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Abstract

Scour is a natural phenomenon originating from the erosive action of watercourse.

It occurs on erodible riverbeds by carrying or excavating materials, and it can be

particularly observed in the vicinity of obstacles such as bridge piers. Identifying rail

infrastructure vulnerable to scour is one of the important tasks for transport agen-

cies. In France, however, a practical process for identification has not existed yet for

rail infrastructure. This thesis addresses the issue via machine learning based solu-

tions, since they have shown good capacity in prediction recently. By using data from

the French National Railway Company (SNCF), popular and classical algorithms are

applied firstly to build the machine learning models. Then, the models are exam-

ined in terms of their robustness, and practicality. Meanwhile, they are compared

with existing approaches such as ARPSA (Cerema, France) and scoring table (RTRI,

Japan). Later, in order to understand the prediction results, the cutting-edge ex-

plainable artificial intelligence (XAI) methods are employed for model interpretation.

Results from XAI are then compared with engineering expertise from SNCF. This

thesis provides a quick yet accurate process for identifying rail infrastructure vulner-

able to scour by benefiting from the novel data-driven approach. It helps improve

the current inspection and maintenance process by emphasizing the importance of

surrounding environmental factors. In the end, a user-friendly web application was

built to ensure the accessibility of the research outcome.

Keywords: rail infrastructure; machine learning; scour risk; rail assets management
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Résumé

L’affouillement est un phénomène naturel résultant de l’action érosive d’un cours

d’eau. Il se produit sur les lits érodables en transportant des sédiments de la rivière

en particulier au voisinage d’obstacles comme les piles de pont. L’identification des

infrastructures ferroviaires vulnérables à l’affouillement est l’une des tâches impor-

tantes des gestionnaires de transport. En France, cependant, il n’existe pas encore

de processus pour les infrastructures ferroviaires. Cette thèse aborde la question via

des méthodes basées sur l’apprentissage automatique, puisqu’elles ont récemment fait

preuve d’une bonne capacité de prédiction. En utilisant les données de la SNCF, des

algorithmes classiques sont d’abord appliqués pour construire les modèles. Ensuite,

les modèles sont examinés en termes de robustesse et de facilité d’utilisation. Enfin,

ils sont comparés à des approches existantes telles que l’ARPSA (Cerema, France)

et le ≪ scoring table ≫ (RTRI, Japon). Ensuiteles méthodes d’intelligence artificielle

explicable (XAI) sont employées pour l’interprétation du modèle. Les résultats de

l’XAI sont comparés à l’expertise des ingénieurs. Cette thèse propose un proces-

sus rapide mais précis d’identification des infrastructures ferroviaires vulnérables à

l’affouillement. Elle permet d’améliorer le processus d’inspection et de maintenance

en soulignant l’importance des facteurs environnementaux. Enfin, une application

conviviale a été créée pour garantir l’accessibilité des résultats de la recherche.

Mots-clés: infrastructure ferroviaire; apprentissage automatique; risque d’affouillement;

gestion des infrastructure ferroviaire
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Chapter 1

Introduction

1.1 Background of the study

A well-developed transport system is essential for a country’s economic develop-

ment. As one of the infrastructure elements, bridges are crucial points served for

connection within the transport network, underpinning economic vitality, and logis-

tics of communities (Sasidharan et al., 2021).

France currently operates the second-largest European rail network, with a total

of 29,901 km of railway (UIC, 2022). For the French National Railway Company

(Société Nationale des Chemins de fer Français, SNCF) and other transport agencies,

managing and ensuring the safety of infrastructure under the extreme weather events

become one of the priorities .

In most cases, scour is the physical process behind the collapse of structures after

flooding. It is considered as a natural phenomenon originating from the erosive action

of flowing watercourse and usually occurs on erodible beds by excavating or carry-

ing away materials from the riverbed. Facing with the stochastic nature of hydrologic
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events (e.g. flood), it is realized that scour related disasters are difficult to be avoided.

In this case, a risk based evaluation model shall be necessary to complement the design

and maintenance procedures. Tubaldi et al. (2017) established a probabilistic frame-

work of scour depth by considering the hydrologic, hydraulic, and scour analyses using

Markovmodel approach. Bento et al. (2020) proposed a risk-based methodology for

scour risk at bridge foundations comprising hazards (extreme hydrological events), nu-

merical modelling (river behaviour) using HEC-RAS and vulnerability (scour depth to

foundation depth ratio) analyses. Besides the aforementioned research work, in prac-

tice, empirical based procedures were proposed to screen the high risk structures in a

more rapid way such as the Design Manual for Roads and Bridges (DMRB) BD97/12

(British Highways Agency, 2012), EX2502 (HR Wallingford, 1992), ARPSA (Cerema,

2019) and the scoring table built by the Railway Technical Research Institute (RTRI)

(Takayanagi et al., 2018).

At SNCF, Livret A (SNCF, 2005) was proposed for classifying the foundations of

rail assets crossing or adjacent to waterways. This document, nonetheless, has been

barely implemented in the field due to its complexity. As a result, scour risk assess-

ment depends majorly on engineers’ judgment and a risk level of bridge foundation

is designated after the field inspection. Guidelines in other countries or sectors can-

not be directly applied to the French rail infrastructure due to the data accessibility,

different construction techniques, or geographical background.

Recently, the increasing availability of data, growing capabilities of hardware, and

cloud-based solutions have all boosted a new type of maintenance policy called pre-

dictive maintenance (PdM). PdM is a method in which the service life of important

parts is predicted based on inspection or diagnosis. Compared with reactive or pre-

ventive maintenance, PdM is condition-based and could decrease the total cost in the

end (see Figure 1.1).
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Figure 1.1: Three types of maintenance policies

Machine learning (ML) is often adopted in PdM for the definition of the actual

condition of the system as well as for forecasting its future states (Susto et al., 2015;

Yousefpour et al., 2021). Therefore, by realizing the limitations of existing methods,

this novel data-driven approach is considered as another option since it can discover

the patterns in data which is not apparent to humans. When looking at the current

literature, ML has been adopted in several studies in civil engineering and shown

encouraging results, such as bridge risk management (Cattan and Mohammadi, 2002;

Elhag and Wang, 2007; Alipour et al., 2017), local scour depth prediction (Cheng

and Cao, 2015), undrained shear strength (Mbarak et al., 2020), clay compressibility

(Zhang et al., 2021b), liquefaction (Goh, 1994), etc.

1.2 Objectives

Global climate change is accelerating and the natural hazards such as flooding,

drought will happen more frequently in the future. Therefore, having a simple yet

effective procedure for managing the rail infrastructure regarding scour is indispens-

able for SNCF. The general objective of this PhD work is to propose a machine
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learning based solution for evaluating the scour risk of rail infrastructure in France.

The following objectives are set to achieve this goal:

• Review the typologies of infrastructure, maintenance policy at SNCF, and the

practical guidelines adopted in other countries or transport agencies. Have

the basic knowledge of machine learning and its application in geotechnical

engineering;

• Collect information from inspection reports and construct the database that

could be used for training the machine learning model;

• Build machine learning models with domain expertise. The proposed models

should provide guidance to the engineers or inspectors who are seen as the end-

users of the model and need to decide the following step after inspection. For

example, whether the scour countermeasure is required for the infrastructure.

• If possible, propose an application which makes the research outcome easy to

be used and understood by the engineers who don’t know coding.

1.3 Overview of the research

This thesis consists of six chapters, which is outlined as follows:

Chapter 1 is the general introduction of the research work.

Chapter 2 presents the overview of the rail assets crossing waterways, including the

surveillance and maintenance policy, construction techniques, and also different ob-

served damages around the infrastructure. Then, basic knowledge of machine learning

and its application in civil engineering is presented.

Chapter 3 introduces the process to build the datasets which are used to train the

machine learning classifiers afterwards.

4



CHAPTER 1. INTRODUCTION

Chapter 4 introduces some popular machine learning algorithms. These algorithms

are then used to build the machine learning model. The training and test results are

presented in this chapter.

Chapter 5 compares the machine learning classifiers built in Chapter 4 from differ-

ent perspectives. For example, the model performance is examined for the robustness,

practicality. The machine learning models are also compared with existing method-

ologies used in Japan and France.

Chapter 6 explains one of the machine learning models that is constructed in Chap-

ter 4. The cutting-edge explainable artificial intelligence (XAI) techniques are em-

ployed for interpretation. Furthermore, the research outcome of this study is demon-

strated in a web application which could facilitate the use of rail engineers. The

presentation of this web application is shown at the end of this chapter.

Chapter 7 is the general conclusions and perspectives of this work.
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Chapter 2

State of the art

2.1 Preamble

The number of natural disasters has increased a lot over the past 50 years due to

the climate change effect. Studies have shown that hydraulic events induced damages

are the major causes for bridge failures. In 1978 in France, the collapse of the Wilson

Bridge, which is a masonry bridge with 15 arches built in 1765-1778, affected nearly

100,000 people in the city of Tours.

This chapter introduces the relevant background information for the maintenance

practical guidelines for scour risk assessment, basic concepts of machine learning and

development of machine learning in civil engineering are reviewed.

2.2 Overview of historical rail infrastructure sub-

ject to scour

This section provides an overview of the railway assets subject to scour, includ-

ing the difficulties for surveillance and maintenance, maintenance policy, foundation
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construction techniques, and commonly observed damages in the field.

2.2.1 Specificities and difficulties

In the French rail network, except the infrastructure in high-speed rail lines (Train

à Grande Vitesse, TGV), rail assets such as bridges, and retaining walls in other lines

(e.g., Transport Express Régional, Intercités) were mostly constructed 120 years ago

(SNCF, 2020). There are roughly 10,000 bridges crossing waterways and waterway

retaining walls in the French rail network. Recently, the accelerating climate change

bringing more severe and frequent natural hazards such as flooding, droughts, and

heavy rains could undoubtedly pose a greater threat to the safety of infrastructure in

the transport network (Nasr et al., 2021).

As a matter of fact, historical rail assets take a great proportion in Europe’s rail

network (Ozaeta Garćıa-Catalán and Mart́ın-Caro, 2020). Each year, a huge amount

of money is spent by the transport agencies for the reinforcement or reconstruction

of rail infrastructure affected by floods. In France, the annual cost to regenerate the

bridges subject to scour or other hydraulic events is roughly 4 million euros, according

to SNCF (2019). The Austrian Federal Railways company (ÖBB) estimated over 100

million euros losses due to floods in recent years (Kellermann et al., 2016). Passenger

travel disruptions due to floods were estimated to cost up to GBP 60 million for the

UK railway network, and the indirect losses (e.g., impact on economic productivity)

could be 10 times larger (Lamb et al., 2019).

The aforementioned data indicates the necessity to have an effective monitoring

and maintenance policy. A proper policy for managing infrastructure could not only

ensure the safety of rail network but also decrease the high cost related to repair

work after the occurrence of scour disaster. However, there are several challenges

and difficulties in monitoring and maintaining the aging rail infrastructure in the rail

system.
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Firstly, bridge management involves numerous data collection and data analysis

techniques. Most railway bridges served in regional express lines (e.g., TER, Inter-

cités) are between 75 and 170 years old. Some of them were partly destroyed during

World War I or World War II and reconstructed after. Therefore, the design draw-

ings could be incomplete or partly lost, and most of the drawings have not been

digitized yet at SNCF. Besides, there could be the riverbed evolution, and flow path

change since construction. In order to understand well the bridge and its surrounding

environment, detailed inspections (underwater inspection through diving) are neces-

sary. Sometimes, in-situ tests such as geotechnical surveys or impact vibration tests

(Nishimura and Tanamura, 1989) are conducted as well. All of them are at a high

cost and sometimes require even additional human resources to proceed.

The second challenge originates from the mode of monitoring. The most efficient

and cost-effective method to deal with scour is to monitor the evolution overtime and

to program scour countermeasure work accordingly (Prendergast and Gavin, 2014).

One of the commonly used techniques for bridge monitoring is visual inspection.

When the depth of watercourse is deep or the velocity is high, an underwater foun-

dation inspection through diver is employed (Sasidharan et al., 2021). However, such

visual inspection is only conducted during the low-flow periods and cannot be realized

in flooding when the scour risk is the highest, due to safety reasons. Moreover, the

issue is exacerbated as the scour hole may be filled in when floodwater subsides and

get unnoticed during visual inspection, which could mislead the real extent of the

problem (Sasidharan et al., 2021).

The third challenge comes from the external threat. The unequivocal extreme cli-

mate events have been recorded more often in the past decade. Study showed that

the intensity and frequency of floods are possible to increase due to global warming

(Few, 2003). Compared with new constructions, historical bridges are more vulner-

able when facing natural hazards resulting from material degradation. Besides the
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changing climate, another threat comes from the increased loading conditions due

to the growing demand of transport on rail. If judging by the current design proce-

dures, the initial design loads have more or less been passed, leading to the growing

vulnerability of rail assets.

2.2.2 Surveillance and maintenance policy

In order to guarantee the safety of rail assets, especially for which in an ageing

system, a proper maintenance policy is important. Figure 2.1 illustrates the inspec-

tion–maintenance process at SNCF. The maintenance work starts with a field inspec-

tion. The railway engineers must make a decision regarding the action to be done

afterwards based on site observations. The most optimistic case is that the bridge

foundation is at a very low risk level and the next inspection is scheduled in no more

than six years. In other cases, corresponding scour countermeasures are going to be

scheduled, and there are three types of cases: immediate regeneration, regeneration,

and preventive work. According to the status of infrastructure, acceptable time to

finish the corresponding maintenance work is different (varying from less than one

year to six years). In some extreme cases, the severe damages (bridge collapse, de-

formation) could result in totally disrupted circulation. The scour countermeasures

and/or the reinforcement of bridge foundation should be done immediately.
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Figure 2.1: Surveillance and maintenance policy for rail infrastructure subject to scour.

The railway engineer makes decisions primarily based on their domain knowledge

and expertise. It can be seen from Figure 2.1 that this step is also influenced by

other aspects, such as his/her subjectivity affected by working experience, budget

constraint, and social impact (importance of the bridge and rail line in the whole

transport network). Therefore, the objective of this PhD work is to propose a ma-

chine learning model, which could serve as a complement for engineer’s judgment and

optimize the decision-making process in the end.

2.2.3 Types of foundations

This subsection presents briefly the types of foundations for historical railway

bridges crossing waterways.

10



CHAPTER 2. STATE OF THE ART

2.2.3.1 Timber pile foundation

Timber pile foundation has existed since Roman and it was employed until the end

of the 19th century. Before the naissance of caisson foundation, it was the only way

to construct on compressible soil, such as silt, clay, and clayey sand.

Normally, the spacing between piles is often close to 1 m and the diameter of the

pile varies from 0.20 m to 0.35 m. The length of the pile is around 10 m but can reach

20 m in some rare cases by using a joint. Figure 2.2 shows the schema of a bridge

foundation constructed on timber piles.

Generally speaking, timber pile foundation construction consists the following steps:

1. driving the piles into the soil to make sure they could support the loads;

2. cutting up the piles in the same plane and connecting the top together;

3. covering a raft on the top of the piles to continue the following work.

Figure 2.2: Schematic presentation of a timber pile foundation (SNCF, 2005).
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2.2.3.2 Caisson

Caisson is a commonly used technique to work on the foundations of a bridge pier.

Water is pumped out in the caisson to keep the work environment dry. There exist

several construction techniques for caisson foundation. In general, the compressed air

allows limiting the infiltration of water inside the caisson.

Figure 2.3 shows a pneumatic caisson which is closed at the top and open at the

bottom. The compressed air forces the water out and keeps the working environment

dry. This process creates an airtight space where workers can excavate mud and rock

debris until hitting the bedrock. Concrete will be poured afterwards to form a solid

bridge pier.

Figure 2.3: Pneumatic caisson (Sornel, 1872).

2.2.3.3 Mass concrete

When the soil layer which supports the loads is not too far from the water level, the

foundation can be constructed on mass concrete. This kind of foundation is realized

by using underwater concrete or pumping out water and then pouring concrete. A
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cofferdam, which is often made by timber piles, sheet piles or earthfill dam, surrounds

the foundation allowing creating a dry working environment (see Figure 2.4).

Figure 2.4: Mass concrete foundation surrounded by: (a) timber pile; (b) earthfill dam

(adapted from SNCF, 2005).

2.2.4 Types of damages

This subsection describes and classifies the commonly seen damages during field

inspection. The asset and its surrounding environment are decomposed into four

parts: riverbank, foundation(infrastructure), channel, and superstructure. Damages

described in this subsection are normally observed from visual inspections. Special

inspections (e.g., underwater foundation inspection through diving, timber pile foun-

dation inspection) are required if the river depth is profound, velocity is high or the

foundation is constructed on timber piles.

2.2.4.1 Riverbank

The common observations (damages) around riverbank are listed as follows and

shown in Figure 2.5:

• landslide;
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• erosion;

• excessive vegetation;

• contraction of flow due to debris.

(a) (b)

(c) (d)

Figure 2.5: Observations (damages) around riverbank: (a) landslide; (b) erosion; (c) ex-

cessive vegetation; (d) contraction of flow due to debris (SNCF, 2020)

2.2.4.2 Foundation (infrastructure)

The causes for foundation damages are due to the degradation of the structural

element or the interaction with watercourse. The types of damages are classified as

follows (Ozaeta Garćıa-Catalán and Mart́ın-Caro, 2020).
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Damages due to the structural element are:

• irregular cracks on foundation;

• abraded and rotten timber piles;

• corrosion of caisson;

• loss of scour protection.

Damages related to the interaction of watercourse are:

• general scour;

• local scour around foundation.

Figure 2.6 shows photos of several commonly seen damages around bridge founda-

tion.

15
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(a) (b)

(c) (d)

Figure 2.6: Photos of damages on foundation: (a) rotten timber piles; (b) corrosion of

caisson; (c) local scour; (d) loss of scour protection (SNCF, 2005).

2.2.4.3 River channel

Damages on river channel are categorized as follows and some of them are illustrated

in Figure 2.7.

• general scour (lowering of riverbed);

• debris;

• bars (due to the sediment deposition);

16
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• riverbed movement;

• excessive vegetation.

(a) (b)

(c)

Figure 2.7: Photos of damages on river channel: (a) debris; (b) bars (sediment deposition);

(c) excessive vegetation.

2.2.4.4 Superstructure

Although damages on superstructure are beyond the scope of foundation inspection,

but they could indicate the instability of foundation (Ozaeta Garćıa-Catalán and

Mart́ın-Caro, 2020). Such damages may be:

• cracks in longitudinal, vertical or transverse direction;
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• mechanical failure of masonry.

Figure 2.8 presents the commonly observed damages on superstructure.

(a)

(b)

Figure 2.8: Photos of damages on superstructure: (a) mechanical failure of masonry; (b)

longitudinal crack.
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2.3 Basic knowledge of scour

2.3.1 Background

Scour is the leading cause for bridge failures (Deng and Cai, 2010; Pizarro et al.,

2020; Dikanski et al., 2018). It is considered as a natural phenomenon originating

from the erosive action of flowing watercourse and usually occurs on erodible beds by

excavating or carrying away materials from the riverbed.

According to Shirole and Holt (1991), more than 60% of bridge failures were related

to scour or other hydraulic effects between 1950 and 1991 in the United States. Since

1840, more than 100 collapses regarding railway bridges were due to scour and caused

15 fatalities in the United Kingdom (Van Leeuwen and Lamb, 2014).

2.3.2 Types of scour

The types of scour typically encountered are presented in this subsection.

• General scour : general scour is also called as natural scour. Melville and

Coleman (2000) define general scour as “that scour occurring irrespective of

the presence of any human-imposed structure”. It occurs due to the natural

variability of river stream flows and sediment regime, considering the influence

from the catchment to the river scale. Riverbed degradation, bend, contraction

scour are all part of general scour (Pizarro et al., 2020).

• Contraction scour : compared with local scour, contraction scour has received

much less attention in recent research (Ghazvinei et al., 2014). Contraction

scour occurs when riverbed width decreases and watercourse velocity increases.

With contraction scour, riverbed material can be mostly or all removed due to

the increased flow velocities and shear stresses. Conditions result in contraction

scour may be : (1) the constriction of watercourse (natural contractions or
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bridge contractions), (2) natural berms along the riverbanks due to sediment

deposits, (3) ice formations, (4) debris, (5) vegetation in the channel (Ekuje,

2018).

• Local scour : local scour happens when there is an structural obstruction

splitting (e.g., piers) or disrupt (e.g., abutments) the flow. According to Benn

(2013), local scour at bridge pier is considered as the most predominant type

of scour. Factors related to local scour include but not limited to intensity of

flow, sediment size of riverbed material, flow depth, attack angle, shape, width

and length of pier and abutment (Ekuje, 2018).

Figure 2.9 illustrates the aforementioned different types of scour that could happen

near a bridge pier.

Original riverbed 

Scoured riverbed 
Local scour around 
bridge pier

Natural and contraction scour

Figure 2.9: Schematic presentation of different types of scour.

2.3.3 Climate change impact on scour

As mentioned in the previous subsection, bridge scour is the foremost cause of bridge

failures worldwide (Dikanski et al., 2018). It removes and excavates the material from
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riverbed due to the erosive action of watercourse. The removal of material starts when

the erosive capacity of water flow exceeds its ability to resist motion, thus the scour

process commences (Annandale, 2006). Furthermore, Annandale (2006) points out

that scour depth increases when the erosive capacity of water flow increases, which

in return lifts and drags the sediment at the riverbed by the flow velocity. Such

process could consequently lower the riverbed in the main channel (e.g., general and

contraction scour) and around bridge piers and abutment (e.g., local scour).

It is broadly acknowledged in the literature that climate change due to anthro-

pogenic emissions of green house gases (e.g., CO2) is taking place (IPCC, 2013). The

latest report of the Intergovernmental Panel on Climate Change (IPCC) indicates

that western and central Europe will have more pluvial and river flooding as a result

of the global average temperature increase (Economist, 2021). Watts et al. (2015)

asserts that “anthropogenic climate change would expectedly modify rainfall, temper-

ature, and catchment hydrological processes around the world resulting in challenging

water-related adaptations”.

The increased frequency of flood events has an adverse impact on the life-cycle

performance of affected railway infrastructure, since the design code is on the basis of

past events and assume the load will be the same in the future (Mondoro et al., 2018),

which leads to growing vulnerability of these infrastructure under future hazards.

To summarize, the increase in river flood discharge resulting from extreme precipi-

tation due to climate change effect could increase scour risk and ultimately, endanger

the safety of infrastructure and cause more failures.

2.4 Practical procedures for scour risk assessment

In order to prevent scour disasters, transport agencies normally conduct regular

visual inspections to evaluate the risk of infrastructure. Practical guidelines are pro-
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posed to help field engineers assess the risk in case they don’t have enough knowledge

in the domain. Before proposing a procedure for the rail assets in France, we look

at firstly the existing approaches in Japan, the United Kingdom, and France in rail

or road sectors, since they share similar construction techniques, or geographical

background to French assets. After reviewing these approaches, the advantages and

disadvantages of each method are compared and discussed at the end of this section.

2.4.1 Rail sector

2.4.1.1 Scoring table in Japan

Proposed by the Railway Technical Research Institute (RTRI), the Japan Railways

Groups (JR) employs a scoring table (Takayanagi et al., 2018) to assess the scour risk

of railway bridges.

In this approach, factors related to scour risk are divided into three categories :

environmental condition of river, structural conditions of bridge pier, and protection

conditions of bridge pier. The evaluation items in each category are considered having

an important impact on scour risk assessment and they are chosen on the basis of

past disasters happened in Japan.

It should be noted that many parameters used in empirical formulas for calculating

scour depth (Laursen, E. M. and Toch, A., 1956; Froehlich, 1988; Melville, 1997;

Melville and Sutherland, 1988; Hager and Unger, 2010; Hong et al., 2012; Link et al.,

2017; Melville and Yee-Meng, 1999; Pizarro et al., 2017; Yanmaz and Altinbilek,

1991) are reflected in this method. Moreover, types of scour countermeasure as well

as the damage level of scour countermeasures have been taken into account in this

approach.

