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RÉSUMÉ

Pour aborder l’optimisation de boite noire, ce projet doctoral comporte trois contributions, dont la
conception est agencée autour d’une unique notion: l’exploration Gaussienne de l’espace. Cette
exploration consiste à échantillonner des points à partir d’une moyenne et d’un écart-type donnés.
Dans une approche directe, l’algorithme se déplace directement vers un point minimisant une cer-
taine quantité d’intérêt dépendant de la fonction objectif et/ou des contraintes. Dans une approche
indirecte, les points échantillonnés sont utilisés pour estimer le gradient d’une approximation lisse
de la boite noire. Ces deux approches ont pour avantage de ne pas dépendre de la dimension de
la boite noire et de ne se fonder que sur les valeurs des fonctions retournées par celle-ci. Elles
s’adaptent donc parfaitement au contexte de l’optimisation de boite noire. L’objectif de cette thèse
est donc de développer des algorithmes autour de ces approches et d’étudier leurs propriétés de
convergence ainsi que leurs efficacités en pratique.

Le premier projet de la thèse traite de la problématique de la multimodalité dans un cadre de
boite noire déterministe. La méthode de l’entropie croisée (CE) est intégrée dans l’algorithme
de recherche directe par treillis adaptatif en tant qu’étape de recherche. Cette étape a pour but
d’explorer l’espace des variables de conceptions et d’éviter de converger prématurément vers un
minimum local. L’algorithme résultant bénéficie des propriétés de convergence de l’algorithme
MADS. Des comparaisons numériques ont été menées avec d’autres algorithmes sur un ensemble
de problèmes multimodaux et sur des problèmes d’ingénierie. Les résultats permettent de démon-
trer la compétitivité de l’algorithme sur ces types de problèmes.

Le second projet de thèse aborde les problèmes d’optimisation stochastique de boite noire sans
contrainte. Dans ce projet, un algorithme séquentiel (SSO) est développé afin de résoudre une
suite d’approximations lisses de plus en plus fines du problème original. Chaque sous problème
est résolu grâce à un algorithme de descente de gradient stochastique, appelé ZO-Signum, où les
gradients sont estimés à partir d’évaluation de la boite noire seulement et dont la direction de
descente est déterminée par le signe d’un vecteur moment. Les propriétés de convergence des deux
algorithmes ont été étudiées. Si la boite noire est supposée lisse et est localement convexe autour de
ses minima locaux, alors nous avons démontré le taux de convergence d’une sous suite d’itérés de
l’algorithme SSO vers un point stationnaire du problème. Finalement, des tests numériques ont été
réalisés sur une simulation de centrale solaire et pour la génération d’images adverses. Ils montrent
l’efficacité de l’algorithme comparé à d’autres algorithmes de la littérature.

Le troisième projet de thèse traite des problèmes d’optimisation de boite noire sous contraintes et
soumis à des incertitudes aléatoires et épistémiques. La valeur conditionelle au risque (CVaR) est
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utilisée pour gérer les incertitudes dans la fonction objectif et les contraintes. Cette formulation
a l’avantage de pouvoir choisir le degré de fiabilité et de traiter les incertitudes épistémiques avec
une approche du pire cas lorsque ce degré est pris suffisamment proche de 1. Pour résoudre la
relaxation Lagrangienne du problème CVaR-contraint, un algorithme d’approximation stochastique
à multi-échelle de temps (RAMSA) est développé. Nous avons prouvé que l’algorithme RAMSA
converge presque-sûrement vers un point réalisable du problème CVaR-contraint dont la valeur
de la fonction objectif est arbitrairement proche de celle d’une solution locale. Enfin, des tests
numériques ont été réalisés avec les buts suivants: établir des stratégies permettant de déterminer la
valeur des hyperparamètres de l’algorithme, comparer différents estimateurs du gradient et montrer
l’efficacité de l’algorithme sur des problèmes soumis à des incertitudes aléatoires et epistémiques.



vi

ABSTRACT

To tackle blackbox optimization, this thesis consists of three contributions, designed around a sin-
gle notion: Gaussian exploration of space. This exploration consists of sampling points from a
given mean and standard deviation. In a direct approach, the algorithm moves directly to a point
minimizing a certain quantity of interest, depending on the objective function and/or constraints.
In an indirect approach, the sampled points are used to estimate the gradient of a smooth blackbox
approximation. The advantage of both approaches is that they do not depend on the size of the
blackbox, and are based only on the output values returned by the blackbox. Therefore, they are
perfectly suited to the context of blackbox optimization. Thus, the aim of this thesis is to develop
algorithms based on these approaches and to study their convergence properties as well as their
effectiveness in practice.

The first contribution deals with the problem of multimodality in a deterministic blackbox frame-
work. The CE method is integrated into the MADS algorithm as a search step. The aim of this
step is to explore the space of design variables and avoid converging prematurely to a local min-
imum. The resulting algorithm benefits from the convergent properties of the MADS algorithm.
Numerical comparisons with other algorithms have been performed on a set of multimodal and
engineering problems. The results demonstrate the competitiveness of the algorithm on these types
of problems.

The second contribution deals with unconstrained stochastic blackbox optimization problems. A
SSO algorithm is developed to solve a sequence of increasingly finer smooth approximations of
the original problem. Each subproblem is solved using a stochastic gradient descent algorithm
called ZO-Signum, where gradients are estimated only from blackbox evaluations and the descent
direction is determined by the sign of a momentum vector. The convergence properties of both
algorithms have been studied. If the blackbox is assumed smooth and is locally convex around its
local minima, then a subsequence of iterates of the SSO algorithm is proved to converge to a sta-
tionary point. The convergence rate is also analyzed. Finally, numerical tests have been conducted
on a simulation of a solar power plant and for the generation of adversarial images. They show the
efficiency of the algorithm compared to other state-of-the-art algorithms.

The third contribution deals with blackbox constrained optimization problems subject to aleatory
and epistemic uncertainties. Conditional value at risk is used to manage uncertainties in the ob-
jective function and constraints. This formulation has the advantage of being able to choose the
degree of reliability and to handle epistemic uncertainties with a worst case approach when this is
taken sufficiently close to 1. To solve the Lagrangian relaxation of the CVaR-constrained problem,
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a RAMSA algorithm is introduced. Under mild assumptions, the RAMSA algorithm almost surely
converges to a feasible point of the CVaR-constrained problem whose objective function value is
arbitrarily close to that of a local solution. Finally, numerical tests have been performed with the
following goals: to establish strategies for determining the value of the hyperparameters; to com-
pare different gradient estimators and to demonstrate the effectiveness of the algorithm on problems
subject to aleatory and epistemic uncertainties.
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CHAPTER 1 INTRODUCTION

The concept of optimization is deeply rooted in human nature and remarkably intuitive. Essentially,
it entails the creation of a strategy within a given context to solve a problem. Even young children
can grasp and excel at this concept, which often emerges during their first games of tic-tac-toe.
Later in life, as they navigate their way into a physics class, they will encounter it again. In that
class, they will discover many physical phenomena that adhere to the principle of least action, a
principle defined by Maupertuis in 1744 as follows [171]: “When a change occurs in nature, the
amount of action required for that change is minimized.” A striking example of this principle is
how a marble thrown into a bowl always lands at the bottom. Ultimately, it was the search for a
beautiful, inexpensive vacation destination not too far from home, with a high likelihood of a mild
climate, that inspired them to begin a thesis in this area - a subject that pervades every crossroads
in life.

The above examples illustrate vividly the myriad of situations in our daily lives in which opti-
mization plays a central role, whether to maximize or minimize some objective. Often, these
optimization challenges require the satisfaction of specific constraints and may occur in uncertain
or unpredictable environments. Typical examples include the design of aircraft, automobiles, and
electronics. Applied mathematics provide a structured framework for dealing effectively with such
problems, offering efficient methods for identifying the extrema of functions depending on one or
more variables while satisfying predefined constraints. The following sections of this chapter are
devoted to setting the framework for this research. They present some of the challenges arising
in this context, outline the objectives of this thesis, and summarize the approaches developed to
address them.

1.1 Problem statement

The first family of optimization problems considered in this thesis can be formulated as in [143]

min
x∈Ω

f(x), (1.1)

where x = (x1, . . . , xn) is the vector of design variables that belongs to Rn and f : X → R is the
(single) objective function to be minimized. The setX ⊂ Rn represents the domain of the function;
in this thesis X will be generally a closed subset of Rn. Finally, Ω is the feasible set in which the
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solution points must belong to, usually defined as

Ω =
{
x ∈ X

∣∣∣ hi(x) = 0, i ∈ {1, . . . , k}, gj(x) ≤ 0, j ∈ {1, 2, . . . ,m}
}
, (1.2)

where hj : X → R and gj : X → R are the constraint functions. This general formulation
may be used to model most deterministic optimization problems. It is worth noting that in the
context of Blackbox Optimization (BBO), only general inequality constraints may be handled as no
efficient method exists to handle general equality constraints [14]. Once the problem is introduced,
a characterization of the solutions to Problem (1.1) can be formalized as follows.

Definition 1.1.1. A point x∗ ∈ Rn is a local minimum of Problem (1.1) if x∗ ∈ Ω and if there

exists a scalar ϵ > 0 such that

f(x∗) ≤ f(x) for all x ∈ Bϵ(x∗) ∩ Ω, (1.3)

where Bϵ(x∗) = {x | ||x∗− x|| < ϵ}. Moreover, it is called a global minimum if the inequality

in eq. (1.3) holds for all x ∈ Ω.

Finding methods for approaching a point that satisfies Definition 1.1.1 is the goal of optimization
research. A common technique is to generate a sequence of points (xk)k∈N that converge to x∗ ∈ Ω.
In an unconstrained problem (i.e., Ω = Rn), this means moving from xk to xk+1, following a
descent direction d, which allows to decrease the value of the objective function f . Mathematically,
a descent direction can be defined as follows:

Definition 1.1.2. A direction d ∈ Rn is said to be a descent direction of the function f at a

point x ∈ Rn if and only if there exists a scalar t̄ > 0 such that

f(x + td) < f(x) for all t ∈ (0, t̄ ].

Many optimization methods aim to compute a sequence of descent directions that converge to x∗

as efficiently as possible. An example of such methods consists in computing the gradient at each
point xk. Indeed, if f is differentiable at xk and its gradient ∇f(xk) is not null, then −∇f(xk) is
a descent direction. This process allows to converge to a point x̃ where ∇f(x̃) = 0. This point
is called a stationary point and can be a local minimum (or even a global minimum) depending on
some properties of the objective function f . This example gives an idea of why the gradient plays
such an important role in many optimization methods. In constrained optimization, the gradient
of the constraint functions is equally important because a stationary point can be characterized by
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the colinearity between the gradients of the objective and constraint functions. While numerical
optimization was a relatively new field three or four decades ago, the development of information
technology has made it a very active area of research. As a result, it is no longer possible to
provide an exhaustive description of all the methods. After presenting the basic concepts used
in optimization methods, the remainder of this section focuses on methods in which the gradient
cannot be used directly to find a descent direction. Readers interested in more general information
on gradient-based numerical optimization are invited to consult [143].

The set of algorithms that do not use directly the gradient in their process can be divided into
two parts. On the first hand, there is a field called Derivative-Free Optimization (DFO), which
is “the mathematical study of optimization algorithms that do not use derivatives” [14]. In this
field, the derivatives of the objective and constraint functions may exist, but obtaining or estimating
them may be computationally expensive. A typical application of DFO is the minimization of an
objective function resulting from a computer simulation whose output does not contain derivatives.
On the other hand, there is a field called BBO, which is “the study of the design and analysis of
algorithms that assume that the objective and/or constraint functions are given by blackboxes”.
A blackbox, in an optimization framework, is any process that returns an output given an input,
but whose inner workings are not analytically available. In the machine learning community, the
expression Zeroth-Order Oracle (ZOO) can also be used to replace the term blackbox. In BBO,
there is typically no assumption of any form of continuity, differentiability, or convexity on the
output. The most common uses of BBO involve computer simulations, but it can also appear in
other areas, such as when the optimization problem involves a laboratory experiment [2]. Finally,
BBO problems are often time-consuming due to their application areas. Each evaluation of the
blackbox may take from seconds to days, requiring the use of efficient algorithms in terms of
function evaluations.

Recently, one of the major concerns in BBO is the case where the output of the blackbox is subject
to uncertainties. This type of problem may arise when the evaluation of the blackbox involves a
Monte Carlo simulation, or when some input parameters of the blackbox are stochastic. This is
the second family of optimization problems addressed in this thesis. In this case, a constrained
blackbox optimization problem is formulated as in [173],

min
x∈X ⊂Rn

Ξ0[F (x, ξ)]

s.t. Ξj[Gj(x, ξ)] ≤ 0, ∀j ∈ {1, 2, . . . ,m},
(1.4)

where the vector ξ represents the uncertainties whose distribution is usually unknown. This vec-
tor can model all uncertainties present either in the design variables, in the parameters, in the
blackbox, or even a combination of them. In practice, the uncertainty vector ξ may also de-



4

pend on x. F (·, ξ) denotes the uncertain output of the objective function, f : X → R while
for all j ∈ {1, 2, . . . ,m}, Cj(·, ξ) denote the uncertain versions of the constraints cj : X → R.
Since the objective and constraint functions depend on the uncertainty vector, the measures Ξj, j ∈
{0, 1, . . . ,m} are used to map the uncertain objective and constraint functions to R. It follows from
this formulation that the choice of the uncertainty model —from which the choice of the measures
Ξj is derived— is critical and will be further developed in Section 2.3.2.

1.2 Challenges addressed in this thesis

Because DFO and BBO assume limited information about the structure of the problem to be solved,
they may be applied to a wide range of problems. It should be noted, however, that if any infor-
mation about a problem is available, it should be used in a specific algorithm [14]. This fine-tuned
algorithm will generally be much more efficient than any DFO or BBO algorithm. Furthermore, the
more different optimization problems an algorithm is able to handle, the more practical challenges
it will face. The main practical challenges encountered by DFO and BBO algorithms are listed
below:

• Absence of gradients. An immediate problem for the DFO and BBO algorithms is that, by
definition, the gradient cannot be used directly to find a descent direction. However, using
the gradient is by far the simplest and most efficient way to proceed. Traditionally, there are
three main approaches that do not use the gradient to obtain a descent direction. The first
approach is referred to as Direct Search Methods (DSM) [14, Part 3]. These methods find
a descent direction by evaluating a finite number of points (which form a positive spanning
set of Rn) and comparing their function values. The second approach is called Model-Based
Methods (MBM) [14, Part 4]. These methods construct a sufficiently accurate smooth local
model of the function from given sample points. Then, an improving point is searched in the
model, hoping that it is also one for the true function. Finally, the last approach is grouped
under the name of metaheuristics [1]. These methods generally use different strategies based
on stochastic sampling of the function. More details about these different approaches are
given in chapter 2.

• Multimodality. A function, and by extension an optimization problem, is said to be multi-
modal if it has multiple local minima. Without any additional assumption about the problem,
multimodality is common for problem such as (1.1). Unfortunately, algorithms tend to con-
verge only to a local minimum. There are methods to explore the space of design variables to
avoid getting stuck in local optima. However, it is known that there are currently no methods
that can guarantee convergence to a global optima in finite time [177] (this claim may be



5

false using quantum computing). Thus, multimodality is an intractable problem, especially
in BBO, where each function evaluation is time-consuming and the number of iterations is
consequently limited.

• Problem dimension. The dimension of the problem particularly affects DFO and BBO al-
gorithms. Again, since the gradient is not directly available, increasing the dimension of
the problem complicates the search for an improving point. Consequently, traditional ap-
proaches in DFO and BBO are limited to problems with a size of a few dozens of variables.
However, with the development of the machine learning community, some problems emerge
with thousands or hundreds of thousands of variables (for example, the problem of black-
box adversarial attack [192]). Therefore, it is necessary to develop new methods capable of
dealing with this type of problem.

• Stochasticity. Finally, randomness makes all the previous challenges even more difficult.
Indeed, when the objective function is stochastic, the definition of descent direction given in
Definition 1.1.2 no longer applies. In the presence of noise, it becomes necessary to compute
sufficiently accurate estimates of the uncertain objective function to obtain a reliable descent
direction approximation. It is even worse when the constraint functions are also uncertain. In
fact, the feasibility set of the stochastic problem depends on the measure chosen to deal with
the uncertainties in the constraints. Moreover, regardless of the measure chosen, obtaining
a high-confidence feasible solution requires large sampling of the constraint functions. It is
also recommended to minimize the risk of outliers that could lead to an underperforming
design or a design with significant failures. This is referred to as risk aversion.

Traditional approaches have primarily focused on finding efficiently local solutions for determinis-
tic DFO and BBO problems with a limited number of variables [14]. Currently, with the develop-
ment of information technology and new applications, there is a need for derivative-free methods
capable of handling larger scale problems and escaping from local minima. Most importantly,
dealing with stochasticity and risk aversion in problems brings a new paradigm. Although this
challenge has existed for some time, it has recently experienced a resurgence [105]. In addition,
most existing approaches involve retrofitting algorithms originally designed for deterministic prob-
lems to stochastic problems. While this can yield satisfactory results, these algorithms were not
originally designed for this specific purpose. Therefore, it would be interesting to develop novel
approaches specifically tailored to this new paradigm.
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1.3 Research objectives

This work takes place in the context described in the previous section and aims to make new prac-
tical and theoretical contributions to the field of DFO and BBO. In particular, it focuses on the four
issues described above: absence of gradients, multimodality, stochasticity and risk aversion; know-
ing that the dimensionality issue underlies each of these problems. Interestingly, all four issues
can be addressed using a single mathematical concept: Gaussian exploration of the space of design
variables [141]. Gaussian exploration consists of evaluating some points generated by a Gaussian
distribution centered on a given mean point and with a given standard deviation. Then, there are
essentially two different approaches to exploit the output of the blackbox at the evaluated points.
The direct approach involves sorting the various points according to some quantity of interest and
declaring the new current point as the best point found. The indirect approach is to compute a
possible descent direction from the blackbox returned values and move along that direction. These
approaches are attractive in the context of DFO or BBO. On the one hand, the direct approach may
help to efficiently explore the space of design variables and escape from local minima [99]. On the
other hand, the indirect approach may efficiently approximate stochastic gradients [141] using only
noisy function evaluations. Therefore, the various goals of this thesis are articulated around these
two approaches as follows.

• The first goal is to fully exploit the properties of Gaussian random exploration to develop
algorithms that address the issues identified above in the context of DFO/ BBO: absence of
the gradient, multimodality, stochasticity and risk aversion.

• Theoretically, these algorithms must rely on strong convergence properties as a guarantee of
reliability. In particular, in the case of stochastic blackbox optimization, almost sure conver-
gence to an optimal point or a neighborhood of an optimal point must be shown. Furthermore,
the rate of convergence must be derived whenever possible.

• In practice, the developed algorithms must be adapted to the context of DFO/BBO. In par-
ticular, they must be efficient in terms of function evaluations. They must also be applicable
to a wide range of problem dimensions.

• Finally, the developed algorithms must be easily implementable and numerical comparisons
with other state-of-the-art algorithms must demonstrate their competitiveness.
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CHAPTER 2 LITTERATURE REVIEW

The first part of this chapter (Section 2.1) is devoted to the mathematical backgrounds of the various
topics discussed in the thesis. Section 2.2 and Section 2.3 present the state-of-the-art on these
subjects.

2.1 Theoretical background

This section introduces some general notions of optimization (pp. 9-13), probability (pp. 13-17),
and ordinary differential equations (pp. 17-19). These notions will be used in various parts of the
thesis for the definitions of the algorithms and their convergence results. They will not be developed
here, but references with details are given at the beginning of each subsection. Readers can go to
the pages (indicated above) of the topic they wish to investigate, or even directly to the literature
review in Section 2.2.

2.1.1 Fundamental principles of optimization theory

Reminders about optimization are mainly taken from [14, Chapter 2 and 6] and [173, Chapter 9.1].
The most important optimization results rely on structural properties of the underlying function. In
this section, the most common properties are defined: the degree of continuity and smoothness, as
well as convexity.

Definition 2.1.1 (Continuity). A function f : Rn → R is said to be continuous at a point

x ∈ Rn if

∀ϵ > 0, ∃ρ such that ∀y ∈ Rn, ||x− y|| < ρ =⇒ |f(x)− f(y)| < ϵ.

The notation f ∈ C0 means that f is continuous at any point x ∈ Rn.

Definition 2.1.2 (Lipschitz continuity). A function f : Rn → Rm is said to be Lipschitz

continuous if and only if there exists a scalar L > 0 for which

||f(x)− f(y)|| ≤ L||x− y|| for all x,y ∈ Rn,

where L is called the Lipschitz constant of f .
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The notation f ∈ C0+ means that f is Lipschitz continuous.

Definition 2.1.3 (Differentiability). A function f : Rn → R is said to be differentiable at a

point x ∈ Rn if and only if there exists a vector g ∈ Rn such that

lim
y→x

f(y)− f(x)− gT (y− x)
||y− x||

= 0.

If f is differentiable at x, then there is a unique such vector g, and it is called the gradient of

f at x, denoted∇f(x).

When f is differentiable at some point x ∈ Rn, the gradient is the vector of the n partial derivatives
of f

∀x, ∇f(x) =
[
∂f(x)
∂x1

,
∂f(x)
∂x2

, . . . ,
∂f(x)
∂xn

]T
.

The notation f ∈ C1 means that f is differentiable and its partial derivatives are continuous. We
extend this notation to f ∈ C1+ to mean that f is differentiable and its gradient is Lipschitz con-
tinuous. If f belongs to both C0+ and C1+, then L0(f) and L1(f) denote the Lipschitz constants of
the function and its gradient, respectively. Finally, the following lemma gives a characterization of
the function of class C1+. This characterization is often employed to calculate the convergence rate
of an algorithm.

Lemma 2.1.4. A function f ∈ C1+ if and only if the following inequality holds:

|f(y)− f(x)−∇f(x)T (y− x)| ≤ 1
2L

1(f)||x− y||2, for all x,y ∈ Rn.

It is possible for a function to be differentiable only in a finite set of directions. In this case, only
some directional derivatives exist. The directional derivatives of f at x in the direction d ∈ Rn are
defined as

f ′(x; d) := lim
t↘0

f(x + td)− f(x)
h

.

It is worth noting that directional derivatives “generalize” the notion of differentiability, since the
directional derivatives of the function may still exist even if f /∈ C1 (e.g., f(x) = |x|). However, the
assumption of the existence of a directional derivative remains a strong assumption in a black-box
optimization framework. Thus, a generalization of directional derivatives is needed to be used with
any Lipschitz function.
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Definition 2.1.5 (Clarke generalized directional derivative [52]). Let f : Rn → R be Lipschitz

near x ∈ Rn. The Clarke generalized directional derivative of f at x in the direction d ∈ Rn

is

f ◦(x; d) = lim sup
y→x, t↘0

f(y + td)− f(y)
h

.

The differences with the directional derivatives are due to the limit superior and to the implicit
consideration of all sequences y that converge to x.

Definition 2.1.6 (Limit superior). The limit superior of the function f : Rn → R at x ∈ Rn is

defined to be

lim sup
y→x

= lim
r↘0

ux(r),

with

ux(r) = sup
y∈Br(x)

f(y), where Br(x) = {y | ||y− x|| < r}.

Finally, an important class of functions in optimization are convex functions.

Definition 2.1.7 (Convex function). The function f : Rn → R is convex if and only if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) for all x,y ∈ Rn and t ∈ [0, 1].

Once the structural properties of a function are defined, the necessary optimality conditions may be
established. In the unconstrained case, when the function is differentiable, the first-order optimality
condition may be stated as follows.

Theorem 2.1.8 (Fermat’s Theorem). If f ∈ C1 and x∗ is a local minimum of f , then∇f(x) =
0.

Note that this condition is not sufficient. A point satisfying Fermat’s Theorem is called a station-
ary point. In the blackbox framework, since the gradient may not exist, the first-order optimality
condition is given in terms of the generalized directional derivatives.

Theorem 2.1.9 (First-order optimality condition via f ◦). If f is Lipschitz continuous near x∗,

a local minimum of f , then f ◦(x; d) ≥ 0 for every d ∈ Rn.
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When the problem is constrained, the conditions become a bit more complex and need the notion
of cone.

Definition 2.1.10 (Cone). A set T ⊂ Rn is said to be a cone if and only if λd ∈ T for every

scalar λ > 0 and for every d ∈ T .

Again, there is a distinction between the differentiable and the non-differentiable case. In the
differentiable case, the optimality condition is based on the tangent cone.

Definition 2.1.11 (Tangent cone). The tangent cone to Ω at x, denoted TΩ(x), is the set of

all tangent directions to Ω at x, i.e., the directions d ∈ Rn for which there exists sequences

(dk)k∈N, with ∀k, dk ∈ Rn, and (tk)k∈N, with ∀k, tk ∈ R+, such that

x + tkdk ∈ Ω,∀k, dk → d and tk ↘ 0.

Once the tangent cone is defined, the first-order optimality condition is stated in the following
theorem.

Theorem 2.1.12 (Constrained first-order optimality condition). If f ∈ C1 and x∗ is a local

minimum of Problem (1.1), then

∇f(x∗)⊤d ≥ 0, for all d ∈ TΩ(x∗).

In the non-differentiable case, the optimality condition is based on the hypertangent cone.

Definition 2.1.13 (Hypertangent cone). The hypertangent cone to Ω at x, denoted THΩ (x), is

the set of all hypertangent directions to Ω at x, i.e, the directions d ∈ Rn for which there

exists sequences (xk)k∈N, with ∀k xk ∈ Ω, (dk)k∈N, with ∀k, dk ∈ Rn, and (tk)k∈N, with

∀k, tk ∈ R+, such that

xk + tkdk ∈ Ω ∀k, xk → x, dk → d and tk ↘ 0.

Now, the constrained first order optimality condition may be stated in terms of generalized direction
derivatives.
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Theorem 2.1.14. If f is Lipschitz continuous near x∗, a local solution to Problem (1.1), then

f ◦(x∗,d) ≥ 0, for all ∈ THΩ (x∗).

Finally, another way to deal with constrained problems is to use the Lagrangian relaxation. Let
consider the Problem (1.1) where Ω only contains m inequality constraints. The Lagrangian of the
problem is defined as the function L : X × Rm → R

L(x,λ) = f(x) +
m∑
j=1

λjgj(x).

where λ = (λ1, . . . , λm) is the vector of Lagrangian multipliers. The Lagrangian relaxation is often
used in optimization to handle constraint functions. The saddle points of the Lagrangian function
may be defined as follows.

Definition 2.1.15 (Saddle point). A saddle point of L is a couple (x∗,λ∗) ∈ X ×Rm such that

for some r > 0, ∀x ∈ X ∩ Br(x∗) and for all λ ≥ 0, we have

L(x∗,λ) ≤ L(x∗,λ∗) ≤ L(x,λ∗),

where Bx∗(r) is a hyper-dimensional ball centered at x∗ with radius r > 0.

The link between the saddle points of the Lagrangian function and Problem (1.1) is specified in the
next theorem.

Theorem 2.1.16 (Saddle point theorem). If (x∗,λ∗) is a saddle point of the Lagrangian func-

tion L, then x∗ is a local solution to Problem (1.1).

2.1.2 Fundamental principles of probability theory

Reminders about probability are mainly taken from [173, Chapter 9.2] for general results and
from [38, Chapter 11.3] for random processes. First, the concepts of probability space, random
variables, and expectation are defined. Although quite intuitive, the formal definitions of these
concepts are difficult because of their links to measure theory. It starts with the concepts of σ-field,
measurable space and measurable function.
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Definition 2.1.17 (σ-field and measurable space). Let Ω be a set, a σ-field F on Ω is a

nonempty collection of subsets of Ω such that:

• Ω ∈ F;

• if B ∈ F , then its complement Bc is also in F;

• if a countable set of elements B1, B2 . . . are in F , then so is B = B1 ∪B2 ∪ . . ..

The tuple (Ω,F) is said to be a measurable space.

Definition 2.1.18 (Measure). Let (Ω,F) be a measurable space. An application µ : F → R+

is said to be a measure if the following holds.

• µ(∅) = 0;

• if a countable set of elements B1, B2, . . . are in F and are two-by-two disjoint, then

µ

( ∞⋃
k=1

Bk

)
=

∞∑
k=1

µ(Bk). (2.1)

Definition 2.1.19 (Measurable function). Let (Ω,F) and (Ξ, E) be two measurable space. A

function f : Ω→ Ξ is said to be E-measurable if

∀B ∈ E , f−1(B) = {ω ∈ Ω|f(ω) ∈ B} ∈ F .

Now these concepts are defined, it is possible to present the particularity of probability theory,
based on the probability measure, the probability space and the random variables.

Definition 2.1.20 (Probability measure). Let P be a measure on the measurable space (Ω,F)
such that P(Ω) = 1. Then P is said to be a probability measure. Moreover, the triplet (Ω,F ,P)
is called a probability space.
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Definition 2.1.21 (Random variables). Let (Ω,F ,P) be a probability space and (Ξ, E) a mea-

surable space. Any measurable function ξ from Ω to Ξ is called a random variable.

Definition 2.1.22 (Generated σ-field). Let {ξi}i∈N a collection of random variables on (Ω,F ,P)
and having their images in the measurable spaces (Ξi, Ei)i∈N. The smallest σ-field which con-

tains the union of ξ−1
i (Ei) is called the generated σ-field.

When (Ξ, E) = (Rd,B(Rd)), where B(Rd)) is the Borel sigma-field, i.e., the one generated by
the open sets of Rd, the random variables are called real random vectors. Finally, one of the main
concepts of probability may be defined (when it exists): the expectation.

Definition 2.1.23 (Integrability). Let p ∈ [1,∞) and (Ω,F ,P) be a probability space. The

space Lp(Ω,F ,P) which contains the p-integrable random variables is the set of all real ran-

dom variables X such that

||X||p =
(∫

Ω
|X(ω)|pP(dω)

) 1
p

< +∞.

Definition 2.1.24 (Expectation). Let X ∈ L1(Ω,F ,P), the expectation of ξ is defined as fol-

lows

Eξ[X] :=
∫

Ω
X(ω)P(dω).

The deviation of a random variable from its expectation is often of statistical interest. In this thesis,
two measures for a real random variable are employed: the quantile and the variance. The quantile
of a real random variable X can be defined as follows

Definition 2.1.25 (Quantile). The (left-side) quantile of X at level α is

q(α) := inf{x | P(X ≤ x) ≥ α}.

The variance is the expected value of the squared deviation from the mean of a random variable.
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Definition 2.1.26 (Variance). Let X ∈ L2(Ω,F ,P), the variance is defined as

V(X) = E[(X − E[X])2].

Another notion widely utilized in this thesis is the expectation given that a certain set of events is
known to occur, this is called the conditional expectation. Let G a sub σ-field of F .

Definition 2.1.27 (Conditional expectation). Let X be an integrable random variable defined

on the space (Ω,F). The conditional expectation of X given G is the unique random variable

G-measurable Z = E[X|G] such that for all integrable G-measurable, the following equality

holds

E[XY ] = E[ZY ].

The conditional expectation is particularly useful for studying stochastic random processes. Its
properties are given in the following proposition.

Proposition 2.1.28. The conditional expectation satisfies the following properties.

• Linearity, let a, b two scalars it follows that

E[aX + bY |G] = aE[X | G] + bE[Y | G].

• Law of total expectation

E[X] = E[E[X|G]].

• If X is G-measurable, then

E[X|G] = X.

• If X is independent of G
E[X|G] = E[X].

• IfH ⊂ G
E[X|H] = E[E[X|G]|H].
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• Jensen’s inequality (which is true for the expectation as well). If f is a convex function,

then

f(E[X|G]) ≤ E[f(X)|G].

Like the conditional expectation, the conditional variance can also be defined.

Definition 2.1.29 (Conditional variance). Let X be a squared integrable random variable, the

conditional variance is defined as

V[X|G] = E[(X − E[X|G])2|G].

Discrete-time stochastic processes
In this work, the properties of a sequence of random variables will be studied. Such a sequence
defines a stochastic (discrete-time) process.

Definition 2.1.30. A discrete time stochastic process is a sequence of random vectors (xk)k∈N

defined on (Ω,F ,P) with their values in Rn.

The convergence of this type of sequence is not usual, here are presented two types of convergence
result. The first type of convergence is the convergence in expectation.

Definition 2.1.31 (Convergence in expectation). A discrete time stochastic process (xk)k∈N

converges in expectation to x, defined on (Ω,F ,P) with its value in Rn, if

E[||xk − x||]→ 0, when k → +∞.

A stronger type of convergence (in the sens that it implies the convergence in expectation) is the
almost-sure convergence.

Definition 2.1.32 (Convergence almost-sure). A discrete time stochastic process (xk)k∈N con-

verges almost surely (a.s.) to x if and only if there exist A ∈ F such that P(A) = 0 and

∀ω ∈ Ac, xk(ω) −→
k→∞

x(ω).

Another important topic of the discrete-time stochastic processes is the martingale. First, the defi-
nition of a filtration is needed.
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Definition 2.1.33 (Filtration). A filtration is a sequence of increasing subalgebra (Fk), i.e,

F1 ⊂ F2 ⊂ . . . ⊂ Fk.

The filtration contains all the information acquired in the stochastic process until time k.

Definition 2.1.34 (Martingale). Let (xk) ∈ Rn be an integrable discrete time stochastic process

and (Fk) be its associated σ-field (i.e, E[xk|Fk] = xk). The process is a martingale if

∀k, E[xk+1|Fk] = xk a.s.

Besides, the process is called a martingale difference sequence if

∀k, E[xk+1|Fk] = 0 a.s.

2.1.3 Fundamental principles of Ordinary Differential Equation (ODE)

This section is required since some convergence result are obtained thanks to an ordinary differen-
tial equation (ODE) approach. The main results of this section come from the work in [91, Chapter
4]. Consider the following ODE

ẋ = f(x), (2.2)

where f : D → Rn is a locally Lipschitz function and D ⊂ Rn. Let x∗ be an equilibrium point of
the ODE, i.e. f(x∗) = 0. The goal is to characterize the stability of x∗.

Definition 2.1.35 (Stability). The equilibrium point x∗ of Equation (2.2) is

• stable, if for each ϵ > 0, there is δ > 0 such that

||x(0)− x∗|| < δ =⇒ ||x(t)− x∗|| < ϵ, ∀t ≥ 0,

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)− x∗|| < δ =⇒ lim
t→∞
||x(t)− x∗|| = 0.

A first result on the stability of an equilibrium point is given in the next theorem.
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Theorem 2.1.36 (Lyapunov stability theorem). Let x∗ an equilibrium point for Equation (2.2)
and D ⊂ Rn be a domain containing x∗. Let V : D → R be a continuously differentiable

function such that

• V (x) = 0 if and only if x = x∗,

• V (x) > 0 if and only if x ̸= x∗,

• V̇ (x) = d
dt
V (x) = (∇V )Tf(x) ≤ 0 for all values of x ̸= x∗.

Then, V is called a Lyapunov function and the equilibrium x∗ is stable. Moreover, if the last

item is replaced by V̇ (x) < 0 for all values of x ̸= x∗, then x∗ is asymptotically stable.

When the point x∗ is asymptotically stable, it can be interesting to know how far from the equilib-
rium the started point may be and still converge to the equilibrium when t goes to infinity.

Definition 2.1.37 (Region of attraction). Let ϕ(t; x) be the solution of Equation (2.2) that starts

at initial state x at time t = 0. Then, the region of attraction is defined as the set of all points

x such that ϕ(t; x) is defined for all t ≥ 0 and limt→∞ ϕ(t; x) = x∗.

Definition 2.1.38 (Globally asymptotically stable equilibrium). If for any initial state x, the

trajectory ϕ(t; x) approaches x∗ as t → ∞, no matter how large ||x|| is, then x∗ is said to be

globally asymptotically stable.

It is possible to know if an equilibrium is globally asymptotically stable thanks to the Lyapunov
function.

Theorem 2.1.39. Let x∗ be an equilibrium point for Equation (2.2) and let V be Lyapunov

function such that

• V̇ < 0 for all values of x ̸= x∗,

• V is radially unbounded, i.e., ||x|| → ∞ =⇒ V (x)→∞,

then x∗ is globally asymptotically stable.

Finally, in order to obtain the same stability result with milder assumption on the function V , the
following definition is needed.
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Definition 2.1.40. A set M is said to be a (positively) invariant set if

x(0) ∈M =⇒ x(t) ∈M, ∀t(≥ 0).

Now, the LaSalle invariance principle may be stated.

Theorem 2.1.41 (LaSalle theorem). Let Ω ⊂ D be a compact set that is positively invariant

with respect to Equation (2.2). Let V : D → R be a continuously differentiable function such

that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0. Let M the largest

invariant set in E. Then, every solution starting in Ω approaches M as t→∞ .

2.2 Deterministic blackbox optimization

This section presents a historical overview of DFO and BBO algorithms in the context of deter-
ministic blackbox optimization problems. Section 2.2.1 describes some metaheuristics used in this
field, Section 2.2.2 details the model-based methods and Section 2.2.3 depicts the direct search
methods. The main difference between the first category of methods and the last two is that the first
does not rely on a proof of convergence, unlike the other two. A detailed review of derivative-free
algorithms (without metaheuristics) can be found in [105] and one of metaheuristics in [1].

2.2.1 Main metaheuristics

The word “metaheuristic” has been introduced to refer to heuristics that are not problem specific.
All metaheuristics are based on the same mechanism: a trade-off between exploitation and explo-
ration [1]. Exploitation is the process of finding the best solutions in a neighboring region, while
exploration is the process of finding the most promising region. While these methods may produce
excellent results in practice, it is worth noting that, first, they are usually approximate. Second,
on average, all metaheuristics achieve the same performance on all problems, i.e., they perform as
well as a random search [189]. Therefore, it may often be necessary to combine them with other
algorithms to ensure their convergence/performance.

Many metaheuristics are population-based algorithms. The common feature of these approaches is
the population, which is a set of points in the design space that evolves towards a minimum of the
function. The approaches differ in their mechanism for evolving the population. There are three
main types: genetic algorithms, swarm intelligence, and evolution strategies. Since the work on
population-based algorithms is tremendous, only well-established methods will be reviewed in this
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thesis. Emphasis will also be placed on the methods used in the numerical comparisons of this
thesis. References to more detailed work are provided for the interested reader.

Genetic algorithms [88] are evolutionary algorithms that use “survival of the fittest” in their inherent
mechanism to search for a better solution. In keeping with the biological theme of the method, the
process to obtain a new point uses mainly four steps called : encoding, selection, crossover and
mutations. A pseudocode of a classical genetic algorithm is given in Algorithm 1. Research on

Algorithm 1 Genetic algorithm
1: K: Maximum number of iterations
2: S: Size of the popultation
3: k = 0
4: while k ≤ K do
5: Selection: select a pair of points according to its fitness value, i.e., its quality
6: Crossover: use the two parent points to create an offspring
7: Mutation: mutate the offspring with a certain probability
8: Update: Replace the old population with the newly generated population
9: k ← k + 1

10: end while
11: Return the best point

genetic algorithms is concerned with the choice of fitness measure, the type of selection used, the
encoding scheme, and the choice of crossover and mutation operators. A study of the pros and cons
of different techniques is given in the work in [88].

Swarm intelligence algorithms are evolutionary algorithms that use collective behavior to update
their population. The main examples of these methods are Ant Colony Optimization (ACO) [60]
and Particle Swarm Optimization (PSO) [90]. Since Ant Colony Optimization is more suited to
combinatorial optimization, the focus will be on the PSO algorithms. A basic variant of the PSO
algorithm works with a population (called a swarm) of candidate solutions (called a particle) that
move through the search space according to a few simple formulae (given below). These formulae
were originally based on a model simulating the movement of a group of birds. The movement
of each particle is guided by its own best-known position in the search space, as well as by the
best-known position of the entire swarm. As better positions are found, they guide the swarm’s
movements. The process is then repeated in the hope of finding a satisfactory solution. Tradition-
ally, at each iteration k, the motion of a particle xi is determined by three components: its velocity
Vk
i , its own best solution xk,∗i , at iteration k, and the best solution shared by all particles xk,∗. The

equations governing the motion of a particle are as follows,

Vk+1
i = ωV k

i + b1(xki − xk,∗i ) + b2(xki − xk,∗),

xk+1
i = xki + Vk+1

i ,
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where ω is a deterministic parameter, while b1 and b2 are two random variables uniformly chosen in
[0, ϕ1] and [0, ϕ2]. Thus, PSO algorithms have the advantage of requiring only three hyperparam-
eters. Of course, there are many variants of PSO algorithms, which the interested reader can find
in [186]. Finally, as for genetic algorithms, the PSO algorithms were originally made for uncon-
strained problem and has been extended to handle general inequality constraints, see for example
the work in [146].

Evolution strategies are a group of algorithms based on artificial evolution methods (as opposed to
genetic algorithms, which are based on biological evolution methods). The best known of these
methods is the covariance matrix adaptation evolution strategy (CMA-ES) [79]. CMA-ES is based
on a selection and adaptation process of a candidate population. In CMA-ES, at each generation,
λ offspring candidates are generated from µ parents. Unlike the genetic algorithm, the offspring
candidates are generated from a multivariate normal distribution. In the next generation, to select
the new parents, the best µ offspring candidates are selected in terms of their ranking according
to their objective function values. This process is repeated iteratively to hopefully converge and
shrink around the global minimum. A pseudocode of this algorithm is given in Algorithm 2. Like

Algorithm 2 CMA-ES algorithm
1: K: maximum number of iterations
2: λ the number of offspring candidates and µ the number of parents
3: m0: a random point of the search space and µ different weights wi

4: σ0 the stepsize and C0 = I the covariance matrix
5: k = 0
6: while k ≤ K do
7: Sampling: generate λ offspring candidates according to

zk+1
t ∼mk + σkN (0, Ck), t ∈ [1, λ] (2.3)

8: Ranking: evaluate the candidates and rank them based on their objective function value
9: Averaging: compute the weighted average solution

mk+1 =
µ∑

t=1
wizk+1

t (2.4)

10: Update: the covariance matrix Ck+1 and the stepsize σk+1 as in [79]
11: k ← k + 1
12: end while
13: Return the best point

the other metaheuristics, CMA-ES was developed to solve unconstrained optimization problems.
Versions of CMA-ES adapted for constrained problems are based on the penalty approach [126] or
modifications of the original algorithm [7].

Another type of metaheuristic is based on neighborhood search. Neighborhood search aims to
escape from a local minimum when the algorithm seems to be stuck there. The three most popular
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methods of this type are: variable neighborhood search, simulated annealing, and tabu search.

The Variable Neighborhood Search (VNS) algorithm [135] explores distant neighborhoods of the
current incumbent solution, and moves from there to a new solution if and only if an improvement
has been made. The VNS algorithm requires two elements: a neighborhood structure and a method
to search locally for a better solution within the neighborhood structure. The advantage of the
VNS algorithm is that it can be coupled with any other local search method. A pseudocode of this
algorithm is given in Algorithm 3.

Algorithm 3 Variable neighborhood search algorithm
1: K: Maximum number of iterations
2: ρ0: initial search length and ρmax the maximal search length
3: δ ∈ N
4: k = 0
5: while k ≤ K do
6: ρk ← ρ0

7: while ρk ≤ ρmax do
8: x′ ← shaking(xk, ρk)
9: x′′ ← localsearch(x′)

10: if f(x′′) < f(xk) then
11: xk+1 ← x′′ and ρk+1 ← ρ0

12: else
13: xk+1 ← xk and ρk+1 ← ρk + δ
14: end if
15: k ← k + 1
16: end while
17: end while
18: Return the best point

Tabu search [74] is a local search whose basic rule has been relaxed so that worse moves can be
accepted if no better move is available. Like the VNS algorithm, the tabu search algorithm requires
a neighborhood structure within which it can move. In addition, to avoid returning to a previously
visited solution, the algorithm has a short-term memory that stores these solutions. Since tabu
search is mainly used in combinatorial optimization, it will not be discussed further.

Finally, Simulated Annealing [95] is based on the evolution of a thermodynamic system. In analogy
to the physical process, the function to be minimized becomes the energyE. In addition, a fictitious
parameter is introduced, the temperature T of the system. By modifying a given state of the system,
we obtain another state. This state either improves the value of the objective function - the energy
of the system is said to be reduced - or degrades it. If we accept a state that improves the objective
function value, we are looking for a local solution. On the contrary, accepting a degrading state
allows exploring a larger part of the state space and tends to avoid getting bogged down too quickly
in the search for a local optimum. As with the previous algorithms in this paragraph, in practice
the algorithm needs a neighborhood structure to identify neighboring points. At each iteration k,
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a neighboring point is evaluated. This modification leads to a variation ∆f in the value of the
objective function. If this variation is negative (i.e., the iteration is an improvement), the algorithm
moves to the neighboring point. Otherwise, it moves only with probability e− ∆f

T . This choice of
exponential probability is known as the Metropolis rule. The process is then iterated, lowering the
temperature or keeping it constant, depending on the approaches.

Probabilistic-based metaheuristics may also be used like Importance Sampling (IS) [102]. It may
be used in two different perspectives:

• Estimation [102]: typically, estimate ℓ = E[h(X)], where X is a random vector having its
value in X a subset of Rn and h is a function on X .

• Optimization [36, 99]: minimize a given objective function f over all x ∈ X .

These two perspectives are in fact two points of view of a same image. In the following, the concept
of IS will be presented under the estimation perspective and explanations will be given to obtain
the optimization perspective. Consider the estimation of the following probability

ℓ = P(f(X) ≤ γ) = E[I{f(X)≤γ}] =
∫
I{f(X)≤γ}ϕ(x)dx,

where f is a function, γ is a given threshold, and X has a probability density function (pdf) ϕ(·).
If ℓ is a very small probability (called a rare event), its estimation from the pdf ϕ requires a huge
number of samples. Therefore, the IS method looks for another pdf ψ that is better able to estimate
ℓ. Using the pdf ψ, ℓ is equal to

ℓ =
∫ I{f(X)≤γ}ϕ(x)

ψ(x) ψ(x)dx = E
[
I{f(X)≤γ}ϕ(X)

ψ(X)

]
,

where X ∼ ψ. Therefore, if X1, . . . ,XN are N independent vectors sampling from the pdf ψ, an
estimator ℓ̂ of ℓ may be computed as follows

ℓ̂ = 1
N

N∑
i=1

I{f(Xi)≤γ}ϕ(Xi)
ψ(Xi)

.

It is an unbiased estimator: a so-called importance sampling estimator and ψ is the importance
sampling pdf. The optimal sampling pdf ψ∗, the one for which the variance of ℓ̂ is minimal, is then
the density of X conditional on the event f(X) ≤ γ, that is

ψ∗(x) = ϕ(x)I{f(X)≤γ}

ℓ
.

Unfortunately, this optimal density is intractable because it involves the unknown quantity of inter-
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est ℓ. Importance sampling aims to approximate this optimal auxiliary density, and there are two
main methods: the parametric and the nonparametric approaches.

Parametric Important Sampling (IS) methods approach the optimal sampling density ψ∗ using a
parameterized auxiliary pdf family (usually the Gaussian). The goal is to determine the parameters
p of the auxiliary pdf ψ(·,p) to minimize the “divergence” between the optimal and the auxiliary
pdf. The best known method is the Cross Entropy (CE) method [168]. It is based on an iterative
process that aims to minimize the Kullback-Leibler (KL) divergence. The KL divergence between
the distributions defined by ψ∗ and ψ(·,p) is given by

D (ψ∗||ψ(·,p)) =
∫
ψ∗(x) ln

(
ψ∗(x)
ψ(x)

)
dx.

