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Abstract

Density estimation is the statistical process of constructing a probabilistic model that
represents the distribution of a given dataset. By estimating this distribution, we can
better understand the statistics and behavior of our data, enhancing predictions, anomaly
detection, and data generation. Density estimation thus forms a crucial step in nu-
merous data analysis and machine learning tasks. Nonetheless, the task of modeling
high-dimensional distributions introduces a multitude of challenges. These primarily
arise from the need to develop models that exhibit flexibility, which allows for the pre-
cise capture of complex high-dimensional patterns, and computational feasibility that
becomes particularly essential during the training phase. Within this context, the thesis
aims to contribute new theoretical and practical perspectives specifically designed to
refine the modeling of probability density functions for high-dimensional, complex data
distributions. Furthermore, we propose an innovative theory to improve the quantifica-
tion of the properties of distributions, such as the thickness of their tails, under statistical
assumptions relevant to the machine learning setting.

The initial part of this thesis focuses on the examination of deep neural function ap-
proximators that are assured to represent probability density functions, regardless of
the parameters’ values. To achieve this, we introduce AFFJORD, an enhanced version
of Continuous Normalizing Flows. This enhancement is made possible through aug-
mentation, inspired by our derivation of the Jacobian of diffeomorphic transformations
parameterized by Ordinary Differential Equations (ODEs). Additionally, we expand on
the recent advancements in diffusion models, proposing a novel method (PSM) that
enhances density estimation while accelerating training, without incurring any drawbacks
in terms of inference time or memory consumption. This is achieved by exploiting the
independence inherent in modeling the scores at different time points within diffusion
models. The result is a flexible, rapidly optimizable, piecewise continuous normalizing
flow.

In the second part of the thesis, we illustrate that the finiteness of the sampling procedure
from marginal distributions negatively impacts the reliability and efficiency of traditional
tail estimation methods derived from Extreme Value Theory, such as the Peaks-Over-
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Threshold approach. To address this challenge, we devise an innovative general theory
for estimating the tails of marginal distributions, particularly when there is significant
variability between locations of the individual conditional distributions that underlie the
marginal. Under certain regularity conditions, we demonstrate that the shape parameter
of the marginal distribution corresponds to the maximum tail shape parameter of the
family of conditional distributions. This estimation approach is coined as ’cross-tail
estimation (CTE)’. We validate cross-tail estimation via a series of experiments conducted
on both simulated and real data. Our findings showcase the improved robustness and
superior quality of tail estimation in comparison to conventional methodologies and
provide evidence of the correlation between overfitting and the thickness of the loss
distribution tail.

In conclusion, this work offers novel theoretical insights and practical perspectives,
specifically tailored to enhance the modeling of probability density functions for high-
dimensional, intricate data distributions. Additionally, we propose an innovative theory
aimed at refining the quantification of the tail thickness of distributions, under statistical
assumptions pertinent to the machine learning context. We conclude this thesis by
outlining three potential avenues for future research within this field, which are then
followed by our final remarks.

Keywords: Density Estimation, Normalizing Flows, Diffusion Models, Extreme Value
Theory, Tail Modelling, Loss Function Distributions, Peaks-Over-Threshold, Cross-Tail-
Estimation.
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Résumé

L’estimation de la densité est le processus statistique de construction d’un modèle prob-
abiliste qui représente la distribution d’un ensemble de données. En estimant cette
distribution, nous pouvons mieux comprendre les statistiques et le proprietés des don-
nées, améliorant les prédictions, la détection d’anomalies, et la génération. L’estimation
de la densité est donc une étape cruciale dans nombreuses tâches d’analyse de données
et d’apprentissage. Néanmoins, la tâche de modélisation de distributions à haute dimen-
sion introduit de nombreux défis. Ces défis proviennent principalement du besoin de
développer des modèles qui présentent une flexibilité, permettant la capture précise de
motifs complexes à haute dimension, et d’une faisabilité computationnelle qui devient
particulièrement essentielle durant la phase d’entraînement. Dans ce contexte, la thèse
vise à apporter de nouvelles perspectives théoriques et pratiques, spécialement conçues
pour affiner la modélisation des fonctions de densité de probabilité pour des distributions
de données complexes à haute dimension. De plus, nous proposons une théorie innovante
pour améliorer la quantification des propriétés des distributions, comme l’ampleurs de
leurs queues.

La première partie de cette thèse se concentre sur l’etude des approximations de reseaux
de neurones profondes concues pour représenter des fonctions de densité de probabilité,
indépendamment des valeurs des paramètres. Pour cela, nous introduisons AFFJORD,
comme extensions de l’etat de l’art sur les "normalizing flows". Cette amélioration est
rendue possible grâce à une augmentation, inspirée par notre dérivation du jacobien
des transformations diffeomorphiques paramétrées par des équations différentielles
ordinaires (ODE). De plus, nous proposons une nouvelle méthode en s’appuyant sur les
modeles de diffusion (PSM) qui améliore l’estimation de la densité tout en accélérant le
processus d’entraiment, sans encourir d’inconvénients en termes de temps d’inférence ou
de consommation de mémoire. Ceci est réalisé en exploitant l’indépendance inhérente à
la modélisation des scores dans les modèles de diffusion. Le résultat est un "normalizing
flow" continu par morceaux, flexible et rapidement optimisable.

La deuxième partie de la thèse illustre que la procédure d’échantillonnage à partir de
distributions marginales a un impact négatif sur la fiabilité et l’efficacité des méthodes
traditionnelles d’estimation de queue dérivées de la théorie des valeurs extrêmes. Pour
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relever ce défi, nous développons une théorie générale innovante pour estimer les queues
de distributions marginales, en particulier lorsque la variabilité est significative entre
les distributions conditionnelles individuelles. Sous certaines conditions de régularité,
nous démontrons que le paramètre de forme de la distribution marginale correspond au
paramètre de forme de queue maximum de la famille de distributions conditionnelles.

En conclusion, ce travail offre de nouvelles perspectives théoriques et pratiques, spéciale-
ment conçues pour améliorer la modélisation des fonctions de densité de probabilité pour
des distributions de données complexes à haute dimension. De plus, nous proposons une
théorie innovante pour affiner la quantification de l’épaisseur des queues des distribu-
tions, en vertu d’hypothèses statistiques pertinentes dans le domaine de l’apprentissage
statistique. Nous concluons cette thèse en proposant trois voies potentielles pour les
recherches futures dans ce domaine. Celles-ci sont ensuite suivies par nos remarques
finales.

Mots clés: Estimation de la Densité, Flux de Normalisation, Modèles de Diffusion,
Théorie des Valeurs Extrêmes, Modélisation de la Queue, Distributions de la Fonction de
Perte, Pics-Au-Dessus-du-Seuil, Estimation de la Queue Croisée.

vi



Acknowledgements

I am deeply grateful to my supervisor Marco Lorenzi for the opportunity to pursue
my thesis within the Epione team at Inria. His trust and confidence in me have been
invaluable throughout this project. I sincerely appreciate Marco’s guidance, advice, and
the insightful discussions we have had. His passion, motivation, and expertise have
been, and will continue to be a great source of inspiration to me. In addition, I wish to
extend my sincere gratitude to Carlo Fanara, whose support and confidence in me were
instrumental during the internship phase of this project. Working alongside him has been
both a privilege and a source of pride, and I am grateful for the significant progress we
achieved together. I would also like to thank Nicholas Ayache for welcoming me into the
Epione team, which I have found to be an incredibly friendly and supportive research
environment. I am also grateful for the opportunity to organize the 3IA Seminar Series,
and for the trust he placed in me.

Furthermore, I extend my gratitude to the jury members, Bertrand Thirion and Marc
Niethammer, for their commitment in thoroughly reviewing my thesis, attending the
defense, and offering insightful comments and advice. Additionally, my most sincere
thanks go to Pietro Michiardi for his engaging and thought-provoking questions during
the defense, which greatly contributed to the depth and quality of the discourse.

Throughout my doctoral journey, I have had the privilege of forming enriching rela-
tionships that have significantly enhanced my experience. The Epione team, comprised
of individuals who are not only kind, thoughtful, understanding, and modest, but also
exceptionally intelligent, has been a cornerstone of both my PhD journey and my personal
growth. The opportunity to work alongside such a distinguished group has undoubtedly
been a highlight of my academic and personal life. I am particularly grateful to Yann
Fraboni, whose engaging and inspiring conversations have broadened my scientific per-
spectives and fostered personal development in numerous areas. In the same breath,
my heartfelt thanks go to Dimitri Hamzaoui, whose friendship and support have been
invaluable. In addition, I extend my appreciation to Santiago Silva, Luis Gomes Pereira,
Riccardo Taiello, Lisa Guzzi, Lucia Innocenti, Martin Van Waerebeke, Jairo Rodriguez,
Elodie Maignant, Zhijie Fang, James Benn, Hava Chaptoukaev, Josquin Harrison, Andrea
Senacheribbe, Hari Sreedhar, Buntheng Ly and many others. Their collective influence
has profoundly shaped my experience, for which I am deeply thankful.

vii



In conclusion, and most importantly, I must express my profound gratitude to my family
for their unwavering support at every stage of my journey—preceding, throughout, and
beyond the tenure of my PhD. Their presence in both challenging and prosperous times
has been an invaluable constant in my life. I am deeply appreciative of the fortune of
having such a supportive family, whose encouragement and belief in my endeavors have
been integral to my well-being. Thank you!

viii



Financial Support

This work has been supported by the French government, through the 3IA Côte d’Azur
Investments in the Future project managed by the National Research Agency (ANR)
with the reference number ANR-19-P3IA-0002. The authors are grateful to the OPAL
infrastructure from Université Côte d’Azur for providing resources and support.

ix





Contents

1 Introduction 1
1.1 Probability Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Classical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Deep Learning (DL) Methods . . . . . . . . . . . . . . . . . . . . 5

1.2 Tail Shape Estimation of Probability Distributions . . . . . . . . . . . . . 9
1.2.1 Extreme Value Theory . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Tails of Marginal Distributions . . . . . . . . . . . . . . . . . . . . 12

1.3 Objectives and Organization of the Thesis . . . . . . . . . . . . . . . . . 13
1.3.1 Density Estimation Challenges via Modern DL Methods . . . . . . 13
1.3.2 Tail-shape Estimation Challenges of Marginal Distributions . . . . 15

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Density Estimation 17

2 Enhanced Distribution Modelling via Augmented Architectures For Neural
ODE Flows 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Proposed Model: Augmented FFJORD (AFFJORD) . . . . . . . . 24
2.3.2 The Cable Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 The Continuous Generalisation of the Total Derivative Decomposi-

tion and Continuous Backpropagation . . . . . . . . . . . . . . . 25
2.3.4 AFFJORD as a Special Case of Augmented Neural ODE Flows . . 26
2.3.5 Multiscale Architecture in Augmented Neural ODE Flows . . . . . 27

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Toy 2D Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Image Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Faster Training of Diffusion Models and Improved Density Estimation via
Parallel Score Matching 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



3.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Normalizing Flows (NFs) . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Diffusion Probabilistic Models (DPMs) . . . . . . . . . . . . . . . 39

3.3 PSM Framework and Relation to Piece-wise Continuous Flows and IRFs . 42
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Toy 2D Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Image Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.1 Number of Computing Units and Likelihood Estimation in DPSM 50
3.5.2 Tailored TPSM Models . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II Tail Shape Estimation 51

4 On Tail Decay Rate Estimation of Loss Function Distributions 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Related Work and Background . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Monte Carlo Cross Validation . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Extreme Value Theory . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Setup and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Cross Tail Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 The General Problem . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 Tails of marginal distributions . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Useful propositions for the experimental part . . . . . . . . . . . 67

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Validity of Cross Tail Estimation in Practice . . . . . . . . . . . . . 70
4.5.2 Robustness to Variance in the Location of Conditional Distributions 72
4.5.3 Model performance inference improvements via cross tail estima-

tion, relative to POT . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.4 Computational Simplifications . . . . . . . . . . . . . . . . . . . . 78

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Conclusion and Perspectives 81
5.1 Summary of the Main Contributions . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Enhanced Distribution Modelling via Augmented Architectures For
Neural ODE Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.2 Faster Training of Diffusion Models and Improved Density Estima-
tion via Parallel Score Matching . . . . . . . . . . . . . . . . . . . 82

5.1.3 On Tail Decay Rate Estimation of Loss Function Distributions . . . 83
5.2 Perspectives and Future Applications . . . . . . . . . . . . . . . . . . . . 84

xii



5.2.1 Fine-tuning of Diffusion Models for Density Estimation . . . . . . 84
5.2.2 Faster Density Estimation . . . . . . . . . . . . . . . . . . . . . . 84
5.2.3 Flexible Conditional Density Estimation . . . . . . . . . . . . . . 85

5.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87

A Appendix of Chapter 2 97
A.1 Cable Rule, the Continuous Generalization of the Chain Rule . . . . . . . 98
A.2 The Continuous Generalization of the Total Derivative Decomposition . . 102
A.3 Generalization of Continuous Backpropagation into Piecewise Continuous

Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.4 Additional Generated Samples . . . . . . . . . . . . . . . . . . . . . . . . 105
A.5 Deriving the Instantaneous Change of Variable via the Cable Rule . . . . 107
A.6 Simplifications in Section 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . 108
A.7 Cable Rule Derived via Equation (2.5 . . . . . . . . . . . . . . . . . . . . 109
A.8 Equivalence Between Continuous Total Derivative Decomposition and the

Continuous Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 110
A.9 Additional Details About the Experiments . . . . . . . . . . . . . . . . . . 111

B Appendix of Chapter 3 113
B.1 Image Generation and Likelihood Estimation in TPSM and DPSM . . . . 114
B.2 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.3 Additional Generated Samples . . . . . . . . . . . . . . . . . . . . . . . . 117
B.4 The Continuous Evolution of the Score During Diffusion . . . . . . . . . . 121
B.5 DDPM and Flow Matching on 2D toy data . . . . . . . . . . . . . . . . . 122
B.6 TPSM-B Visual Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.7 Density Estimation Applied to Time Series Anomaly Detection . . . . . . 124

C Appendix of Chapter 4 129
C.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.2 Examples where the regularity conditions do not hold . . . . . . . . . . . 138
C.3 Examples where the regularity conditions hold . . . . . . . . . . . . . . 139
C.4 Moment based motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.5 Reducing the variability of the estimated shape parameters . . . . . . . . 140
C.6 The inadequacy of the direct POT usage on mixture distributions . . . . . 141
C.7 Additional details with regards to section 4.5.1 . . . . . . . . . . . . . . 143
C.8 Additional details with regards to section 4.5.3 . . . . . . . . . . . . . . 144
C.9 Additional DEdH Tail Shape Estimator Experiments . . . . . . . . . . . . 148

xiii





1Introduction

Contents
1.1 Probability Density Estimation . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Classical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Deep Learning (DL) Methods . . . . . . . . . . . . . . . . . . 5

1.2 Tail Shape Estimation of Probability Distributions . . . . . . . . . . . . 9

1.2.1 Extreme Value Theory . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Tails of Marginal Distributions . . . . . . . . . . . . . . . . . . 12

1.3 Objectives and Organization of the Thesis . . . . . . . . . . . . . . . . 13

1.3.1 Density Estimation Challenges via Modern DL Methods . . . . 13

1.3.2 Tail-shape Estimation Challenges of Marginal Distributions . . 15

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

The objective of this inaugural chapter is to describe the context and objectives that
guide this thesis. We commence by elaborating on the concept of density estimation,
followed by a discussion on both traditional and contemporary methodologies that are
deployed for the aforementioned task. Subsequently, a subsection is dedicated to the field
of Extreme Value Theory, focusing specifically on the various techniques for estimating
the shape of the tails of probability distributions.

We conclude this chapter by exploring some important challenges related to the method-
ologies discussed in density estimation and the estimation of the tail shape of marginal
distributions, and by providing a summary of the steps taken in this thesis to mitigate the
aforementioned challenges.

1.1 Probability Density Estimation

Density estimation is the statistical process of constructing a probabilistic model that
represents the distribution of a given dataset. By estimating this distribution, we can
better understand the statistics and behavior of our data, enhancing predictions, anomaly
detection, and data generation. Density estimation thus forms a crucial step in numerous
data analysis and machine learning tasks. Various methods have been developed for den-
sity estimation, encompassing both parametric and non-parametric approaches. In what
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follows, we illustrate some of these methods, detailing the advantages and drawbacks
inherent to each.

1.1.1 Classical Methods

Parametric Methods:

Parametric density estimation methods assume that the underlying probability density
function belongs to a specific parametric family, whose parameters can be estimated using
the observed data. Parametric methods for density estimation offer several advantages.
The parameters of such models often have clear interpretations, allowing insights into
the underlying distribution. Parametric methods can be computationally efficient, since
the number of parameters can be fixed regardless of the sample size. However, they also
have limitations, particularly when the assumptions of the chosen parametric family do
not align well with the underlying data distribution. Furthermore, they may suffer from
the curse of dimensionality, an issue that this thesis aims to address. Some prominent
parametric methods include:

Families of basic probability density functions. In these models, we postulate that the data
distribution belongs to a particular family of probability density functions f(x, θ), such
as the Gaussian, Beta, Gamma distributions among others [Casella, 2001]. Typically,
parameters maximizing the likelihood of the observed data, given a specific parametric
density function, are estimated either through analytical/numerical maximum likelihood
estimation (MLE), or methods of moments. Regrettably, complex data distributions are
generally challenging to be described by these standard families.

Mixtures of families of parametric probability density functions. Mixture models [Everitt,
1981] exploit the property that a convex combination of probability density functions is
still a valid probability density function:

f(x, θ) =
n∑

k=1
pkfk(x, θk), where

n∑
k=1

pk = 1. (1.1)

Under certain conditions, these mixtures, if composed of particular families of pdfs, can
act as universal approximators—meaning they can theoretically approximate any given
distribution to an arbitrary degree of accuracy, given sufficient components in the mixture
[Goodfellow, 2016]. However, these models do not come without challenges. For in-
stance, a Gaussian mixture model, fk(x, θk) = pk(x; µ, Σ), can collapse into singularities
when optimized using methods such as Maximum Likelihood Estimation [Bishop, 2007;
Shireman, 2015]. Moreover, when other methods like the Expectation-Maximization
algorithm are utilized, the estimated parameters become highly sensitive to their initial-
ization [Biernacki, 2003; Seidel, 2000].
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On top of these, mixture models are not immune to the curse of dimensionality. In
instances of high-dimensional and complex data distributions, the number of components
needed for effective density estimation can become significantly large. Importantly, each
component inherently contains a number of parameters that scales with the dimensional-
ity of the data. The task of selecting the optimal number of components thus represents
a considerable and non-trivial challenge.

Probabilistic Chain Rule (Autoregressive Models). While initially developed for modelling
time series [Box, 1994] such models can be used for general density estimation tasks
[Bengio, 1999; Larochelle, 2011; Uria, 2013]. They operate based on the principle of the
chain rule of probability, expressed as:

p(x) = p(x1, ..., xd−1, xd) = p(xd|xd−1, ..., x1) . . . p(x2|x1)p(x1). (1.2)

This formulation ensures the result is a valid probability density function, as long as every
term on the right-hand side is defined as a conditional probability density function. It’s
typical to define p(xk|xk−1, ..., x1) as a Gaussian distribution, characterized by a mean
µk = µk(xk−1, ..., x1) and a standard deviation σk = σk(xk−1, ..., x1). There’s a wide
range of possible choices for µk and σk, with linear models being one of the simplest
classical approaches. The model is optimized by maximizing the log-likelihood

log p(x) =
d∑

k=1
log p(xk|xk−1, ..., x1) = d log(2π) −

d∑
k=1

(
(xk − µk)2

2σk
2 + log(σk)

)
, (1.3)

on the sampled data x. While these types of models can exhibit considerable flexibility,
they are hindered by the specific structure of dependencies between feature dimensions,
a structure which is imposed by the architecture of the model. Furthermore, their poten-
tial may be constrained by suboptimal selections of the conditional probability family
p(xk|xk−1, ..., x1), and the parameterization models employed therein.

Non-Parametric Methods:

On the contrary, non-parametric methodologies don’t necessitate the data to conform
to specific parametric families of probability distributions, and they usually do not
presuppose a static model structure. Instead, the model’s size typically expands to cater
to the data’s complexity and the size of the sample. Examples of frequently employed
non-parametric techniques include:

Kernel Density Estimation (KDE): KDE [Parzen, 1962] involves placing a kernel function
at each data point and summing them to obtain the density estimate:
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f(x, h) = 1
nhd

n∑
k=1

K
(x − Xi

h

)
, where

∫
Rd

K(x)dx = 1, (1.4)

d is the dimensionality of the data, and n is the number of data points. Nevertheless,
these models tend to have somewhat restricted flexibility. This becomes apparent when
the Gaussian kernel is chosen, a common selection. In such scenarios, these models
coincide with a mixture of isotropic Gaussians with identical variance, where the number
of components is the same of the number of training points, while the mean of each
component is a training point.

Dirichlet Process Mixture Models: Infinite hierarchical Bayesian mixture models [Ras-
mussen, 1999] allow us to model a data distribution using a mixture model without
having to predefine the number of components. In setting up this model, we have to
make assumptions about the prior distribution of component parameters (θ) [Neal, 2000;
Li, 2019]. After deriving the posteriors of the relevant parameters, incorporating the
observed data, we can perform sampling using the Gibbs sampling Markov Chain Monte
Carlo method. Following a substantial burn-in period, the parameters sampled in suc-
cessive iterations are likely to display minimal variation, indicating convergence. These
stabilized parameters can then serve as an estimate of the posterior mixture.
While Bayesian mixture models offer robust capabilities for density estimation and
clustering, and can automatically discern the number of clusters while fitting intricate,
multi-modal distributions, they do present challenges. Determining the convergence of
the Markov Chain Monte Carlo (MCMC) techniques, such as Gibbs sampling, used for
parameter estimation, can be non-trivial. Moreover, given the outcome is still a mixture
model, the model complexity remains high in high-dimensional data, leading to intensive
computational demands during the training phase [Meguelati, 2019].

Orthogonal Series: Orthogonal series methods [Silverman, 1986; Anderson, 1980] for
density estimation involve approximating the density function using an orthogonal basis
of functions. These basis functions can be of various types such as Fourier series, wavelets,
etc. The Fourier series version is provided below:

f(x) =
∑

p∈{0,1,...,P }d

maxi pi≤P

cp1...pd
exp(i2πp · x), (1.5)

where P depends on the number of samples N . Setting c0,0,...,0 = 1 ensures that f(x)
integrates to one, however, ensuring non-negativity is not trivial. Furthermore, as it can
be seen the number of parameters to estimate grows exponentially with the dimension of
the data d.
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1.1.2 Deep Learning (DL) Methods

Deep learning facilitates the construction of computational models that incorporate
multiple processing layers. These models are recognized as universal approximators,
capable of accurately simulating the behavior of virtually any function. They have notably
elevated the level of precision in diverse fields such as speech and visual object detection,
and generative tasks to name a few [Zhao, 2019; Bond-Taylor, 2021; Mehrish, 2023].
Deep learning models offer the potential to identify intricate structures within large
datasets, once trained through backpropagation [LeCun, 2015; Goodfellow, 2016]. De-
spite these advantages neural network functions are not necessarily probability density
functions, that is, there are no guarantees that the function they define is non-negative
and integrates to one. For this reason, general frameworks have been developed, in
which neural networks are used to parameterize parts of the model.

Autoregressive Normalizing Flows

In Section 1.1.1, we provided a brief explanation of density estimation via Autore-
gressive Models. As a special case, the distribution of each dimension xk was modelled
as a conditional Gaussian, where the conditioning is over the dimensions with smaller
indices. Using reparameterization, such an xk can be written as

xk = µk(xk−1, ..., x1) + zkσk(xk−1, ..., x1) = µk + zkσk, (1.6)

where zk follows a standard normal distribution, [Kingma, 2016; Papamakarios, 2017].
We can simultaneously write the expression for all dimensions in vectorized form:

x = µ + z ⊙ σ, (1.7)

for µ = {µ1, µ2, ..., µd}, σ = {σ1, σ2, ..., σd} and z = {z1, z2, ..., zd}. As explained, the
goal is to maximize the log-likelihood

log p(x) = −d log(2π) −
d∑

k=1

(
(xk − µk)2

2σk
2 + log(σk)

)
. (1.8)

We notice that we can rewrite this equation as

log p(x) = −
(

d log(2π) +
d∑

k=1

(xk − µk)2

2σk
2

)
+

d∑
k=1

log( 1
σk

). (1.9)

Considering that zk = xk−µk
σk

and its implication that dzk
dxk

= 1
σk

, Equation (1.9) becomes

log p(x) = −
(

d log(2π) +
d∑

k=1

z2
k

2

)
+

d∑
k=1

log( dzk

dxk
). (1.10)
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The first term in Equation (1.10) can be written as:

d∑
k=1

(
log( 1

2π
) − z2

k

2

)
= log

d∏
k=1

1
2π

e−
z2

k
2 = log

d∏
k=1

p(zk) = log p(z). (1.11)

Regarding the second term, we recall that since µi, σi do not depend on xj for i ≤ j,
then the Jacobian dz

dx = d((x−µ)/σ)
dx is upper triangular (the division of the vectors is

dimension-wise). Thus the determinant of dz
dx is the product of the diagonal elements:

log
∣∣∣∣det

(
dz

dx

)∣∣∣∣ = log
d∏

k=1

dzk

dxk
=

d∑
k=1

log( dzk

dxk
). (1.12)

Based on Equations (1.11) and (1.12), then Equation (1.10) becomes

log p(x) = log p(z) + log
∣∣∣∣det

(
dz

dx

)∣∣∣∣ , (1.13)

which is the logarithmic version of the change of variable formula:

p(x) = p(z)
∣∣∣∣det

(
dz

dx

)∣∣∣∣ . (1.14)

The variables µ, σ are parametrized by deep neural networks with intelligently designed
architectures that respect the autoregressive formulation while maximizing flexibility,
[Papamakarios, 2017; Van den Oord, 2016]. Since autoregressive models are invertible
by construction and since neural networks are differentiable, then these transformations
are diffeomorphisms and the use of change of variable is justified. In the deep learning
setting, models that leverage the change of variable formula are collectively known as
Normalizing Flows.

Normalizing Flows

The Normalizing Flow framework was previously defined in [Tabak, 2010; Tabak, 2013],
and was popularised by [Rezende, 2015] and by [Dinh, 2015] respectively in the context
of variational inference and density estimation.
A Normalizing Flow is a transformation defined by a sequence of invertible and dif-
ferentiable functions mapping a simple base probability distribution (e.g., a standard
normal) into a more complex one. Let Z and X = g(Z) be random variables where g is
a diffeomorphism with inverse h. If we denote their probability density functions by fZ

and fX , based on the change of variable theorem we get:

fX(x) = fZ(z)
∣∣∣∣det

(
dz

dx

)∣∣∣∣ = fZ(h(x))
∣∣∣∣det

(
dh(x)

dx

)∣∣∣∣ . (1.15)

In general, we want to optimize the parameters of h such that we maximize the likelihood
of sampled points x(1), ..., x(m). Once these parameters are optimized, then we can give
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as input any test point x on the right hand side of Equation (1.15), and calculate its
likelihood. For the generative task, being able to easily recover g from h is essential, as
the generated point xg will take form xg=g(zs), where zs is a sampled point from the
base distribution fZ .
For increased modeling flexibility, we can use a chain (flow) of transformations, xi−1 =
gi(xi), i ∈ [n], that is xi = hi(xi−1), i ∈ [n]. In this case, due to chain rule we have:

fX0(x0) = fXn(xn)
∣∣∣∣det

(
dxn

dx0

)∣∣∣∣ = fXn(hn(...h1(x0)))
n∏

i=1

∣∣∣∣det
(

dhi(xi−1)
dxi−1

)∣∣∣∣ , (1.16)

where x0 is a data point. The interested reader can find a more in-depth review of
normalizing flows in [Kobyzev, 2021] and [Papamakarios, 2021].

Continuous Normalizing Flows (CNFs)

While the practical application of normalizing flows is generally challenging due to
computational bottlenecks, most notably regarding the O(D3) computation cost of the
Jacobian determinant, different architectures have been proposed in order to scale nor-
malizing flows to high dimensions while at the same time ensuring the flexibility and
bijectivity of the transformations [Rezende, 2015; Dinh, 2017; Kobyzev, 2021]. The
common strategy consists of placing different architectural restrictions on the model
(e.g. autoregressive case), to enforce special Jacobian forms, with less computationally
demanding determinants. Neural ODEs, [Chen, 2018], are continuous generalizations of
residual networks:

xti+1 = xi + ϵf(xti , ti, θ) → x(t) = x(0) +
∫ t

0
f(x(τ), τ, θ)dτ , as ϵ → 0. (1.17)

In this case, the number of compositions of transformations in Equation (1.17) goes to
infinity, and the change of variable formula evolves into the instantaneous change of
variable [Chen, 2018], which enables one to train continuous normalizing flows:

log p(x(0)) = log p(x(T )) +
∫ T

0
tr

∂f(x(t), t, θ)
∂x(t) dt, (1.18)

where x(0) represents a sample from the data. A surprising benefit is that one does
not need to calculate the determinant of the Jacobian of the transformation anymore,
but simply the trace of a matrix without placing constraints in the form of the Jacobian
of the overall transformation. These models are collectively called Neural ODE flows
(NODEFs) or simply Continuous Normalizing Flows (CNFs). In [Grathwohl, 2019], these
ideas are further explored and computational simplifications are introduced, notably the
use of Hutchinson’s trace estimator, [Hutchinson, 1990; Adams, 2018], as an unbiased
stochastic estimator of the trace in the likelihood expression in Equation (1.18), that
reduces the computation cost of the Jacobian determinant to O(D). The resulting model
is named FFJORD.

1.1 Probability Density Estimation 7



Diffusion Probabilistic Models (DPMs)

As described, CNFs are flexible normalizing flows with free-form continuous dynamics.
However, despite the Jacobian determinant’s computational complexity being lowered
to O(D) in Equation (1.18) and the memory conservation achieved through the adjoint
method [Chen, 2018], the optimization task in CNFs remains challenging. These flows
are trained via maximum likelihood, which can be suboptimal due to the need for the
neural network to craft a transformation mapping the data distribution to a standard
normal one, and due to the increase of the numerical integration steps during training.
Diffusion Probabilistic Models address these concerns. A forward diffusion process or
diffusion process [Sohl-Dickstein, 2015] is a fixed Markov chain that gradually adds
Gaussian noise to the data according to a schedule {bt|t ∈ [n]}:

q(xt|xt−1) := N (xt−1
√

1 − bt, btI). (1.19)

Such a process transforms the data distribution into a standard multivariate normal
distribution. If we denote at = 1 − bt and āt =

∏t
s=1 as, then we can write:

q(xt|x0) = N (x0
√

āt, (1 − āt)I). (1.20)

The reverse process conditioned on the initial sample is also described by a chain of
Gaussian distributions:

q(xt−1|xt, x0) = N (µ(xt, x0), Σ(t)), (1.21)

where
µ(xt, x0) = µ(xt, x0(xt, ε)) = 1

√
at

(
xt − bt√

1 − āt
ε
)
,

Σ(t) = btI.

The goal is to approximate this reverse process via

p(xt−1|xt) := N (µθ(xt, t), Σ(t)) (1.22)

that converts the standard multivariate normal distribution into the data distribution.