RTRI’s scoring table is shown from Table 2.1 to Table 2.3. The importance of each

evaluation item to final scour risk is quantified by the score shown in the column
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Score.

Table 2.1: RTRI scoring table-Environmental condition of river

Evaluation item Choice Score

Topographical land form

Plain 10

Valley plain 10

Alluvial fan 0

Mountainous area 5

Constriction of river width
Absent 15

Present 0

Riverbed material

Sand 10

Gravel 0

Exposed rock or boulder 10

Overall riverbed degradation
Present 0

Absent 10
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Table 2.2: RTRI scoring table - Structural conditions of bridge pier

Evaluation item Choice Score

Bridge pier location relative

to river bend

Straight river or inside of river bend 15

Outside of river bend 0

Bridge pier location

relative to floodplain

In river flow 5

Floodplain without revetment 10

Floodplain with revetment 25

Floodplain without revetment

and adjacent to river flow
0

Floodplain with revetment

and adjacent to river flow
15

Downstream

drop structure

Absent 20

Height

Up to 1m 5

1 - 2m 0

More than 2m 0

Deterioration Present *

Construction

range
Only a part of river course *

Relative embedment depth
Spread foundation or pile foundation

Figure 2.10
Caisson foundation

Variation of embedment depth

Increase or decrease in depth by

more than 1.5m in comparison with

that in the previous inspection

*

Bedrock contact

Absent 0

Probable 15

Present 30
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Table 2.3: RTRI scoring table - Protection conditions of bridge pier

Evaluation item Choice Score

Absent 0

Unknown 0

Deterioration of

basket foundation

Present 0

Absent 5

Unknown 0

Block footing

protection

Deterioration

Absent 20

Partial 5

Overall or washed away *

Unknown 0

Connection Present 5

Expansion of

footing

Relative

embedment

depth

Top of protection work < Riverbed 20

Bottom of protection work < Riverbed

< Top of protection work
10

Riverbed < Bottom of protection work *

Deterioration
Present *

Unknown 0

Detailed explanations of several evaluation items (e.g.,“Constriction of rived width”,

“Bridge pier location relative to rived bend” ) may refer to the work of Takayanagi

et al. (2018). The score of the evaluation item “Relative embedment depth” shown

in Table 2.2 is calculated based on Figure 2.10. The embedment depth is calculated

using equation 2.1

Relative embedment depth = L/B (2.1)

where L is the bridge foundation embedment depth (m) and B is the bridge pier width

(m).
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Figure 2.10: Relationship between relative embedment depth and score (Takayanagi et al.,

2018).

The final bridge score is calculated by summing the score of evaluation items shown

from Table 2.1 to Table 2.3. If the final score is less than 110, a detailed inspection

and more complex studies shall then be needed. It’s noteworthy that several choices

in evaluation items with a “*” mark are considered strongly related to a potential

scouring disaster. Therefore, if one of these choices are included in the investigated

bridge pier, it is regarded as high risk and needs more detailed inspection immediately,

regardless of the sum of scores.

The score of each evaluation item and the threshold value (110) were calibrated

on historic survey data of 77 bridge piers in Japan. The same 77 bridge piers were

considered as high risk by railway engineers without using scoring table. In addition,

it has been tested and confirmed that the results from scoring table and railway

engineers are generally in agreement with each other (Takayanagi et al., 2019).
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2.4.1.2 EX2502 in the United Kingdom

EX2502 (HR Wallingford, 1992) is the standard for the assessment of scour for

railway bridges over water in the UK. The procedure for evaluating the scour depth

in EX2502 involves calculating general scour, local scour and bend scour (if any).

The total scour is calculated as the sum of local scour and general scour, as shown

in equation (2.2)

dt = dl + dg (2.2)

where dt = total scour; dl = local scour; dg = general scour.

To estimate local scour and general scour depth, important features are such as

river bend, relative flow depth, angle of attack, pier shape, sediment size and debris

blockage (if any) (Ekuje, 2018). All equations used in EX2502 for predicting the

general and local scour depth are based on small-scale laboratory experiments with

limited field data for verification (López et al., 2014; Arneson et al., 2012).

The total scour depth dt should sometimes be revised by subtracting an adjustment

factor (AF), as indicated in equation (2.3).

dt = dt − AF (2.3)

AF is actually the difference in bed level at a cross section upstream of the bridge

and the bed level from where the foundation depth was measured. It should be

noted that AF can be applied only when there is enough information indicated in the

divers’ reports or information from monitoring equipment like sonar. In other cases,

AF should be taken as zero.

A preliminary priority rating (PPR) can then be calculated by using the total scour

depth and the foundation depth

PPR = 15 + ln {(dt − df ) /df + 1} (2.4)

27



CHAPTER 2. STATE OF THE ART

where dt = total scour depth; df = foundation depth. The PPR can also be obtained

by using the graph on Figure 2.11.

Figure 2.11: Final priority rating versus total scour depth (source: HR Wallingford, 1992)

The final priority rating (FPR) is calculated by considering a number of additional

features which may influence of failure such as river stability and river type (TR).

TR is calculated by using the equation (2.5)

TR =
1

17
(sum of channel stability, bank stability, channel slope) (2.5)

and the final priority rating (FPR) is presented in equation (2.6).

FPR = PPR− TR (2.6)

In the end, the risk of scour can be determined from Table 2.4.
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Table 2.4: Final priority rating categorisation

Priority rating Category Priority category

>17 1 High

16 - 17 2 High

15 - 16 3 Medium

14 - 15 4 Medium

13 - 14 5 Low

<13 6 Low

One of the limitations of EX2502 is that it does not respond to changes in river

discharges induced by climate change. The river depth is advised to be calculated as:

Yu = 0.185W 0.7
u (2.7)

where Yu = flow depth in the channel;

Wu = channel width upstream of the bridge.

It is obvious that the flow depth does not respond to changes in river discharge.

Therefore, Manning’s equation is suggested to estimate the flow depth (British High-

ways Agency, 2012). Ekuje (2018) presented the implement of Manning’s equation

for making the flow depth responsive to changes in discharge for improvement.

Another limitation of EX2502 is that it is not based on flow velocity and the

influence of flow intensity on local scour (e.g., ratio of velocity due to discharge to

critical velocity (V/Vc)) is not considered. Therefore, it cannot be used to calculate

critical discharge based on critical velocity, where the maximum local scour occurs

(Ekuje, 2018).

Detailed process for local scour (dl), general scour(dg) and additional factors (TR)

is in presented in HR Wallingford (1992).

29



CHAPTER 2. STATE OF THE ART

2.4.2 Road sector

2.4.2.1 ARPSA in France

ARPSA (Cerema, 2019) is the acronym for “Risk anlysis for Structures in scourable

site” (in French : Analyse de Risque des Ponts en Site Affouillable). Proposed by

Cerema, it is a French guideline to evaluate the risk of road bridges to scour. Like

the other practical procedures, it is a risk-based guideline which could help asset

managers to anticipate the future risk and manage infrastructure. It should be noted

that ARPSA was developed and calibrated for road bridges. Extra work should be

done to make it adaptable for French railway bridges (Takayanagi et al., 2019).

ARPSA comprises 3 steps’ analyses: a pre-filtering step, a simplified analysis step,

and a detailed analysis if necessary. Hazard, vulnerability and consequence are studied

separately in ARPSA.

Figure 2.12 shows the scoring table for hazard factors in step 1 (pre-filtering) anal-

ysis. Generally speaking, the scour hazard level takes into account the general scour

(A1), contraction scour (A2) and local scour (A3). Scour hazard characterization is

mainly influenced by river morphology and hydrodynamic factors (Takayanagi et al.,

2019). The scour hazard level in step 1 is then defined by three levels shown in Table

2.5. The hazard level in step 2 refers to a simplified quantitative analysis. It calcu-

lates scour depth by using classic equations (Arneson et al., 2012). Parameters used

in step 2 to calculate scour depth are, among others, flow, flow depth, pier width,

riverbed sediment diameter.
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Influencing factors for scour hazards Score  

River flow 
condi�ons 

Fluvial rivers 2 A11 
Torren�al rivers 3.5 
Mountain torren�al rivers and 
rivers under cyclonic condi�ons  

5 

Type of riverbed 
sediment 

Rocky showing substratum 0 A12 0 A34 
Blocks 1 0.4 
Gravels, pebbles… 1.6 
Cohesive soils (silts, clays) 2.8 1 
Sand 3.5 

General scour 2 x A11 x A12 - 5 A1 
Contrac�on scour Low impact on hydraulic sec�on 

due to the structure 
0.5 A2 

Reduc�on from 15 to 40% of 
hydraulic sec�on due to the 
structure 

2 

Reduc�on > 40% of hydraulic 
sec�on due to the structure or 
when structure is under pressure 
flow 

6 

Dimension of 
support 
considered as flow 
obstacle 

No projec�ng support or pile or 
abutment 

0 A31 

Width ≤ 2m 1.5 
2m < width ≤ 4m 2.5 
Width > 4m 3.5 

Pier shape  Favorable configura�on: circular 
or square or no obliquity against 
flow direc�on 

1 A32 

Obolong, or with obliquity versus 
flow direc�on  

3 

Other cases 2 
Riverbed evolu�on Stable 1.1 A33 

Presence of dunes H>1m or 
alluvial mobile sandbank 

1.3 

Local scour  1.2 x A31 x A32 x A33 x A34 x A11 A3 
Hazard level (total 
scour) 

A1 + A2 + A3 A 

Figure 2.12: ARPSA scoring table : hazard factors (step 1) (Durand et al., 2019).
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Table 2.5: ARPSA- Hazard (A) level classification (step 1)

Hazard level Note

Low A < 3

Medium 3 ≤ A < 7

High A ≥ 7

Figure 2.13 is the scoring table for vulnerability factors in step 1 analysis. Here,

the vulnerability level is a combination of three subdomains: foundation vulnera-

bility (V1), support sensibility to foundation destabilization (V2) and bridge deck

vulnerability to different movements (V3) (e.g., total or differential settlements of the

supports, swaying). The vulnerability level (V) is then classified for each bridge ( see

Table 2.6 for step 1 classification).

ARPSA also includes a table for consequence (ISE). It is based on factors related to

bridge economical or technical significance within the transport network, patrimonial

value, and consequences on serviceability, potential consequences of structure failure,

etc.
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Influencing factors for scour vulnerability  Score  
Construc�on periods A�er 1976 -1 V11 

1951-1975 3 
Before 1950 5 

Type of founda�on Deep or half deep founda�ons 2 V12 
Spread <wide> founda�ons 5 
Other cases or lack of data 10 

Surveillance Recent inspec�on with no 
scouring process 

0 V13 

Other cases 4 
Founda�on vulnerability - If no projec�ng pile or abutment: 0 

- Otherwise: V11+V12+V13 
V1 

Material Concrete or metal, in a good 
condi�on 

1 V21 

Masonry, or damaged concrete 
or metal  

3 

Shape of the obstacle  Sharp cutwater 0 V22 
Cylindrical support or circular 
cutwater 

0.5 

Rectangular support 1  
Support sensibility to 
founda�on destabiliza�on 

V21 + V22 V2 

Type of structure Concrete culvert of truss-bridge 1 V3 
Other cases 2 

Desk sensibility to relative 
movements, swaying or 
par�al loosening of the 
support  

V3  V3 

Vulnerability level - If V1 ≤ 5: V1 
- If V1 > 5: V1+V2+V3 

V 

Figure 2.13: ARPSA scoring table : vulnerability factors (step 1) (Durand et al., 2019).

Table 2.6: ARPSA- Vulnerability (V) level classification (step 1)

Vulnerability level Note

Low V ≤ 8

Medium 8 < V ≤ 12

High V > 12
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Bridge scour risk is determined at first through criticality (C) level by referring to

hazard (A) and vulnerability (V) levels. Later, the scour risk is a combination of

consequence (ISE) level (see Table 2.7) and criticality (C). Table 2.8 and Table 2.9

show the two matrices to determine risk level in step 1 analysis.

Table 2.7: ARPSA- Consequence (ISE) level classification

Consequence level Note

Very low 0 ≤ ISE < 4

Low 4 ≤ ISE < 8

Middle 8 ≤ ISE < 12

High 12 ≤ ISE < 16

Very high 16 ≤ ISE ≤ 20

Table 2.8: ARPSA - Criticality (C) level classification (step 1)

Criticality
Low

vulnerability

Medium

vulnerability

High

vulnerability

Low hazard Low criticality Low criticality Medium criticality

Medium hazard Low criticality Medium criticality High criticality

High hazard Medium criticality High criticality High criticality
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Table 2.9: ARPSA - Risk matrix (step 1)

Risk
Low

criticality

Medium

criticality

High

criticality

Very low consequence Very low risk Very low risk Low risk

Low consequence Very low risk Low risk Medium risk

Medium consequence Low risk Medium risk High risk

High consequence Medium risk High risk Very high risk

Very high consequence High risk Very high risk Very high risk

After step 1, bridge at medium, high or very high risk requires a step 2 semi-

quantitative analysis. Similarly to step 1, it calculates the hazard, and vulnerability

levels.

Hazard level in step 2 is the function of total scour depth P, which is the sum

of general scour depth P1, contraction scour depth P1 and local scour depth P3.

Equations to calculate P1, P2 and P3 are respectively from the work of Ramette

(1981), Laursen (1963),Arneson et al. (2012).

The vulnerability level in step 2 is determined with similar criteria in step 1 but

a French standard for the classification of structures (IQOA) is added. Besides, the

foundation tilting due to potential local scour is taken into account.

ARPSA was tested and calibrated on 83 road bridges including 11 in torrential and

4 in cyclonic conditions (Takayanagi et al., 2019). Detailed information on ARPSA

scoring table is presented in Cerema (2019) and Durand et al. (2019).
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2.4.3 Comparison among the procedures

The procedures presented before are commonly used guidelines for scour risk eval-

uation in practice. Table 2.10 and Table 2.11 list the advantages and disadvantages

of each procedure respectively.

Table 2.10: Advantages of scoring table, EX2502 and ARPSA

Procedure Advantages

Scoring table 1. A very practical and simple procedure to be adopted in practice.

2. Each bridge element (pier) is assigned a risk level.

3. Types of damages over scour countermeasures (e.g., sheet piling,

gabion) are considered in risk evaluation.

EX2502 1. Formulas for estimating local scour, and general scour depth are

established on published scour equations.

2. Conditions of riverbanks are included to assess the stability of

the river.

3. Each bridge element (pier) is assigned a risk level.

ARPSA 1. Besides vulnerability and hazard, consequence factors are in-

cluded in risk evaluation.

2. Bridge superstructure is considered for scour risk evaluation.
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Table 2.11: Disadvantages of scoring table, EX2502 and ARPSA

Procedure Disadvantages

Scoring table 1. History of the bridge, the stability of riverbank and river channel

are not taken into account.

2. Consequence factors are not included in the procedure.

3. The score of each evaluation item is based on Japanese morpho-

logical background.

4. River flow, which could be changed due to climate change effect,

is not taken into consideration.

5. Bridge abutments, and retaining walls cannot be evaluated by

scoring table.

EX2502 1. Consequence factors are not included in the procedure.

2. Formulae are calibrated based on small-scale laboratory experi-

ments with limited field data.

3. River depth, and local scour can not be responsive to the change

of river flow or velocity.

ARPSA 1. The threshold value for determining the vulnerability, hazard

and consequence levels are based on engineering expertise and sev-

eral case studies.

Among all three approaches, scoring table proposed by RTRI is the easiest one

to be applied in practice. The parameters required in this approach are much less

than the others. However, considering scoring table is established based on Japanese

geographical background, it may be not exactly adaptable to the French situation.

EX2502 is established based on published and very popular scour equations. Com-

pared with scoring table, it requires many field measurements (e.g. river width, flow

depth upstream or under the bridge). A quantitative analysis can then be conducted.
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Having these measurements could sometimes be expensive and time-consuming in

practice. Although equations for simulating the river depth are proposed in EX2502,

they are not responsive to the change of river flow. The local scour depth estimated

in EX2502 is not related to velocity as well.

ARPSA is the only one among the presented procedures considering the conse-

quence aspect for scour risk evaluation. Since it is a procedure for highway bridges,

some evaluation items are not adaptable to railway bridges.

In the end, each procedure has its own advantages and disadvantages, and none of

them can be used directly to railway bridges in France. The objective of this study

is to propose a novel procedure for infrastructure in the French rail network. In this

research, the proposed ML models are compared with scoring table and ARPSA (see

section 5.4 in Chapter 5), since data required in these approaches are similar to the

current maintenance policy at SNCF.

2.5 The fundamentals of machine learning

This section reviews the fundamental concepts of machine learning. It clarifies

the definition of artificial intelligence, machine learning, deep learning and introduces

different types of machine learning. Training and testing principle, model evaluation

methods are also presented in this section.

2.5.1 Artificial intelligence, machine learning and deep learn-

ing

According to the Cambridge Dictionary, artificial intelligence (AI) is ”the science of

making computers do things that human beings can do.” In other words, it mimics and

displays “human” cognitive skills by machines, especially computer system. Specific

applications of AI include but not limited to natural language processing, computer
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vision, speech recognition, self-driving cars.

Machine learning is a branch of AI. According to the definition of IBM, machine

learning focuses on the use of data and algorithms to imitate the way that humans

learn, gradually improving its accuracy.

Figure 2.14 illustrates the process to build a spam filter using traditional pro-

gramming and ML technique. Traditional programming needs to write a detection

algorithm in advance with key words (such as “credit card”, “good news”, and “free”)

and then flag emails if one or several of words are detected. The program needs to

be tested and repeated several times until it’s good. ML approach, on the other

hand, learns automatically words or phrases that are good predictors for spam from

the given spam examples, even the unusual frequent patterns can be learnt. This

program is much shorter, easier to be maintained, and most likely more accurate

(Aurélien Géron, 2019).

Deep learning is a subset of ML. It can be generated as a sophisticated and math-

ematically complex evolution of machine learning algorithms. It consists of multiple

layers of interconnected nodes, each building upon the previous layer to optimize the

prediction or categorization (Zhang et al., 2022).
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EvaluateStudy the
problem Write rules

Launch ! 

Analyze
errors

Study the
problem

Train ML
algorithm

Evaluate 
solution 

Analyze
errors

Launch ! 
Data

(a)

(b)

Yes

No

Yes

No

Figure 2.14: Spam filter construction through traditional programming (a) and ML ap-

proach (b) (Aurélien Géron, 2019).

Figure 2.15 presents the scope of AI, ML and deep learning. To conclude, ML

and deep learning are both types of AI. Deep learning is a subset of ML which uses

artificial neural networks for learning.
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Artificial Intelligence 

Machine Learning

Deep Learning

Figure 2.15: Artificial intelligence, machine learning and deep learning.

2.5.2 Types of machine learning

There exist four categories of ML, namely supervised learning, unsupervised learn-

ing, semi-supervised learning, as well as reinforcement learning.

2.5.2.1 Supervised learning

Supervised learning must use data including the desired solution, which is called

labels. The labeled dataset is then fed to train algorithms and to classify data or

predict outcomes accurately (see Figure 2.16). The model adjusts its weights until

it has been fitted appropriately using training data. Below are some commonly used

supervised learning algorithms:

• logistic regression;

• support vector machine (SVM);

• k-nearest neighbors;
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• random forest (RF);

• extreme gradient boosting (XGBoost);

• neural networks.

Among the listed algorithms, SVM, RF, XGBoost and neural networks are selected to

train the ML model because they’ve shown promising results in other related studies.

Chapter 4 presents more detaily these algorithms.

Supervised learning has been widely used in geotechnical engineering, including

soil properties (Bejarbaneh et al., 2018), tunneling (Zhou et al., 2017), landslides

(Moosavi et al., 2014), remote sensing (Yousefpour et al., 2021). A review of ML

applications in civil engineering is presented in section 2.6.

Class 1
Class 2
Unknown

Figure 2.16: A labeled dataset for supervised learning.

2.5.2.2 Unsupervised learning

Unsupervised learning uses ML algorithms to analyze and cluster unlabeled dataset,

as shown in Figure 2.17. Compared with supervised learning, the algorithms can dis-
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cover the underlying patterns without prerequisite knowledge (human intervention).

Figure 2.17: An unlabeled dataset for unsupervised learning.

Unsupervised learning is often used to clustering, which means to group similar data

points together based on their characteristics. It can also be used for dimensionality

reduction, in which the goal is to simplify the data without losing so much information.

Another important task for unsupervised learning is association rule learning. It

digs into large amount of data and discovers relationships between features. The

association rule learning is often used in marketing analysis for decision-making.

Commonly used unsupervised learning algorithms are:

• k-Means;

• principal component analysis (PCA);

• kernal PCA.
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2.5.2.3 Semi-supervised learning

Semi-supervised learning falls between supervised and unsupervised learning. Dur-

ing the training phase, it uses only a small amount of labeled data set to guide clas-

sification and feature extraction from a larger, unlabeled dataset. Semi-supervised

learning is often used in image recognition for searching photos.

2.5.2.4 Reinforcement learning

Reinforcement learning is based on rewarding desired behaviours and/or punishing

undesired ones. In general, the learning system (also called agent) can interpret

environment, take actions and learn through trial and error.

Considering the objective of this study (scour risk evaluation) and number of vari-

ables that we are gonna have, supervised learning is chosen to train the model.

Therefore, the datasets must include factors that have impacts on scour risk (input

parameters) and the corresponding risk (output). Detailed work regarding dataset

preparation is shown in Chapter 3.

2.5.3 Model training and testing

2.5.3.1 Data division

ML model is capable of making predictions by learning from data. Typically, the

collected data is divided into two parts, namely training and test sets.

Training set is used to fit the model (e.g., weights and biases in a neural network).

The ML model is trained on the training set. The size of the training set is much

larger than the other sets (validation or test sets) because it is hoped that the model

can learn as much as possible from it.

Test set can provide an unbiased evaluation of a final model fitted on the training

set. It is only used when the model training phase is finished. In other words, the
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ML model cannot be tuned any further after testing set.

In some cases, validation set is being needed to provide an unbiased evaluation of

a model fit on training set while fine-tuning the hyperparameters (e.g., number of

hidden layer or number of iterations in a neural network). It can be served for model

regularization through early-stopping to avoid overfitting.

2.5.3.2 Underfitting and overfitting

Overfitting and underfitting are two crucial concepts in ML and are the causes for

the poor performance of ML model in most cases. Figure 2.18 shows the examples of

underfitting, optimum learning and overfitting.

x

y

x

y

x

y

(a) (b)

(c)

Predictive 
function

Predictive 
function

Predictive 
function

Figure 2.18: Examples of underfitting (a), optimum (b), and overfitting (c).

As shown in Figure 2.18 (a), underfitting occurs when the model is too simple and
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it cannot represent the underlying structure of data. For example, a linear regression

model is used for life satisfaction prediction. Obviously, it is acknowledged that the

reality is more complex than a linear model.

Some techniques to avoid underfitting are:

• increasing model complexity;

• increasing the size of data, number of variables;

• removing noise from the data;

• increasing the number of epochs for training.

Overfitting (see Figure 2.18(c)) is the opposite of underfitting. It happens when

the model fits exactly against the training data but not generalizes well. In other

words, the model predicts well the training data but not the test. The reasons for

overfitting are whether the model training time is long or the model is too complex,

so the model starts to learn from the noise data or irrelevant information.

In order to avoid overfitting, possible solutions are:

• collecting more training data;

• early stopping to pause training;

• feature selection to identify the most important parameters;

• regularization (e.g., Lasso regularization);

• ensemble learning by using a set of classifiers.

As a matter of fact, there is no specific rule to define the threshold value for

overfitting or underfitting. Most documents indicate overfitting is “when the model
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performs well well on the training data but does not on test data”. Similarly, it is

difficult to say how much data (or variables) is needed for a machine learning model

to avoid underfitting or overfitting. The decision can only be made once we know

the training and test results. Therefore, without training and testing, it’s difficult to

know in advance whether the collected data or selected variables are enough to have

an accurate classifier or not.