The CE methods is reduced to find an optimal reference of a parameter vector p∗ by minimizing
the previous quantity

p∗ ∈ argmin
p

D (ψ∗||ψ(·,p)) .

Now, it follows that

min
p
D (ψ∗||ψ(·,p)) = min

p

∫
ψ∗(x) ln(ψ∗(x))dx−

∫
ψ∗(x) ln(ψ(x,p))dx

= max
p

∫
ψ∗(x) ln(ψ(x,p))dx

= max
p

∫ ϕ(x)I{f(X)≤γ}

ℓ
ln(ψ(x,p))dx

= max
p

Eϕ[I{f(X)≤γ} ln(ψ(x,p))],

using again importance sampling, with a change of distribution ψ(x,v), the following optimization
problem is obtained

max
p

Eψ(·,v)

[
I{f(X)≤γ} ln(ψ(x,p)) ϕ(X)

ψ(x,v)

]
.

This problem may be then used to obtain an estimator of p∗ which is

p̂ ∈ argmax
p

1
N

N∑
i=1

I{f(X)≤γ} ln(ψ(Xi,p)) ϕ(X)
ψ(x,v) , (2.5)

where X1, . . . ,XN ∼ ψ(·,v). This estimator can be obtained in an explicit form if the family of
distributions is the exponential family. Finally, solving Equation (2.5) is a priori difficult, since
I{f(X)≤γ} very often takes the value 0 since f(X) ≤ γ is a rare event. In this case, a sequence
of parameters p̂k and levels γ̂k is constructed with the goal that the former converges to p∗ and
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the latter converges to γ. To do this, the following iterative process is applied: sample N inde-
pendent random variables from the density ψ(·; v̂k−1) and let γ̂k be the (1 − α)-quantile of the
objective function values f(X1), . . . , f(XN). Then v̂k−1 is updated to v̂k by solving the problem
in Equation (2.5) with the same N samples.

Non-parametric importance sampling methods [198] have also been proposed using a kernel den-
sity estimator. The goal of non-parametric importance sampling is to approximate the optimal
density without the need to choose a pdf family. The process in these methods is similar to that of
the CE method: at each iteration, a threshold is calculated based on a quantile of the samples gen-
erated. Then, a kernel-based sample pdf is created from the samples whose the objective function
value is below the threshold. The parameters of the kernel pdf are then updated by the asymptotic
mean of the integrated squared error between the sample kernel density and the optimal density.
The kernel density function has the advantage of being able to handle multiple optimal densities.
In an optimization context, it may be useful to search for several minima at once. However, non-
parametric importance sampling is not efficient in dimensions larger than 10.

Direct search includes all methods that, at each iteration, search -within a given set of points- for
a point whose objective function value is lower than that of the current solution. Among these
methods, there are two well-known heuristics, the Nelder-Mead algorithm [140] and the DIRECT
algorithm [86]. The Nelder-Mead algorithm uses the concept of a simplex, which is a polytope of
n + 1 vertices in n dimensions, such that the convex hull has nonempty interior. At each iteration,
the algorithm maintains a set of n + 1 test points arranged as a simplex. Then, according to the
objective function values of the simplex points, a strategy is chosen to evaluate a new candidate
point. If one of them has a better objective function value than the worst point of the simplex, it is
replaced. Otherwise, the simplex is shrinked. The Nelder-Mead algorithm is usually efficient for
approximating a local solution of a smooth objective function. In contrast, the DIRECT algorithm
is an algorithm that seeks to approximate the global minimum of a function defined on a hyper-
rectangle of Rn. For this purpose, the DIRECT algorithm works by dividing the hyperrectangle
into subrectangles, with the property that the objective function has been evaluated at the center of
each rectangle. At each iteration, certain “potentially interesting” rectangles are selected for further
search. Their centers are evaluated and the process continues. DIRECT is particularly well suited
to finding the global minimum of small-dimensional problems (n ≤ 6).

All previous methods do not benefit from convergence properties, which is their main drawback.
The next subsections are devoted to methods that rely on convergence analysis.
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2.2.2 Model-Based Methods

In the DFO framework, even if the derivatives are not available, there are many cases where it is
reasonable to assume that the underlying objective function is smooth or locally smooth. In these
cases, it may be particularly interesting to locally approximate the function by a model whose
gradient is known in order to guide the optimization process. The set of such methods is called
model-based methods. This section starts with a short description of the techniques to build a
“good” model. Then, two groups of generic methods are described [14]: the model-based descent
methods and the model-based trust-region methods.

When constructing a model of a function, the first question that comes to mind is about the quality
of that model. The class of fully linear models formalizes this notion of quality.

Definition 2.2.1 (Class of fully linear models). Given f ∈ C1, X ∈ Rn and ∆̄ > 0, the class of

function {f̃∆}∆∈(0,∆̄] is said to be a class of fully linear models of f at x parameterized by ∆ if

there exists a pair of strictly positive scalar κf (x) and κg(x) such that, given any ∆ ∈ (0, ∆̄]
the model f̃∆ satisfies

|f(y)− f̃∆(y)| ≤ κf (x)∆2 for all y ∈ B∆(x);

||∇f(y)− g̃∆(y)|| ≤ κg(x)∆ for all y ∈ B∆(x);

where g̃∆ = ∇f̃∆.

If a class of fully linear models can be constructed for any x ∈ Rn with κf and κg independent of
x, the models are said to be fully linear. The question now is how to construct a fully linear model.
In the DFO framework, the model must be built from function evaluations only. A common idea is
to use linear interpolation. The linear interpolation function is defined as follows

f̃∆(x) = L(x) = α0 + αTx,

where α0 ∈ R and α ∈ Rn are taken such that L(yi) = f(yi), ∀i[0, n] where the yi ∈ Rn are a
set of n+ 1 points. In order to have a unique α and α satisfying this condition, the points yi must
satisfy the following condition:

Definition 2.2.2 (Poised for linear interpolation). The set Y = {y0,y1, . . . ,yn} is poised for

linear interpolation if the (n+1)×(n+1) matrix [1,YT ] is of full rank, with Y = [y0, . . . ,yn]
and 1 ∈ Rn+1 is a vector of ones.
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Finally, if this condition is met, the linear interpolation model is a fully linear model [14, Theorem
9.5].

Theorem 2.2.3 (Linear approximation is fully linear ). Let x ∈ Rn and f ∈ C1+ on B∆̂(x)
with constant K. Let Y be poised for linear interpolation with y0 = x and ∆ ≤ ∆̂, then

|f(y)− L(y)| ≤
(1

2K(1 +
√
nC)

)
∆2 for all y ∈ B∆(x),

||∇f(y)−∇L(y)|| ≤
(1

2K(2 +
√
nC)

)
∆ for all y ∈ B∆(x),

with C a positive constant depending on the set Y.

There are other techniques to build a model of the function, such as incorporating order-2 informa-
tion of the function or using more than n + 1 points to build the model. Since this is not the focus
of this research, readers may consult [14, Chapter 9] and references therein.

Model-based descent is a first group of methods to use model in a DFO algorithm. These meth-
ods rely on the concept of line-search to improve the current solution. Line-search is a popular
technique in optimization. It consists of finding a descent direction and then searching for a so-
lution along that descent direction. The interest is to reduce the minimization problem to a one-
dimensional minimization problem at each iteration. To be efficient, the line search must satisfy
a certain condition called the Armijo condition [6]. A pseudocode of a model-based descent al-
gorithm is given in Algorithm 4. The convergence result of the model-based descent algorithm is
given in the following theorem [14, Theorem 10.6].

Theorem 2.2.4 (Convergence of the model-based descent algorithm). Suppose f ∈ C1 is

bounded below and g̃∆ is the gradient of a fully linear model. Suppose that there exists t̄ > 0
such that tk||dk|| ≥ t̄ for all k. If Algorithm 4 is run with ϵ = 0, then

lim
k→∞
||∇f(x)|| = 0.

While the model-based descent algorithm uses only the gradient of the model to guide the opti-
mization process, the model-based trust region aims to fully exploit the information given by the
model. To do so, it uses not only the gradient, but also the approximations to the function values
given by the model. Given a fully linear model, at each iteration the model-based trust region aims
to minimize the model f̃k∆ within a ball of radius ∆k. This ball is called the trust region and corre-
sponds to a region within the model that should be an accurate approximation of the true function.
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Algorithm 4 Model-based Descent algorithm
1: Inputs:
2: ∆0 ∈ (0,∞) the initial model accuracy parameter and µ0 the initial target accuracy parameter
3: η ∈ (0, 1) an Armijo parameter
4: ϵ ∈ [0,∞)
5: g̃0 initial gradient approximation of∇f
6: while ∆k < ϵ and ||g̃k|| < ϵ do
7: Model:
8: Use ∆k and finite number of point to build a fully linear model and set g̃k as the gradient
9: of the model

10: Check model accuracy:
11: if ∆k > µk||g̃k|| then
12: Declare the model inaccurate : ∆k+1 = 1

2 ∆k, µk+1 = µk, k ← k + 1 and go to Model step
13: else
14: Declare the model accurate and go to Line-search step
15: end if
16: Line search:
17: Select dk ∈ Rn such that

(
dk

||dk||

)T ( g̃k

||g̃k||

)
< ϵd with ϵd ∈ (0, 1) a parameter controlling the descent

18: angle. Then, perform a line-search in the direction dk to seek tk such that

f(xk + tkdk) < f(xk) + ηtk(dk)T g̃k (Armijo)

19: Update:
20: if Line-search is a success then
21: Set xk+1 be any point such that f(xk+1) ≤ f(xk + tkdk), ∆k+1 = ∆k and µk+1 = µk

22: else
23: set xk+1 = xk, ∆k+1 = ∆k and µk+1 = 1

2 µk

24: end if
25: k ← k + 1
26: end while

The solution obtained by solving the approximation subproblem is referred to as the candidate so-
lution. The quality of the candidate solution is checked and either the new point is accepted and
the radius of the trust region is increased, or the point is rejected and the radius of the trust region
is decreased. A pseudocode of the model-based trust region algorithm is given in Algorithm 5. The
convergence properties of this algorithm are detailed in the following theorem.

Theorem 2.2.5 (Convergence of the model based trust region algorithm). Suppose f ∈ C1 is

bounded below, and f̃∆ are quadratic fully linear model. With additional technical assumptions

on the model and on the iterates produced by Algorithm 5, if the algorithm runs with ϵ = 0,

then

lim inf
k→∞

||∇f(xk)|| = 0.

The methods described so far are not adapted to handle derivative-free constrained optimization
problems. However, these methods have been adapted for constrained problems. The best known
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Algorithm 5 Model-based trust region algorithm
1: Inputs:
2: ∆0 ∈ (0,∞) the initial model trust region radius and µ the model accuracy parameter
3: η ∈ (0, 1) sufficient decrease test parameter and γ ∈ (0, 1) trust region update parameter.
4: ϵ ∈ [0,∞)
5: f̃0 initial model
6: while ∆k < ϵ and ||∇f̃k(xk)|| < ϵ do
7: Model:
8: if ∆k > µk||g̃k|| or f̃k is not a fully linear model in B∆k (xk) then
9: end if

10: Decrease ∆k+1 = γ∆k, µk+1 = µk and create a fully linear model f̃k, increment k ← k + 1
11: Trust region subproblem
12: Solve or approximate x′ ∈ argminx{f̃k(x) | x ∈ B∆k (xk)}
13: Check quality of x′:
14: Compute the ratio

ρk = f(xk)− f(x′)
f̃k(xk)− f̃k(x′)

15: Update:
16: if ρk > η (sufficient decrease) then
17: Set xk+1 be any point such that f(xk+1) ≤ f(x′), increase ∆k+1 = γ−1∆k and build f̃k+1

18: using f̃k and xk+1

19: else
20: set xk+1 = xk, ∆k+1 = γ∆k and keep f̃k+1 = f̃k

21: end if
22: k ← k + 1
23: end while

confidence region algorithms developed for this purpose are Powell’s algorithms BOBYQA [151]
for bounded constrained problems, LINCOA [150] for linear constrained problems, and COBYLA [149]
for nonlinear constrained problems. In the COBYLA algorithm, the constraint and objective func-
tions are approximated by linear interpolation models, and then a trust-region algorithm is used
to solve the problem. More recently, a trust-region method using fully linear models of both the
constraint and objective functions has been developed in [24]. It introduces a method to locally con-
vexify the blackbox constraints. The trust region subproblem minimizes the model of the objective
function as the intersection of the trust region and a restricted feasible set. The resulting algorithm
is called NOWPAC. Other methods based on penalization have also been developed. In [120],
the problem is transformed into an unconstrained problem thanks to an exact penalty function.
Sometimes, the Lagrangian relaxation is used in addition with the construction of models [77]. A
line search algorithm is then employed to solve a smoothed approximation of the unconstrained
problem.
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2.2.3 Direct Search Methods

This section focuses on local optimization utilizing direct search methods. Hooke and Jeeves [85]
describe the direct search methods as:

The sequential examination of candidates by comparison with the best solution ob-

tained until now and the introduction of a strategy in order to pick the next best promis-

ing candidates.

Coordinate search (CS) algorithm. The first direct search algorithm is the CS algorithm [67]. Its
main idea is to evaluate the objective function in a collection of points, looking for an improvement
over the current solution. In this method, the points used are those along the coordinate directions
and within a δk step-length of the current solution. If an improved solution is found, the current
solution is updated, otherwise the step length is reduced. The main drawback of the coordinate
search algorithm is that it cannot handle simple problems such as minimizing f : R2 → R [14,
Example 3.3] where f(x) = ||x||∞. Indeed, if the algorithm starts at x0 = (1, 1), it will always
stay at x0 until the step-length equals 0, whereas the optimal solution lies at x∗ = (0, 0). To solve
this problem, the CS algorithm has been generalized and made more flexible.

Generalized Pattern Search (GPS) algorithm. In 1997, Torczon [184] proposed a generaliza-
tion of various pattern search methods, grouping them into a common structure and giving a proof
of convergence for this class of algorithms. This new structure is called the GPS algorithm. The
GPS algorithm increases flexibility in the way points are selected. Coordinate directions are re-
placed by a more general set of directions: the polling directions. In the GPS algorithm, the set of
polling directions can change from one iteration to the next. In addition, under certain conditions,
it is possible to evaluate points outside the set of polling directions. All this new flexibility is made
possible by the use of the mesh, which is an enumerable discretization of the space of variables.

Definition 2.2.6 (Mesh). Let G ∈ Rn×n be a full-rank matrix and Z ∈ Zn×p be such that its

columns form a positive spanning set, i.e. a set of nonnegative linear combination of vectors

and spanning Rn. Then denoting D = GZ, the mesh at a point xk ∈ Rn of coarseness δk > 0
is defined by

Mk := {xk + δkDy | y ∈ Np} ⊂ Rn.

Each iteration of the GPS algorithm is divided into two main steps. First, the search step, where
any strategy can be used to obtain an improvement over the current solution, provided that only
a finite number of points are considered and that these points are projected onto the mesh before
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being evaluated. If the search step does not yield an improvement, the poll step is performed. This
step simply consists of evaluating the neighboring mesh points of the current solution xk. If either
the search or the poll step leads to a successful iteration, the mesh size parameter δk is doubled,
otherwise it is halved. The poll step allows to ensure the convergence of the algorithm. The
main convergence result is that if the objective function f is locally Lipschitz, then the ieterates
of the GPS algorithm converge to a limit point where the generalized directional derivatives are
non-negative for a finite set of directions. Nevertheless, the GPS can only handle unconstrained
optimization problems.

Mesh Adaptive Direct Search (MADS). The MADS [12] algorithm was developed to overcome
the two drawbacks of the GPS algorithm : its proof of convergence (limited to a finite set of
directions) and its inability to handle constrained optimization problems. To solve the first problem,
another structure of space is defined in addition to the mesh: the frame.

Definition 2.2.7. Let G ∈ Rn×n be a full-rank matrix and Z ∈ Zn×p be such that its columns

form a positive spanning set for Rn. Set D = GZ and select a mesh size parameter δk > 0 and

let the frame size parameter ∆k be such that δk ≤ ∆k. The frame of extend ∆k and generated

by D at a point xk ∈ Rn is defined by

F k := {x ∈Mk | ||x− xk||∞ ≤ ∆kb},

with b = max{||d′||∞ | d′ ∈ D}.

In the MADS algorithm, the poll set is constructed by selecting the poll directions from within
the frame F k. If the mesh size parameter decreases faster than the frame size parameter, this
allows to obtain asymptotically dense selections of poll directions. To address the second issue, the
MADS algorithm can use two different strategies. The simplest is the extreme barrier strategy [12].
This strategy transforms the constrained problem into an unconstrained one by using the following
objective function:

fΩ(x) :=

 f(x) if x ∈ Ω,
+∞ otherwise.

A finer way to handle the constraints is the progressive barrier [11]. This strategy allows searching
for a feasible point while taking into account the value of the objective function outside of Ω. It
allows MADS to be run from an infeasible point. The progressive barrier is based on the constraint
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violation measure [69] defined by

h(x) =
m∑
j=1

(max{cj(x), 0})2.

The value of the constraint violation function h(x) is 0 if and only if the point x belongs to Ω, oth-
erwise it is strictly positive. This function allows to rank any pair of test points using the following
dominance relation [14].

Definition 2.2.8. The feasible point x ∈ Ω is said to dominate y ∈ Ω when f(x) < f(y). The

infeasible point x ∈ X \Ω is said to dominate y ∈ X \Ω when f(x) ≤ f(y) and h(x) ≤ h(y)
with at least one strict inequality.

The progressive barrier method approaches an optimal solution by exploring around two current so-
lutions. The feasible solution xfeas ∈ Ω and the infeasible solution xinf , which is an undominated
infeasible point with a value of h lower than a threshold called hmax. Then the poll step is applied
around these two incumbent solutions. An iteration of the MADS algorithm with the progressive
barrier is

• dominating, when a dominating trial point with respect to xinf or xfeas is found. In this case,
the threshold is updated to hk+1

max = hkI .

• improving, when it is not a dominating iteration, but a trial point improves the threshold
hkmax. In this case, threshold is updated to hk+1

max = max{h(v) : h(v) < hkI ,v ∈ V k+1}.

• or unsuccessful, when it is neither a dominating nor an improving iteration. In this case, the
threshold is updated to hk+1

max = hkI .

where hkI is defined by

hkI =


h(x) for any x ∈ Ik = {argmin

x∈Uk

{f(x) : 0 < h(x) ≤ hkmax}},

∞ if Ik = ∅,

with Uk the set of infeasible undominated points. Algorithm 6 provides a description of the MADS
with progressive barrier algorithm The convergence of the MADS algorithm with the progressive
barrier rely on the concept of refining subsequences, points and directions.
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Algorithm 6 The Mesh Adaptive Direct Search algorithm
0. Initialization:

A set of starting point: V 0 ⊂ Rn

An initial poll size vector: ∆0

The iteration counter: k ← 0
The mesh size adjustment parameter: τ ∈ Q ∩ (0, 1)
The initial threshold: h0

max =∞
Define δ0

j = min{∆j
0, (∆j

0)2}, ∀j ∈ [1, n]
1. Search step (optional):

Launch the simulation on a finite set Sk of mesh points.
If successful, go to 3.

2. Poll step:
Launch the simulation on the set P k of poll points.

3. Updates:
Update the cache V k+1.
If the iteration is dominating :

update xk+1, hk+1
max = hk

I and ∆k+1 = τ−1∆k.
Else, if the iteration is improving:

update xk+1,hk+1
max = max{h(v) : h(v) < hk

I , v ∈ V k+1} and ∆k+1 = ∆k.
Otherwise:

Set ∆k+1 = τ∆k and hk+1
max = hk

I .
Set δk+1

j = min{∆j
k+1, (∆j

k+1)2}, ∀j ∈ [1, n].
Increase the iteration counter k ← k + 1 and go to 1.

Definition 2.2.9. A convergent subsequence of mesh local minimum {xk}k∈K (for some subset

of indices K) is said to be a refining subsequence if and if limk∈K δ
k = 0. The limit x̂ is called

a refined point. A direction d is a refining direction if and only if there exists an infinite subset

L ⊂ K with poll directions dk such that xk + δkdk ∈ Ω and limk∈L
dk

||dk|| = d
||d|| .

Now the main result may be stated.

Theorem 2.2.10. Let f be locally Lipschitz continuous near a refined point x̂ ∈ Ω and d ∈
TΩ(x̂) be a refining direction. Then,

f ◦(x̂; d) ≥ 0.

Like the GPS algorithm, the great flexibility of the MADS algorithm comes from the search step.
This step allows embedding any heuristics or others algorithms aiming to accelerate the conver-
gence to a minimum or better explore the space of variables. For instance, a variable neighborhood
search step has been implemented [10], in addition with a Nelder-Mead search step [20] and the
use of models [53].
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2.2.4 Summary

In this first section of the literature review, different methods for deterministic blackbox optimiza-
tion problems have been described. The methods are grouped into three different classes. Ta-
ble 2.1 summarizes the main advantages and drawbacks of the different methods according to five
perspectives: the assumptions made about the regularity of the function, the existence of a proof of
convergence, the range of problem sizes handled, the initial design for handling constraints and the
type of minima sought.

Table 2.1 Drawbacks and advantages of the main classes of algorithms for deterministic blackbox
optimization.

Class Assumption
Convergence

proof Range of n Constraints
Type of
search

Metaheuristics ✗ ✗ [2, 1000] ✗ global
Model-based

methods C1 ✓ [2, 50] ✗ local
Direct search

methods ✗ ✓ [2, 50] ✓ local/global

2.3 Uncertain blackbox optimization

In this section, the work specific to uncertain blackbox optimization is detailed. First, the defini-
tion, classification and mathematical model of uncertainties are introduced in Section 2.3.1. Then,
different problem formulations depending on the chosen model are detailed. Finally, methods
from two formulations are depicted more precisely. First, algorithms for unconstrained blackbox
stochastic optimization problems are presented in Section 2.3.2 . Second, algorithms for stochastic
constrained blackbox optimization problems (1.4) are presented in Section 2.3.3.

2.3.1 Uncertainty modeling

Many optimization solvers are able to handle uncertainties. In practical applications, the sources of
uncertainty are numerous, e.g., due to variations in parameters, operating conditions, and modeling
and simulation [27]. Following this assessment, the next step is to classify the uncertainties into
categories. Depending on the field of application and the granularity of the studied phenomena,
there are different ways to classify the uncertainty. However, a consensus has been reached on two
main categories [183]: aleatory and epistemic uncertainty.

Aleatory uncertainty is due to the inherent variability of a physical system and/or its environment. It
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cannot be reduced by collecting more information or data. It is also known as stochastic uncertainty
or irreducible uncertainty. Classical examples of aleatory uncertainty are: pressure, temperature,
or wind direction. Epistemic uncertainty arises from any lack of knowledge, simplifications about
the phenomena being modeled, or measurement inaccuracies. It can be reduced by collecting more
information or paying a higher cost. It is also referred to as reducible uncertainty. A typical example
is the cutting of a sheet of metal. The accuracy of a hydraulic press cut will be on the order of a
tenth of a millimeter, while the accuracy of a more expensive laser cut may be on the order of a
micrometer.

Finally, both categories of uncertainty must be modeled with a mathematical formalism in order
to be handled by an optimization solver. Due to their different natures, the two types of uncer-
tainty cannot be modeled in the same way. In fact, improper modeling of uncertainty can lead to
underperforming designs or even significant design failures [157]. While random uncertainties are
commonly modeled using probability theory, the choice of which model to use for epistemic un-
certainty is particularly complex. When there are not enough data to construct a precise statistical
distribution, it is necessary to resort to others techniques. More appropriate formalisms have been
developed, such as evidence theory [172], interval analysis [136], or fuzzy sets [196]. Although
interesting, these methods require the definition of a new arithmetic based on interval or fuzzy sets.
This is beyond the scope of this work. Two methods based on probability theory have also emerged
to deal with epistemic uncertainty. First, the Bayesian theory [30] allows to update the data distri-
bution thanks to new samples obtained from new experiments. Second, the distributionally robust
optimization [115, 154] where the uncertainties are modeled thanks to a family of distributions,
thus it does not require precise information about the distribution of the uncertainties.

The formulation of Problem (1.4) depends on the model of uncertainty and the measure Ξ used
to deal with it. In the following, the main formulations are described according to the degree of
knowledge we have about the uncertainties. First, the robust optimization formulation [28] is a
“worst-case” approach, requiring only the support of the uncertainties.

min
x∈X ⊂Rn

supξ∈U [F (x, ξ)]

s.t. supξ∈U [Gj(x, ξ)] ≤ 0, ∀j ∈ {1, 2, . . . ,m}.
(2.6)

This formulation is well suited for cases where little information about uncertainties is available.
However, this approach is often overly conservative, and the feasible set may be tiny or even non-
existent. Moreover, if the structure of the problem is known, as in the case of a linear or conic
problem, it is possible to transform the problem into a tractable one, i.e., in a deterministic prob-
lem with a known structure [28]. In a DFO or BBO context, however, it is generally impossible
to achieve the same transformation. In the absence of constraints, work has nevertheless been
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done [32, 131].

Second, the distributionally robust optimization formulation [58, 154] needs only partial distribu-
tional information.

min
x∈X ⊂Rn

supϕ∈Φ ρϕ[F (x, ξ)]

s.t. supϕ∈Φ ρϕ[Gj(x, ξ)] ≤ 0, ∀j ∈ {1, 2, . . . ,m},
(2.7)

where Φ denotes the ambiguity set of probability measures, i.e., a family of measures that are
consistent with prior knowledge about the uncertainty. The ρϕ function is used to quantify the
uncertainty in the outcome of the objective and constraint functions, for a given fixed probability
measure ϕ, e.g. ρϕ = Eϕ[·] (others examples are given below). This approach is very attractive
because it allows to use all available knowledge about the uncertainties. Moreover, the ambiguity
set Φ remains very general and may, in practice, describe a large class of family distributions.
However, these problems are generally infinite dimensional, since the supremum is taken in a set
of probability measures. Thus, without assumptions about the structure of the functions F and Gj ,
the problem is often intractable in practice. Therefore, to the best of our knowledge, there is no
work that uses distributionally robust optimization in a derivative-free setting.

Finally, the stochastic optimization formulation needs complete distributional information [173]

min
x∈X ⊂Rn

ρξ[F (x, ξ)]

s.t. ρξ[Gj(x, ξ)] ≤ 0, ∀j ∈ {1, 2, . . . ,m},
(2.8)

where ρξ is used to quantify the uncertainty in the outcome of the objective and constraint functions
for the distribution of ξ. Note that in practice this distribution does not need to be known to
solve Problem (2.8), except to compute the analytical formulation of the problem. In DFO, the
analytical expression of the objective and constraint functions are unknown, so this would have
been impossible anyway. However, it is clear that this formulation does not seem to be suitable
for dealing with epistemic uncertainty. Nevertheless, given the difficulty of using the previous
formulations, it is the one most often used in practice.

Depending on the choice of ρξ, different formulations are derived from the stochastic formulation
given in Equation (2.8). Using ρ = Eξ[·], the following risk neutral [173] formulation is obtained

min
x∈X ⊂Rn

Eξ[F (x, ξ)]

s.t. Eξ[Gj(x, ξ)] ≤ 0, ∀j ∈ {1, 2, . . . ,m}.
(2.9)

This formulation is limited because the feasible set is given in mean, i.e. it does not take into
account the deviation. When the deviation is large, satisfying the constraints in mean gives little
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indication of the quality of the solution obtained. Nevertheless, this formulation was used in [65].
However, in the absence of constraints, this formulation is widely spread and is the subject of Sec-
tion 2.3.2. A more interesting formulation is

min
x∈X ⊂Rn

Eξ[F (x, ξ)]

s.t. Pξ(Gj(x, ξ) ≤ 0) ≥ αj, ∀j ∈ {1, 2, . . . ,m},
(2.10)

where αj are the reliability indices. The advantage of this formulation is that it tends to satisfy the
constraint with some probability. However, the computational cost of this probability estimation
can be particularly high, especially in the context of DFO. A special survey of methods that attempt
to solve this type of formulation is given in Section 2.3.3. Finally, a promising formulation is
based on the Conditional Value-at-Risk (CVaR) risk measure [162]. The CVaR risk measure is a
probability measure based on the quantile of the level α ∈ (0, 1) of a random variable and can be
defined for a random function F (x, ξ) as follows

CVaRα(F (x, ξ)) = min
t∈R

E
[
t+ 1

1− α max(0, F (x, ξ)− t)
]
.

The formulation of the stochastic optimization Problem (2.8) with CVaR is

min
x∈X ⊂Rn

CVaRα0 [F (x, ξ)]

s.t. CVaRαj
[Gj(x, ξ)] ≤ 0, ∀j ∈ {1, 2, . . . ,m},

(2.11)

where (α0, . . . , αm) are the various desired reliability indices. This formulation is a conservative
approximation of the formulation given in Equation (2.10) [173, Chapter 6]. Thanks to αj , the opti-
mizer benefits from the ability to choose the desired degree of reliability. Indeed, choosing α close
to 1 tends to adopt a “worst-case” approach, as in Problem (2.6), while choosing α close to 0 tends
to adopt a “risk-neutral” approach, as in Problem (2.8). Thus, this probabilistic approach can deal
with epistemic uncertainty. Moreover, it has been shown to be closely related to distributionally
robust optimization ([154]). This formulation has been used in the reinforcement learning commu-
nity [50, 181], with model-based methods [130], and in engineering [160]. Chapter 6 is dedicated
to efficiently solve problem Equation (2.11) in a BBO context.

2.3.2 The unconstrained case

This section is dedicated to methods aimed at solving the unconstrained version of Problem (2.8),
i.e. solving the following problem

min
x∈Rn

f(x) := Eξ[F (x, ξ)], (2.12)
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where the distribution of ξ may be unknown. This means that the methods discussed are based
only on samples of F . In recent years, several algorithms have been developed to solve this prob-
lem (2.12). Most of the algorithms are adaptations of deterministic blackbox algorithms. However,
there is also a large class of algorithms based on zero-order gradient approximation.

The analysis of the model-based methods in Section 2.2.2 depends on the construction of fully
linear of fully quadratic models of a deterministic function f , see Definition 2.2.1. Thus, a nat-
ural extension of model-based algorithms is to build a model thanks to the realization value of
the stochastic function. If the model is fully linear, then the adapted algorithm should be able to
solve the problem (2.12). However, the model is stochastic since it depends on ξ. This change of
paradigm implies to modify Definition 2.2.1 to adapt it to the stochastic model. In [26], the defini-
tion of probabilistically fully linear models is introduced, which essentially says that the condition
in Definition 2.2.1 needs to be satisfied at a given iteration only with some probability. Based on
this definition, [104] and [45] developed a model-based confidence region algorithm. It was proved
that under the smoothness assumption of the objective function, the algorithm converges to a sta-
tionary point with probability one [45]. Later, [34] derives a worst-case complexity (WCC) rate of
convergence of this algorithm in terms of the expected number of iterations. Using a similar anal-
ysis, [145] derives a WCC rate of convergence for the stochastic model-based descent algorithm.

As with model-based methods, handling stochasticity with a direct search algorithm requires fun-
damental changes to the core of the algorithm. These changes are necessary because, due to the
stochasticity of the function, it is not sufficient to compare objective function values at the sampling
stage. The idea developed in [23] is to run the MADS algorithm on estimates of the stochastic
function value. These estimates must be sufficiently accurate with a sufficiently high probability
to ensure convergence. With an additional assumption on the smoothness of the function, a WCC
convergence rate to a stationary point for a large class of direct search algorithms was then given
in [64].

This paragraph depicts the algorithms based on zeroth-order gradient approximation. These meth-
ods rely on the same type of algorithms as deterministic or stochastic gradient descent, but use
function evaluations to obtain an estimate of the gradient. The methods then differ in the way the
gradient estimate is computed and in the way the estimate is used. A pseudocode of a gradient
descent algorithm based on ZO gradient approximation is given in Algorithm 7.
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Algorithm 7 Gradient descent based on ZO approximation of the gradient

1: Choose starting point x0, sequence of step-sizes (αk)k∈N and sequence of difference parameters
(βk)k∈N

2: for k = 1, 2, . . . do
3: Compute a ZO-gradient estimator g̃k(xk, βk, ξk)
4: Update:

xk+1 ← xk − αkg̃k(xk, βk, ξk)

5: end for

The first work on this type of algorithm is the one in [92], which is based on the work on stochastic
approximation made in [156]. In this work, the gradient is estimated by the central finite difference
of stochastic realizations of the function F , that is

g̃kj (xk, βk, ξk) =
F (xk + βkej, ξk,+j )− F (xk − βkej, ξk,−j )

2βk , ∀j ∈ [1, n].

At each iteration, estimating the gradient requires 2n function evaluations. Even with forward finite
difference the algorithms still need to evaluate the function n + 1 times. Solutions to evaluate the
function only 2 times per iteration, regardless of the dimension of the problem, were discovered
years later. First, in [166], where the original stochastic function is perturbed in all directions
simultaneously. The original idea is to approximate the gradient of the expected performance by its
convolution with a multivariate Gaussian distribution. The resulting function is thus smoothed by
the convolution. The gradient approximation of the approximate smoothed functions is computed
as follows,

g̃k(xk, βk, ξk) = F (xk + βuk, ξk+)− F (xk − βuk, ξk−)
2β uk, (2.13)

where uk is sampled from a multivariate Gaussian distribution. Another approximation was de-
veloped in [175] with the same idea of perturbing the function simultaneously along its directions.
The gradient estimator is computed as follows

g̃ki (xk, βk, ξk) = F (xk + βk∆k, ξk+)− F (xk − βk∆k, ξk−)
2βk∆k

i

, ∀i ∈ [1, n],

where ∆k = (∆k
1, . . . ,∆k

n) and the ∆k
i for i ∈ [1, n] are commonly independent symmetric

Bernoulli-distributed random variables. Under the assumption of smoothness and technical re-
quirements on the step sizes, these methods have all been shown to converge to a neighborhood of
a stationary point of the problem (2.12) with probability one (see [33] for the various convergence
proofs). These methods have the ability to handle blackboxes where the uncertainties are embed-
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ded in the blackbox process. The work of [166] is the subject of renewed interest in the context
where the methods have control over the selection of the random variables ξ. In this case, with the
assumption of smoothness of the function F for any ξ, a WCC in mean was found in [71], i.e.

E[||∇f(xR)||2] ≤ O

√σn 1
4

K
1
4

 ,
whereR is randomly uniformly picked in [1, K] and with the additional assumption that E[||∇f(xk)−
g̃(xk, ξk)||] ≤ σ2. Other work has followed - with different updates of Algorithm 7 - using projec-
tion [141], ZO sign-gradient descent [116], momentum update [47], or conditional gradient [25].
Independently of these developments, similar techniques have also emerged in the convex case, the
so-called bandit feedback methods. One-point bandit methods refer to those methods that do not
have control over the uncertainty vectors. These methods are based on an approximation of the
same type as in Equation (2.13), but with uk uniformly chosen on the random sphere [68] or on
mirror descent [70]. Multipoint bandit methods are methods that have control over the uncertainty
vector ξ. They are often based on mirror descent algorithms as well [63].

2.3.3 The constrained case

This section focuses on algorithms for solving the problem (2.10). The main difficulty in this
problem is to efficiently estimate the probabilistic constraints. Conventional algorithms use two
nested loops. In the inner loop, the probabilistic constraints are estimated by a method called the
reliability assessment method. In the outer loop, the previously computed estimator is used to
replace the probabilistic constraints and the problem (2.10) is solved. Here are some reliability
assessment methods for aleatory, epistemic, or mixed aleatory/epistemic uncertainty.

First-order reliability methods (FORM) [51] aim to find the point on the boundary that is closest to
the solution. This point is called the “most probable point” of failure. To do this, they make three
assumptions. First, they assume that the underlying distribution of uncertainties is fully known.
Then, an isoprobabilistic transformation (Rosenblatt [165] or Nataf [108]) is applied to transform
the uncertainties ξ into random Gaussian vectors. Second, the objective and constraint are assumed
to be sufficiently smooth to perform a first-order approximation of the functions. Finally, either the
objective function is assumed to be deterministic or the uncertainties are assumed to be only in the
design variable, in which case it follows that

E[F (x, ξ)] = E[f(x + ξ)] ≈ f(x) + E[∇f(x)Tξ] = f(x), (2.14)

with E[x+ξ] = x. Once the transformation and first-order approximation are done, the probabilis-
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tic constraint in Problem (2.10) can be estimated by solving a deterministic optimization problem.
Since the objective function is assumed to be deterministic, solving Problem (2.10) involves solv-
ing two nested deterministic optimization problems. Based on this concept, several approaches
have been developed: the double loop (e.g., performance measure approach or reliability index ap-
proach [5]), the single loop (e.g., single loop approach [114]), or the decoupled approach (e.g., se-
quential optimization and reliability evaluation [61] or sequential approximate programming [49]).
These methods are particularly efficient in terms of function evaluation because the problem is
deterministic and classical optimization algorithms can be applied. However, the assumptions re-
quired to apply these methods are often not met in practice.

Following this observation, several risk assessment methods have been developed that require
milder assumptions than the FORM-based ones. In [44, 195], the reliability assessment is per-
formed thanks to importance sampling. Therefore, instead of estimating the probability boundary
directly, they use an auxiliary distribution to sample points close to the probabilistic boundary.
Moreover, in [44], they cleverly reuse previously sampled points to reduce the computational cost
of the methods. Other methods [111, 147] use surrogate modeling to approximate the constraint
functions and then perform a reliability analysis on the surrogate. In particular, [147] used the CE
methods and the multifidelity model to reduce the computational cost. These previous methods
have the advantage of performing the reliability evaluation without using the smoothness assump-
tion on the constraint functions. However, they rely on the perfect knowledge of the distribution of
ξ. Moreover, these methods are focused on reliability estimation and cannot be directly applied to
solve Problem (2.10).

Finally, methods for dealing with both types of uncertainty are described. In [4], a generalized
model of uncertainties is defined that takes the form of an interval and allows to deal with both
epistemic and aleatory uncertainties. Then, an advanced line search method computes the lower
and upper bounds of the probabilistic constraints. In [66], the authors separate aleatory and epis-
temic uncertainty. They then use nested loops to propagate the uncertainties. The epistemic un-
certainties are handled in the outer loop using various techniques such as Dempster-Schafer [172]
or interval analysis [136]. The aleatory uncertainties are handled in the inner loop via polynomial
chaos extension [191] or stochastic collocation [142]. A final approach considers Bayesian opti-
mization [139] to incorporate epistemic uncertainties into FORM-based methods. Contrary to the
previous work, it has the main advantage of not requiring interval formalism. All these methods
seem particularly interesting for reliability analysis, but it needs work to be adapted for solving
Problem (2.10), because this work considers the optimization problem. In [128], Problem (2.10) is
solved in the presence of both aleatory and epistemic uncertainty, however the problem is based on
analytical expression of the objective and constraint functions.
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CHAPTER 3 THESIS OUTLINE AND CONTRIBUTIONS

This thesis is organized as follows. Chapter 2 defines the mathematical concepts employed in this
thesis, followed by a critical review of the literature. This review is divided into three distinct
parts. The first part details the methods developed to solve the DFO/BBO deterministic problem
given in Equation (1.1). The second part concerns the methods dealing with the unconstrained
uncertain problem given in Equation (1.4), while the last part describes the methods dealing with
the uncertain constrained problems. Then, the three main contributions of this thesis are developed,
based on three articles (two published and one submitted). Each contribution is preceded by a short
introduction that outlines its concept and objectives.

The first contribution, in Chapter 4, aims to address the problem of multimodality. A heuristic,
the cross-entropy method [167], is adapted to handle the constrained case by using the progressive
barrier [11]. It is then incorporated as a search step in the Mesh Adaptive Direct Search (MADS)
algorithm [12]. This step has the peculiarity of being executed only at certain iterations, depending
on the problem, in order to avoid excessive function evaluations. This combination allows an
efficient exploration of the design variable space and gives the algorithm the ability to escape certain
local minima. Finally, it benefits from the convergence analysis of the MADS algorithm. The
algorithm outperforms other state-of-the-art heuristics in terms of function evaluations on global
optimization benchmarks and real-world engineering problems.

The second contribution, in Chapter 5, tackles the unconstrained stochastic optimization problems.
Inspired by the work in [178], the unconstrained stochastic blackbox optimization problem is trans-
formed into a sequence of smooth approximation subproblems. The smooth approximations are
obtained using a smoothed functional method [166, Chapter 7.6]. Among all the properties of the
smooth approximation, the most interesting is the ability to obtain an estimate of its gradient using
only two function evaluations, regardless of the size of the problem. The sequence of subproblems
is then solved by the sequential stochastic optimization Sequential Stochastic Optimization (SSO)
algorithm. In its inner process, each subproblem is solved thanks to a zeroth-order version of the
Sign Stochastic Gradient Descent with Momentum (ZO-Signum) algorithm. This algorithm bene-
fits from a stopping criterion that depends on the norm of the momentum vector. In the outer loop,
the accuracy of the stopping criterion required to consider a subproblem solved increases progres-
sively. Under mild conditions, the convergence rate in mean of the ZO-Signum algorithm to a
stationary point of a smoothed subproblem is derived. Under additional assumptions, it is proved
that a subsequence of iterates of the SSO algorithm converges to an optimal point of the origi-
nal problem, and its associated rate of convergence is derived. Finally, numerical experiments are
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conducted to compare this algorithm with other algorithms and to demonstrate its competitiveness.

In Chapter 6, the last contribution deals with constrained problems subject to mixed aleatory/ epis-
temic uncertainty. The CVaR measure [162] is used to handle both types of uncertainty in the prob-
lem given in Equation (1.4). The CVaR measure depends on a parameter α that allows to choose
the desired level of reliability in each constraint function. Then, the CVaR-constrained blackbox
optimization problem is approximated by the smoothed functional method [33] based on the trun-
cated Gaussian distribution. The smooth problem is shown to be a conservative approximation of
the CVaR-constrained blackbox optimization problem. Finally, it is solved using a multi-timescale
stochastic approximation algorithm [38]. The convergence analysis of this algorithm is based on
a ODE approach and the Lyapunov theory. We prove that the algorithm converges to a locally
optimal point of the smooth CVaR-constrained problem with probability one. Moreover, for val-
ues of α sufficiently close to 1, this algorithm almost surely converges to a feasible point of the
CVaR-constrained problem whose objective function value is arbitrarily close to that of a local
solution. Numerical experiments are performed on analytical engineering problems, first to exper-
imentally set the various hyperparameters of the algorithm; second, to evaluate the effectiveness
of the truncated Gaussian gradient estimator; third to demonstrate the ability of the algorithm to
handle problems subject to mixed aleatory/epistemic uncertainty.

Finally, Chapter 8 summarizes the contributions of the thesis, underlines their limitations and pro-
poses future research directions.
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CHAPTER 4 ARTICLE 1: COMBINING CROSS ENTROPY AND MADS METHODS
FOR INEQUALITY CONSTRAINED GLOBAL OPTIMIZATION

Title Combining Cross-Entropy and MADS methods for Inequality Constrained Global Opti-
mization.

Authors Charles Audet, Jean Bigeon and Romain Couderc.

Journal Published in Operation Research Forum [21] on 12/07/2021.

4.1 Context

The first contribution of this thesis is an algorithm for solving deterministic blackbox optimization
problems given in Equation (1.1). What emerges from Section 2.2 and is summarized in Table 2.1
is the ability of direct search algorithms to perform both local and global searches. This ability
comes from the search step, which allows the use of arbitrary metaheuristics to explore the space
of design variables or to speed up the convergence of the algorithm. To fully exploit the search step,
a software package called NOMAD [17, 106] has been developed based on the MADS algorithm.
In this software many different search steps have been implemented based on Latin hypercube
sampling [176], variable neighborhood search [10], Nelder-Mead [20] or surrogate models [16].
However, only two search steps are specifically designed for global optimization: Latin Hypercube
Sampling and Variable Neighborhood Search.

Given the flexibility offered by the search step and the numerous types of metaheuristics, there
are many ways to create an exploration search step. Moreover, according to the "no free lunch
theorems" [189], it is known that there is no theoretical best option. Therefore, we choose the Cross
Entropy (CE) method because it is compatible with the MADS algorithm for two main reasons.
First, it was originally developed for combinatorial optimization. Since the MADS algorithm runs
on a discretization of the continuous space of design variables, this suggests that the method will
also be efficient in this context. Second, the standard deviation computed at each iteration of the
CE method can be used as an indicator of whether or not to perform an exploration search step.
Thus, building on these ideas, the following work was developed.
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4.2 Article

Abstract This paper proposes a way to combine the Mesh Adaptive Direct Search (Mads) al-
gorithm with the Cross-Entropy (CE) method for nonsmooth constrained optimization. The CE
method is used as an exploration step by the Mads algorithm. The result of this combination
retains the convergence properties of Mads and allows an efficient exploration in order to move
away from local minima. The CE method samples trial points according to a multivariate normal
distribution whose mean and standard deviation are calculated from the best points found so far.
Numerical experiments show the efficiency of this method compared to other global optimization
heuristics. Moreover, applied on complex engineering test problems, this method allows an impor-
tant improvement to reach the feasible region and to escape local minima.

Keywords: Cross Entropy, MADS, Global optimization, Derivative-free optimization, Blackbox
optimization and Constrained optimization

Declarations

• Funding: Audet is supported by Ivado’s fundamental research grant PRF-2019-8079623546.
Couderc is supported by a French ministerial grant 8542z.

• Conflict of interests: The authors declare that they have no conflict of interest.

• Availability of data and material: The authors declare that they do not use any data.

• Code availability: The authors declare that they use the open source NOMAD software (avail-
able at https://www.gerad.ca/nomad/) and custom code.

4.3 Introduction

This work studies inequality constrained blackbox optimization problems of the form:

min
x∈Ω⊆Rn

f(x), (4.1)

with
Ω = {x ∈ X : cj(x) ≤ 0, j = 1, 2, ...,m},

where f : Rn → R̄ = R ∪ ±∞, c : Rn → R̄m and the set X represents bound constraints of
type ℓ ≤ x ≤ u with ℓ,u ∈ R̄n. The specificity of this work is due to the form of the objective
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function f and of the constraints cj . They can be the result of a simulation of complex physical phe-
nomena. These simulations can take an important amount of time or present some discontinuities
and therefore classical optimization methods are difficult to apply. Especially, when the gradient
of the objective function and/or of the constraints is not explicitly known, hard to compute or its
estimation is time consuming. This field is called derivative-free optimization (DFO). In the worst
case, the gradient does not even exist, which is called blackbox optimization (BBO).

Specialized BBO and DFO algorithms have been developed in order to solve this kind of problem.
There are two main categories: model based algorithms [54] and direct search algorithms [14].
This work deals with direct search algorithms which benefit from theoretical convergence results
and adding some modifications may improve their performance. In particular, the Mesh Adaptive
Direct Search (Mads) algorithm [12] ensures convergence to a point satisfying necessary condi-
tions based on the Clarke calculus [52]. This theoretical guarantee is a solid basis for blackbox
optimization. However, blackbox optimization algorithms must take into account two other types
of difficulties. First, algorithms must be efficient in terms of simulation evaluations (constraints
and objective function). Indeed, the simulation in an engineering context is often time consuming.
Second, blackbox simulations may involve multi-extrema functions, so algorithms must be able to
escape from local minima. Mads may be trapped in a local minimum.

