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Optimization of ridesourcing services for the future deployment of connected and autonomous vehicles in urban areas
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Résumé

Les services de transport à la demande sont de plus en plus populaires en raison de leur commodité. Cependant, certaines études font apparaitre que ces services pourraient augmenter les congestions et le niveau de pollution. Le ridesplitting, un nouveau service de mobilité partagée, est un moyen plus durable de se déplacer pour améliorer l'efficacité des transports et réduire les émissions de polluants. Dans ce contexte, ce travail propose un cadre d'optimisation pour un Système de Mobilité Partagée (SMP). Dans cette thèse, l'écosystème SMP est traité sur quatre domaines de recherche : l'infrastructure urbaine, les utilisateurs, le système de mobilité partagée et les Véhicules Connectés et Autonomes (CAVs) :

1) Infrastructures urbaines

L'objectif est d'explorer les effets non linéaires de l'environnement bâti sur le service de ridesplitting en utilisant une méthode d'apprentissage automatique (modèle d'arbre de décision avec boosting de gradient). Les résultats montrent que la plupart des caractéristiques de l'environnement bâti ont un effet fortement non linéaire sur le taux de ridesplitting. Ces résultats peuvent fournir des préconisations importantes sur les politiques de transport impliquant les opérateurs de transport dans le but d'améliorer les services de covoiturage.

2) Utilisateurs

L'objectif est d'améliorer la prévision de la demande de services de ridesplitting à l'aide d'un réseau neuronal encodeur-décodeur spatio-temporel optimisé avec une couche d'encodage basée sur une combinaison de réseaux (réseau convolutif de graphes et réseau de mémoire à long terme à lecture prioritaire). Les résultats expérimentaux montrent que le cadre proposé surpasse les résultats obtenus dans l'état de l'art aussi bien pour la prédiction de la demande en une seule étape, que pour la prédiction en plusieurs étapes.

3) Système de répartition des trajets

A partir des résultats précédents, nous proposons une optimisation du système de répartition des trajets sur la base d'un réseau de partage pour améliorer le système de répartition des trajets et évaluons l'écart entre le potentiel et le niveau réel de répartition des trajets. A partir de données empiriques de répartition des trajets à Chengdu (Chine), nous avons exploré le potentiel de la répartition des trajets pendant les heures de pointe.

V Les résultats montrent que le pourcentage d'économies potentielles, de gains de temps, et de trajets partagés pourrait atteindre respectivement 18,47%, 25,75% et 90,69%, alors que le niveau réel est de 1,22%, 2,38% et 7,85%. La solution proposée est générique et applicable au déploiement des CAV.

4) CAV

En prévision d'appliquer les modèles et solutions précédentes aux CAV, la résilience et la robustesse des CAV en cas de cyber-attaques a été étudiée en développant une stratégie de contrôle résiliente et robuste (RRCS).

Cette RRCS est appliquée sur un modèle de poursuite et son impact sur le flux de trafic mixte et la stabilité d'un peloton est étudié en cas de cyber-attaques et de défaillances. Des analyses de sensibilité ont été menées pour différentes compositions de pelotons, distributions de véhicules, et cyber-attaques. Les résultats montrent que la RRCS proposée est robuste et efficace pour garantir la sécurité d'un peloton de CAV. Table 1- 
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Background and motivations

Vehicular traffic congestion and air pollution during rush hours are two difficult problems for urban areas worldwide. The cost of congestion in the United States alone is approximately $121 billion per year, representing 1% of the GDP, which includes 5.5 billion hours of time lost and an extra 2.9 billion gallons of fuel burned [START_REF] Schrank | TTI's 2012 urban mobility report[END_REF]. The CO2 emissions have increased greatly during these years, so it is necessary to advocate the low-carbon transport [START_REF] Luo | Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo[END_REF]. Additionally, the road transport sector is now the leading cause of air-pollution-related deaths [START_REF] Roskilly | Novel technologies and strategies for clean transport systems[END_REF]. Therefore, it is imperative and urgent to mitigate congestion and air pollution. Recently, countries around the world have made commitments to spare no efforts to achieve carbon peaking and carbon neutrality to slow the trend of global warming. Transportation emissions account for a large proportion of carbon emissions.

The development of low-carbon cities and low-carbon transportation is crucial to achieve carbon neutrality.

The current revolutions of sharing, automation and electrification are reshaping the way we travel, with broad implications for future mobility management [START_REF] Ke | Predicting origindestination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[END_REF]. Ridesourcing services will be the first application scenario in a wave of revolutions of sharing, automation and electrification. Much uncertainty remains about how these disruptive technologies would exactly impact the ridesourcing system. It is meaningful to explore the opportunities and challenges of smart shared mobility system with connected and autonomous vehicles in a wave of revolutions.

Carbon peaking and carbon neutrality guidance

Climate change and CO2 emissions mitigation have drawn an extensive attention in recent years. Because of its continuously growing share in overall energy consumption, the transport sector has been acknowledged as one of the most important contributors to global emissions [START_REF] Nakamura | Strategies and instruments for low-carbon urban transport: An international review on trends and effects[END_REF]. According to the International Energy Agency, world energy-related CO2 emissions increase from 32.3 billion metric tons in 2012 to 35.6 billion metric tons in 2020 and to 43.2 billion metric tons in 2040 [START_REF] Conti | International energy outlook 2016 with projections to[END_REF]. Besides, 7.38 million tons of CO2 was generated due to oil consumption in the global transport sector in 2013, accounting for 23% of the total fossil fuel-related CO2 emissions [START_REF] Iea | CO2 Emissions from fuel combustion highlights[END_REF]. In addition, with the continuous development of the urban economy and acceleration of the motorization process, cities account for 75% of global energy consumption and 80% of greenhouse gas emissions (Yan, 2010). Therefore, the urban transport sector has become one of the major contributors to global CO2 emissions. In addition, 1960-2001 was a key period during which the world urbanization level rose from 33% to 45% and global CO2 emissions increased from approximately 190 billion tons to approximately 370 billion tons [START_REF] Guan | Empirical study on the relationship between carbon emission and urbanization[END_REF].

At the virtual Leaders' Summit on Climate in April 2021 (Warm-up meeting for the United Nations Climate Change Conference in November 2021 in Glasgow), participating countries announced ambitious new climate targets ensuring the emission reductions to keep the goal of limiting global warming to 1.5-degrees C within reach globally. U.S. has made a solemn commitment to reduce greenhouse gas emissions by 50 to 52 percent by 2030 compared to the emissions in 2005. The EU has made a solemn commitment to the world to reduce greenhouse gas emissions by 50% by 2030 and strive to reach 55% compared to the emissions in 1990, which guarantees the carbon neutrality (net-zero emissions) by 2050. Japan has also announced it will strengthen its climate goals, aiming to reduce emissions to below 44% of 2005 levels by 2030. Canada also updated its climate goals, pledging to cut emissions by 40 to 45 percent by 2030 compared to the emissions in 2005. China has pledged to strive to achieve carbon peaking by 2030 and carbon neutrality by 2060 (TheWhiteHouse, 2021).

Three revolutions of transportation in the future (Sperling, 2018)

The revolution of transportation is a major historical opportunity to solve the above problems for the rise of new cities. The previous revolutions in transportation have given birth to the rise and development of emerging cities. At present, the world's transportation sector is about to face "three new revolutions": vehicle electrification, automation, and shared mobility (sharing of vehicle trips), which have started three major battles in transportation: Shared mobility Campaign: L4 will revolutionize the attributes of cars,which promotes the development of shared mobility.

Automation Campaign: Market demand drives the "intelligence" and "connectivity" of automobiles.

Electrification Campaign: International Convention on "Carbon Emissions" promotes "Electrification" of Vehicles.

Shared mobility Campaign

In this context, car consumers (ownership) will gradually transition to car users (use rights), and autonomous vehicles can be controlled and allocated through the unified data center, which will effectively reduce the idle time of cars and improve utilization efficiency.

The shared mobility platforms represent a new mobility paradigm, a win-win practice for both drivers and passengers, capable of reducing each traveler's costs, offering a new way to decrease environmental impact (Casprini et al., 2019). Shared mobility has become a popular choice, which can effectively reduce car ownership, improve car usage efficiency, and ease the traffic environment. At the same time, when fully autonomous driving technology is realized in the future, the future shared cars will inevitably be combined with autonomous driving technology, which will inevitably subvert the existing service model and become a more advanced and convenient service method that is superior to the existing traditional taxis. [START_REF] Shaheen | Shared mobility: Definitions, industry developments, and early understanding[END_REF] offer an explicit classification of shared mobility, see Figure 1-1. Shared mobility services can be divided into two categories: sharing a vehicle and sharing a passenger ride. For the sharing a vehicle, the services include carsharing, escooter, e-motorcycle and shared bikes.

For the sharing a passenger trip, the services include ridesourcing, E-hailing, ridesharing and microtransit services. There are some confusing terms relating to shared mobility for academic transportation researchers.

In summary, ridesourcing refers to transportation services that connect drivers who drive private cars (instead of commercial vehicles) with passengers via smartphone applications [START_REF] Rayle | Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco[END_REF]. Ridesplitting is a form of ridesourcing wherein riders with similar routes are matched to the same driver and vehicle in real time (S. Shaheen et al., 2016). Ridesourcing is different from ridesharing. Drivers who provide ridesourcing services are usually not travelers, and they drive for the purpose of making money. In contrast, in ridesharing, including carpooling and vanpooling, drivers are travelers who share similar origins/destinations with their riders for the purpose of conserving resources, saving money, or saving time [START_REF] Jin | Ridesourcing, the sharing economy, and the future of cities[END_REF]. Ehailing is a kind of on-demand taxi service. (Uber Estimator, 2022). Uber served 118 million users and provided 6.3 billion trips globally in 2020, even with the coronavirus pandemic shutting down its operations for most of the year [START_REF] Iqbal | Uber Revenue and Usage Statistics. Business of Apps[END_REF]. As of 2020, Lyft has offered services in 644 US cities and served 12.5 million users globally (Iqbal, 2022a). As of 2021, DiDi Chuxing has provided 41 million trips per day on average in approximately 4000 cities globally. In addition, the numbers of annual active users and drivers have reached 493 million and 15 million, respectively, on the DiDi Chuxing platform (DiDi [START_REF] Chuxing | How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify nonlinear thresholds[END_REF]. Many ridesourcing companies have launched ridesplitting services to improve transportation efficiency, thus reducing carbon emissions. Lyft Line and UberPOOL are leading companies that allow passengers whose routes overlap to split rides and fares [START_REF] Shaheen | Shared mobility: Definitions, industry developments, and early understanding[END_REF]. As of April 2018, more than 2.4 million users travel through DiDi ExpressPool (including ridesplitting services) per day over 60 cities (DiDi Chuxing, 2018a). Japan has carried out a large number of top-level design plans to develop autonomous driving through the deep integration of automobiles with intelligent transportation and smart cities. Japan released the "ITS Concept Roadmap for Officials and Civilians" which indicates that by 2025, private cars and trucks will achieve L4level autonomous driving on highways, and driverless travel will be realized nationwide.

In China, ICV industry has been incorporated into the national top-level plan.

China is exploring the technical path of Chinese solutions, accelerating cross-industry collaboration, and promoting testing and demonstration. Since 2021, important documents such as Application Management Specifications (Trial) and Several Provisions on Automotive Data Security Management (Draft for Comments) have been adopted to support the safe development of the ICV industry. From January to October 2021, the penetration rate of L2-level intelligent connected passenger vehicles will exceed 20%, and the penetration rate in new energy vehicles will be as high as 30% (National ICV & China SAE, 2021).

Electrification Campaign

It can be seen that we have just experienced a battle of electrification of automobiles in the past five years. Traditional cars are slowly being replaced by electric vehicles, and this battle is not over yet.

US could have up to 35 million electric vehicles on roads by 2030 according to a report by smart electric power alliance. In China, the number of new energy vehicles will reach 7.84 million in 2021, accounting for 2.60% of the total number of vehicles, an increase of 2.92 million or 59.25% over 2020. Among them, there are 6.4 million pure electric vehicles, accounting for 81.63% of the total number of new energy vehicles. In 2021, 2.95 million new energy vehicles will be newly registered nationwide, accounting for 11.25% of the total number of newly registered vehicles, an increase of 1.78 million or 151.61% over the previous year (The Ministry of Public Security of China, 2022).

In summary, how could the shared mobility system with connected and autonomous vehicles be defined? From a high-level overview, this complex system can be summarized with the following definition: the shared mobility system with connected and autonomous vehicles (CAVs) is made up of the users who use/interact/cooperate with city infrastructures and CAVs technologies on shared mobility system to move efficiently and optimally according to 3 main criteria (efficiency/energy-consumption/safety) for personal or economic goals. Figure 123gives a diagram of this shared mobility system with a set of existing researches dedicated to the use, improvement, management, and modeling of the four key domains: city infrastructures (built environment, R5G, connected infrastructures, road signs and road markings, adaptive infrastructures, etc.), the users (demand prediction, human factors, cognitive model of behaviors visibility and perception, H/M Interaction and ergonomics, etc.), shared mobility system (optimization of the system, connected and cooperative systems, dispatching strategies, MaaS, incentive mechanisms, etc.), and technologies (cyber-security, autonomous/automated vehicles, sensors and environment perception, path planning and copilot, operating safety, mixed traffic management, etc.). Obviously, these four domains have strong interactions and dependency with each other. The studies on each domain aim to optimize the shared mobility system with respect to three key issues (efficiency, energy-consumption, and mobility). The research results could provide the decision makers with policy implications for a low-carbon transport and help the society better understand how the shared mobility services with CAVs should be developed in the future. Developing low-carbon cities and low-carbon transportation is crucial to achieve carbon neutrality worldwide. Shared mobility is one possible and effective way to reduce the adverse effects of transportation with respect to air pollution, energy consumption, and congestion in urban areas. In the context of the three major revolutions in the future, the combination of shared mobility and connected and automated vehicles will bring earth-shaking changes, not only for the automobile industry, but also for human travel in the future. They have the potential to provide an efficient and convenient complementary service to existing mobility solutions in urban areas, however, if not properly regulated, they may also drive-up congestion impacting the overall performance of mobility systems [START_REF] Audenhove | Rethinking on-demand mobility[END_REF]. The motivation of this study is to provide a systematic framework for the shared mobility system. The proposed shared mobility system could help improve ridesplitting service to build a low carbon transport, which could incorporate CAVs for the future mobility to provide a forward-looking reference for transportation network companies and the government to better understand and manage future mobility trends.

Research questions and methodologies

As mentioned in the previous section, the shared mobility system with CAVs is made up of users who use/interact/cooperate with city infrastructures and CAVs technologies on ridesourcing system to move efficiently and optimally according to 3 main criteria (efficiency/energy-consumption/safety) for personal or economic goals.

This dissertation follows the proposed framework (seen from Figure 1-3) and further proposes 4 research questions in the four domains. The detailed research questions and corresponding research objectives can be summarized as shown in Figure 1234 

Major contributions

In this section, we resume the major contributions of this dissertation. To answer the above listed research questions, the following contributions were achieved:

What are the factors which influence the ridesplitting service?

In chapter 3, we answer this research question. The main contributions in this chapter can be summarized as follows: we use a machine learning method, gradient boosting decision tree (GBDT) model, to identify the important features of the built environment at the origins and destinations of ridesplitting services. We explore the nonlinear relationship between the ridesplitting service and key explanatory variables, which could provide insightful results to better understand how the built environment, demographic factors and travel time impact ridesplitting services. Partial dependence plots could provide policy implications for the shared mobility system to improve the ridesplitting service.

How to improve the ridesourcing demand prediction using artificial intelligent algorithms?

In chapter 4, we answer this research question. The main contributions in this chapter can be summarized as follows: we propose a novel ridesourcing demand prediction framework. We use a combination of a graph convolutional network and a read-first long short-term memory network and a dynamic spatiotemporal attention mechanism. The experimental results show that the proposed framework outperforms state-of-the-art models for both single-step demand prediction and multi-step prediction, which demonstrate the effectiveness of the proposed framework.

How to model and optimize the ridesourcing system?

In chapter 5, we answered this research question. The main contributions in this chapter can be summarized as follows: we optimize the ridesourcing system on a city scale based on a shareability network and evaluate the gap between the potential and actual level of ridesplitting. The proposed shared mobility system could help improve ridesplitting service to build a low carbon transport, which could incorporate CAVs for the future mobility to provide a forward-looking reference for transportation network companies and the government.

What are the Impacts of Cyber Attacks on CAVs?

In chapter 6, we answered this research question. The main contributions in this chapter can be summarized as follows: we explore how cyberattacks work on CAVs and propose a resilient and robust control strategy (RRCS) against cyberattacks in anticipation of applying the proposed models and solutions to CAVs. This could help traffic flow under cyberattacks restore the stability and enhance the security of CAVs.

Dissertation Organization

The dissertation is organized as follows, as shown in Figure 1 2) The state-of-the-art literature review in the research topics

3) The interesting findings in the existing literature review

4) The research gap to be addressed in the research topics

General

We use the VOS viewer software and Web of Science, a bibliographic database file, to visualize the network map of the existing literature review. We look for articles with subject headings containing the following keywords: connected and automated vehicles, ridesourcing, ridesplitting and ridesharing to look for the articles. 4731 references are selected to make the further analysis and visual maps. It can be seen that there are 4 heat clusters in the network map, as shown in Figure 2-1.

Cluster 1: demand responsive transport, smart mobility, public transport, travel, transit, autonomous vehicles, urban mobility, …

The studies in cluster 1 explore the on-demand mobility services with autonomous vehicles from a global perspective.

Cluster 2: ridesharing, behavior, adoption, service, preferences, automated vehicle… The studies in cluster 2 focus on the travel behavior analysis of ridesharing services, such as adoption rate and preferences.

Cluster 3: optimization, demand, simulation, urban areas, operations…

The studies in cluster 3 focus on the optimization and simulation of transportation services operation. Besides, demand management is a very important research hotspot in the optimization system.

Cluster 4: impacts, ridesourcing, connected vehicles, autonomous vehicle, transportation system... The studies in cluster 4 focus on the two aspects. On the one hand, they want to explore the impacts of ridesharing services with connected and autonomous vehicles in ideal conditions. On the other hand, they want to explore the impacts on mixed traffic with connected and automated vehicles in adverse conditions.

We can find more mainstream keywords: optimization, demand, behavior, impacts, adoption and transportation system, etc., as shown in the overlay map Figure 

Influencing factors of ridesplitting adoption rate

Built environment features

Many studies that identify the relationship between the built environment and travel behaviors attract people's attention because the findings can be used to design our built environment better and thus make the whole transportation system more efficient. In these studies that are published in mainstream academic journals, the terms used to reflect built environment features often start with a "D". Cervero and Kockelman (1997) proposed the initial "three Ds": density (e.g., population), diversity (e.g., land use mixture), and design (e.g., road density or percentage of 4-way intersections). These features were extended to the "five Ds" by adding destination accessibility and distance to transit [START_REF] Ewing | Travel and the built environment: a synthesis[END_REF], 2010). Demand management (e.g., dynamic parking charges) is the sixth D, and demographics is the seventh D [START_REF] Ewing | Travel and the built environment: A metaanalysis[END_REF]. Many studies that identify the relationship between the built environment and travel behaviors attract people's attention because the findings can be used to design our built environment better and thus make the whole transportation system more efficient.

The influence factors of travel behaviors

We summarized the literature to show the different effects of built environment features on various travel behaviors, which can be classified by different traffic modes, as shown in Table 2-1. For rails and metros, [START_REF] Durning | Direct ridership model of rail rapid transit systems in Canada[END_REF] find that population density, intersection density, and three main land use ratios, industrial/commercial/residential ratios, have significant positive associations with the ridership of rapid rail transit. Ding 

Ridesourcing

The number of OD ridesourcing ridership in Chicago (Yan et al., 2020) Random forest model Uber demand [START_REF] Sabouri | Exploring the influence of built environment on Uber demand[END_REF] Mixed linear regression model Spatial variation of ridesourcing demand in Austin, Texas [START_REF] Yu | Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression[END_REF] Geographically Weighted Poisson regression model In summary, the above studies have confirmed the strong relationship between the built environment and travel behaviors for different traffic modes, namely rail and metro, bus, bike, walking, private vehicles and ridesourcing services. However, to the best of our knowledge, there is no existing research exploring the relationship between ridesplitting and the built environment, which should be investigated. By exploring the relationship between the built environment and ridesplitting, urban planners can better understand how the features of the built environment impact ridesplitting and improve traffic efficiency by way of a more reasonable design and planning of built environment.

Most studies use statistical modeling to explore the relationship between the built environment and travel behaviors, whereas it should be noted that modeling is just one way to explore the relationship. The widely used models can be summarized as follows: ordinary least squares (OLS) models; discrete choice models, such as logit models and probit models; and geographically weighted regression (GWR) models.

For example, [START_REF] Durning | Direct ridership model of rail rapid transit systems in Canada[END_REF] applied a bootstrapped OLS regression model to identify the association between station boardings of the Canadian rapid rail transit and 44 socioeconomic, built environment, and system attributes. [START_REF] Alemi | What influences travelers to use Uber? Exploring the factors affecting the adoption of on-demand ride services in California[END_REF] used a binomial logit model to analyze the key factors, such as the built environment and travel distance, affecting the travel demand of ridesourcing services using comprehensive survey data on 2400 residents in California. [START_REF] Choudhury | Modelling preferences for smart modes and services: A case study in Lisbon[END_REF] applied a nested logit model using data from the Stated Preference (SP) survey in Lisbon, Portugal to analyze the influencing factors of travelers' departure times and ridesharing mode choices. However, OLS and discrete choice models can be used for only global estimations that do not consider spatial heterogeneity (Brunsdon et al., 1996).

The GWR is a regression model that uses local estimation rather than global estimation to address spatially nonstationary processes. Specifically, GWR involves the generation of a regression for each location rather than using a global regression for the entire research area. GWR models have been used to analyze the relationship between the built environment and travel behaviors. For example, [START_REF] Torun | Understanding the role of urban form in explaining transportation and recreational walking among children in a logistic GWR model: A spatial analysis in Istanbul, Turkey[END_REF] applied a logistic GWR model to explore how urban form factors and sociodemographic factors impact transportation walking. However, this kind of model assumes a prior hypothesis of a particular function, such as a linear or log linear relationship, which could lead to modeling biases.

Due to the development of new technology for big data analyses, increasingly more intelligent algorithms are used to explore the characterization of travel behaviors.

In recent years, machine learning models such as GBDT models have performed well when applied to explore the characterization of different transport modes. Friedman developed the first GBDT model, which could provide highly robust, outstanding, and interpretable regression and classification problems [START_REF] Friedman | Greedy function approximation: a gradient boosting machine[END_REF]. [START_REF] Gan | Examining the relationship between built environment and metro ridership at station-to-station level[END_REF]) used a GBDT model to examine the nonlinear effects of the built environment on OD metro ridership in Nanjing, China; this model performed better than the multiplicative model. [START_REF] Ding | Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo[END_REF]) employed a GBDT model to investigate the relationship between the built environment and driving distance in Oslo. GBDT is a machine learning method without a prior hypothesis of a particular function and can predict the target variable more accurately, even the nonlinear relationships with explanatory variables.

Summary

The existing literature has proven that the built environment has a strong relationship with travel behaviors (Ding et al., 2019;[START_REF] Ding | Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo[END_REF][START_REF] Durning | Direct ridership model of rail rapid transit systems in Canada[END_REF]Tao et al., 2020). However, to the best of our knowledge, no existing research has investigated how the built environment impacts ridesplitting services. To fill this gap, the aim of this research part is to explore the relationship between the built environment and origin-destination (OD) ridesplitting ratio.

