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Scour is a natural phenomenon originating from the erosive action of watercourse.

It occurs on erodible riverbeds by carrying or excavating materials, and it can be particularly observed in the vicinity of obstacles such as bridge piers. Identifying rail infrastructure vulnerable to scour is one of the important tasks for transport agencies. In France, however, a practical process for identification has not existed yet for rail infrastructure. This thesis addresses the issue via machine learning based solutions, since they have shown good capacity in prediction recently. By using data from the French National Railway Company (SNCF), popular and classical algorithms are applied firstly to build the machine learning models. Then, the models are examined in terms of their robustness, and practicality. Meanwhile, they are compared with existing approaches such as ARPSA (Cerema, France) and scoring table (RTRI, Japan). Later, in order to understand the prediction results, the cutting-edge explainable artificial intelligence (XAI) methods are employed for model interpretation.

Results from XAI are then compared with engineering expertise from SNCF. This thesis provides a quick yet accurate process for identifying rail infrastructure vulnerable to scour by benefiting from the novel data-driven approach. It helps improve the current inspection and maintenance process by emphasizing the importance of surrounding environmental factors. In the end, a user-friendly web application was built to ensure the accessibility of the research outcome.

Background of the study

A well-developed transport system is essential for a country's economic development. As one of the infrastructure elements, bridges are crucial points served for connection within the transport network, underpinning economic vitality, and logistics of communities [START_REF] Sasidharan | Risk-informed asset management to tackle scouring on bridges across transport networks[END_REF].

France currently operates the second-largest European rail network, with a total of 29,901 km of railway (UIC, 2022). For the French National Railway Company (Société Nationale des Chemins de fer Français, SNCF) and other transport agencies, managing and ensuring the safety of infrastructure under the extreme weather events become one of the priorities .

In most cases, scour is the physical process behind the collapse of structures after flooding. It is considered as a natural phenomenon originating from the erosive action of flowing watercourse and usually occurs on erodible beds by excavating or carrying away materials from the riverbed. Facing with the stochastic nature of hydrologic events (e.g. flood), it is realized that scour related disasters are difficult to be avoided.

In this case, a risk based evaluation model shall be necessary to complement the design and maintenance procedures. [START_REF] Tubaldi | A framework for probabilistic assessment of clear-water scour around bridge piers[END_REF] established a probabilistic framework of scour depth by considering the hydrologic, hydraulic, and scour analyses using Markovmodel approach. [START_REF] Bento | Risk-based methodology for scour analysis at bridge foundations[END_REF] proposed a risk-based methodology for scour risk at bridge foundations comprising hazards (extreme hydrological events), numerical modelling (river behaviour) using HEC-RAS and vulnerability (scour depth to foundation depth ratio) analyses. Besides the aforementioned research work, in practice, empirical based procedures were proposed to screen the high risk structures in a more rapid way such as the Design Manual for Roads and Bridges (DMRB) BD97/12 (British Highways Agency, 2012), EX2502 (HR Wallingford, 1992), ARPSA [START_REF] Cerema | Analyse de risque des ponts en site affouillable[END_REF] and the scoring table built by the Railway Technical Research Institute (RTRI) [START_REF] Takayanagi | Evaluation method using score table for identifying bridge piers vulnerable to scouring in Japan[END_REF].

At SNCF, Livret A (SNCF, 2005) was proposed for classifying the foundations of rail assets crossing or adjacent to waterways. This document, nonetheless, has been barely implemented in the field due to its complexity. As a result, scour risk assessment depends majorly on engineers' judgment and a risk level of bridge foundation is designated after the field inspection. Guidelines in other countries or sectors cannot be directly applied to the French rail infrastructure due to the data accessibility, different construction techniques, or geographical background.

Recently, the increasing availability of data, growing capabilities of hardware, and cloud-based solutions have all boosted a new type of maintenance policy called predictive maintenance (PdM). PdM is a method in which the service life of important parts is predicted based on inspection or diagnosis. Compared with reactive or preventive maintenance, PdM is condition-based and could decrease the total cost in the end (see Figure 1.1). Machine learning (ML) is often adopted in PdM for the definition of the actual condition of the system as well as for forecasting its future states [START_REF] Susto | Machine learning for predictive maintenance: A multiple classifier approach[END_REF][START_REF] Yousefpour | Machine learning solutions for bridge scour forecast based on monitoring data[END_REF]. Therefore, by realizing the limitations of existing methods, this novel data-driven approach is considered as another option since it can discover the patterns in data which is not apparent to humans. When looking at the current literature, ML has been adopted in several studies in civil engineering and shown encouraging results, such as bridge risk management [START_REF] Cattan | Analysis of Bridge Condition Rating Data Using Neural Networks[END_REF][START_REF] Elhag | Risk Assessment for Bridge Maintenance Projects: Neural Networks versus Regression Techniques[END_REF][START_REF] Alipour | Load-Capacity Rating of Bridge Populations through Machine Learning: Application of Decision Trees and Random Forests[END_REF], local scour depth prediction [START_REF] Cheng | Hybrid intelligent inference model for enhancing prediction accuracy of scour depth around bridge piers[END_REF], undrained shear strength [START_REF] Mbarak | SPT based determination of undrained shear strength: Regression models and machine learning[END_REF], clay compressibility (Zhang et al., 2021b), liquefaction [START_REF] Goh | Seismic Liquefaction Potential Assessed by Neural Networks[END_REF], etc.

Objectives

Global climate change is accelerating and the natural hazards such as flooding, drought will happen more frequently in the future. Therefore, having a simple yet effective procedure for managing the rail infrastructure regarding scour is indispensable for SNCF. The general objective of this PhD work is to propose a machine learning based solution for evaluating the scour risk of rail infrastructure in France.

The following objectives are set to achieve this goal:

• Review the typologies of infrastructure, maintenance policy at SNCF, and the practical guidelines adopted in other countries or transport agencies. Have the basic knowledge of machine learning and its application in geotechnical engineering;

• Collect information from inspection reports and construct the database that could be used for training the machine learning model;

• Build machine learning models with domain expertise. The proposed models should provide guidance to the engineers or inspectors who are seen as the endusers of the model and need to decide the following step after inspection. For example, whether the scour countermeasure is required for the infrastructure.

• If possible, propose an application which makes the research outcome easy to be used and understood by the engineers who don't know coding.

Overview of the research

This thesis consists of six chapters, which is outlined as follows:

Chapter 1 is the general introduction of the research work.

Chapter 2 presents the overview of the rail assets crossing waterways, including the surveillance and maintenance policy, construction techniques, and also different observed damages around the infrastructure. Then, basic knowledge of machine learning and its application in civil engineering is presented.

Chapter 3 introduces the process to build the datasets which are used to train the machine learning classifiers afterwards.

Chapter introduces some popular machine learning algorithms. These algorithms are then used to build the machine learning model. The training and test results are presented in this chapter.

Chapter compares the machine learning classifiers built in Chapter 4 from different perspectives. For example, the model performance is examined for the robustness, practicality. The machine learning models are also compared with existing methodologies used in Japan and France.

Chapter explains one of the machine learning models that is constructed in Chapter 4. The cutting-edge explainable artificial intelligence (XAI) techniques are employed for interpretation. Furthermore, the research outcome of this study is demonstrated in a web application which could facilitate the use of rail engineers. The presentation of this web application is shown at the end of this chapter.

Chapter is the general conclusions and perspectives of this work.

Chapter 2

State of the art 2.1 Preamble

The number of natural disasters has increased a lot over the past 50 years due to the climate change effect. Studies have shown that hydraulic events induced damages are the major causes for bridge failures. In 1978 in France, the collapse of the Wilson Bridge, which is a masonry bridge with 15 arches built in 1765-1778, affected nearly 100,000 people in the city of Tours.

This chapter introduces the relevant background information for the maintenance practical guidelines for scour risk assessment, basic concepts of machine learning and development of machine learning in civil engineering are reviewed.

Overview of historical rail infrastructure subject to scour

This section provides an overview of the railway assets subject to scour, including the difficulties for surveillance and maintenance, maintenance policy, foundation construction techniques, and commonly observed damages in the field.

Specificities and difficulties

In the French rail network, except the infrastructure in high-speed rail lines (Train à Grande Vitesse, TGV), rail assets such as bridges, and retaining walls in other lines (e.g., Transport Express Régional, Intercités) were mostly constructed 120 years ago [START_REF] Sncf | Patrimoine Informatisé du Génie Civil (PIGC)[END_REF]. There are roughly 10,000 bridges crossing waterways and waterway retaining walls in the French rail network. Recently, the accelerating climate change bringing more severe and frequent natural hazards such as flooding, droughts, and heavy rains could undoubtedly pose a greater threat to the safety of infrastructure in the transport network (Nasr et al., 2021).

As a matter of fact, historical rail assets take a great proportion in Europe's rail network [START_REF] García-Catalán | Catalogue of Damages in masonry arch bridges[END_REF]. Each year, a huge amount of money is spent by the transport agencies for the reinforcement or reconstruction of rail infrastructure affected by floods. In France, the annual cost to regenerate the bridges subject to scour or other hydraulic events is roughly 4 million euros, according to SNCF (2019). The Austrian Federal Railways company ( ÖBB) estimated over 100 million euros losses due to floods in recent years [START_REF] Kellermann | Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)[END_REF]. Passenger travel disruptions due to floods were estimated to cost up to GBP 60 million for the UK railway network, and the indirect losses (e.g., impact on economic productivity) could be 10 times larger [START_REF] Lamb | A Probabilistic Model of the Economic Risk to Britain's Railway Network from Bridge Scour During Floods[END_REF].

The aforementioned data indicates the necessity to have an effective monitoring and maintenance policy. A proper policy for managing infrastructure could not only ensure the safety of rail network but also decrease the high cost related to repair work after the occurrence of scour disaster. However, there are several challenges and difficulties in monitoring and maintaining the aging rail infrastructure in the rail system.

Firstly, bridge management involves numerous data collection and data analysis techniques. Most railway bridges served in regional express lines (e.g., TER, Intercités) are between 75 and 170 years old. Some of them were partly destroyed during World War I or World War II and reconstructed after. Therefore, the design drawings could be incomplete or partly lost, and most of the drawings have not been digitized yet at SNCF. Besides, there could be the riverbed evolution, and flow path change since construction. In order to understand well the bridge and its surrounding environment, detailed inspections (underwater inspection through diving) are necessary. Sometimes, in-situ tests such as geotechnical surveys or impact vibration tests [START_REF] Nishimura | Study on Integrity Assessment of Railway Bridge Foundation[END_REF] are conducted as well. All of them are at a high cost and sometimes require even additional human resources to proceed.

The second challenge originates from the mode of monitoring. The most efficient and cost-effective method to deal with scour is to monitor the evolution overtime and to program scour countermeasure work accordingly [START_REF] Prendergast | A review of bridge scour monitoring techniques[END_REF].

One of the commonly used techniques for bridge monitoring is visual inspection.

When the depth of watercourse is deep or the velocity is high, an underwater foundation inspection through diver is employed [START_REF] Sasidharan | Risk-informed asset management to tackle scouring on bridges across transport networks[END_REF]. However, such visual inspection is only conducted during the low-flow periods and cannot be realized in flooding when the scour risk is the highest, due to safety reasons. Moreover, the issue is exacerbated as the scour hole may be filled in when floodwater subsides and get unnoticed during visual inspection, which could mislead the real extent of the problem [START_REF] Sasidharan | Risk-informed asset management to tackle scouring on bridges across transport networks[END_REF].

The third challenge comes from the external threat. The unequivocal extreme climate events have been recorded more often in the past decade. Study showed that the intensity and frequency of floods are possible to increase due to global warming [START_REF] Few | Flooding, vulnerability and coping strategies: local responses to a global threat[END_REF]. Compared with new constructions, historical bridges are more vulnerable when facing natural hazards resulting from material degradation. Besides the changing climate, another threat comes from the increased loading conditions due to the growing demand of transport on rail. If judging by the current design procedures, the initial design loads have more or less been passed, leading to the growing vulnerability of rail assets.

Surveillance and maintenance policy

In order to guarantee the safety of rail assets, especially for which in an ageing system, a proper maintenance policy is important. Figure 2.1 illustrates the inspection-maintenance process at SNCF. The maintenance work starts with a field inspection. The railway engineers must make a decision regarding the action to be done afterwards based on site observations. The most optimistic case is that the bridge foundation is at a very low risk level and the next inspection is scheduled in no more than six years. In other cases, corresponding scour countermeasures are going to be scheduled, and there are three types of cases: immediate regeneration, regeneration, and preventive work. According to the status of infrastructure, acceptable time to finish the corresponding maintenance work is different (varying from less than one year to six years). In some extreme cases, the severe damages (bridge collapse, deformation) could result in totally disrupted circulation. The scour countermeasures and/or the reinforcement of bridge foundation should be done immediately. The railway engineer makes decisions primarily based on their domain knowledge and expertise. It can be seen from Figure 2.1 that this step is also influenced by other aspects, such as his/her subjectivity affected by working experience, budget constraint, and social impact (importance of the bridge and rail line in the whole transport network). Therefore, the objective of this PhD work is to propose a machine learning model, which could serve as a complement for engineer's judgment and optimize the decision-making process in the end.

Scheduled inspection program

Field inspection

Immediate

Types of foundations

This subsection presents briefly the types of foundations for historical railway bridges crossing waterways.

Timber pile foundation

Timber pile foundation has existed since Roman and it was employed until the end of the 19th century. Before the naissance of caisson foundation, it was the only way to construct on compressible soil, such as silt, clay, and clayey sand.

Normally, the spacing between piles is often close to 1 m and the diameter of the pile varies from 0.20 m to 0.35 m. The length of the pile is around 10 m but can reach 20 m in some rare cases by using a joint. Figure 2.2 shows the schema of a bridge foundation constructed on timber piles.

Generally speaking, timber pile foundation construction consists the following steps:

1. driving the piles into the soil to make sure they could support the loads;

2. cutting up the piles in the same plane and connecting the top together;

3. covering a raft on the top of the piles to continue the following work. 

Caisson

Caisson is a commonly used technique to work on the foundations of a bridge pier.

Water is pumped out in the caisson to keep the work environment dry. There exist several construction techniques for caisson foundation. In general, the compressed air allows limiting the infiltration of water inside the caisson. 

Mass concrete

When the soil layer which supports the loads is not too far from the water level, the foundation can be constructed on mass concrete. This kind of foundation is realized by using underwater concrete or pumping out water and then pouring concrete. A cofferdam, which is often made by timber piles, sheet piles or earthfill dam, surrounds the foundation allowing creating a dry working environment (see Figure 2.4). 

Types of damages

This subsection describes and classifies the commonly seen damages during field inspection. The asset and its surrounding environment are decomposed into four parts: riverbank, foundation(infrastructure), channel, and superstructure. Damages described in this subsection are normally observed from visual inspections. Special inspections (e.g., underwater foundation inspection through diving, timber pile foundation inspection) are required if the river depth is profound, velocity is high or the foundation is constructed on timber piles.

Riverbank

The common observations (damages) around riverbank are listed as follows and

shown in Figure 2.5:

• landslide;

• excessive vegetation;

• contraction of flow due to debris. The causes for foundation damages are due to the degradation of the structural element or the interaction with watercourse. The types of damages are classified as follows [START_REF] García-Catalán | Catalogue of Damages in masonry arch bridges[END_REF].

Damages due to the structural element are:

• irregular cracks on foundation;

• abraded and rotten timber piles;

• corrosion of caisson;

• loss of scour protection.

Damages related to the interaction of watercourse are:

• general scour;

• local scour around foundation. 

River channel

Damages on river channel are categorized as follows and some of them are illustrated in Figure 2.7.

• general scour (lowering of riverbed);

• debris;

• bars (due to the sediment deposition);

• riverbed movement;

• excessive vegetation. (c) excessive vegetation.

Superstructure

Although damages on superstructure are beyond the scope of foundation inspection, but they could indicate the instability of foundation (Ozaeta García-Catalán and Martín-Caro, 2020). Such damages may be:

• cracks in longitudinal, vertical or transverse direction;

• mechanical failure of masonry. 

Basic knowledge of scour

Background

Scour is the leading cause for bridge failures [START_REF] Deng | Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures -Review[END_REF][START_REF] Pizarro | The science behind scour at bridge foundations: A review[END_REF][START_REF] Dikanski | Effects of uncertain asset stock data on the assessment of climate change risks: A case study of bridge scour in the UK[END_REF]. It is considered as a natural phenomenon originating from the erosive action of flowing watercourse and usually occurs on erodible beds by excavating or carrying away materials from the riverbed.

According to [START_REF] Shirole | Planning for a comprehensive bridge safety assurance program[END_REF], more than 60% of bridge failures were related to scour or other hydraulic effects between 1950 and 1991 in the United States. Since 1840, more than 100 collapses regarding railway bridges were due to scour and caused 15 fatalities in the United Kingdom (Van Leeuwen and Lamb, 2014).

Types of scour

The types of scour typically encountered are presented in this subsection.

• General scour : general scour is also called as natural scour. [START_REF] Melville | Bridge Scour[END_REF] define general scour as "that scour occurring irrespective of the presence of any human-imposed structure". It occurs due to the natural variability of river stream flows and sediment regime, considering the influence from the catchment to the river scale. Riverbed degradation, bend, contraction scour are all part of general scour [START_REF] Pizarro | The science behind scour at bridge foundations: A review[END_REF].

• Contraction scour : compared with local scour, contraction scour has received much less attention in recent research [START_REF] Ghazvinei | Comparative Analysis between Observed and Predicted Contraction Scour at Bridges Abutments[END_REF]. Contraction scour occurs when riverbed width decreases and watercourse velocity increases.

With contraction scour, riverbed material can be mostly or all removed due to the increased flow velocities and shear stresses. Conditions result in contraction scour may be : [START_REF]1 Three types of maintenance policies[END_REF] the constriction of watercourse (natural contractions or bridge contractions), ( 2) natural berms along the riverbanks due to sediment deposits, (3) ice formations, (4) debris, ( 5) vegetation in the channel [START_REF] Ekuje | Bridge scour -climate change effect and modelling uncertainties[END_REF].

• Local scour : local scour happens when there is an structural obstruction splitting (e.g., piers) or disrupt (e.g., abutments) the flow. According to [START_REF] Benn | Railway bridge failure during flooding in the uk and ireland[END_REF], local scour at bridge pier is considered as the most predominant type of scour. Factors related to local scour include but not limited to intensity of flow, sediment size of riverbed material, flow depth, attack angle, shape, width and length of pier and abutment [START_REF] Ekuje | Bridge scour -climate change effect and modelling uncertainties[END_REF].

Figure 2.9 illustrates the aforementioned different types of scour that could happen near a bridge pier. 

Climate change impact on scour

As mentioned in the previous subsection, bridge scour is the foremost cause of bridge failures worldwide [START_REF] Dikanski | Effects of uncertain asset stock data on the assessment of climate change risks: A case study of bridge scour in the UK[END_REF]. It removes and excavates the material from riverbed due to the erosive action of watercourse. The removal of material starts when the erosive capacity of water flow exceeds its ability to resist motion, thus the scour process commences [START_REF] Annandale | Scour technology : mechanics and engineering practice[END_REF]. Furthermore, [START_REF] Annandale | Scour technology : mechanics and engineering practice[END_REF] points out that scour depth increases when the erosive capacity of water flow increases, which in return lifts and drags the sediment at the riverbed by the flow velocity. Such process could consequently lower the riverbed in the main channel (e.g., general and contraction scour) and around bridge piers and abutment (e.g., local scour).

It is broadly acknowledged in the literature that climate change due to anthropogenic emissions of green house gases (e.g., CO [START_REF] Economist | Climate change made north-west Europe's lethal flood more likely[END_REF]. [START_REF] Watts | Climate change and water in the uk -past changes and future prospects[END_REF] asserts that "anthropogenic climate change would expectedly modify rainfall, temperature, and catchment hydrological processes around the world resulting in challenging water-related adaptations".

The increased frequency of flood events has an adverse impact on the life-cycle performance of affected railway infrastructure, since the design code is on the basis of past events and assume the load will be the same in the future [START_REF] Mondoro | Bridge adaptation and management under climate change uncertainties: A review[END_REF], which leads to growing vulnerability of these infrastructure under future hazards.

To summarize, the increase in river flood discharge resulting from extreme precipitation due to climate change effect could increase scour risk and ultimately, endanger the safety of infrastructure and cause more failures.

Practical procedures for scour risk assessment

In order to prevent scour disasters, transport agencies normally conduct regular visual inspections to evaluate the risk of infrastructure. Practical guidelines are pro-posed to help field engineers assess the risk in case they don't have enough knowledge in the domain. Before proposing a procedure for the rail assets in France, we look at firstly the existing approaches in Japan, the United Kingdom, and France in rail or road sectors, since they share similar construction techniques, or geographical background to French assets. After reviewing these approaches, the advantages and disadvantages of each method are compared and discussed at the end of this section.