To this end, for each step t, the KL divergence between q(xt−1|xt, x0) and p(xt−1|xt) is
minimized, which amounts to minimizing

Ex0,xt ||µθ(xt, t) − µ(x0, xt)||2, (1.23)

or equivalently
Ex0,ε||εθ(x0

√
āt +

√
(1 − āt)ε, t) − ε||2, (1.24)
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for ε ∼ N (0, I), data samples x0, and a neural network εθ(xt, t) [Ho, 2020].

SDE Diffusion Models and their CNF Representation

For an ε ∼ N (0, I), the forward diffusion process defined in Equation (1.19) can
be written as

xt = xt−1
√

1 − bt +
√

btε. (1.25)

As derived in [Song, 2021], the continuous counterpart of this process takes the form

dx(t) = −1
2b(t)x(t)dt +

√
b(t)dw. (1.26)

In this case Equation (1.20) becomes

q(xt|x0) = N (x0µt, σ2
t I), (1.27)

where µt = e− 1
2

∫ t

0 b(s)ds and σt =
√

(1 − e−
∫ t

0 b(s)ds). As shown through the Fokker-Plack
equation, the evolution of the probability density function of the data, as dictated by the
FDP, is identical to the evolution dictated by the following ODE transformation:

dx(t) = −1
2b(t)[x(t) + ∇x(t) log pt(x(t))]dt = ft(x(t))dt. (1.28)

Knowing ft allows us to perform data generation and likelihood estimation, through the
framework of continuous normalizing flows. It can be observed that the only unknown in
ft, is the score ∇x(t) log pt(x(t)). This quantity can be modelled using a neural network
sθ(x(t), t) trained either through sliced score matching [Song, 2020]:

min Ext∼p(xt)[
1
2 ||sθ(xt, t)||2 + div(sθ(xt, t))] (1.29)

or the equivalent MSE denoising loss [Ho, 2020; Kingma, 2021]:

min Ex0,ε||sθ(x0µt + σtε, t) − (− ε

σt
)||2. (1.30)

We notice that the loss function is now an MSE and that the network does not have to
devise a process that turns the data distribution into a standard normal one, as such a
process is generated by the forward diffusion process. These properties of DPMs simplify
the learning task significantly.

1.2 Tail Shape Estimation of Probability Distributions

Tails are an integral part of probability density functions, indicating infrequent but
impactful outcomes. Their thickness estimates the probability of extreme events and pro-
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vides information about the moments of the distribution. Thin tails, as seen in a normal
distribution, imply lower probabilities of extreme events, much like the distribution of
heights in people. In contrast, heavy tails suggest higher possibilities of outliers.

While density estimation methods such as Normalizing Flows and Diffusion Models, as
described in Section 1.1, work well when modeling areas of high probability that are
adequately represented by a large number of training data points, these models do not
perform as effectively in modeling low probability areas [Song, 2019], such as the tails
of distributions.

Because extreme events, by definition, occur infrequently, extrapolating based on av-
erages of typical events can lead to an underestimation of their likelihood. Extreme
Value Theory (EVT) provides a rigorous statistical framework for modeling the tails of
distributions to more accurately estimate rare extreme occurrences.

1.2.1 Extreme Value Theory

Extreme Value Theory (EVT) is an established field concerned with modelling the tails
of distributions. It dates back to 1923, when Richard von Mises discovered that the
Gumbell distribution is the limiting distribution of the maximum of an iid sequence,
sampled from a Gaussian distribution. In 1928, Ronald A. Fisher and Leonard H. C.
Tippett in [Fisher, 1928], characterized the only three possible non-degenerate limiting
distributions of the maximum in the general case: Frechet, Gumbel and Weibull. In 1943,
Boris V. Gnedenko, gave a rigorous proof of this fact in [Gnedenko, 1943]. This result is
known Fisher–Tippett–Gnedenko theorem, and forms the foundation of EVT. The three
aforementioned limiting distributions of the maximum can be written in compact form
and they are known as the class of extreme value distributions:

Definition 1.2.1. The Generalized Extreme Value Distribution (GEVD) is defined as follows:

Gξ,a,b(x) = e−(1+ξ(ax+b))− 1
ξ
, 1 + ξ(ax + b) > 0, (1.31)

where b ∈ R, ξ ∈ R \ {0} and a > 0. For ξ = 0, we define the generalized Extreme Value
Distribution as the limit when ξ → 0, that is

G0,a,b(x) = e−e−ax−b
. (1.32)

If the limiting distribution of the maximal sample from a distribution F (x) is Gξ,a,b(x)
as defined in Definition 1.2.1, then depending on whether ξ > 0, ξ = 0, ξ < 0, we say
that F is in the MDA (Maximum Domain of Attraction) of a Frechet, Gumbell, or Weibull
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distribution respectively. The measure of the thickness of a tail is ξ, that is, a distribution
F (x) has a thick tail if its corresponding ξ is positive, thin tail if ξ = 0, and no tail if
ξ < 0. This means that distributions, whose maximal sample converges in distribution
to a Frechet limiting distribution, are characterized by thick tails, indicating a higher
probability of extreme events. On the other hand, distributions with a limiting Gumbel
distribution have thin tails, suggesting a lower likelihood of extreme values. Finally, the
Weibull distribution is the limiting distribution of the maximal sample from a distribution
with bounded support.

Considering the discussion above, it is important to be able to estimate properly the
shape parameter ξ given a set of samples from a distribution. One of the most direct
methods makes use of the Fisher–Tippett–Gnedenko theorem, by dividing the samples
into non-overlapping blocks of equal size and then by picking the maximum observation
in each block. The new observations created, assuming a significant number of samples
are contained in each block, follow approximately an extreme value distribution Gξ,a,b(x)
for some real ξ. Parametric statistical methods for the extreme value distributions are
then applied to those observations. This approach is known as the block maxima method
[Gumbel, 1958]. There are two major sets of estimators that are widely used in this
method [Ferreira, 2015]: the maximum likelihood estimators [Prescott, 1980] and the
probability weighted moment (PWM) estimators [Hosking, 1985].

The block maxima approach offers benefits when observations show dependence within
blocks yet independence between blocks (e.g., seasonal periodicity for annual maxima).
As periodic blocks naturally arise in many situations, this method is often fitting. However,
inherent drawbacks exist, as this method omits some high observations while retaining
lower values. By retaining only the maximum per block, the approach misses certain
peak data points while including suboptimal (low-valued) data [Ferreira, 2015].

The Peak-Over-Threshold (POT) method, the approach we will focus on in this thesis, is
another important approach for estimating the shape parameter of tails. The foundation
of the POT method is the Pickands–Balkema–De Haan theorem [Pickands, 1975; Balkema,
1974]. This theorem roughly states that for a distribution in the max-domain of attraction
of a generalized extreme value distribution, the limiting distribution of samples exceeding
a threshold converges to a generalized Pareto distribution with a location parameter of
zero. Furthermore, the theorem proves that the shape parameters of the generalized
extreme value distribution and corresponding generalized Pareto distribution are equal.
In simpler terms, the theorem states that for a large class of distributions, samples from
a distribution of this class that surpass a high enough threshold follow a generalized
Pareto distribution. The shape parameter of the generalized pareto can then be estimated
using methods such as the Pickands estimator or the MLE based Deckers-Einmahl-de
Haan estimator [Dekkers, 1989a] on the samples above the threshold. Whereas the block
maxima approach may exclude higher observations from one block, and potentially favour
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a low valued maximum of another block, the POT method retains solely exceedances
over a set threshold.

The previously described methods were designed for application to general distributions.
However, the distribution of interest may sometimes be expressed as a marginal distri-
bution derived from dependent random variables. A relevant example comes from the
machine learning domain, where we may be interested in studying the distribution of
statistics of interest (e.g. the mean squared loss) in a cross-validation setting. In this case,
the estimation of each sample is conditioned on the training/testing split, and we would
like to characterise the shape of the loss distribution under this conditional dependency
regime. In this case, classical tail estimation methods may suffer of important limitations,
and novel approaches incorporating the additional information from such dependent
variables should be devised to enhance tail shape estimation for the variable of interest.
This challenge is developed in the following subsection.

1.2.2 Tails of Marginal Distributions

In a general machine learning problem, we assume that each data sample (X, Y ) comes
from distribution D and that the sampling is independent. We have used the symbol
X to denote the features and the symbol Y to denote the labels. The training set
will be defined as a random vector comprised of iid random vectors (X, Y ) sampled
from D. More precisely, after fixing a natural number k, we define a training set as
V = [(X, Y )1, (X, Y )2, ..., (X, Y )k], where each (X, Y )i has distribution D. On the
other hand, a test point U naturally is defined as a sample from D, i.e., U = (X, Y ). In
practice, the realisation of U should not be an entry in V .
A model which is trained on V to predict Y from X is denoted as ĥV (X). The prediction
error on the testing datum U of a model trained on V is denoted as WV (U). We notice
that the probability density function of WV (U) is

fW (w) =
∫

fW,V (w, v)dv =
∫

fV (v)f(w|V = v)dv =
∫

fV (v)fv(w)dv, (1.33)

therefore the distribution function of WV (U) is:

FW (w) =
∫

fV (v)Fv(w)dv. (1.34)

Fv(w) is the distribution of the prediction error (loss) of the model trained on training
set v, while FW (w) is the unconditional distribution of the loss. A natural question is
whether the tail shape parameters of the conditional distributions Fv contain information
about the shape tail parameter of FW .
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This question is important, as potential issues can occur when applying POT directly
on samples of the marginal distribution rather than using the conditional dependence
structure. The main reason why direct application of POT can fail to properly estimate the
tail is that, since the marginal by definition is the mixture of many (potentially infinite)
distributions, the non-tail part of some distributions can overlap and overshadow the tails
of others. This is in particular the case when the medians of components with thin tails
are located in the tail part of thick-tailed components. As we are more likely to sample
from the high-likelihood regions of the thin-tailed components where the medians are
located, rather than from the thick tails of other components, our sample set could fail
to appropriately describe the true shape of the tail of the marginal. In Section 1.3.2,
we provide a more detailed explanation of this challenge, which motivates one of the
contributions of this thesis.

1.3 Objectives and Organization of the Thesis

In this thesis, we aim to resolve some important challenges that arise in the field of
density estimation and tail shape estimation of marginal distributions. In Section 1.3.1
we lay out two such challenges in the task of density estimation, which we tackle in
Chapter 2 and 3 respectively, which in turn comprise Part I of the thesis. The third
challenge regarding tail-shape estimation is presented in Section 1.3.2, and is resolved in
Chapter 4 presented in Part II of this thesis.

Finally, we conclude the manuscript in Chapter 5 by summarizing the main contributions
of this work and exploring further research possibilities.

1.3.1 Density Estimation Challenges via Modern DL Methods

Continuous Normalizing Flows and Diffusion Probabilistic Models present formidable
approaches for modelling high-dimensional data distributions and achieving accurate
density estimations. However, they are not without certain constraints. Firstly, these
models necessitate the integration of both the point xt and the time variable t as inputs
for the network operating at time t. As such, it is of critical importance to strategically
implement the time component, thereby enabling a flexible network evolution over
time. Moreover, while diffusion models considerably streamline the training process and
mitigate memory requirements by foregoing the need for maximum likelihood loss, it
is vital to emphasize that standard training methodologies do not optimally leverage
the inherent characteristics of diffusion models to boost flexibility and curtail training
duration. A key underutilized feature is the independence of the optimization tasks at
distinct time points.
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Challenge I: Temporal Flexibility of the Vector Field in the CNF Context

While the neural ODE framework of normalizing flows, such as the one used in FFJORD,
allows us to compute determinants of free form Jacobians in O(D) time, the flexibility of
the transformations engendered by neural ODEs has proven to be less than ideal. Within
the CNF paradigm, both the point xt and the time variable t are requisite inputs for
the network fθ(xt, t) operating at time t. As a result, it is of paramount importance to
implement the time component in a strategic manner, thus ensuring temporal flexibility
in network evolution.

To address this constraint, in Chapter 2, we introduce AFFJORD, a neural ODE-based
normalizing flow, which bolsters the representational capability of FFJORD by defining
the neural ODE through specially augmented transformation dynamics that conserve the
topological properties of the space. Our experimental evaluations on density estimation
in synthetic and high-dimensional data such as MNIST, CIFAR-10, and CelebA (32 × 32)
evidence that AFFJORD surpasses the baseline FFJORD by virtue of enhanced flexibility
in the underlying vector field. Furthermore, we derive the Jacobian determinant of the
general augmented form by extending the continuous chain rule into the cable rule, which
formulates the forward sensitivity of ODEs in relation to their initial conditions. This
cable rule provides an explicit formula for the Jacobian of a neural ODE transformation
and offers an elegant proof for the instantaneous change of variable.

Challenge II: Modeling Vector Field Evolution through a Single Network

Contrary to the CNF framework, in Diffusion Probabilistic Models (DPM), the network
that models the vector field employs the MSE loss as described in Equation (1.30),
which considerably accelerates the training. Furthermore, diffusion models alleviate the
intricacy of learning the evolutionary process, as the forward diffusion process outlines
the temporal evolution of the data distribution, thus reducing the framework’s role
to merely modeling the predefined vector fields. Nevertheless, if parameterized by a
single time-varying network, these models still encounter limited flexibility, as a solitary
set of parameters (or model) is charged with modeling all vector fields defined by the
Forward Diffusion Process (FDP). Moreover, the optimization of a vector field at time t is
contingent upon the optimization of other vector fields at different time points, thereby
impeding the speed of the training process.

To counter these issues, in Chapter 3, we suggest harnessing the independence of learning
tasks at different time points inherent to DPMs. More precisely, we segment the learning
task by employing independent networks, each specifically designed to learn the evolution
of scores within a particular time sub-interval. Additionally, taking a cue from residual
flows, we extend this strategy by using separate networks to independently model the
score at each discrete time point. As substantiated by empirical evidence on synthetic
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and image datasets, our methodology not only significantly speeds-up the training
process by introducing an extra layer of parallelization on top of data parallelization,
but it also improves density estimation performance relative to the conventional training
methodology for DPMs

1.3.2 Tail-shape Estimation Challenges of Marginal
Distributions

The direct application of the POT method on FW (w) (Equation (1.34)) can present
challenges due to the variability of the locations of the tails of conditional distributions
that underlie the marginal. In what follows, we provide an intuitive explanation as to
why this is the case, and also summarize our approach to alleviating this problem.

Challenge III: Variability in tail locations of conditional distributions underlying the
marginal

To gain some insight into the problem, we study the following simple example. We
assume that our variable of interest is X > 0, which in turns depends on the variable Z.
Our goal is to estimate the tail shape parameter of the distribution of X, that is FX(x).
For simplicity we can assume that Z can be either 0 or 1, with equal probability, and if
Z = 0 then f0(x) = f(x|Z = 0) is a thick tailed distribution (shape parameter ξ0 > 0),
while if Z = 1 then f1(x) = f(x|Z = 1) is a thin tailed distribution (ξ1 = 0), with a large
but finite mean. The (marginal) distribution of X is

f(x) = 1
2f0(x) + 1

2f1(x), that is F (x) = 1
2F0(x) + 1

2F1(x). (1.35)

Given a sample set {(x(1), z(1)), (x(2), z(2)), ..., (x(m), z(m))}, one approach is to simply
ignore the second dimension of each point in the sample set, and directly use the POT
method on the points {x(1), x(2), ..., x(m)}, in order to estimate the tail shape parameter
of f(x). However, for small m, since the thin tailed component in the mixture distribu-
tion in Equation (1.35) has a very large mean, we expect most of the large values in
{x(1), x(2), ..., x(m)}, to come from this component. This is due to the fact that we are
unlikely to sample many values x(i) from the thick tail of f0(x) exceeding the mean of
f1(x). This implies that the sample tail of f(x) will be defined by the samples from the
thin tailed f1(x), while the true tail shape ξ of f(x) is known to be precisely the tail shape
parameter of the distribution with the thickest tail, that is, ξ0. This motivates the idea
of not discarding the dependent values z(i) by marginalizing over Z, but to incorporate
such information in the tail shape estimation process.
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The discussed problem can be generalized when the variable Z is continuous, that is,

FX(x) =
∫

fZ(z)Fz(x)dz, (1.36)

where we see that this formulation covers the setting we encountered in Section 1.2.2
(Equation (1.34)).

In Chapter 4, we develop a general method to mitigate the issue of estimating the tails
of marginal distributions, when there exists a large variability between locations of the
individual conditional distributions underlying the marginal. The proposed solution
enables a reduction in the sample size requirements, in the experiments we conducted.
To this end, we demonstrate that under some regularity conditions, the shape parameter
of the marginal distribution is precisely the maximum tail shape parameter of the family
of conditional distributions. We refer to the method constructed from this result as cross
tail estimation, due to similarities that it shares with Monte Carlo cross validation. An
additional benefit of using the approach proposed here instead of the standard POT, is
the reduced computational time in the case that the marginal is estimated from many
conditional distributions. In the context of the distributions of loss functions (Equation
(1.34)), our theory establishes that, under some assumptions, we can estimate the shape
of the total loss distribution, by simply investigating the models prediction, without the
need for target data. Furthermore, we show evidence of polynomial decay of tails of
distributions of model predictions, and empirically demonstrate a relationship between
the thickness of such tails and overfitting.
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Architectures For Neural ODE Flows. DLDE-III Workshop in the 37th Conference on
Neural Information Processing Systems (NeurIPS 2023), Dec 2023, New Orleans,
Louisiana, United States.

• Etrit Haxholli, Marco Lorenzi. Faster Training and Improved Performance of
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In the introductory discourse, we touched upon the fact that while the neural ODE formu-
lation of normalizing flows such as in FFJORD enables us to calculate the determinants of
free form Jacobians in O(D) time, the flexibility of the transformation underlying neural
ODEs has been shown to be suboptimal. In this chapter, we present AFFJORD, a neural
ODE-based normalizing flow which enhances the representation power of FFJORD by
defining the neural ODE through special augmented transformation dynamics which
preserve the topology of the space. Furthermore, we derive the Jacobian determinant of
the general augmented form by generalizing the chain rule in the continuous sense into
the cable rule, which expresses the forward sensitivity of ODEs with respect to their initial
conditions. The cable rule gives an explicit expression for the Jacobian of a neural ODE
transformation, and provides an elegant proof of the instantaneous change of variable.
Our experimental results on density estimation in synthetic and high dimensional data,
such as MNIST, CIFAR-10 and CelebA (32 × 32), show that AFFJORD outperforms the
baseline FFJORD through the improved flexibility of the underlying vector field.
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2.1 Introduction

Normalizing flows are diffeomorphic random variable transformations providing a pow-
erful theoretical framework for generative modeling and probability density estimation
[Rezende, 2015]. While the practical application of normalizing flows is generally
challenging due to computational bottlenecks, most notably regarding the O(D3) compu-
tation cost of the Jacobian determinant, different architectures have been proposed in
order to scale normalizing flows to high dimensions while at the same time ensuring the
flexibility and bijectivity of the transformations [Rezende, 2015; Dinh, 2017; Kobyzev,
2021]. The common strategy consists of placing different architectural restrictions on
the model, to enforce special Jacobian forms, with less computationally demanding
determinants.

A noteworthy approach is based on neural ODEs [Chen, 2018], as they enable us
to calculate the determinants of free form Jacobians in O(D) time [Grathwohl, 2019].
More specifically, the rule for the instantaneous change of variable [Chen, 2018] pro-
vides an important theoretical contribution to normalizing flows, as it yields a closed
form expression of the Jacobian determinant of a neural ODE transformation. In this
case, calculating the Jacobian determinant simplifies to calculating the integral of the
divergence of the vector field along the transformation trajectory. Such models are
known as Continuous Normalizing Flows (CNFs). In [Grathwohl, 2019], these ideas are
further explored and computational simplifications are introduced, notably the use of
Hutchinson’s trace estimator [Hutchinson, 1990]. The resulting model is named FFJORD.

In [Dupont, 2019], it is shown that there exist functions which neural ODEs are not
capable of representing. To tackle this issue and enhance the expressiveness of the neural
ODE transformation, they propose to lift the data into a higher dimensional space, on
which the neural ODE is applied, to subsequently project the output back to the original
space. Such augmented neural ODEs (ANODEs) have been experimentally shown to lead
to improved flexibility and generalisation properties than the non-augmented counterpart.

Inspired by [Dupont, 2019], in this chapter we develop a theoretical framework to
increase the flexibility of ODE flows, such as FFJORD, through dimension augmentation.
To this end, we derive an explicit formula for Jacobians corresponding to neural ODE
transformations. This formula represents the continuous generalization of the chain
rule, which we name the cable rule, that ultimately allows the derivation of the Jacobian
expression and determinant for the composition of the operations defining ANODE flows:
augmentation, neural ODE transformation, and projection.

To enable computational feasibility and ensure that the ANODE transformation is diffeo-
morphic, we allow the augmented dimensions to parameterize the vector field acting on
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Fig. 2.1.: Vector field evolution in AFFJORD as a function of the augmented dimensions z∗
t .

the original dimensions (but not vice-versa). We name the resulting model augmented
FFJORD (AFFJORD). In AFFJORD, the evolution of time is high dimensional (Figure 2.1),
and is learnt via the vector field defined by the augmented component, contrasting the
linear time evolution of FFJORD. This setup coincides with the framework introduced
by [Zhang, 2019], but in the context of normalizing flows. Our experiments on 2D data
of toy distributions and image datasets such as MNIST, CIFAR-10 and CelebA (32 × 32),
show that the proposed ANODE flow defined by AFFJORD outperforms FFJORD in
terms of density estimation, thus highlighting the improved flexibility and representation
properties of the underlying vector field.

2.2 Background and Related Work

Normalizing Flows: The Normalizing Flow framework was previously defined in [Tabak,
2010; Tabak, 2013], and was popularised by [Rezende, 2015] and by [Dinh, 2015]
respectively in the context of variational inference and density estimation.
A Normalizing Flow is a transformation defined by a sequence of invertible and dif-
ferentiable functions mapping a simple base probability distribution (e.g., a standard
normal) into a more complex one. Let Z and X = g(Z) be random variables where g is
a diffeomorphism with inverse h. If we denote their probability density functions by fZ

and fX , based on the change of variable theorem we get:

fX(x) = fZ(z)
∣∣∣∣det

(
dz

dx

)∣∣∣∣ = fZ(h(x))
∣∣∣∣det

(
dh(x)

dx

)∣∣∣∣ . (2.1)

In general, we want to optimize the parameters of h such that we maximize the likelihood
of sampled points x1, ..., xn. Once these parameters are optimized, then we can give
as input any test point x on the right hand side of Equation (2.1), and calculate its
likelihood. For the generative task, being able to easily recover g from h is essential, as
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the generated point xg will take form xg=g(zs), where zs is a sampled point from the
base distribution fZ .
For increased modeling flexibility, we can use a chain (flow) of transformations, zi−1 =
gi(zi), i ∈ [n], that is zi = hi(zi−1), i ∈ [n]. In this case due to chain rule we have:

fZ0(z0) = fZn(zn)
∣∣∣∣det

(
dzn

dz0

)∣∣∣∣ = fZn(hn(...h1(z0)))
n∏

i=1

∣∣∣∣det
(

dhi(zi−1)
dzi−1

)∣∣∣∣ , (2.2)

where z0 is a data point. The interested reader can find a more in-depth review of
normalizing flows in [Kobyzev, 2021] and [Papamakarios, 2021].

Neural ODE Flows: Neural ODEs, [Chen, 2018], are continuous generalizations of
residual networks:

zti+1 = zti + ϵf(zti , ti, θ) → z(t) = z(0) +
∫ t

0
f(z(τ), τ, θ)dτ , as ϵ → 0. (2.3)

In [Pontrjagin, 1962; Chen, 2018], it is shown that the gradients of neural ODEs can be
computed via the adjoint method, with constant memory cost with regards to "depth":

dL

dθ
=
∫ T

0

∂L

∂z(t)
∂f(z(t), t, θ)

∂θ
dt = −

∫ 0

T

∂L

∂z(t)
∂f(z(t), t, θ)

∂θ
dt, (2.4)

where ∂L
∂z(t) can be calculated simultaneously by

∂L

∂z(t) = ∂L

∂z(T ) −
∫ t

T

∂L

∂z(τ)
∂f(z(τ), τ, θ(τ))

∂z(τ) dτ. (2.5)

In addition, they also derive the expression for the instantaneous change of variable,
which enables one to train continuous normalizing flows:

log p(z(0)) = log p(z(T )) +
∫ T

0
tr

∂f(z(t), t, θ)
∂z(t) dt, (2.6)

where z(0) represents a sample from the data. A surprising benefit is that one does not
need to calculate the determinant of the Jacobian of the transformation anymore, but
simply the trace of a matrix. These models are collectively called Neural ODE flows
(NODEFs) or simply Continuous Normalizing Flows (CNFs). In [Grathwohl, 2019], these
ideas are further explored and computational simplifications are introduced, notably the
use of Hutchinson’s trace estimator, [Hutchinson, 1990; Adams, 2018], as an unbiased
stochastic estimator of the trace in the likelihood expression in Equation (2.6). The
resulting model is named FFJORD.

Multiscale Architectures: In [Dinh, 2017], a multiscale architecture for normaliz-
ing flows is implemented, which transforms the data shape from [c, s, s] to [4c, s

2 , s
2 ],

where c is the number of channels and s is the height and width of the image. Effectively
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Fig. 2.2.: Example of the multiscale architecture on MNIST dataset.

this operation trades spatial size for additional channels, and after each transformation
a normalizing flow is applied on half the channels, while the other half are saved in
an array. This process can be repeated as many times as the width and height of the
transformed image remain even numbers. In the end, all saved channels are concatenated
to construct an image with the original dimensions. A visual description of this process
can be found in Figure 2.2.

Augmented Neural ODEs: Considering that transformations by neural ODEs are dif-
feomorphisms (hence homeomorphisms), [Dupont, 2019] show that Neural Ordinary
Differential Equations (NODEs) learn representations that preserve the topology of the in-
put space, and prove that this implies the existence of functions that Neural ODEs cannot
represent. To address these limitations, they introduce Augmented Neural ODEs:

d

dt

[
z(t)
z∗(t)

]
= h(

[
z(t)
z∗(t)

]
, t, θ) =

[
f(z(t), z∗(t), θ)
g(z(t), z∗(t), θ)

]

for

[
z(0)
z∗(0)

]
=
[
x

0

]
, (2.7)

where z∗(t) is the augmented component, and h = [f, g] is the vector field to be learnt.
In addition to being more expressive models, [Dupont, 2019] show that augmented neu-
ral ODEs are empirically more stable, generalize better and have a lower computational
cost than Neural ODEs. A schematic of their architecture in the discrete case can be
found in Figure 2.3.

Fig. 2.3.: Architecture of discretized augmented neural ODEs (left) and of the discretized aug-
mented neural ODE flows implemented in AFFJORD (right).
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2.3 Proposed Framework

In the first subsection, we introduce our model AFFJORD, which is a special case of
augmented neural ODEs. In the second subsection, we give the generalisation of the
chain rule in the continuous sense which we refer to as the cable rule, which is analogous
to forward sensitivity. Next, we give an intuitive proof of the continuous backpropagation,
by showing its equivalence to the continuous generalisation of the total derivative
decomposition. Then, using the cable rule, we give a more detailed explanation on why
the instantaneous change of variable still holds in our model. In the final subsection, the
augmented multiscale architecture is described, as it is implemented in the experimental
section.

2.3.1 Proposed Model: Augmented FFJORD (AFFJORD)

A neural ODE of the type f(z(t), z∗(t), θ), where z∗(t) = z∗(t) +
∫ t

0 g(z∗(τ), ϕ)dτ , can
equivalently be written as hf (z(t), t, θ) = f(z(t), z∗(t), θ). Thus, motivated by [Dupont,
2019], we propose to lift each data point z(0) ∈ Rn to a higher dimensional space Rn+m,
by augmentation via an m dimensional vector z∗(0), which in practice is set to be the
zero vector. Therefore, the joint vector [z(0), z∗(0)] is transformed by the vector field
h = (f, g):

w(T ) =
[

z(T )
z∗(T )

]
=
[

z(0)
z∗(0)

]
+
∫ T

0

[
f(z(t), z∗(t), θ)

g(z∗(t), ϕ)

]
dt. (2.8)

We are not interested in z∗(T ) as our interest lies on the transformed z(0), that is
z(T ). Since by definition such coupled dynamics are contained in the formulation of
neural ODEs, this implies that the instantaneous change of formula still holds, and the
transformation is injective. This sort of augmentation can be seen as a special case of
augmentation introduced in [Dupont, 2019], where the augmented dimensions depend
only on themselves. The augmented dimensions z∗(t) can also be seen as time dependent
weights of the non-autonomous f whose evolution is determined by the autonomous
ODE g, hence giving f greater flexibility in time [Zhang, 2019].

2.3.2 The Cable Rule

If we define a chain of transformations

zi = gi(zi−1) for i ∈ {1, ..., n}, (2.9)

due to the chain rule we have:

dzn

dz0
= ∂zn

∂zn−1

dzn−1
dz0

= ∂zn

∂zn−1

∂zn−1
∂zn−2

...
∂z1
∂z0

=
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= ∂gn(zn−1)
∂zn−1

∂gn−1(zn−2)
∂zn−2

...
∂g1(z0)

∂z0
. (2.10)

We can choose each gi to infinitesimally modify its input, i.e., gi(zi−1) = zi−1 +
ϵfi(zi−1, ti−1, θ), so that the chain in Expression 2.9 transforms z0 continuously. It
is clear that z(t) = z(0) +

∫ t
0 f(z(t), t, θ)dτ is the limit of the previous iterative definition

when ϵ → 0. Then the expression dzn
dz0

in Equation (2.10) converges to dz(t)
dz(0) , which as we

show in Appendix A.1, satisfies the differential equation below:

d( dz(t)
dz(0))
dt

= ∂f(z(t))
∂z(t)

dz(t)
dz(0) . (2.11)

Using the Magnus expansion [Magnus, 1954; Blanes, 2009], we conclude that

dz(T )
dz(0) = eΩ(T ), for Ω(t) =

∞∑
k=1

Ωk(t), (2.12)

where Ωi(t) are the terms of the Magnus expansion (See Appendix A.1). As this expres-
sion gives the generalisation of the chain rule in the continuous sense, we refer to it as
the cable rule. We notice that Equation (2.11) gives the dynamics of the Jacobian of the
state with respect to the initial condition z(0). The cable rule is therefore analogous
to the forward sensitivity formula for ODEs which provides the dynamics of Jacobian
of the state with respect to the parameters θ of the flow [Zhao, 2013]. This relation is
highlighted and explained in more detail in Appendix A.1. On this note, in Appendix A.7,
we derive the cable rule via Equation (2.5). Furthermore, in Appendix A.5, we derive the
instantaneous change of variables from the cable rule.

2.3.3 The Continuous Generalisation of the Total Derivative
Decomposition and Continuous Backpropagation

In the case that f = f(x(θ), y(θ)), then df
dθ = ∂f

∂x
dx
dθ + ∂f

∂y
dy
dθ , as θ contributes to both x and

y, which in turn determine f . If z(T ) = z(0) +
∫ T

0 f(z(t), θ(t), t)dt, then θ controls the
vector field at each time point during integration, hence we expect that these infinitesimal
contributions of the transformation from z(0) to z(T ) should be integrated. Indeed, as
we prove in Appendix A.2, the following holds:

dz(T )
dθ

=
∫ T

0

∂z(T )
∂z(t)

∂f(z(t), θ(t))
∂θ(t)

∂θ(t)
∂θ

dt, (2.13)

from which for θ(t) = θ, and for some function L = L(z(T )), we deduce:

dL

dθ
= ∂L

∂z(T )
dz(T )

dθ
=
∫ T

0

∂L

∂z(T )
∂z(T )
∂z(t)

∂f(z(t), θ)
∂θ

dt =
∫ T

0

∂L

∂z(t)
∂f(z(t), θ)

∂θ
dt

(2.14)
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thus giving an alternative and intuitive proof of continuous backpropagation [Pontrjagin,
1962; Chen, 2018]. In Appendix A.8, we show that the adjoint method can be used to
prove Equation (2.13), hence the continuous total derivative decomposition is equivalent
to continuous backpropagation. An alternate derivation of Equation (2.13) can be found
in the Appendix of [Massaroli, 2020].