To address the second difficulty, the Mads algorithm may be combined with Variable Neigh-
borhood Search (VNS) [10] and Latin Hypercube Sampling (LHS) [176] techniques to escape
local minima. Other heuristics of global optimization with no convergence guarantees exist in-
cluding Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) [78], Genetic Algo-
rithm (GA) [75], Differential Evolution (DE) [153] or Particule Swarm Optimization (PSO) [89].
However, these heuristics often require a large number of function evaluations which is incompat-
ible with the first difficulty. Moreover, no specific mechanism has been developed to enable these
methods to deal with inequality constraints. In contrast, some methods have been developed to
address the first problem, by reducing the overall number of simulation evaluation such as: the
use of ensembles of surrogate [16] or of quadratic models [53] and the integration of the Nelder-
Mead (NM) algorithm [20]. These different methods improve the efficiency of the Mads algorithm
but do not address the difficulty of local optima.

The objective of the present research is to propose an alternative strategy: the Cross Entropy (CE) [167]
method in hopes of escaping local minima. This method is a trade-off between a more global search
and a limited number of blackbox evaluations. It was introduced in 1997, first in a context of rare
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events in discrete optimization [168] and then adapted to continuous optimization [100]. The main
benefit of using CE is that it often converges rapidly to a promising region in the space of variables.
However, this method does not benefit from theoretical guarantees, and once it has found a promis-
ing region, it requires a large number of simulation evaluations to improve the local accuracy. The
two aims of this work are: global exploration with limited number of iterations while preserving the
theoretical convergence guarantees. In this purpose, CE is used as a step in the Mads algorithm.
The present work proposes a way to include a CE global exploration strategy within the Mads
algorithm.

This paper is divided as follows, Section 2 proposes an overview of the Mads and Cross Entropy
methods. Section 3 presents an algorithm combining CE and Mads. Finally, Section 4 shows the
main numerical results comparing the proposed method with other Mads type algorithm and state-
of-the-art heuristics. Section 5 concludes on future work and on the contributions of this paper.

4.4 Description of Mads and Cross Entropy algorithms

This Section describes the Mads and CE algorithms.

4.4.1 The Mads constrained optimization algorithm

The present work considers the Mads algorithm with the progressive barrier (PB) [11] to handle
inequality constraints and with dynamic scaling [18] to handle the varying magnitudes of the vari-
ables. Mads is a direct search algorithm (see algorithm 8 below). It proceeds iteratively where
the blackbox functions are evaluated at some trial points. These points are either accepted as new
iterates or rejected, depending on the value of the objective function and of the constraints viola-
tions. A key principle of the Mads algorithm is that the candidate points may only be chosen on
a discretization of the space of variables called the mesh. This discretization is adaptative and its
fineness is controlled by the mesh size vector δk ∈ Rn

+. In its simplest form, the mesh [18] is
defined as follows:

Mk = V k + {diag(δk)z : z ∈ Zn}

where V k is the cache containing all points visited by the start of iteration k. A point x belongs
to V k if and only if both the objective function and the constraints were evaluated by the start of
iteration k. The first set V 0 may be initialized by the user or by a collection of points generated by
LHS for instance.

Each iteration includes three steps. The first is an optional step called the SEARCH where various
strategies may be used to explore the space of variables. In practice, the SEARCH accelerates the
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convergence to an optimum and it may attempt to escape from local minima. The only rules to
follow are that the trial points must remain on the current mesh Mk and that the search terminates
in finite time. It is in this step of the algorithm that CE was integrated.

The second step is mandatory and called the POLL. It is the where the space of variable is locally
explored by following strict rules guaranteeing convergence. The POLL is confined to a region
delimited by the so called poll size vector ∆k ∈ Rn

+ which is taken such that ∆k ≤ δk. This region
is defined as follows:

F k = {x ∈Mk : |xj − xkj | ≤∆k
j , ∀j ∈ [1, n]}

with xk the current incumbent solution . Then, this step only consist to select a positive spanning
set Dk

∆k such that
P k = {xk + δkd : d ∈ Dk

∆k}

is a subset of F k of extent Dk
∆k and to evaluate the objective functions and the different constraints

at these points.

Finally, the last step updates the mesh and the poll size vectors at the end of each iteration. The
values of both vectors are reduced when an iteration fails to improve the current solution and they
are increased or remain at the same value otherwise. To handle the constraints, the PB is used. This
method is based on the constraints violation function [69]

h(x) :=


m∑
j=1

(max{cj(x), 0})2 if x ∈ X ⊂ Rn

∞ otherwise.

The constraints violation function value h(x) is equal to 0 if and only if the point x belongs to Ω
and is strictly positive otherwise. This function allows to rank any pair of trial points by using the
following dominance relation [14].

Definition 4.4.1. The feasible point x ∈ Ω is said to dominate y ∈ Ω when f(x) < f(y). The

infeasible point x ∈ X \Ω is said to dominate y ∈ X \Ω when f(x) ≤ f(y) and h(x) ≤ h(y)
with at least one strict inequality.

The PB method approaches an optimal solution by locally exploring around two incumbent solu-
tions. The feasible incumbent solution xfeas ∈ Ω and the infeasible incumbent solution xinf which
is the undominated infeasible point with a value of h lower than a threshold called hmax. In practice,
the threshold hkmax decreases progressively toward zero without ever reaching it. Exploring around
xinf may be interesting because it is possible that while the threshold is pushing towards zero a
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feasible candidate point with a low objective function is generated. Thus, the poll step is applied
around these two incumbent solutions. An iteration of the Mads algorithm with the progressive
barrier may be of three types:

• A dominating iteration occurs when a dominating trial point with respect to xinf or xfeas is
found. In this case, the threshold is updated to hk+1

max = hkI .

• An improving iteration occurs when it is not a dominating iteration but a trial point improves
the threshold hkmax. In this case, threshold is updated to hk+1

max = max{h(v) : h(v) < hkI ,v ∈
V k+1}.

• An unsuccessful iteration occurs when it is neither a dominating nor an improving iteration.
In this case, the threshold is updated to hk+1

max = hkI .

where hkI is defined by

hkI =


h(x) for any x ∈ Ik = {argmin

x∈Uk

{f(x) : 0 < h(x) ≤ hkmax}},

∞ if Ik = ∅,

with Uk the set of infeasible undominated points. Algorithm 1 provides a description of Mads
with progressive barrier algorithm, the reader may consult [14] for more details, and to [11] for a
complete presentation.

The fundamental convergence result [11] of the Mads algorithm with progressive barrier states that
if the entire sequence of trial points belongs to a bounded set, then there exists an accumulation
point x∗ such that the generalized directional derivative f ◦(x∗; d) of Clarke [52] is nonnegative in
every hypertangent [83] direction d to the domain Ω at x∗ provided that x∗ is feasible. A similar
result holds for the constraint violation function h over the set X in situations where the iterates
never approach the feasible region.

4.4.2 The Cross Entropy method for continuous optimization

The Cross Entropy method was introduced by Rubinstein in 1997 in the context of a minimization
algorithm for estimating probabilities of rare events [168]. Later, it was modified to solve combi-
natorial optimization problems [167] and then in 2006 to solve continuous problems [100]. The
main idea of this method is as follows. First, each optimization problem is transformed into a rare
event estimation problem called associated stochastic problem (ASP). For instance, the determin-
istic Problem (1) is transformed as the minimization of the expectation:
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Algorithm 8 The Mesh Adaptive Direct Search algorithm (Mads)
0. Initialization:

A set of starting point: V 0 ⊂ Rn

An initial poll size vector: ∆0

The iteration counter: k ← 0
The mesh size adjustment parameter: τ ∈ Q ∩ (0, 1)
The initial threshold: h0

max =∞
Define δ0

j = min{∆j
0, (∆j

0)2}, ∀j ∈ [1, n]
1. Search step (optional):

Launch the simulation on a finite set Sk of mesh points.
If successful, go to 3.

2. Poll step:
Launch the simulation on the set P k of poll points.

3. Updates:
Update the cache V k+1.
If the iteration is dominating :

update xk+1, hk+1
max = hkI and ∆k+1 = τ−1∆k.

Else if the iteration is improving:
update xk+1,hk+1

max = max{h(v) : h(v) < hkI ,v ∈ V k+1} and ∆k+1 = ∆k.
Otherwise:

Set ∆k+1 = τ∆k and hk+1
max = hkI .

Set δk+1
j = min{∆j

k+1, (∆j
k+1)2}, ∀j ∈ [1, n].

Increase the iteration counter k ← k + 1 and go to 1.

min
X∈Ω,γ∈R

P (f(X) ≤ γ) = min
X∈Ω,γ∈R

E(I{f(X)≤γ}) (4.2)

where X is a random vector and I{f(X≤γ} is the indicator function. Then, this ASP is tackled
efficiently by an adaptive algorithm. This algorithm constructs a sequence of solutions which
converging to the optimal solution of the ASP. The CE method is composed of two iterative steps:

• generation a sample of random data according to a density of probability;

• density parameters update thanks to the data sampled to create a new sample in the next
iteration.

It results that this method often escapes from local minima.
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4.4.2.1 An introductory example

For clarity, consider the example from [100] of minimizing the function:

f(x) = −e−(x−2)2 − 0.8e−(x+2)2
, x ∈ R. (4.3)

The function f has two local minima and a single global minimum at x = 2.

Figure 4.1 (Figure inspired by [100]) Graph of objective function f (left) and evolution of the
normal distribution during the seven first iterations with µ0 = 0, σ0 = 10, Ne = 10 and Ns =
50 (right).

Using a normal distribution the CE procedure is the following:

• Initialization : at the first iteration k = 0, a mean µ0 ∈ Rn and a standard deviation σ0 ∈
Rn (with n the dimension of the problem) are arbitrarily chosen. A large value of σ0 is taken
in order to escape from local solutions.

• Iterative part: at each iteration k ≥ 1:

– First, a sample X1, ...,XNs of points in Rn is generated from a normal law
V(µk−1,σk−1) where Ns is the number of samples.

– Then, f is evaluated at each sampled points and a number of elite points Ne, with the
lowest value of f . µk and σk are the mean and standard deviation of these Ne points.

– Termination: once the standard deviation becomes sufficiently small, the procedure is
stopped.

The sequence of normal distribution is illustrated in the right part of Figure 4.1. This example
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shows how the CE procedure escapes from the local minimum at x = −2 and converges in seven
iterations to the neighborhood of x = 2.

4.4.2.2 The general CE method

Before presenting the CE method introduced in [100], the ASP is considered and the two iterative
steps of the algorithm are precised. Problem 4.1 is transformed into an ASP. Using a family of
probability distribution functions (pdf) {g(·; v) : v ∈ V} where g is the law chosen to sample the
different points at each iteration. V is the set of vector parameters of the pdf g which are calculated
at each iteration. In the previous example g is taken as the normal law and the vk ∈ V is composed
of the mean and standard deviation vk = (µk,σk). Having explained the law and its parameters,
the ASP related to Problem 4.1 can be defined as follows:

min
X∈Ω,γ∈R

Pv(f(X) ≤ γ) = min
X∈Ω,γ∈R

Ev(I{f(X)≤γ}) (4.4)

where v ∈ V is a vector of parameter, X is a random vector with a pdf g(·; v) and γ is a variable. At
this stage, for a given value of γ, the parameter v may be estimated. Conversely, given a vector of
parameters v, the value γ may be also estimated. The CE method is based on these two estimations,
at each iterations, the algorithm estimates one then the other. In the iterative part of Example 4.3,
the first item corresponds to the estimation of γ and the second one to the estimation of v. More
precisely, we denote γ∗ ∈ R as the infemum of the objective function, v∗ the parameters and
g(·; v∗) the pdf associated to this infemum. The goal is to generate a sequence (γk, vk) converging
to (γ∗, v∗). To achieve this goal, a sequence of pdf g(·; v0), g(·; v1), ... converging to g(·; v∗) is
created. To assure the convergence, one must have a “measure" of the difference between the
iterate pdf g(·; vk) and the objective one g(·; v∗). The Kullback-Leibler (KL) divergence [101] is
used:

D(g(·; v∗)||g(·; vk)) =
∫ ∞

−∞
g(x; v∗) ln

(
g(x; v∗)
g(x; vk)

)
dx. (4.5)

The iterative steps may now be described. ρ is defined as a very small quantity, corresponding to
the proportion of elite points which are kept from an iteration to another. The procedure is:

• Adaptive update of γk. With a fixed parameter of pdf vk−1, γk is defined such that it is the
(1− ρ)-quantile of f(X) under vk−1. Then, γk satisfies:

Pvk−1(f(X) ≤ γk) ≥ ρ, (4.6)

Pvk−1(f(X) ≥ γk) ≥ 1− ρ (4.7)
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where X ∼ g(·; vk−1). The γk is denoted γ̂k. To obtain this estimator, a sample X1, ...,XNs

is drawn from g(·; vk−1) and evaluated. Then, the (1− ρ) quantile is:

γ̂k = f⌈ (1−ρ)Ns⌉. (4.8)

• Adaptive update of vk. With a fixed γk and knowing vk−1, vk is a solution of:

max
v
D(v) = max

v
Evk−1

(
I{f(X)≤γk} ln(g(X; v))

)

= min
v
Evk−1

I{f(X)≤γk} ln
(
I{f(X)≤γk}

g(X; v)

) (4.9)

which is the minimization of the KL divergence at iteration k (with the convention 0 ln(0) =
0). Nevertheless, in practice, the real expectation and the real γk are not known, estimators
must be used and the following equation is solved:

ṽk ∈ argmax
v

D̂(v) = 1
Ns

Ns∑
i=1

I{f(Xi)≤γ̂k} ln(g(Xi; v). (4.10)

Last but not least, v̂k is not set to ṽk. There are two reasons for that: first the value of ṽk are
smoothed. Second, some components of ṽk could be set to 0 or 1 at the first few iterations and the
algorithm could converge to non optimal solution. To avoid these problems, the authors of [100]
propose to use the following convex combination:

v̂k = αṽk + (1− α)v̂k−1 (4.11)

with 0 < α ≤ 1. Theoretically, any distribution converging in the neighborhood where the global
maximum is attained can be used including normal, double exponential or beta distribution. Nev-
ertheless, the beta distribution has for support [0, 1] which is not suitable for global exploration, the
double exponential may introduce some discontinuities and the updating step is quite simple with
the normal distribution. Thus, in practice the normal distribution is often chosen [121, 133, 179].
Therefore, the detailed algorithm is presented next:

4.5 The CE-MADS constrained optimization algorithm

This section presents the CE-inspired SEARCH step of Mads. Section 4.1 describes how to handle
constraints, the update of the mean µ and the standard deviation σ and the condition to enter the
CE search step. Section 4.2 presents the algorithm of the CE SEARCH step.
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Algorithm 9 The Cross Entropy (CE) algorithm with normal law
Choose µ̂0 ∈ Rn and σ̂0 ∈ Rn

Set the iteration counter: k ← 0
Ns number of sampled data at each iteration
Ne number of elite population
α the parameter of convex combination
1. Estimation of γk:

Generate a random sample X1, ..,XNs from N(µ̂k−1, σ̂k−1) distribution.
Evaluation of the Ns points by the simulation and then go to 2.

2. Estimation of mean and standard deviation
Let Ek be the indices of the Ne best perfoming samples.
Set µ̃k = 1

Ne

∑
j∈Ek

Xj

and [σ̃k]i =
√

1
Ne−1

∑
j∈Ek

[Xj − µk]2i , ∀i ∈ [1, n].

3. Updates:
Apply the convex combinations:
µ̂k = αµ̃k + (1− α)µ̂k−1

σ̂k = ασ̃k + (1− α)σ̂k−1

Increase the iteration counter k ← k + 1 and go to 1.

4.5.1 The CE-SEARCH step

4.5.1.1 The choice of the elite points

Section 2 presented the CE method for unconstrained optimization. In [100], the bound constrained
case is treated using a truncated normal law and a penalty approach is used for inequality con-
straints. In our work, the truncated normal law is also used to treat the bound constraints. For
general inequality constraints, the algorithm does not use the penalty approach. The proposed ap-
proach is derived from the progressive barrier method described in Section 4.4.1. In fact, when the
algorithm chooses the elite sample, it uses the following function Best (defined in [20] and recalled
here). Thus, any points in the cache may be selected even if its value of constraint violation is
over the threshold of progressive barrier [11]. The definition relies on both the objective and the
constraint violation functions f and h.
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Definition 4.5.1. The function Best : Rn × Rn 7→ Rn

Best(x, y) =


x if x dominates y or if h(x) < h(y),
y if y dominates x or if h(y) < h(x),

Older(x, y) Otherwise

returns the best of two points.

The function Older gives the point which was generated before the former one. Thanks to this
definition, CE may treat the general inequality constraints with the terminology used in Mads.

4.5.1.2 Update of the mean and standard deviation

Three elements differ compared to classical CE method concerning the mean and the standard de-
viation. First, the elite points taken to compute the mean and the standard deviation are not only the
Ns points generated by the normal law. The elite points are chosen from the cache at the iteration
k, denotes V k ⊂ Rn, so any points generated by the Mads algorithm may be selected. This set is
ordered with the function Best, in order to select the Ne elite points, it is sufficient to take the Ne

first points of V k.

Second, the mean and the standard deviation initialization procedure differs from the CE method
proceeds. Indeed, Mads always begins with a starting point, thus there is at least one point in the
cache (the set of evaluated points). Moreover, to avoid generating trial points far from the current
solution, bounds are added to the problem as follows (using x̄k the poll center at iteration k):

(ℓki , uki ) =


(ℓi, ui) if ℓi ̸= −∞ and ui ̸=∞,

(x̄ki − τ−1∆max
i , ui) if ℓi = −∞ and ui ̸=∞,

(ℓi, x̄ki + τ−1∆max
i ) if ℓi ̸= −∞ and ui =∞,

∀i ∈ [1, n]. (4.12)

where ∆max
i = max{∆0

i , ...,∆k
i } for each i ∈ [1, n]. The sequance (∆max

i )k is non decreasing with
respect to k and the product τ−1∆max

i is always larger than ∆i since τ−1 > 1. Once the problem
has finite bound constraints, there are two cases to calculate the mean µk ∈ Rn and the standard
deviation σk ∈ Rn:

• In case where the number of points in the cache is too small to be relevant, i.e. fewer points
that the number Ne required, then the mean and the standard deviation are determined such



55

that:

µk = x̄k (4.13)

σk = 2 (uk − ℓk) (4.14)

• In the others cases, the same calculations are made that in the original CE process:

µk = 1
Ne

∑
j∈Ek

Xj

[σk]i =
√√√√ 1
Ne − 1

∑
j∈Ek

[Xj − µk]2i , ∀i ∈ [1, n].

Third, to generate the point during the CE search, the truncated normal law was always used with
the bounds created in (12). Moreover, the elite points come not only from the previous normal
sampling but also of the other kind of search step. That gives a vector of standard deviation which
tends to zero very quickly, the other methods doing generally a local search. That is why, the
standard deviation is calculated as in 4.11 with a coefficient α = 0.7.

4.5.1.3 The condition to pass in the CE-SEARCH step

The goal of the CE method is to explore in few evaluations the space to determine the promising
region. The number of evaluations used by the CE SEARCH step must be quite small. For this
purpose, Mads does not perform the CE SEARCH step at every iteration. The standard deviation
can be seen as a measure of the incertitude on the data and is used to determine whether to launch
the SEARCH step or not. First, a new variable called σp is introduced, it represents the incertitude
measured the last time the algorithm passed through the CE SEARCH step and generated trial points.
This variable is initialized to∞. Then, the condition to launch the CE SEARCH is the following:

||σk|| < ||σp|| (4.15)

This conditions means that the current incertitude is smaller than the previous one. Each time this
conditions is respected, σp is updated with the standard deviation obtained after the CE step. Last
but not least, there is a special case. The CE method being associate with Mads which is a local
search, it is possible that the points become rapidly close to each others, reducing the standard
deviation. In some cases, that avoids to escape from unfeasible region. Thus, in case where several
iterations of Mads algorithm are passed and the feasible region is still not reached, then the CE-
SEARCH is launched with a mean equal to the current best point and a standard deviation equal to
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2 times the initial standard deviation until a feasible point is found.

4.5.2 The complete algorithm

The CE SEARCH step of Mads algorithm is presented here:

Algorithm 10 The CE SEARCH step
1. Calculation of µk and σk :

if card(V k) < Ne:
µk = x̄0
σk = 2 (uk − ℓk)

else:
µk = 1

Ne

∑
j∈Ek

Xj

[σk]i =
√

1
Ne−1

∑
j∈Ek

[Xj − µk]2i , ∀i ∈ [1, n]

2. CE SEARCH

If ||σk|| < ||σp|| :
Generate a random sample X1, ..,XNs from N (µk, 2σk) distribution
and project them on the mesh.
Evaluation of the Ns points by the simulation.
Update:
µk+1 = 1

Ne

∑
j∈Ek

Xj

[σk+1]i =
√

1
Ne−1

∑
j∈Ek

[Xj − µk+1]i

(σp)2 = (σk+1)2

4.6 Computational experiments

The present work uses data profiles to compare the different algorithm. Data profiles [138] allow to
assess if algorithms are successful in generating solution values close to the best objective function
values. To identify a successful run, a convergence test is required. Let denote xe the best iterates
obtained by one algorithm on one problem after e evaluations, ffea a common reference for a given
problem obtained by taking the max feasible objective function values on all run instances of that
problem for all algorithms and f ∗ the best solution obtained by all tested algorithms on all run
instances of that problem. Then, the problem is said to be solved within the convergence tolerance
τ when:

ffea − f(xe) ≥ (1− τ)(ffea − f ∗).



57

Different initial points constitute different problems. Moreover, an instance of a problem corre-
sponds to a particular pseudo-random generator seeds. The horizontal axis of a data profile rep-
resents the number of evaluations for problems of fixed dimension, and represents group of n + 1
evaluations when problems of different dimension are involved. The vertical axis corresponds to
the proportion of problems solved within a given tolerance τ . Each algorithm has its curve to allow
comparison of algorithms capability to converge to the best objective function value.

This section presents the numerical experiments. It is divided in two subsections. The numerical ex-
periments of Section 4.1 are performed on analytical test problems to calibrate the CE-SEARCH pa-
rameters. Section 4.2 compares CE-Mads with others state-of-the-art global optimization method.
Finally, section 4.3 compares Mads, LH-Mads, VNS-Mads and CE-Mads without the use of
models on three real engineering problems.

4.6.1 Preliminary experiments to calibrate parameters

Computational experiments are conducted using the version 3.9.1 of NOMAD [106] software pack-
age. All tests use the Mads strategy with the use of the NM search [20] and without the use of
models [16, 53]. When the CE-SEARCH is used, it is the first SEARCH step to be applied.

Numerical experiments on analytical test problems are conducted to set default values for the three
algorithmic parameters: the parameter of the convex combination α, the number of sampled data
at each iteration Ns and the number of elite population Ne. CE-Mads is tested on 100 analytical
problems from the optimization literature. The characteristics and sources of these problems are
summarized in Table 1 in appendix 4.8. The number of variables ranges from 2 to 60; 28 problems
have constraints other than bound constraints. In order to have a more precise idea of the effect
between the hyper-parameters (Ne and Ns), three series of tests are conducted:

• A series of tests on the 69 unconstrained test problems having a dimension from 2 to 20.

• A series of tests on the 25 constrained test problems having a dimension from 2 to 20.

• A series of tests on the 6 larger problems in term of dimension (from 50 to 60), three are
constrained and three are not.

For each test, the maximal number of function evaluations is set to 1000(n + 1), where n is the
number of variables and each problem is run with 3 different random seeds.First, for each se-
ries of tests, the five following CE-Mads setup of hyper-parameters are compared: (Ne, Ns) ∈
{ (2, n), (4, 2n), (6, 3n), (8, 4n), (10, 5n)} with n the dimension of the test problem and the α
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value is fixed to 0.7 as in the example 3.1 of [100].A run called NOMAD default is added in each
series of test to compare our results with the current NOMAD software. Data profiles are presented
on Figure 4.2, 4.4 and 4.6 with different values of the tolerance τ .

These results are analysed by series of problems:

• On the unconstrained problems (see Figure 4.2), no algorithm really stands out regardless of
the value of τ , it is difficult to choose one hyper-parameter rather than another one even if
the couple Ne = 4 and Ns = 2n appears to be more efficient.

• On the constrained problems (see Figure 4.4), there are different behaviors according to the
value of τ . For τ = 10−3, no algorithm appears to be dominant. However, for τ = 10−5,
it happens that greater are the values of Ns and Ne, higher is the percentage of problems
solved finally. That can be explained because great Ns and Ne allow a better exploration of
the space, and so a more precise result at the end.

• Finally (see Figure 4.6), on the large test problems, and for small values of the tolerance τ
the CE-Mads is outperformed by the Mads algorithm with default values. It seems that the
CE method is not useful for problems with a large number of variables.

Second, Ne and Ns are fixed to 4 and 2n repectively Then, the five following CE-Mads setup
of hyper-parameters are compared: α ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Data profiles are presented on
Figure 4.3, 4.5 with different values of the tolerance τ . The tests are not run on the problem with
large dimension given the poor performance of CE-Mads on this kind of problems. The results
show that none α value outperformed the other ones in any runs of tests. Inspection of the logs of
the hyper-parameter calibration reveals the two following observations:

• The CE-Mads performance is not very sensitive to the hyper-parameter values. This allows
to avoid some calibration experiments before applying the algorithm on a new test problem.
This is particularly interesting in an engineering context.

• For problems with a large number of variables, our tests suggest to avoid using of the CE-
SEARCH. Nevertheless, this point has not been confirmed on real engineering problems given
that we do not have access to engineering test problems with large dimension.

In the remainder of the paper, the CE-SEARCH values are set to α = 0.7, Ne = 4 and Ns = 2n as
they often perform well.
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Figure 4.2 Result of calibration of the hyper-parameters Ne and Ns of CE-MADS on the 69 uncon-
strained test problems
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Figure 4.5 Result of calibration of the hyper-parameter α of CE-MADS on the 25 constrained test
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4.6.2 Comparisons between CE-Mads and some of state-of-the art global optimization heuris-
tics

In this section, we compared CE-Mads with other well-known global optimization heuristics de-
signed to escape local minima on a collection of unconstrained global optimization benchmark
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Figure 4.6 Result of calibration of the hyper-parameters Ne and Ns of CE-MADS on the 6 large
test problems

problems. The framework used to compare the CE-Mads algorithm with others global optimiza-
tion method is pymoo [35]. This framework proposes a variety of global optimization algorithm.
The CE-Mads method is compared to four of them :

• Genetic Algorithm [75], a method based on biological inspired operators such as mutation,
cross-over and selection. No special advice on the hyper-parameter are given in the pymoo
framework, however after few tests, it seems that a population size of 40 performs well. We
run the different tests with this value.

• Differential Evolution [103], a method which combines evolutionary strategies with geomet-
rical search techniques. In the pymoo framework, the authors advise to test with the following
settings: the crossover constant CR = 0.9, the select weighting factor F = 0.8 and the method
is “DE/rand/1/bin". The size of the population is set to 20 which seems to perform well.

• Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) [78], a method based also
on biological inspired operators. Its name comes from the adaptation of the covariance matrix
of the multivariate normal distribution used during the mutation. The setting used for the tests
are the default setting.

• Particle Swarm Optimization [89], a method inspired by the birds movement and more gen-
erally on the collaboration between the individuals. No indication are given in the pymoo



62

framework but it seems that a population size of 15 performs well.

To compare the different algorithms, we use the test problem common between the global opti-
mization benchmark problems of pymoo and the problems provided in the appendix 4.8. That
gives 19 unconstrained test problems (marked in with an asterisk in the appendix) and we run the
algorithms with five different seeds in order to reduce the effect of randomness. The maximum
number of function evaluations is fixed to 3000. Results are provided on Figure 4.7. The MADS-

Figure 4.7 Result on the 19 global optimization test problems between CE-Mads, LH-Mads, GA,
DE, CMA-ES and PSO for τ = 10−3 (left) and τ = 10−5 (right).

type algorithms are more efficient than the heuristic of global optimization on this test set. The
heuristic’s performances are comparable when the required accuracy is 10−3. If a higher accuracy
is desired, it would seem that CMA-ES is the more appropriate method. The gap between heuris-
tics and MADS-type algorithms seems to widen when greater precision is required. This is normal
considering that MADS is a local search algorithm originally. The interest of CE-MADS stands out
since it allows to combine both a global and a local search, which explains its better performance.

4.6.3 Test on engineering problems

In this section, the CE-Mads algorithm is tested on three different engineering problems and com-
pared to three algorithms: the Mads-default (without models), the VNS-Mads where a VNS-
SEARCH is used and the LH-Mads which is a default Mads with in addition a LHS search. The
comparison with the two last algorithms is crucial because they are methods aiming to explore
the space of design variables. The Latin Hypercube SEARCH strategy is used with two parameters
ninit = 100 and niter = 10: ninit is the number of LH trial points generated at the first iteration
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of Mads and niter the number of LH trial points generated at each subsequent iteration. The Vari-
able Neighbour Search is used with the default parameters [10]. It is an metaheuristic allowing to
explore distant neighborhoods of the current incumbent solution.

4.6.3.1 The MDO problem

The Mads-default (no models), CE-Mads, VNS-Mads and LH-Mads are tested to solve a sim-
ple multidisciplinary wing design optimization problem [73]. Each initial point defines a MDO
problem. Solving the problem consists in maximizing the range of an aircraft subject to 10 general
constraints. The problem has 10 scaled design variables bounded in [0; 100]. Figure 4.8 shows
the result on a data profile when solving 20 MDO problems on different initial points using 3000
function evaluations or less. The initial points are real randomly selected within the bounds. Each
run is done with three different seeds in order to minimize the impact of the seed.
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Figure 4.8 Result on the 60 MDO instances between Mads (no models), CE-Mads, VNS-Mads
and LH-Mads for τ = 10−2 (left) and τ = 10−3 (right).

Figure 4.8 shows that the CE-Mads outperforms the other algorithms for all values of τ . Given that
the computational time of engineering test problem is relatively low, the comparison between the
heuristics and the MADS-type algorithm can be done. The inequality constraints are handled by the
default setting in pymoo which is a penalization method. Given that Mads and VNS-Mads require
a starting point to be run which can impact their performance, they are not used in this comparison.
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Therefore, we do not use any starting point but the different algorithms are run with 20 different
seeds. The result are given on the figure 4.9. The heuristics perform poorly compared to the Mads-
type algorithm. That is not surprising given that Mads benefits of a specialized method to handle
the constraints and is specialized in blackbox optimization. The tests on the other engineering
test problems are not presented given the great computational time required and the even harder
optimization of the blackbox.

Figure 4.9 Result on the 20 MDO instances between CE-Mads, LH-Mads, GA, DE, CMA-ES and
PSO for τ = 10−1 (left) and τ = 10−2 (right).

4.6.3.2 The STYRENE problem

The Mads-default (no models), CE-Mads, VNS-Mads and LH-Mads algorithms are tested to
optimize a styrene production process [10], called STYRENE. This problem is a simulation of a
chemical process. This process relies on a series of interdependent calculation of blocks using
common numerical tools as Runge-Kutta, Newton, fixed point and also chemical related solver.
The particularity of this problem is the presence of “hidden" constraints, i.e. sometimes the pro-
cess does not finish and just return an error. In the case where the chemical process ends, the
constraints (not hidden) and the objective functions may be evaluated during a post-processing.
The objective is to maximize the net value of the styrene production process with 9 industrial and
environmental regulations constraints. In this work, a STYRENE problem possesses eight inde-
pendent variables influencing the styrene production process. The variables considered during the
optimization process are all scaled and bounded in X = [0, 100]8. As it was done for the MDO test
problems, the four algorithms are tested with 20 different starting points taken in X . A maximal
number of evaluations of 3000 is used and each problem is run with three different seeds. The
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Figure 4.10 Result on the 60 STYRENE instances between Mads (no models), CE-Mads and
LH-Mads for τ = 10−1 (left) and τ = 10−2 (right).

STYRENE problems is particularly interesting in this study, because there are two minima as it is
shown in [20]. The results with τ = 10−1 allow to know the percentage of problems having found
the global minimum. The results are provided on Figure 4.10. On the left plot, it is interesting to
notice that the CE-Mads algorithm find the global minimum the same number of times that the
LH-Mads algorithm but is more efficient. On the right plot, the CE-Mads algorithm seems to have
the same accuracy that the VNS-Mads algorithm and is slightly more efficient.

4.6.3.3 The LOCKWOOD problem

Finally, the Mads default (no models), LH-Mads and CE-Mads algorithms without quadratic
models are tested to solve the basic version of a pump-and-treat groundwater remediation prob-
lem from Montana Lockwood Solvent Groundwater Plume Site [124], called LOCKWOOD. The
problem has 6 design variables bounded in X = [0, 20000]6 and 4 constraints. A particularity of
this problem is that each simulation run take several seconds, so the maximum number of blackbox
evaluations is set to 1500. The algorithms are started from 20 different randomly selected initial
points in X and three different seeds are used as previously. The results are provided on Fig-
ure 4.11. In this problem, reach the feasible region is not easy. Here again, the results at τ = 10−1

allows to give an idea of the number of times the algorithm reach the feasible region. For instance,
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Figure 4.11 Result on the 20 LOCKWOOD instances between Mads-default (no models), CE-
Mads, VNS-Mads and LH-Mads for τ = 10−1 (left) and τ = 10−2 (right).

CE-Mads and LH-Mads always reach the feasible region while Mads default reaches the feasible
only 41 times on 60 instances and VNS-Mads only 46 times. The efficiency of CE-Mads and
LH-Mads is comparable. However, on the right plot, a better accuracy is reached with a greater
efficiency by the CE-Mads algorithm.

4.7 Discussion

This paper introduces a way to combine the CE algorithm and the Mads algorithm in order to
allow a better space exploration. This is achieved by defining a CE-SEARCH step within the Mads
algorithm. The CE-SEARCH generates some points according to a normal distribution whose mean
and standard deviation is calculated from the best points stored in the cache. This approach allows
to handle the constraints in a different way. Moreover, the particularity of this SEARCH is that it
is not performed at each iteration of the Mads algorithm, but according to a criterion based on the
value of the norm of the standard deviation of the best points.

Numerical experiments show that in the cases where the problem has different minima or a feasible
region hard to reach, the CE-Mads algorithm performs well. Indeed, it attains as often as the
LH-Mads the feasible region or the global minimum but it is far more efficient, especially when a
tight accuracy is considered. Moreover, even on problem, as MDO, where the classical exploration
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SEARCH, LH and VNS, do not work well, the CE-Mads algorithm gives interesting results.Finally,
comparison with other global algorithms has been made, two conclusions are drawn. First, CE-
Mads works better than the heuristics on the unconstrained global optimization test problems.
That shows its real ability to escape local optima. Second, CE-Mads outperforms the heuristic on
the engineering problems, which is not particularly relevant because it benefits to the Mads ability
of performing well on this kind of problems.

Further works will be devoted to improve the link between the Mads algorithm and the CE algo-
rithm by adjusting the size of the mesh with the standard deviation calculated in CE.
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4.8 Appendix

Table 4.1 Description of the set of 100 analytical problems.

# Name Source n m Bnds
1 ARWHEAD10 [76] 10 0 no
2 ARWHEAD20 [76] 20 0 no
3 BARD [137] 3 0 no
4 BDQRTIC10 [76] 10 0 no
5 BDQRTIC20 [76] 20 0 no
6 BEALE* [137] 2 0 no
7 BIGGS [76] 6 0 no
8 BOX [137] 3 0 no
9 BRANIN* [80] 2 0 yes

10 BROWNAL5 [76] 5 0 no
11 BROWNAL7 [76] 7 0 no
12 BROWNAL10 [76] 10 0 no
13 BROWNAL20 [76] 20 0 no
14 BROWNDENNIS [137] 4 0 no
15 BROWN_BS [137] 2 0 no
16 B250 [37] 60 1 yes
17 B500 [37] 60 1 yes
18 CHENWANG_F2_X0 [46] 8 6 yes
19 CHENWANG_F2_X1 [46] 8 6 yes
20 CHENWANG_F3_X0 [46] 10 8 yes
21 CHENWANG_F3_X1 [46] 10 8 yes
22 CRESCENT [11] 10 2 no
23 DISK [11] 10 1 no
24 DIFFICULT2 [11] 10 0 no
25 ELATTAR [122] 6 0 no
26 EVD61 [122] 6 0 no
27 FILTER [122] 9 0 no
28 FREUDENSTEINROTH* [137] 2 0 no
29 GAUSSIAN [137] 3 0 no
30 G2_10 [13] 10 2 yes
31 G2_20 [13] 20 2 yes
32 G2_50 [13] 50 2 yes
33 GOFFIN [122] 50 0 no
34 GRIEWANK* [80] 10 0 yes
35 GULFRD* [19] 3 0 no
36 HELICALVALLEY* [137] 3 0 no
37 HS19 [82] 2 2 yes
38 HS78 [122] 5 0 no
39 HS83_X0 [82] 5 6 yes
40 HS83_X1 [82] 5 6 yes
41 HS114_X0 [122] 9 6 yes
42 HS114_X1 [122] 9 6 yes
43 JENNRICHSAMPSON [137] 2 0 no
44 KOWALIKOSBORNE* [137] 4 0 no
45 L1HILB [122] 50 0 no
46 MAD6_X0 [122] 5 7 no
47 MAD6_X1 [122] 5 7 no
48 MCKINNON [125] 2 0 no
49 MEYER* [137] 3 0 no
50 MEZMONTES [132] 2 2 yes

# Name Source n m Bnds
51 MXHILB [122] 50 0 no
52 OPTENG_RBF [96] 3 4 yes
53 OSBORNE1 [137] 5 0 no
54 OSBORNE2 [122] 11 0 no
55 PBC1 [122] 5 0 no
56 PENALTY1_4* [76] 4 0 no
57 PENALTY1_10* [76] 10 0 no
58 PENALTY1_20* [76] 20 0 no
59 PENALTY2_4* [76] 4 0 no
60 PENALTY2_10* [76] 10 0 no
61 PENALTY2_20* [76] 20 0 no
62 PENTAGON [122] 6 15 no
63 PIGACHE_X00 [148] 4 11 yes
64 PIGACHE_X01 [148] 4 11 yes
65 POLAK2 [122] 10 0 no
66 POWELL_BS [137] 2 0 no
67 POWELLSG4* [76] 4 0 no
68 POWELLSG8 [76] 8 0 no
69 POWELLSG12 [76] 12 0 no
70 POWELLSG20 [76] 20 0 no
71 RADAR [134] 7 0 yes
72 RANA* [84] 2 0 yes
73 RASTRIGIN* [80] 2 0 yes
74 RHEOLOGY [14] 3 0 no
75 ROSENBROCK* [137] 2 0 yes
76 SHOR [122] 5 0 no
77 SNAKE [11] 2 2 no
78 SPRING_X00 [164] 3 4 yes
79 SPRING_X01 [164] 3 4 yes
80 SROSENBR6 [76] 6 0 no
81 SROSENBR8 [76] 8 0 no
82 SROSENBR10 [76] 10 0 no
83 SROSENBR20 [76] 20 0 no
84 TAOWANG_F2_X00 [182] 7 4 yes
85 TAOWANG_F2_X01 [182] 7 4 yes
86 TREFETHEN* [84] 2 0 yes
87 TRIDIA10 [76] 10 0 no
88 TRIDIA20 [76] 20 0 no
89 TRIGONOMETRIC [137] 10 0 no
90 VARDIM8 [76] 8 0 no
91 VARDIM10 [76] 10 0 no
92 VARDIM20 [76] 20 0 no
93 WANGWANG_F3 [187] 2 0 yes
94 WATSON9 [137] 9 0 no
95 WATSON12 [137] 12 0 yes
96 WONG1 [122] 7 0 no
97 WONG2 [122] 10 0 no
98 WOODS4 [76] 4 0 no
99 WOODS12 [76] 12 0 no

100 WOODS20 [76] 20 0 no
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Nomenclature

The following list describes symbols used within the body of the document. In what follows, if the
symbol is bold then it is a vector otherwise it is a scalar.

ℓ The lower bound of a decision variable

∆k The frame size parameter at iteration k

δk The mesh size parameter at iteration k

ϵ The stopping criterion

γ A parameter to estimate in an associated stochastic problem

u The upper bound of a decision variable

E The expectation

N The normal distribution

V Set of parameters of a probability density function

X The bounded constraints set of type ℓ ≤ x ≤ u

µ The mean

Ω The feasible set

ρ A percentage of quantile

σ The standard deviation

τ The mesh size adjustment parameter

X A random vector

cj The jth constraint

D A positive spanning set

Ek The set of indices of elite points

F k The frame at iteration k
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g(·; ·) A probability density function

h The measure of constraints violation

Ix Indicator function of x

k The iteration counter

Mk The mesh at iteration k

n The dimension of a problem

Ns Number of sampled data at each iteration

Ne Number of elite population

V The cache

v A parameter of a probability density function
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CHAPTER 5 ARTICLE 2: SEQUENTIAL STOCHASTIC BLACKBOX
OPTIMIZATION WITH ZEROTH-ORDER GRADIENT ESTIMATORS

Title Sequential stochastic blackbox optimization with zeroth-order gradient estimators.

Authors Charles Audet, Jean Bigeon, Romain Couderc and Michael Kokkolaras.

Journal Published in AIMS mathematics [22] on 08/09/2023.

5.1 Context

The second contribution of this thesis targets unconstrained stochastic optimization problems of
the form given in Equation (2.12). Specifically, the uncertainties have an unknown distribution and
are considered uncontrollable, i.e., two evaluations of the blackbox at the same point x can yield
two different outputs (this is also called one-point bandit feedback in stochastic convex optimiza-
tion [131]). As shown in Section 2.3.2, this problem is the subject of many work. Mathematically,
it is particularly interesting because in the context of DFO, if the underlying function is continu-
ously differentiable, convergence rates in mean to a stationary point of the problem can be derived.
In practice, however, these results are of limited interest because they formally require many runs
of the algorithm to be guaranteed [71]. A more promising result might be to obtain the convergence
rate to a stationary point according to some probability. This type of result was developed in [71].
Although the convergence rate was obtained with probability one in [34, 145], the drawback of
these results is that they are obtained in terms of iteration and not in terms of blackbox queries.
Thus , that gives limited information about the practical interest of these methods.

This second contribution presents a new method capable of overcoming the aforementioned diffi-
culties. This method is based on a Gaussian exploration of the space of design variables. However,
in contrast to the first contribution, the Gaussian exploration allows smoothing the problem and ob-
taining estimates of the gradient of the smooth approximation. The gradient estimates require only
two blackbox evaluations to be computed, regardless of the size of the problem [33, 71]. However,
they require many more samples to be accurate [29]. Therefore, to avoid costly sampling at each
iteration, the authors of [47] used instead an exponential moving average (also called momentum
in the machine learning community [31]). This moving average of gradient estimates is used to
approximate a descent direction, rather than using only the estimates at the current iteration. This
allows the variance of the estimates to be smoothed over all iterations [31] and provides a more
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efficient algorithm in terms of blackbox evaluations. In our work, inspired by [71] and more gen-
erally by the multi-timescale stochastic approximation [38, Chapter 6], the decay parameter of the
moving average is gradually reduced to 0. This small change allows us to prove that the momen-
tum vector eventually converges in mean to the gradient of the objective function. We also derive
the rate of this convergence. This result is important because the norm of the momentum vector
can be used as a stopping criterion, since its norm converges to 0 during the optimization process.
Based on this result, a sequential optimization algorithm is developed in which each subproblem is
a smooth approximation of the original problem and is solved using a momentum-based method.
The stopping criterion is used to consider a subproblem to be approximately solved and to proceed
to the next one. For a carefully chosen sequence of stopping criteria, we prove that the sequence
of points satisfying these stopping criteria converges to a stationary point of the problem. The
convergence rate is also analyzed.
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5.2 Article

Abstract This work considers stochastic optimization problems in which the objective function
values can only be computed by a blackbox corrupted by some random noise following an un-
known distribution. The proposed method is based on sequential stochastic optimization (SSO),
the original problem is decomposed into a sequence of subproblems. Each subproblem is solved
using a zeroth-order version of a sign stochastic gradient descent with momentum algorithm (i.e,
ZO-signum) and with increasingly fine precision. This decomposition allows a good exploration of
the space while maintaining the efficiency of the algorithm once it gets close to the solution. Under
the Lipschitz continuity assumption on the blackbox, a convergence rate in mean is derived for the
ZO-signum algorithm. Moreover, if the blackbox is smooth and convex or locally convex around
its minima, the rate of convergence to an ϵ-optimal point of the problem may be obtained for the
SSO algorithm. Numerical experiments are conducted to compare the SSO algorithm with other
state-of-the-art algorithms and to demonstrate its competitiveness.

Keywords: stochastic blackbox optimization; gradient approximation; sequential optimization;
momentum-based method; convergence rate analysis

5.3 Introduction

The present work targets stochastic blackbox optimization problems of the form

min
x∈Rn

f(x) where f(x) := Eξ [F (x, ξ)] , (5.1)

and F : Rn×Rm → R is a blackbox [14] that takes two inputs: a vector of design variables x ∈ Rn

and a vector ξ ∈ Rm that represents uncertainties with unknown distributions. The function F is
called a stochastic zeroth-order oracle [71]. The objective function f is obtained by taking the
expectation of F over all possible values of the uncertainties ξ. This optimization problem can
be found in two different fields. The first is in a machine learning framework wherein the loss
function’s gradient is unavailable or difficult to compute, such as in the optimization of neural
network architecture [155], design of adversarial attacks [47] or game content generation [185].
The second field is when the function F is evaluated by means of a computational procedure [97].
In many cases, it depends on an uncertainty vector ξ due to environmental conditions, costs or
effects of repair actions that are unknown [160]. Another source of uncertainty appears when the
optimization is conducted at the early stages of the design process, where knowledge, information
and data are very limited.
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5.3.1 Related work

Stochastic derivative-free optimization has been the subject of research for many years. Traditional
derivative-free methods may be divided into two categories [54]: direct search and model-based
methods. Algorithms corresponding to both methods have been adapted to a stochastic ZO oracle.
Examples include the stochastic Nelder-Mead algorithm [43] and the stochastic versions of the
mesh adaptive direct search algorithm [15, 23] for the direct search methods. For model-based
methods, most studies consider extensions of the trust region method [45, 56, 123]. A major
shortcoming of these methods is their difficulty to scale to large problems.

Recently, another class of methods, named ZO methods, has been attracting increasing amounts
of attention. These methods use stochastic gradient estimators, which are based on the seminal
work in [92, 156], and they have been extended in [71, 141, 166, 175]. These estimators have the
appealing property of being able to estimate the gradient with only one or two function evaluations,
regardless of the problem size. ZO methods take advantage of this property to extend first-order
methods. For instance, the well known first-order methods conditional gradient, sign stochastic
gradient descent (signSGD) [31] and adaptive momentum (ADAM) [94] have been extended to
ZSCG [25], ZO-signSGD [116] and ZO-adaMM [47], respectively. More methods, not only based
on first-order algorithms, have also emerged to solve regularized optimization problems [41], for
very high dimensional blackbox optimization problems [39] and stochastic composition optimiza-
tion problems [72]. Methods using second-order information based limited function queries have
been developed [93]. Some methods handle situations in which the optimizer has only access to a
comparison oracle that indicates which of two points has the highest value [40]. For an overview
on ZO methods, readers may consult [117].