Rail sector 2.4.1.1 Scoring table in Japan

Proposed by the Railway Technical Research Institute (RTRI), the Japan Railways Groups (JR) employs a scoring table [START_REF] Takayanagi | Evaluation method using score table for identifying bridge piers vulnerable to scouring in Japan[END_REF] to assess the scour risk of railway bridges.

In this approach, factors related to scour risk are divided into three categories : environmental condition of river, structural conditions of bridge pier, and protection conditions of bridge pier. The evaluation items in each category are considered having an important impact on scour risk assessment and they are chosen on the basis of past disasters happened in Japan.

It should be noted that many parameters used in empirical formulas for calculating scour depth [START_REF] Laursen | Neural Network Modeling for Estimation of Scour Depth Around Bridge Piers[END_REF][START_REF] Froehlich | Analysis of onsite measurements of scour at piers[END_REF][START_REF] Melville | Pier and abutment scour: Integrated approach[END_REF][START_REF] Melville | Design Method for Local Scour at Bridge Piers[END_REF][START_REF] Hager | Bridge Pier Scour under Flood Waves[END_REF][START_REF] Hong | Predicting time-dependent pier scour depth with support vector regression[END_REF][START_REF] Link | A model of bridge pier scour during flood waves[END_REF][START_REF] Melville | Time Scale for Local Scour at Bridge Piers[END_REF][START_REF] Pizarro | BRISENT: An entropy-based model for bridge-pier scour estimation under complex hydraulic scenarios[END_REF][START_REF] Yanmaz | Study of Time-Depenbent Local Scour around Bridge Piers[END_REF] are reflected in this method. Moreover, types of scour countermeasure as well as the damage level of scour countermeasures have been taken into account in this approach. et al. (2018). The score of the evaluation item "Relative embedment depth" shown in Table 2.2 is calculated based on Figure 2.10. The embedment depth is calculated

RTRI's scoring table is shown from

using equation 2.1 Relative embedment depth = L/B (2.1)
where L is the bridge foundation embedment depth (m) and B is the bridge pier width (m). The final bridge score is calculated by summing the score of evaluation items shown from Table 2.1 to Table 2.3. If the final score is less than 110, a detailed inspection and more complex studies shall then be needed. It's noteworthy that several choices in evaluation items with a "*" mark are considered strongly related to a potential scouring disaster. Therefore, if one of these choices are included in the investigated bridge pier, it is regarded as high risk and needs more detailed inspection immediately, regardless of the sum of scores.

The score of each evaluation item and the threshold value (110) were calibrated on historic survey data of 77 bridge piers in Japan. The same 77 bridge piers were considered as high risk by railway engineers without using scoring table. In addition, it has been tested and confirmed that the results from scoring table and railway engineers are generally in agreement with each other [START_REF] Takayanagi | Scour risk management at bridges -A comparison of Japanese and French scoring methodologies URL[END_REF].

EX2502 in the United Kingdom

EX2502 (HR Wallingford, 1992) is the standard for the assessment of scour for railway bridges over water in the UK. The procedure for evaluating the scour depth in EX2502 involves calculating general scour, local scour and bend scour (if any).

The total scour is calculated as the sum of local scour and general scour, as shown in equation ( 2.2)

d t = d l + d g (2.2)
where d t = total scour; d l = local scour; d g = general scour.

To estimate local scour and general scour depth, important features are such as river bend, relative flow depth, angle of attack, pier shape, sediment size and debris blockage (if any) [START_REF] Ekuje | Bridge scour -climate change effect and modelling uncertainties[END_REF]. All equations used in EX2502 for predicting the general and local scour depth are based on small-scale laboratory experiments with limited field data for verification [START_REF] López | Estimating final scour depth under clear-water flood waves[END_REF][START_REF] Arneson | Evaluating Scour at Bridges[END_REF].

The total scour depth d t should sometimes be revised by subtracting an adjustment factor (AF), as indicated in equation (2.3).

d t = d t -AF (2.3)
AF is actually the difference in bed level at a cross section upstream of the bridge and the bed level from where the foundation depth was measured. It should be noted that AF can be applied only when there is enough information indicated in the divers' reports or information from monitoring equipment like sonar. In other cases, AF should be taken as zero.

A preliminary priority rating (PPR) can then be calculated by using the total scour depth and the foundation depth

P P R = 15 + ln {(d t -d f ) /d f + 1} (2.4)
where d t = total scour depth; d f = f oundation depth. The PPR can also be obtained by using the graph on Figure 2.11. The final priority rating (FPR) is calculated by considering a number of additional features which may influence of failure such as river stability and river type (TR).

TR is calculated by using the equation (2.5)

T R = 1 17
(sum of channel stability, bank stability, channel slope) (2.5) and the final priority rating (FPR) is presented in equation (2.6).

F P R = P P R -T R (2.6)
In the end, the risk of scour can be determined from Table 2.4. One of the limitations of EX2502 is that it does not respond to changes in river discharges induced by climate change. The river depth is advised to be calculated as:

Y u = 0.185W 0.7 u (2.7)
where Y u = f low depth in the channel;

W u = channel width upstream of the bridge.

It is obvious that the flow depth does not respond to changes in river discharge.

Therefore, Manning's equation is suggested to estimate the flow depth (British Highways Agency, 2012). [START_REF] Ekuje | Bridge scour -climate change effect and modelling uncertainties[END_REF] presented the implement of Manning's equation for making the flow depth responsive to changes in discharge for improvement.

Another limitation of EX2502 is that it is not based on flow velocity and the influence of flow intensity on local scour (e.g., ratio of velocity due to discharge to critical velocity (V /V c )) is not considered. Therefore, it cannot be used to calculate critical discharge based on critical velocity, where the maximum local scour occurs [START_REF] Ekuje | Bridge scour -climate change effect and modelling uncertainties[END_REF].

Detailed process for local scour (d l ), general scour(d g ) and additional factors (T R)

is in presented in HR Wallingford (1992). [START_REF] Takayanagi | Scour risk management at bridges -A comparison of Japanese and French scoring methodologies URL[END_REF].

ARPSA comprises 3 steps' analyses: a pre-filtering step, a simplified analysis step, and a detailed analysis if necessary. Hazard, vulnerability and consequence are studied separately in ARPSA.

Figure 2.12 shows the scoring table for hazard factors in step 1 (pre-filtering) analysis. Generally speaking, the scour hazard level takes into account the general scour (A1), contraction scour (A2) and local scour (A3). Scour hazard characterization is mainly influenced by river morphology and hydrodynamic factors [START_REF] Takayanagi | Scour risk management at bridges -A comparison of Japanese and French scoring methodologies URL[END_REF]. The scour hazard level in step 1 is then defined by three levels shown in Table 2.5. The hazard level in step 2 refers to a simplified quantitative analysis. It calculates scour depth by using classic equations [START_REF] Arneson | Evaluating Scour at Bridges[END_REF] Vulnerability level Note

Low V ≤ 8 Medium 8 < V ≤ 12 High V > 12
Bridge scour risk is determined at first through criticality (C) level by referring to hazard (A) and vulnerability (V) levels. Later, the scour risk is a combination of consequence (ISE) level (see Table 2.7) and criticality (C). Table 2.8 and Table 2.9

show the two matrices to determine risk level in step 1 analysis. (1981), [START_REF] Laursen | An analysis of relief bridge scour[END_REF], [START_REF] Arneson | Evaluating Scour at Bridges[END_REF].

The vulnerability level in step 2 is determined with similar criteria in step 1 but a French standard for the classification of structures (IQOA) is added. Besides, the foundation tilting due to potential local scour is taken into account.

ARPSA was tested and calibrated on 83 road bridges including 11 in torrential and 4 in cyclonic conditions [START_REF] Takayanagi | Scour risk management at bridges -A comparison of Japanese and French scoring methodologies URL[END_REF]. Detailed information on ARPSA scoring table is presented in [START_REF] Cerema | Analyse de risque des ponts en site affouillable[END_REF] and [START_REF] Durand | Arosa: A new french guideline for scour at bridges risk-based analysis[END_REF].

Comparison among the procedures

The procedures presented before are commonly used guidelines for scour risk evaluation in practice. Table 2.10 and Table 2.11 list the advantages and disadvantages of each procedure respectively. 

Procedure Advantages

Scoring table 1. A very practical and simple procedure to be adopted in practice.

2. Each bridge element (pier) is assigned a risk level. depth upstream or under the bridge). A quantitative analysis can then be conducted.

Having these measurements could sometimes be expensive and time-consuming in practice. Although equations for simulating the river depth are proposed in EX2502, they are not responsive to the change of river flow. The local scour depth estimated in EX2502 is not related to velocity as well.

ARPSA is the only one among the presented procedures considering the consequence aspect for scour risk evaluation. Since it is a procedure for highway bridges, some evaluation items are not adaptable to railway bridges.

In the end, each procedure has its own advantages and disadvantages, and none of them can be used directly to railway bridges in France. The objective of this study is to propose a novel procedure for infrastructure in the French rail network. In this research, the proposed ML models are compared with scoring table and ARPSA (see section 5.4 in Chapter 5), since data required in these approaches are similar to the current maintenance policy at SNCF. Deep learning is a subset of ML. It can be generated as a sophisticated and mathematically complex evolution of machine learning algorithms. It consists of multiple layers of interconnected nodes, each building upon the previous layer to optimize the prediction or categorization [START_REF] Zhang | Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge[END_REF]. 

The fundamentals of machine learning

Evaluate

Types of machine learning

There exist four categories of ML, namely supervised learning, unsupervised learning, semi-supervised learning, as well as reinforcement learning.

Supervised learning

Supervised learning must use data including the desired solution, which is called labels. The labeled dataset is then fed to train algorithms and to classify data or predict outcomes accurately (see Figure 2.16). The model adjusts its weights until it has been fitted appropriately using training data. Below are some commonly used supervised learning algorithms:

• logistic regression;

• support vector machine (SVM);

• k-nearest neighbors;

• random forest (RF);

• extreme gradient boosting (XGBoost);

• neural networks.

Among the listed algorithms, SVM, RF, XGBoost and neural networks are selected to train the ML model because they've shown promising results in other related studies.

Chapter 4 presents more detaily these algorithms.

Supervised learning has been widely used in geotechnical engineering, including soil properties [START_REF] Bejarbaneh | Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems[END_REF], tunneling [START_REF] Zhou | Feasibility of randomforest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel[END_REF], landslides [START_REF] Moosavi | Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by taguchi method[END_REF], remote sensing [START_REF] Yousefpour | Machine learning solutions for bridge scour forecast based on monitoring data[END_REF]. A review of ML applications in civil engineering is presented in section 2.6. 

Class 1 Class 2 Unknown

Unsupervised learning

Unsupervised learning uses ML algorithms to analyze and cluster unlabeled dataset, as shown in Figure 2.17. Compared with supervised learning, the algorithms can dis- Unsupervised learning is often used to clustering, which means to group similar data points together based on their characteristics. It can also be used for dimensionality reduction, in which the goal is to simplify the data without losing so much information.

Another important task for unsupervised learning is association rule learning. It digs into large amount of data and discovers relationships between features. The association rule learning is often used in marketing analysis for decision-making.

Commonly used unsupervised learning algorithms are:

• k-Means;

• principal component analysis (PCA);

• kernal PCA.

Semi-supervised learning

Semi-supervised learning falls between supervised and unsupervised learning. During the training phase, it uses only a small amount of labeled data set to guide classification and feature extraction from a larger, unlabeled dataset. Semi-supervised learning is often used in image recognition for searching photos.

Reinforcement learning

Reinforcement learning is based on rewarding desired behaviours and/or punishing undesired ones. In general, the learning system (also called agent) can interpret environment, take actions and learn through trial and error.

Considering the objective of this study (scour risk evaluation) and number of variables that we are gonna have, supervised learning is chosen to train the model. Therefore, the datasets must include factors that have impacts on scour risk (input parameters) and the corresponding risk (output). Detailed work regarding dataset preparation is shown in Chapter 3. In some cases, validation set is being needed to provide an unbiased evaluation of a model fit on training set while fine-tuning the hyperparameters (e.g., number of hidden layer or number of iterations in a neural network). It can be served for model regularization through early-stopping to avoid overfitting.

Model training and testing

Underfitting and overfitting

Overfitting and underfitting are two crucial concepts in ML and are the causes for the poor performance of ML model in most cases. Figure 2.18 shows the examples of underfitting, optimum learning and overfitting. As shown in Figure 2.18 (a), underfitting occurs when the model is too simple and it cannot represent the underlying structure of data. For example, a linear regression model is used for life satisfaction prediction. Obviously, it is acknowledged that the reality is more complex than a linear model. Some techniques to avoid underfitting are:

• increasing model complexity;

• increasing the size of data, number of variables;

• removing noise from the data;

• increasing the number of epochs for training.

Overfitting (see In order to avoid overfitting, possible solutions are:

• collecting more training data;

• early stopping to pause training;

• feature selection to identify the most important parameters;

• regularization (e.g., Lasso regularization);

• ensemble learning by using a set of classifiers.

As a matter of fact, there is no specific rule to define the threshold value for overfitting or underfitting. Most documents indicate overfitting is "when the model performs well well on the training data but does not on test data". Similarly, it is difficult to say how much data (or variables) is needed for a machine learning model to avoid underfitting or overfitting. The decision can only be made once we know the training and test results. Therefore, without training and testing, it's difficult to know in advance whether the collected data or selected variables are enough to have an accurate classifier or not.

Evaluation measurements

In order to know how well the model learns from the training data, it needs to be tested in an unseen dataset, which means the test set as mentioned in section By contrast, if the model prediction is classes (e.g., soil type, risk class), the evaluation measurement should be changed correspondingly.

One of the most common ways to evaluate a classifier is to use a use a confusion matrix, as shown in Table 2.12. There could be four possible outcomes when comparing the predicted values with actual values, namely true positive (TP), false positive (FP), false negative (FN), and true negative (TN). 

Accuracy = T P + T N T P + F P + F N + T N (2.8) 
P recision = T P T P + F P (2.9)

Recall = T P T P + F N (2.10) F alse positive rate (F P R) = F P F P + T N (2.11)
Accuracy (equation 2.8) is one of the most popular measurements to evaluate a classifier. It's calculated as the percentage of correctly classified cases among all test data. Simply using accuracy score cannot perfectly evaluate the model performance.

For example, achieving 90 percent accuracy is trivial for an imbalanced dataset. In other words, if the proportion of one class is extremely superior to another, high accuracy score does not indicate that the classifier has a satisfactory performance.

To address this issue, precision (equation 2.9) is employed to calculate the per-centage of true positive samples among all predicted positive samples. At the same time, recall (equation 2.10) calculates the percentage of true positive samples among all actual positive samples. In other words, a high precision means that the model has a high probability to give a correct prediction for positive classes, and a high recall indicates that the classifier is capable of correctly detecting the positive classes.

False positive rate (equation 2.11) is the counter part of recall [START_REF] Liu | Modelling of shallow landslides with machine learning algorithms[END_REF]).

It's the fraction of false positive cases among all actual negative samples, namely the probability of false alarm.

Area Under the ROC Curve (AUC) is an alternative measurement to evaluate a classifier based on a Receiver Operating Characteristic (ROC) curve [START_REF] Fawcett | An introduction to roc analysis[END_REF].

In ROC curve the true positive rate (recall) is plotted against the FPR at different 1 In a binary classification problem, the algorithm returns to a probability which ranges from 0 to 1. The probability allows mapping to a binary category. By default, the threshold value is 0.5. If the probability is larger than 0.5, the sample belongs to class A. On the contrary, if the probability is less than 0.5, the sample could be in class B.

The dotted line represents the ROC curve of a random classifier. As indicated by its name, the area under ROC curve is AUC. AUC measures how well the classifier distinguishes between two classes. A random classifier will have an AUC equal to 0.5 whereas a perfect classifier will have an AUC equal to 1.

Machine learning development in civil engineering 2.6.1 Model development process

As a branch of AI, ML model is designed to use data and algorithms to mimic human learning process. It should be noted that in the literature, there hasn't existed a standardized procedure to study a specific problem via AI/ML [START_REF] Naser | An engineer's guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference[END_REF].

Nonetheless, [START_REF] Shahin | Artificial Intelligence in Geotechnical Engineering: Applications, Modeling Aspects, and Future Directions[END_REF] pointed out the procedures and directions to be systematically investigated (see Figure 2.20) when developing a machine learning model.

Determination of model inputs

input data selection based on priori geotechnical engineering knowledge

Data preparation

suitable form for algorithms

Data division

training and test set seperation regression: R 2 , RMSE, MAE, etc.

classification: accuracy, etc.

Model validation

ML model 1. Determination of model inputs

input data selection based on priori engineering knowledge

Model transparency and knowledge extraction

model interpretation and explanation

Model robustness

predictive ability over a range of data similar to current dataset

Model extrapolation

predictive ability outside the range of current dataset

Model uncertainty

uncertainty regarding model predictions 

Examples of applications

With large volumes of observation and monitoring data available for researchers in civil engineering, ML based solutions are being integrated into various subdomains.

When looking at the literature, in most studies the objective for applying machine learning is prediction. However, several studies also try to interpret the ML model besides prediction. Some research work with these purposes are shown below.

Prediction

• Domain of scour

Lots of research work has applied machine learning algorithms to predict the bridge pier scour depth. Compared with empirical formulas, ML approach does not require predefined coefficients to determine the relationship among key parameters. Among all machine learning models, artificial neural networks (ANNs) have shown encouraging results for local scour depth prediction [START_REF] Cheng | Hybrid intelligent inference model for enhancing prediction accuracy of scour depth around bridge piers[END_REF][START_REF] Najafzadeh | GMDH to predict scour depth around a pier in cohesive soils[END_REF][START_REF] Zounemat-Kermani | Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system[END_REF][START_REF] Hosseini | Bagged neural network for estimating the scour depth around pile groups[END_REF][START_REF] Laursen | Neural Network Modeling for Estimation of Scour Depth Around Bridge Piers[END_REF][START_REF] Tola | Scour detection with monitoring methods and machine learning algorithmsmdash;a critical review[END_REF]. [START_REF] Bateni | Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers[END_REF] used bayesian neural networks for predicting the equilibrium and time-dependent scour depth around bridge piers. Five key parame-ters, namely, flow depth, mean velocity, critical velocity, mean grain diameter, and pier diameter are used for prediction. Results in this paper showed that ML models predict more accurately than the existing mathematical expressions. [START_REF] Toth | Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: comparison of literature formulae and artificial neural networks[END_REF] applied ANN models by using both field and laboratory observations for predicting the maximum scour depth around bridge piers. An external validation dataset is employed for evaluating the ANNs and literature formulae. Results confirm that the ANNs outperform the conventional approaches.

Despite the encouraging results, data in above studies is from laboratory tests. ML has rarely been applied in the engineering practice due to the need for a large amount of data required for training and validation. This PhD work addresses the issue by using data from SNCF.

• Other problems in civil engineering

Besides scour, AI and ML have recently been applied in other contexts. For example, ML models have been adopted for soil properties prediction, such as undrained shear strength [START_REF] Mbarak | SPT based determination of undrained shear strength: Regression models and machine learning[END_REF]Zhang et al., 2021b), compression index [START_REF] Park | Evaluation of the compression index of soils using an artificial neural network[END_REF], and clay compressibility (Zhang et al., 2021a). Apart from this, liquefaction [START_REF] Goh | Seismic Liquefaction Potential Assessed by Neural Networks[END_REF][START_REF] Liu | Artificial Neural Network Methodology for Soil Liquefaction Evaluation Using CPT Values[END_REF][START_REF] Pal | Support vector machines-based modelling of seismic liquefaction potential[END_REF], landslide [START_REF] Dahigamuwa | Feasibility Study of Land Cover Classification Based on Normalized Difference Vegetation Index for Landslide Risk Assessment[END_REF][START_REF] Li | Rainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network[END_REF][START_REF] Liu | Modelling of shallow landslides with machine learning algorithms[END_REF][START_REF] Pradhan | Regional landslide susceptibility analysis using back-13-30[END_REF], pile capacity [START_REF] Pham | Landslide Susceptibility Assessment Using Bagging Ensemble Based Alternating Decision Trees, Logistic Regression and J48 Decision Trees Methods: A Comparative Study[END_REF][START_REF] Ghorbani | Numerical ANFIS-Based Formulation for Prediction of the Ultimate Axial Load Bearing Capacity of Piles Through CPT Data[END_REF][START_REF] Harandizadeh | Application of improved ANFIS approaches to estimate bearing capacity of piles[END_REF], pile settlement (Saeedi [START_REF] Saeedi Azizkandi | Prediction of Uplift Pile Displacement Based on Cone Penetration Tests (CPT)[END_REF][START_REF] Armaghani | Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming[END_REF], stability of underground space [START_REF] Adoko | Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network[END_REF][START_REF] Ghasemi | Development of Two Empirical Correlations for Tunnel Squeezing Prediction Using Binary Logistic Regression and Linear Discriminant Analysis[END_REF][START_REF] Mahdevari | A dynamically approach based on svm algorithm for prediction of tunnel convergence during excavation[END_REF], and tunneling in terms of tunnel boring machine (TBM) performance [START_REF] Naghadehi | State-of-the-art predictive modeling of tbm performance in changing geological conditions through gene expression programming[END_REF][START_REF] Elbaz | Optimization of epb shield performance with adaptive neuro-fuzzy inference system and genetic algorithm[END_REF][START_REF] Mahdevari | A support vector regression model for predicting tunnel boring machine penetration rates[END_REF] are all very popular topics to use ML and AI technics.

