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1. Introduction 

1.1. Background and significance 

 

Patient safety is considered as one of the biggest public health priorities, with healthcare 

systems around the globe attempting to mobilize resources for the prevention of patient harms. 

According to the World Health Organization’s Global Patient Safety Action Plan 2021-2030 

[5],  research studies show that an average of one in ten patients is subject to an adverse event 

(AE) while receiving hospital care in high- income countries [6]. The estimate for low- and 

middle- income countries suggests that up to one in four patients is harmed, with 134 million 

AEs occurring annually due to unsafe care in hospitals, contributing to around 2.6 million 

deaths [7]. Overall, 60% of deaths in low-and middle-income countries from conditions 

amenable to health care are due to unsafe and poor-quality care [8]. 

Despite a positive momentum in the last twenty years [9]–[12], substantial opportunities for 

improvement remain, stemming from inefficient or inadequate implementation of safety actions 

[13], patient harm remaining  one of the leading causes of morbidity and mortality in healthcare 

[14], causing further burden on healthcare systems such as increased costs, extended hospital 

stays and higher readmission rates [15]–[19]. It is estimated that 10-15% of healthcare 

expenditure is consumed by the direct sequelae of healthcare-related patient harms [20].  

There are a number of reasons why the problem of the high incidence of patient harm is still 

prevailing despite more than two decades of awareness and research in the domain of patient 

safety  [13]: 

• Lack of reliable and efficient tools for the measure and surveillance of clinical AEs. 

• Inconsistency in use of proven prevention techniques 

• Lack of accessibility to proven prevention techniques 

• Lack of usability of some technological solutions 

• Areas with insufficient/no proven prevention techniques: the safety “blind spots” 

 

Artificial Intelligence (AI) promises to hold an important potential in identifying, predicting 

and preventing patient harm. In fact, it can be applied to detect patient safety events and improve 

performance of clinical alarms, provide prediction of various patient safety events, and improve 

adherence to best practices.  

While certain application domains of AI in medicine are getting gradually mature, namely 

medical imaging, many of the patient safety domain areas have still not witnessed widely 
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recognized AI-based applications. As for experimental applications that are published, the vast 

majority have still not been sufficiently validated for real-world use scenarios. 

The systematic detection of clinical adverse events (AE), such as for example healthcare 

associated infections, post-surgical events, or medication related adverse events is fundamental 

to the measure of the level of patient harm arising from provision of care to patients. The 

availability of this measurement is in itself important to identify the evolution of incidences of 

various harm categories, that can be of interest at an individual (patient level), institutional 

(hospital level), regional (healthcare system) and global level. Without valid measurements of 

this type, it is almost impossible to assess the true impact of safety improvement actions on 

clinical outcomes. 

Furthermore, if such events can be predicted in due time, a significant potential in terms of 

prevention can be unleashed for the best interest of the patients, the healthcare providers and 

the whole healthcare system.  

The development of AI-based applications holds many challenges related to design, validation 

and user acceptance that need to be tackled before any such application can be transformed into 

a valuable tool for the improvement of patient safety. 

1.2. Objectives 

 

In this thesis, our objective is to explore the potential of AI when applied to the domain of 

prediction, measurement and prevention of clinical Adverse Events.  

 

Our starting point will be a non-AI based trigger-tool system for the automated measurement 

of hospital acquired adverse events, designed before the thesis. 

 

After identifying and analyzing the advantages and shortcomings of these systems, we will 

design two AI-based machine learning models, devoted to the prediction of hospital 

readmissions and patient clinical deterioration, respectively. We will also design an AI-based 

Clinical Decision Support application that associates the second machine learning model with 

clinical rules written by medical experts. 

 

We will highlight specifically the added value that such systems could potentially produce both 

to improve current tools performances and to contribute to the patient safety efforts. In addition 

to that we will analyze the specificities of using machine learning versus rules-based algorithms 

in such applications, and how these two techniques can be used in synergy. 
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1.4. Thesis outline 

 

Hereafter, we have adopted the following outline for the thesis delineation.  

First, we will present the state of the art regarding the measurement of the level of patient harm 

in healthcare institutions along with its practical and theoretical challenges (chapter 2, section 

2.1), and the state of the art regarding the use of artificial intelligence to detect, predict and 

prevent patient harm (chapter 2, section 2.2). We will also present our preliminary, pre-PhD, 

study regarding the automated detection of in-hospital patient harm through non-AI based 

“triggers” (chapter 3). 

