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Résumé

La crise énergétique actuelle a mis en lumiere nos profondes vulnérabilités en matiere
d’approvisionnement énergétique. Cette crise contribue a renforcer et méme a ex-
acerber la dépendance de beaucoup de pays aux énergies fossiles. De nombreux
gouvernements ont choisi d’affermir leurs politiques énergétiques, particulierement
sur les progres que sont la sobriété énergétique et I'usage des énergies renouvelables
intermittentes (photovoltaiques et éoliennes). L’énergie photovoltaique a ’avantage
de n’émettre que peu de gaz a effet de serre lors de son fonctionnement mais a le
défaut majeur d’étre intermittent et variable. Le stockage énergétique peut pallier la
variabilité et I'intermittence de 1’énergie solaire, cependant les technologies de stock-
age les plus performantes s’accompagnent de problématiques de cofit financier et de
recyclage, freinant ainsi leur popularisation.

L’utilisation de Systémes de Management de I’Energie pour le Résidentiel (SMER)
(ou Home energy management system - HEMS en anglais) vient en complément des
énergies solaires en proposant une maniere plus intelligente de consommer 1’énergie.
Développer des SMER est un sujet de recherche tres étudié mais leur application
dans le quotidien reste tres limitée.

De maniere pratique, les SMERs s’appuient souvent sur un réseau de capteurs
permettant d’obtenir des mesures individuelles d’appareil, afin d’identifier les com-
portements de consommation ; les durées, les préférences horaires ou aussi 1’énergie
consommée. Cependant, on peut s’interroger sur la complexité d’installation de
réseaux de capteur, la gestion des données, ou aussi sur le cofit potentiellement im-
portant.

La désagrégation non-intrusive (ou NILM en anglais) est le procédé qui consiste
a séparer une mesure générale en signaux d’appareils a I’aide d’algorithmes. Le but
premier du NILM est de réduire les cofits associés a l'installation et a la maintenance
du réseau de capteurs car le NILM n’a besoin que d’un seul point de mesure placé
au niveau du compteur général. A noter que tout au long du manuscrit, seules des
simulations de NILM & basse fréquence d’échantillonnage (1 donnée par minute) sont
réalisées. Les méthodes utilisant des modeles d’apprentissage profond sont les plus
prometteuses, en raison de leurs tres bonnes performances. Dans ce travail, nous
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expérimentons ce type de modele et nous constatons l'importance de la diversité
des données dans la base d’apprentissage de ces modeles. En méme temps, la lit-
térature associée souligne le manque de données publiées et fiables, pour avoir une
solution de NILM généralisée, c’est-a-dire efficace pour n’importe quelle maison et
pour n’importe quelle saison.

Ce travail propose une nouvelle méthode d’augmentation de données dans le but
d’enrichir les bases d’apprentissage, et de se rapprocher de cet objectif de généralisa-
tion. La méthode est rigoureusement expérimentée et son apport sur la performance
des modeles est démontré. La nouvelle technique d’augmentation de données est
ajoutée a 'outil NILMTK, un célebre outil « open source » dédié a I’évaluation et
la comparaison de méthodes de NILM.

Enfin, ce travail de theése accorde une importance particuliere a I’application de ces
modeles de NILM en proposant d’évaluer quantitativement ’apport du NILM a un
SMER. Le cas d’étude consiste a appliquer une planification de charge a des maisons
réelles tirées de données publiques. On se propose d’intégrer un modele de NILM
dans un SMER. Les planifications produites par le SMER avec un NILM intégré, se
montrent plus adaptées aux usages habituels de chaque foyer, par conséquent 1’ajout
de cette méthode permettrait une meilleure acceptabilité des SMER.

En résumé, ce travail apporte deux contributions originales majeures. Premiere-
ment le développement d'une méthode d’augmentation de données pour aider a
la généralisation des modeles de NILM. La méthode a été publiée dans le journal
SEGAN (Sustainable Energy, Grids and Network). En deuxiéme lieu, la theése pro-
pose une approche originale pour évaluer quantitativement la contribution du NILM
aux SMER.



Abstract

The current need for a fast decarbonisation of energy production has revealed deep
vulnerabilities in energy supplies. It also emphasised the strong fossil fuel depen-
dency of many countries. Some governments decided to tighten their energy policies,
particularly on energy efficiency and intermittent renewable energies such as solar
and wind. Photovoltaic energy has the advantage of emitting few greenhouse gases
in its lifetime operation but has the drawback of being intermittent and variable.
Energy storage can mitigate the variability and intermittency of solar energy. How-
ever, energy storage’s substantial environmental and financial costs may refrain from
investing massively. A second way to face renewable drawbacks involves more in-
telligent demand management. Developing a Home Energy Management System
(HEMS) for residential areas has been a growing research trend but has not been
widely applied due to technical, social and financial barriers. It is expected to mon-
itor appliances individually in residential areas to understand the user’s behaviours
accurately and consequently to determine the preferred hour of use of each appliance,
the duration, or the energy demanded. However, Appliance Load Monitoring (ALM)
is challenging due to the high complexity and cost of the sensor network involved.
Non-Intrusive Load Monitoring (NILM) is the process of disaggregating the main
load into individual appliance loads without additional energy meters. NILM aims
to mitigate the cost of sensor installation and maintenance by installing a unique sen-
sor on the main load and retrieving the individual load appliances computationally.
Recently, deep learning models have been up-and-coming for NILM tasks. The main
meter sampling rate is crucial for the trade-off between disaggregation accuracy and
cost efficiency. High-frequency data will carry more detailed signatures but with a
costly sensor.

In this work, we assess the generalisation capabilities of low-frequency NILM, which
use 1-min time step load monitoring, and identify the settings having the most signif-
icant impact on performances. This work demonstrates the importance of diversity
in the training dataset to unlock generalisability. At the same time, the literature
underlines data scarcity in the domain, mainly due to the complex task of recording
reliable supervised data in real conditions. The present work provides a new data
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augmentation technique to address this issue by enriching the training set. The
technique is thoroughly experimented with to prove its efficiency in improving gener-
alisability. The developed data augmentation add-on module is implemented inside
the NILMTK framework, a famous toolkit to evaluate NILM solutions.

This manuscript brought particular care to a practical NILM application. The idea
is to assess the contribution of a low-frequency NILM to a HEMS by conducting
simulations. The case study applies a load scheduling HEMS to real houses from
public databases. The schedules given by the HEMS with NILM are more accept-
able for the end-user. The first original contribution of this work relies on developing
a new and straightforward data augmentation technique published in the SEGAN
(Sustainable Energy, Grids and Network) journal. Secondly, the thesis proposes an
original approach to quantitatively evaluating NILM’s contribution to HEMS.
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INnfroduction

The current need in a fast decarbonisation of the energy production highlights the sig-
nificant vulnerability of the high fossil-fuel dependency of society [2,3]. Oil is needed
for the industry, transportation and electricity production. Without a resilient en-
ergy supply chain, the international economy would be severely impacted [4]. Besides,
the human use of fossil fuels has been a significant contributor to global warming due
to greenhouse gas emissions. Causal relationships between climate and fossil fuels
have been demonstrated in recent IPCC reports. [5]. The effects of climate change
are disastrous, leading to more frequent heatwaves and extreme weather conditions
in some areas. Not only humans but all biodiversity is at risk [6]. Biodiversity is fac-
ing a severe threat due to climate change, with potentially devastating consequences.
According to the IPCC [5], global temperature rise could increase the extinction risk
of up to 30% of Earth’s species. To alleviate the impact of climate change, there
are several levers to activate, such as instituting profound modifications in the econ-
omy in favouring a circular economy, supporting sustainable and local agriculture,
developing renewable energy and reducing the consumption of resources per capita.
The development of renewable energy sources has been growing remarkably in re-
cent years. This has been driven by the need to alleviate climate change and reduce
our reliance on fossil fuels. According to [7], the capacity of renewable energy has
expanded rapidly. In 2020, an estimated 260 GW of renewable power capacity were
added worldwide. This expansion has been made possible by significant reductions in
the cost of renewable technologies, which have made them increasingly competitive.
One of the most significant barriers is the variable nature of specific renewables,
such as solar and wind power, which can lead to issues for grid integration. The
report in [8] suggests significant investments in energy storage technologies (particu-
larly in electrochemical batteries) and the development of smart grids. A smart grid
is an advanced electrical system that efficiently manages the generation, distribu-
tion, and consumption of electricity using modern information technology [9]. The
primary goals of a smart grid are to enhance grid reliability, optimise energy distribu-
tion, reduce energy losses, and facilitate the integration of renewable energy sources.
Demand Side Management (DSM) is a lever for accommodating renewable energy re-
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sources. It consists of strategies that encompass various demand-oriented approaches,
such as load shifting or load shedding, and energy efficiency measures, that empower
consumers to adapt their electricity consumption patterns with renewable energy
generation, reduce their energy bill or more generally optimise the demand profile
shape. DSM applies to commercial, industrial and residential [10]. In residential
areas, basic DSM begins with a straightforward visualisation of the load given to
the dweller. A consumption reduction of 15% is observed in [11], only by providing
energy feedbacks. In the literature, developing a more sophisticated DSM tool for
residential has been addressed. A Home Energy Management System (HEMS) is an
automated system used to control and schedule specific smart appliances [12]. Indi-
vidual appliance loads are potential inputs for HEMSs because they allow an isolated
visualisation of how exactly the device is used, at what time, and at what power am-
plitude. However, individual demand monitoring is responsible for additional costs
from sensor device purchasing, installation, and data management. Monitoring every
electrical appliance in a building is challenging, intrusive, and non-robust. In partic-
ular, for residential settings, intrusive and invasive monitoring is likely to generate
reluctance among residents. Non-Intrusive Load Monitoring (NILM) aims to over-
come those barriers by computationally disaggregating the main load measurement
into appliance-level loads. NILM has been introduced in works [13,14] with an algo-
rithm designed to detect on/off events. Those transient sequences are relatively short
and require high-frequency data to be discriminated. However, the higher the sam-
pling rate, the higher the monitoring and data processing cost. That is why research
on unlocking low-frequency NILM has emerged [15,16]. Deep Learning (DL) meth-
ods have achieved promising results on low-frequency data [17-23]. The first chapter
of this work is focused on NILM experimentation to identify the main parameters
that impact NILM results. The experiments are conducted on houses from the public
dataset REFIT [24]. However, DL needs a high amount of data contrasting with the
known lack of supervised data in the realm of NILM [25]. In response to both issues,
some researchers in NILM recently proposed Data Augmentation (DA) methods for
NILM [21,25-28]. DA is a technique to enrich the training set in generating a syn-
thetic dataset, habitually based on a transformation of the existing dataset. In this
manuscript, I propose a DA technique called OFFSETAUG, which was published in
the Sustainable Energy, Grids and Networks (SEGAN) journal [29]. The idea be-
hind this augmentation technique is to generate a synthetic dataset by creating new
power profiles with a particular offset process. Compared to the number of papers
aiming to enhance NILM performances [13,17,18,21,22,30] few authors tackle the
application of NILM [31-33]. In Chapter 4, a simulation framework is proposed to
assess the contribution of NILM to HEMSs.
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This whole work revolves around the following points:

Sensitivity analysis of NILM to identify the most influential parameters.

Assessing the performances of NILM for different configurations, particularly
when enhanced with the OFFSETAUG technique.

Evaluating if NILM, and particularly NILM with OFFSETAUG, can improve
HEMSs.






CHAPTER |

Non-Infrusive Load
Monitoring (NILM)

In residential areas, consumption behaviour is different from one house to another,
depending on the number of people living in the house, the type and number of elec-
trical appliances, and weather conditions. To understand and take action to optimise
energy consumption, load monitoring is substantially needed. Load monitoring mea-
sures the load in an electrical system [34]. A modern house is an electrical system
with electrical wiring to ensure energy distribution, an electrical supply generally
from the grid, and outlets and switches for energy consumption. There are two main
branches of Appliance Load Monitoring (ALM): Intrusive Load Monitoring (ILM)
and Non-Intrusive Load Monitoring (NILM). In this chapter, both approaches are
defined and compared qualitatively. A deeper analysis is carried out on NILM to
understand the concepts and challenges around this technology. This chapter will
be focused on answering the following questions:

o What makes NILM an important research theme?

e What are the main NILM solutions?

Note that this chapter is not wanted to be exhaustive but instead gives the necessary
notions to understand future chapters.

1.1  Appliance Load Monitoring

ALM refers to the process of monitoring individual appliances. Following the recent
energy crisis, ALM has gained significant interest due to its potential for energy
savings. In the residential sector, ALM provides the household with energy feed-
back, allowing the dwellers to regulate their energy demand and identify causes of
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energy wastage. With ALM, inhabitants can decompose their monthly electricity
bill to spot the high consumption devices. Malfunctions can occur during appliance
operation [35,36]. For instance, a refrigerator needing to defrost consumes more
due to higher compressor work. Appliance operating flaws are identifiable on ALM
measurements and can be corrected by fixing or replacing the device. ALM is not
only beneficial for the consumer electricity bill, but the process can also help the grid
operator for energy management systems (EMS) implementation such as Demand
Response (DR) or Direct Load Control (DLC) [31-33]. An accurate and recent
estimate of flexible load levels is a significant resource for grid management. The
advantages of ALM are not debatable. However, its real-life application still faces
barriers such as intrusiveness and cost-effectiveness concerns for ILM approaches
while NILM applications encounter accuracy and transferability issues.

1.2 Infrusive Load Monitoring

Distribution board and List of appliances
circuit breakers

Power supply

Figure 1.1. Simplified home electrical system diagram, the orange circle represents the
metering point for NILM while green squares represent the metering points in a standard
ILM-3 approach
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ILM has been thoroughly reviewed in the works [34, 37, 38].ILM involves the
measurement of electricity consumption for one or a few appliances, generally us-
ing inexpensive metering devices. The term "intrusive” indicates that the meter is
placed within the living space, usually in close proximity to the monitored appli-
ances. The Figure 1.1 gives an overview of the sensor positions in NILM and ILM
cases. There are three levels of ILM, described in [37], the ILM-3 level corresponds
to the case where the sensor is directly embedded in the appliance itself or installed
in the dedicated outlet to individually monitor the appliance. In ILM-2, the sen-
sors are positioned at the plug level, allowing for direct monitoring of the appliances
connected to the outlet or multi-outlet, hence each appliance is not necessarily mon-
itored individually. Finally, in ILM-1 each sensor is positioned inside the electrical
distribution board to monitor a zone of the house, thus a group of appliance inside
the same room. ILM-1 and ILM-2 configurations allow to monitor group of appli-
ances instead of individual appliances, therefore an accuracy drop is expected when
it comes to identify the appliance compared to ILM-3 level. Although ILM-3 gives
an accurate solution for ALM, the important number of required sensors increases
the overall monitoring cost. To achieve cost-effectiveness in ALM applications, a lot
of researchers have been focusing on NILM.