ML has also been used for bridge maintenance and risk management. [START_REF] Cattan | Analysis of Bridge Condition Rating Data Using Neural Networks[END_REF] used neural networks to predict subjective ratings for bridge conditions given by experts. It was found that by giving the right input variables, neural network had a much better performance compared with conventional statistical methods and fuzzy-logic approach. [START_REF] Elhag | Risk Assessment for Bridge Maintenance Projects: Neural Networks versus Regression Techniques[END_REF] established ANN in bridge risk score and risk categories assessment. [START_REF] Alipour | Load-Capacity Rating of Bridge Populations through Machine Learning: Application of Decision Trees and Random Forests[END_REF] applied decision trees and random forest algorithms to predict the load-capacity rating of bridges, which was rated only by engineers' judgement before. A user-friendly software (App) was developed by [START_REF] Abedi | RAI: Rapid, Autonomous and Intelligent machine learning approach to identify fire-vulnerable bridges[END_REF] to identify fire-vulnerable bridges.

Model interpretation via explainable artificial intelligence (XAI)

Besides using for prediction, explainable artificial intelligence (XAI) has been employed to understand the physical phenomenon through explaining the black-box ML model. XAI has currently been adopted in structural engineering, but rarely in geotechnical engineering. [START_REF] Shahin | Artificial Intelligence in Geotechnical Engineering: Applications, Modeling Aspects, and Future Directions[END_REF] Based on these applications, the ML models are built at first for prediction (Chapter 4). They are interpreted via SHAP model and other XAI approaches afterwards (Chapter 6).

Summary

More frequent and severe flood events will happen in the future due to climate change. Enhancing the resilience of rail infrastructure under extreme weather conditions will be a key challenge for transport agencies.

In this literature review chapter, the challenges and difficulties for managing and maintaining the rail infrastructure have been introduced firstly. The aging infrastructure, the ancient construction techniques, and also a diverse typologies for damages around infrastructure could all bring challenges for asset managers.

Later, by revealing the physical model of scour, it is clearly realized that the climate change will inevitably accelerate the scour process and make an adverse impact to the life-cycle performance of railway infrastructure.

Then, the practical guidelines from rail and road sectors, namely scoring table ,   EX2502 and ARPSA are presented as examples on how to assess the scour risk in an effective way in practice. The advantages and disadvantages of each method are discussed.

It has been realized that in order to help field engineers, the assessment procedures must be simple enough to be applied in a large amount of assets. However, the challenge could be that when dealing with such amount of assets from a national level, many factors need to be taken into account: history, construction technique, surrounding environment, surveillance frequency, etc. Nevertheless, scour is complicated phenomenon which refers to the interaction of subsoil-foundation-watercourse and the underlying mechanism has not been completely understood yet. Current approaches cannot be directly used for the rail infrastructure in France.

To tackle the aforementioned issues, machine learning based solutions will be proposed in this study, since it can discover the patterns in data which is not apparent to human. The last two sections of this chapter review the fundamentals of machine learning, including types of learning, definitions of underfitting and overfitting, and model performance evaluation methods. Later, the development of machine learning in civil engineering is presented. The methodology introduced here is followed in the rest of the study.

Chapter 3

Data preparation

Introduction

In order to build a machine learning model, having a proper dataset is the first step. This chapter introduces the process for dataset preparation.

In general, there are four types of elements affected by scour: bridge pier, bridge abutment, bridge wing wall (see Figure 3.1) and retaining wall (see Figure 3.2). When looking at the current literature, most research work focuses on studying scour at the bridge pier through physical modelings [START_REF] Melville | Design Method for Local Scour at Bridge Piers[END_REF][START_REF] Melville | Time Scale for Local Scour at Bridge Piers[END_REF][START_REF] Sumer | Wave scour around a pile in sand, medium dense, and dense silt[END_REF][START_REF] Amini | Clear-water local scour around pile groups in shallow-water flow[END_REF] or numerical approaches [START_REF] Richardson | Three-dimensional simulation of scourinducing flow at bridge piers[END_REF][START_REF] Zhu | CFD prediction of local scour hole around bridge piers[END_REF][START_REF] Lu | Field measurements and simulation of bridge scour depth variations during floods[END_REF][START_REF] Foti | Influence of foundation scour on the dynamic response of an existing bridge[END_REF]. Scour at bridge abutment is often studied separately from bridge pier and the formulas for calculating local scour depth at bridge pier and abutment are not the same [START_REF] Arneson | Evaluating Scour at Bridges[END_REF].

Like the previous studies, we separated the raw data as two datasets, one for bridge pier and another for bridge abutment, bridge wing wall and retaining wall (noted as Abutment&Wall hereafter). The two datasets have gone through the same process for feature selection and data preprocessing.

This chapter is organized as follows: Section 3. 

Data collection

Input data

Factors directly or indirectly related to scour are input data. To collect input data, we firstly refer to the inspection reports written by the engineers or inspectors.

In these documents, general information regarding the asset, history, and observed damages around the rail asset are noted. Besides, some open-source data is included as well to complete the missing information in the reports.

Output data

Scour risk is the output of the machine learning model. After field inspections, the status of the asset (piers, abutments, or walls) should be evaluated. The assets are graded from 0 (totally damaged) to 10 (intact). Guidance is proposed to unify the standard of grading (see Appendix A). The proposed grade is then related to scour risk. Table 3.1 shows the scour risk classification rule. 

Feature selection

A risk analysis usually includes two key components: hazard and vulnerability [START_REF] Goerlandt | A risk-informed ship collision alert system: Framework and application[END_REF][START_REF] Todinov | Risk-based reliability analysis and generic principles for risk reduction[END_REF]. Hazard is defined as the condition (flood event)

which could possibly cause the undesirable events. Vulnerability refers to the susceptibility of the receptor (rail infrastructure) to the damaging effects of a hazardous event. Because of the stochastic nature of hydrologic events and also the uncertainty about the watercourse -foundation -surrounding environment interaction, the driving forces to vulnerability are still unclear now [START_REF] Bento | Risk-based methodology for scour analysis at bridge foundations[END_REF]. Studies have shown that bridge failures could be triggered by scour hole, debris accumulation and scour history. The uncertainty about scour history is in conjunction with potentially unknown foundation depth or state, bridge characteristics and number of floods in the last five years, which could increase the vulnerability [START_REF] Argyroudis | Vulnerability of bridges to individual and multiple hazards-floods and earthquakes[END_REF].

Therefore, main factors that could affect the scour risk were firstly divided into four categories, namely bridge characteristics, environment, history, and changing factors (see Figure 3.4). It should be noted that only hazard and vulnerability factors for scour risk assessment are considered in this study. Consequence factors (e.g., the frequency of the train passed by each day, the difficulty to find an alternative transport when the traffic is disrupted) are not included since currently at SNCF, the railway engineers make decision only from a technical perspective. The consequence factors are considered afterwards while planning the maintenance work by the regional office.

In order to choose input parameters, current practical guidelines in France (ARPSA, 

Engineering perspective

Compared with a field inspection which needs to note detailed information of the infrastructure and its surrounding environment, machine learning model performs a generic analysis and each variable needs to be representative enough for one kind of information. In this circumstance, before going to use statistical analysis for feature selection, the first step is to combine variables with similar information from an engineering perspective.

The original dataframe has flow depth and river width values measured from upstream, downstream, and under the bridge. For simplification, all these values are replaced as average flow depth and average river width.

Concerning the variables for damage descriptions, originally, there are 11 and 4

features for channel and riverbank respectively. Each variable is quite unique to describe one type of damage. For example, the 4 features describing the damages at riverbank are: excessive vegetation, debris, scour hole, landslide. These variables are then simplified as channel rating and river bank rating since in a ML model, the selected variable needs to be general and common enough. Instead of considering each damage, a rating score is given in the end by counting the sum of damages. Similar actions are also done for variables describing damages of bridge foundation and its protection.

In the end, the original dataframe is simplified as follows. Although there is no rule to determine the relationship between the size of data and number of required variables, according to the examples that we've seen, the number of variables is still a lot. Therefore, a statistical analysis is conducted afterwards.

Selected variables after engineering analysis are:

• Environment: flow type, slope of riverbed (%), specific flood flow (m 3 /s), width of valley/width of low flow channel, topography, hydraulic structure in the vicinity, sinuosity, riverbed material, river width (m), average flow depth (m), velocity (m/s), navigable, flow obstruction (%);

• Bridge characteristics: streambank protection, movement, pier shape, pier width (m), foundation type, existence of foundation scour countermeasures, watercourse countermeasures, attack angle;

• History: scour history, flood frequency;

• Changing factors: susceptible of scour, channel rating, bank rating, existence of dislocation or deformation (bin.), existence of dislocation or deformation (%), local scour (bin.), local scour (%), other damages.

Below are explanations of some features: 3. Channel rating notes the condition of river channel. The rating depends on the quantity of observed damages in the river channel. For example, the riverbed bathymetry revolution, presence of vortex, excessive vegetation, debris, etc.

4. Dislocation or deformation is the damage existing on masonry as shown in Bridge foundation depth, which is a key parameter in most of risk management procedures, is not included here because it is difficult to obtain this information in current SNCF database. The British Network has also reported the same issue for knowing the foundation depth [START_REF] Dikanski | Effects of uncertain asset stock data on the assessment of climate change risks: A case study of bridge scour in the UK[END_REF]. However, the observed damages in the field could, in a way, reflect the bearing capacity of the bridge foundation, which 1 Binary form means that the variable only has two possible outcomes.

in the end represent the bridge foundation depth.

Statistical perspective

Despite the fact that there is no rule to determine the relationship between the number of variables and size of data, variables after engineering analysis are still quite a lot. The feature selection process is then conducted from a statistical perspective.

Variables with low variance or not enough records

Table 3.3 shows the features to be eliminated and the corresponding reasons. For the variable "hydraulic structure in the vicinity", it is used for knowing the type of hydraulic structures (e.g., weir, dam) near the bridge. In the end, only 9% of data records the corresponding values and others have the same values "No". In other words, only a little number of bridges have the hydraulic structure nearby and the majority don't have it. Thus, this variable has low variance. Since features with low variance don't meaningfully contribute to the model's predictive capability [START_REF] Singh | Cotation des ouvrages d'art Livret A -fondation en site aquatique[END_REF]), that's the reason why this feature should be dropped. Based on the above principles, eliminated features from the statistical perspective are:

• Environment: river width (m), average flow depth (m), velocity (m), navigable, flow obstruction (%);

• Bridge characteristics: streambank bank protection, pier width (m);

• Changing factors: existence of dislocation or deformation (%), local scour (%).

To summarize, Table 3.6 shows the number of selected features after each step. A more detailed presentation of the 18 variables after statistical perspective selection is shown in section 3.5. Step

Number of features

Raw data 124

Engineering perspective 31

Statistical perspective (step 1) 27

Statistical perspective (step 2) 18

Feature selection for Abutment&Wall dataset

Abutment&Wall dataset has the same original database as the bridge pier. Since the number of data collected for the Abutment&Wall dataset is less than bridge pier dataset (208 for piers and 124 for Abutment&Wall dataset), the required features for training the ML model should be less as well, in order to avoid overfitting. In this circumstance, to start, the feature selection for Abutment&Wall dataset follows the same process as the bridge pier dataset.

Generally speaking, except the elimination of the variable "bridge pier shape", other features dropped in Abutment&Wall dataset share the same reasons as the bridge pier dataset. The only difference exists in the feature "attack angle". It has a low variance in the bridge pier dataset. However, in the Abutment&Wall dataset, 44.7% of the data has the differentiated value. Thus, the feature "attack angle" is included in the selected features this time.

For both bridge pier and Abutment&Wall datasets, feature selection stops here.

The remained features are used for training the machine learning model.

However, for Abutment&Wall dataset, the size of data is two times less than the bridge pier while the number of selected features is almost the same. It is very likely to have an overfitting model if training with current selected features. How to select the optimal features for the Abutment&Wall dataset will be discuss detailly in Chapter 4.

It should be noted that this feature selection process is based on the current dataset, which comprises only a limited number of bridges. More variables could possibly be included once more data is collected in the future. However, we try to make the current dataset representative enough by covering different geographical, hydrological backgrounds and structural types.

The final selected features used as input parameters and their detailed information are shown in section 3.5.

Data preprocessing

Once we've decided the input variables, data should be prepossessed. This section introduces the approaches to make the data ready to be used directly in the ML model.

Types of variables

The first step is to decide the type of variable. Among the selected features, only slope of riverbed, specific flood flow, WV/WC are numerical (Num.) variables and the rest are categorical ones. The categorical variables are also divided into three types: ordinal, nominal and binary.

Ordinal (Ord.) indicates that the variable has a clear ordering of the subcategories (for example, fluvial may induce less scour risk compared to torrential). Nominal (Nom.) variable, on the other hand, describes a variable without ordering or ranking subcategories (for example, different types of foundations are considered to have the same probability to induce scour risk). Binary (Bin.) is designated for a variable only having two subcategories. 

Categorical data encoding

The ML model requires all input and output variables to be numeric. In other words, all categories must be converted to numeric form. An ordinal encoding involves mapping each category to an integer, and normally the integer value starts from zero.

For nominal variables there is no inherent relationship between categories. In case that the ML model will not confuse with an ordinal variable, the common solution is to use one-hot encoding, which means to create one binary attribute per category. 

Data scaling

Feature scaling is another essential step in data preprocessing. Despite the fact that data is not necessarily required to be in the same scale for tree-based algorithms (e.g., extreme gradient boosting, random forest) [START_REF] Xia | A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[END_REF], to compare with other algorithms, 0-1 scaling is employed in our study.

Supposing that F={X, Y } denotes the whole dataset, where

X = (x 1 ,x 2 ,. . . x m )
is the m-dimension input feature space and Y = {0, 1} represents the binary output variables, namely low scour risk ("0") and high scour risk ("1") respectively. Input data is then computed by the equation below:

x ′ = x -min(x) max(x) -min(x) (3.1)
where x ′ will be the novel input data after normalization. Equation 3.1 makes sure that all input data ranges from 0 to 1.

Final data for ML model

After feature selection in section 3.3 and data preprocessing in section 3.4, data is now ready to be used to build the ML model. But before training, this section presents the summary of the selected features as input variables and their relative information.

Bridge pier dataset

Input variables selected for bridge pier dataset are shown in Figure 3 To see the distribution of data, the histograms of input parameters are shown in 

Abutment&Wall dataset

Figure 3.8 presents the selected features as input parameters and their relative information. The distribution of input parameters is shown in Figure 3.9. 

Conclusions

In this chapter, the process to choose input parameters, and the approaches to make selected variables adaptable for ML models are presented. Two datasets are established in the end. One for bridge piers and another for bridge abutments, wing walls and retaining walls. It should be noted that the number of data in each dataset is not the same: 208 measurements for bridge pier dataset while 124 for the Abutment&Wall dataset.

Selected features for bridge pier and Abutment&Wall datasets are almost the same and they could all influence the scour risk. But it's noteworthy that features eliminated from engineering and statistical perspectives do not mean they don't have a great impact on scour. Since the objective of this work is to perform a ML-based analysis, variables who don't correspond to the ML feature selection policies (e.g., low variance, not enough records) must be dropped.

Furthermore, the current database has a relative small size and is constructed in a limited given time. Once more data is collected, it's possible to include more features.

Concerning the Abutment&Wall dataset, since its size is approximately two times smaller than pier dataset but the number of input variables are almost the same, an overfitting of model could possibly happen and it could also be the case for bridge pier dataset. But without training and test results, it is only the hypothesis since overfitting depends on the training and test results of the ML model, as presented in Chapter 2. Thus, we are going to build the ML model and the results will be presented in the next Chapter.

Chapter 4

Model construction

Introduction

In the last decade, machine learning was in a rapid development and seemed to be an alternative approach to overcome the limitations of empirical-based methods.

Machine learning applications in the field of civil engineering are presented in section 2.6 and promising results are obtained.

In Chapter 3 section 3.3, we've defined the risk consists of two key components, namely hazard and vulnerability. Generally, the risk level is determined via the risk matrix (see Figure 4.1 (a)) and a threshold is then set to categorize the risk level.

This procedure has also been followed in ARPSA [START_REF] Cerema | Analyse de risque des ponts en site affouillable[END_REF].

However, the category of hazard and vulnerability, as well as the threshold in risk matrix are primarily based on empiricism. Bridge scour induced by flood events is a rather complicated physical process. It is about the interaction among foundation, watercourse, and subsoil. Considering the stochastic nature of hydrologic events and the uncertainty about the structural status of the historical rail infrastructure, a ML based model for risk prediction may be another option since it learns from the observed patterns without using predefined thresholds. 

ML algorithm

Brief introduction of applied machine learning algorithms

When looking at the literature, different machine learning models have been employed in the domain of civil engineering, like support vector machine [START_REF] Hong | Predicting time-dependent pier scour depth with support vector regression[END_REF], artificial neural network [START_REF] Pala | Dynamic soil-structure interaction analysis of buildings by neural networks[END_REF], recurrent neural network [START_REF] Ninić | A hybrid finite element and surrogate modelling approach for simulation and monitoring supported tbm steering[END_REF], convolutional neural network [START_REF] Zhao | Deep learning-based image instance segmentation for moisture marks of shield tunnel lining[END_REF][START_REF] Ran | Rock classification from field image patches analyzed using a deep convolutional neural network[END_REF].

Besides, compared with single sophisticated learning algorithms such as decision trees or k-nearest neighbours, ensemble learning combines predictions from two or more models. Studies have shown that the integrated ensemble models achieved better results compared with a single ML model [START_REF] Lessmann | Benchmarking state-ofthe-art classification algorithms for credit scoring: An update of research[END_REF][START_REF] Nanni | An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring[END_REF].

Extreme gradient boosting (XGBoost) algorithm is considered as one of the advanced supervised ensemble learning models. Proposed by [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF], it was employed in various Kaggle machine learning competitions. In the research community, XGBoost algorithm was used to predict the undrained shear strength of soil (Zhang et al., 2021b), the concrete electrical resistivity [START_REF] Dong | Xgboost algorithm-based prediction of concrete electrical resistivity for structural health monitoring[END_REF], and the earth dam slope stability (Wang et al., 2020b), etc. In general, XGBoost model manifests an encouraging prediction capacity in diverse engineering problems.

In this circumstance, this section presents the basic principle of XGBoost algorithm.

Other popular machine learning algorithms are also introduced to be compared with 

Support vector machine

Support vector machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF] is a powerful supervised learning algorithm which is capable of classification and regression. The model is simply a linear function plus a bias term. To separate the data points, an optimal hyperplane is defined in SVM. The objective is to make sure that the hyperplane has the maximum distance between data points from both classes. Compared with other ML algorithms such as logistic regression, SVM addresses the model overfitting problem by balancing its complexity against its success at fitting the training data.

In other words, the training data is allowed on the wrong side of the hyperplane (see 

Multilayer perceptron

The multilayer perceptron (MLP) is perhaps the most popular and commonly used artificial neural network (ANN) structure [START_REF] Liu | Modelling of shallow landslides with machine learning algorithms[END_REF]). An MLP should include no less than three layers: an input layer, an output layer and one or more hidden layers. As illustrated in Figure 4.5, the information will pass from input layer to output layer through hidden layer(s). Therefore MLP is a feedforward neural network (FNN). Except the nodes in the input layer, each node multiplies every node in the previous layer by its interconnection (synaptic) weights and then adds the sum of the product. Later the sum passes through a nonlinear activation function [START_REF] Zounemat-Kermani | Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system[END_REF]. The obtained results after the activation function then pass on to the next layer as a new "input" and the aforementioned process will be repeated [START_REF] Franklin | Mapping Species Distributions: Spatial Inference and Prediction[END_REF][START_REF] Liu | Modelling of shallow landslides with machine learning algorithms[END_REF][START_REF] Olden | Illuminating the "black box": A randomization approach for understanding variable contributions in artificial neural networks[END_REF]. The value of the output node is the weighted sum of previous hidden nodes. To minimize the cost function in MLP, [START_REF] Rumelhart | Learning Internal Representations by Error Propagation[END_REF] In this study, an MLP neural network with two hidden layers was established.