Demand prediction 2.3.1 Spatial-Temporal Traffic Prediction

The spatial-temporal traffic prediction problem plays an important role in the transportation field. The forecasting objectives include traffic volumes (Song et al., 2018), congestion levels (Wen et al., 2019), travel speeds (Zhang et al., 2021), travel times [START_REF] Zhang | A gradient boosting method to improve travel time prediction[END_REF], air pollution [START_REF] Idir | Mapping Urban Air Quality from Mobile Sensors Using Spatio-Temporal Geostatistics[END_REF][START_REF] Zhang | A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction[END_REF] and traffic demand [START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF][START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF]Y. Liu et al., 2019;[START_REF] Zhao | T-gcn: A temporal graph convolutional network for traffic prediction[END_REF] across the dimensions of time and space. For traffic demand prediction, different traffic modes have their own characteristics, such as bus ridership (Chakour & Eluru, 2016), metro ridership (Ding et al., 2019;[START_REF] Gan | Examining the relationship between built environment and metro ridership at station-to-station level[END_REF], bikes [START_REF] El-Assi | Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto[END_REF] and ridesourcing demand (Tu et al., 2021;Yan et al., 2020). Ridesourcing demand prediction is a key and feasible way to optimize a dispatching system and reach the great potential of ridesourcing services (Tu et al., 2019).

Methodologies for Spatial-Temporal Traffic Prediction

According to the characteristics of the existing traffic demand forecasting research, we can basically divide the available techniques into two categories: traditional time series methods and machine learning approaches.

Traditional spatial-temporal demand prediction models

Traditional demand prediction models include the historical model (HA) and autoregressive integrated moving average (ARIMA) model (L. Liu et al., 2019;Williams & Hoel, 2003). The HA uses the average value of the historical data at the same time every day as the predicted value at the same time instant in the future prediction task (L. Liu et al., 2019). ARIMA is a traditional time series prediction method that combines a moving average and autoregressive components to model historical time series data, and its variants have been widely used in traffic prediction tasks (Williams & Hoel, 2003). Recent studies have proven that the demand prediction task with time series is affected not only by the time dimension but also by the space dimension. However, traditional time series methods are based on prior knowledge, theoretical assumptions, simple mathematical statistics and time series analyses. The challenges they face are the inability to extract the nonlinear characteristics of the input variables, the inability to extract the spatial and temporal correlations among the input variables, and the difficulty of fully utilizing and learning the distribution characteristics and laws of the input data from the perspective of big data.

Traditional machine learning models for spatial-temporal demand prediction

Machine learning algorithms can make fuller use of historical data and obtain satisfactory performance through complex modeling and training processes. Compared with traditional time series forecasting methods, they can determine the correlations between complex input variables and thus exhibit better forecasting performance.

According to statistics, machine learning methods can be divided into two important branches: traditional machine learning methods and deep learning methods. Traditional machine learning methods include eXtreme gradient boosting (XGBoost) (Shi et al., 2019), gradient boosting decision trees (GBDTs) (W. [START_REF] Wang | Modeling and analyzing cyberattack effects on connected automated vehicular platoons[END_REF], support vector machines (SVMs) [START_REF] Sapankevych | Time series prediction using support vector machines: a survey[END_REF], and multiple linear regression (MLR) (Shams et al., 2021), etc. (Castro-Neto et al., 2009;[START_REF] Zaki | Traffic congestion prediction based on Hidden Markov Models and contrast measure[END_REF][START_REF] Zhu | Big data analytics in intelligent transportation systems: A survey[END_REF]. In demand prediction tasks, compared with traditional time series methods, traditional machine learning methods have achieved greater performance improvements (Castro-Neto et al., 2009;[START_REF] Sapankevych | Time series prediction using support vector machines: a survey[END_REF]Shams et al., 2021;Shi et al., 2019;Z. Wu et al., 2020;[START_REF] Zaki | Traffic congestion prediction based on Hidden Markov Models and contrast measure[END_REF][START_REF] Zhu | Big data analytics in intelligent transportation systems: A survey[END_REF]. However, by processing massive spatiotemporal data from non-Euclidean census tracts for multistep ridesourcing demand prediction, traditional time series methods and traditional machine learning algorithms have encountered some problems (X. [START_REF] Cheng | GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction[END_REF][START_REF] Chu | Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions[END_REF][START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF][START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF]Shu et al., 2020;Yao et al., 2018;[START_REF] Zhao | T-gcn: A temporal graph convolutional network for traffic prediction[END_REF].

Deep learning for spatial-temporal prediction models

In recent years, deep learning technology has performed well in dealing with regression problems. Recently, deep learning methods have become the main technology applied in related fields such as computer vision and natural language processing. This has also successfully prompted researchers to apply deep learning techniques to traffic prediction problems. Various neural networks based on back propagation algorithms are used to improve traffic demand forecasting performance. RNN, GRU, and LSTM are used to extract the time series features of input variables and have better prediction performance than traditional models [START_REF] Kontou | Reducing ridesourcing empty vehicle travel with future travel demand prediction[END_REF]C. Li et al., 2019;L. Liu et al., 2019;[START_REF] Liu | DeepVM: RNN-based vehicle mobility prediction to support intelligent vehicle applications[END_REF][START_REF] Mackenzie | An evaluation of HTM and LSTM for short-term arterial traffic flow prediction[END_REF][START_REF] Wang | Transportation area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)[END_REF]Xu et al., 2017;[START_REF] Zhang | MLRNN: Taxi demand prediction based on multi-level deep learning and regional heterogeneity analysis[END_REF]. LSTM was used to predict taxi demand [START_REF] Kontou | Reducing ridesourcing empty vehicle travel with future travel demand prediction[END_REF]Wen et al., 2019). IA multilevel RNN (MLRNN) model combining the development of cluster-level and global-level prediction modules was proposed to extract intra-and inter-cluster features to achieve accurate taxi demand prediction(C. Zhang et al., 2021). However, if only LSTM is used to process the time series characteristics of demand data, the impact of spatial correlation on forecasting may be ignored (G. Chen et al., 2021;[START_REF] Chu | Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions[END_REF][START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF][START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF]Yao et al., 2018;[START_REF] Zhao | T-gcn: A temporal graph convolutional network for traffic prediction[END_REF].

To solve the problem encountered by LSTM, Yao et al. proposed a deep multiview spatial-temporal network (DMVST-Net) framework to simulate spatial and temporal relationships (Yao et al., 2018); that is, a CNN was used to extract the spatial correlations, and LSTM is used to model the correlations between future demand values and near-time points. Similar to the research on DMVST-Net, Chu et al. proposed a deep learning network called multiscale convolutional LSTM (MultiConvLSTM) that considers both time and spatial correlations to achieve more accurate predictions of future travel demand and on-demand traffic [START_REF] Chu | Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions[END_REF].

The common problem with these methods is that they extract spatial correlation features through CNNs, but traditional CNNs deal with this issue in the context of Euclidean space and are not suitable for non-Euclidean spaces [START_REF] Zhao | T-gcn: A temporal graph convolutional network for traffic prediction[END_REF].

Regarding the spatial distribution of traffic demand, long-distance areas may have stronger correlations than neighboring areas [START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF]. Therefore, CNN-based processing of traffic demand data has great defects.

Acquiring complex spatial dependencies is a key problem in ridesourcing demand prediction. The traditional CNN can obtain local spatial features [START_REF] Ke | Hexagonbased convolutional neural network for supply-demand forecasting of ride-sourcing services[END_REF], but it can only be used in a Euclidean space, such as a picture or a regular grid (G. Chen et al., 2021). An urban area network has the form of a graph rather than a two-dimensional grid, which means that a CNN model cannot reflect the complex topological structure of this network and thus cannot accurately capture spatial dependencies. Recently, the generalization of CNNs to GCNs, which can handle arbitrary graph-structured data, has received widespread attention [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF][START_REF] Niepert | Learning convolutional neural networks for graphs[END_REF]Z. Wu et al., 2020). GCN models have been successfully used in traffic prediction tasks, including ridesourcing demand prediction [START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF][START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF][START_REF] Guo | Optimized graph convolution recurrent neural network for traffic prediction[END_REF][START_REF] Ke | Predicting origindestination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[END_REF][START_REF] Li | A multi-stream feature fusion approach for traffic prediction[END_REF]Yu et al., 2020;[START_REF] Zhang | Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies[END_REF][START_REF] Zhao | T-gcn: A temporal graph convolutional network for traffic prediction[END_REF]. [START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF] proposed a spatiotemporal multigraph convolution network (ST-MGCN), which encoded the non-Euclidean pairwise correlations among regions into multiple graphs, and then used an RNN and a GCN to model these correlations. [START_REF] Ke | Predicting origindestination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[END_REF] proposed a Spatio-temporal encoder-decoder residual multi-graph convolutional network (ST-ED-RMGC), which uses RMGC to encode spatially dependent features, uses LSTM to encode temporal features, and finally uses RMGC as a decoder to predict the origin-destination ridesourcing demand at the next moment. [START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF] proposed a dynamic transition-based CNN (DTCNN), which is a novel dynamic transition-based GCN method and provides an effective method for traffic demand prediction. However, these studies did not consider the impact of the temporal and spatial characteristics of the input variables on the current prediction, and they focused only on the single-step prediction task for the next time period.

Summary

Ridesourcing demand prediction is a feasible way to increase these occupancy rates. The vehicles can be dispatched properly to decrease the idle time according to the demand prediction results. Then, passengers could also wait for less time when using ridesourcing services. Therefore, it is important to obtain high-accuracy ridesouring demand predictions for transportation network companies to balance demand and supply.

Existing studies related to traffic demand prediction have focused on single-step prediction for the next time period (L. Liu et al., 2019;Williams & Hoel, 2003).

However, it is more beneficial for ridesourcing services to make multi-step demand predictions, which can help transportation network companies dispatch vehicles more properly in advance. In summary, existing studies focus on single-step prediction, which not only limits the practical application value of the resultant model but also presents the problem of insufficient prediction ability. To fill these gaps, the primary objective of this research part is to propose a new ridesourcing demand prediction framework to improve the single-step and multi-step demand prediction.

Optimization on the ridesourcing services 2.4.1 Studies on ridesourcing services

The future landscape of urban mobility will be reshaped by shared mobility services and CAVs [START_REF] Nazari | Shared mobility versus private car ownership: A multivariate analysis of public interest in autonomous vehicles[END_REF]. Shared mobility services and CAVs are gaining momentum in recent years [START_REF] Greenblatt | Automated vehicles, on-demand mobility, and environmental impacts[END_REF][START_REF] Nazari | Shared mobility versus private car ownership: A multivariate analysis of public interest in autonomous vehicles[END_REF].

It is predicted that all vehicles will be autonomous by the middle of the century [START_REF] Anderson | Autonomous vehicle technology: A guide for policymakers[END_REF]. AVs are driverless and accordingly available at every time and every place [START_REF] Vosooghi | Shared autonomous vehicle simulation and service design[END_REF]. People assume that CAVs will be more relevant to the "sharing-concept". In recent years, more and more researchers have gradually integrated CAVs into sharing services or shared autonomous vehicle (SAV) services.

Meanwhile the widespread adoption of SAV services could provide benefits to society [START_REF] Krueger | Preferences for shared autonomous vehicles[END_REF].

Most studies on ridesourcing focus on three specific aspects: (1) identifying the characteristics of passengers who use ridesourcing services and their preferences [START_REF] Nielsen | Of "white crows" and "cash savers:" A qualitative study of travel behavior and perceptions of ridesharing in Denmark[END_REF]S. A. Shaheen et al., 2016;[START_REF] Wang | Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image[END_REF]; (2) exploring the impacts of ridesourcing services on passengers, such as waiting time [START_REF] Hughes | Transportation network company wait times in Greater Seattle, and relationship to socioeconomic indicators[END_REF][START_REF] Rayle | App-based, ondemand ride services: Comparing taxi and ridesourcing trips and user characteristics in san francisco university of california transportation center (uctc)[END_REF], drivers, such as income [START_REF] Angrist | Uber versus taxi: A driver's eye view[END_REF]M. K. Chen et al., 2019;[START_REF] Hall | Is Uber a substitute or complement for public transit?[END_REF], the environment [START_REF] Kent | Carsharing as active transport: What are the potential health benefits[END_REF], other traffic modes (Chan & Shaheen, 2012;[START_REF] Zhang | Exploring the relationship between ridesharing and public transit use in the United States[END_REF]; and (3) optimizing ridesplitting operations, such as matching and dispatching strategies [START_REF] Li | Short-term wind speed interval prediction based on ensemble GRU model[END_REF]Tu et al., 2019). The literature suggests that ridesourcing services have been increasingly important in the entire transportation system. Four data sources have typically been used to research the problem of sharing a passenger ride: (a) survey data, (b) mobile phone data, (c) empirical data on taxis, and (d) empirical data on ridesourcing services collected directly from transportation network companies. Ridesourcing surveys mainly collect data through questionnaires, including intercept surveys [START_REF] Handke | Flexible ridesharing: new opportunities and service concepts for sustainable mobility[END_REF] and telephone surveys (Hara Associates Inc., 2013); this method has several weaknesses, including the limited number of respondents who can be surveyed, the incomplete representation of the ridesourcing market, and the huge investment of time and resources. Mobile phone data refer to average daily origin-destination (OD) trips from mobile phone call detail records [START_REF] Alexander | Assessing the impact of real-time ridesharing on urban traffic using mobile phone data[END_REF]; but the observations are recorded only when an individual interacts with his or her device, resulting in heterogeneous sampling frequencies and an incomplete picture of daily behavior across users, therefore the data lack full authenticity to assess the impacts of sharing a passenger ride. Some studies used empirical data on taxis to quantify the benefits of ridesplitting in New York [START_REF] Alonso-Mora | On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment[END_REF][START_REF] Santi | Quantifying the benefits of vehicle pooling with shareability networks[END_REF]Simonetto et al., 2019). These articles assume that all passengers using taxis are willing to use the ridesplitting service and that there is only one passenger in each ride. However, passengers using taxis are distinct from passengers using ridesourcing services. Taxi services are regarded as premium services. Passengers using taxis probably are not willing to use ridesplitting services because of the issues of time value and privacy. Furthermore, the average number of passengers per ride for taxis in New York was 1.6 in 2014 [START_REF] King | Access to taxicabs for unbanked households: An exploratory analysis in New York City[END_REF]. Therefore, the actual passenger capacity is much larger than what is assumed in the two studies.

Few studies use empirical data on ridesourcing services to evaluate the impacts of ridesplitting because transportation network companies are reluctant to share their ridesourcing data with the public due to privacy protection. X. M. Chen et al. (2017) used empirical data from DiDi Chuxing to predict the ridesplitting choices of individual passengers. X. [START_REF] Cheng | GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction[END_REF] analyzed ridesplitting behaviors and the associated impact on multimodal mobility. However, these two studies do not investigate the potential of ridesplitting to evaluate the benefits.

Optimization models of ridesourcing services

The objectives of shared mobility-related models can be summarized as follows:

(a) maximizing the number of ridesplitting trips, (b) minimizing the total travel time or minimizing the vehicle miles of all trips, and (c) maximizing the value saved by ridesplitting.

The maximum number of ridesplitting trips can ideally satisfy passengers' trip demand with a minimum fleet size. Two shared trips can be served by a single vehicle instead of two. Thus, shared trips can be used to reduce the required fleet size to mitigate traffic congestion for society. This also benefits passengers by enhancing their mobility. Generally, the cost is proportional to the travel time or vehicle miles.

Therefore, an optimization objective is proposed for the purpose of minimizing the cost to society.

The Senseable City Laboratory of MIT uses empirical taxi data to quantify the benefits of ridesplitting in the future based on the above two objectives [START_REF] Santi | Quantifying the benefits of vehicle pooling with shareability networks[END_REF][START_REF] Vazifeh | Addressing the minimum fleet problem in on-demand urban mobility[END_REF]. However, the delay experienced by passengers is not included in the objective function.

Maximizing the cost saved by ridesplitting is considered from two aspects: on the one hand, we want to minimize the total time and travel distance of all trips from the perspective of the ridesplitting system. On the other hand, the optimal solution for the whole society may not necessarily be optimal for individual passengers, since the travel time is the time actually spent in the vehicle and does not include delays caused by detours. This objective takes the value of the delay experienced by individual passengers into consideration to guarantee the rights of passengers when using the ridesplitting service. [START_REF] Kleiner | A mechanism for dynamic ride sharing based on parallel auctions[END_REF] presented an objective of maximizing saved value by carpooling while simultaneously considering the tradeoff of a tolerable delay for commuters due to the detour distance. However, as demonstrated in the definitions we mentioned above, they focus on the ridesharing for commuters rather than ridesplitting.

Problems related to sharing a passenger ride can be regarded as "pick-up and delivery" problems with desired time windows in which multi-vehicles and multipassengers should be matched efficiently [START_REF] Cortés | The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method[END_REF][START_REF] Ropke | Models and branch-and-cut algorithms for pickup and delivery problems with time windows[END_REF].

Traditionally, such problems are solved by complex mathematical programming with a large number of variables and constraints. This method can be used to address problems with only a few thousand vehicles and trips at most [START_REF] Baker | A genetic algorithm for the vehicle routing problem[END_REF][START_REF] Laporte | The vehicle routing problem: An overview of exact and approximate algorithms[END_REF]; thus, it is not applicable for the hundreds of thousands of trips and vehicles on a large city scale. [START_REF] Ma | T-share: A large-scale dynamic taxi ridesharing service[END_REF] take the first step toward solving the taxi ridesharing problem with dynamic large scales. The Senseable City Laboratory of MIT [START_REF] Santi | Quantifying the benefits of vehicle pooling with shareability networks[END_REF] proposes an efficient "shareability network" method that translates spatiotemporal sharing problems into a graph-theoretic framework to realize shared taxi services. Furthermore, these researchers address the minimum fleet problem using a "vehicle sharing network" [START_REF] Vazifeh | Addressing the minimum fleet problem in on-demand urban mobility[END_REF].

The problem of maximum matching in ridesharing is NP hard. There are two main algorithms for solving NP hard problems: exact algorithms and approximation algorithms. Exact algorithms, such as branch-and-bound algorithms [START_REF] Ignall | Application of the branch and bound technique to some flow-shop scheduling problems[END_REF], branch-and-cut methods [START_REF] Cortés | The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method[END_REF][START_REF] Ropke | Models and branch-and-cut algorithms for pickup and delivery problems with time windows[END_REF], and cut-andprice algorithms [START_REF] Fukasawa | Robust branch-and-cut-and-price for the capacitated vehicle routing problem[END_REF], can be used to solve the ridesharing problem only for small-scale trip requests due to computational challenges. There are many approximation algorithms:1) classical heuristic algorithms, such as saving algorithm [START_REF] Clarke | Scheduling of vehicles from a central depot to a number of delivery points[END_REF], sweep algorithm [START_REF] Gillett | A heuristic algorithm for the vehicle-dispatch problem[END_REF], cluster fist-route second [START_REF] Fisher | A generalized assignment heuristic for vehicle routing[END_REF], and petal algorithms [START_REF] Renaud | An improved petal heuristic for the vehicle routeing problem[END_REF]; 2) metaheuristic algorithms such as local search, population search, learning mechanisms, and the hybridizations. Local search algorithms include simulated annealing algorithms [START_REF] Osman | Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem[END_REF], deterministic annealing algorithms [START_REF] Groër | A library of local search heuristics for the vehicle routing problem[END_REF], tabu search algorithms (Braekers et al., 2014;[START_REF] Kirchler | A granular tabu search algorithm for the diala-ride problem[END_REF], iterated local search algorithms [START_REF] Nogueira | A hybrid iterated local search heuristic for the maximum weight independent set problem[END_REF][START_REF] Penna | An iterated local search heuristic for the heterogeneous fleet vehicle routing problem[END_REF], and variable neighborhood search algorithms [START_REF] Li | An adaptive large neighborhood search heuristic for the share-a-ride problem[END_REF][START_REF] Parragh | Variable neighborhood search for the dial-a-ride problem[END_REF]. Population search algorithms include genetic algorithms [START_REF] Baker | A genetic algorithm for the vehicle routing problem[END_REF], scatter search and path relinking algorithms (Yoshizaki, 2009). Learning mechanisms include ant colony optimization [START_REF] Dorigo | Ant colony optimization[END_REF] and machine learning algorithms [START_REF] Accorsi | Guidelines for the computational testing of machine learning approaches to vehicle routing problems[END_REF].

Hybridizations refer to the combination of above metaheuristic algorithms, such as the combination of local search and population search [START_REF] Santos | Particle swarm optimization with quasi-Newton local search for solving economic dispatch problem[END_REF].

Impacts of connected and autonomous vehicles on the shared mobility

(1) Impacts on economic costs: Clements and Kockelman (2017) synthesized the impact of autonomous vehicles on 13 major industries in the United States, and the results showed that it is estimated that the United States could save 1.2 trillion US dollars per year. [START_REF] Duncan | The cost saving potential of carsharing in a US context[END_REF] sought to quantify the potential travel cost savings for people using shared autonomous vehicles, and the results showed that the cost could be decreased significantly.

(2) Impacts on traffic behavior and land use: [START_REF] Hawkins | Integrated models of land use and transportation for the autonomous vehicle revolution[END_REF] found that the emergence of autonomous vehicles will not only affect the transportation system, but also affect the future pattern of land use development. [START_REF] Davidson | Driving alone versus riding together-How shared autonomous vehicles can change the way we drive[END_REF] pointed out that ridesplitting services could significantly improve network efficiency.

(3) Impacts on traffic congestion, fuel consumption and private car ownership: [START_REF] Maciejewski | Congestion effects of autonomous taxi fleets[END_REF] explored the impact of autonomous taxis in the city on traffic congestion based on the analysis of the Berlin area using MATSim. It is founded that the autonomous fleets have a positive impact on urban traffic if the road capacity is increased. However, without an increase in road capacity, autonomous vehicles should not be introduced on a large scale, as the induced additional traffic flow would exacerbate traffic congestion. Y. Chen et al. ( 2019) developed an analytical framework to quantify the impact of autonomous vehicles on fuel consumption in the United States, and the results showed that the percentage of the fuel saving could be 45% in the optimistic case, but the fuel consumption could be increased by 30% in the pessimistic case.

(4) Impacts on the environment: Fagnant and Kockelman (2014) used Chester and Horvath to estimate that after using SAV vehicles, the emissions of VOC and CO decreased significantly, and the emissions of PM10 and GHG also decreased, but not significantly. [START_REF] Firnkorn | What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm[END_REF] explored the environmental impact of the car-sharing system, Car2go, in Ulm, Germany. The result showed that CO2 emissions could be reduced significantly.

Summary

In summary, ridesourcing is an attractive option for many travelers without their own vehicles. However, there are some debates claiming that on-demand ridesourcing services could increase congestion and pollution (Union of Concerned Scientists, 2020).

However, ridesourcing service has also triggered a seismic shift towards shared mobility service. Ridesplitting, a new shared mobility service, is a more sustainable travel mode for improving traffic efficiency and reducing traffic congestion and air pollution problems. Policy makers have realized the benefits of ridesplitting services and encouraged ridesourcing companies to launch ridesplitting services for passengers.