2.5.3.3 Evaluation measurements

In order to know how well the model learns from the training data, it needs to

be tested in an unseen dataset, which means the test set as mentioned in section

2.5.3.1. If the model performs well on training set but poorly on test set, it indicates

overfitting. If both training and test sets error are small, it means the model learns

well from the data.

The model performance evaluation measurements are chosen based on the types of

problems. If the model output is a numerical value (e.g., soil compression index, foun-

dation settlement), typical performance measurements are the root mean square error

(RMSE), coefficient of determination (R2), mean absolute percentage error (MAE),

etc.

By contrast, if the model prediction is classes (e.g., soil type, risk class), the eval-

uation measurement should be changed correspondingly.

One of the most common ways to evaluate a classifier is to use a use a confusion

matrix, as shown in Table 2.12. There could be four possible outcomes when compar-

ing the predicted values with actual values, namely true positive (TP), false positive

(FP), false negative (FN), and true negative (TN).
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Table 2.12: Confusion matrix

Actual values

Positive Negative

Predicted values Positive True Positive (TP) False positive (FP)

Negative False Negative (FN) True Negative (TN)

Commonly used evaluation measurements can be calculated from this matrix and

are shown from equation 2.8 to equation 2.11. It should be noted that in a perfect

classifier, the number of FN and FP cases are 0. In other words, the ideal values for

accuracy, precision and recall are equal to 1 whereas 0 for false positive rate.

Accuracy =
TP + TN

TP + FP + FN + TN
(2.8)

Precision =
TP

TP + FP
(2.9)

Recall =
TP

TP + FN
(2.10)

False positive rate (FPR) =
FP

FP + TN
(2.11)

Accuracy (equation 2.8) is one of the most popular measurements to evaluate a

classifier. It’s calculated as the percentage of correctly classified cases among all test

data. Simply using accuracy score cannot perfectly evaluate the model performance.

For example, achieving 90 percent accuracy is trivial for an imbalanced dataset. In

other words, if the proportion of one class is extremely superior to another, high

accuracy score does not indicate that the classifier has a satisfactory performance.

To address this issue, precision (equation 2.9) is employed to calculate the per-
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centage of true positive samples among all predicted positive samples. At the same

time, recall (equation 2.10) calculates the percentage of true positive samples among

all actual positive samples. In other words, a high precision means that the model

has a high probability to give a correct prediction for positive classes, and a high

recall indicates that the classifier is capable of correctly detecting the positive classes.

False positive rate (equation 2.11) is the counter part of recall (Liu et al., 2021).

It’s the fraction of false positive cases among all actual negative samples, namely the

probability of false alarm.

Area Under the ROC Curve (AUC) is an alternative measurement to evaluate a

classifier based on a Receiver Operating Characteristic (ROC) curve (Fawcett, 2006).

In ROC curve the true positive rate (recall) is plotted against the FPR at different

thresholds 1 as shown in Figure 2.19.

ROC curve

AUC

Figure 2.19: Example of an ROC curve.

1In a binary classification problem, the algorithm returns to a probability which ranges from 0

to 1. The probability allows mapping to a binary category. By default, the threshold value is 0.5. If

the probability is larger than 0.5, the sample belongs to class A. On the contrary, if the probability

is less than 0.5, the sample could be in class B.
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The dotted line represents the ROC curve of a random classifier. As indicated by

its name, the area under ROC curve is AUC. AUC measures how well the classifier

distinguishes between two classes. A random classifier will have an AUC equal to 0.5

whereas a perfect classifier will have an AUC equal to 1.

2.6 Machine learning development in civil engi-

neering

2.6.1 Model development process

As a branch of AI, ML model is designed to use data and algorithms to mimic

human learning process. It should be noted that in the literature, there hasn’t ex-

isted a standardized procedure to study a specific problem via AI/ML (Naser, 2021).

Nonetheless, Shahin (2013) pointed out the procedures and directions to be system-

atically investigated (see Figure 2.20) when developing a machine learning model.

1. Determination of model inputsinput data selection based on priori
geotechnical engineering knowledge

2. Data preparation
suitable form for algorithms 

3. Data division
training and test set seperation 

regression: R2, RMSE, MAE, etc.
classification: accuracy, etc.

4. Model validation

ML model 

1. Determination of model inputs
input data selection based on priori 
engineering knowledge

5. Model transparency and
knowledge extraction
model interpretation and explanation

6. Model robustness 
predictive ability over a range of data
similar to current dataset

7. Model extrapolation 
predictive ability outside the range of
current dataset

8. Model uncertainty 
uncertainty regarding model predictions

Figure 2.20: Methodology for ML model development (adapted from Shahin, 2013).

Figure 2.20 illustrates the process to develop a ML model. It can be seen that

determination of model input, data preparation, data division and model validation
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(point 1 to 4) are primary steps to construct a ML model for prediction. Once the

model is trained, to enhance its reliability and practicability, point 5 to 8 are needed.

This thesis follows the methodology shown in Figure 2.20. It not only focuses

on ML model construction, but also on checking model robustness for performance

evaluation, and incorporating prior knowledge for model transparency. Chapter 3

presents the work regarding the selection of input parameters, data preparation and

data division. The machine learning models are validated by different measurements

in Chapter 4. Chapter 5 examines model robustness and Chapter 6 interprets the

model for its transparency.

2.6.2 Examples of applications

With large volumes of observation and monitoring data available for researchers in

civil engineering, ML based solutions are being integrated into various subdomains.

When looking at the literature, in most studies the objective for applying machine

learning is prediction. However, several studies also try to interpret the ML model

besides prediction. Some research work with these purposes are shown below.

2.6.2.1 Prediction

• Domain of scour

Lots of research work has applied machine learning algorithms to predict the bridge

pier scour depth. Compared with empirical formulas, ML approach does not require

predefined coefficients to determine the relationship among key parameters. Among

all machine learning models, artificial neural networks (ANNs) have shown encourag-

ing results for local scour depth prediction (Cheng and Cao, 2015; Najafzadeh et al.,

2013; Zounemat-Kermani et al., 2009; Hosseini et al., 2018; Lee et al., 2007; Tola

et al., 2023). Bateni et al. (2007) used bayesian neural networks for predicting the

equilibrium and time-dependent scour depth around bridge piers. Five key parame-
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ters, namely, flow depth, mean velocity, critical velocity, mean grain diameter, and

pier diameter are used for prediction. Results in this paper showed that ML mod-

els predict more accurately than the existing mathematical expressions. Toth and

Brandimarte (2011) applied ANN models by using both field and laboratory obser-

vations for predicting the maximum scour depth around bridge piers. An external

validation dataset is employed for evaluating the ANNs and literature formulae. Re-

sults confirm that the ANNs outperform the conventional approaches.

Despite the encouraging results, data in above studies is from laboratory tests. ML

has rarely been applied in the engineering practice due to the need for a large amount

of data required for training and validation. This PhD work addresses the issue by

using data from SNCF.

• Other problems in civil engineering

Besides scour, AI and ML have recently been applied in other contexts. For exam-

ple, ML models have been adopted for soil properties prediction, such as undrained

shear strength (Mbarak et al., 2020; Zhang et al., 2021b), compression index (Park

and Lee, 2011), and clay compressibility (Zhang et al., 2021a). Apart from this, liq-

uefaction (Goh, 1994; Liu et al., 2006; Pal, 2006), landslide (Dahigamuwa et al., 2016;

Li et al., 2012; Liu et al., 2021; Pradhan and Lee, 2010), pile capacity (Pham et al.,

2017; Ghorbani et al., 2018; Harandizadeh et al., 2019), pile settlement (Saeedi Az-

izkandi et al., 2014; Armaghani et al., 2018), stability of underground space (Adoko

et al., Adoko et al.; Ghasemi and Gholizadeh, 2019; Mahdevari et al., 2013), and

tunneling in terms of tunnel boring machine (TBM) performance (Naghadehi et al.,

2018; Elbaz et al., 2019; Mahdevari et al., 2014) are all very popular topics to use

ML and AI technics.

ML has also been used for bridge maintenance and risk management. Cattan and

Mohammadi (2002) used neural networks to predict subjective ratings for bridge
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conditions given by experts. It was found that by giving the right input variables,

neural network had a much better performance compared with conventional statistical

methods and fuzzy-logic approach. Elhag and Wang (2007) established ANN in bridge

risk score and risk categories assessment. Alipour et al. (2017) applied decision trees

and random forest algorithms to predict the load-capacity rating of bridges, which

was rated only by engineers’ judgement before. A user-friendly software (App) was

developed by Abedi and Naser (2021) to identify fire-vulnerable bridges.

2.6.2.2 Model interpretation via explainable artificial intelligence (XAI)

Besides using for prediction, explainable artificial intelligence (XAI) has been em-

ployed to understand the physical phenomenon through explaining the black-box

ML model. XAI has currently been adopted in structural engineering, but rarely in

geotechnical engineering. Shahin (2013) mentioned the importance of developing an

explainable ML model in civil engineering. Naser (2021) discussed XAI and potential

implications of XAI from a structural engineering perspective.

SHAP (SHapley Additive exPlanation) is a very common and popular model for

interpretation in XAI. Bakouregui et al. (2021) used SHAP model to identify the con-

tribution of input parameters for determining the load-carrying capacity of reinforced

concrete columns. Mangalathu et al. (2020) established an explainable ML model by

applying SHAP for understanding the failure mode of reinforced concrete columns

and shear walls. Wang et al. (2023), Wakjira et al. (2021), Hu et al. (2021), Ma et al.

(2023) have also applied SHAP model in their studies.

Based on these applications, the ML models are built at first for prediction (Chapter

4). They are interpreted via SHAP model and other XAI approaches afterwards

(Chapter 6).
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2.7 Summary

More frequent and severe flood events will happen in the future due to climate

change. Enhancing the resilience of rail infrastructure under extreme weather condi-

tions will be a key challenge for transport agencies.

In this literature review chapter, the challenges and difficulties for managing and

maintaining the rail infrastructure have been introduced firstly. The aging infrastruc-

ture, the ancient construction techniques, and also a diverse typologies for damages

around infrastructure could all bring challenges for asset managers.

Later, by revealing the physical model of scour, it is clearly realized that the climate

change will inevitably accelerate the scour process and make an adverse impact to

the life-cycle performance of railway infrastructure.

Then, the practical guidelines from rail and road sectors, namely scoring table,

EX2502 and ARPSA are presented as examples on how to assess the scour risk in

an effective way in practice. The advantages and disadvantages of each method are

discussed.

It has been realized that in order to help field engineers, the assessment procedures

must be simple enough to be applied in a large amount of assets. However, the chal-

lenge could be that when dealing with such amount of assets from a national level,

many factors need to be taken into account: history, construction technique, sur-

rounding environment, surveillance frequency, etc. Nevertheless, scour is complicated

phenomenon which refers to the interaction of subsoil-foundation-watercourse and the

underlying mechanism has not been completely understood yet. Current approaches

cannot be directly used for the rail infrastructure in France.

To tackle the aforementioned issues, machine learning based solutions will be pro-

posed in this study, since it can discover the patterns in data which is not apparent
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to human. The last two sections of this chapter review the fundamentals of machine

learning, including types of learning, definitions of underfitting and overfitting, and

model performance evaluation methods. Later, the development of machine learning

in civil engineering is presented. The methodology introduced here is followed in the

rest of the study.
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Chapter 3

Data preparation

3.1 Introduction

In order to build a machine learning model, having a proper dataset is the first

step. This chapter introduces the process for dataset preparation.

In general, there are four types of elements affected by scour: bridge pier, bridge

abutment, bridge wing wall (see Figure 3.1) and retaining wall (see Figure 3.2). When

looking at the current literature, most research work focuses on studying scour at the

bridge pier through physical modelings (Melville and Sutherland, 1988; Melville and

Yee-Meng, 1999; Sumer et al., 2007; Amini et al., 2012) or numerical approaches

(Richardson and Panchang, 1998; Zhu and Liu, 2012; Lu et al., 2008; Foti and Sabia,

2011). Scour at bridge abutment is often studied separately from bridge pier and the

formulas for calculating local scour depth at bridge pier and abutment are not the

same (Arneson et al., 2012).

Like the previous studies, we separated the raw data as two datasets, one for bridge

pier and another for bridge abutment, bridge wing wall and retaining wall (noted as
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Abutment&Wall hereafter). The two datasets have gone through the same process

for feature selection and data preprocessing.

This chapter is organized as follows: Section 3.2 introduces the collection of raw

data. Later, how to select input variables is shown in Section 3.3. The necessary

approaches for making the data ready to be used in the ML model are presented in

Section 3.4. In the end, the final two datasets as well as their visualizations are shown

in Section 3.5.

(a) (b)

Figure 3.1: Components of a bridge: (a) pier and abutment; (b) wing wall (source:

www.hpdconsult.com/parts-of-a-bridge).
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Figure 3.2: Example of a retaining wall.

3.2 Data collection

Figure 3.3 illustrates the 19 SNCF regional offices. In general, it’s the regional

office who programs and is in charge of the surveillance, inspection and maintenance

of the railway infrastructure. In order to build a database in a short period but

which is representative enough, 16 out of 19 regions’ bridges and walls are included

in our original database, as shown in Figure 3.3. A wide range of topographical and

hydraulic conditions is covered : watercourse varies from streams in mountainous area

to main rivers in urban area such as the Seine River, the Loire River, etc.
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Perrache viaduct ( Lyon) 

Included

Not included

Toulouse

Bordeaux Chambéry

South of Paris

North of Paris

Limoges

Montpellier
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Marseille
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Strasbourg

Rennes     
& 

Nantes

Bouche d’Aigre viaduct (Tours) 

Laifour bridge (Reims) 

Figure 3.3: 19 SNCF regional offices and examples of bridges included in the dataset.

Figure 3.3 also illustrates examples of bridges included in the dataset. As men-

tioned in Chapter 2, bridges in TER or Intecités lines were mostly constructed 120

years ago. Due to the historic reasons, the construction techniques for these bridges

are considered rather unified. Most bridges were built on timber piles, caissons, con-

crete or cement foundations. Lots of them are masonry arch bridges. Several are

constructed in concrete or steel.

3.2.1 Input data

Factors directly or indirectly related to scour are input data. To collect input

data, we firstly refer to the inspection reports written by the engineers or inspectors.

In these documents, general information regarding the asset, history, and observed

damages around the rail asset are noted. Besides, some open-source data is included

as well to complete the missing information in the reports.
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3.2.2 Output data

Scour risk is the output of the machine learning model. After field inspections, the

status of the asset (piers, abutments, or walls) should be evaluated. The assets are

graded from 0 (totally damaged) to 10 (intact). Guidance is proposed to unify the

standard of grading (see Appendix A). The proposed grade is then related to scour

risk. Table 3.1 shows the scour risk classification rule.

Table 3.1: Scour risk classification rule

Class Grade

High scour risk 0 ≤ grade ≤ 5

Low scour risk 5 < grade ≤ 10

After finishing data collection, Table 3.2 shows the size of two datasets and the

number of collected samples in each class. It can be seen that the size of the bridge

pier dataset (208) is much larger than the Abutment&Wall (124). This is because

for one bridge, it could have multiple piers but only two abutments. 75 bridges are

covered in the pier dataset while 53 bridges and 7 walls for Abutment&Wall. It can

be seen that the two scour risk classes are not equally distributed in pier dataset.

This issue is addressed in subsection 6.2.3, Chapter 6, where the data oversampling

technique is applied.

Table 3.2: Information of the two datasets

Class distribution

Dataset Low High Sum Comments

Pier 57 151 208 75 bridges

Abutment&Wall 58 66 124 53 bridges and 7 retaining walls
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Raw data is collected at this stage. The following steps should be feature selection

and data cleaning.

3.3 Feature selection

A risk analysis usually includes two key components: hazard and vulnerability (Go-

erlandt et al., 2015; Todinov, 2006). Hazard is defined as the condition (flood event)

which could possibly cause the undesirable events. Vulnerability refers to the sus-

ceptibility of the receptor (rail infrastructure) to the damaging effects of a hazardous

event. Because of the stochastic nature of hydrologic events and also the uncertainty

about the watercourse - foundation - surrounding environment interaction, the driv-

ing forces to vulnerability are still unclear now (Bento et al., 2020). Studies have

shown that bridge failures could be triggered by scour hole, debris accumulation and

scour history. The uncertainty about scour history is in conjunction with potentially

unknown foundation depth or state, bridge characteristics and number of floods in the

last five years, which could increase the vulnerability (Argyroudis and Mitoulis, 2021).

Therefore, main factors that could affect the scour risk were firstly divided into four

categories, namely bridge characteristics, environment, history, and changing factors

(see Figure 3.4).
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Main factors affecting the risks of bridges crossing waterways

Pier shape
Pier width
Foundation type
etc.

Flow  
Slope of river bed
Watercourse type
Topography
Riverbed material
etc.

Local / general scour
Cracks
Masonry damages
Riverbank damages
Settlement 
etc.

Flood history
Scour history 
etc.

Environment ( hydrology and
geography)Bridge characteristics History Changing factors (updated

during each inspection)

Bridge failure

Induce

Figure 3.4: Main factors affecting the bridge failure due to scour.

It should be noted that only hazard and vulnerability factors for scour risk assess-

ment are considered in this study. Consequence factors (e.g., the frequency of the

train passed by each day, the difficulty to find an alternative transport when the traf-

fic is disrupted) are not included since currently at SNCF, the railway engineers make

decision only from a technical perspective. The consequence factors are considered

afterwards while planning the maintenance work by the regional office.

In order to choose input parameters, current practical guidelines in France (ARPSA,

Cerema, 2019; Livret A, SNCF, 2005), in Japan (scoring table, Takayanagi et al.,

2018) and in the UK (EX2502, HR Wallingford, 1992) are referred to firstly. Brief

presentations of ARPSA, scoring table and EX2502 are shown in section 2.4.

In the end, a dataframe consisting of 124 variables was proposed to cover as much

information as possible. In this dataframe, essential and non-essential information for

scour risk assessment is included, such as the region of the bridge, rail line number,
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name of the structure, construction year, bathymetry data, and detailed description

of observed damages. This dataframe cannot be used directly to train the machine

learning model, considering the number of features we had and types of variables

(both text and numerical variables are in it). Therefore, a feature selection work is

necessary and is stared from this file by following both engineering and statistical

perspectives.

Subsections 3.3.1 and 3.3.2 present the feature selection work for bridge pier. The

Abutment&Wall dataset follows the same procedure and its feature selection process

is presented briefly in subsection 3.3.3.

3.3.1 Engineering perspective

Compared with a field inspection which needs to note detailed information of the

infrastructure and its surrounding environment, machine learning model performs a

generic analysis and each variable needs to be representative enough for one kind of

information. In this circumstance, before going to use statistical analysis for feature

selection, the first step is to combine variables with similar information from an

engineering perspective.

The original dataframe has flow depth and river width values measured from up-

stream, downstream, and under the bridge. For simplification, all these values are

replaced as average flow depth and average river width.

Concerning the variables for damage descriptions, originally, there are 11 and 4

features for channel and riverbank respectively. Each variable is quite unique to

describe one type of damage. For example, the 4 features describing the damages

at riverbank are: excessive vegetation, debris, scour hole, landslide. These variables

are then simplified as channel rating and river bank rating since in a ML model, the

selected variable needs to be general and common enough. Instead of considering each
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damage, a rating score is given in the end by counting the sum of damages. Similar

actions are also done for variables describing damages of bridge foundation and its

protection.

In the end, the original dataframe is simplified as follows. Although there is no

rule to determine the relationship between the size of data and number of required

variables, according to the examples that we’ve seen, the number of variables is still

a lot. Therefore, a statistical analysis is conducted afterwards.

Selected variables after engineering analysis are:

• Environment: flow type, slope of riverbed (%), specific flood flow (m3/s),

width of valley/width of low flow channel, topography, hydraulic structure in

the vicinity, sinuosity, riverbed material, river width (m), average flow depth

(m), velocity (m/s), navigable, flow obstruction (%);

• Bridge characteristics: streambank protection, movement, pier shape, pier

width (m), foundation type, existence of foundation scour countermeasures,

watercourse countermeasures, attack angle;

• History: scour history, flood frequency;

• Changing factors: susceptible of scour, channel rating, bank rating, existence

of dislocation or deformation (bin.), existence of dislocation or deformation (%),

local scour (bin.), local scour (%), other damages.

Below are explanations of some features:

1. Specific flood flow (m3/s) is calculated from the French project Relational

System For Auditing The Hydromorphology of the Rivers (SYRAH-CE) (Valette

and Cunillera, 2010). It represents the flow which didn’t exceed 99% of the time

on the curve of classified flows.
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2. Width of valley/width of low flow channel (note as WV/WC hereafter)

is the ratio between width of valley and width of low flow channel. Like specific

flood flow (m3/s), this hydromorphological value is obtained from the database

SYRAH-CE. It describes the type of valley in which the river is located. A high

WV/WC value represents a wide alluvial valley, which offers the possibility of

the river to change the flow path. For the zone where the WV/WC is high, the

risk of inundation could be high as well.

3. Channel rating notes the condition of river channel. The rating depends on

the quantity of observed damages in the river channel. For example, the riverbed

bathymetry revolution, presence of vortex, excessive vegetation, debris, etc.

4. Dislocation or deformation is the damage existing on masonry as shown in

Figure 2.8 (a), or the protection of foundation. Existence of dislocation or

deformation (bin.) is the binary form1 of the damage and the possible choices

are yes or no. Existence of dislocation or deformation (%) is calculated

as the damaged surface/volume divided by the surface/volume of the masonry

wall or gabion.

5. Local scour is normally the scour hole existing around the foundation, as shown

in Figure 2.6 (c). Local scour (bin.) is the binary form of the damage and the

possible choices are yes or no. Local scour (%) is the scoured surface/volume

divided by the surface/volume of the foundation.

Bridge foundation depth, which is a key parameter in most of risk management

procedures, is not included here because it is difficult to obtain this information in

current SNCF database. The British Network has also reported the same issue for

knowing the foundation depth (Dikanski et al., 2018). However, the observed damages

in the field could, in a way, reflect the bearing capacity of the bridge foundation, which

1Binary form means that the variable only has two possible outcomes.

65



CHAPTER 3. DATA PREPARATION

in the end represent the bridge foundation depth.

3.3.2 Statistical perspective

Despite the fact that there is no rule to determine the relationship between the

number of variables and size of data, variables after engineering analysis are still quite

a lot. The feature selection process is then conducted from a statistical perspective.

3.3.2.1 Variables with low variance or not enough records

Table 3.3 shows the features to be eliminated and the corresponding reasons. For

the variable “hydraulic structure in the vicinity”, it is used for knowing the type of

hydraulic structures (e.g., weir, dam) near the bridge. In the end, only 9% of data

records the corresponding values and others have the same values “No”. In other

words, only a little number of bridges have the hydraulic structure nearby and the

majority don’t have it. Thus, this variable has low variance. Since features with low

variance don’t meaningfully contribute to the model’s predictive capability (Singh,

2021), that’s the reason why this feature should be dropped.

Table 3.3: Eliminated features due to non sufficient values

Variable name Reason

Hydraulic structure in the vicinity Low variance

Attack angle Low variance

Watercourse countermeasure Low variance

Movement Not enough records

Such issue is also observed for the features “attack angle ” and “watercourse coun-

termeasure”. 9.1% of data has the attack angle different than 90 degree. Concerning

“watercourse countermeasure”, only 5% of data has the corresponding value for de-
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scribing the countermeasure of riverbed (e.g., gabion), which means in this database,

most watercourse is not protected by scour countermeasures.

The rest variables in Table 3.3 for describing the movement of bridge are also

eliminated. Although they are important criteria for knowing the status of a bridge,

in practice, only bridges susceptible of scour are implemented with sensors to monitor

the movement of bridge pier, abutment and bridge deck. In our dataset, only 12.3%

of data has the corresponding values for bridge movement.

