameters Da∗II and D∗
m, we aim to estimate the spa-

tial variability on the porosity field ε. In this sense, we develop a data assimilation approach on
pore-scale imaging that combine dynamical µCT experiments of calcite dissolution and physical
regularization induced by the dimensionless PDE model (5.12). It benefits from the joint ability to
quantify the ranges of mineral reactivity and the residual micro-porosity generated by unresolved
features in the microtomography imaging process. This formulation also relevantly combines the
advantages of experimental and modeling approaches and overcomes their own limitations. On
the one hand, the dissolution process observation will bring insights into the unresolved morpho-
logical features and lead to a better characterization of the sample’s initial state. On the other,
the PDE model regularization can efficiently substitute the differential imaging approach, which
is controversial for fast-dynamical processes subject to poor imaging quality. Therefore, one can
address mineral reactivity inference for highly noisy dynamical µCT resulting from the compro-
mise between scan quality and time resolution, as introduced in Sect. 5.3.2. The major challenge
of this data assimilation formulation, though, relies on the PDE constraint for the concentration
field as the µCT experiments do not provide information on the flow, transport, or diffusion of
the chemical reactant. In the reactive inverse problem, the acid concentration is thus a latent field
whose only the dimensionless boundary conditions are known in equation (5.12) through the nor-
malizing constant C0. In the next section, we will develop the methodology adopted to solve such
a dissolution inverse problem, accounting for all the established modeling assumptions.

5.5 Data assimilation strategy: sequential reinforcement and opera-
tor differentiation

In this present work, we focus on a multitask inverse problem for reactive flows at the pore scale
involving two inverse parameters (Da∗II and D∗

m) and a latent concentration field C. This novel
approach combines dynamical imaging data of calcite dissolution and physics-based regulariza-
tion induced by the dimensionless PDE model (5.10). We build the current data assimilation ap-
proach upon the efficient AW-HMC framework for Bayesian Physics-Informed Neural Networks,
presented in Sect. 4.4.1 of Chapter 4, to quantify both morphological and chemical parameter
uncertainties. In this section, we present the data assimilation method developed to handle this
pore-scale imaging inverse problem. Our methodology emphasizes the sequential reinforcement
of the multi-potential energy and the efficient computation of the heterogeneous diffusion operator
arising from Archie’s law. This requires to set up first a few dedicated notations.

5.5.1 Domain decomposition and sampling notation setup

Dynamical synthetic or experimental µCT images are available on the overall spatiotemporal do-
main Ω × [0, Tf ], and provide dissolution observations subject to noise and imaging limitations
(see Sect. 1.1.3 in Chapter 1 and 5.3.2): we introduce the two-index set Imi,j of image intensities
(dissolution measurements) defined for the whole image voxels. Then, we define a subset of this
image for sampling purposes, involving the positions D as a subset of Ω × [0, Tf ] together with
their image intensities Im, corresponding to Nobs partial and corrupted training observations:

D = {(xk, tk), k = 1...Nobs} (5.13)

On this set of discrete points, there exists mappings i and j such as the image intensity satisfies

Imk := Imi(k),j(k) = 1− ε(xk, tk) + ξ(xk, tk), k = 1...Nobs (5.14)

where the noise ξ ∼ N (0, σ2I) for which the standard deviation σ is automatically estimated in the
AW-HMC sampler by means of the λk adjustment in the weighted multi-potential energy U(Θ)
(see equation (4.19) and Sect. 4.3.2 in Chapter 4 for detailed development). This relationship
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between the microtomography images Im and ε comes from the correlation between the µCT
values and the material local attenuation. Indeed, in a greyscale tomographic scan, the minimum
signal corresponds to the least attenuating or the least dense areas (in ΩF where ε = 1), while
the maximum signal refers to the most attenuating areas (in ΩS where 0 < ε0 ⩽ ε < 1). Due
to the micro-continuum description of the medium based on the two-scale porosity assumption,
each distinct region of the domain — namely ΩS and ΩF — is though regarded as a different
term in the multi-potential energy definition. Such a distinction is prescribed since there is no
guarantee that the data corruption is uniform: the measurement variability can differ locally when
facing heteroscedastic noise. In particular, the artifact limitations tend to enhance the blurring
effects at the material fluid/solid interface Σ. This motivates the special consideration of this
interface neighborhood to account for the unresolved features and provide reliable morphological
uncertainties.

In this sense, we introduce the Reactive Area of Interest (RAI) as the evolving fluid/mineral
interface along the dissolution process that is defined by:

RAI =
{
(xk, tk) ∈ Ω× [0, Tf ] such that Imi(k)+1,j(k) < Imi(k),j(k) and 0.1 < Imk < 0.9

}
(5.15)

where the imaging extreme values are ignored, as a correction criterion, to avoid integrating noise
derivation artifacts into the definition of the RAI. These thresholds rely on the analysis of the µCT
histogram of the initial porous medium dataset. We also define:

• The extended Reactive Area of Interest, denoted RAI+, as the RAI augmented by a fluid
tubular neighborhood of the RAI both in space and time, that is to say, the fluid region close
to the evolving interface in Ω× [0, Tf ],

• The reduced Reactive Area of Interest, denoted RAI−, based on the acceptability criterion
— positivity of the D∗

m estimations — defined thereafter and related to the relations (5.21)-
(5.22).

Moreover, we introduce several discrete domains D• defined as the intersection between the
non-reactive part ofD and their respective time-dependent regions: fluid, solid, reactive, or bound-
ary. For instance, one gets DF = (D ∩ QF ) ∖ RAI with QF the evolving fluid region defined
as

QF = {(x, t) ∈ Ω× [0, Tf ] such that x ∈ ΩF (t)} . (5.16)

In the same way, DS = (D ∩ QS) ∖ RAI where QS is the evolving solid region and D∂ =
D ∩ {∂Ω × [0, Tf ]}. The overall domain Ω × [0, Tf ] is decomposed into several regions and
respective training datasets that are involved in the sequential reinforcement of the multi-potential
energy.

Finally, these different domains satisfy the following properties:

• RAI− ⊂ RAI ⊂ RAI+,

• ΩF ∪ ΩS = Ω, where ΩF = 1(ε<1) in Ω is an open set,

• D = DF ∪ DS ∪ D∂ ∪ RAI .

5.5.2 Sequential reinforcement of the multi-potential energy

The data assimilation strategy developed in the present chapter relies on a sequential design of
the multi-potential energy U(Θ), which will be reinforced to incorporate additional constraints
through dedicated sampling steps. The overall process is illustrated in Figure 5.1. This sequential
splitting is necessary due to the strong coupling between the porosity field ε, related to the µCT
imaging process, the latent concentration field C, and the two unknown inverse parameters Da∗II

and D∗
m. The first sampling step is, therefore, dedicated to providing a-priori estimations of the

micro-porosity field through data-fitting terms only.
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Figure 5.1: Sequential graph of the potential energy reinforcement: our data assimilation strategy
incorporates additional physics-based constraints arising from the PDE model (5.12) through successive
sampling steps. The notations are defined in Sect. 5.5.2.

Step 1: Preconditioning by pure regression on image data

The first sampling step 1 of the sequential splitting strategy aims to provide a preconditioning
description of the surrogate micro-porosity field εΘ. We consider a task differentiation between
DS and RAI+ and hence, we discard from the training the fluid measurements which are far from
the mineral interface — as they are of no interest in this first step to characterize morphological
uncertainty on ε. The resulting potential energy term writes:

U1(Θ) =
λ0
2σ20
∥1− εΘ − Im∥2DS +

λ1
2σ21
∥1− εΘ − Im∥2RAI+ +

1

2σ2Θ
∥Θ∥2 (5.17)

where σk are unknown standard deviations characterizing the noise distributions on their respec-
tive areas, and we assume a prior distribution on Θ given by P (Θ) ∼ N (0, σ2ΘIp+d). The notation
∥ · ∥ refers to either the RMS (root mean square) norm — inherited from the functional L2-norm
— for the two first log-likelihood terms or to the usual Euclidean norm for the last log-prior term.
In practice, we do not rely on a-priori manual calibration of the noise magnitudes — all σk are
set to be equal — but rather use the AW-HMC sampler to automatically and adaptively estimate
these uncertainties through adjustments of the λk. This is especially meaningful in the neighbor-
hood of the evolving fluid/solid interface (corresponding to the RAI+) to study edge-enhancement
implications and in the pure solid region to quantify the unresolved features. At the end of step 1,
one gets a first a-priori estimation of the field ε, which presents the advantage of being denoised
compared to the µCT images and hence is more suitable to differentiate. In this sense, we now
have access to the time derivative of the surrogate porosity εΘ that is subsequently used to provide
some preconditioning of the latent concentration field C.

Step 2: Preconditioning of the latent reactive fluid

The second sampling step 2 relies on this first insight of the Bayesian neural network parameters
obtained through step 1. We hence restart an adaptive weighting procedure with the AW-HMC
sampler by adding additional constraints arising from the PDE model (5.12). As the acid con-
centration is a latent unknown field in our reactive inverse problem, we benefit from this second
sampling step to provide a surrogate estimation CΘ of this field and identify a first reactive pa-
rameter, namely Da∗II. In this sense, we impose a physics-based regularization linking the porosity
derivative to the surrogate concentration field through the PDE equation:

1

υC0

∂εΘ
∂t
−Da∗IICΘ1{(1−ε)>0} = 0 (5.18)

where the calcite molar volume υ and C0 are constant parameters — we assume the concentration
C0 of continuous acid injection, defining the Dirichlet boundary conditions on C, to be known. In
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a direct formulation, equation (5.18) is imposed over the whole domain Ω × [0, Tf ], though the
PDE constraint in inverse modeling mainly brings meaningful information on the RAI. Indeed,

we have
∂εΘ
∂t
≃ −∂Im

∂t
> 0 on the reactive area of interest, which is useful to characterize the

reaction regime through the Da∗II dimensionless number. In the pure solid region where
∂εΘ
∂t

= 0,
the PDE constraint (5.18) translates into low acid penetration in QS that we impose through the
conditionCΘ = c0 = 1e−7. In the fluid regionQF , the latent acid concentration field is a solution
of the following heat equation:

∂CΘ

∂t
−D∗

m∆CΘ = 0 (5.19)

with initial and boundary conditions, respectively unknown in the inverse formulation and non-
homogeneous Dirichlet boundary conditions (see the dimensionless PDE model (5.12) from
Sect. 5.4.3). Following the modeling assumptions of Sect. 5.4.2, especially on the diffusive dom-
inated regime with Pe ≪ 1, we though assume as a first approximation that the surrogate acid
concentration field CΘ is driven by the quasi-stationary Poisson equation ∆CΘ = 0 in QF . This
behaves as a continuity extension of the surrogate concentration field from the domain boundary
to the mineral evolving interface defined by the RAI. Along with the PDE equation (5.18) in the
RAI, this defines augmented multi-potential energy for the second sampling step:

U(Θ) = U1(Θ) +
λ2
2σ22

∥∥∥∥(υC0)
−1αΘ

∂εΘ
∂t
− CΘ

∥∥∥∥2
RAI

+
λ3
2σ23
∥∆CΘ∥2DF

+
λ4
2σ24

(
∥1− CΘ∥2D∂ + ∥c0 − CΘ∥2DS

)
+

1

2σ2Θ
∥Θ∥2

:= U1(Θ) + U2(Θ)

(5.20)

where the constant constraints on the boundary D∂ and solid DS datasets are gathered as a sin-
gle term. The notation αΘ here refers to the first inverse parameter effectively sampled, with
αΘ := (Da∗II)

−1. This second step reinforces the sampling of the surrogate micro-porosity εΘ by
providing insight into the latent concentration field CΘ on the RAI and posterior distribution on
the inverse parameter Da∗II.