2.3.4 AFFJORD as a Special Case of Augmented Neural ODE
Flows

As discussed in subsection 2.3.1, the ODE dynamics in Equation (2.8), can be seen as a
special case of the following joint ODE transformation:

w(T ) =
[

z(T )
z∗(T )

]
=
[

z(0)
z∗(0)

]
+
∫ T

0

[
f(z(t), z∗(t), θ)
g(z∗(t), z(t), ϕ)

]
dt. (2.15)

In this general form, the model is unsuitable to be used in practice for two reasons:
1) The transformation of z(0) to z(T ) is not necessarily injective. Indeed, the transforma-
tion from [z(0), z∗(0)] to [z(T ), z∗(T )] is injective due to the Picard–Lindelöf Theorem,
however, for two data points z′(0) and z′′(0), their images z′(T ), z′′(T ) might be identi-
cal as long as their respective augmented dimensions z′∗(T ), z′′∗(T ) differ.
2) The Jacobian determinant of this general transformation is computationally intractable.
Using the chain rule we can express the Jacobian determinant of this transformation as

∣∣∣∣det
(

dz(T )
dz(0)

)∣∣∣∣ =

∣∣∣∣∣∣det

 dz(T )
d
[
z(T ), z∗(T )

] d
[
z(T ), z∗(T )

]
d
[
z(0), z∗(0)

] d
[
z(0), z∗(0)

]
dz(0)

∣∣∣∣∣∣ . (2.16)

The middle term on the RHS of Equation (2.16) can be further developed via the cable
rule, to give the expression of the determinant of the Jacobian of augmented neural ODE
flows, which is not computationally feasible in general.
As explained in Section 2.3.1, the special case (AFFJORD) formulated in Equation (2.8),
mitigates the issues mentioned above.
Regarding issue 1), we have the following:

Proposition 2.3.1. The architecture of AFFJORD ensures that the transformation is injective.

Proof. Indeed, as z∗(t) is not dependent on external factors, and since z∗(0) is constant
regarding z(0), the end result z∗(T ) will always be the same. Hence, for z′(0) and
z′′(0) their images z′(T ) and z′′(T ) must be different, since their equality would imply
[z′(T ), z∗(T )] = [z′′(T ), z∗(T )] contradicting the Picard–Lindelöf Theorem.

Issue 2) is mitigated as Equation (2.16) simplifies to

∣∣∣∣det
(

dz(T )
dz(0)

)∣∣∣∣ =

∣∣∣∣∣∣det

[I, 0
] e

∫ T

0
∂f(z(t),z∗(t),θ)

∂z(t) dt+Ω[z]
2 (T )+...

B̄(T )
0 D̄(T )

[I

0

]∣∣∣∣∣∣ , (2.17)
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Fig. 2.4.: Example of the augmented multiscale architecture on MNIST dataset

for two block matrices B̄(T ) and D̄(T ). This is proven in Appendix A.6. In this case, the
[z] in Ω[z]

2 (T ) denotes the restriction of the Magnus expansion to the original dimensions.
In case that the base distribution is multivariate normal, from

− log p(z(0)) = − log
[
p(z(T ))

∣∣∣∣det
(

e
∫ T

0
∂f(z(t),z∗(t),θ)

∂z(t) dt+...
)∣∣∣∣ ]

we derive the following loss function:

L = ||Z(T )||2

2 −
∫ T

0
tr

∂f(z(t), z∗(t))
∂z(t) dt. (2.18)

2.3.5 Multiscale Architecture in Augmented Neural ODE Flows

With reference to Figure 2.4, the multiscale architecture in the augmented case per-
forms an Augmented Continuous Flow on the data as described in Subsection 2.3.1,
then squeezes the channels (the augmented as well as the original channels) as in the
original multiscale architecture. However after the second transformation the augmented
channels are removed and stored in a separated array (Array A). The data channels
are treated as before, that is, half of them are saved (Array B), and the other half are
squeezed again. After this process is finished we add new augmented channels, to repeat
the cycle. Note that in order to generate data by the inverse transformation, we need to
retrieve the transformed augmented dimensions previously stored (i.e., Array A).

2.4 Experiments

We compare the performance of AFFJORD with respect to the base FFJORD on 2D data
of toy distributions, as well as on standard benchmark datasets such as MNIST, CIFAR-10
and CelebA (32 × 32). In the case of the 2D data, we use the implementation of CNFs
provided in [Chen, 2018], since using the Hutchinson’s trace estimator and GPUs as in
FFJORD provides no computational benefits in low dimensions. In this case we also use
the non-adaptive Runge-Kutta 4 ODE solver, while for image data we use Dopri5, as well
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Fig. 2.5.: Probability density modeling capabilities of AFFJORD (second column) and FFJORD
(third column) on 2D data of toy distributions.

as the FFJORD implementation of [Grathwohl, 2019]. We use a batch size of 200 for
image data and a batch size of 512 for the toy datasets. In the case of image data, we
use a learning rate of 6 × 10−4, while for toy data the learning rate is set to 10−3. All
experiments were performed on a single GPU.

2.4.1 Toy 2D Datasets

In order to visualise the performance of the model, we first test FFJORD and AFFJORD
on 2D data of toy distributions, depicted in Figure 2.5. In both cases we use the Runge-
Kutta 4 solver with 40 time steps (160 function evaluations). In these examples, we
used a hypernet architecture, where the augmented dimensions were fed to a hypernet
(denoted as hyp) in order to generate the weights of the field of the main dimensions.
The expression of the vector field to be learnt is the following: dz

dt = f
(
[z(t), z∗(t)], θ(t) =

hyp(z∗(t), w)
)
, where dz∗(t)

dt = g(z∗(t), ϕ). Thus, the learnable parameters are w and
ϕ.

While both FFJORD and AFFJORD are capable of modelling multi-modal and discontin-
uous distributions, Figure 2.5 shows that AFFJORD has higher flexibility in modeling
the complex data distributions considered, in comparison to FFJORD. In the first row,
the target is the TY distribution, where the datapoints form letters and a cluster of
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Fig. 2.6.: Performance of FFJORD and AFFJORD on the Hash-Gaussian toy 2D dataset (left) and
TY toy 2D dataset (right).

Gaussian distributions. AFFJORD is more capable of separating the Gaussian spheres and
modelling the shape of the text.

On the second row AFFJORD is capable of separating the Gaussian distribution in the
center from the square that surrounds it. Furthermore, it separates the Gaussians in
the corners from the hash symbol properly. In Figure 2.6, we show the results of the
validation loss per iteration for both models. We can notice that the loss of our model
is roughly two standard deviations lower than the one of FFJORD. For each model the
experiment was repeated 30 times. The experiments provided here show that AFFJORD
is characterized by high flexibility of the vector field. Indeed, in FFJORD the vector field
changes more slowly, whereas in AFFJORD the field is able to change almost abruptly,
due to this greater flexibility in time 1. It is important to emphasize that AFFJORD retains
the ability to generate samples from the learnt distribution, by simply integrating in
the opposite direction. Indeed, for a given sample zs(T ) from the base distribution,
we augment it to z∗(T ), as z∗(T ) is the same for all data points. Then, we can simply
integrate backwards this concatenated vector [zs(T ), z∗(T )] to [zs(0), z∗(0)], drop the
generated augmented dimensions z∗(0), and simply keep the generated data point
zs(0).

2.4.2 Image Datasets

We show that AFFJORD outperforms FFJORD on MNIST, CIFAR-10 and CelebA (32 × 32).
There are several architectures of FFJORD that can be used for this application. Out of
the architectures that we tested, the one that performed best was the multiscale one,
with three convolutional layers with 64 channels each. The number of CNF blocks was 1,
and time was implemented by simply concatenating it as a channel into the data.

1Videos showing the comparison of dynamics between FFJORD and AFFJORD can be found at
https://imgur.com/gallery/kMGCKve
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Fig. 2.7.: Graphs of training and evaluation losses of FFJORD and AFFJORD on CIFAR-10 as well
as CelebA (32 × 32). We run the experiments 5 times. Lower is better.

When time was implemented via a hypernet, we observed that the training time increased
and performance decreased, especially in the case of CIFAR-10. For AFFJORD we use
the exact same base architecture, however, as in the case of 2D toy data, we enable the
evolution of the vector fields through time via a hypernet which takes the augmented
dimensions as an input, and outputs the weights of the main component. The augmented
dimensions are concatenated as a channel to the main channel of the data. The formulas
for both the main field and the augmented component remain unchanged from the
case of the 2D toy data, that is, dz

dt = f
(
[z(t), z∗(t)], θ(t) = hyp(z∗(t), w)

)
and dz∗(t)

dt =
g(z∗(t), ϕ).

The main difference here is that g(z∗(t), ϕ) is a fully connected network with one hidden
layer, which does not take as input all the dimensions of z∗(t) but merely 20 of them.
Number 20 was chosen during fine-tuning, as the best performance was reached in this
setting. The width of the hidden layer is also 20, as is the output. We fix 10 of these 20
dimensions and feed them to a linear hypernet with weight matrix shape [10, p] to output

Tab. 2.1.: Experimental Results for Density Estimation Models, in Bits/Dim for MNIST, CIFAR-10
and CelebA (32 × 32). Lower Is Better. The Multiscale Architecture Is Used in All
Cases.

MODEL MNIST CIFAR10 CelebA(32 × 32)
Real NVP 1.06 3.49 -
Glow 1.05 3.35 -
FFJORD 0.96 ±.00 3.37 ±.00 3.28±.00
AFFJORD 0.95 ± .01 3.32 ± .01 3.23 ± .00
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Fig. 2.8.: Samples generated from AFFJORD: MNIST and CelebA 32 × 32.

the p weights for the main component. It should be emphasized that the architecture of
FFJORD in the main dimensions remains unchanged in AFFJORD for fair comparison,
and we only fine-tuned the augmented structure in addition. Additional details about
the experimental settings can be found in Appendix A.9.

As we show in Table 2.1, AFFJORD slightly outperforms FFJORD on MNIST on the best
run, since both models reach optimal performance, as seen from the generated samples
in Figure 2.8. However, our model outperforms FFJORD on the CIFAR-10 and CelebA
(32 × 32) dataset, as illustrated in Table 2.1, as well as in Figure 2.7. Based on the
conducted experiments the farther FFJORD is from optimal performance, the larger
the improvements brought by AFFJORD are. The calculation of results is done as in
[Grathwohl, 2019], where for each run the best evaluation result over epochs is taken.
After 5 runs, for each model, the scores are averaged and reported in Table 2.1.

In the case of MNIST, both models were trained for roughly 9 days, while in the case of
CIFAR-10 and CelebA (32 × 32), they were trained for approximately 14 days. The results
corresponding to the Real NVP and Glow models, are taken from the original papers:
[Dinh, 2017] and [Kingma, 2018].

As in the previous case, AFFJORD can generate samples by backintegrating. However,
due to the use of the augmented multiscale architecture, where for each cycle we replace
the augmented dimensions, these replaced augmented dimensions must be saved in
an array for the backward generative pass. Examples of samples from AFFJORD are
shown in Figure 2.8 for both MNIST and CelebA (32 × 32) datasets. Additional generated
samples from both AFFJORD and FFJORD can be found in Appendix A.4.
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2.5 Limitations and Future Work

Number of Function Evaluations (NFE)

As originally reported in [Grathwohl, 2019], the number of function evaluations is one
of the main bottlenecks of Neural ODE-based models. Interestingly, if the concatenation
architecture is used in AFFJORD, that is, we only replace the concatenated time channel
in FFJORD with the augmented channel in AFFJORD, then the number of function
evaluations decreases significantly. This aspect is illustrated in Figure 2.9. However,
the hypernet architecture of AFFJORD is prone to the issue of the number of function
evaluations. Indeed, forward passes in AFFJORD-hypernet can be challenging, as the
learnt vector field becomes too stiff with an increasing number of integration steps.

Fig. 2.9.: Number of function evaluations of FFJORD and AFFJORD when the ’concatenate’
architecture is used.

Addition of Self-Attention

[Ho, 2019] describe three modeling inefficiencies in prior work on flow models. One
such factor is the lack of expressive power of convolutional layers used in normalizing
flow models. Considering the performance improvements demonstrated in [Ho, 2019],
in the future we intend to test the improvement in performance brought by the addition
of self-attention in AFFJORD.

Data Dependent Augmented Dimensions

As described in Section 2.3.1, several simplifications are made in the architecture of
the general augmented neural ODE flows, in order to ensure immediate bijectivity and
reduce the computational complexity. However, other possible architectures exist, where
for example z∗(0) is dependent on z(0), and g(z∗(t)) = −z∗(t). This would ensure that
the augmented dimensions converge to zero, providing bijectivity. Since all augmented
dimensions would be different during training, this would imply that the data is lifted to
a higher plane, enabling richer transformations. Finding an approximation of the loss in
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Equation (2.16) remains a challenge for the future however.

Jacobian Regularization

Theoretically speaking, all performance enhancing modifications that can be applied
to FFJORD are also applicable to AFFJORD. Such a modification which reduces the
training time of FFJORD is presented in [Finlay, 2020], where both the vector field and
its Jacobian are regularized. Thus, an interesting research direction in the future would
be to test how the performance of AFFJORD is affected by such amendments.

2.6 Conclusion

We have presented the generalization of the total derivative decomposition in the contin-
uous sense as well as the continuous generalization of the chain rule, to which we refer
as the cable rule. The cable rule is analogous to the forward sensitivity of ODEs in the
sense that, it gives the dynamics of the Jacobian of the state with respect to the initial
conditions, whereas forward sensitivity gives the dynamics of the Jacobian of the state
with respect to the parameters of the flow. Motivated by this contribution, we propose a
new type of continuous normalizing flow, namely Augmented FFJORD (AFFJORD), which
outperforms the CNF state-of-art-approach, FFJORD, in the experiments we conducted
on the task of density estimation on both 2D toy data, and on high dimensional datasets
such as MNIST, CIFAR-10 and CelebA (32 × 32).
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As elucidated in our introduction, in Diffusion Probabilistic Models (DPMs), the task of
modeling the score evolution via a single time-dependent neural network necessitates
extended training periods and may potentially impede modeling flexibility and capacity.
To counteract these challenges, in this chapter, we propose leveraging the independence
of learning tasks at different time points inherent to DPMs. More specifically, we partition
the learning task by utilizing independent networks, each dedicated to learning the
evolution of scores within a specific time sub-interval. Further, inspired by residual flows,
we extend this strategy to its logical conclusion by employing separate networks to inde-
pendently model the score at each individual time point. As empirically demonstrated on
synthetic and image datasets, our approach not only significantly accelerates the training
process by introducing an additional layer of parallelization atop data parallelization,
but it also enhances density estimation performance when compared to the conventional
training methodology for DPMs.
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3.1 Introduction

Forward Diffusion Processes (FDPs) represent a category of Markov chains that method-
ically metamorphose the data distribution into a standard multivariate normal one by
incrementally corrupting the data samples. Within the scope of Diffusion Probabilistic
Models (DPMs), the machine learning task encompasses the training of a neural network
with the objective of emulating the reverse dynamics of this process [Sohl-Dickstein,
2015]. To this end, different approaches have been developed, notably the denoising
[Vincent, 2011; Ho, 2020] and the sliced score matching loss [Hyvärinen, 2005; Song,
2020]. In both cases, the observed samples are used to train a function approximator in
order to model the score, that is, the gradient field of the log-likelihood of the probability
density function (pdf) from which the samples originate.

The performance of such models improves as the number of steps in the FDP increases.
The optimum is naturally reached at the limit when the number of steps tends to infinity.
In this case, the FDP can be depicted as a Stochastic Differential Equation (SDE). This
SDE defines a distinct distribution at every temporal point of the diffusion process, with
the initial and terminal ones being the data and the standard Gaussian distributions
respectively. Given samples from the data distribution, it is possible to efficiently generate
samples from the distribution at any specified time ti. These generated samples can then
be utilized to train a neural network to approximate the score at time ti. The common
approach [Ho, 2020; Song, 2021; Rombach, 2022] is to train a single time-varying neural
network to model all scores, i.e., to model the evolution of the score (Figure 3.1).

The Fokker-Planck equation establishes the connection between SDE diffusion models
and continuous normalizing flows [Song, 2021]. Indeed, the estimated scores provide the
dynamics of the continuous normalizing flow (CNF) which describes the evolution of the
distribution determined by the SDE. Leveraging on this connection, the CNF framework
can be deployed to generate data, or to estimate the likelihood of unobserved points
through the application of the instantaneous change of variable.

Despite the inherent equivalence and functionality between SDE diffusion processes and
CNFs, their optimization techniques exhibit differences. CNFs are trained by maximizing
likelihood, a methodology that is suboptimal for numerous reasons. A key reason is
that normalizing flows, being designed as a sequence of transformations, necessitate the
retention of the entire sequence in memory during training, as it is infeasible to optimize
a step in the sequence independently from the rest. While CNFs alleviate the memory
bottleneck via the adjoint method, the continuity requirement dictates that all vector
fields at all time points must be learned by a singular time-dependent neural network,
which impinges upon the transformation’s flexibility. The composition of multiple CNFs
together is rendered impracticable due to memory and computational constraints, as
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the sequential nature of the composition, as before, implies that each additional CNF
introduces a new set of parameters and extends the training duration. In this context,
each CNF is referred to as a CNF block.

Fig. 3.1.: Instead of using a time dependent network to learn the scores for all times (below:
blue), at each time point we can use a model per score (above: orange), naturally
allowing parallel training of diffusion models.

The aforementioned points underscore the impracticability of independent learning of
vector fields in the CNF approach. To expedite training and augment model flexibility, we
leverage the intrinsic property of DPMs that allows scores at different time points to be
optimized independently. Consequently, instead of training a single time-varying U-Net
to model the scores of the distributions at all time points, we partition the training task
by dividing the integration time interval of the SDE into smaller sub-intervals. For each
sub-interval, we employ a time-dependent U-Net to model the evolution of scores for the
distributions defined within that sub-interval. This strategy is referred to as time-varying
parallel score matching (TPSM). Each such U-Net corresponds to a CNF block within the
CNF framework, and their composition provides the complete evolution of distribution
as determined by the FDP.

With an increasing number of such sub-intervals, the task assigned to each U-Net is
simplified, and in the limit, each time sub-interval converges to a point. Consequently, in
addition to the previously described strategy, we train a multitude of smaller networks,
which are not time-dependent, such that each network learns the score at a single time
point of the diffusion process (Figure 3.1). This methodology is designated as Discrete
Parallel Score Matching (DPSM).

We evaluate our Parallel Score Matching (PSM) methodologies on 2D data, in addition
to image datasets such as CIFAR-10, CelebA 64×64, and ImageNet 64×64, [Liu, 2015;
Deng, 2009]. The findings attest that our approach not only enhances the log-likelihood
results, but also expedites the training process, without incurring penalties related to
memory or inference time.
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3.2 Background and Related Work

3.2.1 Normalizing Flows (NFs)

Normalizing Flows: A Normalizing Flow [Dupont, 2019; Tabak, 2013; Rezende, 2015;
Dinh, 2015] is a transformation defined as a sequence of diffeomorphisms that converts
a base probability distribution (e.g., a standard normal) into another distribution by
warping the domain on which they are defined. Let Z be a random variable, and define
X = g(Z), where g is a diffeomorphism with inverse h. If we denote their probability
density functions by fZ and fX , the change of variable theorem states that:

fX(x) = fZ(z)
∣∣∣∣det

(
dz

dx

)∣∣∣∣ = fZ(h(x))
∣∣∣∣det

(
dh(x)

dx

)∣∣∣∣ . (3.1)

The objective is the optimization of parameters of h to maximize the likelihood of sampled
data points x. After training, one can input any test point x on the RHS of Equation
(3.1), and calculate its likelihood. For the generative task, being able to easily recover
g from h is essential, as the generated point xg will take form xg=g(zs), where zs is a
sampled point from the base distribution fZ .
For increased modeling flexibility, we can use a chain (flow) of transformations, xi−1 =
gi(xi), i ∈ [n], that is xi = hi(xi−1), i ∈ [n]. In this case, due to chain rule we have:

fX0(x0) = fXn(xn)
∣∣∣∣det

(
dxn

dx0

)∣∣∣∣ = fXn(hn(...h1(x0)))
n∏

i=1

∣∣∣∣det
(

dhi(xi−1)
dxi−1

)∣∣∣∣ , (3.2)

where x0 is a data point. The interested reader can find a more in-depth review of
normalizing flows in [Kobyzev, 2021] and [Papamakarios, 2021].

Neural ODE Flows: Neural ODEs [Chen, 2018] are continuous generalizations of
residual networks:

xti+1 = xti + ϵf(xti , ti, θ)

→ x(t) = x(0) +
∫ t

0
f(x(τ), τ, θ)dτ , as ϵ → 0, (3.3)

where for a network with finite weights, injectivity is guaranteed by the Picard–Lindelöf
theorem. In [Chen, 2018], the expression for the instantaneous change of variable is
derived, which enables one to train continuous normalizing flows and perform likelihood
estimation:

log p(x(0)) = log p(x(T )) +
∫ T

0
tr

∂f(x(t), t, θ)
∂x(t) dt, (3.4)

where x(0) represents a sample from the data. Such models are better known as
Continuous Normalizing Flows (CNFs).
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Invertible Residual Flows (IRFs): These models [Behrmann, 2019] are similar to the
discretized version of Continuous Normalizing Flows:

xti+1 = xti + f(xti , θti)

It can be noticed that in this case the output of the residual block is not scaled before
being added to the input, and furthermore, each block is comprised of a different set of
trainable parameters, instead of allowing the behaviour of the model to evolve via a time
input. As injectivity cannot be guaranteed via the Picard–Lindelöf theorem, bijectivity
has to be enforced by imposing the contraction condition Lip(f(xti , θti)) < 1, where
Lip(f(xti , θti)) is the Lipschitz constant of f(xti , θti).

3.2.2 Diffusion Probabilistic Models (DPMs)

Denoising Diffusion Models: A forward diffusion process or diffusion process [Sohl-
Dickstein, 2015] is a fixed Markov chain that gradually adds Gaussian noise to the data
according to a schedule {bt|t ∈ [n]}:

q(xt|xt−1) := N (xt−1
√

1 − bt, btI). (3.5)

Such a process transforms the data distribution into a standard multivariate normal
distribution. If we denote at = 1 − bt and āt =

∏t
s=1 as, then we can write:

q(xt|x0) = N (x0
√

āt, (1 − āt)I). (3.6)

The reverse process conditioned on the initial sample is also described by a chain of
Gaussian distributions:

q(xt−1|xt, x0) = N (µ(xt, x0), Σ(t)), (3.7)

where
µ(xt, x0) = µ(xt, x0(xt, ε)) = 1

√
at

(
xt − bt√

1 − āt
ε
)
,

Σ(t) = btI.

The goal is to approximate this reverse process via

p(xt−1|xt) := N (µθ(xt, t), Σ(t)) (3.8)

that converts the standard multivariate normal distribution into the data distribution.
To this end, for each step t, the KL divergence between q(xt−1|xt, x0) and p(xt−1|xt) is
minimized, which amounts to minimizing

Ex0,xt ||µθ(xt, t) − µ(x0, xt)||2, (3.9)
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or equivalently
Ex0,ε||εθ(x0

√
āt +

√
(1 − āt)ε, t) − ε||2, (3.10)

for ε ∼ N (0, I), data samples x0, and a neural network εθ(xt, t) [Ho, 2020].

SDE Diffusion Models and their CNF Representation: For an ε ∼ N (0, I), the forward
diffusion process defined in Equation (3.5) can be written as

xt = xt−1
√

1 − bt +
√

btε. (3.11)

As derived in [Song, 2021], the continuous counterpart of this process takes the form

dx(t) = −1
2b(t)x(t)dt +

√
b(t)dw. (3.12)

In this case Equation (3.6) becomes

q(xt|x0) = N (x0µt, σ2
t I), (3.13)

where µt = e− 1
2

∫ t

0 b(s)ds and σt =
√

(1 − e−
∫ t

0 b(s)ds).
As shown through the Fokker-Plack equation, the evolution of the probability density
function of the data, as dictated by the FDP, is identical to the evolution dictated by the
following ODE transformation:

dx(t) = −1
2b(t)[x(t) + ∇x(t) log pt(x(t))]dt = ft(x(t))dt. (3.14)

Indeed, the Fokker-Planck equation of

dx = h(x, t)dt + g(t)dw = h(x, t)dt + g(t)Idw (3.15)

is
∂pt(x)

∂t
= −

d∑
i=1

∂

∂xi

[
hi(x, t)pt(x)

]
+ 1

2

d∑
i=1

d∑
i=j

∂2

∂xi∂xj
[g2(t)Ii,jpt(x)]. (3.16)

Since the entries ij, where i ̸= j of I are zero we have:

∂pt(x)
∂t

= −
d∑

i=1

∂

∂xi

[
hi(x, t)pt(x)

]
+ 1

2

d∑
i=1

∂2

∂xi∂xi
[g2(t)pt(x)], (3.17)

∂pt(x)
∂t

= −
d∑

i=1

∂

∂xi

[
hi(x, t)pt(x)

]
+ 1

2

d∑
i=1

∂

∂xi
[g2(t)∂pt(x)

∂xi
], (3.18)

∂pt(x)
∂t

= −
d∑

i=1

∂

∂xi

[
hi(x, t)pt(x)

]
+ 1

2

d∑
i=1

∂

∂xi
[g2(t)∂ log pt(x)

∂xi
pt(x)], (3.19)

∂pt(x)
∂t

= −
d∑

i=1

∂

∂xi

[
hi(x, t)pt(x)

]
+ 1

2

d∑
i=1

∂

∂xi
[g2(t)(∇x log pt(x))ipt(x)], (3.20)
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∂pt(x)
∂t

= −
d∑

i=1

∂

∂xi

[
hi(x, t)pt(x) − 1

2g2(t)(∇x log pt(x))ipt(x)
]
, (3.21)

∂pt(x)
∂t

= −
d∑

i=1

∂

∂xi

[(
hi(x, t) − 1

2g2(t)(∇x log pt(x))i
)
pt(x)

]
, (3.22)

which is the Fokker-Planck equation of

dx(t) = h(x, t) dt − 1
2g2(t)∇x(t) log p(x(t), t)dt. (3.23)

Setting h(x, t) = −1
2b(t)x(t) and g(t) =

√
b(t), we have

dx(t) = −1
2b(t)[x(t) + ∇x(t) log pt(x(t))]dt = ft(x(t))dt. (3.24)

Knowing ft allows us to perform data generation and likelihood estimation, through the
framework of continuous normalizing flows. It can be observed that the only unknown in
ft, is the score ∇x(t) log pt(x(t)). This quantity can be modelled using a neural network
sθ(x(t), t) trained either through sliced score matching [Song, 2020]:

min Ext∼p(xt)[
1
2 ||sθ(xt, t)||2 + div(sθ(xt, t))], (3.25)

or the equivalent MSE denoising loss [Ho, 2020; Kingma, 2021]:

min Ex0,ε||sθ(x0µt + σtε, t) − (− ε

σt
)||2. (3.26)

One can prove that the last loss ensures our network sθ learns the scores. First,

θ∗ = arg min
θ

Ex0,ε||sθ(x0µt + σtε) − (− ε

σt
)||2, (3.27)

θ∗ = arg min
θ

Ex0,xt ||sθ(xt) − (−xt − x0µt

σ2
t

)||2, (3.28)

θ∗ = arg min
θ

Ex0,xt ||sθ(xt) − ∇xt log p(xt|x0)||2. (3.29)

Second, we have

E(x0,xt)∼p(x0,xt)||sθ(xt) − ∇xt log p(xt|x0)||2 =

= Ext∼p(xt)Ex0∼p(x0|xt)||sθ(xt) − ∇xt log p(xt|x0)||2. (3.30)

Then, we can develop the last expression even further as follows

Ext∼p(xt)Ex0∼p(x0|xt)||sθ(xt) − ∇xt log p(xt|x0)||2 =

Ext∼p(xt)Ex0∼p(x0|xt)||sθ(xt) − Ex0∼p(x0|xt)∇xt log p(xt|x0)+

+Ex0∼p(x0|xt)∇xt log p(xt|x0) − ∇xt log p(xt|x0)||2
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= C + Ext∼p(xt)Ex0∼p(x0|xt)||sθ(xt) − Ex0∼p(x0|xt)∇xt log p(xt|x0)||2,

where C does not depend on θ. Thus,

θ∗ = arg min
θ

Ext∼p(xt)||sθ(xt) − Ex0∼p(x0|xt)∇xt log p(xt|x0)||2. (3.31)

Finally, since

Ex0∼p(x0|xt)∇xt log p(xt|x0) =
∫

∇xt log p(xt|x0)p(x0|xt)dx0 =

=
∫

∇xt log p(xt, x0)p(x0, xt)dx0
p(xt)

=
∫

∇xtp(x0, xt)dx0
p(xt)

= ∇xt

∫
p(x0, xt)dx0
p(xt)

=

= ∇xtp(xt)
p(xt)

= ∇xt log p(xt),

we conclude that

θ∗ = arg min
θ

Ext∼p(xt)||sθ(xt) − ∇xt log p(xt)||2. (3.32)

The facts proven above, motivate and justify Algorithm 1.

Algorithm 1 Standard Approach in Diffusion Models

Input: data {x1, ..., xn}, batch-size p
Train model sθ(t)
repeat

sample τ1, ..., τp from [0, 1]
sample x0

π(1), ..., x0
π(p) from {x1, ..., xn}

generate xτ1
π(1), ..., x

τp

π(p) using Equation (3.13)
minimize Σj ||εθ(xτj

π(j)(εj), τj) − (εj)||2.

until convergence

3.3 PSM Framework and Relation to Piece-wise
Continuous Flows and IRFs

In the context of continuous normalizing flows, given the forward integration, the
expression x(t) = x(0) +

∫ T
0 ftdt is comprised of all vector fields ft = f(x(t), θ, t),

parameterized by the network’s trainable parameters, as well as the time input. Increas-
ing model capacity by using a distinct neural network to learn a vector field at each
time t is not feasible, as the entire function x(tN ) = x(x0, ft1(θt1), ft2(θt2), ..., ftN (θtT ))
would need to be maintained in memory, and the transformation may not necessarily
be continuous. Memory constraints also surface when employing multiple CNF blocks
within a piece-wise continuous flow, as each block

∫ ti
ti−1

f(x(τ), θi, τ)dτ introduces a new
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Tab. 3.1.: A Comparison of the Properties of Parallel Score Matching (PSM) Approaches with
Other Generative Diffeomorphism-Based Frameworks.