3.3.2.2 Feature elimination based on statistical information

For numerical values, data points (e.g., values in rows) based on the distinct values

in the given column is grouped. The statistical summary of the series for the generated

groups can then be calculated (examples in Table 3.4 and Table 3.5). Data is grouped

by based on the scour risk class (high or low scour risk). The % means how many of

the values are less than the given percentile.

Table 3.4 shows the example when the variable can be eliminated based on the

statistical information. It can be observed that there are not so much differences

for low and high scour risk cases regarding the variable “flow depth (m)”. On the

contrary, Table 3.5 illustrates the example when the variable seems to be important

at this stage for scour risk evaluation. It can be clearly observed that compared with

low scour risk cases, high scour risk cases have larger values for specific flood flow

(m3/s) in terms of mean, 25%, 50%, and 75% values.

Table 3.4: Statistical information of the variable “flow depth (m)”

Class Mean Min. 25% 50% 75% Max.

Low scour risk 3.27 0.17 1.07 2.5 4.97 10.00

High scour risk 3.18 0.15 1.05 2.5 4.97 10.29
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Table 3.5: Statistical information of the variable “specific flood flow (m3/s)”

Class Mean Min. 25% 50% 75% Max.

Low scour risk 507.53 2.09 35.41 140.28 536.86 5457.26

High scour risk 1027.95 2.09 93.72 343.66 1235.20 5457.26

For categorical variables, which means the variable only has a limited and usually

fixed number of possible values, it’s difficult to calculate the statistical information.

Figure 3.5 presents the example for the variable “navigable”. The scour risk classes

are firstly represented by the numerical number. 0 means low scour risk and 1 signifies

high scour risk. Later, the average values with corresponding standard deviations of

selected variable can be calculated. From Figure 3.5, it can be seen that the average

scour risk score is almost the same for non-navigable and navigable groups. For this

reason, this variable can be eliminated at this stage.

YesNo

Figure 3.5: Bar chart for the variable “navigable”.

Based on the above principles, eliminated features from the statistical perspective
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are:

• Environment: river width (m), average flow depth (m), velocity (m), naviga-

ble, flow obstruction (%);

• Bridge characteristics: streambank bank protection, pier width (m);

• Changing factors: existence of dislocation or deformation (%), local scour

(%).

To summarize, Table 3.6 shows the number of selected features after each step. A

more detailed presentation of the 18 variables after statistical perspective selection is

shown in section 3.5.

Table 3.6: Number of selected features after each step

Step Number of features

Raw data 124

Engineering perspective 31

Statistical perspective (step 1) 27

Statistical perspective (step 2) 18

3.3.3 Feature selection for Abutment&Wall dataset

Abutment&Wall dataset has the same original database as the bridge pier. Since

the number of data collected for the Abutment&Wall dataset is less than bridge pier

dataset (208 for piers and 124 for Abutment&Wall dataset), the required features for

training the ML model should be less as well, in order to avoid overfitting. In this

circumstance, to start, the feature selection for Abutment&Wall dataset follows the

same process as the bridge pier dataset.

Generally speaking, except the elimination of the variable “bridge pier shape”,
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other features dropped in Abutment&Wall dataset share the same reasons as the

bridge pier dataset. The only difference exists in the feature “attack angle”. It has

a low variance in the bridge pier dataset. However, in the Abutment&Wall dataset,

44.7% of the data has the differentiated value. Thus, the feature “attack angle” is

included in the selected features this time.

For both bridge pier and Abutment&Wall datasets, feature selection stops here.

The remained features are used for training the machine learning model.

However, for Abutment&Wall dataset, the size of data is two times less than the

bridge pier while the number of selected features is almost the same. It is very likely to

have an overfitting model if training with current selected features. How to select the

optimal features for the Abutment&Wall dataset will be discuss detailly in Chapter

4.

It should be noted that this feature selection process is based on the current dataset,

which comprises only a limited number of bridges. More variables could possibly be

included once more data is collected in the future. However, we try to make the

current dataset representative enough by covering different geographical, hydrological

backgrounds and structural types.

The final selected features used as input parameters and their detailed information

are shown in section 3.5.

3.4 Data preprocessing

Once we’ve decided the input variables, data should be prepossessed. This section

introduces the approaches to make the data ready to be used directly in the ML

model.
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3.4.1 Types of variables

The first step is to decide the type of variable. Among the selected features, only

slope of riverbed, specific flood flow, WV/WC are numerical (Num.) variables and

the rest are categorical ones. The categorical variables are also divided into three

types: ordinal, nominal and binary.

Ordinal (Ord.) indicates that the variable has a clear ordering of the subcategories

(for example, fluvial may induce less scour risk compared to torrential). Nominal

(Nom.) variable, on the other hand, describes a variable without ordering or ranking

subcategories (for example, different types of foundations are considered to have the

same probability to induce scour risk). Binary (Bin.) is designated for a variable only

having two subcategories. Figure 3.6 and Figure 3.8 list the types of each selected

feature. The proposed order of subcategories were discussed with SNCF experts and

may refer to the work of Deng and Cai (2010) and Wang et al. (2017).

3.4.2 Categorical data encoding

The ML model requires all input and output variables to be numeric. In other

words, all categories must be converted to numeric form. An ordinal encoding involves

mapping each category to an integer, and normally the integer value starts from zero.

For nominal variables there is no inherent relationship between categories. In case

that the ML model will not confuse with an ordinal variable, the common solution

is to use one-hot encoding, which means to create one binary attribute per category.

For example, there are three possible values for the variable foundation type (B9 or

BA9). A caisson mode foundation can then be interpreted into [1, 0, 0] ([0, 1, 0]

and [0, 0, 1] are respectively for timber piles and mass concrete foundations). The

encoding values of categorical variables are shown in Figure 3.6 and Figure 3.8.
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3.4.3 Data scaling

Feature scaling is another essential step in data preprocessing. Despite the fact

that data is not necessarily required to be in the same scale for tree-based algorithms

(e.g., extreme gradient boosting, random forest) (Xia et al., 2017), to compare with

other algorithms, 0-1 scaling is employed in our study.

Supposing that F={X, Y } denotes the whole dataset, where X = (x1,x2,. . .xm )

is the m-dimension input feature space and Y = {0, 1} represents the binary output

variables, namely low scour risk (“0”) and high scour risk (“1”) respectively. Input

data is then computed by the equation below:

x′ =
x−min(x)

max(x)−min(x)
(3.1)

where x′ will be the novel input data after normalization. Equation 3.1 makes sure

that all input data ranges from 0 to 1.

3.5 Final data for ML model

After feature selection in section 3.3 and data preprocessing in section 3.4, data

is now ready to be used to build the ML model. But before training, this section

presents the summary of the selected features as input variables and their relative

information.

3.5.1 Bridge pier dataset

Input variables selected for bridge pier dataset are shown in Figure 3.6. For con-

venience, each variable is represented by its symbol hereafter. As mentioned in sub-

section 3.4.2, a ML model requires data to be numerical. The “Encoding” column

in Figure 3.6 shows the numerical number of the values (categories) for categorical

variables.
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Group Symbol Variable Type Values/Range Encoding  
En

vi
ro

nm
en

t 
C1 Flow type Ord. Fluvial - Other - Torrential 0-1-2 
C2 Slope of riverbed (%) Num. [0.01-3.08] - 
C3 Specific flood flow (m3/s) Num. [2.09 - 5457.26] - 
C4 Width of valley/Width of 

low flow channel 
Num.  [1.52 - 226.68] - 

C5 Topography Ord. Plain - Other - Mountain 0-1-2 
C6 Flow sinuosity Ord. Almost straight - Sinuous - 

Extremely sinuous 
0-1-2 

C7 Riverbed material Ord. Rock - Cohesive soil - 
Cohesionless soil 

0-1-2 

B
rid

ge
 

ch
ar

ac
te

ris
tic

s B8 Pier shape Ord. Triangular-nosed - Circular 
or oblong - Rectangular 

0-1-2 

B9 Foundation type Nom. Caisson - Timber piles - 
Mass concrete 

- 

B10 Existence of foundation 
scour countermeasures 

Bin. No - Yes 0-1 

H
is

to
ry

 H11 Scour history Bin. No - Yes 0-1 

H12 Flood frequency  Ord. Occasional - Frequent - 
Very often 

1-2-3 

  
C

ha
ng

in
g 

fa
ct

or
s 

      

I13 Susceptible of scour Bin. No - Yes 0-1 
I14 Channel rating Ord. Very good - Good - Fair - 

Poor - Very Bad 
0-1-2-3-4 

I15 Riverbank rating Ord. Very good - Good - Fair - 
Poor- Very Bad 

0-1-2-3-4 

I16 Existence of dislocation or 
deformation around 
masonry or gabion  

Bin. No - Yes 0-1 

I17 Existence of local scour Bin. No - Yes 0-1 
I18 Rating of other damages of 

foundation (corrosion, 
timber piles degradation, 
cracks, etc.) 

Ord.  Very good - Good - Fair 
Poor 

0-1-2-3 

 

Figure 3.6: Data description - bridge pier dataset.

To see the distribution of data, the histograms of input parameters are shown in

Figure 3.7.
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Figure 3.7: Histograms of input parameters - bridge pier dataset.

3.5.2 Abutment&Wall dataset

Figure 3.8 presents the selected features as input parameters and their relative

information. The distribution of input parameters is shown in Figure 3.9.
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Group Symbol Variable Type Values/Range Encoding  
En

vi
ro

nm
en

t 

CA1 Flow type Ord. Fluvial - Other - Torrential 0-1-2 
CA2 Slope of riverbed (%) Num. [0.01 - 11.72] - 
CA3 Specific flood flow (m3/s) Num. [0.39 – 5457.26] - 
CA4 Width of valley/Width of 

low flow channel 
Num.  [1.52 - 226.68] - 

CA5 Topography Ord. Plain - Other - Mountain 0-1-2 
CA6 Flow sinuosity Ord. Almost straight - Sinuous - 

Extremely sinuous 
0-1-2 

CA7 Riverbed material Ord. Rock - Cohesive soil - 
Cohesionless soil 

0-1-2 

B
rid

ge
 

ch
ar

ac
te

ris
tic

s BA8 Foundation type Nom. Caisson - Timber piles - 
Mass concrete 

- 

BA9 Existence of foundation 
scour countermeasures 

Bin. No - Yes 0-1 

BA10 Attack angle  Num. [0.0 - 52.00] - 

H
is

to
ry

 HA11 Scour history Bin. No - Yes 0-1 

HA12 Flood frequency Ord. Occasional - Frequent - 
Very often 

1-2-3 

   
C

ha
ng

in
g 

fa
ct

or
s 

      

IA13 Susceptible of scour Bin. No - Yes 0-1 
IA14 Channel rating Ord. Very good - Good - Fair - 

Poor - Very Bad 
0-1-2-3-4 

IA15 Riverbank rating Ord. Very good - Good - Fair - 
Poor- Very Bad 

0-1-2-3-4 

IA16 Existence of dislocation or 
deformation around 
masonry or gabion  

Bin. No - Yes 0-1 

IA17 Existence of local scour Bin. No - Yes 0-1 
IA18 Rating of other damages of 

foundation (corrosion, 
timber piles degradation, 
cracks, etc.) 

Ord.  Very good - Good - Poor 0-1-2 

 

Figure 3.8: Data description - Abutment&Wall dataset.
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Figure 3.9: Histogram of input parameters - Abutment&Wall dataset.

76



CHAPTER 3. DATA PREPARATION

3.6 Conclusions

In this chapter, the process to choose input parameters, and the approaches to make

selected variables adaptable for ML models are presented. Two datasets are estab-

lished in the end. One for bridge piers and another for bridge abutments, wing walls

and retaining walls. It should be noted that the number of data in each dataset is not

the same: 208 measurements for bridge pier dataset while 124 for the Abutment&Wall

dataset.

Selected features for bridge pier and Abutment&Wall datasets are almost the same

and they could all influence the scour risk. But it’s noteworthy that features elim-

inated from engineering and statistical perspectives do not mean they don’t have a

great impact on scour. Since the objective of this work is to perform a ML-based

analysis, variables who don’t correspond to the ML feature selection policies (e.g.,

low variance, not enough records) must be dropped.

Furthermore, the current database has a relative small size and is constructed in a

limited given time. Once more data is collected, it’s possible to include more features.

Concerning the Abutment&Wall dataset, since its size is approximately two times

smaller than pier dataset but the number of input variables are almost the same, an

overfitting of model could possibly happen and it could also be the case for bridge

pier dataset. But without training and test results, it is only the hypothesis since

overfitting depends on the training and test results of the ML model, as presented

in Chapter 2. Thus, we are going to build the ML model and the results will be

presented in the next Chapter.
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Chapter 4

Model construction

4.1 Introduction

In the last decade, machine learning was in a rapid development and seemed to

be an alternative approach to overcome the limitations of empirical-based methods.

Machine learning applications in the field of civil engineering are presented in section

2.6 and promising results are obtained.

In Chapter 3 section 3.3, we’ve defined the risk consists of two key components,

namely hazard and vulnerability. Generally, the risk level is determined via the risk

matrix (see Figure 4.1 (a)) and a threshold is then set to categorize the risk level.

This procedure has also been followed in ARPSA (Cerema, 2019).

However, the category of hazard and vulnerability, as well as the threshold in risk

matrix are primarily based on empiricism. Bridge scour induced by flood events is a

rather complicated physical process. It is about the interaction among foundation,

watercourse, and subsoil. Considering the stochastic nature of hydrologic events and

the uncertainty about the structural status of the historical rail infrastructure, a
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ML based model for risk prediction may be another option since it learns from the

observed patterns without using predefined thresholds.

ML algorithm Scour risk

Input Output

Environment

(b)

Bridge
characteristics

History

Changing factors

Hazard
Low High

Vu
ln

er
ab

ili
ty

Low

High

Scour Risk

Low

High

 Threshold

(a)

Figure 4.1: Risk evaluation through a risk matrix (a) and a ML model (b)

Figure 4.1 (b) shows the scour risk evaluation via a ML model. Considering the

types of variables and the size of data we have, supervised learning is adopted in this

study. The selected features after Chapter 3 are used as input parameters to train

the model and the model output is the scour risk.

In this chapter, two machine learning models are constructed: one for bridge pier
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dataset, and another for Abutment&Wall dataset. Section 4.2 presents briefly some

popular and commonly used algorithms. Later, the training and test results of two

datasets are shown in section 4.3 and section 4.4 respectively. All ML models’ per-

formance is examined through measurements introduced in section 2.5.3.3.

4.2 Brief introduction of applied machine learning

algorithms

When looking at the literature, different machine learning models have been em-

ployed in the domain of civil engineering, like support vector machine (Hong et al.,

2012), artificial neural network (Pala et al., 2008), recurrent neural network (Ninić

et al., 2017), convolutional neural network (Zhao et al., 2020; Ran et al., 2019).

Besides, compared with single sophisticated learning algorithms such as decision

trees or k-nearest neighbours, ensemble learning combines predictions from two or

more models. Studies have shown that the integrated ensemble models achieved

better results compared with a single ML model (Lessmann et al., 2015; Nanni and

Lumini, 2009).

Extreme gradient boosting (XGBoost) algorithm is considered as one of the ad-

vanced supervised ensemble learning models. Proposed by Chen and Guestrin (2016),

it was employed in various Kaggle machine learning competitions. In the research

community, XGBoost algorithm was used to predict the undrained shear strength of

soil (Zhang et al., 2021b), the concrete electrical resistivity (Dong et al., 2020), and

the earth dam slope stability (Wang et al., 2020b), etc. In general, XGBoost model

manifests an encouraging prediction capacity in diverse engineering problems.

In this circumstance, this section presents the basic principle of XGBoost algorithm.

Other popular machine learning algorithms are also introduced to be compared with
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the XGBoost classifier in the end.

4.2.1 Extreme gradient boosting

Extreme gradient boosting (XGBoost) is proposed by Chen and Guestrin (2016)

based on tree models. It has been recognized in a great number of machine learn-

ing and data mining competitions. During the 2015 Kaggle challenge, nearly 60%

published winning solutions used XGBoost.
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Dataset 

Test data 

XGBoost classification
prediction model 

Bridge foundation scour risk 

Training data 

CART tree

CART tree

Residual 
Errors 

Residual 
Errors 

......

Boosting 

Residual 
Errors 

CART tree

Figure 4.2: Schematic presentation of the XGBoost classifier.

Figure 4.2 depicts schematically the process of XGBoost algorithm. It is developed

using gradient boosting algorithm under the ensemble learning framework. Compared

with a single decision tree (also known as CART, Breiman et al., 1984), ensemble

learning generates multiple decision trees to achieve high accuracy in prediction. In
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gradient boosting algorithm, it combines several weak learners into a strong learner

by sequentially adding predictors to correct its predecessor. The residual error is

minimized by adding CART trees. Compared with traditional gradient boosting

algorithm, XGBoost algorithm adds a regularized term to penalize the complexity

of the model in order to avoid overfitting. A more detailed mathematical deduction

concerning XGBoost algorithm may refer to Appendix B.

4.2.2 Support vector machine

Support vector machine (SVM) (Cortes and Vapnik, 1995) is a powerful supervised

learning algorithm which is capable of classification and regression. The model is

simply a linear function plus a bias term. To separate the data points, an optimal

hyperplane is defined in SVM. The objective is to make sure that the hyperplane

has the maximum distance between data points from both classes. Compared with

other ML algorithms such as logistic regression, SVM addresses the model overfitting

problem by balancing its complexity against its success at fitting the training data.

In other words, the training data is allowed on the wrong side of the hyperplane (see

Figure 4.3).
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Hyperplane

Support
vectors

Margin

Target = high risk

Target = low risk

Misclassified
points

Figure 4.3: Schematic presentation of the SVM classifier

In order to overcome the limitations of a linear function, kernel trick is employed in

SVM to implicitly map the training data into a higher dimension space but without

complicating the computational process (Kordjazi et al., 2014). Numerous kernel

functions were proposed in the literature (Cristianini and Shawe-Taylor, 2000), even

though polynomial and radial basis function (RBF) are the two well exploited kernels

for geotechnical engineering problems (Goh and Goh, 2007; Samui, 2008; Samui et al.,

2008). The present work used RBF kernel in the SVM model.

4.2.3 Random forest

Developed by Breiman (2001), random forest (RF) is another ensemble learning

method that aggregates numerous decision trees. RF features advantages for classifi-

cation and regression problems in many aspects. A single tree is a weak classifier due

to its high variance. To overcome this shortcoming, RF forms a forest by generating
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a great amount of decision trees. The objective of RF is to grow each decision tree

individually by adopting the re-sampling method called bagging. Bagging makes each

tree uncorrelated in order to avoid overfitting. By generating lots of trees, a more

robust model could be achieved by obtaining low variance as well as the increase

of model accuracy (Breiman, 2001). The schematic presentation of RF algorithm is

shown in Figure 4.4.

The decision on class affiliation (“high scour risk”-“low scour risk”) is counted by

the majority vote among all trees. To construct a robust RF model, two priori hyper-

parameters should be optimized: the number of trees in the forest and the minimum

number of number of samples required to split an internal node (Rodriguez-Galiano

et al., 2012). These two hyper-parameters help to minimize the error as well as to

obtain a satisfactory model performance.
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Training data

Subset 1 Subset 2 Subset k...

InBag 1
(2/3)

OOB 1
(1/3)

InBag 2
(2/3)

OOB 2
(1/3)

InBag k
(2/3)

OOB k
(1/3)

Prediction 1 Prediction 2 Prediction k
Test Data 

...

Majority votes among k trees 

K  Bootstrap
subsets

K  CART
trees

Figure 4.4: Schematic presentation of the RF algorithm.

4.2.4 Multilayer perceptron

The multilayer perceptron (MLP) is perhaps the most popular and commonly used

artificial neural network (ANN) structure (Liu et al., 2021). An MLP should include

no less than three layers: an input layer, an output layer and one or more hidden

layers. As illustrated in Figure 4.5, the information will pass from input layer to

output layer through hidden layer(s). Therefore MLP is a feedforward neural network

(FNN). Except the nodes in the input layer, each node multiplies every node in the

previous layer by its interconnection (synaptic) weights and then adds the sum of the

product. Later the sum passes through a nonlinear activation function (Zounemat-
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Kermani et al., 2009). The obtained results after the activation function then pass on

to the next layer as a new “input” and the aforementioned process will be repeated

(Franklin, 2010; Liu et al., 2021; Olden and Jackson, 2002). The value of the output

node is the weighted sum of previous hidden nodes. To minimize the cost function

in MLP, Rumelhart et al. (1986) proposed the backpropagation (BP) algorithm. BP

propagates the error from output node to the input nodes. It calculates the partial

derivative of the cost function with respect to any weight and bias in the neural

network. Moreover, the optimal value for weight and bias in the network are computed

by gradient descent algorithm.

X18

. . . . . .

. . .

Y

h1

h2

h3

h15

q1

q2

q5

X1

X2

Input layer 

Hidden layer 1

Hidden layer 2

Output layer

Figure 4.5: Architecture of MLP in the present study.

In this study, an MLP neural network with two hidden layers was established.

There were respectively fifteen and five nodes in each hidden layer. The output node

is the foundation scour risk. 20% dropout rate (Srivastava et al., 2014) was applied

in the training phase in the aim of avoiding overfitting.
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4.3 Bridge pier dataset

This section introduces the process to build the ML model for the bridge pier

dataset. The research approach is presented schematically in Figure 4.6 and is de-

scribed as follows:

1. Data collection & Preprocessing

Inspection  
reports  

 
 

2. Model construction & Fine-tuning 

Training
set

Test 
 set

SVM

RF

XGBoost

MLP

10 times  
random splits

3.  Model evaluation

4. Feature rank 

5. Feature interaction 

Actual Value

Pr
ed

ic
te

d 
va

lu
e

AUC
Accuracy
Precision
Recall
FPR

Figure 4.6: Schematic presentation of bridge pier dataset training process.

1. Data collected from SNCF inspection reports should be pre-processed to make

sure the format was suitable for ML models. This part has already been pre-

sented in Chapter 3.

2. Later, 70% of the data was used to train the model and the remaining 30% was

used for evaluation. Four popular classification algorithms presented in section

4.2 are applied and they respectively are: support vector machine (SVM), ran-

dom forest (RF), extreme gradient boosting (XGBoost) and multilayer percep-

tron (MLP). In order to see the robustness of each model, the random training-

test data splits were repeated 10 times.

3. Then, ML models were evaluated by a confusion matrix introduced in section

2.5.3.3 between the predicted value and actual value. Five model performance

measurements were then calculated, and they, respectively, are: area under the

ROC curve (AUC), accuracy, precision, recall, and false positive rate (FPR).
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4. Once the model was trained, the XGBoost algorithm based model was used to

plot feature importance rank.

5. Lastly, to quantify the contribution and interaction among features, the XG-

Boost classifier, due to its high accuracy score, was trained and tested using one

single input parameter each time.

The following sections present the training and test results as well as the feature

importance discussion.

Concerning the programming environment, all ML models were programmed on

Python 3.8.5 and built using different python libraries. Data was preprocessed using

NumPy (Harris et al., 2020) and pandas libraries (The pandas development team,

2020). The XGBoost algorithm was applied using XGBoost package (Chen and

Guestrin, 2016); the SVM and RF were operated using Sklearn library (Pedregosa

et al., 2011); and the MLP was performed on Keras library (Chollet et al., 2015). Grid

search was adopted in each algorithm to search for the optimal hyper-parameters.

4.3.1 Training and test results

To build the model for prediction, four algorithms are applied and the random

training-test splits are repeated 10 times. Figure 4.7 presents training and test scores

of the model evaluation measurements in each split. These measurements are calcu-

lated from a confusion matrix, which is presented in section 2.5.3.3 by comparing the

predicted class with actual class.

