
HAL Id: tel-04415715
https://theses.hal.science/tel-04415715

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expressive classification rule learning with an emphasis
on learning from sequential data

Marine Collery

To cite this version:
Marine Collery. Expressive classification rule learning with an emphasis on learning from sequential
data. Artificial Intelligence [cs.AI]. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IP-
PAX091�. �tel-04415715�

https://theses.hal.science/tel-04415715
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
3I

P
PA

X
09

1

Expressive classification rule learning
with an emphasis on learning from

sequential data.
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Inria Saclay - IBM France Lab - l’École polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Mathématiques et informatique

Thèse présentée et soutenue à Palaiseau, le 12 octobre 2023, par

MARINE COLLERY

Composition du Jury :

Florence d’Alché-Buc
Professeur, Telecom Paris Présidente

Johannes Fürnkranz
Professor, Johannes Kepler University Linz Rapporteur

Céline Hudelot
Professeur, CentraleSupélec Rapporteuse

Claire Glanois
Researcher, IT University of Copenhagen Examinatrice

Siegfried Nijssen
Professor, Université Catholique de Louvain Examinateur

Marc Schoenauer
Directeur de Recherche, Inria Saclay Examinateur

François Fages
Directeur de Recherche, Inria Saclay Directeur de thèse

Shubham Gupta
Research Scientist, IBM Research France Co-encadrant de thèse

Philippe Bonnard
Software Engineer, IBM France Lab Invité

Remy Kusters
Research Scientist, Gourmey Invité

Expressive classification rule learning with an
emphasis on learning from sequential data.

Marine Collery

ii

Abstract

During the last decades, machine learning and in particular neural networks
have made tremendous progress on classification tasks for a variety of fields
such as healthcare, fraud detection or image recognition. They are able to
learn from various data types ranging from images to time series and achieve
impressive classification accuracy. However, their decisions are difficult or
impossible to understand by a human. Rule-based methods on the other
end, are interpretable, human-readable and have been widely adopted in dif-
ferent industrial fields with Business Rule Management Systems (BRMS). In
practice however, those rules are manually written by experts. One of the
reasons manually-written rule models cannot easily be replaced with learned
rule models is that rule-based learning models are not able to learn as expres-
sive rules with higher-level concepts and complex grammar. Moreover, due to
the lack of latent representations, rule-based learning methods underperform
w.r.t. state-of-the-art neural networks.

In this thesis, we propose an end-to-end neural-based approach to learn
expressive rules for classification problems. Different levels of expressiveness
in rules are presented, implemented and evaluated on some existing datasets
and new synthetic ones proposed as new benchmarks for binary classifica-
tion rule learning. First, the learning of basic disjunctive normal form with
a neural network (base model) is studied. Second, extensions to support se-
quential data are introduced with a recursive and a convolutional approaches.
Finally, the model is extended to learn more expressive rules with predefined
aggregation functions and overall complex grammar rules.

iii

iv

Résumé

Au cours des dernières décennies, l’apprentissage automatique, et en parti-
culier avec les réseaux de neurones, a fait d’énormes progrès pour résoudre
des problèmes de classification dans différents domaines tels que la santé,
la détection des fraudes ou la reconnaissance d’images. Ces modèles sont
capables d’apprendre à partir de différents types de données, allant des im-
ages aux séries temporelles, et d’atteindre une précision de classification im-
pressionnante. Cependant, leurs décisions sont difficiles, voire impossibles à
comprendre par un être humain. Les méthodes basées sur des règles, quant à
elles, sont interprétables, lisibles par l’homme et ont été largement adoptées
dans différents domaines industriels avec les Business Rule Management Sys-
tems (BRMS) ou systèmes de gestion des règles métier. En pratique, cepen-
dant, ces règles sont écrites manuellement par des experts. L’une des raisons
pour laquelle les règles écrites manuellement ne peuvent pas être facilement
remplacées par des modèles de règles apprises à partir de données, est que
les modèles d’apprentissage de règles ne sont pas capables d’apprendre des
règles aussi expressives, avec des concepts de haut niveau et une grammaire
complexe. De plus, en raison d’un manque de représentations latentes, les
méthodes d’apprentissage basées sur des règles sont moins performantes que
les réseaux neuronaux de l’état de l’art.

Dans cette thèse, nous proposons une approche de bout en bout basée
sur un réseau de neurones permettant d’apprendre des règles expressives pour
des problèmes de classification. Différents niveaux d’expressivité des règles
sont présentés et évalués sur de nouvelles données synthétiques et sur certains
ensembles de données existants.

Tout d’abord, l’apprentissage d’expressions sous la forme normale disjonc-
tive et sous la forme normale algébrique avec un réseau neuronal (modèle de
base) sont étudiées et comparées. Ces modèles sont des réseaux de neurones
composés de deux couches, chacune représentant un opérateur logique à l’aide
de poids binaire (ET et OU pour la forme normale disjonctive et ET et OU
exclusif pour la forme normale algébrique). Il en résulte que la méthode
d’apprentissage de règles sous la forme normale algébrique est moins stable

v

vi

sans apporter de gains de performance. Des pistes pour adapter le modèle de
base à différents types de données d’entrées tels que les données numériques
ou catégoriques sont ensuite proposées pour étendre le domaine d’application
du modèle. De même, pour la sortie du modèle, des directions possibles sont
présentées pour supporter des problèmes de multi-classification ou multi-label
classification.

Ensuite, des extensions pour prendre en charge les données séquentielles
sont introduites avec une approche récursive et une approche convolutive.
La première approche repose sur l’ajout d’une récursion sur la première
couche du modèle de base à la façon d’un Recurrent Neural Network (RNN).
L’architecture de ce genre de modèle conduit a des problèmes d’apprentissage
connus qui sont mis en avant dans les résultats. La seconde approche consiste
à utiliser le modèle de base comme un filtre dans une architecture convolutive
interpretable. Cette approche permet de découvrir des motifs séquentiels de
différentes natures en même temps que les règles de classification. Des con-
traintes dynamiques sont appliquées pendant l’apprentissage pour optimiser
la complexité et la qualité des règles.

Enfin, le modèle est étendu pour apprendre des règles plus expressives
avec des fonctions d’agrégation prédéfinies et des règles de grammaire com-
plexes. Pour ce faire, le modèle proposé est plus profond et est construit
en connectant différents blocs neuronaux d’apprentissage de règles présentés
précédemment. La grammaire des règles pouvant être représentées, se rap-
proche de celle disponible aux utilisateurs de BRMS. Dans un premier temps,
une solution pour apprendre des règles avec des agrégats temporels prédéfinis
est présentée. Cette solution est ensuite étendue avec un support de plusieurs
filtres et de plusieurs types de motifs séquentiels. Ces changements im-
pliquent une augmentation des dimensions du modèle qui conduisent à des
difficultés d’apprentissage. Celles-ci sont traitées via de nouvelles proposi-
tions d’implémentation pour les couches neuronales du modèle de base. À
notre connaissance, il n’existe aucun modèle capable d’apprendre des règles
de classification aussi expressives dans la littérature.

Acknowledgments

I would like to express my deepest gratitude to my supervisors François Fages,
Philippe Bonnard, Shubham Gupta and Remy Kusters for their guidance and
constructive feedback during this PhD project.

François, thank you very much for your academic supervision, your en-
couragement, your reactivity in all circumstances and for accepting and then
supporting the direction the project took after the first year with a neural
approach.

Philippe, thank you so much for all these years we have worked together,
from the very first project proposal draft to this manuscript. Our discussions,
each one more interesting than the other, were crucial to help me move
forward, take a step back and get a glimpse of the range of possible directions
and applications that we could look into.

Shubham, words cannot express my gratitude to you. Your role in this
project was invaluable, from the pertinent technical discussions to the effec-
tive brainstorming sessions and your precious feedback on my written and
oral contributions. It was a pleasure to work with you and I was very lucky
to have you join the project. Thank you !

Remy, you joined the project when I needed it the most, with a challeng-
ing second year of PhD, a subject that was just getting clearer and when
time started to speed up. It was a pleasure to work on this project together,
and our discussions greatly contributed to the project progress.

I would like to express my gratitude to Johannes Fürnkranz and Céline
Hudelot for agreeing to review my thesis manuscript and for their precious
comments. I also would like to thank the members of the jury Florence
D’Alché-Buc, Claire Glanois, Siegfried Nijssen and Marc Schoenauer for eval-
uating my work and the interesting discussion that followed the presentation.
I am also grateful for Benjamin Doerr who made sure that the thesis was
going smoothly on all fronts.

I would like to extend my sincere thanks to all the people at IBM who
made this project possible: Eric, Stephane, Asma, Nicolas, and Christian of
course but also Hagen, Greger and Pierre for their role in the rule learning

vii

viii

incentive at IBM. Special thanks to Stephane for his support over the past 3
years. My colleagues from the France Lab research team, Maxence, Yusik and
Laura who I am sure will finish her thesis with flying colors. My colleagues
from the Engine team, Benoit, Catherine, Eric, Hugues, Jean Louis and
Stephane L.. And of course a special thank you to my colleagues and friends
Françoise, Shilpa and Julie for the tea breaks, fun and laughter that were
key to put every step of the PhD rollercoaster ride into perspective.

I also would like to thank my colleagues at Inria and in particular members
of the Lifeware team: Sylvain, Mathieu, former and current PhD students,
Julien, Jeremy, Elea, Sahar and Alexandre, but also Hugo, Guillaume, Henri,
Aurélien and Mélanie.

Finally, I could not have undertaken this journey without my friends,
family and their invaluable support. Thanks to Suzy, Serge, les inversens, la
team STK, le britannia and many others. Above all, thanks to my parents
and my brother for their unconditional support, and of course for all the
patience, love and immeasurable daily support, to Mathurin.

Contents

Abstract iii

Résumé v

List of Figures xiii

List of Tables xvii

Acronyms xxi

Notation xxiii

1 Introduction 1
1.1 Context . 2

1.1.1 Interpretability . 2
1.1.2 Rules and Business Rules 3
1.1.3 BRMS . 5

1.2 Motivations . 5
1.3 Running Example: Fraud Detection 6
1.4 Outline . 7

I State-of-the-Art and Preliminary Work 9

2 State-of-the-Art 11
2.1 Rule Systems . 12

2.1.1 BRMS . 12
2.1.2 Rule Language: the example of ODM 13
2.1.3 Rule Engine: the example of ODM 14

2.2 Machine Learning Basis . 18
2.3 Rule Learning . 18

2.3.1 Tree-Based Algorithms 19

ix

x CONTENTS

2.3.2 Sequential Learning . 20
2.3.3 Associative Rule Classifiers 23
2.3.4 Sequence Classification 25

2.4 Rule Learning with Neural Networks 26
2.4.1 Neuro-symbolic . 26
2.4.2 Rule Extraction from Intermediate Models 30
2.4.3 Logical Neural Structures 30

3 Expressive rules with preprocessing 33
3.1 Introduction . 34
3.2 Feature Generation . 35
3.3 Experiments . 36
3.4 Results and Discussion . 37
3.5 Conclusion . 40

II Neural-based approach 41

4 Neural-based rule learning 43
4.1 Introduction . 44
4.2 Learning DNF - Base Model RN 44

4.2.1 Architecture . 45
4.2.2 Training . 47

4.3 Learning ANF - Model RN-anf 50
4.3.1 Architecture . 52
4.3.2 Training . 53

4.4 Comparing the learning of DNF and ANF 54
4.4.1 Experiments . 54
4.4.2 Results and Discussion 55
4.4.3 Conclusion . 58

4.5 Data types . 59
4.5.1 Numerical Data . 59
4.5.2 Categorical Data . 60

4.6 Multi-classification and Multi-label Classification Problems . . 62
4.7 Conclusion . 63

5 Rule learning for sequential data 65
5.1 Introduction . 66
5.2 Recurrent Rule Neural Network (RR2N) 66

5.2.1 Architecture . 67
5.2.2 Training . 69

CONTENTS xi

5.2.3 Limitations . 69
5.2.4 Experiments . 69
5.2.5 Results and Discussion 70

5.3 Convolutional Rule Neural Network (CR2N) 71
5.3.1 Introduction . 71
5.3.2 Architecture . 72

5.3.2.1 Base Rule Model or Filter 72
5.3.2.2 Convolutional Rule Neural Network 73

5.3.3 Training . 76
5.3.4 Experiments . 79
5.3.5 Results and Discussion 80

5.4 Conclusion . 84

6 Expressive neural-based rule learning 85
6.1 Introduction . 86
6.2 Simple CR2N with Aggregates (s-CR2NA) 87

6.2.1 Architecture . 87
6.2.2 Training . 89
6.2.3 Experiments . 91
6.2.4 Results and Discussion 92

6.3 CR2N with Aggregates (CR2NA) 93
6.3.1 A First Extension . 93

6.3.1.1 Architecture 93
6.3.1.2 Training . 95
6.3.1.3 Experiments 96
6.3.1.4 Results and Discussion 96

6.3.2 Improved Models . 97
6.3.2.1 Architectures 98
6.3.2.2 Training . 99
6.3.2.3 Experiments 99
6.3.2.4 Results and Discussion 100

6.4 Conclusion . 101

7 Conclusion 103

Appendices 107
A Benchmarks proposal . 109
B Manual unit labeling of UCI datasets 111
C Context-Free Grammars . 113

xii CONTENTS

C.1 RN . 113
C.2 RN-anf . 113
C.3 RR2N . 113
C.4 CR2N . 114
C.5 s-CR2NA . 115
C.6 CR2NA . 116

D Peptides Dataset . 117
E Experimental Setting . 117
F Exploded views of the Recurrent Rule Neural Network (RR2N)117

Bibliography 119

List of Figures

2.1 Example of ruleflow. 13

2.2 Business Object Model and Action Rule. 15

2.3 BOM and XOM. 15

2.4 RetePlus mode. 16

2.5 Sequential mode. 17

2.6 Fastpath mode. 17

2.7 Example of a decision tree for financial fraud detection (“Syn-
thetic Financial Datasets For Fraud Detection”). 19

3.1 Comparison of different types of iris from iris dataset (Source:
datacamp.com). 39

4.1 Example of trained model for rule 4.2 - Dotted (plain) lines
represent masked (selected) weights. Green (red) lines repre-
sent masked (negated) weights for the NOT operation. Filled
nodes are hidden nodes. 46

4.2 Example of a trained RN-anf model for the rule if (A and B)
xor (B and C) then 1 else 0 on binary predicates A, B and
C . Plain (dotted) lines represent activated (masked) weights.
An example evaluation of the model is represented with the
filled neurons (neuron=1) for the binary input A = 1 and B = 1. 52

4.3 Average accuracies (%) and penalties Π obtained for the dif-
ferent datasets per model, along with the standard errors of
the average over the 10 executions with different weights ini-
tializations. 56

4.4 Average, min and max training loss of the different models
on all synthetic datasets during training. Area between the
min and max training loss values is filled in the corresponding
color for readability. 57

xiii

xiv LIST OF FIGURES

4.5 Example of a trained StackedOR layer on 3 categorical vari-
ables xc1 , xc2 and xc3 (xck ∈ {Ak, Bk, Ck, Dk}). For simplicity,
the truth value of xc1 = B1 is replaced by B1 for example.
Plain (dotted) lines represent activated (masked) weights. An
example evaluation of the model is represented with the filled
neurons (neuron=1) for the binary input xc1 = B1, xc2 = D2

and xc3 = A3. 61

5.1 Example of trained RR2N model - Plain (dotted) lines rep-
resent activated (masked) weights. Filled nodes are hidden
nodes. Equivalent exploded views of this example of RR2N
model are shown in Appendix F. 68

5.2 Example of a trained base rule model architecture for the rule
if (B1 and D2) or (D2 and C3) then 1 else 0 on 3 categorical
variables xc1 , xc2 and xc3 (xck ∈ {Ak, Bk, Ck, Dk}). For sim-
plicity, the truth value of xc1 = B1 is replaced by B1 for exam-
ple. Plain (dotted) lines represent activated (masked) weights.
An example evaluation of the model is represented with the
filled neurons (neuron=1) for the binary input xc1 = B1,
xc2 = D2 and xc3 = A3. 73

5.3 Example of a trained CR2N architecture. The base rule model
or filter is applied as 1D-convolutional window over the se-
quence (i.e. sliding window). The resulting boolean values are
given as input of the ConvOR layer which indicates through
its activated weights where along the sequence the expression
learned by the base model is true. The output of the Con-
vOR layer is mapped to the label of the sequence y. For local
patterns, the base model expression needs to be shifted ac-
cordingly to the ConvOR layer weights. For a real-domain
application like fraud detection, by providing meaning to B,
C and D, we could have for example if “receiving a transac-
tion of amount X”(B) is followed by “emitting a transaction of
amount X” (D) or “emitting a transaction of amount X”(D)
is followed by “closing the bank account”(C) then class=fraud. 75

5.4 Representations of key results obtained on the synthethic datasets.
Error bars represent the standard deviations over the 10 exe-
cutions with different weights initializations. 81

LIST OF FIGURES xv

6.1 Example of filter proposed to learn rules with predefined ag-
gregation functions on input xd when used with the model
presented in Figure 6.2. This example specifies min, max,
sum and product as predefined aggregation functions. 87

6.2 Base architecture of s-CR2NA model with a placeholder for
the conv layer and filter. 88

6.3 Example of filter proposed to learn rules with predefined ag-
gregation functions on input xd when used with the model
presented in Figure 6.4. Illustrated is a filter with output size 2. 94

6.4 Base architecture of CR2NA with an example of a two dimen-
sional filter. 95

6.5 Average accuracies and penalties Π obtained for the different
datasets per model, along with the standard errors of the av-
erage over the 10 executions with different weights initialization.100

1 Exploded view of RR2N model. 118
2 Flat view of RR2N model. 118

xvi LIST OF FIGURES

List of Tables

1.1 Running example object model. Fraud detection patterns will
be based on transaction and account attributes that are either
binary, numerical or categorical. We will assume the account
id possible values to be a set of unique ids. 7

2.1 Different taxonomies [Yu et al., 2023, Kautz, 2022] for the field
of Neuro-Symbolic AI illustrated with examples and contex-
tualized in the context of rule learning in italics. 29

3.1 UCI datasets [Dua and Graff, 2017] and associated number of
features F (and numerical features Fnum), instances and possi-
ble classes. Additional references : breast-wisconsin [Bennett
and Mangasarian, 1992], wine quality [Cortez et al., 2009]. . . 36

3.2 Average metrics over 10-fold cross-validation comparison with
(w/) and without (w/o) preprocessing. Weighted averaging for
f1 score. A: number of features used in rules (total number of
features). B: number of added features used in rules (number
of added features). 38

4.1 Ground truths applied on binary input features F0, . . . , F9 ∈
{0, 1}10 to generate the 8 synthetic datasets along with the
proportion of the positive class (in %), π the number of condi-
tions in the expression, π∗

DNF the number of conditions in the
simplified equivalent DNF expression and π∗

ANF the number
of conditions in the equivalent ANF expression. 54

4.2 Average accuracies (%) and penalties Π obtained for the dif-
ferent datasets, along with the unbiased standard errors of the
average over the 10 executions with different weights initial-
izations. 55

4.3 Average time per epoch measured for all experiments per model
along with standard error of the average. 58

xvii

xviii LIST OF TABLES

5.1 Ground truths applied on binary input features F0, . . . , F9 ∈
{0, 1}10 to generate 6 synthetic datasets along with the pro-
portion of the positive class (in %) and the penalty π of the
expression. 70

5.2 Metrics obtained for the different datasets, along with the
standard deviations over the 10 executions with different weight
initializations (Bal. Acc.: balanced accuracy). 70

5.3 Ground truths applied on sequences of letters (A to F) to
generate synthetic unbalanced datasets 1, 2, 3 and 4 along with
the proportion of the positive class (in %) and π, the number of
conditions in the expression. t refers to the position when the
last observation in a sequence was made. Balanced datasets
with same ground truths are generated and referred to as the
dataset number followed by the letter b (Appendix A). 79

5.4 Performance metrics obtained for the different models, window
size and pruning strategy on the peptides dataset, along with
the standard deviations over the 10 executions with different
weights initializations. (Bal. Acc.: balanced accuracy, Epoch:
best epoch). 80

6.1 Possible expressions that can be learned with different conv
layers for a filter that corresponds to the expression f(x̄d

S) > b. 89

6.2 Ground truths applied on numerical input features F0, . . . , F9 ∈
[0, 1]10 to generate the 6 synthetic datasets along with the pro-
portion of the positive class (in %) and the penalty π of the
expression. 91

6.3 Average accuracies obtained for the different models and datasets,
along with the unbiased standard errors of the average over the
10 executions with different weights initializations. 92

6.4 Average penalties Π obtained for the different models and
datasets, along with the unbiased standard errors of the aver-
age over the 10 executions with different weights initializations. 92

6.5 Ground truths applied on numerical input features F0, . . . , F9 ∈
[0, 1]10 to generate 3 additional synthetic datasets along with
the proportion of the positive class (in %) and the penalty π
of the expression. 96

6.6 Average accuracies, penalties Π and best epochs (i.e. epoch
of the best loss on validation set) obtained for the different
datasets, along with the unbiased standard errors of the aver-
ages over the 10 executions with different weights initializations. 97

LIST OF TABLES xix

6.7 Average accuracies, penalties Π and best epochs (i.e. epoch
of the best loss on validation set) obtained for the different
datasets, along with the unbiased standard errors of the aver-
ages over the 10 executions with different weights initializations. 99

1 Ground truths applied on specified input features to generate
the BCRDs along with the proportion of the positive class
(in %), π, the number of conditions in the expression, π∗

DNF

the number of conditions in the simplified equivalent DNF
expression when different from π. 110

2 Unit decomposition for all numerical features of selected UCI
datasets. uk refers to the kth unnamed unit of a dataset. . . . 112

xx LIST OF TABLES

Acronyms

AI Artificial Intelligence.
ANF Algebraic Normal Form.
ARM Association Rule Mining.
BAL Business Action Language.
BCRD Binary Classification Rule Dataset.
BNN Binary Neural Network.
BOM Business Object Model.
BRMS Business Rule Management Systems.
CNN Convolutional Neural Network.
CR2N Convolutional Rule Neural Network.
CR2NA Convolutional Rule Neural Network

with Aggregates.
CR2NA-lse CR2NA with LSE implementation.
CR2NA-soft CR2NA with Softmax implementa-

tion.
DNF Disjunctive Normal Form.
HMM Hidden Markov Model.
LLM Large Language Model.
LSE LogSumExp.
LSTM Long-Short Term Memory.
LTL Linear Temporal Logic.
MDL Minimum Description Length.
NLP Natural Language Processing.
ODM Operational Decision Manager.
RN Base Rule Network.
RN-anf ANF Rule Network.
RNN Recurrent Neural Network.
RR2N Recurrent Rule Neural Network.
s-CR2NA Simple CR2NA.
XAI Explainable AI.
XOM Execution Object Model.

xxi

xxii Acronyms

Notation

∧ Logical AND operator.
∨ Logical OR operator.
¬ Logical NOT operator.
⊻ Logical XOR operator.
a A scalar (integer or real).
a A vector.
A A matrix.
A⊺ Transpose of matrix A.
1 A column vector of ones whose dimen-

sion can be inferred from the context.
a A scalar random variable.
a A vector-valued random variable.
A A matrix-valued random variable.
R The set of real numbers.
{0, 1} The set containing 0 and 1.
{0, 1, . . . , n} The set of all integers between 0 and

n.
[a, b] The real interval including a and b.
ai Element i of vector a, with indexing

starting at 1.
Ai,j Element i, j of matrix A.
a ∼ P Random variable a has distribution P .

σ(x) Logistic sigmoid,
1

1 + exp(−x)
.

log x Natural logarithm of x.
⊙ Hadamard product.
diag(A) Main diagonal of a matrix A.

xxiii

xxiv Notation

Chapter 1

Introduction

Contents
1.1 Context . 2

1.1.1 Interpretability . 2

1.1.2 Rules and Business Rules 3

1.1.3 BRMS . 5

1.2 Motivations . 5

1.3 Running Example: Fraud Detection 6

1.4 Outline . 7

1

2 CHAPTER 1. INTRODUCTION

1.1 Context

With the growth of machine learning in the past years due to the newly
available computational power combined with a growing number of accessible
datasets, improving the quality of learned predictive models has been an
important research interest. Today, impressive models are learned but can
lack transparency, interpretability and understandability characteristics that
are required and essential for numerous application fields. Those models,
and especially the ones based on neural networks, are commonly referred
to as “black boxes”. The focus of the research community is progressively
shifting towards providing an explanation for decisions a learned model takes
as well as building interpretable, understandable and transparent models
from scratch.

Rule-based systems (or rule systems) are transparent and interpretable
as the behavior of a rule system is governed by explicit rules. They provide a
structured and explicit approach to emulate human reasoning and decision-
making processes. For a few decades now, rule systems have been widely
adopted in different industrial fields. Business Rule Management Systems
(BRMS) offer an intuitive, human readable and comprehensible way to define
business rules and hide the computational aspect from the business user.

1.1.1 Interpretability

With the growth of high performance non interpretable black-box models,
an important question is raised: to what extent a model can be considered
trustworthy, especially for high-stakes decision making ? Different terms are
commonly used when referring to this problem. We clarify what we mean by
them here for further use.

Model interpretability is the ability (of the model) to present in under-
standable terms to a human [Li et al., 2021, Doshi-Velez and Kim, 2017].
Model rationale is how the model takes decisions. Interpretable models are
models where the model rationale is inherently understandable by a human.
Explanation methods (or approaches) explain or translate a model rationale.

Recently, explaining black-box models has attracted considerable research
interest under the field of Explainable AI (XAI) (or explainable ML). Ex-
planations are provided by another model (post-hoc) to explain the initial
black box model. Also through the analysis of a trained model parameters,
mechanistical interpretability methods have recently been introduced [Wang
et al., 2022, Elhage et al., 2022] and are considered in the following as part
of explanation methods as they are post-hoc methods.

However, for reliability reasons, those aposteriori approaches are not the

1.1. CONTEXT 3

solution for high stakes decision-making and more interest should be placed
on learning models that are interpretable in the first place [Rudin, 2019].
With their explicit and transparent nature, rules are therefore of great inter-
est for high-stakes decision making.

1.1.2 Rules and Business Rules

At the core of a rule system lies a collection of decision rules that consist
of conditions and associated actions. The conditions are typically expressed
using logical expressions based on predicate attributes, which evaluate the
state of the system or the input data. The actions, on the other hand, define
the system’s response based on the conditions being met.

if conditions then actions.

A particular type of rule systems, rule-based classifiers (composed of one
or more classification rules) assign a value (or a class) from a set of predefined
values to the input data on which it is applied.

The language in use in the rules, called rule language, is defined by a rule
grammar that can be formally described by a context-free grammar G.

Context-free grammar [Chomsky, 1956] A context free-grammar is a
4-tuple G = (VT , VN , S, R) where

− VT , is a finite set of terminals or terminal elements in the language that
form the alphabet of the language L.

− VN , disjoint from VT , is a finite set of non terminal elements (variables)
that define a sub-language of L. We note V = VN ∪VT , the vocabulary
of the grammar.

− S ∈ VN , is the start symbol or variable that defines the whole sentence.

− R is a finite set of rules or production rules of the form A → w with
A ∈ VN and w ∈ V ∗.

There are also 3 different types of terminal elements on the syntax level:
• reserved words, distinguished with the following style : reserved
• signs, such as for example −, ∗, ...
• other terminal elements that are defined prior to the grammar, distin-
guished with the following style: terminal

4 CHAPTER 1. INTRODUCTION

For example, for a Disjunctive Normal Form (DNF) expression as condi-
tion of a binary classification rule, the grammar G is defined by the following
values for VT , VN , S and R with conjunction and disjunction operations rep-
resented by ∧ and ∨ respectively.

VT =
{
if, then class = 1 else class = 0,∧,∨, predicate

}
VN = {rule, disjunction, conjunction}
S = {rule}

R =

rule → if disjunction then class = 1 else class = 0

disjunction → conjunction | conjunction ∨ disjunction
conjunction → predicate | predicate ∧ conjunction

In practice, in this manuscript, the production rules of the grammar of the
proposed models will be shared in the main document and the full grammars
available in Appendix (see Appendix C).

Expressivity A grammar is considered to be more expressive than others,
when it supports more possible non-logically equivalent expressions. Expres-
sivity is, thus, the quality of being expressive.

In practice, for rule systems usage by businesses, business policies and
business rules are defined below.

Business Policy Business policies are statements that are used to make
decisions. They are typically found inside application code in the form of
if-then statements.

Business Rule A business rule is a declarative statement that applies to
a business. It is based on a business policies vocabulary and written in
understandable natural language.

Here is an example of business policy: Customers who spend a lot of
money in a single transaction need an upgrade. One implementation of this
business policy could be the following business rule:

if the customer’s category is Gold
and the value of the customer’s shopping cart is more than 1500

then change the customer’s category to Platinum

A complete business logic can be defined with a set of rules (called ruleset)
to implement any business policy. Business rules are managed in Business
Rule Management Systems (BRMS).