Previous studies on the potential of ridesourcing that used observed data are quite limited, and empirical research on ridesplitting is even sparser because of the lack of data. To our knowledge, this research part is one of the first investigations to quantify the actual level and potential of ridesplitting on a city scale. This research part aims to explore the potential of ridesplitting for the future mobility system. The findings can help reveal the potential benefits of ridesplitting, which will be crucial for transportation management agencies and ridesourcing companies in developing sensible policies to promote the use of ridesplitting services.

Impacts of cyberattacks on connected and autonomous vehicles 2.5.1 Types of cyberattacks on connected and autonomous vehicles

Cyberattacks on vehicles can be classified into different types according to different perspectives. From the perspective of the position of cyberattacks, cyberattacks can be classified into in-vehicle cyberattacks and inter-vehicle cyberattacks (Aliwa et al., 2021;[START_REF] Khan | Cyber-attacks in the next-generation cars, mitigation techniques, anticipated readiness and future directions[END_REF][START_REF] Mousavinejad | Distributed cyber attacks detection and recovery mechanism for vehicle platooning[END_REF][START_REF] Wang | Modeling and analyzing cyberattack effects on connected automated vehicular platoons[END_REF]. The former injects malicious information into the in-vehicle networks that Besides, the researchers also focus on the inter-vehicle cyberattacks. They pay attention to the impacts of cyberattacks on CAV platoons and traffic flow by using different vehicle control models based on vehicle dynamics modeling. This will help us understand the impact mechanism of cyberattacks on traffic flow evolution, and lay a foundation for us to design response strategies [START_REF] Khattak | Impact of cyberattacks on safety and stability of connected and automated vehicle platoons under lane changes[END_REF][START_REF] Li | Influence of cyber-attacks on longitudinal safety of connected and automated vehicles[END_REF][START_REF] Noei | Longitudinal Control for Connected and Automated Vehicles in Contested Environments[END_REF][START_REF] Wang | Modeling and analyzing cyberattack effects on connected automated vehicular platoons[END_REF].

This research part focuses on the inter-vehicle cyberattacks, which can be further divided into three kinds of categories according to the consequences on the vehicles: bogus messages, replay/delay messages and collusion attacks, as shown in Table 2-2 (P. Wang et al., 2020).

Table 2-2 Cyberattack classification

Category Description

Bogus messages

These attacks could transmit bogus messages such as erroneous 

Summary

Scholars have also carried out some researches to demonstrate the great potential benefits of CAVs [START_REF] Li | A survey of traffic control with vehicular communications[END_REF][START_REF] Rios-Torres | A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps[END_REF]Sukuvaara & Nurmi, 2009;[START_REF] Van Arem | The impact of cooperative adaptive cruise control on traffic-flow characteristics[END_REF][START_REF] Zhao | Simulation framework for vehicle platooning and carfollowing behaviors under connected-vehicle environment[END_REF]. However, with the help of diverse and advanced communication technology, the "intelligent" information exchange between vehicles and the surrounding environment/world is realized all the time. So, such an open-access communication environment system increases the risk of vehicles being exposed to cyberattacks, which is an urgent and critical challenge to be solved. In order to effectively resist to cyberattacks and improve traffic safety performance, scholars have conducted a lot of researches on cyberattacks from different perspectives.

Although some studies investigated the impact of cyberattacks and put forward the corresponding strategies, there are two important issues to be revealed:

• There are different types of vehicles on the actual road, such as cars, buses, trucks and so on, so the characteristics and performances of the different vehicles are also different. Therefore, it's an important problem to build a vehicle dynamics model for CAV in a mixed traffic flow considering cyberattacks.

• Some of the existing cyberattacks response strategies are formulated from the perspective of intrusion detection, privacy protection, etc., so when the cyberattacks have reached the vehicle level and produced negative effects, it will be an urgent problem to formulate the control strategy from the perspective of vehicle dynamics to resist the harmful threat brought by the cyberattacks.

. 

Introduction

On-demand ridesourcing services, operated by transportation network companies, match passengers and drivers through intelligent mobile phone applications [START_REF] Rayle | Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco[END_REF]. Ridesourcing services have become increasingly popular due to their convenience. Ridesplitting, one form of ridesourcing services, matches riders with similar routes to the same driver, such as "UberPool" and "Lyft Line" (S. Shaheen et al., 2016). There are some debates claiming that on-demand ridesourcing services could increase congestion and pollution (Union of Concerned Scientists, 2020).

However, ridesplitting, a new shared mobility service, is a more sustainable travel mode for improving traffic efficiency and reducing traffic congestion and air pollution problems. Policy makers have realized the benefits of ridesplitting services and encouraged ridesourcing companies to launch ridesplitting services for passengers. For DiDi Chuxing, the number of passengers who choose ridesplitting services has continued to increase since its launch at the end of 2015. By the end of 2019, the cumulative number of users reached 2.9 billion, with a compound annual growth rate of 143.3%. The passenger volume using ridesplitting services was equivalent to 1.2 times the civil aviation passenger volume in 2019 (Didi Chuxing, 2020).

However, the current ridesplitting ratio in key ridesourcing services provided in the city of Chengdu is low, only 7% (W. Li et al., 2019). The average time usage rate of private cars in China is only 7% (Accenture, 2016), while the rate is only 4% in the United Kingdom [START_REF] Bates | Spaced Out: Perspectives on parking policy[END_REF] and 17% in the United States [START_REF] Santos | Summary of travel trends: 2009 national household travel survey[END_REF]. This low utilization rate leads to a serious waste of resources. With the development of technology for autonomous driving, idle private cars could be used for autonomous ridesourcing services or ridesplitting services in the future. Tu et al. (2019) showed that such ridesplitting services could potentially have great benefits in the city of Chengdu, specifically by improving the percentage of cost savings and time savings to 17% and 23%, respectively.

Specifically, this chapter involves three main tasks. First, we use a machine learning method, gradient boosting decision tree (GBDT) model, to identify the important features of the built environment at the origins and destinations of ridesplitting services. Second, we explore the nonlinear relationship between the ridesplitting service and key explanatory variables by creating partial dependence plots.

Third, we provide insightful results that can help transportation network companies improve existing ridesplitting services and have policy implications for urban planners seeking to better understand how the built environment, demographic factors and travel time impact ridesplitting services.

The remainder of this chapter is organized as follows. Section 3.2 presents the data and variables used in this chapter. The GBDT model is described in section 3.3.

Section 3.4 presents the results in detail and discusses the related insights regarding how the built environment features, demographic factors and travel time impact ridesplitting services. The final section 3.5 summarizes the main findings, presents some policy implications and proposes future research directions.

Data and Variables

Study area

Chengdu is the capital of Sichuan Province and is one of the three most populous cities in Western China. As of 2020, the total area in Chengdu was 14335 square kilometers, the local population was 16.58 million, the urban population was 12.34 million, and the urbanization rate was 74.42% (Chengdu Bureau of Statistics, 2020).

Since the launch of ridesplitting services on the DiDi Chuxing platform in 2015, the number of passengers who chose ridesplitting services has continued to increase.

Chengdu is one of the leading cities that actively advocate for and promote ridesplitting Travel time is used to explore the effects of travel impedance factors on the ridesplitting ratio and is an important factor for passengers deciding whether to choose ridesplitting services. It is the average travel time of all OD pairs from the DiDi order dataset.

Variables description

Based on the data available, we determined the dependent variable and several independent variables. The ridesplitting ratio of each OD pair is chosen as the dependent variable. Then, we divide the explanatory variables into 4 categories, namely, the built environment at the origin locations, the built environment at the destination locations, demographic factors and travel time. Then, a descriptive analysis of all the variables was carried out, as shown in Table 3- Note: Samples: 14,121 OD pairs 

Methodology

We choose the built environment features that are measured by the 'four Ds', namely, density, land use diversity, design, and distance to city center. Then, we use the GBDT model to predict the OD ridesplitting ratio and investigate the relative importance ranking of all the explanatory variables. Furthermore, we explore the nonlinear relationship between the ridesplitting ratio and key explanatory variables by generating partial dependence plots. We find some useful thresholds from the partial dependence plots, which could provide a reference for policy makers.

GBDT model

A GBDT model is an additive model that uses decision trees f(x) to estimate the function F(x). The objective of the algorithm is to minimize the loss function
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where x is a set of explanatory variables (i.e., built environment features, demographic factors and travel time) and F(x) is an approximation function of the dependent variable (i.e., OD ridesplitting ratio). 𝑎 𝑚 is the mean of split locations and the terminal node for each splitting variable for each tree. M represents the mth iteration.

The function F(x) is updated according to the gradient descent direction as follows:

(3.2)
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where 𝛽 𝑚 is expected to minimize the value of the loss function.

A shrinkage parameter  (0<  <1), also called the learning rate, can be used to avoid the overfitting problem [START_REF] Friedman | Greedy function approximation: a gradient boosting machine[END_REF]) by means of scaling the contributions 
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of each tree.

(3.4)

Relative importance and partial dependence of the explanatory variables

Compared to most machine learning algorithms regarded as 'black-box'

algorithms, the GBDT model can be used to determine the relative importance ranking of all explanatory variables. The relative importance of variable 𝑥 𝑖 can be obtained as follows:
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where j is the number of leaves on each tree and 𝑑 𝑗 represents the improvement in the squared error term by making the 𝑗 𝑡ℎ split based on the variable 𝑥 𝑖 .

The GBDT model can also generate a partial dependence plot to illustrate the relationships between the explanatory variables and dependent variables. The partial dependence plot shows the marginal effect of one or two features on the predicted response variable [START_REF] Friedman | Greedy function approximation: a gradient boosting machine[END_REF] The partial dependence of F(x) on 𝑥 𝑠 can be defined as follows [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]:

(x ) [F(x , x )] F(x , x ) ( x ) S C x S x S C S C C F E dP = =  (3.7) 1 1 (x ) ( , ) S n i x S S C i F F x x n = =  (3.8)
Where 𝑥 𝑠 are the features that we want to know the specific effect on the OD ridesplitting ratio and 𝑥 𝑐 are the other features used in the chapter. n represents the number of samples. 

(x) (x) * ( ; ) m m m m F F h x a - = +  

Results and Discussion

Performance of the GBDT model

We use a five-fold cross-validation procedure to obtain the optimal parameter settings and a robust result. We fit the models with different numbers of trees (5000, 10000, 15000), shrinkages (0.005, 0.05, 0.01, 0.1) and tree complexities (1,3,[START_REF] Li | Layout Study of the Variable Message Signs on Urban Road Networks[END_REF][START_REF] Li | A Software-Defined Networking Roadside Unit Cloud Resource Management Framework for Vehicle Ad Hoc Networks[END_REF] based on the experimental findings of previous studies. We fit the model 240 times and find that the best performance is obtained when the number of trees, shrinkage and tree complexity are set as 5000, 0.005 and 7, respectively.

As shown in Table 3 As shown in Table 3-3, the built environment features at the origin locations contribute 29.97%, whereas the contribution of the features at the destination locations is 23.98%. The built environment features at the origin locations have larger effects on the OD ridesplitting ratio than the destination locations. In addition, the collective contribution of the demographic factors is 35.31%. Moreover, travel time contributes 10.74%, which is also an important feature.

Relative importance of the explanatory variables

For the built environment features at the origin locations, distance to city center, road density, commercial ratio, land use diversity, and public transportation density are the top five important explanatory variables, which contribute to 10.35%, 2.75%, 2.56%, 2.20% and 1.92%, respectively. The three least important features at the origin locations are local population density, population density and public service density, which contribute to 0.59%, 0.75% and 0.90%, respectively.

For the built environment features at the destination locations, distance to city center, public service density, road density, public transportation density, and land use diversity are the five variables with the highest relative importance, which contribute to 9.26%, 3.92%, 1.97%, 1.83% and 1.24%, respectively. The three least important features at the destination locations are local population density, park density and population density, which contribute to 0.41%, 0.55% and 0.55%, respectively. For the demographic factors, PGDP at the origin locations is the most important factor in all the explanatory variables, accounting for 22.56%. The average price of the house at the origin locations contributes to 6.07%, which is the second most important demographic feature to predict the ridesplitting ratio. The least important demographic factor is the population density of people who are more than 64 years old, which contributes to 0.42%. and 13 per km 2 . The ridesplitting ratio increases slightly when the public transportation density at the origin locations is greater than 13 per km 2 . The above results show that the ridesplitting ratio is relatively high in the districts where public transportation density is less than 6 per km 2 . Therefore, transportation network companies should provide enough ridesplitting services to satisfy ridesplitting demand and guarantee the service quality in areas with low accessibility to public transportation. This threshold could also provide a reference for the government to achieve a good balance of ridesplitting services and public transportation services.

Nonlinear effects of built environment features

Figure 3-4 (c) demonstrates that the road density at the origin locations is negatively correlated with the OD ridesplitting ratio. First, the ridesplitting ratio remains high and steady when the road density is less than 2.5 km/km 2 . Then, the ratio decreases with an increase in road density between 2.5 km/km 2 and 6 km/km 2 . The OD ridesplitting ratio remains almost stable when road density exceeds 6 km/km 2 .

Figure 3-4 (d) generally shows a positive association between land use diversity at the origin locations and the ridesplitting ratio. Land use diversity at the origin locations has almost no effect when it is less than 0.8. However, the OD ridesplitting ratio increases substantially when it reaches 0.85. Then, the ratio remains constant when the land use diversity exceeds 0.85.

To summarize the above results in the origin locations, we can say that the ridesplitting ratio is higher when: The plot shows that the distance to the city center at the destination locations is positively associated with the OD ridesplitting ratio. First, the difference in the ridesplitting ratio could reach 20% between the destinations near the city center and those 33 km away from the city center. Distance to the city center at the destination locations has almost no effect when it is less than 20 km. Within this range, the ridesplitting ratio only differs by approximately 5%. However, the OD ridesplitting ratio increases substantially when it exceeds 20 km. when the public transportation density is between 2 and 4 per km 2 . The ridesplitting ratio decreases slightly when the public transportation density at the destination locations is 4 per km 2 and remains steady beyond this range. The above results show that the ridesplitting ratio is higher in districts where the public transportation density is lower than 2 per km 2 .

Figure 3-5 (c) demonstrates that the road density at the destination locations is negatively correlated with the OD ridesplitting ratio, which is similar to the relationship between the road density at the origin locations and the ridesplitting ratio.

First, the ridesplitting ratio remains high and steady when the road density is less than 2.5 km/km 2 . Then, the ratio decreases with an increase in the road density between 2.5 km/km 2 and 4 km/km 2 . The OD ridesplitting ratio remains almost stable when the road density exceeds 4 km/km 2 . Figure 3-4(c) and Figure 3-5 (c) demonstrate that road density is negatively correlated with the ridesplitting ratio at both the origin and destination locations. This result can be explained by other studies finding that road density has a positive correlation with public transportation services such as buses and metros [START_REF] Li | Influence of cyber-attacks on longitudinal safety of connected and automated vehicles[END_REF]Zhao et al., 2014;Gan et al., 2019). Therefore, the share of ridesplitting services can be replaced by public transportation services in areas with high road density. To be specific, we choose two typical census tracts for further analysis. In census tract No. 77, the distance to the city center is 44.39 km, the density of public transportation is 0.8 number/km However, the OD ridesplitting ratio increases substantially when the PGDP increases to 100,000 RMB/year. The ridesplitting ratio remains steady from 100,000 to 125,000 RMB/year and then decreases slightly between 125,000 and 140,000 RMB/year. Then, the ridesplitting ratio increases from 140,000 to 155,000 RMB/year. The difference in the ridesplitting ratio can reach 30% between areas where the PGDP is 155,000 RMB/year and those where the PGDP is approximately 90,000 RMB/year. The partial dependence plot for the average price of housing at the origin locations is presented in Figure 3-6 (c). In general, this plot indicates that the average price of housing is negatively correlated with the OD ridesplitting ratio. The OD ridesplitting ratio decreases when the average price of housing at the origin locations increases from 6,000 to 10,000 RMB per m 2 . This result indicates that people who live in houses with relatively low prices prefer to choose ridesplitting services. This is consistent with reality because these homeowners want to use ridesplitting services due to the low price. demonstrates that the average price of housing at the destination locations has little effect on the ridesplitting ratio.

Other explanatory variables

53 the ridesplitting ratio remains relatively steady and high.

55 Public transportation density also plays an essentially important role in the impact on the ridesplitting ratio at both the origin and destination locations. A negative association between public transportation and the ridesplitting ratio can be seen both at the origin locations and at the destination locations. The results show that the ridesplitting ratio is relatively high in the districts where public transportation density is less than 4 per km 2 . The government could set a threshold of the available ridesplitting services nearby for transportation network companies to guarantee the service quality, especially in areas with low accessibility to public transportation. This threshold could also provide a reference for the government to achieve a good balance of ridesplitting services and public transportation services.

With respect to demographics, PGDP and the average price of housing at the origin locations are the two most important factors impacting the ridesplitting ratio.

The results demonstrate that a positive association exists between the PGDP at the origin locations and the ridesplitting ratio, whereas a negative association exists between the average price of housing at the origin locations and the ridesplitting ratio.

The findings of this chapter could help to better understand how the built environment, demographic factors and travel time impact ridesplitting services and provide policy implications for decision makers. For urban planners, the insightful results could enhance their understanding of ridesplitting services and be used for land use planning, design, and related features. For the transportation network companies, the results could help them optimize their long-term ridesplitting capacity to satisfy ridesplitting demand and improve the transportation efficiency. These companies should provide enough ridesplitting services in areas with high ridesplitting demand to guarantee service quality and reduce ridesplitting capacity in areas with low ridesplitting demand to reduce empty travel by vehicles.

Ridesplitting, a form of ridesourcing services that matches riders with similar routes to the same driver, is a high occupancy travel mode that can bring considerable benefits. However, the current ratio of ridesplitting in the ridesourcing services is relatively low and its influencing factors remain unrevealed. Therefore, this chapter uses a machine learning method, gradient boosting decision tree model, to identify the impacts of the built environment on the origin-destination ridesplitting ratio. The results show that most built environment features have a strong nonlinear effect on the ridesplitting ratio. Distance to city center, land use diversity and road density are the key explanatory variables impacting the ridesplitting ratio. The non-linear thresholds of built environment factors are found based on partial dependence plots, which could provide policy implications for the government and transportation network companies to promote the ridesplitting. In the next chapter, an optimized ridesourcing demand prediction method will be proposed to improve the ridesourcing service efficiency.

Chapter 4 An optimized ridesourcing demand prediction method based on an encoder-decoder neural network HIGHLIGHTS 1) Improve the demand prediction accuracy for ridesourcing platform

2) Tackle both spatiotemporal single-step prediction and multi-step prediction

3) Develop an encoder-decoder neural network framework for spatiotemporal prediction.

4) Build a dynamic spatiotemporal attention mechanism for the network

Introduction

On-demand ridesourcing services have become crucially important for daily travel worldwide due to the development of mobile internet technology and market demand. Ridesourcing services match passengers and drivers through intelligent mobile phone applications [START_REF] Rayle | Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco[END_REF]. Uber has launched services in over 890 cities in 71 countries through 2020 (Uber, 2020). In 2019, Uber served 111 million users and provided 6.9 billion trips worldwide. There is no doubt that on-demand ridesourcing services can bring convenience for passengers. However, it is known that on-demand ridesourcing services also cause some negative effects, such as aggravating traffic congestion and air pollution, for the whole transportation system because of the low occupancy rates of the vehicles. Ridesourcing demand prediction is a feasible way to increase these occupancy rates. The vehicles can be dispatched properly to decrease the idle time according to the demand prediction results. Then, passengers could also wait for less time when using ridesourcing services. Therefore, it is important to obtain high-accuracy ride-souring demand predictions for transportation network companies to balance demand and supply.

Compared to the traditional time series methods, machine learning methods have an absolute advantage (G. [START_REF] Cheng | GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction[END_REF][START_REF] Chu | Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions[END_REF][START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF][START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF]Xu et al., 2017;Yao et al., 2018;[START_REF] Zhang | A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction[END_REF][START_REF] Zhang | MLRNN: Taxi demand prediction based on multi-level deep learning and regional heterogeneity analysis[END_REF][START_REF] Zhao | T-gcn: A temporal graph convolutional network for traffic prediction[END_REF]. To date, machine learning methods have been widely used in classification and regression prediction tasks (K. Chen et al., 2017;[START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF][START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF][START_REF] Guo | Deep learning-based image segmentation on multimodal medical imaging[END_REF][START_REF] Li | A survey on deep learning for named entity recognition[END_REF][START_REF] Minaee | Image segmentation using deep learning: A survey[END_REF]G. Wang et al., 2018;[START_REF] Zhang | A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction[END_REF][START_REF] Zhang | Deep learning on graphs: A survey[END_REF][START_REF] Zhao | T-gcn: A temporal graph convolutional network for traffic prediction[END_REF], including computer vision [START_REF] Guo | Deep learning-based image segmentation on multimodal medical imaging[END_REF]G. Wang et al., 2018), natural language processing (K. Chen et al., 2017; J. Li et al., 2020), and traffic demand prediction [START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF][START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF][START_REF] Zhao | T-gcn: A temporal graph convolutional network for traffic prediction[END_REF]. In particular, many existing works and 3) For the ridesourcing demand prediction task, there is a high degree of spatiotemporal correlation between the current prediction value and the input variables. Therefore, we use a global attention mechanism to associate the spatiotemporal features with the current prediction, that is, to consider the impacts of the input variables on the prediction.

4) In addition, predictive models based on neural networks are generally prone to information loss and internal covariate shift during the feature extraction process. Therefore, we add residual connections and layer normalization tricks in both the encoder layer and the decoder layer. In the experiment, we evaluate our model on the typical task of next-step prediction and a multistep prediction task. The results of our evaluation show that our approach outperforms state-of-the-art models.

The remainder of this chapter is organized as follows. Section 4.2 describes the methodology and framework of our method for predicting ridesourcing demand. 

Methodology

Our O-STEDN model uses a graph convolutional network (GCN) and a read-first long short-term memory (RLSTM) network as encoders to extract the spatiotemporal correlation features of the input variables (W. [START_REF] Wang | Modeling and analyzing cyberattack effects on connected automated vehicular platoons[END_REF][START_REF] Zhang | A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction[END_REF] and uses LSTM and a spatiotemporal dynamic attention mechanism as decoders to achieve multi-step prediction [START_REF] Cho | Describing multimedia content using attention-based encoder-decoder networks[END_REF][START_REF] Hochreiter | Long short-term memory[END_REF][START_REF] Luong | Effective approaches to attention-based neural machine translation[END_REF]. Note that the dynamic spatiotemporal attention mechanism considers the influence of the spatiotemporal features extracted at each moment in the history of the current prediction, and we also add residual connections and layer normalization tricks to the entire network to prevent network information loss and internal covariate shift problems.

In summary, the main differences between our proposed O-STEDN method and the existing approaches are that, first, we consider the correlations between the predictions at each moment and the spatiotemporal characteristics of the historical input variables; second, we achieve precise multi-step demand forecasting; third, we consider the information loss and internal covariate shift in the feature extraction process (Chen et al., 2020;[START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. The specific 61 description of the methodology is in the remainder of this section.

Framework Overview

Ridesourcing demand prediction is a specific problem of time series analysis. If Decoder Based on the output of the encoder network {ℎ 𝑡-𝑟+1 , … , ℎ 𝑡 } , we can make predictions for the ridesourcing demand at future times 𝑦 ̂= {𝑦 ̂𝑡+1 , … , 𝑦 ̂𝑡+𝑛 }, 𝑦 ̂∶ ∈ 𝑅 𝑁×1 with the decoder layer. It is worth noting that our prediction at each moment is based on the output of the encoder and decoder and is implemented through the dynamic spatiotemporal attention method.