AUC measures how well the classifier distinguishes between the two classes. It is

the area under the ROC curve (see Figure 2.19). The optimal value for AUC is equal

to 1.

Accuracy describes how the model performs across the two classes. Precision mea-
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sures the model’s accuracy in classifying a sample as positive (high scour risk) class.

Recall measures the model’s ability to detect positive samples (high scour risk). A

high recall classifier means that it can detect all high scour risk bridges, but at the

same time, low scour risk examples are evaluated as high. The optimal values for

accuracy, precision, recall are equal to 1.

False positive rate (FPR) is the probability of false alarm. It measures among the

predicted high scour cases: how many are predicted incorrectly (actually at low risk).

The optimum value for FPR is 0.
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(a) AUC training scores (b) AUC test scores

(c) Accuracy training scores (d) Accuracy test scores

(e) Precision training scores (f) Precision test scores
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(g) Recall training scores (h) Recall test scores

(i) FPR training scores (j) FPR test scores

Figure 4.7: Training and test scores under 10 times random splits (bridge pier dataset)

From Figure 4.7 (a) - (f), it is observed that XGBoost has almost the highest AUC,

accuracy, precision scores over the training and test sets in each split. Figure 4.7 (g)

- (j) indicates that although RF classifier has a high recall score, its FPR is also high

among the four algorithms.

Later, the average and standard deviation (STD) values of model performance

measurements for training and test data are summarized in Table 4.1 and Table 4.2

respectively.

92



CHAPTER 4. MODEL CONSTRUCTION

Table 4.1: Results on training data over model performance measures (pier dataset)

AUC Accuracy Precision Recall FPR

XGBoost 0.981±0.009 0.959±0.012 0.970±0.010 0.974±0.014 0.085±0.057

RF 0.978±0.006 0.923±0.011 0.915±0.006 0.988±0.034 0.260±0.006

SVM 0.931±0.010 0.887±0.009 0.939±0.012 0.905±0.015 0.164±0.033

MLP 0.959±0.008 0.917±0.014 0.960±0.009 0.927±0.014 0.112±0.028

Table 4.2: Results on test data over model performance measures (pier dataset)

AUC Accuracy Precision Recall FPR

XGBoost 0.974± 0.0230.974± 0.0230.974± 0.023 0.938± 0.0230.938± 0.0230.938± 0.023 0.961± 0.0220.961± 0.0220.961± 0.022 0.956±0.031 0.114±0.065

RF 0.971±0.016 0.907±0.026 0.897±0.027 0.985± 0.0160.985± 0.0160.985± 0.016 0.314±0.078

SVM 0.918±0.024 0.878±0.024 0.922±0.028 0.914±0.045 0.222±0.093

MLP 0.957±0.020 0.922±0.028 0.957±0.021 0.930±0.035 0.111± 0.0660.111± 0.0660.111± 0.066

It can be seen that among all four ML models, XGBoost classifier achieves the

highest average score in terms of AUC, accuracy and precision for test data. Moreover,

it has approximately the same lowest FPR score as MLP. RF model has the highest

recall score but it also has the highest FPR, which indicates that it will have a higher

probability for false alarms. In practice, this overestimated classifier may relatively

require more unnecessary maintenance work and increase the maintenance cost in the

end.

To conclude, the training and test results show that ML techniques could be suc-

cessfully used for bridge scour risk prediction over the bridge pier dataset. Among

the four proposed algorithms, XGBoost classifier has a very satisfactory performance

over the two classes. Although RF model can predict well the high scour risk cases,

it has the highest false positive rate as well. More studies are required to compare
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comprehensively these two models, and it will be presented in Chapter 5.

4.3.2 Feature importance and interaction

As mentioned earlier, the evaluation of bridge scour involves information coming

from different aspects. Feature importance, in this case, could provide vital guidance

in terms of model interpretability. A trained XGBoost-based model is capable of au-

tomatically providing estimates of feature importance. Figure 4.8 illustrates features

F weight scores. They are calculated as the total number of times a particular feature

to split the tree in XGBoost.

Figure 4.8: Feature importance plotted by the XGBoost algorithm (bridge pier dataset).

As shown in Figure 4.8, the feature C3 (specific flood flow (m3/s)) is the most

important variable which was considerably used (two times more used than second

one C2) compared to the rest. It is then followed by features C2 (slope of riverbed
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(%)), I16 (existence of dislocation or deformation around the masonry or gabion)

and I17 (existence of local scour). Among the four most important variables, the

top two C3 (specific flood flow (m3/s)) and C2 (slope of riverbed (%)) belong to

the category environment. In other words, besides the damages observed from each

visual inspection, river hydrological characteristic and morphological regime (features

C3 and C2) play a very important role in bridge scour risk evaluation. This result

implies significant guidance for current industry process.

Besides, it should be also noted that two features C5 (topography) and B9 (founda-

tion type) are not included in the ranking. By way of explanation these two features

were not used at all as criteria to grow trees.

The choice of input features in this study was initially discussed with experts and

followed the current practical guidance. C5 (topography) and B9 (foundation type)

are two commonly presented features in lots of references. It is reasoned that C5

(topography) was not used in XGBoost model because the information was already

included in C2 (slope of riverbed (%)), C4 (WV/WC) and C6 (flow sinuosity). As

for B9 (foundation type), it could be due to that the engineer evaluates the scour risk

in an asset-specific view. Consequently, knowing the foundation type of each bridge

pier shall be indispensable whereas a ML model performs a generic and statistical

analysis. Foundation type in this case could be seen as an unimportant factor when

facing with a great number of cases.

A more detailed explanation regarding the feature importance discussion is pre-

sented in Chapter 6, where engineers’ expertise is compared with the interpretation

results from XAI.

Furthermore, to quantify the contribution of each feature to scour risk, an XGBoost

model was built by using only one single feature each time. The AUC score for test

data is shown in Figure 4.9.
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Figure 4.9: Single feature AUC score using XGBoost model

The two features C3 (specific flood flow (m3/s)) and I17 (existence of local scour)

have almost the same and the highest AUC score compared with others. However,

it can be seen from Figure 10 that with one single feature, the classifier has a rather

non-satisfactory performance even with the feature having a high rank. Furthermore,

the AUC score is around 0.5 in most cases, which indicates that it works like a random

classifier. The low AUC score shown in Figure 4.9 proves that one feature may not

be adequate enough. It’s the interaction among different features that reveals the

mechanism of scour around bridge piers and makes sure the classifier has encouraging

prediction results.
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4.4 Abutment&Wall dataset

The Abutment&Wall dataset follows the same methodology as in bridge pier. Data

after preprocessing is used to train the model. Considering the number of data we

have (only half of the pier cases) and the performance of algorithms in pier dataset,

RF and XGBoost are selected for training.

In this section, the feature selection work is presented at first in subsection 4.4.1.

Later, the training and test results are shown in subsection 4.4.2.

4.4.1 Input parameters selection

The number of selected features for Abutment&Wall dataset after section 3.3 are

the same as the pier dataset (18 in total) but the size of data is much less (208 for

bridge pier but only 124 for Abutment&Wall). After feature selection in Chapter 3,

we have doubts that overfitting could happen.

To begin, the model is trained with all selected features from Figure 3.8. Similar

to the training process of the bridge pier dataset, 70% of the data was used to train

the model and the rest for testing. Results are shown in Table 4.3 and Table 4.4.

Table 4.3: Abutment&Wall dataset training results with all selected features

AUC Accuracy Precision Recall FPR

XGBoost 0.893 0.896 0.902 0.915 0.128

RF 0.907 0.907 0.889 0.930 0.117
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Table 4.4: Abutment&Wall dataset test results with all selected features

AUC Accuracy Precision Recall FPR

XGBoost 0.763 0.765 0.778 0.737 0.211

RF 0.736 0.742 0.810 0.739 0.267

Overfitting, which is presented in subsection 2.5.3.2, is defined as the machine

learning model gives accurate predictions for training data but not test data. From

Table 4.3 and Table 4.4, it can be clearly observed the huge gap between training and

test results (overfitting) in both XGBoost and RF classifiers. Subsection 2.5.3.2 men-

tions that one of the techniques to avoid overfitting is to identify the most important

parameters and train the model afterwards with simplified variables.

The feature importance of XGBoost classifier is plotted firstly and is shown in Fig-

ure 4.10. It is found that several variables are not mentioned in this rank (e.g., foun-

dation type (BA8), topography (CA5), sinuosity (CA6)), which means they are not

used for prediction. On the other hand, some variables in Figure 4.10 have relatively

low feature importance scores (e.g., flow type (CA1), foundation scour countermea-

sure (BA9), flood frequency (HA12)). Thus, we decided to exclude variables that have

little contribution to the prediction and see the performance of the two classifiers.
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Figure 4.10: Feature importance given by the XGBoost algorithm (Abutment&Wall

dataset).

Several tests were realized to determine the optimal variables for Abutment&Wall

dataset. The excluded variables in each case are shown in Table 4.5. At the beginning,

there is no excluded variable and all the input parameters shown in Figure 3.8 are

used to train the model (Case No.1). From Case No.2, one variable is removed

each time. Variables from Case No.2 to Case No.4 are those not shown in Figure

4.10. From Case No.5 to Case No.9, we exclude the variable each time by following

the feature importance. It should be noted that variables in the category changing

factors, namely rating of other damages of foundation (IA19) and susceptible of scour

(IA13) are not excluded despite their relatively low feature importance score. We

think the observations from the field are rather important.
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Table 4.5: Cases for selecting the input variables regarding the Abutment&Wall dataset

Case

No.

Excluded variables

1 None

2 BA8 (foundation type)

3 BA8 (foundation type), CA5 (topography)

4 BA8 (foundation type), CA5 (topography), CA6 (sinuosity)

5 BA8 (foundation type), CA5 (topography), CA6 (sinuosity), CA1

(flow type)

6 BA8 (foundation type), CA5 (topography), CA6 (sinuosity), CA1

(flow type), BA9 (foundation scour countermeasure)

7 BA8 (foundation type), CA5 (topography), CA6 (sinuosity), CA1

(flow type), BA9 (foundation scour countermeasure), HA12 (flood

frequency)

8 BA8 (foundation type), CA5 (topography), CA6 (sinuosity),CA1

(flow type), BA9 (foundation scour countermeasure), HA12 (flood

frequency), HA11 (scour history)

9 BA8 (foundation type), CA5 (topography), CA6 (sinuosity), CA1

(flow type), BA9 (foundation scour countermeasure), HA12 (flood

frequency), HA11 (scour history), BA10 (attack angle)

By following these principles, Table 4.6 and Table 4.7 show the training and test

results of each case by adopting the XGBoost and RF algorithms. The accuracy

scores regarding each case are then illustrated in Figure 4.11.
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Table 4.6: Training results of XGBoost and RF classifiers (Abutment&Wall dataset)

Case No. Accuracy Precision Recall FPR AUC

1 RF 0.907 0.889 0.930 0.117 0.907

XGBoost 0.896 0.902 0.915 0.128 0.893

2 RF 0.919 0.875 0.977 0.140 0.919

XGBoost 0.837 0.842 0.750 0.150 0.871

3 RF 0.953 0.933 0.977 0.070 0.953

XGBoost 0.872 0.889 0.870 0.125 0.872

4 RF 0.907 0.894 0.933 0.122 0.906

XGBoost 0.895 0.909 0.889 0.098 0.896

5 RF 0.884 0.889 0.889 0.122 0.883

XGBoost 0.919 0.923 0.900 0.065 0.917

6 RF 0.965 0.955 0.977 0.047 0.965

XGBoost 0.907 0.947 0.857 0.045 0.906

7 RF 0.895 0.943 0.825 0.043 0.891

XGBoost 0.942 0.949 0.925 0.052 0.941

8 RF 0.953 0.971 0.920 0.057 0.950

XGBoost 0.930 0.925 0.945 0.065 0.930

9 RF 0.860 0.938 0.750 0.043 0.853

XGBoost 0.917 0.913 0.925 0.065 0.930
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Table 4.7: Test results of XGBoost and RF classifiers (Abutment&Wall dataset)

Case No. Accuracy Precision Recall FPR AUC

1 RF 0.742 0.810 0.739 0.267 0.736

XGBoost 0.765 0.778 0.737 0.211 0.763

2 RF 0.630 0.714 0.652 0.400 0.626

XGBoost 0.684 0.682 0.750 0.389 0.681

3 RF 0.684 0.789 0.652 0.267 0.693

XGBoost 0.684 0.682 0.750 0.389 0.681

4 RF 0.677 0.654 0.850 0.529 0.660

XGBoost 0.676 0.682 0.750 0.412 0.669

5 RF 0.662 0.625 0.750 0.529 0.610

XGBoost 0.811 0.909 0.800 0.167 0.817

6 RF 0.763 0.850 0.739 0.200 0.770

XGBoost 0.894 0.954 0.875 0.071 0.902

7 RF 0.730 0.941 0.640 0.083 0.778

XGBoost 0.838 0.913 0.840 0.167 0.837

8 RF 0.784 0.947 0.720 0.083 0.818

XGBoost 0.811 0.909 0.800 0.167 0.817

9 RF 0.757 0.944 0.680 0.083 0.798

XGBoost 0.817 0.916 0.815 0.185 0.762
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Figure 4.11: Accuracy score of RF and XGBoost classifiers.

From Figure 4.11, it can be clearly observed that the accurate predictions over

training but not test set from Case No.1 to No.5 in both XGBoost and RF algorithms.

In Case No.6, XGBoost algorithm performs very well and has the least difference

between training and test sets. From Case No.7 to Case No.9, the differences between

the two sets become bigger but still, they are smaller than Case No.1 - No.5.

Figure 4.11 confirms the idea that overfitting could happen with initially selected

features. Features in Case No.6 seem to be the optimal ones for the Abutment&Wall

dataset. Based on these results, we are going to repeat the training and test process

to see the performance of the two classifiers.
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4.4.2 Training and test results for Case No.6

After determining the input parameters of Abutment&Wall dataset, the RF and

XGBoost algorithms are applied and the random splits are repeated 10 times.

Figure 4.12 presents the training and test scores under 10 times random splits. It

is clearly observed that compared with the RF classifier, XGBoost model has higher

AUC, accuracy, precision, recall scores and lower FPR. Although random splits are

conducted, it’s the same data set that is tested by the two algorithms each time. It

can be seen that results are more scattered in the RF classifier.
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(a) AUC training scores (b) AUC test scores

(c) Accuracy training scores (d) Accuracy test scores

(e) Precision training scores (f) Precision test scores
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(g) Recall training scores (h) Recall test scores

(i) FPR training scores (j) FPR test scores

Figure 4.12: Training and test scores under 10 times random splits (Abutment&Wall

dataset)

Later, the average and standard deviation values of model performance measure-

ments for training and test data are summarized in Table 4.8 and Table 4.9 respec-

tively.

Table 4.8: Results on training data over model performance measures for Case No.6 (Abut-

ment&Wall dataset)

AUC Accuracy Precision Recall FPR

XGBoost 0.905±0.0030 0.906±0.030 0.915±0.031 0.903±0.050 0.092±0.036

RF 0.871±0.038 0.874±0.038 0.877±0.037 0.882±0.084 0.141±0.055
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Table 4.9: Results on test data over model performance measures for Case No.6 (Abut-

ment&Wall dataset)

AUC Accuracy Precision Recall FPR

XGBoost 0.829± 0.0380.829± 0.0380.829± 0.038 0.825± 0.0390.825± 0.0390.825± 0.039 0.859± 0.0760.859± 0.0760.859± 0.076 0.819± 0.0990.819± 0.0990.819± 0.099 0.161± 0.0880.161± 0.0880.161± 0.088

RF 0.770±0.078 0.757±0.080 0.803±0.116 0.748±0.152 0.211±0.117

Compared with the RF classifier, XGBoost model has higher accuracy, precision,

recall, AUC in average and lower FPR. Based on these results, variables in Case

No.6 are considered as the most optimal ones for Abutment&Wall dataset and they

respectively are:

• Environmental: slope of riverbed (CA2), specific flood flow (m3/s) (CA3),

width of valley/width of low flow channel (CA4), flow sinuosity (CA6);

• Bridge characteristics: existence of foundation scour countermeasures (BA9),

attack angle (BA10);

• History: scour history (HA11), flood frequency (HA12);

• Changing factors: susceptible of scour (IA13), channel rating (IA14), river-

bank rating (IA15), existence of dislocation or deformation around masonry

or gabion (IA16), existence of local scour (IA17), rating of other damages of

foundation (corrosion, timber piles degradation, cracks, etc.) (IA18).

Similar to bridge pier dataset, it’s the XGBoost algorithm that has a better per-

formance for predicting the scour risk of bridge abutment and retaining walls.

However, due to the lack of data, we conduct several tests to determine the optimal

variables for Abutment&Wall dataset according to the feature importance rank in

Figure 4.10. It can be seen that the the test results in terms of accuracy and other
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measurements of XGBoost algorithm are not as good as bride pier dataset, which

is possibly caused by the non-sufficient data as well. The process to select input

variables and the classifier of Abutment&Wall dataset should be seen as a first try.

Once more data is collected, the classifier could probably have a better performance

and the excluded variables could be included.

4.5 Conclusions

In this chapter, two machine learning models are constructed for scour risk eval-

uation: one for bridge piers, and another for bridge abutments and retaining walls.

To train the models, several commonly used machine learning algorithms are applied.

Machine learning models’ performance is evaluated using carefully selected measure-

ments under 10 times random train-test data splits.

Concerning the bridge pier dataset, XGBoost and RF models have the most promis-

ing results. The XGBoost classifier achieves high accuracy (0.959/0.938), precision

(0.970/0.961), recall (0.974/0.956) and low false positive rate (0.085/0.114) for train-

ing and test set respectively. The classifier obtains an AUC score equal to 0.974

for test set (a perfect classifier has an AUC equal to 1). Moreover, XGBoost model

provides a feature importance plot: specific flood flow (m3/s), slope of riverbed (%),

existence of dislocation or deformation, existence of local scour were considered as the

four most important features. The single feature experimental results imply that it’s

the interaction among features that generates the scour phenomenon. RF classifier,

on the other hand, has a slightly higher recall score, which means it could identify

high scour risk piers more accurately than the XGBoost model. But at the same

time, the low scour risk pier is more probable to be evaluated as high in RF classifier.

Chapter 5 presents a more detailed comparison between these two classifiers.

As for the Abutment&Wall dataset, due to its smaller data size, an overfitting is
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observed when training the model at the beginning. After conducting several tests, the

XGBoost algorithm with variables in Case No.6 has the best performance. In order

to select the optimal features for this dataset, feature importance of the XGBoost

classifier is referred to. It should be noted that there are other techniques in the

literature to avoid overfitting (introduced in section 2.5.3.2) and they could be tried

as well. Despite the various techniques to avoid overfitting, most importantly, it’s

necessary to collect more data for this dataset. Current size with selected features

are difficult to build a machine learning model, let alone to have a robust and reliable

one.

The ML models in this chapter suggest that they could be effective and accurate

in bridge scour risk evaluation and possibly be employed as an alternative approach

in the future. Up to now, step 1-4 shown in Figure 2.20 are realized. The rest of the

work will focus on examining the model’s reliability, practicability (Chapter 5) and

making the model more transparent (Chapter 6).
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Model validation and comparison

5.1 Introduction

The machine learning models’ performance is examined by several measurements

calculated from a confusion matrix in Chapter 4. Despite that the classifiers we have

built achieve encouraging results, they are trained with a limited number of data and

it is not quite sure how the model will perform on the unseen data.

In this circumstance, the objective of this chapter is to validate the classifiers built

in Chapter 4 by testing them to more cases. A series of analyses are conducted

regarding the XGBoost and RF models in which very promising results are obtained

for the bridge pier dataset. As a reminder, XGBoost classifier has the best prediction

accuracy for both classes and RF model detects better the high scour risk classes

because of its high recall score.

To achieve these goals, the two ML models are examined in terms of their robust-

ness and practicality. Furthermore, they are compared with two practical guidelines

(scoring table and ARPSA) introduced in Chapter 2. Bridges in Japan and France
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are evaluated by ML models and existing approaches. All these efforts allows under-

standing, and comparing the XGBoost and RF models from different perspectives. In

the end, it could help users (inspectors/engineers) choose wisely between them from

not only the perspective of prediction accuracy but also robustness, practicability,

etc.

This chapter is organized as follows: section 5.2 conducts the parametric study to

investigate the robustness of ML models. Section 5.3 compares the prediction results

with two engineers having different working experience (entry level and senior level).

Comparison between ML models and two existing approaches are shown in section

5.4. In the end, the advantages and disadvantages of XGBoost and RF models are

discussed in section 5.5.

5.2 Robustness investigation

Despite machine learning has been applied in numerous studies, only a little num-

ber of them have investigated model robustness. In this section, the background and

importance of robustness investigation are introduced firstly. Later, the input param-

eters are reclassified in order to quantify the contribution of parameters. In the end,

two types of robustness analyses, namely monotonicity and uncertainty analyses are

realized.

5.2.1 Background

Shahin (2013) once pointed out the that besides primary steps to construct a ML

model for prediction (e.g., data division, data preparation, model validation), ex-

amining the model robustness, which means the predictive ability of ML model to

generalize over a range of data similar to that used for model training, is one of the

supplementary aspects to enhance model reliability.
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Only a limited number of studies in the literature investigated this aspect (Zhang

et al., 2020; Zhang et al., 2021a; Wang et al., 2020a; Shahin et al., 2005). Zhang

et al. (2021a) did a robustness investigation regarding the clay compressibility. All

ML models have a satisfactory performance over the training and test sets. Later

in parametric study, by making input parameters except one fixed to mean value

and varying the studied parameter from the minimum to maximum values, the soil

compression index (Cc) differentiate among algorithms (see Figure 5.1) by changing

monotonically the liquid limit water content (wL). Most importantly, results coming

from random forest algorithm fluctuate a lot and are difficult to be justified from a

physical understanding. Zhang et al. (2021a) pointed out this fluctuation may be due

to the distribution of input parameters and the classification condition at each node

in random forest.

Figure 5.1: Correlation between predicted compression index (Cc) and liquid limit water

content (wL) (Zhang et al., 2021a).

The study of Zhang et al. (2021a) indicates that although the model performs well
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against the traditional measurements such as RMSE and R2, we should also examine

how well the predicted output agrees with the known underlying physical process.

Once the model is constructed, more comprehensive work needs to be realized to

prove the reliability and generality of ML model to make it trustworthy.

5.2.2 Input parameters reclassification

In order to quantify the contribution of model input parameters to prediction re-

sults, the original 18 input variables are reclassified according to the theory of Li et al.

(2010), in which factors related to natural catastrophic risk can be divided into three

aspects: inducing factors (I), environmental factors (E), and vulnerability (V). Below

are short descriptions of each aspect:

• Inducing factors (I): they are mainly the direct cause for natural hazard and

are linked closely to the occurrence of catastrophic losses. For example, scour

induced bridge failures usually directly result from the increase of river flow.

• Environmental factors (E): these factors refer to the environment that breeds

the disasters. Such factors play the role to whether mitigate or aggregate the

destructive power of natural hazard. For example, a local scour is more likely to

be detected in a mountainous area where the slope of riverbed is steep instead

of a plain area where the flow is steady.

• Vulnerability (V): the degree to which a system is likely to experience and

adapt to harm due to exposure to a natural hazard. Bridge vulnerability re-

garding scour risk may be its foundation type, construction year, history, and

observed damages in the field.

Table 5.1 shows the classification of input variables based on the theory of Li et al.

(2010). It should be noted that the inducing factor (I1) and two environmental factors

(E3, E4) are quantitative variables, while the rest environmental factors (E2, E5, E6,
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E7) and all vulnerability factors (V8, V9, V10, V11, V12, V13, V14, V15, V16, V17,

V18) are qualitative ones.