1.2. MOTIVATIONS 5

1.1.3 BRMS

The information provided in this section is based on IBM Operational Deci-
sion Manager documentation [IBM, 2021].

Business Rules Management Systems (BRMS), such as IBM Operational
Decision Manager (ODM), provide a business-user-friendly solution for au-
thoring, orchestrating, testing, deploying, and executing business rules. Us-
ing a human readable language facilitates translation of decision-making and
business strategies into an executable project without requiring any pro-
gramming skills. Additionally, various tools are provided to help guarantee
a proper definition, validity, and solidity of a system. We can mention for
example simulations features to test multiples scenarios.

BRMS are based on the principle that business policies should be ex-
tracted from application code. By removing the business policy implemen-
tation from the application code and implementing business policies with
externalized business rules in a BRMS, application code and business logic
become independent and a business policy change will not require changes
in application code.

1.2 Motivations

Data is being generated at an unprecedented rate, and without the ability to
extract meaningful and interpretable information from it, data is significantly
less valuable.

Extracting expressive rules from data could provide new and relevant
business rules to the BRMS user but also more generally an interpretable
method for high-stakes decision-making where trust is provided by trans-
parency and interpretability.

State-of-the-art rule-based models currently have great difficulties learn-
ing complex data patterns. Rule-based approaches typically tend to overfit
complex patterns because of the inappropriate simplicity of the existing rule
languages (limited expressivity [Fürnkranz and Kliegr, 2015]). The gram-
mars of the learned conditions are usually comparable to the grammar of
DNF, that is disjunction of conjunctions over binary attributes. This is
very limited compared to basic BRMS grammars which include support for
numerical data, aggregations, sequential dependencies... As a consequence,
the high dimensionality of overfitted models makes human understanding of
the model much harder. We believe that having models with more com-
plex (still interpretable) possible data representations will enhance both the
interpretability and accuracy of rule models.

6 CHAPTER 1. INTRODUCTION

Different approaches have been used to extend the rule grammar of learned
rules or to find complex symbolic expressions to model data. Neuro-symbolic
approaches by combining logical formulae and neural networks can model
complex functions [Udrescu and Tegmark, 2020] or provide 1-to-1 mapping
with logical formulae [Riegel et al., 2020]. For sequential covering rule learn-
ing algorithms (logical methods), like RIPPER [Cohen, 1995] for instance,
numerical attributes are required to be converted into nominal attributes.
Discretization is usually applied as a preprocessing step and impacts the
final rules expressivity [Stańczyk et al., 2020]. For decision tree learning al-
gorithms like C4.5 and C5.0 [Quinlan, 1993, Quinlan, 1996], continuous and
discrete attributes are handled and extensions have been proposed to learn
temporal and causal rules [Karimi and Hamilton, 2010].

Support for time-dependent and sequential data is crucial for many appli-
cations in machine learning. Time series data, such as financial transactions,
weather patterns, or sensor readings, as well as sequential data such as DNA
sequences, are prevalent in real-world scenarios. The ability to analyze and
predict trends in such data in an interpretable manner is of great interest.

To address the issue of rule expressivity and grammar limitations, we will
first consider the use of preprocessing and then primarily focus on the usage
of interpretable rule-based neural networks.

1.3 Running Example: Fraud Detection

To illustrate the propositions made in this thesis, we will provide examples
based on a fraud detection use case. Fraud detection is widely dealt with rule
systems for transparency and interpretability reasons (explanations required
for the final user) but also because experts can design rules based on their
knowledge of the current regulations, and common fraud schemes. Fraud
detection is an intuitive and relatable problem that is easy to grasp. It
involves complex patterns that are great to demonstrate the capabilities of
the proposed models.

However our goal in this thesis is not to learn rules exclusively for fraud
detection thus the characteristics specific to this example such as highly
unbalanced datasets are not studied here. Instead, it is used as a motivating
example that has some shared characteristics with other applications. This
thesis aims to provide insights and potential solutions for any decision making
problems where learning rules is of interest. We can mention for instance loan
approval, churn prediction or disease diagnosis.

It is important to note that the examples of fraud patterns used in the
manuscript are purely hypothetical. They do not represent real-world fraud

1.4. OUTLINE 7

Account

id category the id of the account
isNewAccount binary the customer’s account was recently created
accountBalance number the balance of the account
accountCountry category the country of the account

Transaction

isDestAccountSusp binary the destination account is labeled as suspicious
isHighRiskCountry binary the transaction occurs in a high-risk country
amount number the amount of the transaction
oriAccount Account the origin account of the transaction
destAccount Account the destination account of the transaction

Table 1.1: Running example object model. Fraud detection patterns will be
based on transaction and account attributes that are either binary, numerical
or categorical. We will assume the account id possible values to be a set of
unique ids.

patterns or real data. The object model on which the examples will be based
on is presented in Table 1.1.

1.4 Outline

This thesis presents a novel approach for learning expressive rules using neu-
ral networks. It is organized into two main parts. Part one consists of a
review of the state of the art and some preliminary work around the use of a
preprocessing approach to learn more expressive rules. Part two of the thesis
is comprised of three chapters presenting models of increasing complexity
evaluated on new synthetic benchmarks. The first one, chapter three, intro-
duces the base model: a neural-based rule learning model and its use with
binary, numerical and categorical data. Chapter four extends this model to
sequential data, introducing a neural-based rule learning model for temporal
data. Finally, chapter five presents an extension with a deeper architecture
that incorporates patterns with predefined aggregation functions, allowing
for the extraction of more complex knowledge from the data.

Overall, the thesis aims to demonstrate the potential of neural-based rule
learning models as a powerful tool for end-to-end expressive classification
rule learning.

8 CHAPTER 1. INTRODUCTION

Part I

State-of-the-Art and
Preliminary Work

9

Chapter 2

State-of-the-Art

Contents
2.1 Rule Systems . 12

2.1.1 BRMS . 12

2.1.2 Rule Language: the example of ODM 13

2.1.3 Rule Engine: the example of ODM 14

2.2 Machine Learning Basis 18

2.3 Rule Learning . 18

2.3.1 Tree-Based Algorithms 19

2.3.2 Sequential Learning 20

2.3.3 Associative Rule Classifiers 23

2.3.4 Sequence Classification 25

2.4 Rule Learning with Neural Networks 26

2.4.1 Neuro-symbolic . 26

2.4.2 Rule Extraction from Intermediate Models 30

2.4.3 Logical Neural Structures 30

11

12 CHAPTER 2. STATE-OF-THE-ART

2.1 Rule Systems

The information provided in this section is based on IBM Operational Deci-
sion Manager documentation [IBM, 2021].

2.1.1 BRMS

As introduced in the previous chapter, Business Rules Management Systems
(BRMS) provide a solution for companies to adapt their business policies
and decision-making strategy in a flexible environment. A complete business
logic can be defined with a set of rules (called ruleset) to implement any
business policy. Thanks to the technical and business separation, business
logic can be packaged and integrated into the application code as a decision
service. Both live independently: a business policy change will not require
changes in application code.

BRMS have numerous operational and strategic benefits inherited from
this separation.

• Focus on decision making: BRMS are code-free solutions that prevent
business users from relying on IT experts and technical implementation.
They can focus on what they are experts in: decision making.

• Monitoring decisions.
• Ability to deal with change: changes are trackable, and lifecycle is made
easier with project versioning.

• Risk management: By automating processes in an externalized, unam-
biguous, monitored, and tested environment the risk is minimized. The
ability to monitor the historical modifications of the models as well as
the coordination facility between multiple experts highly contribute to
that matter.

Specific features make BRMS appropriate for business users, here we list
some of the key business-user-friendly features.

User-friendly interface BRMS provide comprehensible graphical interface
designed especially for the business user as well as intelligent comple-
tion and integrated helping tools.

Multiple rule definition methods There are multiple types of rules to
define business rules. Action rules and decision tables are the most
common ones.

Rule orchestration To specify how the rules are related to one another,
BRMS provide a structure called ruleflow. It provides the ability to
orchestrate a complex problem into tasks and subtasks in a tree archi-
tecture.

2.1. RULE SYSTEMS 13

Figure 2.1: Example of ruleflow.

Testing tools Ruleset testing solutions are available to validate the correct
behaviour of a rule project.

Lifecycle management and Execution Server Rule project can be mon-
itored and deployed to a server, performances analysed and problems
troubleshooted via intuitive interfaces.

While all those features are crucial to a BRMS, the rule language and the
rule engine are its main components.

2.1.2 Rule Language: the example of ODM

Each BRMS has its own environment and therefore a different rule language.
In this section, we will focus on the example of IBM Operational Decision
Manager (ODM). There are three different rule languages in ODM:

• Business Action Language (BAL), which provides a simple if-then syn-
tax to write business rules.

• ILOG Rule Language (IRL), which is similar to Java [Arnold et al.,
2005] code, and used for technical rules with complex loops in action
part of the rules.

• Advanced Rule Language (ARL), which is a read-only rule language
that is similar in syntax to Java 7 and used by the decision engine
for execution. So for each BAL expression there is a generated ARL
equivalent expression.

The rule language to build and write rules and thus the one to consider for
rule learning is BAL. It is a structured human-readable language which is
very close to natural language as shown in Equation 2.1.

14 CHAPTER 2. STATE-OF-THE-ART

if the amount of ‘the loan’ is more than 1,000,000
then add “The loan cannot exceed 1,000,000” to the messages of ‘the loan’;

reject ‘the loan’ ;
(2.1)

BAL provides a simple if-then-else syntax (Equation 2.1) as well as a defi-
nition, aggregation, and complex conditions construction syntax. To provide
a complete statement, an action rule can consist of four parts: definitions, if,
then, and else. The example in Equation 2.2 shows the four parts in an action
rule with more complex conditions. For more details on the BAL grammar
refer to IBM documentation [IBM, 2021].

definitions

set applicant to a customer where the category of this customer is Gold
if the value of the applicant’s shopping cart is more than $100

or there are 10 customers where the category of each customer is Gold
then apply a 15% discount
else apply a 5% discount

(2.2)
The language combined with a defined vocabulary is used to write busi-

ness rules. This vocabulary is called Business Object Model (BOM). It is an
object model that contains classes and methods a rule can act on. In practice,
it is very similar to a Java object model. It consists of classes grouped into
packages. Each class has a set of attributes, methods and, possibly, other
nested classes. BOM is illustrated in Figure 2.2.

BOM has a corresponding executable model called Execution Object
Model (XOM) defined by a BOM-to-XOM mapping illustrated in Figure 2.3.
Every BOM element must have a corresponding XOM element. This map-
ping is the key to having a natural-language-based interaction with the user
and still have an executable model behind.

Once rules are written, an engine is required to specify how the rules need
to be executed. The rule engine is the second key component of a BRMS.

2.1.3 Rule Engine: the example of ODM

Each BRMS has its own rule execution solutions. The execution mode af-
fects which rules are executed and in which order. ODM provides multiple
engine execution modes: RetePlus, Sequential and Fastpath modes. They
all have benefits and drawbacks which makes them more or less adapted for
a particular rule task. Here we list how they operate.

2.1. RULE SYSTEMS 15

Figure 2.2: Business Object Model and Action Rule.

Figure 2.3: BOM and XOM.

RetePlus mode [IBM, 2021] RetePlus mode is an extension of the Rete
algorithm [Forgy, 1982] and operates as follows.

1. The rule engine matches the conditions of the rules in the ruleset
against the objects in working memory as shown in Figure 2.4. Dur-
ing the pattern matching process, RetePlus creates a network based on
semantic relationships between rule condition tests.

16 CHAPTER 2. STATE-OF-THE-ART

Figure 2.4: RetePlus mode.

2. For each match, a rule instance is created and put into the agenda.
Then, based on some ordering principles, the agenda selects the rule
instance to be run.

3. When the rule instance is executed, the rule action is executed. This
action modifies the working memory in the following way

• By adding an object to the working memory.
• By removing an object from the working memory.
• By modifying the attributes of an existing object.

4. The process is repeated until no more rule instances are left in the
agenda.

Sequential mode [IBM, 2021] In sequential mode, rules are stateless,
and executed in ruleset order like a stack as shown in Figure 2.5. There
is no reevaluation of a rule, so conditions with aggregations are not sup-
ported (there is at least one element in a condition for example). However,
workarounds exist using the working memory.

The sequential algorithm operates as follows:

1. The rule engine does pattern matching on input ruleset parameters
and on the conditions defined on the collections of objects in working
memory.

2. For each match, a rule instance is created and immediately run. When
a rule instance is run, it sets the value of an attribute or an output
ruleset parameter.

Fastpath mode (default mode) [IBM, 2021] The Fastpath algorithm
is illustrated in Figure 2.6 and operates as follows:

2.1. RULE SYSTEMS 17

Figure 2.5: Sequential mode.

Figure 2.6: Fastpath mode.

1. The rule engine uses a working memory that references application
objects or ruleset parameters. Fastpath does the pattern matching
process, as in RetePlus, by creating a tree based on semantic relations
between rule condition tests.

2. For each match, a rule instance is created and inserted in the agenda.
3. After the pattern matching process, the rule instances in the agenda

are executed.
4. The rule engine stops after the rule instances have been executed. This

behaviour also depends on the exit criteria of the rule task. The pattern
matching process is not repeated.

To conclude, in this section, we described the basics of how a BRMS works
thanks to its environment and main components that are its rule language

18 CHAPTER 2. STATE-OF-THE-ART

and rule engine. While BRMS suit the businesses needs in terms of flexibility,
efficiency and various data types support, in a world where machine learning
is solving the most complex problems and data is everywhere, a feature is
highly requested: learning business rules from data. Rules are commonly
written by business users. However, learning rules from data brings a new
dimension to rule systems: expertise combined with learning abilities.

2.2 Machine Learning Basis

In this section, we define some key machine learning concepts that are re-
quired for further reading.

Machine learning algorithms aim to create a predictive or decision-making
model by analyzing a dataset. The model is designed to make predictions or
decisions based on new input data. A dataset is characterized by attributes
and a set of instances. An instance assigns a value to each one of the at-
tributes. An instance is commonly also referred to as an observation, an
example, or an item. Depending on the properties of the dataset, it can
be used for different learning tasks and scenarios. For a supervised learning
scenario, - i.e. when learning a model that maps an input to an output based
on example of input-output pairs - one of the attributes is a target or out-
put attribute. Attributes that are not target attribute are commonly called
features. For an unsupervised learning scenario, there is no target attribute
in the dataset. For a classification learning task, the goal is to assign a cat-
egory to an instance whereas for a regression learning task the outcome is
continuous.

In the following, we will focus on supervised classification learning prob-
lems. In that context, the target attribute is often called class attribute or
label.

2.3 Rule Learning

In machine learning, rule learning is a procedure of generating rules from
either existing rules or models and/or data. Rule learning includes various
types of inferences, such as inductive, deductive, and analogical reasoning,
though rule induction is the most common one [Wojtusiak, 2012].

Rule induction, or inductive rule learning, is the process of automatically
generating a set of rules (a ruleset) from a dataset. The learned ruleset is a
model that is intended to be both readable and comprehensible by a human,
and that can be executed to make a prediction or a decision.

2.3. RULE LEARNING 19

Thanks to the specific features of a ruleset model, rule learning is con-
sidered for two applications: learning and explaining. They come hand in
hand as a learned ruleset is explainable, but rule learning can also be used to
explain a decision made by a trained model. This idea was studied by [Sushil
et al., 2018] with proposition of different approaches to induce if-then-else
rules to explain predictions of supervised models.

In the following, main state-of-the-art rule induction algorithms are pre-
sented. As explained by [Fürnkranz et al., 2012], there are two main families
of methods to induce rulesets from training data: extracting rules from a de-
cision tree (CART [Breiman et al., 1984], C4.5 [Quinlan, 1993]) or sequential
covering that is learning rules directly from data (CN2 [Clark and Niblett,
1989], RIPPERk [Cohen, 1995]). Both are detailed in the following subsec-
tions. We also add another family of method of interest: neural-based rule
learning, which we will study later in Section 2.4.

In this document, we will focus on rule induction. Thus we will use rule
learning and rule induction interchangeably.

2.3.1 Tree-Based Algorithms

Decision trees are often used to find an optimal solution of a problem. A
decision tree is a recursive structure made of labeled leaf nodes or test nodes
that have two or more outcomes. In the following example (Figure 2.7), leaf
nodes are represented by an ellipse and test nodes by a rectangle.

old balance destination = 0

type = TRANSFERT

old balance origin > 12000

fraudulent

True

genuine

False

True

genuine

False

True

old balance origin
−amount

− new balance origin = 0

new balance origin = 0

fraudulent

True

genuine

False

True

genuine

False

False

Figure 2.7: Example of a decision tree for financial fraud detection (“Syn-
thetic Financial Datasets For Fraud Detection”).

Decision tree learners follow a divide and conquer paradigm where the
idea is to decompose the problem into similar and simpler subproblems and

20 CHAPTER 2. STATE-OF-THE-ART

combine the intermediate solutions to build the final one.
When building a decision tree, the main concern is how to choose the

value of a dividing node, that could also be referred to as a test node, a
condition, or a discriminator.

Any decision tree can be converted into a set of classification rules. A
path in a tree, called decision path, can be written as an if-then rule where
the outcome of the rule is the leaf node, and the conditions are a conjunction
of decision nodes encountered. In the example Figure 2.7, one path can be
written as the following rule (Equation 2.3).

if old balance destination = 0
and not (type = TRANSFERT)

then transaction is genuine
(2.3)

To describe the entire decision tree in the same manner, as there are 6
different paths, we would need to write 6 rules. However, if we look more
closely into the decision tree, different approaches can be taken to simplify
the ruleset. Rules could be ordered and a default class defined, for example.
We could also introduce an else clause and the use of disjunctions. One
solution is presented in Equation 2.4. A complete chapter in Quinlan’s C4.5
book [Quinlan, 1993] is dedicated to the study of converting a decision tree
into rules.

if old balance destination = 0
and type = TRANSFERT
and old balance origin > 12000

or not (old balance destination = 0)
and old balance origin - amount - new balance origin = 0
and new balance origin = 0

then transaction is fraudulent
else transaction is genuine

(2.4)
Multiple methods have been proposed to induce decision trees from data

such as CART (Classification And Regression Trees) [Breiman et al., 1984] or
C4.5 [Quinlan, 1993]. C4.5 is an algorithm proposed by Quinlan to generate
decision trees [Quinlan, 1993]. In this algorithm the quality evaluation of a
condition or test is based on information theory with information gain and
a gain ratio criterion.

2.3.2 Sequential Learning

Sequential learning (not to be mistaken with learning from sequential data),
sequential covering and separate-and-conquer strategy all refer to the same

2.3. RULE LEARNING 21

idea: learning a disjunctive set of rules one rule at a time. By analogy with
decision trees “divide and conquer” paradigm, some rule induction algorithms
are based on a similar idea called “separate and conquer”. A separate and
conquer algorithm searches for a rule that describes a part of the training
instances, separates the data and, with a recursive approach, it conquers all
the remaining examples not covered by any new rules until there is no more
training data. Multiple induction algorithms are based on this strategy.

CN2 for example is a reference model based on this strategy [Clark and
Niblett, 1989]. Algorithms are also intended for specific input data. For ex-
ample, FOIL (First-Order Inductive Learner) [Quinlan, 1993] is a sequential
learning model that learns Horn clauses from relational data.

One of the current state-of-the-art reference algorithm is RIPPERk (also
refereed to as RIPPER) [Cohen, 1995]. It also follows the “separate and
conquer” strategy. RIPPER is an algorithm presented in 1995 by W. Cohen.
It is an improved version of the IREP (Incremental Reduced Error Prun-
ing) algorithm presented in Algorithm 1 for two classes learning problems
[Fürnkranz and Widmer, 1996].

Algorithm 1: IREP algorithm for a two-class learning problem

Input: Pos, Positive elements in a dataset
Input: Neg, Negative elements in a dataset
Output: RuleSet, Set of rules learned
RuleSet empty;
while Pos not empty do

Split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos,
PruneNeg);
Rule = GrowRule(GrowPos, GrowNeg);
Rule = PruneRule(Rule, PrunePos, PruneNeg);
if error rate of Rule on (PrunePos, PruneNeg) > 50% then

return RuleSet;
else

Add Rule to RuleSet;
Remove examples covered by Rule from (Pos,Neg)

end

end
Return RuleSet

In Algorithm 1, GrowRule refers to the “growing of a rule” which is im-
plemented by [Cohen, 1995] such that it will “repeatedly add conditions that
maximizes FOIL information gain criterion until the rule covers no negative

22 CHAPTER 2. STATE-OF-THE-ART

examples from the growing dataset”. FOIL information gain is defined in
Equation 2.5.

Gfoil(rule0, rule1) = p1(log2(
p1

p1 + n1

)− log2(
p0

p0 + n0

)) (2.5)

where: rule0 = rule before adding new condition
rule1 = rule0 with new condition
p0, n0 = number of positive (and negative) elements covered by rule0
p1, n1 = number of positive (and negative) elements covered by rule1

In Algorithm 1, PruneRule consists in “deleting any final sequence of
conditions from the rule, and, choosing, the deletion that maximizes” the
following function (Equation 2.6).

cost(Rule, PrunePos, PruneNeg) =
p+ (N − n)

P +N
(2.6)

where: p, n = number of positive (and negative) elements in PrunePos
(PruneNeg) covered by Rule

P,N = number of positive (and negative) elements in PrunePos
(PruneNeg)

As explained in [Cohen, 1995], this process is repeated until the value of
the cost function can not be improved by deletion of conditions.

Three modifications are made to IREP algorithm to create RIPPER.

1. Metric used in pruning phase changed from cost function described
in Equation 2.6 to cost function defined in Equation 2.7 because first
cost function tends to prefer more coverage rather than accuracy.

cost(Rule, PrunePos, PruneNeg) =
p− n

p+ n
(2.7)

2. Stopping condition is too restrictive in IREP and often stops too
soon for moderate size datasets and low coverage rules. Minimum
Description Length (MDL) is introduced, and the following condition
(Equation 2.8) replaces the former error-rate-based condition.

DL of RuleSet > d+MDL obtained so far (2.8)

MDL refers to the number of bits needed to encode theory data from
which it was learned. Common value for d is 64 bits.

2.3. RULE LEARNING 23

3. Post processing to optimize the rules is added to minimize error
on complete ruleset. For each rule in the ruleset, two new rules are
learned. The first one is called replacement rule, and it is learned from
scratch with the data covered by the original rule. The second one is
call revision rule, it is learned starting from the original rule and by
adding new conditions with the data covered by the original rule. Both
rule creations follow the same growing and pruning approach but this
time pruning aims to minimize error on the entire associated ruleset.
Only the rule with the lowest MDL between original, replacement and
revision rules, is kept as shown in Algorithm 2. This post-processing of
the ruleset can be done k times, which is referred to by the algorithm
full name RIPPERk.

Algorithm 2: RIPPERk Ruleset post-processing

for k times do
foreach rule Ri in ruleset do

create Replacement rule R
′
i → ruleset

′

create Revision rule R
′′
i → ruleset

′′

choose Ri, R
′
i or R

′′
i :

Ri = rule associated to ruleset with lowest MDL
Update ruleset

end

end

We detailed IREP and RIPPER algorithms to point out how complicated
it is to grasp how they deal with the quality and rule complexity tradeoff.
Although they try to optimize this tradeoff, pruning phase, stopping condi-
tion combined with post processing for RIPPER make it difficult for the user
to configure the learning to obtain more rules for example.

Interesting approaches have been proposed to improve RIPPER perfor-
mances. A fuzzy rule-based classifier called FURIA was introduced in 2009
in which decision boundaries are modeled in a more flexible way [Hühn and
Hüllermeier, 2009]. In that example, improvements come with an increase in
runtime.

2.3.3 Associative Rule Classifiers

Another approach to classification rule learning is to combine Association
Rule Mining (ARM) with classification.

24 CHAPTER 2. STATE-OF-THE-ART

In association rule learning, rules are defined as an implication of the
form X → Y where X and Y are sets of binary attributes, also called items.
To select the best rules in a learning problem, constraints need to be defined
to shrink the space of all possible rules. Those constraints are commonly
minimum support and minimum confidence. Support of X is the proportion
of instances in the dataset containing all items of X. It indicates how frequent
X appears in the data. Confidence of a rule X → Y is the proportion of
instances in the dataset containing all items of X and all items of Y. It
indicates how frequent the rule X → Y is true in the dataset.

The first associative rule classifier (ARC) algorithm was introduced by
[Liu et al., 1998] with CBA algorithm (Classification Based on Associations)
which generates a complete set of CARs (Class Association Rules) [Liu et al.,
1998]. It combines a state-of the-art association rule learning algorithm Apri-
ori [Agrawal and Srikant, 1994] with some interesting ideas taken from both
research fields (i.e. ARM and classification rule learning) to provide better
results than C4.5. One presented explanation to this result is that “global”
best rules are created rather than “local” ones in a sequential covering ap-
proach. “Local” best rules are according to Liu et al. more likely to be
overfitting. This improvement can be explained by the ability of the model
to express patterns or expressions (expressiveness) that are relevant for the
data considered.

Multiple propositions have been made to improve CBA algorithm. ACIM
(Associative Classification based on Incremental Mining) for example, re-
duces computational time while maintaining comparable accuracies [Alnababteh
et al., 2014].

CPAR (Classification based on Predictive Association Rules) comes with
interesting characteristics [Yin and Han, 2003]. In comparison to RIPPER
that evaluates all candidates rules, it uses a more efficient greedy approach
for generation. Additionally, repeated calculations are limited with dynamic
programming and multiples rules are built simultaneously.

All previously mentioned associative classification algorithms share the
common requirement presented above: thresholds (commonly based on con-
fidence and support) need to be provided by the user for rule mining. Setting
these values is a challenging task as it differs for different applications.

Recently, a bi-level associative classifier using automatic learning on rules
called BiLevCSS tried to tackle this problem and outperforms state-of-the-
art classifiers (in terms of accuracy) [Sood et al., 2020]. It is based on two
learning stages. First an associative rule classifier is built based on statisti-
cally significant rules which is highly inspired by SigDirect algorithm [Li and
Zaiane, 2017]. This classifier is then followed by a supervised learning clas-
sifier in the second stage of learning. Multiple classifiers are considered for

2.3. RULE LEARNING 25

this second step, but we can highlight the use of RIPPER for interpretability
reasons.

2.3.4 Sequence Classification

Rule learning can also be applied to the problem of classifying sequences.
Sequence classification has been an important research problem in machine
learning because of the wide range of applications from genomics to any time
series data. While there are now impressive black-box models capable of
solving this problem with high accuracy, interpretable methods are still of
great interest.

A sequence is an ordered list of events from which several subtypes can
be defined [Xing et al., 2010].

• a simple symbolic sequence is an ordered list of the symbols from an
alphabet of symbols (a DNA sequence for example),

• a complex symbolic sequence is an ordered list of vectors. Each vector
is a subset of an alphabet. For example, a set of items bought by a
customer over a certain amount of time,

• a simple time series is a sequence of real values ordered in timestamp
ascending order,

• a multivariate time series is a sequence of numerical vectors.
In the context of rule learning on sequential data all of the above can be
considered but in practice we have mostly found work on simple symbolic
sequences in the literature .

There are methods for instance that first extract interesting patterns
before building a classifier [Zhou et al., 2013, Zhou et al., 2015]. Many
different types of patterns can be defined but as pointed out by [Zhou et al.,
2015], common sequence classifiers are either great for datasets where ‘the
class of a sequence is determined by certain items that co-occur within it,
though not always in the same order’ or where ‘the class of a sequence is
determined by items that occur in the sequence almost always in exactly the
same order’. This observation highlights the limitation in terms of sequential
expressivity of the existing methods.

MiSeRe was introduced to tackle two other limitations of pattern-based
methods for classification problems on sequential data, which are parame-
ter tuning and robustness [Egho et al., 2015]. However it is also a two-step
method where any classifier could be used after the patterns have been ex-
tracted.

Learning from sequential data comes with multiples challenges. First,
capturing the temporal dependencies in the data is not trivial, especially for
long sequences, when dependencies are complex or with long-term correla-

26 CHAPTER 2. STATE-OF-THE-ART

tions. On that note, an interesting non interpretable approach for capturing
long-term correlations was recently introduced based on a rotation layer and
an innovative data representation [Khalitov et al., 2023]. Then, the dimen-
sionality of the data even after having extracted potential sequential features
can still be very high. Finally, common machine learning methods work with
fixed length input size i.e. fixed sequence length, when in practice sequential
data often comes in variable-length sequences.

To conclude, in this section, we introduced state-of-the-art rule learning
methods that have been extensively used and studied in the past. While they
address the problem of learning logical operations like disjunctions, conjunc-
tions or implications or the learning on symbolic sequences, the grammar of
the learned rules is very limited compared to the grammar of any BRMS.

2.4 Rule Learning with Neural Networks

In this section, we will start by studying different approaches combining logi-
cal and neural aspects of learning in neuro-symbolic methods and identifying
those that are relevant for rule learning. Then, we will focus on two cate-
gories. The first one, rule extraction, consists in extracting rules from trained
neural networks. The second one, a specific sub-section of the literature that
is more relevant to this thesis, is related to enforcing logical structures in a
neural network architecture to make the models equivalent to logical models.