Method: CNF SA-DPM PSM-DPM
Computationally Demanding Loss

√
× ×

Memory Bottleneck
√

× ×
Limited Variability In Time

√ √
×

Necessity To Devise A diffeomorphism
√

× ×
Score Optimization Interdependency

√ √
×

set of parameters θi. Given that these transformations are interconnected in a chain,
they must coexist in memory during the maximum likelihood optimization procedure.
Moreover, continuous normalizing flows present a formidable optimization task, as the
time-dependent network f(x(t), θ, t) is obligated to generate an evolution process for
the data distribution that culminates in a standard normal distribution. The loss function
further adds to the complexity, as not only it contains the end point of the integration
path x(T ) = x(0) +

∫ T
0 f(x(t), θ, t)dt, but also the integral of the divergence along that

integration path
∫ T

0 tr ∂f(x(t),t,θ)
∂x(t) dt.

Contrarily, diffusion models parameterized by time-dependent neural networks ame-
liorate the complexity of learning the evolution process. This is because the forward
diffusion delineates the time-based evolution of the data distribution, simplifying the
framework’s task to merely modeling the already defined vector fields. However, if
parameterized by a single time-varying network, these models still grapple with limited
flexibility due to a single set of parameters (model) being tasked with modeling all the
vector fields defined by the FDP. Moreover, the optimization of a vector field at time t

is dependent on the optimization of other vector fields at various time points, which
hampers the speed of the training process. This standard approach (SA) in Diffusion
Probabilistic Models (DPMs) is outlined in Algorithm 1 for comparison, and is abbreviated
as SA-DPM.

Disadvantages of SA in DPMs

1) The flow’s adaptability over time is limited due to the employment of a single
time-varying network.
2) The optimization of score approximation at any given time ti remains influenced
by the optimization of score approximation at any other time tj .

As shown in Appendix B.4, the scores in a diffusion process evolve continuously, with the
given PDE dynamics:

∂s(x, t)
∂t

= 1
2b(t)∇xtr

∂s(x, t)
∂x

+ 1
2b(t)∂s(x, t)

∂x
(x + s(x, t)).
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Given that the distribution at each time ti and its associated score are intrinsically deter-
mined by the data distribution and the Forward Diffusion Process (FDP), we can expedite
training by concurrently learning the scores ∇xti

log p(xti , ti) through each sθi
(xti) at all

times ti. If our models proficiently approximate these scores, the transformation resulting
from combining these models will be smooth.

This instigates partitioning the diffusion process, specifically, the interval t ∈ [0, 1] is
divided into

⋃N−1
i=0 [ti, ti+1]. Thereby, it remains feasible to train a time-dependent neural

network sθi
(xt, t) to acquire scores ∇xt log p(xt, t) for time t ∈ [ti, ti+1]. Such an ap-

proach diminishes the complexity of tasks for each model, bolstering modeling capability,
whilst preserving time continuity. Moreover, given the parallelizability of training, a
solitary model is loaded in memory per device during training, and post-training it can
be stored on a disk and recalled at testing. The training procedure of this framework is
described in Algorithm 2. In this case, each score modeling network sθi

(xt, t) corresponds
to a CNF block in the continuous normalizing flow representation.

Algorithm 2
Time-varying Parallel Score Matching (TPSM)

Input: data {x1, ..., xn}, batch-size p
Split [0, 1] into ∪N−1

i=0 [ti, ti+1]
for i = 0 to N − 1, in parallel do

Train model sθi

repeat
uniformly sample τ1, ..., τp from [ti, ti+1]
sample x0

π(1), ..., x0
π(p) from {x1, ..., xn}

generate xτ1
π(1), ..., x

τp

π(p) using Eq. 3.13

minimize Σj ||εθi
(xτj

π(j)(εj), τj) − (εj)||2

until convergence
end for

Algorithm 3
Discrete Parallel Score Matching (DPSM)

Input: data {x1, ..., xn}, batch-size p
Discretize [0, 1] into {t0 = 0, t1, ..., tN = 1}
for i = 1 to N , in parallel do

Train model sθi

repeat
uniformly sample ti from {t0, ..., tN }
sample x0

π(1), ..., x0
π(p) from {x1, ..., xn}

generate x
ti
π(1), ..., x

ti
π(p) using Eq. 3.13

minimize Σj ||εθi
(xti

π(j)(εj)) − (εj)||2

until convergence
end for

Elevating this approach to its apex, the duration of each interval approaches 0, thus we
utilize a single network to model the score per time-point. This framework corresponds to
an invertible residual flow with infinitesimal scaling, as invertibility and differentiability
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are guaranteed by the fact that the learned transformation approximates the diffusion
process. A description of this training procedure is given in Algorithm 3.

A comparison of the properties of Parallel Score Matching (PSM) with other genera-
tive diffeomorphism-based frameworks can be found in Table 3.1. Details about the
generation procedure and likelihood estimation in the PSM framework can be found in
Appendix B.1.

3.4 Experiments

We contrast the density estimation performance of DPMs trained via parallel score
matching and those trained through the standard approach (SA-DPM). We conduct
experiments on 2D data of toy distributions, alongside standard benchmark datasets
including CIFAR-10, CelebA, and ImageNet.

For the 2D toy distribution data scenario, we solely compare the TPSM method against
the baseline, namely, SA-DPM. The batch size across all experiments is 512, and we
employ a learning rate of 10−3. Each network was trained on a single CPU of equivalent
performance and shares the same architecture in both approaches. This network is an
MLP comprised of three hidden layers, wherein the non-linearity is provided by the ELU
activation function.

Concerning standard image benchmark datasets, within the TPSM approach, we adopt
the torch implementation [Wang, 2020] of the network originally proposed in [Ho, 2020]
which, for the purpose of equitable comparison, is also utilized in SA-DPM. Similarly,
within the DPSM approach, we opt for the even simpler basic U-Net, which originally
presented the U-Net architecture in [Ronneberger, 2015]. For all models, we implement
a batch size of 32 on ImageNet and CelebA, and a batch size of 128 for CIFAR-10. In
DPSM we adopt a learning rate of 10−3, while in TPSM and SA-DPM this is reduced to
2 × 10−4. Each neural network across all three methods was trained on a single GPU
with RTX-2080 level of performance. As in the 2D data experiments, we utilize the ELU
activation function.

At no stage do we employ data parallelization, which constitutes an auxiliary paralleliza-
tion strategy that complements the methodology presented in this chapter.

3.4.1 Toy 2D Datasets

To visually discern the distribution modeling capabilities between the baseline and the
TPSM approach, we initially test both frameworks on 2D toy data. The two distributions
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we examine are TY (refer to the upper row of Figure 3.2) and HG (lower row of
Figure 2.5). The time-varying network deployed is identical in both methods and
for both distributions. More specifically, it is an MLP with the subsequent structure:
4 → 100 → 150 → 100 → 2. It merits mention that this model’s input is 4-dimensional,
as the model’s time variability is enabled by appending the time component t to the 2D
data input x(t). The output is 2-dimensional, as it predicts the score at point x(t) at time
t, i.e., [s1(θ), s2(θ)] = sθ = sθ(x1(t), x2(t), t, t).

Fig. 3.2.: Probability density modeling capabilities of SA (second column), TPSMA (third column)
and TPSMC (fourth column) on 2D data of toy distributions. The performance of
TPSMB is shown in Appendix B.6.

As previously described, in SA-DPM the model attempts to learn all the scores of the
evolution of the distribution dictated by the (DDPM) forward process:

dx(t) = −1
2b(t)[x(t) + ∇x(t) log pt(x(t))]dt; t ∈ [0, 1],

where we set b(t) = 10t.

Tab. 3.2.: A comparison of the results between SA-DPM and TPSM variants. The results are
given in NLL (lower is better). Parallel training time is given in parentheses (blocks ×
hours per block).

Method: SA-DPM TPSMA TPSMB TPSMC

TY 0.76 (1× 4h) 0.69 (2× 1h) 0.64 (4× 1h) 0.58 (200× 1h)
HG 1.11 (1× 1.3h) 1.07 (2× 0.3h) 1.04 (4× 0.3h) 1.03 (200× 0.3h)
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In contrast, for the TPSMA approach, we train two models (networks), with the initial
model spanning the time interval [0, 0.1] and the subsequent one covering [0.1, 1]. In
the case of TPSMB, we partition the diffusion process into four subintervals with the
following splits {0, 0.02, 0.1, 0.3, 1}. Conversely, in the extreme TPSMC approach, we
utilize 200 such networks, where network i is trained to learn the scores corresponding
to the evolution of the distribution dictated by the identical process, constrained to the
time interval t ∈ [ i

200 , i+1
200 ].

As evidenced in Figure 3.2, TPSM demonstrates a substantially enhanced performance in
the evaluated tasks, when juxtaposed with the baseline (SA-DPM), notwithstanding the
fact that the latter underwent a training duration four times lengthier. In the initial row,
the intended target is the TY distribution, a notably intricate and arduous 2D distribution
to model. It becomes apparent that the baseline exhibits difficulty in modeling such a
distribution, as it fails to adequately delineate the distinct modalities constituting the
probability density function. One could conjecture that a considerable enhancement of
the model size would likely yield superior performance from the SA-DPM, albeit this
would inevitably augment the already substantial training duration. Moreover, when
considering more realistic scenarios involving high-dimensional data, the size of the
network would inevitably be constrained due to memory-related limitations. Analogous
distinctions can be discerned in the second row (HG distribution). In Table 3.2, we
present the results of the test NLL for both models across both datasets, in addition to
the difference in training time. The experiments demonstrated herein indicate that the
TPSM approach is characterized by high flexibility of the vector field.

TPSM naturally retains the ability to generate samples from the learnt distribution and
perform likelihood estimation by employing Equations (B.1) and (B.2) (Appendix B.1).
In addition, any ODE solver can be used, including adaptive ones, identically as in the
case of CNFs. In our experiments we use the Runge-Kutta-4 (RK4) method and we
precisely calculate the divergence during validation, as there is no necessity to utilize the
Hutchinson’s trace estimator [Hutchinson, 1990; Grathwohl, 2019] due to the data’s low
dimensionality.

3.4.2 Image Datasets

In this section, we showcase the enhanced performance attained by employing PSM
methods on image data. We parameterize the SA-DPM model using the time-varying
U-Net architecture introduced in [Ho, 2020] and set the number of channels to 64. The
same network is utilized in each block for the TPSM approach.

The initial TPSM variant explored, designated as TPSM0, follows a similar approach as
TPSMA in the synthetic 2D data case, wherein the diffusion interval [0, 1] is partitioned
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into two subintervals: [0, 0.1] and [0.1, 1]. By training each network in each block for
half the number of parameter updates compared to the SA-DPM network, the training
time is reduced by 50% through parallelization. Moreover, improvements in likelihood
estimation results are observed (Table 3.3), with no adverse effects on inference time
or memory usage, as illustrated in Tables B.4, B.5, and B.6 in Appendix B.2. During the
inference phase, 100 steps were executed within the interval [0, 0.1] and 900 steps within
[0.1, 1]. Moreover, we evaluate TPSM1, which consists of 10 blocks, and to investigate

Tab. 3.3.: The results of TPSM0, where the two time subintervals have unequal length. In
parentheses we give the number of GPUs (blocks) × the time of training per block.

Method: CIFAR-10 CelebA 64×64 ImageNet 64×64
SA-DPM 3.13 (1× 72h) 2.06 (1× 72h) 3.62 (1× 180h)
TPSM0 3.12 (2× 36h) 1.92(2× 36h) 3.55 (2× 90h)

the limiting behavior of TPSM, we introduce TPSM2, comprised of 100 blocks. For
TPSM1, block i models the score associated with times t ∈ [ i

10 , i+1
10 ], whereas in the

case of TPSM2, this changes to t ∈ [ i
100 , i+1

100 ]. The results are given in Table 3.4 and
demonstrate significant improvements in density estimation and training time through
parallelization. We observe that TPSM0 outperforms TPSM1, attributable to the decision
to utilize the DDPM setting, where the majority of the local score evolution transpires
when t approaches 0, [Nichol, 2021b]. This insinuates that the results of TPSM1 and
TPSM2 could experience significant enhancements if more recent and efficient settings
were employed, such as Flow-Matching, [Lipman, 2023], where the score’s evolution
is distributed more uniformly over time. Such is the case for 2D toy data as shown in
Appendix B.5.

As in the case of 2D data, we set b(t) = 10t in all cases. The RK4 solver (1k steps) was
used during density estimation in SA-DPM, and in TPSM. If the Euler method is used, a
higher number of integration steps is suggested (≥ 5k), as otherwise sub-optimal results
can be obtained, which overestimate the performance of the model. Generated samples
from such models can be found in Appendix B.3. In Appendix B.2, we provide results
in the case that SA-DPM and TPSM2 are trained for the same number of parameter
updates.

Tab. 3.4.: Results comparing the performance of SA-DPM and the parallel score-matching ap-
proaches. We test the models on CIFAR-10, CelebA, and ImageNet (64x64). The
results are given in bits/dim (lower is better), and the training time is given in
parentheses.

Method: CIFAR-10 CelebA 64×64 ImageNet 64×64
SA-DPM 3.13 (1× 72h) 2.06 (1× 72h) 3.62 (1× 180h)
TPSM1 3.11 (10× 9h) 2.07 (10× 9h) 3.60 (10× 22h)
TPSM2 2.93 (100× 4.5h) 1.90 (100× 4.5h) 3.55 (100× 14h)
DPSM 2.93 (1000× 1.5h) 1.94 (1000× 2.5h) 3.59 (1000× 7h)
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Fig. 3.3.: Random non cherry-picked CIFAR-10 and CelebA samples generated by the DPSM with
1000 training/generative steps.

The model implemented in the DPSM framework differs significantly, as it does not
depend on time. In this instance, we elect to employ the initial U-Net as introduced
and implemented in the pioneering U-Net paper [Ronneberger, 2015]. The channel
architecture is configured as follows: (3, a, a ∗ 2, a ∗ 4, a ∗ 8, a ∗ 16, a ∗ 8, a ∗ 4, a ∗ 2, a, 3).

When a is set to 64, this architecture aligns with the standard implementation. The
discretization process incorporates 1000 steps, signifying the use of 1000 basic U-Nets,
each per step. The parameters b(t) are defined as previously, b(t) = 10t. The classical non
time-varying U-Net exhibits approximately 3.5 times faster training time per parameter
update compared to the time-varying U-Net. Coupled with fewer parameter updates,
this accelerates DPSM training, making it up to 50 times quicker than that of SA-DPM.
Additionally, the U-Net’s reduced complexity facilitates usage of batch sizes that are
four times larger than in the time-varying scenario. However, DPSM implementation
necessitates interpolation techniques for precise likelihood estimation. For our exper-
iments involving a thousand networks, we simply interpret the ODE as a piece-wise
constant function, specifically, in CNF block i, the vector field is defined to be constant,
and is described by the optimized score approximator si(θ) at time ti. Utilizing the Euler
method, likelihood estimation is performed with 5k steps and generation with 1k steps,
avoiding interpolation in the generation process. Figure 3.3 presents generated samples
of CIFAR-10 and CelebA. Detailed information on the number of parameter updates for
each model and dataset is available in Table B.2 in Appendix B.2. Although the main
focus of this thesis is on density estimation performance quantified using rigorous scien-
tific metrics like KL divergence (bits/dim), in Appendix B.2, we present results relating
to the quality of generated samples, evaluated using the widely accepted 2-Wasserstein
distance approximation (FID), [Seitzer, 2020]. Further experiments applying TPSM on
time series for anomaly detection are given in Appendix B.7.
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3.5 Limitations and Future Work

3.5.1 Number of Computing Units and Likelihood Estimation in
DPSM

The DPSM framework fundamentally relies on parallel computing, which necessitates a
substantial number of computing units. In fact, the true advantages of parallelization
within DPSM can only be fully exploited when one has access to computing clusters.
Conversely, the TPSM framework can be effectively operated even by those with access
to a single GPU, provided that the number of blocks is kept low. As demonstrated
earlier, training two CNF blocks sequentially (as in the TPSM0 scenario) requires the
same duration as training a single block within the SA-DPM framework. However, this
approach results in enhanced performance, as evidenced in Table 3.3.

Though the training process can be performed in parallel, the generation and likelihood
estimation processes are inherently sequential. In the context of DPSM, it is necessary to
interpolate between successive models to carry out accurate likelihood estimation. The
generation process, on the other hand, remains unaffected.

3.5.2 Tailored TPSM Models

In this study, due to computational simplifications, we chose to employ smaller, older
models across all three frameworks (SA-DPM, TPSM, DPSM). Our main objective was to
demonstrate that the latter two methods outperform the first one. In all instances, for
fair comparison, we used models in the individual blocks (steps) in the TPSM (DPSM)
approach that were equal to or smaller than the ones used in SA-DPM. Looking ahead, it
would be valuable to remove these restrictions and attempt to develop custom models for
the TPSM/DPSM frameworks. This would allow us to assess how much these strategies
can enhance the state of the art.

3.6 Conclusion

We have presented Parallel Score Matching strategies for training diffusion probabilistic
models. We exploited the inherent properties of diffusion models which enable modeling
of each score separately. We showed that learning different groups of scores in parallel
via independent neural networks is effective and allows great improvements of training
time, while enabling better model performance.
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Tails constitute an important aspect of probability density functions, signifying infrequent
yet substantial outcomes. Extreme Value Theory (EVT) represents a recognized domain
tasked with the modeling of distribution tails. A principal parameter ascertained by
traditional EVT methods such as Peaks-Over-Threshold is the tail-shape parameter, the
determinant of the thickness of a distribution’s tail. An intuitive query in this scenario
is whether we can exploit supplementary information, provided by dependent random
variables, to enhance the estimation of our variable of interest’s tail shape. This question
assumes notable relevance in specific contexts, such as those involving the loss-function
distributions.

The study of loss-function distributions is critical to characterize a model’s behaviour on
a given machine-learning problem. While model quality is commonly measured by the
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average loss assessed on a testing set, this quantity does not ascertain the existence of
the mean of the loss distribution. Conversely, the existence of a distribution’s statistical
moments can be verified by examining the thickness of its tails.

Cross-validation schemes determine a family of testing loss distributions conditioned
on the training sets. By marginalizing across training sets, we can recover the overall
(marginal) loss distribution, whose tail-shape we aim to estimate. Small sample-sizes
diminish the reliability and efficiency of classical tail-estimation methods like Peaks-Over-
Threshold, and we demonstrate that this effect is notably significant when estimating
tails of marginal distributions composed of conditional distributions with substantial
tail-location variability. We mitigate this problem by utilizing a result we prove: under
certain conditions, the marginal-distribution’s tail-shape parameter is the maximum
tail-shape parameter across the conditional distributions underlying the marginal. We
label the resulting approach as ‘cross-tail estimation (CTE)’.

We test CTE in a series of experiments on simulated and real data1, showing the improved
robustness and quality of tail estimation as compared to classical approaches.

4.1 Introduction

Loss function distributions form critical subjects of analysis, serving as barometers
for machine learning model performance. In the context of a particular model and
associated machine learning task, the true distribution of the loss function is typically
elusive; we predominantly have access to a finite sample set, born from diverse choices
of training and testing sets. To facilitate performance comparisons across different
models based on the underlying loss function distributions, a spectrum of methodologies
has been established. Traditional strategies derive from information criteria such as
the Akaike Information Criterion (AIC) [Akaike, 1973; Akaike, 1974], an asymptotic
approximation of the Kullback-Leibler divergence between the true data distribution and
the fitting candidate, and its corrected version (AICc) [Sugiura, 1978; Hurvich, 1989], in
addition to the Bayesian Information Criterion (BIC) [Schwarz, 1978]. The application
of these information criteria, especially the AIC, is often constrained by the multiple
inherent approximations and assumptions [Burnham, 2007], making them less feasible in
certain scenarios. However, it warrants mention that more recent penalized criteria have
considerably expanded their suitability for realistic setups [Birge, 1995; Arlot, 2009].
Simultaneously, other methodologies, termed splitting/resampling methods, have been
devised, wherein a subset of the data is deployed to assess the performance of the
trained model. This group of methodologies is expansive, predicated on a diverse range

1The code is available at https://github.com/ehaxholli/CTE
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of partitioning and evaluation strategies addressing data heterogeneity and imbalance
[Neyman, 1934; Cochran, 2007].

In the domain of cross-validation strategies, the common metric employed for gauging
model performance is the sample mean of the loss function distribution. This practice,
though invariably providing a finite numerical value, does not assure the existence of
the first statistical moment or those of higher order. Moreover, this metric, in spite of
its prevalence, should not necessarily be construed as a sole indicator of the model’s
performance, as it does not necessarily quantify its robustness to the underlying data
distribution and model architecture. While it is true that aforementioned methods
allow to rank models according to their relative performance on a given dataset, these
scores still have limited value in quantifying the overall stability of a model. From a
theoretical perspective, there is a connection between the uppermost existing moment of
a distribution and the thickness of its tail. This underscores the significance of examining
the behavioural traits and decay rate of the tails of loss function distributions.

In order to proceed, we first must be able to model the tails of distributions and to
quantify their “thickness". Extreme Value Theory (EVT) is an established field concerned
with modelling the tails of distributions. One of the fundamental results in EVT is
the Pickands–Balkema–De Haan Theorem, which states that the tails of a large class
of distributions can be approximated with generalized Pareto ones [Pickands, 1975;
Haan, 2007]. In practice, the shape and scale parameter of the generalized Pareto are
approximated from a finite sample, while its location parameter is always zero. It is
the shape parameter which quantifies tail thickness, with larger values corresponding to
heavier tails. The resulting estimation method is called Peaks-Over-Threshold (POT).

In the context of distributions of loss functions, for each training set, there is a corre-
sponding conditional loss function distribution over points in the sample space. The
actual total loss function distribution, the entity of our interest, is the weighted sum
(integral) of all such conditional distributions, that is, it is the distribution created after
marginalizing across the space of training datasets. In practice, we have a finite number
of conditional distributions, as we have a finite number of training sets. Furthermore,
for each of these conditional distributions, we only possess an approximation of them,
derived from the samples in the testing set. The empirical approximation of the total
loss function distribution therefore consists of the union of the sample sets of conditional
distributions. Within this setting, the estimation of the tail shape of the total loss function
distribution could be ideally carried out by applying POT on this union of samples.

In theory, as we show in this chapter, the role of the thickest conditional tails in deter-
mining the decay rate of the marginal is preserved, since the marginal and conditional
distributions are defined everywhere, which allows the assessment of tails at extreme
locations. Unfortunately, in practice, the finiteness of the sampling affects the estimation

4.1 Introduction 55



of the tail of the marginal distribution, as the tails may be poorly or not even represented
across different conditional distributions. To be more specific, during marginalization,
samples from the tails of heavy tailed distributions can be overshadowed by the samples
from the non-tail part of individual thin tailed ones. This suggests that modelling the
tails of a marginal distribution by the usual application of POT can give inaccurate results
in practice.

In this chapter, we develop a general method to mitigate the issue of estimating the
tails of marginal distributions, when there exists a large variability between locations
of the individual conditional distributions underlying the marginal. To this end, we
demonstrate that under some regularity conditions, the shape parameter of the marginal
distribution is precisely the maximum tail shape parameter of the family of conditional
distributions. We refer to the method constructed from this result as cross tail estimation,
due to similarities that it shares with Monte Carlo cross validation. The proposed
solution enables a reduction in the sample size requirements, in the experiments we
conducted. In the context of model comparison, our theory establishes that, under
some assumptions, we can estimate the shape of the total loss distribution, by simply
investigating the models prediction, without the need for target data. Furthermore, we
show evidence of polynomial decay of tails of distributions of model predictions, and
empirically demonstrate a relationship between the thickness of such tails and overfitting.
An additional benefit of using the approach proposed here instead of the standard POT,
is the reduced computational time in the case that the marginal is estimated from many
conditional distributions.

The following is a summary of the structure of the chapter: In section 4.2 we recall some
of the main concepts and results from Extreme Value Theory. In section 4.3, we state and
generalize the main problem, which we tackle in section 4.4, by building our theory. We
conclude section 4.4, by proving three statements which are useful for the experimental
part, and by highlighting the relation between the tail of a distribution and its moments.
In the final section, we show experimentally that our method can improve estimation in
practice, as compared to the standard use of POT.

4.2 Related Work and Background

This section initially provides a succinct overview of Monte Carlo cross validation, given its
conceptual similarities with the proposed method, “cross tail estimation". The subsequent
subsection outlines standard results and definitions from extreme value analysis, forming
the foundational bedrock for the proofs presented in section 4.4.
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4.2.1 Monte Carlo Cross Validation

Let D = {(x1, y1), ...(xn, yn)}, be a set of data samples drawn form the same distribution.
During each iteration i we sample k samples Di = {(xπ(1), yπ(1)), ..., (xπ(k), yπ(k))} with-
out replacement from the original dataset D, and consider it as the training set for that
iteration. The set D \ Di is then used as the testing set. The quantity of interest during
iteration i is the sample mean of the loss of the model trained on Di, namely f̂Di , over
the points of the testing set:

M̃L
i := 1

|D \ Di|
∑

j∈D\Di

L(f̂Di(xj), yj), (4.1)

for a given loss function L.
We evaluate the total performance of the model, based on its average performance over
different choices of the training/testing sets, that is, the true evaluation metric is:

M̃L := 1
m

m∑
i=1

M̃L
i = 1

m

m∑
i=1

1
|D \ Di|

∑
j∈D\Di

L(f̂Di(xj), yj), (4.2)

where m is the number of iterations (data partitions).
A detailed discussion on cross validation, elucidating its similarities with our proposed
method for tail estimation in marginal loss function distributions, namely ’cross tail
estimation’, is presented in subsection 4.3.2.

4.2.2 Extreme Value Theory

Extreme value theory (EVT) or extreme value analysis (EVA) is a branch of statistics
dealing with the extreme deviations from the median of probability distributions. Ex-
treme value theory is closely related to failure analysis and dates back to 1923, when
Richard von Mises discovered that the Gumbell distribution is the limiting distribution
of the maximum of an iid sequence, sampled from a Gaussian distribution. In 1928,
Ronald A. Fisher and Leonard H. C. Tippett in [Fisher, 1928], characterized the only
three possible non-degenerate limiting distributions of the maximum in the general case:
Frechet, Gumbel and Weibull. In 1943, Boris V. Gnedenko, gave a rigorous proof of
this fact in [Gnedenko, 1943]. This result is known Fisher–Tippett–Gnedenko theorem,
and forms the foundation of EVT. The three aforementioned limiting distributions of the
maximum can be written in compact form and they are known as the class of extreme
value distributions:
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Definition 4.2.1. The Generalized Extreme Value Distribution is defined as follows:

Gξ,a,b(x) = e−(1+ξ(ax+b))− 1
ξ
, 1 + ξ(ax + b) > 0, (4.3)

where b ∈ R, ξ ∈ R \ {0} and a > 0. For ξ = 0, we define the generalized Extreme Value
Distribution as the limit when ξ → 0, that is

G0,a,b(x) = e−e−ax−b
. (4.4)

Theorem 4.2.2 (Fisher–Tippett–Gnedenko). : Let X be a real random variable with
distribution FX . Denote by {X1, X2, ..., Xn} a set of iid samples from the distribution
FX , and define Mn = max{X1, ..., Xn}. If there exist two sequences {ci > 0}i∈N and
{di ∈ R}i∈N, such that

c−1
n (Mn − dn) d−→ F as n → ∞, (4.5)

for some non-degenerate distribution F , then we must have F (x) = Gξ,a,b(x), for some
b, ξ ∈ R, a > 0.

If X is a random variable as in Theorem 4.2.2, such that F (x) = Gξ,a,b(x), we say that
FX is in the Maximum Domain of Attraction of Gξ,a,b(x), and we write FX ∈ MDA(ξ).
Depending on whether ξ > 0, ξ = 0, ξ < 0, we say that FX is in the MDA of a Frechet,
Gumbell, or Weibull distribution respectively.

Definition 4.2.3. A Generalized Pareto distribution (GPD) with location parameter zero is
defined as below:

Gξ,σ(w) =

1 − (1 + ξ w
σ ))− 1

ξ for ξ ̸= 0

1 − e− w
σ for ξ = 0

, (4.6)

where w > 0 when ξ > 0 and 0 < w < −σ
ξ for ξ < 0. The shape parameter is denoted by ξ,

while the scale parameter by σ > 0.

[Pickands, 1975], and [Balkema, 1974] proved that the limiting distribution of samples
larger than a threshold is a Generalized Pareto distribution, whose location parameter is
zero.

Theorem 4.2.4 (Pickands–Balkema–De Haan). : Let X be a random variable with
distribution FX and xF ≤ ∞ such that ∀x > xF , F̄X(x) = 0. Then FX ∈ MDA(ξ) ⇐⇒
∃g : (0, ∞) → (0, ∞) such that

lim
u→xF

sup
y∈[0,xF −u]

|F̄ X
u (y) − Ḡξ,g(u)(y)| = 0, (4.7)
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where F̄ X
u (y) = 1−FX(y+u)

1−FX(u) .

This result forms the basis of the well-known Peak-Over-Threshold (POT) method which is
used in practice to model the tails of distributions. The shape parameter can be estimated
via different estimators such as the Pickands Estimator or the Deckers-Einmahl-de Haan
Estimator (DEdH), [Dekkers, 1989a].

Definition 4.2.5. Let X1, X2,...,Xn be iid samples from the distribution FX . If we denote
with X1,n, X2,n,..., Xn,n the samples sorted in descending order, then the Pickands estimator
is defined as follows:

ξ̂
(P )
k,n = 1

ln 2 ln Xk,n − X2k,n

X2k,n − X4k,n
. (4.8)

Definition 4.2.6. Let X1, X2,...,Xn be iid samples from the distribution FX . If we denote
with X1,n, X2,n,..., Xn,n the samples sorted in descending order, then the DEdH estimator is
defined as follows:

ξ̂
(H)
k,n = 1 + H

(1)
k,n + 1

2

(H(1)
k,n)2

H
(2)
k,n

− 1

−1

, (4.9)

where

H
(1)
k,n = 1

k

k∑
j=1

(ln Xj,n − ln Xk+1,n) (4.10)

and

H
(2)
k,n = 1

k

k∑
j=1

(ln Xj,n − ln Xk+1,n)2. (4.11)

An important result which we are going to use frequently in our proofs is Theorem 4.2.10,
which can be found in [Embrechts, 2013; Haan, 2007], and gives the connection between
the maximum domain of attraction and slowly varying functions.

Definition 4.2.7. A positive measurable function L is called slowly varying if it is defined in
some neighborhood of infinity and if:

lim
x→∞

L(ax)
L(x) = 1, for all a > 0. (4.12)

Theorem 4.2.8 (Representation Theorem, see [Galambos, 1973]). : A positive measurable
function L on [x0, ∞] is slowly varying if and only if it can be written in the form:

L(x) = ec(x)e

∫ x

x0
u(t)

t
dt

, (4.13)
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where c(t) and u(t), are measurable bounded functions such that limx→∞ c(x) = c0 ∈ (0, ∞)
and u(t) → 0 as t → ∞.

Proposition 4.2.9. [Mikosch, 1999] If L is slowly varying then for every ϵ > 0:

lim
x→∞

x−ϵL(x) = 0. (4.14)

Proof. We give a proof in Appendix C.1 for the sake of completeness.

Theorem 4.2.10. : If X ∈ MDA(ξ) and xF is such that ∀x > xF , F̄X(x) = 0 then:

• ξ > 0 ⇐⇒ F̄X(x) = x
− 1

ξ L(x), where L is slowly varying,

• ξ < 0 ⇐⇒ F̄X(xF − 1
x) = x

1
ξ L(x), where L is slowly varying,

• ξ = 0 ⇐⇒ F̄X(x) = c(x)e−
∫ x

w
1

a(t) dt
, w < x < xF ≤ ∞, where c is a measurable

function satisfying c(x) → c > 0 as x ↑ xF , and a(x) is a positive, absolutely
continuous function (with respect to Lebesgue measure) with density a′(x) having
limx↑xF

a′(x) = 0. If xF < ∞ then limx↑xF
a(x) = 0 as well.