Step 3: Overall data assimilation potential with full reactive model

Finally, the third sampling step 3 will address the overall reactive inverse problem, to refine the
micro-porosity and acid concentration predictions accounted for the fully coupled PDE model
(5.12) and provide uncertainty quantification on the inverse parameters Da∗II and D∗

m. The exten-
sion by continuity of the acid concentration — from the Poisson equation in QF — is replaced by
its corresponding heat equation term (5.19) (see equation 5.23 bellow). We also use the diffusion-
reaction PDE coupling εΘ and CΘ to infer the dimensionless number D∗

m:

∂CΘ

∂t
−D∗

mdiv
(
ε1+η
Θ ∇(ε−1

Θ CΘ)
)
+Da∗IICΘ =

∂CΘ

∂t
−D∗

mdiv
(
ε1+η
Θ ∇(ε−1

Θ CΘ)
)
+

1

υC0

∂εΘ
∂t

= 0

(5.21)
which is theoretically valid on the whole RAI for the inverse modeling. Nonetheless, the heteroge-
neous diffusion term Di(ε, C) := div

(
ε1+η∇(ε−1C)

)
arising from Archie’s law becomes highly

sensitive at the mineral boundary due to jumps in the porosity derivatives at the interface. This
may disrupt the identification of the inverse parameter D∗

m. The PDE constraint (5.21) therefore
needs to be imposed on a reduced neighborhood of the reactive area of interest, namely the RAI−

domain.
This restricted RAI is then defined by the eligible points of the RAI domain where D∗

m is pre-
dicted positive. From the overall samples of step 2, we compute the predictive BMA distributions
of the two operators

∂CΘ

∂t
+

1

υC0

∂εΘ
∂t

and Di(εΘ, CΘ) (5.22)
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on the domain Ω × [0, Tf ] and then estimate D∗
m through equation (5.21) to define the RAI−

domain.
From this procedure, one also gets an estimate of the posterior distribution of D∗

m after sam-
pling step 2 which is regarded as an initial a-priori on this inverse parameter in step 3. This will
be further detailed in the applications (see Sect. 5.6 and 5.7). Taken together, the fully reinforced
multi-potential energy for the third sampling step writes:

U(Θ) = U1(Θ) +
λ2
2σ22

∥∥∥∥(υC0)
−1αΘ

∂εΘ
∂t
− CΘ

∥∥∥∥2
RAI

+
λ3
2σ23

∥∥∥∥γΘ∂CΘ

∂t
−∆CΘ

∥∥∥∥2
DF

+
λ4
2σ24

(
∥1− CΘ∥2D∂ + ∥c0 − CΘ∥2DS

)
+

λ5
2σ25

∥∥∥∥γΘ(∂CΘ

∂t
+ (υC0)

−1∂εΘ
∂t

)
− div

(
ε1+η
Θ ∇(ε−1

Θ CΘ)
)∥∥∥∥2

RAI−
+

1

2σ2Θ
∥Θ∥2

:= U1(Θ) + Ũ2(Θ) + U3(Θ)
(5.23)

where γΘ := (D∗
m)−1 such that the set of inverse parameters we infer in practice is (Pinv)Θ =

{αΘ, γΘ}. The data assimilation strategy developed in the present chapter incorporates successive
physics-based constraints using a sequential reinforcement of the multi-potential energy U(Θ).
This is achieved by splitting the sampling steps, which is required due to the strong coupling
of the overall PDE system (5.12) involving latent field and unknown parameters. This overall
algorithm is summarized in Figure 5.1.

5.5.3 Computational strategy for differential operator expression

This section is dedicated to the development of a differentiation strategy for efficient computation
of the heterogeneous diffusion Di(ε, C) arising from Archie’s law. Indeed, the third sampling
step in the sequential reinforcement of the multi-potential energy (see Sect. 5.5.2) involves the
computation of this diffusion operator through a neural network surrogate model. This implies the
use of Automatic Differentiation (AD) which is a prevalent technique in deep-learning frameworks
such as Physics-Informed Neural Networks and Bayesian Physics-Informed Neural Networks.
Such an automatic differentiation relies on gradient backpropagation to compute the derivatives of
the neural network functional outputs with respect to its inputs, by using the chain rule principle.
AD is thus a fast computational technique when it comes to the evaluation of first and second-
order derivatives of the output fields, namely the spatial gradient and Laplacian operators, and
the temporal partial derivatives. More complex non-linear operators resulting from two successive
differentiation of non-trivial functional compositions — as this is the case for theDi(ε, C) operator
— can though readily lead to high-computational cost. This observation leads to reconsidering
the heterogeneous diffusion term as a succession of sum and product of first and second-order
operators. Consequently, we consider the diffusion operator Di(ε, C) under two formulations: its
compact form (5.24a) and its developed form (5.24c) reading

Di(ε, C) = div
(
εη+1∇(ε−1C)

)
(5.24a)

= div
(
εη∇C − εη−1C∇ε

)
= div

(
εη−1(ε∇C − C∇ε)

)
(5.24b)

= εη−1 (ε∆C − C∆ε) + (η − 1)εη−1∇ε · ∇C + (η − 1)εη−2C∇ε · ∇ε (5.24c)

Then we replace the expression of the diffusion in the multi-potential energy (5.23) with the novel
operator formulation (5.24c). This makes possible to reduce the computational cost of evaluating
this diffusion operator through merely the auto differentiation of the following terms: ∇εΘ,∇CΘ,
∆εΘ, and ∆CΘ. Finally, we observe on the developed expression (5.24c) that the case η = 1
even results in a more straightforward expression of Archie’s law which then writes Di(ε, C) =
ε∆C − C∆ε. This is particularly convenient as the tortuosity index η = 1 can be regarded as
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a) Comparison of diffusion operators on the 1D+Time

TCPU (ms) Speedup S TGPU (ms) Speedup S

Original operator Di(ε, C) 37.13 1 11.32 3.28

Developed operator (5.24c) with η ̸= 1 24.78 1.49 6.985 5.32

Developed operator (5.24c) with η = 1 10.66 3.48 6.739 5.51

b) Comparison of diffusion operators on the 2D+Time

TCPU (ms) Speedup S TGPU (ms) Speedup S

Original operator Di(ε, C) 83.88 1 13.69 6.12

Developed operator (5.24c) with η ̸= 1 72.63 1.16 10.63 7.89

Developed operator (5.24c) with η = 1 68.99 1.22 10.59 7.92

Table 5.1: Computational times of the diffusion operators on the 1D+Time and 2D+Time inverse
problem: comparison between several expressions of the differential operator for CPU and GPU im-
plementations. The Speedup is computed as S = T0/T• with T0 := TCPU for the original expression
Di(ε, C) = div

(
εη+1∇(ε−1C)

)
. All the computational times are expressed in milliseconds (ms) and are

averaged on several evaluations of the diffusion operator during the sampling procedure.

an approximation of the effective diffusivity in pore-scale models (e.g. see [279]). Furthermore,
this reduced expression confirms the high sensitivity of the heterogeneous diffusion term at the
mineral boundary σ due to the micro-porosity Laplacian involved in Archie’s law. Considering
suitable differential operator expressions can enhance the surrogate model efficiency by reducing
the automatic differentiation cost.

We perform some validations of this first insight through computational time measurements
for the different expressions of the heterogeneous diffusion term. We hence compare the original
formulation of Di(ε, C) with the developed operator (5.24c) for tortuosity coefficients η = 0.5 —
to consider the most general form — and η = 1 that leads to the reduced evaluation of the hetero-
geneous diffusion. We account for computational times on both CPU and GPU devices and per-
form several evaluations of the diffusion operator expressions to provide averaged computational
times along the sampling procedure of step 3. These results are summarized in Table 5.1 for the
1D+Time test case (Table 5.1.a) and 2D+Time application (Table 5.1.b) explicitly developed in the
validation Sect. 5.6 and application Sect. 5.7. We define in each case the reference computational
cost T0 as the CPU time necessary to evaluate the original operator expression Di(ε, C). This
respectively leads to T0 = 37.13 ms and T0 = 83.88 ms for 1D+Time and 2D+Time applications.
We then evaluate the speedup, denoted S, of the distinct operator formulations as S = T0/T•
where T• are their respective computational times. It results from this comparison an effective
improvement of the computational costs, either on CPU or GPU, when considering the developed
operator (5.24c) from equation (5.24) — even in its general form for η ̸= 1 (see second rows of
Table 5.1.a and 5.1.b). This highlights that the configuration that best optimizes the speedup is
to use the operator (5.24c) on GPU devices. The improvement between the general and reduced
form of the operator (5.24c) is, however, less significant especially in 2D+Time. This can be read-
ily explained by the fact that most of the computational time is spent evaluating the gradient and
Laplacian operators rather than their combination. In this sense, the general form (5.24c) can be
used effectively regardless of the tortuosity index value η. Overall, the developed heterogeneous
diffusion operator (5.24c) contributes to reducing the computational cost of its single evaluation.