1.3 Non-Intrusive Load Monitoring

NILM is the process of disaggregating the main load into individual appliance loads.
The major advantage of NILM is to require a unique measurement spot that can be
taken outside the house, as represented in Figure 1.1. This subsection is dedicated
to a thorough understanding of the concept of NILM and the challenges involved.

1.3.1 Mathematical formulation

NILM consists in disaggregating a main load measurement, so a time series, let it be
Yir = (Y1, Yo, ..., yr) into appliance-level loads such as ch) = (:vgk), P xgg)) for
the appliance k. Figure 1.2 depicts the disaggregation of the main load. xﬁ’“) and y;
are power values in Watt. At each timestamp, ¢ € [1, 7], the aggregated signal can

be defined by the equation,

K
Yy = ngk) + €. (1.1)
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Figure 1.2. Observation of a main load and the associated individual loads on the SYND
dataset [1]

While (1.2) defines the principle of NILM,

ift(k) = f(k)(yt>- (1.2)

NILM models, noted f®). aim at estimating #,*) values knowing only the main load
time series Y. K is the set of all measured appliances and ¢; is a noise value. There
may be a difference between the main measurement and the sum of individual load
appliances, reflected in the noise value. This difference may occur for three potential
reasons: not all appliances are necessarily monitored, the submeter and the main
sensors may have different sensitivities, or due to minor power fluctuations. Deep
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learning models are widespread for NILM due to their promising performances. To
train f*) to identify the load of an appliance k, the supervised training is processed
on a dataset where Y and X® are fully known. To be consistent in mathemati-
cal notation, even if it may be counter-intuitive to predict x with y features, this
convention is kept in the whole manuscript.

1.3.2 NILM, a challenging task

The first NILM research began in the 1980s; however, the technology is not pop-
ularly used because of the challenges that must be alleviated before a widespread
deployment. Main difficulties can be grouped as technical or societal issues.

1.3.2.1 Technically challenging

For disaggregation purposes, a NILM model must have abilities to identify individ-
ual appliance activation in a generally complex aggregated load. Several sources of
complexity can be pointed out. First, the appliances composing the aggregated load
are rarely the same between two houses. Even if certain appliances are typical for
residential such as washing machines, fridges, televisions or freezers, less common
devices might be retrieved, for instance, aquariums, particular game consoles or DIY
tools. Combinations of the fridge and washing machine operations are more ordinary
than washing machine and jigsaw. Hence, the consequent diversity of possible appli-
ance combinations adds high complexity to the task of NILM. Secondly, there are
uncountable existing appliance brands and versions; finding the same device brand
in two distinct houses would be more surprising than having different ones. The
appliance’s core electrical and mechanical components are relatively common; each
standard washing machine has a drum for mixing up the clothes, a rotor to drive
the drum mechanically, and a thermal resistance for water heating. However, all
the brands do not agree on a defined operating power level or a standard operating
duration. Dishwashers, microwaves, or washing machines increase aggregate load
diversity as they operate depending on a user-defined program. For instance, dish-
washers can run in eco mode or a quick-washing program. For both modes, the
warm-up periods and the temperature levels are different; thus, the resulting electric
signature is different.
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Table 1.1. Types of Appliances

Type Description Appliances
I Only on and off states Microwaves, Kettles, Toast-
ers
II Multi-state appliances Washing machines, Dish-
washers
I11 Continuously variable de- Power drill, Dimmer lights
vices
v Always-on devices with very Appliances on  standby
low consumption mode, Routers

1.3.2.2 Sociadlly challenging

NILM encompasses the social burdens of ALM, be they privacy and acceptance is-
sues. Broken-down monitoring discloses the dweller’s activities, which is ethically
questionable and requests a trust-based relationship between the monitoring man-
ager and the residents [39,40]. Observing the profile of an appliance requiring home
occupation to function (Television, microwave, oven ..., etc.) indicates when the res-
idents are at home. Surprisingly, according to authors [41], privacy concerns are not
the main obstacle to smart-metering roll-out in residential. Instead, installing me-
tering devices and managing data are more challenging due to their high complexity.
Ultimately, social burdens meet the technical aspects when considering operational
NILM implementations. Figure 1.3 depicts two schemes:

 cloud-based (Figure 1.3(a)), where the aggregate data are sent to the inter-
net for remote processing, be they disaggregation and HEMS (Home Energy
Management Sysyem) purposes;

 edge-based (Figure 1.3(b)), in which the data does not physically leave the
household. In this configuration, all computing tasks are processed locally.

The cloud-based approach emphasises social vulnerabilities as private data is
uploaded online. However, this deployment method allows for the utilisation of higher
shared computing resources, thus more complex DL models, compared to edge-based
HEMS. The latter approach keeps the data within the household and ensures security
at the expense of low computational power available for cost-effectiveness concerns.

Even though some NILM hurdles remain, the technology is a step forward from
traditional ILM solutions due to the reduced number of meters installed intrusively.
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The use of traditional smart meters has been called socially into question, as noted
in a study by [40], due to their low acceptance level. NILM is seen as a potential
solution to this ongoing social debate.

1.3.3 Non-ML-based methods

NILM has been a vigorously explored topic. Many authors, [13,14, 18-21, 30, 42],
focused on NILM model development to unlock generalisation capability permitting
large-scale deployment. NILM models can be roughly separated into two groups:
machine-learning and non-machine-learning-based models. This subsection gives an
overview of primary non-ML-based NILM methods to understand the concepts and
the pros and cons of the main techniques.

1.3.3.1 Hart method - Edge detection

George W. Hart [13] is the precursor of NILM. To understand the pioneer model, it
is worth underlining load profiles that can be characterised in two different states,
steady and transient periods. A given appliance can be in several states; for instance,
the washing machine can be in washing, water heating or drying phases. Those op-
erating stages induce different patterns on the load profile. Simpler appliances, such
as traditional lighting, only have two states, on and off. A state change is a transient
phase while non-variant power profiles are associated with steady states. Hart pro-
poses identifying both states on the aggregated load using an edge detection process.
An edge refers to a power shift, increasing or decreasing power. Figure 1.4 repre-
sents the spotted edges on a subset of the REFIT dataset. Thus, unmarked periods
are the steady state moments. The idea of Hart’s method is to associate positive
and negative edges by comparing the power shift amplitudes. For instance, a 100W
positive power shift followed by a 98W negative power shift can be sensibly paired
and are potentially caused by the same appliance operation. Figure 1.4 shows that
the positive edge noted E9 and negative edge E10 will be associated, similarly for
E3 and E4. One problem remains, how to map an appliance operation to the appli-
ance label? Concretely, how can the approach determine if the appliance operation
defined by a 100W-positive-shift and a 98 W-negative-shift is a fridge or a washing
machine operation? Hart separates two setups, the manual and the automatic se-
tups. During manual mode, there is a temporary period where the appliances in
question are manually turned on and off to gather data on their power levels and
how long they operate for. In automatic setup, typical power level and operation
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duration are beforehand determined for each appliance to form a device distinctive
map. The aggregate load from Figure 1.4 broadcasts a relatively smooth aggregate
load, probably because of the chosen hours, from 00:00 to 03:00, when occupants
sleep. However, in most cases, the aggregate load is very noisy. Furthermore, some
appliances do not have a clear steady state phase.

REFIT 5

2000 A

1500 A

Power (W)

1000 4

500 A

E10
E2 E4 E6 P e &'l oF1)

L v v v v w_ W v W W W - |
00:00 00:30 01:00 01:30 02:00 02:30 03:00

20-Mar
Time

Figure 1.4. Edge detection on house 5 from REFIT dataset, orange circles represent the
power shift periods

1.3.3.2 Combinatorial Optimisation (CO)

The CO algorithm, introduced in [14], is an intuitive way to solve NILM problems.
Since an aggregate load is a sum of many individual appliance loads, finding the best
power-level combination can be a straightforward solution.

K
. . k) (K
3, = argm@n|yt -y zt( )x§ )| (1.3)
2 k=1
Equation (1.3) defines the combinatorial approach, with z*) a binary variable repre-
senting the appliance state, if on 2*) = 1, otherwise 2*) = 0. The combinatorial op-
timisation approach is multi-target. Consequently, it disaggregates all appliances si-
multaneously by estimating the state of each appliance, with 2; = {251), 2}2) s 2§K)}.
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This method faces obstacles when the value of K, the number of appliances, is high;
the number of possible power combinations expands rapidly, involving massive com-
putational resources. Increasing the number of possible combinations reduces the
likelihood of a unique aggregated power level. Both the Hart Section 1.3.3.1 and
CO Section 1.3.3.2 methods share a flaw in that they cannot handle negative loads,
which has become a problem with the rise of prosumers (consumer and producer at
the same time), often involving a two-way connection between the supplier and the
prosumer. Prosumers selling their excess photovoltaic energy to the grid can cause
negative loads, monitored at the meter level, during high solar irradiation and low
energy demand. Those limitations of non-ML-based methods led the researchers to
deeply explore the potential of DL-based approaches.

1.3.4 Dl-based methods

DL techniques are of great interest in various fields for prediction, estimation or
identification tasks. The high complexity of the NILM tasks makes it a platform for
machine learning applications, especially for DL, a subset of ML. Unlike ML, DL
approaches do not need a crucial feature engineering [43]. Nevertheless, DL-based
NILM requires a prior pre-processing of the input when training. Commonly, the
sliding window approach is used [44].

1.3.4.1 Sliding-window pre-processing

DL models for NILM are designed to identify patterns on the aggregate load [22].
The whole aggregate sequence is too long and too computationally demanding to
input to DL models. Instead, sliced sequences are given to the model as windows.
To capture all the information, a window of pre-defined length is slid over the entire
aggregate load. In (1.11), the length of the window is W;,; thus input length is W;,.

1.3.4.2 DL terminology

The present section is intended to be non-exhaustive on DL theory, although major
terminologies are defined, and illustrated examples are given. The objective is to
provide the necessary understanding to comprehend the NILM models presented in
the forthcoming sections Section 1.3.4.4 and Section 1.3.4.5.

o Neurons and dense layers
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Input Hidden layer Output

Figure 1.5. Example of a neural network

A neuron, also called a node, is a fundamental unit in DL models. A DL
neuron simulates the activity of a biological neuron seen in the human brain.
In the context of DL, the building blocks of neural networks are neurons, which
are essential to process and transmit information. Figure 1.6 shows a single
neuron representation. A neuron receives input data (y;), and each input is
associated with a weight (w;) which quantifies the input importance. In the
training phase, these weights are constantly updated to optimise the network
performance. Inside each neuron, a straightforward operation is processed.
Each input is multiplied by its associated weights, and the results are summed
up; the obtained weighted sum is defined in equation (1.4). However, this
operation remains linear and does not grant the ability to adapt to complex
non-linear functions. For this reason, the weighted sum noted S, the summation
is passed through an activation function. The activation function brings non-
linearity to the neuron’s output, which is indispensable for the network to
grasp and estimate complex relationships within the data. Different activation
functions can be used, such as ReLu, Sigmoid or tanh; see equations (1.5),
(1.6) and (1.7). The result of the activation operation is the output of the
neuron, noted x. Moreover, a bias term b, updated during the training phase,
gives an additional degree of freedom to the activation function; for instance,
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bias grants to always-positive functions, like ReLu, the ability to activate the
neuron even if the output is negative.

=0

Gretu(W) = max(0, W) (1.5)
(W)= —— (16)

Jsigmoid — 1+ oW .

€W _ G_W
Gtanh(W) = W L oW (1.7)
V1 "
}« x = gWwy.y1 + Wa.y + W3.y3 + b)
Y2 ——— —_—

w3
V3

Figure 1.6. Single neuron representation, with y;, ¢, w;, b and x respectively the " input,
the activation function, the ¥ weight, the bias value and the neuron output.

A dense layer or a fully connected layer is composed of neurons. It is one of
the most prevalent kinds of layers utilized in a variety of artificial intelligence
activities such as time-series analysis or image recognition. The dense layer is
useful for linking neurons between neighbouring layers of a neural network. In
Figure 1.5, the hidden layer is dense, as this layer is connected to each of the
previous and the posterior nodes.

o Convolutional Neural Network

A Convolutional Neural Network (CNN) is a deep learning model that pro-
cesses grid-like data, including images, audio, and time series data. CNNs
have revolutionised computer vision tasks, achieving state-of-the-art results in
tasks such as image classification and speech recognition [43,45]. A CNN ap-
plies convolutional layers to learn spatial hierarchies of features from input data
through automatic and adaptive learning. Convolutional layers are composed
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alternation

of adaptable filters called kernels that convolve with the input data, screen-
ing for patterns and features at the local level. The Figure 1.8 illustrates the
convolution operation for an image Figure 1.8-(a) or a 1D-sequence Figure 1.8-
(b). The idea of CNN training is to capture patterns by updating the kernel
elements, the j; values.

» Backpropagation

How do the DL, and generally the ML models, learn information? DL mod-
els can learn intricate patterns and representations from enormous amounts of
data thanks to the underlying process known as backpropagation [46]. Back-
propagating errors automatically modify weights and biases to minimise predic-
tion errors. The input data is fed into the neural network during the forward
pass. As the information moves through the layers, it undergoes several math-
ematical operations, including linear transformations and activation functions
(Figure 1.6), to obtain the neural network output. A loss function calculates
the difference between the network’s output z; and the target power value
x¢. In NILM applications, the ground truth is the individual appliance load
measurement. There are two significant types of loss functions: regression
and classification. For regression cases, one prefers the Mean Squared Error
(equation (1.9)) and the Mean Absolute Error (equation (1.8)). In contrast,
the binary-cross entropy and the categorical-cross entropy losses are used for
classification.
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During the backward pass, the algorithm computes the gradient of the loss func-
tion concerning each weight value by working backwards through the network.
The gradient shows how responsive each weight’s change is to the loss function.
To minimise the loss, the neural network’s weights are updated using the cal-
culated gradients in the opposite direction of the gradient. The learning rate
hyperparameter controls the range of these weight updates. Finally, the net-
work performs the forward pass, loss computation, backward pass, and weight
updates iteratively over the training data until the performance converges to
a satisfactory level.
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1.3.4.3 Hyperparameters for DL models

In DL domain, hyperparameters are user-defined settings for model training config-
uration. The hyperparameters are manually adjustable and highly suggested to be
fine-tuned; the hyperparameter values need a prior adjustment to optimise the model
learning. Following is a non-exhaustive list of parameters needing a prior adjustment:

« Patience for early stopping

When should the model training be stopped? When its performances are sat-
isfying regarding the ability to predict the output accurately. Unless in a
biased experiment, the testing set cannot be seen during the training phase,
so performances must be evaluated on a section of the training set, called the
validation set. The learning ends in diverse possible conditions; it can be when
it reaches a fixed-epoch value or if the model does not demonstrate further im-
provement during a defined number of epochs (patience value). The patience
hyperparameter permits an earlier learning stop at the expense of higher risks
of under-fitting when the patience value is set too low. Fine-tuning the patience
parameter is essential to ward off non-converging models and time-consuming
training.

o Learning rate

During training, the optimisation algorithm adjusts the model weights (Fig-
ure 1.7), with the learning rate controlling the step size. A higher learning rate
can result in faster convergence but may also cause overshooting of the optimal
weights. On the other hand, a lower learning rate can prevent overshooting but
may lead to slower convergence.

o Model architecture parameters

The number of layers and neurons in a DL model is tightly related to the per-
formance and the training time needed. The more parameters, the more com-
putational resource is required, but a high parameter number only sometimes
warrants good accuracy. Heavy iterative computations might come up with
the perfect architecture, although in NILM scholarship, many architectures
have proven effectiveness with reasonable computational resources [17,18]. As
explained in Section 1.3.4.1, classical-DL-based-NILM models rely on sliding-
window preprocessing. Hence, the model does not see the whole training se-
quence but sees a series of subsets through a sliding window. The importance
of the sliding window length has been pointed out by authors [47,48]. A
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small window captures non-discriminant patterns, while the model is bound
to manage more noise for large windows. The window length is addressed in
a section dedicated to model architecture because the window-length hyper-
parameter is correlated to the number of trainable parameters; see equations
(1.10) and (1.11), the longer the sliding window, the higher the trainable pa-
rameters. Sliding-window-length adjustment is central in DL, NILM to adapt
to appliance pattern duration and to ensure a reasonable training time.

e Dropouts

In deep learning, dropout is a technique to avoid overfitting in neural networks.
Overfitting happens when a neural network becomes highly skilled at tasks
on the training data but struggles to perform effectively on new, unseen data.
Dropout helps prevent this problem by introducing randomness during training.
This reduces the network’s dependence on specific neurons. The technique was
first introduced in work [49]. In every training iteration, dropout randomly
disables a certain proportion of neurons, meaning that they are set to zero on
the forward pass (Figure 1.7) and their values are frozen on the backward pass,
making them insensitive to the gradient. This is done to improve generalisation
abilities on unseen data.