4.3 Setup and Problem Statement

In the initial subsection, we establish a formal framework to address the problem of tail
modelling for total loss distributions, and elucidate how unsatisfactory results can arise
from a naive application of the Peaks-Over-Threshold (POT) method. Subsequently, in
the second subsection, we present Cross-Tail-Estimation (CTE), a novel methodology that
addresses these shortcomings. A salient feature of this section is the illustration of the
analogy between CTE and Cross-Validation, providing an intuitive understanding of CTE.
In the concluding subsection, we lay the groundwork for the upcoming section 4.4. In
this forthcoming section, we provide the theoretical justification, in the form of Theorem
4.4.11, for the application of our introduced method, CTE.

4.3.1 Problem Statement

We assume that each data sample (X, Y ) comes from distribution D and that the
sampling is independent. We use the symbol X to denote the features and the symbol Y

to denote the labels. The training set will be defined as a random vector comprised of iid
random vectors (X, Y ) sampled from D. More precisely, after fixing a natural number
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k, we define a training set as V = [(X, Y )1, (X, Y )2, ..., (X, Y )k], where each (X, Y )i

has distribution D. On the other hand, a test point U naturally is defined as a sample
from D, i.e., U = (X, Y ). In practice, the realisation of U should not be an entry in V .
A model which is trained on V to predict Y from X is denoted as ĥV (X). The prediction
error on the testing datum U of a model trained on V is denoted as WV (U). For the
remainder of the chapter we assume that WV (U) > 0 and notice that the probability
density function of WV (U) is

fW (w) =
∫

fW,V (w, v)dv =
∫

fV (v)f(w|V = v)dv =
∫

fV (v)fv(w)dv, (4.15)

therefore the distribution function of WV (U) is:

FW (w) =
∫

fV (v)Fv(w)dv. (4.16)

Fv(w) is the distribution of the prediction error (loss) of the model trained on training
set v, while FW (w) is the unconditional distribution of the loss.

Standard methods such as the Peaks-Over-Threshold (POT) approach, when employed
directly for estimating the tails of general marginal distributions like FW (w) in Equation
(4.16), may yield unsatisfactory outcomes.

To provide insight into the problem, let’s simplify the scenario for a moment, by as-
suming that some random vector V can be either v1 or v2, each with an equal likelihood.
In the situation where V = v1, assume Fv1(w) corresponds to a thick-tailed distribution,
wherein even the first moment does not exist. Conversely, if V = v2, suppose Fv2(w)
takes the form of a Gaussian distribution, characterized by a large mean. Under these
conditions, Equation (4.16) simplifies to FW (w) = 1

2Fv1(w) + 1
2Fv2(w). It is known that

the tail shape parameter of FW (w) =
∑n

i=1 p(vi)Fvi(w) is determined by the conditional
distribution Fvi(w) with the thickest tail. In our case, n above is 2, and the tail of
FW (w) is defined by the fat tail of Fv1(w). Suppose we proceed with the standard POT
approach, that is, we integrate out the random variable V , and subsequently estimate the
shape parameter of the tail of FW (w). In practical scenarios, this translates to merging
the samples from both conditional distributions into a singular array. Given the finite
nature of sample sizes in such cases, it’s conceivable that none of the samples of W

from the thick-tailed distributions surpass those from the Gaussian distribution, owing to
the discrepancies in their locations. As a consequence, the sample tail of the marginal
(mixture) distribution takes its shape from the sample tail of the Gaussian Fv2(w), while
in reality, the tail of FW (w) is dictated by the heavy tail of Fv1(w). In the ideal scenario
with limitless sampling, we would expect to determine the true tail shape. Yet, within
the constraints of practical applications, it may be necessary to estimate the tail shape
parameters of Fv1(w) and Fv2(w) individually.
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A natural question that arises in the case that V has a continuous distribution as in
Equation (4.16) is whether the tail of the marginal FW (w) is still determined by the
largest tail of the conditional distributions Fv(w). As we will prove in section 4.4, under
some regularity conditions, the answer is in the affirmative.

4.3.2 Cross Tail Estimation

We will denote with ξv the tail shape parameter of Fv(w) and with ξ the shape tail
parameter of FW (w). Our goal in section 4.4 is to prove that under some regularity
conditions if ∃v, such that ξv > 0, then ξ = max{ξv|v}, and if ∀ξv ≤ 0, then we have
ξ ≤ 0. This motivates Algorithm 4 which we name “Naive Cross Tail Estimation" (NCTE).

Algorithm 4 Naive Cross Tail Estimation

Input: Data D = [(x, y)1, (x, y)2, ..., (x, y)n]; the Pickands or DEdH estimator
Define: A = {}
Fix the number of training sets (rounds): m ∈ N
repeat

1. sample (x, y)π(1), ..., (x, y)π(k) from (x, y)1, (x, y)2, ..., (x, y)n

2. train model ĥv on v = [(x, y)π(1), ..., (x, y)π(k)]
3. calculate the prediction errors Wv(U) of model ĥv on the testing set D \ v
4. group the calculated prediction errors in the set Ev(D)
5. apply the Pickands or DEdH estimator on Ev(D) to estimate ξv

6. add ξ̂v to A
until |A| = m
return max A if max A > 0, else return ‘non-positive’

Since for each v, the estimated ξ̂v is prone to estimation errors, taking the maximum ξ̂v

over all v tends to cause NCTE to overestimate the true ξ, especially when the number of
conditional distributions Fv(w) is large. For this reason we propose Algorithm 5, named
’Cross Tail Estimation’ (CTE), where we split the samples from Fv(w) into p sets in order
to get p estimates of the tail shape parameter of Fv(w), that is {ξ̂1

v, ξ̂2
v, ..., ξ̂p

v}. Our final
estimation of ξv is the average of the p estimations, i.e., 1

p

∑p
i=0 ξ̂i

v. A more detailed
justification for utilizing Algorithm 5 is given in Appendix C.5. We notice that Algorithm
5 is identical to Algorithm 4 when p = 1.
Remark: Estimating particular statistics of FW (w) through the statistics of Fv(w) as in
in Algorithm 4 and 5 is a key component of Cross Validation. During Cross Validation,
a training set v and a testing set D \ v are selected in each iteration, during which the
following conditional expectation is then estimated:

E[WV (U)|V = v] =
∫

wfv(w)dw. (4.17)
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Algorithm 5 Cross Tail Estimation

Input: Data D = [(x, y)1, (x, y)2, ..., (x, y)n]; the Pickands or DEdH estimator
Define: A = {}
Fix the number of training sets (rounds): m ∈ N
repeat

1. sample (x, y)π(1), ..., (x, y)π(k) from (x, y)1, (x, y)2, ..., (x, y)n

2. train model ĥv on v = [(x, y)π(1), ..., (x, y)π(k)]
3. calculate the prediction errors Wv(U) of model ĥv on the testing set D \ v
4. group the calculated prediction errors in the set Ev(D)
5. split Ev(D) into {E1

v(D), ..., Ep
v(D)}

6. apply the Pickands or DEdH estimator on each Ei
v(D) to get an estimate ξ̂i

v of ξv

7. average over p to get the final estimate ξ̂v = 1
p

∑p
i=0 ξ̂i

v of ξv

8. add ξ̂v to A
until |A| = m
return max A if max A > 0, else return ‘non-positive’

The estimates of E[WV (U)|V ] received in each iteration are then averaged to get an
estimation of the total expectation:

EU,V (WV (U)) =
∫

wf(w)dw =
∫

fV (v)
∫

wfv(w)dwdv =

=
∫

fV (v)E[WV (U)|V = v]dv = E[E[WV (U)|V = v]].
(4.18)

In the language of section 4.3.1, the mean of distribution FW (w) is the average of the
means of the conditional distributions Fv(w).
This statement about sums stands parallel with our claim about extremes: the shape
parameter of the tail of FW (w), if positive, is the maximum of the shape parameters of
the tails of the conditional distributions Fv(w).

4.3.3 The General Problem

Generalizing the problem stated in section 4.3.1 requires considering a one dimensional
random variable of interest X, dependent on other random variables {Z1, Z2, ..., Zn},
such that the probability density function of X is

fX(x) =
∫

f(z1, ..., zn, x)dz1 · · · dzn (4.19)

=
∫

f(z)f(x|z)dz =
∫

f(z)fz(x)dz. (4.20)

Integrating with respect to x we get

FX(x) =
∫

f(z)F (x|z)dz =
∫

f(z)Fz(x)dz. (4.21)
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In this case, with regards to the previous section, we notice that Z = V is the training
set on which we condition, while X = W is the random variable of interest. In section
4.4, we give several results which relate the tails of FX(x) and F (x|z), culminating with
Theorem 4.4.11 which justifies the usage of the CTE algorithm, by providing limiting
behaviour guarantees.

4.4 Theoretical Results

In this section, we build our theory of modelling the tails of marginal distributions, which
culminates with Theorem 4.4.11. We conclude this section by proving three statements
which are useful in the experimental section 4.5, and give the relation between the
existence of the moments of a distribution and the thickness of its tails. Unless stated
otherwise, the proofs of all the statements are given in Appendix C.1.

4.4.1 Tails of marginal distributions

For two given distributions, whose tails have positive shape parameters, we expect the
one with larger tail parameter to decay slower. Indeed:

Lemma 4.4.1. If F1 ∈ MDA(ξ1) and F2 ∈ MDA(ξ2), and if ξ1 > ξ2 > 0, then
limx→∞

F̄2(x)
F̄1(x) = 0.

In a similar fashion, regardless of the signs of the shape parameters, we expect the one
with larger tail parameter to decay slower. In fact we have the following:

Lemma 4.4.2. If F1 ∈ MDA(ξ1) and F2 ∈ MDA(ξ2) then:

1. If ξ1 > 0 and ξ2 = 0 then limx→∞
F̄2(x)
F̄1(x) = 0.

2. If ξ1 = 0, xF1 = ∞ and ξ2 < 0 then limx→∞
F̄2(x)
F̄1(x) = 0.

3. If ξ1 > 0 and ξ2 < 0 then limx→∞
F̄2(x)
F̄1(x) = 0.

Despite the fact that a linear combination of slowly varying functions is not necessarily
slowly varying, the following statement holds true:
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Lemma 4.4.3. If for i ∈ {1, ..., n} we let Li(x) be slowly varying functions, and {a1, ..., an}
be a set of positive real numbers, then

L(x) =
n∑

i=1
aiLi(x)

is slowly varying.

In the case of a mixture of a finite number of distributions the following known result
holds:

Theorem 4.4.4. Let Z : Ω → A ⊂ Rn be a random vector where |A| < ∞. At each
point z1, .., zn ∈ A, we define a distribution Fzi(x) ∈ MDA(ξi) and assume that ξmax :=
max(ξ1 = ξz1 , ..., ξn = ξzn) > 0. If the set {p1, ..., pn} is a set of convex combination
parameters, that is

∑
i

pi = 1 and pi > 0 then:

F (x) =
n∑
i

piFzi(x) ∈ MDA(ξmax). (4.22)

If ξmax ≤ 0 then if ξF exists we have ξF ≤ 0.

Proof. While this result is well known, we give an alternative proof in Appendix C.1,
using the Pickands-Balkema-De Haan Theorem.

From now on, we assume that the functions FA(x) =
∫

A fZ(z)Fz(x)dz defined on any
element A of the Borel σ − algebra induced by the usual metric are in the MDA of some
extreme value distribution. Furthermore, we assume that the pdf fZ(z) is strictly positive
everywhere in its domain.

Proposition 4.2.9 states that every slowly varying function is sub-polynomial. That
is for any δ > 0 and any slowly varying function L(x), if we are given any γ > 0, then
we can find x(L, δ, γ) > 0, such that for all x > x(L, δ, γ), the inequality x−δL(x) < γ

holds. However, since x(L, δ, γ) depends on the function L, assuming that we have
a family of {Lz|z ∈ A}, where A is a measurable set, the set {x(Lz, δ, γ)|z ∈ A} can
be unbounded, suggesting that the beginning of the tail of F̄z(x) = x

− 1
ξz Lz(x) can be

postponed indefinitely across the family {Fz|z ∈ A}. These concepts are formalized in
the following:

Definition 4.4.5. For a set A, the family of sub-polynomial functions {Lz(x)|z ∈ A} is
called γ-uniformly sub-polynomial if for any fixed δ > 0, there exists a γ(δ) so that the set
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{x0|z ∈ A} is bounded from above, where x0 = x0(Lz, δ, γ) is the smallest value for which
when x > x0 we have x−δLz(x) < γ.

Proposition 4.4.6. Let Z : Ω → A ⊂ Rn be a random vector where A is measurable and
define a family of sub-polynomial functions {Lz(x)|z ∈ A}, which we assume is γ-uniformly
sub-polynomial. Then for a probability density function fZ(z) on A induced by Z, the
function L(x) =

∫
A fZ(z)Lz(x)dz is sub-polynomial.

In the following theorem, we assume that all conditional distributions have positive tail
shape parameters, and we show that the marginal distribution cannot have a tail shape
parameter larger (smaller) than the largest (smallest) tail shape parameter across condi-
tional distributions. Furthermore, if the tail shape parameters vary continuously across
the space of conditional distributions, then the tail shape parameter of the marginal is
precisely the same as the maximal tail shape parameter of the conditional distributions.

Theorem 4.4.7. Let Z : Ω → A ⊂ Rn be a random vector where A is measurable. At each
point z ∈ A define a distribution Fz(x) ∈ MDA(ξz), and suppose there exist ξlo, ξup such
that ∀z ∈ A, 0 < ξlo ≤ ξz ≤ ξup. Furthermore, let Lz(x) be the slowly varying function
corresponding to Fz(x). If the family {Lz(x)|z ∈ A} is γ-uniformly sub-polynomial, then
for F (x) =

∫
A fZ(z)Fz(x)dz we have ξlo ≤ ξF ≤ ξup. Furthermore, if ξz is continuous in

z, then ξF = ξmax, where ξmax := sup{ξz|z ∈ A}.

Similarly to the case when Fz(x) are in the MDA(ξz) for ξz > 0, if we wish to extend
the results above, regularity conditions are required for the ξz ≤ 0 case. We notice that if
Fz(x) ∈ MDA(ξ) for ξ ≤ 0, then F̄z(x) itself is sub-polynomial, whether its support is
bounded or not. This observation motivates the following:

Definition 4.4.8. For a set A, define the family of distribution functions FA = {Fz(x)|z ∈
A}, and define A+ = {z|ξz > 0}, A− = {z|ξz ≤ 0}. We say family FA has stable cross-tail
variability if,

• {Lz(x)|z ∈ A+} is γ-uniformly sub-polynomial,

• {F̄z(x)|z ∈ A−} is γ-uniformly sub-polynomial.

We notice that in the previous theorem, if for all z we have 0 < ξz ≤ ϵ, then ξF ≤ ϵ. If
the corresponding family FA = {Fz(x)|z ∈ A} has stable cross-tail variability, this holds
independently from the lower bound of {ξz|z ∈ A}. Indeed:
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Lemma 4.4.9. Let Z : Ω → A ⊂ Rn be a random vector where A is measurable. At each
point z ∈ A define a distribution Fz(x) ∈ MDA(ξz), and suppose that ∀z ∈ A, ξz ≤ ϵ. If
the family {Fz(x)|z ∈ A} has stable cross-tail variability, then for F (x) =

∫
A fZ(z)Fz(x)dz

we have ξF ≤ ϵ.

Corollary 4.4.10. Let Z : Ω → A ⊂ Rn be a random vector where A is measurable. At each
point z ∈ A define a distribution Fz(x) ∈ MDA(ξz), and suppose that ∀z ∈ A, ξz ≤ 0. If
the family {Fz(x)|z ∈ A} has stable cross-tail variability, then for F (x) =

∫
A fZ(z)Fz(x)dz

we have ξF ≤ 0.

Proof. We notice that for any ϵ > 0, we have ξz < ϵ for all z ∈ A. Hence, from the
previous Lemma we conclude that ξF ≤ ϵ, ∀ϵ > 0.

Finally, we prove the generalization of Theorem 4.4.7 in the case that the tail shape
parameters ξZ of the conditional distributions are real numbers:

Theorem 4.4.11. Let Z : Ω → A ⊂ Rn be a random vector where A is measurable.
At each point z ∈ A define a distribution Fz(x) ∈ MDA(ξz), where ξz is continuous
and ξmax > 0. If the family {Fz(x)|z ∈ A} has stable cross-tail variability, then for
F (x) =

∫
A fZ(z)Fz(x)dz we have ξF = ξmax. In the case that ξmax ≤ 0 then ξF ≤ 0.

Examples when the conditions of Theorem 4.4.11 hold, as well as when they are violated,
can be found in Appendix C.3 and Appendix C.2, respectively.

4.4.2 Useful propositions for the experimental part

In this subsection, we prove three statements which are useful in the experimental
section 4.5, and state the well-known relation between the existence of the moments of a
distribution and the thickness of its tails.

Proposition 4.4.12. Let FX be the distribution of the random variable X. We define X1 to
be a random variable whose distribution is the normalized right tail of FX , that is:

FX1(x) =

0 for x ≤ 0
F (x)−F (0)

1−F (0) for x > 0
. (4.23)
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Similarly we define X2 whose distribution is the normalized left tail of FX ,

FX2(x) =

0 for x < 0
F (0)−F (−x)

F (0) for x ≥ 0
. (4.24)

If FX1 ∈ MDA(ξ1), FX2 ∈ MDA(ξ2), and max{ξ1, ξ2} > 0, then:

ξ|X| = max{ξ1, ξ2}.

If FX1 ∈ MDA(ξ1), FX2 ∈ MDA(ξ2), and max{ξ1, ξ2} ≤ 0, then:

ξ|X| ≤ 0.

Proof. Since

F|X|(x) = P(|X| < x) = P(X < x|X > 0)P(X > 0) + P(−X < x|X ≤ 0)P(X ≤ 0)

= p1FX1(x) + p2FX2(x),
(4.25)

Theorem 4.4.4 gives the desired conclusion.

Proposition 4.4.13. Let X be a random variable such that X ∈ MDA(ξX > 0). If we
define Y to be equal to Xα, for some α ∈ R+, then Y ∈ MDA(ξY ) where ξY = αξX . If
ξX ≤ 0 then ξY ≤ 0.

It is important to notice that we can estimate the shape of the tail of WV (U) by also
conditioning on the test label y:

fW (w) =
∫

fW,Y (w, y)dy =
∫

fY (y)f(w|Y = y)dy =
∫

fY (y)fy(w)dy (4.26)

FW (w) =
∫

fY (y)Fy(w)dy. (4.27)

We use this fact to prove the following:

Proposition 4.4.14. Let the loss function be defined as WV (U) = |Y − f̂V (X)|p for
some p ∈ R+, and let Fy(t) be the distribution of f̂V (X) given Y . If we assume that the
distribution of the labels Y has bounded support S, that the family {Fy(t)|y ∈ S} has stable
cross-tail variability, and that the shape parameters ξy of Fy(t) change continuously, then
the tail shape parameters of WV (U) and |f̂V (X)|p share the same sign, and are identical if
either of them is positive.

68 Chapter 4 On Tail Decay Rate Estimation of Loss Function Distributions



There exists a strong connection between the Maximum Domain of Attraction of a
distribution, and the existence of its moments (see [Embrechts, 2013]):

Proposition 4.4.15. If F|X| is the distribution function of a random variable |X|, and
F|X| ∈ MDA(ξ) then:

i) if ξ > 0, then E[|X|r] = ∞, ∀r ∈ (1
ξ

, ∞), (4.28)

ii) if ξ ≤ 0, then E[|X|r] < ∞, ∀r ∈ (0, ∞). (4.29)

This means that, for a model with a positive loss function whose distribution has a shape
parameter that is bigger than one, even the first moment of that loss function distribution
does not exist. Hence, we would expect that our model has an infinite mean, which
would suggest that this model should be eliminated during model ranking. However, if
every model has an infinite expected loss, it’s not advisable to eliminate them all. An
alternative approach could be to utilize the tail thickness and medians of the loss function
distributions to guide decision-making about which models to keep.

In Proposition 4.4.14, we showed that if we condition on the testing set, under some as-
sumptions, we can estimate the shape of the total loss distribution, that is the distribution
of WV (U), by simply investigating the models prediction, without the need for target
data. This can also be motivated from the moments of WV (U) as shown in Appendix
C.4.

4.5 Experiments

In this section, we demonstrate the significance of Theorem 4.4.11. In the first subsection,
we show experimental evidence that the estimated shape parameter of the marginal
distribution, coincides with the maximal shape parameter of individual conditional
distributions. In the second subsection, we show that when the sample size is finite, as it
is the case in practice, the method proposed by Theorem 4.4.11 (cross tail estimation) can
be necessary to reduce the required sample size for proper tail shape parameter estimation
of marginal distributions. Furthermore, in the third subsection, we compare the standard
POT and cross tail estimation on real data. For the considered regression scenarios,
we notice that when these shape parameters are calculated by cross tail estimation,
the magnitude of shape parameters of the distribution of model predictions increases
significantly when the model overfits. We also notice that such a relationship does not
hold in the case that we use directly the POT method to estimate the aforementioned
shape parameters. Finally, in the fourth subsection, we discuss the computational
advantages of using cross tail estimation.
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4.5.1 Validity of Cross Tail Estimation in Practice

The main problem that we tried to tackle in the previous section was estimating the
shape parameters of the tail of distribution F (x):

F (x) =
∫

f(z)Fz(x)dz, (4.30)

via tail shape estimation of the conditional distributions Fz(x). In what follows, we
provide experiments showing that this is feasible in practice.

Experimental Setting
For simplicity, we set z to be one dimensional, and thus denote the conditional distribu-
tions Fz as Fz, where z ∈ R. In this case Equation (4.30) becomes

F (x) =
∫

f(z)Fz(x)dz. (4.31)

First, we define f(z) as a mixture of Gaussian distributions. To do so we choose a mean
µi from a uniform distribution in [−5, 5] and then a standard deviation σi from a uniform
distribution between [0, 4], together defining a Gaussian distribution gi(z). We repeat
this process for 30 Gaussian distributions and define f(z) =

∑30
i=1

gi(z)
30 .

Second, we define the function ξz as

ξz =
(nz+2m2+kz3)e−|z|+a

b + c

d
, (4.32)

where n = 1, m = 2, k = 2, b = 5.76, a = −3b − 3.80, d = (7
8ξmax + 29

8 )−1 and
c = dξmax + 3. The ξmax in the variables c, d determines the maximum value that the
function ξz takes as long as ξmax ∈ [−4, 5]. More details about the function ξz are pro-
vided in Appendix C.7.

Third, we define Fz(x). If ξz ≤ 0, then we define Fz(x) as a Generalized Pareto distri-
bution (GPD) where the scale parameter is set to 1 and the tail shape parameter is ξz.
Otherwise we define Fz(x) as 1 − x

− 1
ξz . The choice of ξmax completely determines each

ξz and hence each Fz(x), thus it fully defines F (x) in Equation (4.31).

We run the experiments for different values of the parameter ξmax, that is, ξmax takes
the following 45 values {−4, −4 + 0.2, −4 + 0.4, ..., 5}. We denote these ξmax values as
ξj = −4 + 2j

10 , where j ∈ {0, ..., 45}. Each choice of j defines a particular maximal value
ξmax = ξj and thus a marginal distribution Fj(x) as on the left side of Equation (4.31).
Also since the particular choice j of the maximum ξmax determines all corresponding ξz

in Equation (4.32) then we denote ξz as ξz,j .
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For each j we repeat p times Algorithm 6. On repetition k, the algorithm returns
ξ̂k

j which is an estimation of ξj . As guided by the ideas laid in Appendix C.5, our final
estimation of ξj after p repetitions of Algorithm 6 above is ξ̂j = 1

p

∑p
k=1 ξ̂k

j .

Algorithm 6 Construction of a Continuous Mixture Distribution and Direct POT Usage

define: J = {}
fix the number of iterations: M ∈ N
repeat

a) Sample a z from the distribution f(z)
b) For that z, calculate ξz,j (given that ξmax = ξj)
if ξz,j ≤ 0 then

c) Sample a point x from a GPD with location zero, σ = 1, shape parameter ξz,j .
d) J = J ∪ {x}

else
c) Sample x from Fz(x) = 1 − x

− 1
ξz,j

d) J = J ∪ {x}
end if

until |J | = M
apply the Pickands or DEdH estimator on J to estimate ξj , the shape parameter of
Fj(x).
return the estimated value of ξj

Experimental validation of CTE using the Pickands estimator

We show the results of the experiment described above, when the Pickands Estimator is
applied. In this study, a comprehensive set of experimental outcomes has been illustrated
in Figure 4.1. Here, the parameter M , delineated in the preceding subsection, is assigned
values from the set {105, 106, 107, 108}. In the context of these experiments, p was set to
10 as a constant across all trials. The experiments were performed encompassing a total
of 10 runs to capture potential variability and better reflect the stochastic nature of the
process.

In order to acquire a more robust and representative understanding of the results,
given the inherent variability of the experimental setup, statistical metrics including
the mean and standard deviation were computed across these multiple experimental runs.

Upon examining the obtained results, they seem to align with our initial theoretical
expectations. Specifically, when the maximum tail shape parameter within the mixture
of conditional distributions is of positive value, the estimated shape parameter of the
marginal distribution is that identical positive value. On the other hand, if the maximum
tail shape parameter within the conditional distributions is negative, the estimated shape
parameter of the marginal distribution duly returns a negative value. This symmetry in
the estimations provides a degree of confidence in the validity of the conducted experi-
ments and the consistency of the underlying theoretical framework.
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Fig. 4.1.: In cases where the maximum tail shape parameter in the mixture of conditional
distributions is positive, the estimated shape parameter of the marginal is equal to this
maximal value. If this maximum value is negative, the estimated shape parameter is
negative. These results were obtained using the Pickands estimator.

Complementary results, pertaining to a replica of the above-described experiment,
wherein the DEdH Estimator is utilized, can be found in Appendix C.9.

4.5.2 Robustness to Variance in the Location of Conditional
Distributions

In subsection 4.5.1, we presented empirical evidence to substantiate Theorem 4.4.11.
Notably, for computational expediency, we elected to set all conditional distributions
with a location parameter of zero. This decision was motivated by the fact that, if
location parameters were permitted to exhibit significant variability, the direct Peaks
Over Threshold (POT) approach would necessitate an unfeasibly large sample size
to verify our claims. This issue is addressed in the current subsection, wherein we
illustrate that the CTE approach provides a suitable remedy. Specifically, in subsection
4.5.2, we outline modifications to the experimental setup from subsection 4.5.1 that
allow for variation in the location parameter, and present the experimental results
accordingly. In subsection 4.5.2, we apply the CTE approach to the same marginal
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distributions as in subsection 4.5.2, and demonstrate that it allows for correct estimation
of shape parameters. Additional experiments, in more simplified settings, highlighting
the necessity of CTE are provided in Appendix C.6.

Applying POT directly when the location of conditional distributions exhibits sub-
stantial variability

In order to ensure high variability of the location of conditional distributions Fz(x), we
modify step (c) in the if statement of Algorithm 6 into (c*) as delineated in Algorithm 7.

Algorithm 7 Modification of Algorithm 3 to Ensure High Location Variability

if ξz,j ≤ 0 then
c) Sample a point x from a GPD with location zero, σ = 1, shape parameter ξz,j .
d) J = J ∪ {x}

else
c*) Sample x from Fz(x) = 1 − x

− 1
ξz,j . Translate x by adding 1

ξz,j
4 , i.e., x = x + 1

ξz,j
4 .

d) J = J ∪ {x}
end if

Fig. 4.2.: Estimation of the shape parameter of the marginal by direct application of POT. We
utilize the Pickands estimator as our estimator of choice.
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This adaptation ensures that conditional distributions with lower positive shape parame-
ters are situated at greater distances from the origin, thereby augmenting the probability
that their tails will dominate over those that exhibit heavier tails.

The results in Figure 4.2 show that the estimators predict that the shape parameter of the

tail is constantly 4 as the tail of the marginal is determined by ξz,j
−4 instead of 1 − x

− 1
ξz,j

which merely becomes noise around ξ−4
z,j . This changes once ξmax = ξj becomes larger

than 4, in which case the tails of the conditional distribution are once again determined

by 1 − x
− 1

ξz,j .

Complementary results, pertaining to a replica of the above-described experiment,
wherein the DEdH Estimator is utilized, can be found in Appendix C.9, Figure C.10.

Enhancing parameter estimation accuracy through the CTE approach

We demonstrate that the CTE method can effectively recover the true shape of the
tail of the marginal, even in cases where the conditional distributions exhibit highly
varying locations, as was observed in subsection 4.5.2. To ensure objectivity, we define
the functions f(z), ξz,j , and Fz,j(x) in a consistent manner as before, thereby ensuring
that all marginal distributions under consideration are equivalent to those studied in
previous cases. As per the definition of the CTE, the sampling and estimation procedure
is described in detail in Algorithm 8.

Algorithm 8 Application of CTE on the Mixture Distribution Defined in Algorithm 4

sample K values z from f(z)
for each z do

Calculate ξz,j (given that ξmax = ξj)
for l = 1 to p do

if ξz,j ≤ 0 then
Sample a set S of N samples from a GPD with shape parameter ξz,j , scale σ = 1.

else
Sample a set S of N samples from Fz(x) = 1 − x

− 1
ξz,j .

Translate each sample x in S as follows: x = x + 1
ξz,j

4 .

end if
Apply the Pickands or DEdH estimator on S to get an estimate ξ̂l

z,j of the shape
parameter ξz,j of Fz,j(x)

end for
As guided by the ideas laid in Appendix C.5, our final estimation of ξz,j after p

repetitions of the process above is ξ̂z,j = 1
p

∑p
l=1 ξ̂l

z,j .
end for
We select the maximal ξ̂z,j from the K predicted values (corresponding to the K

sampled z). According to Theorem 4.4.11 the estimated ξ̂j should be close to ξj .
return ξ̂j , the estimated value of ξj
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Fig. 4.3.: Estimation the shape parameter of the marginal using CTE. We utilize the Pickands
estimator as our estimator of choice.

We set p = 10 at all times. Furthermore, for the sake of fairness, we sample the same num-
ber of points from each marginal distribution as in the previous subsection, that is, we
set KN = M . Since we set K = 50, in order for M to take values in {1e5, 1e6, 1e7, 1e8},
N needs to take values in {2e3, 2e4, 2e5, 2e6}. We execute the experiment 10 times, and
to account for variability across the different runs, we compute the mean and standard
deviation of the results. They are shown in Figure 4.3. Naturally, the more K is increased
the more likely we are to sample the z corresponding to the conditional distribution
with the maximal shape parameter. Theorem 4.4.11 provides assurance that as the value
of K increases, our estimation progressively converges to the true shape parameter of
the marginal distribution. The conducted experiments indicate that merging samples
from various conditional distributions, which form the marginal, may potentially be
detrimental when estimating the tail shape of the marginal.