2.4.1 Neuro-symbolic

Neuro-symbolic Artificial Intelligence (AI) combines neural and symbolic ar-
chitectures with the aim of benefiting from both domain. Recently, a lot of
research interest has been focused on this topic, partly because more and
more researchers believe that a human-level AI requires symbolic reason-
ing but also for robustness, reliability or interpretability [Marcus and Davis,
2019, Sarker et al., 2021, d’Avila Garcez et al., 2019].

Different surveys have recently been published to clarify the challenges,
existing methods, applications and future directions of the broad field of
neuro-symbolic AI [d’Avila Garcez and Lamb, 2023, Yu et al., 2023]. Dif-
ferent taxonomies are presented and their complexity highlight the variety
of the different existing approaches. For instance, [Kautz, 2022] proposed to
divide neuro-symbolic approaches into 6 categories.

The first one refers to ‘standard deep learning’ as symbols can serve as
both the input and the output of neural networks. For instance, in the con-
text of natural language processing, the symbolic inputs are sequences of

2.4. RULE LEARNING WITH NEURAL NETWORKS 27

words that can be converted into vectors with one-hot encoding for exam-
ple. For the output of the neural network, depending of the task, there are
scenarios where the output can be symbolic. For example, again in the con-
text of natural language processing, outputs can be sequences of symbols for
text generation or symbolic category for sentiment analysis. This category
is very broad and somewhat apart, because in most cases, when the field of
neuro-symbolic AI is mentioned, it is to differentiate it from ‘standard deep
learning’ and thus it is not this type that is being referred to.

The second category gathers systems that use neural-based techniques
within a symbolic problem solver (like Monte-Carlo Tree Search algorithm).
This is the case for AlphaGo for example where ‘value networks’ (evalu-
ate board positions) and ‘policy networks’ (select moves) are combined in a
Monte-Carlo Tree Search algorithm that selects actions by lookahead search
[Silver et al., 2016].

The third type is for neural networks that transform non-symbolic input
into a symbolic data structure before it is given to symbolic reasoning model
i.e. input/output interactions between the two modules. DeepProbLog for
instance, in the context of probabilistic logic programming, is based on this
idea with neural networks being predicates that are then called by the prob-
abilistic logic program [Manhaeve et al., 2018].

In the fourth category, systems have the particularity to have the sym-
bolic knowledge compiled in the training of the neural network i.e. symbolic
aspects are translated into the architecture of the network. In this category,
we find differentiable fuzzy logic where weights are constrained to act as logic
operators like AND and OR [Riegel et al., 2020, Qiao et al., 2021] but also
neural approaches addressing symbolic problems like performing calculations
[Lample and Charton, 2019]. In the latter, a transformer is trained for func-
tion integration and for solving differential equations on large datasets of
equations, with their associated solutions.

The fifth type groups systems that use soft-constraints on the network’s
loss function to apply a symbolic logic rule constraint on the learned embed-
ding [Diligenti et al., 2017, van Krieken et al., 2022, Petersen et al., 2022].
Prior background knowledge when described in logic rules can for instance
be used with this technique to help training with unlabeled and/or noisy
data. In that context different fuzzy logic operators have been compared
[van Krieken et al., 2022] and it highlighted that some are not suitable in
differentiable learning setting.

And finally for the sixth category, the idea is to ‘embed a symbolic rea-
soning engine inside a neural engine’, as some of the fourth type systems do,
but with the additional goal of ‘enabling super-neuro and combinatorial rea-
soning’ according to [Kautz, 2022]. It is based on the distinction between two

28 CHAPTER 2. STATE-OF-THE-ART

types of human thinking defined by [Kahneman, 2011]: slow and fast think-
ing. The latter is very quick, effortless, involuntary, automatic and based on
similarity, like for recognizing faces, and humans are very good at it. The
other is slow, demanding, requires awareness and often working memory and
is used for example for complex mental calculation but the humans are more
likely to make mistakes. A parallel between neural based systems and fast
thinking as well as between logical based systems and slow thinking is pro-
posed by [Kautz, 2022] to define the sixth type. As for human reasoning, fast
thinking is in charge of initiating slow thinking when needed, the symbolic
reasoning part would be a subroutine of the overall neural system. Back
and forth interactions between the two would require, the neural network to
support both the symbolic reasoning system output and the potential non
symbolic initial input data. However as stated by [d’Avila Garcez and Lamb,
2023] although there is work in this direction [Cameron et al., 2020, Lamb
et al., 2021], type 6 that are fully embedded systems and capable of complex
calculation do not exist yet.

Neuro-symbolic reasoning has also been categorized into 3 subfields based
on the manner in which the learning (neural) and reasoning (symbolic) com-
ponents are coupled : ‘learning for reasoning’ and ‘reasoning for learning’
where modules are loosely coupled and ‘learning-reasoning’ where they are
tightly coupled [Yu et al., 2023]. For ‘learning for reasoning’ systems, the
objective is to harness the power of neural networks to improve the perfor-
mance of symbolic reasoning. For ‘reasoning for learning’ systems, it is the
other way around, the objective being to benefit from symbolic knowledge to
constrain or guide the learning for performance or interpretability reasons.
Finally for ‘learning-reasoning’ systems, the neural and symbolic reasoning
systems both benefit equally from each other, and the interaction is bidirec-
tional. These categories can be mapped to the previously described types
from [Kautz, 2022] as shown in Table 2.4.1 with common examples.

Although all strategies can be of interest in the context of rule learning,
most of them are commonly not aiming for fully interpretable models or for
symbolic reasoning. In Kautz taxonomy, type 1 for instance is too broad to
be considered as an interesting category for rule learning. Types 2 and 3 are
not commonly referring to fully interpretable strategies because they rely on
intermediate concepts that are not. For strategies in type 5, soft-constraints
are used and thus symbolic constraints are met only in exceptional cases.
However for strategies in types 4 and 6, in cases where there is a 1-to-1
mapping between the network and logic, an application for rule learning
appears to be natural. In the following, we dive more in depth into how
neuro-symbolic approaches can be used for rule learning.

2.4. RULE LEARNING WITH NEURAL NETWORKS 29

Taxonomy
Yu et al.

Taxonomy
Kautz

Description Examples

N/A type 1 ‘standard deep learning’
with symbolic
input/output of a neural
network.
–⃝ commonly not
interpretable, not
learning rules

Learning for
reasoning

type 4 symbolic embedded in
the neural architecture of
the network.
+⃝ when 1-to-1 mapping,
ensures logic expression
learned
–⃝ limited expressivity

[Rocktäschel and Riedel, 2017]

[Evans and Grefenstette, 2018]

[Riegel et al., 2020]

[Qiao et al., 2021]

[Persia and Guimarães, 2023]

type 2 neural-based techniques
used within a symbolic
problem solver.
–⃝ commonly not fully
interpretable, not
learning rules

[Silver et al., 2016] and
autonomous vehicles
systems

Reasoning for
learning

type 5 symbolic constraining the
training of the model
(e.g. in loss).
–⃝ soft-constraints, logic
is an exception

[Diligenti et al., 2017]

[van Krieken et al., 2022]

[Petersen et al., 2022]

Learning-
reasoning

type 3 input/output interactions
between a neural network
and a symbolic reasoning
model.
–⃝ commonly not fully
interpretable, not
learning rules

[Manhaeve et al., 2018]

[Barbiero et al., 2023]

type 6 symbolic reasoning
engine embedded inside a
neural engine aiming for
combinatorial reasoning.
–⃝ no existing method yet

in the direction:
[Cameron et al., 2020]

[Lamb et al., 2021]

Table 2.1: Different taxonomies [Yu et al., 2023, Kautz, 2022] for the field
of Neuro-Symbolic AI illustrated with examples and contextualized in the
context of rule learning in italics.

30 CHAPTER 2. STATE-OF-THE-ART

2.4.2 Rule Extraction from Intermediate Models

An approach to rule learning is to extract rules from an intermediate model
(e.g. a deep neural network). The resulting rules can either be used as an
explanation of the model, as an approximation of the model or as the final
model. This strategy corresponds in the previously described taxonomies
to a ‘learning for reasoning’ and type 2 strategies. It corresponds to a se-
quential technique where first a neural network is trained and then a rule
extraction technique is applied. The objective is therefore, given a trained
model and the data used for training, to extract the best comprehensible
rules to approximate the model.

As reviewed by [Hailesilassie, 2016], there are three main extraction meth-
ods. Decomposition algorithms work at the neuron level and aggregate the
results to build a network representation. Pedagogical approaches consider
the neural network as a black-box, so the internal weights are not stud-
ied. Eclectic methods combine the two previous methods. We can mention
DeepRED [Zilke et al., 2016] that first presented a decomposition method
for deep neural networks and CGX a method using dual linear programming
[Hemker et al., 2023]. An interesting pipeline was also presented recently that
starts from a trained neural network that is then converted into a random
forest and then to a boolean directed acyclic graph [Brudermueller et al.,
2020]. This work highlighted that the process of converting a neural network
into logic resulted in a decrease in accuracy.

Indeed, with extraction based approaches, the approximation errors of
the black-box model are propagated from the trained model to the rules and
are combined with the extraction errors. Also, all extraction methods are
limited in terms of rule grammar by either the architecture of the model for
decomposition algorithms, by the rule learning algorithm used for pedagog-
ical approaches or both for eclectic methods. Rule extraction methods are
therefore great solutions for cross checking neural networks but limited for
rule learning as the final goal.

2.4.3 Logical Neural Structures

With the success of deep neural networks, few approaches have been proposed
to explicitly enforce a logical structure in a neural network.

First we can mention models based on layers that model logical operators
like AND and OR. Decision Rule Network [Qiao et al., 2021] for instance
is based on differentiable AND/OR layers to learn a disjunction of conjunc-
tions (DNF) from binary input data with parameterized trade-off between
accuracy and simplicity of the rules. Binary weights are trained to select the

2.4. RULE LEARNING WITH NEURAL NETWORKS 31

input nodes to keep in the associated operation (conjunction or disjunction).
Also in a general context, deepening the architecture of such neural-based
rule learning model was investigated recently and showed promising results
in terms of accuracy [Beck and Fürnkranz, 2021b]. However, it is important
to note that with such deepening, i.e. stacking and/or layers, the expressivity
of the rules is not improved as all resulting logical formulas can be converted
into an equivalent DNF. These models are based on differentiable logic from
the field of fuzzy logic with different T-norms and T-conorms compared in
depth in recent work [van Krieken et al., 2022].

A differentiable logic gate network has also been introduced based on
differentiable logic. In that case, weights are randomly fixed and what is
learned is the logic gate operator to use for each neuron from a set of pre-
defined operations [Petersen et al., 2022]. Also, the network is intrinsically
sparse as each neuron has only 2 inputs. Although a logic gate network is
very interesting in terms of computational cost and speed at inference time,
the learned logical expression is not meant to be concise nor expressive.

With those approaches, there is generally a 1-to-1 mapping between the
(trained) model and the rules or the logical expression that can be expressed
by extracting the learned parameters of the neural network. This is because
by design, we understand how it works before knowing that it works. This
is a completely opposite strategy to the growing field of mechanistic inter-
pretability where neural networks are reverse-engineered.

Also, in the context of rule learning, using a neural-based approach can
be potentially more robust to data imperfections than sophisticated symbolic
algorithms [Hitzler et al., 2022]. Recently, RIDDLE was introduced to target
this specific aspect to learn rules on incomplete or uncertain data [Persia and
Guimarães, 2023].

We also want to point out the proximity of the logical neural structures
based on binary weights with the research field of Binary Neural Networks
(BNN). BNNs are deep neural networks where a vast majority of both weights
and activations are binary (usually -1, 1) [Geiger and Team, 2020]. This is a
specificity that can be found in the models mentioned above. In the context
of a BNN, the binarization makes the computation very efficient in terms of
memory and evaluation whereas for rules, discretization is the main concern.
We can also highlight the fact that these logical neural structures, in addition
to being binary, require sparse weights, which similarly allows us to draw a
parallel with sparse neural networks and their challenging training [Srinivas
et al., 2017, Louizos et al., 2018].

To conclude, in this section, we introduced state-of-the-art rule learning
methods that are more or less based on a neural architecture. We started by

32 CHAPTER 2. STATE-OF-THE-ART

looking into the broad field of neuro-symbolic and analyzed existing strate-
gies in the context of rule learning, to explore combining the hard constraints
of rules and symbolic reasoning with the power of neural network. Then,
two strategies were studied more in depth : rule extraction from a trained
model and logical neural structures. We have shown that both approaches
come with limitations including the learned rules grammar being very limited
while potentially providing models that are more robust to data imperfec-
tions (than non neural-based approaches). Rule extraction methods are great
solutions for cross checking neural networks but not as suitable for rule learn-
ing as a goal due to the propagation of approximation errors. With logical
neural structures on the other hand, a 1-to-1 mapping between the trained
neural model and the rules can be obtained at the cost of challenging training
due to the requirement for binary and sparse weights.

Chapter 3

Preliminary: a preprocessing
approach for more expressive
rules

Contents
3.1 Introduction . 34

3.2 Feature Generation 35

3.3 Experiments . 36

3.4 Results and Discussion 37

3.5 Conclusion . 40

33

34 CHAPTER 3. EXPRESSIVE RULES WITH PREPROCESSING

3.1 Introduction

In order to familiarize ourselves with the subject, the state of the art and the
problems introduced previously, we investigate increasing the expressiveness
of rules obtained with existing models such as RIPPER using preprocessing.
In the following we describe the preliminary work conducted, focusing on the
use of mutual information.

Rule-based learning models do not reach the same performance as black-
box models. They have weak internal data representations due to the fact
that the learning algorithms require binary data as input. The discretization
of the data is either automated or done manually, ideally by domain experts.
When automated, input data is commonly discretized in an unsupervised
manner directly without any other feature processing.

After discretization, input data is of the form Ai = d, Ac ≥ θ or Ac ≤
θ where Ai is a discrete attribute and d a valid value for Ai, or Ac is a
numerical attribute and θ is a value for Ac. Generating features automatically
as a preprocessing step before discretization and rule learning could enhance
the expressivity of these conditions with linear combination of features for
example.

Different approaches have been proposed to automate attribute construc-
tion (or feature generation) for data-mining with filter, wrapper and embed-
ded methods [Sondhi, 2009]. We can mention genetic-programming-based
[Otero et al., 2003] and regression-based feature learning with AutoLearn
[Kaul et al., 2017]. However as pointed out by [Cherrier, 2021], they mostly
do not consider dimensional validity of created features and focus on model
performance rather than interpretability. Dimensional consistency is required
for instance for full interpretability. It can be controlled for example with
the introduction of a grammar [Ratle and Sebag, 2001, Cherrier, 2021]. For
filtering methods, a candidate created feature is evaluated with a score func-
tion to evaluate the utility of the feature. Different functions have been
studied in the literature [Guyon and Elisseeff, 2003] such as correlation and
information theory criteria. Information gain is often used as a measure of
entropy evolution with and without the feature presence at the dataset level.

In the following, we focus on improving the quality of the learned rules,
by extending the rule language with an interpretable preprocessing method
based on mutual information for generating new meaningful features auto-
matically for rule learning. We propose an approach for the supervised learn-
ing of classification rules with interpretable and dimensionally valid complex
conditions. The method relies on the following two hypotheses: augmented
data space with selected operations does provide more information for the
learning classification task of the chosen datasets, and this added informa-

3.2. FEATURE GENERATION 35

tion can be measured by mutual information comparison at feature level.
We present a filtering method based on mutual information improvement at
the feature level. The main motivation for using a preprocessing filtering
approach is to build a generic process applicable to any inductive learning
algorithm [Otero et al., 2003].

Preliminary results with RIPPER algorithm [Cohen, 1995] are presented,
where we focus on numerical attributes and only combine features with di-
mensionally valid additions and substractions for feature generation. Due
to the constraint on the dimensional decomposition of each dataset and the
limited number of considered operations, improvements for all datasets is not
expected.

3.2 Feature Generation

The proposed feature generation algorithm for numerical features is divided
into two steps that are repeated for a maximum of N iterations, as follows.

1. Select the set of possible new features. A new feature F ∗ is defined by
F ∗ = f(Fi, Fj) with Fi and Fj two existing features and f an operation
from the set of available operations. F ∗ is a possible new feature if
f(Fi, Fj) is dimensionally valid and if there is no equivalent expression
of F ∗ already in feature list (exploiting associativity and commutativity
properties of operation f if any).

2. For all F ∗ in possible new features set, add F ∗ to features list if

I(F ∗, y) > max(I(Fi, y), I(Fj, y)),

with I the mutual information and y the target class. Mutual informa-
tion I is defined as a measure of the similarity between a feature and
the target. In practice, we use scikit-learn function estimate
‘sklearn.feature selection.mutual info classif ’ [Pedregosa et al., 2011].

3. Stop if no new features have been added.

The first step narrows down the search space for possible feature combi-
nations while making sure that the added features are dimensionally valid.
The second step makes sure the added feature is meaningful to the clas-
sification problem of interest. However, it is important to note that this
step does not take into account the complete set of existing features and
the correlations between them. Mutual information quantifies the amount

36 CHAPTER 3. EXPRESSIVE RULES WITH PREPROCESSING

of information shared between the features and the class to predict and can
capture non-linear relationship between the variables.

At each iteration, expressions can grow exponentially in complexity. With-
out loss of generality, selecting new features only based on combinations of
an existing feature with one original features at every iteration can help re-
straining number of possible expressions and ease the equivalence checking
in first step.

3.3 Experiments

Datasets The selected datasets from UCI [Dua and Graff, 2017] are pre-
sented in Table 3.1.

Datasets are analyzed and to every numerical feature is assigned a unit
to be used for the dimensionality filtering. These units either correspond to
continuous or discrete data. The details of these assignments is available in
Appendix B.

Name # F (Fnum) # instances # classes

abalone 8(7) 4177 29
adult 14(6) 48842 2
breast-wis(consin) 10(10) 699 2
iris 4(4) 150 3
segment 19(19) 2310 7
wine 13(13) 178 3
wine-(quality-)red 11(11) 1599 11
wine-(quality-)white 11(11) 4898 11

Table 3.1: UCI datasets [Dua and Graff, 2017] and associated number of
features F (and numerical features Fnum), instances and possible classes.
Additional references : breast-wisconsin [Bennett and Mangasarian, 1992],
wine quality [Cortez et al., 2009].

Synthetic Dataset As a sanity check, a very simple balanced generated
dataset of 10000 instances is created to justify the necessity to have conditions
based on multiple attributes. (x0 and x1 being floats between 0 and 100).

if x0 + x1 > 100 then class = 1 else class = 0

Without preprocessing, RIPPER manages to approximate synthetic data
with 24 rules and 97% accuracy. With preprocessing, the rule is retrieved
and perfect classification is achieved.

3.4. RESULTS AND DISCUSSION 37

Experimental Setting Datasets are cleaned when required by removing
null values. The experiments are carried out with k-fold cross-validation
strategy with k = 10. For feature generation (Section 3.2), available op-
erations are sum and absolute difference. Maximum of iterations N is set
to 1 (the datasets are simple and after few tests we noticed that features
already carried most of the information required for classification so there
were no improvement for N > 1). Rule learning model applied after feature
generation is RIPPER [Cohen, 1995] algorithm (k=2).

Metrics used to compare experiments are common machine learning met-
rics (accuracy, balanced accuracy and weighted f1 score) as well as ruleset
characteristics (number of rules, number of features not used in rules, num-
ber of added features and number of added features used in rules). Metrics
are averaged over 10 folds.

We run the experiments on datasets presented in Table 3.1 with and
without feature generation.

3.4 Results and Discussion

The results are summarized in Table 3.2. The first observation shown is
that, in most cases, the preprocessing step has a positive impact on the
number of learned rules. Apart from adult dataset, a portion of generated
features is used in the learned rules for all datasets. They have on average a
positive impact on model metrics for datasets iris, segment and wine. Also
we can point out that for wine-quality-white (and wine-quality-red) dataset,
the number of rules learned dropped on average from 29.2 to 14.5 (from 22 to
14). It highlights the fact that preprocessing has, as in any machine learning
problem, a huge role to play for rule learning. It can affect radically a result
in terms of accuracy and ruleset characteristics but also by increasing the
expressivity of the learned rules.

We can see that proposed automated feature generation based on mutual
information does provide valuable expressions for the next learning step. We
list below some of the created features that are used in the learned rulesets.

• abalone: length + height

• iris: sepal length - sepal width

• segment: vedge mean + intensity mean

• wine: alcohol + ash

• wine-quality-red: fixed acidity - volatile acidity

They do make explicit sense, and it is thanks to dimensional analysis. This
dimensionally-aware strategy does both enhance the search efficiency and the
interpretability of the resulting expressions in rule conditions as written by

38 CHAPTER 3. EXPRESSIVE RULES WITH PREPROCESSING

Dataset Model Ruleset

acc bal acc f1 # rules A B

abalone w/o 24.0 12.3 17.6 47.2 8(8) –
w/ 24.8 12.2 17.9 47.6 11.2(11.3) 3.2(3.3)

adult w/o 82.2 69.7 80.6 42.2 10.4(14) –
w/ 82.2 69.7 80.6 42.9 10.4(16) 0(2)

breast-wis w/o 86.1 80.9 84.9 17.3 8(9) –
w/ 86.0 80.4 84.6 14.9 12.6(42.3) 6.4(33.3)

iris w/o 92.0 92.0 91.9 5.7 3.8(4) –
w/ 95.3 95.3 95.3 5.6 5.2(6) 1.5(2)

segment w/o 69.8 69.8 63.2 25.7 14.2(19) –
w/ 70.9 70.9 65.2 26.1 18.9(28.3) 5.7(9.3)

wine w/o 88.9 89.4 88.6 5.1 5.4(13) –
w/ 90.0 90.7 89.4 4.5 5.9(34.6) 2.8(21.6)

wine-red w/o 53.6 24.9 50.1 22.0 11(11) –
w/ 47.5 20.8 39.9 14.3 21.6(49.5) 13.4(38.5)

wine-white w/o 50.6 21.5 46.1 29.2 11(11) –
w/ 50.3 20.0 42.1 14.5 24.6(57.3) 18.1(46.3)

Table 3.2: Average metrics over 10-fold cross-validation comparison with
(w/) and without (w/o) preprocessing. Weighted averaging for f1 score. A:
number of features used in rules (total number of features). B: number of
added features used in rules (number of added features).

[Keijzer and Babovic, 1999]. For example, for iris dataset, the following rule
(among others) was learned:

if petal length ≥ 4.8 and sepal length − sepal width ≥ 3.5

then class = Iris-virginica

The condition sepal length - sepal width ≥ 3.5 describes the elliptic
characteristic of virginica sepal, whereas the versicolor sepal has more of a
circle shape, as confirmed in Figure 3.1.

On the other hand, not all datasets benefit from those added features. In
four cases, a lot of features are added with the preprocessing step (breast-
wisconsin, wine, wine-quality-white and wine-quality-red) but are mostly (≥
60%) not kept in rules learned by RIPPER. This is a consequence of the in-
dependence of the feature generation and the rule learning. New features are
created based on their mutual information with the target. This is not a met-
ric or criteria used in RIPPER, decisions made at preprocessing time have no
relation with decisions made at learning time. It also shows that preprocess-

3.4. RESULTS AND DISCUSSION 39

Figure 3.1: Comparison of different types of iris from iris dataset (Source:
datacamp.com).

ing is not restrictive enough with regards to RIPPER conditions selection for
specific datasets. Many features are created and not used in rules. Part of
the filtering is carried by the dimensional analysis filter, which is necessary
to build comprehensible and valid rules, but it is only a first level filter. This
is a common drawback of using filter methods as highlighted by [Cherrier,
2021]: filtering methods are completely independent from the learning step.
Using a wrapper method, that is selecting the new features with regards to
learning results, would help increase the added feature usage at the cost of
computational time. Embedded methods on the other hand, which intro-
duce feature construction in learning algorithm, are not model-agnostic and
require different changes for each learning algorithm. This simple method,
has the advantage to be applicable for any inductive learning algorithm.

Also, the rule learning model RIPPER is affected by the number of at-
tributes provided as input during training. The increase of the number of
attributes, impacts the complexity of the learned rules (more conditions).
Rules are longer and this directly impacts the stopping criterion in use for
addition of new rules. Indeed, RIPPER uses a stopping criterion based on
Minimum Description Length (MDL) that represents the amounts of bits
required to describe both the theory (in this case the model, the ruleset) and
the data required to learn it. As adding features to the data affects the num-
ber of conditions in rules, MDL is impacted and learning can stop earlier.
This explains why for wine-quality-red dataset for example the number of
rules dropped from 22.0 to 14.3. To confirm this, we trained RIPPER with
only the subset of features that are actually used at least once by RIPPER
in the 10 folds. We achieved on average 52.0% accuracy (+4.5%) and 15.4
rules (+1 rule).

40 CHAPTER 3. EXPRESSIVE RULES WITH PREPROCESSING

Another reason for a dataset not to benefit from the preprocessing step
is that feature transformation is explicit and based on predefined operators,
that are addition and substraction only in presented experiments. They
are not enough to describe all datasets. For instance, metrics are improved
very slightly for abalone dataset. Adding other operators along with the
introduction of a grammar to control the validity of built features as proposed
by [Ratle and Sebag, 2001] could help better describe the data while limiting
computational cost and interpretability issues. Adult dataset for instance,
had only one pair of features with dimensional compatibility. Addition and
subtractions were applied to that pair, but were not used in rules. It did not
benefit at all from the preprocessing step.

3.5 Conclusion

We proposed a preprocessing approach for learning more expressive rules
with an automated dimensionally-aware feature generation based on mutual
information. This preprocessing builds new features out of the (numerical)
original attributes with a predefined set of operators. We have evaluated
how added features improved resulting ruleset quality when learned with
RIPPER algorithm, by comparing accuracy and number of rules with and
without preprocessing.

Experiments were performed with 8 common UCI datasets. 7 datasets
benefited from preprocessing in terms of conditions expressivity, higher accu-
racy and/or decreased number of rules (1 dataset could hardly benefit from
it due to little feature dimensional compatibility). Although rule learning
with RIPPER is impacted by the increased number of input features, when
the number of added features is smaller than the initial number of features,
this approach proved to be successful in learning fewer interpretable rules
with more complex conditions and with comparable or better accuracy.

However, whereas the compatibility of this preprocessing approach with
any other model can be seen as an advantage, it comes from the fact that it is
a filtering method, i.e. completely independent from the learning step, and
thus generated features are not guaranteed to be relevant for the learning
step. An embedded approach could be the solution to this problem to ensure
expressive features tailored for the learning step.

Part II

Neural-based approach

41

Chapter 4

Neural-based rule learning

Contents
4.1 Introduction . 44

4.2 Learning DNF - Base Model RN 44

4.2.1 Architecture . 45

4.2.2 Training . 47

4.3 Learning ANF - Model RN-anf 50

4.3.1 Architecture . 52

4.3.2 Training . 53

4.4 Comparing the learning of DNF and ANF . . . 54

4.4.1 Experiments . 54

4.4.2 Results and Discussion 55

4.4.3 Conclusion . 58

4.5 Data types . 59

4.5.1 Numerical Data . 59

4.5.2 Categorical Data 60

4.6 Multi-classification and Multi-label Classification
Problems . 62

4.7 Conclusion . 63

43

44 CHAPTER 4. NEURAL-BASED RULE LEARNING

4.1 Introduction

Most existing rule induction algorithms presume the availability of predicates
used to represent the rules, naturally decoupling the predicate definition and
the rule learning phases. Expressiveness is therefore highly impacted, we
believe end-to-end neural-based approach can help couple them.

Different approaches have been proposed to learn rules with neural net-
works [Qiao et al., 2021, Beck and Fürnkranz, 2021a]. The main idea we
are going to focus on in this section is a neural network architecture that
models disjunctions and conjunctions thanks to well chosen AND and OR
layers for binary classification problems. In opposition to sequential covering
algorithms (like RIPPER for example [Cohen, 1995]), with a neural based
approach multiple expressions are learned simultaneously with a global op-
timization strategy.

First, we introduce two architectures and associated training strategy to
learn rules based on DNF and Algebraic Normal Form (ANF) expressions re-
spectively before comparing their learning in the context of classification rule
learning. On one hand, DNF expressions (disjunction of conjunctions) are
similar to how humans think and are commonly used by BRMS for instance.
On the other hand, ANF (exclusive disjunction of conjunctions) is a canoni-
cal form i.e. two equivalent logical expressions transform into the same ANF
(also known as Zhegalkin polynomials or Reed-Muller expressions). Thus,
we investigate whether the particularities of ANF and especially the XOR
operator can benefit the learning of rules with neural networks.

Then, from a base rule learning architecture, we are able to learn rela-
tional predicates i.e. linear combinations of original attributes in the same
training step as learning the rules [Kusters et al., 2022] and also propose an
architecture for categorical data.

Also we investigate extending this architecture to answer multi-classification
and multi-label classification problems.