Table 5.1: Input parameters reclassification by adapting the theory of Li et al. (2010)

Category Variable(s)

Inducing factor (I) Specific flood flow (m3/s) (I1)

Environmental factors (E) Flow type (E2), Slope of riverbed (%) (E3), Width

of valley/Width of low flow channel (E4), Topography

(E5), Flow sinuosity (E6), Riverbed material (E7)

Vulnerability factors (V) Pier shape (V8), Foundation type (V9), Existence

of foundation (V10), Scour history (V11), Flood his-

tory (V12), Susceptible of scour (V13), Channel rating

(V14), Riverbank rating (V15), Existence of dislocation

or deformation around masonry or gabion (V16), Exis-

tence of local scour (V17), Rating of other damages of

foundation (V18)

5.2.3 Monotonicity and uncertainty analyses

5.2.3.1 Investigation methodology

Monotonicity analysis has been applied in several geotechnical studies to see the

robustness and generalization ability of ML model (Zhang et al., 2021a; Shahin et al.,

2005; Wang and Yin, 2020). In monotonicity analysis, the investigated parameter

varies from the minimum to maximum and other parameters are fixed at mean values.

However, the input variables are all numerical in the aforementioned studies. Re-

garding the categorical variables in our dataset, it’s not easy to determine their mean

values. Thus, the fixed values for categorical variables are the subcategory which

takes the highest proportion. Instead of varying from the minimum to maximum
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value, the investigated categorical variable is varied from each subcategory. For ex-

ample, the variable flow type (C1)’s fixed value is “fluvial”, since it’s the majority.

When it becomes the investigated parameter, the value varies as “fluvial”, “other”,

and “torrential”.

The explored range for monotonicity analysis of each variable may refer to Figure

3.6 and Figure 3.7.

Compared with monotonicity analysis which focuses on the performance of ML

classifier over the whole dataset, uncertainty analysis tackles this issue in a local

scale with concrete examples. It is about the incomplete and uncertain information

regarding structure itself or during inspection.

Uncertainty is often divided in two types: epistemic uncertainty, which can be

minimized by having more accurate measurements; and aleatory uncertainty, coming

from the random nature and cannot be reduced (Kiureghian and Ditlevsen, 2009).

For example, ratings of channel or riverbank may be not precise enough due to the

incomplete information from the field and this is epistemic uncertainty. With detailed

inspection, the value of feature could be more accurate. On the other hand, the flow

of watercourse could possibly be changed in the future due to climate change and it is

difficult to anticipate the future flood flow due to the aleatory nature of watercourse.

Table 5.2 lists the parameters that may possess epistemic or aleatory uncertainty.

In order to observe the performance of the machine learning classifiers, parametric

studies are conducted. For quantitative factors, they are considered to be half of or

two times larger than the original value while the qualitative factors are varied among

all the subcategories.

10 randomly selected bridges located in France are used as case studies. The inves-

tigated parameter varies in the given explored range and the rest parameters remain

as the original value.
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Table 5.2: Selected variables for uncertainty analysis with their explored range

Variables Explored range

Quantitative

factors

Specific flood flow (I1), Slope of riverbed

(E3), WV/WC (E4)

0.5 X variable X 2

Qualitative

factors

Riverbed material (E7), Susceptible of

scour (V13), Channel rating (V14), River-

bank rating (V15), Existence of disloca-

tion or deformation around masonry or

gabion (V16), Existence of local scour

(V17), Rating of other damages (V18)

All subcategories

In our study, the prediction is in categorical form (high or low scour risk). Supposing

the prediction with original feature value belongs to class B, by varying monotonically

the investigated variable, three types of possible model performance could happen and

it is shown in Figure 5.2.
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Figure 5.2: Possible model performance after monotonicity or uncertainty analysis.

Case I means that the prediction changes to another class (e.g. from low scour

risk to high scour risk). Case II signifies the prediction remains the same. Case III
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indicates that the predicted result fluctuates between two classes. Based on physical

understanding, if the model performs in the way shown in Case III, the results are

surely unreasonable and in conflict with the existing knowledge.

5.2.3.2 Results

• Monotonicity analysis

By varying the investigated parameter from the minimum to maximum and other

parameters fixed at mean or majority values, Figure 5.3 illustrates two examples of

monotonicity analyses results. When changing the variable V11 (scour history) and

E4 (width of valley/width of low flow channel), the ML model performs the way as

Case I in Figure 5.3: the scour risk is changed low to high (or high to low). Entire

results of monotonicity analysis of the two ML models are shown in Table 5.3.

Low scour risk

High scour risk
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Yes No

 Scour history (V11)
(a) (b)
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1.52 18 226.68

 WV/WC (E4)

Low scour risk

High scour risk

Figure 5.3: Examples of monotonicity analysis for Case I: (a) V11 (Scour history) in RF

model; (b) E4 (width of valley/width of low flow channel) in XGBoost model.
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Table 5.3: Monotonicity analysis results

RF XGBoost

Case I V11, V7 E4, V16, V17

Case II I1, E2, E3, E4, E5, E6, E7, V8,

V9, V10, V12, V13, V14, V15,

V16, V18

I1, E2, E3, E5, E6, E7, V8,

V9, V10, V11, V12, V13, V14,

V15, V18

Case III - -

It can be seen that neither of the two models performs in the way shown in case

III. In most cases, the predictive class remains the same by changing the studied

parameter. However, it’s noteworthy that variables causing Case I are not exactly

the same between the two algorithms (V11 and V7 for RF model but E4, V16 and

V17 for XGBoost model).

• Uncertainty analysis

Monotonicity analysis only permits seeing the model performance in a global scale

over the whole range of data. The uncertainty analysis, on the other hand, makes it

possible to see how the ML model performs by considering data uncertainty. Only

variables whose information could be uncertain is investigated. Table 5.4 shows the

uncertainty analysis results by using the 10 selected examples.
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Table 5.4: Uncertainty analysis results

Case

No.

Region Model Case I Case II Case III

1 Bordeaux
RF V16 I1,E3,E4,E7,V13,V14,V15, V17,V18 -

XGBoost V16 I1,E3,E4,E7,V13,V14,V15,V17,V18 -

2 Lyon
RF - I1,E3,E4,E7,V13,V14,V15,V16, V17,V18 -

XGBoost V13, V17 I1,E3,E4,E7,V14,V15,V16,V18 -

3 Tours
RF - I1,E3,E4,E7,V13,V14,V15,V16, V17,V18 -

XGBoost E3 E4,E7,V13,V14,V15,V16, V17,V18 I1

4 Toulouse
RF - I1,E3,E4,E7,V13,V14,V15,V16,V17,V18 -

XGBoost V16 I1,E3,E4,E7,V13,V14,V15,V17,V18 -

5
Clermont

Ferrand

RF - I1,E3,E4,E7,V13,V14,V15,V16, V17,V18 -

XGBoost - I1,E3,E4,E7,V13,V14,V15,V16,V17,V18 -

6
Nante -

Rennes

RF V17 I1,E3,E4,E7,V13,V14,V15,V16,V18 -

XGBoost V17 I1,E3,E4,E7,V13,V14,V15,V16,V17,V18 -

7
Metz-

Nancy

RF E3, V18 I1,E4,E7,V13,V14,V15,V16,V17 -

XGBoost I1,E3 E4,E7,V13,V14,V15,V16,V17 -

8 Strasbourg
RF V17 I1,E3,E4,E7,V13,V14,V15,V16,V18 -

XGBoost V17 I1,E3,E4,E7,V13,V14,V15,V16,V18 -

9 Montpellier
RF V17 I1,E3,E4,E7,V13,V14,V15,V16,V18 -

XGBoost V17 I1,E3,E4,E7,V13,V14,V15,V16,V18 -

10 Montpellier
RF V16,V17 I1,E3,E4,V13,V14,V15,V18 E7

XGBoost I1,V16,V17 E3,E4,E7,V13,V14,V15,V18 -

Table 5.4 indicates that similarly to monotonicity analysis, in most cases the pre-

dictive class remains as the original value (Case II) by modifying the investigated

parameter each time. However, both algorithms perform in an unrobust fashion

(Case III) in the given examples (Case No.3 for XGBoost and Case No.10 for RF),

while Case III is not observed in monotonicity analysis.

The number of variables in Table 5.4 in each case is counted by classifying as

inducing (I), environmental (E) and vulnerability (V) factors. Results are shown in
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Figure 5.4. Figure 5.4 (a) indicates that compared with the RF model, it is easier

for XGBoost classifier to change the prediction results. For example, the change of

predicted class (Case I) is caused by inducing factor (I) two times in XGBoost classifier

while none for RF model. The modification of environmental (E) and vulnerability

(V) factors have the same effect: the predictions are more probable to change in

XGBoost model than in RF. Seeing from the randomly selected 10 case studies, the

prediction results of RF are relatively more stable (remain as Case II) even changing

the input parameters, as shown in Figure 5.4 (b).

(a) (b) (c)

Figure 5.4: Uncertainty analysis results by classifying variables as inducing (I), environ-

mental (E) and vulnerability (V) factors for Case I (a), Case II (b), and Case

III (c).

The above analyses compare the RF and XGBoost models by conducting two ro-

bustness analyses, with the aim of investigating whether they perform in a reliable

and reasonable fashion. While monotonicity analysis focuses on a global scale, the

uncertainty analysis is conducted in a local scale with concrete examples. Three types

of possible model performance is distinguished. Generally speaking, in most cases the

predictive class remains the same by exclusively changing one parameter each time,

which seems reasonable since a high scour risk scenario is often triggered by multiple

aspects. For example, an increasing flow easily comes with the transportation of de-
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bris and the riverbank erosion. In uncertainty analysis, both algorithms perform in a

way that is contradictory to the existing knowledge. Such phenomenon has also been

observed in other studies (Zhang et al., 2021a; Wang et al., 2020a): the prediction

results don’t form a smooth curve when using the tree-based algorithm and fluctuate

a lot. This phenomenon may result from the discrete distribution of input variables,

which ultimately influences the classification conditions at each node.

To conclude, after robustness analysis, we observed that both classifiers can perform

in a robust fashion in most cases. To understand why the variables resulting in Case

I, Case II and Case III are different in two models relates to the algorithm itself and

how the model is built, which is considered beyond the scope of this study. Detailed

comparison of XGBoost and RF classifiers by considering the results of robustness

analysis is shown in section 5.5.

5.3 Practicality investigation

As presented in Figure 2.1, the machine learning model serves as a complement

to the engineer’s judgement with the purpose of optimizing the decision-making pro-

cess. In this section, the RF and XGBoost models are tested by bridges in Occitanie

region in France. The bridges are then evaluated by two SNCF engineers’ with dif-

ferent working experience. The evaluation results are then compared among different

approaches for examining whether the ML model can help the decision-making in

practice or not.

5.3.1 Bridges in Occitanie region for testing

In order to examine the practicability of two ML models, they were applied to 40

bridge piers located in the Occitanie region in France. Figure 5.5 shows the pictures

of some tested bridges. Bridges tested here have the same construction techniques

as the ones in the training and test data sets. They are also constructed almost 100
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years ago.

Paris

Figure 5.5: Examples of bridges tested in Occitanie Region in France.

Besides evaluating the bridges by applying the ML models, a junior engineer, whose

working experience is less than two years, and a senior engineer who works more than

five years in the related domain were invited to assess the same elements as well. In

the end, the assessment results are compared to see the coherence between ML models

and engineers with different working experiences.
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5.3.2 Practicality investigation results

The number of the same assessment results among RF, XGBoost classifiers and two

engineers is shown in Figure 5.6. It can be seen that they are generally in agreement.

The least match occurs between the RF model and the junior engineer but there

are still 32 cases (80%) in common. Supposing that the results given by the senior

engineer are all “correct”, XGBoost model is the one that most close to the senior

engineer (38 cases or 95% in common), followed by the junior engineer (37 cases or

92.5% in common) and then RF model (34 cases or 85% in common).

40
(100%)

32
(80%)

34
(85%)

37
(92.5%)

34
(85%)

38
(95%)

40
(100%)

35
(87.5%)

40
(100%)

40
(100%)

Junior
engineer 

RF

XGBoost

Senior
engineer

Junior
engineer RF XGBoost Senior

engineer

Figure 5.6: Number of the same assessment results among the junior engineer, RF classi-

fier, XGBoost classifier and the senior engineer.

The high coherence between the engineers and the ML models proves the prac-

ticability of the proposed ML models. Most importantly, XGBoost classifier is the
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one that is the most close to the senior engineer’s evaluation. In other words, this

test proves the possibility to use the proposed ML based solution in practice as an

alternative approach, especially for helping engineers at entry level.

5.4 Comparison with existing approaches

In order to validate the constructed machine learning models, it’s important to

compare them with existing approaches. In this section, the RF and XGBoost models

are compared with the Japanese scoring table and the French ARPSA methods. It is

well acknowledged that both scoring table and ARPSA are not built for the French

railway bridges. The reason for doing this model comparison is to understand the

differences among each approach, which could ultimately help for model improvement.

EX2502 is not used for comparison because an overestimation of general scour is

observed. Scoring table and ARPSA are introduced in section 2.4.

5.4.1 Scoring table (Japan)

Scoring table is the practical guideline for the Japanese railway bridges’ scour risk

evaluation. In order to compare the ML models with the scoring table, a methodolog-

ical comparison is conducted firstly. Later, the XGBoost and RF models are applied

to 20 Japanese cases, which are also evaluated by the scoring table.

5.4.1.1 Methodological comparison

Before applying the two procedures, a methodological comparison is conducted at

first to see their similarities and differences between scoring table and the ML model.

They are concluded and shown in Table 5.5.
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Table 5.5: Summary of methodological similarities and differences between the scoring

table and the French machine learning model

Similarities

1. Same objective: assess scour risk of bridge element in a practical way.

2. Risk classes as an outcome, and in a binary form.

3. Don’t calculate local scour depth, general scour depth with design flood level

to conclude risk level.

Differences

1. Foundation depth plays an important role in Japanese approach, but it is

not directly included in the ML method due to the difficulty for accessing

data. However, variables in ML model such as the bathymetry evolution since

the year of construction, and types of damages, in some ways reflects this

information.

2. Parameters for describing hydrology and hydromorphology are not included in

Japanese method, because information is considered already covered in topo-

graphical landform, riverbed materials, and hydraulic conditions.

3. The influence of riverbed particle to scour is different. Japanese model doesn’t

include cohesive soil (e.g., silt, clay), which is commonly seen materials in the

French river. Cohesionless soil (e.g., sand) is considered as the material most

likely to increase scour risk in French method.

4. The French ML model comprises the history of the structure (e.g., scour his-

tory, flood history) while the Japanese procedure doesn’t.

5. In Japanese procedure, the hydraulic structure in the vicinity is an important

factor and the bridge can directly be considered at high risk while the ML

model doesn’t take into account of this feature.

6. The protection condition is scored differently in Japanese guideline based on

the scour countermeasure types. The French ML model considers the different

scour countermeasures having the same influence.
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The nature of the ML model and scoring table is not the same: one is a data-

driven approach, and another is calibrated by engineers’ experience. Nevertheless, the

common objective of the two guidelines is to screen high scour risk in an effective way.

Bridges evaluated at high risk will need a detailed inspection, reinforced surveillance,

or completed geotechnical and hydrological studies.

However, it can be observed from Table 5.5 that the parameters required in each

guideline are quite different, which is primarily caused by the ways of managing

the railway infrastructure. In France, when the water level is high, an underwater

foundation inspection through diving is conducted. However, the impact vibration

test is often adopted in Japan to know the status of bridge piers through comparing

the natural frequency. The second reason is the different hydrological conditions.

From a general view, compared with Japan, watercourse in France is more stable in

terms of velocity and river diversion. Therefore, it causes the differences for riverbed

material, the impact of riverbed material to scour and the important role of hydraulic

structures (e.g., weir, dam) near bridges.

After the methodological comparison, the two ML models and the scoring table are

applied to 20 cases for testing.

5.4.1.2 20 Japanese cases for testing

Similarly to France, Japan also possesses a large number of historical railway

bridges. The first Rail Construction Act started in 1892 in Japan for conventional

lines (Shibayama, 2017). The bridge construction techniques in conventional rail

lines (equivalent to TER in France) are also very similar to France like timber pile

foundation, caisson. Recently, scour has been reported as a serious issue in both

two countries due to the increased frequency and intensity of extreme weather events

(Takayanagi et al., 2019).

The two RF and XGBoost models are trained and tested by the French data. In
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order to examine the two models’ generality, which means their predictive capacities

over bridges outside France, the two classifiers are tested by 20 railway bridges located

in Japan. The assessment results are then compared with the scoring table (ST).

Testing the French ML models using Japanese data and then comparing with the

Japanese guideline could, in a way, validate the two ML models as well.

Data from the 20 Japanese cases were provided by the Railway Technical Research

Institute (RTRI). Their locations and photos of some bridges are shown in Figure 5.7.

Among these cases, JP1-JP10 are bridges that once experienced severe flood events

(e.g., after typhoon or heavy rain) while JP11 – JP20 are the ones without obvious

damages in history. The 10 damaged cases (JP1-JP10) comprise information before

and after flood events, so they are assessed at these two moments as shown in Figure

5.8. Figure 5.7(c) shows the photo of JP5 after flood event (AF).
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(a)

(c)

(b)

Figure 5.7: Case studies of bridges in Japan: (a) locations of 20 bridges; (b) photo of JP2

after foundation regeneration; (c) photo of JP5 after the flood event (Samizo,

2014).
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Figure 5.8: Timeline of the ten damaged bridge cases.

5.4.1.3 Japanese cases test results

20 Japanese bridges are tested by the trained RF, XGBoost classifiers and the

Japanese guideline scoring table (ST). Since JP1 – JP10 are tested before and after the

flood events, there are 30 cases in total for testing. Very similar to France developed

ML classifiers, the output of ST is also in a binary form, namely low scour risk

and high scour risk, which allows comparing directly the results obtained from ML

classifiers without model calibration.

Table 5.6 shows the assessment results of Japanese cases via different approaches.

It can be observed that the same case has quite a different predicted class as output

among all approaches. Most cases are assessed at high risk by using RF classifier and

ST (20 and 24 respectively). On the contrary, 19 cases are evaluated at low scour

risk when applying XGBoost model, compared with only 6 and 10 from ST and RF

classifier respectively.
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Table 5.6: Assessment results of 20 JP cases tested in XGBoost, RF and ST

Class Approach Case No. Total count

Low scour

risk

RF JP6, JP9, JP12, JP14, JP15, JP16, JP17,

JP18, JP19, JP20

10

XGBoost JP1, JP2, JP3, JP4, JP4AF JP5, JP7,

JP7AF, JP8, JP9, JP11, JP13, JP14, JP15,

JP16, JP17, JP18, JP19, JP20

19

ST JP1, JP11, JP12, JP15, JP16, JP17 6

High

scour risk

RF JP1, JP1AF, JP2, JP2AF, JP3, JP3AF,

JP4, JP4AF, JP5, JP5AF, JP6AF, JP7,

JP7AF, JP8, JP8AF, JP9AF, JP10,

JP10AF, JP11, JP13

20

XGBoost JP1AF, JP2AF, JP3AF, JP5AF, JP6,

JP6AF, JP8AF, JP9AF, JP10, JP10AF,

JP12

11

ST JP1AF, JP2, JP2AF, JP3, JP3AF, JP4,

JP4AF, JP5, JP5AF, JP6, JP6AF, JP7,

JP7AF, JP8, JP8AF, JP9, JP9AF, JP10,

JP10AF, JP13, JP14, JP18, JP19, JP20

24

To evaluate the model similarity, Figure 5.9 shows the number of the same assess-

ment results among the three evaluation methods. RF model is the one most close to

ST with 22 out of 30 (73%) cases in common while for XGBoost classifier there are

15 cases (50%).
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Figure 5.9: Number of the same assessment results among ST, XGBoost and RF.

Concerning the Japanese cases, instead of the XGBoost classifier, it’s the RF model

which is closer to the Japanese guideline. The frequency and intensity of natural

hazards (e.g., storm, flooding, heavy rain) in Japan are much higher and more severe

than in France. Consequently, a bridge evaluated at a low scour risk level by French

standards could be in a more vulnerable state by following the Japanese guideline,

which is built under the environmental conditions in Japan. RF model, on the other

hand, has higher recall and false positive rate (see Table 4.2), which means low scour

risk cases are more probable to be considered as high. That’s the reason why RF

model is closer to the results given by ST.

It should be noted that ST is an empirical approach established on case studies.

Extra efforts such as confirmation from Japanese expert(s), tested by other approaches

are needed to validate the results from ST, which is considered beyond the scope of

this work.

Another noteworthy point is that both XGBoost and RF models are trained by

using a French dataset. 20 bridges as case studies are not enough to prove the proposed
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ML model is ready to be applied in Japan despite the encouraging results. The

objective of this test is to demonstrate the possibility of proposed ML model being

used in a broader geographical background. To adopt it in practice, the classifier

must be trained by using data from the country.

5.4.2 ARPSA (France)

ARPSA is the French scour risk evaluation procedure for highway bridges. There

is a qualitative analysis at first in ARPSA. Bridges assessed at medium or high risk

are required to have a quantitative analysis then.

Compared with railway bridges, highway bridges are constructed much later with

advanced techniques. However, in several cases, highway and railway bridges are

often near to each other. That is to say, they share very similar geographical and

hydrological environment. Therefore, by applying ARPSA to railway bridges, it allows

seeing how the railway bridges are judged by the highway standard.

ARPSA consists of two steps’ analyses: qualitative (step 1) and semi-quantitative

(step 2) analyses. We use at first the whole bridge pier dataset for qualitative analysis.

Later, two bridges are selected to conduct the quantitative analyses. The selected two

bridges are then compared with the RF and XGBoost models.

5.4.2.1 Step 1: qualitative analysis

The whole bridge pier dataset is used for conducting the qualitative analysis, in

order to see the percentage of bridges requiring the semi-quantitative analysis (step

2). The hazard and vulnerability scores are calculated according to Figure 2.12 and

Figure 2.13. The score histograms are shown in Figure 5.10.
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(a)

(b)

Figure 5.10: Histograms of hazard (a) and vulnerability (b) scores.

Since ARPSA is designed for highway bridges, to validate whether we have adopted

it correctly on railway bridges, the minimum (Min.) and maximum (Max.) hazard

and vulnerability scores obtained in our dataset are compared with the work of Younsi

(2019). Younsi (2019) once used ARPSA to evaluate 12 railway bridges, which are

only located in the region of Provence-Alpes-Côte d’Azur in south of France. The

comparison results are shown in Table 5.7.

133



CHAPTER 5. MODEL VALIDATION AND COMPARISON

Table 5.7: Hazard and vulnerability scores compared with the study of Younsi (2019)

Hazard score (A) Vulnerability (V)

Min. Max. Min. Max.

Study of Younsi (2019) 13.2 25.3 14.5 24.5

Present study -4.5 41.5 10 25

From Table 5.7, it is observed that the vulnerability scores we have calculated are

generally in the same range as the study of Younsi (2019). However, the range for

hazard score is much larger in our study. This is because vulnerability is the weakness

of the structure when facing the natural events. Since in both studies, the objects are

railway bridges, who share the same construction techniques and structural types, the

range for vulnerability score could be almost the same. Hazard, on the other hand,

is defined as the condition (flood event) which could possibly cause the undesirable

events. The study of Younsi (2019) only focused on one region in France and that is

to say, the geographical background is not very diversified. In our dataset, bridges are

in almost every region in France (see Figure 3.3). It’s pretty natural that the hazard

scores are in a wider range.

The negative hazard scores in Figure 5.10a result from the riverbed material. When

the riverbed material is rock, the hazard value could easily be negative. Hazard score

larger than 25.3 is because several bridges crossing a torrential rivers and the riverbed

material is cohesive soils (silts, clay) or sand. In this case, the general scour (A1)

could be 23 or 30 (see Figure 2.12). However, when the bridges in the study of Younsi

(2019) cross the torrential river, the riverbed material is always gravel (which means

the general scour A1 is equal to 11).

Hazard and vulnerability class can be obtained by following the rules shown in

Table 2.5 and Table 2.6. Then, the criticality level, which is the combination of
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hazard and vulnerability levels as shown in Table 2.8, is determined.