5.3.2 Motivation

Formally, stochastic gradient estimators involve a smooth approximation fβ (see Chapter 7.6 in [166])
which is a convolution product between f and a kernel hβ(u)

fβ(x) :=
∫ ∞

−∞
hβ(u)f(x− u)du =

∫ ∞

−∞
hβ(x− u)f(u)du. (5.2)

The kernel must fulfill a set of conditions[166, pp. 263]:

(1) hβ(u) = 1
βnh(u

β
) is a piecewise differentiable function;

(2) limβ→0 h
β(u) = δ(u), where δ(v) is Dirac’s delta function;

(3) limβ→0 f
β(x) = f(x) if x is a point of continuity of f ;
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(4) The kernel hβ(u) is a probability density function, that is fβ(x) = EU∼hβ(u)[f(x −U)] =
EU∼h(u)[f(x− βU)].

Frequently used kernels include the Gaussian distribution and the uniform distribution on a unit
ball. Three properties of the smooth approximation are worth noting. First, the smooth approxi-
mation may be interpreted as a local weighted average of the function values in the neighborhood
of x. Condition 5.3.2 implies that it is possible to obtain a solution that is arbitrarily close to a
local minimum f ∗. Second, the smooth approximation is infinitely differentiable as a consequence
of the convolution product, regardless of the degree of smoothness of f . Moreover, according to
the chosen kernel, stochastic gradient estimators may be calculated. These estimators are unbiased
estimators of ∇fβ and may be constructed on the basis of observations of F (x, ξ) alone. Finally,
the smooth approximation allows convexification of the original function f . Previous studies [166,
178] show that greater values of β result in better convexification, as illustrated in Figure 5.1. Ad-
ditionally, a larger β leads to greater exploration of the space during the calculation of the gradient
estimator. It has also been demonstrated in [118] that if the smoothing parameter is too small,
the difference in function values cannot be used to accurately represent the function differential,
particularly when the noise level is significant.

Figure 5.1 Curves of fβ for u ∼ N (0, 1) and different values of β.

Although the two first properties of the smooth approximation are exploited by ZO methods, the
last property has not been utilized since the work in [178]. This may be because the convexification
phenomenon becomes insignificant when dealing with high-dimensional problems 1. However, for
problems of relatively small size (n ≃ 10), this property can be useful. The authors of [178] use

1Note that a blackbox optimization problem with dimensions ranging from 100 to 1000 may be considered large,
while problems with n ≥ 10000 may be considered very large.
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an iterative algorithm to minimize the sequence of subproblems

min
x∈Rn

fβ
i(x), (5.3)

where βi belongs to a finite prescaled sequence of scalars. This approach is limited because the
sequence βi does not necessarily converge to 0 and the number of iterations to go from subproblem i

to i+1 is arbitrarily fixed a priori. Furthermore, neither a convergence proof nor a convergence rate
are provided for the algorithm. Finally, although promising, numerical results are only presented
for analytical test problems. These shortcomings motivate the research presented here.

5.3.3 Contributions

The main contributions of this paper can be summarized as follows:

• A sequential stochastic optimization (SSO) algorithm is developed to solve the sequence of
subproblems in Eq (5.3). In the inner loop, a subproblem is solved according to the ZO
version of the signum algorithm [31]. The stopping criterion is based on the norm of the
momentum, which must be below a certain threshold. In the outer loop, the sequence of βi

is proportional to the threshold needed to consider a subproblem solved, and it is driven to 0.
Therefore, the smaller the value of βi (and thus better the approximation given by fβi), the
larger the computational budget allotted for the resolution of the subproblem.

• A theoretical analysis of this algorithm is conducted. First, the expectation of the norm of the
momentum is proved to converge to 0, with a convergence rate that depends on the step sizes.
Then, the convergence rate in mean of the ZO-signum algorithm toward a stationary point
of fβ is derived under Lipschitz continuity of the function F . Finally, if the function F is
smooth and fβ is convex or becomes convex around its local minima, the rate of convergence
to an ϵ-optimal point is derived for the SSO algorithm.

• Numerical experiments were conducted to evaluate the performance of the proposed algo-
rithm for two applications. First, a comparison is made with traditional derivative-free algo-
rithms in terms of the optimization of the storage cost of a solar thermal power plant model,
which is a low-dimensional problem. Second, a comparison is made with other ZO algo-
rithms in order to generate blackbox adversarial attacks, which are large-sized problems.

The remainder of this paper is organized as follows. In Section 5.4, the main assumptions and the
Gaussian gradient estimator are described. In Section 5.5, the sequential optimization algorithm is
presented, and its convergence properties are studied in Section 5.6. Section 5.7 presents numerical
results, and Section 5.8 draws conclusions and discusses future work.
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5.4 Gaussian gradient estimator

The assumptions concerning the stochastic blackbox function F are as follows:

Assumption 1. Let (Ω,F ,P) be a probability space.

(a) The function satisfies F (·, ξ) ∈ L1(Ω,F ,P) and f(x) := Eξ[F (x, ξ)] for all x ∈ Rn.

(b) F (·, ξ) is Lipschitz-continuous for any fixed value of ξ = (ξ1, ξ2), with the constantL0(F ) >
0, that is

|F (x, ξ1)− F (y, ξ2)| ≤ L0(F )||x− y||.

Assumption 1(a) implies that the expectation of F (x, ξ) with respect to ξ is well defined on Rn and
that the estimator F (x, ξ) is unbiased. Assumption 1(b) is commonly used to ensure convergence
and bound the variance of the stochastic ZO oracle. It is worth noticing that no assumption is made
regarding the differentiability of the objective function f or of its estimate F with respect to x,
contrary to most work on ZO methods.

Under Assumption 1, a smooth approximation of the function f may be constructed via its convo-
lution with a Gaussian random vector. Let u be an n-dimensional standard Gaussian random vector
and β > 0 be the smoothing parameter. Then, a smooth approximation of f is defined as

fβ(x) := 1
(2π)n

2

∫
f(x + βu)e− ||u||2

2 du = Eu[f(x + βu)]. (5.4)

This estimator has been studied in the literature (especially in [141]); it has the benefits of several
appealing properties. The properties used in this work are summarized in the following lemma:

Lemma 5.4.1. Under Assumption 1, the following statements hold for any integrable function

f : Rn → R and its approximation fβ parameterized by β > 0.

(1) fβ is infinitely differentiable: fβ ∈ C∞.

(2) A one-sided unbiased estimator of ∇fβ is

∇̃fβ(x) := u (f(x + βu)− f(x))
β

. (5.5)

(3) Let β2 ≥ β1 ≥ 0; then, ∀x ∈ Rn

||∇fβ1(x)−∇fβ2(x)|| ≤ L1(fβ
1) (β2 − β1) (n+ 3) 3

2 .
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Moreover, for β > 0, fβ is L1(fβ)-smooth, i.e., fβ ∈ C1+ with L1(fβ) = 2
√
n

β
L0(F ).

(4) If f is convex, then fβ is also convex.

Proof. (1) It is a consequence of the convolution product between an integrable function and an
infinitely differentiable kernel.

(2) See [141, Eq (22)].

(3) If u ∼ N (0, I), define the following for all x ∈ Rn

g(x) = fβ
1(x) = Eu[f(x + β1u)].

Let µ = β2 − β1 ≥ 0; it follows that for all x ∈ Rn

gµ(x) = Eu[g(x+µu)] = Eu[fβ1(x+µu)] = Eu[f(x+µu+β1u)] = Eu[f(x+β2u)] = fβ
2(x).

Then, since by [141, Lemma 2] under Assumption 1, fβ1 is Lipschitz continuously differen-
tiable, [141, Lemma 3] may be applied to the function g and it follows that

||∇fβ1(x)−∇fβ2(x)|| = ||∇g(x)−∇gµ(x)|| ≤ L1(fβ
1)µ (n+ 3) 3

2 = L1(fβ
1) (β2 − β1) (n+ 3) 3

2 .

(4) See [141, pp. 5].

The estimator obtained in Eq (5.5) may be adapted to the stochastic ZO oracle F . For instance, a
one-sided (mini-batch) estimator of the noised function F is

∇̃fβ(x, ξ) = 1
q

q∑
j=1

uj (F (x + βuj, ξj)− F (x, ξ0))
β

, (5.6)

where {uj}qj=1 and {ξj}qj=0 are q Gaussian random directional vectors and their associated q esti-
mate values of the function F , respectively. This is still an unbiased estimator of∇fβ because

Eu,ξ[∇̃fβ(x, ξ)] = Eu[Eξ[∇̃fβ(x, ξ)|u]] = ∇fβ(x). (5.7)

The result of Lemma 5.4.1(3) is essential to understand why solving a sequence of optimization
problems defined by Eq (5.3) may be efficient, although it might seem counterproductive at first
sight. Below are examples of the advantages of treating the problem with sequential smoothed
function optimization.
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• The subproblems are approximations of the original problem and it is not necessary to solve
them exactly. Thus, an appropriate procedure for solving these problems with increasingly
fine precision can be used. Moreover, as seen in Lemma 5.4.1(3), the norm of the gradient
obtained in a subproblem is close to the one of the following subproblem. The computa-
tional effort to find a solution to the second subproblem from the solution of the first should
therefore not be important.

• The information collected during the optimization process for a subproblem may be reused
in the subsequent subproblems since they are similar.

• A specific interest in the case of smooth approximation is the ability of using a larger value
of β to solve the first subproblems. It allows for a better exploration of the space and convex-
ification phenomenon of the function (see Figure 5.1). Moreover, the new step size may be
used for each subproblem; it allows for an increase in the step size momentarily, in the hope
of having a greater chance of escaping a local minimum.

5.5 SSO algorithm

Section 3.1 presents a ZO version of the signum algorithm [31] to solve Subproblem (5.3) for a
given βi and Section 3.2 presents the complete algorithm used to solve the sequential optimization
problem.

5.5.1 The ZO signum algorithm

A ZO version of the signum algorithm (Algorithm 2 of [31]) is used to solve the subproblems.
The signum algorithm is a momentum version of the sign-SGD algorithm. In [116], the authors
extended the original sign-SGD algorithm to a ZO version of this algorithm. However, a ZO ver-
sion of signum is not studied in the work of [116]. As the signum algorithm has been shown to
be competitive with the ADAM algorithm [31], a ZO version of this algorithm seems interesting
to consider. For completeness, the versions of the sign-SGD and the signum algorithms as they
originally appeared in [31] are given in Section 5.9.3. There is an important difference between the
original signum algorithm and its ZO version presented in Algorithm 11. Indeed, while the step
size of the momentum 1− s2 is kept constant in the work of [31], it is driven to 0 in our work.
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Algorithm 11 ZO-signum algorithm to solve subproblem i ∈ N.
1: Input: xi,0, mi,0, βi, si,01 , si,02 , L, q, M

2: Set k = 0
3: Define step-size sequences si,k1 = si,0

1
(k+1)α1 and si,k2 = si,0

2
(k+1)α2

4: while ||mi,k|| > Lβi

4β0 or k ≤M do
5: Draw q samples uk from the Gaussian distribution N (0, I)
6: Calculate the average of the q Gaussian estimate ∇̃fβ

i(xi,k, ξi,k) from Eq (5.6)

7: Update:

mi,k+1 = si,k2 ∇̃fβ
i(xi,k, ξk) + (1− si,k2 )mi,k (5.8)

xi,k+1
j = xi,kj − sk1sign(mi,k+1

j ) ∀j ∈ [1, n] (5.9)

8: k ← k + 1
9: end while

10: Return mi,k and xi,k

This leads to two consequences. First, the variance is reduced since the gradient is averaged on
a longer time horizon, without using mini-batch sampling. Second, as it has been demonstrated
in other stochastic approximation works ([33, Section 3.3] and [169]), with carefully chosen step
sizes the norm of the momentum goes to 0 with probability one. In the ZO-signum algorithm, the
norm of the momentum is thus used as a stopping criterion.

5.5.2 The SSO algorithm

The optimization of the subproblem sequence described in Eq (5.3) is driven by the SSO algorithm
presented in Algorithm 12. The value of β plays a critical role, as it serves as both the smoothing
parameter and the stopping criterion for Algorithms 11 and 12. Algorithm 12 is inspired by the
MADS algorithm [12] as it is based on two steps: a search step and a local step. The search
step is optional, may use any heuristics and is required only for problems with relatively small
dimensions. In Algorithm 12, an example of a search is given; it consists of updating x after M
iterations of the ZO-signum algorithm with the best known x found so far. The local step is then
used: Algorithm 11 is launched for each subproblem i with specific values of βi and step-size
sequences. Once Algorithm 11 meets the stopping criterion (which depends on the value of βi),
the value of βi and the initial step-sizes si,01 and si,02 are reduced, and the algorithm proceeds to the
next subproblem. The convergence is guaranteed by the local step, since the search step is run only
a finite number of times.
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Algorithm 12 SSO algorithm.
1: Initialization:
2: Set x0,0 ∈ Rn, β0 > 0 and N as the maximum number of function calls for the search step
3: Set q as the number of gradient estimates at each iteration of ZO-signum (ZOS) algorithm
4: Set M the minimum number of iterations made by the ZOS algorithm on a subproblem
5: C is the cache containing all of the evaluated points
6: Set m0,0 = ∇̃fβ0(x0,0, ξ0) and L = +∞
7: Set s0,0

1 > 0 and s0,0
2 > 0

8: Set i = 0
9: Search step (optional):

10: while M(i+ 1)q ≤ N : do
11: Solve subproblem i with Algorithm 11:

mi+1,0 = ZOS(xi,0,mi,0, βi, si,01 , s
i,0
2 , L, q,M)

xi+1,0 ∈ argmin
x∈C

F (x, ξ)

12: Update βi, si,01 and si,02 as in Step 18
13: end while
14: L = ||m0,0||
15: Local step:
16: while βi > ϵ do
17: Solve subproblem i with Algorithm 11:

mi+1,0,xi+1,0 = ZOS(xi,0,mi,0, βi, si,01 , s
i,0
2 , L, q,M)

18: Update:

βi = β0

(i+ 1)2 , s
i,0
1 = s0,0

1

(i+ 1) 3
2
, si,02 = s0,0

2
i+ 1

i← i+ 1

19: end while
20: Return xi

It is worth noting that the decreasing rate of βi is chosen so that the difference between subproblems
i and i + 1 is not significant. Therefore, the information collected in subproblem i, through the
momentum vector m, can be used in subproblem i + 1. Furthermore, the initial step sizes si,01 and
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si,02 decrease with each iteration, allowing us to focus our efforts quickly toward a local optimum
when s0,0

1 and β0 are chosen to be relatively large.

5.6 Convergence analysis

The convergence analysis is conducted in two steps: first the convergence rate in mean is derived
for Algorithm 11 and then the rate of convergence to an ϵ-optimal point is derived for Algorithm 12.

5.6.1 Convergence rate of the ZO-signum algorithm

The analysis of Algorithm 11 follows the general methodology given in [31, Appendix E]. In the
following subsection, the main result in [31] is recalled for completeness. The next subsections
are devoted to bound the variance and bias terms when limk→∞ si,k2 = 0 . Finally, these results
are used to obtain the convergence rate in mean of Algorithm 11 in the non-convex and convex
case. The last subsection is devoted to a theoretical comparison with other ZO methods of the
literature. The subproblem index i is kept constant throughout this section. In order to better convey
the convergence analysis of the ZO-signum algorithm, a hierarchical workflow of the different
theoretical results is presented in Table 5.1. The main results are presented in Theorem 5.6.9 and
its corollary for the non-convex case, and Theorem 5.6.11 for the convex case.

Table 5.1 Workflow of lemmas/propositions/theorems for the ZO-signum convergence analysis.

Assumptions on F Preliminary results Intermediate results Main results When fβ is convex

Proposition 5.6.1

Assumption 1
Lemma 5.6.2

Proposition 5.6.5
which implies that

Lemma 5.6.3
Theorem 5.6.9 Theorem 5.6.11

L1(fβi) = 2
√
nL0(F )
βi

Lemma 5.6.4
Corollary 5.6.10

Lemma 5.6.6
Proposition 5.6.8

Lemma 5.6.7

5.6.1.1 Preliminary result [31]

The following proposition uses the Lipschitz continuity of the function fβi (proved in Lemma 5.4.1)
to bound the gradient at the kth iteration.

Proposition 5.6.1. [31] For the subproblem i ∈ N, under Assumption 1 and in the setting of
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Algorithm 11, we have

si,k1 E[||∇fβi (xi,k)||1] ≤ E[fβi(xi,k)− fβi(xi,k+1)] + nL1(fβ
i)

2 (si,k1 )2

+ 2si,k1 E[||m̄i,k+1 −∇fβi(xi,k)||1]︸ ︷︷ ︸
bias

+2si,k1
√
n
√√√√E[||mi,k+1 − m̄i,k+1||22]︸ ︷︷ ︸

variance

,
(5.10)

where m̄i,k+1
j is defined recursively as m̄i,k+1

j = si,k2 ∇fβ
i(xi,k) + (1− si,k2 )m̄i,k

j .

Proof. See Appendix B.

Now, it remains to bound the three terms on the right side of Inequality (5.10).

5.6.1.2 Bound on the variance term

The three following lemmas are consecrated to bound the variance term. Unlike the work reported
in [31], the variance reduction is conducted by driving the step size of the momentum to 0. It avoids
the need to sample an increasing number of stochastic gradients at each iteration, which may be
problematic, as noted in [116]. To achieve this, the variance term is first decomposed in terms of
expectation of the squared norm of the stochastic gradient estimators g̃.

Lemma 5.6.2. For the subproblem i ∈ N, let k ∈ N and j ∈ [1, n]; we have

E[||mi,k+1 − m̄i,k+1||2] ≤ (si,k2 )2E[||g̃i,k||2] +
k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r||2]

+
k∏
t=0

(1− si,t2 )2E[||g̃i,0||2],

where g̃i,rj = ∇̃fβi(xi,r, ξr),∀r ∈ [0, k] is defined in Eq (5.6) and the norm is || · ||2.

Proof. Let k ∈ N; by definition of mi,k and m̄i,k, it follows that

||mi,k+1 − m̄i,k+1||2 = (si,k2 )2||g̃i,k −∇fβi(xi,k)||2 + (1− si,k2 )2||mi,k − m̄i,k||2

+ 2si,k2 (1− si,k2 )(g̃i,k −∇fβi(xi,k))T (mi,k − m̄i,k).
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The expectation of this expression is

E[||mi,k+1 − m̄i,k+1||2] = (si,k2 )2E[||g̃i,k −∇fβi(xi,k)||2] + (1− si,k2 )2E[||mi,k − m̄i,k||2]

+ 2si,k2 (1− si,k2 )E[(g̃i,k −∇fβi(xi,k))T (mi,k − m̄i,k)]. (5.11)

Now, introducing the associated sigma field of the process F i,k = σ(xj,t,mj,t, m̄j,t; j ≤ i, t ≤ k)
by the law of total expectation, it follows that

E[(g̃i,k −∇fβi(xi,k))T (mi,k − m̄i,k)] = E[E[(g̃i,k −∇fβi(xi,k))T (mi,k − m̄i,k)|F i,k]]

= E[ (E[g̃i,k|F i,k]−∇fβi(xi,k))T (mi,k − m̄i,k)]

= 0,

where the second equality holds because mi,k, m̄i,k and ∇fβi(xi,k) are fixed conditioned on F i,k

and because E[g̃i,k|xi,k] = ∇fβi(xi,k) where g̃i,k is an unbiased estimator of the gradient by Eq
(5.7). By substituting this result in (5.11), it follows that

E[||mi,k+1 − m̄i,k+1||2] = (si,k2 )2E[||g̃i,k −∇fβi(xi,k)||2] + (1− si,k2 )2E[||mi,k − m̄i,k||2].

By repeating this process iteratively, we obtain

E[||mi,k+1 − m̄i,k+1||2] = (si,k2 )2E[||g̃i,k −∇fβi(xi,k)||2]

+
k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r −∇fβi(xi,r)||2]

+
k∏
t=0

(1− si,t2 )2E[||g̃i,0 −∇fβi(xi,0)||2].

(5.12)

Finally, by observing that ∀r ∈ [0, k],E[g̃i,r|xi,r] = ∇fβi(xi,r) and by the law of total expectation,
we obtain

E[||g̃i,r −∇fβi(xi,r)||2] = E[||g̃i,r − E[g̃i,r|xi,r]||2]

= E[||g̃i,r||2]− E[||∇fβi(xi,r)||2]

≤ E[||g̃i,r||2].

Introducing this inequality to Eq (5.12) completes the proof.

Second, the expectation of the squared norm of the stochastic gradient estimators are bounded by a
constant depending quadratically on the dimension.
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Lemma 5.6.3. Let i ∈ N, r ∈ [0, k] and j ∈ [1, n]; then under Assumption 1, we have

E[||g̃i,r||2] ≤ L0(F )2 (n+ 4)2,

where L0(F ) is the Lipschitz constant of F .

Proof. By Eq (5.6) with q = 1, it follows that

E[||g̃i,r||2] = E
[
||u||2

(βi)2

(
F (xi,r + βiu, ξ1)− F (xi,r, ξ0)

)2
]

≤ L0(F )2E[||u||4]

≤ L0(F )2 (n+ 4)2

where the first inequality follows from Assumption 1(b) and the second by [141, Lemma 1].

Finally, a technical lemma bounds the second term of the decomposition of Lemma 5.6.2 by a
decreasing sequence. It achieves the same rate of convergence as in [31] without sampling any
stochastic gradient.

Lemma 5.6.4. For the subproblem i ∈ N, let si,k2 be defined such that si,k2 = si,0
2

(k+1)α2 with

α2 ∈ (0, 1) and si,02 ∈ (0, 1); then, for k such that

k

(k + 1)α2
≥ ln(si,02 ) + (1 + α2) ln(k)

si,02
, (5.13)

the following inequality holds

k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2 ≤ 9si,02

kα2
. (5.14)

Proof. Let k ∈ N; as in [31], the strategy consists of breaking up the sum in order to bound both
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terms separately.

k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2 =

⌊k/2⌋−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2 +

k−1∑
r=⌊k/2⌋

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2

≤ (1− si,k2 )2⌊k/2⌋
⌊k/2⌋−1∑
r=0

(si,r2 )2 + (si,⌊k/2⌋−1
2 )2

k−1∑
r=⌊k/2⌋

(1− si,k2 )2(k−r−1)

≤ (si,02 )2⌊k/2⌋ (1− si,k2 )2⌊k/2⌋ + 8(si,02 )2

k2α2

⌊k/2⌋∑
r=0

(1− si,k2 )2r

≤ (si,02 )2k (1− si,k2 )2⌊k/2⌋ + 8 (si,02 )2

k2α2(1− (1− si,k2 )2)

≤ (si,02 )2k (1− si,k2 )2⌊k/2⌋ + 8si,02

kα2(2− si,k2 )
.

Now, we are looking for k such that

si,02 k (1− si,k2 )2⌊k/2⌋ ≤ 1
kα2
⇔ e2⌊k/2⌋ ln(1−si,k

2 ) ≤ 1
(si,02 )k1+α2

.

As, ln(1− x) ≤ −x, it is sufficient to find k such that

e
−si,0

2
k

(k+1)α2 ≤ 1
(si,02 )k1+α2

⇔ k

(k + 1)α2
≥ ln(si,02 ) + (1 + α2) ln(k)

si,02
.

Taking such a k allows us to complete the proof.

Combining the three previous lemmas allows the bounding of the variance term in Proposition 5.6.1.

Proposition 5.6.5. In the setting of Lemmas 5.6.3 and 5.6.4 and under Assumption 1(b), the

variance term of Proposition 5.6.1 is bounded by

E[||mi,k+1 − m̄i,k+1||22] ≤
9si,02 L0(F )2 (n+ 4)2

kα2
+ o

( 1
kα2

)
.
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Proof. By Lemmas 5.6.2 and 5.6.3, it follows that

E[||mi,k+1 − m̄i,k+1||2] ≤ (si,k2 )2E[||g̃i,k||2] +
k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r||2]

+
k∏
t=0

(1− si,t2 )2E[||g̃i,0||2]

≤
(

(si,k2 )2 +
k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2 +

k∏
t=0

(1− si,t2 )2
)
L0(F )2 (n+ 4)2.

Now as (si,k2 )2 = o
(

1
kα2

)
and

∏k
t=0 (1−si,t2 )2 = o

(
1
kα2

)
, the result follows from Lemma 5.6.4.

5.6.1.3 Bound on the bias term

First, the bias term is bounded by a sum depending on sk1 and sk2.

Lemma 5.6.6. For the subproblem i ∈ N and at iteration k ∈ N of the Algorithm 11, we have

E[||m̄i,k+1 −∇fβi(xi,k)||1] ≤ 2nL1(fβ
i)
(
k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 )

)
.

Proof. Foremost, observe that the quantity

Si,k :=

 1, if k = 0,
si,k2 +∑k−1

r=0 s
i,r
2
∏k−1
t=r (1− si,t+1

2 ) +∏k
t=0 (1− si,t2 ), otherwise,

(5.15)

may be written recursively as

Si,k =

 1, if k = 0,
si,k2 + (1− si,k2 )Si,k−1, otherwise.

Note that in its second expression Si,k = 1 for all k. Therefore, by definition of m̄i,k
j and the

previous result on Si,k, it follows that

m̄i,k = si,k2 ∇fβ
i(xi,k) +

k−1∑
r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 )∇fβi(xi,r) +

k∏
t=0

(1− si,t2 )∇fβi(xi,0),

∇fβi(xi,k) =
(
si,k2 +

k−1∑
r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t2 )
)
∇fβi(xi,k).
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Thus

E[||m̄i,k+1 −∇fβi(xi,k)||1] ≤
k−1∑
r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 )E[||∇fβi(xi,r)−∇fβi(xi,k)||1]

+
k∏
t=0

(1− si,t2 )E[||∇fβi(xi,0)−∇fβi(xi,k)||1].
(5.16)

By the smoothness of the function fβi , Lemma F(3) of [31] ensures that ∀r ∈ [0, k − 1]

||∇fβi (xi,r)−∇fβi(xi,k)||1 ≤
k−1∑
l=r
||∇fβi(xi,l+1)−∇fβi(xi,l)||1 ≤ 2nL1(fβ

i)
k−1∑
l=r

si,l1 .

Substituting this inequality into Eq (5.16) gives

E[||m̄i,k+1 −∇fβi(xi,k)||1] ≤ 2nL1(fβ
i)Si,k1 , (5.17)

where

Si,k1 =
k−1∑
r=0

si,r2

k−1∑
l=r

si,l1

k−1∏
t=r

(1− si,t+1
2 ) +

k−1∑
l=0

si,l1

k∏
t=0

(1− si,t2 ).

Reordering the terms in Sk1 , we obtain

Si,k1 =
k−1∑
l=0

si,l1

(
l∑

r=0
si,r2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t2 )
)

=
k−1∑
l=0

si,l1

(
si,l2

k−1∏
t=l

(1− si,t+1
2 ) +

l−1∑
r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t2 )
)

=
k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 )

(
si,l2 +

l−1∑
r=0

si,r2

l−1∏
t=r

(1− si,t+1
2 ) +

l∏
t=0

(1− si,t2 )
)

︸ ︷︷ ︸
Si,l=1

=
k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 ),

which completes the proof.

Second, the sum may be bounded by a term decreasing with k.
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Lemma 5.6.7. For the subproblem i ∈ N, let si,k2 = si,0
2

(k+1)α2 and si,k1 = si,0
1

(k+1)α1 with si,01 ∈ (0, 1),
si,02 ∈ (0, 1) and 0 < α2 < α1 < 1; then, for k such that

k

(k + 1)α2
≥

2
(
ln(si,02 ) + (1 + α1 − α2) ln(k)

)
si,02

, (5.18)

the following inequality holds

k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 ) ≤ 5si,01

si,02 k
α1−α2

. (5.19)

Proof. The proof follows the proof of Lemma 5.6.4. The sum is partitioned as follows:

k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 ) =

⌊k/2⌋−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 ) +

k−1∑
l=⌊k/2⌋−1

si,l1

k−1∏
t=l

(1− si,t+1
2 )

≤ (1− si,k2 )⌊k/2⌋
⌊k/2⌋−1∑
l=0

si,l1 + s
i,⌊k/2⌋−1
1

k−1∑
l=⌊k/2⌋−1

(1− si,k2 )k−r−1

≤ si,01 k (1− si,k2 )⌊k/2⌋ + 4si,01

kα1(1− (1− si,k2 ))

= si,01 s
i,0
2 k (1− si,k2 )⌊k/2⌋

si,02
+ 4si,01

si,02 k
α1−α2

.

Now, as in Lemma 5.6.4 taking k such that

k

(k + 1)α2
≥

2
(
ln(si,02 ) + (1 + α1 − α2) ln(k)

)
si,02

ensures that si,02 k (1− si,k2 )⌊k/2⌋ ≤ 1
kα1−α2 , which completes the proof.

Finally, using the two previous lemmas allows for bounding of the bias term.

Proposition 5.6.8. In the setting of Lemma 5.6.7, the bias term of Proposition 5.6.1 is bounded

by

E[||m̄i,k+1 −∇fβi(xi,k)||1] ≤ 10nL1(fβ
i) si,01

si,02 k
α1−α2

.
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Proof. The proof is a straightforward consequence of Lemmas 5.6.6 and 5.6.7.

5.6.1.4 Convergence rate in mean of the ZO-signum algorithm

As the different terms in the inequality of Proposition 5.6.1 have been bounded, the main result of
this section may be derived as in the following theorem.

Theorem 5.6.9. For a subproblem i ∈ N and under Assumption 1, let α1 ∈ (0, 1), α2 ∈ (0, α1),
0 < si,01 , si,02 < 1 and K > C where C ∈ N satisfies Eqs (5.13) and (5.18); we have

E[||∇fβi(xi,R)||1] ≤
1

K1−α1 − C
Kα1

Di
f

si,01
+ n
√
nL0(F )si,01
βi

K∑
k=C

1
k2α1

+ 6
√
si,02 L0(F )

√
n(n+ 4)

K∑
k=C

1
kα1+ α2

2

+ 40L0(F )si,01 n
√
n

si,02 β
i

K∑
k=C

1
k2α1−α2

,
(5.20)

where fβ
i(xi,C)−minx f

βi(x) ≤ Di
f , L0(F ) is the Lipschitz constant of F and R is randomly

picked from a uniform distribution in [C,K].

Proof. Let C ∈ N satisfy Eqs (5.13) and (5.18) and, summing over the inequality in Proposi-
tion 5.6.1, it follows that

K∑
k=C

si,k1 E[||∇fβi(xi,k)||1] ≤ E[fβi(xi,C)− fβi(xi,K+1)] + nL1(fβ
i)

2

K∑
k=C

(si,k1 )2

+ 2
√
n

K∑
k=C

si,k1

√
E[||mi,k+1 − m̄i,k+1||22] + 2

K∑
k=C

si,k1 E[||m̄i,k+1 −∇fβi(xi,k)||1].

By substituting the results of Propositions 5.6.5 and 5.6.8 in the previous inequality, we obtain

K∑
k=C

si,k1 E[||∇fβi(xi,k)||1] ≤ E[fβi(xi,C)− fβi(xi,K+1)] + nL1(fβ
i)

2

K∑
k=C

(si,k1 )2

+ 6
√
si,02 L0(F ) (n+ 4)

√
n

K∑
k=C

si,01

kα1+ α2
2

+ 20L1(fβ
i)si,01 n

si,02

K∑
k=C

si,01
k2α1−α2

.

Dividing both sides by si,01 K
−α1 (K − C), picking R randomly uniformly in [C,K] and using the
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definition of Di
f given that minx f(x) ≤ f(x) for all x, we get

E[||∇fβi(xi,R)||1] = 1
K − C

K∑
k=C

E[||∇fβi(xi,k)||1] ≤
1

K − C

K∑
k=C

Kα1

kα1
E[||∇fβi(xi,k)||1]

≤ 1
K1−α1 − C

Kα1

Di
f

si,01
+ nL1(fβ

i)si,01
2

K∑
k=C

1
k2α1

+ 6
√
si,02 L0(F ) (n+ 4)

√
n

K∑
k=C

1
kα1+ α2

2

+ 20L1(fβ
i)si,01 n

si,02

K∑
k=C

1
k2α1−α2

.
Recalling that L1(fβ

i) = 2
√
nL0(F )
βi (see [141, Lemma 2]) completes the proof.

This theorem allows one to prove the convergence rate in mean of the norm of the gradient when
α1 and α2 are chosen adequately. In particular, the following corollary provides the convergence
rate when α1 = 3

4 and α2 = 1
2 .

Corollary 5.6.10. Under the same setting of Theorem 5.6.9 with βi ≈ 1 α1 = 3
4 , α2 = 1

2 ,

si,01 = 1
n

3
4

and si,02 ≈ 1, we have

E[||∇fβi(xi,R)||2] = O

 n
3
2

K1/4 ln(K)
 . (5.21)

Proof. The result is a direct consequence of Theorem 5.6.9 with the specified constant, and it can
be obtained by noting that || · ||2 ≤ || · ||1 in Rn.

In [47, 71, 116], the function F is assumed to be smooth with a Lipschitz continuous gradient. In
the present work, F is only assumed to be Lipschitz continuous. This has two main consequences
on the result of convergence: the dependence of the dimension on the convergence rate is larger.
Furthermore, while β must be chosen relatively small in the smooth case, it is interesting to note
that it does not have to be this way in the nonsmooth case.

5.6.1.5 The convex case

The convergence rate results for the ZO-signum algorithm has been derived in the non-convex case.
In the next theorem, they are derived for the case when the function fβi is convex.
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Theorem 5.6.11. Under Assumption 1, suppose moreover that fβ
i

is convex and there exists ρ

such that ρ = maxk∈N ||xi,k − xi,∗||; then, by setting

si,k1 = 2ρ
(k + 1) , s

i,k
2 = 1

(k + 1) 2
3

and Γk :=
k∏
l=2

(
1− 2

k + 1

)
= 2
k(k + 1) with Γ1 = 1,

(5.22)
it follows that

E[fβi(xi,K)− fβi(x∗)] ≤ 4ρ2n
√
nL0(F )

βiK
1
3

(5.23)

and

E[||∇fβi(xi,R)||] ≤ 2L0(F )
K2 + 4ρn

√
nL0(F )

βiK
1
3

, (5.24)

where R is a random variable in [0, K − 1] whose the probability distribution is given by

P(R = k) = si,k1 /Γk+1∑K−1
k=0 s

i,k
1 /Γk+1

.

Proof. Under the assumptions in the statement of Theorem 5.6.11, it follows by Proposition 5.6.1
that

E[fβi(xi,k+1)− fβi(xi,∗)] ≤ E[fβi(xi,k)− fβi(xi,∗)]− si,k1 E[||∇fβi(xi,k)||]

+ nL1(fβ
i)

2 (si,k1 )2 + 2si,k1 E[||m̄i,k+1 −∇fβi(xi,k)||1]

+ 2si,k1
√
n
√
E[||mi,k+1 − m̄i,k+1||2]

≤ E[fβi(xi,k)− fβi(xi,∗)]− sk1E[||∇fβi(xi,k)||]

+ 4ρ2n
√
nL0(F )

βi (k + 1) 4
3
,

(5.25)

where the last inequality follows thanks to Propositions 5.6.5 and 5.6.8 with L1(fβ
i) = 2L0(F )

√
n

βi

and the values of si,k1 and si,k2 . Now, by convexity assumption of fβi and the bound ρ, the following
holds

fβ
i(xi,k)− fβi(xi,∗) ≤ ∇fβi(xi,k)T (xi,k − xi,∗)

≤ ||∇fβi(xi,k)|| ||xi,k − xi,∗||

≤ ρ||∇fβi(xi,k)||.
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Thus, by substituting this result into Eq (5.25), it follows that

E[fβi(xi,k+1)− fβi(xi,∗)] ≤
(

1− 2
(k + 1)

)
E[fβi(xi,k)− fβi(xi,∗)] + 4ρ2n

√
nL0(F )

βi (k + 1) 4
3
.

Now by dividing both sides of the equation by Γk+1 and summing up the inequalities, it follows
that

E[fβi(xi,K)− fβi(xi,∗)]
ΓK ≤ 4ρ2n

√
nL0(F )
βi

K−1∑
k=0

1
Γk+1 (k + 1) 4

3

≤ 4ρ2n
√
nL0(F )
βi

K−1∑
k=0

(k + 1) 2
3 .

Thus

E[fβi(xi,K)− fβi(xi,∗)] ≤ 4ρ2n
√
nL0(F )
βi

ΓK
K−1∑
k=0

(k + 1) 2
3 ≤ 4ρ2n

√
nL0(F )

βiK
1
3

.

Now, the second part of the proof may be demonstrated. By Eq (5.25), it also follows that

si,k1 E[||∇fβi(xi,k)||] ≤ E[fβi(xi,k)− fβi(xi,∗)]− E[fβi(xi,k+1)− fβi(xi,∗)] + 4ρ2n
√
nL0(F )

βi (k + 1) 4
3
.

As in the previous part, by dividing both sides by Γk+1, summing up the inequalities and noting
that f̄k = E[fβi(xi,k)− fβi(xi,∗)], we obtain

K−1∑
k=0

si,k1
Γk+1E[||∇fβi(xi,k)||] ≤

K−1∑
k=0

f̄k − ¯fk+1

Γk+1 + 4ρ2n
√
nL0(F )
βi

K−1∑
k=0

1
Γk+1 (k + 1) 4

3
.

Then, again by dividing both sides by
∑K−1
k=0

si,k
1

Γk+1 it follows that

E[||∇fβi(xi,R)||] =
∑K−1
k=0

si,k
1

Γk+1E[||∇fβi(xi,k)||]∑K−1
k=0

si,k
1

Γk+1

≤ 1∑K−1
k=0

si,k
1

Γk+1

(
K−1∑
k=0

E[f̄k − ¯fk+1]
Γk+1 + 4ρ2n

√
nL0(F )
βi

K−1∑
k=0

1
Γk+1 (k + 1) 4

3

)
,

where R is a random variable whose distribution is given in the statement of the theorem. Now, as
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in Eq (2.21) of [25], the following inequalities hold

K−1∑
k=0

f̄k − ¯fk+1

Γk+1 ≤ f̄ 0 +
K−1∑
k=1

2
Γk+1(k + 1) f̄

k and
K−1∑
k=0

si,k1
Γk+1 = ρ

ΓK .

Thus, by substituting these in the inequality involving the expectation, we obtain

E[||∇fβi(xi,R)||] ≤ ΓK
ρ

(
E[f̄ 0] +

K−1∑
k=1

2
Γk+1(k + 1)E[f̄k] + 4ρ2n

√
nL0(F )
βi

K−1∑
k=0

1
Γk+1 (k + 1) 4

3

)

≤ ΓK
ρ

(
E[f̄ 0] + 8ρn

√
nL0(F )
βi

K−1∑
k=0

1
Γk+1 (k + 1) 4

3

)

≤ 2L0(F )
K2 + 8ρn

√
nL0(F )

βiK
1
3

,

where the second inequality follows from Eq (5.23).

5.6.1.6 Summary of convergence rates and complexity guarantees

The result obtained in Eq (5.21) is consistent with the convergence results of other ZO methods. To
gain a better understanding of its performance, this result is compared with those of four other al-
gorithms from different perspectives: the assumptions, the measure used, the convergence rate and
the function query complexity. All methods seek a solution to a stochastic optimization problem;
the comparison is presented in Table 5.2. Since the convergence rates of the ZO-signum and ZO-
signSGD algorithms are measured by using ||∇f(x)||, although ||∇f(x)||2 is used for ZO-adaMM
and ZO-SGD, Jensen’s inequality is used to rewrite the convergence rates in terms of the gradient
norm.

• for ZO-SGD [71]

E[||∇f(x)||] ≤
√
E[||∇f(x)||2] ≤

√√√√O(σ√n√
K

+ n

K

)
≤ O

√σn 1
4

K
1
4

+
√
n√
K

 ;

• for ZO-adaMM [47]

E[||∇f(x)||] ≤
√
E[||∇f(x)||2] ≤

√√√√O(( n√
K

+ n2

K

)√
ln(K) + ln(n)

)

≤ O

((√
n

K
1
4

+ n√
K

)
(ln(K) + ln(n))

1
4

)
,
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where the third inequalities are due to
√
a2 + b2 ≤ a + b, for a, b ≥ 0. For ZO-signSGD, unless

the value of b depends on K, the algorithm’s convergence is only guaranteed within some ball
around the solution, making it difficult to compare with other methods. Thus, in the non-convex
case, after this transformation, it becomes apparent that ZO-signum has a convergence rate that
is O

(
n

3
4√
σ

)
and O(

√
n) worse than those of ZO-SGD and ZO-adaMM, respectively. This may

be attributed to the milder assumption made on the function F in the present work, which also
explains why the convergence is relative to fβ . In the convex case, ZO-signum has a convergence
rate that is O

(
nK

1
6

σ

)
worse that of ZSCG and O

(√
nK

1
6
)

worse that of ZO-SGD. This may be

explained by the sign(·) operator loosing the magnitude information of the gradient when it is
applied. This problem may be fixed as in [87] but it outside the scope of this work. Finally,
all methods except ZO-signSGD are momentum-based versions of the original ZO-SGD method.
Although the momentum-based versions are mostly used in practice, it is interesting to notice that
none of these methods possess a better convergence rate than the original ZO-SGD method. The
next section provides some clues about the interests of the momentum-based method.

Table 5.2 Summary of convergence rates and query complexity for various ZO algorithms given K
iterations.

Method Assumptions Measure Convergence rate Queries

ZO-SGD
F (·, ξ) ∈ C1+

E[||∇f(xR)||2] O

(√
σn

1
4

K
1
4

+
√

n√
K

)
O(K)

[71]
E[||∇F (x, ξ)−∇f(x)||2] ≤ σ2

ZO-signSGD
F (·, ξ) ∈ C0+

E[||∇f(xR)||2] O

( √
n√
K

+
√

n√
b

+ n√
bq

)
O(bqK)

[116]
F (·, ξ) ∈ C1+

||∇F (x, ξ)||2 ≤ η

ZO-adaMM
F (·, ξ) ∈ C0+

E[||∇f(xR)||2]
O
(( √

n

K
1
4

+ n√
K

)
×

O(K)
[47]

F (·, ξ) ∈ C1+
(ln(K) + ln(n))

1
4
)

||∇F (x, ξ)||∞ ≤ η

ZO-Signum F (·, ξ) ∈ C0+ E[||∇fβ(xR)||2] O
(

n
√

n

K
1
4

ln(K)
)

O(K)

ZO-Signum F (·, ξ) ∈ C0+, f convex E[fβi(xi,K)− fβi(xi,∗)] O
(

n
√

n

K
1
3

)
O(K)

ZO-SGD [141] F (·, ξ) ∈ C0+, f convex E[f(xi,K)− f(xi,∗)] O
(

n√
K

)
O(K)

Modified ZSCG
F (·, ξ) ∈ C1+, F convex

E[f(xi,K)− f(xi,∗)] O
(

σ
√

n√
K

)
O(K)

[25]
E[||∇F (x, ξ)−∇f(x)||2] ≤ σ2

5.6.2 Convergence rate of the SSO algorithm

The convergence analysis from the previous subsection is in mean, i.e., it establishes the expected
convergence performance over many executions of the ZO-signum algorithm. As in [71], we now
focus on the performance of a single run. A second hierarchical workflow of the different theoreti-



96

cal results is presented in Table 5.3.

Table 5.3 Workflow of Lemmas/Propositions/Theorems for the SSO convergence analysis.

Assumptions on F Preliminary results Intermediate results Main result When fβ is convex

Assumptions
Lemma 5.6.12

Lemma 5.6.15
Theorem 5.6.17 (i) Theorem 5.6.17 (ii)

1, 2 and 3
Proposition 5.6.8 Lemma 5.6.13 Lemma 5.6.14

which imply
Lemma 5.4.1(3)

L1(fβi ) ≤ L1(f)
Theorem 5.6.9

Proposition 5.6.5
Lemma 5.6.16

Proposition 5.6.8

Unlike [71], our analysis is based on a sequential optimization framework rather than a post-
optimization process. Our SSO algorithm uses the norm of the momentum as an indicator of the
quality of the current solution. In order to analyze the rate of convergence of this algorithm, the fol-
lowing additional assumptions are made regarding the function F . The first assumption concerns
the smoothness of the function F . The assumption of smoothness is used only to guarantee that
L1(fβ

i) is a constant with respect to βi, contrary to the non-smooth case (see [141, Eq (12)]).

Assumption 2. The function F (·, ξ) has a L1(F )-Lipschitz continuous gradient.

The second assumption concerns the local convexity of the function fβ .

Assumption 3. Let (xi,0) be a sequence of points produced by Algorithm 12 and xi,∗ a sequence

of local minima of fβ
i
. We assume that there exists a threshold I ∈ N and a radius ρ > 0 such that

∀i ≥ I:

(1) fβ
i

is convex on the ball Bρ(xi,∗) := {x ∈ Rn : ||x− xi,∗|| < ρ};

(2) xi,0 ∈ Bρ(xi,∗).

Under these assumptions, we will prove that if the norm of the momentum vector m is below some
threshold, then this threshold can be used to bound the norm of the gradient. Second, an estimate
for the number of iterations required to reduce the norm of m below the threshold is provided. The
next lemma is simply technical and demonstrates the link between m̄ and m.
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Lemma 5.6.12. For any subproblem i ∈ N and iteration k ≥ 1, the following equality holds

E[mi,k|xi,k−1] = E[m̄i,k|xi,k−1],

where m̄i,k is defined recursively in Proposition 5.6.1.

Proof. The proof is conducted by induction on k. For k = 1, setting mi,0 = ∇̃fβi(xi,0, ξ0) implies
that

mi,1 = si,02 ∇̃fβ
i(xi,0, ξ0) + (1− si,02 )mi,0 = ∇̃fβi(xi,0, ξ0).

In the same way, m̄i,1 = ∇fβi(xi,0). Therefore, we have

E[mi,1|xi,0] = E[∇̃fβi(xi,0, ξ0)|xi,0] = ∇fβi(xi,0) = E[∇fβi(xi,0)|xi,0] = E[m̄i,1|xi,0].

Now, suppose that the induction assumption is true for a given k ∈ N; then,

E[mi,k+1|xi,k] = si,k2 ∇fβ
i(xi,k) + (1− si,k2 )E[mi,k|xi,k].

Now, by the law of total expectation

E[mi,k|xi,k] = E[E[mi,k|xi,k,xi,k−1]|xi,k]

= E[E[mi,k|xi,k−1]|xi,k]

= E[E[m̄i,k|xi,k−1]|xi,k] (by the induction assumption)

= E[m̄i,k|xi,k].

Thus as E[∇fβi(xi,k)|xi,k] = ∇fβi(xi,k), it follows that

E[mi,k+1|xi,k] = si,k2 ∇fβ
i(xi,k) + (1− si,k2 )E[mi,k|xi,k]

= si,k2 E[∇fβi(xi,k)|xi,k] + (1− si,k2 )E[m̄i,k|xi,k]

= E[m̄i,k+1|xi,k],

which completes the proof.