There were respectively fifteen and five nodes in each hidden layer. The output node is the foundation scour risk. 20% dropout rate [START_REF] Srivastava | Dropout: A Simple Way to Prevent Neural Networks from Overfitting[END_REF] was applied in the training phase in the aim of avoiding overfitting.

Bridge pier dataset

This section introduces the process to build the ML model for the bridge pier dataset. The research approach is presented schematically in Figure 4.6 and is described as follows: 1. Data collected from SNCF inspection reports should be pre-processed to make sure the format was suitable for ML models. This part has already been presented in Chapter 3.

2. Later, 70% of the data was used to train the model and the remaining 30% was used for evaluation. Four popular classification algorithms presented in section 4.2 are applied and they respectively are: support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost) and multilayer perceptron (MLP). In order to see the robustness of each model, the random trainingtest data splits were repeated 10 times.

3. Then, ML models were evaluated by a confusion matrix introduced in section 2.5.3.3 between the predicted value and actual value. Five model performance measurements were then calculated, and they, respectively, are: area under the ROC curve (AUC), accuracy, precision, recall, and false positive rate (FPR).

4. Once the model was trained, the XGBoost algorithm based model was used to plot feature importance rank. 5. Lastly, to quantify the contribution and interaction among features, the XG-Boost classifier, due to its high accuracy score, was trained and tested using one single input parameter each time.

The following sections present the training and test results as well as the feature importance discussion.

Concerning the programming environment, all ML models were programmed on Python 3.8.5 and built using different python libraries. Data was preprocessed using NumPy [START_REF] Harris | Array programming with NumPy[END_REF] and pandas libraries (The pandas development team, 2020). The XGBoost algorithm was applied using XGBoost package [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF]; the SVM and RF were operated using Sklearn library [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]; and the MLP was performed on Keras library [START_REF] Chollet | Keras[END_REF]. Grid search was adopted in each algorithm to search for the optimal hyper-parameters.

Training and test results

To build the model for prediction, four algorithms are applied and the random training-test splits are repeated 10 times. False positive rate (FPR) is the probability of false alarm. It measures among the predicted high scour cases: how many are predicted incorrectly (actually at low risk).

The optimum value for FPR is 0. As shown in Figure 4.8, the feature C3 (specific flood flow (m 3 /s)) is the most important variable which was considerably used (two times more used than second one C2) compared to the rest. It is then followed by features C2 (slope of riverbed (%)), I16 (existence of dislocation or deformation around the masonry or gabion) and I17 (existence of local scour). Among the four most important variables, the top two C3 (specific flood flow (m 3 /s)) and C2 (slope of riverbed (%)) belong to the category environment. In other words, besides the damages observed from each visual inspection, river hydrological characteristic and morphological regime (features C3 and C2) play a very important role in bridge scour risk evaluation. This result implies significant guidance for current industry process.

Besides, it should be also noted that two features C5 (topography) and B9 (foundation type) are not included in the ranking. By way of explanation these two features

were not used at all as criteria to grow trees.

The choice of input features in this study was initially discussed with experts and followed the current practical guidance. C5 (topography) and B9 (foundation type) are two commonly presented features in lots of references. It is reasoned that C5 (topography) was not used in XGBoost model because the information was already included in C2 (slope of riverbed (%)), C4 (WV/WC) and C6 (flow sinuosity). As for B9 (foundation type), it could be due to that the engineer evaluates the scour risk in an asset-specific view. Consequently, knowing the foundation type of each bridge pier shall be indispensable whereas a ML model performs a generic and statistical analysis. Foundation type in this case could be seen as an unimportant factor when facing with a great number of cases.

A more detailed explanation regarding the feature importance discussion is presented in Chapter 6, where engineers' expertise is compared with the interpretation results from XAI.

Furthermore, to quantify the contribution of each feature to scour risk, an XGBoost model was built by using only one single feature each time. The AUC score for test data is shown in Figure 4.9. The two features C3 (specific flood flow (m 3 /s)) and I17 (existence of local scour)

have almost the same and the highest AUC score compared with others. However, it can be seen from Figure 10 that with one single feature, the classifier has a rather non-satisfactory performance even with the feature having a high rank. Furthermore, the AUC score is around 0.5 in most cases, which indicates that it works like a random classifier. The low AUC score shown in Figure 4.9 proves that one feature may not be adequate enough. It's the interaction among different features that reveals the mechanism of scour around bridge piers and makes sure the classifier has encouraging prediction results.

Abutment&Wall dataset

The Abutment&Wall dataset follows the same methodology as in bridge pier. Data after preprocessing is used to train the model. Considering the number of data we have (only half of the pier cases) and the performance of algorithms in pier dataset, RF and XGBoost are selected for training.

In this section, the feature selection work is presented at first in subsection 4.4.1.

Later, the training and test results are shown in subsection 4.4.2.

Input parameters selection

The number of selected features for Abutment&Wall dataset after section 3.3 are the same as the pier dataset (18 in total) but the size of data is much less (208 for bridge pier but only 124 for Abutment&Wall). After feature selection in Chapter 3, we have doubts that overfitting could happen.

To begin, the model is trained with all selected features from Figure 3.8. Similar to the training process of the bridge pier dataset, 70% of the data was used to train the model and the rest for testing. Results are shown in Table 4.3 and Table 4.4. Several tests were realized to determine the optimal variables for Abutment&Wall dataset. The excluded variables in each case are shown in Table 4.5. At the beginning, there is no excluded variable and all the input parameters shown in By following these principles, Table 4.6 and Table 4. Later, the average and standard deviation values of model performance measurements for training and test data are summarized in Table 4.8 and Table 4.9 respectively. No.6 are considered as the most optimal ones for Abutment&Wall dataset and they respectively are:

• Environmental: slope of riverbed (CA2), specific flood flow (m 3 /s) (CA3), width of valley/width of low flow channel (CA4), flow sinuosity (CA6);

• Bridge characteristics: existence of foundation scour countermeasures (BA9), attack angle (BA10);

• History: scour history (HA11), flood frequency (HA12);

• Changing factors: susceptible of scour (IA13), channel rating (IA14), riverbank rating (IA15), existence of dislocation or deformation around masonry or gabion (IA16), existence of local scour (IA17), rating of other damages of foundation (corrosion, timber piles degradation, cracks, etc.) (IA18).

Similar to bridge pier dataset, it's the XGBoost algorithm that has a better performance for predicting the scour risk of bridge abutment and retaining walls.

However, due to the lack of data, we conduct several tests to determine the optimal variables for Abutment&Wall dataset according to the feature importance rank in Once more data is collected, the classifier could probably have a better performance and the excluded variables could be included.

Conclusions

In this chapter, two machine learning models are constructed for scour risk evaluation: one for bridge piers, and another for bridge abutments and retaining walls.

To train the models, several commonly used machine learning algorithms are applied.

Machine learning models' performance is evaluated using carefully selected measurements under 10 times random train-test data splits.

Concerning the bridge pier dataset, XGBoost and RF models have the most promising results. The ML models in this chapter suggest that they could be effective and accurate in bridge scour risk evaluation and possibly be employed as an alternative approach in the future. Up to now, step 1-4 shown in Figure 2.20 are realized. The rest of the work will focus on examining the model's reliability, practicability (Chapter 5) and making the model more transparent (Chapter 6).

Chapter 5

Model validation and comparison

Introduction

The machine learning models' performance is examined by several measurements calculated from a confusion matrix in Chapter 4. Despite that the classifiers we have built achieve encouraging results, they are trained with a limited number of data and it is not quite sure how the model will perform on the unseen data.

In this circumstance, the objective of this chapter is to validate the classifiers built in Chapter 4 by testing them to more cases. A series of analyses are conducted regarding the XGBoost and RF models in which very promising results are obtained for the bridge pier dataset. As a reminder, XGBoost classifier has the best prediction accuracy for both classes and RF model detects better the high scour risk classes because of its high recall score.

To achieve these goals, the two ML models are examined in terms of their robustness and practicality. Furthermore, they are compared with two practical guidelines (scoring table and ARPSA) introduced in Chapter 2. Bridges in Japan and France are evaluated by ML models and existing approaches. All these efforts allows understanding, and comparing the XGBoost and RF models from different perspectives. In the end, it could help users (inspectors/engineers) choose wisely between them from not only the perspective of prediction accuracy but also robustness, practicability, etc.

This chapter is organized as follows: section 5.2 conducts the parametric study to investigate the robustness of ML models. Section 5.3 compares the prediction results

with two engineers having different working experience (entry level and senior level).

Comparison between ML models and two existing approaches are shown in section 5.4. In the end, the advantages and disadvantages of XGBoost and RF models are discussed in section 5.5.

Robustness investigation

Despite machine learning has been applied in numerous studies, only a little number of them have investigated model robustness. In this section, the background and importance of robustness investigation are introduced firstly. Later, the input parameters are reclassified in order to quantify the contribution of parameters. In the end, two types of robustness analyses, namely monotonicity and uncertainty analyses are realized.

Background

Shahin ( 2013) once pointed out the that besides primary steps to construct a ML model for prediction (e.g., data division, data preparation, model validation), examining the model robustness, which means the predictive ability of ML model to generalize over a range of data similar to that used for model training, is one of the supplementary aspects to enhance model reliability.

Only a limited number of studies in the literature investigated this aspect [START_REF] Zhang | A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[END_REF]Zhang et al., 2021a;Wang et al., 2020a;[START_REF] Shahin | Investigation into the robustness of artificial neural networks for a case study in civil engineering[END_REF] The study of Zhang et al. (2021a) indicates that although the model performs well against the traditional measurements such as RMSE and R 2 , we should also examine how well the predicted output agrees with the known underlying physical process.

Once the model is constructed, more comprehensive work needs to be realized to prove the reliability and generality of ML model to make it trustworthy.

Input parameters reclassification

In order to quantify the contribution of model input parameters to prediction results, the original 18 input variables are reclassified according to the theory of [START_REF] Li | Assessment of catastrophic risk using bayesian network constructed from domain knowledge and spatial data[END_REF], in which factors related to natural catastrophic risk can be divided into three aspects: inducing factors (I), environmental factors (E), and vulnerability (V). Below are short descriptions of each aspect:

• Inducing factors (I): they are mainly the direct cause for natural hazard and are linked closely to the occurrence of catastrophic losses. For example, scour induced bridge failures usually directly result from the increase of river flow.

• Environmental factors (E): these factors refer to the environment that breeds the disasters. Such factors play the role to whether mitigate or aggregate the destructive power of natural hazard. For example, a local scour is more likely to be detected in a mountainous area where the slope of riverbed is steep instead of a plain area where the flow is steady.

• Vulnerability (V): the degree to which a system is likely to experience and adapt to harm due to exposure to a natural hazard. Bridge vulnerability regarding scour risk may be its foundation type, construction year, history, and observed damages in the field. (Zhang et al., 2021a;[START_REF] Shahin | Investigation into the robustness of artificial neural networks for a case study in civil engineering[END_REF]Wang and Yin, 2020). In monotonicity analysis, the investigated parameter varies from the minimum to maximum and other parameters are fixed at mean values.

However, the input variables are all numerical in the aforementioned studies. Regarding the categorical variables in our dataset, it's not easy to determine their mean values. Thus, the fixed values for categorical variables are the subcategory which takes the highest proportion. Instead of varying from the minimum to maximum value, the investigated categorical variable is varied from each subcategory. For example, the variable flow type (C1)'s fixed value is "fluvial ", since it's the majority.

When it becomes the investigated parameter, the value varies as "fluvial ", "other ", and "torrential ".

The explored range for monotonicity analysis of each variable may refer to Figure Uncertainty is often divided in two types: epistemic uncertainty, which can be minimized by having more accurate measurements; and aleatory uncertainty, coming from the random nature and cannot be reduced [START_REF] Kiureghian | Aleatory or epistemic? does it matter?[END_REF].

For example, ratings of channel or riverbank may be not precise enough due to the incomplete information from the field and this is epistemic uncertainty. With detailed inspection, the value of feature could be more accurate. On the other hand, the flow of watercourse could possibly be changed in the future due to climate change and it is difficult to anticipate the future flood flow due to the aleatory nature of watercourse.

Table 5.2 lists the parameters that may possess epistemic or aleatory uncertainty.

In order to observe the performance of the machine learning classifiers, parametric studies are conducted. For quantitative factors, they are considered to be half of or two times larger than the original value while the qualitative factors are varied among all the subcategories. 10 randomly selected bridges located in France are used as case studies. The investigated parameter varies in the given explored range and the rest parameters remain as the original value. Case I means that the prediction changes to another class (e.g. from low scour risk to high scour risk). Case II signifies the prediction remains the same. Case III indicates that the predicted result fluctuates between two classes. Based on physical understanding, if the model performs in the way shown in Case III, the results are surely unreasonable and in conflict with the existing knowledge.

Results

• Monotonicity analysis

By varying the investigated parameter from the minimum to maximum and other parameters fixed at mean or majority values, Figure 5. Case III --It can be seen that neither of the two models performs in the way shown in case III. In most cases, the predictive class remains the same by changing the studied parameter. However, it's noteworthy that variables causing Case I are not exactly the same between the two algorithms (V11 and V7 for RF model but E4, V16 and V17 for XGBoost model).

• Uncertainty analysis

Monotonicity analysis only permits seeing the model performance in a global scale over the whole range of data. The uncertainty analysis, on the other hand, makes it possible to see how the ML model performs by considering data uncertainty. Only variables whose information could be uncertain is investigated. Table 5.4 shows the uncertainty analysis results by using the 10 selected examples. The above analyses compare the RF and XGBoost models by conducting two robustness analyses, with the aim of investigating whether they perform in a reliable and reasonable fashion. While monotonicity analysis focuses on a global scale, the uncertainty analysis is conducted in a local scale with concrete examples. Three types of possible model performance is distinguished. Generally speaking, in most cases the predictive class remains the same by exclusively changing one parameter each time, which seems reasonable since a high scour risk scenario is often triggered by multiple aspects. For example, an increasing flow easily comes with the transportation of de-bris and the riverbank erosion. In uncertainty analysis, both algorithms perform in a way that is contradictory to the existing knowledge. Such phenomenon has also been observed in other studies (Zhang et al., 2021a;Wang et al., 2020a): the prediction results don't form a smooth curve when using the tree-based algorithm and fluctuate a lot. This phenomenon may result from the discrete distribution of input variables, which ultimately influences the classification conditions at each node.

To conclude, after robustness analysis, we observed that both classifiers can perform in a robust fashion in most cases. To understand why the variables resulting in Case I, Case II and Case III are different in two models relates to the algorithm itself and how the model is built, which is considered beyond the scope of this study. Detailed comparison of XGBoost and RF classifiers by considering the results of robustness analysis is shown in section 5.5.

Practicality investigation

As presented in Figure 2.1, the machine learning model serves as a complement to the engineer's judgement with the purpose of optimizing the decision-making process. In this section, the RF and XGBoost models are tested by bridges in Occitanie region in France. The bridges are then evaluated by two SNCF engineers' with different working experience. The evaluation results are then compared among different approaches for examining whether the ML model can help the decision-making in practice or not.

Bridges in Occitanie region for testing

In order to examine the practicability of two ML models, they were applied to 40 bridge piers located in the Occitanie region in France. Besides evaluating the bridges by applying the ML models, a junior engineer, whose working experience is less than two years, and a senior engineer who works more than five years in the related domain were invited to assess the same elements as well. In the end, the assessment results are compared to see the coherence between ML models and engineers with different working experiences.

Practicality investigation results

The number of the same assessment results among RF, XGBoost classifiers and two engineers is shown in Figure 5.6. It can be seen that they are generally in agreement.

The least match occurs between the RF model and the junior engineer but there are still 32 cases (80%) in common. Supposing that the results given by the senior engineer are all "correct", XGBoost model is the one that most close to the senior engineer (38 cases or 95% in common), followed by the junior engineer (37 cases or 92.5% in common) and then RF model (34 cases or 85% in common). The high coherence between the engineers and the ML models proves the practicability of the proposed ML models. Most importantly, XGBoost classifier is the 123 one that is the most close to the senior engineer's evaluation. In other words, this test proves the possibility to use the proposed ML based solution in practice as an alternative approach, especially for helping engineers at entry level.

Comparison with existing approaches

In order to validate the constructed machine learning models, it's important to compare them with existing approaches. In this section, the RF and XGBoost models are compared with the Japanese scoring table and the French ARPSA methods. It is well acknowledged that both scoring table and ARPSA are not built for the French railway bridges. The reason for doing this model comparison is to understand the differences among each approach, which could ultimately help for model improvement.

EX2502 is not used for comparison because an overestimation of general scour is observed. Scoring table and ARPSA are introduced in section 2.4.

Scoring table (Japan)

Scoring table is the practical guideline for the Japanese railway bridges' scour risk evaluation. In order to compare the ML models with the scoring table, a methodological comparison is conducted firstly. Later, the XGBoost and RF models are applied to 20 Japanese cases, which are also evaluated by the scoring table.

Methodological comparison

Before applying the two procedures, a methodological comparison is conducted at first to see their similarities and differences between scoring table and the ML model.

They are concluded and shown in Table 5.5.

Table 5.5: Summary of methodological similarities and differences between the scoring table and the French machine learning model Similarities 1. Same objective: assess scour risk of bridge element in a practical way.

2. Risk classes as an outcome, and in a binary form.

3. Don't calculate local scour depth, general scour depth with design flood level to conclude risk level. Differences 1. Foundation depth plays an important role in Japanese approach, but it is not directly included in the ML method due to the difficulty for accessing data. However, variables in ML model such as the bathymetry evolution since the year of construction, and types of damages, in some ways reflects this information.

2. Parameters for describing hydrology and hydromorphology are not included in Japanese method, because information is considered already covered in topographical landform, riverbed materials, and hydraulic conditions.

3. The influence of riverbed particle to scour is different. Japanese model doesn't include cohesive soil (e.g., silt, clay), which is commonly seen materials in the French river. Cohesionless soil (e.g., sand) is considered as the material most likely to increase scour risk in French method.

4. The French ML model comprises the history of the structure (e.g., scour history, flood history) while the Japanese procedure doesn't.

5. In Japanese procedure, the hydraulic structure in the vicinity is an important factor and the bridge can directly be considered at high risk while the ML model doesn't take into account of this feature.

6. The protection condition is scored differently in Japanese guideline based on the scour countermeasure types. The French ML model considers the different scour countermeasures having the same influence.

The nature of the ML model and scoring table is not the same: one is a datadriven approach, and another is calibrated by engineers' experience. Nevertheless, the common objective of the two guidelines is to screen high scour risk in an effective way.

Bridges evaluated at high risk will need a detailed inspection, reinforced surveillance, or completed geotechnical and hydrological studies.

However, it can be observed from Table 5.5 that the parameters required in each guideline are quite different, which is primarily caused by the ways of managing the railway infrastructure. In France, when the water level is high, an underwater foundation inspection through diving is conducted. However, the impact vibration test is often adopted in Japan to know the status of bridge piers through comparing the natural frequency. The second reason is the different hydrological conditions.

From a general view, compared with Japan, watercourse in France is more stable in terms of velocity and river diversion. Therefore, it causes the differences for riverbed material, the impact of riverbed material to scour and the important role of hydraulic structures (e.g., weir, dam) near bridges.

After the methodological comparison, the two ML models and the scoring table are applied to 20 cases for testing.

20 Japanese cases for testing

Similarly to France, Japan also possesses a large number of historical railway bridges. The first Rail Construction Act started in 1892 in Japan for conventional lines [START_REF] Shibayama | Japan's transport planning at national level, natural disasters, and their interplays[END_REF]. The bridge construction techniques in conventional rail lines (equivalent to TER in France) are also very similar to France like timber pile foundation, caisson. Recently, scour has been reported as a serious issue in both two countries due to the increased frequency and intensity of extreme weather events [START_REF] Takayanagi | Scour risk management at bridges -A comparison of Japanese and French scoring methodologies URL[END_REF].

The two RF and XGBoost models are trained and tested by the French data. In order to examine the two models' generality, which means their predictive capacities over bridges outside France, the two classifiers are tested by 20 railway bridges located in Japan. The assessment results are then compared with the scoring table (ST).