4.2 Learning DNF - Base Model RN

We consider a supervised binary classification problem where we aim to pre-
dict a binary output label y, based on binary input data x. We are provided
with a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))}, where
N is the number of training samples and D consists of N pairs of binary input
data x(i) and their corresponding binary labels y(i). A binary input vector
x (i.e. x(i)) is represented as x ∈ {0, 1}D, with D the number of binary
features. A binary output label y (i.e. y(i)) is represented as y ∈ {0, 1}.

4.2. LEARNING DNF - BASE MODEL RN 45

In this section, we want to build a network that aims at learning rules
via disjunction and conjunction operations in a DNF expression. A Boolean
function f is in DNF, if it is a disjunction of conjunction of binary input
features x.

f(x1, . . . , xD) =
∨
i

(
ki∧
j

Li,j

)
, Li,j ∈ {x1, . . . , xD} ∪ {¬x1, . . . ,¬xD}

(4.1)
An example of rule that we want the model to support in the context of

fraud detection is provided in Equation 4.2.

if (the transaction occurs in a high-risk country
and the customer’s account was recently created)
or the destination account is labeled as suspicious

then transaction is fraudulent

(4.2)

The model should be trained such that given a binary input x, the net-
work produces an output prediction ŷ such that ŷ is a suitable approximation
of the true binary label y.

4.2.1 Architecture

The model, referred to as Base Rule Network (RN), is illustrated in Figure
4.1 and defined as follows.

• Neurons are logical expressions that evaluate to 0 or 1.
– input neurons x are binarized input features that have by defini-

tion a logical value.
– hidden neurons h are conjunctions of the input features.
– output neuron y is a disjunction of the (hidden) conjunctions.

• In boolean algebra, common logical operators are AND, OR and NOT.
We assign to each of these operations a binary weight matrix that plays
the role of a mask to filter between different nodes with regards to the
logical operation considered.

– Wand is the weight that filters neurons for the conjunction (AND)
operation.

– Wor is the weight that filters neurons for the disjunction (OR)
operation.

– V is the weight that filters neurons for the optional negation of
the neurons of the conjunction (AND) operation (v = 1, neuron
negated).

46 CHAPTER 4. NEURAL-BASED RULE LEARNING

– In this model we do not allow for negation in the OR layer (as in
DNF expressions).

x1

x2

h1

h2

h3

y

AND layer OR layer

A

B

A and B

B

not A

(A and B) or not A

Figure 4.1: Example of trained model for rule 4.2 - Dotted (plain) lines
represent masked (selected) weights. Green (red) lines represent masked
(negated) weights for the NOT operation. Filled nodes are hidden nodes.

OR Layer Disjunction operation (∨) is implemented by taking the mini-
mum value between the sum of the selected elements and 1. If none of them
are activated then y = 0, and y is equal to 1 otherwise (y is a scalar in
the context of binary classification). Here, as well as in the remainder of
this manuscript, 1 denotes a column vector of ones, the specific dimension
of which can be inferred from the context.

y = min(Worh,1) (4.3)

AND Layer In order to implement the conjunction operation (∧), we use
the De Morgan’s law that express the conjunction with the OR operator
A ∧B = ¬(¬A ∨ ¬B). Applying it to Equation 4.3 we have:

h = ¬(min(Wand(¬x),1)) = 1−min(Wand(1− x),1). (4.4)

NOT Operator It is also possible to learn the NOT operator (¬) in the
AND layer. To do so we can to use a binary weight V with same dimensions
asWand to negate input values x in the conjunctions. Modified input neurons
x̂ represent the result of that negation if needed on x (∗ sizes are adjusted
accordingly).

x̂ = |V ∗ − x∗| (4.5)

4.2. LEARNING DNF - BASE MODEL RN 47

Equation 4.4 is modified to implement conjunction operation with possi-
ble negation.

h = 1−min(Wand(1− x̂),1) (4.6)

It is also possible to simply pad to the input x the negated input 1− x and
let the model learn to not represent contradictions (A∧¬A for example). In
the following, the NOT operator is not included by default in the base rule
model RN unless stated otherwise.

To conclude, the base rule model is composed of a logical AND layer
and an OR layer. The formal grammar that this architecture can express is
specified with the following production rules (see Appendix C.1 for the full
grammar):

rule → if base expression then class = 1 else class = 0
base expression → conjunction | conjunction ∨ base expression

conjunction → predicate | predicate ∧ conjunction
predicate → x1 | x2 | . . .

(4.7)

This grammar is also limited by the model architecture: conjunction con-
tains at most one occurrence of each predicate and the total number of con-
junction(s) is bounded by the number of hidden nodes.

It is important to note that both AND and OR operators presented here
are commutative operations. In practice, in a BRMS or a programming
language, the evaluation of these operations might not respect the commuta-
tivity. This has an impact in case of errors. For example for the disjunction
operation, True ∨ Error would return an error in a commutative setting
while if only the first operand is evaluated, True would be returned. This is
something to keep in consideration for usage of the learned rules.

Also disjunctions in natural language are often understood as exclusive
disjunctions. For example when saying ‘I would like this or that’, ‘this and
that’ would not be considered without the mention of ‘or both’ [Aloni, 2023].
Both in the model computation and in the rule examples (for example Equa-
tion 4.2), ‘or’ and ∨ refer to non exclusive disjunctions.

4.2.2 Training

In this section, we delve into the training strategy used to optimize the
presented model. The overall algorithm is presented in Algorithm 3.

During training, the objective is to find the suitable model parameters
Θ (i.e. Wand, Wor and V when applicable) that minimize a chosen loss
function ℓ(y, ŷ) over the training dataset D. This loss function quantifies the

48 CHAPTER 4. NEURAL-BASED RULE LEARNING

dissimilarity between the predicted binary output ŷ and the true binary label
y.

Given a model f with parameters Θ, the machine learning problem can
be mathematically formalized as the minimization of the empirical risk:

min
Θ
L(Θ) = min

Θ

1

N

N∑
i=1

ℓ
(
y(i), f(x(i); Θ)

)
where:

• Θ represents the model parameters to be learned.
• L(Θ) is the empirical risk with parameters Θ.
• f(x(i); Θ) is the model’s prediction for the binary input x(i) with pa-
rameters Θ.

• ℓ(y(i), f(x(i); Θ)) is the loss function that measures the dissimilarity be-
tween the true binary label y(i) and the predicted binary label f(x(i); Θ).

To solve this machine learning problem, different gradient-based opti-
mization techniques are available to find the values of the model parameters
Θ that minimize the empirical risk.

In the following, we define a loss function that penalizes complex rules
and specify the model parameters and optimization strategy used for the
training of RN model.

To overcome training challenges attributed to binarized neural networks
[Geiger and Team, 2020] (gradient zeroed almost everywhere due to the bi-
narization operation), latent weights are used for the training of the model
parameters Θ, i.e. Wand, Wor and V when applicable. The model is trained
via automatic differentiation (Pytorch [Paszke et al., 2019]) with Adam op-
timizer.

Latent weights The binary model parameters introduced above (Wand,
Wor and V when applicable) are trained indirectly via the training of a
continuous parameter C which is activated by a sigmoid function during
training and binarized with a Heaviside function during testing. With such
binary weights and continuous relaxation Equations 4.3 and 4.4 are differen-
tiable [Kusters et al., 2022]. To overcome training limitations, we use a hard
concrete distribution [Qiao et al., 2021, Louizos et al., 2018]. As shown in
Equation 4.9, it rescales the weights and the random variable U (uniform dis-
tribution) introduced during training, prevents from obtaining local minima.
See [Louizos et al., 2018] for details.

4.2. LEARNING DNF - BASE MODEL RN 49

u ∼ U(0, 1), S = σ((log(u)− log(1− u) +C)/β), Ŝ = S ∗ (ζ − γ) + γ

(4.8)

W = min(max(Ŝ, 0), 1) (4.9)

We use the same parameter values as the original paper: β = 2/3, ζ = 1.1
and γ = −0.1 [Louizos et al., 2018].

Weight values are in [0, 1] during training, while for testing and rule
extraction, a Heaviside is applied (heaviside(x) = 1x≥0) to ensure strict bi-
narization.

W = heaviside(C) (4.10)

RN model parameters Θ (Wand, Wor and V when applicable) are there-
fore trained indirectly and actual trained parameters are Cand, Cor and Cneg

when applicable.

Loss function We define an empirical risk L composed of a mean-squared
error loss along with a regularization term Π that penalizes the complexity of
the rule. The importance of the regularization is controlled by the parameter
λ.

L(Θ) =
1

N

N∑
i=1

ℓse
(
y(i), f(x(i); Θ)

)
+ λΠ(Θ) (4.11)

ℓse (y, ŷ) = (ŷ − y)2 (4.12)

The regularization term Π, or penalty, evaluates the number of predicates
(or terminal conditions) in the rule i.e. the number of path activated in the
model as shown in Equation 4.13. In practice, we use λ = 10−4.

Π(Θ) = Π(Wand,Wor) = WorWand1 (4.13)

Note that if V is applicable, i.e. if the NOT operator is included in the
model, it is not taken into account in the computation of the regularization
term.

It should also be emphasized that the interpretability of the approach is
therefore provided by the learning of rules, but also by the optimization of the
size and therefore complexity of the learned expressions via the regularization
term Π.

50 CHAPTER 4. NEURAL-BASED RULE LEARNING

Optimizer When using a training strategy based on latent weights, Adam
optimizer is recommended because of its fast convergence and for being less
sensitive to the choice of hyperparameters in this context [Geiger and Team,
2020]. However, it is also possible to train a BNN in a latent free manner
with a custom optimizer.

Bop is a custom optimizer for BNN that only has one possible action :
flipping weights by taking into account the consistency and strength of the
gradients [Helwegen et al., 2019]. We tried training the base rule model with
Bop. It required adapting Bop to boolean weight problems as described in
Equation 4.14. We kept the notation from the original paper with mi

t the
exponential moving average at time t of weight wi

t (with adaptability rate
γ for consistency) and τ a threshold to control the strength of the gradient
required to flip. Exponential moving average computation is kept unchanged.

wi
t =

{
1− wi

t if |mi
t| ≥ τ and (mi

t ≥ 0) = wi
t

wi
t otherwise

(4.14)

However in practice we were not able to obtain close to comparable results
with Bop optimizer. We tried multiple combinations of parameters, network
size and datasets but we found the configuration to be very tricky to configure
and were not able to find a stable training strategy. We want to stress that
we are not saying this optimizer can not work (and it does in some cases)
but we were not able to find an ideal setting on noise free simple synthetic
datasets. One observation we were able to make is that in the rare settings
models did converge to an accurate trained model, the complexity of the rules
was high. Also in the context of the original paper the optimizer is tested
on models that are not fully binary (most of the layers are but not all) this
might have an impact on the strength of the gradients and the stability of
this approach.

Due to the fact that training strategy with latent weights worked, we did
not delve further into this strategy but this direction might be of interest for
future work.

4.3 Learning ANF - Model RN-anf

DNF are very natural expressions to learn as they are easily comprehensible
by humans [Fürnkranz et al., 2012], and are used in BRMS for instance.
However, any boolean function can be expressed in other normal forms such
as ANF (exclusive disjunction of conjunctions) a canonical form also known
as Zhegalkin polynomials or Reed-Muller expressions. In this section, we in-
vestigate whether the particularities of ANF and especially the XOR operator

4.3. LEARNING ANF - MODEL RN-ANF 51

Algorithm 3: Training procedure based on mini-batch training

Data: Training dataset D, Learning rate: η, Batch size: B, Number
of epochs: E

Result: Trained neural network model
Initialize neural network parameters;
for i← 1 to E do

for j ← 1 to N
B

do
Randomly sample a mini-batch Dbatch of size B from D;
Forward pass: Compute predictions on mini-batch using the
current parameters (Eq. 4.3, 4.4 or 4.6);
Compute the loss between predictions and actual targets
(Eq. 4.11);
Backpropagation: Compute gradients of the loss with respect
to the parameters;
Update the parameters using Adam optimizer with learning
rate η;

return Trained model ;

(⊻) can benefit the learning of rules with neural networks.

The setting and objective from the previous Section 4.2 are still valid.
However in this section, we want to build a network that aims at learning rules
via exclusive disjunction and conjunction operations in an ANF expression.
A Boolean function f can be uniquely represented in a ANF.

f(x1, . . . , xD) =
∨

j∈{0,1}D

aj
(
xj1
1 ∧ · · · ∧ xjD

D

)
(4.15)

where j = {j1, . . . , jD} ∈ {0, 1}D and coefficients aj take values in {0, 1}.
Any rules that could be learned in Section 4.2 can be converted to ANF.

Example from Equation 4.2 is rewritten in ANF in Equation 4.16 with vari-
able names rather than text expressions for readability.

if isDestAccountSusp ⊻ (isHighRiskCountry ∧ isNewAccount)
⊻ (isDestAccountSusp ∧ isHighRiskCountry ∧ isNewAccount)

then transaction is fraudulent
(4.16)

52 CHAPTER 4. NEURAL-BASED RULE LEARNING

4.3.1 Architecture

The ANF rule model invoked is composed of two consecutive layers: an AND
layer (Section 4.2.1) and a XOR layer described below. A fixed True value is
also added as input to the XOR layer to match the ANF grammar. Negations
are not allowed in ANF but this True term negates the result of the rest of
the XOR expression due to parity properties. The model, referred to as the
ANF Rule Network (RN-anf), is illustrated in Figure 4.2.

x1

x2

x3

x1

x2

h1

h2

h3

h4

1

h2

y

AND layer XOR layer

A

B

C

A and B

B and C
if (A and B)

xor (B and C)
then 1 else 0

Figure 4.2: Example of a trained RN-anf model for the rule if (A and B) xor
(B and C) then 1 else 0 on binary predicates A, B and C . Plain (dotted)
lines represent activated (masked) weights. An example evaluation of the
model is represented with the filled neurons (neuron=1) for the binary input
A = 1 and B = 1.

XOR Layer Exclusive disjunction operation (⊻) can be interpreted in
terms of parity as the result is True if the number of true inputs is odd,
and False if the number of true inputs is even. We exploit this property to
implement the XOR layer using cosine function, with Wxor associated binary
weights as follows.

y =
1

2

(
1− cos

(
πWxor

[
h
1

]))
(4.17)

Although this function is continuous, it is important to note that when the
input values and/or weights are in between 0 and 1 the result can be com-
pletely meaningless.

4.3. LEARNING ANF - MODEL RN-ANF 53

The formal grammar of the expressions that can be expressed with this
model is specified with the following production rules (see Appendix C.2 for
the full grammar):

base expression → conjunction | conjunction ⊻ base expression
conjunction → predicate | predicate ∧ conjunction | True

predicate → x1 | x2 | . . .
(4.18)

It is important to note that, as shown in the grammar, this architecture
does not prevent from having duplicate conjunctions in the exclusive dis-
junction. Thus we are learning ANF-like expressions that can be very easily
simplified as a post processing step if needed. We are not applying this post
processing of the rules in the following unless clearly stated. Equation 4.15
is modified into the following to describe an ANF-like expression.

f(x1, . . . , xD) = a ⊻
∨
i

(
ki∧
j

Li,j

)
, Li,j ∈ {x1, . . . , xD}, a ∈ {0, 1} (4.19)

4.3.2 Training

In the same manner as in Section 4.2.1, in order to overcome the model to be
binary, we use latent weights (Section 4.2.2). All operations of the previously
described model are differentiable. Model parameters Θ, i.e. Wand andWxor,
are trained through automatic differentiation. For model training, we use
mean-square error loss (MSE) function and Adam optimizer (learning rate
η = 0.1).

Loss function Loss function from Equation 4.11 is still valid. In practice,
we use λ = 10−4. The number of terminal conditions of the model Π can be
expressed as follows.

Π(Θ) = Π(Wand,Wxor) = Wxor

[
Wand1

1

]
(4.20)

It is important to note that although rules might require to be converted
back to DNF and thus be expressed in more or less terminal conditions,
we are minimizing the complexity of the ANF expression here. This is a
limitation of this approach as converting back and forth between ANF and
DNF especially for simplified versions of the DNF can be very costly but also
non differentiable and thus not applicable for the computation of the penalty
during training.

54 CHAPTER 4. NEURAL-BASED RULE LEARNING

Ground Truth +class π π∗
DNF π∗

ANF

1 F0 ∨ (F3 ∧ F6) 63.5 3 3 6
2 (F0 ∧ F4) ∨ (F3 ∧ F6) 43.6 4 4 8
3 (¬F3 ∧ ¬F6) ∨ ¬F0 ∨ ¬F4 80.6 4 4 11
4 (¬F3 ∧ ¬F6) ∨ (F0 ∧ F9 ∧ ¬F6) ∨ ¬F0 ∨ ¬F4 83.9 7 6 20
5 F0 ⊻ F4 49.6 2 4 2
6 F0 ⊻ F4 ⊻ F8 49.9 3 12 3
7 F0 ⊻ F4 ⊻ (F3 ∧ F8) 49.5 4 20 4
8 F0 ⊻ F4 ⊻ (F8 ∧ ¬F3) 50.2 4 20 5

Table 4.1: Ground truths applied on binary input features F0, . . . , F9 ∈
{0, 1}10 to generate the 8 synthetic datasets along with the proportion of
the positive class (in %), π the number of conditions in the expression, π∗

DNF

the number of conditions in the simplified equivalent DNF expression and
π∗
ANF the number of conditions in the equivalent ANF expression.

4.4 Comparing the learning of DNF and ANF

In order to compare the learning of DNF to ANF expressions in the context
of neural-based rule learning model, we apply different models to synthetic
datasets and compare them in terms of training performance and training
time. Two different DNF rule learning model implementations and one ANF
rule learning model are compared.

4.4.1 Experiments

The first DNF model implementation corresponds to the AND layer with the
NOT operator followed by the OR layer introduced in Section 4.2.1. It will
be refereed to as the AND-NOT-OR model. The second DNF model imple-
mentation corresponds to an AND layer followed by an OR layer introduced
in Section 4.2.1 with both input values and negated input values provided
as input to the model. It will be refereed to as the AND-NOTF-OR model.
The ANF model is RN-anf composed of AND layer followed by a XOR layer.

Synthetic datasets We propose 8 synthetic datasets for discovering sim-
ple binary classification rules composed of disjunctions, exclusive disjunctions
and conjunctions as shown in Table 5.1. These are composed of 10000 in-
stances with 10 binary features. Generation is detailed in Appendix A.

4.4. COMPARING THE LEARNING OF DNF AND ANF 55

Experimental Setting All datasets are partitioned in a stratified fashion
with 60% for training, 20% for validation and 20% for testing datasets and
we use a batch size of 100 instances and train for 200 epochs. The hidden size
in the model is set to 60 which is at least three times the maximum of π∗

DNF

and π∗
ANF . More details on experimental setting can be found in Appendix E.

For each experiment, we run the algorithm 10 times with different random
seeds for weights initializations. Resulting metrics are averaged over these
runs.

4.4.2 Results and Discussion

AND-XOR AND-NOT-OR AND-NOTF-OR
Accuracy Penalty Accuracy Penalty Accuracy Penalty

1 100.0 ± 0.0 8.8 ± 1.9 100.0 ± 0.0 6.4 ± 0.5 100.0 ± 0.0 7.2 ± 0.6
2 100.0 ± 0.0 8.0 ± 0.0 100.0 ± 0.0 7.4 ± 0.5 100.0 ± 0.0 8.6 ± 0.3
3 99.7 ± 0.3 11.2 ± 0.2 100.0 ± 0.0 7.4 ± 0.6 100.0 ± 0.0 9.8 ± 0.5
4 96.8 ± 0.0 5.5 ± 1.5 100.0 ± 0.0 9.9 ± 0.6 100.0 ± 0.0 11.4 ± 0.7
5 88.0 ± 6.5 41.6 ± 10.3 100.0 ± 0.0 6.4 ± 0.4 100.0 ± 0.0 8.4 ± 0.5
6 86.2 ± 6.6 60.5 ± 12.8 100.0 ± 0.0 14.1 ± 0.9 100.0 ± 0.0 15.0 ± 1.1
7 100.0 ± 0.0 26.0 ± 8.0 96.3 ± 1.9 16.7 ± 2.2 97.6 ± 1.0 21.6 ± 1.4
8 89.8 ± 6.8 50.9 ± 11.2 98.1 ± 0.9 19.6 ± 0.7 99.3 ± 0.7 21.4 ± 1.5

Table 4.2: Average accuracies (%) and penalties Π obtained for the different
datasets, along with the unbiased standard errors of the average over the 10
executions with different weights initializations.

ANF vs DNF In terms of accuracy, average accuracies over the 10 ex-
ecutions in Table 4.2 highlights that DNF models overall outperform the
ANF model. Figure 4.3 consolidates this observation and highlights the high
standard error over the 10 runs for the ANF model. The training of ANF
model is not as effective as for other two DNF models. What happens dur-
ing training in terms of training loss is shown in Figure 4.4. DNF models
converge quickly (less than 20 epochs) and learn in all cases, while the ANF
model does not. Also, minimum ANF training loss is almost always higher
than maximum DNF models training loss. Except for dataset 4, which is the
dataset with the highest π∗

ANF value, ANF model converged at least once for
all the other datasets towards the ground truth.

All these observations lead us to the conclusion that this ANF model is
not as effective in terms of training as the presented DNF models. There are
two main reasons, we can think of to explain this.

56 CHAPTER 4. NEURAL-BASED RULE LEARNING

and-notf-or and-not-or and-xor

80

85

90

95

100
A

cc
u
ra

cy

and-notf-or and-not-or and-xor

20

40

60

P
en

a
lt

y

Datasets

1 2 3 4 5 6 7 8

Figure 4.3: Average accuracies (%) and penalties Π obtained for the different
datasets per model, along with the standard errors of the average over the
10 executions with different weights initializations.

First, for a fixed hidden size, as there are less possible local optima in
search space due to the properties of ANF, training is more sensitive to
weights initialization and ideal training hyper parameters are likely to be
different.

Then, both neurons and weights when training starts are in between 0 and
1, meaning that the resulting XOR computation is completely meaningless
(Equation 4.17). Gradients are therefore significantly impacted. AND and
OR operations are also not very meaningful when neurons and weights are in
between 0 and 1. This is the case when Worh in Equation 4.3 is higher than
1 for the OR operator for example, as Equation 4.3 no longer approximates
a logical OR. However, in practice and thanks to the regularization term
in the loss function, the first training steps start by zeroing a lot of weight
values (or at least for Π to be small if not zero) before converging towards a
minima. This model simplification is beneficial for the AND and OR logical
operations approximations and overall penalty of the final expression. The
XOR computation however does not benefit from it : it only provides mean-
ingful approximation when only at most one term value of the weighted sum

Wxor

[
h
1

]
from Equation 4.17 is in between 0 and 1. It also explains why

the ANF model performs better on datasets where ground truths contain
conjunctions. Also on these very simple synthetic data, DNF models are
not impacted by approximation errors likely because of the simplicity of the
ground truths.

4.4. COMPARING THE LEARNING OF DNF AND ANF 57

0 50 100 150 200

0.0

0.2

0.4

T
ra

in
in

g
L

o
ss

dataset 1

0 50 100 150 200

0.0

0.2

0.4
dataset 2

0 50 100 150 200

0.0

0.2

T
ra

in
in

g
L

o
ss

dataset 3

0 50 100 150 200

0.0

0.2

dataset 4

0 50 100 150 200

0.0

0.2

0.4

T
ra

in
in

g
L

o
ss

dataset 5

0 50 100 150 200

0.0

0.2

0.4

dataset 6

0 50 100 150 200

Epoch

0.0

0.2

0.4

T
ra

in
in

g
L

o
ss

dataset 7

0 50 100 150 200

Epoch

0.0

0.2

0.4

dataset 8

Models

and-xor and-not-or and-notf-or

Figure 4.4: Average, min and max training loss of the different models on all
synthetic datasets during training. Area between the min and max training
loss values is filled in the corresponding color for readability.

DNF implementations Both DNF implementations have comparable train-
ing loss variations (Figure 4.4) and differ only slightly by a marginally higher

58 CHAPTER 4. NEURAL-BASED RULE LEARNING

Model Time per epoch (ms)

and-xor 4.54 ± 0.06
and-not-or 12.33 ± 0.18
and-notf-or 4.20 ± 0.05

Table 4.3: Average time per epoch measured for all experiments per model
along with standard error of the average.

accuracy for one (and-notf-or) and a marginally lower penalty for the other
(and-not-or). This is intuitively understandable given their difference in im-
plementation as and-notf-or maximum theoretical penalty is twice bigger
than and-not-or model and and-not-or model has an additional step (Equa-
tion 4.5) impacting training. Their biggest difference is in the average exe-
cution time of an epoch with model and-not-or being 3 times slower. This
is probably because the operations required to calculate a selective negation
of inputs are more time-consuming than a negation “in all cases”. Note that
the quality of the implementation could also affect the performances of the
models.

4.4.3 Conclusion

In conclusion, we have compared the learning with a neural-based approach
of an ANF expression to a DNF expression and evaluated their training per-
formances in a simplistic context. The training of the ANF rule model turned
out to be less stable without providing any other gains in performance. We
have not found sufficient motivation to pursue the direction of learning ANF.
Therefore, in the following we will continue focusing on the base rule model
presented in Section 4.2.1 that has demonstrated more favorable outcomes
in our study.

As part of this study we also compared two implementations of DNF rule
model, the difference lying in the way they handle negations. Although more
experiments would be needed to assess when one of the approaches should be
preferred (for example, depending on the input size of the model), it emerged
that the learning time is multiplied by 3 in our case when learning negation
via a weight (and-not-or) compared with padding the input with the negated
values (and-notf-or).

4.5. DATA TYPES 59

4.5 Data types

The base model architecture (RN) presented in Section 4.2.1 supports binary
input data (input values passed to the model are boolean). In the same
manner as for state-of-the-art rule learning algorithms like RIPPER [Cohen,
1995] for example, a separate preprocessing step can be applied on the data
to binarize the data. However, by opting for an end-to-end approach, the
predicates can be learned alongside the rules themselves.

In the following, we extend the architecture to support numerical and cat-
egorical data and thus augment the expressivity of the end-to-end approach.
Other data types like sequences will be studied in Chapter 5.

4.5.1 Numerical Data

Modified version of literal learning module from [Kusters et al., 2022].
By learning rules from numerical data, we imply that we learn a bina-

rization of the numerical attributes from which we learn rules. An example
of binarized expression in the context of fraud detection is provided in Equa-
tion 4.21.

the amount of the transaction is higher than 10000 (4.21)

Numerical data x ∈ RD can be transformed into boolean input data with
a sigmoid activation (binarization) to be provided as input to the base model
RN.

With a simple linear layer with real-valued trainable weightW , bias b and
a sigmoid activation (a.k.a perceptron), output node ϕj represents a numeric
comparison on a linear combination of the input features

∑
wjixi ≥ bj.

ϕ = σ

(
Wx− b

θ

)
(4.22)

σ is the sigmoid activation function applied component-wise with tempera-
ture θ which controls the slope of the sigmoid.

For validation, testing and rule extraction, the sigmoid is replaced by
a Heaviside step function to ensure strict binarization. It is a choice of
implementation to fix ϕ = 0 or ϕ = 1 when Heaviside input is 0 to represent∑

wjixi > bj or
∑

wjixi ≥ bj expressions respectively.
This layer that we will refer to as the Linear Combination layer, can also

be constrained to represent direct numeric comparisons of individual input
features by fixing the weights matrix W to be the identity matrix. This
constrained layer will be referred to in the following as the Threshold layer.

60 CHAPTER 4. NEURAL-BASED RULE LEARNING

It is worth highlighting that a Threshold layer is able to represent xi > bj
but can not represent xi ≤ bj as all the non-null weights are positive. Both
the Linear Combination layer and the Threshold layer can be input layers to
the base model RN for numerical data processing and will be referred to as
Numerical layers.

Also if additional information were to be available on the nature of the
input data such as their dimensions for instance, Linear Combination layers
could be constrained to match with the associated requirements in that case
by ensuring the representation of dimensionnally-compatible features.

In terms of training, it is important to note that input data of numerical
layers should be standardized either from scratch or via batch normalization
especially when combined with initialization distributions for weights and
bias that are centered around zero. When extracting the rules, standardiza-
tion or batch normalization operations can be reversed to rescale the weights
and bias values for usage in the rules. We opt in this work for Xavier uni-
form initialization of weights and bias [Glorot and Bengio, 2010] and batch
normalization applied before the Numerical layers.

The formal grammar that this architecture can express is specified with
the following production rules:

linear combination literal →
∑

wjixi is greater than bj
threshold literal → xi is greater than bj

(4.23)

4.5.2 Categorical Data

Introduced in [Collery et al., 2023].
By learning rules from categorical data, we imply that we learn rules from

a binary representation or evaluation of the categorical attributes. An exam-
ple of evaluation of categorical expression in the context of fraud detection
is provided in Equation 4.24.

the id of the destination account of the transaction is “UniqueID” (4.24)

Categorical data can easily be transformed into binary input data with
one-hot encoding to be provided as input to the base model RN. However in
theory impossible logical expression can be represented with this strategy.