The following lemma shows that if ||m|| is below a certain threshold, then this threshold can be
used to bound the norm of the gradient.
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Lemma 5.6.13. For a subproblem i ∈ N, let Ki ∈ N denote the first iteration in Algorithm 11

for which ||mi,Ki || ≤ Lβi

4β0 ; then, under Assumption 3 the norm of the gradient of the function

fβ
i

at xi,K may be bounded as follows

||∇fβi(xi,Ki)|| ≤ Lβi

4β0 + 10nL1(F ) si,01

si,02 K
α1−α2
i

.

Moreover, if the problem i+1 is considered, the gradient of the function fβ
i+1

may be bounded

at the point xi,Ki = xi+1,0 as follows:

||∇fβi+1(xi+1,0)|| ≤ ||∇fβi(xi,Ki)||+ L1(F ) (n+ 3) 3
2 (βi − βi+1).

Proof. LetKi be taken as in the statement of the lemma. The norm of the gradient may be bounded
as follows:

||∇fβi(xi,Ki)|| ≤ ||E[mi,Ki |xi,Ki ]||+ ||∇fβi(xi,Ki)− E[mi,Ki |xi,Ki ]||

≤ E[||mi,Ki || |xi,Ki ] + ||∇fβi(xi,Ki)− E[m̄i,Ki |xi,Ki ]||,

where the second inequality follows from Jensen’s inequality and Lemma 5.6.12. Now, using
||mi,Ki || ≤Lβi

4β0 , E[∇fβi(xi,K)|xi,Ki ] = ∇fβi(xi,Ki), L1(fβ
i) ≤ L1(F ) and the result of Proposi-

tion 5.6.8 completes the first part of the proof

||∇fβi(xi,Ki)|| ≤ Lβi

4β0 + E[||∇fβi(xi,Ki)− m̄i,Ki || |xi,Ki ]

≤ Lβi

4β0 + 10nL1(F ) si,01

si,02 K
α1−α2
i

.

The second part of the proof follows directly by applying the triangular inequality and the result in
Lemma 5.4.1(3) because xi,Ki = xi+1,0.

Under Assumption 2, the expected difference between the values of fβi at xi,0 and its optimal value
is bounded in the next lemma.
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Lemma 5.6.14. Let I be the threshold from Assumption 2. If i ≥ I , then

E[fβi+1(xi+1,0)− fβi+1(xi+1,∗)] ≤ ρ

(
Lβi

4β0 + 10nL1(F ) si,01

si,02 K
α1−α2
i

+ L1(F ) (n+ 3) 3
2 (βi − βi+1)

)
.

(5.26)

Proof. Convexity of the function fβi on the ball Bρ(xi,∗) implies that

E[fβi+1(xi+1,0)− fβi+1(xi+1,∗)] ≤ E[⟨∇fβi+1(xi+1,0),xi+1,0 − xi+1,∗⟩]

≤ E[||∇fβi+1(xi+1,0)|| ||xi+1,0 − xi+1,∗||].

The result follows by using Lemma 5.6.13 and because xi+1,0 belongs to the ball Bϵ(xi,∗).

Moreover, an estimate of the number of iterations required to reduce the norm of the gradient below
some threshold may be given.

Lemma 5.6.15. Under Assumptions 1–3, for a subproblem i > I and in the setting of Al-

gorithm 12, let si,02 ∈ R+ be such that k = 1 in Eqs (5.13) and (5.18); assume that L =
max(L0(F ), L1(F )), α1 = 3

4 and α2 = 1
2 . Then, for a uniformly randomly chosen R ∈ [0, Ki],

it follows that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(Ai +Bi),

where Ai and Bi are defined in Eq (5.27).

Proof. Markov’s inequality implies that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0E[||∇fβi(xi,R)||]

Lβi
.

Now, given the result of Theorem 5.6.9 with the specified values of α1 and α2 and the fact that
L1(fβ

i) ≤ L1(F ) together with Lemma 5.6.14, it follows that

4β0E[||∇fβi(xi,R)||]
Lβi

≤ 4β0

βiK
1
4
i

(Ai +Bi),
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where

Ai = ρ

si,01

βi−1

4β0 + 10n si−1,0
1

si−1,0
2 K

1
4
i−1

+ (n+ 3) 3
2 (βi − βi+1)

 ,
Bi = nsi,01

2 H
(− 3

2 )
k + ln(Ki)

(
6
√
si,02 (n+ 4)

√
n+ 20nsi,01

si,02

)
,

(5.27)

Ki is the iteration number for subproblem i and H
(− 3

2 )
k is the generalized harmonic number.

The following lemma provides an estimate of the number of iterations required to bound the norm
of the difference between m and the gradient below a certain threshold.

Lemma 5.6.16. For a subproblem i ∈ N and in the setting of Algorithm 12, let si,02 ∈ R+ be

such that k = 1 in Eqs (5.13) and (5.18); assume that L = max(L0(F ), L1(F )), α1 = 3
4 and

α2 = 1
2 . Then, for a uniformly randomly chosen R ∈ [0, Ki], it follows that

P
(
||mi,R −∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(
3
√
si,02 (n+ 4)

√
n+ 10nsi,01

si,02

)
.

Proof. By Markov’s inequality, it follows that

P
(
||mi,R −∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0E[||mi,R −∇fβi(xi,R)||]

Lβi

= 4β0

LβiKi

Ki∑
k=0

E[||mi,k −∇fβi(xi,k)||] ≤ 4β0

βiK
1
4
i

(
3
√
si,02 (n+ 4)

√
n+ 10nsi,01

si,02

)
,

where the last inequality holds by Propositions 5.6.5 and 5.6.8 with α1 = 3
4 and α2 = 1

2 .

Finally, the main theorem of this section may be stated.

Theorem 5.6.17. Let Assumptions 1–3 hold and let I be the threshold from Assumption 3.

(i) For i ∈ N, set

βi = 1√
n(i+ 1)2 , s

i,0
1 = 1

6n (i+ 1)3/2 and si,02 = s2

(i+ 1)

with s2 so that Eqs (5.13) and (5.18) are satisfied for k = 1. Moreover, let us denote Ki

as the first iteration for which ||mi,Ki || ≤ Lβi

4β0 and that without loss of generality L =
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max(L0(F ), L1(F )). Let ϵ > 0 be the desired accuracy and let i∗ ≥
√

L
ϵ
≥ I . If for any

i ≥ I,Ki ≥ (i+ 1)6; then after at most

O

(
n6L7/2

ϵ7/2

)

function evaluations, the following inequality holds

||∇fβi∗

(xi∗,0)|| ≤ ϵ. (5.28)

(ii) Furthermore, when for every i ∈ N, fβi
is convex; then, under the same setting as Theo-

rem 5.6.11 given in Eq (5.22), it follows that after at most

O

n 9
2L7/2

ϵ7/2


function evaluations, the inequality given by Eq (5.28) holds.

Proof. For a subproblem i ∈ N, a probabilistic upper bound on the iteration Ki ∈ N such that
||mi,Ki ||≤Lβi

4β0 may be provided. We have

||mi,Ki || = min
k∈[0,Ki]

||mi,k|| ≤ ||mi,R|| ≤ ||mi,R −∇fβi(xi,R)||+ ||∇fβi(xi,R)||, (5.29)

where R ∼ U [0, Ki]. Now, probabilistic upper bounds on the number Ki are required to obtain that
both terms on the right-hand side of the previous inequality are below Lβi

4β0 . For the first term of the
right-hand side in Eq (5.29), using the specified values of si,01 , si,02 and βi, Lemma 5.6.16 ensures
that

P
(
||mi,R −∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(
3
√
si,02 (n+ 4)

√
n+ 10nsi,01

si,02

)

≤ O

(
n
√
n (i+ 1) 3

2

K
1
4
i

)
.

The second term of the right-hand side in Eq (5.29) depends on the value of I . For subproblems
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i ≤ I , it follows by Markov’s inequality and Theorem 5.6.9 that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

Lβi
E[||∇fβi(xi,R)||]

≤ 4β0

βi

(
Di
f

si,01
+ nsi,01

2 H
(− 3

2 )
k + ln(Ki)

(
6
√
si,02 (n+ 4)

√
n+ 40si,01 n

si,02

))

≤ O

max
(
n(i+1)

7
2

L
, n
√
n ln(Ki)(i+ 1) 3

2

)
K

1
4
i

 .
For subproblems i > I , Lemma 5.6.15 ensures that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4

(Ai +Bi),

where Ai and Bi are given by Eq (5.27). Now, given the condition on Ki, it follows that

Ai = ρn (i+ 1)3/2
(

1
i2

+ 10
s2i2

+ 2 (n+ 3)
i2(i+ 1)

)

and

Bi = H
(− 3

2 )
k

2(i+ 1)3/2 + ln(Ki)
(

6n
√
n+ 3√s2√
i+ 1

+ 12
s2
√
i+ 1

)
.

Thus, we obtain

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ O

n√n (i+ 1) 3
2 ln(Ki)

K
1
4
i

 . (5.30)

Therefore, to obtain that ||mi,Ki || ≤ Lβi

4β0 , it takes at most the following number of iterations:

Ki =

 O (max (n4 (i+ 1)14, n6 (i+ 1)6)) , if i ≤ I,

O ((n6 (i+ 1)6)) , otherwise.

Thus, by taking i∗ ≥
√

L
ϵ
, it follows that the number of iterations needed to reach the subproblem
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i∗ is

i∗∑
i=1

Ki =
I∑
i=1

Ki +
i∗∑

i=I+1
Ki = O

(
max

(
n4 (I + 1)15, n6 (I + 1)7

))
+O(n6 (i∗)7)

= O

(
n6L7/2

ϵ7/2

)
,

(5.31)

where I is a constant with respect to ϵ. Once this number of iterations is reached, it follows that
||mi∗,0|| ≤ L

(i∗+1)2 ≤ ϵ and by Lemma 5.6.13

||∇fβi∗

(xi∗,Ki∗ )|| ≤ L

(i∗ + 1)2 + L
√
i∗ + 1 (i∗) 3

2
≤ 2ϵ.

For the second part of the proof, the bounds on Eq (5.29) do not depend on the value of I since fβi

is assumed convex for every i ∈ N. With the setting in Eq (5.22), it follows that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βi
E[||∇fβi(xi,R)||] ≤ 16ρn

√
n (i+ 1)2

K
1
3
i

and

P
(
||mi,R −∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

Lβi
n
√
nL

∑Ki−1
k=0

2ρ
Γk+1(k+1)

4
3∑Ki−1

k=0
2ρ

Γk+1(k+1)
≤ 8n

√
n (i+ 1)2

K
1
3
i

,

where the first inequality follows by Theorem 5.6.11 and the second one by the definition of the
probability density of R together with Propositions 5.6.5 and 5.6.8. Therefore, it takes at most
Ki = O(n 9

2 (i + 1)6) iterations to obtain ||mi,Ki || ≤ Lβi

4β0 . Thus, by taking i∗ ≥
√

L
ϵ
, it follows that

the number of iterations needed to reach the subproblem i∗ is

i∗∑
i=1

Ki = O(n 9
2 (i∗)7) = O

n 9
2L

7
2

ϵ
7
2

 .
It remains to apply Lemma 5.6.13 as previously done to complete the proof.

We would like to make a few remarks about this theorem. First, one approach to satisfy the condi-
tion Ki ≥ (i + 1)6 for any i ∈ N is to incorporate it into the stopping criterion of Algorithm 11.
However, due to the limited number of iterations in practice, this condition is typically replaced by
a weaker one, Ki ≥ M , where M > 0 is a constant. Second, the main result of Theorem 5.6.13
establishes the rate of convergence to an ϵ-optimal point for a single run of the SSO algorithm,
which is the first of its kind to the best of our knowledge. This was made possible by decomposing
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the problem given in Eq (5.1) into a sequence of subproblems, each of which is solved by using
carefully chosen stopping criteria and step sizes. It is worth noting that, in [71], the (ϵ,Λ)-solution
of the norm of the gradient is obtained after at most O

(
nL2σ2

ϵ4

)
function evaluations. Although

this bound has a weaker dependence on n and L, it is worse in terms of ϵ. Third, the first term
in Eq (5.31) may be significant even if it is fixed, particularly if the region where the function is
convex is difficult to reach; indeed, this constant disappears when fβi is convex for every index i.
Nevertheless, the bounds given represent the worst set and may be considerably smaller in practice.
A way to decrease this term is to decrease the power on i in the denominator of βi, si,01 and si,02 but
this would also decrease the asymptotic rate of convergence. Finally, the process used in the SSO
algorithm may be extended to other momentum-based methods and give an appealing property for
these methods compared to the classical SGD.

5.7 Numerical experiments

The numerical experiments are conducted for two bounded constrained blackbox optimization
problems. In order to handle the bound constraints x ∈ [ℓ,u] ⊂ Rn, the update given by Eq (5.9)
is simply projected such that x← max(ℓ,min(x,u)).

5.7.1 Application to a solar thermal power plant

The first stochastic test problem is SOLAR [110], which simulates a thermal solar power plant and
contains several instances allowing for selection of the number of variables, the types of constraints
and the objective function to optimize. All of the instances of SOLAR are stochastic and have non-
convex constraints and integer variables. In this work, the algorithms developed do not deal with
integer variables. Therefore, the problem is altered: all integer variables are fixed to their initial
values and the problem is to obtain a feasible solution by optimizing the expectation of constraint
violations over the remaining variables. Numerical experiments were conducted for the second
instance of the SOLAR framework, which considers 12 variables (2 integers) and 12 constraints

min
x∈[0,1]12

E

 m∑
j=1

max(0, cj(x, ξ))2

 ,
where cj denotes the original stochastic constraints and the bound constraints have been normal-
ized. The second instance of SOLAR is computationally expensive; a run may take between several
seconds and several minutes. Therefore, the maximum number of function evaluations was set to
1000. Four algorithms were used:

• SSO, whose hyperparameters values are given in Table 5.4. The search step given in Algo-
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rithm 12 was used for this experiment. A truncated version of the Gaussian gradient based
estimate was used for this experiment.

Table 5.4 List of hyperparameters for the SSO algorithm.

Problem βi si,k1 si,k2 M q

Cifar10 0.005
(i+1)2

0.005
(i+1)

3
2

√
k+1

0.9
(i+1) (k+1)

1
4

60 10

ImageNet 0.001
(i+1)2

0.003
(i+1)

3
2

√
k+1

0.7
(i+1) (k+1)

1
4

100 10

Solar 0.3
(i+1)2

0.1
(i+1)

3
2

√
k+1

0.5
(i+1) (k+1)

1
4

5 10

• ZO-adaMM [47] which is a ZO version of the original Adam algorithm. This algorithm
appears as one of the most effective according to [47, 117] in terms of distortion value, num-
ber of function evaluations and success rate. The default parameters defined experimentally
in [47] were used for this problem, except that β = 0.05 and the learning rate was equal to
0.3. Moreover, the same gradient estimator as that for ZO-signum was used to eliminate its
impact on the performance.

• CMA-ES [78] an algorithm based on biologically inspired operators. Its name comes from
the adaptation of the covariance matrix of the multivariate normal distribution used during
the mutation. The version of CMA-ES used was the one of the pymoo [35] library with the
default setting.

• The NOMAD 3.9.1 software [106], based on the MADS [12] algorithm, a popular blackbox
optimization solver.

The results are presented in Figure 5.2, which plots the average best result obtained by each algo-
rithm with five different seeds. In this experiment, SSO achieved similar performance to NOMAD
and CMA-ES which are state-of-the-art algorithms for this type of problem. ZO-adaMM had diffi-
culty converging even though it is a ZO algorithm.
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Figure 5.2 Average of five different seed runs for the NOMAD, CMAES, SSO and ZO-adaMM
algorithms.

5.7.2 Application to blackbox adversarial attack

This section demonstrates the competitiveness of the SSO algorithm through experiments involving
the generation of blackbox adversarial examples for deep neural networks (DNNs) [192]. Generat-
ing an adversarial example for a DNN involves adding a well-designed perturbation to the original
legal input to cause the DNN to misclassify it. In this work, the attacker considers the DNN model
to be unknown, hence the term blackbox. Adversarial attacks against DNNs are not just theoret-
ical, they pose a real safety issue [144]. Having an algorithm that generates effective adversarial
examples enables modification of DNN architecture to enhance its robustness against such attacks.
An ideal adversarial example is one that can mislead a DNN to recognize it as any target image
label, while appearing visually similar to the original input, making the perturbations indiscernible
to human eyes. The similarity between the two inputs is typically measured by an ℓp norm. Mathe-
matically, a blackbox adversarial attack can be formalized as follows. Let (y, ℓ) denote a legitimate
image y with the true label ℓ ∈ [1,M ], where M is the total number of image classes. Let x denote
the adversarial perturbation; the adversarial example is then given by y′ = y + x, and the goal is
to solve the problem [47]

min
x
λf(y + x) + ||x||2,

subject to (y + x) ∈ [−0.5, 0.5]n,
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where λ > 0 is a regularization parameter and f is the blackbox attack loss function. In our
experiments, λ = 10 and the loss function is defined for an untargeted attack [42], i.e.,

f(y′) = max{Z(y′)ℓ −max
j ̸=ℓ

Z(y)j, 0},

where Z(y′)k denotes the prediction score for class k given the input y′. Thus, the minimum value
of 0 is reached as the perturbation succeeds to fool the neural network.

The experiments of generating blackbox adversarial examples were first performed by using an
adapted AlexNet [98] on the dataset Cifar10 and then by using InceptionV3 [180] on the dataset
ImageNet [59]. Since the NOMAD algorithm is not recommended for large problems, three al-
gorithms are compared: SSO (without search), ZO-adaMM and CMA-ES. In the experiments, the
hyperparameters of the ZO-adaMM algorithm were taken as in [47], and those of SSO are given
in Table 5.4; the uniform gradient based estimate is used for both algorithms. Moreover, for the
Cifar10 dataset, different initial learning rates for ZO-adaMM were used to observe its influence
on the success rate. Experiments were conducted for 100 randomly selected images with a start-
ing point corresponding to a null distortion; the maximum number of function queries was set to
5000. Thus, as the iteration increases, the attack loss decreases until it converges to 0 (indicating a
successful attack) while the norm of the distortion could increase.

The best attack performance involves a trade-off between a fast convergence to a 0 attack loss in
terms of function evaluations, a high rate of success, and a low distortion (evaluated by the ℓ2-
norm). The results for the Cifar10 dataset are given in Table 5.5.

Table 5.5 Results of blackbox adversarial attack for the Cifar10 dataset (n = 3× 32× 32).

Method Attack success rate ||ℓ2|| first success Average # of function evaluations

ZO-adaMM lr = 0.01 79 % 0.14 582
ZO-adaMM lr = 0.03 96% 0.97 310
ZO-adaMM lr = 0.05 98% 2.10 215
CMAES σ = 0.005 99% 0.33 862
SSO 100% 0.55 442

Except for ZO-adaMM with an initial learning rate equal to 0.01, all algorithms achieved a success
rate above 95%. Among these algorithms, ZO-adaMM with a learning rate equal to 0.05, had the
best convergence rate in terms of function evaluations but it had the worst value of distortion. On
the contrary, CMA-ES obtained the best value of distortion but had the worst convergence rate. The
SSO algorithm achieved balanced results, and it was the only one to reach full success rate.
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Table 5.6 displays the results for the ImageNet dataset. Only two algorithms are compared since
dimensions were too large to invert the covariance matrix in CMA-ES. For this dataset, ZO-adaMM
and SSO had the same convergence rate. However, SSO outperformed ZO-adaMM in terms of
success rate while having a slightly higher level of distortion.

Table 5.6 Results of blackbox adversarial attack for the ImageNet dataset (n = 3× 299× 299).

Method Attack success rate ||ℓ2|| first success Average # of function evaluations

ZO-adaMM lr = 0.01 59 % 19 1339
SSO 73 % 33 1335

5.8 Concluding remarks

This paper presents a method for computationally expensive stochastic blackbox optimization. The
approach uses ZO gradient estimates, which provides three advantages. First, they require few
function evaluations to estimate the gradient, regardless of the problem’s dimensions. Second,
under mild conditions on the noised objective function, the problem is formulated as optimization
of a smooth approximation. Third, the smooth approximation may appear to be locally convexified
near a local minima.

Based on these three features, the SSO algorithm was proposed. This algorithm is a sequential
one and comprises two steps. The first is an optional search step that improves the exploration
of the decision variable space and the algorithm’s efficiency. The second is a local search, which
ensures the convergence of the algorithm. In this step, the original problem is decomposed into
subproblems solved by a ZO-version of a sign stochastic descent with momentum algorithm. More
specifically, when the momentum’s norm falls below a specified threshold that depends on the
smoothing parameter, the subproblem is considered solved. The smoothing parameter’s value is
then decreased, and the SSO algorithm moves on to the next subproblem.

A theoretical analysis of the algorithm has been conducted. Under Lipschitz continuity of the
stochastic ZO oracle, a convergence rate in mean of the ZO-signum algorithm is derived. Under
additional assumptions of smoothness and convexity or local convexity of the objective function
near its minima, the rate of convergence of the SSO algorithm to an ϵ-optimal point of the problem
has been derived, which is, to the best of our knowledge, the first of its kind.

Finally, numerical experiments were conducted based on a solar power plant simulation and adver-
sarial blackbox attacks. Both examples were computationally expensive, the former was a small-
sized problem (n ≈ 10) and the latter was a large-sized problem (up to n ≈ 105). The results
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demonstrate the SSO algorithm’s competitiveness in terms of both performance and convergence
rate compared to state-of-the-art algorithms. Further work will extend this approach to constrained
stochastic optimization.
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5.9 Appendix

5.9.1 Appendix A. Notations

The following list describes symbols used within the body of the document. Throughout the paper,
when a symbol is shown in bold then it is a vector; otherwise, it is a scalar.

n The dimension of the space of the design variables
Ω The sample space of ξ, i.e., the set of all possible outcomes of ξ

ξ : Ω→ Rm The vector of uncertainties
Eξ[·] The expectation with respect to the random vector ξ

F : Rn × Rm → R The stochastic zeroth-order oracle that takes into account the uncertainty ξ

f : Rn → R The expectation of F with respect to ξ

β ∈ R+∗ A strictly positive scalar for use as a smoothing parameter
u ∈ Rn A Gaussian random vector
fβ = E[f(x + βu)] A smooth approximation of a function f
L0(f) The Lipschitz constant associated with a function f
L1(f) The Lipschitz constant associated with the gradient of a function f
∇f The gradient of a function f
∇̃f An estimator of the gradient of a function f

g̃
An estimator of the gradient of a function f based on outputs of the stochastic

zeroth-order oracle F (x, ξ)
j ∈ [1, n] The counter associated with the dimension
i ∈ N The outer iteration counter associated with a subproblem
k ∈ N The inner iteration counter
m ∈ Rn The momentum vector
si,k2 ∈ (0, 1) The step size associated with the momentum
si,k1 ∈ (0, 1) The step size associated with x
L ∈ R+∗ An approximation of the Lispchitz constant
q ∈ N The size of the mini batch used to estimate ∇̃
M ∈ N The minimum number of iterations used in the ZO-signum algorithm
H

(α)
k The generalized harmonic number of order α
C0+ Class of Lipschitz continuous functions
C1+ Class of differentiable functions whose gradient is Lipschitz
C∞ Class of infinitely differentiable functions



111

5.9.2 Appendix B. Proof of Proposition 5.6.1

Proposition 5.9.1 ([31]). For the subproblem i ∈ N, under Assumption 1 and in the setting of

Algorithm 11, we have

si,k1 E[||∇fβi (xi,k)||1] ≤ E[fβi(xi,k)− fβi(xi,k+1)] + nL1(fβ
i)

2 (si,k1 )2

+ 2si,k1 E[||m̄i,k+1 −∇fβi(xi,k)||1]︸ ︷︷ ︸
bias

+2si,k1
√
n
√√√√E[||mi,k+1 − m̄i,k+1||22]︸ ︷︷ ︸

variance

,
(B.32)

where m̄i,k+1
j is defined recursively as m̄i,k+1

j = si,k2 ∇fβ
i(xi,k) + (1− si,k2 )m̄i,k

j .

Proof. By L1(fβ
i)-Lipschitz smoothness of fβi (see Lemma 5.4.1(3)), it follows that

fβ
i(xi,k+1) ≤ fβ

i(xi,k) + ⟨∇fβi(xi,k),xi,k+1 − xi,k⟩+ L1(fβ
i)

2 ||xi,k+1 − xi,k||22

= fβ
i(xi,k)− si,k1 ⟨∇fβ

i(xi,k), sign(mi,k+1)⟩+ L1(fβ
i) (si,k1 )2

2 ||sign(mi,k+1)||22

= fβ
i(xi,k)− si,k1 ||∇fβ

i(xi,k)||1 + nL1(fβ
i)

2 (si,k1 )2

+ 2si,k1

n∑
j=1
|∇jf

βi(xi,k)|1{sign(mi,k+1
j ) ̸= sign(∇jf

βi(xi,k))},

where 1{·} is the indicator function. Now, as in [31, 116], the expected improvement conditioned
on xi,k is given by

E[fβi(xi,k+1)− fβi(xi,k)|xi,k] ≤ −si,k1 ||∇fβ
i (xi,k)||1 + nL1(fβ

i)
2 (si,k1 )2

+ 2si,k1

n∑
j=1
|∇jf

βi(xi,k)|E[1{sign(mi,k+1
j ) ̸= sign(∇jf

βi(xi,k))}|xi,k]. (B.33)

Again, as in [31, 116], the expectation that the sign ofmi,k+1
j is different from the sign of∇jf

βi(xi,k)
is relaxed by considering that the set

{mi,k+1
j : sign(mi,k+1

j ) ̸= sign(∇jf
βi(xi,k)} ⊂ {mi,k+1

j : |mi,k+1
j −∇jf

βi(xi,k)| ≥ |∇jf
βi(xi,k)|}.
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Therefore, it follows that

E[1{sign(mi,k+1
j ) ̸= sign(∇jf

βi(xi,k))}|xi,k] ≤ E[1{|mi,k+1
j −∇jf

βi(xi,k)| ≥ |∇jf
βi(xi,k)|}|xi,k]

≤
E[|mi,k+1

j −∇jf
βi(xi,k)| |xi,k]

|∇jfβ
i(xi,k)| , (B.34)

where the second inequality comes from the conditional Markov’s inequality. Substituting Eq (B.34)
into Eq (B.33) and taking the expectation over all of the randomness we obtain

E[fβi(xi,k+1)− fβi(xi,k)] ≤− si,k1 E[||∇fβi (xi,k)||1] + nL

2 (si,k1 )2

+ 2si,k1

n∑
j=1

E[|mi,k+1
j −∇jf

βi(xi,k)|].
(B.35)

Moreover, by adding and subtracting m̄i,k+1 in terms of the sum of Eq (B.35), one gets

n∑
j=1

E[|mi,k+1
j −∇jf

βi(xi,k)|] = E[||mi,k+1 − m̄i,k+1 + m̄i,k+1 −∇fβi(xi,k)||1]

≤
√
nE[||mi,k+1 − m̄i,k+1||2] + E[||m̄i,k+1 −∇fβi(xi,k)||1]

≤
√
n
√
E[||mi,k+1 − m̄i,k+1||22] + E[||m̄i,k+1 −∇fβi(xi,k)||1],

where the first inequality comes from ||·||1 ≤
√
n||·||2 and the second one from Jensen’s inequality.

Finally, incorporating the last inequality in Eq (B.35) completes the proof.

5.9.3 Appendix C. Original signSGD and signum algorithms

Below are the original versions of the signSGD and signum algorithms.

Algorithm 13 signSGD algorithm.

1: Input: x0, s1 ∈ (0, 1)
2: for k = 0, 1, . . . do
3: Calculate an estimate of the stochastic gradient ∇̃f(xk) and update:

xk+1 = xk − s1sign(∇̃f(xk))

4: end for
5: Return xk
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Algorithm 14 Signum algorithm.

1: Input: x0,m0, s1 ∈ (0, 1), s2 ∈ (0, 1)
2: for k = 0, 1, . . . do
3: Calculate an estimate of the stochastic gradient ∇̃f(xk) and update:

mk+1 = s2mk + (1− s2)∇̃f(xk)

xk+1 = xk − s1sign(mk+1)

4: end for
5: Return xk
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5.9 Addenda

The previous paper was presented at the MOPTA 2023 conference and several remarks were made
to add a theoretical result and numerical experiments. First, a corollary that completes Theo-
rem 5.6.17 is stated and proved. Second, additional experiments are conducted to compare the SSO
algorithm and the ZO-Signum algorithms in order to study the practical implications of sequential
optimization. Finally, experiments are performed on blackbox adversarial attacks in a stochastic
context. The blackbox adversarial attack presented in [47] was indeed deterministic, so the same
problem was used in our paper to conform to the state of the art. Here we have more freedom to
perform the numerical experiments.

5.9.1 An additional theoretical result

First, note that a typo was made in Theorem 5.6.17, the norm of the gradient must be taken at xi∗+1,0

and not at xi∗,0. Since the blackbox f is assumed to be C1 in the theorem, the result obtained for the
function fβi∗

can be extended to the original blackbox f . This is the subject of the next corollary.

Corollary 5.9.1. Under the same statement as Theorem 5.6.17 except that βi = 1
(n+3)

3
2 (i+1)2

,

then after at most

O

(
n6L7/2

ϵ7/2

)

function evaluations, the following inequality holds

||∇f(xi∗+1,0)|| ≤ ϵ.

Proof. By the triangular inequality, it follows that

||∇f(xi∗+1,0)|| ≤ ||∇fβi∗

(xi∗+1,0)||+ ||∇f(xi∗+1,0)−∇fβi∗

(xi∗+1,0)||

≤ ϵ+ Lβi
∗ (n+ 3) 3

2 ,

where the second inequality is due to Theorem 5.6.17 and Lemma 5.4.1.3. Now, as i∗+1 ≥
√

L
ϵ
+1,

it follows that
Lβi

∗ (n+ 3) 3
2 ≤ ϵ.

The result of the corollary follows directly.
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5.9.2 Comparison between the SSO and the ZO-Signum algorithms

The ZO-Signum algorithm is used to solve each subproblem of the SSO algorithm. It can be seen
as an SSO algorithm where the hyperparameter M is fixed to infinity. Therefore, that remains to
compare two SSO algorithms with a different hyperparameter value. In this case, the simplest way
to compare the two versions of an algorithm is to use a benchmark of analytical test problems and
present data profiles [138].

First, data profiles must be adapted for unconstrained stochastic optimization. Data profiles can
be used to assess whether the algorithms are successful in generating solution values close to the
best objective function values. To identify a successful run, a convergence test is required. In a
deterministic case, this test is based on the best function value found by the algorithm. However,
if the function is stochastic, the best function value is inappropriate. Here, an estimated mean of
the function value is used for the convergence test. Let µe be the best estimated mean obtained by
an algorithm on a problem after e evaluations, µ0 be the mean of the function at the starting point,
and µ∗ be the best mean obtained by all tested algorithms on all instances of the problem. Then the
problem is said to be solved with respect to the mean within the convergence tolerance τ if

µ0 − µe ≥ (1− τ) (µ0 − µ∗).

An instance of a problem corresponds to a particular seed of a pseudorandom generator. The num-
ber of samples used for the mean estimation must be adapted to the desired convergence tolerance.
In this work, 1000 independent identically distributed samples of ξ are used to estimate the mean.
Therefore, the convergence tolerances used are all greater than 0.01. Finally, the horizontal axis of
a data profile represents groups of n + 1 evaluations. The vertical axis corresponds to the propor-
tion of problems solved within a given tolerance τ . Each algorithm has its curve to compare the
algorithms’ ability to converge to the best mean.

To compare the two algorithms, 16 test problems from the literature are used. These test problems
can be grouped into 4 classes of problems. Each problem consists of an objective function and
a distribution of uncertainties. The vector ξ is composed of independent, identically distributed
variables. Here are the characteristics and the origin of the different test problems

• Stochastic Rosenbrock problem [23]

f1(x, ξ) =
n−1∑
i=1

(
10(xi+1 + ξi+1 − (xi + ξi)2) + ξn+i

)2
+
(

(1− (xi + ξi)) + ξ2n−1+i

)2
.
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• Stochastic Powell problem [199]

f2(x, ξ) =
n/4∑
i=1

(
(x4i−3 + ξ4i−3 + 10(x4i−2 + ξ4i−2))2 + 5(x4i−1 + ξ4i−1 − (x4i + ξ4i)2

+ (x4i−2 + ξ4i−2 − 2(x4i−1 + ξ4i−1))4 + 10(x4i−3 + ξ4i−3 − (x4i + ξ4i)4
)

+ ξn+1

√√√√1 + 100
n∑
i=1

(xi − 1)2.

• Stochastic Levy problem [199]

f3(x, ξ) = sin2(πw1) +
n−1∑
i=1

(wi − 1)2[1 + 10 sin2(πwi + 1)]

+ (wn − 1)2(1 + sin2(2πwn)) + ξn+1

√√√√1 + 10
n∑
i=1

(xi − 2)2

with:
wi = 1 + xi + ξi − 1

4 .

• Stochastic Schwefel problem

f4(x, ξ) =418.9829n+
n∑
i=1

(xi + ξi) sin(
√
|xi + ξi|)]

+ ξn+1

100

√√√√1 + 100
n∑
i=1

(xi − 1)2.

Table 5.7 Problem parameters and uncertainties distributions

n x0 Bounds ξi,, i ∈ [1, n] ξj , j ≥ n

f1 {2, 10, 50, 100} [−1.2, 1]n/2 [−1.5, 1.5]n U([−0.25, 0.25]) U([−3, 3]2n−2)1

f2 {4, 12, 20, 40} [3.25, 4.6]n/2 [−4, 5]n B(2, 2) 2 U([−4, 4])
f3 {2, 10, 20, 50} [−7.2, 9.6]n/2 [−10, 10]n VM(0, 4)3 U([−3, 3])
f4 {2, 10, 20, 50} [305, 305]n/2 [200, 500]n T (−0.5, 0.1, 0.5)4 U([−3, 3])

1 U the uniform distribution,
2 B(2, 2) the beta distribution,
3 VM(0, 4) the Von Mises distribution,
4 T (0.5, 1, 0) the triangular distribution.

The data profiles are computed using the previous benchmark with 5 different seeds for each prob-
lem. For each value of τ ∈ {0.1, 0.01}, the data profiles are plotted in terms of the mean. In
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order to better illustrate the results according to the dimension of the problem, the benchmark of
test problems is divided into two groups: one with problem size inferior to 10 and another with
problem size strictly superior to 10. Each problem is run with ten different random seeds to reduce
the randomness. In addition, the results of the NOMAD software, the CMA-ES algorithm, and the
ZO-adaMM algorithm are presented. The hyperparameter values for the different algorithms are as
follows:

• SSO:

βi = min{20, (u0 − ℓ0)/3}
(i+ 1)2 , si,k1 = min{60, (u0 − ℓ0)/3}√

n(i+ 1) 3
2
√
k + 1

, si,k2 = 0.7
(i+ 1)(k + 1) 1

4
,

M = Kmax

5 , q = 2;

• ZO-Signum:

β = min{20, (u0 − ℓ0)/3}, sk1 = min{60, (u0 − ℓ0)/3}√
n
√
k + 1

, sk2 = 0.7
(k + 1) 1

4
, M =∞, q = 2;

• ZO-adaMM:

β = min{20, (u0 − ℓ0)/3}√
n

, lr = min{200, 20(u0 − ℓ0)}, β1 = 0.9, β2 = 0.7, q = 2;

• CMA-ES: β = (u0−ℓ0)
30 ;

• NOMAD version 3.9 [106] with the Robust-MADS option [15];

where Kmax is the maximum number of iterations assigned to a problem, and u0 and ℓ0 are the
first variables of the lower and upper bounds. In the experiments, Kmax is 500 for problems of size
n = 2, 1000 for problems of size n = 4, 2500 for problems of size n = 10, 3000 for problems of
size n = 12, and 10000 for n ≥ 20.

Results on test problems with dimension n ≤ 10 are shown in figure 5.3. For τ = 0.1 it appears
that the SSO and ZO-Signum algorithms have the same curves. This is because the convergence
tolerance is too small to detect a difference between the two algorithms. However, both algorithms
outperform the other algorithms, either in terms of efficiency (i.e., solving as many problems as
possible in as few function evaluations as possible) or consistency (i.e., having a large percentage
of problems solved within the allotted budget of evaluations). However, with a finer convergence
tolerance, the results change drastically. While in terms of efficiency, the R-MADS algorithm
performs better than a group composed of the SSO, ZO-Signum, and ZO-adaMM algorithms, in
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Figure 5.3 Results on test problems with n ≤ 10 for τ = 0.1 (left) and τ = 0.01 (right) with 5
different seeds for each problem.

terms of consistency, the SSO algorithm outperforms the R-MADS, ZO-Signum, and ZO-adaMM
algorithms, which achieve similar results.
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Figure 5.4 Results on test problems with n ≥ 10 for τ = 0.1 (left) and τ = 0.01 (right) with 5
different seeds for each problem.

Results on test problems with dimension n ≥ 10 are shown in figure 5.4. These results confirm and
reinforce the previous results. For a convergence tolerance of τ = 0.1, the SSO and ZO-Signum
algorithms perform equally well and outperform the other algorithms. For a finer convergence tol-
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erance, the SSO algorithm outperforms all other algorithms, while the ZO-type algorithms perform
equally well and outperform the R-MADS and CMA-ES algorithms. To summarize the results,
it appears that in small dimension, the R-MADS algorithm performs better, although the ZO-type
algorithms achieve satisfactory results. In large dimension, the ZO-type algorithm achieves a better
result than the R-MADS and CMA-ES algorithms. In both cases, the SSO algorithm allows to
obtain better optimal values thanks to its sequential optimization process.

5.9.3 Universal targeted blackbox adversarial attack

This subsection completes the experiments on generating adversarial examples for DNNs. Two
main changes are made to the experiments performed in section Section 5.7.2. First, the problem
is targeted. This means that the perturbation must be designed so that the DNN misclassifies the
adversarial image as a pre-specified target label. Second, the problem is made stochastic. This
is done by selecting a set of 15 images that have been correctly classified by the DNN. Then,
instead of looking for a perturbation for a single image, the perturbation must be designed for the
15 images. For this purpose, it is assumed that the gradient can only be estimated for a randomly
chosen image among the 15. Therefore, compared to Section 5.7.2, the goal of the algorithm is to
solve the following problem

min
x
λE[f(yi + x)] + ||x||2,

subject to (yi + x) ∈ [−0.5, 0.5]n,

where i is taken randomly uniformly in {1, . . . , 15}. Moreover, as the problem is for targeted attack
[42], the function f is also slightly modified

f(y′
i) = max{max

j ̸=ℓ′
Z(y′

i)j − Z(y′
i)ℓ′−, 0},

where y′
i = yi + x and yi is an image correctly classified as label ℓ, ℓ′ ̸= ℓ is the target label, and

Z(y′
i)j is the prediction score of class j given input y′

i.

The results are given in Table 5.8 for a set of 15 images of the Cifar10 dataset and a budget of
function evaluations fixed to 50000. In this experiment, the origin label is 5, corresponding to
images of dogs, while the target label is 3, corresponding to images of cats. The hyperparameter
values are set to the same values as in the deterministic adversarial attack experiment, except that
s0

1 = 0.01, s0
2 = 0.3, and M = 500. The results show that the SSO algorithm achieves better results

than the ZO-adaMM algorithm on the 15 selected images, but has a similar success rate when all
correctly classified images are considered. Furthermore, the norm of the distortion is smaller for
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the SSO algorithm than for the ZO-adaMM algorithm. Although the results are promising, further
experiments are needed to confirm them.

Table 5.8 Results of stochastic targeted blackbox attack for the Cifar10 dataset n = 3× 32× 32

Method

% of 15 images classed as

targeted label

% of the correctly classified

images classed as targeted label

||ℓ2||
final

ZO-adaMM

lr = 0.05 46.66 10.8 3.39

SS0 86.66 11.3 2.90
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CHAPTER 6 ARTICLE 3: RISK-AVERSE CONSTRAINED BLACKBOX
OPTIMIZATION UNDER MIXED ALEATORY/EPISTEMIC UNCERTAINTIES

Title Risk averse constrained blackbox optimization under mixed aleatory/epistemic uncertain-
ties

Authors Charles Audet, Jean Bigeon, Romain Couderc and Michael Kokkolaras

Journal Submitted for publication to Computational Optimization and Applications on 29/10/2023.

6.1 Context

The third contribution of this thesis addresses the problem given in Equation (1.4). This problem
is very general, as it allows to consider any type of uncertainty. As presented in Section 2.3.1,
there are two main types of uncertainty. Dealing with both types is particularly challenging in
a BBO context. For example, several papers on this topic are of limited interest because they
focus only on the reliability analysis problem [4, 139]. For a given point x, these methods try to
efficiently approximate the uncertain constraints at that point, and no hint is given on how to handle
an uncertain objective function. Furthermore, another drawback of these methods is that they are
heuristic based and do not benefit from convergence analysis. Although this does not question the
efficiency of these methods in practice, it may limit their legitimacy to be used.

In this contribution, a CVaR-based approach allows to deal with both types of uncertainty [112]. In
fact, if a risk level sufficiently close to 1 is desired, this approach mimics the worst-case approach
for epistemic uncertainty. However, in a BBO context, estimating the CVaR of the objective and/or
constraint functions is challenging. Monte Carlo simulation is usually prohibitively expensive,
requiring at least 1

1−α samples to get a satisfactory estimate of CVaR. As in the previous paper,
multi-timescale stochastic approximation algorithms have been developed to avoid computation-
ally expensive sampling [50, 152]. This algorithm cannot be directly applied in our case because
a gradient estimate is computed based on Markov decision process properties. Therefore, in this
work, Gaussian exploration is used to smooth the problem and obtain approximate derivatives of
the problem, as in the previous contribution. However, a new problem arises since the classical
Gaussian distribution cannot be used in the case where bound constraints are not relaxable in the
sense of [107]. Therefore, an approximation based on the truncated Gaussian distribution is de-
veloped. Finally, thanks to all the previous elements, we prove the almost sure convergence of
our algorithm to a feasible point of the CVaR-constrained problem whose objective function value
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is arbitrarily close to that of a local solution. This proof is based on classical results from multi-
timescale stochastic approximation and Lyapunov theory.
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6.2 Article

Abstract This paper addresses risk averse constrained optimization problems where the objective
and constraint functions can only be computed by a blackbox subject to unknown uncertainties.
To handle mixed aleatory/epistemic uncertainties, the problem is transformed into a conditional
value-at-risk (CVaR) constrained optimization problem. General inequality constraints are man-
aged through Lagrangian relaxation. A convolution between a truncated Gaussian density and
the Lagrangian function is used to smooth the problem. A gradient estimator of the smooth La-
grangian function is derived, possessing attractive properties: it estimates the gradient with only
two outputs of the blackbox, regardless of dimension, and evaluates the blackbox only within the
bound constraints. This gradient estimator is then utilized in a multi-timescale stochastic approx-
imation algorithm to solve the smooth problem. Under mild assumptions, this algorithm almost
surely converges to a feasible point of the CVaR-constrained problem whose objective function
value is arbitrarily close to that of a local solution. Finally, numerical experiments are conducted to
serve three purposes. Firstly, they provide insights on how to set the hyperparameter values of the
algorithm. Secondly, they demonstrate the effectiveness of the algorithm when a truncated Gaus-
sian gradient estimator is used. Lastly, they show its ability to handle mixed aleatory/epistemic
uncertainties in practical applications.

Keywords: Risk averse optimization; constrained blackbox optimization; multi-timescale stochas-
tic approximation; conditional value-at-risk; mixed aleatory/epistemic uncertainties; truncated Gaus-
sian gradient estimator

6.3 Introduction

Blackbox optimization (BBO) is concerned with optimization problems where the functions used
to compute the objective and the constraints are blackboxes. In optimization, a blackbox is any
process that returns an output when an input is provided, but the inner workings of that process are
not analytically available [14]. This type of problem is common in signal processing [55], machine
learning [144], and engineering design [2, 97]. In the presence of uncertainties, a constrained
blackbox optimization problem may be formulated as follows

min
x∈X ⊂Rn

Ξ0[C0(x, ξ)]

s.t. Ξj[Cj(x, ξ)] ≤ 0, ∀j ∈ [1,m],
(6.1)

where x is the vector of the design variables, X := [bℓ,bu] is a hyperectangle, and ξ is the vector
modelling the uncertainties. The source of uncertainties may arise from the design variables, the
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parameters, the inner processes of the blackbox (for example, when Monte Carlo simulation is used
in the blackbox), or even combinations of these factors. Uncertainties may or may not depend on
x. C0(·, ξ) denotes the version of the objective function c0 : X → R subject to uncertainties, while
for all j ∈ {1, 2, . . . ,m}, Cj(·, ξ) denotes the version of the constraint cj : X → R subject to the
uncertainties (also called the limit state function in the reliability community). Since the objective
function and the constraints depend on the uncertainty vector, the measures Ξj, j ∈ {0, 1, . . . ,m}
are used to map them into R. It follows from this formulation that the key factor is the selection of
the uncertainties model, which in turn determines the choice of the measures Ξj . In the following,
various methods commonly found in the literature are presented, depending on the assumptions
made, the chosen uncertainty model, and the level of information available about these uncertain-
ties.

6.3.1 Related work

In probabilistic reliability-based design optimization (RBDO), uncertainties are considered as ran-
dom vectors with known probabilistic distributions. In this field [57], Problem (6.1) is transformed
into the following

min
x∈X ⊂Rn

C0(x,p)

s.t. P[Cj(x,p) ≤ 0] ≥ αj, ∀j ∈ [1,m],
(6.2)

where αj, j ∈ {1, 2, . . . ,m} are the desired reliability levels and x and p are the means of the
noised design variables and parameters respectively. In this reformulation, the expectation is uti-
lized to handle the uncertainties in the objective function, and a linear approximation is employed
to derive the deterministic objective function 1. To address the uncertainties in the constraints, a
probability measure is employed. The conventional approach to solving Problem (6.2) involves
two nested loops: the outer loop searches for an optimal design, while the inner loop evaluates the
feasible probability of the optimal candidate.

The inner loop is often computationally demanding due to the time-consuming estimation of fea-
sible probabilities. To address this challenge, numerically efficient methods for RBDO problems
have been developed. In a first set of methods, the inner loop involves solving a deterministic opti-
mization problem. The fundamental idea behind this class of methods is to identify a point on the
constraint boundary that is closest to the solution, known as the "most probable point" (MPP) of
failure. Then, the task consists in finding this point efficiently. Typically, first or second-order relia-

1For a differentiable function C0 perturbed only by uncertainties in its design variables. These uncertainties can
be written as x + ξx where x = Eξx [x + ξx]. Then a first-order Taylor approximation of the function gives that
Eξx [C0(x + ξx)] ≈ Eξx [C0(x) +∇C0(x)T ξx] = C0(x). A similar observation holds for the parameters.
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bility methods (FORM/SORM) [51] are utilized. These methods transform the uncertainty vectors
into uncorrelated Gaussian random vectors using the Rosenblatt or Nataf transformation [108], then
the constraints are approximated linearly or quadratically. Therefore, the probabilistic constraints
in Problem (6.2) are reformulated as a deterministic optimization problem, reducing the task of
solving Problem (6.2) to two nested deterministic optimizations. Various approaches have been em-
ployed to solve it with a double loop, such as the Performance Measure Approach (PMA) or the Re-
liability Index Approach (RIA) [5], a single loop, such as the Single Loop Approach (SLA) [114],
or decoupled approaches like the Sequential Optimization and Reliability Assessment (SORA) ap-
proach [61] or the Sequential Approximate Programming (SAP) approach [49]. These methods
prove to be efficient even when dealing with nonlinear problems, and when gradients are approxi-
mated using finite differences [5]. Additionally, methods known as reliability-based robust design
optimization (RBRDO) have been developed to handle uncertainties in the objective function by
employing a bi-objective formulation of the problem [170].