Second, we will present the thesis contributions relative to the application of artificial 

intelligence in the detection and classification of patient harm in chapter 4 (applied to patient 

hospital readmissions) and in chapter 5 (applied to the prediction of patient clinical 

deterioration).  

Third, we will present in chapter 6 an ongoing experience relative to the design, implementation 

and validation of a clinical decision support tool that was built based upon the machine learning 

model used in chapter 5 in addition to clinical rules and interventions, as a solution that can be 

used for the management of patients at risk of clinical deterioration in regular hospital floors. 

In chapter 7, a final discussion and conclusion section will critically wrap up the important 

findings and commentaries stemming from the different contributions with regards to the 

findings of the state of the art. 
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2. State of the art 

2.1. Current gaps in patient harm and clinical adverse events measurement 

2.1.1. Hospital-acquired adverse events: incidence and evolution  

 

Patient safety is defined as the absence of preventable harm to a patient and 

minimization of the risk of harm associated with the health care process [21]. In 1999, 

the publication of the Institute of Medicine’s landmark report “To Err is Human: 

building a safer health system” [22]  was transformational for patient safety awareness. 

It highlighted for the first time the extent of the problem of “patient harm”, estimating 

that as many as 98 000 people died in American hospitals each year as a result of medical 

errors.  

An increase in research about safety gaps in healthcare institutions followed in the few 

years after the report publication, and soon, patient safety was considered as one of the 

biggest public health priorities, with healthcare systems around the globe attempting to 

mobilize resources for the prevention of patient harms. 

According to the World Health Organization’s Global Patient Safety Action Plan 2021-

2030[5],  research studies show that an average of one in ten patients is subject to an 

adverse event (AE) while receiving hospital care in high- income countries [6]. The 

estimate for low- and middle- income countries suggests that up to one in four patients 

is harmed, with 134 million AEs occurring annually due to unsafe care in hospitals, 

contributing to around 2.6 million deaths [7]. Overall, 60% of deaths in low-and middle-

income countries from conditions amenable to health care are due to unsafe and poor-

quality care[8]. 

Two decades after this eye-opening report and the efforts deployed, there seems to be a 

significant improvement in the rates of AEs [9]–[12] in the United States but further 

research is needed to understand if this trend is similar across other countries, and across 

harm categories. 

Despite this positive momentum, substantial opportunities for improvement remain, 

stemming from inefficient or inadequate implementation of safety actions [13], patient 

harm remaining  one of the leading causes of morbidity and mortality in healthcare [14], 

causing further burden on healthcare systems such as increased costs, extended hospital 

stays and higher readmission rates [15]–[19]. It is estimated that 10-15% of healthcare 

expenditure is consumed by the direct sequelae of healthcare-related patient harms [20].  
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However, unsafe care is not only linked to hospital-based care; in fact, half of the global 

disease burden arising from patient harm seem to originate in primary and ambulatory 

care [23]. 

The majority of patient harms fall into the following categories: healthcare associated 

infections (HAIs), adverse drug events (ADEs), venous thromboembolism (VTE), 

surgical complications, pressure ulcers, falls, insufficient decompensation detection and 

diagnostic errors, including missed and delayed diagnosis[24], [25][24], [25]. 

A more detailed taxonomy of patient harm and adverse events categories has been 

elaborated by the Florida Hospital and illustrated in the Global Trigger Tool 

Implementation Guide for New Zealand [26]. Table 1 shows a slightly modified version 

of this taxonomy where we have added diagnostic errors and decompensation detection 

errors. 
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Table 1: Taxonomy of patient harm/clinical adverse events categories (based on the Florida 

Hospital Classification) 

Events Related to Medications/Intravenous Fluids 

Kidney damage due to contrast dye Clostridium difficile medication associated infection 

Medication related renal insufficiency IV volume overload/electrolyte imbalance 

Medication related cardiac even/arrhythmia   Medication related hypotension   

Medication related delirium, confusion, or over-

sedation   
Medication related glycemic events 

Medication related allergic reaction Medication related diarrhoea   

Medication related bleeding   

Hospital Acquired Infections Events Related to Surgery or Other Procedure 

Catheter associated urinary tract infection Abnormal bleeding following surgery or procedure 