Complementary results, pertaining to a replica of the above-described experiment,
wherein the DEdH Estimator is utilized, can be found in Appendix C.9, Figure C.11.
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4.5.3 Model performance inference improvements via cross tail
estimation, relative to POT

In what follows, we show that cross tail estimation can improve the estimation of the
shape of the tail in realistic settings. Furthermore, we observe that in these cases, the
thickness of the tail is positively correlated with over-fitting, therefore inference regarding
the performance of the model is improved when using CTE instead of POT. Gaussian
Processes In this experiment, our data is composed of a one-dimensional time series
taken from the UCR Time Series Anomaly Archive 2 [Wu, 2020], which we reorganize in
windows of size 2, and use each window to fit a Gaussian process (GP) model in order
to predict the next value in the series. Our complete dataset D is composed of n = 1e4
windows. On each run we randomly select 340 points of D for training (denote Di), and

Fig. 4.4.: Experimental results in the case of testing Gaussian processes. Left: The Pickands
estimator is used. Right: The DEdH estimator is used. In both cases we notice that CTE
estimates larger shape parameters of the loss function distributions for models which
overfit. This is not the case when POT is applied directly. The first black vertical line
marks the first model with lower MSE than the model with the smallest length scale
parameter (the point where the models stop overfitting). The second black vertical
line marks the model in from which MSE starts growing again (the point when models
begin underfitting). The MSE is presented in log scale and has been further linearly
scaled to fit the plot. Shaded areas denote the standard deviation of the measurements
across 200 independent runs.

then group the predictions of the model on the 1e4 points of D into an array which we
denote by Ŷi. Then we split Ŷi into five equally sized subsets Ŷi,j . We proceed to estimate
the shape parameter of the tails of the prediction of the model, for given training set Di.
This is done by applying the Pickands/DEdH estimator to Ŷi,j , receiving ξ̂i,j and then
as per Appendix C.5, we get the estimate ξ̂i = 1

5
∑5

j=1 ξ̂i,j which corresponds to Ŷi. We

2https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.
zip
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repeat this process 1000 times (for 1000 choices of the training set Di), and select as our
estimation of the shape parameter of the tail of the distribution of our loss function, the
maximum individual estimated parameter: ξ̂i = max{ξ̂i|i ∈ [1000]}. On the other hand,
we also calculate the MSE on the testing set D\Di after the model has been trained on Di.

To check the difference of performance of the direct POT of tail shape estimation and
cross tail estimation, we also calculate the shape parameter of the overall distribution of
prediction models, through the standard method, by applying Pickands/DEdH estimator

on Y =
1000⋃
i=1

Ŷi.

These experiments are repeated for length scale parameters given in the x−axis of
Figure 4.4 as well as in Appendix C.8. We repeat every experiment 200 times to account
for variability across different runs, we compute the mean and standard deviation of the
results.

In Figure 4.4 , we notice that when the CTE approach is used, the shape parame-
ter is significantly larger for models which overfit. In Appendix C.8, we illustrate that
the MSE is large for small scale parameters due to overfitting (Figure C.4). Furthermore,
the shape parameter only drops to (under) zero, when the model starts underfitting for
length scale parameters bigger than 2.5e7. In Appendix C.8 (Figure C.5), it is shown
that for such large values of the length scale parameter, the predictions become roughly
constant.

On the other hand, if POT is applied directly, then the estimated shape parameters
are not significantly larger for models which overfit compared to those that do not. This
is because conditioning on the training set, the predicted values on the test set vary
significantly with regards to the their location. Hence, the tail that is estimated by the
direct application of the POT approach is sometimes simply the one translated the furthest
from the origin. Thus, if there is some inverse relationship between the magnitude of
the location and the size of the estimated shape parameter across different conditional,
then we expect POT to underestimate the true shape parameter of the marginal. This is
shown in Appendix C.8, for the model with the highest estimated shape parameter (290).
The variability (sorted) of the estimated shape parameters of the 1000 conditionals for
each length scale parameter is given in Figure C.7 of Appendix C.8, together with the
corresponding 97th percentile (threshold) from each corresponding conditional distribu-
tion. We notice that indeed, quite often the difference between locations is large, and
that the largest threshold often corresponds to conditional distributions with small, even
negative shape parameters.

The outcomes presented herein are robust with regards to the choice of applying the
method explicated in Appendix C.5 in conjunction with the direct Peaks Over Threshold
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(POT) approach. Furthermore, the findings presented in Figure 4.4 demonstrate near
equivalence in relation to the magnitude of the selected threshold (in this study, we
evaluated 99.7 and 99.997 percentiles).

Polynomial Kernels This experiment is almost identical to the previous one, with the
only differences being that the models we test now are polynomial kernels, and the set of
possible candidate models in this case is defined by the degree of the polynomial kernel.
We test polynomial kernels of degree from 1 to 9. As before, we repeat this experiment
200 times. The results are shown in Figure 4.5.

Fig. 4.5.: Experimental results in the case of testing polynomial kernels. Left: The Pickands
estimator is used. Right: The DEdH estimator is used. In both cases we notice that
CTE estimates larger shape parameters of the loss function distributions for models
which overfit. This is not the case when POT is applied directly. The black vertical line
marks the inflection point of the MSE. The MSE is presented in log scale and has been
further linearly scaled to fit the plot. Shaded areas denote the standards deviation of
the measurement across 200 independent runs.

4.5.4 Computational Simplifications

Another benefit to using cross tail estimation is the reduction of computational time, as
for a given number m of conditional distributions, with n samples for each, instead of
joining all testing samples together in an array of size m ∗ n, we perform calculations in
m arrays of size n in parallel. This becomes useful in practice during shape parameter
estimation, as using Pickands estimators requires sorted samples, where best algorithms
for sorting require n log(n) operations for a vector of size n. Hence our method which
requires n log(n) operations is much faster in practice than the standard POT approach
which requires mn log(mn), in a setting where m and n are of approximately of the same
order.
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4.6 Conclusion

We study the problem of estimating the tail shape of loss function distributions, and
explain the complications that arise in performing this task. We notice that such compli-
cations arise in general during the estimation of the tail shape of marginal distributions.
In order to mitigate such shortcomings, we propose a new method of estimating the
shape of the right tails of marginal distributions and give theoretical guarantees that the
tail of the marginal distribution coincides with the thickest tail of the set of conditional
distributions composing the marginal. We give experimental evidence that our method
works in practice, and is necessary in applications with small sample sizes. Using the
aforementioned method, we show experimentally that the tails of distribution functions
in many cases can have non-exponential decay, as well as that it is possible that not even
their first moment exists. Furthermore, we discover an interesting phenomena regarding
the relationship between the overfitting of a model, and the thickness of the tails of its
prediction function distribution, in the experiments we conducted.

Potential additional applications of the method we develop include improving classic tail
modelling, as well as the threshold selection for model comparison in anomaly detection
[Su, 2019]. Furthermore, cross tail estimation could be used to estimate the existence
of the moments of loss function distributions, and thus can be considered as a potential
elimination criteria for models whose first moment does not exist.
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In the first part of this thesis, we focused on modelling high-dimensional, complex data
distributions. More precisely, in Chapter 2, we introduced AFFJORD, a framework that
guarantees accurate representation of probability density functions and enhances the
performance of ODE based Normalizing Flows. In Chapter 3, we put forth a novel
approach named PSM, that not only improves density estimation when compared to the
standard approach of training diffusion models, but also expedites the training process,
all while maintaining roughly identical inference time and memory consumption. In
the second part we introduced ’cross-tail estimation,’ a new method to facilitate the
estimation of tail thickness in marginal distributions, exhibiting superior performance
when contrasted with the direct application of Points-Over-Threshold approach.

5.1 Summary of the Main Contributions

In this section, we present a synopsis of the principal contributions.
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5.1.1 Enhanced Distribution Modelling via Augmented
Architectures For Neural ODE Flows

In the second chapter of this thesis, we tackled the issue of insufficient flexibility observed
in the evolution of the vector field within the framework of Continuous Normalizing
Flows. In response to this issue, we endeavored to develop an effective solution, resulting
in the contributions listed below.

Main Contributions

• We propose an intuitive expansion of the total derivative formula in the continuous
sense, demonstrating its equivalence with continuous backpropagation.

• We introduce the continuous version of the chain rule, which we refer to as the
cable rule. The cable rule bears resemblance to the forward sensitivity of ordinary
differential equations (ODEs) as it details the evolution of the state’s Jacobian
based on initial conditions, akin to how forward sensitivity illustrates the Jacobian’s
evolution in relation to flow parameters.

• Drawing inspiration from our results, we put forth a novel type of continuous
normalizing flow known as Augmented FFJORD (AFFJORD). This method sur-
passes the currently leading continuous normalizing flow method, FFJORD, in our
experimental findings.

5.1.2 Faster Training of Diffusion Models and Improved Density
Estimation via Parallel Score Matching

In the third chapter, we focused on diffusion probabilistic models. We directed our efforts
toward refining training methodologies, with a specific focus on Parallel Score Matching
strategies. The motivation behind this exploration was to harness the inherent property
of diffusion models, which enable the individualized modeling of distinct scores. We list
our main contributions below.

Main Contributions

• Capitalizing on the inherent attribute of diffusion models, which allows for the
individual modeling of each score, we present evidence supporting the feasibility
of this method for density estimation.
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• Our proposed method not only enhances the outcomes in density estimation but
also reduces training duration through the process of parallelization.

• We provide empirical evidence to assert that our approach does not incur penalties
in terms of inference time and memory expenses.

• We further demonstrate that in specific instances, our approach improves the
generative process.

5.1.3 On Tail Decay Rate Estimation of Loss Function
Distributions

In the fourth chapter of the thesis, drawing inspiration from cross-validation and the
process of marginalizing the loss function across various training sets in machine learn-
ing models, we directed our focus towards addressing the challenge of enhancing the
estimation of the tail shape parameter in the case of general marginal distributions. In
the pursuit of this objective, we made several contributions which are provided below.

Main Contributions

• We tackle the task of measuring the tail shape of loss function distributions and
introduce a new method to estimate the shape of the tails of general marginal
distributions. This approach offers theoretical guarantees that the tail of the
marginal distribution aligns with the thickest tail among the underlying conditional
distributions.

• We provide empirical evidence to affirm the efficacy of our method in real-world
applications, especially in scenarios dealing with limited sample sizes, and show
that tails of loss-function distributions often show non-exponential decay.

• We expose an interesting link between the overfitting of a model and the thickness
of the tail of its corresponding prediction-function distribution.

• Our developed method has potential implications for improving classic tail model-
ing, aiding in threshold selection for model comparison in anomaly detection, and
may serve as a criterion to eliminate models whose first moment of its loss function
distribution does not exist.
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• In the task of tail shape estimation of marginal distributions, the method we
developed provides computational advantages when the number of conditional
distributions is of the same order as the number of samples from each conditional.

5.2 Perspectives and Future Applications

In the ensuing discussion, we offer a detailed perspective along with potential pathways
for future applications.

5.2.1 Fine-tuning of Diffusion Models for Density Estimation

Time series data are often non-stationary, altering their distribution over different periods.
Consequently, learning the distribution of such time series, particularly for anomaly
detection using a singular diffusion model, can pose significant challenges. Recently,
numerous architectural alterations and augmentations, such as LoRA and ControlNet
[Hu, 2021; Zhang, 2023], have been proposed, enabling the fine-tuning of diffusion
models to cater to specific distributions.

Future research could be directed towards designing models capable of discerning the
current state of the time series and dynamically adjusting the model via control strategies
as mentioned above. The implementation of such a model would involve the continuous
detection and adaptation to the evolving states of the time series data, providing a
real-time response to changing conditions. This proposed framework bears resemblance
to high-capability, multi-regime Markov Switching Models [Hamilton, 2010; Guidolin,
2007]. Such a model would operate by understanding the current state of the time series
and adjusting its peformance accordingly.

5.2.2 Faster Density Estimation

A key limitation of diffusion models is their requirement for multiple steps to generate
a sample, subsequently necessitating a substantial number of steps to execute precise
density estimation. Recent studies have sought to reduce the number of steps required for
high-quality generation [Lu, 2022; Karras, 2022]. However, many of these investigations
primarily concentrate on the generative task, neglecting to provide results for density
estimation. Exploring the applicability of such methods to density estimation would
be an intriguing prospect. Among the recent methodologies with promising outcomes
are consistency models [Song, 2023], which enable high-quality single-step sampling.
Regrettably, this generative function ceases to be a diffeomorphism. Uncovering methods
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to ensure that such functions retain their diffeomorphic properties and are thus suitable
for density estimation presents an exciting direction for future research.

5.2.3 Flexible Conditional Density Estimation

In some cases we would like to perform density estimation of a random variable, knowing
the realized value of depended random variables. Diffusion models enable us to do so,
as one can condition on the variable z in order to generate or estimate the likelihood
of y. This can be done through various ways [Dhariwal, 2021; Ho, 2022; Kim, 2022;
Nichol, 2021a], most notably as in [Saharia, 2022a; Saharia, 2022b]. In this case,
one trains a diffusion model on the noisy versions yt of the original input y0, while
constantly keeping as input in the network the realized value of the variable on which
we condition, that is, z. While this works in practice, we would like to be able to train
a diffusion model on x, and be able to perform conditional density estimation for any
splitting y, z of x, that is x = (y, z). Naturally since the diffusion model has modelled
the joint distribution p(x), we know that it contains the information p(z) =

∫
p(y, z)dy,

and thus p(y|z) = p(x)
p(z) . Strategies for generating y given z that work well in practice

have been developed and applied to inpainting, colorization, class generation to name a
few [Song, 2021; Lugmayr, 2022]. However, there is no guarantee that the generated
samples are actually samples from p(y|z) = p(x)

p(z) . More importantly, in the context of this
thesis, no methods exist to perform density estimation of p(y|z), if one has a diffusion
model trained on p(x) = p(y, z).

5.3 Final Remarks

In this thesis, we have delved into the significance of density estimation and explored a
variety of both classical and contemporary methods dedicated to this area. Additionally,
we have examined the tails of distributions and looked at a collection of concepts
and techniques used in Extreme Value Theory (EVT), a discipline that focuses on the
distribution of extreme values.

Throughout our discussion, we highlighted numerous challenges that emerge within these
topics, and presented the efforts we’ve made to alleviate these issues. Our contributions
enabled us to enhance the performance of contemporary methods for density estimation,
and improved the estimation of the shape of tails marginal distributions.

Towards the conclusion, we offered several perspectives for future research. This includes
ways for accelerating diffusion models, strategies for efficient fine-tuning of such methods,
and potential for transforming models trained to estimate joint density functions into
ones capable of estimating conditional densities derived from the joint one.
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These perspectives present intriguing possibilities, particularly for anomaly detection
in non-stationary time series and in the enhancement of regression procedures. Such
advancements could, in turn, find practical applications in a wide array of real-world
tasks. As we close this thesis, we look forward to seeing the progress and innovations
that will undoubtedly continue to emerge in this exciting and ever-evolving field.
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A.1 Cable Rule, the Continuous Generalization of the
Chain Rule

We will first assume that z is one dimensional. If zi = fi(zi−1) for i ∈ {1, ..., n} then by
the chain rule we have

dzn

dz0
= ∂zn

∂zn−1

dzn−1
dz0

= ∂zn

∂zn−1

∂zn−1
∂zn−2

...
∂z1
∂z0

= ∂fn(zn−1)
∂zn−1

∂fn−1(zn−2)
∂zn−2

...
∂f1(z0)

∂z0
(A.1)

Now, if we assume that zi = z(ti) is transformed more gradually as in zi+1 = zi + ϵf(zi),
and that ti+1 = ti + ϵ, we get that

dzn

dz0
= ∂zn

∂zn−1

∂zn−1
∂zn−2

...
∂z1
∂z0

= (I + ϵ
∂f(zn−1)

∂zn−1
)(I + ϵ

∂f(zn−2)
∂zn−2

)...(I + ϵ
∂f(z0)

∂z0
) (A.2)

We see that z(t) = z(0) +
∫ t

0 f(z(τ))dτ is the limit of the previous iterative definition
zi+1 = zi + ϵf(zi, θ(ti)), when ϵ → 0. For simplicity, we have written f(zi) = f(zi, θ, ti).
If we decide to expand equation A.2, we obtain

dzn

dz0
= I +

n−1∑
i=0

∂f(zi)
∂zi

ϵ +
n−1∑
i=0

∑
j<i

∂f(zi)
∂zi

∂f(zj)
∂zj

ϵ2 + ... + ∂f(z0)
∂z0

...
∂f(zn)

∂zn
ϵn (A.3)

= I + Sn
1 + Sn

2 + ... + Sn
n+1, (A.4)

where

Sn
2 =

n−1∑
i=0

∑
j<i

∂f(zi)
∂zi

∂f(zj)
∂zj

ϵ2, Sn
3 =

n−1∑
i=0

∑
j<i

∑
k<j

∂f(zi)
∂zi

∂f(zj)
∂zj

∂f(zk)
∂zk

ϵ3, ... (A.5)

We will focus on the sum Sn
2 for a moment. Let us define

gn
2 (x, y) = ∂f(zti)

∂zti

∂f(ztj )
∂ztj

, for x ∈ [ti, ti+1], y ∈ [tj , tj+1]. (A.6)

It is clear that gn
2 is the discretization of

g2(t, u) = ∂f(zt)
∂zt

∂f(zu)
∂zu

, for t ∈ [0, T ], u ∈ [0, T ]. (A.7)

We can notice that Sn
2 =

∑n−1
i=0

∑
j<i gn

2 (ti, tj)ϵ2 and that gn
2 (ti, tj) = gn

2 (tj , ti) is symmet-
ric, but in Sn

2 , only takes values in the rectangles under the diagonal as illustrated in
Figure A.3. If we decide to expand the sum Sn

2 on the rectangles above the diagonal as
in Figure A.4 and denote it as S̄n

2 =
∑n−1

i=0
∑

j ̸=i gn
2 (ti, tj)ϵ2, then due to the symmetry

of gn
2 (ti, tj) = gn

2 (tj , ti), we deduce that Sn
2 = 1

2 S̄n
2 . The only rectangles missing in S̄n

2 ,
regarding the discretization of [0, T ] × [0, T ], are the ones corresponding to the cases
when i = j, which are the rectangles in the diagonal. It is important to emphasize
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Fig. A.1.: Rectangle (i, j) in discretized [0, T ] × [0, T ] Fig. A.2.: Symmetry of gn
2

Fig. A.3.: Rectangles participating in Sn
2 Fig. A.4.: Rectangles in S̄n

2

here that Sn
2 is the sum of C2

n terms, while S̄n
2 is made out of V 2

n = 2!C2
n terms. This is

especially apparent when we notice the discretization of [0, T ] × [0, T ] is composed of
n2 rectangles, while the diagonal is composed of n rectangles, hence S̄n

2 is the sum of
n2 − n = V 2

n terms. The ratio of the collective mass of the rectangles in the diagonal with
respect to the entire [0, T ] × [0, T ] goes to zero as n → ∞, hence we conclude that

S̄n
2 =

n−1∑
i=0

∑
j ̸=i

∂f(zi)
∂zi

∂f(zj)
∂zj

ϵ2 →
∫

[0,T ]×[0,T ]
g2(t, u)d(t, u) = (

∫ T

0

∂f(zt)
∂zt

dt)2, (A.8)

thus,

Sn
2 = 1

2! S̄
n
2 → 1

2!(
∫ T

0

∂f(zt)
∂zt

dt)2. (A.9)

Similarly for

Sn
3 =

n−1∑
i=0

∑
j<i

∑
k<j

∂f(zi)
∂zi

∂f(zj)
∂zj

∂f(zk)
∂zk

ϵ3,

we can define

gn
3 (x, y, z) = ∂f(zti)

∂zti

∂f(ztj )
∂ztj

∂f(ztk
)

∂ztk

, for x ∈ [ti, ti+1], y ∈ [tj , tj+1], z ∈ [tk, tk+1],

(A.10)
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and

g3(t, u, v) = ∂f(zt)
∂zt

∂f(zu)
∂zu

∂f(zv)
∂zv

, for t ∈ [0, T ], u ∈ [0, T ], v ∈ [0, T ]. (A.11)

In this case:
gn

3 (x, y, z) = gn
3 (x, y, z) = gn

3 (x, z, y) = gn
3 (y, x, z) =

= gn
3 (y, z, x) = gn

3 (z, x, y) = gn
3 (z, y, x), (A.12)

where each equality corresponds to one of the 6 = 3! permutations of (x, y, z). As
before we can expand the domain of Sn

3 , by adding the rectangles in the discretization of
[0, T ]× [0, T ]× [0, T ] such that i might be smaller than j, as well as that j could be smaller
than k. We denote this expanded sum as S̄n

3 , and by the symmetry of gn
3 , we notice

that Sn
3 = 1

3! S̄
n
3 . This implies that the rectangles participating in S̄n

3 , now cover most of
[0, T ] × [0, T ] × [0, T ], where the only exceptions are the ones when i = j or j = k (or
both). The number of rectangles participating in S̄n

3 is V 3
n = 3!C3

n = n3 − 3n2 + 2n, and
since the number of all rectangles in [0, T ] × [0, T ] × [0, T ] is n3, this implies that 3n2 − 2n

rectangles are missing in sum S̄n
3 from the cases when i = j or j = k (or both). The ratio

of the collective mass of such rectangles with respect to the entire [0, T ] × [0, T ] × [0, T ]
goes to zero as n → ∞, hence as before:

S̄n
3 =

n−1∑
i=0

∑
j ̸=i

∑
i ̸=k ̸=j

∂f(zi)
∂zi

∂f(zj)
∂zj

∂f(zk)
∂zk

ϵ3 →
∫

[0,T ]×[0,T ]×[0,T ]
g3(t, u, v)d(t, u, v) (A.13)

= (
∫ T

0

∂f(zt)
∂zt

dt)3, (A.14)

implying

Sn
3 = 1

3! S̄
n
3 → 1

3!(
∫ T

0

∂f(zt)
∂zt

dt)3. (A.15)

In a similar fashion we can prove that Sn
k → 1

k!(
∫ T

0
∂f(zt)

∂zt
dt)k. Thus we conclude that:

dz(T )
dz(0) = 1

0!I + 1
1!

∫ T

0

∂f(zt)
∂zt

dt + 1
2!(
∫ T

0

∂f(zt)
∂zt

dt)2 + 1
3!(
∫ T

0

∂f(zt)
∂zt

dt)3 + ... (A.16)

dz(T )
dz(0) = e

∫ T

0
∂f(zt)

∂zt
dt

. (A.17)

Unfortunately, this result does not hold when the dimensionality of z(t) is larger than one.
Indeed, in this case, ∂f(zti )

∂zti
is a matrix, hence gn

2 (x, y) = ∂f(zti )
∂zti

∂f(ztj )
∂ztj

is not necessarily

symmetric, as the commutator [∂f(zti )
∂zti

,
∂f(ztj )

∂ztj
] is not necessarily zero. For this reason,

inspired by the previous result we try a different approach. Indeed, we can see from
Equation (A.17) that dz(T )

dz(0) is the solution of the following ODE:
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d( dz(t)
dz(0))
dt

= ∂f(z(t))
∂z(t)

dz(t)
dz(0) (A.18)

as the initial condition dz(t=0)
dz(0) = I. Hence we wish to prove that dz(t)

dz(0) satisfies the same
ODE in higher dimensions as well.

We notice that we can write:

z(t) = z(0) +
∫ t

0
f(z(τ))dτ = g(z(0), t), (A.19)

therefore,
d( dz(t)

dz(0))
dt

= ∂2g(z(0), t)
∂t∂z(0) = ∂2g(z(0), t)

∂z(0)∂t
=

=
d(dg(z(0),t)

dt )
dz(0) = df(z(t))

dz(0) = df(z(t))
dz(t)

dz(t)
dz(0) . (A.20)

We pause for a moment, in order to highlight the similarity of expression A.20 and the
forward sensitivity:

d(dz(t)
dθ )

dt
= df(z(t), t, θ)

dθ
= ∂f(z(t), t, θ)

∂z(t)
dz(t)

dθ
+ ∂f(z(t), t, θ)

∂θ
. (A.21)

Now from Expression A.20, we infer that dz(t)
dz(0) is the solution of the following linear

ODE:
d( dz(t)

dz(0))
dt

= ∂f(z(t))
∂z(t)

dz(t)
dz(0) . (A.22)

If we write Y (t) = dz(t)
dz(0) , then the equation above becomes:

dY (t)
dt

= ∂f(z(t))
∂z(t) Y (t). (A.23)

The general solution of first-order homogeneous linear ODEs is given in [Magnus, 1954;
Blanes, 2009], and in our case can be written as follows:

dz(t)
dz(0) = eΩ(t) dz(0)

dz(0) = eΩ(t), for Ω(t) =
∞∑

k=1
Ωk(t), (A.24)
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where

Ω1(t) =
∫ t

0
A(t1) dt1, (A.25)

Ω2(t) = 1
2

∫ t

0
dt1

∫ t1

0
dt2 [A(t1), A(t2)], (A.26)

Ω3(t) = (A.27)

= 1
6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

([
A(t1), [A(t2), A(t3)]

]
+
[
A(t3), [A(t2), A(t1)]

])
, (A.28)

and so on for k > 3, where:

A(t) = ∂f(z(t), t, θ)
∂z(t) . (A.29)

We notice that if z(t) is one dimensional, then this result agrees with the one in the
previous approach. To conclude, we have proven the following theorem:

Theorem A.1.1. Let dz(t)
dt = f(z(t), θ, t), where f is continuous in t and Lipschitz continu-

ous in z(t), furthermore let z(t) = zt(z(0), t) satisfy the conditions of Clairaut’s theorem.
Then the following holds:

d( dz(t)
dz(0))
dt

= ∂f(z(t))
∂z(t)

dz(t)
dz(0) . (A.30)

Proof. Since f is continuous in t and Lipschitz continuous in z then due to Picard–Lindelöf
theorem, z(T ) exists and is unique. Furthermore, since f is Lipschitz continuous in z(t),
then ∂f(zt)

∂zt
exists almost everywhere. Based on the previous derivations we reach the

desired conclusion.

A.2 The Continuous Generalization of the Total
Derivative Decomposition

In Appendix A1, we assumed that z(t) = z(0) +
∫ t

0 f(z(τ), θ, τ)dτ , which was the the
limit of ϵ → 0 of the previous iterative definition of zi+1 = zi + ϵf(zi, θ, ti). Now,
we assume that the set of parameters in f is different at each discrete time, that is
zi+1 = zi + ϵfi(zi, θi, ti), for independent sets θi. First, we notice that

zn = zn(z(t0), θ(t0), θ(t1), ..., θ(tn−1)) = zn(z(t1), θ(t1), θ(t2), ..., θ(tn−1)) =

...zn(z(tk+1), θ(tk+1), θ(tk+2), ..., θ(tn−1)) = ...

... = zn(z(tn−1), θ(tn−1)) = z(tn = T − ϵ).
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This can be seen from Figure A.5. Thus

dzn

dθ(tk) = dzn(z(tk + ϵ), θ(tk + ϵ), θ(tk+2), ..., θ(tn))
dθ(tk) (A.31)

dzn

dθ(tk) = ∂zn

∂z(tk + ϵ)
dz(tk + ϵ)

dθ(tk) + 0 + 0 + ... + 0 = ∂zn

∂z(tk + ϵ)
∂z(tk + ϵ)

∂θ(tk) . (A.32)

Fig. A.5.: The dependencies in the discretisation of z(t)
t = f(z(t), θ(t), t). Variable ztk+1 com-

pletely absorbs the contribution of θtk
to zT , hence zT is a function of ztk+1 and the

following sets of parameters θtk+1 , θtk+2 , ..., θtn
.

We now focus on analysing ∂zn
∂z(tk+ϵ) and ∂z(tk+ϵ)

∂θ(tk) . First we notice that from:

∂zn

∂z(tk) = ∂zn

∂z(tk + ϵ)
∂z(tk + ϵ)

∂z(tk) = ∂zn

∂z(tk + ϵ)(I + ϵ
∂f(z(tk), θ(tk))

∂z(tk) + O(ϵ2)) (A.33)

we get
∂zn

∂z(tk + ϵ) = ∂zn

∂z(tk) − ϵ
∂zn

∂z(tk + ϵ)
∂f(z(tk), θ(tk))

∂z(tk) + O(ϵ2). (A.34)

Regarding ∂z(tk+ϵ)
∂θ(tk) the following holds:

∂z(tk + ϵ)
∂θ(tk) = ∂(z(tk) + f(z(tk), θ(tk))ϵ + O(ϵ2))

∂θ(tk) = 0 + ∂f(z(tk), θ(tk))
∂θ(tk) ϵ + O(ϵ2).

(A.35)
After combining both Equation (A.34) and Equation (A.35) in expression (A.32), we
deduce that:

dzn

dθ(tk) =

( ∂zn

∂z(tk) − ϵ
∂zn

∂z(tk + ϵ)
∂f(z(tk), θ(tk))

∂z(tk) + O(ϵ2)
)(∂f(z(tk), θ(tk))

∂θ(tk) ϵ + O(ϵ2)
)
, (A.36)

thus
∂zn

∂θ(tk) = dzn

dθ(tk) = ∂zn

∂z(tk)
∂f(z(tk), θ(tk))

∂θ(tk) ϵ + O(ϵ2) (A.37)
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Now assuming that θ(tk) = g(tk, θ), we can write the total derivative of zn with respect
to parameters θ :

dzn

dθ
=

n∑
k=0

∂zn

∂θ(tk)
dθ(tk)

dθ
=

n∑
k=0

∂zn

∂z(tk)
∂f(z(tk), θ(tk))

∂θ(tk)
dθ(tk)

dθ
ϵ + O(ϵ2) (A.38)

hence taking ϵ → 0, we conclude that

dz(T )
dθ

=
∫ T

0

∂z(T )
∂z(t)

∂f(z(t), θ(t))
∂θ(t)

∂θ(t)
∂θ

dt. (A.39)

We can see that we are integrating the infinitesimal contributions of parameters θ, at
each time t. In case that θ(t) = g(t, θ) = θ, then we have

dz(T )
dθ

=
∫ T

0

∂z(T )
∂z(t)

∂f(z(t), θ)
∂θ

∂θ

∂θ
dt =

∫ T

0

∂z(T )
∂z(t)

∂f(z(t), θ)
∂θ

Idt =

=
∫ T

0

∂z(T )
∂z(t)

∂f(z(t), θ)
∂θ

dt = −
∫ 0

T

∂z(T )
∂z(t)

∂f(z(t), θ)
∂θ

dt. (A.40)

Theorem A.2.1. Let dz(t)
dt = f(z(t), θ(t), t), where f is continuous in t and Lipschitz

continuous in z(t) and θ(t). Then the following holds:

dz(T )
dθ

=
∫ T

0

∂z(T )
∂z(t)

∂f(z(t), θ(t), t)
∂θ(t)

∂θ(t)
∂θ

dt. (A.41)

Proof. As before, since f is continuous in t and Lipschitz continuous in z then due to
Picard–Lindelöf theorem, z(T ) exists and is unique. Furthermore, since f is Lipschitz con-
tinuous in θ(t), then ∂f(θ(t))

∂θ(t) exists almost everywhere. Based on the previous derivations
we reach the desired conclusion.