Let xc be a categorical feature that can take one value αc
i out of a

fixed number of possible values n. Binary inputs xc = αc
0 and xc = αc

1

are then given as input to the AND layer (as shown by production rules
in Equation 4.25) that can in theory represent the impossible expression

4.5. DATA TYPES 61

x1

x2

x3

x1

x2

xc1 = A1

..
. B1

C1

D1

xc2 = A2

..
. B2

C2

D2

xc3 = A3

..
. B3

C3

D3

B1

D2

C3

Figure 4.5: Example of a trained StackedOR layer on 3 categorical variables
xc1 , xc2 and xc3 (xck ∈ {Ak, Bk, Ck, Dk}). For simplicity, the truth value of
xc1 = B1 is replaced by B1 for example. Plain (dotted) lines represent acti-
vated (masked) weights. An example evaluation of the model is represented
with the filled neurons (neuron=1) for the binary input xc1 = B1, xc2 = D2

and xc3 = A3.

xc = αc
0 ∧ xc = αc

1 i.e the model has to learn the hidden categorical relation-
ship between the one-hot encoded variables. To prevent learning it when we
already know, we propose a stacked architecture of OR layers for categorical
data, referred to as the StackedOR layer, that can be plugged in the base
model RN as shown in Figure 4.5. Assuming K categorical features, this
structure is defined by K weights, W k

stack, (one for each categorical input)
that are combined in a block-diagonal weight matrix Wstack. Wstack binary
weights are trained in the same manner as Wand and Wor as latent weights
(Section 4.2.2).

categorical literal → xc = αc
0 | . . . | xc = αc

n (or simply αc
0 | . . . | αc

n)

(4.25)

However, with this layer in front of the AND layer, the learned expression
is constrained to only have one set of possible values for each xc in the final
expression, i.e. it prevents from learning multiple disjunctions of xc values
to be used in different rule disjunctions. This can be fixed by increasing
the output size of the stacked OR layers and masking in the following AND
layers impossible combinations.

62 CHAPTER 4. NEURAL-BASED RULE LEARNING

4.6 Multi-classification and Multi-label Clas-

sification Problems

Multi-classification With any binary classification model and a one-against-
all strategy, a binary classification model can be used for multi-classification
problems. This strategy to deal with multiple classes can be adapted to the
learning of ordered rules as presented for RIPPER [Cohen, 1995] but it can
be applied to any model. It consists in learning an ordered set of rules by
ordering the n classes by increasing prevalence and training the model on the
binary classification problems of class i against classes {i + 1, . . . , n} for all
values of i ∈ {1, . . . , n − 1}, last class (class n) being the default class (else
clause).

This approach could be applied to our base architecture (RN) but a thor-
ough examination and study of the model robustness on unbalanced datasets
would be required to ensure qualitative and quantitative results. Indeed, this
is pointing out a common tradeoff for rule learning : quality of the learned
rules (measured for example with accuracy) and their simplicity or length
(measured for example with the number of conditions in the rules). In an
unbalanced environment, and especially with a gradient-based optimization,
learning the empty rules if TRUE then . . . or if FALSE then . . . will likely
be highly favorable local minima without more precautions taken during
training or with the data.

RL-Net, another approach for multi-classification was recently introduced
with the learning of ordered rules [Dierckx et al., 2023]. It consists in adding
a hierarchy layer to force an order between the neurons (or rules) that is
followed by an output layer to assign those rules to a class. This strategy
would be our preferred choice for extending the model for multi-classification.

Multi-label classification Another type of problem the base architecture
can be applied to is multi-label classification. It consists of labeling instances
with non-exclusive classes. The architecture can be adapted to multi-label
classification problems by having an output node per non-exclusive class. A
disjunction of conjunction will represent each class. However this solution
is a first step to tackle multi-label classification as without any additional
changes, the model would not capture dependencies between the different
labels.

4.7. CONCLUSION 63

4.7 Conclusion

To conclude, in this chapter we have presented a base neural architecture to
learn binary classification rules along with an associated training strategy and
explored to some extent different directions of improvement and adaptation
to address a wider range of problems. With a neural based approach multiple
expressions are learned simultaneously with a global optimization strategy
and the expected complexity (or length) of the rules can be monitored by
the regularization coefficient in the loss function.

After trying out an unsuccessful latent-free training strategy, we con-
firmed our working strategy for the future experiments with latent weights.

We studied whether the properties of ANF and especially the XOR op-
erator could benefit the learning of rules with neural networks. In practice,
on simplistic scenarios we found the training to be less stable than when
training a DNF without gain in performance or training time.

We also presented methods for dealing with numerical and categorical
data and discussed how the base neural architecture could be extended to
other common supervised machine learning problems (multi-classification
and multi-label classification).

This chapter has given us an insight as to the flexibility of this approach
and reinforces our view that the base rule model (RN) can be used as a basis
for more complex architectures, i.e. models that can learn rules governed by
more complex (and expressive) grammars.

64 CHAPTER 4. NEURAL-BASED RULE LEARNING

Chapter 5

Neural-based rule learning for
sequential data

Contents
5.1 Introduction . 66

5.2 Recurrent Rule Neural Network (RR2N) 66

5.2.1 Architecture . 67

5.2.2 Training . 69

5.2.3 Limitations . 69

5.2.4 Experiments . 69

5.2.5 Results and Discussion 70

5.3 Convolutional Rule Neural Network (CR2N) . . 71

5.3.1 Introduction . 71

5.3.2 Architecture . 72

5.3.3 Training . 76

5.3.4 Experiments . 79

5.3.5 Results and Discussion 80

5.4 Conclusion . 84

65

66 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

5.1 Introduction

Discovering interpretable patterns for classification of sequential data is of key
importance for a variety of fields, ranging from genomics to fraud detection
or more generally interpretable decision-making. We believe in our end-to-
end neural-based approach to be of great interest also for sequential data.
Both because of its compatibility with the different input blocks presented
previously (learning of literals from different data types in an end-to-end
manner) and because of the possible compatibility of the resulting learned
sequential patterns with other layers.

In this chapter, we investigate two approaches to learn rules from sequen-
tial data based on the base architecture. The first one is a Recurrent Neural
Network (RNN) and the second a Convolutional Neural Network (CNN).

In this chapter, we consider a supervised binary classification problem
where we aim to predict a binary output label y, based on multivariate
sequential input data X. We are provided with a training dataset D =
{(X(1), y(1)), (X(2), y(2)), . . . , (X(N), y(N))}, where N is the number of train-
ing samples andD consists ofN pairs of multivariate sequential dataX(i) and
their corresponding binary labels y(i). A multivariate sequence X (i.e. X(i))
of D features and of length T is defined as X = (x0, ...,xT−1)

T ∈ {0, 1}T×D,
where xt ∈ {0, 1}D, ∀t ∈ {0, ..., T − 1}, is the tth observation of all D vari-
ables. A binary output label y (i.e. y(i)) is represented as y ∈ {0, 1}.

We also introduce t, the position when the last observation in a sequence
was made. With t being our reference, t− i refers to the moment of the ith

observation before t with i ∈ {0, ..., T − 1}).
The models presented can also be extended to a set of N sequences of x

of a fixed number of feature D and of different lengths Tn.

5.2 Recurrent Rule Neural Network (RR2N)

We investigate the use of an interpretable many-to-one RNN for binary clas-
sification of sequential data.

The purpose of the network is to learn logical rules composed of dis-
junctions of conjunctions over sequential data. An example is provided in
Equation 5.1.

if (A and B at t) or (B at t− 1) then class = y (5.1)

where A and B are binary predicates.
A more complex example of logical rule over sequential data in the context

of fraud detection is provided in Equation 5.2.

5.2. RECURRENT RULE NEURAL NETWORK (RR2N) 67

if the balance of the oriAccount at t-1 > 10000
and the balance of the oriAccount at t <= 1

then transaction is fraudulent
(5.2)

The learned expressions are relative to the position t. We arbitrary right
align the sequences and thus learn patterns relative to the last observation t

in the sequence. The alignment is an implementation detail that should be
chosen according to the problem to solve.

5.2.1 Architecture

In order to learn rules that are sequence dependent, a natural extension is
to add an explicit recursion to the base model RN presented in Chapter 4.
This recursion is added on the AND layer while the OR layer remains un-
changed. We list here the key changes made to the RN model and illustrates
the new model, Recurrent Rule Neural Network (RR2N), in Figure 5.1 for
Equation 5.1.

• Neurons are logical expressions that can capture a sequential depen-
dency.

– input neurons xt are sequentially-dependent binarized input fea-
tures.

– hidden neurons ht are conjunctions of the input features xt and
ht−1, which is the hidden state that captures the conjunctions up
to t− 1.

– input neurons of the AND layer xand,t are now

[
xt

ht−1

]
• The same changes are defined for the weights associated to logical op-
erations AND and OR.

– Wand is still the weight that filters neurons for the conjunction
(AND) operation. However it is composed of two weights W and
U that filters neurons for the AND operation on the input and
hidden neurons respectively so that Wand =

[
W U

]
.

– Wor is kept unchanged.

AND Layer By replacing the new terms in Equation 4.4, and setting an
initial state for the hidden nodes to 1 we have the following.{

h0 = 1
ht = 1−min(Wand(1− xand,t),1)

(5.3)

{
h0 = 1
ht = 1−min(W (1− xt) +U(1− ht−1),1)

(5.4)

68 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

x1
t

x2
t

h1
t−1

h2
t−1

h3
t−1

h1
t

h2
t

h3
t

y

AND layer OR layer

A

B

B at t-1

A and B

B

B at t-1

(A and B) or B at t-1

Figure 5.1: Example of trained RR2N model - Plain (dotted) lines represent
activated (masked) weights. Filled nodes are hidden nodes. Equivalent ex-
ploded views of this example of RR2N model are shown in Appendix F.

The formal grammar that this architecture can express is specified with
the following production rules (see Appendix C.3 for the full grammar):

base expression → conjunctiont | conjunctiont ∨ base expression
conjunctiont → literalt | conjunctiont−1 | literalt ∧ conjunctiont

| conjunctiont−1 ∧ conjunctiont

literalt → xd at t−t
(5.5)

What this grammar points out is that the learned rules are nested con-
junctions each of which applies to a specific position t. Therefore rule extrac-
tion is done in a recursive manner as follows. When a node hi

t in the hidden
layer is connected to a node that is not an input node but a hidden node
hj

t−1, time is incremented by one and and hj
t connections are explored re-

cursively until we reach initialization depth or until there is no hidden nodes
connected to the studied node.

The hidden nodes in the AND layer are initialized to 1. This value is
not meaningless as it is equivalent of a True logical value. The recursive
extraction should then stop at a depth of search T which is the trained
sequence length with the initialization value. When extracting rules from
the model and reaching a hidden node hi at t − (T − 1) the value of that
node is then True. This can easily be extended for sequences of different
lengths Tn by padding and fixing T = max(Tn).

5.2. RECURRENT RULE NEURAL NETWORK (RR2N) 69

5.2.2 Training

The training strategy from Chapter 4 is kept unchanged, with model param-
eters Θ (i.e. Wand and Wor) being trained indirectly with latent weights and
automatic differentiation (see Section 4.2.2).

Loss function Loss function from Equation 4.11 is still valid. In practice,
we also use λ = 10−4. The number of terminal conditions of the recurrent
rule model Π is expressed as follows.

Π(Θ) = Π(Wand,Wor) = WorΠT−1,

Π0 = Wand1

Πt = Wand

[
1

Πt−1

]
(5.6)

It is important to note that this expression does not take into account
easy simplification of the learned rules and considers the initial state of True
nodes as end conditions.

5.2.3 Limitations

Adding this recurrence in the model architecture brings the same limitations
as a basic RNN [Bengio et al., 1994]. We are mainly referring to the problem
of the vanishing gradients that we will not try to solve here, but due to that
specific limitation we will focus on learning rules from sequences of short
length (6 observations).

5.2.4 Experiments

Synthetic datasets We propose 6 synthetic datasets for discovering simple
binary classification rules on sequential data as shown in Table 5.1. The last
4 datasets are to evaluate the magnitude of the vanishing gradient problem.
These are composed of 10000 sequences of length 7 with 10 binary features.
Generation is detailed in Appendix A.

Experimental Setting All datasets are partitioned in a stratified fashion
with 60% for training, 20% for validation and 20% for testing datasets and we
use a batch size of 100 sequences and train for 200 epochs. The hidden size
in the model is set to 10. More details on experimental setting can be found
in Appendix E. For each experiment, we run the algorithm 10 times with
different weight initializations. Resulting metrics are averaged over these
runs.

70 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

Ground Truth +class π

1 F1 at t-1 ∧ F2 at t 25.0 2
2 F1 at t-1 ∨ F2 at t 75.1 2
3 F4 at t-1 50.5 1
4 F4 at t-2 50.0 1
5 F4 at t-3 49.7 1
6 F4 at t-4 49.6 1
7 F4 at t-5 50.0 1

Table 5.1: Ground truths applied on binary input features F0, . . . , F9 ∈
{0, 1}10 to generate 6 synthetic datasets along with the proportion of the
positive class (in %) and the penalty π of the expression.

5.2.5 Results and Discussion

200 epochs 600 epochs
Dataset Accuracy Bal. Acc. Π Accuracy Bal. Acc. Π

1 100.0 ± 0.0 100.0 ± 0.0 2 ± 1 - - -
2 100.0 ± 0.0 100.0 ± 0.0 3 ± 1 - - -
3 100.0 ± 0.0 100.0 ± 0.0 1 ± 1 - - -
4 95.2 ± 15.2 95.0 ± 15.8 2 ± 1 94.8 ± 16.3 95.0 ± 15.8 5 ± 9
5 64.7 ± 24.4 65.0 ± 24.2 2 ± 2 90.1 ± 20.8 90.0 ± 21.1 3 ± 3
6 75.9 ± 25.6 76.1 ± 25.4 4 ± 3 74.6 ± 26.8 75.0 ± 26.4 2 ± 2
7 64.9 ± 24.2 65.0 ± 24.1 6 ± 8 73.8 ± 24.4 73.2 ± 25.1 8 ± 13

Table 5.2: Metrics obtained for the different datasets, along with the standard
deviations over the 10 executions with different weight initializations (Bal.
Acc.: balanced accuracy).

The datasets generated for this study are very simple and have no noise,
still the model starts having difficulties with a sequential time dependency
of t − 3 (dataset 5) as shown in Table 5.2. We run those experiments for
a training of three times more epochs to confirm this observation. With
datasets 3 to 7, we evaluate the maximum depth of recurrence the model can
capture in the data. We expected the model to have difficulties capturing
longer time dependencies, and this is confirmed. It gives this model very
little utility.

In addition, by just observing the rule grammar (Equation 5.5), the nested

5.3. CONVOLUTIONAL RULE NEURAL NETWORK (CR2N) 71

architecture implies that a pattern with a time dependency of t− i needs to
pass through the i previous layers by taking at least i neurons in the hidden
nodes. This is highlighted in the exploded view of the model (see Appendix
F).

The common strategy to counter the RNN limitations, is to use a Long-
Short Term Memory (LSTM) model which has a hidden state that allows
gradient to pass through the different steps [Hochreiter and Schmidhuber,
1997]. However, we were not able to find a solution to keep the interpretabil-
ity of the model and equivalence with the rules with such LSTM cell due
to its computation involving an hyperbolic tangent activation (breaking the
binarization).

To conclude, combining two architectures like RNN and BNN implies
combining their limitations. In this case, the training problems were empha-
sized even on the simplest datasets. The presented recurrent architecture
comes with training limitations but also with rule grammar limitations due
to the nested temporal expressions. While learning rules with a neural archi-
tecture from sequential data is very promising, we believe that neither this
recurrent approach nor its potential extensions (LSTM for example) are the
solutions to expressive sequential rules.

5.3 Convolutional Rule Neural Network (CR2N)

This section is a slightly modified version of our published paper [Collery
et al., 2023].

In this section, we propose a novel differentiable fully interpretable method
to discover both local and global patterns (i.e. catching a relative or abso-
lute temporal dependency) for rule-based binary classification. It consists of
a convolutional binary neural network with an interpretable neural filter and
a training strategy based on dynamically-enforced sparsity. We demonstrate
the validity and usefulness of the approach on synthetic datasets and on an
open-source peptides dataset. Key to this end-to-end differentiable method
is that the expressive patterns used in the rules are learned alongside the
rules themselves.

5.3.1 Introduction

In this section, we bridge three domains (rule learning, sequential pattern
mining and BNN) and introduce a binary neural network to learn classifi-
cation rules on sequential data. We propose a differentiable rule-based clas-

72 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

sification model for sequential data where the conditions are composed of
sequence-dependent patterns that are discovered alongside the classification
rule. More precisely, we aim at learning a rule of the following structure:
if pattern then class = 1 else class = 0. In particular we consider two types
of patterns: local and global patterns [Aggarwal, 2002] that are in practice
studied independently with a local and a global model. A local pattern de-
scribes a subsequence at a specific position in the sequence while a global
pattern is invariant to the location in the sequence (Figure 5.3).

Examples of local and global pattern in the context of fraud detection are
provided in Equation 5.7.

global there are two consecutive transactions in the sequence where the destination
account is labeled as suspicious.

local the destination account is labeled as suspicious for the latest two
transactions in sequence

(5.7)

The network, that we refer to as Convolutional Rule Neural Network
(CR2N), builds on top of the base model RN presented in Chapter 4.

The contributions are the following: i) We propose a convolutional binary
neural network that learns classification rules together with the sequence-
dependent patterns in use. ii) We present a training strategy to train a
binarized neural network while dynamically enforcing sparsity. iii) We show
on synthetic and real world datasets the usefulness of our architecture with
the importance of the rule grammar and the validity of our training process
with the importance of sparsity. The code and datasets are publicly available
at https://github.com/IBM/cr2n.

5.3.2 Architecture

5.3.2.1 Base Rule Model or Filter

The base rule model, invoked is composed of the three following consecutive
layers: a StackedOR layer (Section 4.5.2), an AND layer and an OR layer
(Section 4.2.1) as shown in (Figure 5.2).

The formal grammar that this architecture can express is specified with

https://github.com/IBM/cr2n

5.3. CONVOLUTIONAL RULE NEURAL NETWORK (CR2N) 73

x1

x2

x3

x1

x2

h1

h2

h3

h4

h5

h2

y

StackedOR layer AND layer OR layer
(
∑

k nk,K) (K,H) (H, 1)

xc1 = A1

..
. B1

C1

D1

xc2 = A2

..
. B2

C2

D2

xc3 = A3

..
. B3

C3

D3

B1

D2

C3

B1 and D2

D2 and C3
if (B1 and D2)
or (D2 and C3)

then 1 else 0

Figure 5.2: Example of a trained base rule model architecture for the rule if
(B1 and D2) or (D2 and C3) then 1 else 0 on 3 categorical variables xc1 , xc2

and xc3 (xck ∈ {Ak, Bk, Ck, Dk}). For simplicity, the truth value of xc1 = B1 is
replaced by B1 for example. Plain (dotted) lines represent activated (masked)
weights. An example evaluation of the model is represented with the filled
neurons (neuron=1) for the binary input xc1 = B1, xc2 = D2 and xc3 = A3.

the following production rules:

base expression → conjunction | conjunction ∨ base expression
conjunction → predicate | predicate ∧ conjunction

predicate → categorical expression | literal
categorical expression → categorical literal | categorical literal ∨ categorical expression

categorical literal → xc = αc
0 | . . . | xc = αc

nc
(or simply αc

0 | . . . | αc
nc
)

literal → x1 | x2 | . . .
(5.8)

As in Chapter 4, this grammar is also limited by the model architecture:
conjunction contains at most one occurrence of each predicate and the total
number of conjunction(s) is bounded by the number of hidden nodes.

5.3.2.2 Convolutional Rule Neural Network

The main contribution of this section is the extension of the base model RN
to sequential data with a convolutional approach. We apply the base rule
model as a 1D-convolutional window of fixed length L ∈ N over a sequence
and retrieve all outputs as input for an additional disjunctive layer which we

74 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

refer to as the ConvOR layer as shown in Figure 5.3. The base rule model
learns a disjunction of conjunctions over the window size length and the
ConvOR layer indicates where along the sequence that logical expression is
true. If the logical expression is to be applied all along the sequence then it
can be described as a global pattern, otherwise the learned pattern represents
a local pattern.

The model input is now of size
∑

k L×nk and output of StackedOR layer
(or input of the AND layer) is L×K. Other dimensions are not impacted. For
simplicity in the following, K is fixed to 1 i.e. input data is composed of one
categorical variable evolving sequentially (a simple symbolic sequence). The
method is still valid for complex symbolic sequence with K > 1 with possible
limitations on the expressivity as mentioned in Section 4.5.2. Figure 5.2 is
also still valid with a change of index, k is now referring to the position in
the window of size L.

With this approach, different sequence-dependent expressions can be ex-
tracted and their nature depends on the weights of the ConvOR layer (Fig-
ure 5.3). If all the weights, Wconv, of the ConvOR layer are activated (i.e.
equal to 1), the logical expression learned by the base model is valid in all
the sequence (true at least in one window): a global pattern is learned. If
only some of the weights of the ConvOR layer are activated, the logical ex-
pression learned by the base model is valid only in the window associated to
that weight: a local pattern is learned. The base model logical expression is
modified accordingly to match that shift (see example in Figure 5.3 with a
shift of 3 sequential steps).

The obtained weights thus translate to a rule grammar with the following
production rules:

rule → if expression then class = 1 else class = 0
expression → local pattern | global pattern (5.9)

t is defined as the last observation in a sequence, in the same manner as
in Section 5.2. A,B,C and D are toy binary input possible values for our
categorical variable xc (they cannot be activated simultaneously at the same
position t in the sequence). With those definitions, we list below examples
of different sequence-dependent expressions that can be expressed with the
proposed architecture (see Figure 5.3):

A local pattern is an expression composed of predicates that are true
at a specific position i, for example A at t-15. Based on Equation 5.8 we
have:

local pattern → base expression
predicate → categorical expression at t− i | literal at t− i.

(5.10)

5.3. CONVOLUTIONAL RULE NEURAL NETWORK (CR2N) 75

t

A
B

D
A

C
B

D

y

local

global

Evaluation of
base rule model
on every window

ConvOR layer

Filter
i.e. base rule model

(B at t-2 and D
at t-1) or (D at
t-1 and C at t-0)

(B at t-5
and D at t-4)
or (D at t-4

and C at t-3)

B-D or D-C
in sequence

Figure 5.3: Example of a trained CR2N architecture. The base rule model
or filter is applied as 1D-convolutional window over the sequence (i.e. sliding
window). The resulting boolean values are given as input of the ConvOR
layer which indicates through its activated weights where along the sequence
the expression learned by the base model is true. The output of the Con-
vOR layer is mapped to the label of the sequence y. For local patterns, the
base model expression needs to be shifted accordingly to the ConvOR layer
weights. For a real-domain application like fraud detection, by providing
meaning to B, C and D, we could have for example if “receiving a transac-
tion of amount X”(B) is followed by “emitting a transaction of amount X”
(D) or “emitting a transaction of amount X”(D) is followed by “closing the
bank account”(C) then class=fraud.

A global pattern is an expression describing the presence of a pattern
anywhere in the sequence, for example B-D in sequence is a global pattern
where “−” sign refers to “followed by” and “∗” correspond to any unique
literal (equivalent to ∀i ∈ [0;T − 2], B at t-i-1 and D at t-i) . If inputs
are sequences of characters, global patterns can be compared to simple reg-
ular expressions supporting the logical OR (metacharacter‘[]’). Based on
Equation 5.8 we have:

global pattern → base expression
conjunction → predicate | * | predicate − conjunction

(5.11)

Additional special cases can be pointed out such as the learning of a global
pattern over an interval (e.g. B-*-D in window [t-6; t-3]) or the learning of

76 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

sequence characteristics dependant expression such as 4 ≤ len(sequence) ≤ 6
based on the sequence length (not shown on Figure 5.3 but it corresponds to
a specific case where the base model has learned an always true rule). Also,
it is important to note that base expression and conjunction lengths in both
grammars are bounded by the fixed window size L. The full grammar of the
rule language that the model can represent is available in Appendix C.4.

To ensure full equivalence between the model and rule, sequences bound-
aries need to be considered, especially for global patterns. All sequences
are padded on both ends with a sequence of 0 of size L − 1 (not shown for
simplicity on Figure 5.3). Also sequences of different lengths are supported
by creating a model based on the maximal available sequence length M in
the data and padding shorter sequences with a sequence of 0 of appropriate
length. ConvOR layer input size is then M + L− 1.

With this one architecture, we can model both local and global patterns.
However for optimization reasons detailed below, we choose to differentiate
the two into two distinct models: a local and a global model. The ConvOR
layer weights for the global model are set and fixed to 1 during training.

5.3.3 Training

In addition the training strategy from Chapter 4 that is kept unchanged (Sec-
tion 4.2.2), we propose to improve the training by enforcing sparsity dynam-
ically. The model parameters Θ of CR2N are W 1

stack, . . . ,W
K
stack,Wand,Wor

and Wconv.

Loss function Loss function from Equation 4.11 is still valid and in prac-
tice, we use λ = 10−5. The regularization term Π , or penalty, that evaluates
the number of terminal conditions in the rule represented by CR2N depends
on the penalty of the base rule model. First the base rule model penalty
Πbase is defined before expressing Π.

Πstack =

W
1
stack1
...

WK
stack1

 , Πbase = WorWandΠstack (5.12)

For optimizing Π for local patterns, we have to minimize the activated
ConvOR layer weights. For global patterns, we want them to all be activated.
A condition could be set on the sum of ConvOR layer weights (Equation 5.13)
to shift from one optimization problem to the other but with loss of continuity
and thus differentiability (interesting values of τ beingM+L−1, the ConvOR
layer input size, that would correspond to all ConvOR layer weights being

5.3. CONVOLUTIONAL RULE NEURAL NETWORK (CR2N) 77

equal to 1, or M − L+ 1 that would allow for 2(L− 1) weights to be 0, and
corresponds to the padding required for properly accounting for sequence
boundaries (Section 5.3.2.2)).

Πlocal = ΠbaseWconv1, Πglobal = Πbase, Π(Θ)∗ =

{
Πglobal ifWconv1 ≥ τ

Πlocal otherwise

(5.13)
Due to non continuity of Π∗ in Equation 5.13, we choose to have two models
with the same architecture for the two cases: the local and the global model
respectively more relevant for their associated pattern. For the local model,
all weights are trainable and Π(Θ) = Πlocal. For the global model, weights in
the ConvOR layer are fixed and set to 1, and Π(Θ) = Πglobal.

Enforced sparsity Sparsity of the model is crucial to learn concise expres-
sions, the model needs to generalize without observing all possible instances
at training time. The first requirement for that matter is sparsity in the
base rule model. In addition to the regularization term in the loss function,
we propose to use a sparsify-during-training method [Hoefler et al., 2021]
and dynamically enforce sparsity in weights from 0% to an end rate rf set
to 99% in our case [Lin et al., 2020]. Sparsify-during-training method can
also benefit the quality of the training in terms of convergence by correcting
for approximation errors due to premature pruning in early iterations but is
highly dependant on the sparsification schedule [Hoefler et al., 2021].

As illustrated in Algorithm 4, every 16 iterations s and for a total of sf
training iterations, every trainable weight in Θ is pruned with a binary mask,
B (of size of its associated weight and applied with Hadamard product (⊙))
[Lin et al., 2020, Zhu and Gupta, 2017]. We propose a mask based on the
maximum of weight magnitude C and pruning rate r [Zhu and Gupta, 2017]
making the assumption that it contributes to generalization (Equation 5.14).
This strategy can be more aggressive than state-of-art contributions [Lin
et al., 2020] due to its dependency to theC maximum value. During training,
the model with the highest prediction accuracy on validation dataset and the
highest sparsity (evaluated at each epoch) is kept.

r = rf − rf

(
1− s

sf

)3

, Bi,j = |Ci,j| ≥ r ×max(C), Ŵ = W ⊙B

(5.14)

Additional training optimizations have been tested out such as for exam-
ple replacing the latent weights with an optimizer for BNN [Helwegen et al.,

78 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

Algorithm 4: Training procedure with enforced sparsity

Data: Training dataset D, Learning rate: η, Batch size: B, Number
of epochs: E, Pruning period: p, Pruning end rate: rf

Result: Trained neural network model
Initialize neural network parameters;
Initialize binary mask B to 1;
sf = E ×B; ▷ number of iterations

for i← 1 to E do
for j ← 1 to N

B
do

s = i× j; ▷ training iteration

if p divides s then ▷ trigger mask update
Compute masks B for every model weights parameters
and for end rate rf (Eq. 5.14);

Apply masks B on model weights parameters: Ŵ = W ⊙B;
Randomly sample a mini-batch Dbatch of size B from D;
Forward pass: Compute predictions on mini-batch using the
pruned model parameters Ŵ ;
Compute the loss between predictions and actual targets
(Eq. 4.11);
Backpropagation: Compute gradients of the loss with respect
to the parameters;
Update the parameters using Adam optimizer with learning
rate η;

Evaluate model on validation dataset;
Keep model with best loss on validation dataset;

return Best model ;

2019, Geiger and Team, 2020] introduced in Section 4.2.2, adding a sched-
uled cooling on the sigmoid of the binarized weights, alternating the training
of each layer every few epochs [Qiao et al., 2021] or using a learning rate
scheduler. Those techniques are not detailed in more depth here but could
be of interest for improving results on specific datasets.