1.3.4.4 Seqguence-to-sequence (5295)

Kelly and Knottenbelt [21] identified the potential of CNN-S2S models. Those DL
models showed significant improvement compared to classical methods such as the
Combinatorial Optimisation approach or the Factorial Hidden Markov Model [50].
S2S for the NILM task disaggregates a W;,-length-main-load sequence to a W~
length output sequence in the equation (1.10). Usually, CNN-S2S approaches re-
spect Wi, = Wiy, although some researchers [30] explored sequence-to-subsequence
architectures where W, > W,:.

k >(k
FS Vetywan1,0) = X0 1, (1.10)

with Y;ff}rwm_l is a main load chunk and )A(f:’zlwm_l being the load of the appliance k.

6 is the hyperparameter set. Denoising Autoencoder (DAE) architecture for NILM
issues, illustrated in Figure 1.10(a), has been introduced in [21]. The general idea
in DAE is to add noise artificially in the input sequence (Autoencoder) to train the
model to retrieve the clean signal (Denoising). In NILM problems, the noise is already
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Figure 1.9. Principle of the CNN-S2P approach and representation of a sliding window
of width W,.

generated by the operations of other devices besides the one(s) to identify; thus, the
architecture is designed only to denoise the aggregate load. Another S2S method is
the CNN-S2S [21], which utilises the same architecture depicted in Figure 1.10(b).

1.3.4.5 Sequence-to-point (S2P)

In work [18], the S2P approach overtakes S2S methods and is among the most stud-
ied in literature [17,22,48]. The classical S2P architecture is represented in Fig-
ure 1.10(b). The first layers are the CNN needed for feature capturing.

Fo) Verrw,,-1,0) = X, (1.11)

The concept behind the S2P is that the centre point of the window can be understood
through the values preceding and succeeding it, as represented in Figure 1.9. In
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Figure 1.10. Two model architectures, orange circles represent the dropouts

[17,18], the window length is set as an odd number to have a midpoint. Throughout

this work, W, is taken odd, so let be 7 = %

1.3.5 Single-target and multi-target models

The disaggregation task is intuitively associated with separating an aggregated load
into many individual loads. Multi-target approaches, illustrated in Figure 1.11(a),
predict the individual appliance profiles using a unique model. Hence, the idea is to
build a model capable of identifying a finite number of appliance types. A unique
model is implemented in a multi-target approach, making it a more computation-
ally effective method. However, the model cannot be tuned differently for each
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appliance type. To contrast, the significant advantage of the single-state approach
Figure 1.11(b) is that a particular tuning is possible according to the appliance to
detect. For instance, a shorter sliding window (see Section 1.3.4.1) is preferable for
a microwave estimation to a washing machine detection, as the microwave generally

runs for a short time.
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Figure 1.11. Two NILM solution structures
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1.4 Conclusion

This Chapter 1 comprises a thorough definition of NILM, to understand what
makes NILM an important research theme. Standard ILM solutions are not cost-
efficient and are less adapted for large-scale deployment. NILM can overcome
this barrier in the conditions that current NILM solutions can give accurate dis-
aggregation despite the well-known NILM technical complexity. In the literature,
the authors separate DL-based and non-DL-based approaches, as DL has gained
much attention in the NILM domain. In the next chapter, a series of experi-
ments is conducted to understand how NILM models perform and what are the
significant settings impacting those models.




CHAPTER 2
NILM experimentation

Developing and proposing new models for NILM has recently become a prominent
trend in academic research. Researchers widely agree that DL approaches offer the
most effective methodology for NILM tasks. However, the results obtained from these
models tend to be unstable due to variations in the experimental setup, selection of
houses, and appliances. A NILM model must demonstrate high generalisation capa-
bility or adaptability to diverse households for successful implementation. The oper-
ational efficiency of NILM at a low implementation cost is a significant prerequisite
for practical deployment. The efficient functioning of the model at a high sampling
period should reduce the need for expensive meters. This study experiments with a
1-minute sampled NILM approach under various experimental configurations. The
initial configuration comprises a "seen” setting, while the latter is centred around
an "unseen” scenario. A single unique house dataset is used for training and evalu-
ation in the seen configuration. In contrast, in the unseen configuration, the NILM
models are evaluated based on the data from a house that has never been used for
training. For this investigation, the experimental platform used is the NILM toolkit
(NILMTK), a widely used toolkit in the field. Effects of the sample period, time of
the day, weekdays and weekends, and length of training data on NILM performances
are also evaluated with short NILM experiments. This series of experiments gives
an overview of significant factors that determine NILM performances and points out
levers for improvement. The research questions tackled by the Chapter 2 are:

o What are the major parameters involved in NILM performance?

e To what extent can a NILM solution replace a standard ILM?
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2.1 NILMTK

NILMTK is a significant contribution in the realm of NILM [17,50,51] to facilitate
the evaluation of NILM algorithm performances. This open-source toolkit serves
as a valuable resource for researchers, enabling them to compare different energy
disaggregation algorithms in a reproducible manner. A substantial contribution of
NILMTK is its effort to compare multiple disaggregation approaches across various
publicly available datasets, thus promoting greater transparency and collaboration
within the research community. NILMTK encompasses parsers for various exist-
ing datasets. NILMTK data parsing consists of converting the raw public datasets
to the NILMTK-DF (NILMTK Data Format), a Hierarchical Data Format (HDF)
file [52]. Additionally, it includes a collection of preprocessing algorithms to handle
missing data and data standardisation, benchmark disaggregation algorithms from
the scholarship, and a standardised set of evaluation metrics. To ease user handling
of NILMTK, an API (Application Programming Interface) has been developed to
allow the user to set up the experiment quickly and easily without the need to han-
dle complex coding. By providing these essential components, NILMTK facilitates
rigorous evaluations and benchmarking of NILM methodologies.

2.2 NILM datasets

DL models are known to need a considerable amount of data. For DL-based NILM
models, the data needed are composed of an aggregate load and the associated ground
truths, i.e. the individual appliance loads. One of the most used datasets is REDD
(Reference Energy Disaggregation Data Set) [53] composed of 6 houses from the
USA. In European regions, UKDALE appears as the notorious dataset [54], with 5
houses recorded from the United Kingdom from 2013 to 2015. Nevertheless, only
house 1 has a high data length, contrary to the rest. The limited data regarding
house variety and temporal length makes REDD and UKDALE less appropriate
for thorough evaluations. Indeed, in the training phase, having a variety of houses
enhances the model’s ability to generalise due to the diversity of seen data. Testing
on several houses is required to establish strong empirical evidence of generalisation
capabilities. A sufficient data length for the NILM experiment ensures to make
the model less seasonal-dependent. For these reasons, some researchers have sought
to contribute to recording more diverse and long data. In 2015, DATAPORT [55]
was claimed to be the largest source of disaggregated energy data with 722 houses.
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The REFIT dataset [24] is a compelling collection of data from 20 houses, each
with almost a year and a half of monitored activity. REFIT and DATAPORT were
monitored in actual conditions where data from real homes with real families were
collected. Referring to ILM properties (Section 1.2), this data collection method has
its drawbacks, specifically on possible poor data quality (missing data and outliers)
and inaccurate data labelling. To address these issues, researchers have investigated
synthetical datasets. SynD [56] is a synthetic energy dataset that combines traces of
actual household appliances. The SynD system was created with around 20 different
types of appliances, enabling it to simulate various appliance combinations.

2.3 Metrics

As per [57-59], the evaluation of load disaggregation can be broken down into two
tasks: event detection and energy estimation. For event detection, the primary
metric considered in this paper is the fl-score defined in the equation (2.1) calculated
with the True Positive Rate (TPR), see equation (2.3) and the False Positive Rate
(FPR), see equation (2.4). As NILM is originally a regression problem, a user-defined
threshold separates on-events from off-events. This work selects three thresholds to
evaluate the F1Score metric at 25W, 100W and 500W. The thresholds compute the
confusion matrix variables in figure Figure 2.1. The Mean Absolute Error (MAE)
assesses an average power deviation between ground truth and prediction. However,
MAE metric comparison can be biased by low-amplitude noises when the device is not
operating and by the operating power level. Then, the Normalized Disaggregation
Error (NDE}), see equation (2.6), is also applied in this work. As MAE and NDE

are error metrics, a 0 value is sought for ideal performances.

e Flscore

Precision x Recall
F1S =2 2.1
core " Precision + Recall’ 2.1)

e Precision

Precision — —— 1 (2.2)
recision = TP+FP .

« Recall or sensitivity or True Positive Rate (TPR)
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2.4 Model fine-funing

DL model performances rely on user-defined hyperparameters requiring a fine-tuning
process. The aim is to determine the optimal configuration parameters regarding the
model’s accuracy. Generally, a grid search approach is applied to deal with the many



2.4 Model fine-tuning 29

hyperparameters involved. The model performances are assessed for each hyperpa-
rameter combination. This grid-searching process requires heavy computational re-
sources. A randomised grid search can address this issue by reducing the number
of assessed combinations by random selection. However, this type of selection faces
the risk of missing the optimum. Building a less computational-demanding grid-
searching space is possible by selecting only the most meaningful hyperparameters
and defining reasonable ranges for each value. For NILM applications, the sliding
window length for feature capturing is an additional hyperparameter to be tuned.
The present subsection aims to accurately determine the hyperparameter values and
observe the model sensitivity to different adjustable settings. The fine-tuning study
focuses on three critical variables: the learning rate, the patience for early stopping
and the window length (Section 1.3.4.3).

Table 2.1. Fixed parameters for fine-tuning experimentation. Dates are formatted as
YYYY-MM-DD.

Training house refit2

Validation house refit2

Testing house refit2

Dates train 2014-07-01 to 2014-07-20
Dates test 2014-09-01 to 2014-09-30
Sampling period (s) 60

Validation split 15%

Batch size 1000

Maximum epoch 100

Adjustable variables are not necessarily fully independent when performing fine-
tuning tasks, i.e., learning rate variations might impact the best patience value.
There is no standard hyperparameter value combination for NILM experimentation;
for instance, some authors [17] do not use patience for early stopping while [22]
do. Diversity in the choices of datasets, houses, training periods, or NILM models
makes it ambitious to emerge "the best” hyperparameter combination. However,
there are unfavourable model settings that lead to skewed NILM results. The present
investigation is conducted on two common appliances, the kettle and the dishwasher.

« Learning rate [r

Figure 2.2 and Figure 2.3 give an overview of the effect of learning rate vari-
ations on NDE-error (2.6). Notably, the errors increase when a high learning
rate is set. The dishwasher and kettle disaggregations perform better when
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Figure 2.2. Model fine-tuning patience (pat), learning rate (Ir) for a fixed window length
(wd) on the dishwasher.
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Figure 2.3. Model fine-tuning patience (pat), learning rate (Ir) for a fixed window length
(wd) on the kettle.
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Ir <1072, The error escalates rapidly when the Ir value is above this threshold,
caused by the fact that the model does not converge due to the overshooting
effect when Ir is too high (Section 1.3.4.3). With a high [r value, the weight up-
dates are too consequent to optimise the model’s performance. Remembering
that on-activations are more infrequent than off-activations (at least for many
common appliances) is essential; a finer weight-updating might be required to
capture those rare moments of on-activations. On the contrary, all three mod-
els perform better when the Ir-variable is low (Ir < 1073), except for the kettle
power estimation with the DAE model where accuracy drops when Ir = 1074,
probably a higher patience value is needed for the model to converge.

Patience

The training phase is stopped whenever the model is satisfactory regarding
the model performance on the validation set. Although DL models are black-
box models and complex to comprehend, validation curves offer a convenient
visualisation of the training process. The model is overfitting when it has
high abilities to predict/estimate the training set, whereas it performs poorly
on the validation set. In Figure 2.6, training is stopped when the model has
not improved for a patience-number of epochs. Patience fine-tuning depicts a
slight improvement for CNN-S2P and CNN-S2S when increasing the patience in
Figure 2.2. For dishwasher disaggregation, DAE seems less sensitive to the pa-
tience hyperparameter, as respective curves in Figure 2.4(a) and Figure 2.2(a)
are nearly overlapped totally. In the training phase for kettle detection, the
DAE model is more sensitive to the patience value, as choosing patience = 5
under-performs in Figure 2.3(a) and Figure 2.5(a). The proximity between the
fine-tuning curves for patience = 15 and those for patience = 10 suggests that
further training of the models may not be necessary.