A.3 Generalization of Continuous Backpropagation
into Piecewise Continuous Backpropagation

We define z(t) as before, with the only difference being that its derivative is discontinuous
at a point (say T

2 ):

z(t) =


z(0) +

∫ t
0 f(z(τ), θ(τ))dτ, t ∈ [0, T

2 ]

z(0) +
∫ T

2
0 f(z(τ), θ(τ))dτ +

∫ t
T
2

g(z(τ), ϕ(τ))dτ, t ∈ (T
2 , T ]

(A.42)
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As in [Chen, 2018], we can get

d( ∂L
∂z(t))
dt

=

− ∂L
∂z(t)

∂f(z(t),θ(t))
∂z(t) , t ∈ [0, T

2 ]

− ∂L
∂z(t)

∂g(z(t),ϕ(t))
∂z(t) , t ∈ (T

2 , T ],
(A.43)

thus

∂L

∂z(t) =


∂L

∂z(T ) −
∫ t

T
∂L

∂z(τ)
∂g(z(τ),ϕ(τ))

∂z(τ) dτ, t ∈ (T
2 , T ]

∂L
∂z(T ) −

∫ t
T
2

∂L
∂z(τ)

∂f(z(τ),θ(τ))
∂z(τ) dτ −

∫ T
2

T
∂L

∂z(τ)
∂g(z(τ)ϕ(τ))

∂z(τ) dτ, t ∈ (0, T
2 ].

(A.44)

The approach developed in Appendix A2 can be used to generalize continuous backprop-
agation into piecewise continuous backpropagation. Indeed, identically as before, we
have the first order appoximation:

dLϵ

dθ
=

n∑
k=0

∂Lϵ

∂z(tk)
∂f(z(tk), θ(tk))

∂θ(tk)
∂θ(tk)

∂θ
ϵ +

n∑
k=0

∂Lϵ

∂z(tk)
∂g(z(tk), ϕ(tk))

∂ϕ(tk)
∂ϕ(tk)

∂θ
ϵ

(A.45)

Taking the limit we get:

dL

dθ
=
∫ T

2

0

∂L

∂z(t)
∂f(z(t), θ(t))

∂θ(t)
∂θ(t)

∂θ
dt +

∫ T

T
2

∂L

∂z(t)
∂g(z(t), ϕ(t))

∂θ(t)
∂ϕ(t)

∂θ
dt (A.46)

and in the same manner we get:

dL

dϕ
=
∫ T

2

0

∂L

∂z(t)
∂f(z(t), θ(t))

∂θ(t)
∂θ(t)
∂ϕ

dt +
∫ T

T
2

∂L

∂z(t)
∂g(z(t), ϕ(t))

∂θ(t)
∂ϕ(t)

∂ϕ
dt, (A.47)

If we set θ(t) = θ and ϕ(t) = ϕ, then we get:

dL

dθ
=
∫ T

2

0

∂L

∂z(t)
∂f(z(t), θ)

∂θ
dt, (A.48)

and
dL

dϕ
=
∫ T

T
2

∂L

∂z(t)
∂g(z(t), ϕ)

∂ϕ
dt. (A.49)

A.4 Additional Generated Samples

In Figure A.6a, Figure A.6b and Figure A.6c , are presented additional examples of
generated samples of MNIST, CIFAR-10 and CelebA(32 × 32) by AFFJORD, respectively.
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(a) Generated samples of MNIST by AFFJORD. (b) Generated samples of CIFAR-10 by AF-
FJORD.

(c) Generated samples of CelebA(32 × 32.) by
AFFJORD

Fig. A.6.: Generated samples by AFFJORD.

In addition in Figure A.7a, Figure A.7b and Figure A.7c, are presented additional ex-
amples of generated samples of MNIST, CIFAR-10 and CelebA (32 × 32) by FFJORD,
respectively.
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(a) Generated samples of MNIST by FFJORD. (b) Generated samples of CIFAR-10 by FFJORD.

(c) Generated samples of CelebA(32 × 32) by
FFJORD.

Fig. A.7.: Generated samples by FFJORD.

A.5 Deriving the Instantaneous Change of Variable
via the Cable Rule

The trace of a commutator [X, Y ] = XY − Y X is always zero, hence we prove
below that for all terms Ωk>1(t) given in Equations (A.25) in Appendix A1, we have
tr(Ωk(t)) = 0.
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Indeed, since the trace and the integral are interchangeable we have:

tr(Ω2(t)) = tr
1
2

∫ t

0
dt1

∫ t1

0
dt2 [A(t1), A(t2)]

= 1
2

∫ t

0
dt1

∫ t1

0
dt2 tr[A(t1), A(t2)] = 0. (A.50)

tr(Ω3(t)) = 1
6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

(
tr
[
A(t1), [A(t2), A(t3)]

]
+

+tr
[
A(t3), [A(t2), A(t1)]

])
(A.51)

= 1
6

∫ t

0
dt1

∫ t1

0
(0 + 0)dt2 = 0, (A.52)

and so on for k > 3.

The only exception is the case when k = 1:

tr(Ω1(t)) = tr

∫ t

0
A(t1)dt1 =

∫ t

0
tr

∂f(z(t1), t1, θ)
∂z(t1) dt1. (A.53)

Finally, using Jacobi’s formula, we conclude that:

log
∣∣∣∣det

(
dz(T )
dz(0)

)∣∣∣∣ = log
∣∣∣det

(
eΩ(T )

)∣∣∣ = log etr(Ω(T )) =
∫ T

0
tr

∂f(z(t), t, θ)
∂z(t) dt. (A.54)

A.6 Simplifications in Section 2.3.1

First we notice that if z∗(0) does not depend on z(0), then

dz(T )
dz(0) =

[
I, 0

]
e

∫ T
0

∂f(z(t),z∗(t),θ)
∂z(t) dt

∫ T
0

∂f(z(t),z∗(t),θ)
∂z∗(t) dt∫ T

0
∂g(z(t),z∗(t),ϕ)

∂z(t) dt
∫ T

0
∂g(z(t),z∗(t),ϕ)

∂z∗(t) dt

+Ω2(T )+...  I
dz∗(0)
dz(0)

 , (A.55)

becomes

dz(T )
dz(0) =

[
I, 0

]
e

∫ T
0

∂f(z(t),z∗(t),θ)
∂z(t) dt

∫ T
0

∂f(z(t),z∗(t),θ)
∂z∗(t) dt∫ T

0
∂g(z(t),z∗(t),ϕ)

∂z(t) dt
∫ T

0
∂g(z(t),z∗(t),ϕ)

∂z∗(t) dt

+Ω2(T )+... [
I

0

]
. (A.56)
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On the other hand, if the augmented dimensions do not depend on the main dimensions
then ∂g(z(t),z∗(t),ϕ)

∂z(t) = 0. This implies that

A(t) =

 ∂f(z(t),z∗(t),θ)
∂z(t)

∂f(z(t),z∗(t),θ)
∂z∗(t)

∂g(z(t),z∗(t),ϕ)
∂z(t)

∂g(z(t),z∗(t),ϕ)
∂z∗(t)

 →

∂f(z(t),z∗(t),θ)
∂z(t)

∂f(z(t),z∗(t),θ)
∂z∗(t)

0 ∂g(z∗(t),ϕ)
∂z∗(t)

 . (A.57)

Hence,

Ω1(t) =
∫ t

0
dt1

∂f(z(t1),z∗(t1),θ)
∂z(t1)

∂f(z(t1),z∗(t1),θ)
∂z∗(t1)

0 ∂g(z∗(t1),ϕ)
∂z∗(t1)

 =

∫ t
0 dt1

∂f(z(t1),z∗(t1),θ)
∂z(t1) B1(t)

0 D1(t)


(A.58)

Ω2(t) =

∫ t

0
dt1

∫ t1

0
dt2

∂f(z(t2),z∗(t2),θ)
∂z(t2)

∂f(z(t2),z∗(t2),θ)
∂z∗(t2)

0 ∂g(z∗(t2),ϕ)
∂z∗(t2)

∂f(z(t1),z∗(t1),θ)
∂z(t1)

∂f(z(t1),z∗(t1),θ)
∂z∗(t1)

0 ∂g(z∗(t1),ϕ)
∂z∗(t1)



−
∫ t

0
dt1

∫ t1

0
dt2

∂f(z(t1),z∗(t1),θ)
∂z(t1)

∂f(z(t1),z∗(t1),θ)
∂z∗(t1)

0 ∂g(z∗(t1),ϕ)
∂z∗(t1)

∂f(z(t2),z∗(t2),θ)
∂z(t2)

∂f(z(t2),z∗(t2),θ)
∂z∗(t2)

0 ∂g(z∗(t2),ϕ)
∂z∗(t2)



=

∫ t
0 dt1

∫ t1
0 dt2[∂f(z(t1),z∗(t1),θ)

∂z(t1) , ∂f(z(t2),z∗(t2),θ)
∂z(t2) ] B2(t)

0 D2(t)

 =
[
Ω[z]

2 (t) B2(t)
0 D2(t)

]
.

In this way we can prove that

Ω(t) =
∞∑

k=1
Ω(t)k =

[∑∞
k=1 Ω[z]

k (t)
∑∞

k=1 Bk(t)
0

∑∞
k=1 Dk(t)

]
=
[
Ω[z](t) B(t)

0 D(t)

]
.

Considering that the exponential of a matrix whose lower left block is zero, will still have
a zero lower left block, we have:

dz(t)
dz(0) = eΩ(t) =

[
eΩ[z](t) B̄(t)

0 D̄(t)

]
.

Finally,

∣∣∣∣det
(

dz(T )
dz(0)

)∣∣∣∣ =
∣∣∣∣∣det

([
I, 0

] [eΩ[z](t) B̄(t)
0 D̄(t)

] [
I

0

])∣∣∣∣∣ =
∣∣∣det

(
eΩ[z](t)

)∣∣∣ =

e
∫ T

0 tr
∂f(z(t),z∗(t),θ)

∂z(t) dt+0+...0+...
. (A.59)
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Differentiating Equation (2.5) in Appendix A1, we get:

d
(

dL
dz(t)

)
dt

= − dL

dz(t)
∂f(z(t), t, θ)

∂z(t) . (A.60)

Choosing L to be z(0), we have

d
(dz(0)

dz(t)
)

dt
= −dz(0)

dz(t)
∂f(z(t), t, θ)

∂z(t) . (A.61)

We define A(t) := dz(0)
dz(t) , and B(t) := A(t)−1 = dz(t)

dz(0) , so that the equation above
becomes

dA(t)
dt

= −A(t)∂f(z(t), t, θ)
∂z(t) , (A.62)

thus
−B(t)dA(t)

dt
= ∂f(z(t), t, θ)

∂z(t) . (A.63)

Then from

B(t)A(t) = I, (A.64)

we have
−B(t)dA(t)

dt
= dB(t)

dt
A(t), (A.65)

thus, using this expression in Equation (A.63) we get

dB(t)
dt

A(t) = ∂f(z(t), t, θ)
∂z(t) . (A.66)

Finally, we get the desired result by multiplying both sides from the right with B(t) .

A.8 Equivalence Between Continuous Total Derivative
Decomposition and the Continuous
Backpropagation

In Section 2.3.3. we derived the expression of continuous backpropagation from the
continuous total derivative decomposition. However, we can also derive the the formula
of the continuous total derivative decomposition (Equation (2.13)) from continuous
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backpropagation (Equation (2.14)). Indeed, for a function f = f(z(t), θ(t), t), where
θ(t) = g(θ, t), we can see f as h(z(t), θ, t) = f(z(t), θ(t), t). Hence,

∂L

∂θ
=
∫ T

0

∂L

∂z(t)
dh(z(t), θ, t)

dθ
dt =

∫ T

0

∂L

∂z(t)
df(z(t), θ(t), t)

dθ
dt, (A.67)

therefore
∂L

∂θ
=
∫ T

0

∂L

∂z(t)
∂f(z(t), θ(t), t)

∂θ(t)
dθ(t)

dθ
dt. (A.68)

Setting L = z(T ), gives the desired result.

A.9 Additional Details About the Experiments

As mentioned in the main part of the chapter, we optimized the architecture of FFJORD
first and fine-tuned its hyper-parameters.

This architecture remains unchanged in the AFFJORD model for fair comparison, and
we only fine-tuned the augmented structure and dimension in addition. Indeed, as it
can be seen, the results we report for FFJORD (0.96 MNIST, 3.37 CIFAR) are better than
those reported on the original paper (0.99 MNIST, 3.40 CIFAR). The aforementioned
improvements were a result of reducing the number of parameters during our tuning
process, by reducing the number of CNF blocks from 2 to 1. The total number of
parameters for different architectures of FFJORD and AFFJORD can be found on Table
A.1. It should be emphasized that in the hypernet architecture, the parameters of
AFFJORD are contained inside the parameters in the main architecture of FFJORD, so a
bigger model is not being used, simply the flexibility of evolution of the main parameters
in time is being increased.

Tab. A.1.: Number of Total Parameters of FFJORD and AFFJORD (Concat and Hypernet Archi-
tecture) for MNIST and CIFAR-10. The Multiscale Architecture Is Used in All Cases.

Dataset Concat Hypernet
FFJORD AFFJORD FFJORD AFFJORD

MNIST 400323 417629 783019 4556169
CIFAR10 679441 820815 1332361 8976115
CelebA (32 × 32) 679441 820815 1332361 8976115

More generally, our experiments show that augmented architectures generally improve
the performance of the standard non-augmented FFJORD counterparts, independently
from the baseline architecture used. Furthermore, the farther the performance of FFJORD
is from being optimal, the greater are the improvements when using AFFJORD.
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B.1 Image Generation and Likelihood Estimation in
TPSM and DPSM

Regarding the time-varying Parallel Score Matching (TPSM) approach, we can generate
data as in the original framework by iterating the following integration process:

x(ti) = x(ti+1) +
∫ ti

ti+1

[
− 1

2b(τ)
(
x(τ) + sθi

(xτ , τ)
)]

dτ, (B.1)

and perform likelihood estimation via

log p(x(t0)) = log p(x(tN ))

+ΣN−1
i=0

∫ ti+1

ti

[
− 1

2b(τ)tr
∂
(
x(τ) + sθi

(xτ , τ)
)

∂x(τ)
]
dτ, (B.2)

where sθi
(xt, t) = − εθi

(xt,t)√
1−e

−
∫ t

0
b(s)ds

.

Similarly, in the case of Discrete Parallel Score Matching (DPSM), we can easily generate
data via back-integrating

x(ti) = x(ti+1) − ϵ
[

− 1
2b(ti+1)

(
x(ti+1) + sθti+1

(xti+1)
)]

Likewise, we can perform likelihood estimation as follows

log p(x(t0)) = log p(x(tN ))

+ΣN
i=1
[

− ϵ
1
2b(ti)tr

∂
(
x(ti) + sθi

(xti)
)

∂x(ti)
]
.

In addition, in both approaches data samples can be generated by integrating the
corresponding reverse SDE [Song, 2021].

dx(t) = −b(t)[12x(t) + ∇x(t) log pt(x(t))]dt +
√

b(t)dw.

B.2 Additional Results

Below we give additional results with regards to the experimental section.

First, we set up a comparison between TPSM2 and SA-DPM, where the number of
parameter updates for each network is the same in both approaches. To elaborate,
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each network in TPSM2 undergoes 50k parallel parameter updates, and the network in
SA-DPM also experiences 50k parameter updates. Given this configuration, the training
duration for both approaches is equivalent. However, as displayed in Table B.1, the
disparity in their performance is quite significant.

Tab. B.1.: Results comparing the performance of SA-DPM and TPSM2 for the same number of
parameter updates. We test the models on CIFAR-10, CelebA, and ImageNet. The
results are given in bits/dim (lower is better), the number of parameter updates is
given in parentheses, and the training time is given in square brackets.

Method: CIFAR-10 CelebA 64×64 ImageNet 64×64
SA-DPM 3.30 (50k) [4.5H] 2.38 (50k) [4.5H] 3.76 (150k) [14H]
TPSM2 2.93 (50k) [4.5H] 1.90 (50k) [4.5H] 3.55 (150k) [14H]

Tab. B.2.: Results related to Table 3.4, comparing the number of parameter updates of SA-DPMs
and the parallel score matching approaches, namely TPSM and DPSM.

Method: CIFAR-10 CelebA ImageNet

SA-DPM 800k 800k 2000k
TPSM0 400k 400k 1000k
TPSM1 100k 100k 250k
TPSM2 50k 50k 150k
DPSM 50k 100k 250k

In addition, below, we provide results as measured by the usual approximation of
FID. The number of parameter updates is identical as before (Table B.2). In all cases
we generated 50 thousand samples. It is important to notice that while for example
the images generated by TPSM2 in Figures B.1 and B.2 are visibly better than those
by SA-DPM, the FID score does not reflect this, likely due to it being limited by the
several underlying assumptions and biases inflicted by arbitrary choices in its definition
[Kynkäänniemi, 2023].

Tab. B.3.: The results given in FID.

Method: CIFAR-10 CelebA ImageNet

SA-DPM (3k SDE steps) 12.45 5.34 48.8
TPSM0 (3k SDE steps) 12.88 8.19 51.2
TPSM1 (3k SDE steps) 9.54 7.97 51.9
TPSM2 (3k SDE steps) 12.83 9.23 48.7
SA-DPM (1k SDE steps) 12.47 5.40 51.5
DPSM (1k SDE steps) 8.89 4.88 38.06

Furthermore, we present inferential outcomes in relation to generation and likelihood
estimation time, as well as the memory utilization of all the considered approaches. It is
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noteworthy that PSM approaches not only abstain from inducing inferential penalties, but
also have the potential to expedite generation and likelihood estimation in certain cases,
such as DPSM. The batch size for SDE and ODE generation was consistently maintained
at 32, whereas for likelihood estimation, it was uniformly reduced to 16. In all instances,
the generation of SDEs was executed employing 1000 Numerical Function Evaluations
(NFE). In contrast, for ODE generation and likelihood estimation pertaining to SA-DPM
and TPSM, a total of 1000 steps employing the RK4 method were taken, equating to
4000 function evaluations. Specifically, in the context of DPSM, a total of 4000 steps
were performed using interpolation and integration via the Euler method for both ODE
generation and likelihood estimation. The results are provided in Tables B.4, B.5 and
B.6.

Tab. B.4.: Inference results on ImageNet. Inference time is given in seconds while memory
usage is provided in MB.

Task Generation SDE Generation ODE Likelihood Estimation

SA-DPM 131.8s (2396MB) 674.4s (4260MB) 858.8s (7164MB)
TPSM0 119.8s (2334MB) 635.7s (3951MB) 936.2s (6221MB)
TPSM1 123.6s (2396MB) 626.8s (2800MB) 887.7s (6624MB)
TPSM2 137.1s (2381MB) 567.3s (2392MB) 792.4s (6187MB)
DPSM 124.7s (2709MB) 326.2s (2569MB) 335.2s (2670MB)

Tab. B.5.: Inference results on CelebA. Inference time is given in seconds while memory usage
is provided in MB.

Task Generation SDE Generation ODE Likelihood Estimation

SA-DPM 121.2s (2450MB) 662.8s (4156MB) 892.2s (7139MB)
TPSM0 116.3s (2402MB) 599.3s (3704MB) 933.9s (6261MB)
TPSM1 126.9s (2426MB) 661.4s (2789MB) 929.3s (6470MB)
TPSM2 146s (2435MB) 605.5s (2401MB) 837.8s (616.8MB)
DPSM 116.6s (2518MB) 303.1s (2529MB) 318.8s (2650MB)

Tab. B.6.: Inference results on CIFAR-10. Inference time is given in seconds while memory usage
is provided in MB.

Task Generation SDE Generation ODE Likelihood Estimation

SA-DPM 38.3s (1890MB) 184.7s (2279MB) 380.2s (3528MB)
TPSM0 38.5s (1780MB) 195.2s (2252MB) 354s (2906MB)
TPSM1 37.9s (1900MB) 198.3s (1989MB) 393.8s (2964MB)
TPSM2 51.1s (1883MB) 185.6s (1895MB) 367s (2920MB)
DPSM 95.2s (1930MB) 171.3s (1959MB) 217.8s (1959MB)
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B.3 Additional Generated Samples

Below we provide generated samples from all the models that are present in Table 3.4.

Fig. B.1.: Random non cherry-picked generated ImageNet 64x64 images. Top-Left: SA-DPM,
2000k parameter updates, 1 CNF block, 10k sampling steps via the reverse SDE.
Top-Right: TPSM, 250k parameter updates, 10 CNF blocks, 10k sampling steps via
the reverse SDE. Bottom-Left: TPSM, 150k parameter updates, 100 CNF blocks, 10k
sampling steps via the reverse SDE. Bottom-Right: DPSM, 250k parameter updates,
1000 CNF blocks, 1k sampling steps via the reverse SDE.
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Fig. B.2.: Random non cherry-picked generated CIFAR-10 images. Top-Left: SA-DPM, 800k
parameter updates, 1 CNF block, 10k sampling steps via the reverse SDE. Top-Right:
TPSM, 100k parameter updates, 10 CNF blocks, 10k sampling steps via the reverse
SDE. Bottom-Left: TPSM, 50k parameter updates, 100 CNF blocks, 10k sampling steps
via the reverse SDE. Bottom-Right: DPSM, 50k parameter updates, 1000 CNF blocks,
1k sampling steps via the reverse SDE.
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Fig. B.3.: Random non cherry-picked generated CelebA images. Top-Left: SA-DPM, 800k pa-
rameter updates, 1 CNF block, 10k sampling steps via the reverse SDE. Top-Right:
TPSM, 100k parameter updates, 10 CNF blocks, 10k sampling steps via the reverse
SDE. Bottom-Left: TPSM, 50k parameter updates, 100 CNF blocks, 10k sampling steps
via the reverse SDE. Bottom-Right: DPSM, 100k parameter updates, 1000 CNF blocks,
1k sampling steps via the reverse SDE.
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Fig. B.4.: Random non cherry-picked generated CelebA, ImageNet64x64 and Cifar-10 images
generated by TPSM0 with 2 CNF blocks and 10000 reverse SDE steps. The number of
parameter updates is half that of SA-DPM per block as given in Table B.2.
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B.4 The Continuous Evolution of the Score During
Diffusion

The SDE process of transforming the data distribution to a normal one is the following:

dx(t) = −1
2b(t)x(t)dt +

√
b(t)dw. (B.3)

The equivalent process in terms of the evolution of the distribution is given by the
following ODE:

dx(t) = −1
2b(t)

(
x(t) + ∇x(t) log p(x(t), t)

)
dt = f(x(t), t)dt. (B.4)

The instantaneous change of variable formula states that,

d log p(x(t), t)
dt

= −tr
∂f(x(t), t)

∂x(t) , (B.5)

thus by substituting f :

d log p(x(t), t)
dt

= 1
2b(t)tr

∂x(t) + ∇x(t) log p(x(t), t)
∂x(t) = 1

2b(t)D+1
2b(t)tr

∂∇x(t) log p(x(t), t)
∂x(t) .

(B.6)
It is easy to notice that,

d∇x(t) log p(x(t), t)
dt

= ∇x(t)
d log p(x(t), t)

dt
= 1

2b(t)∇x(t)tr
∂∇x(t) log p(x(t), t)

∂x(t) . (B.7)

If we denote s(x(t), t) = ∇x(t) log p(x(t), t), the last expression becomes:

ds(x(t), t)
dt

= 1
2b(t)∇x(t)tr

∂s(x(t), t)
∂x(t) . (B.8)

Since,
ds(x(t), t)

dt
= ∂s(x(t), t)

∂x(t)
dx(t)

dt
+ ∂s(x(t), t)

∂t
(B.9)

using Equation (B.8), we get:

∂s(x(t), t)
∂x(t)

dx(t)
dt

+ ∂s(x(t), t)
∂t

= 1
2b(t)∇x(t)tr

∂s(x(t), t)
∂x(t) , (B.10)

and therefore
∂s(x, t)

∂t
= 1

2b(t)∇xtr
∂s(x, t)

∂x
− ∂s(x, t)

∂x

dx

dt
. (B.11)

We conclude that the score evolves continuously in time as described by the following
PDE:

∂s(x, t)
∂t

= 1
2b(t)∇xtr

∂s(x, t)
∂x

+ 1
2b(t)∂s(x, t)

∂x
(x + s(x, t)). (B.12)
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This emphasizes the fact that the scores of all the intermediate distributions defined by
the FDP are completely determined by the score of the initial (data) distribution.

B.5 DDPM and Flow Matching on 2D toy data

Beyond the investigations delineated in the main chapter’s experimental section, we
conducted additional experiments involving the utilization of 10 blocks that evenly
distribute the diffusion process time interval. These experiments were executed within
the DDPM framework, which is consistently utilized throughout the chapter, but also in
this special case in the novel Flow-Matching framework.

Tab. B.7.: A comparison of the properties of SA-DPM with TPSM10blocks, in the DDPM framework.
The results are given in negative log-likelihood (lower is better).

Method: SA-DPM TPSM10blocks

TY 0.76 (1× 4H) 0.69 (10× 1H)
HG 1.11 (1× 1.3H) 1.05 (10× 0.3H)

Fig. B.5.: SA-DPM and TPSM with 10 blocks comparison on 2D toy data when the DDPM
framework is used.

Within the DDPM framework, the majority of score (probability) evolution occurs when
t approaches 0. Consequently, the outcomes of TPSM10Blocks hold potential for sub-
stantial enhancement if more recent settings were employed, such as Flow-Matching,
as elucidated in [Lipman, 2023], wherein the evolution of the score is more uniformly
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distributed over time. This improvement is demonstrated in Table B.8 and Figure B.6.
Our observations indicate that the implementation of the Flow-Matching framework
bolsters the effectiveness of all approaches. However, the TPSM results exhibit a more
pronounced enhancement in the context of the TY data, while in the case of HG the
improvements of SA-DPM and TPSM are similar. Thus, even within the confines of more
contemporary and efficient frameworks, our parallel score matching strategy continues
to deliver the advantageous outcomes postulated in the introduction.

Tab. B.8.: A comparison of the properties of SA-DPM with TPSM10blocks, in the OT Flow-
Matching framework. The results are given in negative log-likelihood (lower is
better).

Method: SA-DPM TPSM10blocks

TY 0.75 (1× 4H) 0.66 (10× 1H)
HG 1.10 (1× 1.3H) 1.04 (10× 0.3H)

Fig. B.6.: SA-DPM and TPSM with 10 blocks comparison on 2D toy data when the OT Flow-
Matching framework is used.

B.6 TPSM-B Visual Results

Owing to the limitations imposed by the margins within the primary part of the chapter,
we present here the visual results of TPSMB , which utilizes 4 neural networks. We notice
that even if we train these four networks sequentially, the total training time is the same
as in SA-DPM, while the resulting performance shows significant improvements.
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Fig. B.7.: TPSMB visual results compared with SA-DPM.

B.7 Density Estimation Applied to Time Series
Anomaly Detection

From a statistical viewpoint, anomalies are considered as data points residing within the
low-probability areas of the feature space within a distribution. Unsupervised anomaly
detection, which aims to identify these anomalies, is a key challenge in data analysis, with
potential applications in numerous fields. Lately, this domain has attracted significant
attention from machine learning researchers, prompted by their ambition to incorporate
recent advancements in deep learning. We demonstrate that our PSM strategy, specifically
TPSM0, surpasses commonly used methods such as autoencoders. Moreover, we present
evidence that even within well-known benchmarks, statistical anomalies do not always
match observed anomalies, indicating a discrepancy between the two.

Discrepancy between annotated anomalies and statistical anomalies in the com-
monly used SWaT dataset
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Fig. B.8.: TPSM0 visual results on SWaT.

The Secure Water Treatment (SWaT) dataset [Goh, 2016] is a simplified representation
of an actual industrial water treatment plant that produces filtered water. This dataset
comprises 11 days of continuous operation, with data from 7 days of normal operations
and 4 days of attack scenarios. Each data point in the time series has 51 dimensions.
Anomalies are annotated in the test set. Interestingly, the 11th dimension is consistently
valued at 0 in all training points but occasionally takes the value 1 in the test set. Never-
theless, the points where the 11th dimension equals 1 are not identified as anomalies
despite their statistical significance. We present results showing that an Autoencoder and
TPSM0 identify such points as anomalies, even though they are labeled as normal data
points. The results are given in Figures B.8 and B.9.

It is important to note that every individual block in TPSM0 underwent a rigorous
training process involving 1.5 million parameter updates. This training was conducted
with a batch size of 128 to ensure the model’s robustness and generalizability. Following
this, density estimation was performed using 1000 steps, equivalent to 4000 function
evaluations, per point. This intensive procedure ensures the high reliability of our
approach.

During this process, we consciously avoided the use of windowing in either of the
methodologies, in order not to include temporary information, as our goal was to
perform point anomaly detection.
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The Autoencoder, in contrast, was subjected to a training regimen of 1200 epochs,
ensuring the model learned to discern complex patterns within the data. Intriguingly, both
the Autoencoder and TPSM0 managed to identify the points where the 11th dimension
is valued at one. Yet, the diffusion model seemed to go a step further, recognizing the
entire region containing these values as an anomalous area. This ability of the diffusion
model to capture larger anomalous regions potentially positions it as a more sensitive
detector for similar tasks in the future.

Fig. B.9.: AE visual results on SWaT.

Performance of Diffusion Models on the UCR dataset

In their work, Wu et al. (2021) present a startling assertion that a majority of the datasets
used as benchmarks in anomaly detection suffer from one or more of four identified
flaws. They argue that these flaws may compromise the reliability of many published
comparisons of anomaly detection algorithms. More critically, they suggest that much of
the perceived advancements in recent years might be illusory. In their paper, they not
only provide evidence to support these claims but also introduce the UCR Time Series
Anomaly Archive. They hope that this archive will provide the research community with
a benchmark allowing meaningful comparisons between approaches and an accurate
measure of overall progress.

We evaluated the performance of the autoencoder (AE) model on the ’UCR Time Series
Anomaly Archive’ as a baseline in comparison to the TPSM0 method, and our results
demonstrate the superior efficacy of TPSM0. We present the percentage of datasets in
the UCR archive where we successfully identified the anomalies. Notably, the size of
the AE is approximately 3.4 Mb, while TPSM0, comprised of two blocks, maintains a
significantly smaller footprint with each block being less than 1.4 Mb. The window size
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in both approaches was set to 100. The autoencoder utilizes the MSE as the anomaly
score, While TPSM0 uses the negative log-likelihood. The results are presented in Table
B.9.

Tab. B.9.: A comparison of the performance of AE with TPSM0, in the UCR time series dataset.
The metric used is the percentage of time series in which the anomaly is labeled
correctly.

Method AE SA-DPM TPSM0
UCR 51.2% 57.2% 60%

An example where AE misses the anomaly and TPSM0 does not is provided in Figures
B.10 and B.11.

Fig. B.10.: AE misses the anomaly.

Fig. B.11.: TPSM0 identifies the anomaly correctly.
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C.1 Proofs

Proof of Proposition 4.2.9

We notice that if L(x) converges the statement is trivial. However, if it does not then:

lim
x→∞

x−ϵL(x) = lim
x→∞

L(x)
xϵ

= lim
x→∞

ec(x)e

∫ x

xo

u(y)
y

dy

xϵ
= lim

x→∞
ec(x)e

∫ x

xo

u(y)
y

dy

eϵ log(x) =

= lim
x→∞

ec(x)e

∫ x

xo

u(y)
y

dy−ϵ log(x) = lim
x→∞

ec(x)e
log(x)(

∫ x

xo

u(y)
y dy

log(x) −ϵ)
.