Central line associated blood stream infection 
Blood clots and other occlusions related to surgery or 

procedure 

Peripheral or central line non-blood stream infection 
Complications related to peripheral venous or arterial 

puncture 

Respiratory infection (non-ventilator associated) Post-op acute renal failure 

Surgical infection Removal of retained foreign body 

Ventilator associated pneumonia Removal, injury or repair of organ 

Other Hospital Acquired Infection Cardiac complications related to surgery or procedure   

Diagnosis related events Prolonged post-op ileus   

Misdiagnosis 
Respiratory complications related to surgery or 

procedure   

Delayed diagnosis Events Related to Patient Care  

Decompensation detection related events Deep Vein Thrombosis/Venous Thromboembolism 

Unidentified decompensation Hospital acquired pressure ulcer /wound 

Delayed identification of decompensation 
Complications related to peripheral venous or arterial 

puncture  

Inappropriate management of decompensation Fall with injury   

Other category of adverse events  

Other adverse events  
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2.1.2. Measuring rates of clinical adverse events: current tools and challenges  

 

One of the factors that may explain the insufficient level of desirable improvement of 

patient safety to this day is the lack of accurate measurement and regular monitoring of 

AE rates, both at national and institutional levels [13]. Hence, stemming from the “one 

cannot improve what one cannot measure” principle, it is crucial that healthcare systems 

measure AE levels timely, efficiently, reliably, and regularly in order to deploy 

appropriate actions to lower the level of harm. 

Several tools have been developed in the literature to help detect AEs. These include 

morbidity and mortality conferences, autopsies, malpractice claims analysis, error 

reporting systems, administrative data analysis, chart review, and clinical surveillance 

through patient safety indicators[27]. However, all these methods are retrospective, 

limited in matter of detection scope, and resource intensive. In fact, voluntary reporting 

systems have been estimated to detect only 2-8% of actual AEs occurring during 

hospitalizations [28][29]. 

The latest recommended “gold standard” approach, currently used in many hospitals 

worldwide, is to perform a manual review of a sample of patient medical records, using 

a standardized approach such as the Institute for Healthcare Improvement’s Global 

Trigger Tool (GTT) methodology[30].  

Triggers are not harms in themselves – but ‘clues’ that harm may have occurred. When 

reviewing a medical record, triggers are used as ‘flags’ for potential harm. A trigger 

could be a laboratory result outside the normal range, a medication that has 

been prescribed or suddenly stopped, escalation to a higher level of care, or a return to 

interventional theatre. This enables a more efficient and streamlined approach for record 

review. 

They have been identified as being associated with patient harms, but not all positive 

triggers necessarily identify an adverse event [31]. 

Although this method has shown to have a higher sensitivity versus other AE detection 

methods, its practical disadvantages include its resource-intensiveness due to time and 

personnel required, limitations in detection associated with the quality of clinical 

documentation, in addition to low inter-rater reliability, which are all limiting factors in 

its adoption[32], [33].  

Recent research has suggested that automated AE detection methods using “data 

mining” techniques and “rules-based algorithms” are showing to be superior to manual 

tools [34]–[36] allowing for healthcare professionals to provide timely feedback and 

safety interventions [37]. Indeed, by design, automated AE detection methods can 

consistently screen large numbers of patients in real time to save valuable resources, 
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something which would be extremely tedious if done manually by reviewers with the 

same accuracy [36]. 

Efforts to automate the detection of AEs have been driven by the increase in the 

adoption of electronic medical records (EMR) worldwide over the last decade [38], with 

some incorporating a modified automated GTT methodology based on laboratory 

values, ICD-10 diagnosis codes and text mining of clinical documentation[32][39]. 

Since the safety benefits from EMRs have not been reaped as much as expected [40][41] 

(mainly because of a lack of “usability” of the solutions which increases burden to the 

healthcare workers, as well as a lack of intelligent clinical decision support functions 

that can help optimize care delivery and safety). Consequently, recent reports indicate 

that investments should now be focused on developing automated detection methods 

using EMR data, to routinely and continuously measure the frequency and types of 

patient harm [42].While most implemented automated AE systems detect only certain 

categories of AEs, such as hospital acquired infections, patient falls or adverse drug 

events [43]–[47], very few [48]–[50] offer the surveillance of a broad spectrum of AEs, 

and those who did were built on top of mature and complex EMR systems, not 

accessible to hospitals with limited resources.  