Testing the French ML models using Japanese data and then comparing with the Japanese guideline could, in a way, validate the two ML models as well.

Data from the 20 Japanese cases were provided by the Railway Technical Research Institute (RTRI). Their locations and photos of some bridges are shown in Figure 5.7. Among these cases, JP1-JP10 are bridges that once experienced severe flood events (e.g., after typhoon or heavy rain) while JP11 -JP20 are the ones without obvious damages in history. The 10 damaged cases (JP1-JP10) comprise information before and after flood events, so they are assessed at these two moments as shown in Figure 5.8. Figure 5.7(c) shows the photo of JP5 after flood event (AF).
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Japanese cases test results

20 Japanese bridges are tested by the trained RF, XGBoost classifiers and the Japanese guideline scoring table (ST). Since JP1 -JP10 are tested before and after the flood events, there are 30 cases in total for testing. Very similar to France developed ML classifiers, the output of ST is also in a binary form, namely low scour risk and high scour risk, which allows comparing directly the results obtained from ML classifiers without model calibration.

Table 5.6 shows the assessment results of Japanese cases via different approaches.

It can be observed that the same case has quite a different predicted class as output among all approaches. Most cases are assessed at high risk by using RF classifier and ST (20 and 24 respectively). On the contrary, 19 cases are evaluated at low scour risk when applying XGBoost model, compared with only 6 and 10 from ST and RF classifier respectively. Concerning the Japanese cases, instead of the XGBoost classifier, it's the RF model which is closer to the Japanese guideline. The frequency and intensity of natural hazards (e.g., storm, flooding, heavy rain) in Japan are much higher and more severe than in France. Consequently, a bridge evaluated at a low scour risk level by French standards could be in a more vulnerable state by following the Japanese guideline, which is built under the environmental conditions in Japan. RF model, on the other hand, has higher recall and false positive rate (see Table 4.2), which means low scour risk cases are more probable to be considered as high. That's the reason why RF model is closer to the results given by ST.

It should be noted that ST is an empirical approach established on case studies.

Extra efforts such as confirmation from Japanese expert(s), tested by other approaches are needed to validate the results from ST, which is considered beyond the scope of this work.

Another noteworthy point is that both XGBoost and RF models are trained by using a French dataset. 20 bridges as case studies are not enough to prove the proposed ML model is ready to be applied in Japan despite the encouraging results. The objective of this test is to demonstrate the possibility of proposed ML model being used in a broader geographical background. To adopt it in practice, the classifier must be trained by using data from the country.

ARPSA (France)

ARPSA is the French scour risk evaluation procedure for highway bridges. There is a qualitative analysis at first in ARPSA. Bridges assessed at medium or high risk are required to have a quantitative analysis then.

Compared with railway bridges, highway bridges are constructed much later with advanced techniques. However, in several cases, highway and railway bridges are often near to each other. That is to say, they share very similar geographical and hydrological environment. Therefore, by applying ARPSA to railway bridges, it allows seeing how the railway bridges are judged by the highway standard.

ARPSA consists of two steps' analyses: qualitative (step 1) and semi-quantitative (step 2) analyses. We use at first the whole bridge pier dataset for qualitative analysis.

Later, two bridges are selected to conduct the quantitative analyses. The selected two bridges are then compared with the RF and XGBoost models.

Step 1: qualitative analysis

The whole bridge pier dataset is used for conducting the qualitative analysis, in order to see the percentage of bridges requiring the semi-quantitative analysis ( step2). The hazard and vulnerability scores are calculated according to Figure 2.12 and Since ARPSA is designed for highway bridges, to validate whether we have adopted it correctly on railway bridges, the minimum (Min.) and maximum (Max.) hazard and vulnerability scores obtained in our dataset are compared with the work of Younsi Present study -4.5 41.5 10 25

From Table 5.7, it is observed that the vulnerability scores we have calculated are generally in the same range as the study of [START_REF] Younsi | Analyse de Risque des Ponts en Sites Affouillables -Expérimentation et Comparaison des méthodes française et japonaise sur un parc d'ouvrages[END_REF]. However, the range for hazard score is much larger in our study. This is because vulnerability is the weakness of the structure when facing the natural events. Since in both studies, the objects are railway bridges, who share the same construction techniques and structural types, the range for vulnerability score could be almost the same. Hazard, on the other hand, is defined as the condition (flood event) which could possibly cause the undesirable events. The study of [START_REF] Younsi | Analyse de Risque des Ponts en Sites Affouillables -Expérimentation et Comparaison des méthodes française et japonaise sur un parc d'ouvrages[END_REF] only focused on one region in France and that is to say, the geographical background is not very diversified. In our dataset, bridges are in almost every region in France (see Figure 3.3). It's pretty natural that the hazard scores are in a wider range.

The negative hazard scores in Figure 5.10a result from the riverbed material. When the riverbed material is rock, the hazard value could easily be negative. Hazard score larger than 25.3 is because several bridges crossing a torrential rivers and the riverbed material is cohesive soils (silts, clay) or sand. In this case, the general scour (A1) could be 23 or 30 (see Figure 2.12). However, when the bridges in the study of [START_REF] Younsi | Analyse de Risque des Ponts en Sites Affouillables -Expérimentation et Comparaison des méthodes française et japonaise sur un parc d'ouvrages[END_REF] cross the torrential river, the riverbed material is always gravel (which means the general scour A1 is equal to 11).

Hazard and vulnerability class can be obtained by following the rules shown in Table 2.5 and Table 2.6. Then, the criticality level, which is the combination of hazard and vulnerability levels as shown in Table 2.8, is determined.

Table 5.8 shows the number of vulnerability, hazard, and criticality levels after qualitative analysis. Originally, to conclude the risk level in ARPSA, the consequence level is required (see Table 2.9). However, the consequence level classification rule is one the basis of highway standard, and they are not adaptable for railway bridges.

Thus, the criticality level is used to decide whether a semi-quantitative analysis ( step2) is needed. Here, we follow the strategy adopted in the study of [START_REF] Younsi | Analyse de Risque des Ponts en Sites Affouillables -Expérimentation et Comparaison des méthodes française et japonaise sur un parc d'ouvrages[END_REF]):

bridge at medium or high criticality level should have a quantitative analysis. From Table 5.8, it is found that most bridges in our dataset require a quantitative analysis: 25 at medium criticality level and 178 at high. Thus, in the next subsection, two bridges are selected as case studies for quantitative analysis and the results are compared with the machine learning model.

5.4.2.2

Step 2: semi-quantitative analysis Given to these observations, more frequent surveillance regarding this Viaduct and the reinforcement work for pier P1 are required.

The two bridges introduced above are evaluated by ARPSA, XGBoost and RF models. Results of qualitative (step 1 in ARPSA) are firstly shown in Table 5.9. Both bridges have the high criticality level in step 1, which means the semiquantitative (step2) analysis is required and the results are shown in Table 5.10. In semi-quantitative analysis, Richebout bridge is at high hazard and vulnerability level. Consequently, the criticality level for Richebout bridge is high in the end.

Viaduc sur l'Adour also has the high criticality level, despite the medium level for vulnerability.

The two bridges are then tested by the ML models, and the predicted scour risk levels are shown in Table 5.11. To conclude, after applying ARPSA to the bridge pier dataset, it is found that most bridges require a semi-qualitative (step 2) analysis. ARPSA could overestimate the scour risk of the railway bridge because for the road standard, most railway bridges are at a vulnerable state due to its construction periods. In order to make ARPSA adaptable for railway bridges, the construction periods and the corresponding classification rules should be modified.

Discussion

After completing a series of investigations and model comparisons, the advantages and disadvantages of RF and XGBoost models are discussed in this section.

It is observed in Chapter 4 that RF classifier is more sensible to high scour risk cases because of its high recall score. However, the price is that when adopting RF classifier, it could generate high maintenance costs, since low scour risk cases care more probable to be evaluated as high. Thus, we think RF model is more adaptable for regions where the frequency and intensity of natural hazards are high. It could also be applied to regions where rail line serves as a major transportation because in these places, bridge failures could cause severe social disruptions. We must avoid the traffic disruption and the high recall score of RF classifier could help achieve this objective by detecting high scour risk cases more accurately.

XGBoost classifier has a good predictive capacity for both classes because it has the highest accuracy score among the four ML models. It's also the model that is most closely to the senior engineer's evaluation results. Nevertheless, it's capacity to detect high scour risk classes is not as good as RF. Therefore, XGBoost classifier is suggested to be applied to regions where the inundation risk is low, because the probability to have scour induced bridge failure in these places could be low. It can also be applied to regions who have a constrained budget for maintenance or there are alternatives for transportation besides rail. Moreover, the uncertainty analysis results reveal that the XGBoost classifier requires the data with less uncertainty. If not, the predictive class is more easily to be changed.

Conclusions

Different types of analyses are conducted in this chapter with the aim of validating and comparing the XGBoost and RF classifiers, which are built in Chapter 4 for the bridge pier dataset.

The robustness investigation allows examining the model performance over unseen data. It is observed that in most cases, the two models can perform in a reliable fashion. The XGBoost model is more sensible to the uncertainty of data because the predicted class is more easily to be changed from one to another.

Later, the two ML models are compared with two engineers having different working experience for practicality investigation. The high coherence between the engineers and the ML models is observed. Most importantly, XGBoost model has 95% in common with the predictions from the senior engineer.

In the end, the ML models are compared with two existing practical guidelines (scoring table and ARPSA) by applying them to Japanese and French bridges. It is found that RF classifier is closer to the scoring table due to its high recall score.

When applying ARPSA to the railway bridges, it is found that although railway and highway bridges could often share similar geographical and hydrological background, ARPSA is not completely adaptable for railway brides. It could overestimate the scour risk because it considers most railway bridges are already in a very high vulnerability level.

After a series of analyses, we think both RF and XGBoost classifiers are capable of being applied in practice. However, RF model could be preferred by region where the frequency and intensity of natural hazards are high or rail line serves as a major transportation. XGBoost model, on the other hand, could be applied to regions where the inundation risk is low or there exists alternatives for transportation besides rail.

The robustness, and practicality investigations in this chapter permit understanding well the two ML models besides the model performance measurements we chose in Chapter 4. Moreover, comparing ML models with existing approaches provides insights for other countries' transport agencies who want to develop their ML based maintenance policy for managing the infrastructure affected by floods.

Given its advantages and disadvantages, XGBoost classifier is chosen as an example for model interpretation and implementation in practice, which are going to be presented in Chapter 6.

6.2 ML model interpretation using XAI and engineers' expertise

In this section, XAI approaches and engineers' expertise are employed for interpreting the XGBoost classifier built for the bridge pier dataset.

Importance of building an explainable ML model

When looking at the literature, although researchers keep widening the boundaries of what can be learnt by machine learning algorithms, little has been implemented [START_REF] Naumets | Investigation into explainable regression trees for construction engineering applications[END_REF], especially in the field of civil engineering.

Machine learning model is also known as black-box model. From this name, it can be understood that the opaque nature of learning algorithms prohibits having a straightforward explanation of the prediction results [START_REF] Emmert-Streib | Explainable Artificial Intelligence and Machine Learning: A reality rooted perspective URL[END_REF].

For example, compared with a linear regression model, a deep learning neural network may achieve higher accuracy but is difficult to be interpretable. This non-transparency nature makes policymakers reluctant to embrace AI/ML techniques in practice considering the social and legal liabilities taken by civil engineers. Questions may be asked as follows: (1) How has been each prediction made ? (2) To which degree to trust a model's prediction ? (3) Can we challenge the prediction results ?

Scour risk is evaluated after engineer's field inspection. A ML-based model without explanation may not be easily accepted by field engineers who are considered as endusers. Firstly, scour is related directly to bridge failure. In such high risk project, a misclassification may possibly threat human's life and the surrounding environment.

Moreover, civil engineers are trained to follow norms and standards. They get used to procedures with explicit explanations. The black-box ML model is nonetheless not capable of telling how each prediction is made. Engineers are consequently reluctant to trust the prediction even though satisfactory test results can be achieved some-times. Lastly, even though there exits systematically a series of metrics to evaluate the performance of ML model, these measurements are seemingly only the interest of research community [START_REF] Barredo Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF]. Although this may be fair for some disciplines, society and science care way more than just performance. Obtaining good results with selected measurements does not effectively indicate that the mechanism behind the problem is revealed but rather infers the specific algorithm could predict well in the established dataset, data from which is presumably considered being representative enough to the phenomenon.

In recognition of the obstacles to promoting AI/ML techniques from academia to industry, the concept of explaining the black-box model, namely explainable AI (XAI) has emerged recently. Although talking about what is explanation enters the realm of philosophy [START_REF] Díez | Gen-eral theories of explanation: buyer beware[END_REF] and is considered beyond the scope of this paper. To shed some light, Gunning (2017) defined XAI as:

"a suite of machine learning techniques that enables human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners."

In other words, XAI tries to help human users understand the prediction results given by black-box model in a local and global scale. From a legal perspective, the European Commission requires all artificial intelligence systems to be transparent for high risk projects [START_REF] Chavanel | L'IA pour le secteur ferroviaire européen -Etat des lieux et perspectives (in French)[END_REF]. Meanwhile, Naser (2021) pointed out the necessities to develop explainable ML models in civil engineering from an engineering perspective.

While interpretable approaches like XAI may help engineers understand results coming from ML models, domain knowledge should also be valued. In order to understand how the field engineers rank the input parameters, we still invited a group of SNCF engineers for a survey. They were asked to grade numerically the importance of features for scour risk assessment. The specific research methodology for interpreting the machine learning model is presented in the next subsection.

and Sardana, 2019). Collecting data of railway bridges requires the efforts of people in different affiliations and may sometimes be time-consuming. Consequently, it is not quite easy to obtain a balanced dataset, which means that the number of two classes is not equally distributed in the end.

In recognition of this issue, SMOTE [START_REF] Chawla | SMOTE: Synthetic Minority Over-sampling Technique[END_REF] is used in our study, which oversamples the minority class samples. Recently, diverse types of ML problems have applied this approach and proved the effectiveness [START_REF] Blagus | SMOTE for high-dimensional class-imbalanced data[END_REF][START_REF] Naser | Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of rc columns[END_REF]. In SMOTE, synthetic data is generated based on real observations.

The algorithm takes firstly samples from the existing minority class. Later, new data is synthesized by calculating the distance between its two nearest neighbours.

The distance is then multiplied by a random number ranging from 0 to 1 and the newly generated synthetic data is placed from one of the real observations using the calculated distance in the end.

After SMOTE, the size of bridge pier dataset is increased from 208 to 302, and the high -low scour risk classes are equally distributed (from 73% -27% to 50% -50%).

70% of the oversampling data is used to train the XGBoost classifier and the rest 30% is for evaluation. SHAP model uses the additive feature contribution function to explain the unknown ML model. Suppose that f is the original prediction model and g is the explanation model, x ′ is the simplified input term that links the original input variables s through a mapping function x = h x (x ′ ). SHAP defines the explanation as:

f (x) = g (x ′ ) = ϕ 0 + M j=1 ϕ j x j ′ (6.1)
where M is the number of simplified input variables. ϕ j ∈ R denotes feature j's contribution. ϕ 0 is the constant value when all input parameters are missing. Equation (6.1) is illustrated in Figure 6.2, where ϕ 0 , ϕ 1 , ϕ 2 and ϕ 3 increase the predicted result f (x) while ϕ 4 decreases f (x).

According to [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF], the possible solution of equation ( 6.1) which guarantees the local accuracy, missingness, and consistency of the SHAP model is shown in equation ( 6.2):

ϕ j (f, x) = z ′ ⊆x ′ |z|! (M -|z ′ | -1)! M ! [f x (z ′ ) -f x (z ′ \ j)] (6.2)
where |z ′ | represents the number of non-zero entries in z ′ and z Similarly to summary plot, each dot represents a data sample. The x-axis is the value of feature, and the y-axis is the SHAP value. Furthermore, partial dependence plot introduces a second feature (chosen automatically by default) that may have an interaction effect with the plotted feature. Several observations are made from Figure 6.4:

′ ⊆ x ′ f x (z ′ ) = f (h x (z ′ )) = E (f (z) | z s ),
1. In Figure 6.4 (c), it can be seen clearly that when C4 (ratio between width of valley and low flow channel), a parameter used to describe the hydromorphology of the region, is less than 18.75, it tends to increase the scour risk and vice versa.

This finding could provide insights for engineers since the correlation between C4 and scour risk is difficult to be quantified with current knowledge.

2. The relationships between SHAP values and categorical variables I14 (channel rating) and I18 (rating of other damages) are less obvious as shown in Figure 6.4 (d) and (f).

3. Figure 6.4 (a) and Figure 6.4 (b) show that when the value of C2 (slope of riverbed) or C3 (specific flood flow) is large, it tends to increase the scour risk (SHAP value is positive), which is in accordance with the current knowledge:

scour exists more often in the steep slope and/or high flow area. Furthermore, it can be observed that the feature values of C2 and C3 are significantly scattered and, consequently, the predictions as well as explanations may be less precise for areas having less value. To conclude, SHAP interpretation results provide insights to ameliorate current field inspections and are generally in accordance with the scientific knowledge. Due to the differential inherent computational process, equations from MEP use part of the input data including an exponential calculation and a logical model, while GLM formulates all input parameters in a linear form linking by a logit function.

Surrogate model interpretation

In general, both MEP and GLM are easy to be applied in practice. But one should note that surrogate models are developed to explain the original ML model. They cannot have perfect fidelity with regard to the original model [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]. If the explanation completely adheres the computed results, this means the two models will be equal and there will be no need to have the original model at the beginning. In other words, the original model itself already has a transparent nature.

Engineers' interpretation

SHAP interpretation is based on the mathematical algorithm. It's still important to know feature importance from the engineering perspective. Due to its complexity and multidisciplinary nature, current scour risk evaluation procedures are highly empirical based. In practice, the decision-making process may be influenced by the subjectiveness of field engineers (e.g., working experience, educational level).

With the purpose to see how field engineers consider feature importance in a scour risk model and whether their opinions are unified, a survey was conducted. Among the 26 engineers who participate in the survey, 11 of them have been working in the inspection and maintenance sector for more than ten years. 10 of them have an experience of less than five years and the rest of them are between five to ten years.

During this workshop, they were asked to grade numerically the influence of input parameters to scour risk from 1 (the least influential) to 4 (the most influential). It should be noted that parameters ranked by engineers are the same input parameters in ML model. Possible reasons for such differences are discussed afterwards.

Feature importance discussion

It is noticed in Figure 6.6 that the feature importance rank given by the engineers is not quite in consistency with the SHAP model. Therefore, Figure 6.7 compares the relative feature importance by using results from SHAP model (mean SHAP value in reflect the non-sufficient bearing capacity of bridge foundation represented by foundation type (B9).

2. The role of ML model in the whole inspection-maintenance process is to help engineers for decision-making, while the tasks for engineers are more complex than this. They still need to program the corresponding maintenance work once the asset is considered at high risk. Therefore, a comprehensive understanding shall be necessary for engineers, which includes factors such as C1 (flow type), B9 (foundation type), B10 (existence of foundation scour countermeasures).

3. The interviewees in this survey (SNCF engineers), who mainly do inspections, are not specialists in geotechnics or hydrology. Due to the staff shortage but a huge number of rail assets to be inspected, they make decisions mainly based on the damages observed in the field (e.g., scour hole, crack, material degradation) and sometimes ignore the surrounding environment. If engineers participating in the survey are specialized in hydrology, environmental factors like C2 (slope of riverbed) and C4 (width of valley/width of low flow channel) and bridge pier shape (B8) could be more important in this case.

4. In the end, although two popular XAI models were employed to explain the black-box model in this study, [START_REF] Tocchetti | The role of human knowledge in explainable ai[END_REF] pointed out that state-of-the-art explainability may not be enough to guarantee the full understandability of explanations from a human perspective. Evaluating the effectiveness of explanations could require researchers from IT-related fields, psychology and philosophy, which is considered beyond the scope of this study.

In comparison with engineers' expertise, XAI approaches consider variables for describing the characteristics of watercourse (C2: slope of riverbed; C3: specific flood flow) and hydromorphology of the region (C4: width of valley/width of low flow channel) are more important than bridge characteristics (e.g., foundation type). This is mainly because the resilience of historical bridges to natural hazards is not as good as new constructions. The same flood event could cause more severe damages to historical infrastructures. In other words, compared with structural factors, the surrounding environment could pose an even greater threat to the stability of historical bridges since all of them have already been in a relatively vulnerable state.