For the above O-STEDN, we also add residual connections and layer normalization tricks to the whole network to prevent network information loss and internal covariate shift problems. In the following sections, we describe each step of the proposed method in detail.

GCN

The GCN model constructs a filter in a non-Euclidean space, and the filter is used to extract the spatial features between the central node of the graph and its first-order neighbor nodes; that is, the GCN model is constructed by stacking multiple convolutional layers. As shown in Figure 4 For each node 𝑣 ∈ 𝑉, we use 𝐻 0 to denote the node initial embeddings, which usually contain the input feature 𝑥 𝑖 of each node. In a graph 𝐺, the key idea of a GCN is to stack 𝐾 steps in a recursive feature propagation manner to learn node embeddings.

For each node 𝑣 , the feature aggregation step aggregates the embeddings from the graph neighbors 𝑁 𝑣 and its own embedding 𝐻 𝑣 𝑘 at the previous layer 𝑘. We input the output of feature aggregation into a standard nonlinear transformation layer to generate the (𝑘 + 1)-th layer embeddings of the graph nodes as:

𝐻 (𝑘+1) = ReLU(𝐷 ̃-0.5 𝐴 ̃𝐷 ̃-0.5 𝐻 (𝑘) ) (4.1)
After iteratively executing equation (4.1) in each layer with a defined depth 𝐾 (such as 𝐾 = 2), the final embeddings of graph nodes at a depth 𝐾 are denoted as 𝐻 (𝐾) , as shown in Fig. 2 (b). To protect the feature information of the original node, we use a residual connection layer to connect the input and output hidden features, as shown in Fig. 2 (a). A GCN model can be expressed as:

𝐻 (𝑘+1) = LayerNorm(𝐻 (𝑘+1) + 𝑊 𝑟𝑒𝑠 𝐻 (𝑘) ) (4.2)
where ReLU is a nonlinear activation function (rectified linear unit) and LayerNorm represents layer normalization (Ba et al., 2016). We use 𝐷 ̃-0.5 𝐴 ̃𝐷 ̃-0.5 to denote the normalized adjacency matrix with added self-connections, 𝐴 ̃= 𝐴 + 𝐼 is the adjacency matrix of the graph with added self-connections, and 𝐼 is the identity matrix.

𝐷 ̃ is the degree matrix of 𝐴 ̃; 𝑊 𝑘 and 𝑊 𝑟𝑒𝑠 are the weight matrices of transformation layer and residual connection layer, respectively.

As shown in Figure 4-2, we use a K-depth GCN to extract the spatial correlation features of the historical ridesourcing demand data. Finally, we learn the spatial correlation features of each area node through the GCN and use the learned spatial features as the inputs of the RLSTM network in time series order. 𝑐̂𝑡 -𝑗 = 𝑓 𝑡-𝑗 ∘ 𝑐 𝑡-𝑗-1 (4.5)

Spatiotemporal Prediction Model

3) The write gate 𝑤 𝑡-𝑗 is based on the outputs of the read gate 𝑟 𝑡-𝑗 and the input [ℎ ̂𝑡-𝑗-1 , 𝐻 𝑖 , 𝑐 𝑡-𝑗-1 ] at the current time 𝑡 -𝑗 and selects some important feature information for updating the information of the memory unit 𝑐̂𝑡 -𝑗 at the current time.

Therefore, the write gate 𝑤 𝑡-𝑗 updates the memory unit information based on the important features selected by the read gate 𝑟 𝑡-𝑗 , thereby reducing redundant information residuals. This is shown in equations (4.6), (4.7), (4.8), and (4.9): ℎ ̂𝑡-𝑗 = 𝑇𝑎𝑛ℎ(𝑐 𝑡-𝑗 ) (4.9)

𝑤 𝑡-𝑗 = 𝜎(𝑊 𝑤 (𝑟 𝑡-𝑗 ∘ [ℎ ̂𝑡-𝑗-1 , 𝐻 𝑡-𝑗 , 𝑐 𝑡-𝑗-1 ]) + 𝑏 𝑤 ) (4.6 
Finally, the result is the unit state 𝑐 𝑡-𝑗 output at time 𝑡 -𝑗, as shown in equation ( 9). To prevent network information loss and internal covariate shift, we add residual connections and layer normalization tricks to the RLSTM layer.

ℎ 𝑡-𝑗 = 𝑊 𝑠 (LayerNorm(𝑊 𝑐 ℎ ̂𝑡-𝑗 + 𝑊 𝑟 𝐻 𝑡-𝑗 )) (4.10)

In the above, we describe the time feature extraction process of RLSTM in detail.

As shown in Figure 4-4, we use the temporal features {ℎ 𝑡-𝑟+1 , . . . , ℎ 𝑡-𝑗 , . . . , ℎ 𝑡 } extracted by the encoder at each moment as the inputs of the decoder and dynamic spatiotemporal attention layer for Ridesourcing demand prediction.

LSTM Decoder

The ridesourcing demand prediction for the 𝑖-th time step is affected not only by the predicted value at the previous time 𝑡 + 𝑖 -1 but also by all historical spatiotemporal features ℎ = {ℎ 𝑡-𝑟+1 , . . . , ℎ 𝑡-𝑗 , . . . , ℎ 𝑡 } . To realize the multi-step prediction of ridesourcing demand in the future, we use LSTM as a decoder for prediction purposes. The LSTM input containing the spatiotemporal features is obtained using the method described in the previous section, that is, via a GCN and RLSTM. LSTM is used to extract temporal features from the prediction periods, which is advantageous for processing long-term time dependence problems, and it outputs the final prediction result. Assume that 𝑐̅ 𝑡+𝑖 is the cell state, and ℎ ̅ 𝑡+𝑖 is the cell output state at time 𝑡 + 𝑖. Additionally, 𝑖, 𝑓 and 𝑜 represent the input gate, forge gate and output gate, respectively. The prediction process of the LSTM at each time series can be expressed by the following formulas:

1) LSTM selectively forgets the feature information of the cell state at time 𝑡 + 𝑖:

𝑓 𝑡+𝑖 = 𝜎(𝑊 𝑓 𝑠 𝑡+𝑖-1 + 𝑊 𝑓 ℎ ̅ 𝑡+𝑖-1 + 𝑊 𝑓 𝑐̅ 𝑡+𝑖-1 + 𝑏 𝑓 ) (4.11) 𝑐̅ 𝑡+𝑖 ′ = 𝑓 𝑖 ∘ 𝑐̅ 𝑡+𝑖-1 (4.12) 
LSTM selectively forgets the feature information with a small contribution in the memory unit 𝑐 𝑖-1 according to the current input [ℎ ̅ 𝑡+𝑖-1 , 𝑠 𝑡+𝑖-1 , 𝑐̅ 𝑡+𝑖-1 ] . By multiplying the outputs of the memory unit 𝑐 𝑡+𝑖-1 and the forget gate 𝑓 𝑡+𝑖 , part of the memory information is forgotten.

2) LSTM selects important information from the input features, which is used to update the state cell:

𝑐̃𝑡 +𝑖 = 𝑡𝑎𝑛ℎ(𝑊 𝑐̃ℎ ̅ 𝑡+𝑖-1 + 𝑊 𝑐̃𝑠𝑡+𝑖-1 + 𝑊 𝑐̃𝑐 ̅ 𝑡+𝑖-1 + 𝑏 𝑐̃) (4.13) 𝑖 𝑡+𝑖 = 𝜎(𝑊 𝑖 ℎ ̅ 𝑡+𝑖-1 + 𝑊 𝑖 𝑥 𝑡+𝑖-1 + 𝑊 𝑖 𝑐̅ 𝑡+𝑖-1 + 𝑏 𝑖 ) (4.14) 𝑐 𝑡+𝑖 = 𝑐̅ 𝑡+𝑖 ′ + 𝑖 𝑡+𝑖 ∘ 𝑐̃𝑡 +𝑖 (4.15)
In the above equations, 𝑐̃𝑡 +𝑖 represents the initial feature used to update the information of the memory unit 𝑐 𝑖 ′ . The function of the input gate 𝑖 𝑡+𝑖 is mainly to assign different weight values to the elements in each dimension of 𝑐̃𝑡 +𝑖 and to select the important feature information for updating the memory unit 𝑐̅ 𝑡+𝑖 ′ .

3) Finally, the LSTM output is determined:

𝑜 𝑡+𝑖 = 𝜎(𝑊 𝑜 ℎ ̅ 𝑡+𝑖-1 + 𝑊 𝑜 𝑠 𝑡+𝑖-1 + 𝑊 𝑜 𝑐̅ 𝑡+𝑖-1 + 𝑏 𝑜 ) (4.16)
𝑠 𝑡+𝑖 = 𝑊 𝑠 (𝑜 𝑡+𝑖 ∘ 𝑡𝑎𝑛ℎ (𝑐̅ 𝑡+𝑖 )) (4.17)

The output gate 𝑜 𝑖 is based on the input [ℎ ̅ 𝑡+𝑖-1 , 𝑠 𝑡+𝑖-1 , 𝑐̅ 𝑡+𝑖-1 ] at the current time and selects some important feature information from the memory unit 𝑐̅ 𝑡+𝑖 to be output at the current time. The output of the LSTM is 𝑠 𝑡+𝑖 , and we input the results of the calculation into the dynamic spatiotemporal attention layer and fully connected layer to generate the predicted value.

Dynamic Spatiotemporal Attention Decoder

According to the above, ridesourcing demand is a spatiotemporal prediction problem; that is, the demand prediction at time 𝑡 + 𝑖 in the future is affected by a period of time in the past. The ridesourcing condition at a location is related to the previous observations of itself and its neighbors, and the correlations vary nonlinearly over the time steps. To model these properties, we design an attention mechanism to adaptively model the nonlinear correlations between different time steps, that is, dynamic spatiotemporal attention, as illustrated in Figure 4-3. Note that ridesourcing demand prediction is influenced by both the spatial dimension and time dimension. For example, a ridesourcing demand that occurs during the morning peak hours may affect the ridesourcing demand in the future, or a ridesourcing demand at a certain location may affect the ridesourcing demands of itself and its neighbors. Therefore, we consider both the spatial dimension and time dimension to measure the correlations between different time steps.

Specifically, the dynamic spatiotemporal attention at time step 𝑡 + 𝑖 of the decoding stage and the hidden state 𝑠 𝑡+𝑖 output by the LSTM layer of the decoder are first taken as inputs. The goal is then to derive the context vector 𝑐 𝑖 , which captures related historical spatiotemporal feature information to help predict the ridesourcing demand 𝑦 𝑡+𝑖 . Simply, an attentional hidden state 𝑠̃𝑡 +𝑖 is generated according to the hidden state 𝑠 𝑡+𝑖 and the context vector 𝑐 𝑡+𝑖 , and then the attentional vector 𝑠̃𝑡 +𝑖 is fed to the fully connected layer to generate the prediction values. We also add residual The idea of dynamic spatiotemporal attention is to consider all the historical spatiotemporal features of the encoder when deriving the context vector 𝑐 𝑡+𝑖 [START_REF] Cheng | GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction[END_REF]. The alignment weight 𝑎 𝑡+𝑖 , whose size equals the number of input time steps of the encoder, is derived by comparing the current hidden state 𝑠 𝑡+𝑖 with each spatiotemporal feature ℎ 𝑡-𝑗 . Formally, the correlation between time steps 𝑡 -𝑗 and 𝑡 + 𝑖 is defined as: A context vector 𝑐 𝑖 is then computed as a weighted sum of 𝑎 𝑡+𝑖 and all the historical spatiotemporal features, and the prediction process has been introduced above.

𝑎 𝑡+𝑖 (ℎ 𝑡-𝑗 ) = 𝑒𝑥𝑝(ℎ 𝑡-𝑗 ⊺ 𝑠 𝑡+𝑖 ) ∑ 𝑒𝑥𝑝(ℎ 𝑡-𝑗 ⊺ 𝑠 𝑡+𝑖 ) 𝑡 𝑗=𝑡-𝑟+1 ( 

Loss Function

In the O-STEDN model, a loss function is used to measure the degree of inconsistency between the predicted value 𝑦 ̂ and the real value 𝑦. The loss function is given in (4.22):

𝑙𝑜𝑠𝑠 = √ ∑ (𝑦 𝑖 -𝑦 ̂𝑖) 2 𝑛 𝑖=1 𝑛 + 𝜆 2 ‖𝑊‖ 2 2 (4.22)
where 𝑛 is the length of the predicted sequence, 𝑦 𝑖 denotes the observed value, 𝑦 ̂𝑖 is the predicted value, 𝜆 is the regularization parameter, and 𝑊 denotes all learnable parameters in the O-STEDN.

Experiments

Data Description

The study area, Chengdu, is divided into 162 census tracts based on administrative boundaries, which guarantees the integrity of the districts, as shown in Figure 45.

Ridesourcing order data are obtained from the DiDi platform through the DiDi GAIA Initiative (DiDi Chuxing, 2018b). The dataset includes the complete order data of DiDi Express and DiDi Premier Services in Chengdu, China, from November 1st to November 30th, 2016. The fields of the order dataset are the order ID, start timestamp, end timestamp, and pick-up and drop-off locations. We clean the data and remove outliers such as order data with travel times less than 120 s or greater than 7200 s. Then, 69 the ridesourcing demand for every 15 min of each census tract can be calculated. 

Baselines and Metrics

We compare our model with the following prediction methods:

HA: The HA model uses the average value of the historical data at the same time every day as the predicted value at the same time in the future prediction task (L. Liu et al., 2019).

ARIMA: This is a traditional time series prediction method that combines moving average and autoregressive components to model historical time series data (Williams & Hoel, 2003).

RNN:

This network is mainly used to analyze time series data and has achieved good performance in various research fields [START_REF] Liu | DeepVM: RNN-based vehicle mobility prediction to support intelligent vehicle applications[END_REF].

GRU: This is an extension of an RNN that introduces a gating mechanism to solve the problem of gradient disappearance and is widely used for complex time series prediction tasks, such as short-term wind speed interval prediction (C. Li et al., 2019).

LSTM:

This network can learn long-term dependencies by using a gating mechanism to store information; that is, it can be trained to store all relevant information to predict specific future results. LSTM is an advanced sequence learning model that has been used in research on demand forecasting tasks [START_REF] Kontou | Reducing ridesourcing empty vehicle travel with future travel demand prediction[END_REF]Xu et al., 2017).

DMVST-Net:

This network uses LSTM and CNN networks as feature extractors to model spatial and temporal relationships (Yao et al., 2018).

ST-MGCN:

This network encodes the non-Euclidean pairwise correlations among regions into multiple graphs and then uses an RNN and a GCN to model these correlations [START_REF] Geng | Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[END_REF].

GCN and RNN (GCN-RNN):

This combined approach uses a GCN and an RNN to model spatial and temporal relationships [START_REF] Lv | Traffic network resilience analysis based on the GCN-RNN prediction model[END_REF].

DTCNN:

This network contributes a novel dynamic transition-based GCN method that is effective for traffic demand prediction [START_REF] Du | Traffic demand prediction based on dynamic transition convolutional neural network[END_REF].

MLRNN: This network develops cluster-level and global-level prediction modules to extract intracluster and intercluster features, respectively (C. Zhang et al., 2021).

MultiConvLSTM: This approach uses the ConvLSTM network and considers temporal and spatial correlations to predict future travel demands and on-demand flows [START_REF] Chu | Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions[END_REF].

ST-ED-RMGC: This network uses RMGC to encode spatially dependent features, uses LSTM to encode temporal features, and finally uses RMGC as a decoder to predict the origin-destination ride-sourcing demand at the next moment [START_REF] Ke | Predicting origindestination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[END_REF].

To where 𝑇 is the test set size.

Experimental Settings

Training

The hyperparameters in our O-STEDN model are determined during the training process; that is, the best-performing model is selected according to the RMSE on the validation set. We manually specify the hyperparameter ranges of the learning rate {0.01, 0.005, 0.003, 0.001}, dropout rate {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, regularization parameter {0.1, 0.01, 0.001, 0.0001} and decay rate {0.99, 0.95, 0.90, 0.85}. For the O-STEDN model, we find that the following settings work well: the dropout is set to 0.5, the decay rate is set to 0.99, the regularization parameter is set to 0.0001 and the learning rate is set to 0.001. When using the comparison models, these settings still work well. We implement the O-STEDN in TensorFlow and train all models using the stochastic gradient descent (SGD) optimizer with a batch size of 32.

Evaluation

The 

Comparative results and discussions

Single step prediction

Table 4-2 lists the 120-15 min ridesourcing prediction performance of our proposed O-STEDN model and the baseline models. The performance of the HA and ARIMA is far inferior to that of other methods, which also reflects the difficulty of ridesourcing demand prediction. The MAEs are 1.674 and 1.159, respectively. The reason why the accuracies of the RNN, GRU and LSTM are better than those of the two traditional methods is that the former approaches have the advantage of extracting time series features and are good at associating input time series features. The MAEs are 0.931, 0.914, and 0.906, respectively. The prediction performance of DMVST-Net is inferior to that of the GCN-RNN, DTCNN and GCN-LSTM, which shows the shortcomings of using a CNN to extract discrete spatial features; that is, it is difficult to extract the spatial correlations of ridesourcing demand data among different regions.

The reason for the poor effect achieved by the ST-MGCN model based on the RNN-GCN may be that we use a single graph, that is, a regional position relationship graph, without considering the problem of regional similarity; second, in the process of extracting time series features, the influence of spatial factors is ignored. Therefore, the prediction performance of the GCN-RNN is significantly better than that of the ST-
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MGCN model based on an RNN and a GCN, which also verifies our conjecture regarding the poor prediction performance of the ST-MGCN. The performance of the DTCNN, MLRNN, and MultiConvLSTM models is relatively prominent among the baseline models, and the optimal MAE, RMSE, and R 2 values reach 0.863, 1.491, and 0.928, respectively. The disadvantages of MultiConvLSTM are that the model is too complex, a CNN is used as the basis for spatial feature extraction, and the training and inference times are extremely long, which is not suitable for practical applications. The GCN solves the problem faced by the CNN network; that is, it can effectively extract the spatial correlation features of ridesourcing demand data among discrete regions in non-Euclidean space. Therefore, among the baseline models, the DTCNN model based on a GCN and a GRU has the best prediction effect.

Our model takes the spatiotemporal correlation features of ridesourcing demand data among discrete regions, the improvement of the temporal and spatial feature extraction models, the residual connections used to prevent the loss of feature information, and the influence of historical ridesourcing demand data on the prediction periods into account. Therefore, the prediction performance of the GCN-LSTM, GCN-RLSTM-LSTM, GCN-RLSTM-LSTM-Attention, and O-STEDN models we proposed in this chapter is better than that of all baseline models. Moreover, the three metrics (MAE, RMSE, and R 2 ) have obvious scoring advantages: the MAEs are 0.867, 0.846, 0.807, and 0.794, respectively; the RMSEs are 1.467, 1.445, 1.420, and 1.409, respectively; the R 2 values are 0.930, 0.932, 0.935, and 0.936, respectively. Compared with the best performance among the baseline models, our proposed O-STEDN method exhibits relative improvements of 8.0% (MAE), 5.5% (RMSE), and 0.9% (R 2 ). 

Multi-step prediction

The existing demand forecasting research mainly focuses on single-step forecasting for the next time, which may not be sufficient to meet the needs of actual application scenarios. In the introduction section, we introduce the significance of demand forecasting, so the significance of multi-step demand forecasting is selfevident. Table 4-3 lists the multi-step ridesourcing demand predictions for multiple periods in the future. Due to the limitations of the baseline models, we choose several state-of-the-art models with better performance and suitability for multi-step prediction for the experimental comparison. We can see that for multi-step prediction tasks, our proposed O-STEDN model performs best compared with all baseline models. For the multi-step prediction task [120-45 min], compared with the optimal baseline model (DTCNN), the MAE is improved by 8.8%, the RMSE is improved by 8.1%, and the R 2 is improved by 1.3%. For the multi-step prediction task [120-90 min], compared with the optimal baseline model (DTCNN), the MAE is improved by 12.6%, the RMSE is improved by 11.0%, and the R 2 is improved by 2.0%. Although the difficulty of prediction continues to increase with the number of time steps, the error of our proposed O-STEDN model is still smaller than that of all baseline models, and the prediction results are satisfactory. 

Effect of Each Component

As shown in Table 4-2, we compare our proposed O-STEDN model and its variants, GCN-LSTM, GCN-RLSTM-LSTM, and GCN-RLSTM-LSTM-Attention, and we can obtain the following conclusions:

1) First, compared with the optimal baseline model (the DTCNN), GCN-LSTM has better prediction performance. The RMSE improvement is 1.6%, and the R 2 improvement is 0.2%. This shows that the prediction model combining a

GCN and LSTM has a better ability to extract spatiotemporal features than a GCN and a GRU.

2) Second, on the basis of GCN-LSTM, we replace the time series feature extractor LSTM in the encoder with RLSTM. As a result, the prediction performance of the model is greatly improved. Compared with DTCNN, the MAE improvement is 2.0%, the RMSE improvement is 3.1%, and the R 2 improvement is 0.4%. The results show that compared with LSTM, the advantage of using RLSTM to extract time series features is more obvious.

3) Third, based on the GCN-RLSTM-LSTM model, GCN-RLSTM-LSTM-Attention uses a global attention mechanism to associate the temporal and spatial features extracted from each moment of GCN-RLSTM with the current prediction value of the decoder. Compared to the DTCNN, the MAE improvement is 6.5%, the RMSE improvement is 4.8%, and the R 2 improvement is 0.8%. The results show that when paying attention to the correlations between the temporal and spatial features of the input data and the current prediction value, that is, considering the impact of historical data on the current prediction, the prediction performance of our proposed model is greatly improved. 

Effects of the GCN Model Parameters

To study the influence of the depth of the regional node in the GCN on the prediction results, we evaluate the O-STEDN model by changing the important hyperparameter k, that is, the number of layers k in the graph convolution. To select the best hyperparameter k, we conduct tests on three tasks: 120-15, 120-45, and 120-90 min. Table 4 shows the performance of the O-STEDN on the three tasks on the test will enable the O-STEDN model to capture more regional spatial correlation, but it will cause excessive model complexity and overfitting problems. In addition, we can also find that for a 120-15 min prediction task conducted in a short period of time, the error changes with increasing k, and the magnitude of the change is relatively small.

Then, for a 120-90 min prediction task conducted in a long period of time, the error increases sharply with increasing k. Combined with the results in Table 4, this also reflects the difficulty of the multi-step prediction task. However, compared with the baseline models, our proposed O-STEDN model still achieves satisfactory performance. This also proves the significance of our O-STEDN model and its value in practical future applications. 

Conclusions

To the best of our knowledge, this is the first time that multi-step ridesourcing demand prediction has been performed based on integral administrative census tracts at the city scale. In this chapter, we propose a new ridesourcing demand prediction framework, the O-STEDN, which implements a novel GCN-RLSTM-LSTM-Attention model. For the encoder layer, we use a combination of a GCN and an RLSTM network as the spatiotemporal feature extractor. The GCN overcomes the shortcomings of a traditional CNN and can deeply extract the spatial correlation features of discrete regions in non-Euclidean space. RLSTM can effectively extract and memorize timerelated features. For the decoder layer, we use an LSTM model and a dynamic spatiotemporal attention mechanism to associate historical spatiotemporal features with the current prediction. Furthermore, we add residual connections and layer 79 normalization tricks in both the encoder layer and the decoder layer to prevent the loss of feature information and internal covariate shift problems.