Suitable choices in the differential operator expressions considerably improve the AD cost
when considering complex non-linear operators with non-trivial functional compositions, as for
Archie’s law. This, therefore, reduces the computational time spent in evaluating one instance of
these operators. Such improvements are meaningful, accounting for the numerous surrogate model
evaluations required for an appropriate sampling of the target posterior distribution (see equation
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(4.2) in Chapter 4) through MCMC samplers. Considering the developed formulation (5.24c) of
the heterogeneous diffusion operator on GPU devices hence implies a significant enhancement of
the overall computational time of the present data assimilation strategy.

5.6 Validation on synthetic 1D+Time calcite dissolution

In this chapter, we develop a novel data assimilation strategy to address reactive inverse problems
in pore-scale imaging with uncertainty quantification. This aims to quantify morphological uncer-
tainty on the micro-porosity field ε and estimate reliable ranges of chemical parameters through
dynamical µCT noisy observations augmented with PDE models of dissolution. The present strat-
egy is based on the robust Bayesian framework presented in Chapter 4 along with the AW-HMC
sampler (see Sect. 4.4.1 of Chapter 4) and relies on sequential reinforcement of the multi-potential
energy.

In this section, we validate the present methodology on inverse problems of calcite dissolution
with heterogeneous porosity in artificial 1D spatial configurations. All the µCT measurements
that we consider are synthetic observations resulting from direct numerical simulations of reac-
tive flows with noise perturbation, in order to validate our methodology in well-established test
cases. The validation test case is a purely synthetic 1D+Time problem, for which we check two
configurations with distinct tortuosity indices with η = 1 and η = 0.5.

5.6.1 Direct reactive model: problem set up

We consider two heterogeneous samples of 1D synthetic calcite cores whose initial geometries
are characterized by the numerical µCT images presented in Figure 5.2 on a ’physical’ spatial
domain Ω of width 0.3mm. These initial images correspond to normalized greyscale tomographic
scans, corrupted with noise that either accounts for sensor noise or unresolved morphological
features. Direct numerical simulations of reactive processes are then performed on these initial
geometries to provide synthetic µCT dynamical images of dissolution. These observation data
are generated by solving the reaction-diffusion system (5.8) by means of mesh-based and parti-
cle methods — namely a Backward Euler or Mid Point method for the time integration coupled
with Particle Strength Exchanges scheme for the heterogeneous diffusion — on a Cartesian spa-
tiotemporal grid of resolution Nx = 200 and Nt = 240. Continuous acid injection is maintained
through non-homogeneous Dirichlet boundary conditions on the domain Ω to ensure a diffusive-
dominated regime. Numerically, we consider a strong acid solution with pH = 0 such that the
normalizing constant C0 equals 1. The characteristic length L of these porous samples is set to
L = 0.1mm and the reactive parameters are respectively defined by Ks = 0.8913mol.m−2.s−1,
Dm = 1e−9m2.s−1, and γH+ = 1e−3m3.mol−1 — taken from the benchmark [204]. The reac-
tive specific area As is set to As = 1e3m−1, and we do not account for the calcite molar volume
υ in these test cases — as such 1D+Time examples do not mean to be physically consistent but
rather serve validation purposes. We also consider distinct tortuosity indexes, namely η = 1 and
η = 0.5, on the different geometries to address both the compact form (5.24a) and develop form
(5.24c) of the diffusion operatorDi(ε, C) in the data assimilation problem. The DNS is performed
until the overall calcite core is dissolved which corresponds to a characteristic final time Tf = 24
s. Taken together, one gets a sequence of synthetic µCT images Imi,j , similar to Figure 5.2, char-
acterizing the dissolution process of the two calcite cores on the ’physical’ spatiotemporal domain
Ω× [0, Tf ].

5.6.2 Dimensionless inverse problem and dimensionless numbers

From the setting of these reactive parameters, one identifies the dissolution regime of these test
cases given by the dimensionless catalytic Damköhler DaII = 8.913 from equation (5.6). The in-
ference of this Damköhler number is though not straightforward in inverse problems, as developed
in Sect. 5.4.3, and we define the dimensionless time t∗ such that the its related final time is T ∗

f = 1.
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Figure 5.2: Initial µCT images defining the porous sample geometries: synthetic cases with tortuosity
indices a) η = 1 and b) η = 0.5. The µCT measurements are normalized, corrupted with noise, and provide
the dataset Im before the dissolution process. The calcite core regions are identified by the double-headed
arrows, and correspond to the maximum intensity in the greyscale tomographic scans displayed below.

The dimensionless spatial variable x∗ is computed as in the dimensionless formulation of the di-
rect problem using x∗ = x/L. For the data assimilation, we hence consider the dimensionless
domain Ω

∗ × [0, T ∗
f ] = [0, 3]× [0, 1] to extract the observation dataset

D = {(xk, tk) ∈ [0, 3]× [0, 1], k = 1...Nobs} (5.25)

where the number of training pointsNobs = 7725 represents about 16% of the data required for the
full field reconstructions on Ω∗× [0, T ∗

f ]. The dataset D is divided into the corresponding datasets
DS , DF , DRAI, RAI+, RAI− and D∂ that respectively cover around 50%, 4%, 15%, 13%, 10%
and 8% of the Nobs training measurements. One also determines the scaling dimensionless factor
Dref which appears in the dimensionless inverse formulation (5.12):

Dref =
T ∗
fL

2

Tf
= 4.16e−10m2.s−1 (5.26)

according to the relation (5.9) and the estimations of Tf , T ∗
f andL. We characterize the dissolution

regime in these reactive inverse problems by means of the two dimensionless numbers defined in
(5.11), and one gets:

Da∗II = 21.3912 and D∗
m = 2.4 (5.27)

which are related to the inverse parameters to infer through (Pinv)Θ = {αΘ, γΘ} ={
(Da∗II)

−1, (D∗
m)−1

}
. For such 1D+Time reactive inverse problems, the overall multi-potential

energy finally writes in the case η = 1:

U(Θ) =
λ0
2σ20
∥1− εΘ − Im∥2DS +

λ1
2σ21
∥1− εΘ − Im∥2RAI+ +

λ2
2σ22

∥∥∥∥αΘ
∂εΘ
∂t
− CΘ

∥∥∥∥2
RAI

+
λ3
2σ23

∥∥∥∥γΘ∂CΘ

∂t
− ∂2CΘ

∂x2

∥∥∥∥2
DF

+
λ4
2σ24

(
∥1− CΘ∥2D∂ + ∥1e−7− CΘ∥2DS

)

+
λ5
2σ25

∥∥∥∥γΘ(∂CΘ

∂t
+
∂εΘ
∂t

)
−
(
εΘ
∂2CΘ

∂x2
− CΘ

∂2εΘ
∂x2

)∥∥∥∥2
RAI−

+
1

2σ2Θ
∥Θ∥2

(5.28)
and is sequentially reinforced, as presented in Sect. 5.5.2, through three successive sampling steps
using the AW-HMC sampler. The hyperparameters setting of the sequential AW-HMC samplers
together with the neural network architecture are detailed hereafter.
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5.6.3 Deep learning configuration

Regarding the deep learning strategy for the overall data assimilation problem, we use two dis-
tinct neural network architectures to define the micro-porosity and acid concentration surrogate
models. Each surrogate model has, therefore, one single output corresponding to εΘ and CΘ, re-
spectively. This is preferred to merging the two outputs into a single neural network architecture
to avoid a strong correlation between the output fields. Indeed, providing surrogate models not
strongly correlated with a multiple-output neural network may require numerous hidden layers
that straightforwardly impact the overall computational cost. On the contrary, using distinct neu-
ral networks makes it possible to build independent surrogate models while retaining few hidden
layers and, therefore, a reasonable number of neural network parameters. Correlations between
the two neural network architectures, and then the outputs fields εΘ and CΘ, are merely achieved
through the PDE model defining the multi-potential energy (5.28). This deep learning configura-
tion is more meaningful for such a reactive data assimilation problem since a high correlation —
due to the neural network architecture — with the latent field CΘ can highly disrupt the micro-
porosity recovery. Relying on the PDE model to ensure relevant correlation hence appears as the
most appropriate strategy.

The first neural network establishing the micro-porosity surrogate model εΘ is composed of 4
hidden layers with 32 neurons per layer and a hyperbolic tangent activation function. The output
layer is complemented by a rectified hyperbolic tangent Tanhr(z) = 0.5(Tanh(z) + 1) to ensure
output values between 0 and 1. This neural network complexity provides the best approximation
of the micro-porosity during the first sampling step 1 while maintaining moderate computational
costs. Indeed, we analyze in Figure 5.3 the impact of the neural network architecture both on the
computational time spent on the sampling procedure and the BMA accuracy, computed as:

BMA-Eε = ∥P (εΘ | (x, t),D,M)− ε)∥2Ω∗×[0,T ∗
f ]

(5.29)

where the notation ∥ · ∥ used here refers to the functional L2-norm and P (εΘ | (x, t),D,M) is
the BMA approximation from equation (4.3) in Chapter 4 (e.g. see [319]). For the optimal Neural
Network (NN) configuration, one estimates the sampling computational cost, providing the over-
all samples of the posterior distribution based on the Nobs training measurements, to about 17
min. The BMA prediction obtained through equation (4.3), over the whole computational domain
Ω∗× [0, T ∗

f ] is meanwhile immediate — less than 1 s on GPU and a few seconds on CPU. Recov-
ering the latent concentration CΘ will require less neural network expressivity compared to the
micro-porosity field which needs to integrate noisy data, and unresolved morphological features
in its reconstruction. In this sense, we assume that the second neural network defining the acid
surrogate model is composed of 3 hidden layers with 32 neurons per layer and a hyperbolic tan-
gent activation function. This is only one layer less compared to the first NN for εΘ but enables
saving 1056 parameters. The number of network parameters is, therefore, 3297 for the first sam-
pling and increases to 5538 for the second and third sampling steps with the two additional inverse
parameters.