Window length

The authors of the work [48] have dedicated to fine-tuning window length for
CNN-52S and CNN-S2P learning. Indeed, this hyperparameter is substantial
as it is among the factors that determine the ability of the model to learn pat-
terns. A high window length is likely to capture more noise, whereas a short
sequence might not be sufficient to capture a discriminant pattern entirely.
In the presented fine-tuning experimentation, a window-length fine-tuning is
proposed on a long-running appliance (dishwasher) and a short-running one
(kettle). In Figure 2.4(c), the CNN-S2S model shows improvement when in-
creasing window size from 79 to 119; however, the performance increase is not
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Figure 2.6. Validation curve of the S2P training for the dishwasher disaggregation, Min
val__loss is the lowest error values on the validation set.

as sharp as the one for CNN-S2P, in Figure 2.4(b), which seems highly sensi-
tive to the window length. Despite having higher errors than CNN-S2P and
CNN-S285, the DAE model also looks sensitive to the window length with a min-
imum at wd = 139. When considering the Figure 2.5 for fine-tuning for kettle
detection, CNN-S2P and CNN-S2S models do not display a precise preferred
sequence length. This is likely due to the kettle running briefly; the imbalance
between on and off periods is more substantial with more off periods. More-
over, in this work, 60s-sampled experimentation (see Table 2.1) is performed
to assess the low-frequency capabilities of NILM approaches, devices like kettle
generally run during a period close to or shorter than 1min. Consequently,
patterns are smoothed and likely to be less discriminant. Even though single-
target NILM models (see Figure 1.11(b)) are applied, a unique model should
be capable of detecting when the device is running but also when the device is
not running. Hence, single-target models indirectly learn patterns from other
appliances. In the work [22], the authors exploit this indirect detection ability
to apply transfer learning to NILM. The proposed kettle models are likely to
be tuned to detect better when the kettle is off than when it is on due to the
imbalance.
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2.5 Dl-based vs non-DlL-based models

The models have been presented in Section 1.3.3 and Section 1.3.4. In the conducted
experimentation, DL-based methods demonstrate higher accuracy according to Fig-
ure 2.7, where CO and Hart85 barely reach NDE = 1.0. In the work [17], artificial
aggregation is applied to test the models, i.e. the models are trained and tested on
a synthetic load generated by aggregating the available individual loads. According
to the result of Batra et al’s work [17], CO and Hart85 models seem to perform well,
nearly as well as Al-based models, on artificial aggregate conditions. However, the
performances drop sharply on a real aggregate assessment. Models, whether DL or
non-DI-based, built with artificial aggregate, have low noise awareness as the train-
ing set contains only pure signals. In Batra et al. [17], when comparing an actual
aggregate condition with an artificial one, the mean absolute error (MAE) drops
by an average of 86W for CO. However, the CNN-S2P model demonstrates a much
lower drop of 9W in MAE. Consequently, DL models have higher capabilities to cope
with noises in the data. Non-DL models often require manual feature identification
like Hart’s method [13,14]; it is necessary to spot every power edge and power level,
which rapidly becomes a challenge in some households where the main load is highly
noised. Using CNN allows the capture of the most discriminant features from the
training set automatically, making the DL. models more scalable than non-DL mod-
els. In the presented experiment, CNN-S2P reaches a promising 0.67 N DE value for
the Seen configuration and 0.78 for the Unseenb.

2.6 "Seen” vs “unseen”

Table 2.2. Parameters for Seen vs Unseen experimentation

Param Seen Unseenl Unseen2 Unseen3 Unseen4 Unseenb
Testing houses 5 5 5 5 5 5
Training houses 5 2 23 236 23613 2361319
Total testing days 28 28 28 28 28 28

Total training days 150 150 150 150 150 150
Sampling period (s) 60 60 60 60 60 60
Validation split 15% 15% 15% 15% 15% 15%
Batch size 1000 1000 1000 1000 1000 1000
Maximum epoch 100 100 100 100 100 100
Patience 10 10 10 10 10 10
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Window length 119 119 119 119 119 119

Appliances dishwasher, kettle, microwave, washing machine




2.6 "Seen” vs “unseen” 37

Some NILM researchers [13,14,18,42] train and evaluate their model on a unique
house; evaluation is processed on houses seen during training. One possible imple-
mentation, aligning with this evaluation method, is to install an energy meter on
each appliance temporarily. Once enough data is collected, the meters are unin-
stalled (and installed on another house), and a NILM model built with the measured
data is embedded into the household for disaggregation purposes. The energy op-
erator in charge of the ALM tasks can opt for a manual setup; instead of having a
long ILM period, the operator can install the sensor on each appliance and run appli-
ances on purpose to create possible combinations of each device. However, manual
processing increases the time the operator spends in the dwelling depending on the
number of appliances and their standard operating duration. It is more cost-effective
for the energy operator to monitor intrusively for a short period than for an extended
period to reduce the requirement of buying many metering devices for other houses
left to monitor. Even though a shorter period is more cost-effective, a too-short data
length causes poor model performances due to an inherent seasonality on residential
load profiles; winter data are less correlated to summer data, and holidays demon-
strate different demand patterns. Unseen experimentation consists of assessing the
models on a house unseen in the training phase [22]. This evaluation is critical for
NILM researchers as it directly assesses the generalisation capabilities of the mod-
els. There are two levels of generalisation: on the first level, the model’s ability to
correctly disaggregate a load of a house from the same region, and on the second
level, the capacity to disaggregate a load from a completely different region from
the ones considered in training. In this work, only the first level of generalisation is
experimented with. To operationally implement a NILM model to detect individual
appliance loads on an unseen house, first, it is necessary to train the model on fully-
known houses, and then the built model is implemented to predict the individual
loads of the house to disaggregate. In this section, two configurations are confronted
quantitatively: Unseen and Seen scenarios. Table 2.2 gives the fixed parameters for
comparing both configurations. Reasonable values of the hyperparameters, window
length, learning rate and patience are determined based on the fine-tuning process
in Section 2.4. A unique test set of 28 days from refith is shared among all experi-
ments. To some significant degree, the length of the training set infringes on NILM
performances. Therefore, a fixed training set length of 150 days is applied. For the
NILM model to generalise well, the training set needs to have diversity. To assess the
generalisation capabilities of unseen models, different numbers of houses (from 1 to
5) in the training set are tested for a fixed training length (150 days). The differences
between seen and unseen configurations are blatant in Figure 2.7 for the DL models,
i.e. CNN-S2P, CNN-S2S and DAE. When experimenting with the CNN-S2P model,
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the NDE value for the Seen-scenario is about 0.66, while for the Unseenb-scenarios,
NDE equals 0.78, representing an 18% error increase. A possible way to mitigate
the gap between Seen and Unseen is to increase the number of houses within the
training set. According to Figure 2.7, the accuracy of the DL models increases as
more houses are included in the training. Note that for all experiments, the length of
the training set is kept constant (see Table 2.2). Adding a new house to the training
set increases diversity by including new combinations of appliances, schedules, and
power levels. In work [60], it is stated that 3 to 6 examples of activations for a
given appliance are sufficient to build a generalised model, to give an at-first-sight
extrapolation of this result, 3 to 6 different houses are needed to come up with a
generalised single-target NILM model in the condition that each house is composed
of a unique appliance type version. Nevertheless, further experimentation is required
to determine the number of houses for which the models have the best generalisation
abilities. This section provides an overview of the impact of the number of houses
and, thus, the importance of data variability on NILM performance.

2.7 Sample period

Table 2.3. Parameters for sample period tuning experimentation

Testing houses 5
Training houses 5
Total testing days 28
Total training days 150
Validation split 15%
Batch size 1000
Maximum epoch 100
Patience 10
Learning rate 0.001
Window length 119
Appliances dishwasher, kettle, microwave, washing machine

In France, since 2016, the Linky smart meter has been massively installed in
households to replace electromechanical meters. The main meter is legally bound
to measure at specific sampling periods [61], 1 hour, 30 minutes and 10 minutes for
grid management and electricity billing tasks. In all modern dwellings connected
to the grid, a meter is used by the grid operator to bill the electricity. Ideally, the
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Figure 2.7. Average NDE for Unseen and Seen scenarios

NILM operator can use the initially present meter to minimise the costs. However,
in NILM, only a few works [33] consider very long sampling periods superior to 1
minute. Indeed, the higher the sampling period, the more faded the load patterns
are. Thus, detecting individual appliances becomes very challenging, particularly for
short-running appliances, such as the kettle or the microwave, that generally run for
a few minutes or seconds. Figure 2.9 provides a graphical representation of the effect
of the sampling period on individual and main load curves. When applying a high-
time step NILM, the number of monitoring points required to describe the patterns
decreases. Consequently, the patterns are visually smoothed, and short-running
device patterns (kettle, microwave) tend to disappear. Similarly, DL models capture
fewer features and discriminant patterns for low-sampling rate data. Practically, the
sampling period is crucial for the NILM operator; the lower the sampling period, the
higher the installation and operational costs. Figure 2.8 visualises the NDE increase
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Figure 2.8. Average NDE function of the data sampling period using the CNN-S2P model

for sampling period increase. Experiments are held according to the parameters in
Table 2.3 and came up with an NDE value that increases from 0.67 to 0.99 when
shifting the time step from 1 to 20 minutes. A dilemma arises: whether to have
a highly accurate and not cost-efficient NILM or to have a less precise and cost-
efficient NILM. Depending on the NILM application, the NILM operator can install
an additional meter beside the grid meter to collect finer data at a higher sampling
rate.

2.8 Hours of day and days of week

In this section, experiments are held to quantify the correlation between human ac-
tivity and NILM performance. The hypothesis to verify is that the more running
appliances composing the aggregate load, the harder it is for NILM models to disag-
gregate correctly. To a certain extent, energy consumption is correlated to human
occupancy [62,63]. In periods of high household occupancy, it is more likely to have
higher energy consumption with several electrical appliances running simultaneously.
NILM is a complex task, particularly for the uncountable potentially existing appli-
ance combinations (see Section 1.3.2). Those appliance combinations are emphasised
during high-consuming periods when rare combinations can appear. As far as the
author knows, there is no existing NILM dataset with real-time occupancy informa-
tion. To overcome this barrier, the energy data are thoroughly analysed to spot the
potential high-occupancy period. In a standard household, high occupancy is gener-
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Figure 2.9. Observation of main and submeter measurements under different sampling
rate conditions. Note in Figure 2.9(a), the dishwasher load can sometimes be higher than
the main load due to measurement errors in the REFIT dataset.

ally in the evening after work, when people prepare dinner (oven, stove ...) and do
all sorts of chores (vacuum, washing machine ...). Even if there seems to be a com-
mon trend, all households are different, and various behaviours might be observed.
Some dwellers are used to staying home during the weekend, while others prefer to
visit family, travel, do groceries, or do diverse outside activities. The experimental
configuration shown in Table 2.4 examines the time of day and weekday impact. The
case study of the REFIT5 household shows higher consumption during the weekend.
One peak is observed in the morning and another in the evening. In the considered
house, the dishwasher is mainly used at night; after midnight, the user probably
schedules the dishwasher activation to take advantage of low electricity prices. The
energy share of the dishwasher is consequent during those hours (between 00:00 and
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Table 2.4. Parameters for time of day and weekday impact observation

Testing houses 5
Training houses 5
Total testing days 28
Total training days 150
Validation split 15%
Batch size 1000
Maximum epoch 100
Patience 10
Learning rate 0.001
Window length 119
Appliances dishwasher

05:00 a.m.), reaching 60%. Dwellers will likely be asleep at these hours, so only a few
appliances are activated. Seeing the scatter diagrams Figure 2.11, for high energy
shares, the dishwasher detection reaches a very accurate result with a NDE = 0.15
while NDFE = 0.83 when considering low energy shares. The simplicity of the signal
causes this large gap during these after-midnight hours when nearly no noise appli-
ances are activated. It can be seen that the points in Figure 2.11(b) are not far from
the bisection, revealing a very convenient NILM except for a cluster at coordinates
~ (1000, 2500) where the power level is under-estimated by the model. During the
daytime, human activities lead to a more complex main load profile with many more
devices that can be confused with the targeted one. When filtering in weekends and
weekdays, a smaller NDE gap is visible for weekend days on average NDFE = 0.68
while NDFE = 0.40 during weekdays. The difference can be explained partially by
Figure 2.10(a), showcasing a more significant energy demand during weekends. Sim-
ilarly to the above hourly NDFE comparison, a higher weekend consumption means
more electrical appliance usage, leading to a more complex signal. This short ex-
periment allows observing the performance variation under different aggregate load
shape complexity. Nevertheless, given the possible existing load shapes, further in-
vestigation is necessary to give a general result on the performance gap between
complex and non-complex periods.
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Figure 2.10. Observation of the REFIT5 household behaviour during the NILM testing
period

2.9 Training dataset length

Having enough data is essential to build a relevant NILM model; authors [27,28, 64]
highlight the data scarcity for DL. NILM models. In this section, 5 different lengths of
the training dataset are experimented with to assess the effect on model performances.
The parameters are presented in Table 2.5. The training set comprises a unique
household, REFIT?2, to assess only the effect of dataset length. What one may expect
is that the more information is given to the model, the higher the generalisation
capabilities. However, the information must have quality to ward off overfitting risks.
This section demonstrates the consequences of a NILM model trained on a unique
house with different dataset lengths. In Figure 2.13 | only the DAE model improves
when the training set length is increased, whereas other models do not show apparent
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CNN-S2P model.

and significant enhancement. On the contrary, CNN-S2P model performances are
downgraded, suggesting that the CNN-S2P has already learnt enough with a one-
month training set to predict the unseen house REFIT5. Considering the CNN-S28S,
the best result, NDE = 0.85, is obtained with a three-month length and knows
slight declines for a more extended training dataset. With a one-month dataset in
training, the CNN-S2P, with a performance of NDFE = 0.86, is more accurate than
the DAE trained with a five-month dataset reaching NDE = 0.89. Errors for DAE
decreased from 0.95 for a one-month length to 0.89 for a five-month length and the
CNN-S2S from 0.87 to only 0.85. Therefore, the improvement margin in varying
only the training set lengths is thin. This experimentation provides scope for future
NILM datasets; recording a long period does not necessarily lead to powerful NILM
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models. This investigation has limitations, as only 5 months were considered, from
March to July, when the temperature is felt hotter in the UK (REFIT dataset is
recorded in the UK). Hence, the experiment does not consider season change; the
models were assessed and trained on data from more or less the same season.