However, a major drawback of FORM-based methods is their reliance on linear approximations
of the objective and constraint functions. These approximations can be inaccurate in practice if
the underlying problem is not smooth. Therefore, other methods have been developed that do not
rely on linear approximations. Similar to FORM-based methods, these approaches generally use a
double-loop strategy. In the inner loop, a reliability analysis estimates the feasible probability. Ex-
amples of such methods include important sampling [44, 195], line sampling [4], subset simulation
algorithms [9], or surrogate modeling strategies [111, 147]. Subsequently, the estimation of the
feasible probability is incorporated into the RBDO problem, resulting in a deterministic problem if
the objective function is unnoised or a linear approximation of the objective function can be made.

In addition to the linear approximation, FORM-based methods suffer from another major drawback:
they depend on the precise characterization of the uncertainty model of the variables and param-
eters (required for applying the Nataf transformation). However, the Nataf transformation cannot
always be applied, especially when the blackbox inherently contains noise. Even when applicable,
the Nataf transformation assumes a specific dependence structure of the uncertainties [109]. Never-
theless, in the absence of sufficient data, justifying and enforcing a specific dependency assumption
becomes challenging and unwarranted due to its biasing effect on the final solution. The papers of
R. Lebrun and A. Dutfoy [108, 109] provide a detailed discussion of these issues related to using
Nataf’s transformation in FORM-based methods.

Uncertainties are commonly classified into two categories: aleatory uncertainties and epistemic
uncertainties [157]. Aleatory uncertainties represent the stochastic behavior and randomness of
events and variables. Epistemic uncertainty is generally associated with a lack of knowledge about
phenomena, imprecision in measurements, and poorly designed models. Aleatory uncertainties
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can be modeled by random variables, while epistemic uncertainties can be represented by interval,
point data or modeled using Gaussian processes [197]. Using probabilistic models for epistemic
uncertainties may lead to infeasible designs in practice [157]. Even for aleatory uncertainties, se-
lecting an appropriate probabilistic model can be challenging, especially when the dimension of the
uncertainties is large or when dependencies are unknown due to data scarcity [157]. A poorly cho-
sen model can result in underperforming designs or designs with significant failures [163]. When
epistemic uncertainties are involved in reliability analysis, non-probabilistic approaches based on
evidence theory [172], possibility theory [62], or fuzzy sets [119, 196] may be used.

Recently, some approaches have utilized ellipsoidal sets to model uncertainties [129, 188]. When
both types of uncertainties are present, combining probabilistic and non-probabilistic models to
address these uncertainties may be an interesting option [66, 128]. Alternatively, distributionally
robust chance-constrained programming [190] or a Bayesian probabilistic approach using Gaussian
processes [3, 139] also appear promising. Finally, scenario optimization, that tackles Problem (6.1)
using available data without prescribing a specific model (or a set of models) for the uncertainty,
has been explored [158]. Unfortunately, the described approaches are primarily used for reliability
analysis, and they do not handle uncertainties in the objective function, except in the work in [3],
which is limited to parameter uncertainties. Another significant drawback is the lack of a conver-
gence proof to an optimal point of the problem. Table 6.1 summarizes the different methods based
on several criteria. The first two criteria assess whether the methods may deal with nonsmooth
problems, while the third evaluates the ability of the method to handle noise in the objective func-
tion as well as in the constraints. The fourth criterion examines whether the method requires a
precise characterization of the distribution that models the aleatory uncertainties, (e.g. for applying
the Nataf transformation). Finally, the last criterion assesses the capability of the method to handle
uncertainties in the absence of perfect knowledge of the data.

6.3.2 Contributions

To account for the uncertainties in both the objective and constraint functions, methods utilizing
the conditional value-at-risk (CVaR) have been developed [112, 162]. CVaR is a coherent risk
measure that evaluates the risk associated with a design solution by combining the probability of
undesired events with a measure of the magnitude or severity of those events. CVaR methods have
found extensive applications in risk averse optimization like in trust-region algorithms [130], in
engineering design problems [81, 113, 161, 193], and in constrained reinforcement learning [50,
181].

One of the main interest of the CVaR measure lies in the flexibility provided by the parameter α.
When α = 0, the CVaR measure corresponds to the expectation, whereas as α approaches 1, it
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Table 6.1 Summary of the different methods and their limits

Methods Type 1

Handles
nonsmooth
constraints

Handles
nonsmooth
objective

Handles noisy
objective

Allows unknown
aleatory

uncertainty
Allows lack of

data 2

FORM-based [5,
49, 61, 114] O ✗ ✗ ✗ ✗ ✗

RBRDO [170] O ✗ ✓ ✓ ✗ ✗

Importance
Sampling [44,

195] O ✓ ✓ ✗ ✗ ✗

Line Sampling [4] RA ✓ N/A N/A ✗ ✓
Subset

simulation [9] RA ✓ N/A N/A ✓ ✗

Surrogate
modelling [111,

147] RA ✓ N/A N/A ✓ ✗

Mixed
approaches [66,

128] O ✗ ✗ ✗ ✗ ✓
Ellipsoidal

set [129, 188] O ✗ ✗ ✗ ✗ ✓
Bayesian

approach (I) [139] RA ✓ N/A N/A ✓ ✓
Bayesian

approach (II) [3] O ✓ ✓ ✓3 ✓ ✗

Scenario
Optimization [158] O ✗ ✗ ✗ ✓ Only point data

This work O ✓ ✓ ✓ ✓ ✓4

1 The type indicates if the method handle the whole stochastic constrained optimization problem (O) or is limited to
reliability analysis (RA).
2 Only points or interval data are available.
3 Only parameters uncertainties.
4 For interval data, the method allows only to obtain worst-case solution.

corresponds to the supremum of the function over the support of the uncertainties [160]. This ver-
satility allows to handle both aleatory and epistemic uncertainties, albeit in a worst-case scenario
only. However, substituting failure probability constraints with CVaR constraints is a conservative
approach [173, chapter 6] that might render the problem infeasible in the worst case. Moreover,
the closer the value of α is to 1, the more sensitive the measure becomes to the uncertainty model,
particularly in the tails. Managing this heightened sensitivity necessitates an untractable number
of samples. While the former issue is challenging to avoid a priori, the latter can be partially ad-
dressed by employing a multi-timescale stochastic approximation algorithm to estimate the CVaR
value [50, 152]. Unfortunately, the methods utilized in the referenced papers cannot be directly
applied to solve a CVaR formulation of Problem (6.1). In fact, these methods cleverly leverage the
properties of the Markov Decision Process to compute estimates of the gradients, a strategy that is
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impossible to use in the context of the present study. The contributions of this work are outlined as
follows.

First, in Section 6.5, the process of smoothing the problem and obtaining analytical gradient es-
timates from noisy measurements of the blackbox is described. A smooth approximation of the
gradient [33, 141] is employed. The concept involves approximating the original function by its
convolution with a multivariate density function. The resulting approximation possesses several
desirable properties: it is infinitely differentiable even if the original function is only piecewise
continuous, it preserves the structural properties (such as convexity and Lipschitz constant) of the
original function, and an unbiased estimator of the gradient of the smooth approximation can be
calculated from only two measurements of the blackbox. In most studies [71, 141], Gaussian or
uniform density functions are utilized for the approximation. However, in this paper, a truncated
Gaussian density function is developed to satisfy the bound constraints of the problem (6.1). The
properties of this new approximation and its associated unbiased gradient estimator are provided.

Second, Problem (6.1) is reformulated as a CVaR-constrained problem, wherein the objective func-
tion and the constraints are approximated by their smooth truncated Gaussian counterparts. The
quality of this approximation is theoretically examined and depends on several parameters such
that the value of α, the dimension and the value of the smoothing parameter. Subsequently, fol-
lowing the approach in [50], a Lagrangian relaxation is applied to the problem. The method used
to solve the relaxed problem is developed in Section 6.6. It involves a four-timescale stochastic
approximation algorithm. The first timescale aggregates information about the gradient, the second
estimates the quantile of the objective and constraint functions, the third updates the design vari-
ables in a descent direction, and the last one updates the Lagrange multiplier in the ascent direction.
The convergence analysis of this algorithm is studied in Section 6.7 and is conducted using an Ordi-
nary Differential Equation (ODE) approach. Under mild assumptions, this algorithm almost surely
converges to a feasible point of the CVaR-constrained problem whose objective function value is
arbitrarily close to that of a local solution.

Finally, in Section 6.8, practical implementation details are provided to minimize the number of
hyperparameters in the developed algorithm. Numerical experiments are conducted to estimate the
values of the remaining hyperparameters. Then, comparisons are made between the algorithm using
the Gaussian gradient estimator and its truncated counterpart. In the last subsection, the efficiency
of the algorithm is demonstrated on problems involving mixed aleatory/epistemic uncertainties.
Conclusions are drawn in Section 6.9.
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6.4 Problem formulation

In order to formally settle the problem and to develop the convergence analysis, the following
assumptions are made on the functions Cj and used throughout the paper.

Assumption 4. Let (Ω,F ,P) be a probability space and consider Cj(x, ξ) : Rn × Rd → R, j ∈
[0,m] where ξ : Ω → Ξ ⊂ Rd is the vector modelling the uncertainties. Then, the following hold

for all j ∈ [0,m].

1. There exists a measurable function κ1(ξ) : Ξ → R such that Eξ[κ1(ξ)] ≤ L1 < ∞ and for

which

|Cj(x, ξ)| ≤ κ1(ξ), ∀x ∈ X and ξ ∈ Ξ.

2. There exists a measurable function κ2(ξ1, ξ2) : Ξ×Ξ→ R where ξ1 and ξ2 are i.i.d. random

vectors such that Eξ[κ2(ξ1, ξ2)] ≤ L2 <∞ and for which

|Cj(x, ξ1)− Cj(y, ξ2)| ≤ κ2(ξ)||x− y||, ∀ (x,y) ∈ X × X and (ξ1, ξ2) ∈ Ξ× Ξ.

3. The function Cj(·, ξ) has a continuous cumulative distribution function and there exists a

measurable function κ3(ξ1, ξ2) : Ξ×Ξ→ R, where ξ1 and ξ2 are i.i.d. random vectors such

that Pξ(κ3(ξ1, ξ2) ≤ L3) = 1 with L3 <∞ and for which

|Cj(x, ξ1)− Cj(x, ξ2)| ≤ κ3 (ξ1, ξ2)||x− y||, ∀ (x,y) ∈ X × X and (ξ1, ξ2) ∈ Ξ× Ξ.

Three comments on these assumptions. First, note that no assumptions are made about the dif-
ferentiability of the functions Cj . Second, Assumption 4.1 will be made throughout this paper
because it allows the value-at-risk (VaR) and the CVaR of the functions Cj to be well defined. The
other assumptions are used in Section 6.5 to bound the approximation of the constrained CVaR
blackbox problem and in Section 6.7 to study the convergence of the proposed method. Finally, the
assumptions are increasingly strong, i.e., Assumption 4.3 implies Assumption 4.2, which implies
Assumption 4.1.

Now, the VaR at level α ∈ (0, 1) of the objective and constraint functions may be defined. It
is originally derived from the left-side quantile of level α of a given random variable. Given j ∈
{0, 1, . . . ,m} and a reliability level αj ∈ (0, 1), the VaR of a function Cj(x, ξ) is defined as

VaRαj
(x) := inf{t |P(Cj(x, ξ) ≤ t) ≥ αj}.

The VaR of a function has several interesting properties. When the cumulative distribution function
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P(Cj(x, ξ) ≤ u) is right continuous with respect to t, the infemum is a minimum and if it is, in addi-
tion, continuous and strictly increasing, then VaRαj

is the unique t such that P(Cj(x, ξ) ≤ t) = α.
However, the VaR of a function is computationally intractable, is not a coherent risk measure [8]
and does not take into account the magnitude/severity of the undesired events. Therefore, in prac-
tice another measure is used: the Conditional Value-at-Risk. The CVaR of a function Cj(·, ξ), for
a level αj ∈ (0, 1) at a point, x may be defined as [162]

CVaRαj
(x) := min

t∈R
Vαj

(x, t), (6.3)

where
Vαj

(x, t) = t+ 1
1− αj

Eξ[(Cj(x, ξ)− t)+], (6.4)

where the superscript plus denotes the function (t)+ := max{0, t}. The level αj gives the pos-
sibility to choose the desired degree of reliability. Choosing a level close to 0 is tantamount to
taking the expectation measure into account, i.e. adopting a "risk neutral" approach. On the other
hand, choosing a level close to 1 is tantamount to taking a "worst-case" approach. In this way,
different values of αj can be used for the different objective and constraint functions, depending
on the degree of reliability desired for each of them. Now, problem (6.1) can be reformulated as a
CVaR-constrained blackbox optimization problem:

min
x∈X

CVaRα0(x)

s.t. CVaRαj
(x) ≤ 0, ∀j ∈ [1,m].

(6.5)

This formulation is a convex program if the objective and constraint functions are convex in the
design space. This convexification of the design space makes Problem (6.5) a conservative approx-
imation of Problem (6.2) [Chapter 6, [173]]. Thus, this formulation guarantees a conservative result
in terms of failure probability, see e.g. [163]. To solve Problem (6.5), it is usually reformulated with
the function Vα as follows

min
(x,t)∈X ×Rm+1

Vα0 (x, t0)

s.t. Vαj
(x, tj) ≤ 0, ∀j ∈ [1,m].

(6.6)

The equivalence between Problem (6.5) and Problem (6.6) is shown in the following lemma.
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Lemma 6.4.1. Suppose the solution sets of Problem (6.5) and Problem (6.6) are not empty.

Then these problems are equivalent in the sense that, x∗ is a solution of Problem (6.5) if and

only if there exist t∗ ∈ Rm+1 such that (x∗, t∗) is a solution of Problem (6.6), and the optimal

values are the same.

Proof. By the definition of the Conditional Value-at-Risk given in Equation (6.3), Problem (6.5)
may be reformulated as follows

min
x∈X

(
min
t0∈R

Vα0 (x, t0)
)

s.t.
(

min
tj∈R

Vαj
(x, tj)

)
≤ 0, ∀j ∈ [1,m].

(6.7)

Now, the following relations hold

min
x∈X

(
min
t0∈R

Vα0 (x, t0)
)

= min
(x,t0)∈X ×R

Vα0 (x, t0)(
min
tj∈R

Vαj
(x, tj)

)
≤ 0, ∀j ∈ [1,m] ⇐⇒ ∀j, ∃tj s.t. Vαj

(x, tj) ≤ 0.

Therefore, the Problems (6.7) and (6.6) are equivalent. Now, let x∗ be a solution of Problem (6.5),
it is possible to construct the associated vector t∗(x∗) where t∗j(x∗) = VaRαj

(x∗),∀j ∈ [0,m]. The
tuple (x∗, t∗(x∗)) is then solution of Problem (6.7) and as a consequence of Problem (6.6) which
ends the proof.

Despite this property, Problem (6.5) is difficult to solve for two main reasons. First, since the
functions Cj are the outputs of a blackbox, the gradients of these functions may not exist, and even
if they do, their analytic formulations are not available. Second, the problem is highly sensitive to
the values of αj , and the closer the values are to 1, the harder the problem is to solve. The next
section describes the strategy used in this paper to overcome these difficulties.

6.5 Smooth approximation and Lagrangian relaxation of the problem

This section introduces a method for solving the Problem (6.5). To obtain a more tractable problem,
the original problem is approximated by a smooth problem using truncated Gaussian smoothing.
The quality of the approximation is then studied and a Lagrangian relaxation of the smooth problem
is given.
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6.5.1 Truncated Gaussian smooth approximation

In a blackbox optimization framework, all we know is that for any given input, the blackbox will
return an output, which may be subject to uncertainties. To obtain a more tractable problem, a
smooth approximation may be used [166, pp. 263]. The principle of this method is to approximate
the function by its convolution with a kernel density function. Formally, if c is an integrable func-
tion, β > 0 is a scalar, and u is a random vector with distribution ϕ, the smooth approximation of
c can be defined as

cβ(x) :=
∫ +∞

−∞
c(x− βu)ϕ(u)du = Eu[c(x + βu)]. (6.8)

The smooth approximation benefits from several attractive properties. First, it can be interpreted
as a local weighted average of the function values in the neighborhood of x. If c is continuous
at x, it is possible to obtain a value of cβ(x) that is arbitrarily close to the value of c(x) by using
an appropriate value of β. Second, it inherits the degree of smoothness of the density function
as a consequence of the convolution product. Finally, depending on the chosen kernel, stochastic
gradient estimators can be computed. They are unbiased estimators of the gradient of cβ and can
be constructed only from values of c(x) and c(x + βu).

The most commonly used kernels are the Gaussian distribution and the uniform distribution on a
sphere [71, 141]. However, if the problem has bound constraints, a significant drawback of these
distributions is that the random vector x+σu may fall outside the bound constraints. For instance, if
u ∼ N (0, 1), x+σu might be sampled outside the bounds. This issue persists even with a uniform
distribution if x is near the bounds. However, the bound constraints are usually non-relaxable in
the sense of [107], meaning that the output of the blackbox lacks significance for optimization
outside the bound constraints. This can occur due to physical phenomena or when the blackbox
is undefined beyond the bounds. In such cases, the gradient estimate of cβ , computed from the
values of the function c at the points x and x + βx, becomes unreliable. To address this issue, a
truncated Gaussian estimator is developed in this paper, and its main properties are summarized in
the following lemma.

Lemma 6.5.1. Let c be an integrable function on X , the smooth approximation cβ is defined

as

cβ(x) = Eu[c(x + βu)],

where u ∼ T N (0, I, bℓ−x
β
, bu−x

β
), bℓ and bu are respectively the lower and the upper bounds

of the problem. In what follows, ϕ and Φ denote respectively the probability density func-

tion (p.d.f.) and the cumulative density function (c.d.f.) of the standard Gaussian distribution.
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Now, the following holds.

1. cβ is infinitely differentiable: cβ ∈ C∞.

2. A one-sided unbiased estimator of ∇cβ is

∇̃cβ(x) = (u− µ)c(x + βu)− (u− µ)c(x)
β

, (6.9)

where µ is the mean of the truncated Gaussian vector, i.e,

µi =
ϕ
(
bℓi

−xi

β

)
− ϕ

(
bui −xi

β

)
Φ
(
bui −xi

β

)
− Φ

(
bℓi

−xi

β

) , ∀i ∈ [1, n].

3. Let u1 ∼ T N (0, I, bℓ−x
β
, bu−x

β
) and u2 ∼ T N (0, I, x−bu

β
, x−bℓ

β
), a two-sided unbiased

estimator of∇cβ is

∇̃cβ(x) = (u1 − µ1)(c(x + βu1)− c(x))− (u2 − µ2)(c(x− βu2)− c(x))
2β ,

(6.10)

4. In addition, if c is a L-Lipschitz continuous function, let β ≥ 0, then ∀x ∈ Rn

|cβ(x)− c(x)| ≤ Lβ
√
n.

Proof. 1.) This can be shown by noting that the truncated Gaussian kernel is infinitely differen-
tiable within the bounds. However, to obtain the above estimators, the calculation must be done.
Therefore, using the above notation, and given that the components ui of u are mutually indepen-
dent, it follows that

Eu[c(x + βu)] =
∫ bu−x

β

bℓ−x
β

c(x + βu)
n∏
i=1

ϕ(ui)
Φ
(bui −xi

β

)
− Φ

(bℓi
−xi

β

)du

=
∫ bu−x

β

bℓ−x
β

1
(2π)

n
2

c(x + βu)
n∏
i=1

e−
u2

i
2

Φ
(bui −xi

β

)
− Φ

(bℓi
−xi

β

)du

= 1
(2π)

n
2

 n∏
i=1

1
Φ
(bui −xi

β

)
− Φ

(bℓi
−xi

β

)
∫ ∞

−∞
1[bℓ−x

β
,bu−x

β

] (u)c(x + βu)
n∏
i=1

e−
u2

i
2 du,
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where 1[·](·) denotes the indicator function. Substituting v = x + βu leads to:

Eu[c(x + βu)] = 1
(2π)n

2 βn

 n∏
i=1

1
Φ
(bui −xi

β

)
− Φ

(bℓi
−xi

β

)
∫ ∞

−∞
1[bℓ,bu] (v)c(v)

n∏
i=1

e
− (xi−vi)2

2β2 dv.

By setting

h1(x) = 1
(2π)n

2 βn

n∏
i=1

1
Φ
(bui −xi

β

)
− Φ

(bℓi
−xi

β

) ,
h2(x) = 1[bℓ,bu] (x)c(x) and h3(x) =

n∏
i=1

e
− (xi)2

2β2 ,

cβ(x) may be compactly written as

cβ(x) = h1(x)(h2 ∗ h3)(x),

where ∗ is the convolution product between two functions. As h3 ∈ C∞(Rn) and h2 ∈ L1(Ω,F ,P)
then (h2 ∗ h3) ∈ C∞(Rn) (property of convolution product). Moreover, h1 ∈ C∞(Rn) as well,
therefore cβ(x) ∈ C∞(Rn) as it is the product of infinitely continuously differentiable functions.

2.) By using the same notation as above, the partial derivative of cβ may be computed, for j ∈ [1, n]
as

∂cβ(x)
∂xj

= ∂h1(x)
∂xj

(h2 ∗ h3) (x) + h1(x)
(
h2 ∗

∂h3

∂xj

)
(x).

Yet, we have

∂h1(x)
∂xj

= 1
(2π)

n
2 βn

 n∏
i=1

1
Φ
(bui −xi

β

)
− Φ

(bℓi
−xi

β

)
 ϕ

(
buj −xj

β

)
− ϕ

(
bℓj

−xj

β

)
β

(
Φ
(

buj −xj

β

)
− Φ

(
bℓj

−xj

β

)) = −µjh1(x)
β

∂h3(x)
∂xj

= −xj
β2 h3(x).

Thus, we obtain
∂cβ(x)
∂xj

= Eu

[
uj − µj
β

c(x + βu)
]
.

From this result, an unbiased estimator of the gradient of cβ is

∇̃cβ(x) = u− µ

β
c(x + βu).
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As the variance of this estimator gets unbounded as β goes to 0, in practice the following estimator
is used

∇̃cβ(x) = (u− µ)c(x + βu)− (u− µ)c(x)
β

.

This estimator is still unbiased since Eu[(u− µ)c(x)] = 0.

3.) Symmetrically, if u ∼ T N (0, I, x−bu

β
, x−bℓ

β
), an unbiased estimator is

∇̃cβ(x) = (µ− u)c(x− βu)− (µ− u)c(x)
β

.

thus, by summation of the two one-sided estimator, the two-sided estimator is obtained.

4.) Finally, we have, with u1 ∼ T N (0, I, bℓ−x
β1 , bu−x

β1 ) and u2 ∼ T N (0, I, bℓ−x
β2 , bu−x

β2 )

|cβ(x)− c(x)| = |Eu[c(x + βu)]− c(x)| ≤ Eu[|c(x + βu)− c(x)|] ≤ LβEu[||u||].

where the first inequality comes from the Jensen’s inequality and the second one comes from the
L-Lipschitz continuity of c. It remains to bound Eu[||u||] when u is a truncated Gaussian vector,
for this purpose, the proof of Lemma 1 of [141] is adapted for truncated Gaussian distribution. The
following identity is used:

∫ bu−x
β

bℓ−x
β

e− ||u||2
2 du = (2π)n/2

n∏
i=1

(
Φ
(
bui
− xi
β

)
− Φ

(
bℓi − xi
β

))
:= κ.

By setting v = x + βu and multiplying by βn, the last equalities become

∫ bu

bℓ

e
− ||v−x||2

2β2 dv = (2π)n/2
n∏
i=1

(
Φ
(
bui
− xi
β

)
− Φ

(
bℓi − xi
β

))
βn = κβn.

Taking the logarithm yields

ln
(∫ bu

bℓ

e
− ||v−x||2

2β2 dv
)

= n ln(β) + n

2 ln(2π) +
n∑
i=1

ln
(

Φ
(
bui
− xi
β

)
− Φ

(
bℓi − xi
β

))
. (6.11)
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Now, the derivative of the left-hand-side of Equation (6.11) with respect to β is given by

∂

∂β
ln
(∫ bu

bℓ

e
− ||v−x||2

2β2 dv
)

= 1
κβn

∫ bu

bℓ

||v− x||2

β3 e
− ||U−x||2

2β2 dv

= 1
κβ

∫ bu−x
β

bℓ−x
β

||u||2e− ||u||2
2 du since

v− x
β

= u

= 1
β
Eu[||u||2]

and the derivative of the right-hand-side of Equation (6.11) is given by

n

β
+

n∑
i=1

bℓi
−xi

β2 ϕ
(
bℓi

−xi

β

)
− bui −xi

β2 ϕ
(
bui −xi

β

)
Φ
(
bui −xi

β

)
− Φ

(
bℓi

−xi

β

) .

Thus,

Eu[||u||2] = n+
n∑
i=1

bℓi
−xi

β
ϕ
(
bℓi

−xi

β

)
− bui −xi

β
ϕ
(
bui −xi

β

)
Φ
(
bui −xi

β

)
− Φ

(
bℓi

−xi

β

) ≤ n, (6.12)

where the inequality holds because the sum is negative for x ∈ X . Finally, with the result in Equa-
tion (6.12) and the results of Lemma 1 of [141], the following bound appears

Eu[||u||] ≤
√
n.

When only noisy outputs of the blackbox are available, the following estimator is used

∇̃Cβ(x, ξ) = (u− µ) (C(x + βu, ξ1)− C(x, ξ2))
β

, (6.13)

where ξ1 and ξ2 are two independent identically distributed realizations of a random vector ξ. This
estimator is still unbiased because

Eu,ξ[∇̃cβ(x, ξ)] = Eu[Eξ[∇̃cβ(x, ξ)|u]] = ∇cβ(x).

6.5.2 Smooth approximation of CVaR-constrained blackbox optimization problem

The non-smoothness of a CVaR-constrained blackbox optimization problem arises from two el-
ements: the potential non-smoothness of the functions Cj and the non-smoothness introduced by
the function max in the CVaR formulation. The concept of smoothing a CVaR-constrained opti-
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mization problem is not novel; it has been explored in prior works [127, 174]. In this study, this
concept is applied to both sources of non-smoothness using the aforementioned truncated Gaus-
sian smoothing. As t is an unconstrained vector, arbitrarily large bounds are introduced for this
vector. Let β1, β2 > 0 be two scalars, u ∼ T N (0, I, bℓ−x

β1
, bu−x

β1
) a random vector of size n and

v ∼ T N (0, I, −tmax
β2

, tmax
β2

), a random vector of size m+ 1, where tmax is chosen to be sufficiently
large, the smooth approximation of Vαj

and CVaRαj
for all j ∈ [0,m] are defined respectively as

V β
αj

(x, tj) = Eu,v[Vαj
(x + β1u, tj + β2vj)], and

CVaRβ
αj

(x) = min
tj∈R

Eu,v[Vαj
(x + β1u, tj + β2vj)].

Then, the smooth approximation of the Problem (6.6) may be formulated as follows

min
(x,t)∈X ×Rm+1

V β
α0(x, t0)

s.t. V β
αj

(x, tj) ≤ 0, ∀j ∈ [1,m].
(6.14)

Now, the quality of this smooth approximation is studied. The following Lemma states properties
of the truncated Gaussian smoothing approximation applied with the CVaR measure.

Theorem 6.5.2. Under Assumption 4.2, the following holds.

1. |CVaRβ
αj

(x)− CVaRαj
(x)| ≤ L2β1

√
n+β2

1−αj
for all j ∈ [0,m] and x ∈ X ;

2. |CVaRβ
α0(x̃∗) − CVaRα0(x∗)| ≤ L2β1

√
n+β2

1−αj
, where x̃∗ and x∗ are solutions of Prob-

lem (6.14) and (6.5) respectively.

3. If Assumption 4.3 holds, then there exists a threshold ᾱj ∈ (0, 1] such that for all

αj ≥ ᾱj

CVaRαj
(x) ≤ CVaRβ

αj
(x) ≤ CVaRαj

(x) + L2β1
√
n+ β2

1− αj
.

Thus, for αj ≥ ᾱj , if x̃∗ is a solution of Problem (6.14), then it is a feasible point for Prob-

lem (6.5).
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Proof. 1. Under Assumption 4.2, it follows that for all (x, tj) ∈ X × R

|V β
αj

(x, tj)− Vαj
(x, tj)| =

1
1− αj

∣∣∣Eu,v,ξ[(Cj(x + β1u, ξ1)− (tj + β2vj))+ − (Cj(x, ξ2)− tj)+]
∣∣∣

≤ 1
1− αj

Eu,v,ξ[|(Cj(x + β1u, ξ1)− (tj + β2vj))+ − (Cj(x, ξ2)− tj)+|]

≤ 1
1− αj

Eu,v,ξ[|Cj(x + β1u, ξ1)− β2vj − Cj(x, ξ2)|]

≤ 1
1− αj

Eu,v,ξ[κ2(ξ1, ξ2)β1||u||+ β2|vj|]

≤ L2β1
√
n+ β2

1− αj
,

where the first inequality follows from Jensen’s inequality, the second from the following inequality
|max(0, a) − max(0, b)| ≤ |a − b|, the third from Assumption 4.2 and the last one from the
independence of u and κ2(ξ) and the bound on the expectation of the norm of (truncated) Gaussian
random vectors. This is true for all tuples (x, tj) ∈ X × R, in particular for t∗j ∈ argmin V (x, tj)
and t̃∗j ∈ argminEu,v[Vαj

(x + β1u, tj + β2vj)]. Therefore, it follows that for any j ∈ [0,m] and
any x ∈ X

V β
αj

(x, t̃∗j) ≤ V β
αj

(x, t∗j) ≤ Vαj
(x, t∗j) + L2β1

√
n+ β2

1− αj
.

Conversely, it also follows that

Vαj
(x, t∗j) ≤ Vαj

(x, t̃∗j) ≤ V β
αj

(x, t̃∗j) + L2β1
√
n+ β2

1− αj
.

Recalling that CVaRαj
(x) = Vαj

(x, t∗j) and CVaRβ
αj

(x) = V β
αj

(x, t̃∗j), we obtain that

|CVaRβ
αj

(x)− CVaRαj
(x)| ≤ L2β1

√
n+ β2

1− αj
∀j ∈ [1,m].

2. Using the same previous argument but with respect to x instead of t allows to obtain the second
inequality.

3. Consider x ∈ X and suppose that Assumption 4.3 holds. It follows that for all j ∈ [0,m] and
ξ ∈ Ξ

|Cj(x, ξ)| − |Cj(0,0)| ≤ |Cj(x, ξ)− Cj(0,0)| ≤ κ3(ξ,0)||x||,
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which implies that |Cj(x, ξ)| is almost surely bounded by a function depending on x. Now, for all
x ∈ X , Mj(x) is defined as the essential supremum of Cj(x, ξ), i.e,

Mj(x) := inf{t ∈ R | Cj(x, ξ) ≤ t for almost every ξ ∈ Ξ}.

Now, we have by definition

VaRαj=1 (x) = inf{t | P(Cj(x, ξ) ≤ t) = 1} = Mj(x).

As the c.d.f. of Cj(·, ξ) is assumed continuous, then it follows by [159] that

CVaRαj
(x) = 1

1− αj

∫ 1

αj

VaRτ (x)dτ.

As for τ ∈ [αj, 1], the VaRτ function is continuous with respect to τ with VaRαj
(x) ≤ VaRτ (x) ≤

VaRαj=1(x) = Mj(x), the mean value theorem ensures

VaRαj
(x) ≤ CVaRαj

(x) ≤ Mj(x).

Thus, for all x ∈ X , limαj→1 CVaRαj
(x) = Mj(x) and we can set CVaRαj=1(x) = Mj(x) which

ensures continuity of the CVaRαj
function with respect to αj for αj ∈ (0, 1]. Now,

CVaRβ
αj=1(x) = VaRβ

αj=1(x) = inf{t | P(Cj(x + β1u, ξ)− β2vj ≤ t) = 1},

where the probability measure is taken with respect to ξ, u ∼ T N (0, I, bℓ−x
β1

, bu−x
β1

) and
v ∼ T N (0, I, −tmax

β2
, tmax
β2

). It follows that

VaRβ
αj=1(x) = sup

ξ∈Ξ, u∈[ bℓ−x
β1

,bu−x
β1

],
vj∈[( −tmax

β2
)j ,( tmax

β2
)j ]

Cj(x + β1u, ξ)− β2vj = sup
x∈X

Mj(x) + (tmax)j,

where the sup is understood as the essential supremum of the function. Thus, for any x ∈ X ,
CVaRαj=1(x) < CVaRβ

αj=1(x). Therefore, by continuity of CVaRαj
with respect to αj , there

exists ᾱj ∈ (0, 1] such that for all αj ≥ ᾱj

CVaRαj
(x) ≤ CVaRβ

αj
(x) ≤ CVaRαj

(x) + L2β1
√
n+ β2

1− αj
,

where the second inequality comes from the first part of the theorem.

Theorem 6.5.2.2 shows that the difference in the values of objective function of Problem (6.14)
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and Problem (6.5) is bounded by a constant that depends on the values of αj , β1, and β2. Theo-
rem 6.5.2.3 demonstrates that, with additional mild conditions, if αj is chosen sufficiently close
to 1, the solution obtained in Problem (6.14) is feasible for Problem (6.5). Therefore, the solution
of Problem (6.14) may be feasible for Problem (6.5) and its value can be arbitrarily close to that
of Problem (6.5) with sufficiently small values of β1 and β2. However, it is important to note that
in practice, if β1 and β2 are chosen too small, the difference between the empirical values of the
function will also be too small to represent the function differential [47].

To solve Problem (6.14) and to avoid the use of inner loops, which are computationally intractable,
a Lagrangian relaxation is employed. This approach leads to the following unconstrained problem.

max
0≤λ∈Rm

min
(x,t)∈X ×Rm+1

Lβ(x, t,λ) := V β
α0(x, t0) +

m∑
j=1

λjV
β
αj

(x, tj), (6.15)

where t = (t0, . . . , tm) ∈ Rm+1. The next section describes a method allowing convergence to a
saddle point of the Problem (6.15) whose the definition is recalled here.

Definition 6.5.3 (Saddle point). A saddle point of L(x, t,λ) is a point (x∗, t∗,λ∗) such that

for some r > 0, ∀ (x, t) ∈ X × Rm+1⋂B(x∗,t∗)(r) and for all λ ≥ 0, we have

L(x, t,λ∗) ≥ L(x∗, t∗,λ∗) ≥ L(x∗, t∗,λ),

where B(x∗,t∗)(r) is a hyper-dimensional ball centred at (x∗, t∗) with radius r > 0.

6.6 A Risk Averse Multi-timescale Stochastic Approximation Algorithm

Section 6.6.1 presents the multi-timescale stochastic approximation methods, and Section 6.6.2
describes the complete algorithm used to solve the Problem (6.15).

6.6.1 Multi-timescale Stochastic approximation methods

Multi-timescale is used to address the second difficulty raised at the end of Section 2, i.e., to
avoid using nested loops to estimate a quantile of the level α and to compute the probabilistic
constraints. Multi-timescale stochastic approximation [33, 38] is a method that utilizes updates with
different step-size schedules. Multi-timescale algorithms are useful when, between two successive
updates of the algorithm, an inner-loop procedure must be performed recursively until it converges.
Employing a multi-timescale algorithm allows both updates (for the inner and outer loops) to run
together and converge to the desired point. In conditional value-at-risk (CVaR) optimization, this
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is typically the case for updating the additional variable t that could have been updated in an
inner loop procedure. For example, the work [50, 152] use a multi-timescale algorithm to update
the additional variable. Other cases where multi-timescale can be applied include aggregating
information about the gradient through an exponential moving average and updating the Lagrangian
multipliers in the case of a Lagrangian relaxation. For more details on multi-timescale stochastic
approximation, readers may refer to [38, Chapter 6] or [33, Section 3.3].

In this work, four different timescales are used. The four different step sizes sk1, s
k
2, sk3 and sk4 are

chosen so that Assumption 5 holds.

Assumption 5. For k ≥ 0, the step sizes sequences sk1, s
k
2, sk3 and sk4 are strictly positive and satisfy

the requirements:

∑
sk1 =

∑
sk2 =

∑
sk3 =

∑
sk4 = +∞,∑(

(sk1)2 + (sk2)2 + (sk3)2 + (sk4)2
)
<∞,

lim
k→∞

sk1
sk2

= lim
k→∞

sk2
sk3

= lim
k→∞

sk3
sk4

= 0.

These four step sizes differ by their speed to reach the infinity. In fact, under the previous assump-
tion, there exists an integer k0 such that, for every K ≥ k0, the partial sums satisfy

K∑
k=0

sk1 <
K∑
k=0

sk2

and the gap between the above two summations increases with K. Thus, the time scale associated
with s2 is said to be faster than the time scale associated with s1. In this work, the fastest timescale
is used to aggregate information about the gradient, the first intermediate timescale is used to update
the additional variable t and the second intermediate timescale is used to update the design vector
x, and the slowest timescale is used to update the Lagrangian multipliers λ.

6.6.2 The RAMSA algorithm

Algorithm 15 summarizes the different updates. Note that when the square (·)2, the square root
√
· or division ·

· operators are applied to a vector, it is elementwise. Further remarks about Algo-
rithm 15 are outlined:

• The updates (6.18) are the updates used to aggregate information about the gradient and are
computed from the unbiased estimator defined in Equation (6.13). It will be shown later in the
convergence proof that in fact ||Mk−∇L(xk, tk,λ)|| → 0 and ||Vk− (∇L(xk, tk,λ))2|| →
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Algorithm 15 Risk Averse Multi-timescale Stochastic Approximation (RAMSA) algorithm
1: Input: x0, X , T ,L, Kmax.
2: Set k = 0 be an iteration counter
3: Define stepsize sequences (sk

1), (sk
2), (sk

3) and (sk
4) having the following form :

sk
i = s0

i

(k + 1)τi
, ∀i ∈ {1, 2, 3, 4}

4: where the exponential decays τi, i = 1, . . . , 4 are chosen such that the Assumption 5 are satisfied.
5: Set M0 = g̃0, V0 = (M0)2 and t0 = 0
6: while k ≤ Kmax do
7: Draw samples uk ∼ T N (0, I, bℓ−xk

β1
, bu−xk

β1
) and vk ∼ T N (0, I, −tmax−tk

β2
, tmax−tk

β2
).

8: Recall that an unbiased output of the Lagrangian is given by:

L̃(x, t, λ, ξ) = Ṽα0(x, t0, ξ) +
m∑

j=1
λj Ṽαj (x, tj , ξ) (6.16)

9: where Ṽαj
(x, tj , ξ) = tj + 1

1−αj
(Cj(x, ξ)− tj)+.

10: Calculate the gradient estimate g̃ := (g̃x, g̃t, g̃λ) ∈ Rn × Rm+1 × Rm with respect to x, t and λ with:

g̃k
x =

(
L̃(xk + β1uk, tk + β2vk, λk, ξk

1)− L̃(xk, tk, λk, ξk
2)
)

(uk − µk
1)

β1
,

g̃k
t =

(
L̃(xk + β1uk, tk + β2vk, λk, ξk

1)− L̃(xk, tk, λk, ξk
2)
)

(vk − µk
2)

β2
,

g̃k
λj

= Ṽαj
(xk, tk

j , ξk
1) ∀j ∈ [1, m].

(6.17)

11: Update the long term gradient estimators:

Mk+1 = sk
4 g̃k + (1− sk

4)Mk

Vk+1 = sk
4 (g̃k)2 + (1− sk

4)Vk
(6.18)

12: Update the current iterates xk, tk and λk;

tk+1 = ΠT

tk − sk
3

Mk+1
t√

Vk+1
t + ϵ

 (6.19)

xk+1 = ΠX

[
xk − sk

2
Mk+1

x√
Vk+1

x + ϵ

]
(6.20)

λk+1 = ΠL

λk + sk
1

Mk+1
λ√

Vk+1
λ + ϵ

 (6.21)

13: k ← k + 1
14: end while
15: Return xk

0 almost surely when k → ∞. The Mk iterates can be thought of as an exponential moving
average of the gradient estimators and aim to aggregate information about the direction of the
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gradient. The Vk iterates aim to avoid exploding gradient updates and aggregate information
about the magnitude of the gradient.

• The update of the variable t is done in the update (6.19). The interest of updating t with a
faster timescale than those of x is that x will be quasi static compared to t. Thus, for a given
x, the updates of t will appear to have converged to a point t∗(x), where t∗ is an estimate of
the VaR at the point x of the objective and constraint functions.

• A projection is employed in the updates of the variables x, t and λ. This projection is re-
quired in the case of x because the space of the design variables is bounded. For t and λ, the
projection is required for convergence analysis. Since the bounds on t and λ can be arbitrarily
large, this is not a problem in practice. In the algorithm, the sets X , T , and L are all hyper-
rectangles, i.e., sets of type [bℓ,bu] ⊂ Rd where d is a given dimension. Furthermore, the
projection operator ΠX (x) is defined as ΠX (x) = (Π1(x1), . . . ,Πd(xd)), where the individ-
ual projection operators Πj : R → R are defined by Πj(xj) = min( (bu)j,max( (bℓ)j, xj))
for all j ∈ [1, d]. The projection operators for the variables t and λ are defined in the same
way.

6.7 Convergence analysis

The convergence of the RAMSA algorithm is stated in the following theorem.

Theorem 6.7.1. Under Assumption 4.3 and Assumption 5, let further assume that the problem

given in Equation (6.14) is strictly feasible and there exists K ∈ N such that xK and λK are in

the domain of attraction of x∗ and λ∗ with λ∗ ∈ L◦ respectively. Then, the iterates (xk, tk,λk),
produced by the RAMSA algorithm, converge almost surely to a saddle point of the Lagrangian

function Lβ and (x∗, t∗) is a locally optimal solution for the smooth CVaR-constrained problem

given in Equation (6.14).

While the technical details of the proof of this theorem are given in Section 6.10.1, a high-level
overview of the proof steps is given below.

• First, for each timescale, a discrete stochastic approximation analysis is used to prove the
almost sure convergence of the iterates (Mk,Vk,xk, tk,λk) to a stationary point
(M∗,V∗,x∗, t∗,λ∗) of the corresponding continuous-time system.

• Then, to show that the continuous-time system is locally asymptotically stable at the station-
ary point, a Lyapunov analysis is performed.
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• Finally, considering the iterates (xk, tk,λk), the Lyapunov function used in the above analy-
sis is the Lagrangian function L(x, t,λ). Therefore, the stationary point (x∗, t∗,λ∗) is a sad-
dle point. Thus, by the saddle point theorem, we deduce that x∗ is a locally optimal solution
to the smooth CVaR-constrained blackbox optimization problem given in Equation (6.14).

This convergence proof procedure is standard for multi-timescale stochastic approximation algo-
rithms, see [33, chapter 10], [38, chapter 6] or [33, 50], for further references. Note that this proce-
dure must be done for each timescale, requiring four similar proof steps. This is due to the different
speeds of the timescales. Here, the updates (Mk,Vk) converge on a faster timescale than tk, which
converges on a faster timescale than xk, while λk converges on the slowest timescale. The idea of
multi-timescale convergence analysis is then to assume that, given a timescale, the updates made on
faster timescales are quasi-equilibrated, i.e. have already converged to an equilibrium point. The
updates made on slower timescales are quasi-static, i.e. fixed with respect to the given timescale.
Therefore, the convergence analysis of the updates of the given timescale is done by considering
all other updates as fixed. To illustrate the mathematical meaning of this assumption, consider two
updates xk,xk2 ∈ X1 ×X2 such that

xk+1
1 = xk1 + sk1

(
f1(xk1 ,xk2) + δk+1

1

)
, (6.22)

xk+1
2 = xk2 + sk2

(
f2(xk1 ,xk2) + δk+1

2

)
, (6.23)

where f1 and f2 are Lipschitz continuous function and δ1, δ2 are square integrable martingale
difference sequence with respect to the σ-field σ(xi1,xi2, δi1; i ≤ k) and σ(xi1,xi2, δi2; i ≤ k). If sk1
and sk2 are non-summable and square summable step sizes with sk2 which is a faster timescale than
sk1, i.e., sk1 = o(sk2). Then, the previous recursion may be rewritten as follows

xk+1
1 = xk1 + sk2

(
sk1
sk2

(
f1(xk1 ,xk2) + δk+1

1

))
, (6.24)

xk+1
2 = xk2 + sk2

(
f2(xk1 ,xk2) + δk+1

2

)
. (6.25)

As sk1 = o(sk2), this recursion may be seen as a noisy discretization of the ODEs ẋ1 = 0 and
ẋ2 = f2(x1,x2). Since ẋ1 = 0, x1 is a constant and the second ODE may be replace with
ẋ2 = f2(x0

1,x2), where x0
1 is a constant. Finally it can be proved [38, Chapter 6, Theorem 2]

that (xk1 ,xk2) converge (x∗
1, µ(x∗

1)), where µ is a Lipschitz continuous function, µ(x∗
1) is a locally

stable equilibrium of the ODE ẋ2 = f2(x∗
1,x2) and x∗

1 is a locally stable equilibrium of the ODE
ẋ1 = f1(x1, µ(x1)).

In Theorem 6.7.1, it is proved that the iterations converge to a locally optimal solution of the
problem given in Equation (6.14). It is possible to obtain a result for the original CVaR-constrained
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problem given in Equation (6.5) by utilizing Theorem 6.5.2. This is the subject of the following
corollary.

Corollary 6.7.2. Under the same assumptions as Theorem 6.7.1, it follows that there exists a

threshold ᾱ ∈ (0, 1] such that if αj ≥ α for all j ∈ [0,m], then the iterates xk converge almost

surely to a feasible solution x∗ of Problem (6.5) whose the objective function value is within
L2β1

√
n+β2

1−maxj∈[1,m] αj
of that of a local solution of Problem (6.5).

Proof. The proof is straightforward, considering the result of Theorems 6.7.1 and 6.5.2.

This corollary is particularly interesting because it ensures the almost sure convergence of Algo-
rithm 15 to a feasible point of the CVaR-constrained problem whose objective function value is
arbitrarily close to that of a local solution. To the best of our knowledge, this result is the first of its
kind in the area of derivative-free RBDO with unknown uncertainty distribution.

6.8 Computational implementations and numerical experiments

This section is divided into five parts: details of the numerical implementation are given in Sec-
tion 6.8.1. Section 6.8.2 describes the setup of the experiments. Section 6.8.3 presents the exper-
iments aimed at finding relations between the hyperparameters and the problems to be solved.
Finally, Section 6.8.4 exhibits the results obtained using the truncated Gaussian gradient estima-
tor instead of its classical counterpart, while Section 6.8.5 shows the results when the problem is
subject to mixed aleatory/epistemic uncertainties.