Training on sequences of variable lengths There are different ways
to handle sequences and batches of sequences of variable lengths. The first
one is to create batches of same length sequences. This strategy assumes
at each weights update that the searched patterns are independent from
the sequences length. The training is likely to be distorted for that reason,

5.3. CONVOLUTIONAL RULE NEURAL NETWORK (CR2N) 79

but also because of the smaller batches resulting from the split by length
that will generate noisy gradient estimates. However this is a strategy that
is commonly used for example in the field of Natural Language Processing
(NLP). The second is to pad sequences to be of the same length and mask the
appropriate neurons once the sequential data processing is complete. In our
case this would correspond to masking parts of the input of the conv layer.
In practice in the following the first option is implemented with batches of
same length sequences.

5.3.4 Experiments

In order to evaluate the validity and usefulness of this method, we apply it to
both synthetic datasets and UCI membranolytic anticancer peptides dataset
[Grisoni et al., 2019, Dua and Graff, 2017].

Ground Truth +class π

1 C at t-4 14.2 1
2 A at t-6 and C at t-4 1.5 2
3 (A at t-6 and C at t-4) or (B at t-5 and C at t-3) 3.6 4
4 B-D in sequence 20.4 2

Table 5.3: Ground truths applied on sequences of letters (A to F) to generate
synthetic unbalanced datasets 1, 2, 3 and 4 along with the proportion of the
positive class (in %) and π, the number of conditions in the expression. t

refers to the position when the last observation in a sequence was made.
Balanced datasets with same ground truths are generated and referred to as
the dataset number followed by the letter b (Appendix A).

Synthetic Datasets We propose 8 synthetic datasets based on 4 ground
truth expressions with both balanced and unbalanced class distribution for
discovering simple binary classification rules with local or global patterns as
shown in Table 5.3. There are 1000 sequences of letters (A to F) of different
lengths from 4 to 14 letters in each of them (Mean around 9±3). Generation
is detailed in Appendix A.

Peptides Dataset Besides the synthetic datasets, real-world UCI anti-
cancer peptides dataset composed of labeled one-letter amino acid sequences,
is used [Grisoni et al., 2019, Dua and Graff, 2017]. The multi-classification

80 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

Model Window Pruning Accuracy Bal. Acc. Penalty (Π) Epoch

global

3
No 88.9 ± 5.0 75.3 ± 12.7 58.7 ± 35.9 105 ± 60
Yes 85.3 ± 5.3 67.3 ± 14.3 19.4 ± 15.9 23 ± 20
30 88.7 ± 5.0 75.4 ± 12.9 46.9 ± 28.0 48 ± 22

6
No 91.2 ± 1.0 81.8 ± 2.0 220.0 ± 56.5 92 ± 82
Yes 89.5 ± 3.6 77.6 ± 9.3 132.7 ± 93.9 33 ± 15
30 91.0 ± 1.3 82.0 ± 2.8 97.3 ± 60.6 71 ± 19

local

3
No 90.0 ± 3.7 78.7 ± 9.7 694.3 ± 269.3 77 ± 48
Yes 90.3 ± 1.5 81.6 ± 1.6 885.2 ± 328.7 25 ± 8
30 89.2 ± 5.2 76.3 ± 13.2 674.7 ± 483.9 49 ± 13

6
No 92.1 ± 1.0 83.5 ± 2.5 3.9k ± 1.4k 91 ± 58
Yes 88.0 ± 4.7 74.6 ± 12.4 1.0k ± 1.0k 34 ± 16
30 91.7 ± 1.5 83.5 ± 2.6 1.8k ± 0.6k 49 ± 10

Table 5.4: Performance metrics obtained for the different models, window
size and pruning strategy on the peptides dataset, along with the standard
deviations over the 10 executions with different weights initializations. (Bal.
Acc.: balanced accuracy, Epoch: best epoch).

problem is transformed into a binary classification problem is the same man-
ner as [Nwegbu et al., 2022] (see Appendix D). Sequence lengths are from 5
to 38 letters (Mean: 17 ± 5.5) and positive class distribution is 79%.

Experimental Setting Experimental setting from previous section is still
valid (Section 5.2.4), with the following changes. The hidden size in the base
rule model is set to the double of the input size of the AND layer (which is the
window size of the convolution). At each epoch (200 in total), we evaluate the
model against the validation dataset and keep the model with the highest
accuracy and in case of equality the model with lowest penalty. We run
the experiments with two different window sizes (3 and 6) for the CR2N
convolution filter size. We compare the two versions of the architecture: the
local and global models described in Section 5.3.3 and study three different
dynamic pruning strategies: none, dynamic enforced sparsity from epoch=0
and from epoch=30 (arbitrary).

5.3.5 Results and Discussion

Rule grammar and expressivity The importance of the rule model ex-
pressivity can be seen concretely by comparing the different patterns the
local and global models have learned for dataset 3b for example:

5.3. CONVOLUTIONAL RULE NEURAL NETWORK (CR2N) 81

global local

Model

0.6

0.8

1.0

B
a
la

n
ce

d
A

cc
u

ra
cy

(a) window=6, pruning=No

global local

Model

0

100

200

P
en

a
lt

y

(b) window=6, pruning=No

3 6

Window Size

0.6

0.8

1.0

B
a
la

n
ce

d
A

cc
u

ra
cy

(c) model=local, pruning=No

No Yes 30

Pruning Strategy

0

50

100

150
B

es
t

E
p

o
ch

(d) window=6, model=local

No Yes 30

Pruning Strategy

0.6

0.8

1.0

B
a
la

n
ce

d
A

cc
u

ra
cy

(e) window=6, model=local

No Yes 30

100

200

P
en

a
lt

y

(f) window=6, model=local

No Yes 30

Pruning Strategy

0

20

Dataset

1 2 3 4 unbalanced

balanced

Figure 5.4: Representations of key results obtained on the synthethic
datasets. Error bars represent the standard deviations over the 10 execu-
tions with different weights initializations.

1. (A or B)-*-(C)-*-*-(A or B or C or D or E or F) in sequence (global,
no pruning, window size=6), and

2. (B at t-5 and C at t-3) or (A at t-6 and C at t-4) (local, pruning,
window size=6).

In the first case, the grammar is not appropriate to model the data (as a
reminder, the global model is a constrained version of the local model) as
opposed to the local model that learned the perfect rule. In practice, on real

82 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

data, obtained patterns, such as “if (D or E or G or H or I or N or Q or T
or Y)-*-*-*-(D or E or G or I or N or Q or S or T or V or Y) in sequence”
obtained for labeling ‘inactive-virtual’ peptides, can be explored further by
a domain expert. Black box approaches do not provide such insights.

The importance of the rule model expressivity is also highlighted by com-
paring experiments with local or global models and experiments with different
window sizes. First of all, the accuracy of the local model is higher compared
to the global model on balanced synthetic datasets 1, 2 and 3 (Figure 5.4(a)).
For balanced and unbalanced dataset 4, both models achieve very high ac-
curacies (> 95%). However, as shown on Figure 5.4(b), it is at the cost of
rule complexity for the local approach with averaged penalty values higher
than 60 (and standard deviation higher than 50) compared to lower than 10
for the global model (and standard deviation lower than 5). It points out
that the local model in that case requires on average at least more than 6
times more terminal conditions in the learned rule than the global model
for comparable accuracies, but also that the weights initial states have a
huge impact on the rule complexity when the rule grammar is not expressive
enough (with no pruning). Those results are confirmed on real-world dataset
with the peptides dataset, accuracies between the local and global models
especially for a window size of 6 are comparable. However there is an order
of magnitude difference for the penalty, global approach being more concise.
It is important to note that by design the global approach has less weights
to train and thus a much lower maximum penalty.

Datasets 2b and 3b benefit from a bigger window size (expected for
dataset 3/3b due to ground truth pattern size) as shown in Figure 5.4(c).
Accuracies are also higher with window size 6 than 3 for the peptides dataset
at the cost of also higher penalties (Table 5.4).

The more expressive the model is, i.e. the more patterns it can model,
training limitations aside, the better the performance. Of course common
black box models with no such 1-1 rule mapping constrained architecture
would reach 100% accuracy, but it is that mapping in particular that makes
the model relevant, expressive and fully interpretable. Also, the best perfor-
mances in accuracy for the peptides dataset (∼ 91%) are comparable to the
best results (∼ 92%) obtained from classification with single kernels when
applied to that same dataset in [Nwegbu et al., 2022], our model providing an
additional fully-interpretable property. The presented model is also flexible
due to its logical equivalence and can be inputted into other logical layers
for deeper architectures to extend the rule grammar [Beck and Fürnkranz,
2021a]. It can also be extended for time series with well-chosen filter size for
instance. Other rule grammar extensions can be inspired by Linear Tempo-
ral Logic domain and regular expression pattern mining [De Giacomo et al.,

5.3. CONVOLUTIONAL RULE NEURAL NETWORK (CR2N) 83

2022]. However the more expressive the model is the more effort is required
for training and rule complexity.

Sparsity and training strategy The importance of model sparsity is
pointed out by the experiments with different pruning strategies. First, look-
ing at training scenarios, both on synthetic and peptide datasets, experiments
with sparsity-during-training approaches reach the best model faster on av-
erage than without (lower best epoch Figure 5.4(d)). Then, regarding the
performance in terms of accuracy, we can differentiate two cases: balanced
and unbalanced datasets. Training of unbalanced datasets is more affected
by the aggressive dynamic pruning strategy than balanced datasets. For ex-
ample, we observe a drop on average of around 0.2 in accuracy for dataset
1 compared to balanced dataset 1 (Figure 5.4(e)). The pruning strategy
starting after 30 epochs is preferred in both cases. Average accuracies with a
pruning strategy not starting immediately (30 epochs) are comparable to the
ones obtained without pruning for balanced datasets. In terms of rule com-
plexity, penalty values are lower with pruning and even lower when starting
after 30 epochs in most cases (Figure 5.4(f)).

With our pruning strategy (Equation 5.14), we make the assumption
that lower positive loc values are associated to overfitting or redundancy
by taking into account that values closer to 0, i.e. on the sigmoid slope,
are more likely to shift thus less ‘certain’. As pointed out in early work by
[Prechelt, 1997], the dynamic pruning strategy helps to overcome possible
lower generalization ability compared to a fixed pruning which could explain
cases of better performance (peptide dataset local model window size of 3
for example). A different pruning strategy based on a generalization loss was
proposed to characterize the amount of overfitting [Prechelt, 1997]. While
this strategy is relevant in more general cases and can be applied to many
different networks, our strategy is tailored for minimizing positive trainable
parameter values.

Sparsity of the model is also induced via the regularization term Π in
the loss function L (Equation 4.11). With this method, the importance of
sparsity is controlled in with a regularization coefficient (λ) but the final
sparsity is not directly configurable. A dynamic pruning strategy on the
other hand, is easier to control for both target sparsity and accuracy but is
highly dependent on the pruning schedule [Hoefler et al., 2021].

An interesting point is made by [Hoefler et al., 2021] about the convo-
lutional operator that ‘can be seen as a sparse version of fully-connected
layers’. That level of forced sparsity in our model is therefore defined by the
fixed window size model parameter with respect to the maximum sequence

84 CHAPTER 5. RULE LEARNING FOR SEQUENTIAL DATA

length. The ideal sparser window size would be the size of the maximal tem-
poral hidden pattern in data that can only be approximated with external
or expert knowledge and/or tuned with trial and error.

With or without a dynamic pruning strategy, for highly unbalanced datasets
(2 and 3), experiments have shown that the training strategy of the model is
not suitable. Indeed most of them, label everything with the majority class
(50% balanced accuracy). It corresponds to the specific case of learning an
empty rule (penalty=0) (Figure 5.4(a,c,e)). For unbalanced datasets 1 and
4, their best models do not reach on average the same accuracies as in their
balanced versions.

Overall this training strategy is both the key and the main limitation of
our approach: it can provide a sharp concise rule with minimal redundancy
and simplified logical expression but it is highly dependent on numerous
model, training and pruning parameters and is not suited as is for highly
unbalanced datasets.

To conclude, we presented a 1D-convolutional neural architecture to dis-
cover local and global patterns in sequential data while learning binary clas-
sification rules. This architecture is fully differentiable, interpretable and
requires sparsity that is enforced dynamically. One main limitation is its
dependence to the window size and sparsity scheduler parameters. Further
work will consist in integrating this block into more complex architectures
to augment the expressivity of the learned rules as well as extending it for
multi-classification.

5.4 Conclusion

In conclusion, this chapter explored and evaluated two approaches for neural-
based rule learning for sequences. The first approach, based on a recurrent
architecture, exhibited limitations inherent to traditional recurrent neural
networks (RNNs). Despite its potential, this recurrent approach lacked sig-
nificant room for improvements within a fully interpretable context (inspira-
tion from LSTM for example). Consequently, an alternative approach was
pursued. The second approach centered around a convolutional architecture,
demonstrated the ability to effectively learn two distinct types of temporal
patterns. Additionally, a novel training strategy incorporating dynamically
enforced sparsity was introduced to obtain concise and accurate rules. Also
with well-chosen filter size, the architecture presented for sequential data
could be adapted to time series. This model is of great interest as it could
be extended to further increase the expressiveness of the learned rules.

Chapter 6

Expressive neural-based rule
learning

Contents
6.1 Introduction . 86

6.2 Simple CR2N with Aggregates (s-CR2NA) . . . 87

6.2.1 Architecture . 87

6.2.2 Training . 89

6.2.3 Experiments . 91

6.2.4 Results and Discussion 92

6.3 CR2N with Aggregates (CR2NA) 93

6.3.1 A First Extension 93

6.3.2 Improved Models 97

6.4 Conclusion . 101

85

86 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

6.1 Introduction

In the last two chapters, we defined and proposed neural architectures for rule
learning on binary features with RN and on sequential data with CR2N for
example. In this chapter, we build on top of them to extend the grammar of
the learned rules. By deepening the architecture and plugging in rule learning
neural blocks into one another, we get closer to the grammar available in
BRMS.

In the first section, we look into the learning of rules with predefined
aggregation functions. Learning functions with neural networks has been a
research interest for some time now [Udrescu and Tegmark, 2020]. From ba-
sic linear combinations to complex mathematical experessions [Udrescu and
Tegmark, 2020] neural networks are suitable (or not) for these applications
[Thompson et al., 2022, Willard et al., 2022]. However what we are interested
in is not learning the mathematical function itself but in learning a model
that selects appropriate aggregation functions from a catalog (predefined
list), as a user would in a BRMS, and learns its arguments. We can mention
for instance min, max, sum and product as common aggregation functions
that can be applied on sequential data or sets for example. In practice, these
functions are used extensively by BRMS business users because they provide
key quantitative information to model their business policy. In the context of
fraud detection, learning the following condition “minimum amount of the 3
last transactions is higher than 1000 euros” could be of interest for example,
for classifying fraudulent transactions.

Then in a second part of the chapter, we deepen the architecture and
present a model that can express rules based on multiple filters on sequential
data which implies that a rule can be based on multiple local and/or global
patterns as defined in Chapter 5. Changes in the dimensions of the model
lead to learning difficulties. Two new implementations of the OR and AND
layers that approximate the max operation in different ways are proposed
and then compared. This architecture is a next step towards more expressive
rules. To the best of our knowledge, there is no existing models able to learn
such expressive classification rules in the literature.

As in Chapter 5, we consider a supervised binary classification problem
where we aim to predict a binary output label y, based on multivariate
sequential input data X. We are provided with a training dataset D =
{(X(1), y(1)), (X(2), y(2)), . . . , (X(N), y(N))}, where N is the number of train-
ing samples andD consists ofN pairs of multivariate sequential dataX(i) and
their corresponding binary labels y(i). A multivariate sequence X (i.e. X(i))
of D features and of length T is defined as X = (x0, ...,xT−1)

T ∈ [0, 1]T×D,
where xt, ∀t ∈ {0, ..., T − 1}, is the tth observation of all D variables. A

6.2. SIMPLE CR2N WITH AGGREGATES (S-CR2NA) 87

binary output label y (i.e. y(i)) is represented as y ∈ {0, 1}.
We also keep the previously introduced t as the position when the last

observation in a sequence was made. With t being our reference, t− i refers
to the moment of the ith observation before t with i ∈ {0, ..., T − 1}).

The models presented can also be extended to a set of N sequences of x
of a fixed number of feature D and of different lengths Tn.

6.2 Simple Convolutional Rule Neural Net-

work with Aggregates (s-CR2NA)

We extend the CR2N model to introduce the learning of rules with predefined
aggregation functions on sequences.

6.2.1 Architecture

xd
t1

xd
t2

xd
t3

min

max

sum

prod

Threshold

Threshold

Threshold

Threshold

Aggregates Block

AND OR

Figure 6.1: Example of filter proposed to learn rules with predefined aggrega-
tion functions on input xd when used with the model presented in Figure 6.2.
This example specifies min, max, sum and product as predefined aggregation
functions.

Base Rule Model or Filter The AND and OR layers of the base rule
model (a.k.a. the filter) are kept untouched in this extended architecture.
As input of the AND layer, a new block, referred to as the aggregates block,
applies J predefined aggregation functions to the input data before binarizing
the resulting values with a Threshold layer as introduced in Section 4.5.1.

x̄d
S or (xd

t)t∈S refers to the values of feature d in the subsequence of
X defined by the set S of contiguous indices (corresponds to the window

88 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

on which the filter is applied). The aggregates block on a window S with
{f1, . . . , fJ} the set of predefined aggregation functions, is implemented as
follows.

aS = σ

1

θ

f1(x̄1
S)

. . .
fJ(x̄

D
S)

− b

 (6.1)

σ is the sigmoid activation function applied component-wise with tem-
perature θ and learnable bias b. In practice, we use θ = 0.1.

A Heaviside step function replaces the sigmoid in the same manner as
in Section 4.5.1 for validation, testing and rule extraction. As shown in
Section 4.5.1, hidden neuron aS,1 represent the logical expression f1(x̄

1
S) >

b1.

In the following we will consider four basic aggregation functions: min,
max, sum and product. However, the method can be applied to any function
that maps a set of data to a (numerical) value. Resulting values are combined
and provided as input to the base rule layers as shown in Figure 6.1

The new filter (Figure 6.1) associated grammar production rules are de-
fined in Equation 6.2.

base expression → conjunction | conjunction ∨ base expression
conjunction → aggregate | aggregate ∧ conjunction
aggregate → aggfunction of xd is greater than value

aggfunction → min | max | sum | product

(6.2)

t

Conv Layer

Filter

Figure 6.2: Base architecture of s-CR2NA model with a placeholder for the
conv layer and filter.

6.2. SIMPLE CR2N WITH AGGREGATES (S-CR2NA) 89

Conv layers In addition to the ConvOR layer introduced in the previous
chapter, we define the ConvAND layer. In the same manner as the ConvOR,
the ConvAND layer indicates where along the sequence the logical expression
learned in the filter must be true but combines those positions with a con-
junction. Together with their local and global variants, there are 4 different
conv layers to gather the filter outputs along the sequence. The base archi-
tecture of this model that we refer to as s-CR2NA is shown in Figure 6.2 and
can take one conv layer as output layer. These conv layers, combined with
the previously described filter architecture, augment the expressivity of the
filter expression. With Ŝ the set of sets Si of X of size L that corresponds to
the selected windows by the conv layer, depending on the conv layer we can
express the following expressions (Equation 6.3). Full grammar of the model
rule language is available in Appendix C.5.

localOR → base expression over any of the windows: Ŝ

localAND → base expression over all of the windows: Ŝ
globalOR → ∃S of size L in seq such that base expression

globalAND → ∀S of size L in seq, base expression

(6.3)

Table 6.1 highlights their role by comparing their impact on a simple filter
expression f(x̄d

S) > b both with the mathematical expressions and textual
equivalents.

Conv Layer Math Text

Local OR

∨
S∈Ŝ

f(x̄d
S) > b f of d is greater than b over any of the windows S.

Local AND

∧
S∈Ŝ

f(x̄d
S) > b f of d is greater than b over all of the windows S.

Global OR ∃S of size L |f(x̄d
S) > b

There are L consecutive elements in sequence x,
where f of d is greater than b.

Global AND ∀S of size L, f(x̄d
S) > b

For all L consecutive elements in sequence x,
f of d is greater than b.

Table 6.1: Possible expressions that can be learned with different conv layers
for a filter that corresponds to the expression f(x̄d

S) > b.

6.2.2 Training

As opposed to the training strategy in use in previous chapter (Chapter 5),
enforced sparsity is not applied in these experiments. We believe that adding
a pruning strategy may help optimizing the complexity of the rules and help

90 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

and fasten the training. However, finding satisfactory configuration for the
enforced sparsity presented in Section 5.3.3 is challenging and improvements
were modest, it is therefore omitted. Also, the learning rate η of Adam
optimizer is set to 0.01. The rest of the training strategy is kept unchanged
and summarized in Algorithm 5 (Section 4.2.2). The model parameters Θ of
s-CR2NA are Wand,Wor,Wconv and b.

Algorithm 5: Training procedure

Data: Training dataset D, Learning rate: η, Batch size: B, Number
of epochs: E

Result: Trained neural network model
Initialize neural network parameters;
for i← 1 to E do

for j ← 1 to N
B

do
Randomly sample a mini-batch Dbatch of size B from D;
Forward pass: Compute predictions on mini-batch using the
current model parameters;
Compute the loss between predictions and actual targets
(Eq. 4.11);
Backpropagation: Compute gradients of the loss with respect
to the parameters;
Update the parameters using Adam optimizer with learning
rate η;

Evaluate model on validation dataset;
Keep model with best loss on validation dataset;

return Best model ;

Loss function The loss function from Equation 4.11 is still valid (λ =
10−4). s-CR2NA being very close to the architecture of CR2N, the compu-
tation of their associated regularization terms Π is almost identical as shown
in Equation 6.4. The number of terminal conditions of the base rule model
Πbase now corresponds to the penalty of RN model.

Πbase = WorWand1, Πlocal = ΠbaseWconv1, Πglobal = Πbase (6.4)

For the local model, all weights are trainable and Π(Θ) = Πlocal. For
the global model, weights in the Conv Layers are fixed and set to 1, and
Π(Θ) = Πglobal.

6.2. SIMPLE CR2N WITH AGGREGATES (S-CR2NA) 91

Type Ground Truth +class π

1 local max
s

F0 > 0.8 over window: s−1 49.2 1

2 localOR max
s

F0 > 0.9 over any of the windows: s−1, s−4 43.9 2

3 localAND max
s

F0 > 0.9 over all of the windows: s−1, s−4 62.7 2

4 globalOR ∃s of size 3 in seq such that
∑
s

F5 > 2 55.0 1

5 globalOR ∃s of size 3 in seq such that
∏
s

F5 > 0.25 52.8 1

6 globalAND ∀s of size 3 in seq, min
s

F0 > 0.05 64.5 1

Table 6.2: Ground truths applied on numerical input features F0, . . . , F9 ∈
[0, 1]10 to generate the 6 synthetic datasets along with the proportion of the
positive class (in %) and the penalty π of the expression.

Training on sequences of variable lengths Unlike experiments in Chap-
ter 5.3, sequences are padded to be of the same length. Data resulting from
applying the filter on the padded values, is then masked and replaced by
a default value before being provided to the conv layer. The default value
depends on the nature of the conv layer. For Local OR and Global OR conv
layers default value is 0 (i.e False) and for Global AND conv layer default
value is 1 (i.e. True). For Local AND layer the classical usage is to use 0 as
a default value (used in practice). However, 1 can be chosen as default value
with a consequence on the learned patterns as it will imply an implicit con-
dition on the length of the sequence. Also batch normalization for Threshold
layers takes into account the padding (ignores the padded values).

6.2.3 Experiments

In order to evaluate the validity and usefulness of this method, we apply the
model on synthetic datasets.

Synthetic Datasets We propose 6 synthetic datasets for discovering sim-
ple binary classification rules with local or global patterns involving aggre-
gation functions as shown in Table 6.2. There are 6000 sequences of 10 nu-
merical features (Fi) ranging from 0 to 1. Sequences are of different lengths
from 4 to 14 elements each. Generation is detailed in Appendix A. The
model(s) with the conv layers corresponding to the dataset ground truth
pattern is(are) manually chosen for the experiments.

92 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

Local OR Local AND Global OR Global AND

1 99.7 ± 0.3 100.0 ± 0.0 - -
2 100.0 ± 0.0 - - -
3 - 99.6 ± 0.2 - -
4 - - 98.5 ± 0.1 -
5 - - 100.0 ± 0.0 -
6 - - - 100.0 ± 0.0

Table 6.3: Average accuracies obtained for the different models and datasets,
along with the unbiased standard errors of the average over the 10 executions
with different weights initializations.

Local OR Local AND Global OR Global AND

1 1.9 ± 0.3 1.1 ± 0.1 - -
2 3.2 ± 0.6 - - -
3 - 4.0 ± 0.6 - -
4 - - 8.8 ± 1.0 -
5 - - 10.1 ± 0.9 -
6 - - - 2.1 ± 0.3

Table 6.4: Average penalties Π obtained for the different models and datasets,
along with the unbiased standard errors of the average over the 10 executions
with different weights initializations.

Experimental Setting All datasets are partitioned in a stratified fashion
with 60% for training, 20% for validation and 20% for testing datasets and
we use a batch size of 200 sequences. The hidden size in the base rule model
is set to 20. Output sizes of the threshold layer and of the filter are 1. More
details on experimental setting can be found in Appendix E. At each epoch
(400 in total), we evaluate the model against the validation dataset and keep
the model with the lowest loss. For each experiment, we run the algorithm 10
times with different weights initializations. Resulting metrics are averaged
over these runs. We run the experiments with a window size of 3 elements
for the convolution.

6.2.4 Results and Discussion

Learned rules and expressions Table 6.3 shows that the model con-
verges towards accurate expressions. When looking at the learned rules,

6.3. CR2N WITH AGGREGATES (CR2NA) 93

they correspond to the ground truths (or logically equivalent expressions)
in most cases. However we can point that for dataset 4, the model is not
always reaching the ground truth. What differentiates dataset 4 from the
others is that it involves the aggregation function sum. The codomain of
aggregation function sum is wider than the ones for min, max and product.
This might explain an increased sensitivity to the bias initialization and a
possible need for more training time. In practice, the constrained threshold
layer is responsible for this learning disparity, because the input value of this
layer is not weighted by a trainable parameter, as it would be the case in a
conventional linear layer.

Sparsity In terms of sparsity, the expressions, even when equivalent or
very close to ground truths, are not always in their simplest form and might
require simplification.

For example for dataset 4, the following expression was learned:

∃s of size 3 in seq such that sums F5 > 2 and prods F5 > 0.2.

This could likely be solved per dataset with fine-tuning of hyper parameters
or longer training, higher regularization coefficient λ or even enforced sparsity
at the cost of finding an appropriate configuration.

In conclusion, this model, designed for learning rules with basic prede-
fined aggregates on sequential data, has demonstrated its ability to generate
expressive rules and great training performance. The user’s choice of conv
layer prevents this model from being suitable for any real use and it is there-
fore as expected only an intermediate model. However, it seems to be a good
basis for integration into a more intricate and expressive model.

6.3 Convolutional Rule Neural Network with

Aggregates (CR2NA)

In this section, we extend the s-CR2NA model by allowing for multiple con-
volutional filters to accommodate multiple sequential patterns types. We
refer to this network as Convolutional Rule Neural Network with Aggregates
(CR2NA).

6.3.1 A First Extension

6.3.1.1 Architecture

94 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

xd
t1

xd
t2

xd
t3

Aggregates

Threshold

Threshold

Threshold

AND OR

Figure 6.3: Example of filter proposed to learn rules with predefined aggre-
gation functions on input xd when used with the model presented in Figure
6.4. Illustrated is a filter with output size 2.

Filter The filter presented in Section 6.2.1 is modified slightly to support
expressions based on raw numerical data. The Threshold layer is applied
not only to the aggregated values, but also to raw numerical input. The
resulting filter model is illustrated in Figure 6.3 and the grammar of one
output neuron is described with production rules in Equation 6.5. Unlike
previous architectures, the filter can have an output size higher than 1.

base expression → conjunction | conjunction ∨ base expression
conjunction → predicate | predicate ∧ conjunction

predicate → aggregate | literal
aggregate → aggfunction of xd is greater than value

aggfunction → min | max | sum | product
literal → xd is greater than value at ti

(6.5)

Conv Layers All four possible Conv Layers presented in Section 6.2.1 are
applied to each output dimension of the filter. The layers are kept unchanged.

Rule Layers Finally all the resulting values from the different Conv Layers
are given as input to the base rule model composed of an AND and an OR
layer. Note that non sequential features could easily be added as input to
the rule layers along with the resulting sequential patterns from the conv
layers for datasets that are composed of both sequential and non sequential
features.

An example of model with two dimensional filter is illustrated in Fig-
ure 6.4. Overall the rules represented by this model can be described by the
production rules in Equation 6.6 (full grammar is available in Appendix C.6).