Table 2.5. Parameters to evaluate data length effect

Testing houses 2
Training houses 5t
Total testing days 28
Validation split 15%
Batch size 1000
Maximum epoch 100
Patience 10
Learning rate 0.001
Window length 119

Appliances dishwasher, kettle, microwave, washing machine




46 2 NILM experimentation

1.6
mmm 1 month
mmm 2 months
1.4 4 B 3 months
mmm 4 months
B 5 months
1.2 -
L
0 1.0 4
=
0.8
0.6
0.4 -
; 3 S w 2 S
7] 2 ¥ ) n u
= 5 = =
BN = =
@] )
NILM models

Figure 2.13. Impact of the training data length on the model performances

2.10 Conclusion

In this chapter, a series of experiments was conducted to understand the sig-
nificant factors impacting the performances of NILM models. The scholarship
thoroughly reviewed model type choice [17]; our experiment results align with
this research, confirming DL models’ superiority. In Section 2.5, results show bet-
ter performances when using DL models (CNN-S2P, CNN-S2S and DAE). DL
methods need prior fine-tuning to optimise the models; in this chapter, the influ-
ence of three hyperparameters was observed: the learning rate, the patience for
early stopping and the window width. The latter is a crucial adjustable param-
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eter in the NILM domain, as it has an incidence on both model complexity and
model accuracy. Through fine-tuning Section 2.4, acceptable hyperparameter
values were found to process further NILM experimentation. In Section 2.6, two
configurations were compared to assess the accuracy decline when experiment-
ing under generalised (Unseen) conditions. To determine the levers to unlock
generalisation improvements, many points were investigated :

The DL architecture (DAE, CNN-S2S, CNN-S2P)

The number of houses comprised in the training set

The sampling period

Load complexity throughout the day and the week

Training dataset length

The analysis revealed that load complexity has the highest impact on NILM
performances with an NDE difference of about 0.68 (Figure 2.11(b)) between a
disaggregation during a complex aggregated load and a simpler one. The CNN-
S2P model showed an interesting improvement when adding variability (adding
new houses) to the training set, reaching the best performances in Unseen con-
ditions among all other models. Increasing the training dataset length does not
bring apparent improvements. In some circumstances, this setting can nega-
tively impact NILM quality. Considering all the analyses, low-frequency NILM
in Unseen conditions can hardly replace a whole sensor network for the poor
accuracy found. The Seen conditions gave better results but still showed poor
results when the load became more complex. Three levers were identified to be
relevant for NILM quality improvements :

» Adding diversity (new houses, new power levels of appliances, new patterns)
in the training set

o Enriching the training set with data from periods when the aggregate load
is more complex, corresponding to adding more appliance combinations

e Reducing the sampling period
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The NILM cost-efficiency limits the latter lever. Still, the next chapter assesses
to what extent data augmentation can activate other levers to enrich the training
dataset for better NILM model performances.




CHAPTER 3

Data
augmentation:Expanding
the variety of NILM training
dafo

This section is focused on data augmentation (DA) contribution to enhance NILM
performances. The core idea behind DA is to enrich the training dataset to tackle
data scarcity and quality issues. By introducing more data to the existing training
set, a more extended dataset is available for training. The training set quality is
aligned with the variety and reliability of the information encompassed. In NILM,
only a few papers [26-28, 64] tackle DA, with promising results; nevertheless, there
appear to be opportunities to strengthen the research on DA for NILM. This chapter
revolves around the following research questions:

o Is DA an efficient method to enhance NILM generalisability?

o How effective is the OFFSETAUG method compared to existing DA tech-
niques?

o Is DA relevant for very low-frequency data?

Indeed, thorough experiments must be conducted to demonstrate any positive effect
of DA on NILM performances. In this section, a particular interest is given to the
generalisability of NILM, which is supposed to be potentially enhanced with DA.
Hence, Unseen experiments on two different datasets are carried out to compare
configurations with and without DA, a methodology used in [26,27] where authors
proposed DA algorithms. A new DA algorithm is presented and compared with
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previously published methods in the present work. The paper entitled "Expanding
the variety of non-intrusive load monitoring training data: Introducing and bench-
marking a novel data augmentation technique”, referenced [29], from the journal
Sustainable Energy, Grids and Networks (SEGAN), is included into this chapter.
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resource to enhance the performance of low-frequency NILM tasks.
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1. Introduction

The current energy crisis highlights the significant vulnera-
bility of our fossil-fuel-dependent energy systems. In response,
several governments have tightened energy policies and imple-
mented awareness-raising programs to reduce energy use. Ac-
celerating energy efficiency and improving building thermal per-
formance are among the major actions to achieve a green and
secure energy system. In the study [1], the author demonstrated
that providing feedback on energy demand can result in a 15%
decrease in energy consumption. A breakdown of the main elec-
trical load can help users identify over-consuming items and
target energy savings. However, demand monitoring incurs ad-
ditional costs from sensor device purchasing, installation, and
data processing. Monitoring every electrical appliance in a build-
ing is challenging, intrusive, and non-robust. In particular, for
residential settings, intrusive monitoring is likely to generate re-
luctance among residents. Non-intrusive Load Monitoring (NILM)
systems can help overcome traditional monitoring barriers [2].

* Corresponding author.
E-mail address: yvon.francou@univ-reunion.fr (J. Francou).

https://doi.org/10.1016/j.segan.2023.101142
2352-4677/© 2023 Elsevier Ltd. All rights reserved.

NILM measures only the main load of a building and compu-
tationally disaggregates it to appliance-level profiles. NILM was
first introduced by Hart [3] using an event-based approach that
involves spotting on and off events with the help of transient-
based analysis. An effective transient state identification requires
a high sampling frequency. Although high frequency data are
convenient to retain a more extensive feature range, high sam-
pling rate smart meters are expensive. Consequently, numerous
researchers have taken an interest in low-frequency NILM. There
is no common agreement on the low-frequency threshold value,
but most studies consider it lower than 1 Hz. With the advent
of deep learning (DL) techniques, NILM has achieved promising
performance on low-sampling data [4-10].

In many DL experiments involving NILM for residential, mod-
els are often tested on the same house used for training. However,
in a real-world scenario, training data from the target house may
not be available, making it essential to evaluate the generalization
capabilities of NILM. Previous studies [4,6,9] have attempted to
address this issue through generalized experiments. However,
the results obtained from these studies have been found to vary
depending on factors such as the length of the testing and training
datasets, the selected appliances, and the chosen houses. In [4],
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a comprehensive benchmark was conducted, which included a
generalization assessment using the DATAPORT dataset [11]. Clas-
sical deep learning NILM models such as the sequence-to-point
(S2P) approach presented in [5] and reused in [10] resulted in
a mean absolute error less than an averaged 30 W for the re-
frigerator at a 1-min sampling rate. The CNN proposed by [6]
nearly achieved 8.00 W when trained on all houses of REFIT [12]
at 8 s sampling rate. Although results are encouraging, it seems
some experimental cases results can be further improved. So far
deep -learning-based NILM methods have been very promising
however they need a lot of data with variability to generalize well
on unseen houses. [13,14] pointed out the lack of supervised data.
To address this issue contribution of data augmentation (DA) is
underlined. DA is a technique used in deep learning to artificially
increase the size of the training set by creating transformed
versions of the existing data to improve model generalization. In
the realm of DL NILM, the core idea is to generate new synthetic
datasets derived from available data. A relevant DA should be
realistic (representative of the initial training data) while being
a source of variety to provide new information to the models.
For NILM purposes, various DA algorithms have been proposed.
The basic process consists of artificially combining known data
chunks to generate a synthetic dataset. For example, [8] pro-
posed generating a synthetic aggregate data by randomly adding
target appliance and distractor appliance (all appliances differ-
ent from the target appliance) load profiles to the main load,
while [15] suggested successively adding off and on profiles to
an actual aggregate load. However, these methods may not con-
sider the realistic aspect of the synthetic load as they certainly
do not depict the behavior features. To address this issue, [13]
proposed generating synthetic aggregate data by adding acti-
vation profiles based on real consumption scenarios from real
survey reports. Similarly, the SynD dataset [16] was synthesized
based on real consumption patterns. A generative adversarial
network approach is presented in [ 14] to generate new data that
preserves major features. To assess DA contribution behavioral
information should still be derived only from the available data.
During the NILM process, the available datasets are the aggre-
gated and sub-metered training set, as well as the aggregated
testing set. [17] proposed randomly adding activation profiles of
the target appliance to the aggregated testing set to generate
a new synthetic training set. The idea is to extract information
from the main testing set to improve the learning process. This
practical methodology gives interesting improvements in gener-
alization capabilities. Although the previously presented works
achieve good results, some of them diverge from the common
definition of data augmentation by adding additional information,
such as behavioral information [13] or information extracted
from the test base history [17]. In [9], the importance of power
levels and power shift features is underlined. Hence a training
set containing the same power levels/shifts as the testing set is
expected to build better models. However, the power levels from
the main testing load are unlabeled and then barely exploitable
without techniques from unsupervised NILM. DA is beneficial to
reduce the well-known class-imbalance effect, seen in [8,18] in
the NILM domain. Generally, appliances, except for refrigerators
and freezers, are usually more off-state than on-state. To tackle
this issue a classical approach is to oversample appliance on-
activation. In this work, a random adaptation of the power levels
is proposed. The goal is to enhance the diversity of the training set
by introducing additional samples that encompass a broad range
of power levels for the target appliances. It is anticipated that
some of these new samples will closely resemble the tested load.
This research focuses on evaluating the impact of the proposed
DA technique on the generalization of a DL NILM system. To
assess its contribution, the proposed DA method is compared
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Fig. 1. Core principle of data augmentation.

with two other DA techniques found in existing literature, and
with the baseline case where no DA is used. The study’s major
contributions include the following:

e Benchmarking and comparing 3 straightforward DA tech-
niques in the context of NILM.

e Evaluating the impact of DA on very low-frequency NILM
tasks (intervals of at least 1 min).

e Developing and thoroughly assessing an easy-to-implement
and straightforward DA algorithm.

By conducting these comparisons, this work aims to provide
valuable insights into the effectiveness and practicality of DA for
enhancing DL NILM performance and generalization.

The paper is organized as follows, Section 2 presents DL ap-
plications for NILM. Section 3 introduces the augmentation algo-
rithms used. Finally 4 describes experimental configurations and
results are exposed in 5.

2. Deep learning models for NILM

NILM consists in disaggregating a main load measurement, so
a time series let it be Y = (Y7, Y,, ..., Y7) into appliance-level
loads such as X* = (xk, x5, ..., xk) for the appliance k. At each
timestamp, t € [1, T], the aggregated signal can be defined by
the equation,

K

Yo=Y x+e. (1)
k=1

While the principle of NILM is defined by the equation,

X = fH(xe). (2)

NILM models, noted f*, aims at evaluating X* values knowing
only the main load time series Y. K is the set of all measured
appliances and ¢; is a noise value. Deep learning models are very
common for NILM, due to their promising performances. To train
f* to identify the load of an appliance k the supervised training is
processed on a dataset where Y and X* are fully known. Develop-
ing a specific model for each appliance is a frequent practice [6,8],
as in available training datasets labeling every single appliance
within the household is very challenging. A promising approach
is the sequence-to-point (S2P) which is designed to predict the
window midpoint. S2P is defined as,

£ Veerwy—1.0) = XE, (3)
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Fig. 2. Architecture of S2P approach, orange circles represent the dropouts.

where t = Wy /2. Wy and Wy, being the output and input
window lengths. The idea behind the S2P configuration is that
the midpoint of the output window can be explained by the
values before and after. The S2P architecture used for the study
is presented in Fig. 2.

3. Data augmentation algorithms

The principle of DA is presented in Fig. 1, which consists of
generating a new synthetic dataset from a transformation of the
actual training set. Some transformations found in the domain
consist in adding activation profiles to the actual dataset [8],
combining on-period and off-period chunks [15] or generating
a new dataset from a generative adversarial network [14]. In
this work, a straightforward DA algorithm approach, noted OFF-
SETAUG, is proposed to generate a rich synthetic dataset. The
DA algorithm is described in Fig. 3. STEP 1 - When training
NILM models, the only known data are the main and the sub-
meter loads from the training set. An algorithm inspired from
get_activations() function from the work [8], is used to spot on-
periods on the appliance-level load. Hence a database composed
of on-activations is generated. This process is common for DA in
the NILM domain such as in [8] or [17]. STEP 2 - Isolated profiles
are randomly selected within the previously generated database.
The number of selections is user-defined. STEP 3 - The major
novelty of this work is the high power level offsetting process of
the isolated profiles. To process offsetting, a distinction must be
made between high power and low power levels, see third step in
Fig. 3. The threshold, noted thr, is user-defined according to the
target appliance type; in this work, thr = 300W is chosen based
on a beforehand trial and error test. The next operation consists
in offsetting the high power levels with Eq. (4) inspired by the
noise definition in the work [19],

Xk =xk+8pifxk > thr
Xk = xk otherwise

(4)
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AP = [8p,ép,...8p] operates as an offset. A unique AP is
randomly selected for each isolated profile. The selection process
follows a Gaussian distribution with u and o respectively the
mean and the standard deviation. The idea behind the method
is to artificially emphasize variability over the isolated profile
database. The power variation is applied only on high power
levels to limit noise emphasizing and to avoid negative values.
Commonly high power levels on on-activations correspond to
resistor loads, the power level can vary according to the type of
device, the brand, the weather or the operation program chosen
by the dweller for complex appliances. Consequently, the method
is expected to work well on appliances composed with resistor
loads (dishwasher, washing machine, oven, heater ...) as randomly
offsetting would mimic those power level variations. Values of
u and o are defined by the user, they should be cautiously
chosen in order to avoid unrealistic profiles. Note that offsetting
preserves the pattern as it results in a vertical translation of the
initial profile. Applying successive offsets to the isolated profiles
is presumed to make the models less dependent on power values
and more on patterns. Moreover, this method would operate as a
regularizer for DL models reducing overfitting risk. STEP 4 - Once
the isolated profiles are processed, they are added iteratively
to the main and the appliance-level training set for off-period
chunks, in Fig. 5 a new combination is created with an air condi-
tioner activation and a main set chunk. During the preprocessing
stage before model training, a subset of windows resulting from
the sliding windows process is selected from the augmented
data. This subset specifically contains new combinations of “on”
and “off” states. However, the “off” windows in the augmented
dataset are excluded from the training process since they already
exist in the original training set. The focus is on incorporating
novel variations of “on” and “off” combinations to enrich the
training set and improve model generalization.

The DA algorithm is compared to existing methods. The first
method (AUG) is similar to the one proposed in this work except
no offsetting (AP = [0,0,0,...,0]) is used. In NILM literature,
AUG is close to DA applied in [8,15]. Adding noise to the training
data is generally a classical data augmentation process, in [19], a
noise is added to the main dataset following the equation,

Ynoise = Y + 1y * N(0, 1) (5)

Ynoise and Y are respectively the main training set with noise ad-
dition and its initial value. n¢ is the noise factor defined in [19] to
define the percentage of added noise. In this work, a ny = 1 value
is considered. The noise N(0, 1) follows a Gaussian Distribution
with unoseauc = 0 and onoiseauc = 1. In this work, this approach
is noted NOISEAUG. All augmentation methods, see Table 1, are
compared to the baseline case, NOAUG, in which the model is
trained without augmenting the training data.

4. Experimentation

The DA technique is applied on a wide-spread NILM model,
the S2P (3). The first experiment is to assess the efficiency of
the proposed DA algorithm for NILM generalization, comparing
the baseline NILM to the NILM enhanced with the DA technique.
The second experiment consists of evaluating the ability of DA to
improve models for higher sampling period data. In this section,
the carried-out experiments are described.