The experimental results show that the proposed framework outperforms state-ofthe-art models for both single-step demand prediction and multi-step prediction. For the single-step prediction task [120-15 min], the prediction performance is greatly improved. Specifically, the MAE is improved by 8%, the RMSE is improved by 5.5%, and the R 2 is improved by 0.9%, even compared with the optimal baseline model (DTCNN). For the multi-step prediction task [120-45 min], compared with the optimal baseline model (DTCNN), the MAE is improved by 8.8%, the RMSE is improved by 8.1%, and the R 2 is improved by 1.3%. For the multi-step prediction task [120-90 min], compared with the optimal baseline model (DTCNN), the MAE is improved by 12.6%, the RMSE is improved by 11.0%, and the R 2 is improved by 2.0%.

The proposed prediction framework can be applied not only to demand prediction problems but also to other spatiotemporal-related problems; it could provide an accurate reference for both transportation network companies and policy makers in advance. Transportation network companies can dispatch vehicles more effectively to improve the occupancy rate and decrease the travel cost of the whole system.

Governments can also dynamically manage traffic demand according to demand prediction. In the next chapter, we will further study how to optimize the ridesourcing system with shared autonomous vehicles.

Chapter 5 Optimizing ridesourcing system based on a shareability network HIGHLIGHTS

1) The percentage of cost savings can be increased from 1.22% up to 18.47%

2) The percentage of shared trips can be increased from 7.85% up to 90.69%

3) The percentage of time savings can reach 25.75% from 2.38%

4) The average delay can be reduced from 9.86 min to 4.76 min 5) Passengers wait less time on average

Introduction

Ridesourcing is an attractive option for many travelers who do not own a vehicle. However, there are some debates claiming that ridesourcing services result in an estimated 69 percent more climate pollution on average than the trips they displace (Union of Concerned Scientists, 2020). They are threatening the development of public transport services and triggering major market disruption in many countries around the world.

Ridesplitting, a new shared mobility service, is a more sustainable travel mode for improving traffic efficiency and reducing traffic congestion and air pollution problems. Policy makers have realized the benefits of ridesplitting services and encouraged ridesourcing companies to launch ridesplitting services for passengers.

The primary objective of this chapter is to explore the potential opportunity and evaluate the benefits of ridesplitting using an empirical ridesourcing dataset during rush hours in the city of Chengdu, China. More specifically, this chapter includes the following three tasks: First, we calculate the actual level of ridesplitting and analyze its current characteristics of ridesplitting. Second, we compare the potential of ridesplitting under three different objectives to evaluate the benefits of ridesplitting, namely, reduced fleet size, time savings, and cost savings. Third, we analyze the reasons for the gap between the potential of ridesplitting and the actual level of ridesplitting in the real world.

To our knowledge, most studies have replaced taxi services with ridesplitting services to explore the potential of ridesplitting services. However, taxi services are regarded as premium services. Passengers using taxi services are more concerned about the value of their time and privacy. Therefore, most taxi passengers are not willing to use ridesplitting services. To fill this gap, this chapter aims to evaluate the potential of ridesplitting services on a city scale using empirical ridesourcing data. The proposed ridesplitting service can not only mitigate air pollution but also take passenger delays into consideration to guarantee the ridesplitting service quality. The findings could help ridesourcing companies improve their existing ridesplitting services. Furthermore, this chapter can provide enlightening insights to policy makers to provide a better understanding of the potential of ridesplitting and its related environmental implications to support better planning of low-carbon transport and urban transport management.

The remainder of this chapter is organized as follows. Section 5.2 analyzes the characterization of the present ridesourcing services. A potential ridesplitting identification algorithm based on a shareability network is described in section 5.3. Section 5.4 analyzes the results in detail and further discusses the insights and recommendations on how to increase the adoption of ridesplitting services. Section 5.5 designs a new ridesourcing system with connected and autonomous vehicles based on blockchain for the future urban mobility. The final section 5.6 summarizes the contributions and interesting findings.

Data and variables

Trip Data

The trip data used in this chapter are from the DiDi GAIA Initiative, DiDi's open data project [START_REF] Chuxing | What does the GAIA Initiative provide in the first phase? Retrieved February 5th[END_REF]. The dataset contains the complete order data of DiDi Express and DiDi Premier, two of DiDi Chuxing's core ridesourcing services, in the city of Chengdu, China, from November 1-30, 2016. According to a previous study (W. Li et al., 2019) on this dataset, 13:00-15:00 is the rush hour for using ridesourcing services. This research only concentrates on rush hours. The extracted order dataset contains over 1.04 million trips, including fields such as OrderID, start and end timestamps, and pick-up and drop-off locations (sample data are shown in Table 5-1). 

Map Data

Data from www.openstreetmap.org has been used to reproduce the street network of Chengdu and the central city zone of Chengdu has been chosen as the research area;

see Figure 5-1. A network in which nodes are intersections and links are roads connecting those intersections has been built. The network contains 7,783 nodes and 13,087 links. We retain trips with durations of 1 minute to 120 min, thus discarding outliers. After the preprocessing and filtering phase, more than 97% of the trips are kept for further analysis. We match the pick-up and drop-off locations with the intersection nodes from the trip dataset. We compute the travel time between all origins and destinations using the average speed on road segments retrieved from Baidu Map.
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Definitions and Notations

The proposed model has the following assumptions, and the related notations are shown in Table 5-2. 1) All passengers in the ridesourcing data set are willing to choose a ridesplitting service.

2) All vehicles obey to the dispatching schedules completely.

3) More than 90% of ridesplitting trips consist of only two shared rides because of DiDi Chuxing's rule that a driver is only allowed to accept at most two ride requests simultaneously. In addition, the number of passengers for each shared ride is limited to no more than two. Therefore, it is reasonable to assume that at most two trips can be combined in modeling. 

Delay (Ti)

Delay for Ti (min)

Vdelay-Ti

Value of the delay (Ti)

Methodology

We build the model based on the shareability network derived from The Senseable City Laboratory of MIT [START_REF] Santi | Quantifying the benefits of vehicle pooling with shareability networks[END_REF]. We define three performance indicators, which are the percentages of shared trips, time savings and cost savings.

A hybrid iterative local search algorithm based on a variable neighborhood depth search algorithm (ILS-VND), which has the characteristics of fast calculation, good solution quality and high stability, outperforms other heuristic algorithms in relation to the maximum weight independent set problem [START_REF] Nogueira | A hybrid iterated local search heuristic for the maximum weight independent set problem[END_REF]. Therefore, ILS-VND is used to find the optimal potential ridesplitting solutions under each of the three objectives. We find the best potential ridesplitting solution of the three and quantify the gap between the actual level and potential opportunity. This chapter transforms the ridesplitting assignment problem into a maximum weight independent set problem and solves it with the ILS-VND algorithm. This method is effective in addressing the largescale dynamic ridesplitting assignment problem through real-time computation.

Model Description

Let S = (T, L) be the shareability network defined as follows. Node set T = {T1, … , Tn} corresponds to the set of all trips. If trip nodes Ti and Tj can be combined, the shared trip can be denoted as Ti,j, and we can add link L(Ti, j) to connect the two nodes. We define link set L = i, j∈{1,2…,n}L(Ti, j) as all feasible trips for ridesplitting.

Whether trips Ti and Tj can be combined or not depends on the spatial/temporal properties of the two trips and on an upper bound ∆. If the waiting time and delay time after ridesplitting are both less than the upper bound ∆ for passengers, this means that the pick-up times and drop-off times of the 2 trips after ridesplitting are within the given time window, as shown in Figure 5-2 below, and the 2 trips can be regarded as feasible for ridesplitting and be added to the link set. and Tj can be combined into Ti,j. Specifically, the constraints are as follows:

𝒕 𝒊 𝒔 ≤ 𝒕 𝒊 𝒐 ≤ 𝒕 𝒊 𝒔 + Δ (5.1) 𝒕 𝒊 𝒆 ≤ 𝒕 𝒊 𝒅 ≤ 𝒕 𝒊 𝒆 + Δ (5.2) 𝒕 𝒋 𝒔 ≤ 𝒕 𝒋 𝒐 ≤ 𝒕 𝒋 𝒔 + Δ (5.3) 𝒕 𝒋 𝒆 ≤ 𝒕 𝒋 𝒅 ≤ 𝒕 𝒋 𝒆 + Δ (5.4)
After deriving the link set L of combinable trips, the shareability network S = (T, L) forms. Given a shareability network S = (T, L), M is a subset of S. repeated node on either link of M, then M is said to be a match of S.

For example, given trip T = {T1, T2, T3, T4, T5, T6}, known (T1, T2), (T2, T3), (T1, T5), (T2, T6), (T2, T4), and (T5, T6) are feasible for ridesplitting. Then, shareability network S consists of 6 links: L= {L1, L2, L3, L4 L5, L6}={L(T1,2), L(T2,3) L(T1,5) L(T2,6) L(T2,4) L(T5,6)}, as shown in Figure 5-4. We can give relevant weights to the links according to the optimization objective. Therefore, (L ) i  , the weight of link {Ti, Tj} ∈ L, can be defined as follows:

(1) For the objective of maximizing the number of ridesplitting trips, the weight (L ) i  of each edge Li is defined as the number of trips, which is 2 in all cases in this chapter.

(L ) i  = 2

(5.5)

(2) For the objective of maximizing the total time of all trips, the weight (L ) i  of each edge Li is defined as the time saved by ridesplitting.

( )

( ) ( ) {1,2,...,n} , (L )= i i i i jj t T t T t T  +-  (5.6) 
(3) For the objective of maximizing the value saved by ridesplitting, the weight (L ) i  of each edge Li is defined as the value saved by ridesplitting. aved time(T )= t (T ) + t (T ) -t (T ) S

(5.8)

T 1 T 2 T 3 T 4 T 5 T 6 L 1 , W 1 L 2 , W 2 L 3 , W 3 L 4 , W 4 L 5 , W 5 L 6 , W 6 i,j i j i,j
aved distance(T )= S(T ) + S(T ) -S(T ) S

(5.9) Another step is the calculation of the value of the delay time experienced by passengers in Chengdu. [START_REF] Becker | A Theory of the Allocation of Time. The economic journal, vehicles national fuel consumption impacts: A data-rich approach[END_REF] uses the time allocation theory to estimate the value of time and proposes that the value of travel time equals the wage rate. Wardman (1998) states that the hourly wage rate can be used to determine the time value. When using the hourly wage rate method to estimate the value of travel time, it should be multiplied by the reduction factor  for revision since the travel time saved is usually not fully used for work. [START_REF] Miller | The value of time and the benefit of time saving: A literature synthesis and recommendations on values[END_REF] proposes a reduction factor close to 60 %. Small et al. (2012) proposes that the reduction factor can be taken as the interval value of 20% to 100%.

Delay (Ti,j) = Delay (Ti)+ Delay (Tj) = (𝑡 𝑖 𝑑 -𝑡 𝑖 𝑒 )+ (𝑡 𝑗 𝑑 -𝑡 𝑗 𝑒 ) (5.10) i 1 i j i,j 2 i j i, j j 3 
P3 = * Income T (5.12) where Income represents the per capita annual income and T represents the per capita working hours. factor  as 0.6. Thus, P3 = 0.307 RMB/minute.

i i j i,j i j i, j j ( ) 0.3*[t (T ) + t (T ) -t (T )] 1.7*[S(T ) + S(T ) -S(T )]-0. *( 307 + ) d e d e i i j t t t L t = - - +  (5.13)
Ridesourcing companies such as DiDi and Uber must respond to trip requests in real time. Trip requests in a short time window can be known, and we set this window as δ. Passengers need to know whether they will get a shared ride within time window δ. For trips 𝑇 𝑖 and 𝑇 𝑗 , only when |𝑡 𝑖 𝑠 -𝑡 𝑗 𝑠 | ≤ δ can we connect the two trips as a feasible ridesplitting trip. Obviously, if we set a larger δ, there are more sharing opportunities for trips. However, δ should be reasonably small to offer passengers timely service.

Therefore, we set δ =1 minute in the model.

Algorithm of the Shareability Network

M with the { (L )} i Max   is the maximum weighted matching of the shareability network S, denoted as Mmax, which corresponds to the optimal ridesplitting solution.

The maximum weight matching problem of the shareability network can be solved efficiently by converting the shareability network into the intersection graph. Node Vi of the intersection graph corresponds to link Li of the shareability network. We add a link if two nodes contain the same trip. The weight of each node w(Vi) in the intersection graph equals the weight of the corresponding link w (Li). R is a subset of S'. If there is no link between two arbitrary nodes of R, R is said to be an independent set of the intersection graph. The R with the

{ (V )} i Max  
is the maximum weight independent set of the intersection graph S', denoted as Rmax. Obviously, Rmax equals the corresponding Mmax. We can transform the shareability network into an intersection graph to solve the maximum weighted matching problem efficiently, as shown in We add disturbance to the local optimal solution obtained by local search to avoid falling into the local optima. The current optimal solution is determined by the total weight of the selected set until the maximum number of iterations is reached. Based on the ridesplitting trip identification method of a previous study (Li et al., 2019) using this dataset, single and shared rides can be distinguished to obtain the actual current level of DiDi ridesplitting services. As shown in Table 5-5, it can be found that only 7.85% of total ride orders are shared orders. The hours saved by ridesplitting account for 2.4% of the total ride hours. The percentage of cost savings is 1.22%. All of these values are fairly low. In addition, the average delay of actual ridesplitting is 9.86 minutes. 

Potential of Ridesplitting

Under the three different objectives, as the maximum tolerable delay increases, the optimal shared trips, time savings and cost savings continue to increase due to more opportunities for ridesplitting. We evaluate the performances of the three different objectives based on three indicators: shared trips, time savings and cost savings. For the indicator of shared trips, there is no doubt that the objective of maximizing the number of shared trips has the best performance. As shown in Figure 5-6, the potential opportunity can reach 91.37% with an average delay of 7.27 minutes, while the actual figure is only 7.85%. There is almost no gap between the objectives of maximizing the shared trips and maximizing the cost savings. Under the objective of maximizing cost savings, the percentage of shared trips can reach 90.69%. Under the objective of maximizing the time savings, the percentage of shared trips is a little less than that under the other two objectives, which can reach 86.99%.

For the indicator of time savings, the percentage can reach 25.77% with an average delay of 5.62 minutes under the objective of maximizing the time savings, see Figure 567. By contrast, the actual figure is only 2.38%. The percentages of time savings under the objectives of maximizing the time savings and maximizing the cost savings are basically the same. This is because the travel time is also taken into consideration under the objective of maximizing the cost savings, where the percentage of time savings can reach 25.75%. Under the objective of maximizing shared trips, the percentage of time savings is 13.5%, much less than that under the other two objectives.

In addition, the percentage of time savings goes down slightly when the maximum tolerable delay is more than 11 minutes. This is because it only considers the number of shared trips rather than the time savings, which can result in longer detours. between 10% and 15% under the objective of maximizing the time savings. This is because there is no consideration of the delay time of passengers, which can also impact the cost savings. Under the objective of maximizing shared trips, the percentage of cost savings can reach 9.16%. Furthermore, the percentage of cost savings goes down gradually when the maximum tolerable delay is more than 7 minutes. This is because it only considers the number of shared trips rather than the time savings and delay time of passengers, which can bring about larger costs.

As shown in Table 5-6, the average delay increases with the increase of the maximum tolerable delay. When the maximum tolerable delay increases to 15 minutes, the average delay is 4.76 minutes under the objective of maximizing the cost savings, while the average delay reaches 7.27 minutes and 5.62 minutes under the objectives of maximizing the shared trips and the time savings, respectively. Obviously, the average delays of the potential ridesplitting solutions under the three objectives are all lower than the delay of 9.86 minutes in the real world. Therefore, it can be found that passengers can wait for less time on average when using the ridesplitting algorithm proposed in this chapter. Furthermore, the average delay under the objective of maximizing the cost savings is the lowest of the three objectives. 

Discussion

Benefits

To evaluate the potential benefits of ridesplitting, we compare the potential of ridesplitting under three objectives with the actual level. We summarize and discuss the main findings in this section.

(i) Ridesplitting has great potential to mitigate congestion and air pollution: under the objective of maximizing cost savings, the percentage of potential shared trips is 90.69%, while the actual scale is 7.85%. The required fleet size can also be reduced considerably by ridesplitting because two shared trips can be served by a single vehicle instead of two vehicles. Therefore, shared trips can be used to reduce the required fleet size to mitigate traffic congestion for society. This also benefits passengers by enhancing their mobility. [START_REF] Ke | Hexagonbased convolutional neural network for supply-demand forecasting of ride-sourcing services[END_REF] found that ridesplitting in on-demand services can lead to a reduction of 12,327 vehicles in Hangzhou in the future, representing nearly 0.53% of all vehicle ownership in Hangzhou. Furthermore, the potential time savings afforded by ridesplitting can reach 25.75%, whereas this figure is 2.38% in the real world. Sperling (2018) stated that pooling to fill the empty seats in all vehicles is the most important strategy and innovation for achieving sustainable transportation.

(ii) Maximum tolerable delay is a significantly important indicator to maximize benefits. With the increase of the maximum tolerable delay, the percentages of shared trips, time savings and cost savings increase because of there being more opportunities for ridesplitting. However, the average delays also increase due to the increase of maximum tolerable delay. Therefore, trade-off solutions should be proposed to avoid overly long delays and guarantee the travel time reliability for passengers. Specifically, under the objective of maximizing cost savings, the cost savings rise significantly before the maximum tolerable delay increases to 12 minutes. The percentage of cost savings basically maintains the same value when the maximum tolerable delay is more than 12 minutes. Therefore, policy makers and on-demand ridesplitting companies can consider the marginal benefit when setting the maximum delay in matching and routing algorithms.

(iii) According to the results of the above three indicators, it can be found that the objective of maximizing the cost savings has better outcomes than the objectives of maximizing the shared trips or time savings. This is because maximizing the cost savings takes into account not only the value of time savings and saved vehicle miles but also the value of passenger delays. From the perspective of the whole system, we want to minimize the total time and travel distance of all trips. However, from the perspective of individual passengers, the optimal solution for the whole society may not necessarily be optimal for themselves, since the travel time does not include delays caused by detours. This objective also takes the value of the delay experienced by individual passengers into consideration to guarantee the rights of passengers when using the ridesplitting service. Therefore, the objective is more reasonable than the other two objectives.

Recommendations

Upon exploring the actual level and potential of ridesplitting during rush hours, it can be found that there is a large gap between the actual level and potential opportunity.

Specific strategies are recommended for ridesplitting companies and policy makers to improve the present ridesplitting service, as follows:

• Ridesplitting companies (e.g., Didi Chuxing) should improve matching and routing algorithms to reduce the extra delays and improve the travel time reliability of the ridesplitting service.

• Ridesplitting companies should establish credit rating systems for both passengers and drivers to discourage tardy behavior. Then the ridesplitting system can operate more efficiently and the travel time reliability can also be improved.

• Ridesplitting companies should subsidize drivers and passengers proportionately to improve their enthusiasm for and participation in ridesplitting.

Additionally, transportation management agencies should provide more policy incentives to promote the use of ridesplitting, such as high-occupancy vehicle lanes and waivers for road fees and parking fees.

The design of new ridesourcing system for the future deployment of connected and autonomous vehicles

In this section, we extensively design the new ridesourcing system for the future deployment of CAVs. It should be noted that it is an initial design in anticipation of applying the previous models and solutions to CAVs. The characterization of shared mobility system reported here is fully representative of an autonomous driving scenario where human operation of vehicles is not necessary, such as constraints on driver availability and maximum operating hours. With the development of CAVs, the research results will be closer to future trends. We assume that all vehicles obey to the dispatching schedules completely in the proposed model. Driver compliance rate may be different under human-driven vehicles in the reality at present, which illustrates that there is still a lot of room for optimization of current shared mobility services. At the same time, Future urban mobility is envisioned to be reshaped by the emerging CAVs and shared mobility services. Therefore, it is meaningful to design a shared mobility system for the future deployment of connected and autonomous vehicles in urban areas.

Blockchain provides technical conditions that can improve the efficiency and the safety of the shared mobility system. Smart contract makes it possible to finish and record a transaction for CAVs. We propose a ridesourcing system with CAVS based on the blockchain for the future mobility, which has four key components: the car drivers and SAVs, the user-oriented platform (UOP), the location-based service (LBS) and the blockchain system, shown in the Figure 56789. 

A. Users and SAVs

(i) Users: everyone that downloads the public and private key generator from the UOP platform is already a member of our system. (ii) SAVs: every SAV should have their unique non-fungible tokens to distinguish themselves.

B. The user-oriented platform (UOP)

(i) Authentication: All the identities would be based on public keys and private keys. In order for the blockchain to perform authentication, users use public keys to enter the system. A private key works to protect every transaction's security. (ii)

Permission and different tokens: The UOP platform will check every user's permission when they submit any requests. After checking a user's permission, the platform grants different tokens to the user. For example, when a user wants to use the SAV, the UOP platform will check this member's permission and whether the SAV is in use. If the request is successful, the SAV's token will be handed over to this user, which represents that the user has the usufruct of the car.

C. The location-based service (LBS)

Ultra-wide band (UWB) wireless communication technology combined with GPS is recommended to be used to ensure the car's positioning data. First, the SAVs will get the current GPS position information through the Robot Operating System. Then, according to the design of the UWB signal, it will analyse the accurate positioning information, especially when indoors.

D. Blockchain system

Blockchain is a decentralized database that integrates and applies cutting-edge computer technologies such as point-to-point transmission, encryption algorithms, consensus mechanisms, and distributed data storage. In a narrow sense, blockchain is an unalterable and unforgeable distributed ledger guaranteed by cryptography, which forms a chain data structure by sequentially connecting data blocks in chronological order. Broadly speaking, blockchain is a new distributed infrastructure and computing paradigm, which is based on blockchain data structures to verify and store data.

The operation procedures of key components of the ridesourcing system with CAVs based on the blockchain:

Step1: Optimal matching based on the proposed model in this chapter 1. The user sends a driving request to use a SAV.

2. The UOP service makes the SAV run by using a signal.

3. The SAV sends different kinds of data to the blockchain net under the LBS.

4. After optimal computation, the UOP will send the SAV to the place requested by the user.

Step2: Optimal rescheduling of the empty SAVs 1. The area could be divided into hot zones and cold zone based on the proposed predictive demand in chapter 4.

2. The empty SAVs are dispatched to the proper zones to improve the efficiency.

3. The rescheduled SAVs updates the data to the blockchain net under the LBS.

To ensure that the car's situation can be seen in the system and keep the data valid, all the data will be stored both in the blockchain net and UOP database. It should be noted that this is an initial design for the future deployment of CAVs, which need further research about the specific details.

Conclusions

This chapter aims to improve the ridesplitting service during rush hours using empirical ridesourcing data provided by DiDi Chuxing, which contains complete datasets on ridesourcing orders in the city of Chengdu, China. A ridesplitting trip identification algorithm based on a shareability network is developed to quantify the potential of ridesplitting. We analyze shared trips, time savings and cost savings under three objectives. Furthermore, we evaluate the gap between the potential of ridesplitting and the actual level of ridesplitting. Besides, we make an initial design of the shared mobility system for the future deployment of CAVs. The main findings are as follows:

The percentage of potential cost savings can reach 18.47% with an average delay of 4.76 minutes, whereas the actual percentage is 1.22% with an average delay of 9.86 minutes. Passengers can wait less time on average when using the proposed ridesplitting algorithm. The percentage of shared trips can be increased from 7.85% to 90.69%, and the percentage of time savings can reach 25.75% from 2.38%.