(C.1)

Using L’Hopital’s rule we get:

lim
x→∞

∫ x
xo

u(y)
y

log(x) = lim
x→∞

u(x)
x
1
x

= lim
x→∞

u(x) = 0, (C.2)

therefore

lim
x→∞

e
log(x)(

∫ x

xo

u(y)
y dy

log(x) −ϵ) = 0. (C.3)

Proof of Lemma 4.4.1

From Theorem 4.2.10, we get that

F1 ∈ MDA(ξ1) ⇐⇒ F̄1(x) = x
− 1

ξ1 L1(x),

and
F2 ∈ MDA(ξ2) ⇐⇒ F̄2(x) = x

− 1
ξ2 L2(x),

where L1(x) and L2(x) are slowly varying functions.
Therefore

lim
x→∞

F̄2(x)
F̄1(x)

= lim
x→∞

x
1

ξ1
− 1

ξ2
L2(x)
L1(x) = lim

x→∞
xα L2(x)

L1(x) , (C.4)

since
ξ1 > ξ2 =⇒ − 1

ξ1
> − 1

ξ2
=⇒ α := 1

ξ1
− 1

ξ2
< 0.

On the other hand L(x) := L2(x)
L1(x) is defined in a neighborhood of infinity as L1(x) ̸= 0,

and is also a slowly varying function as

lim
x→∞

L(ax)
L(x) = lim

x→∞

L2(ax)
L1(ax)
L2(x)
L1(x)

= lim
x→∞

L2(ax)
L2(x)

L1(ax)
L1(x)

= 1,
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and since the quotient of positive measurable functions, is positive and measurable.
Therefore, using Corollary 1, Equation (C.4) becomes

lim
x→∞

F̄2(x)
F̄1(x)

= lim
x→∞

xα L2(x)
L1(x) = lim

x→∞
xαL(x) = 0. (C.5)

Proof of Lemma 4.4.2

1. If ξ1 > 0 and ξ2 = 0 then

lim
x→∞

F̄2(x)
F̄1(x)

= lim
x→∞

c(x)e−
∫ x

w

g(t)
a(t) dt

x
− 1

ξ L(x)
= lim

x→∞
c(x)e− log(x)(

∫ x

w

g(t)
a(t) dt

log(x) − 1
ξ

)

L(x) , (C.6)

using L’Hopital’s rule:

lim
x→∞

∫ x
w

g(t)
a(t)dt

log(x) = lim
x→∞

g(x)
a(x)

1
x

= lim
x→∞

x

a(x) , (C.7)

we distinguish two cases:

if limx→∞ a(x) ̸= ∞ then limx→∞
x

a(x) = ∞,

while if limx→∞ a(x) = ∞ then using L’Hopital’s rule again, we obtain

lim
x→∞

x

a(x) = lim
x→∞

1
a′(x) = ∞. (C.8)

Thus, in both cases

= lim
x→∞

c(x)e− log(x)(

∫ x

w

g(t)
a(t) dt

log(x) − 1
ξ

)

L(x) = lim
x→∞

c(x)x−(

∫ x

w

g(t)
a(t) dt

log(x) − 1
ξ

)

L(x) = 0. (C.9)

Statements 2. 3. and 4. are trivial. Proof of Lemma 4.4.3 Since L(x) is positive and
measurable (linear combination of finite measurable functions), the only part left to
prove is that

lim
x→∞

L(ax)
L(x) = 1, ∀a > 0.

First we prove that

lim
x→∞

L1(ax) + L2(ax)
L1(x) + L2(x) = 1, ∀a > 0.

Indeed, for each ϵ > 0, there exist x1, x2 such that for x > x1 we have |L1(ax)
L1(x) − 1| < ϵ

and for x > x2 we have |L2(ax)
L2(x) − 1| < ϵ. Hence for x0 = max{x1, x2}, x > x0 implies
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|L1(ax) − L1(x)| < L1(x)ϵ and |L2(ax) − L2(x)| < L2(x)ϵ therefore |L1(ax) + L2(ax) −
(L1(x) + L2(x))| = |L1(ax) − L1(x) + L2(ax) − L2(x)| ≤ |L1(ax) − L1(x)| + |L2(ax) −
L2(x)| < (L1(x) + L2(x))ϵ hence |L1(ax)+L2(ax)

L1(x)+L2(x) − 1| < ϵ.

Now, we notice that for every ai > 0, we get limx→∞
aiLi(ax)
aiLi(x) = 1, and aiLi(x) is positive

as well as measurable. This implies that a1L1 and a2L2 are slowly varying functions, and
therefore based of the previous result we get

lim
x→∞

a1L1(ax) + a2L2(ax)
a1L1(x) + a2L2(x) = 1, ∀a > 0.

Using induction finishes the proof of the Lemma.

Proof of Theorem 4.4.4 Since if ξzi < 0 then ∃x0 > 0, such that ∀x > x0 we have
FZi(x) = 0, this means that the tail of the distribution is not affected by FZi(x). In fact
if ξmax < 0 then F will have finite support hence ξF ≤ 0. Furthermore if ξmax = 0 from
Lemma 4.4.2 we get that ξF ≤ 0. Therefore for the case ξmax > 0 we only consider the
setting where ξi ≥ 0.

F̄u(w) = 1 − F (u + w)
1 − F (u) =

n∑
i

pi(1 − Fzi(u + w))
n∑
i

pi(1 − Fzi(u))
=

n∑
i

F̄zi(u + w)
n∑
j

pj

pi
F̄zj (u)

(C.10)

=
n∑
i

F̄zi(u + w)
F̄zi(u)

F̄zi(u)
n∑
j

pj

pi
F̄zj (u)

=
n∑
i

F̄zi(u + w)
F̄zi(u)

1
n∑
j

pj

pi

F̄zj (u)
F̄zi (u)

. (C.11)

We denote with i(max) the index corresponding to ξmax and finish our proof using
Pickand’s theorem:

lim
u→∞

sup
w∈[0,∞]

|F̄u(y) − Ḡξmax,g(u)| = lim
u→∞

sup
w∈[0,∞]

|
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i
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1
n∑
j

pj

pi

F̄zj (u)
F̄zi (u)

− Ḡξmax,g(u)|

(C.12)

= lim
u→∞

sup
w∈[0,∞]

|
n∑
i

F̄zi(u + w)
F̄zi(u)

1

1 +
n∑

j ̸=i

pj

pi

F̄zj (u)
F̄zi (u)

− Ḡξmax,g(u)| (C.13)
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u→∞

sup
w∈[0,∞]
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F̄zi(max) (u)
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(C.14)
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≤ lim
u→∞
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≤ lim
u→∞
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− Ḡξmax,g(u)|
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The first expression,

lim
u→∞

sup
w∈[0,∞]

|
F̄zi(max)(u + w)

F̄zi(max)(u)
− Ḡξmax,g(u)| (C.17)

goes to zero due to Pickands Theorem while the expression,

lim
u→∞

| 1

1 +
n∑

j ̸=i(max)

pj

pi(max)

F̄zj (u)
F̄zi(max) (u)

− 1|
(C.18)

converges to 0 as well because from Lemma 4.4.1 we have limu→∞
F̄zj (u)

F̄zi(max) (u) = 0 for

every j. Finally the last expression,

lim
u→∞

n∑
i ̸=i(max)

| 1

1 +
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j ̸=i
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pi

F̄zj (u)
F̄zi (u)

|
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equals 0 since in each sum
n∑

j ̸=i

pj

pi

F̄zj (u)
F̄zi (u) , there exists an index j such that F̄zj (u) =

F̄zi(max)(u), implying that
n∑

j ̸=i

pj

pi

F̄zj (u)
F̄zi (u) → ∞.

In the derivation above we assumed that the Fzi(max) which corresponds to ξmax is unique.
In the case that this is not true we notice that for F1 and F2 which share the same
corresponding parameter ξ > 0 we have

p1F1(x) + p2F2(x) = x
− 1

ξ (p1L1(x) + p2L2(x)) = x
− 1

ξ L(x), (C.20)
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and since L(x) > 0, from Lemma 4.4.3 we have that L(x) is slowly varying, therefore
p1F1(x) + p2F2(x) ∈ MDA(ξ).

Proof of Proposition 4.4.6 First, we fix δ > 0. We can find a x(γ, δ) > 0, such that
for x > x(γ, δ), we can bound x−δLz(x) < γ for all z ∈ A simultaneously. This implies
that fZ(z)x−δLz(x) is bounded by fz(z)γ. Since

∫
z fz(z)γdz = γ < ∞, by dominated

convergence we get

lim
x→∞

x−δ
∫

A
fZ(z)Lz(x)dz = lim

x→∞

∫
A

fZ(z)x−δLz(x)dz =
∫

A
lim

x→∞
fZ(z)x−δLz(x)dz = 0.

(C.21)

Proof of Theorem 4.4.7

We will first assume that ξF > 0.
Since F̄ (x) = x

− 1
ξF LF (x), for every ϵ > 0:

F̄ (x)

x
− 1

ξlo−ϵ

= x
− 1

ξF LF (x)

x
− 1
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− 1
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=∫
A

fZ(z)x− 1
ξz

+ 1
ξlo−ϵ Lz(x)dz =

∫
A

fZ(z)xα(z)Lz(x)dz.

(C.22)

We notice that ξz ≥ ξlo > ξlo−ϵ =⇒ − 1
ξz

≥ − 1
ξlo

> − 1
ξlo−ϵ hence α(z) = − 1

ξz
+ 1

ξlo−ϵ > 0.
Considering that

lim
x→∞

F̄ (x)

x
− 1

ξlo−ϵ

= lim
x→∞

∫
A

fZ(z)xα(z)Lz(x)dz, (C.23)

by using Fatou’s lemma:

lim
x→∞

∫
A

fZ(z)xα(z)Lz(x)dz ≥
∫

A
lim

x→∞
fZ(z)xα(z)Lz(x)dz = ∞, (C.24)

we get

lim
x→∞

x
− 1

ξlo−ϵ

F̄ (x)
= 0, (C.25)

implying

lim
x→∞

x
− 1

ξlo−ϵ

x
− 1

ξF LF (x)
= lim

x→∞
x

− 1
ξlo−ϵ

+ 1
ξF

LF (x) = 0, (C.26)

therefore
ξlo − ϵ < ξF , ∀ϵ > 0 thus ξlo ≤ ξF . (C.27)
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Now we turn to prove that ξF ≤ ξup. As before,

F̄ (x)

x
− 1

ξup+ϵ

= x
− 1

ξF LF (x)

x
− 1

ξup+ϵ

=
∫

A fZ(z)x− 1
ξz Lz(x)dz

x
− 1

ξup+ϵ

=∫
A

fZ(z)x− 1
ξz

+ 1
ξup+ϵ Lz(x)dz =

∫
A

fZ(z)xβ(z)Lz(x)dz.

(C.28)

We notice that ξz ≤ ξup < ξup + ϵ =⇒ − 1
ξz

≤ − 1
ξup

< − 1
ξup+ϵ hence β(z) = − 1

ξz
+

1
ξup+ϵ < −δ < 0. This last inequality, combined with the fact that the family {Lz(x)|x ∈
R} is γ-uniformly sub-polynomial, implies that

fZ(z)xβ(z)Lz(x) ≤ fZ(z)x−δLz(x) ≤ fZ(z)γ, (C.29)

for some γ > 0. Since
∫

z fZ(z)γdz = γ < ∞, by dominated convergence

lim
x→∞

F̄ (x)

x
− 1

ξup+ϵ

= lim
x→∞

∫
A

fZ(z)xβ(z)Lz(x)dz (C.30)

lim
x→∞

∫
A

fZ(z)xβ(z)Lz(x)dz =
∫

A
lim

x→∞
fz(z)xβ(z)Lz(x)dz = 0, (C.31)

meaning

lim
x→∞

F̄ (x)

x
− 1

ξup+ϵ

= 0, (C.32)

which implies

lim
x→∞

x
− 1

ξF LF (x)

x
− 1

ξup+ϵ

= lim
x→∞

x
1

ξup+ϵ
− 1

ξF LF (x) = 0, (C.33)

therefore we get
ξup + ϵ > ξF , ∀ϵ > 0 hence ξF ≤ ξup. (C.34)

Now we prove that indeed ξF > 0. It is simple to show that ξF cannot be negative.
Indeed, if ξF is negative, it means that F has finite support which is not possible as for
each fixed x, we have Fz(x) > 0, ∀z ∈ A, therefore ∀x ∈ R, F (x) > 0.
Proving that ξF ̸= 0 is slightly less trivial. For every distribution G0 ∈ MDA(0) and for
ϵ < ξlo

F̄ (x)
Ḡ0(x)

= F̄ (x)
x− 1

ϵ

x− 1
ϵ

Ḡ0(x)
=
∫

A fZ(z)x− 1
ξz Lz(x)dz

x− 1
ϵ

x− 1
ϵ

Ḡ0(x)
. (C.35)

As before we can prove that the first fraction F̄ (x)
x− 1

ϵ
→ ∞. The expression x− 1

ϵ

Ḡ0(x) goes to ∞
as well due to Lemma 4.4.2, thus

lim
x→∞

F̄ (x)
Ḡ0(x)

= ∞. (C.36)
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If ξF was 0, then for some G0 ∈ MDA(0) we would have

lim
x→∞

F̄ (x)
Ḡ0(x)

= lim
x→∞

1 = 1, (C.37)

hence ξF ̸= 0.

Finally we prove that, if ξz is continuous in z and ξmax exists, then we have ξF = ξmax.
We will first separate A in two sets A1, A2, where A1 = {z|ξmax − λ ≤ ξz ≤ ξmax} and
A2 = {z|ξlo ≤ ξz < ξmax − λ}. Since ξz is continuous, then the pre-image of each of the
measurable sets [ξmax − λ, ξmax], [ξlo, ξmax − λ) will be measurable. In addition, since
[ξmax − λ, ξmax] and [ξlo, ξmax − λ) contain an open set, then so will A1 and A2, implying
that pi = P(Ai) > 0, where i ∈ {1, 2}. Thus,

F̄ (x) =
∫

A
fZ(z)F̄z(x)dz = p1

∫
A1

fZ(z)
p1

F̄z(x)dz + p2

∫
A2

fZ(z)
p2

F̄z(x)dz

= p1F̄1(x) + p2F̄2(x).
(C.38)

From the first part of the Theorem: ξ1 ∈ [ξmax − λ, ξmax], and ξ2 ∈ [ξlo, ξmax − λ], where
Fi ∈ MDA(ξi), i = 1, 2. On the other hand Theorem 4.4.4 implies that ξF = ξ1,
therefore ξF ∈ [ξmax − λ, ξmax] for all λ > 0. We conclude that ξF = ξmax.

Proof of Lemma 4.4.9

We assume that ξF > ϵ. Then as in the earlier derivations, due to dominated convergence
and Lemmas 4.4.1 and 4.4.2, for any δ > 0, we get:

lim
x→∞

x
− 1

ξF LF (x)
x− 1

ϵ+δ

= lim
x→∞

F̄ (x)
x− 1

ϵ+δ

= lim
x→∞

∫
A

fZ(z) F̄z(x)
x− 1

ϵ+δ

dz

= lim
x→∞

∫
A+

fZ(z) F̄z(x)
x− 1

ϵ+δ

dz + lim
x→∞

∫
A−

fZ(z) F̄z(x)
x− 1

ϵ+δ

dz

=
∫

A+
lim

x→∞
fZ(z) x

− 1
ξz

x− 1
ϵ+δ

Lz(x)dz +
∫

A−
lim

x→∞
fZ(z) F̄z(x)

x− 1
ϵ+δ

dz = 0.

(C.39)

therefore ξF < ϵ + δ, ∀δ > 0, contradicting our assumption ξF > ϵ.

Proof of Theorem 4.4.11

The proof is similar to that of the last statement in Theorem 4.4.7. We will first separate
A in two sets A1, A2, where A1 = {z|ξmax − λ ≤ ξz ≤ ξmax} and A2 = {z|ξz <

ξmax − λ}. Since ξz is continuous, then the pre-image of each of the measurable sets
[ξmax−λ, ξmax], (−∞, ξmax−λ), will be measurable. In addition, since [ξmax−λ, ξmax] and
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(−∞, ξmax −λ) contain an open set, then so will A1 and A2, implying that pi = P(Ai) > 0,
where i ∈ {1, 2}.

F̄ (x) =
∫

A
fZ(z)F̄z(x)dz = p1

∫
A1

fZ(z)
p1

F̄z(x)dz + p2

∫
A2

fZ(z)
p2

F̄z(x)dz

= p1F̄1(x) + p2F̄2(x).
(C.40)

Based on Theorem 4.4.7 and Lemma 4.4.9: ξ1 = ξmax, and ξ2 ∈ (−∞, ξmax − λ], where
Fi ∈ MDA(ξi), i = 1, 2. From Theorem 4.4.4, we conclude that ξF = ξmax. The last
statement in the Theorem, that is, if ξmax ≤ 0 then ξF ≤ 0, is simply Corollary 4.4.10.

Proof of Proposition 4.4.13

In the case that ξX > 0, based on our assumptions there exists L(x) such that

P(X > x) = F̄X(x) = x
− 1

ξX L1(x). (C.41)

Therefore

F̄Y (x) = P(Y > x) = P(Xα > x) = P(X > x
1
α ) = (x

1
α )− 1

ξX L1(x
1
α ) = x

− 1
αξX L2(x).

(C.42)
We conclude that Y ∈ MDA(αξX). On the other hand if ξX ≤ 0 then ξY ≤ 0, because if
ξY > 0, then from the first part we would have ξX = 1

αξY > 0.

Proof of Proposition 4.4.14 We will first prove the case when p = 1. If we fix y and
denote with ξh−

y , ξh+
y the shape parameters of the left and right tail of p(f̂V (X)

∣∣y), then
assuming that at least one of them is positive, from Proposition 21 we know that the tail
shape parameter of p(|f̂V (X)|

∣∣y) is ξh
y = max{ξh−

y , ξh+
y }. We notice now that ξh−

y , ξh+
y

are the right and left tail shape parameters of p(−f̂V (X)
∣∣y), therefore they are the right

and left tail shape parameters of the distribution p(y − f̂V (X)
∣∣y). Due to this, if we

denote with ξg
y the tail shape parameter of p(|y − f̂V (X)|

∣∣y), using Proposition 21 once
again we have that ξg

y = max{ξg+
y , ξg−

y } = max{ξh−
y , ξh+

y } = ξh
y , where ξg−

y , ξg+
y are the

left and right shape parameters of p(y − f̂V (X)|y). If both ξh−
y , ξh+

y are non-positive then
from Proposition 21, ξh

y is non-positive, and furthermore ξg
y is non-positive, otherwise we

could go in the reverse direction and prove that ξg
y > 0 implies that either ξg−

y = ξh+
y is

positive, or that ξg+
y = ξh−

y is positive.
Now, we denote by Gy(s) the distribution of |y − f̂V (X)| given y, and prove that the
family {Gy(s)|y ∈ S} has stable cross-tail variability. For each y we denote with t0(y) the
smallest value after which the sub-polynomial assumption is satisfied by Fy(t). Similarly
we define s0(y) for Gy(s). Since the family {Fy(t)|y ∈ S} has stable cross-tail variability,
then each such t0(y) exists, and furthermore the set {t0(y)|y ∈ S} is bounded from above.
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Since each s0(y) is only displaced by a magnitude of |y| from t0(y), and since the set S is
bounded, then we can conclude that {s0(y)|y ∈ S} is bounded from above.
We denote ξg, ξh the tail shape parameters of |Y − f̂V (X)| and |f̂V (X)| respectively.
Using Theorem 4.4.11 twice we get that if there is at least one ξh

y = ξg
y > 0 then

ξh = max{ξh
y |y ∈ S} = max{ξg

y |y ∈ S} = ξg > 0, otherwise ξh ≤ 0, ξg ≤ 0.
Finally we finish the proof by applying Proposition 22 on |Y − f̂V (X)| and |f̂V (X)|.

C.2 Examples where the regularity conditions do not
hold

Below we give examples where the regularity conditions do not hold:

Example 1: Let fU (u) be a uniform distribution, and gu(w) an exponential distribution
with parameter 1

u . Clearly, the expectation of gu(w) at each u ∈ (0, 1) exists. However for

h(w) =
∫ 1

0
fU (u)gu(w)du =

∫ 1

0
ue−uwdu (C.43)

the expectation is∫ ∞

0

∫ 1

0
wfU (u)gu(w)dudw =

∫ 1

0

∫ ∞

0
wue−uwdwdu =

∫ 1

0

1
u

du (C.44)

In this example, we can see that even though all the distributions gu(w) have shape
parameter 0, the shape parameter of h(w) is bigger or equal to one. This is because
the beginning of the exponential behaviour of the tail is delayed indefinitely across the
elements of the family, violating the γ-uniform sub-polynomial assumption.

Below we give an example of a family of slowly-varying functions {Lz(x)|z ∈ A}, where
A is compact and Lz(x) is continuous in x and z, but {Lz(x)|z ∈ A} is not γ-uniformly
sub-polynomial. In this case, the non slowly-varying behaviour (non sub-polinomiality)
of Lz(x), or in other words, the tail of Fz(x), is postponed indefinitely across the family
of {Fz(x)|z ∈ A}

Example 2: Let Lz(x), for z ∈ [0, 1], be defined as below:

Lz(x) =

1 + zx4−(z− 1
x

)2
for x ∈ (1, 1

z )

1 + 1
z3 for x ∈ (1

z , ∞)
(C.45)
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when z ̸= 0 and L0 = 1 for x ∈ (1
z , ∞). For x−1 we define Fz(x) = x−1Lz(x), that is:

Fz(x) =

x−1 + zx3−(z− 1
x

)2
for x ∈ (1, 1

z )

x−1 + 1
z3 x−1 for x ∈ (1

z , ∞)
(C.46)

when z ̸= 0 and F0 = x−1 for x ∈ (1
z , ∞). One can check that Fz(x) and Lz(x) are

continuous in z. On the other hand for a given z, Fz(1
z ) = z + z−2, meaning that Fz(1

z )
tends to infinity, when z tends to zero. Therefore {Lz(x)|z ∈ A} is not γ-uniformly
sub-polynomial.

C.3 Examples where the regularity conditions hold

Below we give examples where the regularity conditions do hold:

Example 3: Let F̄z(x) = x−z = x
− 1

1
z =ξz for z ∈ (1, ∞), and let F̄ (x) = e

∫∞
1 e−zF̄z(x)dz.

Then F̄ (x) = x−1 1
1+ln x = x−1L(x), where L(x) = 1

ln x is slowly varying as both 1 and
ln x are slowly varying.

Example 4: Let F̄z(x) = x−z ln xz for z ∈ (1, 2), and let F̄ (x) =
∫ 2

1 F̄z(x)dz. Then
F̄ (x) = x−1 − 2x−2 + x−1 1

ln x − x−2 1
ln x = x−1(1 − 2x−1 + 1

ln x − x−1 1
ln x) = x−1L(x),

where L(x) = 1 − 2x−1 + 1
ln x − x−1 1

ln x is slowly varying.

C.4 Moment based motivation

In Proposition 4.4.14, we showed that under certain conditions, we could estimate the
shape of the tail of the distribution of WV (U) without using test labels. This can also
be motivated from the moments of WV (U). Indeed, conditioning on the test label y we
have

E[W p
V (U)|Y = y] = EV [(y − f̂V (x))p|y] (C.47)

=
p∑

k=0

(
p

k

)
yk(−1)p−kEV [f̂p−k

V (x)|y] (C.48)

We can see that for test label y, if the moment p of f̂V (x) given y exists then the moment
p of WV (u) given y exists. If each EV [f̂ j

V (x)|y], j ∈ {1, ..., p} changes continuously with
y then E[W p

V (U)|y] is continuous with respect to y. Further assuming that the support of
Y is compact, then moment p of WV (U), that is, E[W p

V (U)] = EyE[W p
V (U)|Y = y] will

exist as well.
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Under these conditions, if f̂V (x) is a non-negative function, then the existence of
E[f̂p

V (x)] = EyE[f̂p
V (x)|y] guarantees the existence of E[f̂p

V (x)|y] for almost all y, thus it
ensures the existence of E[W p

V (U)].

C.5 Reducing the variability of the estimated shape
parameters

It is proven in [Dekkers, 1989b], that under certain conditions on k (in particular
that k(n)

n → 0 as n → ∞) the Pickands Estimator has an asymptotically Gaussian

distribution:
√

k(n)(ξ̂(P )
k,n − ξ) d−→ N (0, σ2(ξ)). This implies that for large n, we roughly

have ξ̂
(P )
k,n ∼ N (ξ, σ2(ξ)

k(n) ). Minding the size of n, we can split the n samples into m

groups such that n = m n
m , and such that we still have roughly ξ̂

(P )
k, n

m
∼ N (ξ, σ2(ξ)

k( n
m

)). Since

we can estimate ξ̂
(P )
k, n

m
for each of the m groups we can define the average estimation

as ξ̂
(P ),avg
k, n

m
= 1

m

∑m
i=1 ξ̂

(P ),i
k, n

m
. Under the assumption that samples from such groups are

independent, we get that ξ̂
(P ),avg
k, n

m
∼ N (ξ, σ2(ξ)

mk( n
m

)). Since k(n) = o(n), we can choose
to reduce the variance ’linearly’ by keeping n

m constant and increasing m, instead of
increasing the sub-linear k(n). This becomes quite apparent if we set k(n) = log n or
k(n) =

√
n. Indeed, for k(n) = log n, the ratio between the variances of the direct

approach and our approach is

m log n
m

log n
=

m log n
m

log m + log n
m

= mC

log m + C
→ ∞ (C.49)

as m → ∞.

Similarly for k(n) =
√

n,
m
√

n
m√

n
=

√
m → ∞ (C.50)

as m → ∞. Here we can see that even if we fix m and then allow each group with size
n
m to grow as n increases, the variance is still

√
m times smaller using our approach.

The asymptotically Gaussian distribution property holds in the case of the DEdH estimator
if one knows that ξ > 0 (Hill estimator, [Davis, 1984]). Furthermore, both estimators
H

(1)
k,n and H

(2)
k,n in Definition 4.2.6 jointly possess this property, [Dekkers, 1989a].
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C.6 The inadequacy of the direct POT usage on
mixture distributions

In this section, we illustrate two cases where cross tail estimation is necessary for proper
tail shape estimation. Uniform Case

Fig. C.1.: Standard estimation of the shape parameter of the tails by simply applying the Pickands’
Estimator, on average, gives poor results on fewer data (left). Cross tail estimation
(CTE) gives the correct estimation on average. (right).

In our experimental procedure, we randomly select samples adhering to two distinct
power law distributions. Each of these distributions has a unique characteristic shape
parameter - one has a shape parameter of 1, while the other possesses a shape parameter
of 0.5. For our random sampling process, we afford equal probability, precisely 50%, to
both these distributions. This means there is an identical chance of picking a sample from
either of these power law distributions, each with their respective shape parameters.

When we examine an experimental set of 103 sampled points from each of these distribu-
tions, the resulting pattern becomes apparent as shown in Figure C.1 (left). We find that
if we amalgamate all the sampled data points from both distributions into a unified array,
and subsequently apply Pickands Estimator on this consolidated data set, the process
yields a sub-optimal estimation of the distribution tail. The outcome is unsatisfactory
as it fails to reveal the accurate shape of the tail, thereby defeating the purpose of the
estimation.

However, we discover that there is a noticeable enhancement in the quality of the
estimation when we bolster the sample size from the initial 103 to a considerably larger

C.6 The inadequacy of the direct POT usage on mixture distributions 141



size of 2 ∗ 104. This increase in sample size permits us to retrieve the true shape of the
distribution tail.

Using CTE however, we find that a sample size of just 103 proves to be adequate in
obtaining a satisfactory estimation of the distribution tail. As illustrated in Figure C.1
(right), this method leads to an accurate estimation with a substantially smaller sample
size. Therefore, our method introduces an efficient pathway towards achieving accurate
estimations with fewer resources, thereby demonstrating its potential superiority over
the traditional Pickands Estimator.

Non-Uniform Case

Similarly, in the second experiment, we sample with 20% probability from a distribution
with power law tails with shape parameter 1, and with 80% probability probability from
a distribution with power law tails with shape parameter 0.5.

Fig. C.2.: Standard estimation of the shape parameter of the tails by simply applying the Pickands’
Estimator, on average, gives poor results on fewer data (left). Cross tail estimation
(CTE) gives the correct estimation on average. (right).

When sampling 5 ∗ 103 points from each distribution, Figure C.2, we are not able to
properly estimate the tail if we join all the samples together in a common array and then
apply the Pickands’ Estimator. But, if we increase the sample size from 5 ∗ 103 to 5 ∗ 107,
we manage to retrieve the the true tail shape of the mixture. However, using our method,
5 ∗ 103 samples are already sufficient to get a proper estimation.
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C.7 Additional details with regards to section 4.5.1

Below we provide Figure C.3 which illustrates how ξz evolves depending on the ξmax

which is given as input. The parameter ξmax takes the following 45 values {−4, −4 +
0.1, −4 + 0, 2, ..., 5}.

Fig. C.3.: The evolution of ξz depending on the value of ξmax.
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C.8 Additional details with regards to section 4.5.3

Fig. C.4.: The performance of Gaussian process on train and test data depending on the length
scale parameter. First half of the cases.

144 Chapter C Appendix of Chapter 4



Fig. C.5.: The performance of Gaussian process on train and test data depending on the length
scale parameter. Second half of the cases.
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Fig. C.6.: The performance of polynomial kernels on train and test data depending on the degree.
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Fig. C.7.: For each length scale parameter of the Gaussian Process, we present the variability
(sorted) of the estimated shape parameters across 1000 conditional distributions
(defined by the choice of training sets). Jointly, we also present the 97th percentile of
the conditional distributions corresponding to each estimated shape parameter.
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Fig. C.8.: We run 32 times the Gaussian Process experiment for length scale parameter value of
290. On each run, we calculate thresholds (sorted) of the 1000 conditional distribu-
tions determined by the 1000 choices of the training set, as well as their corresponding
shape tail parameters. We see that higher thresholds correspond to lower shape
parameters

C.9 Additional DEdH Tail Shape Estimator
Experiments

Experimental validation of CTE using the DEdH estimator

A comprehensive set of experimental outcomes has been illustrated in Figure C.9.
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Fig. C.9.: In cases where the maximum tail shape parameter in the mixture of conditional
distributions is positive, the estimated shape parameter of the marginal is also positive
and equal to this maximal value. However, if this maximum value is negative, the
estimated shape parameter is also negative. We utilize the DEdH estimator as our
estimator of choice.

Just as in subsection 4.5.1, the parameter M , delineated in the subsection 4.5.1, is
assigned values from the set {105, 106, 107, 108}. In the context of these experiments, p

was set to 10 as a constant across all trials. The experiments were performed repetitively,
encompassing a total of 10 runs to capture potential variability and better reflect the
stochastic nature of the process.

Upon examining the obtained results, they again seem to align with our initial the-
oretical expectations. This symmetry in the estimations provides a degree of confidence
in the validity of the conducted experiments and the consistency of the underlying
theoretical framework.

Applying POT directly when the location of conditional distributions exhibits substantial
variability

In the scope of our investigation, we executed experiments akin to those detailed in
subsection 4.5.2, but in this case we utilized the DEdH estimator. Our observations
reaffirm that the tail shape of the marginal is subject to incorrect estimations, which can
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be attributed to the substantial variability in the location of the conditional distributions
constituting the marginal.

Fig. C.10.: Estimation of the shape parameter of the marginal by direct application of POT. We
utilize the DEdH estimator as our estimator of choice.

Enhancing parameter estimation accuracy through the CTE approach

Analogous to the approach taken in section 4.5.2, we demonstrate here that the Cross Tail
Estimation (CTE) effectively alleviates the issue associated with pronounced variation in
the locations of conditional distributions that make up the marginal. It should be noted,
however, that in this instance, we employ the DEdH estimator.
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Fig. C.11.: Estimation the shape parameter of the marginal using CTE. We utilize the DEdH
estimator as our estimator of choice.
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