Automated measurement tools for AEs are currently not available in the majority of 

commercially available solutions for hospitals and are still under development[51].  In 

fact, an ideal tool for the surveillance of patient safety events should provide validated, 

reliable, automated and real-time AE measurements that can be linked to improvement 

actions, and easily followed over time. Such a system should also use adequate and 

intuitive data representation tools in the form of a dashboard that is accessible to relevant 

managerial positions in the healthcare institution.  

2.1.3. Main safety gaps remaining  
 

There are a number of reasons why the problem of the high incidence of patient harm is 

still prevailing despite more than two decades of awareness and research in the domain 

of patient safety  [13]: 

• Lack of reliable and efficient tools for the measure and surveillance of 

clinical AEs. We cannot improve what we cannot reliably and consistently 

measure. Currently available tools for the measurement of clinical AEs do not 

permit healthcare institutions and systems to measure patient harm inside and 

outside the hospital, reliably, consistently and efficiently. Automated solutions 

are still under development and currently not available in the majority of 

commercially available solutions for hospitals. Without such tools, it is not 

possible to measure the evolution of progress in the prevention of AEs, in order 

to identify the impact of safety practices implementation. 
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• Inconsistency in use of proven prevention techniques. In fact, a number of 

prevention practices have demonstrated proof to have reduced the burden of 

certain categories of adverse events. For example, certain bundles of evidence-

based practices were effective in drastically reducing certain types of hospital 

acquired infections (HAIs) [52], [53] such as Central line- associated 

bloodstream infections (CLABSI), Ventilator Associated Pneumonias (VAP) 

and Surgical Site Infections (SSI). Nevertheless, in recent studies hospital 

acquired infection rates remain high in most healthcare institutions in the 

USA[54], and this fact is thought to be related to the lack of adoption or 

inconsistency in the use of the aforementioned prevention techniques. The 

COVID-19 pandemic has had also a negative impact on the rate of HAIs in 

hospitals[55]. Hence, in order to improve the results of a domain of patient 

adverse events, interventions, tools or policies reinforcing the level of adoption 

and/or consistency in the implementation of the evidence-based practices are 

needed.  

 

• Lack of accessibility to proven prevention techniques. For a number of AE 

domains, such as Medication errors, computerized clinical decision support 

solutions have been imagined, implemented and proven to be efficient to 

decrease the level of errors and consequently harms in this domain. Such 

solutions include computerized physician order entry (CPOE) that comprise 

modules to automatically check or flag allergies, drug-drug interactions, out-of-

range doses, bar-code checking of drugs before dispensation and before 

administration. The level of adoption of such tools although increasing in 

developed countries, is still very limited in moderate- and low-income countries, 

mainly because of the high costs of such solutions. Lowering the barrier to 

accessibility to these solutions seem to be a main target in order to improve the 

safety results for this AE domain. 

 

• Lack of “usability” of some technological solutions. Recent data[56] is 

suggesting that Clinical Decision Support function of existing Electronic Health 

Records (EHR) are not delivering the benefits that were promised in the early 

proof-of-concept studies. Main reasons for this poor performance are the 

disregard (in the design and implementation phases) of certain “non-technical” 

factors such as workflow adaptation, user-friendliness, training, organizational 

and culture issues. The term “usability” is currently being used to describe and 

measure the outcomes of the software functions in comparison to the needs of 

health care team members and the way they perform their work. EHRs with low 

usability scores seem even to be linked to bad patient outcomes and clinician 

burnout [57]. Hence, priority is to address these design and implementation 

issues of these solutions in order to reap the promised safety benefits. A number 
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of approaches involving disciplines such as human factors engineering, 

psychology, social sciences and user-oriented design are needed [58].  

 

• Areas with insufficient/no proven prevention techniques: the safety “blind 

spots”.  A certain number of domains are emerging as important areas with 

significant incidence rates that lack evidence-based interventions proven to 

lower the associated level of harm, and thus require immediate attention from 

the patient safety scientific community. Such domains include: diagnostic errors, 

patient decompensation, inpatient falls, acquired pressure ulcers, outpatient 

safety and health information technology (HIT) induced errors. 