Interpreting the ML model via XAI and comparing the results with engineers' expertise contribute to making the ML model trustworthy and improving the current inspection process. The proposed method is capable of screening high scour risk structures effectively and helping engineers understand how the prediction is made at the same time. Furthermore, the comparison results emphasize the importance of surrounding environmental factors in scour risk assessment, which are currently often neglected by engineers.

In the end, there hasn't existed a standard to criticize whether XAI or engineers' expertise is closer to the true mechanism. The proposed XGBoost model with explanations and the survey to rank input parameters are now built in a web application at SNCF. The updated database and more engineers' participation in the survey could help better understand the phenomenon in the future.

Model implementation at SNCF

This section introduces how to implement the proposed ML classifier in practice.

The XGBoost classifier we've built and the SHAP model interpretation have been included in a web application1 , which could be directly used by the engineers without knowing coding. 

Work flow

Web application

Building the proposed ML model requires solid knowledge not only in the domain of civil engineering but also coding. For the users, namely the inspectors and engineers, it's very rare for them to have the two competences at the same time. Therefore, the proposed ML classifier has been employed in a web application, as shown in Figure 6.9. It could help the inspectors and engineers directly use the model without having a background in coding.

After inspections, the engineer can enter the input parameters based on their field observations. An overview for confirming the entered parameters is shown in the web application (see Figure 6.9 (a)). Before knowing the result, users are asked firstly if they are willing to register the test data in the cloud. For developers, the registered data could help enrich the database and update the ML model regularly with the aim of maintaining the system. The prediction result with related probability is shown afterwards. In order to improve the ML model, a question is asked to know whether the users agree with the prediction results or not (see Figure 6.9 (b)). SHAP local interpretation has been implemented. It helps understand how the prediction is made by the ML classifier. In the end, the survey conducted among the engineers to rank feature importance has been included in this web application as well. It allows collecting more data from the engineers (see Figure 6.9 (c)). The web application we have built not only allows engineers who don't know coding can use it easily, but also helps the maintenance, data collection and future improvement of the model.

Conclusions

The XGBoost classifier that we have built in Chapter 4 could help field engineers evaluate scour risk rapidly yet precisely. Although satisfactory results have been obtained, it is difficult to apply such model in practice due to the opaque nature of ML algorithms, from both engineering and legal perspectives.

In this circumstance, this chapter firstly proposed interpretable approaches to make the black-box ML model transparent by using XAI and engineers' expertise. Data is currently seeking a more appropriate approach for evaluating the scour risk.

To address this issue, machine learning based solutions are proposed in this thesis.

Two datasets are established by using information from inspection reports and open source platforms. In order to determine the input parameters for the machine learning models, feature selection work is conducted from both engineering and statistical perspectives.

Later, very popular and commonly used algorithms are employed. The performance of machine learning classifiers are examined by using measurements calculated from the confusion matrix. Results have shown that for the bridge pier dataset, XGBoost and RF models have the most promising results. Regarding the Abutment&Wall dataset, due to the lack of data, an overfitting is observed at first. After eliminating several input parameters, it's still the XGBoost algorithm who has the best performance. But generally speaking, the prediction accuracy and other measurements for Abutment&Wall dataset are not as good as in pier dataset.

Next, in order to compare the models, more complex investigations are conducted regarding the RF and XGBoost classifiers trained for the bridge pier dataset because they achieve satisfying results. It is observed that in most cases, both models can perform in a robust fashion. XGBoost classifier is more sensible for data uncertainty but it is the one that has the most common results (95%) as the senior engineer.

When tested by the Japanese cases, RF model is the one that has the most cases in common (73.3%) with the Japanese guideline. This is because RF has a relatively high recall score and the Japanese bridges are in rather vulnerable states when judging by the French standard. Moreover, when applying ARPSA to French railway bridges, it is found ARPSA could easily overestimate the scour risk. That is to say, although ARPSA is built for French road bridges who could possibly share very similar geographical environment as the railway ones, it can not be directly used. One of the reasons is that the threshold for vulnerability level classification is empirical based and it's not perfectly adaptable in the rail sector.

Then, in order to understand the predictions from machine learning model, the XGBoost model for bridge pier dataset is interpreted by SHAP model, surrogate model, and engineering expertise. The interpretation results are compared afterwards.

The differences between XAI approaches and engineer's expertise are caused by the different natures of methodologies, scope of work, and bias existing in the engineers.

This comparison highlights the importance of surrounding environmental factors such as hydromorphology, riverbed, watercourse, which are currently often less prioritised by the engineers or inspectors.

In the end, to facilitate the use of engineers and inspectors, the XGBoost classifier with XAI explanations is built in a web application. Findings presented in this work could help significantly evaluate the scour risk by benefiting from the novel AI and machine learning technology. It could provide valuable guidance for improving the current inspection process and insights for other countries who want to develop their own practical guideline.

Perspectives

Several recommendations are made for the future work.

1. This study can be seen as a first try to use machine learning for scour risk evaluation. A binary classifier is built with limited number of data. However, it is still difficult to prioritize maintenance work considering the number of rail assets. A multiclass model for risk segmentation shall be more practical in practice.

2. The size of the two datasets is relatively small considering the number of assets in the rail network. Therefore, future work should continue enlarging the size of data, especially for the Abutment&Wall dataset. More variables could possibly be included if more data is collected in the future. The ideal algorithm for making the prediction could possibly be changed as well.

3. The proposed model is capable of identifying scour vulnerable bridges from a technical perspective. However, the maintenance activities should be planned long time in advance. With constraint budget and the shortage of stuff, the asset manager should get to know the cost (direct and indirect) associated with. The cost of making a bridge less vulnerable to scour is smaller compared to the total cost of failure. Future analysis should include corresponding cost-benefit studies and fortunately, some studies have already mentioned this point [START_REF] Liu | Network-Level Risk-Based Framework for Optimal Bridge Adaptation Management Considering Scour and Climate Change[END_REF][START_REF] Wright | Estimated effects of climate change on flood vulnerability of U.S. bridges[END_REF].

4. In the upcoming year, the changing climate will undoubtedly pose a greater threat to the safety of rail infrastructure and it will especially be amplified in long service life bridges, which are built long time ago and the impact of climate change on the intensity of flood actions are not taken into account in design phase. Therefore, it shall be important to incorporate the effects of climate change and project the bridge scour risk under future climate scenarios for the safety of transport network.

Define the instance set in leaf t as I t = {i | q(x i ) = t}, equation (B.5) can be rewritten as follows: ) is a scoring term to measure a tree's performance. A smaller value means the tree is purer and fits the data better.

ϕ (j) = n i=1 g i f j (x i ) + 1 2 h i f 2 j (x i ) +
In reality, it's quite difficult to enumerate all the possible tree structures q because the tree is grown greedily. As a result, the first only has a single leaf and it will iteratively add branches. After each split, the gain in the loss reduction is calculated as follows:

Gain = 1 2 G 2 L H L + λ + G 2 R H R + λ - (G L + G R ) 2 H L + H R + λ -γ (B.9)
Equation (B.9) can be obviously divided into four parts.

G 2 L H L +λ , G 2 R H R +λ and (G L +G R ) 2 H L +H R +λ
are score for the left child, score for the right child and score before splitting respectively. γ is the regularized hyper-parameter by introducing additional leaf. If

Gain < 0 the splitting will be stopped. More detailed information about XGBoost can refer to the research work of [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF].
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 11 Figure 1.1: Three types of maintenance policies
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 21 Figure 2.1: Surveillance and maintenance policy for rail infrastructure subject to scour.
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 22 Figure 2.2: Schematic presentation of a timber pile foundation (SNCF, 2005).
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 2 Figure 2.3 shows a pneumatic caisson which is closed at the top and open at the bottom. The compressed air forces the water out and keeps the working environment dry. This process creates an airtight space where workers can excavate mud and rock debris until hitting the bedrock. Concrete will be poured afterwards to form a solid bridge pier.
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 23 Figure 2.3: Pneumatic caisson (Sornel, 1872).
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 24 Figure 2.4: Mass concrete foundation surrounded by: (a) timber pile; (b) earthfill dam (adapted from SNCF, 2005).
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 25 Figure 2.5: Observations (damages) around riverbank: (a) landslide; (b) erosion; (c) excessive vegetation; (d) contraction of flow due to debris (SNCF, 2020)
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 226 Figure 2.6 shows photos of several commonly seen damages around bridge foundation.
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 27 Figure 2.7: Photos of damages on river channel: (a) debris; (b) bars (sediment deposition);
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 228 Figure 2.8 presents the commonly observed damages on superstructure.
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 29 Figure 2.9: Schematic presentation of different types of scour.

  several evaluation items (e.g.,"Constriction of rived width", "Bridge pier location relative to rived bend " ) may refer to the work of Takayanagi
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 210 Figure 2.10: Relationship between relative embedment depth and score[START_REF] Takayanagi | Evaluation method using score table for identifying bridge piers vulnerable to scouring in Japan[END_REF].

Figure 2 .

 2 Figure 2.11: Final priority rating versus total scour depth (source: HR Wallingford, 1992)

Figure 2 . 14 :

 214 Figure 2.14: Spam filter construction through traditional programming (a) and ML approach (b) (Aurélien Géron, 2019).

Figure 2 .Figure 2 . 15 :

 2215 Figure 2.15 presents the scope of AI, ML and deep learning. To conclude, ML and deep learning are both types of AI. Deep learning is a subset of ML which uses artificial neural networks for learning.

Figure 2 .

 2 Figure 2.16: A labeled dataset for supervised learning.

Figure 2 .

 2 Figure 2.17: An unlabeled dataset for unsupervised learning.

2. 5 . 3 . 1

 531 Data division ML model is capable of making predictions by learning from data. Typically, the collected data is divided into two parts, namely training and test sets. Training set is used to fit the model (e.g., weights and biases in a neural network). The ML model is trained on the training set. The size of the training set is much larger than the other sets (validation or test sets) because it is hoped that the model can learn as much as possible from it. Test set can provide an unbiased evaluation of a final model fitted on the training set. It is only used when the model training phase is finished. In other words, the ML model cannot be tuned any further after testing set.

Figure 2 . 18 :

 218 Figure 2.18: Examples of underfitting (a), optimum (b), and overfitting (c).

Figure 2 .

 2 18(c)) is the opposite of underfitting. It happens when the model fits exactly against the training data but not generalizes well. In other words, the model predicts well the training data but not the test. The reasons for overfitting are whether the model training time is long or the model is too complex, so the model starts to learn from the noise data or irrelevant information.

2. 5 . 3 . 1 .

 531 If the model performs well on training set but poorly on test set, it indicates overfitting. If both training and test sets error are small, it means the model learns well from the data. The model performance evaluation measurements are chosen based on the types of problems. If the model output is a numerical value (e.g., soil compression index, foundation settlement), typical performance measurements are the root mean square error (RMSE), coefficient of determination (R 2 ), mean absolute percentage error (MAE), etc.

thresholds 1 as shown in Figure 2 Figure 2 . 19 :

 2219 Figure 2.19: Example of an ROC curve.

Figure 2 . 20 :

 220 Figure 2.20: Methodology for ML model development (adapted from Shahin, 2013).

Figure 2 .

 2 Figure 2.20 illustrates the process to develop a ML model. It can be seen that determination of model input, data preparation, data division and model validation

  mentioned the importance of developing an explainable ML model in civil engineering. Naser (2021) discussed XAI and potential implications of XAI from a structural engineering perspective. SHAP (SHapley Additive exPlanation) is a very common and popular model for interpretation in XAI. Bakouregui et al. (2021) used SHAP model to identify the contribution of input parameters for determining the load-carrying capacity of reinforced concrete columns. Mangalathu et al. (2020) established an explainable ML model by applying SHAP for understanding the failure mode of reinforced concrete columns and shear walls. Wang et al. (2023), Wakjira et al. (2021), Hu et al. (2021), Ma et al. (2023) have also applied SHAP model in their studies.

Figure 3 . 1 :

 31 Figure 3.1: Components of a bridge: (a) pier and abutment; (b) wing wall (source: www.hpdconsult.com/parts-of-a-bridge).

Figure 3 . 2 :

 32 Figure 3.2: Example of a retaining wall.

Figure 3 .Figure 3 . 3 :

 333 Figure 3.3 illustrates the 19 SNCF regional offices. In general, it's the regional office who programs and is in charge of the surveillance, inspection and maintenance of the railway infrastructure. In order to build a database in a short period but which is representative enough, 16 out of 19 regions' bridges and walls are included in our original database, as shown in Figure3.3. A wide range of topographical and hydraulic conditions is covered : watercourse varies from streams in mountainous area to main rivers in urban area such as the Seine River, the Loire River, etc.

Figure 3 .

 3 Figure 3.3 also illustrates examples of bridges included in the dataset. As mentioned in Chapter 2, bridges in TER or Intecités lines were mostly constructed 120 years ago. Due to the historic reasons, the construction techniques for these bridges are considered rather unified. Most bridges were built on timber piles, caissons, concrete or cement foundations. Lots of them are masonry arch bridges. Several are constructed in concrete or steel.

Figure 3 . 4 :

 34 Figure 3.4: Main factors affecting the bridge failure due to scour.

1 . 2 .

 12 Specific flood flow (m 3 /s) is calculated from the French project Relational System For Auditing The Hydromorphology of the Rivers (SYRAH-CE)[START_REF] Valette | Cahiers techniques SYRAH-CE[END_REF]. It represents the flow which didn't exceed 99% of the time on the curve of classified flows. Width of valley/width of low flow channel (note as WV/WC hereafter) is the ratio between width of valley and width of low flow channel. Like specific flood flow (m 3 /s), this hydromorphological value is obtained from the database SYRAH-CE. It describes the type of valley in which the river is located. A high WV/WC value represents a wide alluvial valley, which offers the possibility of the river to change the flow path. For the zone where the WV/WC is high, the risk of inundation could be high as well.

Figure 2 .

 2 Figure 2.8 (a), or the protection of foundation. Existence of dislocation or deformation (bin.) is the binary form 1 of the damage and the possible choices are yes or no. Existence of dislocation or deformation (%) is calculated as the damaged surface/volume divided by the surface/volume of the masonry wall or gabion.

Figure 3 . 5 :

 35 Figure 3.5: Bar chart for the variable "navigable".

Figure 3 . 6 and

 36 Figure 3.8 list the types of each selected feature. The proposed order of subcategories were discussed with SNCF experts and may refer to the work of[START_REF] Deng | Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures -Review[END_REF] and[START_REF] Wang | A review of bridge scour: mechanism, estimation, monitoring and countermeasures[END_REF].

For

  example, there are three possible values for the variable foundation type (B9 or BA9). A caisson mode foundation can then be interpreted into [1, 0, 0] ([0, 1, 0] and [0, 0, 1] are respectively for timber piles and mass concrete foundations). The encoding values of categorical variables are shown in Figure 3.6 and Figure 3.8.

Figure 3 . 6 :

 36 Figure 3.6: Data description -bridge pier dataset.

Figure 3

 3 Figure 3.7.

Figure 3 . 7 :

 37 Figure 3.7: Histograms of input parameters -bridge pier dataset.

Figure 3 . 8 :

 38 Figure 3.8: Data description -Abutment&Wall dataset.

Figure 3 . 9 :

 39 Figure 3.9: Histogram of input parameters -Abutment&Wall dataset.

Figure 4 . 1 :

 41 Figure 4.1: Risk evaluation through a risk matrix (a) and a ML model (b)

Figure 4 .

 4 Figure 4.1 (b) shows the scour risk evaluation via a ML model. Considering the types of variables and the size of data we have, supervised learning is adopted in this study. The selected features after Chapter 3 are used as input parameters to train the model and the model output is the scour risk.

Figure 4 . 2 :

 42 Figure 4.2: Schematic presentation of the XGBoost classifier.

Figure 4 .

 4 Figure 4.2 depicts schematically the process of XGBoost algorithm. It is developed using gradient boosting algorithm under the ensemble learning framework. Comparedwith a single decision tree (also known as CART,[START_REF] Breiman | Classification and Regression Trees[END_REF], ensemble learning generates multiple decision trees to achieve high accuracy in prediction. In

Figure 4

 4 Figure 4.3).

Figure 4 . 4 :

 44 Figure 4.4: Schematic presentation of the RF algorithm.

Figure 4 . 5 :

 45 Figure 4.5: Architecture of MLP in the present study.

Figure 4 . 6 :

 46 Figure 4.6: Schematic presentation of bridge pier dataset training process.

Figure 4 .

 4 7 presents training and test scores of the model evaluation measurements in each split. These measurements are calculated from a confusion matrix, which is presented in section 2.5.3.3 by comparing the predicted class with actual class. AUC measures how well the classifier distinguishes between the two classes. It is the area under the ROC curve (see Figure 2.19). The optimal value for AUC is equal to 1. Accuracy describes how the model performs across the two classes. Precision mea-sures the model's accuracy in classifying a sample as positive (high scour risk) class.Recall measures the model's ability to detect positive samples (high scour risk). A high recall classifier means that it can detect all high scour risk bridges, but at the same time, low scour risk examples are evaluated as high. The optimal values for accuracy, precision, recall are equal to 1.

Figure 4 . 7 :

 47 Figure 4.7: Training and test scores under 10 times random splits (bridge pier dataset)

Figure 4 .

 4 7 (g) -(j) indicates that although RF classifier has a high recall score, its FPR is also high among the four algorithms. Later, the average and standard deviation (STD) values of model performance measurements for training and test data are summarized in

Figure 4 . 8 :

 48 Figure 4.8: Feature importance plotted by the XGBoost algorithm (bridge pier dataset).

Figure 4 . 9 :

 49 Figure 4.9: Single feature AUC score using XGBoost model

  parameters and train the model afterwards with simplified variables.The feature importance of XGBoost classifier is plotted firstly and is shown in. It is found that several variables are not mentioned in this rank (e.g., foundation type (BA8), topography (CA5), sinuosity (CA6)), which means they are not used for prediction. On the other hand, some variables in Figure4.10 have relatively low feature importance scores (e.g., flow type (CA1), foundation scour countermeasure (BA9), flood frequency (HA12)). Thus, we decided to exclude variables that have little contribution to the prediction and see the performance of the two classifiers.

Figure 4 . 10 :

 410 Figure 4.10: Feature importance given by the XGBoost algorithm (Abutment&Wall dataset).

  Figure 3.8 are used to train the model (Case No.1). From Case No.2, one variable is removed each time. Variables from Case No.2 to Case No.4 are those not shown in Figure 4.10. From Case No.5 to Case No.9, we exclude the variable each time by following the feature importance. It should be noted that variables in the category changing factors, namely rating of other damages of foundation (IA19) and susceptible of scour (IA13) are not excluded despite their relatively low feature importance score. We think the observations from the field are rather important.

Table 4 . 5 :

 45 Cases for selecting the input variables regarding the Abutment&Wall dataset type), CA5 (topography), CA6 (sinuosity), CA1 (flow type), BA9 (foundation scour countermeasure), HA12 (flood frequency), HA11 (scour history), BA10 (attack angle)

  7 show the training and test results of each case by adopting the XGBoost and RF algorithms. The accuracy scores regarding each case are then illustrated in Figure 4.11.

Figure 4 . 12 :

 412 Figure 4.12: Training and test scores under 10 times random splits (Abutment&Wall dataset)

Figure 4 .

 4 Figure 4.10. It can be seen that the the test results in terms of accuracy and other

  . Zhang et al. (2021a) did a robustness investigation regarding the clay compressibility. All ML models have a satisfactory performance over the training and test sets. Later in parametric study, by making input parameters except one fixed to mean value and varying the studied parameter from the minimum to maximum values, the soil compression index (C c ) differentiate among algorithms (see Figure 5.1) by changing monotonically the liquid limit water content (w L ). Most importantly, results coming from random forest algorithm fluctuate a lot and are difficult to be justified from a physical understanding. Zhang et al. (2021a) pointed out this fluctuation may be due to the distribution of input parameters and the classification condition at each node in random forest.

Figure 5 . 1 :

 51 Figure 5.1: Correlation between predicted compression index (C c ) and liquid limit water content (w L )(Zhang et al., 2021a).

3. 6 and

 6 Figure 3.7. Compared with monotonicity analysis which focuses on the performance of ML classifier over the whole dataset, uncertainty analysis tackles this issue in a local scale with concrete examples. It is about the incomplete and uncertain information regarding structure itself or during inspection.

Table 5 . 2 :Figure 5 . 2 :

 5252 Figure 5.2: Possible model performance after monotonicity or uncertainty analysis.

Figure 5 . 3 :

 53 Figure 5.3: Examples of monotonicity analysis for Case I: (a) V11 (Scour history) in RF model; (b) E4 (width of valley/width of low flow channel) in XGBoost model.

Figure 5 . 4 .