6.8.1 Computational implementation

In this section, practical details of the implementation of Algorithm 15 are given. They aim to
reduce the number of hyperparameters required by the algorithm and improved its practical effi-
ciency.

The first difficulty the algorithm faces is when the bounds of the decision variables differ in magni-
tude. A first approach is then to adjust the initial step sizes according to each coordinate. However,
this increases the number of hyperparameter values to be set. Another approach, which requires
only one step size for all coordinates j ∈ [0,m], is to map the initial hyperrectangle to the hyper-
cube [0, 1]n. The output of the blackbox Cj : X → R is simply replaced by C1

j : [0, 1]n → R,
where

C1
j (x, ξ) = Cj(bℓ + (bu − bℓ)x, ξ).
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The algorithm encounters a second difficulty related to the Lagrangian relaxation, where the values
of the objective function and constraints are added together. When constraint magnitudes differ, the
algorithm is biased towards the larger ones. To mitigate this bias, a solution consists of choosing
different step sizes for updating λ but that increases the number of hyperparameters. Alternatively,
a transformation may be applied to normalize the values, allowing the use of a single step size. In
this method, the arctan(·) function is employed to map the blackbox output values to the range of
[−π

2 ,
π
2 ]. However, there is an issue when the bounds of the arctan function are approached because

the gradient estimator is computed from the difference between the values returned by the arctan
function. If this difference is too small, especially in the presence of noisy blackbox outputs,
the quality of the gradient estimator decreases. To address this issue, the cubic root function is
applied beforehand to increase the difference between these values. That leads to the following
transformation

C2
j (x, ξ) = arctan

(
3
√
Cj(x, ξ)

)
,∀j ∈ [0,m].

In the rest of the paper, we refer to C̃j : [0, 1]n → [−π
2 ,

π
2 ], ∀j ∈ [0,m], the map corresponding to

the two previous transformations applied to the outputs of the blackbox.

Finally, in practical applications, it appears that initiating the process directly at the intended re-
liability level can be counterproductive [199]. To overcome this difficulty, the values of αj, ∀j ∈
[0,m] are initially set to 0. Then, these values are gradually increased until the desired reliability
levels are reached. This is done by inserting reliability level setting

αk+1
j = α∗

j + γ
(
αkj − α∗

j

)
for every index j ∈ [0,m] in between lines 12 and 13 of Algorithm 15. Here, α∗

j are the desired
reliability levels and γ ∈ [0, 1) is a fixed threshold.

6.8.2 Numerical experiments

Before proceeding to the numerical experiments, this section describes the test problems chosen,
the way the experiments are performed, and the objectives of the different experiments.

First, four analytical test problems, each with a known practical optimum, are chosen from existing
literature. These problems include a Steel Column Design (SCD) problem [194], a Welded Beam
Design (WBD) problem [194], a Vehicle Side Impact (VSI) problem [194], and a Speed Reducer
Design (SRD) problem [48]. These problems are decribed in Section 6.10.2, and further informa-
tion regarding their physical interpretations can be found in the associated references. Except in
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the last subsection, the goal is to solve the following standard RBDO problem

min
x∈[0,1]n

Eξ[C̃0(x, ξ)]

s.t. P(C̃j(x, ξ) ≤ 0) ≥ 0.99, ∀j ∈ [1,m].
(6.26)

It is important to note that Problem (6.26), unlike the classical FORM-based problem, incorporates
uncertainties not only in the constraints but also in the objective function. Moreover, despite the
analytical expressions of the problems are available and the uncertainty distributions are known,
the RAMSA algorithm operates without utilizing these information. As outlined in Sections 6.4
and 6.5 it solves formally a smooth Lagrangian relaxation of Problem (6.26).

In order to make comparisons, it is essential to devise a strategy for evaluating the quality of so-
lutions generated by the RAMSA algorithm. As both the problem and the algorithm are subject
to uncertainties, multiple runs of the RAMSA algorithm are necessary, and the values of the pro-
posed solutions need to be estimated using Monte Carlo simulations. In this work, a trial consists
of running the algorithm 100 times with the same set of hyperparameters values. For each run,
a maximum budget of 5000 function evaluations is allocated. At the end of these 100 runs, the
final solution points are recorded. For each solution point, the mean of the objective function and
the probabilisty to satisfy the constraints are estimated through 10000 Monte Carlo simulations. A
run is deemed successful if all constraints are satisfied with a probability greater than 0.99. More-
over, the mean solution point over the 100 runs, denoted as x̄∗, is calculated as well as its standard
deviation. That allows to check that the RAMSA algorithm consistently converges to the same
neighborhood of an optimal point. To further validate the results, this point is also compared with
the solution obtained by the SORA algorithm in [48, 194]. Note that the aim is not to directly
compare the RAMSA and SORA algorithms since the SORA algorithm takes advantage of the an-
alytical expressions of the problems and knowledge of uncertainty distributions. When a trial is
consistent for a set of hyperparameter, the set and the trial are said to be satisfactory.

Now, the objectives of the upcoming experimental sections are threefold. First, despite the trans-
formations introduced in the previous section, there are still some hyperparameters that need to be
configured. Section 6.8.3 provides guidelines on how to set these hyperparameters. Second, a crit-
ical aspect is the selection of the kernel density used to estimate gradients during the optimization
process. In Section 6.8.4, a comparison is made between the classical Gaussian gradient estimator
and the truncated Gaussian gradient estimator introduced in Section 6.5.1. Third, the VSI problem
is described slightly differently in [194], allowing the means of the uncertainty variables ξ8 and
ξ9 to take two values: 0.192 and 0.345. This is an opportunity to employ the RAMSA algorithm
for solving the VSI problem under mixed aleatory/epistemic uncertainties. In fact, the uncertainty
in distribution parameters can be regarded as a source of epistemic uncertainty [139]. Detailed
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descriptions of the conducted experiments are presented in Section 6.8.5.

6.8.3 Hyperparameters setting rules

The RAMSA algorithmn involves four types of hyperparameters: the exponential decays of the step
sizes τ ∈ (1

2 , 1)4, the threshold for the adaptive reliability level γ, the initial step sizes s0 ∈ R4
+,

and the smoothing parameters β ∈ R2
+∗. Two strategies can be employed to determine the values

of these hyperparameters.

On the one hand, theoretical considerations are employed to set some hyperparameter values.
This approach is employed to set the values of the exponential decays. These values must sat-
isfy Assumption 5 to ensure the convergence of the algorithm. Moreover, they must be distinct
enough to achieve the desired multi-timescale effect, but also not too different, otherwise, ei-
ther the fastest timescale is too fast (leading to increased noise) or the slowest timescale is overly
slow (impeding the convergence process) [33, Chapter 6]. Thus, the decays are arbitrarily set to
τ = (0.8, 0.7, 0.6, 0.501). The threshold for the adaptive reliability level γ can be determined sim-
ilarly. This hyperparameter depends only on the value of Kmax because for j ∈ [0,m], it follows
that ∀k ∈ N, αk+1

j = α∗
j (1 − γk). Thus γ can be chosen such that αKmax

j ≈ α∗
j . However, if α∗

j

is chosen close to 1, the problem given in Equation (6.14) is particularly conservative for Prob-
lem (6.5), as shown in Theorem 6.5.2, and even more so for Problem (6.26). Therefore, to avoid
overly conservative results, γ is chosen to be equal to 1− 5

2Kmax so that αKmax
j ≈ 0.9 provided that

Kmax = 2500 and α∗ = 0.99.

On the other hand, there are some hyperparameters values that cannot be determined theoretically.
In this case, they have to be computed experimentally. This is achieved through a two-step strat-
egy. The set of test problems is divided into two groups: the experimental test problems and the
validation test problems. In the first step, for each experimental problem, a set of hyperparam-
eters, that gives satisfactory results on this test problem, is identified. By analyzing the results
obtained on the different problems and the associated hyperparameter values, a distinction may
be deduced between the hyperparameters which are problem-dependent and which are not. For
problem-dependent hyperparameters, we try to establish correlations between the hyperparameter
values and relevant problem-related quantities. Examples of such quantities include the objective
function value, the gradient norm, or its variance at the starting point. Then, the validation step
is undertaken to check the rules derived from the experimental step. During this phase, the rules
are applied to the validation test problems to determine the hyperparameter values of the RAMSA
algorithm. If the results obtained with this set of hyperparameters are satisfactory, the rules are
deemed effective.

In this study, the two-step strategy is applied as follows. The experimental test problems selected
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are the VCD, WBD, and VSI problems. Trials of Algorithm 15 are conducted with different sets of
hyperparameter values and the classical Gaussian gradient estimator [141, Equation (26)]. For the
sake of brevity, only one set of satisfactory hyperparameters and its associated results are presented
for each problem. The values of this set are listed in Table 6.2, while in Table 6.3 the associated
average results of the trials are presented. Detailed results from the 100 runs of the trials are
provided in Section 6.10.3 in the form of boxplots.

Table 6.2 Satisfactory set of hyperparameter values found for each problem

Problem β1 β2 s0
1 s0

2 s0
3 s0

4

SCD 0.05 0.0001 0.01 0.05 0.001 0.2
WBD 0.002 0.0001 0.01 0.001 0.001 0.4
VSI 0.1 0.0001 0.01 0.5 0.001 0.5

Table 6.3 Average result over 100 runs obtained for each problem

Problem/
Algo

Average of
E[C(x∗, ξ)]

Average of
P(Cj(x∗, ξ) ≤ 0)

Average result point
x̄∗ (and standard

deviation)

Number of
successful

runs
Function
queries

SCD 3967 [0.9938] [229.7, 15.03, 103.1]
[±4.4,±0.25,±3.8]

100 5000

SORA 3989 [0.9947] [258, 13.5, 100] N/A 216
WBD 2.53 [1.0, 1.0, 0.9995, 1.0, 1.0] [6.36, 158, 211, 6.59]

[±0.01,±0.29,±0.29,±0.02]
100 5000

SORA 2.49 [1.0, 1.0, 1.0, 1.0, 1.0] [5.92, 181, 211, 6.22] N/A 505

VSI 28.38

[1.0, 1.0, 1.0, 1.0, 0.9993 [0.88, 1.34, 0.51, 1.49,
[±0.03,±0.004,±0.02,±0.009]

95 50001.0, 1.0, 0.9925, 1.0,
0.9996] 1.29, 1.19, 0.45]

±0.07,±0.01,±0.08]

SORA 29.55
[1.0, 1.0, 1.0, 1.0, 0.9987, [0.78, 1.35, 0.69, 1.5,

N/A 80541.0, 0.9987, 0.9983, 1.0, 1.07, 1.2, 0.78]
0.9993]

Table 6.3 shows that the RAMSA algorithm achieves satisfactory results in all three problems. In-
terestingly, it appears to perform better on problems with higher dimensions and more constraints.
This phenomenon can be attributed to the approximation of the gradient used in the RAMSA al-
gorithm. This approximation estimates the gradient of the Lagrangian function with only two
blackbox evaluations, regardless of the dimension or number of constraints. Upon analyzing Ta-
ble 6.2, it seems that β2, s0

1, and s0
3 are problem-independent. Moreover, the value of s0

4 falls within
a relatively narrow interval of [0.1, 0.6]. In contrast, the smoothing parameter β1 and the initial step
size s0

2, both associated with the design vector x, exhibit variations from one problem to another.
This variability suggests the problem dependency of these hyperparameters.
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The first claim to be proven experimentally is the following: an appropriate order of magnitude of
β1 is so that the variance of the gradient estimator at the starting point is minimal. A such value
should reduce the variability during the initial stages of the optimization process and thus improve
the convergence rate. To validate this assertion, the gradient is approximated by computing N

Lagrangian gradient estimators given in Equation (6.17), at the point (x0,0,0). The gradient is
approximated for only 6 different values of β1 to prevent excessive computations. The values
chosen are [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]. Then, the variance of the first n components of the
gradient (i.e., the components of g̃x) is computed, and the average of these variances is calculated
for each value of β1. The value of β1 is finally chosen as the one leading to the smallest average
variance. If the minimum is reached for two different values of β1, the larger value is selected. The
results for the three different problems are presented in Table 6.4. It is observed that, selecting β1

to minimize the average variance and halving it, yields to similar results to those of Table 6.2.

Table 6.4 Average variance of N gradient approximations for different values of the smoothing
parameter β1

Value of β1 0.001 0.005 0.01 0.05 0.1 0.2
Average variance for

SCD problem 4.2 0.16 0.04 0.004 0.003 0.94
Average variance for

WBD problem 2.1 1.75 1.78 5.2 15 8.9
Average variance for

VSI problem 0.67 0.03 0.008 0.0018 0.0016 0.0016

The second claim to be experimentally shown is that: there is a correlation between the norm of
the stochastic gradient and the value of the initial step size s0

2. Intuitively, that means that the
smaller the gradient norm, the larger the initial step size should be, and vice versa. To validate
this hypothesis, N stochastic gradients with β1 = 0.1 are computed, and the norm of their mean is
calculated. The result, normalized by the square root of the dimension, is presented in the third line
of Table 6.5 for each problem. The second line displays the result obtained in Table 6.2, and the
last line shows the corresponding correlation coefficients. Based on these results, it can be deduced
that the correlation coefficient should be around 10−3.

In the conducted experiments, the value of N is set to 10000. It is worth noting that while this large
sample size is suitable for these experiments, in a BBO context, such a number might be intractable
due to its computational cost. However, the methodology employed here can be adapted to work
with smaller sample sizes. The goal of this approach is to provide only an order of magnitude for
the hyperparameter values. Thus, a reduced number of samples can be used in a BBO context.
Additionally, it is worth mentioning that the calculated gradients used to estimate the value of β1
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Table 6.5 Correlation between the norm of the gradient and the initial step size s0
2

SCD WBD VSI

Value of s0
2 0.05 0.001 0.5

Estimated value of
||∇xLβ(x0,ξ)||2√

n
≈ 0.02 ≈ 1.4 ≈ 0.01

s0
2 ×

||∇xLβ(x0,ξ)||2√
n

≈ 0.001 ≈ 0.001 ≈ 0.005

can also be used to estimate the value of s0
2, reducing the computational cost of the method.

To validate the experimental step, the claims previously stated are applied to compute the hyperpa-
rameter values for solving the SRD problem. For this problem, the minimum value of the average
variance occurs for β1 = 0.1, and the norm of the Lagrangian gradient (normalized by the dimen-
sion) is estimated to be 0.006. These values are then utilized to set the values of β1 = 0.05 and
s0

2 = 0.15. The values of the others hyperparameters are set as in Table 6.2 and s0
4 = 0.2. The

results obtained with this set of values are shown in Table 6.6.

Table 6.6 Average result over 100 runs for Speed Reducer design problem

Problem/
Algo

Average of
E[C(x∗, ξ)]

Average of
P(Cj(x∗, ξ) ≤ 0)

Average result point
x̄∗ (and standard

deviation)

Number of
successful

runs
Function
queries

SRD 3148

[1.0, 1.0, 1.0, 1.0, 1.0 [3.6, 0.7, 17.0, 7.41,
[±0.0,±0.0,±0.06,±0.04]

100 50001.0, 1.0, 0.9996, 1.0,
1.0, 1.0] 7.99, 3.51, 5.37]

±0.04,±0.01,±0.01]

SORA 3038
[1.0, 1.0, 1.0, 1.0, 0.9975, [3.57, 0.7, 17, 7.3,

N/A 24860.9986, 1.0, 0.9986, 1.0, 7.75, 3.36, 5.3]
1.0, 0.9986]

Based on these results, it appears that the rules established for setting the hyperparameter values
lead to satisfactory solutions. The consistency observed in the solution points, as indicated by
the small standard deviations obtained, suggests that the algorithm consistently converges to the
same vicinity. Moreover, this solution is relatively close to the optimal point found by the SORA
algorithm. Note, however, that these rules do not guarantee to find the best possible set of hyper-
parameters. For example, by retaining all hyperparameter values but adjusting β1 to 0.01, similar
values of probabilistic constraints can be achieved, with an average objective function value of
3066.

In summary, the rules established in this section provide valuable insights into obtaining a satis-
factory set of hyperparameter values for the RAMSA algorithm. However, they must be used with
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caution due to the limited number of problems used to derive them, especially for the value of β1.
It is known [47] that setting the appropriate β1 value is a challenging task in practice. One potential
approach to address this challenge is to dynamically decrease the value of β1 during the optimiza-
tion process, as done in [22]. Nevertheless, this topic falls beyond the scope of the present paper
and is not explored further here.

6.8.4 Truncated Gaussian vs Gaussian gradient estimator

In this section, the focus is on investigating the behavior of the algorithm when the bound con-
straints are unrelaxable [107], meaning that the outputs of the blackbox are not meaningful for the
optimization process. This situation can arise when the blackbox is not defined outside its bounds
or due to physical phenomenon. In this section, the uncertainties specified in Section 6.10.2 are
truncated, ensuring that x + ξ ∈ X for every realization of ξ. Moreover, to solve the constrained
problem, the algorithm is executed using the truncated Gaussian gradient estimator instead of the
classical Gaussian gradient estimator utilized in the previous section. This modification guarantees
that all the candidate points are evaluated inside the bound constraints X .

To determine the hyperparameter values for the algorithm using the truncated Gaussian gradient
estimator, the methodology introduced in the previous section is applied. The values of β1 that min-
imize the variance of the truncated Gaussian estimator are found to be 0.2, 0.005, 0.2 and 0.01for
the SCD, WBD, VSI, and SRD problems, respectively. Consequently, the values of β1 are set to
0.1, 0.0025, 0.1 and 0.025. Furthermore, the correlation coefficient between the norm of the ap-
proximate gradient and the initial step size s0

2 is approximately 5× 10−4. Thus, the values of s0
2 are

set to 0.1, 0.0008, 0.6 and 0.01 for the SCD, WBD, VSI, and SRD problems, respectively. Finally,
the values of s0

4 are set to 0.25, 0.4, 0.6, and 0.2. The results of these experiments are presented
in Table 6.7, and the detailed results from the 100 runs are depicted in boxplots in Section 6.10.3.

In Table 6.7, it is shown that utilizing the truncated Gaussian gradient approximation leads to
satisfactory results. However, the algorithm convergence is significantly slower than with classical
Gaussian gradient approximation, requiring three times more function queries. This phenomenon
cannot be attributed to the chosen hyperparameter values, as experiments with different sets of
values do not significantly improve the results. Our main hypothesis is that this phenomenon may
come from a side effect of using the truncated Gaussian distribution. However, a comprehensive
investigation of this issue requires dedicated research, left for future work.
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Table 6.7 Best average result over 100 runs obtained for each problem with truncated Gaussian
gradient estimator with 15000 function evaluations by run

Problem
Average of
E[C(x∗, ξ)]

Average of
P(Cj(x∗, ξ) ≤ 0)

Average result point
x̄∗ (and standard

deviation)
Number of

successful runs
SCD 3957 [0.9958] [226, 15, 106]

[±10,±0.6,±6]
97

WBD 2.53 [0.999, 1.0, 1.0, 1.0, 1.0] [6.37, 158, 211, 6.59]
[±0.01,±0.24,±0.24,±0.01]

99

VSI 28.97

[1.0, 1.0, 1.0, 1.0, 0.9998 [1.00, 1.35, 0.54, 1.49,
[±0.03,±0.004,±0.03,±0.008]

911.0, 1.0, 0.9923, 1.0,
0.9977] 1.21, 1.19, 0.48]

±0.1,±0.008,±0.1]

SRD 3093

[1.0, 1.0, 1.0, 1.0, 1.0 [3.58, 0.7, 17.0, 7.30,
[±0.002,±0.0,±0.03,±0.004]

1001.0, 1.0, 0.994, 1.0,
1.0, 0.999] 7.78, 3.42, 5.31]

±0.003,±0.002,±0.0008]

6.8.5 Solving problems under mixed aleatory/epistemic uncertainties

In this section, the behavior of the algorithm in the presence of mixed aleatory and epistemic un-
certainties is examined. Epistemic uncertainties may arise from uncertainties about distribution pa-
rameters [139]. In the VSI problem presented in [194], it is noted that the mean of the uncertainty
variables ξ8 and ξ9 can take two different values: 0.192 and 0.345. While both values were fixed
to 0.345 in [194] and in the previous experiments, in this section, these means are treated as epis-
temic uncertainties. Two types of epistemic uncertainty are studied: points epistemic uncertainty
where the means µξ8 and µξ9 of ξ8 and ξ9 belong to {(0.192, 0.192), (0.192, 0.345), (0.345, 0.192),
(0.345, 0.345)} and interval epistemic uncertainty where µξ8 and µξ9 belong to the same interval
[0.192, 0.345]. The others uncertain variables remain the same (no truncated) and are considered as
aleatory uncertainties.

In this type of problems, a solution is deemed feasible if, for any values µξ8 and µξ9 , the proba-
bilistic constraints are satisfied with a probability greater than 0.99. Checking solution feasibility
is more complex than in the previous section. In the case of points epistemic uncertainty, checking
feasibility remains relatively straightforward since it involves evaluating the solution for the four
possible pairs of means. However, when dealing with interval epistemic uncertainty, there is no
ideal method for this verification. The approach adopted in this paper involves seeking the worst
possible values of the epistemic uncertainties, µξ8 and µξ9 , at a candidate solution x∗. To achieve
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this, the following problem is solved for each constraint Cj, j ∈ [1,m]

max
(µξ8 ,µξ9 )∈[0.192,0.345]2

Cj(x∗,E[ξ]). (6.27)

This problem aims to find the most challenging combination of µξ8 and µξ9 . In this problem, all
the uncertainties are fixed to their means and therefore the problem is deterministic. For each
constraint, the couples solution of Problem (6.27) are recorded. Next, the aleatory uncertainties are
introduced. For each pair of µξ8 and µξ9 obtained , the probabilities of satisfying the constraints at
x∗ are computed using the original distribution of the aleatory uncertainties. If these probabilities
are all larger than 0.99, then the candidate solution is considered feasible. This approach provides a
robust assessment of feasibility under interval epistemic uncertainty. It is noteworthy that applying
this methodology to the solution point obtained by the SORA algorithm reveals that this point is
infeasible in the presence of epistemic uncertainty. For instance, if the means µξ8 and µξ9 are taken
to be equal to (0.192, 0.345), the probability of satisfying the 7th constraint is P (C7(x∗

SORA, ξ) ≤
0) ≈ 0.88.

Table 6.8 Average result over 100 runs obtained with mixed aleatory/points epistemic uncertainty
in the VSI problem with 15000 function evaluations by run

Value of
(µξ8 , µξ9)

Average of
E[C(x∗, ξ)] Average of P(Cj(x∗, ξ) ≤ 0)

Average result point
x̄∗ (and standard

deviation)
Number of

successful runs

(0.192, 0.192)

30.38

[1.0, 1.0, 1.0, 0.9986, 1.0

[1.27, 1.35, 0.51, 1.49,
[±0.05,±0.0,±0.02,±0.007

981.0, 0.9993, 0.9930, 1.0, 1.0]

1.26, 1.19, 0.47]
±0.08,±0.01,±0.1]

(0.192, 0.345) [1.0, 1.0, 1.0, 1.0, 1.0,
981.0, 0.9993, 0.9930, 1, 0.9995]

(0.345, 0.192) [1.0, 1.0, 1.0, 1.0, 1.0,
981.0, 1.0, 0.9930, 1.0, 1.0]

(0.345, 0.345) [1.0, 1.0, 1.0, 1.0, 1.0,
991.0, 1.0, 0.9929, 1.0, 0.9995]

To address this type of problems with the RAMSA algorithm, it is necessary to associate a proba-
bility distribution with the mean of ξ8 and ξ9. It is important to underline that this does not imply
making an assumption about the distribution of the epistemic uncertainty itself. The distribution is
just utilized to generate blackbox outputs. That allows to approach the problem from a worst-case
perspective, leveraging the CVaR properties when the values of αj are taken sufficiently close to 1.
In the algorithm, the Bernoulli distribution is employed to generate the means for points epistemic
uncertainty, while the uniform distribution is used to generate the means for interval epistemic un-
certainty. The results for mixed aleatory/points epistemic uncertainties are presented in Table 6.8,
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and for mixed aleatory/interval epistemic uncertainties in Table 6.9.

Table 6.9 Average result over 100 runs obtained with mixed aleatory/interval epistemic uncertainty
in the VSI problem with 10000 function evaluations by run.

Solution of
Problem (6.27)1

Average of
E[C(x∗, ξ)] Average of P(Cj(x∗, ξ) ≤ 0)

Average result point
x̄∗ (and standard

deviation)
Number of

successful runs

(0.192, 0.345) 29.71

[1.0, 1.0, 1.0, 1.0, 1.0 [1.15, 1.35, 0.51, 1.49,
[±0.04,±0.00005,±0.01,±0.01

991.0, 0.9974, 0.9929, 1.0, 0.9994]
1.23, 1.19, 0.48]
±0.07,±0.02,±0.1]

1 There is only one point because for each run, the solutions (µξ8 , µξ9) of (6.27) are always the same.

In both cases, the RAMSA algorithm achieves satisfactory results. An interesting observation is
that the results obtained with mixed aleatory/interval epistemic uncertainties are better to those
with mixed aleatory/points epistemic uncertainties. This observation might appear counterintuitive
since, in this experiment, points epistemic uncertainty is a subset of interval epistemic uncertainty.
However, this phenomenon could be explained because the algorithm is better at handling con-
tinuous distributions than discrete distributions. The continuous nature of interval epistemic un-
certainty could potentially make it more amenable for the gradient estimator, leading to enhanced
performance in these cases.

6.9 Concluding remarks

This work targets the constrained blackbox optimization problem given in Equation (6.1), where
the output of the blackbox is subject to uncertainties. To deal with the uncertainties, a CVaR-
constrained problem formulation is adopted. This formulation allows the selection of the desired
level of reliability. A smooth approximation of the CVaR-constrained problem is then derived by
convolving the objective and constraint functions with a truncated multivariate Gaussian density.
The use of the truncated Gaussian density, as opposed to the classical Gaussian density, ensures
that sampling points are drawn within the bound constraints. Consequently, this approach avoids
numerical failures that may occur when functions are undefined outside their bounds. Then, a
Lagrangian relaxation is applied to handle the constraints. The resulting Lagrangian function pos-
sesses several appealing properties for optimization. First, it is infinitely differentiable since it is a
sum of smooth approximations of the objective and constraint functions. Second, gradient estima-
tors of the Lagrangian function can be computed with only two noisy blackbox outputs, making it
computationally efficient. Theoretical bounds on the quality of the approximation have been de-
rived. These bounds depend on the size of the problem, the value of the smoothing parameters, and
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the desired level of reliability. It is worth noting that it has been proved that for a reliability level
sufficiently close to 1, a feasible solution of the approximated problem remains a feasible solution
of the original CVaR-constrained problem.

A new algorithm has been proposed to find a saddle point of the Lagrangian function. This algo-
rithm is based on multi-timescale stochastic approximation updates. In this work, four different
timescales are used. On the fastest timescale, the updates aggregate information about the gradient
of the smooth Lagrangian function. On a first intermediate timescale, they estimate the value-at-
risk of the objective and constraint functions. On a second intermediate timescale, the updates
compute the optimal solution with respect to x, while on the slowest timescale, the updates com-
pute the optimal values of the Lagrangian multipliers. A convergence analysis based on Lyapunov
theory shows that the different updates almost surely converge to a saddle point of the Lagrangian
function. This point is locally optimal for the smooth approximation of the CVaR-constrained
problem. Furthermore, using the previous result on the quality of the approximation, we prove
that for reliability level values sufficiently close to one, this point is feasible and its value may be
arbitrarily close to an optimal value of the CVaR-constrained problem.

Once theoretical results have been stated, details of the numerical implementations are given. These
details mainly concern two transformations: one mapping the design variables into [0, 1]n and an-
other mapping the blackbox outputs into [−π

2 ,
π
2 ]m+1. These transformations are designed to scale

the design variables and the blackbox outputs, effectively reducing the number of hyperparameters.
Then, numerical experiments are performed. In these experiments, the primary objective is to es-
tablish rules for selecting the values of the remaining hyperparameters. The results reveal that all
hyperparameter values, except two, are independent of the problem and can be pre-specified using
the values determined in this work. The first problem-dependent hyperparameter identified is the
initial value of the step size for updating x. It is determined that this value can be estimated from
the norm of the gradient estimator at the starting point. The second problem-dependent hyperpa-
rameter is the value of the smoothing parameter. It is found that this parameter can be chosen in
such a way that its value minimize the variance of the gradient estimator at the starting point.

The secondary objective is to compare the effectiveness of the methods when truncated Gaussian
gradient estimators are used instead of the classical Gaussian gradient estimator. The proposed
strategy for setting the hyperparameters is applied to experiments conducted with the truncated
Gaussian gradient estimator. However, its use come at a cost. In the conducted experiments, it is
observed that the truncated estimator is approximately three times less efficient than the classical
Gaussian gradient estimator in terms of blackbox evaluations.

The tertiary objective of the experiments is to apply the algorithm to problems involving mixed
aleatory/epistemic uncertainties. In these experiments, the epistemic uncertainties are related to



157

the parameter distribution of the uncertainty variables. Two types of epistemic uncertainty are
explored: points epistemic uncertainty and interval epistemic uncertainty. The algorithm demon-
strated significant efficacy in handling both types of uncertainties. Notably, it performed particu-
larly well in cases involving interval uncertainties, yielding promising results.

Future work will focus on validating these results using real-world industrial test cases. Addi-
tionally, there are plans to compare the RAMSA algorithm with other state-of-the-art algorithms to
further assess its performance and competitiveness on problems subject to mixed aleatory/epistemic
uncertainties.
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6.10 Appendix

6.10.1 Appendix A. Proof of Theorem 6.7.1

First, two technical lemmas are stated to show that the iterates Mk and Vk are uniformly bounded
almost surely. For this purpose, properties about the random gradient estimator must be shown.

Lemma 6.10.1. Under Assumption 4.3, the random gradient estimator g̃ := (g̃x, g̃t, g̃ξ) is

almost surely Lipschitz continuous with respect to x, t and λ. Moreover, ||g̃|| is almost surely

bounded.

Proof. Let (x,y) ∈ X 2, (t, s) ∈ Rm+1 × Rm+1 and consider any fixed realization of u,v, ξ1 and
ξ2, it follows that for αj ∈ (0, 1)

|Ṽαj
(x + β1u, (tj + β2vj, ξ1)− Ṽαj

(y + β1u, sj + β2vj, ξ2)|

≤ |tj − sj|+
∣∣∣∣(Cj(x + β1u, ξ1)− (tj + β1vj)

)+
−
(
Cj(y + β1u, ξ2)− (sj + β1vj)

)+
∣∣∣∣

≤ 2|tj − sj|+ |Cj(x + β1u, ξ1)− Cj(x + β1u, ξ2)| ≤ 2|tj − sj|+ L3||x− y|| a.s. ,

where the second inequality follows from |max(a, 0)−max(b, 0)| ≤ |a− b| and the third is due to
Assumption 4.3. Therefore, Ṽαj

is almost surely Lipschitz continuous with respect to x ∈ X and
tj ∈ R. As, L̃ is a sum of almost surely Lipschitz continuous functions with respect to x and t, it is
also an almost surely Lipschitz continuous function. Moreover, L̃ is a linear function with respect
to λ and thus Lipschitz continuous with respect to λ.

Finally, by Assumption 4.3, we have for all x ∈ X and ξ ∈ Ξ

|Cj(x, ξ)| − |Cj(0,0)| ≤ |Cj(x, ξ)− Cj(0,0)| ≤ κ3(ξ,0)||x||.

Thus, the function Cj is almost surely bounded. Since L̃ is a sum of almost surely bounded func-
tions, x, t and λ are taken in compact sets and v and u are truncated Gaussian random vectors, it
follows directly that ||g̃|| is almost surely bounded.

Once this was shown, Mk and Vk may be bounded.

Lemma 6.10.2. The sequence of updates Mk and Vk are uniformly bounded with probability

one.
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Proof. Let k ∈ N, we have

Mk+1 = sk4g̃k +
k−1∑
r=0

sl4

k−1∏
q=r

(1− sq+1
4 )g̃r +

k∏
q=0

(1− sq4)g̃0.

It follows directly by triangular inequality that

||Mk+1|| ≤ sk4||g̃k||+
k−1∑
r=0

sl4

k−1∏
q=r

(1− sq+1
4 )||g̃r||+

k∏
q=0

(1− sq4)||g̃0||.

Now according to Lemma 6.10.1, for all r ∈ N, the random gradient estimator is almost surely
bounded. Therefore, we have

||Mk+1|| ≤

sk4 +
k−1∑
r=0

sl4

k−1∏
q=r

(1− sq+1
4 ) +

k∏
q=0

(1− sq4)
 sup
r∈[0,k]

||g̃r|| < +∞.

The same arguments may be applied for Vk, thus the claim follows directly.

The remainder of the section is composed of four steps.

Step 1: Convergence of M and V updates. Since M and V converge on the fastest timescale, ac-
cording to Lemma 1 in [38, chapter 6], the convergence properties of the updates in Equation (5.8)
may be analyzed for arbitrary quantities of x, t and λ (here x = xk, t = tk and λ = λk are used).
These updates may be rewritten as follows

Mk+1 = Mk + sk4
(
∇L(xk, tk,λk)−Mk + δk+1

M

)
, (6.28)

Vk+1 = Vk + sk4
(

(∇L(xk, tk,λk))2 + V(xk, tk,λk)−Vk + δk+1
V

)
, (6.29)

where δk+1
M = g̃k − ∇Lβ(xk, tk,λk) and δk+1

V = (g̃k)2 − ∇Lβ(xk, tk,λk)2 − V(xk, tk,λk),
with V(xk, tk,λk) = E[(g̃k − E[g̃k|Fk])2|Fk] the variance conditioned by the associated sigma
field Fk = σ(xr, tr,λr,Mr,Vr; r ≤ k). Now, the following Lemma may be stated to prove the
convergence properties of the updates M and V.

Lemma 6.10.3. Consider the following continuous time system dynamics of the updates,

Ṁ = h1(M,x, t,λ) := ∇Lβ(x, t,λ)−M,

V̇ = h2(M,x, t,λ) := (∇Lβ(x, t,λ))2 + V(x, t,λ)−V,

(ẋ, ṫ, λ̇) = (0,0,0).

(6.30)
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This o.d.e. has a globally asymptotically stable equilibrium

{(
∇Lβ(x, t,λ),∇Lβ(x, t,λ))2 + V(x, t,λ),x, t,λ

) ∣∣∣ (x, t,λ) ∈ X × T × L
}
,

and the sequences (Mk,vk,xk, tk,λk) converge almost surely to this equilibrium.

Proof. The proof may be decomposed in two parts: the first part consists of analyzing the solutions
of the two first o.d.e. given in Equation (6.30) and the second part consists of verifying that all the
assumptions needed to apply Lemma 1 in [38, Chapter 6] are satisfied.

First, let (x, t,λ) ∈ X × T × L be fixed and consider the following functions,

L1
x,t,λ(M) = ||∇Lβ(x, t,λ)−M||2,

L2
x,t,λ(V) = ||(∇Lβ(x, t,λ))2 + V(x, t,λ)−V||2.

Let denote M∗ = ∇Lβ(x, t,λ) and V∗ = (∇Lβ(x, t,λ))2 + V(x, t,λ) the equilibrium points of
the two first equations in Equation (6.30). The both functions satisfy the following conditions:

• They are globally positive definite, i.e, L1
x,t,λ(M) > 0, for all M ̸= M∗ and L2

x,t,λ(V) > 0,
for all V ̸= V∗.

• They are radially unbounded since ||M|| → ∞ =⇒ L1
x,t,λ(M)→∞ and ||V|| → ∞ =⇒

L2
x,t,λ(V)→∞.

• The time derivatives of the both functions are globally negative definite since d
dτ
L1

x,t,λ(M(τ)) =
−2||∇Lβ(x, t,λ) −M(τ)||2 and d

dτ
L2

x,t,λ(V(τ)) = −2||(∇Lβ(x, t,λ))2 + V(x, t,λ) −
V(τ)||2.

Thus, both functions are Lyapunov functions associated to the two first o.d.e. given in Equa-
tion (6.30). By a corollary of the LaSalle invariance theorem (see for instance [91, Corollary 4.2]),
the equilibrium points M∗ and V ∗ are globally asymptotically stable. Moreover, ∇Lβ is Lipschitz
with respect to x, t and λ since it is a continuously differentiable function defined on a bounded
space. The same may be applied for the function (∇Lβ)2. Finally, the function V is also Lipschitz,
since g̃ is Lipschitz by Lemma 6.10.1.

Now, we use the framework of the Lemma 1 in [38, Chapter 6].

(i) By Lemma 6.10.2, the updates Mk and Vk are uniformly bounded almost surely. The same
goes for the updates xk, tk and λk because of the projection operator.
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(ii) The functions h1 and h2 are Lipschitz continuous with respect to x, t,λ,M and V by prop-
erties of∇Lβ and V.

(iii) The sequence (δk+1
M ) is a martingale difference sequence with respect to the increasing sigma

fields Fk = σ(xr, tr,λr,Mr,Vr; r ≤ k) since, by properties of truncated Gaussian smooth-
ing, it follows that

E[δk+1
M |Fk] = E[g̃k|Fk]−∇Lβ(xk, tk,λk) = 0.

This sequence is also square integrable since

E[||δk+1
M ||2|Fk] ≤ 2(E[||g̃||2|Fk] + E[||∇Lβ(xk, tk,λk)||2]) <∞,

because ||a− b||2 ≤ 2(||a||2 + ||b||2), g̃ is almost surely bounded by Lemma 6.10.1 and∇Lβ

is a continuous function taking inputs in a compact set.

(iv) The sequence (δk+1
V ) is a martingale difference sequence with respect to Fk since

E[δk+1
V |Fk] = E[(g̃k)2|Fk]− (∇Lβ(xk, tk,λk))2 − V(xk, tk,λk) = 0,

by definition of conditional variance V(xk, tk,λk) = E[(g̃k)2|Fk] − (E[g̃k|Fk])2 and is
square integrable

E[||δk+1
V ||2|Fk] ≤ 2(E[||(g̃)2||2] + ||(∇Lβ(xk, tk,λk))2 + V[g̃|Fk]||2 < +∞,

thanks to the same arguments as for δk+1
M .

(v) Finally, the step sizes sk1, sk2, sk3 and sk4 satisfy Assumption 5.

Under these conditions, Lemma 1 in [38, Chapter 6] may be applied, and the claim follows directly.

Step 2: Convergence of the t-update. The t-update converges on a faster timescale than the ones
on x and λ, while M and V converge faster than t, thus, according to Lemma 1 in [38, Chapter 6]
the convergence of the t update may be proved for any arbitrary λ and x (here x = xk and λ = λk

are taken). Furthermore, in the M-updates and V-updates, as a result of Lemma 6.10.3 the follow-
ing limits hold ||Mk−∇Lβ(xk, tk,λk)|| → 0 and ||Vk− (∇Lβ(xk, tk,λk))2−V(xk, tk,λk)|| → 0
almost surely. Consequently, by defining

∇k
tL

β = ∇tL
β(xk, tk,λk) and Vk

t = Vt(xk, tk,λk),
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the update on t may be rewritten as follows

tk+1 = ΠT
[
tk + sk3

(
−Ψxk,λk(tk) + δk+1

t

)]
,

where


Ψxk,λk(tk) = ∇k

tL
β√

(∇k
tL

β)2+Vk
t +ϵ

,

δk+1
t = Ψxk,λk (tk)− Mk+1

t√
Vk+1

t +ϵ
.

(6.31)

Now, the following Lemma may be stated to prove the convergence properties of the update t.

Lemma 6.10.4. Consider the following continuous time system dynamics of the updates,

ṫ = Γt [−Ψx,λ(t)] = Γt

 −∇tL
β(x, t,λ)√

∇tLβ(x, t,λ) + Vt(x, t,λ) + ϵ

 ,
(ẋ, λ̇) = (0,0),

(6.32)

where

Γt[−Ψx,λ(t)] := lim
0<η→0

ΠT [t− ηΨx,λ(t)]− ΠT [t]
η

.

This o.d.e. has an asymptotically globally stable equilibrium

{(
x, t∗(x,λ),λ

) ∣∣∣ (x,λ) ∈ X × L
}
,

where t∗(x,λ) = {t | Γt [−Ψx,λ(t)] = 0} and the sequences (xk, tk,λk) converge almost

surely to this equilibrium.

It is worth noting that Γt[K(t)] is the left directional derivative of the function Πt[t] in the direction
of K(t). By using the left directional derivative Γt [−Ψx,λ(t)] in the gradient descent algorithm for
t, the gradient will point in the descent direction along the boundary of T whenever the t-update
hits its boundary.

Proof. Similar to the analysis made for the M-update and V-update, the proof is decomposed
in two parts. First, the solution of the first o.d.e. given in Equation (6.32) is described. Let
(x,λ) ∈ X × L be fixed and consider the following function

Lx,λ (t) = Lβ(x, t,λ)− Lβ(x, t∗,λ),

where t∗ is a minimum point (for any (x,λ), the function Lβ is convex in t). This function satisfies
the following conditions:
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• The function is positive definite since Lx,λ(t) > 0, for all t ̸= t∗ and radially unbounded
since ||t|| → ∞, =⇒ Lx,λ(t)→∞.

• The time derivative of the function is

dLx,λ (t)
dτ

= ∇tL
β(x, t,λ)T Γt [−Ψx,λ(t)]

and the goal is to show that this quantity is negative definite. There are two sets of cases to
study:

– The cases where t ∈ T ◦ = T \∂T . In all this cases, there exist η > 0 sufficiently small
such that t− ηΨx,λ(t) ∈ T , therefore by definition of Γt and Ψt, it follows that (recall
that the operators on the vectors are elementwise):

dLx,λ (t)
dτ

= −
m∑
j=0

(
∂Lβ(x,t,λ)

∂tj

)2

√(
∂Lβ(x,t,λ)

∂tj

)2
+ Vtj (x, t,λ) + ϵ

.

– The cases where t ∈ ∂T . When t ∈ ∂T , the indices j ∈ [0,m] of the variables
of t may be grouped in three complementary sets : Smin = {j ∈ [0,m] | tj =
− (tmax)j}, Smax = {j ∈ [0,m] | tj = (tmax)j} or S◦ = {j ∈ [0,m] | tj = (− (tmax)j,
(tmax)j)}. Then, for the variables tj whose the indices are in S◦, there exists η > 0,
sufficiently small such that (t − ηΨx,λ (t))j ∈ (− (tmax)j, (tmax)j). For the vari-
ables tj whose the variables are in Smin, then either (Ψx,λ (t))j ≤ 0, so Πtj [(−tmax −
ηΨx,λ (t))j] = (−tmax−ηΨx,λ (t))j; or (Ψx,λ (t))j > 0 so Πtj [−tmax−ηΨx,λ (t))j] =
− (tmax)j . For the variables tj whose the variables are in Smax, the symmetric result
may be obtained. Therefore, it follows that

dLx,λ (t)
dτ

= lim
0<η→0

∇tL
β(x, t,λ)T

(
Πt[t− ηΨx,λ(t)]− t

η

)

= lim
0<η→0

− ∑
j∈S◦

∂Lβ(x, t,λ)
∂tj

(Ψx,λ(t))j

−
∑

j∈Smin

∂Lβ(x, t,λ)
∂tj

Πtj [(−tmax − ηΨx,λ (t))j] + (tmax)j
η

−
∑

j∈Smax

∂Lβ(x, t,λ)
∂tj

Πti [(tmax − ηΨx,λ (t))j]− (tmax)j
η

)
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≤ −
∑
j∈S◦

(
∂Lβ(x,t,λ)

∂tj

)2

√(
∂Lβ(x,t,λ)

∂tj

)2
+ Vtj (x, t,λ) + ϵ

,

Therefore, dLx,λ (t)
dτ

< 0 whenever Γt [−Ψx,λ(t)] ̸= 0, i.e, is negative definite.

Thus, the function Lx,λ is a Lyapunov function and by [91, Corrolary 4.2], the equilibrium point
t∗(x,λ) = {t | Γt [−Ψx,λ(t)] = 0} is globally asymptotically stable. Moreover, since ∇Lβ is
Lipschitz continuous with respect to x and λ, it follows that t∗(x,λ) is Lipschitz continuous with
respect to these vectors as well. Now, the framework of the Lemma 1 and Theorem 2 in [38,
Chapter 6] is used.

• The conditions (i) to (v) given in the proof of Lemma 6.10.3 are still satisfied.

• The function Γt [−Ψx,λ(t)] is Lipschitz continuous by properties of∇Lβ .

• The random sequence (δk+1
t ) converges asymptotically to 0 by Lemma 6.10.3.

Therefore, the t-update is a stochastic approximation with a null martingale difference sequence
term and an additional error term δk+1

t . Then, by applying Theorem 2 in [38, Chapter 6] and the
enveloppe theorem [50, Theorem 16], the claim follows directly.

Step 3: Convergence of the x-update. The convergence of the x-update is very similar to the
convergence of the t-update. The x-update converges on a faster timescale than the one of λ, while
t, M and V converge on faster timescales than x, thus, according to [38, Chapter 6] the convergence
of the x update may be proved for any arbitrary λ (here λ = λk is taken). Furthermore, in
the t, M and V updates, as a result of Lemma 6.10.3 and Lemma 6.10.4 the following limits
hold ||Mk − ∇Lβ(xk, tk,λk)|| → 0, ||Vk − (∇Lβ(xk, tk,λk))2 − V(xk, tk,λk)|| → 0 and
||tk − t∗(xk,λk)|| → 0 almost surely. Consequently by defining

∇k
xL

β = ∇xL
β(xk, tk,λk) and Vk

x = Vx(xk, tk,λk),

the update on x may be rewritten as follows

xk+1 = ΠX
[
xk + sk2

(
−Ψλk(xk) + δk+1

1,x + δk+1
2,x

)]
, (6.33)
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where

Ψλk(xk) = ∇xL
β(xk, t∗(xk,λk),λk)√

(∇xLβ(xk, t∗(xk,λk),λk))2 + Vx(xk, t∗(xk,λk),λk) + ϵ
,

δk+1
1,x = ∇k

xL
β√

(∇k
xL

β)2 + Vk
x + ϵ

− Mk+1
x√

Vk+1
x + ϵ

,

δk+1
2,x = Ψλk(xk)− ∇k

xL
β√

(∇k
xL

β)2 + Vk
x + ϵ

.

Now, the following Lemma may be stated to prove the convergence properties of the update x.

Lemma 6.10.5. Consider the following continuous time system dynamics of the updates,

ẋ = Γx [−Ψλ(x)] = Γx

 −∇xL
β(x, t∗(x,λ),λ)√

∇xLβ(x, t∗(x,λ),λ) + Vx(x, t∗(x,λ),λ) + ϵ

 ,
λ̇ = 0,

(6.34)

where

Γx[−Ψλ(x)] := lim
0<η→0

ΠX [x− ηΨλ(x)]− ΠX [x]
η

.

Assume there existsK1 ∈ N such that xK1 is in the domain of attraction of x∗ where x∗ is some

local minimum of Lβ with respect to x. Then, this o.d.e. has a locally asymptotically stable

equilibrium {(
x∗(λ),λ

) ∣∣∣ λ ∈ L
}
, (6.35)

where x∗(λ) = {x ∈ X | Γx [−Ψλ(x)] = 0} is the local minima of the assumption and the

sequences (xk,λk) converge almost surely to the set given in Equation (6.35).