Diagnostic errors can stem from multiple factors, some are systemic (such as 

failures or breakdowns in communication, lack of coordination/handover or 

robust procedures) and others are individual (such as failures in data gathering 

or interpretation especially for abnormal patient results and patient 

history/status, overconfidence in diagnostic judgment and lack of 

knowledge/experience). Hence, no single physician’s knowledge and decision 

making are sufficient to ensure an accurate diagnosis, especially when the 

diagnosis evolves across time and space and involves interactions between 

numerous team players. 

Clinical decompensation (or deterioration) of patients in clinical wards is a 

common event and can result in avoidable mortality. A patient who needs cardiac 

resuscitation is usually not expected to have a good prognosis. It is therefore 

important to have systems in place to detect the early signs of deterioration, so 

that mitigation can take place. Paper-based early warning systems, such as 

MEWS[59], have been elaborated in the early 2000 to assist nurses in the 

detection of clinical signs of deterioration. They have been widely implemented 

especially in the UK, USA and Australia, but much less in other developed 

countries, and even less in moderate- and low-income countries. The evidence 

base of the safety outcomes of these systems is very limited, and might be related 

to the relatively delayed detection of deterioration they offer. Currently, 

investments are made in electronic early warning systems that can offer a more 

reliable and earlier detection of patient deterioration.   

Patient falls are among the most common adverse events reported in hospitals 

and rates of fall are difficult to measure reliably since they depend mostly on 

reporting by nursing staff and there are no effective, systematic and independent 

approach to detect them. About 2% of hospitalized patients fall at least once 

during their stay. Recent data about the trends of adverse events rates in the US 

show that  
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Even though a number of successful quality improvement programs have been 

described (mostly relying on the risk evaluation of fall-risk in patients), most 

controlled studies of fall prevention did not yield positive results [60]. There is 

an urgent need for well-designed research studies in hospital fall prevention. 

Nurse staffing and even unit design considerations may play an important role 

into decreasing fall risk. The current nursing shortage witnessed on the 

international level can also negatively impact the efforts to reduce patient falls. 

There’s a strong need to explore solutions to identify reliably inpatient falls and 

even offer a clinical decision support aid to flag patients at high risk, and maybe 

even detect early signs of high-risk physical activity that can lead to fall, hence 

preventing it. 

Pressure ulcers are also among the adverse events with the highest incidence in 

hospitals. In the US, approximately 2.7% of hospitalized patients develop 

pressure ulcers that are largely preventable, thus incurring more than 28.2 billion 

(USD, 2019) financial burden which could be significantly reduced. 

In a recent US national study[12], between 2010 and 2019, the decrease in the 

rates of pressure ulcers and falls was significantly lower than the other included 

AE categories, which may indicate a need for new initiatives related to the 

prevention of pressure ulcers and inpatient falls. 

 

2.1.4. Preventable adverse events: the “holy grail” of patient safety 

 

The measurement of patient harm is important in order to assess the level of patient 

safety in a healthcare institution. The objective of this measure is to help healthcare 

administrations and leaders to identify gaps and subsequently help derive specific 

improvement actions, with the objective to lower the level of harm in the identified 

safety areas. However, while this approach is important on a global and managerial 

level, a risk-predictive approach on the patient level could hold even greater potentials 

for harm prevention. 

A certain number of AE categories are particularly eligible to this approach. These are 

the ones for which the risk of occurrence can be determined by independent factors 

related to the patient and other contextual variables that can be obtained in routine, in 

particular.  

A number of risk assessment tools have been elaborated (mostly in paper form) in the 

last three decades for certain categories of AEs, in order to be used directly during 

patient care. Such examples include the Braden Scale [61] for the risk assessment of 

pressure ulcer, the Morse scale [62] for the risk assessment of patient fall, the Modified 
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Early Warning System score [59] for the stratification of clinical deterioration risk, and 

the Well’s risk score to predict Deep Vein Thrombosis [63]. 

As clinical data availability is increasing with growing EHR adoption, risk scores can 

be elaborated for a number of additional AE domains.  These CDSS tools can be 

constructed either through expert opinion or through data-driven techniques (e.g 

machine learning) or even in combining both methods. Possible candidate areas include 

risk of induced Acute Kidney Injury, acquired delirium, postoperative infections, risk 

of stroke, risk of pneumonia etc. The adoption of such tools by the healthcare 

professionals is conditioned by a better integration of these tools [64] in the EHR, taking 

into consideration the needs of the professionals and the findings of the CDS 

implementation science. 