 54 Figure 5.4. Figure 5.4 (a) indicates that compared with the RF model, it is easier for XGBoost classifier to change the prediction results. For example, the change of predicted class (Case I) is caused by inducing factor (I) two times in XGBoost classifier while none for RF model. The modification of environmental (E) and vulnerability (V) factors have the same effect: the predictions are more probable to change in XGBoost model than in RF. Seeing from the randomly selected 10 case studies, the prediction results of RF are relatively more stable (remain as Case II) even changing the input parameters, as shown in Figure 5.4 (b).

Figure 5 . 4 :

 54 Figure 5.4: Uncertainty analysis results by classifying variables as inducing (I), environmental (E) and vulnerability (V) factors for Case I (a), Case II (b), and Case III (c).

Figure 5 .ParisFigure 5 . 5 :

 555 Figure 5.5: Examples of bridges tested in Occitanie Region in France.

Figure 5 . 6 :

 56 Figure 5.6: Number of the same assessment results among the junior engineer, RF classifier, XGBoost classifier and the senior engineer.

Figure 5 . 8 :

 58 Figure 5.8: Timeline of the ten damaged bridge cases.

Figure 5 . 9 :

 59 Figure 5.9: Number of the same assessment results among ST, XGBoost and RF.

Figure 2 .Figure 5 . 10 :

 2510 Figure 2.13. The score histograms are shown in Figure 5.10.

(

  2019).[START_REF] Younsi | Analyse de Risque des Ponts en Sites Affouillables -Expérimentation et Comparaison des méthodes française et japonaise sur un parc d'ouvrages[END_REF] once used ARPSA to evaluate 12 railway bridges, which are only located in the region of Provence-Alpes-Côte d'Azur in south of France. The comparison results are shown in Table5.7.

Figure 5 .

 5 Figure 5.11 shows the photos of two bridges that we have selected as case studies.

Figure 5 .

 5 Figure 5.11: Photos of Richebout bridge (a) and Viaduc sur l'Adour (b)

Figure 6 . 2 :

 62 Figure 6.2: SHAP attributes regarding each feature

Figure 6 . 4 :

 64 Figure 6.4: SHAP partial dependence plots: (a) C2 (slope of riverbed (%)); (b) C3 (specific flood flow (m 3 /s)); (c) C4 (width of valley/ width of low flow channel); (d) I14 (channel rating); (e) I15 (riverbank rating); (f) I18 (rating of other damages)

Figure 6 .Figure 6 . 5 :

 665 Figure 6.5 displays the waterfall plots for local explanations regarding data sample No.1 and No.204. The bottom of a waterfall plot shows the base value, which is considered the prediction result when input features' values are unknown. In other words, base value is the average of target variables. Then each row shows the contribution (red means positive and blue means negative) of each feature to the model output.The corresponding value of each feature is marked at the left side in grey. It should be noted that by default, the x-axis of waterfall plot is in log-odds unit. The negative value indicates the probability is less than 0.5 which means the negative class. For example, in Figure6.5 (a), the slope of river bed (C2 = 0.01) and the nonexistence

Figure 6 .

 6 Figure 6.6 displays the average scores with standard deviations of input parameters ranked by SNCF engineers.

Figure 6 . 6 :

 66 Figure 6.6: Feature average scores obtained from the survey

Figure 6 .

 6 Figure 6.3 (a)), GLM model (coefficients in equation 6.8) and survey results (average score in Figure 6.6) with a 0 -1 normalization. MEP approach is not compared due to its exponential functions.

Figure 6 . 7 :

 67 Figure 6.7: Feature importance comparison.

Figure 6 .

 6 Figure 6.8 depicts schematically the workflow of the proposed model in practice at SNCF. Data collected by engineers through inspection is firstly recorded in an SNCF internal and digitalized platform named PIGC (Patrimoine Informatisé du Génie Civil), which is designated for managing rail infrastructure. Information in this platform regarding the bridge characteristics, surrounding environment as well as the observations from inspections is used as data to train the ML model. After training and testing, the scour risk provided by the ML model is seen as a complement to the engineer's assessment. Corresponding scour countermeasure work could be scheduled hereafter.

Figure 6 . 8 :

 68 Figure 6.8: Overview of the machine learning based PdM system

  on prediction result: agree or not ? (b) Prediction result and collecting feedback from the users

Figure 6 . 9 :

 69 Figure 6.9: Proposed ML model in a web application (Copyright SNCF)

Figure 6 . 9 :

 69 Figure 6.9: Proposed ML model in a web application (Copyright SNCF)

  after oversampling was at first used to build the ML classifier. Later, XAI approaches (SHAP and surrogate models) and a survey among SNCF engineers were conducted to interpret the ML model. SHAP proposed global and local explanations for model interpretations. Surrogate models namely MEP and GLM approximated the original model and showed satisfactory results by generalizing functions easy to be used in the field. The engineers' survey results indicate that the environmental factors are not as important as in SHAP global plot. In the end, feature importance obtained from SHAP, GLM and engineers' survey were compared.The comparison results show that existence of local scour (variable I16) around bridge foundation is considered as the most important feature in XAI approaches and engineers' expertise, which is in line with current knowledge: one of the most obvious criteria to assess scour risk is to know whether there has already been a scour hole near bridge foundation. Besides this common point, it is observed that several environmental factors neglected by engineers have a rather high ranking in XAI explanations. Generally speaking, the differences between XAI approaches and engineers' expertise are caused by different natures of methodologies, scope of work, and bias existing in the engineers.In this chapter, the XAI interpretations make ML model trustworthy through explaining how the predictions are made. The survey among the engineers reveals the fact that some hydrological parameters are not prioritised by the engineers during scour risk evaluation. In the end, comparing XAI results with engineers' expertise helps significantly in improving the maintenance process at SNCF. It highlights the importance of surrounding environmental factors (watercourse, riverbed, hydromorphology). Compared with new constructions, historical bridges are in a relatively vulnerable state and the surrounding environment could pose a greater threat to their stability.In the end, how to implement the proposed machine learning model in practice is presented. A web application is built using the research outcome of the thesis.It allows engineers using and understanding the model easily, even without knowing coding. Moreover, this web application serves as the bridge of communication between model developers and engineers. The feedback from users will help maintain and improve the model. Future work should continue enlarging the size of data and inviting more railway engineers to participate in the survey.Due to the increase of precipitation brought by climate change, flood events are very likely to happen more often in the future. Flooding is actually the direct cause of scour induced infrastructure failure. Huge amount of money and resources are deployed each year to reinforce or maintain the infrastructure subject to scour. SNCF
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.1 to Table 2.3. The importance of each evaluation item to final scour risk is quantified by the score shown in the column Score.

Table 2 . 1 :

 21 RTRI scoring table-Environmental condition of river

	Evaluation item	Choice	Score
		Plain	10
		Valley plain	10
	Topographical land form		
		Alluvial fan	0
		Mountainous area	5
		Absent	15
	Constriction of river width		
		Present	0
		Sand	10
	Riverbed material	Gravel	0
		Exposed rock or boulder	10
		Present	0
	Overall riverbed degradation		
		Absent	10

Table 2 . 2 :

 22 RTRI scoring table -Structural conditions of bridge pier

	Evaluation item	Choice	Score

Table 2 . 3 :

 23 RTRI scoring table -Protection conditions of bridge pier

Table 2 . 4 :

 24 Final priority rating categorisation

	Priority rating	Category	Priority category
	>17	1	High
	16 -17	2	High
	15 -16	3	Medium
	14 -15	4	Medium
	13 -14	5	Low
	<13	6	Low

Influencing factors for scour hazards Score

  

	River flow	Fluvial rivers	2	A11	
	condi�ons	Torren�al rivers	3.5		
		Mountain torren�al rivers and	5		
		rivers under cyclonic condi�ons			
	Type of riverbed	Rocky showing substratum	0	A12 0	A34
	sediment	Blocks	1	0.4	
		Gravels, pebbles…	1.6		
		Cohesive soils (silts, clays)	2.8	1	
		Sand	3.5		
	General scour	2 x A11 x A12 -5		A1	
	Contrac�on scour Low impact on hydraulic sec�on	0.5	A2	
		due to the structure			
		Reduc�on from 15 to 40% of	2		
		hydraulic sec�on due to the			
		structure			
		Reduc�on > 40% of hydraulic	6		
		sec�on due to the structure or			
		when structure is under pressure			
		flow			
	Dimension of	No projec�ng support or pile or	0	A31	
	support	abutment			
	considered as flow	Width ≤ 2m	1.5		
	obstacle	2m < width ≤ 4m	2.5		
		Width > 4m	3.5		
	Pier shape	Favorable configura�on: circular	1	A32	
		or square or no obliquity against			
		flow direc�on Obolong, or with obliquity versus	3	. Parameters used
	in step 2 to calculate scour depth are, among others, flow, flow depth, pier width, flow direc�on
	Other cases riverbed sediment diameter. Riverbed evolu�on Stable	2 1.1	A33	
		Presence of dunes H>1m or	1.3		
		alluvial mobile sandbank			
	Local scour	1.2 x A31 x A32 x A33 x A34 x A11		A3	
	Hazard level (total	A1 + A2 + A3		A	
	scour)				
	Figure 2.12: ARPSA scoring table : hazard factors (step 1) (Durand et al., 2019).
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	5: ARPSA-Hazard (A) level classification (step 1)
	Hazard level Note
	Low	A < 3
	Medium	3 ≤ A < 7
	High	A ≥ 7
	Figure 2.13 is the scoring table for vulnerability factors in step 1 analysis. Here,
	the vulnerability level is a combination of three subdomains: foundation vulnera-
	bility (V1), support sensibility to foundation destabilization (V2) and bridge deck
	vulnerability to different movements (V3) (e.g., total or differential settlements of the
	supports, swaying). The vulnerability level (V) is then classified for each bridge ( see
	Table 2.6 for step 1 classification).	
	ARPSA also includes a table for consequence (ISE). It is based on factors related to
	bridge economical or technical significance within the transport network, patrimonial
	value, and consequences on serviceability, potential consequences of structure failure,
	etc.	

Influencing factors for scour vulnerability Score

  

	Construc�on periods	A�er 1976	-1	V11
		1951-1975	3	
		Before 1950	5	
	Type of founda�on	Deep or half deep founda�ons	2	V12
		Spread <wide> founda�ons	5	
		Other cases or lack of data	10	
	Surveillance	Recent inspec�on with no	0	V13
		scouring process		
		Other cases	4	
	Founda�on vulnerability	-If no projec�ng pile or abutment: 0	V1
		-Otherwise: V11+V12+V13		
	Material	Concrete or metal, in a good	1	V21
		condi�on		
		Masonry, or damaged concrete	3	
		or metal		
	Shape of the obstacle	Sharp cutwater	0	V22
		Cylindrical support or circular	0.5	
		cutwater		
		Rectangular support	1	
	Support sensibility to	V21 + V22		V2
	founda�on destabiliza�on			
	Type of structure	Concrete culvert of truss-bridge 1	V3
		Other cases	2	
	Desk sensibility to relative	V3		V3
	movements, swaying or			
	par�al loosening of the			
	support			

Vulnerability level -If V1 ≤ 5: V1 -If V1 > 5: V1+V2+V3 V

  

	Figure 2.13: ARPSA scoring table : vulnerability factors (step 1) (Durand et al., 2019).
	Table 2.6: ARPSA-Vulnerability (V) level classification (step 1)

Table 2

 2 

		.7: ARPSA-Consequence (ISE) level classification
		Consequence level Note	
		Very low	0 ≤ ISE < 4	
		Low	4 ≤ ISE < 8	
		Middle	8 ≤ ISE < 12	
		High	12 ≤ ISE < 16	
		Very high	16 ≤ ISE ≤ 20	
	Table 2.8: ARPSA -Criticality (C) level classification (step 1)
	Criticality	Low	Medium	High
		vulnerability	vulnerability	vulnerability
	Low hazard	Low criticality	Low criticality	Medium criticality
	Medium hazard Low criticality	Medium criticality High criticality
	High hazard	Medium criticality High criticality	High criticality

Table 2 .

 2 10: Advantages of scoring table, EX2502 and ARPSA

Table 2 .

 2 11: Disadvantages of scoring table, EX2502 and ARPSA

	Procedure	Disadvantages
	Scoring table 1. History of the bridge, the stability of riverbank and river channel
		are not taken into account.
		2. Consequence factors are not included in the procedure.
		3. The score of each evaluation item is based on Japanese morpho-
		logical background.
		4. River flow, which could be changed due to climate change effect,
		is not taken into consideration.
		5. Bridge abutments, and retaining walls cannot be evaluated by
		scoring table.
	EX2502	1. Consequence factors are not included in the procedure.
		2. Formulae are calibrated based on small-scale laboratory experi-
		ments with limited field data.
		3. River depth, and local scour can not be responsive to the change
		of river flow or velocity.
	ARPSA	1. The threshold value for determining the vulnerability, hazard
		and consequence levels are based on engineering expertise and sev-
		eral case studies.
	Among all three approaches, scoring table proposed by RTRI is the easiest one
	to be applied in practice. The parameters required in this approach are much less
	than the others. However, considering scoring table is established based on Japanese
	geographical background, it may be not exactly adaptable to the French situation.
	EX2502 is established based on published and very popular scour equations. Com-
	pared with scoring table, it requires many field measurements (e.g. river width, flow

Table 2 .

 2 12: Confusion matrix

		Actual values	
		Positive	Negative
	Predicted values Positive	True Positive (TP)	False positive (FP)
	Negative	False Negative (FN) True Negative (TN)

Commonly used evaluation measurements can be calculated from this matrix and are shown from equation 2.8 to equation 2.11. It should be noted that in a perfect classifier, the number of FN and FP cases are 0. In other words, the ideal values for accuracy, precision and recall are equal to 1 whereas 0 for false positive rate.

Table 3 . 1 :

 31 Scour risk classification rule

	Class	Grade
	High scour risk	0 ≤ grade ≤ 5
	Low scour risk	5 < grade ≤ 10

After finishing data collection, Table

3

.2 shows the size of two datasets and the number of collected samples in each class. It can be seen that the size of the bridge pier dataset (

208

) is much larger than the Abutment&Wall (124). This is because for one bridge, it could have multiple piers but only two abutments. 75 bridges are covered in the pier dataset while 53 bridges and 7 walls for Abutment&Wall. It can be seen that the two scour risk classes are not equally distributed in pier dataset. This issue is addressed in subsection 6.2.3, Chapter 6, where the data oversampling technique is applied.

Table 3 . 2 :

 32 Information of the two datasets

		Class distribution		
	Dataset	Low	High	Sum	Comments
	Pier	57	151	208	75 bridges
	Abutment&Wall 58	66	124	53 bridges and 7 retaining walls

Main factors affecting the risks of bridges crossing waterways

  

	Bridge characteristics	Environment ( hydrology and geography)	History	Changing factors (updated during each inspection)
	Pier shape Pier width Foundation type etc.	Flow Slope of river bed Watercourse type etc. Riverbed material Topography	Flood history Scour history etc.	etc. Settlement Local / general scour Cracks Masonry damages Riverbank damages
		Induce		
		Bridge failure		

Table 3 . 3 :

 33 Eliminated features due to non sufficient values countermeasure of riverbed (e.g., gabion), which means in this database, most watercourse is not protected by scour countermeasures.The rest variables in Table3.3 for describing the movement of bridge are also eliminated. Although they are important criteria for knowing the status of a bridge, in practice, only bridges susceptible of scour are implemented with sensors to monitor the movement of bridge pier, abutment and bridge deck. In our dataset, only 12.3% of data has the corresponding values for bridge movement.

	Variable name	Reason
	Hydraulic structure in the vicinity Low variance
	Attack angle	Low variance
	Watercourse countermeasure	Low variance
	Movement	Not enough records
	Such issue is also observed for the features "attack angle " and "watercourse coun-
	termeasure". 9.1% of data has the attack angle different than 90 degree. Concerning

"watercourse countermeasure", only 5% of data has the corresponding value for de-scribing the

3.3.2.2 Feature elimination based on statistical information

For numerical values, data points (e.g., values in rows) based on the distinct values in the given column is grouped. The statistical summary of the series for the generated groups can then be calculated (examples in Table

3.4 and Table 3.5

). Data is grouped by based on the scour risk class (high or low scour risk). The % means how many of the values are less than the given percentile.

Table 3.4 

shows the example when the variable can be eliminated based on the statistical information. It can be observed that there are not so much differences for low and high scour risk cases regarding the variable "flow depth (m)". On the contrary, Table

3

.5 illustrates the example when the variable seems to be important at this stage for scour risk evaluation. It can be clearly observed that compared with low scour risk cases, high scour risk cases have larger values for specific flood flow (m 3 /s) in terms of mean, 25%, 50%, and 75% values.

Table 3 . 4 :

 34 Statistical information of the variable "flow depth (m)"

	Class	Mean Min. 25% 50% 75% Max.
	Low scour risk 3.27	0.17	1.07 2.5	4.97 10.00
	High scour risk 3.18	0.15	1.05 2.5	4.97 10.29

Table 3 . 5 :

 35 Statistical information of the variable "specific flood flow (m 3 /s)"

	Class	Mean Min. 25% 50%	75%	Max.
	Low scour risk 507.53 2.09	35.41 140.28 536.86 5457.26
	High scour risk 1027.95 2.09	93.72 343.66 1235.20 5457.26
	For categorical variables, which means the variable only has a limited and usually

fixed number of possible values, it's difficult to calculate the statistical information.

Figure 3.5 

presents the example for the variable "navigable". The scour risk classes are firstly represented by the numerical number. 0 means low scour risk and 1 signifies high scour risk. Later, the average values with corresponding standard deviations of selected variable can be calculated. From Figure

3

.5, it can be seen that the average scour risk score is almost the same for non-navigable and navigable groups. For this reason, this variable can be eliminated at this stage.

Table 3 . 6 :

 36 Number of selected features after each step

data XGBoost classification prediction model Bridge foundation scour risk Training data

  

	4.2.1 Extreme gradient boosting
	Extreme gradient boosting (XGBoost) is proposed by Chen and Guestrin (2016)
	based on tree models. It has been recognized in a great number of machine learn-
	ing and data mining competitions. During the 2015 Kaggle challenge, nearly 60%
	published winning solutions used XGBoost. Boosting
	CART tree	CART tree
		Residual
		Errors
		Residual
		Errors
		CART tree
		Residual
	......	Errors

Dataset Test

Table 4

 4 

	.1 and Table 4.2

Table 4 . 1 :

 41 Results on training data over model performance measures (pier dataset)

		AUC	Accuracy	Precision	Recall	FPR
	XGBoost 0.981±0.009 0.959±0.012 0.970±0.010 0.974±0.014 0.085±0.057
	RF	0.978±0.006 0.923±0.011 0.915±0.006 0.988±0.034 0.260±0.006
	SVM	0.931±0.010 0.887±0.009 0.939±0.012 0.905±0.015 0.164±0.033
	MLP	0.959±0.008 0.917±0.014 0.960±0.009 0.927±0.014 0.112±0.028

Table 4 . 2 :

 42 Results on test data over model performance measures (pier dataset)

		AUC	Accuracy	Precision	Recall	FPR
	XGBoost 0.974 ± 0.023 0.974 ± 0.023 0.974 ± 0.023 0.938 ± 0.023 0.938 ± 0.023 0.938 ± 0.023 0.961 ± 0.022 0.961 ± 0.022 0.961 ± 0.022 0.956±0.031 0.114±0.065
	RF	0.971±0.016 0.907±0.026 0.897±0.027 0.985 ± 0.016 0.985 ± 0.016 0.985 ± 0.016 0.314±0.078
	SVM	0.918±0.024 0.878±0.024 0.922±0.028 0.914±0.045 0.222±0.093
	MLP	0.957±0.020 0.922±0.028 0.957±0.021 0.930±0.035 0.111 ± 0.066 0.111 ± 0.066 0.111 ± 0.066

It can be seen that among all four ML models, XGBoost classifier achieves the highest average score in terms of AUC, accuracy and precision for test data. Moreover, it has approximately the same lowest FPR score as MLP. RF model has the highest recall score but it also has the highest FPR, which indicates that it will have a higher probability for false alarms. In practice, this overestimated classifier may relatively require more unnecessary maintenance work and increase the maintenance cost in the end.

Table 4 . 3 :

 43 Abutment&Wall dataset training results with all selected features

		AUC Accuracy Precision Recall FPR
	XGBoost 0.893 0.896	0.902	0.915	0.128
	RF	0.907 0.907	0.889	0.930	0.117

Table 4 . 4 :

 44 Abutment&Wall dataset test results with all selected features

		AUC Accuracy Precision Recall FPR
	XGBoost 0.763 0.765	0.778	0.737	0.211
	RF	0.736 0.742	0.810	0.739	0.267
	Overfitting, which is presented in subsection 2.5.3.2, is defined as the machine
	learning model gives accurate predictions for training data but not test data. From

Table 4 .