To our knowledge, this is one of the first investigations of the gap between the actual and the potential of ridesplitting on a city scale. The findings of this chapter can help reveal the great potential of ridesplitting. The quantitative benefits could encourage governments to take more action to improve the present ridesplitting services such as by providing high-occupancy vehicle lanes and waivers for road fees and parking fees. The comparative evaluation between the potential and actual level of ridesplitting provides policy implications for improving existing ridesplitting services.

The ridesplitting companies should establish credit rating systems to improve the efficiency of ridesplitting services. Furthermore, the maximum tolerable delay should be set properly for policy makers to obtain more benefits for low-carbon urban transport and guarantee the ridesplitting service quality at the same time.

The characterization of shared mobility system reported in this study is fully representative of an autonomous driving scenario where human operation of vehicles is not necessary, such as constraints on driver availability and maximum operating hours. At the same time, Future urban mobility is envisioned to be reshaped by the emerging CAVs and shared mobility services. Therefore, the research results will be closer to future trends. This chapter makes the initial investigation on the potential of CAVs on ridesplitting services in perfect condition. In the next chapter, we will explore the impacts of cyberattacks on CAVs in adverse condition. [START_REF] Li | A survey of traffic control with vehicular communications[END_REF][START_REF] Rios-Torres | A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps[END_REF]Sukuvaara & Nurmi, 2009;[START_REF] Van Arem | The impact of cooperative adaptive cruise control on traffic-flow characteristics[END_REF][START_REF] Zhao | Simulation framework for vehicle platooning and carfollowing behaviors under connected-vehicle environment[END_REF]. However, with the help of diverse and advanced communication technology, the "intelligent" information exchange between vehicles and the surrounding environment/world is realized all the time. So, such an open-access communication environment system increases the risk of vehicles being exposed to cyberattacks, which is an urgent and 101 critical challenge to be solved.

Although some studies investigated the impact of cyberattacks and put forward the corresponding strategies, there are two important issues to be addressed: firstly, it's an important problem to build a vehicle dynamics model for CAVs in a mixed traffic flow considering cyberattacks. Secondly, some of the existing cyberattacks response strategies are formulated from the perspective of intrusion detection, privacy protection, etc., so when the cyberattacks have reached the vehicle level and produced negative effects, it will be an urgent problem to formulate the control strategy from the perspective of vehicle dynamics to resist the harmful threat brought by the cyberattacks.

To 

Cyberattacks types and vehicle types

According to different research needs, previous scholars have made different classifications of cyberattacks [START_REF] Cui | A review on safety failures, security attacks, and available countermeasures for autonomous vehicles[END_REF][START_REF] Khattak | Investigating cybersecurity issues in active traffic management systems[END_REF][START_REF] Raya | Securing vehicular ad hoc networks[END_REF][START_REF] Zeadally | Vehicular ad hoc networks (VANETS): status, results, and challenges[END_REF]. Considering that we only evaluate the impact of cyberattacks on traffic flow from the perspective of vehicle dynamics, we summarize the cyberattacks as affecting the vehicle's position, velocity and acceleration as shown in Table 6-1. Besides, we classify vehicles into small vehicles, medium vehicles and large vehicles according to the vehicle length. Referring to the characteristic description of different vehicle types in the existing literature [START_REF] Liu | Modeling and simulation of the car-truck heterogeneous traffic flow based on a nonlinear car-following model[END_REF][START_REF] Ngoduy | Effect of the car-following combinations on the instability of heterogeneous traffic flow[END_REF] we make reasonable assumption that the larger the vehicle is, the larger the safety headway is, and the smaller the maximum acceleration, maximum deceleration and maximum velocity are. ( )
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The robust and resilient control strategy (RRCS) against cyberattacks

In order to mitigate and resist the harmful impact of cyberattacks on traffic flow, an acceleration control switch is designed as the RRCS against cyberattacks in this section. The specific control form is as follows: The core idea of this strategy mainly has two objectives. The first is to keep the safe distance between vehicles under cyberattacks, and the second is to make the vehicle dynamically adjust the acceleration and gradually restore the stability of the traffic flow. When the vehicle returns to the steady-state position, its velocity shall also reach the steady-state to realize seamless switching with IDM controller. Taking
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Controller-A as an example, its design motivation and design steps are as follows.

First of all, we aim that the vehicles affected by the cyberattacks will return to the equilibrium position as soon as possible after implementing the strategy. At this time, the vehicle velocity is greater steady-state velocity, and the headway is less than the steady-state headway. Therefore, from the perspective of kinematics, the vehicle needs to decelerate first and then accelerate, resulting in the displacement difference with the steady-state, so as to achieve the established steady-state goal, in which a velocity node In order to analyze the impact of cyberattacks on the evolution of mixed traffic flow and the feasibility of RRCS applying, this section selects some typical scenarios according to the previous classification of cyberattacks for numerical simulations, and makes a comparative analysis of the evolution results with and without RRCS. We set up ten vehicles to form a CAV platoon. The number of large vehicles, medium vehicles and small vehicles can be controlled according to the set proportion, and the vehicle distribution is randomly generated. The vehicle type ratio we set in this part of the simulation is 2 large vehicles, 2 medium vehicles and 6 small vehicles. The initial velocity of all vehicles is 12 m/s, and the same type of vehicle has the same initial headway. Table 6-2 summarizes the parameters of three kinds of vehicle adopted from the existing research works and makes appropriate adjustments (Sharma et al., 2019;[START_REF] Wang | Modeling and analyzing cyberattack effects on connected automated vehicular platoons[END_REF]Xie et al., 2018). It is worth noting that IDM variables are regarded as constants in this chapter for the consideration of sensitivity analysis of cyberattack 109 related parameters in the section 6.4.2. , and the velocity information transmitted to the fifth vehicle is tampered. This velocity value is put to 1.5 times the actual velocity of the current vehicle (4 th vehicle). That is to say, the rear vehicle overestimates the velocity of the front car. , the cyberattack ended and the traffic flow slowly returned to the steady state. and show the evolution of velocity and headway respectively, which corresponds to . What is depicted in Figure 6-3(d)-(f) is mixed traffic flow evolution diagrams under the overestimated velocity with RRCS. We can clearly find that in the case of cyberattacks, the vehicle still keeps a certain distance from the vehicle in front, which ensures the driving safety. It can also be seen from the Figure 6-3(f) that the headway (platoon state with inter-distances and vehicle positioning from the leader) has been kept in a small range under cyberattack, and the platoon can still restore stability under this control strategy when attacks disappear, which proves that this strategy can play an effective role in the process of resistance overestimate velocity attack. 

Underestimate velocity

Contrary to overestimating velocity, here, the velocity information of the fourth vehicle is tampered with a lower velocity (40% of the actual value). This attack is applied in the time t=40 s and then transmitted to the rear vehicle, resulting in the underestimation of the velocity of the rear vehicle to the front vehicle, which lasts 20 seconds and ends in t=60 s. The distribution of randomly generated vehicles is that the sixth and seventh vehicles are medium vehicles, and the ninth and last vehicle are large vehicles. Figure 6-4(a) shows the running track of the CAV platoon. The fifth vehicle mistakenly continues to decelerate, resulting in a large headway, which can also be directly reflected in and .

Comparatively speaking, the impact of this kind of cyberattack is less critical than that of overestimating velocity attack, which will not cause vehicle collision, but it will produce unnecessary vehicle spacing, which leads to the loss and waste of road resources. 

Overestimate position

The cyberattack set here is that the position information transmitted to the rear vehicle by the third vehicle is 15 meters further than the actual position, which causes the rear vehicle to overestimate the position of the front vehicle, and the attack lasts for 20 seconds, starting from the t=40 s to t=60 s. 6-6(d) shows that the fourth vehicle is a medium-sized vehicle, and the wave line with minimal amplitude means the process of the vehicle resisting the cyberattack under the influence of the control strategy. In the process of the application of the RRCS, the velocity appears more frequent acceleration and deceleration fluctuations, but it can ensure that under the influence of cyberattacks, the headway can be ensured in a stable and safe range, which can be revealed from Figure 6-6(e) and .

Replay messages attack-Replay old acceleration

After randomly generating a platoon of three types of vehicles, we make all vehicles start to drive at a uniform constant speed of 12 m/s. At under the influence of replay acceleration attacks, the fifth vehicle will not always approach the front vehicle or even rear end, but still maintain a suitable headway, and under this acceleration control strategy, the vehicle can return to the steady velocity and steady headway, showing the superiority of the RRCS.

Collusion attack

Overestimate the velocity of two different vehicles simultaneously (Type I)

The actual scenario corresponding to this part is that the attacker forges messages from multiple vehicles at the same time to mislead the subject vehicle. Firstly, the first kind of collusion attack (Type I) means that the velocity information of two different vehicles is tampered with simultaneously. The specific setting here is that the velocity messages issued by the third vehicle and the seventh vehicle from t=40 s to t=60 s are tampered with 1.5 times of the actual velocity respectively, so the network information received by the fourth vehicle and the eighth vehicle are wrong. 

Sensitivity analysis for RRCS

In order to study the effect of RRCS on traffic flow stabilization when vehicles are subjected to cyberattacks, we observe and analyze the distribution of headway of all vehicles with or without RRCS over time. It is worth noting that considering the different steady-state headway of different vehicle types, it is unreasonable to directly calculate the variance of all headway at all times for analysis. Therefore, we first calculate the deviation between the headway of all vehicles at all times and their own In addition, the more prominent and interesting findings are as follows: first, in the cyberattack scenario with overestimated position information, in the case of 100 different traffic flow compositions randomly generated, RRCS will play a negative role in coping with cyberattack in a few cases; Second, the effect of RRCS in the attack scenario of underestimating velocity information and underestimating position information is better than the other two scenarios of overestimating vehicle information.
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Overall, the above four figures reflect the positive role of RRCS proposed in this chapter in dealing with the cyberattack type of bogus messages, that is, RRCS can resist the damage of cyberattack to the stability of traffic flow and help the traffic flow develop in a stable direction. Secondly, we discuss the impact of RRCS on traffic flow stability under cyberattack scenarios of replay old acceleration information. The box diagram on the left in Figure 6-10(e) shows the variance distribution of headway deviation without RRCS, and its upper quartile and median are 28.42 and 24.76 respectively, while the box diagram on the right is obtained after RRCS plays a role when the vehicle platoon is attacked by the network, and its upper quartile and median are reduced to 25.42 and 20.13 respectively. Although the improvement effect is not very significant in terms of variance distribution, it also means that RRCS can also play a favorable role in resisting the cyberattack of replay old acceleration and promote the stability of the platoon. Here, we set the composition of the platoon as two large vehicles, two medium vehicles and six small vehicles, and the vehicle distribution is randomly formed. One-way Analysis of Variance (ANOVA) was carried out to further test whether there is significant difference in the variance distribution of headway deviation with or without RRCS as shown in the Table 6- • The threat of cyberattacks to CAV mixed traffic flow is significant, and the stability and security of the CAV platoon are adversely affected;

The cyberattack scenarios corresponding to

• Different forms of cyberattacks will cause different forms and different degrees of harmful effects. For example, vehicles will suddenly accelerate or brake, resulting in too small or too large headways between vehicles, and may even lead to vehicle collisions;

• Collusive attacks have the greatest adverse impact on the CAV platoon, as they involve multiple vehicle attacks;

• The RRCS proposed in this chapter is feasible. It can not only dynamically switch the acceleration control strategy when the vehicle is under cyberattacks, so as to maintain a safe and appropriate headway, but also ensure that the CAV platoon can gradually return to a stable state after being attacked. improve their ridesourcing services but also help policy makers implement traffic demand management measures dynamically. Ridesourcing demand prediction is the first step for the shared mobility system to match the demand and supply and dispatch shared autonomous vehicles appropriately. This capability will be very useful for an optimal dispatching of automated/autonomous vehicles.

3) Domain 3: Ridesourcing system

Research topic: Optimizing ridesourcing system based on a shareability network Ridesourcing services play a crucial role in metropolitan transportation systems and aggravate urban traffic congestion and air pollution. Ridesplitting is one possible way to reduce these adverse effects and improve the transport efficiency, especially during rush hours. We explore the potential of ridesplitting during peak hours using empirical ridesourcing data provided by DiDi Chuxing, which contains complete datasets of ridesourcing orders in the city of Chengdu, China. A ridesplitting trip identification algorithm based on a shareability network is developed to quantify the potential of ridesplitting. Then, we evaluate the gap between the potential and actual scales of ridesplitting. The results show that the percentage of potential cost savings can reach 18.47% with an average delay of 4.76 minutes, whereas the actual percentage is 1.22% with an average delay of 9.86 minutes. The percentage of shared trips can be increased from 7.85% to 90.69%, and the percentage of time savings can reach 25.75% from 2.38%. This is the first investigation of the gap between the actual level and the potential of ridesplitting on a city scale. The proposed ridesplitting algorithm can not only bring benefits on a city level but also take passenger delays into consideration.

The quantitative benefits could encourage transportation management agencies and transportation network companies to develop sensible policies to improve the existing ridesplitting services. This chapter could be seen as a work which explores the potential of connected and autonomous vehicles on ridesourcing services in perfect condition.

4) Domain 4: CAVs technologies

Research topic: Proposing a resilient and robust control strategy for connected and autonomous vehicles to resist the threat of cyber-attacks CAVs present significant potentials for improving road safety and mitigating traffic congestion for the future mobility system. However, cooperative driving vehicles are more vulnerable to cyberattacks when communicating with each other, which will introduce a new threat to the transportation system. In order to guarantee safety aspects, it is also necessary to ensure a high level of information quality for CAV.

To the best of our knowledge, this is one of the first investigations on the impacts of 

Perspectives

The perspectives for the shared mobility services involving the deployment of CAVs can be summarized as follows: This study uses the GBDT model to explore the nonlinear relationship between the built environment features and ridesplitting ratio, which can provide a more reasonable explanations without hypothesizing a prior function. However, this study has some limitations, which could be improved by further research in the future. In this study, we use ridesourcing data for only one city and only one month. The proposed method can be easily applied to other cities. We need more data from other cities and other time durations to compare and validate the relationship between the features of the built environment and the ridesplitting ratio. Furthermore, we consider only the effects of the built environment features, demographic factors and travel time on ridesplitting, while more travel impedance variables such as delays and detours, travel behaviors over a week (weekdays and weekends), and travel behaviors during one day (peak and nonpeak hours), may also have impacts on the ridesplitting ratio; therefore, these variables need to be explored. In addition, we divide Chengdu into 162 census tracts based on the administrative boundaries. We can investigate the results of the different scaling cells to explore the impacts of the scaling method. This study uses the modeling method to explore the relationship between ridesplitting and built environment. It should be noted that there are some qualitative approaches, such as deductive and inductive, which could also be used for research on the built environment.

Other research directions in this domain: R5G, connected infrastructures, road signs and road markings, adaptive infrastructures, etc.

It is worth exploring that the safety and efficiency impacts on CAVs of connected and adaptive infrastructures, such as communication facilities (R5G) and road infrastructures (road signs, road markings). It is also recommended that the impacts on pedestrians and conventional human-driven vehicles of connected and adaptive infrastructures.

Another study could be to identify the traffic bottlenecks due to the infrastructure and to propose adapted or new infrastructure allowing an efficient ridesourcing with connected and autonomous vehicles. This remark lead to the following research direction about R5G and new infrastructure concepts like LOSAD (Level Of Service for Automated Driving) and ISAD (Infrastructure Services for Autonomous Driving). There are still some directions which could be further explored in the future: human factors involved in the shared mobility services with CAVs such as personalized preferences of users. It is worth considering how to guarantee the equity of shared mobility services with CAVs such as elderly or disabled people.

3) Domain 3: Ridesourcing system

Research perspectives in the proposed topic: Optimizing ridesourcing system based on a shareability network with connected and autonomous vehicles There are some limitations to the current study, which can motivate a few future research directions. First, it assumes that all the passengers using the ridesourcing service are willing to use a ridesplitting service. In fact, the percentage of passengers who choose ridesplitting services is related to the quality of the ridesplitting service such as the delay time. Second, a constant speed is used to compute the travel time.

The speed should be dynamic according to the road segments and time sequences in a follow-up study. Finally, the density of vehicles can also impact the results. The proposed ridesplitting algorithm can be used in different cities to make a comparison.

Other research directions in this domain: MaaS (Mobility as a Service), incentive mechanisms, optimization of the system, connected and cooperative systems, dispatching strategies, etc.

It is worth exploring the MaaS framework, integration the ridesourcing service using CAVs with the public transportation services. Ridesourcing services with CAVS will increase the number of trips for its convenience in the long run. It is more energyefficient for integrating the ridesourcing services using CAVs with the subway., which can help build a low-carbon transportation. It is also meaningful to explore incentive mechanism for shared mobility vehicles rather than private and conventional vehicles, such as high-occupancy vehicle lanes and waivers for road fees and parking fees.

4) Domain 4: CAVs technologies

Research perspectives in the proposed topic: Proposing a resilient and robust control strategy for connected and autonomous vehicles to resist the threat of cyber-attacks Of course, there are still some deficiencies in this research part and the following aspects could be further explored in the future: First, how cyberattack impacts the travel demand, traffic efficiency and energy consumption of the shared mobility system would be explored in the next stage. Secondly, there are common lane changing and overtaking behaviors in real traffic scenarios, which should be considered in the vehicle dynamics model to better describe the characteristics of traffic flow. Thirdly, some parameters like safe headway could vary rather than a fixed value, which will help to improve the universality and persuasion of the model and strategy. Last but not least, more sensor data could be considered such as LIDAR and camera. In this way it could be possible to merge the proposed approach (RRCS) with the perception outputs and a risk assessment system.

Other research directions in this domain: autonomous/automated vehicles, sensors and environment perception, path planning and copilot, operating safety, mixed traffic management, etc.

There are several more directions that can be explored for further study. It is worth exploring the path planning strategy for shared mobility services with electric CAVs.

How to set the location and number of charging piles is really an interesting research direction. It is also meaningful to design a feasible shared mobility services with CAVs based on the blockchain to improve the efficiency and safety of the whole system.
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 11612 Figure 1-1: Classification of shared mobility [Source: modified from (Shaheen et al., 2015)]

[

  Source: (Audenhove et al., 2020)] Automation Campaign At present, intelligent vehicles have become an important strategic direction for the transformation and upgrading of the global automobile industry. Countries have accelerated their strategic deployment and promoted the development of the intelligent vehicles. In the United States, the government has improved the environment for the development of the intelligent and connected vehicles (ICV) industry by continuously strengthening strategic planning, accelerating testing and application, and other measures. In January 2021, the US Department of Transportation released the "Comprehensive Plan for Autonomous Vehicles" to further clarify the vision and goals of realizing autonomous vehicles. In April 2020, the United States released the "ITS Strategy 2020~2025". More than 30 states in the United States have passed the revision of policies and regulations to accelerate testing and demonstration. Among them, California, Arizona and other places actively promote the exploration of commercial applications. Michigan plans to build the first 40-mile-long road between Detroit and Ann Arbor exclusively for connected and autonomous vehicles. The European Union (EU) promotes EU-level consensus and cross-industry collaboration about intelligent vehicles through strategic planning, technology roadmaps, and support for innovative research projects. European countries have adopted the revision of policies and regulations to promote the commercial application of L3 intelligent driving. In April 2021, the UK completed the Compliance with the new automated lane keeping systems (ALKS) technical consultation, launched the revision of the Roads Act, and promoted the commercial application of the ALKS function in the UK by the end of 2021. In May 2021, the German Bundestag and the Bundesrat successively passed the "Autonomous Driving Law", allowing L4-level autonomous vehicles to operate on German public roads in 2022. In July 2021, France promulgated the autonomous driving decree to establish a complete regulatory framework for the deployment of autonomous vehicles, and hopes to take the lead in promoting the application of ALKS by the end of 2021 (National ICV & China SAE, 2021).
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 13 Figure 1-3 A diagram illustration of shared mobility system with CAVs [Source: modified from (Gruyer et al., 2021) in Gustave Eiffel University]

:

  Domain 1: City infrastructures Research question 1: What are the factors which influence the ridesplitting service? Research objective 1: Exploring nonlinear effects of the built environment on ridesplitting service Domain 2: Users Research question 2: How to improve the ridesourcing demand prediction using artificial intelligent algorithms? Research objective 2: Improving the demand prediction of ridesourcing services with an Optimized Spatiotemporal Encoder-Decoder Neural Network Domain 3: Ridesourcing system Research question 3: How to model and optimize the ridesourcing system? Research objective 3: Optimizing ridesourcing system based on a shareability network on a city scale Domain 4: CAVs technologies Research question 4: What are the Impacts of Cyber Attacks on CAVs? Research objective 4: Proposing a resilient and robust control strategy for connected and autonomous vehicles to resist the threat of cyberattacks
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 14 Figure 1-4 The research framework and research questions of the dissertation

Figure 1 - 5 :

 15 Figure 1-5: The components of a typical ridesourcing system [Source: modified from (Wang & Yang, 2019)]

  -6: following this overview chapter, a thorough literature review of literature is provided. The literature review covers the state-of-the-art researches related to ridesourcing services; which followed by a summarized review for the implemented and research studies for the ridesourcing services in a connected and automated environment in the future. Chapter 3 investigates the influencing factors of ridesplitting service using a machine learning algorithm. Chapter 4 proposes a novel ridesourcing demand prediction framework, the optimized spatiotemporal encoder-decoder neural network (O-STEDN) to improve the prediction accuracy and balance demand and supply. Chapter 5 aims to optimize the ridesourcing services based on a shareability network and explore the potential on the ridesplitting service. Chapter 6 explores the impacts of cyberattacks on mixed traffic in a connected and autonomous environment. Finally, chapter 7 concludes the research efforts, findings, and future perspectives of this work.
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 11 Figure 1-6 The organization of the dissertation
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 212223 Figure 2-1 The network map of the keywords of related literature review
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 24 Figure 2-4 Synthesis of the literature review

  et al. (2019) apply a GBDT model and show that the number of bus stops, compact and mixed land use development, and car ownership play a key role in determining stationlevel Metrorail ridership. With respect to buses, Chakour and Eluru (2016) find that transit facilities, the presence of parks and public transport services have a positive effect on ridership, while the presence of highways has a negative effect. For bikes, El-Assi et al. (2017) identify that network intersection density and bicycle infrastructure, such as bike lanes and path situations, have significant effects on bike-sharing demands. For walking, Tao et al. (2020) confirm that job density, population density, land use diversity, and pedestrian road density have strong nonlinear relationships with walking distance to transit. For private vehicles, Ding et al. (2018) identify the strong nonlinear relationship between driving distance and built environment factors, as well as demographics in Oslo. For ridesourcing, Yan et al. (2020) find that socioeconomic and demographic variables, travel impedance, built environment characteristics, and transit-related factors have strong correlations with the ridesourcing demand in Chicago. Sabouri et al. (2020) reveal that Uber demand is positively correlated with the land use mix or entropy, total population and employment, activity density, and transit stop density of a census block group. In addition, intersection density and destination accessibility have negative impacts on Uber demand. Yu and Peng (2019) identify that there are strong relationships between ridesourcing demand and built environment factors such as density, land use, infrastructure, and transit accessibility in Austin, Texas, using a geographically weighted Poisson regression model.