Ultimately, the timely incorporation of risk prediction CDS modules for the different 

types of AEs in the workflow of nurses, physicians and other healthcare could deliver 

personalized recommendations and alerts relative to the prevention of AEs that promise 

to impact the safety of care in more efficient ways than global improvement projects 

and protocols. 

 

2.2. Use of artificial intelligence to detect and predict patient harm 

2.2.1. The potential of AI in identifying, predicting and preventing patient harm 

 

Recent reviews [25], [65], [66] of studies focusing on the use of AI in patient safety 

domains have highlighted the following conclusions regarding the potential of use of AI 

in the identification, prediction and prevention of patient harm: 

• Detect patient safety events and improve performance of clinical alarms  

Rules-based systems have been, since the end of the 1990s, first to be designed and 

evaluated in order to automatically detect adverse events. The later version of these 

systems used electronic triggers found in the EHR, some of which were inspired from 

the IHI Trigger Tools methodology [66].  Their detection performance was significantly 

better than the paper chart audit gold standard, but remained overall modest especially 

in terms of specificity and false alarm rates.  

A number of recent studies have shown that machine-learning based systems could 

improve the detection performance of medication related adverse events, including 

prescription errors[67]–[69], [68]drug-drug interactions and medication reconciliation 

errors [70]–[72], reduce the false alarm rate of monitor vital sign data, and in particular 

alarms related to cardiac events (e.g arrythmias)  [73]–[75]. 
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Moreover, a number of Natural Language Processing (NLP) and Machine Learning 

(ML) based systems have been elaborated for automatic identification and classification 

of patient safety incidents and adverse events from incident reports and from the EHR 

clinical notes [76]–[78]. 

In the medical imaging field, numerous models and systems have been elaborated in 

order to automatically help identify relevant radiological findings including possible 

adverse events, thus contributing to reduce diagnostic errors [79], [80] . 

• Provide prediction of various patient safety events 

Reports have shown that several ML-based systems have been designed for the 

prediction of patient harm in multiple patient safety domains. Main prediction domains 

include for example: the onset of central-line associated bloodstream infections [81], 

Adverse Drug Events (ADE) and drug-drug interactions based on drug structural 

similarities and mechanism of action [68], [82], [83], predicting the personalized 

therapeutic dosage of digoxin [84] and warfarin through integrating certain relevant 

genomic sequencing data [85], [86], identifying inpatients at high-risk for Venous 

thromboembolism [87], [88], predicting postoperative blood loss [89], stratifying 

patient relative to the risk of developing pressure ulcers [90], predicting fall risk using 

wearables and computer vision [91], [92], and prediction of patient clinical deterioration 

[93], [94] 

• Improve adherence to best practices 

It was reported that patients only receive recommended care about 50% of the time [95], 

and unwarranted variation in clinician’s decisions and action impair care delivery [96], 

[97] when they fail to use applicable guidelines[98]. AI-based applications can play a 

potential role in improving adherence to best practice through predicting user behavior 

and giving feedback, suggesting recommendations or enforcing certain actions at the 

right time in the clinician’s workflow. 

For example, ML algorithms combined with computer vision and data from other types 

of sensors were applied to monitor hand hygiene compliance both in outpatient and 

inpatient settings, with good reported performance in increasing the best practice 

compliance [99]–[101]. Similarly, in radiology, systems have been designed to enforce 

the appropriate use of diagnostic imaging modalities, for example in the appropriate 

prescription of imaging exams for the diagnosis of deep vein thrombosis and pulmonary 

embolism[102], [103]. 

 

2.2.2. Current concerns and challenges regarding the elaboration and use of AI-

based models and applications  
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Machine learning and other artificial intelligence techniques are playing an increasing 

role in healthcare, across many clinical domains, and hold a big potential to improve 

patient safety gaps. This is being translated by the rapidly growing number of AI-based 

models and systems in this domain that are being published in the scientific literature, 

and focused upon in the media. While this is undoubtedly a sign of a paradigm shift in 

this domain that is leveraged by technology, the current “hype” shadows real concerns 

and gaps that are being raised in recent reviews and that should be handled before the 

commercial appetite for AI applications in healthcare introduces significant risks to the 

users and the patients. Three main challenges are affecting the adoption of AI-based 

solutions for patient safety, which are: 1) issues related to increasing the robustness of 

AI-based systems, 2) reporting standards to enable assessment of performance of AI 

models, and applications 3) acceptance challenges that need to be addressed for an 

institution to adopt these systems. 