Table 5.8 shows the number of vulnerability, hazard, and criticality levels after

qualitative analysis. Originally, to conclude the risk level in ARPSA, the consequence

level is required (see Table 2.9). However, the consequence level classification rule is

one the basis of highway standard, and they are not adaptable for railway bridges.

Thus, the criticality level is used to decide whether a semi-quantitative analysis (step

2) is needed. Here, we follow the strategy adopted in the study of Younsi (2019)):

bridge at medium or high criticality level should have a quantitative analysis.

Table 5.8: Application of ARPSA for qualitative analysis (step 1)

Vulnerability Hazard Criticality

Low 0 24 5

Medium 59 35 25

High 149 149 178

Sum 208 208 208

From Table 5.8, it is found that most bridges in our dataset require a quantitative

analysis: 25 at medium criticality level and 178 at high. Thus, in the next subsection,

two bridges are selected as case studies for quantitative analysis and the results are

compared with the machine learning model.

5.4.2.2 Step 2: semi-quantitative analysis

Figure 5.11 shows the photos of two bridges that we have selected as case studies.
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(a)

(b)

Figure 5.11: Photos of Richebout bridge (a) and Viaduc sur l’Adour (b)

Richebout bridge (Figure 5.11a) is located in Butry-sur-Oise, a city in the north of

Paris in France. It crosses the Oise River which flows into the Seine River. Richebout

bridge is used for rail and road circulations. The bridge was constructed in 1915 and

then reconstructed after World War II. It consists of three spans with a steel deck.

The two masonry bridge piers are in river channel. According to the archives, the

bridge pier foundations were reinforced in 1981. The velocity of river is measured
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between 0.3 to 0.5 m/s during inspection, and the slope of riverbed is around 0.01%.

According to recent inspections in 2016 and 2020, no obvious damage is observed in

Richebout bridge.

Viaduc sur l’Adour (Figure 5.11b) was constructed in 1881. It’s in Saint-Sever

commune, Nouvelle-Aquitaine administrative region in southwestern of France. The

viaduct crosses the Adour river, which flows into the Atlantic Ocean. The bridge

pier (P1), which is in the low flow river channel, is built on caisson foundation. By

comparing with photos taken in 1950, it was observed that the width of low flow

channel decreased a lot due to the agricultural reason and a quarry in the upstream.

The river bed has moved towards pier P1. Inspection in 2022 reported an obvious

lowering of riverbed. Moreover, the foundation embedment depth has decreased 4.6

m since its construction (embedment depth were 5.22 m in 1881 and 0.62 m in 2021).

Given to these observations, more frequent surveillance regarding this Viaduct and

the reinforcement work for pier P1 are required.

The two bridges introduced above are evaluated by ARPSA, XGBoost and RF

models. Results of qualitative (step 1 in ARPSA) are firstly shown in Table 5.9.

Table 5.9: Qualitative analyses results (step 1)

Hazard level (score) Vulnerability level (score) Criticality

Richebout bridge High (7.1) High (20.5) High

Viaduc sur l’Adour Medium (5.6) High (12.5) High

Both bridges have the high criticality level in step 1, which means the semi-

quantitative (step2) analysis is required and the results are shown in Table 5.10.
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Table 5.10: Semi-quantitative analyses results (step 2)

Hazard level (score) Vulnerability level (score) Criticality

Richebout bridge High (6.3) High (13) High

Viaduc sur l’Adour High (7.3) Medium (10) High

In semi-quantitative analysis, Richebout bridge is at high hazard and vulnerability

level. Consequently, the criticality level for Richebout bridge is high in the end.

Viaduc sur l’Adour also has the high criticality level, despite the medium level for

vulnerability.

The two bridges are then tested by the ML models, and the predicted scour risk

levels are shown in Table 5.11.

Table 5.11: ML model results of Richebout bridge and Viaduc sur l’Adour

Scour risk

XGBoost RF

Richebout bridge Low Low

Viaduc sur l’Adour High High

Viaduc sur l’Adour is evaluated at high criticality level in ARPSA, and high scour

risk level in two ML models. However, for Richebout bridge, it is evaluated at high

criticality by ARPSA while the predictions from XGBoost and RF models are both

low scour risk levels.

The hazard and vulnerability levels in ARPSA are determined by the corresponding

scores and predefined threshold (examples in Table 2.5 and Table 2.6). When applying

ARPSA to railway bridges, we observed that the vulnerability level in both step 1 and

step 2 analyses require the construction periods (see Figure 2.13) and the construction
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period defined in ARPSA are not completely adaptable for railway bridges: bridges

constructed before 1950 have a score equal to 5. Most railway bridges are constructed

before this date. In the end, by following the vulnerability classification level, it is

pretty natural that the tested railway bridge is at high vulnerability level. In other

words, when judging by the road standard, railway bridges are highly possible to have

a high vulnerability level and consequently, a high criticality (or risk) level. That’s

the reason why, despite the fact that no obvious damage is observed in Richebout

bridge, ARPSA evaluates Richebout bridge at a high criticality level while both ML

models predicts at low.

To conclude, after applying ARPSA to the bridge pier dataset, it is found that

most bridges require a semi-qualitative (step 2) analysis. ARPSA could overestimate

the scour risk of the railway bridge because for the road standard, most railway

bridges are at a vulnerable state due to its construction periods. In order to make

ARPSA adaptable for railway bridges, the construction periods and the corresponding

classification rules should be modified.

5.5 Discussion

After completing a series of investigations and model comparisons, the advantages

and disadvantages of RF and XGBoost models are discussed in this section.

It is observed in Chapter 4 that RF classifier is more sensible to high scour risk

cases because of its high recall score. However, the price is that when adopting RF

classifier, it could generate high maintenance costs, since low scour risk cases care

more probable to be evaluated as high. Thus, we think RF model is more adaptable

for regions where the frequency and intensity of natural hazards are high. It could

also be applied to regions where rail line serves as a major transportation because

in these places, bridge failures could cause severe social disruptions. We must avoid
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the traffic disruption and the high recall score of RF classifier could help achieve this

objective by detecting high scour risk cases more accurately.

XGBoost classifier has a good predictive capacity for both classes because it has

the highest accuracy score among the four ML models. It’s also the model that is

most closely to the senior engineer’s evaluation results. Nevertheless, it’s capacity

to detect high scour risk classes is not as good as RF. Therefore, XGBoost classifier

is suggested to be applied to regions where the inundation risk is low, because the

probability to have scour induced bridge failure in these places could be low. It can

also be applied to regions who have a constrained budget for maintenance or there

are alternatives for transportation besides rail. Moreover, the uncertainty analysis

results reveal that the XGBoost classifier requires the data with less uncertainty. If

not, the predictive class is more easily to be changed.

5.6 Conclusions

Different types of analyses are conducted in this chapter with the aim of validating

and comparing the XGBoost and RF classifiers, which are built in Chapter 4 for the

bridge pier dataset.

The robustness investigation allows examining the model performance over unseen

data. It is observed that in most cases, the two models can perform in a reliable

fashion. The XGBoost model is more sensible to the uncertainty of data because the

predicted class is more easily to be changed from one to another.

Later, the two ML models are compared with two engineers having different working

experience for practicality investigation. The high coherence between the engineers

and the ML models is observed. Most importantly, XGBoost model has 95% in

common with the predictions from the senior engineer.
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In the end, the ML models are compared with two existing practical guidelines

(scoring table and ARPSA) by applying them to Japanese and French bridges. It is

found that RF classifier is closer to the scoring table due to its high recall score.

When applying ARPSA to the railway bridges, it is found that although railway and

highway bridges could often share similar geographical and hydrological background,

ARPSA is not completely adaptable for railway brides. It could overestimate the scour

risk because it considers most railway bridges are already in a very high vulnerability

level.

After a series of analyses, we think both RF and XGBoost classifiers are capable

of being applied in practice. However, RF model could be preferred by region where

the frequency and intensity of natural hazards are high or rail line serves as a major

transportation. XGBoost model, on the other hand, could be applied to regions where

the inundation risk is low or there exists alternatives for transportation besides rail.

The robustness, and practicality investigations in this chapter permit understand-

ing well the two ML models besides the model performance measurements we chose

in Chapter 4. Moreover, comparing ML models with existing approaches provides

insights for other countries’ transport agencies who want to develop their ML based

maintenance policy for managing the infrastructure affected by floods.

Given its advantages and disadvantages, XGBoost classifier is chosen as an exam-

ple for model interpretation and implementation in practice, which are going to be

presented in Chapter 6.
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Chapter 6

Model interpretation and

implementation

6.1 Introduction

In previous chapters, we have built the ML classifiers for prediction (Chapter 4).

The practicality, robustness of the ML models have been examined (Chapter 5). How-

ever, when looking at Figure 2.20, it highlights the importance to have a transparent

model. Therefore, the objectives of the last chapter in this thesis are to interpret the

black box ML model, make it transparent by using the explainable artificial intelli-

gence (XAI) techniques. Furthermore, the engineering application is presented at the

end of this chapter. A web site is constructed by using the research outcome of this

study, with the aim of facilitating the use of ML model in practice.
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6.2 ML model interpretation using XAI and engi-

neers’ expertise

In this section, XAI approaches and engineers’ expertise are employed for inter-

preting the XGBoost classifier built for the bridge pier dataset.

6.2.1 Importance of building an explainable ML model

When looking at the literature, although researchers keep widening the boundaries

of what can be learnt by machine learning algorithms, little has been implemented

(Naumets and Lu, 2021), especially in the field of civil engineering.

Machine learning model is also known as black-box model. From this name, it

can be understood that the opaque nature of learning algorithms prohibits having

a straightforward explanation of the prediction results (Emmert-Streib et al., 2020).

For example, compared with a linear regression model, a deep learning neural network

may achieve higher accuracy but is difficult to be interpretable. This non-transparency

nature makes policymakers reluctant to embrace AI/ML techniques in practice con-

sidering the social and legal liabilities taken by civil engineers. Questions may be

asked as follows: (1) How has been each prediction made ? (2) To which degree to

trust a model’s prediction ? (3) Can we challenge the prediction results ?

Scour risk is evaluated after engineer’s field inspection. A ML-based model without

explanation may not be easily accepted by field engineers who are considered as end-

users. Firstly, scour is related directly to bridge failure. In such high risk project, a

misclassification may possibly threat human’s life and the surrounding environment.

Moreover, civil engineers are trained to follow norms and standards. They get used

to procedures with explicit explanations. The black-box ML model is nonetheless not

capable of telling how each prediction is made. Engineers are consequently reluctant

to trust the prediction even though satisfactory test results can be achieved some-
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times. Lastly, even though there exits systematically a series of metrics to evaluate

the performance of ML model, these measurements are seemingly only the interest

of research community (Barredo Arrieta et al., 2020). Although this may be fair for

some disciplines, society and science care way more than just performance. Obtaining

good results with selected measurements does not effectively indicate that the mech-

anism behind the problem is revealed but rather infers the specific algorithm could

predict well in the established dataset, data from which is presumably considered

being representative enough to the phenomenon.

In recognition of the obstacles to promoting AI/ML techniques from academia to

industry, the concept of explaining the black-box model, namely explainable AI (XAI)

has emerged recently. Although talking about what is explanation enters the realm

of philosophy (Dı́ez et al., 2013) and is considered beyond the scope of this paper. To

shed some light, Gunning (2017) defined XAI as:

“a suite of machine learning techniques that enables human users to understand,

appropriately trust, and effectively manage the emerging generation of artificially in-

telligent partners.”

In other words, XAI tries to help human users understand the prediction results given

by black-box model in a local and global scale. From a legal perspective, the European

Commission requires all artificial intelligence systems to be transparent for high risk

projects (Chavanel, 2022). Meanwhile, Naser (2021) pointed out the necessities to

develop explainable ML models in civil engineering from an engineering perspective.

While interpretable approaches like XAI may help engineers understand results

coming from ML models, domain knowledge should also be valued. In order to un-

derstand how the field engineers rank the input parameters, we still invited a group of

SNCF engineers for a survey. They were asked to grade numerically the importance of

features for scour risk assessment. The specific research methodology for interpreting

the machine learning model is presented in the next subsection.
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6.2.2 Research methodology

Figure 6.1 illustrates the schema of the research methodology in this section. The

imbalanced dataset issue observed in Table 3.2 is addressed firstly via the synthetic

minority oversampling technique (SMOTE) technique. Later, two XAI approaches

(SHAP and surrogate model) and engineers’ expertise are employed to interpret the

ML classifier, which is trained after data oversampling. In the end, the feature im-

portance obtained from XAI approaches and engineers’ expertise are compared.

Figure 6.1: Methodology for interpreting the ML model

6.2.3 SMOTE for data oversampling

An imbalanced dataset could result in a negative effect on the performance of ML

algorithms. This issue, nonetheless, exists in many real-world applications (Gosain
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and Sardana, 2019). Collecting data of railway bridges requires the efforts of people

in different affiliations and may sometimes be time-consuming. Consequently, it is

not quite easy to obtain a balanced dataset, which means that the number of two

classes is not equally distributed in the end.

In recognition of this issue, SMOTE (Chawla et al., 2002) is used in our study, which

oversamples the minority class samples. Recently, diverse types of ML problems have

applied this approach and proved the effectiveness (Blagus and Lusa, 2013; Naser and

Kodur, 2022). In SMOTE, synthetic data is generated based on real observations.

The algorithm takes firstly samples from the existing minority class. Later, new

data is synthesized by calculating the distance between its two nearest neighbours.

The distance is then multiplied by a random number ranging from 0 to 1 and the

newly generated synthetic data is placed from one of the real observations using the

calculated distance in the end.

After SMOTE, the size of bridge pier dataset is increased from 208 to 302, and the

high – low scour risk classes are equally distributed (from 73% - 27% to 50% - 50%).

70% of the oversampling data is used to train the XGBoost classifier and the rest 30%

is for evaluation.

Table 6.1 shows the accuracy, precision, recall and FPR of the XGBoost classifier

with training and test sets respectively. Furthermore, the precision and recall scores

of each class before and after SMOTE are shown in Table 6.2. It should be reminded

that the ideal value for accuracy, precision and recall are equal to 1 whereas 0 for

FPR.
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Table 6.1: XGBoost classifier performance (data after SMOTE)

Accuracy Precision Recall FPR

Training set 0.99 0.98 0.99 0.02

Test set 0.95 0.95 0.93 0.04

Table 6.2: Precision and recall for each class before and after oversampling

Class Training set Test set

Precision Recall Precision Recall

Low scour risk Original data 0.97 0.90 0.73 0.92

After SMOTE 0.99 0.98 0.94 0.96

High scour risk Original data 0.96 0.99 0.98 0.92

After SMOTE 0.98 0.99 0.95 0.93

From Table 6.1, it is observed that the XGBoost algorithm has a satisfactory per-

formance regarding all four proposed measurements. Moreover, Table 6.2 shows that

there is a significant increase regarding precision score for low scour risk classes after

SMOTE. In general, with data after SMOTE, the XGBoost classifier has an encour-

aging performance, and the performance of ML model on minority class prediction is

improved. The model interpretation is developed based on this classifier.

6.2.4 SHAP model interpretation

The feature importance values are often inconsistent by changing the criteria (Bak-

ouregui et al., 2021), which could result in contradictory explanations. SHAP (SHap-

ley Additive exPlanation) model, on the other hand, provides a unified measurement

(Lundberg and Lee, 2017) for model interpretations. The benefits of SHAP model are
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that both global and local interpretability can be achieved. This subsection presents

briefly SHAP model and its interpretation results.

6.2.4.1 SHAP model introduction

SHAP (SHapley Additive exPlanation) model (Lundberg and Lee, 2017), derived

from the Shapley value (Shapley, 1952) in the game theory, is an important and

versatile tool in XAI. It is capable of interpreting the output of any ML model on a

global and local scale.

SHAP model uses the additive feature contribution function to explain the unknown

ML model. Suppose that f is the original prediction model and g is the explanation

model, x′ is the simplified input term that links the original input variables s through

a mapping function x = hx (x
′). SHAP defines the explanation as:

f (x) = g (x′) = ϕ0 +
M∑
j=1

ϕjxj
′ (6.1)

where M is the number of simplified input variables. ϕj ∈ R denotes feature j’s con-

tribution. ϕ0 is the constant value when all input parameters are missing. Equation

(6.1) is illustrated in Figure 6.2, where ϕ0, ϕ1, ϕ2 and ϕ3 increase the predicted result

f (x) while ϕ4 decreases f (x).

According to Lundberg and Lee (2017), the possible solution of equation (6.1) which

guarantees the local accuracy, missingness, and consistency of the SHAP model is

shown in equation (6.2):

ϕj (f,x) =
∑
z′⊆x′

|z|! (M − |z′| − 1)!

M !
[fx (z

′)− fx (z
′ \ j)] (6.2)

where |z′| represents the number of non-zero entries in z′ and z′ ⊆ x′ fx (z
′) =

f (hx (z
′)) = E (f (z) | zs), and S is the set of non-zero indices in z′. ϕj is the Shapely
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value of feature j. More detailed information and mathematical deductions of SHAP

model may refer to the work of Lundberg and Lee (2017).

0

Figure 6.2: SHAP attributes regarding each feature

6.2.4.2 SHAP model interpretation results

• Global explanation

Figure 6.3 illustrates the impact of input features on model predictions on a global

scale. The global feature importance plot, where the importance of each feature is

calculated as the mean absolute SHAP value for that feature over all given samples

is shown in Figure 6.3 (a). The y-axis plots the ordered feature importance rank and

the x-axis stands for the mean absolute SHAP value or the average impact on model

output for each feature. In general, the higher the mean absolute SHAP value is, the

more important the variable is. From Figure 6.3 (a), it can be seen that the four

most important features are respectively I17 (existence of local scour), C2 (slope of

riverbed), I16 (existence of dislocation and deformation) and C3 (specific flood flow),

while C6 (flow sinuosity), C5 (topography) and B9 (foundation type) have SHAP

values equal to zero, which means they have little contribution to prediction.
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(a) (b)

Figure 6.3: SHAP global bar plot and summary plot: (a) global bar plot; (b) summary

plot.

The global bar plot in Figure 6.3 (a) only permits to see the contribution of each

variable to prediction results. Nonetheless, the impact of each feature (whether it’s

positive or negative) to prediction is still not clear.

In this circumstance, Figure 6.3 (b) presents the summary plot. It uses an information-

dense way to show the relationship between feature value (colour red means value is

high while blue is low) and SHAP value (plotted in x-axis) regarding each input

variable. Positive SHAP value means the positive impact (e.g., high scour risk) on

prediction whereas negative value means negative effect (e.g., low scour risk). The

feature value for categorical variable is presented by the encoding value shown in Fig-

ure 3.6. Each data is represented by a dot on each feature row. The “pile up” dots

show the density in each row. For example, the existence of damages (features with

encoding values equal to 1) like I17 (local scour), I16 (dislocation and deformation)
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and H11 (scour history) will increase the scour risk (indicated by the positive SHAP

value) whereas the nonexistence situations (features with encoding values equal to 0)

will decrease the risk (indicated by the negative SHAP value).

For variables whose relationships between SHAP values and feature values are not

clear in summary plot, Figure 6.4 illustrates the dependence scatter plot which shows

the effect of a single feature on prediction.
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(a)

(c)

(e)

(b)

(d)

(f )

18.75

Figure 6.4: SHAP partial dependence plots: (a) C2 (slope of riverbed (%)); (b) C3 (spe-

cific flood flow (m3/s)); (c) C4 (width of valley/ width of low flow channel);

(d) I14 (channel rating); (e) I15 (riverbank rating); (f) I18 (rating of other

damages)

Similarly to summary plot, each dot represents a data sample. The x-axis is the

value of feature, and the y-axis is the SHAP value. Furthermore, partial dependence

plot introduces a second feature (chosen automatically by default) that may have an
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interaction effect with the plotted feature. Several observations are made from Figure

6.4:

1. In Figure 6.4 (c), it can be seen clearly that when C4 (ratio between width of

valley and low flow channel), a parameter used to describe the hydromorphology

of the region, is less than 18.75, it tends to increase the scour risk and vice versa.

This finding could provide insights for engineers since the correlation between

C4 and scour risk is difficult to be quantified with current knowledge.

2. The relationships between SHAP values and categorical variables I14 (channel

rating) and I18 (rating of other damages) are less obvious as shown in Figure

6.4 (d) and (f).

3. Figure 6.4 (a) and Figure 6.4 (b) show that when the value of C2 (slope of

riverbed) or C3 (specific flood flow) is large, it tends to increase the scour risk

(SHAP value is positive), which is in accordance with the current knowledge:

scour exists more often in the steep slope and/or high flow area. Furthermore, it

can be observed that the feature values of C2 and C3 are significantly scattered

and, consequently, the predictions as well as explanations may be less precise

for areas having less value.

Figure 6.5 displays the waterfall plots for local explanations regarding data sample

No.1 and No.204. The bottom of a waterfall plot shows the base value, which is con-

sidered the prediction result when input features’ values are unknown. In other words,

base value is the average of target variables. Then each row shows the contribution

(red means positive and blue means negative) of each feature to the model output.

The corresponding value of each feature is marked at the left side in grey. It should

be noted that by default, the x-axis of waterfall plot is in log-odds unit. The negative

value indicates the probability is less than 0.5 which means the negative class. For

example, in Figure 6.5 (a), the slope of river bed (C2 = 0.01) and the nonexistence
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of local scour (I17 = 0) are the two most significant factors to decrease the scour

risk, while in Figure 6.5 (b) the existence of local scour (I17 = 1), the existence of

dislocation or deformation (I16 = 1), slope of riverbed (C2 = 0.06), existence of scour

history (H11 = 1) are the four most important aspects to push up the base value and

increase the risk.

(a) (b)

Figure 6.5: SHAP waterfall plot for local explanation: (a) data No. 1; (b) data No. 204.

To conclude, SHAP interpretation results provide insights to ameliorate current

field inspections and are generally in accordance with the scientific knowledge.

6.2.5 Surrogate model interpretation

In engineering, when the prediction results are derived from a time-consuming and

computationally expensive process, a surrogate model is desired to approximate the

existing complex method. Compared with a black-box model, a surrogate model

usually has a simple nature or the inner mechanism has already been understood by

users (e.g. a linear function) (Naser, 2021). Theoretically, any model having high

interpretability can be considered as a surrogate model if it can approximate the

black-box model as closely as possible (Molnar, 2019). To build a surrogate model,

data used to train the black-box model are input variables. The target variables,
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however, come from the predictions given by the black-box model instead of original

observations. With its explicit expressions, the surrogate model is considered to be

able to explain the predictions once it goes through the training and test process and

achieves satisfactory performance.

Multi expression programming (MEP) (Oltean and Dumitrescu, 2002) and gener-

alized linear model (GLM) are used in our study to build two surrogate models.

MEP, as a branch of genetic programming (GP) inspired by Charles Darwin’s theory

of natural selection, is a type of linear-based GP for optimization. Multiple solutions

(programs) are encoded in the same chromosome in MEP. It starts by generating

random population of computer programs and the best solution can be generated

from the chromosome by iterating the selection, crossover and mutation process until

the termination condition is satisfied. The best equations generated from MEP are

usually easy to be applied in practice. The expressions obtained from MEP to decide

the scour risk class are shown as follows in equation (6.3) – equation (6.7):

A1 = C4I17 (6.3)

A2 = C2 + I16 + I17 −B8 (6.4)

A3 = (B10 + I16)
H11 (6.5)

A4 = A1 + A2 + A3 (6.6)

If A4 < −0.982, low risk, or else high risk (6.7)

Risk in the end is decided by an IF function. The model achieves the following

accuracy (0.93/0.9), precision (0.90/0.86), recall (0.96/0.93), and FPR (0.10/0.11),

for training and test data respectively.