4.1. Data preprocessing

Despite the availability of several Non-Intrusive Load Mon-
itoring (NILM) datasets, they may not be sufficient to address
the high variability of existing load profiles, which consist of a
multitude of appliance types with countless potential appliance
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Table 1
Overview table of the DA methods.
Designation Details References
NOAUG No data augmentation
AUG DA by combining ON and OFF periods [8] and [15]
OFFSETAUG DA with the proposed method by offsetting ON periods
and by combining ON and OFF periods
NOISEAUG DA by adding noise to the main training set [19]
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Fig. 3. Data augmentation through synthetic dataset generation using a high power offsetting block.

combinations. Monitoring residential loads is particularly chal-
lenging due to the intrusion of sensors capable of tracing personal
data. REFIT dataset, described in [12] is composed of 21 houses
in the United Kingdom with various occupancies and various
numbers of appliances recorded. REFIT database has one of the
longest monitoring durations of about 2 years with an 8 s sam-
pling period. To achieve reliable deep learning NILM experiments,
the data must be well inspected before processing. In the below
experiments, the data are downsampled to 1 min like in the
experiments in [4], to reduce noises, to alleviate computational
resources, and to assess the generalization capabilities on very
low-frequency NILM tasks. The input sequence Wj,, chosen for
the experiment is 99 samples for the washing machine and the
dishwasher detection. Whereas a slightly wider window, 119
samples, is chosen for the electric furnace and the air conditioner
disaggregation as those appliances generally run for a longer
period. The latter two appliance profiles are extracted from the
DATAPORT dataset [11]. Data standardization is processed as
follows,

o xi—
X = i aﬂx. (6)
X

The values of u, and oy are in Table 2. The DA processes have been
incorporated into the NILMTK (Non-Intrusive Load Monitoring
Toolkit) framework [20].

4.2. Experimentation settings
To comprehensively evaluate the generalization capabilities a

leave-one-out looped experimentation is processed on the data
set as illustrated in Fig. 4. For evaluating a model’s performance

EN ENENEEEN
(2 B s | o | 7 | 20
(2] s | 6 | 7 | 20|
(2] s | 6 | 7 | 20

Fig. 4. Successive leave-one-out on some REFIT houses for a comprehensive
assessment.

on a given house, the model is trained on all the other houses.
Since the DA approaches are random, each experiment is re-
peated 3 times to obtain aggregate results. 0.5% of the whole
training window samples results from DA are used for training,
as seen in [14], the length of the augmented set is kept relatively
low. The models are trained with 120 days from each training
house, plus the synthetic set when DA is applied, while tested
on a 30-day chunk of the tested household. The ADAM optimizer
presented in [21] is used to train the model. Dropouts of 20% are
used for training. Dropout layers are represented in Fig. 2. Main
experimentation settings are in the Table 2. To reduce overfitting
risks during the training phase, the model is monitored over a
certain number of epochs. If there is no improvement in the
model’s performance over the last 10 epochs, the training is
stopped and the best previous weights are retrieved regarding
the validation loss. For the experimentation, a single-target NILM
model approach is applied, hence a unique model is trained for
each appliance type.
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Table 2
Experimentation settings for performance assessment.
Dishwasher Washing machine Air conditioner Electric furnace
Mean for standardization (W) 700 400 1500 1500
Standard deviation for standardization (W) 1000 700 1800 1000
Input window size (min) 99 99 119 119
Sample period (s) 60 60 60 60
Maximum epoch 100 100 100 100
Batch size 1000 1000 1000 1000
Patience of early-stopping (epochs) 10 10 10 10
Learning rate 0.001 0.001 0.001 0.001
Dataset REFIT REFIT DATAPORT DATAPORT
Training and testing on houses 5,6,7,17,20 5,6,7,17,20 1642, 2335, 3039, 8386 661, 1642, 2335, 8386, 9160
Validation house 2 2 2818 2818
Training length (days/per house) 120 120 120 120
Testing length (days) 30 30 30 30
Validation length (days) 120 120 120 120
Offset random selection parameters (u, o) (0,20) (0,20) (0,20) (0,20)
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Fig. 5. Representation of AUG process for air conditioner detection. Figure (a) overlaps a randomly selected on-activation submeter and an off-activation main set
chunk. Figure (b) is the addition of both latter, an augmented main load chunk.

5. Results and discussions TRUE CLASS
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mation. For event detection, the main metric considered in this 2« e
paper is the f1-score defined in Eq. (7) calculated with the True E § FALENSATVE T em e
Positive Rate (TPR), see Eq. (9) and the False Positive Rate (FPR), = -

see Eq. (10). As NILM is originally a regression problem, a user-
defined threshold separates on-events from off-events. In this
paper, three different thresholds are selected to evaluate the
F1Score metric, at 25 W, 100 W and 500 W. The thresholds are
used to compute the confusion matrix variables in Fig. 6. The
Mean Absolute Error (MAE) is used to assess an average power

Fig. 6. Confusion matrix.
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Fig. 7. Output curves for air conditioner power estimation compared to the ground truth on the house 9160 from DATAPORT.

Table 3

Cross validation results per appliance, F1score label is followed by the considered on-off threshold, MAE in W.

Air conditioner F1score500 Flscore100 Flscore25 MAE NDE

AUG 0.7003 0.6685 0.4645 217.1415 0.6423
OFFSETAUG 0.7219 0.6930 0.5107 203.9826 0.6139
NOAUG 0.6707 0.6356 0.5337 218.2975 0.6370
NOISEAUG 0.6844 0.6480 0.4920 204.6370 0.6389
Dish washer F1score500 F1score100 Flscore25 MAE NDE

AUG 0.7398 0.5713 0.3463 51.0791 0.5870
OFFSETAUG 0.7792 0.5749 0.2978 48.0004 0.6067
NOAUG 0.6726 0.5030 0.2329 54.4085 0.6542
NOISEAUG 0.6977 0.5331 0.3472 46.1146 0.6519
Electric furnace F1score500 F1score100 Flscore25 MAE NDE

AUG 0.2515 0.4247 05111 196.4844 0.9325
OFFSETAUG 0.2640 0.4482 0.5518 193.0571 0.8959
NOAUG 0.2913 0.4205 0.5171 186.4006 0.9313
NOISEAUG 0.2904 0.4198 0.5263 192.2699 0.9096
Washing machine F1score500 Flscore100 Flscore25 MAE NDE

AUG 0.3357 0.2605 0.2324 66.2479 0.9548
OFFSETAUG 0.3806 0.2734 0.2172 56.4337 0.9319
NOAUG 0.3182 0.2179 0.2752 42.9283 0.9368
NOISEAUG 0.2719 0.1920 0.1887 53.9879 0.9995

y¥ and y¥ are respectively the ground truth and the predicted load
for the appliance k. TN, TP, FP and FN are defined in the confusion
matrix in Fig. 6.

5.2. DA contributions

In Table 4, the results demonstrate the effectiveness of 2 DA
techniques, AUG and OFFSETAUG. For the proposed OFFSETAUG,
on average, there is a 10% increase in F1-score500 metric, a 12%
increase in F1-score100 metric and a slight 1% increase in F1-
score25 value. Although the results for AUG experiments have
shown fewer improvements, its contribution worth to be un-
derlined, a 4% and a 8% increases are respectively observed on
F1-score500 and F1-score100. The improvements regarding the
F1-score brought about by both techniques are likely due to the
extra information provided by the transformation, as AUG and
OFFSETAUG consist in injecting new combinations that were not
seen in the actual training set. Seeing only the overall results in
Table 4, NOISEAUG seems under performing comparing to the

benchmark (NOAUG) in terms of Fl1-score and NDE. However,
when considering the details in Table 3, it can be seen NOISEAUG
is able to perform on air conditioner, dish washer and electric
furnace detections. Serious underperformances are observed on
the washing machine power regression for NOISEAUG. This is
likely due to the load shape, when the rotor is operating an
inherent noise is visible on the profile. This noise is believed to
be discriminant for washing machine. Thus transforming the data
with a Gaussian noise addition to create a synthetic training set,
as done for NOISEAUG, can be a source of confusion for washing
machine identification. In the field of NILM, MAE and NDE are
standard metrics. AUG and OFFSETAUG has shown promising
improvements in NDE metrics, as a NDE decrease is observed for
both, a sharper NDE decline is seen for OFFSETAUG. Observation
of the estimated power loads in Fig. 7 supports the performance
of AUG and OFFSET configurations. When the appliance is oper-
ating, OFFSETAUG is often the closest to the actual power level.
As may seen around 22:00 in Fig. 7, a false detection is observed
for NOAUG configuration. This false detection is not retrieved
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Fig. 8. Sample period effect on DA improvement. ANDE is the NDE difference when the model is trained without augmentation and when trained with augmentation.

A ANDE > 0 indicates an improvement compared to the baseline.

Table 4
Overall results.
F1score500 Flscore100 Flscore25 MAE NDE
AUG 0.5068 0.4812 0.3886 132.7382 0.7791
OFFSETAUG 0.5364 0.4974 0.3944 125.3685 0.7621
NOAUG 0.4882 0.4442 0.3897 125.5087 0.7898
NOISEAUG 0.4861 0.4482 0.3886 124.2524 0.8000

on the 3 DA experiments. In general, using DA in data prepro-
cessing phase permits a training data enriching. For operational
implementation, DA augmentation can be beneficial when NILM
is used on the edge or on the cloud during the training-phase of
the model to deploy. The synthetic expanding of the training set
does involve insignificant preprocessing surplus times, making it
a lightweight add-on to optimize NILM model training.

5.3. DA contribution on higher sampling periods

NILM researchers and manufacturers are particularly inter-
ested in the ability of NILM to perform at lower sampling periods.

Greater granularity of data means higher operational implemen-
tation and maintenance costs [24]. DA for NILM has been assessed
for high frequency data [25], although in this study, the contri-
bution of DA for lower sampling period has been explored. To
quantify the contribution, the ANDE metric defined in Eq. (13)
is used as it reveals a direct improvement whenever ANDE> 0.
The Figs. 8 represent the evolution of ANDE in relation to the
sampling rate considering the air conditioner and the electric
furnace. All three DA algorithms have brought an enhancement
on air conditioner until the 10-min-sample-period. AUG and OFF-
SETAUG still contribute until 20 min. However, for the electric
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furnace, only the NOISEAUG can perform at a higher sample pe-
riod until 5 min. Reducing sampling rate causes a pattern fading,
hence it is supposed the electric furnace discriminant patterns are
discernible up to 5-min-sampling-period.

6. Conclusion and perspectives

The emergence of DL NILM models has highlighted the issue
of data scarcity in this field [25,26]. While one solution would
be to monitor as many buildings as possible, this is difficult to
achieve comprehensively. Instead, some researchers propose to
enhance DL NILM model training with DA. In this work, a new
DA algorithm, OFFSETAUG, is proposed. It consists in generating
new data and data combinations. This involves isolating the op-
erating periods of the target device from the known training set,
adding an offset to the high power levels, and randomly adding
them to a duplicate chunk of the actual training dataset. The
novelty of this work lies in the offsetting process, which involves
applying a straightforward offset to each isolated profile’s high
power levels to maintain realistic patterns for NILM tasks. To
ensure power level variability, offset values are randomly selected
according to a Gaussian distribution. In this study, the proposed
DA approach has been thoroughly evaluated, and it has shown
clear improvements in f1-score and NDE on 4 common appliances
when compared to two existing DA algorithms and to the baseline
case. Varying power levels during the training phase has resulted
in better power estimation and improved event detection capa-
bilities. This paper evaluates the contribution of DA in relation to
the sampling period. Simulations demonstrated DA is valuable for
low-frequency data up to a specific sampling period dependent
on the appliance profile. Although DA techniques for NILM are
becoming a significant research topic, this is currently, as far as
the author knows, the first benchmarking study for comparing
DA techniques in NILM. Therefore, future research should address
this lack of benchmarking to seek to answer the question what is
the more convenient DA method for NILM?
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CHAPTER 4
NILM contribution to HEMS

A deep feeling of energy supply vulnerability has become apparent in society. In
residential areas, some households (mainly middle-class households) are under un-
comfortable pressure due to a constant rise in energy bills. To face the inevitable
price increase, some actions an user may apply to cut his electricity bill are to reduce
energy use, limit energy waste, or avoid consuming during peak periods when the
cost of electricity is high. All these solutions belong to the Demand-Side Manage-
ment (DSM) strategies. Generally, DSM is implemented by the grid operator to
manage the energy demand. The goal is to adjust energy usage and then modify
the load shape to enhance grid stability, increase cost-effectiveness for utility compa-
nies, or lower household electricity bills. The most common load shaping techniques
involve [65,66]:

e Load building: increasing the load throughout the day by increasing the de-
mand. It could be surprising to present a means to increase consumption, but
it may be needed for the cases where the grid is overproducing; augmenting
the demand is a lever to keep grid stability.

o Load shifting: during peak demand, grid load is reduced while load building is
applied during off-peak periods.

o Load shedding: an intentional process of temporarily switching off certain en-
ergy consumer regions, buildings or appliances.

o Peak clipping or peak shaving: any actions to reduce the peak demand.

o Valley filling: consists of increasing the load during periods of low energy de-
mand to obtain a flat demand profile to ease grid management.

» Conservation: reduces general consumption by replacing existing devices with
more energy-efficient ones.

DSM has two main temporalities: long and short terms [67]. Long-term programs
refer to improving general energy efficiency, which refers to using technology to
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provide the same or better energy services by consuming less energy [68]. For in-
stance, using LED lighting instead of incandescent lamps is an energy-efficient al-
ternative [69] involved in conservation strategies. The government’s energy policies
in France encourage DSM, for instance, through the CEE (Certificats d’économie
d’énergie) mechanism, easing the funding of more efficient devices [70]. The idea is
to alleviate global energy consumption and to restrain the energy demand increase.
DSM can also be applied on a short-term horizon basis by implementing Demand
Response (DR) techniques. The actionable levers for DR implementation are mainly
financial, whether for load curtailment strategies or dynamic pricing programs [66].
The purpose of load curtailment is for the grid operator to curtail specific loads in
exchange for payment from offloaded customers. Load curtailment is generally ap-
plied for high-consuming customers, such as factories. An example of the need for
curtailment is when the load is nearly above the limit where an additional power
plant needs to be started; instead, curtailment can be applied to reduce the global
grid operation cost. For residential applications, a dynamic tariff is preferred. The
concept is to encourage customers to consume during off-peak hours by implement-
ing lower electricity prices during these periods. It has been demonstrated incentive
pricing is critical to keep the balance between production and consumption [71,72].
Among the most common dynamic pricing mechanisms:

o Time of Use (TOU); the pricing structure is divided into two periods: a peak
period and an off-peak period. The electricity price varies based on the time
of day, with higher prices during peak periods and lower prices during off-peak
periods.

» Real Time Pricing (RTP); the price changes dynamically hourly. The customers
are notified regarding the rates generally one day ahead.

o Critical-Peak Pricing (CPP); this pricing structure fixes a very high electricity
price when the grid encounters a critical state for grid stability. Generally, the
customer is alerted quickly (day or hour) ahead of the critical event.

o Peak-Time Rebate (PTR); This pricing structure is designed to reward cus-
tomers with rebates when they reduce their peak loads.