6.3. CR2N WITH AGGREGATES (CR2NA) 95

t

Local OR

Local AND

Global OR

Global AND

Local OR

Local AND

Global OR

Global AND

AND OR

Filter

Figure 6.4: Base architecture of CR2NA with an example of a two dimen-
sional filter.

rule → if disjunction then class = 1 else class = 0
disjunction → conjunction | conjunction ∨ disjunction
conjunction → expr | expr ∧ conjunction

expr → localOR | localAND | globalOR | globalAND

(6.6)

6.3.1.2 Training

The training strategy from Chapter 4 is kept unchanged (Section 4.2.2). The
model parameters Θ of CR2NA are Wand filter,Wor filter,Wconv,Wand,Wor

and b.

Loss function Loss function from Equations 4.11 and 6.4 are still valid
(λ = 10−4). The regularization term Π, or penalty, still evaluates the number
of terminal conditions in the rule. The number of terminal conditions of the
base rule model Πbase, of a local model Πlocal or of a global model Πglobal can
be expressed as functions of the model parameters as follows.

Πbase = Wor filterWand filter1, Πlocal = Πbase ⊙ (Wconv1), Πglobal = Πbase

(6.7)

96 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

Ground Truth +class π

7 F0 at t− 5 > 0.7 ∨ F1 at t− 2 > 0.7 51.8 2
8 F1 at t− 1 > 0.7 ∨ ∃s of size 3 in seq such that min

s
F0 > 0.5 60.7 2

9 (F1 at t− 1 > 0.5 ∧ F8 at t− 1 > 0.6)

∨ (
∑
s

F4 > 1.5 over window: s−1

∧ ∃s of size 3 in seq such that min
s

F2 > 0.2)

55.5 4

Table 6.5: Ground truths applied on numerical input features F0, . . . , F9 ∈
[0, 1]10 to generate 3 additional synthetic datasets along with the proportion
of the positive class (in %) and the penalty π of the expression.

From which, Π can be expressed as follows.

Π(Θ) = WorWand

ΠlocalOR

ΠlocalAND

ΠglobalOR

ΠglobalAND

 (6.8)

6.3.1.3 Experiments

The validity and usefulness of this method is again evaluated by applying
the model on synthetic datasets.

Synthetic Datasets In addition to the 6 synthetic datasets presented in
Section 6.2.3, we propose 3 additional datasets in Table 6.5 with more com-
plex rules and that involve the new aspects of the grammar supported by
the model. There are 6000 sequences of 10 numerical features (Fi) ranging
from 0 to 1. Sequences are of different lengths from 4 to 14 elements each.
Generation is detailed in Appendix A.

Experimental Setting Experimental setting from previous section is still
valid (Section 6.2.3) but the output size of the filter is set to 5 and the hidden
size in the final rule model to 5.

6.3.1.4 Results and Discussion

When deepening the model and without radical changes in the training strat-
egy, the training limitations of the model are exposed as shown in Table 6.6.

6.3. CR2N WITH AGGREGATES (CR2NA) 97

Accuracy Π Epoch

1 78.5 ± 7.7 5.2 ± 2.4 35.1 ± 10.4
2 85.3 ± 6.0 9.8 ± 2.8 101.4 ± 40.5
3 87.6 ± 4.3 6.9 ± 2.9 110.5 ± 24.7
4 86.0 ± 5.4 24.0 ± 7.9 81.7 ± 24.7
5 87.9 ± 4.3 27.2 ± 6.0 139.4 ± 41.2
6 80.6 ± 4.8 7.9 ± 2.6 102.2 ± 36.5

7 64.7 ± 3.8 8.7 ± 5.0 114.7 ± 27.6
8 68.8 ± 2.6 9.8 ± 4.2 189.0 ± 33.2
9 77.7 ± 4.6 7.0 ± 2.1 102.4 ± 19.6

Table 6.6: Average accuracies, penalties Π and best epochs (i.e. epoch of the
best loss on validation set) obtained for the different datasets, along with the
unbiased standard errors of the averages over the 10 executions with different
weights initializations.

In a lot of cases, the model is learning the empty class which directly
impacts the average and standard error values. There is one main reason to
explain this training instability : the implementation of AND and OR layers
combined with the latent weights. The AND and OR layers are implemented
using the minimum function. It is applied to the weighted sum of the layer
input which is by definition completely dependent on the layer input size
(Equations 4.3 and 4.6). As a consequence, the larger the model, the greater
the logical approximation errors during training. We believe this is the main
cause of learning difficulties. Many other configurations have been tested
in an attempt to find ideal parameters (learning rate scheduling, dropout,
added noise,...). However, none of the configurations provided more stable
and robust learning. This problem is all the more worrying as the datasets
tested here are very simple and noiseless, hence the importance of addressing
these learning limitations before possible usage on real-world data.

6.3.2 Improved Models

Following the observations of the previous model training difficulties, we
experiment with other implementations of AND and OR layers to validate
the unchanged overall CR2NA architecture.

98 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

6.3.2.1 Architectures

Every occurrence of an OR or AND layer in the previously introduced model
(Section 6.3.1) is replaced with the following OR and AND layers. The com-
putations in the new implementations have the benefit of providing mean-
ingful approximation of the logical operation regardless of the input size.
This was the main concern raised following the experiences with the previ-
ous implementation. These computations also come with a more meaningful
approximations for input and weight values between 0 and 1. The rest of the
architecture is kept unchanged.

Implementations are based on approximations of a common fuzzy logic
OR operator : the maximum function.

The first set of OR and AND layers is based on the usage of the softmax
function, they will be refereed to as the (soft)OR and (soft)AND layers.

(soft)OR Layer We exploit an approximation of the maximum with the
softmax function to define an OR layer as follows (∗ sizes are adjusted ac-
cordingly).

V = n(W ∗
or ⊙ x∗), y = diag(V ⊺softmax(V)/n) (6.9)

The softmax function corresponds to softmax(zi) = ezi∑K
j=1 e

zj
with z =

(z1, . . . , zK) ∈ RK applied on the input dimension K.

(soft)AND Layer In the same manner as in Section 4.2.1, applying the
De Morgan’s Law to Equation 6.9, we have:

V = n(W ∗
and ⊙ ¬x∗), h = ¬(diag(V ⊺softmax(V)/n))

i.e. V = n(W ∗
and ⊙ (1− x∗)), h = 1− (diag(V ⊺softmax(V)/n)).

(6.10)
The second set of OR and AND layers is based on the usage of the Log-

SumExp (LSE) function, and will be refered to as the (lse)OR and (lse)AND
layers.

(lse)OR Layer We exploit an approximation of the maximum function
with the LSE function to define a new OR layer as follows:

V = n(W ∗
or ⊙ x∗), s = logsumexp(V)/n, y = min(max(s, 0), 1).

(6.11)

6.3. CR2N WITH AGGREGATES (CR2NA) 99

CR2N-soft CR2N-lse
Accuracy Π Epoch Accuracy Π Epoch

1 100.0 ± 0.0 8.8 ± 1.5 270.2 ± 30.3 100.0 ± 0.0 11.5 ± 1.6 32.6 ± 2.9
2 99.5 ± 0.5 11.1 ± 1.7 238.7 ± 23.2 100.0 ± 0.0 19.4 ± 1.9 56.4 ± 5.1
3 100.0 ± 0.0 25.4 ± 4.3 82.3 ± 15.6 99.8 ± 0.2 15.9 ± 2.1 31.5 ± 7.4
4 99.3 ± 0.7 12.0 ± 1.6 99.4 ± 12.4 100.0 ± 0.0 15.1 ± 2.0 49.7 ± 5.0
5 96.7 ± 0.8 13.3 ± 2.2 142.3 ± 46.5 98.0 ± 0.6 14.9 ± 2.3 48.8 ± 5.0
6 100.0 ± 0.0 5.4 ± 0.9 302.8 ± 27.5 97.1 ± 1.0 7.9 ± 1.0 59.6 ± 12.1

7 85.2 ± 1.9 40.0 ± 6.2 276.9 ± 38.4 78.6 ± 0.8 14.3 ± 1.9 87.6 ± 17.6
8 82.2 ± 2.4 51.6 ± 5.5 263.9 ± 35.7 76.7 ± 1.3 16.9 ± 3.0 93.8 ± 23.1
9 86.7 ± 0.6 22.9 ± 4.9 225.0 ± 33.6 87.5 ± 0.3 13.2 ± 2.8 90.3 ± 19.4

Table 6.7: Average accuracies, penalties Π and best epochs (i.e. epoch of the
best loss on validation set) obtained for the different datasets, along with the
unbiased standard errors of the averages over the 10 executions with different
weights initializations.

LSE function corresponds to logsumexp(zi) = log
∑

j e
zi,j and is applied

on the input dimension.

(lse)AND Layer Applying the De Morgan’s Law to Equation 6.11, we
have:

V = n(W ∗
and ⊙ ¬x∗), h = ¬min(max(s, 0), 1)

i.e. V = n(W ∗
and ⊙ (1− x∗)), h = 1−min(max(s, 0), 1).

(6.12)

6.3.2.2 Training

Training is kept the same as described in Section 6.3.1.2.

6.3.2.3 Experiments

We will refer to the former model described in Section 6.3.1 as CR2NA model,
the one based on (soft)AND and OR layers as the CR2NA with Softmax
implementation (CR2NA-soft) and the one built on top of (lse) layers as
CR2NA with LSE implementation (CR2NA-lse). In order to compare the
three, the experimental setting is kept the same as in Section 6.3.1.3.

100 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

6.3.2.4 Results and Discussion

The results obtained for the learning of CR2NA-soft and CR2NA-lse are
presented in Table 6.7. First of all in terms of accuracy, performances are
comparable for simplest datasets but CR2NA-soft reaches better accuracies
than CR2NA-lse on the 3 most complex datasets (datasets 7, 8 and 9). It
is very likely related to the difference in speed of convergence of the two
implementations. The average best epoch for CR2NA-soft is much higher
than for CR2NA-lse. It shows that only a fourth of the training time in terms
of epochs is used by CR2NA-lse model to converge towards the best model.
Note that these results were obtained without specific fine tuning and with a
basic training strategy, altough these results suggest that CR2NA-lse could
benefit from smaller learning rate or learning rate scheduling for instance.

In terms of penalties, both models obtained comparable penalties for
simplest models (1 to 6) that are quite high compared to ideal π values
presented in Table 6.2 and 6.5 but also compared to the ones obtained for
CR2NA (Table 6.6). Stronger regularization (dropout or added noise can also
be considered), longer training or enforced sparsity (at the cost of finding an
appropriate configuration) would be required for improvement of the learned
rules complexity and overall generalization performance for complex datasets
compared to the training of CR2NA (at least on these simple datasets).

CR2NA CR2NA-soft CR2NA-lse

60

70

80

90

100

A
cc

u
ra

cy

CR2NA CR2NA-soft CR2NA-lse

10

20

30

40

50

P
en

a
lt

y
Π

Datasets

1 2 3 4 5 6 7 8 9

Figure 6.5: Average accuracies and penalties Π obtained for the different
datasets per model, along with the standard errors of the average over the
10 executions with different weights initialization.

When compared to CR2NA original implementation (Section 6.3.1) the
training is much more consistent. This is highlighted in Figure 6.5, with
CR2NA-soft and CR2NA-lse implementations improvements in terms of ac-
curacy for all datasets but also with the very low standard errors for both

6.4. CONCLUSION 101

accuracy and penalty values. Average penalty being 0 when the CR2NA
model converges towards the empty rule makes the average penalty compar-
ison with this model not particularly relevant.

In terms of average training time of an epoch, CR2NA and CR2NA-lse
require comparable time but are two times faster than CR2N-soft which
suggest that CR2NA-lse implementation could be a preferred in practice.

Also, although it was not required with these synthetic datasets, for more
complex datasets we suggest to avoid the addition of noise in the computation
of the threshold layer as well as Dropout in the conv layers as common
regularization technique to learn less represented patterns in the data.

To conclude, this deeper architecture, designed for learning rules with
predefined aggregates on sequential data, has demonstrated its ability to
generate expressive rules and great training performance with specific base
layers implementations. Indeed with the base AND and OR layers described
in Chapter 4, the experiments highlighted some training limitations of their
implementation. Following this observation, we investigated other logical
layers implementations to address this issue based on approximation of the
maximum function (with softmax and LSE functions). Both offer a more
stable training but come with resulting rules with higher penalty values. A
direction for future work would be to investigate how it could be improved ef-
ficiently with the addition of a enforced sparsity strategy, more training time,
higher regularization coefficient or hyper parameters tuning and scheduling
for example. Implementations based on LSE seems to provide the best con-
vergence and computation time.

6.4 Conclusion

To conclude, with the approach of deepening the base rule model we were
able to extend the rule grammar and expressivity of the learned rules. First
a simple intermediate model applying predefined aggregation functions to
sequential data was trained and tested as a proof-of-concept to encourage
this research direction. Then the architecture was extended with additional
rule layers that extend the rules complexity to another level with the possi-
bility to learn rules based on multiple sequential filters (and non sequential
features). Increasing the size of the model did, however, highlight learn-
ing limitations of the original implementations of the AND and OR layers.
Other implementations were explored and compared when used in the same
model architecture and proved to provide more stable training and consistent
performance across experiments.

102 CHAPTER 6. EXPRESSIVE NEURAL-BASED RULE LEARNING

This architecture is very promising and future work will consist in inves-
tigating its limitations with non-perfect data and existing datasets. These
results pave the way for many possible improvements in terms of expressive-
ness and learning.

Chapter 7

Conclusion

We started from the observation that, to the best of our knowledge, there
was no existing method to learn expressive rules, i.e. rules with a grammar
that can deal with different types of input data and express complex expres-
sions. If we consider the full learning process to take as input the raw input
data and return as output the classification rules, there are many special-
ized approaches that focus on a specific step in this process but none target
the overall goal. Betting on an end-to-end neural-based approach, we pro-
pose such models starting from a base rule model that learns a disjunction
of conjunctions (Chapter 4) and step by step extending it to more complex
grammars (Chapter 5 and 6).

Contributions In the path of extending the grammars of learned classi-
fication rules, we started with a preliminary work based on a preprocessing
approach. Then, on the basis of a neural-based rule learning approach for
binary tabular data we provided support for numerical and categorical data,
compared the learning of DNF to ANF expressions and discussed extensions
for other classification problems (multi-classification and multi-label classifi-
cation). Two models were proposed for supporting sequential data (RR2N
and CR2N) before the addition of predefined aggregates to the rule gram-
mar together with a deeper architecture (CR2NA). This final architecture
is much more expressive and closer to what a business user can write in a
BRMS than the first RN model or state-of-art rule learning models. The
main contributions of this thesis are:

• CR2N, a convolutional rule neural network which learns different types
of sequential patterns alongside the classification rules.

• CR2NA, an expressive rule neural network that can express rules with
predefined temporal aggregates but also, due to its flexible architecture,

103

104 CHAPTER 7. CONCLUSION

it can deal with both sequential and flat data of different types : binary,
numerical and categorical data.

Limitations The work presented here does come with important limita-
tions. First of all, we focused the work on binary classification problems
for simplicity and it restrained quite significantly the existing datasets we
could use and thus the possibilities for us to compare our model to other
approaches. As a consequence, experiments are quite limited and almost
exclusively conducted using synthetic data. Experiments on synthetic data
are required to validate the model as a first step but most certainly are not
enough to show all of their limitations. During the writing of this manuscript,
RL-Net model proposed a very interesting solution to deal with multi clas-
sification problems [Dierckx et al., 2023]. It would be of great interest to
incorporate their ideas in our models to evaluate them in a broader scope.

Then, throughout the entire manuscript, we motivated the application
of learned rules with fraud detection in mind. Fraud detection problems
are characterized by a distinct feature: highly unbalanced data. We made
the deliberate decision not to go in that direction and instead decided to
keep the proposed methods as generic as possible. However, the proposed
architectures are not ready to use without prior data processing (e.g. under
or over sampling) in highly unbalanced settings. Also, the main motivation
of this work is related to BRMS. However, the commutativity properties of
the logical operations in use are fully exploited and thus obtained expressions
are unordered. In business rules the order of conditions (and rules) can have
a huge importance for error management.

Finally, looking more closely into the technical limitations of our pro-
posed approaches, we are using a tool, neural networks, and an optimization
strategy, gradient descent, that is not specifically designed for discrete opti-
mization problems such as ours. This means that in addition to using tips and
tricks to make it to work (latent weights, enforced sparsity for example) the
well-known limitations of neural networks also apply and some might even be
exacerbated. We are referring to sensitivity to hyperparameters, difficulties
in optimizing non-linear functions, vanishing and/or exploding gradients or
sensitivity to initialization for example. However to some extent (length of
the rule can still impact interpretability) lack of interpretability is no longer
a problem.

Perspectives for future work In addition to addressing these limitations,
there are still other avenues for future work. First, there are still a lot of
complex expressions both for flat and sequential data that should be learnable

105

in order to match BRMS supported rule grammar. In this direction itself,
there is still much to be done. For example, we can mention sequential
operators like before, after or occurs in (looking into Linear Temporal Logic
(LTL) would be a great starting point). Also the support for sequential data
could be extended to time series with some well-chosen filter size and support
for ordered categorical data could be investigated. It is also important to
note that BRMS are also not just used for binary classification problems.
Extending the expressivity of the right side of rules (action part) could also be
of great interest and require further exploration within the research domains
of regression problems and/or program synthesis.

Another direction of research would be to look into the stability and ro-
bustness of the training strategy. We consider the presented work to provide
initial steps in the direction of a working end-to-end rule learning process
rather than a final solution. Further studies on weights initialization, opti-
mization of BNN and layers implementations would likely improve the quality
of the training for instance.

On the longer term, we believe it would be interesting to investigate
the use of this approach for another type of data we have not mentioned
yet: graphs. There are many different machine learning problems that could
be explored with a rule-based approach such as node classification, edge
prediction or graph clustering. We have seen CNN being used on graph data
in the past [Defferrard et al., 2017], so why not consider a CNN with an
interpretable filter as presented in this manuscript.

Finally, if we believe that interpretable AI will follow the steps of generic
AI, there are still many existing tools and techniques to be adapted, opti-
mized or used as inspiration for interpretable neural models. From Hidden
Markov Model (HMM), to RNN, to CNN, to transformers and very recently
Large Language Models (LLMs), AI has experienced remarkable progress
and development in recent years most of which are yet to be made inter-
pretable. This promises a very bright future for neural-based rule learning
if for example interpretable transformers are to exist. There is currently a
considerable research (and industrial) interest in LLMs. These models are
language models which, until now, are not suitable for learning mathemati-
cal expressions (and thus rules) or for arithmetic reasoning. However, in the
context of business rules and BRMS, they are extremely relevant for propos-
ing rules from a textual query or for assisting the writing of rules for business
users (as an AI pair programmer). An hybrid approach combining the power
of LLM and a neural-based rule learning model would be a very interesting
avenue to pursue as well.

Another widely used learning technique for non interpretable models that
is not commonly applied to rule learning is reinforcement learning. Adapting

106 CHAPTER 7. CONCLUSION

the current approach with reinforcement learning would be another direction
for future work. This would likely benefit interactive real-world environment
although this would not necessarily be in the immediate scope of business
rules. It might also more generally bring robustness to the rule construction.
This year, reinforcement learning was introduced for the learning of temporal
rules in a different set up [Yang et al., 2023] and showed promising results.

Appendices

107

A. BENCHMARKS PROPOSAL 109

A Benchmarks proposal

In this section we gather all the information relative to the new synthetic
datasets proposed to evaluate binary classification rule learning models.

We refer to the set of datasets presented in Table 1 as the Binary Classifi-
cation Rule Dataset (BCRD) collection (Available here : https://github.
com/IBM/classification-rule-datasets).

Synthetic datasets generation Datasets are created by applying ground
truths on randomly generated features.

For the balanced datasets in use in Chapter 5, they are generated ran-
domly with the same ground truth as unbalanced datasets. Then, they are
upsampled until the minority class represents half of the goal dataset size
and appropriate number of majority class are randomly removed.

https://github.com/IBM/classification-rule-datasets
https://github.com/IBM/classification-rule-datasets

110

Ground Truth +class π π∗
DNF

sl Simple Logical Rules
10000 instances composed of 10 binary features F0, . . . , F9 ∈ {0, 1}10

1 F0 ∨ (F3 ∧ F6) 63.5 3
2 (F0 ∧ F4) ∨ (F3 ∧ F6) 43.6 4
3 (¬F3 ∧ ¬F6) ∨ ¬F0 ∨ ¬F4 80.6 4
4 (¬F3 ∧ ¬F6) ∨ (F0 ∧ F9 ∧ ¬F6) ∨ ¬F0 ∨ ¬F4 83.9 7 6
5 F0 ⊻ F4 49.6 2 4
6 F0 ⊻ F4 ⊻ F8 49.9 3 12
7 F0 ⊻ F4 ⊻ (F3 ∧ F8) 49.5 4 20
8 F0 ⊻ F4 ⊻ (F8 ∧ ¬F3) 50.2 4 20

st Short-term dependency Rules on Sequences
10000 sequences of length 7 composed of 10 binary features F0, . . . , F9 ∈ {0, 1}10

1 F1 at t-1 ∧ F2 at t 25.0 2
2 F1 at t-1 ∨ F2 at t 75.1 2
3 F4 at t-1 50.5 1
4 F4 at t-2 50.0 1
5 F4 at t-3 49.7 1
6 F4 at t-4 49.6 1
7 F4 at t-5 50.0 1

lg Rules with Local and Global patterns on Sequences
1000 sequences of length from 4 to 14 composed of letters (A to F)

1 C at t-4 14.2 1
2 A at t-6 ∧ C at t-4 1.5 2
3 (A at t-6 ∧ C at t-4) ∨ (B at t-5 and C at t-3) 3.6 4
4 B-D in sequence 20.4 2

sa Rules with Aggregates
6000 sequences of length from 4 to 14 composed of 10 numerical features
F0, . . . , F9 ∈ [0, 1]10

1 max
s

F0 > 0.8 over window: s−1 49.2 1

2 max
s

F0 > 0.9 over any of the windows: s−1, s−4 43.9 2

3 max
s

F0 > 0.9 over all of the windows: s−1, s−4 62.7 2

4 ∃s of size 3 in seq such that
∑
s

F5 > 2 55.0 1

5 ∃s of size 3 in seq such that
∏
s

F5 > 0.25 52.8 1

6 ∀s of size 3 in seq, min
s

F0 > 0.05 64.5 1

7 F0 at t− 5 > 0.7 ∨ F1 at t− 2 > 0.7 51.8 2
8 F1 at t−1 > 0.7∨∃s of size 3 in seq such that min

s
F0 > 0.5 60.7 2

9 (F1 at t− 1 > 0.5 ∧ F8 at t− 1 > 0.6)

∨ (
∑
s

F4 > 1.5 over window: s−1

∧ ∃s of size 3 in seq such that min
s

F2 > 0.2)

55.5 4

Table 1: Ground truths applied on specified input features to generate the
BCRDs along with the proportion of the positive class (in %), π, the num-
ber of conditions in the expression, π∗

DNF the number of conditions in the
simplified equivalent DNF expression when different from π.

B. MANUAL UNIT LABELING OF UCI DATASETS 111

B Manual unit labeling of UCI datasets

Manual unit labeling of UCI datasets required for experiments presented in
Chapter 3 is described in Table 2.

112

Dataset Unit Features

abalone gr whole, shucked, viscera, shell
mm length, diam, height

adult u1 age
u2 fnlwgt
u3 education num
u4 capital gain, capital loss
u5 hours week

breast wisconsin u1 clump thickness, uniformity of cell size, uni-
formity of cell shape, marginal adhesion, sin-
gle epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, mitoses

index sample code number

iris cm sepal length, sepal width, petal length, petal
width

segment u1 region centroid col, region centroid row
u2 region pixel count
u3 short line density 5, short line density 2
u4 vedge mean, hedge mean, intensity mean,

rawred mean, rawblue mean, rawgreen mean
u5 vedge sd, hedge sd
u6 exred mean, exblue mean, exgreen mean
u7 value mean, saturatoin mean, hue mean

wine u1 alcohol, malic acid, ash, alcalinity of ash,
total phenols, flavanoids, nonflavanoid phe-
nols, proanthocyanins, color intensity, hue,
od280/od315

u2 magnesium, proline

wine quality u1 fixed acidity, volatile acidity, citric acid,
residual sugar, chlorides, free sulfur dioxide,
total sulfur dioxide, sulphates

u2 density
u3 ph
u4 alcohol

Table 2: Unit decomposition for all numerical features of selected UCI
datasets. uk refers to the kth unnamed unit of a dataset.

C. CONTEXT-FREE GRAMMARS 113

C Context-Free Grammars

C.1 RN

The rule language of RN model (Section 4.2) is described by the context-free
grammar G = (VT , VN , S, R) (as defined in Section 1.1.2) with:

VT = {if, then class = 1 else class = 0} ∪ {∧,∨} ∪
{
x1, x2, . . .

}
VN = {rule, base expression, conjunction, predicate}
S = {rule}

R =

rule → if base expression then class = 1 else class = 0

base expression → conjunction | conjunction ∨ base expression
conjunction → predicate | predicate ∧ conjunction

predicate → x1 | x2 | . . .

C.2 RN-anf

The rule language of RN-anf model (Section 4.3) is described by the context-
free grammar G = (VT , VN , S, R) (as defined in Section 1.1.2) with:

VT = {if, then class = 1 else class = 0} ∪ {∧,⊻,True} ∪
{
x1, x2, . . .

}
VN = {rule, base expression, conjunction, predicate}
S = {rule}

R =

rule → if base expression then class = 1 else class = 0

base expression → conjunction | conjunction ⊻ base expression
conjunction → predicate | predicate ∧ conjunction | True

predicate → x1 | x2 | . . .

C.3 RR2N

The rule language of RR2N model (Section 5.2) is described by the context-
free grammar G = (VT , VN , S, R) (as defined in Section 1.1.2) with:

VT = {if, then class = 1 else class = 0, at t−, } ∪ {∧,∨} ∪
{
xd, t

}
VN = {rule, base expression, conjunctiont, literalt}
S = {rule}

R =

rule → if base expression then class = 1 else class = 0

base expression → conjunctiont | conjunctiont ∨ base expression
conjunctiont → literalt | conjunctiont−1 | literalt ∧ conjunctiont

| conjunctiont−1 ∧ conjunctiont

literalt → xd at t−t

114

C.4 CR2N

The rule language of CR2N model (Section 5.3) is described by the context-
free grammar G = (VT , VN , S, R) (as defined in Section 1.1.2) with:

VT = {if, then class = 1 else class = 0, at t−, } ∪ {∧,∨, *,−}∪{
x1, x2, . . .

}
∪
{
xc1 = α1

0, . . . , xc1 = α1
n1
, . . . , xck = αk

nk

}
∪ {i}

VN = {rule, expression, local pattern, global pattern, base expressionlocal,
base expressionglobal, conjunctionlocal, conjunctionglobal, predicatelocal,
predicateglobal, categorical expression, categorical literal, literal}

S = {rule}

R =

rule → if expression then class = 1 else class = 0
expression → local pattern | global pattern

local pattern → base expressionlocal

global pattern → base expressionglobal

base expressionlocal → conjunctionlocal |
conjunctionlocal ∨ base expressionlocal

conjunctionlocal → predicatelocal | predicatelocal ∧ conjunctionlocal

predicatelocal → categorical expression at t− i | literal at t− i.

base expressionglobal → conjunctionglobal |
conjunctionglobal ∨ base expressionglobal

conjunctionglobal → predicateglobal | * |
predicateglobal − conjunctionglobal

predicateglobal → categorical expression | literal

categorical expression → categorical literal |
categorical literal ∨ categorical expression

categorical literal → xc = αc
0 | . . . | xc = αc

nc

(or simply αc
0 | . . . | αc

nc
)

literal → x1 | x2 | . . .