The other hyperparameters concerning the AW-HMC sampler are summarized in Table 5.2 for
the sequential sampling steps. These sampler parameters involve, inter alia, several adaptive steps
N during which the critical weights λk are automatically adjusted through an Inverse Dirichlet
basis (see equation (4.22) in Sect. 4.4.1 from Chapter 4), and a number of overall sampling steps
Ns. The two other parameters, namely L and δt, are intrinsically related to the Hamiltonian Monte
Carlo structure of the AW-HMC sampler. Indeed, they are involved in the deterministic step that
relies on the leapfrog symplectic integrator to solve for the Hamiltonian dynamical system (4.8)
(see Sect. 4.3.1 in Chapter 4). We also refer to our methodological Chapter 4 for more details on
these hyperparameters and especially to Algorithm 1 (Adaptively Weighted Hamiltonian Monte
Carlo) for their respective role in the sampling phases.
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Figure 5.3: Neural Network configuration choice for the surrogate model on the micro-porosity field:
a) Computational cost of sampling step 1 with respect to the neural network architectures both in terms
of the number of hidden layers and neurons per layer. b) Bayesian Model Average (BMA) error between
the surrogate model εΘ and groundtruth ε, computed as in equation (5.29), for different neural network
architectures.

Figure 5.4: Uncertainty Quantification on 1D+Time reactive inverse problem with data assimilation:
Bayesian Model Average (BMA) predictions on the micro-porosity field εΘ with their local uncertainties —
given by the standard deviation on the posterior distribution of the predictions — and mean squared errors
(MSE). The top row corresponds to the initial geometry from Figure 5.2a with tortuosity index η = 1. The
bottom row is related to the initial porous sample from Figure 5.2b with η = 0.5.



5.6. Validation on synthetic 1D+Time calcite dissolution 155

Sampling step
Number of Number of Number of Leapfrog time

adaptive steps N samples Ns leapfrog steps L step δt

1) Preconditioning εΘ 50 200 200 1e−3
2) Preconditioning CΘ 20 200 200 5e−4

+ Inference αΘ

3) Full data assimilation 4 200 200 2e−4

Table 5.2: AW-HMC hyperparameters on the 1D+Time reactive inverse problem: Setting of the sam-
pler hyperparameters for the three sequential sampling steps defined in Figure 5.1. The number of adaptive
steps N along with the leapfrog parameters L and δt are AW-HMC sampler-specific parameters.

Figure 5.5: Uncertainty Quantification on the micro-porosity field at the initial state (t∗ = 0) for
1D+Time reactive inverse problem: Corrupted µCT image before dissolution, groundtruth on ε, BMA
prediction, and uncertainty on εΘ plotted along the spatial dimensionless coordinates x∗. Validation test
cases with tortuosity indexes a) η = 1 and b) η = 0.5.

5.6.4 Numerical results

We demonstrate the validity of our data assimilation approach on synthetic inverse problems of
calcite dissolution whose initial core geometries are characterized in Figure 5.2, and for which
the dynamical µCT images are provided through DNS (see Sect. 5.6.1). In the data assimila-
tion Bayesian framework, we first select log-normal prior distributions on (Pinv)Θ = {αΘ, γΘ},
which ensures the positivity of the inverse parameters, and independent normal distribution for
the neural network parameters θ. Nonetheless, appropriate change of variables on the inverse
parameters, namely •Θ = e•̃Θ , makes it possible to consider Gaussian prior distributions on the
newly defined set of parameter Θ = {θ, P̃inv} (e.g. see [328]). This is the underlying hypothe-
sis considered when defining the log-prior term in the potential energy (5.28), where we assume
P (Θ) ∼ N (0, σ2ΘIp+d). In practice, we use the standard deviation σΘ = 10 in the applications
such that slightly diffuse distribution induces weakly informed priors on the Θ parameters. We
also impose weakly informed priors on the inverse parameters such that we do not rely on biased
a-priori on their respective scaling. In this sense, we benefit from the AW-HMC sampler ad-
vantages to handle multiscale inverse problems with unknown informative priors. We also avoid
hand-tuning of the distinct task uncertainties by setting all the σk, k = 0...5, to be equal in equa-
tion (5.28). On the contrary, automatic adjustment of the weighting parameters λk will provide
intrinsic task uncertainties during the sampling procedure.

From the overall sampling procedure, we first obtain a Bayesian Model Average prediction on
the porosity field εΘ which is approximated by (e.g. see [319]):

P (εΘ|(x, t),D,M) ≃ 1

Ns −N

Ns∑
τ=N

P
(
εΘ|(x, t),Θtτ

)
(5.30)

where P
(
εΘ | (x, t),Θtτ

)
is the surrogate model prediction of the micro-porosity resulting from
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Figure 5.6: Bayesian Model Average Cumulative Error diagnostics, as defined in equations (5.31)-
(5.33), for 1D+Time reactive inverse problem: BMA-CE on the micro-porosity field prediction ε through-
out the sampling iterations, and BMA-CE on the PDE constraint residuals F1 and F2 defined in (5.32) and
introduced successively. The dotted vertical lines split the sampling steps in the sequential reinforcement of
the multi-potential energy (5.28). Dissolution inverse problem on the initial geometries from a) Figure 5.2a
with tortuosity index η = 1 and b) Figure 5.2b with tortuosity index η = 0.5.

the sampling iteration τ for the set of parameters Θ — including both the neural network and in-
verse parameters. Similarly, one can also compute local uncertainties on the output porosity field
given the standard deviation metric on the posterior distribution of the predictions. These uncer-
tainty quantification results are presented in Figure 5.4 along the whole dissolution time t∗ for both
the initial core geometries with distinct tortuosity indexes. We also compare the local uncertainties
on the micro-porosity field with the traditional MSE between the BMA surrogate prediction ob-
tained by equation (5.30) and the groundtruth ε. This shows enhanced mean squared errors on the
core edges during the calcite core dissolution which are, however, embedded in the local uncer-
tainties. The latter uncertainties also tend to increase in these regions, characterizing the challenge
of capturing reliable core interfaces from the dynamical µCT images. In this sense, one can query
the confidence of mineral reactivity assessment using merely differential imaging techniques on
the dynamical µCT scans. From the dynamical observation of the calcite core dissolution, we
obtain uncertainties on the initial state geometry represented in Figure 5.5. This shows that the
posterior prediction on εΘ covers the groundtruth micro-porosity field ε and provides upper and
lower bounds for the residual, potentially unresolved, micro-porosity ε0 estimation in the porous
matrix — e.g. 1.8% ⩽ ε0 ⩽ 9% in the case η = 1 for the 95% confidence interval, corresponding
to approximately two standard deviations.

Moreover, we rely on the Bayesian Model Average Cumulative Error metric, denoted
BMA-CE and introduced in Sect. 4.4.3 of Chapter 4, to quantify the sampling efficiency in terms
of convergence along the marginalization process. We first compute the BMA-CE diagnostics for
the porosity field ε based on:

BMA-CEε(τ) =

∥∥∥∥∥ 1

τ −N

τ∑
i=N

P
(
εΘ | (x, t),Θti

)
− (1− Im)

∥∥∥∥∥
2

∀τ > N. (5.31)

Equation (5.31) hence defines for each sampling step τ , after the adaptive steps, a cumulative error
characterizing the convergence of the BMA model toward the groundtruth ε. Such a diagnostic is
computed during the overall sampling procedure, covering the three successive steps of sequential
reinforcement. In the same manner, we extend this notion of convergence to the PDE constraints
by computing the BMA-CE metric on their respective residuals. We, therefore, introduce F1

and F2 the PDE constraints residuals arising from the reactive model (5.12) and involved in the
multi-potential energy (5.28):

F1(εΘ, CΘ) := αΘ
∂εΘ
∂t
− CΘ

F2(εΘ, CΘ) := γΘ

(
∂CΘ

∂t
+
∂εΘ
∂t

)
−
(
εΘ
∂2CΘ

∂x2
− CΘ

∂2εΘ
∂x2

) (5.32)
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Figure 5.7: Posterior distributions of 1D+Time reactive inverse problem: a) Histogram of the marginal
posterior distributions for the inverse parameter αΘ. b) Phase diagrams of its trajectory throughout the
sampling, with the adaptive steps trajectories (in blue) and effective sampling (in red). The groundtruth
values of α are represented by the black dots. c) Resulting posterior distributions of the catalytic Damköhler
number DaII, determined through the log-normal distribution from relation (5.34). The top and bottom row
respectively corresponds to the tortuosity indexes η = 1 and η = 0.5.

to finally define their corresponding diagnostics BMA-CEF• :

BMA-CEF•(τ) =

∥∥∥∥∥ 1

τ −N

τ∑
i=N

P
(
F•(εΘ, CΘ) | (x, t),Θti

)∥∥∥∥∥
2

∀τ > N. (5.33)

These metrics are respectively computed on the sampling steps 2 and 3 for the residuals F1 and
F2, and the resulting convergence curves are presented in Figure 5.6 for both initial geometries.
Successively introducing the additional PDE constraints results in deviations in the BMA-CEε

curve compared to the purely data-fitting sampling step 1. This means that the PDE model brings
information on the porosity field ε recovery instead of providing overfitting predictions. One also
gets that the PDE constraints are satisfied by the convergence of their residual BMA-CE curves.

Regarding the inverse parameters inference, we represent in Figure 5.7a the histograms of the
marginal posterior distributions of αΘ := (Da∗II)

−1 for the two initial geometries from Figure 5.2.
These distributions are obtained throughout the sampling steps 2 and 3, and provide intrinsic un-
certainties on the parameter estimations. One also gets from Figure 5.7b the parameter trajectories
when exploring the phase space distribution π(Θ, r) (see equation (4.4) in Chapter 4), where the
convergence toward the mode during the adaptive steps is represented in blue. The final sampling,
corresponding to the phase diagram trajectories for τ > N , thus ensures an efficient exploration
of the parameter mode neighborhood. Following the sequential reinforcement strategy detailed in
Sect. 5.5, one gets at the end of the sampling step 2 a description of the restricted RAI− domain
altogether with an initial estimate on the distribution of D∗

m.
The latter is regarded as an initial a-priori on the parameter γΘ in step 3, and is obtained as

follows:
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Figure 5.8: Prior and posterior distributions on the inverse parameter γΘ for 1D+Time reactive
inverse problem with tortuosity index η = 1: a) Global distribution on the estimated parameter D∗

m

arising from a-posteriori analysis on the sampling step 2. We discard the distribution tail after the vertical
dashed line corresponding to the 80th percentile. b) Resulting prior distribution on the inverse parameter
γΘ, used as an a-priori in step 3. c) Posterior distribution on γΘ obtained from the overall data assimilation
problem throughout sampling step 3.