We have summarized and categorized hereafter the main points regarding these 

concerns and challenges.   

• Most studies are still preclinical 

Most of the studies concerning models or systems powered by AI involve 

retrospective testing of algorithms on existing data. Only a small percentage of 

studies are prospective trials of AI-guided systems, and till date even a smaller 

percentage of AI-powered clinical solutions have got the approval of regulatory 

agencies (e.g FDA) [3], [104].  

This fact warrants the need for more attention to the characteristics of these systems 

and to the challenges and additional risks [105] they might be introducing, in order 

to prevent them and maximize their desired outcome in real-world contexts. In fact, 

while there is a big commercial pressure to implement AI-based solutions in 

healthcare, the implementation process should take its time, following two key steps: 

first, a well conducted and reported development and validation study, and then 

randomized clinical trials that evaluate usefulness in the real world[104]. 

• Model data transparency and validation methods need to be scrutinized 

A lack of transparency regarding the training data used for model development 

directly affects the reproducibility, generalizability, and interpretability of a 

proposed model [106]. Transparency is needed across 3 main categories: the 

population from which the data were acquired; model design and development, 

including training data; and model evaluation and validation.  

In fact, the performance of any AI model broadly depends on its reliability and its 

ability to generalize to the setting and population in which it is applied, rather than 

its performance represented by the training and test data alone. [107] 
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An empirical evaluation of 81 studies comparing AI models against clinicians 

showed major problems with lack of transparency, bias, and unjustified claims, 

likely because key details about the studies were often missing [104]. 

• Existing predictive models reporting frameworks are insufficient for AI-

based models 

The TRIPOD (Transparent Reporting of a multivariable prediction model for 

Individual Prognosis or Diagnosis) framework [108], which is the current standard 

for reporting predictive models, is useful for standardizing the reporting of research-

derived risk scores but presents important limitations when applied to ML models 

using observational data [3]. New reporting standards are currently being developed 

to better tackle AI model stability, bias adjustment, and interpretability. Examples 

include the AI-TREE framework, the MINIMAR framework, as well as an AI 

extension of TRIPOD [2], [109], [110]. 

• Challenges concerning the evaluation of AI derived CDS tools 

Since AI models are often used as CDS in practice, reporting the actual 

implementation of these tools should adhere to standard approaches and 

frameworks. One important point to report is if the AI-derived CDS tool was tested 

side by side with existing tools, if available. Other important key issue for quality-

improvement to be reported relates to how the tool was implemented in clinical care.  

Was it implemented at the point-of-care (for example such as a best-practice alert), 

or as a CDS in the form of data display (such as a risk dashboard), or was it 

implemented as a CDS with nudge-embedded support (such as presentation of risk 

or treatment choice)? [3] 

Data assumptions, such as how missing data were handled and approaches to 

imputing data are also important to report. 

• The problem of result generalizability and adaptability to dataset-shift 

AI-based systems should be externally validated, stemming from the fact that any 

model that is developed within one dataset will reflect the idiosyncrasies and 

specificities of that dataset and will thus perform less well when the model is tried 

in new settings. However, this is not being routinely done in studies [111]. Also, the 

performance of algorithms can also degrade within the same institution as practices 

change or as demographics within that site change. Proactive learning algorithms 

aim to avoid using these types of unstable information. These algorithms proactively 

avoid learning site-specific biases and are therefore more robust when moved 

between institutions and when dataset shift occurs [112].  
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• The problem of uncertainty of predictions 

A prediction can be uncertain (thus unreliable) for several reasons. For example, the 

learning model may not have had exposure to enough samples like the sample in the 

development data set (model uncertainty). Alternatively, the target outcomes that 

the model is predicting may be noisy (due to incomplete or uncertain input data) [3]. 

For example, there may be value in calculating and reporting the number of events 

used in the dataset used for algorithm learning phase per number of predictors, if 

only to give the reader a sense of model coverage and bias. 

Information about uncertainty of predictions is very important for the user, as it 

might impact his decisions, as well as for the general reliability of the system.  

Bayesian inference is a common approach for obtaining uncertainty estimates, and 

new alternatives yield audit tools that can help determine both model and data 

uncertainty [113] . 