C. CONTEXT-FREE GRAMMARS 115

C.5 s-CR2NA

The rule language of s-CR2NA model (Section 6.2) is described by the
context-free grammar G = (VT , VN , S, R) (as defined in Section 1.1.2) with:

VT = {if, then class = 1 else class = 0} ∪ {over any of the windows,
over all of the windows,∃,∀, of size, in seq, such that, of,

is greater than} ∪ {∧,∨} ∪
{
xd, value, Ŝ, S, L

}
∪ {min,max, sum,

product}
VN = {rulelocalOR, rulelocalAND, ruleglobalOR, ruleglobalAND, localOR,

localAND, globalOR, globalAND, base expression, conjunction,
aggregate, aggfunction}

S = {rulelocalOR, rulelocalAND, ruleglobalOR, ruleglobalAND}

R =

rulelocalOR → if localOR then class = 1 else class = 0
rulelocalAND → if localAND then class = 1 else class = 0
ruleglobalOR → if globalOR then class = 1 else class = 0

ruleglobalAND → if globalAND then class = 1 else class = 0

localOR → base expression over any of the windows: Ŝ

localAND → base expression over all of the windows: Ŝ
globalOR → ∃S of size L in seq such that base expression

globalAND → ∀S of size L in seq, base expression

base expression → conjunction | conjunction ∨ base expression
conjunction → aggregate | aggregate ∧ conjunction
aggregate → aggfunction of xd is greater than value

aggfunction → min | max | sum | product

116

C.6 CR2NA

The rule language of CR2NA model (Section 6.3) is described by the context-
free grammar G = (VT , VN , S, R) (as defined in Section 1.1.2) with:

VT = {if, then class = 1 else class = 0} ∪ {over any of the windows,
over all of the windows,∃,∀, of size, in seq, such that, of,

is greater than, at} ∪ {∧,∨} ∪
{
xd, value, Ŝ, S, L, c, ti

}
∪ {min,max, sum,

product}
VN = {rule, disjunction, conjunction, expr, localOR, localAND, globalOR,

globalAND, base expression, conjunctionfilter, predicate, aggregate,
aggfunction, literal}

S = {rule}

R =

rule → if disjunction then class = 1 else class = 0
disjunction → conjunction | conjunction ∨ disjunction
conjunction → expr | expr ∧ conjunction

expr → localOR | localAND | globalOR | globalAND

localOR → base expression over any of the windows: Ŝ

localAND → base expression over all of the windows: Ŝ
globalOR → ∃S of size L in seq such that base expression

globalAND → ∀S of size L in seq, base expression

base expression → conjunctionfilter | conjunctionfilter ∨ base expression
conjunctionfilter → predicate | predicate ∧ conjunctionfilter

predicate → aggregate | literal
aggregate → aggfunction of xd is greater than c

aggfunction → min | max | sum | product
literal → xd is greater than value at ti

D. PEPTIDES DATASET 117

D Peptides Dataset

UCI anticancer peptides dataset [Grisoni et al., 2019] (Available on [Dua
and Graff, 2017]) is composed of one-letter amino acid sequences (of variable
length) and each sequence is labeled with its anticancer activity on breast
cancer cell lines.

The dataset provides 4 classes with the following distribution: 83 inactive-
exp, 750 inactive-virtual, 98 moderately active and 18 very active. Sequences
lengths range from 5 to 38 letters (Mean: 17 ± 5.5).

We transform this multi-classification problem into a binary classification
problem (as done in [Nwegbu et al., 2022]). Class ‘inactive-virtual’ is the
positive class (750) and all the other are combined as the negative class
(199). No other processing of the data is necessary and we leave it as is.

E Experimental Setting

TheC latent weights are initialized with xavier uniform initialization method
[Glorot and Bengio, 2010].

Experiments were run on CPU on a MacBookPro18,2 (2021) with Apple
M1 Max chip, 10 Cores, 32 GB of RAM and running macOS Monterey
Version 12.4.

F Exploded views of the Recurrent Rule Neu-

ral Network (RR2N)

Two exploded views of the example of trained RR2N model from Figure 5.1
are shown in Figure 1 and 2. They are equivalent to the representation in
Figure 5.1 and illustrate the recurrence of the layer by unfolding it in the
visual representation.

118

(at t)

(at t)

A

B

A and B

B

B at t-1

at t-1

at t-1

A

B

B at t-1

Figure 1: Exploded view of RR2N model.

A at t-1

B at t-1

A

B

B at t-1

A and B

B at t-1

t-1 t

Figure 2: Flat view of RR2N model.

Bibliography

[IBM, 2021] (2021). IBM ODM Documentation.
www.ibm.com/docs/en/odm.

[Aggarwal, 2002] Aggarwal, C. C. (2002). On effective classification of strings
with wavelets. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’02, pages
163–172, New York, NY, USA. Association for Computing Machinery.

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast Algo-
rithms for Mining Association Rules in Large Databases. In Proceedings of
the 20th International Conference on Very Large Data Bases, VLDB ’94,
pages 487–499, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

[Alnababteh et al., 2014] Alnababteh, M., Alfyoumi, M., Aljumah, A., and
Ababneh, J. (2014). Associative Classification Based On Incremental Min-
ing (ACIM). International Journal of Computer Theory and Engineer-
ing(IJCTE, 6:135–140.

[Aloni, 2023] Aloni, M. (2023). Disjunction. In Zalta, E. N. and Nodel-
man, U., editors, The Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab, Stanford University, spring 2023 edition.

[Arnold et al., 2005] Arnold, K., Gosling, J., and Holmes, D. (2005). The
Java Programming Language. Addison Wesley Professional.

[Barbiero et al., 2023] Barbiero, P., Ciravegna, G., Giannini, F., Zarlenga,
M. E., Magister, L. C., Tonda, A., Lio’, P., Precioso, F., Jamnik, M., and
Marra, G. (2023). Interpretable neural-symbolic concept reasoning.

[Beck and Fürnkranz, 2021a] Beck, F. and Fürnkranz, J. (2021a). Beyond
DNF: First Steps towards Deep Rule Learning. In Brejová, B., Cien-
cialová, L., Holeňa, M., Mráz, F., Pardubská, D., Plátek, M., and Vinař,
T., editors, Proceedings of the 21st Conference Information Technologies –

119

120 BIBLIOGRAPHY

Applications and Theory (ITAT 2021), volume 2962 of CEUR Workshop
Proceedings, pages 61–68, Hotel Hělpa, Nı́zke Tatry and Muránska planina.
CEUR.

[Beck and Fürnkranz, 2021b] Beck, F. and Fürnkranz, J. (2021b). An Em-
pirical Investigation Into Deep and Shallow Rule Learning. Frontiers in
Artificial Intelligence, 4.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learn-
ing long-term dependencies with gradient descent is difficult. IEEE Trans-
actions on Neural Networks, 5(2):157–166.

[Bennett and Mangasarian, 1992] Bennett, K. P. and Mangasarian, O. L.
(1992). Robust Linear Programming Discrimination Of Two Linearly In-
separable Sets.

[Breiman et al., 1984] Breiman, L., Friedman, J., Stone, C. J., and Olshen,
R. A. (1984). Classification and Regression Trees. Taylor & Francis.

[Brudermueller et al., 2020] Brudermueller, T., Shung, D. L., Stanley, A. J.,
Stegmaier, J., and Krishnaswamy, S. (2020). Making Logic Learnable With
Neural Networks.

[Cameron et al., 2020] Cameron, C., Chen, R., Hartford, J., and Leyton-
Brown, K. (2020). Predicting Propositional Satisfiability via End-to-End
Learning. Proceedings of the AAAI Conference on Artificial Intelligence,
34(04):3324–3331.

[Cherrier, 2021] Cherrier, N. (2021). Interpretable Machine Learning for
CLAS12 Data Analysis. PhD thesis, Université Paris-Saclay.

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description of
language. IRE Transactions on information theory, 2(3):113–124.

[Clark and Niblett, 1989] Clark, P. and Niblett, T. (1989). The CN2 Induc-
tion Algorithm. Machine Learning, 3(4):261–283.

[Cohen, 1995] Cohen, W. W. (1995). Fast Effective Rule Induction. In In
Proceedings of the Twelfth International Conference on Machine Learning,
pages 115–123. Morgan Kaufmann.

[Collery et al., 2023] Collery, M., Bonnard, P., Fages, F., and Kusters, R.
(2023). Neural-based classification rule learning for sequential data. In
International Conference on Learning Representations.

121

[Cortez et al., 2009] Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and
Reis, J. (2009). Modeling wine preferences by data mining from physico-
chemical properties. Decision Support Systems, 47(4):547–553.

[d’Avila Garcez et al., 2019] d’Avila Garcez, A., Gori, M., Lamb, L. C., Ser-
afini, L., Spranger, M., and Tran, S. N. (2019). Neural-Symbolic Com-
puting: An Effective Methodology for Principled Integration of Machine
Learning and Reasoning.

[d’Avila Garcez and Lamb, 2023] d’Avila Garcez, A. and Lamb, L. C.
(2023). Neurosymbolic AI: The 3rd wave. Artificial Intelligence Review,
56(11):12387–12406.

[De Giacomo et al., 2022] De Giacomo, G., Favorito, M., Li, J., Vardi, M. Y.,
Xiao, S., and Zhu, S. (2022). LTLf Synthesis as AND-OR Graph Search:
Knowledge Compilation at Work. In Proceedings of the Thirty-First In-
ternational Joint Conference on Artificial Intelligence, pages 2591–2598,
Vienna, Austria. International Joint Conferences on Artificial Intelligence
Organization.

[Defferrard et al., 2017] Defferrard, M., Bresson, X., and Vandergheynst, P.
(2017). Convolutional Neural Networks on Graphs with Fast Localized
Spectral Filtering.

[Dierckx et al., 2023] Dierckx, L., Veroneze, R., and Nijssen, S. (2023). RL-
Net: Interpretable Rule Learning with Neural Networks. In Kashima, H.,
Ide, T., and Peng, W.-C., editors, Advances in Knowledge Discovery and
Data Mining, volume 13935, pages 95–107. Springer Nature Switzerland,
Cham.

[Diligenti et al., 2017] Diligenti, M., Gori, M., and Saccà, C. (2017).
Semantic-based regularization for learning and inference. Artificial In-
telligence, 244:143–165.

[Doshi-Velez and Kim, 2017] Doshi-Velez, F. and Kim, B. (2017). Towards
A Rigorous Science of Interpretable Machine Learning. arXiv:1702.08608
[cs, stat].

[Dua and Graff, 2017] Dua, D. and Graff, C. (2017). UCI Machine Learning
Repository. University of California, Irvine, School of Information and
Computer Sciences.

122 BIBLIOGRAPHY

[Egho et al., 2015] Egho, E., Gay, D., Boulle, M., Voisine, N., and Clerot, F.
(2015). A Parameter-Free Approach for Mining Robust Sequential Clas-
sification Rules. In 2015 IEEE International Conference on Data Mining,
pages 745–750, Atlantic City, NJ. IEEE.

[Elhage et al., 2022] Elhage, Nelson, Hume, T., Olsson, C., Nanda, N.,
Henighan, T., Johnston, S., ElShowk, S., Joseph, N., DasSarma, N., Mann,
B., Hernandez, D., Askell, A., Ndousse, K., Jones, and Drain, D., Chen,
A., Bai, Y., Ganguli, D., Lovitt, L., Hatfield-Dodds, Z., Kernion, J., Con-
erly, T., Kravec, S., Fort, S., Kadavath, S., Jacobson, J., Tran-Johnson,
E., Kaplan, J., Clark, J., Brown, T., McCandlish, S., Amodei, D., and
Olah, C. (2022). Softmax linear units. Transformer Circuits Thread.

[Evans and Grefenstette, 2018] Evans, R. and Grefenstette, E. (2018).
Learning Explanatory Rules from Noisy Data.

[Forgy, 1982] Forgy, C. L. (1982). Rete: A fast algorithm for the many pat-
tern/many object pattern match problem. Artificial Intelligence, 19(1):17–
37.

[Fürnkranz et al., 2012] Fürnkranz, J., Gamberger, D., and Lavrač, N.
(2012). Foundations of Rule Learning. Springer Science & Business Media.

[Fürnkranz and Kliegr, 2015] Fürnkranz, J. and Kliegr, T. (2015). A Brief
Overview of Rule Learning. In Bassiliades, N., Gottlob, G., Sadri, F.,
Paschke, A., and Roman, D., editors, Rule Technologies: Foundations,
Tools, and Applications, volume 9202, pages 54–69. Springer International
Publishing, Cham.

[Fürnkranz and Widmer, 1996] Fürnkranz, J. and Widmer, G. (1996). In-
cremental Reduced Error Pruning.

[Geiger and Team, 2020] Geiger, L. and Team, P. (2020). Larq: An open-
source library for training binarized neural networks. Journal of Open
Source Software, 5(45):1746.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding
the difficulty of training deep feedforward neural networks. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pages 249–256. JMLR Workshop and Conference Proceedings.

[Grisoni et al., 2019] Grisoni, F., Neuhaus, C. S., Hishinuma, M., Gabernet,
G., Hiss, J. A., Kotera, M., and Schneider, G. (2019). De novo design

123

of anticancer peptides by ensemble artificial neural networks. Journal of
Molecular Modeling, 25(5):112.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An intro-
duction to variable and feature selection. Journal of Machine Learning
Research, 3(null):1157–1182.

[Hailesilassie, 2016] Hailesilassie, T. (2016). Rule Extraction Algorithm for
Deep Neural Networks: A Review.

[Helwegen et al., 2019] Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z.,
Cheng, K.-T., and Nusselder, R. (2019). Latent Weights Do Not Exist:
Rethinking Binarized Neural Network Optimization. In Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc.

[Hemker et al., 2023] Hemker, K., Shams, Z., and Jamnik, M. (2023). CGX-
plain: Rule-Based Deep Neural Network Explanations Using Dual Linear
Programs.

[Hitzler et al., 2022] Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M. K.,
and Zhou, L. (2022). Neuro-symbolic approaches in artificial intelligence.
National Science Review, 9(6):nwac035.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J.
(1997). Long Short-term Memory. Neural computation, 9:1735–80.

[Hoefler et al., 2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N.,
and Peste, A. (2021). Sparsity in Deep Learning: Pruning and growth for
efficient inference and training in neural networks. Journal of Machine
Learning Research, 22(241):1–124.

[Hühn and Hüllermeier, 2009] Hühn, J. and Hüllermeier, E. (2009). FURIA:
An algorithm for unordered fuzzy rule induction. Data Mining and Knowl-
edge Discovery, 19(3):293–319.

[Kahneman, 2011] Kahneman, D. (2011). Thinking, Fast and Slow. macmil-
lan.

[Karimi and Hamilton, 2010] Karimi, K. and Hamilton, H. J. (2010). Gen-
eration and Interpretation of Temporal Decision Rules.

[Kaul et al., 2017] Kaul, A., Maheshwary, S., and Pudi, V. (2017). Au-
toLearn — Automated Feature Generation and Selection. In 2017 IEEE
International Conference on Data Mining (ICDM), pages 217–226.

124 BIBLIOGRAPHY

[Kautz, 2022] Kautz, H. A. (2022). The third AI summer: AAAI Robert S.
Engelmore Memorial Lecture. AI Magazine, 43(1):105–125.

[Keijzer and Babovic, 1999] Keijzer, M. and Babovic, V. (1999). Dimension-
ally Aware Genetic Programming. Gecco-99: Proceedings of the Genetic
and Evolutionary Computation Conference.

[Khalitov et al., 2023] Khalitov, R., Yu, T., Cheng, L., and Yang, Z. (2023).
ChordMixer: A Scalable Neural Attention Model for Sequences with Dif-
ferent Length. In The Eleventh International Conference on Learning Rep-
resentations.

[Kusters et al., 2022] Kusters, R., Kim, Y., Collery, M., Marie, C. d. S., and
Gupta, S. (2022). Differentiable Rule Induction with Learned Relational
Features. arXiv:2201.06515 [cs, stat].

[Lamb et al., 2021] Lamb, L. C., Garcez, A., Gori, M., Prates, M., Avelar,
P., and Vardi, M. (2021). Graph Neural Networks Meet Neural-Symbolic
Computing: A Survey and Perspective.

[Lample and Charton, 2019] Lample, G. and Charton, F. (2019). Deep
Learning for Symbolic Mathematics. arXiv:1912.01412 [cs].

[Li and Zaiane, 2017] Li, J. and Zaiane, O. R. (2017). Exploiting statistically
significant dependent rules for associative classification. Intell. Data Anal.

[Li et al., 2021] Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., Bian,
J., and Dou, D. (2021). Interpretable Deep Learning: Interpretation, In-
terpretability, Trustworthiness, and Beyond. arXiv:2103.10689 [cs].

[Lin et al., 2020] Lin, T., Stich, S. U., Barba, L., Dmitriev, D., and Jaggi,
M. (2020). Dynamic model pruning with feedback. In International Con-
ference on Learning Representations.

[Liu et al., 1998] Liu, B., Hsu, W., and Ma, Y. (1998). Integrating classi-
fication and association rule mining. In Proceedings of the Fourth Inter-
national Conference on Knowledge Discovery and Data Mining, KDD’98,
pages 80–86, New York, NY. AAAI Press.

[Louizos et al., 2018] Louizos, C., Welling, M., and Kingma, D. P. (2018).
Learning sparse neural networks through L0 regularization. In Interna-
tional Conference on Learning Representations.

125

[Manhaeve et al., 2018] Manhaeve, R., Dumancic, S., Kimmig, A., De-
meester, T., and De Raedt, L. (2018). DeepProbLog: Neural Probabilistic
Logic Programming. In Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc.

[Marcus and Davis, 2019] Marcus, G. and Davis, E. (2019). Rebooting AI:
Building Artificial Intelligence We Can Trust. Pantheon Books, USA.

[Nwegbu et al., 2022] Nwegbu, N., Tirunagari, S., and Windridge, D. (2022).
A novel kernel based approach to arbitrary length symbolic data with
application to type 2 diabetes risk. Scientific Reports, 12:4985.

[Otero et al., 2003] Otero, F. E. B., Silva, M. M. S., Freitas, A. A., and
Nievola, J. C. (2003). Genetic Programming for Attribute Construction
in Data Mining. In Goos, G., Hartmanis, J., van Leeuwen, J., Ryan, C.,
Soule, T., Keijzer, M., Tsang, E., Poli, R., and Costa, E., editors, Genetic
Programming, volume 2610, pages 384–393. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran As-
sociates, Inc.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12:2825–2830.

[Persia and Guimarães, 2023] Persia, C. and Guimarães, R. (2023). RID-
DLE: Rule Induction with Deep Learning. Proceedings of the Northern
Lights Deep Learning Workshop, 4.

[Petersen et al., 2022] Petersen, F., Borgelt, C., Kuehne, H., and Deussen,
O. (2022). Deep Differentiable Logic Gate Networks.

[Prechelt, 1997] Prechelt, L. (1997). Connection pruning with static and
adaptive pruning schedules. Neurocomputing, 16(1):49–61.

126 BIBLIOGRAPHY

[Qiao et al., 2021] Qiao, L., Wang, W., and Lin, B. (2021). Learning accu-
rate and interpretable decision rule sets from neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages
4303–4311.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Quinlan, 1996] Quinlan, J. R. (1996). Improved Use of Continuous At-
tributes in C4.5.

[Ratle and Sebag, 2001] Ratle, A. and Sebag, M. (2001). Grammar-guided
genetic programming and dimensional consistency: Application to non-
parametric identification in mechanics. Applied Soft Computing, 1(1):105–
118.

[Riegel et al., 2020] Riegel, R., Gray, A., Luus, F., Khan, N., Makondo, N.,
Akhalwaya, I. Y., Qian, H., Fagin, R., Barahona, F., Sharma, U., Ikbal, S.,
Karanam, H., Neelam, S., Likhyani, A., and Srivastava, S. (2020). Logical
Neural Networks.

[Rocktäschel and Riedel, 2017] Rocktäschel, T. and Riedel, S. (2017). End-
to-End Differentiable Proving.

[Rudin, 2019] Rudin, C. (2019). Stop explaining black box machine learn-
ing models for high stakes decisions and use interpretable models instead.
Nature Machine Intelligence, 1(5):206–215.

[Sarker et al., 2021] Sarker, M. K., Zhou, L., Eberhart, A., and Hitzler, P.
(2021). Neuro-Symbolic Artificial Intelligence: Current Trends.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,
L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershel-
vam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489.

[Sondhi, 2009] Sondhi, P. (2009). Feature construction methods : A survey.

[Sood et al., 2020] Sood, N., Bindra, L., and Zaiane, O. (2020). Bi-Level
Associative Classifier Using Automatic Learning on Rules. In Hartmann,
S., Küng, J., Kotsis, G., Tjoa, A. M., and Khalil, I., editors, Database and
Expert Systems Applications, Lecture Notes in Computer Science, pages
201–216, Cham. Springer International Publishing.

127

[Srinivas et al., 2017] Srinivas, S., Subramanya, A., and Babu, R. V. (2017).
Training Sparse Neural Networks. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pages 455–
462, Honolulu, HI, USA. IEEE.

[Stańczyk et al., 2020] Stańczyk, U., Zielosko, B., and Baron, G. (2020). Dis-
cretisation of conditions in decision rules induced for continuous data.
PLoS ONE, 15(4):e0231788.

[Sushil et al., 2018] Sushil, M., Šuster, S., and Daelemans, W. (2018). Rule
induction for global explanation of trained models. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 82–97, Brussels, Belgium. Association for
Computational Linguistics.

[Thompson et al., 2022] Thompson, N. C., Greenewald, K., Lee, K., and
Manso, G. F. (2022). The Computational Limits of Deep Learning.

[Udrescu and Tegmark, 2020] Udrescu, S.-M. and Tegmark, M. (2020).
AI Feynman: A Physics-Inspired Method for Symbolic Regression.
arXiv:1905.11481 [hep-th, physics:physics].

[van Krieken et al., 2022] van Krieken, E., Acar, E., and van Harmelen, F.
(2022). Analyzing Differentiable Fuzzy Logic Operators. Artificial Intelli-
gence, 302:103602.

[Wang et al., 2022] Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. (2022). Interpretability in the Wild: A Circuit for Indirect
Object Identification in GPT-2 small.

[Willard et al., 2022] Willard, J., Jia, X., Xu, S., Steinbach, M., and Kumar,
V. (2022). Integrating Scientific Knowledge with Machine Learning for
Engineering and Environmental Systems.

[Wojtusiak, 2012] Wojtusiak, J. (2012). Rule Learning. In Seel, N. M.,
editor, Encyclopedia of the Sciences of Learning, pages 2909–2911. Springer
US, Boston, MA.

[Xing et al., 2010] Xing, Z., Pei, J., and Keogh, E. (2010). A brief survey on
sequence classification. ACM SIGKDD Explorations Newsletter, 12(1):40–
48.

[Yang et al., 2023] Yang, C., Wang, L., Gao, K., and Li, S. (2023). Rein-
forcement Logic Rule Learning for Temporal Point Processes.

128 BIBLIOGRAPHY

[Yin and Han, 2003] Yin, X. and Han, J. (2003). CPAR: Classification based
on Predictive Association Rules. In SDM.

[Yu et al., 2023] Yu, D., Yang, B., Liu, D., Wang, H., and Pan, S. (2023). A
Survey on Neural-symbolic Learning Systems.

[Zhou et al., 2013] Zhou, C., Cule, B., and Goethals, B. (2013). Itemset
Based Sequence Classification. In Hutchison, D., Kanade, T., Kittler, J.,
Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O.,
Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D.,
Vardi, M. Y., Weikum, G., Salinesi, C., Norrie, M. C., and Pastor, Ó.,
editors, Advanced Information Systems Engineering, volume 7908, pages
353–368. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Zhou et al., 2015] Zhou, C., Cule, B., and Goethals, B. (2015). Pattern
Based Sequence Classification. IEEE Transactions on Knowledge and Data
Engineering, 28:1–1.

[Zhu and Gupta, 2017] Zhu, M. and Gupta, S. (2017). To prune, or not to
prune: Exploring the efficacy of pruning for model compression.

[Zilke et al., 2016] Zilke, J. R., Loza Menćıa, E., and Janssen, F. (2016).
DeepRED – Rule Extraction from Deep Neural Networks. In Calders, T.,
Ceci, M., and Malerba, D., editors, Discovery Science, Lecture Notes in
Computer Science, pages 457–473, Cham. Springer International Publish-
ing.

Titre : Apprentissage de règles de classification expressives notamment à partir de données séquentielles.

Mots clés : apprentissage automatique, IA interpretable, IA explicative, neuro-symbolique, apprentissage de
règles, données séquentielles

Résumé : Au cours des dernières décennies, l’ap-
prentissage automatique, et en particulier avec les
réseaux de neurones, a fait d’énormes progrès
pour résoudre des problèmes de classification dans
différents domaines tels que la santé, la détection des
fraudes ou la reconnaissance d’images. Ces modèles
sont capables d’apprendre à partir de différents types
de données, allant des images aux séries tempo-
relles, et d’atteindre une précision de classification
impressionnante. Cependant, leurs décisions sont
difficiles, voire impossibles à comprendre par un
être humain. Les méthodes basées sur des règles,
quant à elles, sont interprétables, lisibles par l’homme
et ont été largement adoptées dans différents do-
maines industriels avec les Business Rule Manage-
ment Systems (BRMS) ou systèmes de gestion des
règles métier. En pratique, cependant, ces règles sont
écrites manuellement par des experts. L’une des rai-
sons pour laquelle les règles écrites manuellement
ne peuvent pas être facilement remplacées par des
modèles de règles apprises à partir de données, est
que les modèles d’apprentissage de règles ne sont

pas capables d’apprendre des règles aussi expres-
sives, avec des concepts de haut niveau et une gram-
maire complexe. De plus, en raison d’un manque de
représentations latentes, les méthodes d’apprentis-
sage basées sur des règles sont moins performantes
que les réseaux neuronaux de l’état de l’art.
Dans cette thèse, nous proposons une approche
de bout en bout basée sur un réseau de neu-
rones permettant d’apprendre des règles expressives
pour des problèmes de classification. Différents ni-
veaux d’expressivité des règles sont présentés et
évalués sur de nouvelles données synthétiques et
sur certains ensembles de données existants. Tout
d’abord, l’apprentissage d’expressions sous la forme
normale disjonctive avec un réseau neuronal (modèle
de base) est étudié. Ensuite, des extensions pour
prendre en charge les données séquentielles sont
introduites avec une approche récursive et une ap-
proche convolutive. Enfin, le modèle est étendu pour
apprendre des règles plus expressives avec des fonc-
tions d’agrégation prédéfinies et des règles de gram-
maire complexes.

Title : Expressive classification rule learning with an emphasis on learning from sequential data.

Keywords : machine learning, interpretable AI, explanatory AI, neuro-symbolic, rule learning, sequential data

Abstract : During the last decades, machine learning
and in particular neural networks have made tremen-
dous progress on classification tasks for a variety of
fields such as healthcare, fraud detection or image re-
cognition. They are able to learn from various data
types ranging from images to time series and achieve
impressive classification accuracy. However, their de-
cisions are difficult or impossible to understand by a
human. Rule-based methods on the other end, are
interpretable, human-readable and have been widely
adopted in different industrial fields with Business
Rule Management Systems (BRMS). In practice ho-
wever, those rules are manually written by experts.
One of the reasons manually-written rule models can-
not easily be replaced with learned rule models is that
rule-based learning models are not able to learn as
expressive rules with higher-level concepts and com-

plex grammar. Moreover, due to the lack of latent
representations, rule-based learning methods under-
perform w.r.t. state-of-the-art neural networks.
In this thesis, we propose an end-to-end neural-based
approach to learn expressive rules for classification
problems. Different levels of expressiveness in rules
are presented, implemented and evaluated on some
existing datasets and new synthetic ones proposed
as new benchmarks for binary classification rule lear-
ning. First, the learning of basic disjunctive normal
form with a neural network (base model) is studied.
Second, extensions to support sequential data are
introduced with a recursive and a convolutional ap-
proaches. Finally, the model is extended to learn more
expressive rules with predefined aggregation func-
tions and overall complex grammar rules.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Abstract
	Résumé
	List of Figures
	List of Tables
	Acronyms
	Notation
	Introduction
	Context
	Interpretability
	Rules and Business Rules
	BRMS

	Motivations
	Running Example: Fraud Detection
	Outline

	I State-of-the-Art and Preliminary Work
	State-of-the-Art
	Rule Systems
	BRMS
	Rule Language: the example of ODM
	Rule Engine: the example of ODM

	Machine Learning Basis
	Rule Learning
	Tree-Based Algorithms
	Sequential Learning
	Associative Rule Classifiers
	Sequence Classification

	Rule Learning with Neural Networks
	Neuro-symbolic
	Rule Extraction from Intermediate Models
	Logical Neural Structures

	Expressive rules with preprocessing
	Introduction
	Feature Generation
	Experiments
	Results and Discussion
	Conclusion

	II Neural-based approach
	Neural-based rule learning
	Introduction
	Learning DNF - Base Model RN
	Architecture
	Training

	Learning ANF - Model RN-anf
	Architecture
	Training

	Comparing the learning of DNF and ANF
	Experiments
	Results and Discussion
	Conclusion

	Data types
	Numerical Data
	Categorical Data

	Multi-classification and Multi-label Classification Problems
	Conclusion

	Rule learning for sequential data
	Introduction
	Recurrent Rule Neural Network (RR2N)
	Architecture
	Training
	Limitations
	Experiments
	Results and Discussion

	Convolutional Rule Neural Network (CR2N)
	Introduction
	Architecture
	Base Rule Model or Filter
	Convolutional Rule Neural Network

	Training
	Experiments
	Results and Discussion

	Conclusion

	Expressive neural-based rule learning
	Introduction
	Simple CR2N with Aggregates (s-CR2NA)
	Architecture
	Training
	Experiments
	Results and Discussion

	CR2N with Aggregates (CR2NA)
	A First Extension
	Architecture
	Training
	Experiments
	Results and Discussion

	Improved Models
	Architectures
	Training
	Experiments
	Results and Discussion

	Conclusion

	Conclusion
	Appendices
	Benchmarks proposal
	Manual unit labeling of UCI datasets
	Context-Free Grammars
	RN
	RN-anf
	RR2N
	CR2N
	s-CR2NA
	CR2NA

	Peptides Dataset
	Experimental Setting
	Exploded views of the Recurrent Rule Neural Network (RR2N)

	Bibliography