• for the sampling iteration τ = N...Ns in step 2, we compute the (cumulative) predictive
BMA distributions of the two operators

∂CΘ

∂t
+

1

υC0

∂εΘ
∂t

and Di(εΘ, CΘ),

• we establish the RAI−τ as the admissible points of the RAI where D∗
m is predicted positive

for each sampling iteration τ > N ,

• we compute a spatially averaged estimation of the parameter
(
D∗

m

)
τ

on this eligible domain,
where (

D∗
m

)
τ
=

1

#RAI−τ

∑
k∈RAI−τ

(D∗
m)τ (xk, tk) ∀τ > N,

• we can estimate a global distribution on D∗
m throughout the overall samples of step 2 where

we discard the distribution tail after the 80th percentile,

• we finally evaluate the prior distribution on the inverse parameter γΘ := (D∗
m)−1 with its

mean value γΘ used as an initial a-priori in step 3,

In the case η = 1 for instance, one gets the global distribution on D∗
m shown in Figure 5.8a, which

translates into the prior distribution on γΘ given by Figure 5.8b with γΘ = 3.8e−1. Finally, we
obtain the posterior distribution from the overall data assimilation problem throughout sampling
step 3. This results in the distribution on the inverse parameter γΘ represented in Figure 5.8c, with
the uncertainty range γΘ ∈ [0.274, 0.582].

Finally, one can estimate the posterior distribution on the catalytic Damköhler number DaII

resulting from the overall data assimilation problem on dynamical µCT images. This comes from
the observation that each inverse parameter, namely αΘ and γΘ, is sought according to a log-
normal distribution through the change of variable •Θ = e•̃Θ . Hence, we obtain two normal
posterior distributions on the random variables X1 and X2 respectively associated with ln(αΘ)
and ln(γΘ) such that X1 ∼ N

(
µα, σ

2
α

)
and X2 ∼ N

(
µγ , σ

2
γ

)
. This combines into a normal

distribution on ln(γΘ/αΘ) given by (X1−X2) ∼ N
(
µγ − µα, σ2γ + σ2α

)
, which is nothing more

than a log-normal posterior distribution on the Damköhler number DaII. Indeed, one gets that the
random variable X related to the dimensionless DaII number follows

X ∼ Log−N
(
µγ − µα, σ2γ + σ2α

)
:= Log−N

(
µ, σ2

)
, (5.34)
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whose mean and variance are respectively computed as

E[X] = eµ+σ2/2 and Var(X) = e2µ+σ2
(
eσ

2 − 1
)
. (5.35)

The resulting posterior distributions on the Damköhler number DaII are represented in Figure 5.7c
for both the initial calcite core geometries with their related tortuosity indexes. We finally obtain
the uncertainty ranges DaII ∈ [5.43, 27.89] and DaII ∈ [2.30, 11.37] for the tortuosity indexes
η = 1 and η = 0.5 respectively.

5.7 Pore-scale imaging inverse problem of calcite dissolution:
2D+Time application

In this section, we apply the data assimilation methodology developed in Sect. 5.5 to inverse prob-
lems for calcite dissolution with heterogeneous porosity levels. We consider a more realistic appli-
cation involving the dissolution of a 2D calcite core following the configuration of the benchmark
developed in [204]. This test case can provide a basis for reactive inverse problems in isotropic
porous samples, although the µCT measurements are still synthetic observations resulting from
DNS altered with noise.

5.7.1 Problem set up and dimensionless inverse formulation

We consider a 2D calcite crystal with a cylindrical shape, heterogeneous porosity levels, and two
apertures, whose initial geometry is defined by the numerical µCT image from Figure 5.9, cor-
rupted with Gaussian noise. We define the physical domain Ω ⊂ R2 of width 0.2mm correspond-
ing to the two-dimensional flow channel surrounding the calcite core. We first solve the direct
formulation of the dissolution process for this initial geometry on a Cartesian spatiotemporal grid
of resolution Nx = Ny = 100 and Nt = 350. We assume a diffusive-dominated regime with
continuous acid injection through non-homogeneous Dirichlet boundary conditions on ∂Ω. We
also consider, as in the 1D+Time validation test cases, a strong acid solution with pH = 0 such
that the normalizing constant is given by C0 = 1mol.L−1. The characteristic length L of these
porous samples is set to L = 0.1mm and the reactive parameters are respectively defined by
Ks = 0.8913mol.m−2.s−1, Dm = 1e−9m2.s−1, and γH+ = 1e−3m3.mol−1, taken from the
benchmark [204]. The reactive specific area As is set to As = 1e3m−1 — which is slightly
underestimated compared to the computed value around 7.4e3m−1. We account for the calcite
molar volume υ = 36.93e−3L.mol−1, and set a tortuosity index η = 0.5. The DNS is performed
until the overall calcite is dissolved which corresponds to a characteristic final time Tf = 175 s.
Taken together, one gets a sequence of synthetic µCT images Imi,j characterizing the dissolution
process of the calcite core on the spatiotemporal domain Ω× [0, Tf ].

Given these reactive parameters, we identify the same dissolution regime as in the 1D+Time
test cases, with a catalytic Damköhler given by DaII = 8.913. The inverse formulation, how-
ever, results in distinct dimensionless numbers, namely Da∗II and D∗

m, arising from the scaling
dimensionless factor Dref . This scaling factor is here determined by:

Dref =
T ∗
fL

2

Tf
= 5.714e−11m2.s−1, (5.36)

where the final dimensionless time is T ∗
f = 1. Therefore, one gets from equation (5.11) the

following dimensionless numbers characterizing this 2D+Time reactive inverse problem:

Da∗II = 155.9775 and D∗
m = 17.5 (5.37)

which are related to the inverse parameters through (Pinv)Θ = {αΘ, γΘ} =
{
(Da∗II)

−1, (D∗
m)−1

}
.

We consider the dimensionless domain Ω
∗ × [0, T ∗

f ] = [0, 2]× [−1, 1]× [0, 1], given the charac-
teristic length L, to extract the observation dataset

D = {(xk, yk, tk) ∈ [0, 2]× [−1, 1]× [0, 1], k = 1...Nobs} (5.38)
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Figure 5.9: Initial µCT image defining the 2D porous sample geometry: Synthetic case with tortuosity
index η = 0.5. The µCT measurements are normalized, corrupted with noise, and provide the observation
dataset before the dissolution process. The cylindrical calcite core has a radius equal to 0.05mm.

where the number of training points Nobs = 15907 represents less than 1% of the data required
for the full field reconstructions on the spatiotemporal domain Ω∗× [0, T ∗

f ]. This datasetD is then
divided into DS , DF , DRAI, RAI+, RAI− and D∂ that respectively cover around 15.5%, 0.5%,
48%, 11%, 20% and 5% of the Nobs training measurements. Finally, the multi-potential energy
writes on this dataset decomposition:

U(Θ) =
λ0
2σ20
∥1− εΘ − Im∥2DS +

λ1
2σ21
∥1− εΘ − Im∥2RAI+ +

λ2
2σ22

∥∥∥∥(υC0)
−1αΘ

∂εΘ
∂t
− CΘ

∥∥∥∥2
RAI

+
λ3
2σ23

∥∥∥∥γΘ∂CΘ

∂t
−∆CΘ

∥∥∥∥2
DF

+
λ4
2σ24

(
∥1− CΘ∥2D∂ + ∥1e−7− CΘ∥2DS

)
+

λ5
2σ25

∥∥∥∥γΘ(∂CΘ

∂t
+ (υC0)

−1∂εΘ
∂t

)
−Di(εΘ, CΘ)

∥∥∥∥2
RAI−

+
1

2σ2Θ
∥Θ∥2

(5.39)
where the heterogeneous diffusion operatorDi(εΘ, CΘ) is computed in its developed form (5.24c)
with η = 0.5. This overall potential energy is sequentially reinforced throughout three successive
sampling steps, as detailed in Sect. 5.5.2 and validated in Sect. 5.6 on 1D+Time data assimilation
problems.

5.7.2 Deep learning framework and computational efficiency

Regarding the deep learning strategy, the framework is kept identical to the 1D+Time validation
test cases (see Sect. 5.6.3). In this sense, we consider two distinct neural network architectures, for
the micro-porosity and acid concentration surrogate models, which are respectively composed of
4 and 3 hidden layers with 32 neurons per layer. The number of network parameters is, therefore,
3297 for the first sampling and 5538 for the second and third sampling steps with the two additional
inverse parameters. The setting of the AW-HMC sampler hyperparameters is also summarized in
Table 5.3 for the successive sampling steps.

Besides, we investigate the impact of the problem dimensionality by analyzing the computa-
tional efficiency of the present data assimilation approach with sequential reinforcement process.
In this sense, we compare the computational costs of the three successive sampling steps on the
1D+Time and 2D+Time reactive inverse problems. The results of these computational time mea-
surements are presented in Table 5.4 for both configurations. The first columns compare the sam-
pling times, which is the time required to provide the overall samples of the posterior distributions
using the AW-HMC sampler. This training phase is performed on theNobs observation data which
are randomly selected and non-uniformly distributed on the whole Cartesian grids — respectively
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Sampling step
Number of Number of Number of Leapfrog time

adaptive steps N samples Ns leapfrog steps L step δt

1) Preconditioning εΘ 50 200 150 1e−3
2) Preconditioning CΘ 40 200 150 5e−4

+ Inference αΘ

3) Full data assimilation 10 200 150 3e−4

Table 5.3: AW-HMC hyperparameters on the 2D+Time reactive inverse problem: Setting of the sam-
pler hyperparameters for the three sequential sampling steps defined in Figure 5.1. The number of adaptive
steps N along with the leapfrog parameters L and δt are AW-HMC sampler-specific parameters.

a) Computational times for 1D+Time data assimilation

Sampling time TGPU (in hh:mm:ss) Prediction time TCPU (in hh:mm:ss)

Sequential step 1 00:17:13 00:00:04

Sequential step 2 01:38:01 00:00:13

Sequential step 3 02:38:58 00:00:14

b) Computational times for 2D+Time data assimilation

Sampling time TGPU (in hh:mm:ss) Prediction time TCPU (in hh:mm:ss)

Sequential step 1 00:16:26 00:04:59

Sequential step 2 01:21:01 00:34:34

Sequential step 3 02:41:10 00:41:18

Table 5.4: Computational times of the successive sequential steps on the 1D+Time and 2D+Time in-
verse problem: Comparison of the sampling times on GPU devices (first columns), and the prediction
times on CPU devices (second columns) between 1D+Time and 2D+Time configurations. All the compu-
tational times are expressed under the form hh:mm:ss to ease the readability.