GLM, on the other hand, is a linear model that generalizes variables in both nu-

155



CHAPTER 6. MODEL INTERPRETATION AND IMPLEMENTATION

merical and categorical forms via a link function. Compared with a linear regression

model in which both variables and outcomes are assumed to follow a Gaussian dis-

tribution, GLM allows variables and outcomes following the exponential family of

distributions (e.g., Poisson distribution, binomial distribution). The link function re-

lates the linear predictor and the mean of the distribution function. For example, the

binomial distributed data may use the logistic link function.

Equation 6.8 shows the linear function using GLM to augment the interpretability

of XGBoost classifier. Each input variable multiplies the computed coefficient. Con-

sidering it’s a binary classification case, a logit function is served as the link function.

Riskscour = logit ( − 0.13× C1 + 8.51× C2 + 0.0007× C3 − 0.027× C4 + 0.375× C6

− 0.74× C7 − 3.68×B8 − 1.27×B10 + 2.31×H11 + 1.71×H12

− 0.72× I13 + 0.54× I14 + 0.09× I15 + 2.91× I16 + 12.61× I17+

0.18× I18)

(6.8)

The trained GLM model has the following metrics for accuracy (0.92/0.91), precision

(0.94/0.93), recall (0.9/0.88) and FPR (0.06/0.06) for training and test set.

Due to the differential inherent computational process, equations from MEP use

part of the input data including an exponential calculation and a logical model, while

GLM formulates all input parameters in a linear form linking by a logit function.

In general, both MEP and GLM are easy to be applied in practice. But one should

note that surrogate models are developed to explain the original ML model. They

cannot have perfect fidelity with regard to the original model (Rudin, 2019). If the

explanation completely adheres the computed results, this means the two models will

be equal and there will be no need to have the original model at the beginning. In

other words, the original model itself already has a transparent nature.
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6.2.6 Engineers’ interpretation

SHAP interpretation is based on the mathematical algorithm. It’s still important

to know feature importance from the engineering perspective. Due to its complex-

ity and multidisciplinary nature, current scour risk evaluation procedures are highly

empirical based. In practice, the decision-making process may be influenced by the

subjectiveness of field engineers (e.g., working experience, educational level).

With the purpose to see how field engineers consider feature importance in a scour

risk model and whether their opinions are unified, a survey was conducted. Among

the 26 engineers who participate in the survey, 11 of them have been working in

the inspection and maintenance sector for more than ten years. 10 of them have an

experience of less than five years and the rest of them are between five to ten years.

During this workshop, they were asked to grade numerically the influence of input

parameters to scour risk from 1 (the least influential) to 4 (the most influential). It

should be noted that parameters ranked by engineers are the same input parameters

in ML model.

Figure 6.6 displays the average scores with standard deviations of input parameters

ranked by SNCF engineers.
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Figure 6.6: Feature average scores obtained from the survey

It is observed that almost all features have a score near or above 2 and none of

them is around 1, which means variables in ML are all considered vital for decision-

making. The high standard deviations existing in some features (e.g., C3, C7, I14)

may be caused by working experience and working place location (contrasted climate
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and geographical background from north to south in France). Furthermore, environ-

mental factors like C2 (slope of riverbed), C3 (specific flood flow), and C4 (width of

valley/width of low flow channel) are not as important as in SHAP global bar plot.

Possible reasons for such differences are discussed afterwards.

6.2.7 Feature importance discussion

It is noticed in Figure 6.6 that the feature importance rank given by the engineers

is not quite in consistency with the SHAP model. Therefore, Figure 6.7 compares the

relative feature importance by using results from SHAP model (mean SHAP value in

Figure 6.3 (a)), GLM model (coefficients in equation 6.8) and survey results (average

score in Figure 6.6) with a 0 -1 normalization. MEP approach is not compared due

to its exponential functions.

Figure 6.7: Feature importance comparison.
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Several observations are made from Figure 6.7 :

1. I17 (existence of local scour) is considered as the most important feature in all

three methods.

2. Some features have little or zero contribution in SHAP and GLM methods while

the engineers give a rather high score, such as C1 (flow type), C5 (topography)

and B9 (foundation type). It’s noteworthy that these are features mentioned in

commonly used scour risk evaluation process.

3. By contrast, C2 (slope of riverbed) and C4 (width of valley/width of low flow

channel) have a fairly high score in SHAP but not with the engineers.

To conclude, for both XAI models and engineers, the existence of local scour (I17)

is considered as the most important feature. It seems logical since estimating the local

scour depth under future flood scenarios has always been a key step in most practical

guidelines (e.g., Cerema, 2019; HR Wallingford, 1992). The risk could be already

high if a scour hole (local scour) around bridge foundation is detected. Besides, the

two XAI approaches are generally consistent with each other.

The reasons for differences between engineers’ expertise and XAI approaches are

concluded as follows:

1. An engineer does the risk analysis in an asset-specific view and makes judge-

ments based on physical mechanisms. However, the ML model makes predic-

tions by learning from data. It is the statistical relationship and algorithms that

“teach” the model. In this case, the important variables for engineers may be

already reflected or covered by other variables in XAI interpretations due to the

different natures of methodologies. For example, flow type (C1) and topography

(C5) could be reflected by slope of riverbed (C2) and hydromorphology of the

region (C4). Cracks (information covered by variable I18) on bridge piers could
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reflect the non-sufficient bearing capacity of bridge foundation represented by

foundation type (B9).

2. The role of ML model in the whole inspection-maintenance process is to help

engineers for decision-making, while the tasks for engineers are more complex

than this. They still need to program the corresponding maintenance work once

the asset is considered at high risk. Therefore, a comprehensive understanding

shall be necessary for engineers, which includes factors such as C1 (flow type),

B9 (foundation type), B10 (existence of foundation scour countermeasures).

3. The interviewees in this survey (SNCF engineers), who mainly do inspections,

are not specialists in geotechnics or hydrology. Due to the staff shortage but a

huge number of rail assets to be inspected, they make decisions mainly based on

the damages observed in the field (e.g., scour hole, crack, material degradation)

and sometimes ignore the surrounding environment. If engineers participating

in the survey are specialized in hydrology, environmental factors like C2 (slope

of riverbed) and C4 (width of valley/width of low flow channel) and bridge pier

shape (B8) could be more important in this case.

4. In the end, although two popular XAI models were employed to explain the

black-box model in this study, Tocchetti and Brambilla (2022) pointed out that

state-of-the-art explainability may not be enough to guarantee the full under-

standability of explanations from a human perspective. Evaluating the effective-

ness of explanations could require researchers from IT-related fields, psychology

and philosophy, which is considered beyond the scope of this study.

In comparison with engineers’ expertise, XAI approaches consider variables for

describing the characteristics of watercourse (C2: slope of riverbed; C3: specific flood

flow) and hydromorphology of the region (C4: width of valley/width of low flow

channel) are more important than bridge characteristics (e.g., foundation type). This
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is mainly because the resilience of historical bridges to natural hazards is not as

good as new constructions. The same flood event could cause more severe damages

to historical infrastructures. In other words, compared with structural factors, the

surrounding environment could pose an even greater threat to the stability of historical

bridges since all of them have already been in a relatively vulnerable state.

Interpreting the ML model via XAI and comparing the results with engineers’

expertise contribute to making the ML model trustworthy and improving the current

inspection process. The proposed method is capable of screening high scour risk

structures effectively and helping engineers understand how the prediction is made

at the same time. Furthermore, the comparison results emphasize the importance of

surrounding environmental factors in scour risk assessment, which are currently often

neglected by engineers.

In the end, there hasn’t existed a standard to criticize whether XAI or engineers’

expertise is closer to the true mechanism. The proposed XGBoost model with expla-

nations and the survey to rank input parameters are now built in a web application at

SNCF. The updated database and more engineers’ participation in the survey could

help better understand the phenomenon in the future.

6.3 Model implementation at SNCF

This section introduces how to implement the proposed ML classifier in practice.

The XGBoost classifier we’ve built and the SHAP model interpretation have been

included in a web application 1, which could be directly used by the engineers without

knowing coding.

1This thesis proposed the proof of concept of the application. Development work was supported

by the SNCF PLATIPUS project.
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6.3.1 Work flow

Figure 6.8 depicts schematically the workflow of the proposed model in practice

at SNCF. Data collected by engineers through inspection is firstly recorded in an

SNCF internal and digitalized platform named PIGC (Patrimoine Informatisé du

Génie Civil), which is designated for managing rail infrastructure. Information in this

platform regarding the bridge characteristics, surrounding environment as well as the

observations from inspections is used as data to train the ML model. After training

and testing, the scour risk provided by the ML model is seen as a complement to the

engineer’s assessment. Corresponding scour countermeasure work could be scheduled

hereafter.

Data collection
Data storage

Railway
infrastructure

Scour risk assessment
via ML 

Model
development

Inspection

Actions: surveillance
and maintenance program  

Recording

Figure 6.8: Overview of the machine learning based PdM system

6.3.2 Web application

Building the proposed ML model requires solid knowledge not only in the domain of

civil engineering but also coding. For the users, namely the inspectors and engineers,
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it’s very rare for them to have the two competences at the same time. Therefore, the

proposed ML classifier has been employed in a web application, as shown in Figure

6.9. It could help the inspectors and engineers directly use the model without having

a background in coding.

After inspections, the engineer can enter the input parameters based on their field

observations. An overview for confirming the entered parameters is shown in the web

application (see Figure 6.9 (a)). Before knowing the result, users are asked firstly if

they are willing to register the test data in the cloud. For developers, the registered

data could help enrich the database and update the ML model regularly with the

aim of maintaining the system. The prediction result with related probability is

shown afterwards. In order to improve the ML model, a question is asked to know

whether the users agree with the prediction results or not (see Figure 6.9 (b)). SHAP

local interpretation has been implemented. It helps understand how the prediction is

made by the ML classifier. In the end, the survey conducted among the engineers to

rank feature importance has been included in this web application as well. It allows

collecting more data from the engineers (see Figure 6.9 (c)).
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1. Enter input parameters 

2. Overview of input parameters 

(a) Zone for entering input parameters

4. Zone to show 
prediction result with 
the related probability  

3. Test data registration

  5. Opinion on prediction 
result: agree or not ?  

(b) Prediction result and collecting feedback from the users

Figure 6.9: Proposed ML model in a web application (Copyright SNCF)
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6. SHAP local 
interpretation

7. Feautre importance 
survey  

(c) Implementation of SHAP local interpretation

Figure 6.9: Proposed ML model in a web application (Copyright SNCF)

The web application we have built not only allows engineers who don’t know coding

can use it easily, but also helps the maintenance, data collection and future improve-

ment of the model.

6.4 Conclusions

The XGBoost classifier that we have built in Chapter 4 could help field engineers

evaluate scour risk rapidly yet precisely. Although satisfactory results have been

obtained, it is difficult to apply such model in practice due to the opaque nature of

ML algorithms, from both engineering and legal perspectives.

In this circumstance, this chapter firstly proposed interpretable approaches to make

the black-box ML model transparent by using XAI and engineers’ expertise. Data

after oversampling was at first used to build the ML classifier. Later, XAI approaches

(SHAP and surrogate models) and a survey among SNCF engineers were conducted

to interpret the ML model. SHAP proposed global and local explanations for model

interpretations. Surrogate models namely MEP and GLM approximated the original
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model and showed satisfactory results by generalizing functions easy to be used in

the field. The engineers’ survey results indicate that the environmental factors are

not as important as in SHAP global plot. In the end, feature importance obtained

from SHAP, GLM and engineers’ survey were compared.

The comparison results show that existence of local scour (variable I16) around

bridge foundation is considered as the most important feature in XAI approaches

and engineers’ expertise, which is in line with current knowledge: one of the most

obvious criteria to assess scour risk is to know whether there has already been a

scour hole near bridge foundation. Besides this common point, it is observed that

several environmental factors neglected by engineers have a rather high ranking in

XAI explanations. Generally speaking, the differences between XAI approaches and

engineers’ expertise are caused by different natures of methodologies, scope of work,

and bias existing in the engineers.

In this chapter, the XAI interpretations make ML model trustworthy through ex-

plaining how the predictions are made. The survey among the engineers reveals the

fact that some hydrological parameters are not prioritised by the engineers during

scour risk evaluation. In the end, comparing XAI results with engineers’ expertise

helps significantly in improving the maintenance process at SNCF. It highlights the

importance of surrounding environmental factors (watercourse, riverbed, hydromor-

phology). Compared with new constructions, historical bridges are in a relatively

vulnerable state and the surrounding environment could pose a greater threat to

their stability.

In the end, how to implement the proposed machine learning model in practice

is presented. A web application is built using the research outcome of the thesis.

It allows engineers using and understanding the model easily, even without knowing

coding. Moreover, this web application serves as the bridge of communication between

model developers and engineers. The feedback from users will help maintain and
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improve the model. Future work should continue enlarging the size of data and

inviting more railway engineers to participate in the survey.
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Conclusions

7.1 General conclusions

Due to the increase of precipitation brought by climate change, flood events are

very likely to happen more often in the future. Flooding is actually the direct cause

of scour induced infrastructure failure. Huge amount of money and resources are

deployed each year to reinforce or maintain the infrastructure subject to scour. SNCF

is currently seeking a more appropriate approach for evaluating the scour risk.

To address this issue, machine learning based solutions are proposed in this thesis.

Two datasets are established by using information from inspection reports and open

source platforms. In order to determine the input parameters for the machine learning

models, feature selection work is conducted from both engineering and statistical

perspectives.

Later, very popular and commonly used algorithms are employed. The performance

of machine learning classifiers are examined by using measurements calculated from

the confusion matrix. Results have shown that for the bridge pier dataset, XGBoost
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and RF models have the most promising results. Regarding the Abutment&Wall

dataset, due to the lack of data, an overfitting is observed at first. After eliminating

several input parameters, it’s still the XGBoost algorithm who has the best perfor-

mance. But generally speaking, the prediction accuracy and other measurements for

Abutment&Wall dataset are not as good as in pier dataset.

Next, in order to compare the models, more complex investigations are conducted

regarding the RF and XGBoost classifiers trained for the bridge pier dataset because

they achieve satisfying results. It is observed that in most cases, both models can

perform in a robust fashion. XGBoost classifier is more sensible for data uncertainty

but it is the one that has the most common results (95%) as the senior engineer.

When tested by the Japanese cases, RF model is the one that has the most cases in

common (73.3%) with the Japanese guideline. This is because RF has a relatively

high recall score and the Japanese bridges are in rather vulnerable states when judg-

ing by the French standard. Moreover, when applying ARPSA to French railway

bridges, it is found ARPSA could easily overestimate the scour risk. That is to say,

although ARPSA is built for French road bridges who could possibly share very sim-

ilar geographical environment as the railway ones, it can not be directly used. One

of the reasons is that the threshold for vulnerability level classification is empirical

based and it’s not perfectly adaptable in the rail sector.

Then, in order to understand the predictions from machine learning model, the

XGBoost model for bridge pier dataset is interpreted by SHAP model, surrogate

model, and engineering expertise. The interpretation results are compared afterwards.

The differences between XAI approaches and engineer’s expertise are caused by the

different natures of methodologies, scope of work, and bias existing in the engineers.

This comparison highlights the importance of surrounding environmental factors such

as hydromorphology, riverbed, watercourse, which are currently often less prioritised

by the engineers or inspectors.
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In the end, to facilitate the use of engineers and inspectors, the XGBoost classifier

with XAI explanations is built in a web application. Findings presented in this work

could help significantly evaluate the scour risk by benefiting from the novel AI and

machine learning technology. It could provide valuable guidance for improving the

current inspection process and insights for other countries who want to develop their

own practical guideline.

7.2 Perspectives

Several recommendations are made for the future work.

1. This study can be seen as a first try to use machine learning for scour risk

evaluation. A binary classifier is built with limited number of data. However,

it is still difficult to prioritize maintenance work considering the number of rail

assets. A multiclass model for risk segmentation shall be more practical in

practice.

2. The size of the two datasets is relatively small considering the number of assets

in the rail network. Therefore, future work should continue enlarging the size of

data, especially for the Abutment&Wall dataset. More variables could possibly

be included if more data is collected in the future. The ideal algorithm for

making the prediction could possibly be changed as well.

3. The proposed model is capable of identifying scour vulnerable bridges from a

technical perspective. However, the maintenance activities should be planned

long time in advance. With constraint budget and the shortage of stuff, the asset

manager should get to know the cost (direct and indirect) associated with. The

cost of making a bridge less vulnerable to scour is smaller compared to the

total cost of failure. Future analysis should include corresponding cost-benefit

studies and fortunately, some studies have already mentioned this point (Liu
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et al., 2020; Wright et al., 2012).

4. In the upcoming year, the changing climate will undoubtedly pose a greater

threat to the safety of rail infrastructure and it will especially be amplified

in long service life bridges, which are built long time ago and the impact of

climate change on the intensity of flood actions are not taken into account in

design phase. Therefore, it shall be important to incorporate the effects of

climate change and project the bridge scour risk under future climate scenarios

for the safety of transport network.
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Glossary

Abutment (Culée) A substructure at the ends of a bridge span

supporting its superstructure.

Debris (Embâcle) Floating or submerged material, such as

logs, vegetation, or trash, transported by a

stream.

Low flow channel (Lit mineur) Water flows during the lowest flow condi-

tions. In some cases, the low flow channel

may be coincident with the main channel

Main channel (Lit moyen) The river cross section that carries water dur-

ing normal (e.g., ordinary) flow conditions.

Masonry (Maçonnerie) The art and craft of building and fabricating

in stone, clay, brick, or concrete block.

Pier (Pile) The vertical support structures of bridges.

Bridge piers are the intermediate supports,

whose function is to transmit the forces they

receive from the load-bearing elements to the

foundations.
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Retaining wall (Mur de

soutènement)

Structure designed and constructed to with-

stand lateral pressure of soil or hold back soil

materials.

Riverbank (Berge) The land at either edge of a river. It borders

the watercourse and confines the water in the

natural channel when the water level, or flow,

is normal.

Scour (Affouillement) Erosion of streambed or bank material due

to flowing water.

Sheet piling (Palplanche) Sections of sheet materials with interlocking

edges that are driven into the ground to pro-

vide earth retention and excavation support.

Sheet piles are most commonly made of steel,

but can also be formed of timber or rein-

forced concrete.

Slope of riverbed (Pente du lit) The inclination of the channel bottom.

Watercourse (Cours d’eau) A natural or artificial channel through which

water flows.

Wing wall (Mur en aile) Wing walls are adjacent to the abutments

and act as retaining walls.
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Figure 7.1: Schematic presentations of a bridge crossing watercourse (a) and a retaining

wall adjacent to watercourse (b) (top view)
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Appendix A

Grade proposition guidance

The purpose of the following table is to help inspectors and engineers make a quick

decision and hold the same standard while evaluating in the field. The degraded

scenarios in each damage level are generalized. Therefore, it’s possible that certain

types of damages are not covered here (e.g., settlement, disjoint, dislocation).

197



APPENDIX A. GRADE PROPOSITION GUIDANCE

 

Damage level 
&proposed 
grade   

Foundation Protection 
Comments 

Shallow foundation Deep foundation Gabions Sheet piling 

Minor 
(9-10) 

    

No obvious damage 

Moderate 
(6-8) 

    

Slight damages at the 
surface.  No influence 
for the stability of the 
structure 

Extensive 
(3-5) 

    

Several damages on the 
surface, the restoration 
work need to be 
undertaken 

Severe   
(0-2) 

    

Totally ruined, the 
circulation could 
possibly be stopped 
immediately 

Note: If the damages exist on foundation and its protection at the same time, the damage level will be given in accordance with the worst case. 
For example, the protection has a severe damage level while the foundation has a minor, the final result should be severe. 

Figure A.1: Guidance for damage level and proposed grade after inspection

198



Appendix B

XGBoost model introduction

Extreme gradient boosting (XGBoost) is an ensemble learning algorithm based on

tree models.

Suppose a dataset D = {(xi, yi)} (xi ∈ R, yi ∈ R) with m features and n examples,

x and y represent the input and output data respectively. The predicted output value

ŷi is calculated as the sum of K additive functions shown in equation (B.1) :

ŷi =
K∑
k=1

fk(xi), fk ∈ Γ (B.1)

where Γ =
{
f (x) = wq(x)

} (
q : Rm → T,w ∈ RT

)
is the space of decision trees (also

known as CART, Breiman et al., 1984) and K denotes the number of decision trees.

For a single tree fk(x), q represents the tree structure that maps the input data to

the corresponding leaf node. T is the number of leaves in the tree and w is the leaf

weight.

The objective function of XGBoost formulated by Chen and Chen and Guestrin
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APPENDIX B. XGBOOST MODEL INTRODUCTION

(2016) is shown in equation (B.2).

ϕ =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk)

where Ω (f) = γT +
1

2
λ ∥w∥2

(B.2)

Here
∑n

i=1 l (yi, ŷi) is the loss function which is used to calculate the difference be-

tween the actual value yi and predicted value yi. Compared with traditional boosting

algorithms, XGBoost model adds a regularized term Ω to penalize the complexity of

the model in order to avoid overfitting. γ is the cost to have additional leaves. λ is a

regularization hyper-parameter and ∥w∥2 is the L2 norm of leaf weights.

It’s quite difficult to optimize equation (B.2) with traditional approaches in Eu-

clidean space. Therefore, the XGBoost model is trained in an additive approach by

using boosting. Boosting is a learning algorithm with which weak learners could be

converted to strong ones. By adopting boosting at the j-th iteration, ŷ
(j−1)
i + fj(xi)

represents ŷ
(j)
i and equation (B.2) can be transformed to:

ϕ =
n∑

i=1

l(yi, ŷ
(j−1)
i + fj(xi)) + Ω(fj) (B.3)

In this case, by adding greedily fj may help to minimize the objective function and

improve the prediction results. To find the optimal value, a second-order Taylor

approximation is used to equation (B.4):

ϕj ≃
n∑

i=1

[
l

(
yi, ŷ

(j−1) + gifj (xi) +
1

2
hif

2
j (xi)

)]
+ Ω(fj) (B.4)

where gi = ∂ŷ(j−1)l(yi, ŷ
(j−1)) and hi = ∂2

ŷ(j−1)l(yi, ŷ
(j−1)) are first and second-order

gradient statistics of the loss function. After removing the constant term, equation

(B.4) can be simplified at step j as:

ϕ̃(j) =
n∑

i=1

[
gifj(xi) +

1

2
hif

2
j (xi)

]
+ Ω(fj) (B.5)
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APPENDIX B. XGBOOST MODEL INTRODUCTION

Define the instance set in leaf t as It = {i | q(xi) = t}, equation (B.5) can be

rewritten as follows:

ϕ̃(j) =
n∑

i=1

[
gifj(xi) +

1

2
hif

2
j (xi)

]
+ γT +

1

2
λ

T∑
t=1

w2
t

=
T∑
t=1

[(∑
i∈It

gi

)
wt +

1

2

(∑
i∈It

hi + λ

)
w2

t

]
+ γT

(B.6)

For a given tree structure, define Gt =
∑

i∈It gi, Ht =
∑

i∈It hi. Therefore the optimal

weight in leaf t is

w∗
t = − Gt

Ht + λ
(B.7)

and the corresponding optimal value is

ϕ∗
(j) = −1

2

T∑
t=1

G2
t

Ht + λ
+ γT (B.8)

Equation (B.8) is a scoring term to measure a tree’s performance. A smaller value

means the tree is purer and fits the data better.

In reality, it’s quite difficult to enumerate all the possible tree structures q because

the tree is grown greedily. As a result, the first only has a single leaf and it will

iteratively add branches. After each split, the gain in the loss reduction is calculated

as follows:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− γ (B.9)

Equation (B.9) can be obviously divided into four parts.
G2

L

HL+λ
,

G2
R

HR+λ
and (GL+GR)2

HL+HR+λ

are score for the left child, score for the right child and score before splitting re-

spectively. γ is the regularized hyper-parameter by introducing additional leaf. If

Gain < 0 the splitting will be stopped. More detailed information about XGBoost

can refer to the research work of Chen and Guestrin (2016).
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