DR applies to industries, particularly heavy industries [10, 73| such as cement fac-
tories for significant peak shavings. In the commercial sector, electricity is used for
heating/cooling, refrigerating, lighting or running any sort of electronic device (com-
puters, printers, ...). The commercial sector allows the implementation of many DR
techniques [10], which can be load shifting, i.e. delaying the loads when electricity
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is cheaper or when renewable sources are available. Demand response (DR) mech-
anisms in industrial and commercial sectors should not disturb the existing work
organisation with a risk of reducing productivity. The ultimate goal of DR should
be to optimise energy consumption and reduce costs without negatively impacting
the daily operations of businesses and industries. Similarly, in the residential sec-
tor, load shape modifications have to be aligned with the willingness and comfort
of each individual. It is hardly possible to shed the television operation while the
dweller is watching. Hence, DR has to be aligned with the dwellers’ comfort [74-76].
The variety in schedules, with the highly personal comfort aspect, makes a standard
DR less effective for an individual household, a customised DR is needed for each
household. Significant progress has been made in the concept of Home Energy Man-
agement Systems (HEMS) [12]. HEMS refers to various strategies used to influence
and manage the patterns of an individual household’s electricity demand. This chap-
ter explores how NILM can contribute to implementing HEMS and deals with the
following research question:

e To what extent can NILM enhance HEMS?

o If it contributes, how far can a NILM trained with DA overpass a standard
NILM?

To answer the question, the methodology for evaluating the effectiveness of NILM is
addressed, and a series of experiments are undertaken to compare a NILM-equipped
HEMS with both a HEMS without ALM system and a HEMS with ILM. The con-
tribution of DA has been demonstrated in Chapter 3, particularly when it comes to
improving NILM trained in a generalised configuration (i.e. deployed on a never-seen
house). So, this chapter also evaluates the performance of an augmented NILM for
a HEMS.

4,1 Case study: a day-ahead load
scheduler

HEMS is a complex tool that automatically manages the energy demand within
an individual household [12,77]. This section defines this concept and provides a
practical description of its application. The Figure 4.1 depicts a schematic view
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of a HEMS operation. The following components and concepts are necessary to
understand an HEMS operation:

e The central controller

The HEMS main component is the central controller. Centralising and process-
ing information from all other components, the central controller is the brain of
the HEMS, producing the optimal schedules for appliance usage. The HEMS
controller is the interface between the home and the grid operator. It provides
feedback to the operator in case of any malfunction or power outage. It also
serves as a communication interface between the user and the HEMS, which
can be done using a Human Machine Interface (HMI). This interface gives the
user control over the system, which is necessary to preserve their free will [12].
Moreover, it provides the user with helpful information to monitor the system’s
operation, such as the schedule for each smart appliance.

Smart appliances

In everyday life, at least for those who are not equipped with smart appliances,
the appliances do not work without a physical intervention by a human be-
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ing. This traditional way of utilising appliances has the advantage of making
machines function as slaves, obeying human wishes. However, this approach
severely limits the effectiveness of energy management systems because the
dependence on the user is too significant [12,78]. Besides, smart appliances
embody communication and monitoring systems that automatically receive,
process and apply schedules. Conventional appliances must be enhanced with
communication units for HEMS applications.

o Load monitoring

Different load monitoring configurations have been reviewed in previous sec-
tions (Section 1.1). Load monitoring is crucial for HEMS applications; in the
works [32,79,80], the authors identified the power level, the average operation
time or the number of uses per day with load monitoring. In the following, the
contribution of 3 ALM methods is assessed: ILM, NILM and a data-augmented
NILM.

o Objectives

HEMS must have a specific objective. In the article [32], a HEMS is designed
to reduce the household’s energy bills while smoothing out the consumption
peaks. On the other hand, in the work [79], the objective is to optimise the
load profile based on the operating cost of the grid, specifically for a microgrid.
A common aim in both works is to ensure the end-user’s comfort as much as
possible.

It is essential to experiment with a HEMS to evaluate the contribution of NILM
properly. A HEMS experimental facility would have been ideal, but only simulations
were exploitable in this work. One research target is developing a suitable HEMS
simulation framework to compare the contributions with and without NILM. This
chapter simulates the operation illustrated in Figure 4.1. This HEMS is a load
scheduler, allowing specific schedulable loads, e.g. the washing machine and the
dishwasher, to be day-ahead planned. The HMI will inform users of the scheduled
operating times, enabling the user to decide whether or not to follow the schedule.
Load scheduling is an optimisation problem involving complex load allocation tasks
considering various factors and constraints [15,81-83]. The proposed optimisation
layout is detailed in the following subsections, in which the objective function (OF)
and the constraints are introduced.
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4.1.1 Variables and notations

This subsection is essential to understand the following mathematical formulations.
The HEMSs are tested day by day at a 1-minute sampling period, so from here, we
defined the time ¢, varying in the interval [0, 1439] corresponding to the number of
minutes in a day. It is crucial to discern the future from the past as the past is
analysed to provide a schedule for the next day. So, at a present-day d, the set of
past days is called Dy,s with Dy = {...,d —2,d — 1}. Symmetrically, the set of
future days is defined with Dyypre = {d +1,d +2,...}. The given schedules are
the optimal starting times of each schedulable appliance represented by the variable

§gfj ); we make the hypothesis for each day, and for each appliance, only one schedule

is provided per day; thus, the notation is simplified §((iks). The number of schedulable
appliances is noted K, notably K, < K. The variable i represents the number of
activations (NV, ékS)) of the k" appliance that started on the day d. We call activation a
s%?l)lence of an appliance operation fro(l;fn)start to end. An activation sequence is noted

g ;5 the operation starts at time s;;” and lasts 6&’;5). Therefore, ad]ff(ii is defined

only when ¢y belongs to the interval [sgf;), sgff) + 56(&‘*)]. The main load (y44,) can be
separated into schedulable (7g+,) and non-schedulable (¥44,) loads, represented by
the equation (4.1). We define the set of scheduled starting times for the day d by S'd,
such that S; = {§éks) | ks € [1, K,]}. Similarly we define the set of actual starting
times as Sy = {sgff) | i€ [0, N | k, € [1,K,]}. The Figure 4.2 summarise the set
of variables.

Ya o = Ydto T Yd.to (4.1)
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Figure 4.2. Schematic view of the schedule generation at day d for the day d + 1 and definition of the variables.
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4.1.2 Objective: Energy above a power reference

The proposed HEMS aims to reduce the daily energy above a power reference noted
E; by producing schedules of the operation starting times. The daily F; is defined
by equations (4.2), (4.3) and (4.4). pat,(Sq) is the house’s main load value, and this
variable conveys the modifications of the main load when shifting the starting time
of the k' appliance. At is the time step, in hour, of the load monitoring.

E4(Sq) = :f:i max(pat,(Sa) — Dref, 0) X At (4.2)
o=
with:
Ks; N(ks)

Pan(Sa) = Yo+ 32 30 mai(sai’ 34 (43)

and:
ks
Miliys = { oths K ey Y] (44)

The concept of power reference in DSM has been used in [84]. The goal is to keep
the power usage below a certain threshold noted p,.f(to). This mechanism allows the
preservation of the adequacy between energy production and load. pyf(to) is non-
constant and varies with time. A basic example would be a solar-powered building;
the idea would be to keep the load below the solar power production. In our case
study, a constant power reference is considered, with p,.y = 3000W. This assumption
applies perfectly to a house powered by a power generator; in this instance, the power
reference pyy is the generator power rating. By optimising the schedulable appliance
starting times sd ) the main load is expected to be improved. The OF is defined by
equation (4.5):

{§((1ks) | ks € [1, K]} = arg(m)in|Ed(§d)] (4.5)
(ks
Sd

4.1.3 Constraint 1: End-users” acceptance

User comfort is essential in the HEMS application [85] to ensure the acceptance of the
technology. Indeed, the idea of HEMS is not to remove dwellers’ free will but instead
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to suggest a trade-off between household comfort and grid operation requirements.
End-users’ acceptance can highly hamper the broad application of HEMS [74-76].
The term comfort, in this whole manuscript, refers to the energy usage preferences
of a household. The word "comfort” here must be dissociated from all other types
of comfort, such as thermal or acoustic comfort, even if a correlation may exist. A
basic example of an energy usage discomfort would be when a dweller feels cold and
cannot run its electrical heater for any reason; the heater has broken down, or a
HEMS has drastically delayed the device running. The work [76] gives relevant and
concrete explanations of how unsuitable schedules may impact dwellers: It is crucial
to launch the washing machine not far from the preferred schedules; otherwise, there
is a risk of leaving wet laundry inside. Similarly, for the dishwasher, if the dishes
are not cleaned on time, the dwellers may run out of available plates and forks for
the next meal. For electric vehicle owners, it is a must to have enough power to
be prepared for future trips. Quantifying energy preferences is challenging as they
constantly change; during weekdays, working dwellers generally need to run their
devices during the evening for cooking, entertaining, or simply doing the required
chores. During holidays, the energy preferences may change as well. Those are quick
observations and assumptions, but energy preferences are challenging to predict,
making it a broad research topic [86,87]. Within a HEMS scheduler, the comfort
information has to be provided to the central controller before the processing. There
are three ways to collect the comfort information:

o Manually: The dweller can inform the HEMS controller of their preferred device
usage hours through an HMI on a mobile phone or a tablet [85]. Several
drawbacks can be identified when using the manual method; firstly, it requires
the end user’s involvement so he does not forget to input the information.
Furthermore, as mentioned earlier, comfort varies over time; with the manual
approach, the dweller will have the annoying task of regularly accessing the

HMI to have reliable schedules generated by the HEMS.

o Automatically: A forecasting unit is used to predict the energy usage comfort
for the next day. The automatic method is less intrusive, but its effectiveness
depends tightly on forecasting capabilities. With poor accuracy, the produced
schedules can be expected to be far from the end-user’s will.

o Hybrid: A mix between the manual and the automatic methods. The hybrid
approach is a trade-off as the user’s contribution is reduced to correcting the
automatically delivered schedules if necessary.
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Regarding the pros and cons of each comfort collection method, it is crucial to develop
a HEMS capable of generating acceptable schedules automatically. In the HEMS
community, the end-users comfort is considered an objective [15,79] to maximise.
However, in this study, comfort is included as a constraint. The philosophical idea
behind the comfort constraint is that for a conventional house (without any HEMS
installed), the introduction of the HEMS is similar to a robot asking the dwellers for
a trade-off between their comfort and a second variable that improves the load shape.
Hence, a certain margin of comfort reduction must be established for the HEMS to
manage load effectively; an acceptable threshold on comfort value is set following
the equation (4.7).

(k) < (k)
Caty = co.toer[r(zﬁfgg]({cto to € [0,1439]}) (4.6)
(ks) ~(ks)
ca’ zco, maz ({¢,"}) (4.7)

_E(]f ) being the average comfort score at time ty. ¢y is a coefficient set in the interval
[0, 1]; the higher the level of comfort requirement of the end-user, the higher the ¢
value. There are 2 steps to determine the average comfort score:

o Step 1: get_activations

This function was developed in the work [21] and allows the retrieval of acti-
vations from a sub-meter load. Following previously cited work, activation is
defined as a device operation profile. The algorithm requires a power thresh-
old to differentiate off and potentially on states to identify an activation. If
the power is above the power threshold, the appliance power consumption has
to be above at least for a set minimum duration parameter to be considered
activated. We can find every past activation by applying the get_activations
function on each past day. It is essential to underline that individual appliance
load for the past days is known, or at least estimated with NILM, when the
HEMS processes the schedules for the next day.

. . ks ks . s
getiactwatzons(XC(l’to)e[0:1439]) = {Afi’i) | i€ [0: NI} (4.8)

startitime(Agff)) = sgff) (4.9)
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Each activation A(ks) is a sequence composed of the agffo)i values constrained

to the time interval [sdz) : gf;) + 5&125)], as summarised in equation (4.10).

ks)
AT = {al) 1ty € [s55) 1 8T+ a0} (4.10)

o Step 2: Compute the comfort score

The comfort score c((j *) measures the willingness of the household to use the

k" appliance for each time of the day, based on the analysis of the set of
past days. The concept of quantifying comfort for HEMS purposes is done in
previous studies [32,79], where it is presented as a probability density function
or an appliance usage ratio. Contrary to the comfort scores in the literature, the
proposed one is computed with activations found; only the activations detected
in the previous step are considered. The first advantage of the proposed comfort
score is to filter noises from actual activations; the second one is that the
comfort score is computed with the start time of each activation using the
function start_time (4.9) allowing to quantify the comfort depending on the
exact time the user activates the appliance.

(k) 1 N(ks) (ks - to’
Can = N 22::1 max(0,1 — 7AST ) (4.11)
1
= L s 412

| | Dpast | | d€Dpast

In the HEMS community, the authors [75,76] have introduced the energy-
usage-comfort through the Acceptable Delay Time (ADT) variable, which is
the maximum delay of an appliance operation without disrupting consumers’
comfort. The delay here means a postponement compared to the "normal”
activation time. This work introduces the Acceptable Shifting Time (AST) for
advancing or postponing the running up to a given time threshold. AST values
in Table 4.1 are used for the following sections.

Table 4.1. AST values

AST (h)
dishwasher 3
washing machine 3




70 4 NILM contribution to HEMS

4.1.4 Constraint 2: Constant daily energy

In this case study, the HEMS gives a schedule for the next day between midnight
and 11:59 p.m. A constraint ensures the load is effectively scheduled for the desired
day and does not spill over into the day after. For instance, if a washing machine
operation lasts 2 hours, the HEMS cannot plan a start-up at 10:59 p.m. This con-
vention is helpful to facilitate the daily basis assessment of the HEMS performances
since the total energy consumed during the day is expected to be unchanged, and
only the cleverness of allocating the schedulable load will be assessed. The constraint
is summarised in equation (4.13), with \; an energy value targetted to stay constant
when optimising the schedulable appliance starting times in Sy.

1439

D Pate(Sa) = M (4.13)

to=0

4.1.5 Solver. Genetic Algorithm

The Genetic Algorithm (GA) is a population-based meta-heuristic algorithm thor-
oughly explained in [88]. The utilisation of GA in our case study is predicated on
the reason that the GA is excellent at performing global searches in solution spaces.
They are proficient in exploring diverse potential solutions, making them highly suit-
able for discovering global or near-global optima in complex optimisation problems
without being trapped in local optima. In our study, the search space complexity is
O(1440()): the more appliances, the more complex the problem. Also, GA can han-
dle non-linear OF, as they do not require mathematical models or derivatives. This
makes them particularly adapted to the OF of this work (4.5) that contains a non-
linear maz-function. To implement the GA, the optimisation problem is formalised
within the pymoo library [89].