 4 3 and Table 4.4, it can be clearly observed the huge gap between training and test results (overfitting) in both XGBoost and RF classifiers. Subsection 2.5.3.2 mentions that one of the techniques to avoid overfitting is to identify the most important

Table 4 . 6 :

 46 Training results of XGBoost and RF classifiers (Abutment&Wall dataset)

	Case No.	Accuracy Precision Recall FPR AUC
	RF	0.907	0.889	0.930	0.117 0.907
	XGBoost 0.896	0.902	0.915	0.128 0.893
	RF	0.919	0.875	0.977	0.140 0.919
	XGBoost 0.837	0.842	0.750	0.150 0.871
	RF	0.953	0.933	0.977	0.070 0.953
	XGBoost 0.872	0.889	0.870	0.125 0.872
	RF	0.907	0.894	0.933	0.122 0.906
	XGBoost 0.895	0.909	0.889	0.098 0.896
	RF	0.884	0.889	0.889	0.122 0.883
	XGBoost 0.919	0.923	0.900	0.065 0.917
	RF	0.965	0.955	0.977	0.047 0.965
	XGBoost 0.907	0.947	0.857	0.045 0.906
	RF	0.895	0.943	0.825	0.043 0.891
	XGBoost 0.942	0.949	0.925	0.052 0.941
	RF	0.953	0.971	0.920	0.057 0.950
	XGBoost 0.930	0.925	0.945	0.065 0.930
	RF	0.860	0.938	0.750	0.043 0.853
	XGBoost 0.917	0.913	0.925	0.065 0.930

Table 4 .

 4 7: Test results of XGBoost and RF classifiers (Abutment&Wall dataset) After determining the input parameters of Abutment&Wall dataset, the RF and XGBoost algorithms are applied and the random splits are repeated 10 times.Figure 4.12 presents the training and test scores under 10 times random splits. It is clearly observed that compared with the RF classifier, XGBoost model has higher AUC, accuracy, precision, recall scores and lower FPR. Although random splits are conducted, it's the same data set that is tested by the two algorithms each time. It can be seen that results are more scattered in the RF classifier.

	Case No.	Accuracy Precision Recall FPR AUC
	RF	0.742	0.810	0.739	0.267 0.736
	XGBoost 0.765	0.778	0.737	0.211 0.763
	RF	0.630	0.714	0.652	0.400 0.626
	XGBoost 0.684	0.682	0.750	0.389 0.681
	RF	0.684	0.789	0.652	0.267 0.693
	XGBoost 0.684	0.682	0.750	0.389 0.681
	RF	0.677	0.654	0.850	0.529 0.660
	XGBoost 0.676	0.682	0.750	0.412 0.669
	RF	0.662	0.625	0.750	0.529 0.610
	XGBoost 0.811	0.909	0.800	0.167 0.817
	RF	0.763	0.850	0.739	0.200 0.770
	XGBoost 0.894	0.954	0.875	0.071 0.902
	RF	0.730	0.941	0.640	0.083 0.778
	XGBoost 0.838	0.913	0.840	0.167 0.837
	RF	0.784	0.947	0.720	0.083 0.818
	XGBoost 0.811	0.909	0.800	0.167 0.817
	RF	0.757	0.944	0.680	0.083 0.798
	XGBoost 0.817	0.916	0.815	0.185 0.762

Figure 4.11: Accuracy score of RF and XGBoost classifiers. From Figure 4.11, it can be clearly observed that the accurate predictions over training but not test set from Case No.1 to No.5 in both XGBoost and RF algorithms.

In Case No.6, XGBoost algorithm performs very well and has the least difference between training and test sets. From Case No.7 to Case No.9, the differences between the two sets become bigger but still, they are smaller than Case No.

 

Table 4 .

 4 8: Results on training data over model performance measures for Case No.6 (Abut-

		ment&Wall dataset)		
		AUC	Accuracy	Precision	Recall	FPR
	XGBoost 0.905±0.0030 0.906±0.030 0.915±0.031 0.903±0.050 0.092±0.036
	RF	0.871±0.038 0.874±0.038 0.877±0.037 0.882±0.084 0.141±0.055

Table 4 .

 4 9: Results on test data over model performance measures for Case No.6 (Abut-

		ment&Wall dataset)		
		AUC	Accuracy	Precision	Recall	FPR
	XGBoost 0.829 ± 0.038 0.829 ± 0.038 0.829 ± 0.038 0.825 ± 0.039 0.825 ± 0.039 0.825 ± 0.039 0.859 ± 0.076 0.859 ± 0.076 0.859 ± 0.076 0.819 ± 0.099 0.819 ± 0.099 0.819 ± 0.099 0.161 ± 0.088 0.161 ± 0.088 0.161 ± 0.088
	RF	0.770±0.078 0.757±0.080 0.803±0.116 0.748±0.152 0.211±0.117
	Compared with the RF classifier, XGBoost model has higher accuracy, precision,

recall, AUC in average and lower FPR. Based on these results, variables in Case

  The single feature experimental results imply that it's the interaction among features that generates the scour phenomenon. RF classifier, on the other hand, has a slightly higher recall score, which means it could identify high scour risk piers more accurately than the XGBoost model. But at the same time, the low scour risk pier is more probable to be evaluated as high in RF classifier.Chapter 5 presents a more detailed comparison between these two classifiers.As for the Abutment&Wall dataset, due to its smaller data size, an overfitting is observed when training the model at the beginning. After conducting several tests, the XGBoost algorithm with variables in Case No.6 has the best performance. In order to select the optimal features for this dataset, feature importance of the XGBoost classifier is referred to. It should be noted that there are other techniques in the literature to avoid overfitting (introduced in section 2.5.3.2) and they could be tried as well. Despite the various techniques to avoid overfitting, most importantly, it's necessary to collect more data for this dataset. Current size with selected features are difficult to build a machine learning model, let alone to have a robust and reliable one.

	The XGBoost classifier achieves high accuracy (0.959/0.938), precision
	(0.970/0.961), recall (0.974/0.956) and low false positive rate (0.085/0.114) for train-

ing and test set respectively. The classifier obtains an AUC score equal to 0.974 for test set (a perfect classifier has an AUC equal to 1). Moreover, XGBoost model provides a feature importance plot: specific flood flow (m 3 /s), slope of riverbed (%), existence of dislocation or deformation, existence of local scour were considered as the four most important features.

Table 5 .

 5 1 shows the classification of input variables based on the theory of Li et al.

	(2010). It should be noted that the inducing factor (I1) and two environmental factors
	(E3, E4) are quantitative variables, while the rest environmental factors (E2, E5, E6,

Table 5 . 1 :

 51 Input parameters reclassification by adapting the theory of[START_REF] Li | Assessment of catastrophic risk using bayesian network constructed from domain knowledge and spatial data[END_REF] 

	Category	Variable(s)
	Inducing factor (I)	Specific flood flow (m 3 /s) (I1)
	Environmental factors (E)	Flow type (E2), Slope of riverbed (%) (E3), Width
		of valley/Width of low flow channel (E4), Topography
		(E5), Flow sinuosity (E6), Riverbed material (E7)
	Vulnerability factors (V)	Pier shape (V8), Foundation type (V9), Existence
		of foundation (V10), Scour history (V11), Flood his-
		tory (V12), Susceptible of scour (V13), Channel rating
		(V14), Riverbank rating (V15), Existence of dislocation
		or deformation around masonry or gabion (V16), Exis-
		tence of local scour (V17), Rating of other damages of
		foundation (V18)
	5.2.3 Monotonicity and uncertainty analyses
	5.2.3.1 Investigation methodology
	Monotonicity analysis has been applied in several geotechnical studies to see the
	robustness and generalization ability of ML model

Table 5 . 3 :

 53 Monotonicity analysis results

		RF	XGBoost
	Case I	V11, V7	E4, V16, V17
	Case II I1, E2, E3, E4, E5, E6, E7, V8,	I1, E2, E3, E5, E6, E7, V8,
		V9, V10, V12, V13, V14, V15,	V9, V10, V11, V12, V13, V14,
		V16, V18	V15, V18

Table 5 .

 5 7: Hazard and vulnerability scores compared with the study of[START_REF] Younsi | Analyse de Risque des Ponts en Sites Affouillables -Expérimentation et Comparaison des méthodes française et japonaise sur un parc d'ouvrages[END_REF] 

		Hazard score (A)	Vulnerability (V)
		Min.	Max.	Min.	Max.
	Study of Younsi (2019)	13.2	25.3	14.5	24.5

Table 5 .

 5 8: Application of ARPSA for qualitative analysis (step 1)

		Vulnerability Hazard	Criticality
	Low	0	24	5
	Medium	59	35	25
	High	149	149	178
	Sum	208	208	208

Table 5

 5 

		.9: Qualitative analyses results (step 1)	
		Hazard level (score) Vulnerability level (score) Criticality
	Richebout bridge	High (7.1)	High (20.5)	High
	Viaduc sur l'Adour Medium (5.6)	High (12.5)	High

Table 5 .

 5 10: Semi-quantitative analyses results (step 2)

		Hazard level (score) Vulnerability level (score) Criticality
	Richebout bridge	High (6.3)	High (13)	High
	Viaduc sur l'Adour High (7.3)	Medium (10)	High

Table 5 .

 5 11: ML model results of Richebout bridge and Viaduc sur l'Adour

			Scour risk
		XGBoost	RF
	Richebout bridge	Low	Low
	Viaduc sur l'Adour	High	High
	Viaduc sur l'Adour is evaluated at high criticality level in ARPSA, and high scour
	risk level in two ML models. However, for Richebout bridge, it is evaluated at high
	criticality by ARPSA while the predictions from XGBoost and RF models are both
	low scour risk levels.		
	The hazard and vulnerability levels in ARPSA are determined by the corresponding
	scores and predefined threshold (examples in Table 2.5 and Table 2.6). When applying
	ARPSA to railway bridges, we observed that the vulnerability level in both step 1 and
	step 2 analyses require the construction periods (see Figure 2.13) and the construction

Table 6 .

 6 1 shows the accuracy, precision, recall and FPR of the XGBoost classifier with training and test sets respectively. Furthermore, the precision and recall scores of each class before and after SMOTE are shown in Table6.2. It should be reminded that the ideal value for accuracy, precision and recall are equal to 1 whereas 0 for FPR.

Table 6 . 1 :

 61 XGBoost classifier performance (data after SMOTE)

		Accuracy	Precision	Recall	FPR
	Training set	0.99	0.98	0.99	0.02
	Test set	0.95	0.95	0.93	0.04

Table 6 . 2 :

 62 Precision and recall for each class before and after oversampling

	Class	Training set	Test set
		Precision Recall	Precision Recall
	Low scour risk Original data	0.97	0.90	0.73	0.92
	After SMOTE	0.99	0.98	0.94	0.96
	High scour risk Original data	0.96	0.99	0.98	0.92
	After SMOTE	0.98	0.99	0.95	0.93
	From Table 6.1, it is observed that the XGBoost algorithm has a satisfactory per-
	formance regarding all four proposed measurements. Moreover, Table 6.2 shows that
	there is a significant increase regarding precision score for low scour risk classes after
	SMOTE. In general, with data after SMOTE, the XGBoost classifier has an encour-
	aging performance, and the performance of ML model on minority class prediction is
	improved. The model interpretation is developed based on this classifier.	
	6.2.4 SHAP model interpretation			
	The feature importance values are often inconsistent by changing the criteria (Bak-
	ouregui et al., 2021), which could result in contradictory explanations. SHAP (SHap-
	ley Additive exPlanation) model, on the other hand, provides a unified measurement
	(Lundberg and Lee, 2017) for model interpretations. The benefits of SHAP model are

  train the black-box model are input variables. The target variables, however, come from the predictions given by the black-box model instead of original observations. With its explicit expressions, the surrogate model is considered to be able to explain the predictions once it goes through the training and test process and achieves satisfactory performance. and categorical forms via a link function. Compared with a linear regression model in which both variables and outcomes are assumed to follow a Gaussian distribution, GLM allows variables and outcomes following the exponential family of distributions (e.g., Poisson distribution, binomial distribution). The link function relates the linear predictor and the mean of the distribution function. For example, the binomial distributed data may use the logistic link function. Equation6.8 shows the linear function using GLM to augment the interpretability of XGBoost classifier. Each input variable multiplies the computed coefficient. Considering it's a binary classification case, a logit function is served as the link function.Risk scour = logit ( -0.13 × C 1 + 8.51 × C 2 + 0.0007 × C 3 -0.027 × C 4 + 0.375 × C 6

	In engineering, when the prediction results are derived from a time-consuming and computationally expensive process, a surrogate model is desired to approximate the existing complex method. Compared with a black-box model, a surrogate model usually has a simple nature or the inner mechanism has already been understood by users (e.g. a linear function) (Naser, 2021). Theoretically, any model having high interpretability can be considered as a surrogate model if it can approximate the black-box model as closely as possible (Molnar, 2019). To build a surrogate model, alized linear model (GLM) are used in our study to build two surrogate models. MEP, as a branch of genetic programming (GP) inspired by Charles Darwin's theory of natural selection, is a type of linear-based GP for optimization. Multiple solutions (programs) are encoded in the same chromosome in MEP. It starts by generating random population of computer programs and the best solution can be generated from the chromosome by iterating the selection, crossover and mutation process until the termination condition is satisfied. The best equations generated from MEP are usually easy to be applied in practice. The expressions obtained from MEP to decide the scour risk class are shown as follows in equation (6.3) -equation (6.7): A 1 = C 4 I 17 (6.3) A 2 = C 2 + I 16 + I 17 -B 8 (6.4) A 3 = (B 10 + I 16 ) H 11 (6.5) A 4 = A 1 + A 2 + A 3 (6.6) If A 4 < -0.982, low risk, or else high risk (6.7) Risk in the end is decided by an IF function. The model achieves the following accuracy (0.93/0.9), precision (0.90/0.86), recall (0.96/0.93), and FPR (0.10/0.11), for training and test data respectively. (6.8) The trained GLM model has the following metrics for accuracy (0.92/0.91), precision data used to Multi expression programming (MEP) (Oltean and Dumitrescu, 2002) and gener-(0.94/0.93), recall (0.9/0.88) and FPR (0.06/0.06) for training and test set.

GLM, on the other hand, is a linear model that generalizes variables in both nu-merical -0.74 × C 7 -3.68 × B 8 -1.27 × B 10 + 2.31 × H 11 + 1.71 × H 12 -0.72 × I 13 + 0.54 × I 14 + 0.09 × I 15 + 2.91 × I 16 + 12.61 × I 17 + 0.18 × I 18 )

  For a given tree structure, define G t = i∈It g i , H t = i∈It h i . Therefore the optimal weight in leaf t is

	=	t=1 T	i∈It	g i w t +	2 1	i∈It	γT + h i + λ w 2 1 λ 2 t + γT T w 2 t t=1	(B.6)
				w * t = -	G t H t + λ	(B.7)
	and the corresponding optimal value is			
			ϕ * (j) = -	1 2	T t=1	G 2 t H t + λ	+ γT	(B.8)
	Equation (B.8							

This thesis proposed the proof of concept of the application. Development work was supported by the SNCF PLATIPUS project.
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In order to overcome the limitations of a linear function, kernel trick is employed in SVM to implicitly map the training data into a higher dimension space but without complicating the computational process [START_REF] Kordjazi | Prediction of ultimate axial loadcarrying capacity of piles using a support vector machine based on CPT data[END_REF]. Numerous kernel functions were proposed in the literature [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF], even though polynomial and radial basis function (RBF) are the two well exploited kernels for geotechnical engineering problems [START_REF] Goh | Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data[END_REF][START_REF] Samui | Support vector machine applied to settlement of shallow foundations on cohesionless soils[END_REF][START_REF] Samui | OCR Prediction Using Support Vector Machine Based on Piezocone Data[END_REF]. The present work used RBF kernel in the SVM model.

Random forest

Developed by [START_REF] Breiman | Random Forests[END_REF], random forest (RF) is another ensemble learning method that aggregates numerous decision trees. RF features advantages for classification and regression problems in many aspects. A single tree is a weak classifier due to its high variance. To overcome this shortcoming, RF forms a forest by generating To evaluate the model similarity, Figure 5.9 shows the number of the same assessment results among the three evaluation methods. RF model is the one most close to ST with 22 out of 30 (73%) cases in common while for XGBoost classifier there are 15 cases (50%).

Chapter 6

Model interpretation and implementation

Introduction

In previous chapters, we have built the ML classifiers for prediction (Chapter 4).

The practicality, robustness of the ML models have been examined (Chapter 5). However, when looking at Figure 2.20, it highlights the importance to have a transparent model. Therefore, the objectives of the last chapter in this thesis are to interpret the black box ML model, make it transparent by using the explainable artificial intelligence (XAI) techniques. Furthermore, the engineering application is presented at the end of this chapter. A web site is constructed by using the research outcome of this study, with the aim of facilitating the use of ML model in practice. 

Research methodology

SMOTE for data oversampling

An imbalanced dataset could result in a negative effect on the performance of ML algorithms. This issue, nonetheless, exists in many real-world applications (Gosain The global bar plot in Figure 6.3 (a) only permits to see the contribution of each variable to prediction results. Nonetheless, the impact of each feature (whether it's positive or negative) to prediction is still not clear.

In this circumstance, Figure 6. Several observations are made from Figure 6.7 :

1. I17 (existence of local scour) is considered as the most important feature in all three methods.

2. Some features have little or zero contribution in SHAP and GLM methods while the engineers give a rather high score, such as C1 (flow type), C5 (topography)

and B9 (foundation type). It's noteworthy that these are features mentioned in commonly used scour risk evaluation process.

3. By contrast, C2 (slope of riverbed) and C4 (width of valley/width of low flow channel) have a fairly high score in SHAP but not with the engineers.

To conclude, for both XAI models and engineers, the existence of local scour (I17) is considered as the most important feature. It seems logical since estimating the local scour depth under future flood scenarios has always been a key step in most practical guidelines (e.g., [START_REF] Cerema | Analyse de risque des ponts en site affouillable[END_REF]HR Wallingford, 1992). The risk could be already high if a scour hole (local scour) around bridge foundation is detected. Besides, the two XAI approaches are generally consistent with each other.

The reasons for differences between engineers' expertise and XAI approaches are concluded as follows:

1. An engineer does the risk analysis in an asset-specific view and makes judgements based on physical mechanisms. However, the ML model makes predictions by learning from data. It is the statistical relationship and algorithms that "teach" the model. In this case, the important variables for engineers may be Appendix A

Grade proposition guidance

The purpose of the following table is to help inspectors and engineers make a quick decision and hold the same standard while evaluating in the field. The degraded scenarios in each damage level are generalized. Therefore, it's possible that certain types of damages are not covered here (e.g., settlement, disjoint, dislocation). Totally ruined, the circulation could possibly be stopped immediately Note: If the damages exist on foundation and its protection at the same time, the damage level will be given in accordance with the worst case.

For example, the protection has a severe damage level while the foundation has a minor, the final result should be severe. 

where Γ = f (x) = w q(x) q : R m → T, w ∈ R T is the space of decision trees (also known as CART, [START_REF] Breiman | Classification and Regression Trees[END_REF] and K denotes the number of decision trees.

For a single tree f k (x), q represents the tree structure that maps the input data to the corresponding leaf node. T is the number of leaves in the tree and w is the leaf weight.

The objective function of XGBoost formulated by Chen and Chen and Guestrin

where

Here n i=1 l (y i , y i ) is the loss function which is used to calculate the difference between the actual value y i and predicted value y i . Compared with traditional boosting algorithms, XGBoost model adds a regularized term Ω to penalize the complexity of the model in order to avoid overfitting. γ is the cost to have additional leaves. λ is a regularization hyper-parameter and ∥w∥ 2 is the L2 norm of leaf weights.

It's quite difficult to optimize equation (B.2) with traditional approaches in Euclidean space. Therefore, the XGBoost model is trained in an additive approach by using boosting. Boosting is a learning algorithm with which weak learners could be converted to strong ones. By adopting boosting at the j-th iteration, y In this case, by adding greedily f j may help to minimize the objective function and improve the prediction results. To find the optimal value, a second-order Taylor approximation is used to equation (B.4):

l y i , y (j-1) + g i f j (x i ) + 1 2 h i f 2 j (x i ) + Ω (f j ) (B.4)

where g i = ∂ y (j-1) l(y i , y (j-1) ) and h i = ∂ 2 y (j-1) l(y i , y (j-1) ) are first and second-order gradient statistics of the loss function. After removing the constant term, equation (B.4) can be simplified at step j as: .5)