Nx × Nt = 200 × 240 in 1D+Time and Nx × Ny × Nt = 100 × 100 × 350 in 2D+Time. All
the successive sampling steps are performed on GPU devices, and the computational times are ex-
pressed in hours, minutes and seconds (hh:mm:ss). In these sampling/training phases, the present
methodology does not suffer from the curse of dimensionality. The 1D+Time and 2D+Time data
assimilation problems present similar computational times, although the number of training ob-
servations is two times larger in 2D+Time. This establishes that most of the computational cost
of the problem is correlated to the number of neural network parameters — as already confirmed
in Sect. 5.6.3 and more specifically in Figure 5.3 — rather than the number of training points.
Since it appears that the same neural network architecture as in 1D+Time is significant to describe
the 2D+Time inverse problem, the computational efficiency of this 2D+Time data assimilation is
significantly improved.

The second columns of Table 5.4 then compare the prediction time on CPU devices. This cor-
responds to the computational time necessary for the potential energy estimation and output field
predictions on the whole domain Ω∗× [0, T ∗

f ], along with the computation of the main differential
operators required as additional outputs. Among the additional outputs, one finds the porosity
time derivative at the end of step 1, and all the first-order derivatives and Laplacian operators for
the porosity and concentration field at the end of step 2 — which are used to evaluate the initial
a-priori on γΘ. The first-order derivatives and Laplacian operators are also considered as output
in step 3 to perform the a-posterior analysis based on the BMA-CE diagnostics. In contrast to the
sampling phase, the computational time devoted to these predictions is larger when dimensional-
ity increases. This comes from the observation that one needs to evaluate the output fields and
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Figure 5.10: Uncertainty Quantification on the micro-porosity field at the initial state (t∗ = 0) for
2D+Time reactive inverse problem: Corrupted µCT image before dissolution, groundtruth on ε, BMA
prediction, and uncertainty on εΘ. The results are plotted along the horizontal white dashed lines from
Figure 5.11, at spatial coordinates a) y∗ = −0.192 and b) y∗ = 0.212.

additional differential operators on a Cartesian grid which is about 72 times larger in 2D+Time.
The predictions of all these differential operators on the overall domain Ω∗ × [0, T ∗

f ] are achieved
through automatic differentiation and hence are consistent with their evaluations along the training
phase. This can straightforwardly be replaced by other standard differential schemes — as finite
differences or PSE schemes — to evaluate these operators on the Cartesian grid, using merely
the predictive porosity and acid concentration fields. However, the computational improvement of
the process may not be that significant, since one needs to evaluate these operators for all the Ns

samplings steps — basically 600 times — to take into account their intrinsic uncertainties. This
means that it only takes a few seconds per sample to evaluate these differential operators through
automatic differentiation, which is thus comparable to other usual schemes. On top of that, the
prediction phases here occur on CPU devices due to memory usage that is not marginal. Typically
the micro-porosity field prediction on its own required the storage of Ns ×Nx ×Ny ×Nt floats
in 2D+Time, which is equivalent to about 1.9GB. In this sense, both memory usage and compu-
tational efficiency of this prediction phase could be improved, and efforts must be made in this
direction. In prospect, we would like to benefit from the parallel architecture of GPU devices by
investigating and using appropriate domain decompositions of Ω∗ × [0, T ∗

f ].

5.7.3 Results and discussion

We apply our data assimilation approach with sequential reinforcement of the multi-potential
energy on this 2D+Time reactive inverse problem of calcite dissolution, based on synthetic dy-
namical µCT observations generated by DNS. We guarantee the positivity of the inverse pa-
rameter inference by selecting log-normal prior distributions and applying the same change of
variable •Θ = e•̃Θ as in the validation Sect. 5.6. This is combined with independent normal
distribution on the neural network parameters, such that we assume the overall prior distribution
P (Θ) ∼ N (0, σ2ΘIp+d). We also impose weakly informed priors on the inverse parameters since
we do not impose a-priori information on their respective scaling.

At the end of the sequential sampling, one gets the Bayesian Model Average prediction on the
porosity field εΘ, approximated as in equation (5.29), along with its local uncertainties during the
whole dissolution process. These uncertainty quantification results are presented in Figure 5.11 for
several dissolution times, including the initial condition for t∗ = 0 in Figure 5.11a. We compare
these results with the synthetic µCT images and mean squared errors computed between the BMA
surrogate prediction and the groundtruth ε. We observe enhanced uncertainties on the calcite core
interfaces, including the aperture edges, and this all along the dissolution process. The initial state
exhibits heterogeneous uncertainty distribution on the whole calcite, with lower uncertainties on
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Figure 5.11: Uncertainty Quantification on 2D+Time reactive inverse problem with data assimilation:
Bayesian Model Average (BMA) predictions on the micro-porosity field εΘ with their local uncertainties
and mean squared errors (MSE). Comparison with the µCT dynamical images at several dissolution times,
in the dimensionless formulation: a) Initial condition at t∗ = 0. Intermediate dissolution times at b)
t∗ = 0.43, c) t∗ = 0.602 and d) t∗ = 0.837.
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Figure 5.12: Bayesian Model Average Cumulative Error diagnostics for 2D+Time reactive inverse
problem: BMA-CE on the micro-porosity field prediction ε throughout the sampling iterations, and BMA-
CE on the PDE constraint residuals F1 and F2 defined by equations (5.40) and introduced successively.
The dotted vertical lines mark the sequential reinforcement of the multi-potential energy (5.39).

the pure solid region. As this mineral interface decreases due to the dissolution, the uncertainties
tend to become more homogeneously distributed (see Figure 5.11c and 5.11d for instance). One
can, however, notice that the local mean squared errors are significantly embedded in the micro-
porosity uncertainties, ensuring reliable predictions. In Figure 5.10, we detail these results on the
initial state geometry — for t∗ = 0 — by plotting along the two dashed lines from Figure 5.11
the BMA and uncertainty on εΘ, the groundtruth values, and the µCT observations. Considering
the dynamical dissolution process also provide insight into the upper and lower bounds of the
residual micro-porosity ε0 for the initial calcite core geometry. In the porous matrix, we obtain the
estimations 3% ⩽ ε0 ⩽ 10% for the 95% confidence interval.

The validation of the inference is first performed using the Bayesian Model Average Cumu-
lative Error on the micro-porosity field, which is computed along the three successive sampling
steps of sequential reinforcement. We then introduce F1 and F2 the PDE constraints residuals
arising from the reactive model (5.12) and involved in the multi-potential energy (5.39):

F1(εΘ, CΘ) := (υC0)
−1αΘ

∂εΘ
∂t
− CΘ

F2(εΘ, CΘ) := γΘ

(
∂CΘ

∂t
+ (υC0)

−1∂εΘ
∂t

)
−Di(εΘ, CΘ)

(5.40)

to estimate their BMA-CEF• diagnostics on sampling steps 2 and 3. For the 2D+time data as-
similation problem, the BMA-CE metrics on the micro-porosity field ε and PDE residuals are
straightforwardly extended from the formulae (5.31) and (5.33). The results are provided in Fig-
ure 5.12 and highlight the convergence of each term toward final BMA errors, at the sampling
iteration τ = 500, scaling respectively about BMA-CEε(τ) = 1.6e−3, BMA-CEF1(τ) = 1.4e−2
and BMA-CEF2(τ) = 6.4e−2. From these convergence diagnostics, we observe a saturation
of the PDE constraints that highlight the intrinsic uncertainties of their corresponding tasks in
the multi-potential energy (5.39). In this sense, the PDE constraint F2 involving the heteroge-
neous diffusion operator (5.24c) is the most uncertain term due to its high sensitivity to porosity
variations. Nonetheless, we notice, as in the validation test cases from Sect. 5.6, that successive in-
troduction of the PDE constraints brings information on the porosity field recovery by preventing
overfitting issues.

For the inverse parameters inference, we represent in Figure 5.13 the histograms of the
marginal posterior distributions of αΘ := (Da∗II)

−1 and its trajectory in the phase space illustrating
the convergence toward its mode during the adaptive steps — represented in blue in Figure 5.13b.
The latter shows that our data assimilation approach combined with the AW-HMC sampler from
Chapter 4 makes it possible to capture the correct parameter range without prior knowledge of
its scaling. Once the adaptive process ends, we effectively start sampling the inverse parame-
ter mode neighborhood, represented by the phase space trajectories for τ > N in red. We then
follow the same process as in Sect. 5.6.4 to estimate the prior distribution on the inverse param-
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Figure 5.13: Posterior distributions of 2D+Time reactive inverse problem: a) Histogram of the marginal
posterior distribution for the inverse parameter αΘ. b) Phase diagram of its trajectory throughout the sam-
pling, with the adaptive steps trajectories (in blue) and effective sampling (in red). The groundtruth value
of α is represented by the black dot. c) Resulting posterior distribution of the catalytic Damköhler number
DaII, determined through the log-normal distribution from relation (5.34).