The Listing 4.1 gives the pymoo framework for the optimisation. A precedes the
code comments. The comfort constraints are within the list constr ieq, which stands
for inequality constraints. The constraint 2 Section 4.1.4 is an equality constraint
but converted to an inequality. The objective function called Eref fo in the code is
added to the list objs. The pymoo functional problem will take both lists, constr_ieq
and obj s, inside the Functional Problem module. Once the problem is formalised, the
solver is initialised with the GA method, where all the required GA parameters are
specified. The termination criteria are the number of generations. About the number
of generations, the example of the fitness curve in Figure 4.3 shows a converging path.
The convergence happens before 20 generations.
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# DEFINE O0BJECTIVE FUNCTION
# Y -> forecasted main load
# pref -> power reference
# Eref_fo -> Energy above power reference threshold
# A_O0 -> activation {a_O_washing_machine, a_0O_dishwasher}
objs = [lambda ts : Eref_fo(ts,pref,Y,A O,n)]
# DEFINE CONSTRAINTS
# Cf -> Comfort score ; A_O -> list of activations to shift
constr_ieq = [
lambda x : min_comfort(x,Cf,c=0.5),
lambda x: constant_daily_energy(x,Y,A_0)]
# FORMALISE THE PROBLEM AS A FUNCTIONAL PROBLEM
problem = FunctionalProblem(n_var,objs,constr_ieq=constr_ieq,x1=0,xu

=1439)

# INITIALISE THE GA ALGORITHM AND SET PARAMETER VALUES
# GA -> pymoo GA module
algorithm = GA(
pop_size=200,
n_offsprings=50,
sampling=IntegerRandomSampling(),crossover=SBX(prob=0.9, eta=15,
repair=RoundingRepair()) ,mutation=PM(eta=20,repair=RoundingRepair())

)

# DEFINE TERMINATION CRITERIA
termination = get_termination("n_gen", 30)

# MINIMISATION

res = minimize (problem,
algorithm,
termination)

Listing 4.1. Python code snippet for the optimisation problem formalised in the pymoo
framework

4.2 HEMS assessment: Simulations

Simulations were conducted since no experimental facilities were available during the
thesis work. Public datasets from real houses were used to preserve realistic condi-
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Figure 4.3. Fitness curve

tions. This section details the simulation method, the conditions and the parameters.

4.2.1 HEMS versions

As mentioned earlier, different types of ALM systems are confronted, and the im-
provement brought by each of them is measured. Hence, various HEMS versions
are tested here. In this case study, ALM is used in a load scheduler tool to give a
behavioural analysis to determine each appliance’s preferred time of use. To quantify
the contribution of sub-metering, a comparison between the following configurations
is proposed:

o Hnoaug: ALM tasks are performed by a generalised NILM. The integration of
the NILM tool is depicted in Figure 4.4(b), allowing us to retrieve the comfort
scores for each day of the past and compute an average comfort score.

o Hoffsetaug: The HEMS is equipped with a NILM trained with the OFFSE-
TAUG data augmentation technique proposed in Chapter 3.

o Hilm: The HEMS recovers individual appliance measurements using intrusive
sensors as seen in Figure 4.4(a). A nearly perfect measurement is expected in
this case.
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o Hnoalm: No sub-metering applied as depicted in Figure 4.4(c), only a past
main load measurements are collected.

e Hrandom: A naive method providing a random schedule.

e Hgrid: This method recommends shifting loads to the grid’s usual off-peak
times, mainly at night. So, random schedules on off-peak times are generated.

Figure 4.4(d) describes cases where no optimisation is undertaken; Hrandom
and Hgrid.

Table 4.2. HEMS versions for simulations

Configurations Objective  Constraint 1  Constraint 2 ~ALM

Hilm E, co = 0.5 yes ILM

Hnoaug Eq co =0.5 yes NILM

Hoffsetaug E, co = 0.5 yes NILM__OFFSETAUG
Hnoalm Eyg - yes -

Hgrid - - - -

Hrandom - - - -
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4.2.2 Acceptability model

The question here is how to evaluate the relevance of the delivered schedules. They
are evaluated for their potential to improve the load shape and distance with the
user’s preference. The significant advantage of a simulated assessment based on ac-
tual data is that we can assume the data were obtained by recording loads voluntarily
activated by the end user. Consequently, we know beforehand the preferred starting

times s&’f;) for each device. The idea will be to confront scheduled versus actual

activation. For evaluating the schedules §(ks), the idea is to apply a basic appliance
model based on values in Table 4.1. If a schedule is too far from the nearest actual
activation starting time, the schedule is rejected, as defined in (4.14). A schedule
rejection means no load shape modification caused by the k" appliance. When the
day to optimise does not contain actual activation of the k! appliance, there is no
shifting of this appliance.

min{] s, ") — s{] i € [1, NI < ATk (4.14)

4.2.3 Hypotheses for simulation

To exemplify the hypotheses, we consider the present day d. The hypotheses of the
simulation are listed below:

o The devices requiring human intervention, washing machines and dishwashers,
are ready to be started at the end of the day d. Thus, the washing machine is
loaded with the dirty laundry, and the dishwasher is loaded with dishes to be
washed before 00:00 a.m. of day d + 1. Consequently, the appliance just needs
the top from the HEMS to be activated. This hypothesis is essential to give
sense to the load scheduling process.

o At the end of the day d, the dweller receives the schedules from the central
controller. He is fully free to reject the proposed schedule. Otherwise, the
schedule remains.

e The resident never fails to read the HEMS information before the first scheduled
activation so he can reject it.

o The only reason for schedule rejection is because the timing does not follow the
user’s wishes.
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o The limit between acceptable and not acceptable is identified, and quantified
by the AST values in Table 4.1.

o The only schedulable devices are the dishwasher and the washing machine.

o The central controller never fails to provide a schedule.

4.2.4 Simulations

To evaluate the performances of each HEMS presented in Section 4.2.1, the algo-
rithms are incorporated into a real house from databases. A method for simulating
the operation of these HEMS with actual data taken from the REFIT database is
presented here. The house 17 from REFIT is used for simulations. The simula-
tions are carried out iteratively throughout 365 days. The HEMS aims to predict
the best allocation of schedulable loads, in this case, the washing machine and the
dishwasher, for the following day. As depicted in Figure 4.4(a), Figure 4.4(b) and
Figure 4.4(c), to optimise future day d + 1, information from past days is necessary,
except for naive HEMSs Figure 4.4(d), where schedules are generated randomly. The
simulation framework is described in Figure 4.5 and follows the steps:

o Step 0: The input database is separated into past, present, and future days.
The past days D,.s are needed for the HEMS to generate the schedules. For
the present simulation, D), is taken as the last 30 days.

o Step 1: When the HEMS is equipped, historical data are retrieved with an
ALM system. Hoffsetaug, Hnoaug and Hilm have the ALM ability contrary to
Hrandom and Hgrid.

e Step 2: The HEMS is processing to provide schedules for the next day, d + 1.

o Step 3: A reference is needed to assess the schedules’ relevance. The actual
load profile for the day d+ 1 is assumed to be the maximum comfort condition.
Knowing this, schedules are compared with actual activations from actual data.

o Step 4: If the schedule is acceptable, in other words, respecting the conditions
(4.14), the load is shifted. More precisely, the schedule is not rejected only if
the nearest activation from the schedule, is at a distance inferior to the AST
value.
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Figure 4.5. Framework of the simulation to assess HEMSs, using an existing database
with a main load Y and sub-meter loads X

4.2.5 Metrics

Defining the metrics used to assess the HEMS before presenting the results is nec-
essary. The chosen metrics aim to observe how effectively the HEMS can enhance
the load shape, with the metric AFE, (4.15). When the HEMS provides improving
schedules, we have AE; > 0. When the schedule is acceptable, but the starting time
actually wanted by the user is more favourable than the HEMS proposed schedule,
we have AFy; < 0. Third case, the given schedules are not acceptable so no load
scheduling could be followed; thus, for those days, AE,; = 0.

AE; = E4(S4) — Eq(Sy) (4.15)

The cumulative delta, noted Cap, metric, provides a yearly aggregated AE; as an
estimate of the potential gain from using an HEMS for 1 year. This metric can be
directly aligned with the size of the power supply units, for instance in a micro-grid.
The implementation of a HEMS would decrease the energy above the generator power
rating by a Cag, energy value.

Cap, = Y AE, (4.16)

deD
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Figure 4.6. Daily AFE; for each HEMS configuration
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4.3 [Results and discussions

To generate the schedules, the HEMSs need historical data analysis to find an average
comfort score and main load. We can observe an average comfort score in Section 4.3.
The first point to note on those curves is that house 17 from the REFIT database only
uses its dishwasher in the evening. The NILM models also estimate a comfortable
operation in the evening. However, the NILMs detect an earlier comfort peak. This
is due to two things: firstly, the S2P model is based on the technique of centred
sliding windows, which predicts the present point (central point) from future and
past information (see Chapter 1). Therefore, the future influences the present. So it
could be understandable to have a slight gap in starting times. The second reason is
that the databases have imperfections, one of which was pointed out in Chapter 1: the
timestamps of the sub-metered databases and the main measurements are sometimes
different, with observable time lags. The Section 4.3 depicts a comfort discrepancy
for the Hnoaug configuration, between about 400 to 600 minutes. A discrepancy that
does not appear for Hoffsetaug. The NILM with DA has a comfort peak closer to
the Hilm’s one. At this point, it would be desirable to define a metric to evaluate the
accuracy in comfort. Still, the slight offset between the real start time and NILM
predicted starting time makes the metric definition more challenging. Hence, these
graphical observations are exploited.

— hoffsetaug
—— hnoaug

— hilm

----- hoffsetaug limit
----- hnoaug limit
----- hilm limit

0.8 A

o
o

Comfort Score
o
~

0.2

0.0 1
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Time(minutes)

Figure 4.7. The average comfort score for the dishwasher (solid lines) and the acceptabil-
ity limit with ¢g = 0.5 (dotted lines)

This section describes the simulation results. As stated by the previously mentioned
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metrics, the analysis aims to compare the gains when the HEMS operates in the
house. The comparison is done daily, by the seen of Figure 4.6. This figure shows
the evolution of the AFEj; value, which seems bounded between —1 and 1 kWh a day.
This relatively low amplitude is understandable, as only the washing machine and the
dishwasher operations were shifted. The positive AE; values indicate improvements
brought by the HEMS, and it seems all HEMSs, even the naive ones, can improve
the load shape because positive peaks may be observed on all the curves. This is
because the house under scrutiny has a poor load shape; to overstate it on purpose,
we can say every load shape modification brings improvement. The question is,
which option yields more significant enhancement? In Table 4.3, we can see HEMS
equipped with an ALM system is more convenient for the end-user as all three cases
Hilm, Hnoaug, and Hoffsetaug show fewer cases where AFE,; = 0 and have more cases
where AFE,; > 0 compared to other HEMS versions. Thus, this demonstrates HEMS
with ALM can facilitate acceptability. It is interesting to know whether, at the end
of the simulation year, the HEMS has made a visible difference or not. Graphically,
the answer seems evident in Figure 4.6. Table 4.3 shows the number of times that
the HEMS brought about an improvement. However, the extent of the improvement
is not quantified. For this, we also evaluated Cag,, which is the algebraic area of the
curves (see Figure 4.6). The results are shown in Figure 4.9. The higher the Cag,
the more the HEMS has enhanced load management. The first observation is that
the HEMS without sub-metering have less performance, as the user does not follow
the schedules as depicted on the few numbers of times the AFE,; have been modified
for those configurations (see Table 4.3). The Hilm outperforms the others, followed
by the Hoffsetaug. Indeed, Hoffsetaug performs better than Hnoaug, with a 2%
increase in Capg,. The difference seems thin and the contribution of OFFSETAUG
to HEMS might be questioned, however, those 2% differences can be very valuable
when scheduling high energy-consuming appliances such as electric vehicles.

Table 4.3. The number of times A Fy; improved, decreased or did not change.

AEd>O AEd<O AEdIO
Hilm 55 27 101
Hnoaug 48 17 118
Hoffsetaug | 60 13 110
Hnoalm 14 3 166
Hgrid 20 3 160
Hrandom 32 10 141
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4.4 Conclusion

This chapter ends the manuscript with a case study application aiming to demon-
strate a contribution of NILM to HEMS. The application targets load scheduling
HEMS. Reproducing a relevant load scheduling application is challenging with-
out an experimental facility. In this work, a method to simulate a HEMS is
developed, based on typical database habitually used for NILM experimentation.
Those data contains individual appliance loads and main load set. The idea is
to simulate load scheduling to compare the contribution of HEMS with a config-
uration without HEMS. A very straightforward acceptability model is applied,
where the users reject the schedule if it is too far from the actual preferred op-
eration. Based on the observations, the results are more favourable for HEMS
equipped with ALM, whether with ILM or with NILM. The contributions of
OFFSETAUG NILM and NILM without augmentation are compared; the first
demonstrates higher performances for HEMS application.




Conclusion

This work centres on NILM, a non-intrusive system to disaggregate the main load.
Intrusive systems exist to monitor individual appliance loads, but those measurement
solutions suffer from high installation complexity and low cost-effectiveness when
monitoring several appliances. NILM is a promising cost-effective solution to unlock
widely deployed ALM projects due to its ease of installation and lower costs.

Nevertheless, it is crucial to remember NILM’s cost increases for lower sampling
period data. To keep a certain congruity level, this work proposes to experiment
with low-frequency NILM, i.e., NILM, which uses data with a high sampling period.

DL is promising among all NILM solutions; a CNN-based model, the S2P, is used
in this work. It is well-known that DL models require a high number of data to
exhibit a generalisation ability. In NILM, one of the main targets is to disaggregate
any house, even houses that were never seen in the training phase.

In this work, the influence of the training database length is observed; interestingly,
data length seems to have an impact when there is variability in the dataset. Length
and variability are identified to be essential to unlocking generalisation capabili-
ties. Indeed, a DA technique called OFFSETAUG has been presented, consisting
of creating new power profiles and then new data based on offsetting operations.
OFFSETAUG is benchmarked against some of the few known DA techniques in the
scholarship and has shown promising results. Improving NILM accuracy has been
a popular research topic; many algorithms have been developed recently, and each
author claims higher accuracy. On the other hand, the NILM application is less
prevalent in the literature. In this work, we proposed to assess the contribution of
NILM to a HEMS solution. The HEMS optimises the load shape in line with a
power reference value. The simulations were held on a particular house for 2 schedu-
lable appliances, the washing machine and the dishwasher. Besides, further work
should focus on simulating the HEMS with more energy-consuming appliances such
as Electric Vehicles. Nevertheless, the results demonstrated a case where ALM has
a significant role in determining energy usage preferences automatically. Moreover,
even a low-frequency NILM can help find the user’s energy comfort from historical
data. Although this work highlights the technical advancements of AI, NILM and
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HEMS, it also emphasises the importance of flexibility in our daily energy usage to al-
low for load delay, shifting or shedding. This paves the way for the conclusion of this
work, where technical advancements without consumer involvement are inefficient.
A collective effort is needed to strive to address recent globalised challenges.
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