Proof. First, the solutions of the first o.d.e. in Equation (6.34) is described. Let λ ∈ L be fixed and
consider the following function

Lλ(x) = Lβ(x, t∗(x,λ),λ)− Lβ(x∗, t∗(x∗,λ),λ),

where x∗ is the local minimum inX defined in the statement of the Lemma. This function is locally
positive definite and its time derivatives is

dLλ (x)
dτ

= ∇xL
β(x, t∗(x,λ),λ)T Γx [−Ψλ(x)] ,

which is negative definite (the proof may be done in the exact same way as the one given in Lemma 6.10.4
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and is omitted here). Therefore, the function is a Lyapunov function and, by Lyapunov stability
theorem [91, Theorem 4.1], x∗(λ) = {x | Γx[−Ψλ(x)] = 0} is a locally asymptotically stable
equilibrium. Since ∇Lβ is Lipschitz continuous with respect to λ, it follows that x∗(λ) is Lips-
chitz as well. Now, the framework in [38, Chapter 6] is used.

• The conditions (i) to (v) given in the proof of Lemma 6.10.3 are still satisfied.

• The function Γx [−Ψλ(x)] is Lipschitz continuous by properties of∇Lβ .

• The random sequence (δk+1
1,x ) and (δk+1

2,x ) converges asymptotically to 0 by Lemma 6.10.3
and Lemma 6.10.4.

By assumption, the iterates xK1 belongs to the domain of attraction of x∗ for some K1 ∈ N. By
definition of the domain of attraction, xk is in the domain of attraction for all k ≥ K1. Thus, by
applying Theorem 2 in [38, Chapter 6] from the iteration K, the claim follows directly.

At this stage, the results obtained in Lemma 6.10.4 and Lemma 6.10.5 allows concluding that for
any fixed λ ∈ L, the following holds:

(xk, tk)→ (x∗(λ), t∗(x∗(λ),λ)) ∈ X × T .

Moreover, t∗(x∗(λ) is a minimum of Lβ with respect to t while x∗(λ) is a local minimum of Lβ

with respect to x. Since we have

min
x∈X

(
min
t∈T

L(x, t,λ)
)

= min
(x,t)∈X ×T

L(x, t,λ),

it follows that this point is a local minimum for the function Lβ .

Step 4: Convergence of the λ-update. Since the λ-update converges in the slowest time scale,
according to previous analysis, the following limits hold ||Mk −∇Lβ(xk, tk,λk)|| → 0,
||Vk− (∇Lβ(xk, tk,λk))2−V(xk, tk,λk)|| → 0, ||tk−t∗(xk,λk)|| → 0 and ||xk → x∗(λ)|| → 0,
almost surely. Therefore, by defining

∇k
λL

β = ∇λL
β(xk, tk,λk),Vk

λ = Vλ(xk, tk,λk),∇∗
λL

β = ∇λL
β(xk, t∗(xk,λk),λk)

and V∗
λ = V(xk, t∗(xk,λk),λk),

the λ-update rule can be re-written as follows

xk+1 = ΠL
[
λk + sk1

(
Ψ(λk) + δk+1

1,λ + δk+1
2,λ + δk+1

3,λ

)]
, (6.36)
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where

Ψ(λk) = ∇λLβ(x∗(λk), t∗(x∗(λk), λk), λk)√
(∇λLβ(x∗(λk), t∗(x∗(λk), λk), λk))2 + Vλ(x∗(λk), t∗(x∗(λk), λk), λk) + ϵ

,

δk+1
1,λ = Mk+1

λ√
Vk+1

λ + ϵ
− ∇kλLβ√

(∇kλLβ)2 + Vkλ + ϵ
,

δk+1
2,λ = ∇kλLβ√

(∇kλLβ)2 + Vkλ + ϵ
− ∇∗

λLβ√
(∇∗

λLβ)2 + V∗
λ + ϵ

,

δk+1
3,λ = ∇∗

λLβ√
(∇∗

λLβ)2 + V∗
λ + ϵ

−Ψ(λk).

Now, the following Lemma may be stated to prove the convergence properties of the update λ.

Lemma 6.10.6. Let consider the following continuous time system dynamics of the updates,

λ̇ = Γλ [Ψ(λ)]

= Γλ

 ∇λLβ(x∗(λk), t∗(x∗(λk), λk), λk)√
(∇λLβ(x∗(λk), t∗(x∗(λk), λk), λk))2 + Vλ(x∗(λk), t∗(x∗(λk), λk), λk) + ϵ

 ,
(6.37)

where

Γλ[Ψ(λ)] := lim
0<η→0

ΠL[λ− ηΨ(λ)]− ΠL[λ]
η

.

Assume there exists K2 ∈ N such that λK2 is in the domain of attraction of λ∗ where λ∗ is

some local maximum of Lβ with respect to λ. Then, this o.d.e. has a locally asymptotically

stable equilibrium

λ∗ = {λ ∈ L | Γλ [Ψ(λ)] = 0}, (6.38)

and the sequences (λk) converges almost surely to this local maximum given in Equation (6.38).

Proof. The proof is analog to the proof of convergence for the x-update. First, the solutions of the
first o.d.e. in Equation (6.37) is described. Let consider the following function

L(λ) = −Lβ(x∗(λ), t∗(x∗(λ),λ),λ) + Lβ(x∗(λ∗), t∗(x∗(λ∗),λ∗),λ∗),

where λ∗ is the local maximum in L defined in the statement of the Lemma. This function is locally
positive definite and its time derivatives is

dL (λ)
dτ

= ∇λL
β(x∗(λ), t∗(x∗(λ),λ),λ)T Γλ [Ψ(λ)] ,
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which is negative definite (the proof may be done in the exact same way as the one given in
Lemma 6.10.4 and is omitted here). Therefore, the function is a Lyapunov function and, by Lya-
punov stability theorem [91, Theorem 4.1], λ∗ = {λ | Γλ[Ψ(λ)] = 0} is a locally asymptotically
stable equilibrium. Now, the framework in [38, Chapter 6] is used.

• The conditions (i) to (v) given in the proof of Lemma 6.10.3 are still satisfied.

• The function Γλ [Ψ(λ)] is Lipschitz continuous by properties of∇Lβ .

• The random sequence (δk+1
1,λ ), (δk+1

2,λ ) and (δk+1
3,λ ) converges asymptotically to 0

by Lemma 6.10.3, Lemma 6.10.4 and Lemma 6.10.5.

By assumption, the iterates λk belongs to the domain of attraction of λ∗ for some K2 ∈ N. By
definition of the domain of attraction, λk is in the domain of attraction for all k ≥ K2. Thus, by
applying Theorem 2, in [38, Chapter 6] from the iteration K = max(K1, K2), the claim follows
directly.

Main result: convergence to a saddle point. By letting x∗ = x∗(λ∗) and t∗ = t∗(x∗(λ∗),λ∗),
it will be shown that (x∗, t∗,λ∗) is a saddle point of the Lagrangian function Lβ if λ∗ ∈ L◦ and
thus by the saddle point theorem, x∗ is a locally optimal solution for the smooth CVaR-constrained
problem given in Equation (6.14). This result is formally settled in Theorem 6.7.1 which is recalled
here;

Theorem 6.10.7. Under Assumption 4.3 and Assumption 5, let further assume that the problem

given in Equation (6.14) is strictly feasible and there exists K ∈ N such that xK and λK are in

the domain of attraction of x∗ and λ∗ with λ∗ ∈ L◦ respectively. Then, the iterates (xk, tk,λk)
converge almost surely to a saddle point of the Lagrangian function Lβ and x∗ is a locally

optimal solution for the smooth CVaR-constrained problem given by Equation (6.14).

Proof. Under the assumptions of the theorem, since (x∗, t∗) is a local minimum of Lβ(x, t,λ) over
the bounded set (x, t) ∈ X × T , there exists a r > 0 such that

Lβ(x∗, t∗,λ∗) ≤ Lβ(x, t,λ∗), ∀ (x, t) ∈ X × T ∩ Br(x∗, t∗).

In order to complete the proof, we must show that for all j ∈ [1,m]

cj(x∗, t∗) := t∗j + 1
1− αEu,v,ξ[(C(x∗ + β1u, ξ)− (t∗j + β2vj))+] ≤ 0 and (6.39)

λ∗
jcj(x∗, t∗) = λ∗

j

(
t∗j + 1

1− αEu,v,ξ[(C(x∗ + β1u, ξ)− (t∗j + β2vj))+]
)

= 0. (6.40)
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The proof of the inequality given in Equation (6.39) is made by contradiction. Suppose that

cj(x∗, t∗) = t∗j + 1
1− αEu,v,ξ[(C(x∗ + β1u, ξ)− (t∗j + β2vj))+] > 0.

This implies for λj ∈ L◦
j that for any η ∈ (0, η̄]

ΠL

[
λ∗
j − η

(
t∗j + 1

1− αEu,v,ξ[(C(x∗ + β1u, ξ)− (t∗j + β2vj))+]
)]

= ΠL
[
λ∗
j − ηcj(x∗, t∗)

]
= λ∗

j − ηcj(x∗, t∗),

with η̄ sufficiently small. Therefore, it follows that Γλj
[ (Ψ(λ∗))j] = cj(x∗, t∗) > 0, which contra-

dicts the definition of λ∗ given in Equation (6.38). Thus, the inequality given in Equation (6.39)
holds. To show the result given in Equation (6.40), it is sufficient to show that λ∗

j = 0 when
cj(x∗, t∗) < 0. For λ∗

j ∈ L◦, there exists a sufficiently small η > 0 such that

ΠL
[
λ∗
j + ηcj(x∗, t∗)

]
− λ∗

j

η
= cj(x∗, t∗) < 0.

This is again in contradiction with the definition of λ∗ given in Equation (6.38) and thus the
equality in Equation (6.40) holds. Finally, by the local saddle point theorem, it follows that x∗ is a
locally optimal solution for the smooth CVaR-constrained problem given by Equation (6.14).

6.10.2 Appendix B. Analytical problems description

Here are the list of analytical problems considered in Section 6.8.1.
Steel column problem [194]

• Dimension: n = 3 and m = 1.

• Original lower bounds: bℓ = (200, 10, 100)

• Original upper bounds: bu = (400, 30, 500)

• Original x0: (200, 10.5, 100)
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• Equations:

C0(x, ξ) = (x1 + ξ1)(x2 + ξ2) + 5(x3 + ξ3),

C1(x, ξ) = F

(
1
As

+ ξ8eb
Us(eb − F )

)
− ξ4,

with As = 2(x1 + ξ1)(x2 + ξ2), Us = (x1 + ξ1)(x2 + ξ2)(x3 + ξ3), eb = π2ξ9Ui
L2 ,

Ui = 1
2(x1 + ξ1)(x2 + ξ2)(x3 + ξ3)2 and F = ξ5 + ξ6 + ξ7.

• Uncertainties: ξ1 ∼ N (0, 0.1x1), ξ2 ∼ N (0, 0.1x2), ξ3 ∼ N (0, 0.1x3),
ξ4 ∼ N (400, 40), ξ5 ∼ N (5× 105, 5× 104), ξ6 ∼ N (6× 105, 6× 104),
ξ7 ∼ N (6× 105, 6× 104), ξ8 ∼ N (30, 3), ξ9 ∼ N (21000, 2100) and L = 7500.

• Solution in [194]: x∗ = (257.7806, 13.5335, 100) with E[C0(x∗, ξ)] = 3988.95 and
P(C1(x∗, ξ) ≤ 0) = 0.9947 (estimated in this work from 106 samples).

Welded Beam problem [194]

• Dimension: n = 4 and m = 5.

• Original lower bounds: bℓ = (3.175, 0.0, 0.0, 0.0)

• Original upper bounds: bu = (50.8, 254, 254, 50.8)

• Original x0: (6.208, 157.82, 210.62, 6.208)

• Equations:

C0(x, ξ) = κ1(x1 + ξ1)2(x2 + ξ2) + κ2 (x3 + ξ3)(x4 + ξ4)(κ3 + x2 + ξ2)

C1(x, ξ) = τ

93.77 − 1 with

τ =
√
τ 2

1 + 2τ1τ2(x2 + ξ2)
2R + τ 2

2 , τ1 = κ4√
2(x1 + ξ1)(x2 + ξ2)

,

R =

√
(x2 + ξ2)2 + (x1 + ξ1 + x3 + ξ3)2

2 , M = κ4

(
κ3 + x2 + ξ2

2

)
,

J =
√

2(x1 + ξ1)(x2 + ξ2)
(

(x2 + ξ2)2

12 + (x1 + ξ1 + x3 + ξ3)2

4

)
, τ2 = MR

J
,
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C2(x, ξ) = σ

206.85 − 1 with σ = 6κ4κ3

(x3 + ξ3)2(x4 + ξ4)
,

C3(x, ξ) = x1 + ξ1

x4 + ξ4
− 1,

C4(x, ξ) = δ

6.35 − 1 with δ = 4κ4 (κ3)3

2.0685× 105(x3 + ξ3)3(x4 + ξ4)
,

C5(x, ξ) = 1− P

κ4
with P = 4.013(x3 + ξ3)(x4 + ξ4)3√κ5κ6

6 (κ3)2

(
1− x3 + ξ3

4κ3

√
κ5

κ6

)
,

where κ1 = 6.74135× 10−5, κ2 = 2.93585× 10−6, κ3 = 3.556× 102,
κ4 = 2.6688× 104, κ5 = 2.0685× 105 and κ6 = 8.274× 104.

• Uncertainties: ξ1 ∼ U(−0.1693, 0.1693), ξ2 ∼ U(−0.1693, 0.1693),
ξ3 ∼ U(−0.0107, 0.0107), ξ4 ∼ U(−0.0107, 0.0107).

• Solution in [194]: x∗ = [5.9188, 181.2849, 210.6114, 6.2253]
with E[C0(x∗, ξ)] = 2.4948 and ∀j ∈ [1, 5], P(Cj(x∗, ξ) ≤ 0) = 1.0 (estimated from 106

samples).

Vehicle Side Impact problem [194]

• Dimension: n = 7 and m = 10.

• Original lower bounds: bℓ = (0.5, 0.45, 0.5, 0.5, 0.875, 0.4, 0.4)

• Original upper bounds: bu = (1.5, 1.35, 1.5, 1.5, 2.625, 1.2, 1.2)

• Original x0: (1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0)

• Equations:

C0(x, ξ) = 1.98 + 4.9(x1 + ξ1) + 6.67(x2 + ξ2) + 6.98(x3 + ξ3) + 4.01(x4 + ξ4)

+ 1.78(x5 + ξ5) + 2.73(x7 + ξ7),

C1(x, ξ) = 1.16− 0.3717(x2 + ξ2)(x4 + ξ4)− 0.00931(x2 + ξ2)ξ10 − 0.484(x3 + ξ3)ξ9

+ 0.01343(x6 + ξ6)ξ10 − 1,

C2(x, ξ) = 0.261− 0.0159(x1 + ξ1)(x2 + ξ2)− 0.188(x1 + ξ1)ξ8 − 0.019(x2 + ξ2)(x7 + ξ7)

+ 0.0144(x3 + ξ3)(x5 + ξ5) + 0.00087570(x5 + ξ5)ξ10 + 0.08045(x6 + ξ6)ξ9

+ 0.00139ξ8ξ11 + 1.575× 10−6ξ10ξ11 − 0.32,
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C3(x, ξ) = 0.2147 + 0.00817(x5 + ξ5)− 0.131(x1 + ξ1)ξ8 − 0.0704(x1 + ξ1)ξ9

+ 0.03099(x2 + ξ2)(x6 + ξ6)− 0.018(x2 + ξ2)(x7 + ξ7) + 0.0208(x3 + ξ3)ξ8

+ 0.121(x3 + ξ3)ξ9 − 0.00364(x5 + ξ5)(x6 + ξ6) + 0.0007715(x5 + ξ5)ξ10

− 0.0005354(x6 + ξ6)ξ10 + 0.00121ξ8ξ11 + 0.00184ξ9ξ10

− 0.02(x2 + ξ2)2 − 0.32,

C4(x, ξ) = 0.74− 0.61(x2 + ξ2)− 0.163(x3 + ξ3)ξ8 + 0.001232(x3 + ξ3)ξ10

− 0.166(x7 + ξ7)ξ9 + 0.227(x2 + ξ2)2 − 0.32,

C5(x, ξ) = 28.98 + 3.818(x3 + ξ3)− 4.2(x1 + ξ1)(x2 + ξ2) + 0.0207(x5 + ξ5)ξ10

+ 6.63(x6 + ξ6)ξ9 − 7.77(x7 + ξ7)ξ8 + 0.32ξ9ξ10 − 32,

C6(x, ξ) = 33.86 + 2.95(x3 + ξ3) + 0.1792ξ10 − 5.057(x1 + ξ1)(x2 + ξ2)− 11(x2 + ξ2)ξ8

− 0.0215(x5 + ξ5)ξ10 − 9.98(x7 + ξ7)ξ8 + 22ξ8ξ9 − 32,

C7(x, ξ) = 46.36− 9.9(x2 + ξ2)− 12.9(x1 + ξ1)ξ8

+ 0.1107(x3 + ξ3)ξ10 − 32,

C8(x, ξ) = 4.72− 0.54(x4 + ξ4)− 0.19(x2 + ξ2)(x3 + ξ3)− 0.0122(x4 + ξ4)ξ10

+ 0.009325(x6 + ξ6)ξ10 + 0.000191ξ2
11 − 4,

C9(x, ξ) = 10.58− 0.674(x1 + ξ1)(x2 + ξ2)− 1.95(x2 + ξ2)ξ8 + 0.028(x6 + ξ6)ξ10

+ 0.02054(x3 + ξ3)ξ10 − 0.0198(x4 + ξ4)ξ10 − 9.9,

C10(x, ξ) = 16.45− 0.489(x3 + ξ3)(x7 + ξ7)− 0.843(x5 + ξ5)(x6 + ξ6) + 0.0432ξ9ξ10

− 0.0556ξ9ξ11 − 0.000786ξ2
11 − 15.69.

• Uncertainties: ∀i ∈ {1, 2, 3, 4, 6, 7}, ξi ∼ N (0, 0.03), ξ5 ∼ N (0, 0.05),
ξ8 ∼ N (0.345, 0.006), ξ9 ∼ N (0.345, 0.006), ξ10 ∼ N (0, 10) and ξ11 ∼ N (0, 10).

• Solution in [194]: x∗ = (0.7872, 1.35, 0.6887, 1.5, 1.0706, 1.2, 0.7284) with E[C0(x∗, ξ)] =
29.5585 and ∀j ∈ [1, 10], P(Cj(x∗, ξ) ≤ 0) ≥ 0.9982 (estimated from 106 samples).

Speed Reducer problem [48]

• Dimension: n = 7 and m = 11.

• Original lower bounds: bℓ = (2.6, 0.7, 17, 7.3, 7.3, 2.9, 5.0)

• Original upper bounds: bu = (3.6, 0.8, 28, 8.3, 8.3, 3.9, 5.5)

• Original x0: (3.5, 0.7, 17, 7.3, 7.72, 3.35, 5.29)



173

• Equations:

C0(x, ξ) = 0.7854 (x1 + ξ1) (x2 + ξ2)2(3.3333 (x3 + ξ3)2 + 14.9334 (x3 + ξ3)− 43.0934)

− 1.508 (x1 + ξ1)( (x6 + ξ6)2 + (x7 + ξ7)2) + 7.477( (x6 + ξ6)3 + (x7 + ξ7)3)

+ 0.7854( (x4 + ξ4) (x6 + ξ6)2 + (x5 + ξ5) (x7 + ξ7)2),

C1(x, ξ) = 27
(x1 + ξ1) (x2 + ξ2)2 (x3 + ξ3)

− 1,

C2(x, ξ) = 397.5
(x1 + ξ1) (x2 + ξ2)2 (x3 + ξ3)2 − 1,

C3(x, ξ) = 1.93 (x4 + ξ4)3

(x2 + ξ2) (x3 + ξ3) (x6 + ξ6)4 − 1,

C4(x, ξ) = 1.93 (x5 + ξ5)3

(x2 + ξ2) (x3 + ξ3) (x7 + ξ7)4 − 1,

C5(x, ξ) =

√(
745 (x5+ξ5)

(x2+ξ2) (x3+ξ3)

)2
+ 16.9× 106

0.1 (x6 + ξ6)3 − 1100,

C6(x, ξ) =

√(
745 (x5+ξ5)

(x2+ξ2) (x3+ξ3)

)2
+ 157.5× 106

0.1 (x7 + ξ7)3 − 850,

C7(x, ξ) = (x2 + ξ2) (x3 + ξ3)− 40,

C8(x, ξ) = 5− (x1 + ξ1)
(x2 + ξ2)

C9(x, ξ) = (x1 + ξ1)
(x2 + ξ2)

− 12,

C10(x, ξ) = 1.5 (x6 + ξ6) + 1.9
(x4 + ξ4)

− 1,

C11(x, ξ) = 1.1 (x7 + ξ7) + 1.9
(x5 + ξ5)

− 1.

• Uncertainties: ∀i ∈ [1, 7], ξi ∼ N (0, 0.005).

• Solution in [194]: x∗ = (3.5765, 0.7, 17.0, 7.3, 7.7541, 3.3652, 5.3017) with E[C0(x∗, ξ)] =
3038.72 and ∀j ∈ [1, 11], P(Cj(x∗, ξ) ≤ 0) ≥ 0.9976 (estimated from 106 samples).

6.10.3 Appendix C. Detailed numerical results

This section details the numerical results of Section 6.8.3 and Section 6.8.4. In these sections, only
the average result over the 100 runs are presented. In this section, boxplots are used to describe the
result of all the 100 runs. Each run is represented by a cross, the orange line is the mediane and the
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bounds of the box are the first and third quartiles. Finally, the circled crosses are the outliers. Here
are the results for Section 6.8.3.
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Figure 6.1 Detail result for Steel Column Design problem with classical Gaussian gradient approx-
imation
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Figure 6.2 Detail result for Welded Beam Design problem with classical Gaussian gradient approx-
imation
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Figure 6.3 Detail result for Vehicle Side Impact problem with classical Gaussian gradient approxi-
mation
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Figure 6.4 Detail result for Speed Reducer Design problem with classical Gaussian gradient ap-
proximation

Here are the results for Section 6.8.4.
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Figure 6.5 Detail result for Steel Column Design problem with truncated Gaussian gradient ap-
proximation
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Figure 6.6 Detail result for Welded Beam Design problem with truncated Gaussian gradient ap-
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Figure 6.7 Detail result for Vehicle Side Impact problem with truncated Gaussian gradient approx-
imation
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Figure 6.8 Detail result for Speed Reducer Design problem with truncated Gaussian gradient ap-
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CHAPTER 7 GENERAL DISCUSSION

In this chapter, Section 7.1 summarizes the three different contributions of this thesis. Section 7.2
underlines their limitations, especially in the view of the research objectives stated in the introduc-
tion.

7.1 Summary of contributions

The contributions of this thesis focus on issues arising from the specific context of blackbox opti-
mization: absence of gradients, multimodality, stochasticity, and risk aversion. To deal with these
different issues, several approaches have been developed based on the singular concept of Gaussian
exploration.

In the first contribution, a direct approach to Gaussian exploration is formalized by the cross-
entropy method. Originally, this method is a metaheuristic and consists in updating the mean and
standard deviation of the underlying normal distribution by taking the best points in terms of func-
tion values. In our work, the cross-entropy is adapted to be a search step of the mesh adaptive direct
search algorithm, which aims at escaping local minima. This allows to guarantee the convergence
properties of the resulting algorithm. The cross-entropy search step has two advantages compared
to the other exploration-type search steps previously embedded in the NOMAD software. First, it is
primarily designed to be applied to constrained blackbox problems. Therefore, the updating of the
mean and standard deviation into the distribution depends not only on the objective function values,
but also on the constraint values via the progressive barrier approach. Second, it has an internal
mechanism choosing the iteration at which the cross-entropy search step must be performed or not.
This mechanism is based on the standard deviation of the few best points. Thus, it depends on the
problem and not on an a priori chosen hyperparameter. The resulting algorithm is compared to
several state-of-the-art metaheuristics on a specific global optimization benchmark and its compet-
itiveness is shown. Finally, it is compared with the other search step implemented in the NOMAD
software for the purpose of escaping local minima on three industrial test cases. Again, promising
results are obtained.

In the second contribution, the Gaussian exploration is applied to solve unconstrained blackbox
optimization problems. Here, the Gaussian exploration is used to estimate the gradient of a smooth
approximation of the original blackbox. The smooth Gaussian approximation benefits from sev-
eral appealing properties: it is infinitely differentiable, it convexifies the blackbox around its local
minima and estimates of its gradient may be computed using only two, potentially noisy, outputs
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of the blackbox. All of these properties depend on a critical hyperparameter called the smooth-
ing parameter. Choosing a particular value of the smoothing parameter is difficult in practice. A
sequential optimization algorithm is developed in which the value of the smoothing parameter is
progressively reduced. For solving the smooth subproblem, a new algorithm, called ZO-Signum,
is implemented. To avoid overly expensive sampling at each iteration to compute an accurate gra-
dient estimate, the sign of the direction is taken from a momentum vector. The momentum vector
is a moving average of all gradient estimates over the iterations. This algorithm also features a
stopping criterion based on the momentum norm. The interest of this stopping criterion is twofold
in the sequential process. First, it allows the transition from one subproblem to another. Second,
it is proportional to the smoothing parameter and decreases progressively. So, more importance
is given to the smooth approximations that are the closest to the original problem, i.e. those with
the smallest smoothing parameter values. The remainder of this paper is largely devoted to the
theoretical analysis of both algorithms. On the one hand, under Lipschitz continuity assumptions,
the convergence rate in mean of the ZO-Signum algorithm to a stationary point of a smooth ap-
proximation of the original problem is derived. Under further assumptions on the differentiability
and local convexity of the original blackbox, we show that a subsequence of iterates of the SSO
algorithm converges to a stationary point of the blackbox. In addition, the worst-case complexity
of this convergence is given in terms of blackbox evaluations. Finally, the SSO algorithm is com-
pared with other state-of-the-art algorithms on a simulation of a thermal solar power plant and on
the generation of blackbox adversarial images for a deep neural network. In both experiments, the
SSO algorithm shows its competitiveness.

In the third contribution, a Gaussian exploration similar to the previous one is used to solve con-
strained blackbox optimization problems subject to mixed aleatory/epistemic uncertainty. In this
work, a CVaR formulation of the problem is chosen. This formulation has three main advantages.
First, it gives the possibility to choose a desired reliability level to handle the probability constraints.
Second, it can deal with both types of uncertainty. When the blackbox is subject to epistemic un-
certainty, choosing a reliability level close to 1 allows the uncertainty to be treated similarly to a
worst-case approach. Third, solving a CVaR-constrained optimization problem can be reformu-
lated into an equivalent expectation-constrained blackbox optimization problem by adding m + 1
design variables. Then, to obtain a more tractable problem, the original problem is replaced by
a smooth approximation. However, instead of using a Gaussian smooth approximation as in the
previous work, we use its truncated counterpart to satisfy the bound constraints of the problem.
The truncated Gaussian smooth approximation is shown to inherit the same properties as the Gaus-
sian, and its own gradient estimator is derived. Theoretically, we show that under mild assumptions
on the blackbox, for a value of the reliability level sufficiently close to 1, a feasible solution of
the smooth approximation is also feasible for the original CVaR-constrained problem. Moreover,
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the difference between the optimal function values of the approximation and the original problem
can be bounded by an arbitrarily small value depending on: the dimension, the reliability level,
and the smoothing parameter. A four timescale algorithm is developed to solve the Lagrangian
relaxation of the smooth CVaR-constrained problem approximation. On the fastest timescale, in-
formation about the gradient is aggregated as a moving average of the truncated gradient estimates.
On the first intermediate timescale, the values of the m + 1 additional variables are updated. On
the second intermediate and slowest timescales the design variables and the Lagrangian multipli-
ers are updated, respectively. The convergence of the algorithm is based on Lyapunov theory, and
we prove that the algorithm converges to a locally optimal solution of the smooth problem with
probability 1. It is then deduced that the algorithm converges, with probability one, to a feasible
point of the CVaR-constrained problem whose objective function value is arbitrarily close to that
of a local solution. Finally, several experiments are conducted with three different objectives. The
first objective is to provide guidelines on how to experimentally determine the value of the different
hyperparameters. The main findings are that all hyperparameters are problem independent except
two: the value of the initial stepsize along x and the value of the smoothing parameter on the de-
sign variables. Experimentally, the value of the smoothing parameter can be chosen to minimize
the average variance of the gradient at x0 over all directions. On the other hand, the value of the
step size is correlated with the norm of the gradient at x0. The second objective is to study the
effect of using the truncated Gaussian gradient estimator instead of its Gaussian counterpart. It
appears that the algorithm can achieve similar results in both cases, but with a higher number of
blackbox evaluations when the truncated estimator is used. Finally, experiments show the ability
of the algorithm to deal with both types of uncertainty: aleatory and epistemic.

7.2 Limitations

To assess the limitations of the current work, we refer to the objectives stated in Section 1.3. While
the first and second research objectives seem to be generally met, several limitations appear from
the perspective of the third and fourth objectives:

• The second and third contributions are based on stochastic gradient descents (or ascents)
with zeroth-order gradient approximations. A major drawback of these methods is that their
efficiency in terms of function evaluation depends on hyperparameter values that are difficult
to set a priori, especially the initial stepsizes. Despite the work done to reduce the number
of hyperparameters and to provide experimental rules for setting them, the number of test
problems used for this purpose is too small to ensure the generalization of these rules. More-
over, due to their lack of specific mathematical structure, blackbox problems pose a variety
of challenges to optimization algorithms. It is highly likely that no rule will ultimately be
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generalized.

• The numerical comparisons of the different contributions are also limited. In the first paper,
despite the efforts made in this direction, comparisons with model-based methods or other
methods combining a heuristic and a local search are missing. In the second paper, there are
only two test problems, including one that is not stochastic. This is too few to ensure the
practical interest of the methods, although this gap has been partially filled in the addenda.
Finally, in the last paper, no comparison with other state-of-the-art algorithms is made and
all numerical experiments are performed on analytical test problems. Therefore, these exper-
iments need to be strengthened if their results are to be truly meaningful.

• Finally, although all the algorithms developed in this thesis are relatively easy to implement,
they are not publicly available. This is an obstacle for other researchers who want to repro-
duce the results, perform additional experiments or numerical comparisons, or simply use
the algorithms in their research.
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CHAPTER 8 CONCLUSION

Finally, this section gives perspectives on future research work.

8.1 Future Research

In light of the limitations listed in the previous section, the following improvements may represent
interesting lines of future research. First, it is necessary to propose quickly a publicly available
version of the code used in this thesis. This will allow other researchers to use it.

The second research perspective concerns test problems. Currently, there are few benchmarks
devoted to stochastic optimization or risk-averse optimization. SOLAR is a good example of what
a benchmark for blackbox stochastic optimization should be. Other benchmarks of this kind, with
different application should be implemented. Furthermore, it would be interesting to create more
basic benchmarks to quickly test the relevance of a new algorithm. In these benchmarks, the user
could choose the degree of uncertainty and the type of uncertainties: aleatory, epistemic or mixed.

The final research perspective looks for methods that avoid the use of step size, as this is one of the
most difficult hyperparameters to set. A first approach could be based on a combination of direct
and indirect Gaussian exploration, similar to what is done in the second paper for the SOLAR
application. The idea would be to better integrate the two phases of exploration and exploitation.
Another more promising approach could be based on stochastic linesearch or stochastic trust region.
In fact, in deterministic gradient descent methods, the algorithms perform a linear search at each
iteration to avoid the use of stepsize [6]. In the literature review it was mentioned that these methods
have been adapted to the stochastic derivative-free context [34, 145]. Unfortunately, both of these
algorithms require that the function be sampled a large number of times at each iteration to obtain
a sufficiently accurate estimate of the gradient or model. To limit the number of samples to be
estimated per iteration, one idea might be to use these methods based on the gradient estimated by
a momentum vector (i.e., a moving average over all iterations).
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CHAPTER 9 RÉSUMÉ ÉTENDU

L’optimisation de boîte noire porte sur le développement et l’analyse d’algorithmes conçus pour
des problèmes dont la fonction objectif et/ou les contraintes sont les valeurs de sortie d’une boîte
noire. Une boîte noire en optimisation peut être n’importe quel processus qui, à une entrée donnée,
renvoie une sortie. Par définition, la structure d’une boîte noire est généralement inconnue, inex-
ploitable, voire même inexistante. Ces problèmes surviennent usuellement lorsque les valeurs de
la fonction objectif et des contraintes proviennent de simulations informatiques ou d’expériences
menées en laboratoire. Ces situations sont courantes en ingénierie et dans certaines branches de
l’apprentissage automatique.

En raison de l’absence de structure des fonctions sous-jacentes aux problèmes, les approches tra-
ditionnelles les plus efficaces, fondées sur le gradient, ne peuvent être directement utilisées en
optimisation de boîte noire. Des stratégies doivent également être instaurées afin d’éviter aux al-
gorithmes de converger prématurément vers une solution locale. En outre, il est fréquent que les
valeurs retournées par la boîte noire soient soumises à des incertitudes. Les causes à l’origine de
celles-ci sont variées et peuvent être dues par exemple à la prise en compte de paramètres aléatoires,
à des imprécisions sur des mesures ou encore à l’estimation de certaines quantités par la méthode
de Monte-Carlo. Par conséquent, les algorithmes développés doivent avoir la capacité de gérer
les fluctuations induites par les incertitudes sur la fonction objectif et les contraintes, notamment
en diminuant le risque que ces dernières prennent des valeurs aberrantes. Ces différents enjeux
constituent les problématiques majeures de cette thèse : l’absence de gradient, la multimodalité, la
stochasticité et l’aversion au risque.

Pour aborder ces problématiques, ce projet doctoral comporte trois contributions, dont la concep-
tion est agencée autour d’une unique notion : l’exploration Gaussienne de l’espace. Cette explo-
ration consiste à échantillonner des points à partir d’une moyenne et d’un écart-type donnés. Dans
une approche directe, l’algorithme se déplace directement vers un point minimisant une certaine
quantité d’intérêt dépendant de la fonction objectif et/ou des contraintes. Dans une approche indi-
recte, les points échantillonnés sont utilisés pour estimer le gradient d’une approximation lisse de la
boîte noire. Ces deux approches ont pour avantage de ne pas dépendre de la dimension de la boîte
noire et de ne se fonder que sur les valeurs des fonctions retournées par celle-ci. Elles s’adaptent
donc parfaitement au contexte de l’optimisation de boîte noire. L’objectif de cette thèse est donc
de développer des algorithmes autour de ces approches et d’étudier leurs propriétés de convergence
ainsi que leurs efficacités en pratique.

Le premier projet de la thèse traite de la problématique de la multimodalité dans un cadre de boîte
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noire déterministe. Pour résoudre ce type de problème, il existe de nombreuses méthodes. Parmi
elles, nous nous sommes concentrés sur la méthode de l’entropie croisée (CE). Cette méthode
consiste à générer des points dans l’espace de recherche à partir d’une loi normale multivariée.
La boîte noire est ensuite évaluée à ces différents points et les meilleurs points sont retenus afin
de mettre à jour la moyenne et l’écart type de la loi normale. Cette méthode est intéressante car
elle permet, dans un premier temps, d’explorer l’espace en identifiant des zones prometteuses de
l’espace de recherche et, dans un second temps, d’échapper à des minima locaux. Le principal
désavantage de cette méthode est qu’elle ne bénéficie pas de propriétés de convergence vers un
minimum local de la fonction.

Dans cette première contribution, notre idée a été d’intégrer la méthode d’entropie croisée en tant
qu’étape de recherche pour l’algorithme de recherche directe par treillis adaptatif (MADS). Dans
l’algorithme MADS, l’espace de recherche est discrétisé suivant un certain treillis. Chacune des
itérations de l’algorithme peut ensuite être décomposée en deux étapes: une étape de recherche
(optionnelle) et une étape de sonde qui permet de garantir la convergence de l’algorithme. Dans
l’étape de recherche, n’importe quelle méthode permettant d’accélérer la convergence ou d’éviter
la convergence prématurée de l’algorithme dans un minimum local peut être utilisée. Pour s’assurer
de la convergence, il est néanmoins nécessaire que le nombre de points évalués pendant cette étape
soit fini. Dans l’étape de sonde, la boîte noire est évaluée dans un ensemble fini de directions
formant un ensemble générateur positif de l’espace. Afin d’intégrer la méthode de l’entropie croisée
en tant qu’étape de recherche de l’algorithme MADS, nous avons effectué trois changements par
rapport à l’algorithme original.

Premièrement, dans le but de gérer les contraintes de bornes, la loi normale multivariée est tron-
quée. Deuxièmement, les points ne sont pas seulement ordonnés à partir de la valeur de leur
fonction objectif mais également en prenant compte de leur valeur de la fonction de violation
des contraintes. Cela permet d’adapter la méthode d’entropie croisée à la gestion des contraintes
générales d’inégalité. Enfin, la particularité de cette étape de recherche est qu’elle n’est pas ef-
fectuée à chaque itération de l’algorithme mais seulement lorsque la norme de l’écart-type entre
les meilleurs points trouvés jusqu’alors est inférieure à un certain seuil, qui est mis à jour au fur
et à mesure du processus d’optimisation. Cela permet de sélectionner les itérations où il semble
pertinent de procéder à une étape de recherche et ainsi de limiter le nombre d’évaluations de la
boîte noire qui peut être coûteuse en terme de temps de calcul. Finalement, l’algorithme résultant
bénéficie à la fois des propriétés de convergence de l’algorithme MADS et de celles d’exploration
de la méthode de l’entropie croisée.

Cette étape de recherche a été comparée avec d’autres méthodes de recherche pour l’exploration
fondées notamment sur la recherche par voisinage ou par l’échantillonnage dans un hypercube
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latin. En outre, elle a été comparée à d’autres métaheuristiques. Ces comparaisons ont été menées
des problèmes analytiques multimodaux mais également sur des problèmes d’ingénierie. Dans les
deux cas, l’algorithme CE-MADS présente des résultats intéressants en terme de performance et
d’efficacité.

Le second projet de thèse aborde les problèmes d’optimisation stochastique de boîte noire sans
contrainte. Dans ce projet, un algorithme séquentiel (SSO) est développé afin de résoudre une
suite d’approximations lisses Gaussienne. Ces approximations Gaussiennes lisses sont obtenues en
prennant l’espérance par rapport à un vecteur u Gaussian de la fonction objectif f pris en x+βu où
β est le paramètre de lissage. Ces approximations bénéficient de plusieurs propriétés intéressantes
pour l’optimisation. Premièrement, elles sont indéfiniment différentiables car cette espérance peut
être vu comme un produit de convolution entre la fonction f et la fonction de densité de proba-
bilité Gaussienne. Deuxièmement, si β est pris suffisamment large, un phénomène de convexifi-
cation de la fonction apparait autour de ses minima locaux. A l’inverse, lorsque β tend vers 0,
l’approximation tend vers la fonction originale. Enfin, la propriété la plus intéressante est que le
gradient de l’approximation peut être estimé à partir de deux évaluations de la fonction objectif,
quelque soit la dimension. Cet estimateur est de pauvre qualité en pratique mais il existe des tech-
niques fondées sur les moyennes mobiles pour parvenir à l’exploiter. Pour ce faire, le problème
original est décomposé en suite de sous problème. Chaque sous problème consiste à minimiser la
valeur d’une approximation Gaussienne paramétrée par β. Dans cette suite d’approximation lisse,
la valeur du paramètre β tend vers 0.

Dans l’algorithme SSO, chaque sous problème est résolu grâce à une version sans dérivées de
l’algorithme de descente du signe du gradient stochatique avec momentum, appelé ZO-Signum.
Cette version sans dérivées diffère de l’algorithme originel Signum pour trois raisons. Première-
ment, le gradient de l’approximation Gaussienne est estimé à partir d’évaluations de la fonction
objectif seulement. Deuxièmement, la taille de pas utilisée pour agréger les estimations du gradient
dans le vecteur de moment tend vers 0, alors que la taille de pas est constante dans l’algorithme
originel. Cette décroissance de la taille de pas vers 0 est particulièrement importante théorique-
ment puisqu’elle assure la décroissance de la variance du vecteur moment. Enfin, l’algorithme
ZO-Signum bénéficie d’un critère d’arrêt fondé sur la norme du vecteur moment. Cela permet de
passer d’un sous problème à l’autre dans l’algorithme SSO. En effet, une fois que l’algorithme
ZO-Signum atteint le critère d’arrêt, l’algorithme SSO procède à la mise à jour du paramètre de
lissage β pour le nouveau sous problème et des valeurs initiales des deux tailles de pas utilisées
dans l’algorithme ZO-Signum.

Les propriétés de convergence des deux algorithmes ont été étudiées. Lorsque la boîte noire est
Lipschitz continue, le taux de convergence en moyenne de l’algorithme ZO-Signum vers un point



186

stationnaire d’une approximation lisse du problème original a été calculé. Ce résultat a été comparé
avec d’autres taux de convergence obtenus dans la littérature lorsque la fonction f est supposée C1.
Il s’avère que, du à la plus faible hypothèse sur la structure de la fonction, le taux de convergence
de l’algorithme ZO-Signum a une plus grande dépendance dans la dimension du problème mais ob-
tient la même dépendance en terme d’itérations. Si la boîte noire est supposée C1 et est localement
convexe autour de ses minima locaux, alors nous avons démontré le taux de convergence d’une
sous suite d’itérés de l’algorithme SSO vers un point stationnaire du problème. Ce résultat est plus
fort que les autres résultats de la littérature car il n’est pas obtenu en moyenne mais de manière
déterministe.

Finalement, des tests numériques ont été réalisés sur des problèmes analytiques de différentes
tailles, sur une simulation de centrale solaire et pour la génération d’images adverses. L’algorithme
SSO a été comparé à une version sans dérivées de l’algorithme ADAM, à une version spécifique
pour l’optimisation stochastique de l’algorithme MADS et à l’algorithme CMA-ES. Les résultats
démontrent l’efficacité de l’algorithme sur les différents problèmes tests utilisés en comparaison
des autres algorithmes.

Le troisième projet de thèse traite des problèmes d’optimisation de boîte noire sous contraintes et
soumis à des incertitudes aléatoires et épistémiques. La valeur conditionnelle au risque (CVaR) est
utilisée pour gérer les incertitudes dans la fonction objectif et les contraintes. Cette formulation a
l’avantage de pouvoir choisir le degré de fiabilité α et de traiter les deux types d’incertitudes avec
une approche du pire cas lorsque α est pris suffisamment proche de 1.

Étant donné que la fonction objectif et les contraintes proviennent d’une boîte noire et que la formu-
lation avec CVaR est non différentiable, une approximation Gaussienne du problème est réalisée.
Néanmoins, contrairement au travail précédent, le problème original peut contenir des contraintes
de borne. Or si ces contraintes ne sont pas relaxables, c’est à dire que les valeurs retournées
à l’extérieur des bornes n’ont pas de sens pour l’optimisation, l’approximation Gaussienne clas-
sique est inexploitable. C’est pourquoi nous utilisons une approximation lisse par Gaussienne
tronquée. Nous avons prouvé que cette approximation hérite de tous les résultats théoriques de
l’approximation Gaussienne. En outre, son gradient peut être estimé à partir de la sortie de la boîte
noire et de points localisés à l’intérieur des bornes du problème. Finalement, nous avons prouvé
également que pour une valeur α suffisamment proche de 1, la solution du problème approché est
une solution réalisable pour le problème original dont la valeur de la fonction objectif peut être
choisie arbitrairement proche de la valeur d’une solution du problème original.

Finalement, le problème approché est reformulé comme un problème sous contraintes de borne
uniquement en utilisant la relaxation Lagrangienne. Un algorithme d’approximation stochastique à
quatre échelles de temps (RAMSA) est développé pour résoudre ce problème. La première échelle
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de temps sert à agréger les gradient stochastiques sous forme d’un vecteur de moment. La seconde
échelle de temps estime la valeur conditionelle au risque de la fonction objectif et des contraintes.
La troisième met à jour les variables de conception tandis que la dernière met à jour les multipli-
cateurs de Lagrange. Nous avons prouvé que l’algorithme RAMSA converge presque-sûrement
vers un point réalisable du problème CVaR-contraint dont la valeur de la fonction objectif est ar-
bitrairement proche de celle d’une solution locale. Pour chaque échelle de temps, la preuve de
convergence est fondée sur une suite de différence de martingale. Ensuite, le résultat est obtenu
en se ramenant à un système d’équations différentielles ordinaires ainsi que de résultats tirés du
principe d’invariance de La Salle.

Enfin, des tests numériques ont été réalisés sur quatre problèmes analytiques de la littérature dont
un étant soumis aux deux types d’incertitudes (les autres n’étant soumis qu’aux incertitudes aléa-
toires). Ces tests avaient trois buts différents. Premièrement, ils devaient servir à établir une
stratégie permettant de déterminer la valeur des hyperparamètres en pratique. Nous avons pu établir
que l’algorithme dépendait principalement du choix de la valeur du paramètre de lissage β et du
choix de la taille de pas initial servant à la mise à jour des variables de décision. Empiriquement,
il semble que la valeur de β doit être choisie de manière à minimiser la variance de l’estimateur du
gradient. En outre, la taille du pas initial semble être corrélée avec la norme du gradient au point
de départ. Deuxièmement, nous avons pu comparer l’estimateur Gaussien avec celui tronqué, il est
apparu qu’utiliser le second rendait l’algorithme moins efficace en terme d’évaluations de la boîte
noire. Finalement, ces tests nous ont permis de démontrer l’efficacité de l’algorithme pour des prob-
lèmes sujet à des incertitudes aléatoires et epistémiques. Dans nos tests numériques, les incertitudes
épistémiques étaient modélisées par des points ou par des intervalles. Paradoxalement, l’algorithme
performe mieux pour les incertitudes épistémiques modélisées sous forme d’intervalles.

En conclusion, cette thèse est fondée sur trois contributions principales abordant plusieurs problé-
matiques de l’optimisation de boîte noire. Ces trois contributions ont fait l’objet d’articles de revue,
les deux premièr ont été publiés dans les journaux Operations Research Forum et AIMS mathemat-
ics respectivement. Le dernier est en cours de revue dans la revue Computational Optimization and
Applications. Cela prouve la qualité des contributions présentées.

Cependant, ces contributions ont également leurs limites. Le code permettant de reproduire les ré-
sultats, bien que très détaillé dans chacune des contributions, n’est pas encore disponible publique-
ment. Par ailleurs, les deux derniers algorithmes sont particulièrement dépendants vis à vis de
certains hyperparamètres, notamment de la taille de pas initiale pour la mise à jour des variables de
décision. Il pourrait être intéressant pour surmonter cette difficulté d’utiliser une recherche linéaire
permettant de fixer la taille de pas à chaque itération. L’idéal serait d’utiliser le vecteur de mo-
ment pour obtenir la direction de la recherche. Néanmoins, cela soulève le problème de la mise
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à jour de ce vecteur lorsqu’une recherche linéaire est utilisée et devra faire l’objet de travaux plus
approfondis.
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