Figure 5.14: Prior and posterior distributions on the inverse parameter γΘ for 2D+Time reactive
inverse problem: a) Global distribution on the estimated parameter D∗

m arising from a-posteriori analysis
on the sampling step 2. We discard the distribution tail after the vertical dashed line corresponding to the
80th percentile. b) Resulting prior distribution on the inverse parameter γΘ, used as an a-priori in step 3. c)
Posterior distribution on γΘ obtained from the overall data assimilation problem throughout sampling step
3.

eter γΘ, and we obtain γΘ = 3.9e−2 which is used as an initial a-priori in the sampling step
3 (see Figure 5.14a and Figure 5.14b). The posterior distribution on the inverse parameter γΘ,
estimated throughout step 3, is represented in Figure 5.14c and provides the following predictive
interval γΘ ∈ [2.6e−2, 5.4e−2]. One can, finally, estimate the posterior distribution on the cat-
alytic Damköhler number DaII according to the log-normal distribution obtained by the relation
(5.34). This results in the posterior distribution represented in Figure 5.13, and we obtain the
uncertainty range DaII ∈ [2.12, 10.16] for this data assimilation problem of calcite dissolution,
which is consistent with the theoretical value.
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5.8 Concluding remarks

This work intended to address two major challenges related to uncertainty quantification in pore-
scale modeling of reactive flows, which plays a crucial role in the long-term management of CO2
capture and storage. Providing reliable macro-properties changes due to geochemical processes,
such as CO2 mineral trapping and dissolution within the porous environment, is essential to query
reservoir safety. In this sense, we aim to ensure that the evolving petrophysical properties provide
meaningful characterizations of these chemical processes instead of intrinsic deviations arising
from imaging limitations. Some intrinsic limiting factors remain when modeling pore-scale dy-
namical systems based on µCT scans and lead to several trade-offs that can bias the predictions.
In particular, this results in unresolved micro-porosity, especially when the scan resolution does
not fully capture morphological features of the pore space under the constraint of having a rep-
resentative elementary volume (REV) of the sample. Quantifying sub-resolution porosity, which
is a prevalent imaging artifact, was the first challenge we identified, and therefore we focused on
quantifying morphological uncertainties in the micro-porosity field. Our second concern was to
investigate the reliability of kinetic parameters, such as mineral reactivity, in the context of reactive
processes. Indeed, these are critical parameters to account for in pore-scale modeling, though their
experimental estimations can suffer from wide discrepancies. Estimating proper order of magni-
tude and uncertainty ranges appears essential to ensure reliable calibration of pore-scale models,
and afterward trustable management of CO2 mineral storage. The present article investigated both
these issues by integrating uncertainty quantification concerns in the workflow of pore-scale mod-
eling.

Current methodologies investigating these problems regard them independently and fall into
pure image treatment analysis related to experimental static or dynamical µCT images. Deep
learning methodologies, for instance, are used to address sub-resolution porosity quantification.
Multi-scale image reconstruction, which extrapolates the latent information of the porous struc-
ture, is obtained with Generative Adversarial Networks [330]. One also gets super-resolved seg-
mented images from static µCT scans through Convolutional Neural Networks [16], which com-
pensate for the unresolved morphological features. Regarding the mineral reactivity assessment,
experimental works have been conducted on dynamical 4D µCT of carbonate dissolution. This
provides, through differential imaging techniques, insight into local reaction rates at the mineral
interfaces [200, 218]. However, all these approaches do not consider incorporating uncertainty
quantification in the estimates. In contrast, alternatives accounting for deviations in the petrophys-
ical properties due to imaging limitations are mainly purely model-related approaches [238, 278].

The main novelty of our work, therefore, lay in its ability to address both morphological uncer-
tainty and reaction rate quantification from the perspective of coupling physics-based models with
data-driven techniques. In this sense, we have developed a data assimilation approach for pore-
scale imaging problems that combines dynamical microtomography and physical regularization
induced by PDE models of reactive processes. We integrated this novel data assimilation strategy
into the Bayesian inference context through our efficient AW-HMC framework for BPINNs [237].
This also confirmed the great potential of this adaptive and self-balancing methodology and ren-
dered BPINNs a promising approach to address complex data assimilation. In the pore-scale
imaging context, in particular, we have focused on multitask inverse problems of calcite disso-
lution based on dynamical µCT images, along with two dimensionless inverse parameters and
a latent concentration field. We have also assumed unknown informative priors on the different
tasks scaling and relied on automatic adjustment of the uncertainties including noise-related es-
timations and model adequacy. In this sense, we provided reliable uncertainty quantification on
the micro-porosity field description and reactive parameters. We also built our data assimilation
upon a sequential reinforcement strategy of the multi-potential energy and thus the target posterior
distribution. This involved successively integrating additional PDE constraints into the overall
data assimilation process through dedicated sampling steps. Finally, we have also addressed com-
putational concerns and have shown that suitable formulation of complex non-linear differential
operators, especially the heterogeneous diffusion arising from Archie’s law, can significantly re-
duce the computational costs of these operators. Taken together, we presented an intrinsic data
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assimilation strategy for pore-scale imaging inverse problem and demonstrated its efficiency on
several 1D+Time and 2D+time calcite dissolution problems.

Overall, our results confirmed enhanced morphological uncertainties localized on the calcite
core edges throughout the dissolution process. This characterized the challenge of capturing re-
liable mineral interfaces from the dynamical µCT images, and therefore query the confidence
of mineral reactivity assessment using merely differential imaging techniques on the µCT scans.
Combining data-driven and physics-based approaches thus offers a promising alternative to over-
come the limitations of each approach individually, and alleviate biased predictions. We also
obtained reliable insight into the upper and lower bounds for the residual, potentially unresolved,
micro-porosity ε0 in the porous matrix. These estimations can then be incorporated into direct nu-
merical simulation solvers to measure the impact of these micro-porosity variations on the other
petrophysical properties, such as permeability. This can also ensure that the macro-scale porosity
evolutions due to the reactive processes are significant compared to these intrinsic morphological
uncertainties at the pore scale. Finally, we have obtained posterior distributions on the dimension-
less reactive parameters characterizing the dissolution inverse problems. We have shown that our
data assimilation approach combined with the AW-HMC sampler made it possible to capture the
correct parameter ranges without prior knowledge of their scaling, which confirmed the robustness
and reliability of the inferences. Last but not least, we have identified uncertainty ranges on the
usual catalytic Damköhler number DaII resulting from the prescribed PDE model and dynamical
observations of the dissolution process. This is of great interest to aggregate experimental inves-
tigations and direct numerical simulations, and therefore guarantee the reliability of pore-scale
modeling and simulation of reactive flows. We now have the potential to effectively address ro-
bust and reliable uncertainty quantification in pore-scale imaging and to manage the impact of
µCT limitations on the petrophysical properties and reactive parameters.

As future prospects, it would be interesting to apply the present data assimilation approach
on real µCT dissolution scans and extend the inference to different kinds of dissolution regimes.
This would bring further insights into the relationship between experiments and mathematical
modeling theory, which would improve dramatically the trust in computational approaches of
real-life reactive materials.
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This thesis investigates pore-scale modeling of reactive processes and presents several con-
tributions toward the reliability concerns associated with such computational methodologies. In
particular, we have addressed the challenge of understanding the intricate interplay between µCT
experimental data and mathematical modeling theory to significantly enhance the confidence in
DNS approaches in the context of CO2 mineral storage modeling.

Ensuring the reliability of pore-scale modeling holds paramount importance in understanding
the impacts of geochemical processes associated with CO2 interactions within the aquifer envi-
ronment and consistently managing changes in the macro-scale properties. Uncertainties, whether
arising from morphological biases and imaging issues in the µCT data or the inaccurate calibration
of kinetic parameters within the PDE model, influence the pore-scale flow dynamics, subsequently
propagating uncertainties at the macro-scale during the upscaling process.

As a result, these uncertainties necessitate comprehensive exploration, and this thesis intro-
duces an overall computational framework designed to address such a requirement. In this con-
cluding chapter, we summarize the key contributions of this work and highlight several opportu-
nities and prospects.

6.1 General conclusion

On one side, the current thesis addressed the development of suitable mathematical models and
efficient DNS methods for modeling reactive hydrodynamics at the pore scale. A semi-Lagrangian
formulation of the reactive systems is adopted, combining a particle description of the chemical
transport equations with an underlying grid-based approach for flow modeling. The latter accounts
for the involvement of the porous matrix in the overall flow process through a micro-continuum
description of the medium and the Darcy-Brinkman Stokes model based on the superficial ve-
locity formalism. The numerical implementation, within the HPC framework HySoP, hinged on
an operator splitting strategy, coupled with high-order remeshing steps for grid-particle interpola-
tions, and is provided on a hybrid computational environment, including CPU and GPU devices.
This existing numerical framework is enhanced to account for the heterogeneous diffusion of the
chemical species throughout the porous matrix, which arises from Archie’s law in the two-scale
description of the medium. A particle-based approximation of such diffusion operators is achieved
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through a discrete renormalized Particle-Strength-Exchange (PSE) scheme, that makes it possible
to fully address the superficial formulation of the chemistry on GPU devices.

This numerical framework is employed to investigate the effects of CO2 mineral trapping,
identify potential pore-clogging at the pore scale, and establish the macro-scale properties evolu-
tion due to such a geochemical process. In particular, a novel crystallization model is developed
that relies on a two-step process, namely a homogeneous nucleation followed by a crystal growth
step. A deterministic Transition State Theory (TST) formulation of the initial nucleation based on
the supersaturation state is combined with a probabilistic view of the nuclei aggregation rates to the
pore interface. These aggregation rates included a non-uniform probability of crystal attachment
based on the local volume fraction of the surrounding material and adsorption frequencies. This
incorporated geometrical dependency in the crystallization model, which is crucial to ensure ac-
curate predictions of pore-clogging. Furthermore, we investigated the impact of several dominant
regimes on the dynamical patterns of CO2 mineral trapping and included the effects of nuclei ag-
gregation by considering an additional dimensionless number in the overall crystallization regime
characterization. This highlighted that considering the transport and nucleation rates, through the
conventional Pe and Da

prec
II dimensionless numbers, is not sufficient to characterize pore-clogging

at the pore scale and demonstrated that one should consider the effects of crystal aggregation on
the reactive patterns of CO2 mineral trapping.

On the other side, uncertainties in the calibration of the PDE models query the reliability of
pore-scale modeling, especially considering the wide discrepancies observed in mineral reactivity
and kinetic parameters in natural systems. The reactive specific area, in particular, is often used
in pore-scale models as a calibration parameter to account for surface reaction rates. Further-
more, µCT morphological uncertainties including unresolved features on the micro-porosity field,
unseen pore roughness, and approximate location of the pore interfaces render challenging the
proper estimation of the macro-scale properties changes. Quantifying the deviations induced by
these intrinsic limitations is essential to ensure reliable evolution of the macro-porosity and bulk
permeability due to the geochemical processes.