  could disrupt the function of CAN (Controller Area Network), On-board diagnostics (OBD), Telematics Box (T-box), and Electric Control Units (ECUs). And the latter is intended to disable the vehicular wireless communication (i.e., Vehicle-to-Everything or V2V) information to influence vehicles' behaviors through DSRC (Dedicated Short-Range Communications) and/or LTE-V (Long-Term Evolution-Vehicle). Some previous studies explored the impacts of cyberattacks from the perspective of in-vehicle. For example, Palomar et al. (2012) successfully prevented the propagation of false warning events in VANETs by applying certificates and Proof-of-Work (POW) systems. To deal with the serious threat to vehicle safety and driver privacy caused by cyberattacks, Liu et al. (2017) summarized the previous methods of cyberattacks and proposed the countermeasures of in-vehicle networks. Asuquo et al. (2018) introduces the privacy enhancement technology and encryption method to provide location privacy in the vehicle and mobile networks. Taylor et al. (2018) combined recurrent neural network and multivariate Markov chain to develop anomaly detector for identifying cyberattacks and malicious traffic, and designed an attack framework to verify the effectiveness of the detectors through simulation. Tariq et al. (2020) proposed CAN Bus Message Attack Detection Framework (CAN-ADF), which can generate, detect and evaluate comprehensive exceptions for a CAN bus. Moreover, the real vehicle design experiments show that the proposed method has high detection accuracy. Katragadda et al. (2020) designed a sequence mining approach to detect low-rate injection attacks in Control Area Network (CAN), which can detect sophisticated injection attacks and supply real-time intrusion detection for the vehicle.
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 252 velocity or position through masquerading a legal vehicle or tampering a piece of messages Replay/delay Due to the jammed communication channel or being injected with a replay virus, the communication data is fraudulently repeated or delayed Collusion attacks Two or more vehicles are attacked simultaneously by cooperatively adversariesModeling of cyberattacks on connected and autonomous vehiclesIn order to effectively resist to cyberattacks and improve traffic safety performance, scholars have conducted a lot of researches on cyberattacks from different perspectives.[START_REF] Alipour-Fanid | String stability analysis of cooperative adaptive cruise control under jamming attacks[END_REF] investigated the influence of mobile reactive jamming attacks on the stability of CACC platoon, and the results showed that the attack will reduce the stability of traffic flow system. P.Wang et al. (2018) proposed an extended car-following model to describe connected traffic dynamics under cyberattacks, the results showed that the proposed model will help to avoid collision and reduce traffic congestion under the influence of cyberattacks.[START_REF] Li | Influence of cyber-attacks on longitudinal safety of connected and automated vehicles[END_REF] studied and evaluated the impact of slight cyberattacks on CAV longitudinal security through modeling and simulation. The results showed that the impact of communication location attacks is worse than that of speed attacks. In addition, the impact of cyberattacks in vehicle acceleration phase is more severe and dangerous than that in vehicle deceleration phase. P.Wang et al. (2020) proposed a bi-bi-layer architecture composed of both a vehicle layer and a cyber layer to explore the impact of cyberattacks on CAV platoon safety and efficiency.[START_REF] Dong | Impact evaluation of cyber-attacks on traffic flow of connected and automated vehicles[END_REF] proposed an evaluation framework to measure the impact of cyberattacks on traffic flow performance, and analyzed and studied the impact from the aspects of attack intensity, attack range and traffic demand through numerical simulation.[START_REF] Zhai | Designing continuous delay feedback control for lattice hydrodynamic model under cyber-attacks and connected vehicle environment[END_REF] designed a new continuous feedback controller based on lattice hydrodynamic model to suppress the impact of cyberattacks, and the effectiveness of the controller in dealing with cyberattacks and reducing traffic congestion were analyzed and verified by stability analysis and numerical simulation.[START_REF] Khattak | Impact of cyberattacks on safety and stability of connected and automated vehicle platoons under lane changes[END_REF] used an infrastructure-based communication platform to discuss the impact of cyberattacks on the safety and stability of connected and automated vehicle platoons under lane changes. Noei et al. (2021) proposed a traffic microsimulation tool that can simulate conventional, automated, and connected and automated vehicles in a platoon under fault, failure, and cyberattack with optimized accuracy and simulation speed to maximize throughput and without compromising safety or string stability.
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 12 Built environment factors have strong non-linear effects on the ridesplitting ratio Gradient Boosting Decision Trees model is used to analyze the effects. 3) Distance to the city center is the most important among built environment factors 4) Land use diversity and road density also have strong impacts on ridesplitting ratios 5) Non-linear thresholds of built environment factors are identified to guide the planning
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  1. The spatial distributions of some explanatory variables are shown in Figure 3-2.
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 32 Figure 3-2 Distributions of some explanatory variables
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 33 Figure 3-3 The importance ranking of all the explanatory variablesshows the relative importance of the explanatory variables and their rankings in predicting the OD ridesplitting ratio. The total importance of all explanatory variables equals 100% because it is measured in a relative way.

Figure 3 -

 3  demonstrates the effects of four key built environment variables of the origin locations on the ridesplitting ratio. shows that the distance to the

   shows that the distance to the city center at the origin locations has a positive association with the OD ridesplitting ratio. People are more likely to use ridesplitting services when they depart from areas far away from the city center than those near the city center. People are reluctant to use ridesplitting services when the distance to the city center at the origin locations is less than 5 km. However, the OD ridesplitting ratio increases substantially when the distance to the city center is more than 32 km.

Figure 3 -

 3  displays the relationship between public transportation density at the origin locations and the OD ridesplitting ratio, which shows a significant nonlinear pattern: first decreasing then steady and then increasing slightly. The OD ridesplitting ratio decreases with increasing public transportation density at the destination locations from 0 to 6 per km 2 , and the ridesplitting ratio differs by approximately 4%. The ridesplitting ratio remains steady when the public transportation density is between 6
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 34 Figure 3-4 The effects of the key built environment variables of the origin locations on the ridesplitting ratio
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 35 Figure 3-5 The effects of the key built environment variables of the destination locations on the ridesplitting ratio

Figure 3 -

 3 Figure 3-5 (b) indicates that public transportation density at the destination locations is negatively associated with the ridesplitting ratio, which is similar to the relationship between the public transportation density at the origin locations and the ridesplitting ratio. The OD ridesplitting ratio decreases with increasing public transportation density at the destination locations ranging from 0 to 2 per km 2 , and the ridesplitting ratio differs by approximately 5%. The ridesplitting ratio remains steady

Figure 3 -

 3  shows a positive association between the land use diversity at the destination locations and the ridesplitting ratio in general. The land use diversity at the origin locations has almost no effect when it is less than 0.65. However, the OD ridesplitting ratio keeps increasing when the land use diversity increases from 0.65 to 0.9.
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 3 Figure 3-6 demonstrates the effects of key demographic variables on the OD ridesplitting ratio.Figure 3-6 (a) displays the relationship between PGDP at the origin

   displays the relationship between PGDP at the origin locations and OD ridesplitting ratio. The partial dependence plot indicates that the ridesplitting ratio is relatively low when the PGDP is less than 100,000 RMB/year.

Figure 3 -

 3  demonstrates the relationship between the PGDP at the destination locations and the OD ridesplitting ratio. The per capita GDP at the destination locations has little effect on the ridesplitting ratio.
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 36 Figure 3-6 The effects of the key demographic variables on the OD ridesplitting ratio
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 373 Figure 3-7 The effects of the travel time on the OD ridesplitting ratio
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 38 Figure 3-8 The combined effects of S-residential ratio and S-commercial ratio on the OD ridesplitting ratio

Figure 3 - 9 3 . 5

 3935 Figure 3-9 The combined effects of S-POI density and S-land use diversity on the OD ridesplitting ratio
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 2 experimental results in the field of traffic demand prediction prove that deep learning methods have better performance than traditional time series methods and traditional machine learning algorithms. In view of these findings, we propose a novel and simple optimized spatiotemporal encoder-decoder neural network (O-STEDN) for ridesourcing demand prediction in this chapter.More specifically, this chapter involves 3 tasks. First, we divide the study area according to its administrative districts to guarantee the integrity of the districts and perform a characterization analysis of the ridesourcing demand in Chengdu. Second, we propose our own prediction model, which combines temporal and spatial characteristics to accurately complete the multi-step prediction of future ridesourcing demand. Finally, we compare our model with other existing advanced methods to validate the efficiency of the proposed model. The main contributions of this chapter can be summarized as follows:1) To the best of our knowledge, this is the first time that multi-step ridesourcing demand prediction has been performed based on integral administrative districts at the city scale. These results can provide highly meaningful references for both government and transportation network companies in advance. Different from existing methods, our approach uses a combination of a GCN and an RLSTM network as the spatiotemporal feature extractor. The advantage is that the GCN overcomes the shortcomings of traditional convolutional neural networks (CNNs) and can deeply extract the spatial correlation features of discrete regions in non-Euclidean space. Compared with time series feature extraction methods, including recurrent neural network (RNN), gated recurrent unit (GRU), and LSTM, RLSTM can better extract and memorize time-related features.

Section 4 .

 4 3 presents the experiments in detail. Comparative results and further discussions are proposed in Section 4.4. Conclusions and policy implications are presented in Section 4.5. The final section concludes the chapter's contributions and limitations.

  we measure the input ridesourcing demand data at a certain frequency, such as one sample per 15 min, we obtain a sequence of ridesourcing demand data in a time series form; this is denoted by {𝑥 𝑖 | -∞ < 𝑖 < +∞} , in which 𝑥 𝑖 ∈ 𝑅 𝑁×𝒅 𝒙 and 𝑁 is the number of area nodes. The core of this problem involves how to reveal the spatial and temporal correlations of ridesourcing demand data. Thus, we use the O-STEDN to learn the spatial and temporal properties hidden in data.
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 41 Figure 4-1 The framework of the proposed O-STEDN. The framework of the proposed O-STEDN is illustrated in Figure 4-1. There are two steps required to implement the proposed method: Encoder The ridesourcing demand sequence data are pipelined into the proposed O-STEDN to learn its spatiotemporal features by a stacked encoder. We use a GCN to extract the spatial features of the ridesourcing demand data in all areas and use RLSTM to extract the temporal features of the spatial correlation features output by the GCN.At each time step, the input data of the encoder are 𝑥 ∶ ∈ 𝑅 𝑁×𝑑 𝑥 , where 𝑑 𝑥 includes five factors(year, month, day, hour, and demand), the output of the GCN is 𝐻 ∶ ∈ 𝑅 𝑁×𝑑 𝑔 , and the output of RLSTM is ℎ ∶ ∈ 𝑅 𝑁×𝑑 𝑟 . Here, 𝑑 𝑔 and 𝑑 𝑟 represent the embedding dimensions of the GCN output and RLSTM output, respectively, and 𝑁 is the number

- 2 ,

 2 assuming that the red node is the central area, the GCN model can obtain the topological relationships between the central area and its surrounding areas, encode the topological structure of the area network and the attributes of the areas, and then obtain the resulting spatial correlation features. In this chapter, we use the GCN model to learn spatial features from historical Ridesourcing demand data.Assuming that the red node is the central area, the blue, yellow, and orange nodes indicate the areas connected to the central area. (a) We use a residual connection to add the input and output of the GCN. (b) We obtain spatial features by obtaining the topological relationships between the central area and the surrounding areas. When 𝑘 = 1, we can extract the spatial features of the red node and the neighboring nodes with depths of 1. When 𝑘 = 2, on the basis of 𝑘 = 1, we can also extract the spatial features of the red node and the nodes with depths of 2.
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 42 GCN model 
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 231 RLSTM EncoderRLSTM is a novel model (proposed by us) for extracting the temporal features of long-term sequence tasks, and it has been successfully used in pollutant concentration prediction-based research tasks (B.Zhang et al., 2021). To better extract the temporal correlation features of ridesourcing demand data, we use RLSTM as the temporal feature extractor. Its structure is shown in Figure4-3, and the feature extraction steps are described as 
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 43 Figure 4-3 The architecture of the RLSTM model.
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 44 Figure 4-4 Spatiotemporal prediction model

  𝑊 𝑐 (𝑟 𝑡-𝑗 ∘ [ℎ ̂𝑡-𝑗-1 , 𝐻 𝑡-𝑗 , 𝑐 𝑡-𝑗-1 ]) + 𝑏 𝑐 )

  connections and layer normalization tricks to the decoder layer to prevent network information loss and internal covariate shift, as shown in the following equations: 𝑠̃𝑡 +𝑖 = 𝑡𝑎𝑛ℎ(𝑊 𝑐 [𝑐 𝑡+𝑖 , 𝑠 𝑡+𝑖 ]) (4.18) 𝑦 𝑡+𝑖 = 𝑊 𝑠 (LayerNorm(𝑊 𝑠̃𝑠 ̃𝑡+𝑖 + 𝑊 𝑟 𝑠 𝑡+𝑖-1 )) (4.19)

  4.20) 𝑐 𝑡+𝑖 = 𝑎 𝑡+𝑖 ⊺ {ℎ 𝑡-𝑟+1 , . . . , ℎ 𝑡-𝑗 , . . . , ℎ 𝑡 } (4.21) With dynamic spatiotemporal attention, at each time step 𝑡 + 𝑖, the model infers an aligned weight 𝑎 𝑡+𝑖 dynamically based on the current hidden state 𝑠 𝑡+𝑖 of the decoder output and all historical spatiotemporal features ℎ = {ℎ 𝑡-𝑟+1 , . . . , ℎ 𝑡-𝑗 , . . . , ℎ 𝑡 }.
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 45 Figure 4-5 Study area

  evaluate the prediction performance of the O-STEDN model, we use three metrics to evaluate the difference between the observed values 𝑦 𝑖 and the prediction values 𝑦 ̂𝑖 : the root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (𝑅 2 ). High 𝑅 2 and low RMSE and MAE values indicate more accurate prediction performance. The experimental metrics are calculated by the following formulas:
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 4333 validation set used in this chapter is closely related to the training stage, and after each epoch, the RMSE, MAE, and 𝑅 2 obtained by the prediction model on the validation set are calculated. Therefore, the optimal model is selected based on the model error calculated on the validation set. The specific process is as follows: for each experiment, the number of epochs is 200. After training for an epoch, we test the trained model on the validation set. If the RMSE of the prediction model on the validation set decreases, we update and save the model parameters. After many parameter adjustments and experiments, when the prediction effect of the prediction model on the validation set is optimal, the training process ends. Finally, the prediction result is obtained by iterating all the samples in the test set. In all experiments, we use an earlystop mechanism; that is, the number of early-stop rounds and the maximum number of epochs are set to 10 and 200, respectively. Model Parameters After multiple training and evaluation steps, we determine the final model framework parameters. As shown in Table 4-1, the number of layers, number of nodes, output size, and related hyperparameters of the O-STEDN model are listed in detail. The implementation codes of our proposed O-STEDN model and the comparison models are open source; please refer to our personal GitHub homepage (https://github.com/zouguojian/traffic-demand-prediction).

Figure 4 -

 4  shows the multistep demand prediction results of the [120-45 min] task obtained using the historical data from 11:15-13:15 to predict the travel demand in the next three time periods, 13:15-13:30, 13:30-13:45, and 13:45-14:00. The multi-step demand prediction results are still accurate compared to the single-step demand prediction results. In general, we can identify hot census tracts with high ridesourcing demand and cold census tracts with low ridesourcing demand. In addition, the
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 4 Finally, we consider the loss of feature information and internal covariate shift on the basis of GCN-RLSTM-LSTM-Attention, so we add residual connections and layer normalization to both the encoder layer and the decoder layer. The experimental results also verify our conjecture, and the prediction performance of the O-STEDN model is improved again. Compared to the DTCNN, the MAE improvement is 8.0%, the RMSE improvement is 5.5%, and the R 2 improvement is 0.9%. This also proves that in the processes of feature extraction and prediction, the prediction model may lose feature information and incur internal covariate shift problems. Removing and adding effective processing methods in advance can eliminate this phenomenon and can also improve the final prediction accuracy of the model. Based on the above analysis, we summarize the functions and contributions of each part of the proposed O-STEDN model. Through the comparison, we combine the advantages of all variants, highlighting the predictive performance of the O-STEDN model. Therefore, for the short-term ridesourcing demand prediction task, the proposed O-STEDN model is accurate and plays a positive role.

  set and gives the values of the three indicators, MAE, RMSE and R 2 . We observe that as the number of layers k increases, the error first decreases and then increases, and the coefficient of determination first increases and then decreases. Through observation, we find that when k is equal to 2, the O-STEDN model performs best on each task. To observe the influence of k on the O-STEDN model more intuitively, we use a visual form to demonstrate the performance of the model, as shown in Figure 4-7.
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 48 Figure 4-8 The performance of the O-STEDN model as the number of layers k in the graph convolution changes on the 120-15, 120-45, and 120-90 min ridesourcing demand prediction tasks.
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 51 Figure 5-1 Research area in Chengdu

Figure 5 - 2 Figure 5 - 3

 5253 Figure 5-2 Ridesplitting trip example
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 54 Figure 5-4 Shareability Network

(

  P1 represents the average price of time, P2 represents the average price of distance, P3 represents the value of travel time, and Delay (Ti) represents the delay time for Ti. Specifically, the average price of time P1 and the average price of distance P2 can be calculated by the price of the DiDi ridesourcing service in Chengdu, as shown in Table 5-3. Thus, for the research time interval, P1 = 0.3 RMB/ minute and P2 = 1.7 RMB/kilometer.

  According to the Chengdu Statistical Yearbook 2017 compiled by the Chengdu Statistic Bureau, National Bureau of Standards Survey Office in Chengdu, the average wage of fully employed persons in urban units in 2016 was 61330 RMB. The average time spent working per year is 250 days/year * 8 hours/day = 2000 hours/year. The wage rate of people in Chengdu is 61330 /2000 = 30.67 RMB/hour. We set reduction

Figure 5

 5 Figure 5-5.
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 55 Figure 5-5 Transformation into an Intersection Graph

Objective:

  Maximizing shared trips, time savings or cost savings Input: G(V, E, W), maximum number of iterations MaxIter Output: The set of selected matching Mmax , and the total weight of the set ωmax 1

  91
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 56 Figure 5-6 Shared trips under the three objectives
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 57 Figure 5-7 Time savings under three objectives
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 59 Figure 5-9 Key components of the ridesourcing system with CAVs based on the blockchain
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 124 An architecture with three layers to investigate the impacts of cyberattacks is proposed Collusive attacks have the greatest adverse impact on a CAV platoon in mixed traffic 3) A resilient and robust control strategy to mitigate the threat of cyberattacks is proposed The stability of the proposed strategy for mitigating cyberattacks is demonstrated 6.1 Introduction Internet, mobile communication, big data, artificial intelligence and other new technologies accelerate breakthroughs and continue to evolve, promoting the rapid development of mobile Internet and automated driving technology. Connected and automated vehicles which can realize "safe, efficient, comfortable and energy-saving" driving will also emerge as the times require. CAVs are expected to improve the characteristics of traditional traffic flow from the micro vehicle level, and then provide an effective way to solve the problems of traffic congestion, traffic efficiency and traffic pollution. Scholars have also carried out some researches to demonstrate the potential benefits of CAVs

3 )

 3 fill this gap, this chapter proposes a CAV mixed flow car-following model considering cyberattacks based on Intelligent Driver Model (IDM). On this basis, an acceleration control switch is designed as a Robust and Resilient Control Strategy (RRCS) against cyberattacks, which can help traffic flow to restore stability and enhance security. Finally, the influence of cyberattacks on the evolution of mixed traffic flow and the role of RRCS in combating cyberattacks are revealed by numerical simulations. The remainder of this chapter is organized as follows. Section 6.2 establishes a car-following model of CAV mixed flow under cyberattacks. Section 6.3 proposes the Robust and Resilient Control Strategy against cyberattacks. In Section 6.4, numerical simulations are carried out to reveal the impact of cyberattacks on the evolution of mixed traffic flow, and the feasibility of the RRCS is verified by comparative experiments. Finally, section 6.5 gives a general conclusion about this work. The schematic diagram of the research scenario is shown below (Figure 6-1), covering the following three assumptions: 1) The CAV mixed traffic flow refers to different types of connected and automated vehicles, rather than the existence of non-connected and automated vehicles; 2) Only the longitudinal car following behavior is considered, and the lane changing behavior and overtaking behavior are not considered; 102 Cyberattacks may appear in every vehicle in the CAV platoon. 4) Each vehicle only has access to its own position and velocity data and has a communication device. No other sensors or information sources are available (no RADAR, cameras, LiDAR …). In this case, the communication mean is seen as a remote sensor.

Figure 6 - 1

 61 Figure 6-1 Schematic diagram of mixed CAV flow for multiple types of vehicles.

-

  = the control strategy in the state of "too close vehicle gap"; Controller IDM -= the control strategy based on Intelligent Driver Model; Controller B -= the control strategy in the state of "too far vehicle gap"; g T = vehicle time headway threshold when triggering and switching to Controller-A; and u T = vehicle time headway threshold when triggering and switching to Controller- B.
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 62 Figure 6-2 Architecture for exploring the impacts of RRCS on mixed CAV flow

Figure 6 -

 6 3(a)-(c) describes the evolution of mixed traffic flow under bogus velocity messages attack when there is no RRCS. Due to the random distribution, the leading and sixth vehicles are medium vehicles, and the seventh and eighth vehicles are large vehicles. It can be seen from

Figure 6

 6 Figure 6-3(a) that during 40 t s = to 60 t s = , the fifth vehicle received a false message, and it kept accelerating to approach the vehicle in front, causing potential safety hazards. In the 60 t s =
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 63 Figure 6-3 Mixed traffic flow evolution diagrams under the overestimated velocity with/without RRCS.
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 6646412 -(f) depicts the impact of the underestimated velocity attack on traffic flow evolution under RRCS, which can be used for comparative analysis without RRCS. It can be found that in the case of attack, the vehicle velocity still keeps a small fluctuation, and the vehicle headway is also maintained in a good state, and the stability and safety of the fleet are guaranteed. Therefore, we have arguments to explain the feasibility and superiority of this RRCS.

Figure6- 5

 5 Figure6-5(a)-(c) depicts the evolution of the position, velocity and headway of the

Figure 6 - 5

 65 Figure 6-5 Mixed traffic flow evolution diagrams under the overestimated position with/without RRCS

Figure 6 -Figure 6 - 6

 666  shows the position evolution of vehicles under the influence of cyberattacks when there is no strategy. The purple line represents the fourth vehicle cheated by the false information of the vehicle in the front, which is a small car.

Figure 6 -

 6 6(d)-(f) is the evolution diagram of position, velocity and headway under the RRCS.

  Figure

Figure 6 - 7

 67 Figure 6-7 Mixed traffic flow evolution diagrams under replay acceleration attacks with/without RRCS

Figure 6 -

 6 Figure 6-8 shows the evolution of traffic flow under the influence of collusion attacks with/without the RRCS. Compared with the close proximity of the fourth vehicle and the third vehicle, the eighth vehicle and the seventh vehicle in Figure 6-8(a), the evolution of driving position between the vehicles in Figure 6-8(d) has been better improved, which is the role of RRCS in the cyberattack stage. In Figure 6-8(c), the fourth vehicle is a small vehicle, and the eighth vehicle is a medium vehicle. The headway of each vehicle decreases from its constant-state headway to 11.5 m and 14.0 m respectively, which causes adverse interference and impact on the safety and stability of the CAV platoon. Compared with bogus information attacks, collusion attacks generate more serious traffic risks.

Figure 6 -Figure 6 - 8 Figure 6 - 9

 66869  shows the evolution of traffic flow under the influence of collusion attack when the RRCS is added, which reveals that RRCS can still play a

1 t; 2 t 1

 121 = the start time of the evolution phase used to calculate the variance, 1 40 ts = = the end time of the evolution phase used to calculate the variance, 2 60 ts = ; k = number of discrete time steps; t  = time step, 0.01s for each step; Sensitivity analysis of different platoon compositions Furthermore, due to the necessity of exploring the universality of RRCS to deal with cyberattacks in different scenarios, we carried out numerical simulation covering more generally applicable traffic flow composition scenarios, mainly including different vehicle distribution types and proportions. Firstly, our simulation object is still a platoon composed of 10 vehicles, then 25 different proportion combinations are randomly generated by Gaussian mixture distribution for the proportion composition of large, medium and small vehicles, and then 4 vehicle distribution types are randomly generated for each proportion combination. Therefore, 100 different platoon compositions scenarios are randomly generated here, as shown in Table 6-3. In addition, the seven cyberattack types and specific forms are also consistent with the cyberattacks in the simulation in Section 6.4.1.

  -S-S-M-L-S-M-S-S M-S-M-S-M-S-S-L-S-S S-M-M-S-S-L-S-S-S-M M-S-S-S-S-M-S-S-M-L *S means the small vehicle, M means the medium vehicle, L means the large vehicle In the case of 100 randomly generated platoon composition, we calculate the variance of headway deviation value with or without RRCS in different cyberattack scenarios, and drew the results into the box plot that can directly reflect the distribution characteristics of all variances shown in Figure 6-9 for comparative analysis. The relevant result data are shown in Table 6-4 below.

Figure 6 -

 6 Figure 6-10(a)-(d) shows the box plot of variance distribution of headway deviation value in 100 traffic flow scenarios with or without RRCS under bogus messages attack. The attack type in Figure 6-10(a) is overestimated velocity information. In the absence of RRCS, the upper quartile and median of variance distribution are 52.44 and 24.95 respectively, while in the presence of RRCS, the upper quartile and median decreased to 28.09 and 16.87 respectively. Looking at Figure 6-10(b), the simulated cyberattack form is overestimated position information attack. The upper quartile and median of variance with RRCS are 19.78 and 3.48 respectively, which is also obviously lower than that without RRCS.Figure 6-10(c) represents the

Figure 6 -

 6 10(c) represents the cyberattack scenario corresponding to underestimated velocity information. Compared with the upper quartile and median of 18.38 and 15.55 without RRCS, the presence of RRCS significantly reduces the upper quartile and median to 17.64 and 10.85 respectively. The comparison in Figure 6-10(d) describing the cyberattack scenario of underestimating position information is significant, and the upper quartile and median of variance decrease from 21.80 and 19.23 without RRCS to 3.96 and 3.59 with RRCS.
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 66 Figure 6-10 Variance distribution of headway deviation under different cyberattacks scenarios with different vehicle proportion and distribution

Figure 6 -

 6 11 is a set of variance distribution box diagrams of headway deviation obtained by 123 setting different cyberattack intensities under different cyberattack scenarios. Table 6-6 shows the specific data of the box diagram corresponding to Figure 6-11and some intuitive comparison data, including the improvement value and improvement proportion of the upper quartile value and median value in the box diagram.On the premise that the multiple of overestimated velocity attack obeys the linear distribution of 1.1 to 3.5 times, shows the box diagram of variance distribution of headway deviation with or without RRCS. An important discovery is that the upper quartile values of the two box graphs are equal, which actually means that when the attack velocity reaches a certain multiple, RRCS will not continue to play a role, which will need further research. Nevertheless, the median with RRCS is still 22.81% lower than that without RRCS, which shows the positive role of RRCS in overestimated velocity attack to a certain extent.

Figure 6 -Figure 6 -

 66 Figure 6-11 Variance distribution of headway deviation under different cyberattacks scenarios with different cyberattack intensities

  7 below. In most scenarios, the p-values are less than 0.05, which shows that there is significant difference in the variance distribution of headway deviation with or without RRCS under the simulation premise that the cyberattack intensity follows the linear distribution. It proves that RRCS could effectively alleviate the threat brought by cyberattacks in most scenarios with different 127 the cyberattack scenario. Finally, traffic simulation experiments are carried out to study the impact of cyberattacks on the evolution of CAV mixed traffic flow with or without RRCS, and to verify the feasibility of the RRCS proposed in this chapter. The conclusion mainly includes the following five points:

•Figure 7 - 1 A 1 )

 711 Figure 7-1 A diagram illustration of shared mobility system with CAVs [Source: modified from (Gruyer et al., 2021) in Gustave Eiffel University]

  cyberattacks on CAV in mixed traffic (large vehicles, medium vehicles, and small vehicles) from the perspective of vehicle dynamics. The research part aims to explore the influence of cyberattacks on the evolution of CAV mixed traffic flow and propose a resilient and robust control strategy (RRCS) to alleviate the threat of cyberattacks. First, we propose a CAV mixed traffic car-following model considering cyberattacks based on Intelligent Driver Model (IDM). Furthermore, a RRCS for cyberattacks is developed by setting the acceleration control switch and its impacts on the mixed traffic flow are explored in different cyberattack types. Finally, sensitivity analyses are conducted in different platoon compositions, vehicle distribution and cyberattack intensities. The results show that the proposed RRCS of cyberattacks is robust and can resist the negative threats of cyberattacks on the CAV platoon, thereby providing a theoretical basis for restoring the stability and improving the safety of the CAV.

1) Domain 1 :

 1 City infrastructuresResearch perspectives in the proposed topic: Exploring nonlinear effects of the built environment on ridesplitting service

2 )

 2 Domain 2: Users Research perspectives in the proposed topic: Improving the demand prediction of ridesourcing services with an Optimized Spatiotemporal Encoder-Decoder Neural Network One possible direction for future work is to further study how to develop a realtime dispatching and trajectory planning scheme for shared autonomous vehicles according to the demand prediction results of ridesourcing services. And it is worth studying how to set the time windows for the demand prediction to optimize the whole shared mobility system. Other research directions in this domain: human factors, transportation equity, cognitive model of behaviors visibility and perception, H/M Interaction and ergonomics, etc.

  

  

  

  

  

  

  

  

  

  

Table 1 -

 1 1 presents the development of some typical ridesourcing platforms, such as Uber, Lyft and DiDi Chuxing. As of 2022, Uber operated in 84 countries in over 1110 cities

Table 1 -

 1 1 The development of some typical ridesourcing platforms
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	1 Literature review exploring the relationship between built environment and travel
		behaviors in different traffic modes	
	Traffic modes	Travel behaviors	Methodologies

Table 3 -

 3 1 Variable definitions and statistics.

	Variables	Variable Description	Mean	S.D.	Min	Max
	Orders					
	Ridesplitting orders	Number of ridesplitting orders from November 1 st to 30 th in 2016	26.58	63.81	0	1597
	Ridesourcing orders	Number of ridesourcing orders from November 1 st to 30 th in 2016	431.71	984.20	1	33477
	Ridesplitting ratio	Number of ridesplitting orders/number of ridesourcing orders	21.85%	33.32%	0	99.94%
	Built					
	Environment					
	Population density	Population/area size (person per km 2 )	11142.95	14545.89	155.07	67557.29
	Local population density	Local population/area size (person per km 2 )	6132.88	8789.07	151.72	41861.45
	Park density	Number of parks and square/area size (park per km 2 )	0.60	0.85	0	5.11
	Industrial ratio	Number of industrial locations/number of POI	3.22%	5.03%	0	39.74%
	Transportation density	Number of transportation facilities/area size (facility per km 2 )	5.14	4.41	0.33	17.75

Table 3 -

 3 2 Comparison of the GBDT model and basic linear regression model.

				Percentage of
	Metrics	GBDT	Linear regression	
				improvement
	R 2	0.7415	0.3449	+114.99%
	MAE	0.1070	0.2104	-49.14%
	MSE	0.0293	0.0727	-59.70%

Table 3 -

 3 3 The relative importance ranking of all the explanatory variables.

	Built environment features at origin locations	Relative importance	Ranking
	S-distance to city center	10.35%	3
	S-road density	2.75%	8
	S-commercial ratio	2.56%	9
	S-diversity	2.20%	
	S-transportation density	1.92%	
	S-residential ratio	1.89%	
	S-industrial ratio	1.87%	
	S-area	1.82%	
	S-POI density	1.26%	
	S-park density	1.10%	
	S-public density	0.90%	
	S-population density	0.75%	
	S-local population density	0.59%	
	Sum	29.97%	--
	Built environment features at destination locations Relative importance	Ranking
	E-distance to city center	9.26%	4
	E-public density	3.92%	6
	E-road density	1.97%	
	E-transportation density	1.83%	
	E-diversity	1.24%	
	E-area	0.95%	
	E-POI density	0.88%	
	E-commercial ratio	0.83%	
	E-residential ratio	0.79%	
	E-industrial ratio	0.78%	
	E-population density	0.55%	
	E-park density	0.55%	
	E-local population density	0.41%	
	Sum	23.98%	--
	Demographic factors	Relative importance	Ranking
	S-PGDP	22.56%	1
	S-housing price	6.07%	5
	E-PGDP	2.84%	7
	E-population density (less than 14)	1.04%	
	E-housing price	0.96%	
	S-population density (more than 64)	0.77%	
	S-population density (less than 14)	0.66%	
	E-population density (more than 64)	0.42%	
	Sum	35.31%	--
	Travel impedance feature	Relative importance	Ranking
	Travel time	10.74%	2

  2 , the road density is 1.70 km/ km 2 and the land use diversity is 0.93. For all ridesourcing trips departing from the No. 77 census tract, the average real ridesplitting ratio is 74.66%. For all ridesourcing trips arriving at No. 77 census tract, the average real ridesplitting ratio is 53.00%. In census tract No. 137, the distance to the city center is 7.41 km, the density of public transportation is 14.93 number/km 2 , the road density is 8.03 km/ km 2 and the land use diversity is 0.72. The number of ridesourcing trips departing from No.137 census tract is 81054, and the average real ridesplitting ratio is zero. For all ridesourcing trips arriving at No.137 census tract, the average real ridesplitting ratio is 19.61%. The real ridesplitting situation related to these two census tracts is consistent with the result provided by the proposed model.
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		-1 Model parameters	
	Layer name	Output Size	Parameters	Values
			layer nodes × number of layers	128×1
	GCN	128	layer nodes × number of layers	128×1
			𝑘	2
	RLSTM	128	layer nodes × number of layers	128×1
	LSTM	128	layer nodes × number of layers	128×1
	Dynamic Spatiotemporal Attention	128	layer nodes × number of layers	128×1
	Feed Forward	128	layer nodes × number of layers	128×1
		128		128×1
	Fully Connected Layer	64	layer nodes × number of layers	64×1
		1		1×1
	-	-	Batch size	32
	-	-	Dropout	0.5
	-	-	Decay rate	0.99
	-	-	Learning rate	0.001
	-	-	Epoch	200
	-	-	𝜆	0.0001
	-	-	Training method	SGD
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	2 Performance comparison of all models for the [120-15 min] task
	Model	MAE	RMSE	R 2
	HA	1.674	2.743	0.791
	ARIMA	1.159	1.668	0.862
	RNN	0.931	1.543	0.923
	GRU	0.914	1.531	0.924
	LSTM	0.906	1.535	0.924
	DMVST-Net	0.890	1.528	0.924
	ST-MGCN	0.899	1.527	0.925
	GCN-RNN	0.877	1.498	0.927
	DTCNN	0.863	1.491	0.928
	MLRNN	0.886	1.525	0.925
	MultiConvLSTM	0.879	1.512	0.926
	GCN-LSTM	0.867	1.467	0.930
	GCN-RLSTM-LSTM	0.846	1.445	0.932
	GCN-RLSTM-LSTM-Attention	0.807	1.420	0.935
	O-STEDN	0.794	1.409	0.936
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		3 Model comparison for the [120-45 min] and [120-90 min] tasks	
	Model	MAE	[120-45 min] RMSE	R 2	MAE	[120-90 min] RMSE	R 2
	RNN	0.986	1.658	0.912	1.184	1.966	0.877
	GRU	0.977	1.680	0.910	1.173	2.046	0.866
	LSTM	0.930	1.623	0.916	1.027	1.807	0.896
	DMVST-Net	0.919	1.582	0.920	0.986	1.688	0.909
	GCN-RNN	0.907	1.564	0.921	0.971	1.680	0.910
	DTCNN	0.904	1.561	0.922	0.969	1.672	0.911
	MLRNN	0.933	1.593	0.919	0.986	1.686	0.910
	MultiConvLSTM	0.909	1.566	0.921	0.989	1.686	0.909
	O-STEDN	0.824	1.435	0.934	0.847	1.488	0.929

Table 4 -

 4 From Figure4-8, we can see that the MAE and RMSE values are minimal when k is equal to 2, and R 2 is maximal when k is equal to 2. A larger number of layers k

		4 The comparison of the results obtained on the three tasks with different values of k
	k	Target task (min)	MAE	RMSE	R 2
		[120-15]	0.837	1.431	0.932
	1	[120-45]	0.875	1.470	0.931
		[120-90]	0.880	1.540	0.924
		[120-15]	0.794	1.409	0.936
	2	[120-45]	0.824	1.435	0.934
		[120-90]	0.847	1.488	0.927
		[120-15]	0.806	1.417	0.935
	3	[120-45]	0.832	1.499	0.932
		[120-90]	0.939	1.657	0.918
		[120-15]	0.806	1.433	0.930
	4	[120-45]	0.864	1.536	0.925
		[120-90]	0.987	1.709	0.907
		[120-15]	0.848	1.449	0.930
	5	[120-45]	0.935	1.620	0.916
		[120-90]	1.005	1.712	0.907
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			1 Order Data Structure	
	Field	Type	Sample	Comment
	OrderID	String mjiwdgkqmonDFvCk3ntBpron5mwfrqvI	Anonymized
	Ride Start Timestamp	String	1501581031	Unix timestamp, in seconds
	Ride End Timestamp	String	1501582195	Unix timestamp, in seconds
	Pick-up Longitude	String	104.11225	GCJ-02 Coordinate System
	Pick-up Latitude	String	30.66703	GCJ-02 Coordinate System
	Drop-off Longitude	String	104.07403	GCJ-02 Coordinate System
	Drop-off Latitude	String	30.6863	GCJ-02 Coordinate System

Table 5 -

 5 2 Notations of all variables

	Notation	Comment
	T = { T 1, T2, …, Tn}	Trip set
	Ti, j	Shared trips T i and T j
	T.𝒐, T.𝒅	Pick-up, drop-off locations of the trip
	𝒕 𝒊 𝒔 , 𝒕 𝒊 𝒆	Desired pick-up, drop-off times of the trip
	𝒕 𝒊 𝒐 , 𝒕 𝒊 𝒅	Actual pick-up, drop-off times for the trip after ridesplitting
	𝒕(𝒊,𝒋)	Travel time between node i and node j
	𝛅	Time horizon of the search time for ridesplitting
	Δ	Maximum tolerable delay for passengers
	L = i, j∈{1,2…,n}L(Ti, j)	Link set that represents feasible ridesplitting
	S	Shareability network
	M	Matching of the shareability network S
	Mmax	Maximum weighted matching of the shareability network S
	S'	Intersection graph
	V = {V1, V2, …, Vn}	Node set of intersection graph S'

R

Independent set of intersection graph S'

Rmax

Maximum weighted independent set of intersection graph S'

  If there is no

		t i s	t i o	t i s +Δ		t i e	t i d	t i e +Δ
				t j s	t j o	t j s +Δ		t j e t j d t j e +Δ
	T i .o	T j .o		T i .o		T j .o	T i .o	T j .o	T i .o	T j .o
	T i .d	T j .d		T i .d		T j .d	T i .d	T j .d	T i .d	T j .d
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 5 3 Price of the DiDi ridesourcing service in Chengdu

	Time	Fee per kilometer (RMB)
	23:00-07:00	2.4
	Other time	1.7
	Time	Fee per minute (RMB)
	7:00-10:00 & 17:00-19:00	0.38
	Other time	0.3

Table 5 -

 5 

4 Pseudocode under three objectives

Table 5 -

 5 5 Actual level of ridesplitting

	Item	Number	Percentage
	Single ride orders	959,513	92.15%
	Shared ride orders	81,694	7.85%
	Total orders	1,041,207	100%
	Single ride hours	365,336.4 h	89.19%
	Shared ride hours	44,293.0 h	10.81%
	Total ride hours before ridesplitting	409,629.4 h	100%
	Single trip hours	365,336.4 h	91.36%
	Ridesplitting trip hours	34,548.5 h	8.64%
	Total trip hours after ridesplitting	399,884.9 h	100%
	Hours saved by ridesplitting*	9,744.5 h	2.38%
	Total trip cost before ridesplitting	21,300,728.8 RMB	--
	Single trip cost after ridesplitting	18,997,492.8 RMB	90.82%
	Ridesplitting trip cost after ridesplitting	2,043,811.4 RMB	9.18%
	Total trip cost after ridesplitting	21,041,304.2 RMB	100%
	Cost saved by ridesplitting*	259,424.6 RMB	1.22%
	*percentage of saved hours within the total ride hours before ridesplitting	
	*percentage of cost savings within the total cost before ridesplitting	

Table 5 -
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		6 Average delay under the three objectives
	Maximum			
	Tolerable Delay	Shared Trips	Time Savings	Cost Savings
	(min)			
	1	0.48	0.48	0.47
	2	1.14	1.12	1.11
	3	1.72	1.70	1.68
	4	2.34	2.27	2.21
	5	2.9	2.78	2.69
	6	3.45	3.36	3.12
	7	3.98	3.85	3.46
	8	4.44	4.32	3.78
	9	4.93	4.91	4.03
	10	5.4	4.73	4.23
	11	5.83	4.98	4.39
	12	6.3	5.59	4.53
	13	6.66	5.35	4.64
	14	6.91	6.13	4.73
	15	7.27	5.62	4.76

Table 6 -

 6 1 Cyberattack classification

	Category	Description	Attack consequences
			Tampering with
	Bogus messages	These attacks could transmit bogus messages such as erroneous velocity or position through masquerading a legal vehicle or tampering a piece of messages	velocity information Tampering with location information
			Delayed
		Due to the jammed communication channel or	transmission
	Replay/delay	being injected with a replay virus, the communication	information
		data is fraudulently repeated or delayed	Repeat transmission
			information
	Collusion	Two or more vehicles are attacked simultaneously	Superposition of
	attacks	by cooperatively adversaries	single attacks

Table 6 -

 6 2 Parameter values of different types of vehicles

	Parameter	l	0 v	a		b		T		s	0		g T	u T		c a	max	d	e	max
	Unit	m	ms	ms	2	ms	2	s	s	m s	s		ms	2	ms	2
	Small vehicle	5	33	2.5	3		1.3 0.1	4	1.3 3.5			2.5	4
	Medium vehicle	8	27	2		2		1.6 0.15 6	1.6 3.8			2	3
	Large vehicle	11	22	1.5	1		2	0.2	8		2	4			1.5	2
	6.4.1.1 Bogus velocity messages												
	Overestimate velocity													
	In this scenario, the fourth vehicle was attacked from	t	=	40 s	to	t	=	60 s

Table 6 -

 6 3 CAV platoon composition types (100 in total) 

Table 6 -

 6 4 Box plot data of variance distribution of headway deviation with or without RRCS under different vehicle proportion and vehicle distribution Y indicates the presence of RRCS, N indicates the absence of RRCS, U-IV means Upper quartile improvement value, M-IV means Median improvement value, U-IP means Upper quartile improvement percentage, M-IP means Median improvement percentage.

	Cyberattack type RRCS	Upper quartile	Median U-IV M-IV U-IP	M-IP
	Overestimate velocity	Y N	28.09 52.44	16.87 24.35 8.08 46.43% 32.38% 24.95
	Underestimate velocity	Y N	19.78 62.04	3.48 32.19	42.26 28.71 68.12% 89.19%
	Overestimate position	Y N	17.64 18.38	10.85 15.55	0.74	4.7	4.03% 30.23%

*

2 Sensitivity analysis of different attack intensity

  In the above numerical simulation, the respective cyberattack intensity under different cyber-attack scenarios considered is a fixed value, such as overestimated velocity attack of 1.5 times the actual velocity and underestimated velocity attack of 0.4 times the actual velocity. In this section, we further explore the variance distribution of headway deviation under different cyberattack scenarios when the cyberattack intensity follows the linear distribution, so as to verify that the effectiveness of the RRCS proposed in this chapter in resisting cyberattacks is not accidental in individual attack intensity scenarios. The cyberattack intensity of different attack types subject to linear distribution is shown in Table6-5 Table 6-5below.

Table 6 -

 6 5 Linearly distributed cyberattack intensity in different cyberattacks scenarios

	Cyberattack type	Specific distribution of cyberattack intensity
	Overestimate velocity	Actual Velocity * (1.1~3.5)
	Underestimate velocity	Actual Velocity * (0.1~0.9)
	Overestimate position	Actual Position + (5~45)
	Underestimate position	Actual Position -(5~25)
	Replay old acceleration	Replay lasts for (1s~10s)
	collusion attack -Type I	Actual Velocity * (1.1~3.1) and Actual Velocity * (1.1~3.1)
	collusion attack -Type II	Actual Velocity * (1.1~3.1) and Actual Position + (5~30)

Table 6 -

 6 6 Box plot data of variance distribution of headway deviation with or without RRCS under different cyberattack intensities Y indicates the presence of RRCS, N indicates the absence of RRCS, U-IV means Upper quartile improvement value, M-IV means Median improvement value, U-IP means Upper quartile improvement percentage, M-IP means Median improvement percentage.

	Cyberattack type RRCS	Upper quartile	Median U-IV M-IV U-IP	M-IP
	Overestimate velocity	Y N	370.38 370.38	118.96 154.14	0	35.18	0%	22.82%
	Underestimate velocity	Y N	2.95 84.37	1.49 44.20	81.42 42.71 96.50% 96.63%
	Overestimate position	Y N	5.81 89.54	5.03 46.30	83.73 41.27 93.51% 89.14%
	Underestimate position	Y N	8.09 20.07	2.14 10.89	11.98 8.75 59.69% 80.35%
	Replay old acceleration	Y N	52.28 132.46	49.46 80.18 78.89 60.53% 61.46% 128.35
	collusion attack -Type I	Y N	22.44 36.86	13.65 14.42 6.85 39.12% 33.41% 20.50
	collusion attack -Type II	Y N	13.87 58.48	10.61 44.61 28.55 76.28% 72.91% 39.16

*
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Conclusions
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Ridesplitting, a new shared mobility service, is a more sustainable travel mode for improving traffic efficiency and reducing air pollution. Therefore, the motivation of this study is to propose an optimization framework for the shared mobility system (SMS).

The originality and innovative aspects of this dissertation could be summarized according to 2 perspectives. For the value of theory and methodology, the proposed framework for the SMS could provide a systematic methodology for the modelling and simulation. The proposed artificial intelligent algorithms could provide a better understanding for the researches of travel behaviors analysis and spatiotemporal modelling. For the value of practical application, the proposed shared mobility system could help improve ridesplitting service to build a low carbon transport, which could incorporate CAVs for the future mobility.