Firstly, a direct numerical approach that hinges on upscaling these unresolved morphological
features is addressed through a slip-length formalism and employed to investigate absolute per-
meability deviations on real rock geometries derived from X-ray µCT. We studied two uncertainty
ranges at the macro-scale, namely the full deviation that stems from the modeling of Stokes flow
with Navier boundary condition involving a prescribed slip length and the theoretical deviations at
first and second orders, established by an asymptotic analysis. The latter determined the Stokes-
like problems to solve at the successive orders that individually define slip-correction terms of the
bulk permeability. An independent solver for Stokes is developed to robustly manage the distinct
boundary conditions at the pore interface and ensure that the computed permeability deviations are
representative of slip-length values characterizing the µCT uncertainties. This numerical frame-
work is applied to quantify permeability ranges on several porous samples and this has highlighted
the relevance of the second-order slip correction in explaining the apparent macroscopic effects
on the permeability. We also established characteristic dimensionless ratios of the sample repre-
sentativity based on the relative permeability deviations and specific area.

Finally, this thesis addressed morphological uncertainties in the micro-porosity field through
inverse problems of reactive flows with the motivation of bringing an accurate description of
porous media, observing their dynamical dissolution by µCT experiments. A dedicated data as-
similation framework is developed to address such multitask inverse problems integrating uncer-
tainty quantification (UQ) and a sequential reinforcement approach is introduced to incorporate
additional physics-based PDE constraints into the workflow. This allowed the efficient combi-
nation of data-driven approaches based on imperfect dynamical experiments, with physics-based
PDE models having their inherent uncertainties to provide insight into their respective limitations.
Therefore, in addition to the morphological uncertainty quantification on the micro-porosity field
arising from the µCT images, uncertainty ranges on the kinetic parameters are also provided,
which renders reliable the calibration of the reaction rates in the PDE models for pore-scale DNS.

To achieve this objective, we have devised a novel deep-learning strategy that effectively tack-
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Figure 6.1: Overview of the main contributions of the present thesis for CO2 mineral storage appli-
cations, in relation to the identified concerns arising from pore-scale imaging and modeling.

les physics-based and multi-task Bayesian inference problems while accommodating unknown
priors on the measurement noise distribution and model adequacy. A Bayesian Physics-Informed
Neural Network (BPINNs) formulation involving a robust MCMC sampler is developed to pro-
vide automatic and auto-weighted task balancing in multi-objective Bayesian Inference problems,
which hinge on coupling PDE models and data observations as distinct tasks. The resulting Adap-
tively Weighted Hamiltonian Monte Carlo AW-HMC sampler demonstrated outstanding perfor-
mances on several data assimilation problems of various complexity, efficiency in managing scal-
ing sensitivities and the inherent uncertainties of the different objectives, and effectiveness in
ensuring task balancing. Overall, this benefits from enhanced convergence and stability while
improving reliability in the uncertainties estimates, which stems from a robust and unbiased sam-
pling. Furthermore, this automatic task-balancing formulation of the BPINNs is cost-effective
compared to ongoing alternatives, which either require a pre-trained Generative Adversarial Net-
work (GAN) or a large number of additional parameters to infer. This novel strategy maintains
reasonable computational costs by directly leveraging gradient information from the distinct tasks
within the BPINNs framework and therefore aligns with energy sobriety concerns.

Overall, this work contributes significantly to the study of CO2-related reactive processes in
porous media by advancing computational methods, calibration techniques, and uncertainty quan-
tification. Taken together, this enhances our ability to model and predict reliable changes in the
macro-scale properties influenced by intricate geochemical processes at the pore scale in the con-
text of CO2 mineral storage in underground natural reservoirs.

In a broader scope, the presented data assimilation framework could offer valuable insights
into reliability analyses involving inverse problems. This is particularly relevant when experi-
mental data are abundant but multiple competing mathematical models are under consideration.
In this context, incorporating robust uncertainty quantification into inferring interpretable inverse
parameters related, inter alia, to physics, chemistry, or hydrodynamics could facilitate the dis-
crimination among various models or numerical methods. At the same time, this process ensures
reliable ranges for the inverse parameters inference, which guarantees a reasonable comparison
between the different models.
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6.2 Enhancement of DNS model and numerical framework

6.2.1 Exponential Integrators for more complex and stiff reactive systems

One way to enhance the numerical framework would rely on incorporating cutting-edge time in-
tegrators within the numerical framework HySoP, namely a dedicated class of Exponential In-
tegrators. The latter consists of high-order integration method, which has been developed since
the 1960s, though their use was limited due to the complexity of computing the exponential of
an operator, which stands as an essential part of the approach. Over the past decades, advances
in the numerical approximation of matrix exponentials have rendered Exponential Integrators an
efficient alternative to commonly used implicit schemes for non-linear problems [294]. In particu-
lar, the method developed by Tokman et al. [179], which is derived from the EPIRK (Exponential
Propagation Iterative method of Runge-Kutta type) class of Exponential Integrators, would make
it possible to handle complex and stiff reactive systems with enhanced stability. Therefore, this
would broaden the scope of modeling for geochemical processes and expand the DNS possibilities
for CO2 mineral storage applications. Such a formalism would also make it possible to incorporate
divergence effects resulting, for instance, from crystal nucleation in processes where the charac-
teristic time of fluid/solid interface changes is way faster than the hydrodynamics time scale.

6.2.2 Toward calcium free input process and transient models of CO2 trapping

The numerical simulations of mineral trapping presented in Chapter 2 described a solution of
dissolved CO2 in an alkaline medium highly concentrated in calcium ions, continuously injected
in the porous medium. To study CO2 trapping without enhancing calcium concentration, which
means using only the calcium available in the medium, we need to improve the accuracy of the
schemes and enhance the modeling of the exchanges at walls. Indeed, calcium will be transported,
diffused, and consumed totally but gradually, unlike CO2, which is injected. The transport in
the Poiseuille flow of the pores will cause calcium ions to spread and disperse (see the transport
of an invasive front at the pore-scale in [135]), and the reaction will not occur close to the input.
Instead, it will gradually propagate into the medium and should lead to a progressive wave of reac-
tion/diffusion. Identification of different regimes of reaction with respect to Peclet and Damköhler
numbers will be possible, investigating different processes and improving the first analysis pro-
vided in [236] and [297]. Such simulations and methods could also be translated into models of
battery charge/discharge or studies of in silico drug delivery processes.

6.2.3 Reformulation of the PSE for heterogeneous diffusion

In future work, the stability and consistency of 3D Particle-Strength-Exchange methods will be in-
vestigated for space-variable diffusion operator, based on the DC-PSE analysis provided in [267].
New formulations of PSE will also be investigated based on other symmetric expressions of M
managing the estimations of viscosity, molecular or effective diffusion for exchange formulae,
rather than using the historical arithmetic averaging. Such extensions should help to satisfy phys-
ical constraints at porosity jumps with concentrations far from equilibrium. The inclusion of
rheology as shear-thinning properties of precipitate, that is to say a model of non-linear viscosity
computed by PSE schemes, will allow to investigate multi-factor mechanisms of pore clogging.

6.3 Advancing data assimilation for reactive hydrodynamics

6.3.1 Real experimental µCT data of calcite dissolution

The applications that we expect to particularly benefit from the advances of the data assimilation
framework developed in the current thesis include the better characterization of real-life reactive
materials, along with insights into the relationship between experiments and mathematical mod-
eling. In this sense, investigating morphological bias on the micro-porosity and kinetic parameter
uncertainty ranges on real experimental µCT data is one of the short-term prospects of this work.
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We would target realistic 2D+Time calcite core dissolution, on the one hand, and dissolution of
simplified porous geometries, on the other hand, resulting from the development of a dedicated
reactive cell able to handle dynamical µCT scans at the DMEX Center for X-ray Imaging.

6.3.2 Investigation of other flow regimes

Together with the prospect of achieving data assimilation on real-like reactive materials, we would
extend the current framework to different dissolution regimes, including advection dominant phe-
nomena. This would require, especially, insights into the velocity field to integrate the overall
reactive hydrodynamics PDE system within the data assimilation framework. Nonetheless, this
implies the recovery of an additional latent field and inverse parameter, namely the velocity and
a modified Peclet number Pe∗ := uL/Dref , and therefore requires further investigations. One
option would consist of using prior for the hydrodynamics through DNS formalism or fast surro-
gate modeling and fluid flow model proxy [18, 262] based on the morphological a-priori on the
porous medium evolution from dynamical µCT. Subsequently, these priors could be incorporated
and adjusted into the data assimilation problem involving mainly the constraints of the advection-
diffusion-reaction PDE system, as a two-step sequential process. Moreover, the estimation of the
bulk permeability of the Kozeny-Carman correlation is a real challenge since it drives the amount
of concentration heading inside the solid matrix: it is a meaningful and fundamental physical
quantity, but remains currently an open question.

6.3.3 Improvements of the deep-learning framework

Rendering deep learning approaches scalable to a wide variety of complex problems, including
data assimilation on 4D real-life reactive material, requires developing efficient computational
strategies. In this sense, the numerical framework for robust data assimilation with UQ devel-
oped in this thesis could benefit from enhanced parallelization on GPU devices. One can consider
task parallelization on different processors during the sampling phase of a multi-objective data as-
similation problem, or investigate potential coupling with the symmetric splitting approach of the
standard Hamiltonian Monte Carlo suggested by Cobb et al. [84] which enables parallelization
on data subsets during the training phase. Regarding the prediction step, one can also investi-
gate appropriate standard domain decomposition distributed over several devices to enhance the
computational efficiency. This should further improve the efficiency of the method with the idea
of maintaining sustainable computational costs, which becomes crucial when addressing intricate
real-world inverse problems and data assimilation.

6.3.4 Deep learning interpretability

Advances in AI and machine learning methodologies have led to their widespread scientific use
in various application domains. Nonetheless, when such a performance relies on complex mod-
els, merely regarded as "black boxes", this raises concerns about their decision-making processes.
Consequently, there is a need to gain deeper insights into the model interpretability in deep learn-
ing approaches by integrating more meaningful mathematical considerations of machine learning-
based representations. In this sense, ongoing research focuses, for instance, on establishing math-
ematical frameworks for exploring the sensitivity analysis and optimization of neural network hy-
perparameters, as these parameters can significantly influence the network’s performance [224].
This aims to enhance our understanding of machine learning approaches, making them more trans-
parent and trustworthy.
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