• Explainability and clinical usefulness of results 

CDS is generally considered beneficial when providers receive suggestions at 

specific times in their workflow and in ways that help them make better 

decisions[114]. Furthermore, it is critical to assess if the suggestion interrupts the 

clinician in his or her workflow. Generally, the goal is only to advise the clinician, 

including giving an assessment about uncertainty regarding a prediction, but leaving 

up to him/her the choice. 

Decisions made by AI (and specifically by machine learning based systems) are 

often seen by clinicians as opaque due to the “black box” nature of the patterns 

derived by these techniques. Therefore, a principle of “explainability” is emerging 

as a requirement for adoption of AI solutions where it is based on the ethical and 

deontological requirement that humans affected by the decisions suggested by the 

AI solutions should be able to get an explanation why the decision is made in terms 

of language they can understand and they should be able to challenge the decision 

with reasoned arguments. The idea of explainable AI is that humans can understand 

how a CDS system has produced an outcome. This, however, without limiting the 

level of complexity of the algorithm, and with that negating the possible benefits of 

using AI. In some clinical applications, it might not be necessary to understand the 

exact details of the algorithm, but rather to have a sort of insight into factors that are 

important or decisive related to a specific prediction. What machine learning 

algorithms do is learn to assign weights to features in the data, in order to make 

optimal predictions based on that data. For clinicians, it is important to know which 

features are considered relevant by the algorithm and how much weight is assigned 

to this feature. Having that information, a clinician can judge whether the features 

that a CDS system picks out are indeed relevant or not. Using a system that 
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formalizes aspects of the reasoning process and explicates the factors that are 

combined, and with what weight, will support clinicians in developing their ability 

to articulate and justify their own reasoning process. [115] 

• Adoption barriers of AI-based CDS by clinicians and hospitals 

A number of CDS adoption barriers by clinicians and hospitals have been identified 

in recent studies, and should be taken into consideration in any design and 

implementation of such solutions: [116], [117] 

Fragmented workflows: CDS systems can disrupt clinician workflow and yield 

decreased adoption, especially in the case of stand-alone systems. CDS systems 

disrupt workflow if designed without taking into consideration the “human factors” 

approach. Disrupted workflow can lead to increased cognitive effort, more time 

required to complete tasks, and less time face-to-face with patient, even if they are 

integrated within existing information systems. Studies have found that practitioners 

with more experiential knowledge are less likely to use, and more likely to override 

CDSS. 

Alert fatigue and inappropriate alerts: Studies have found that the majority of CDS 

systems alerts can be inconsequential, and often physicians tend to disagree with or 

distrust alerts, or even simply override them. Also, if physicians are presented with 

excessive/unimportant alerts, they can suffer from alert fatigue. 

CDS systems may be dependent on computer literacy. Lack of technological 

proficiency can be hindering when engaging with a CDSS. This can vary by the 

design details of the CDSS, but some have been found to be overly complex, relying 

too much on user skill.  

System and content maintenance: Maintenance of CDS systems is an important but 

often neglected part of the CDS system life-cycle. This includes technical 

maintenance of systems, applications and databases that power the CDSS. Another 

challenge is the maintenance of knowledge-base and its rules, which must keep with 

the fast-changing nature of medical practice and clinical guidelines.  

Trust in system accuracy and decision process: The accuracy of the 

content/predictions is identified as an important theme for clinicians to trust the CDS 

system. The uncertainty felt by clinicians about the quality and accuracy of evidence 

in addition to lack of explainability of the outcomes negatively impact their will to 

adopt the CDS solution. 

Lack of transportability and interoperability Despite ongoing development for the 

better part of three decades, CDS systems (and even EHRs in general) suffer from 

interoperability issues. Many CDSS exist as cumbersome stand-alone systems, or 

exist in a system that cannot communicate effectively with other systems. Positively, 

interoperability standards are continuously being developed and improved, such as 

Health Level 7 (HL7) and Fast Healthcare Interoperability Resources (FHIR). These 
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are already being utilized in commercial EHR vendors. Several government 

agencies, medical organizations and informatics bodies are actively supporting and 

some even mandating the use of these interoperability standards in health systems. 

2.2.3. Recent frameworks and practical recommendations for the design, 

evaluation and validation of AI-based models and CDS systems 

 

Stemming from all the aspects and challenges described above, relative to AI-

enabled CDS design and implementation, we select a bundle of recently published 

synthetic and practical conceptual frameworks and recommendations that can 

tackle the aforementioned challenges, and guide the efficient elaboration of such 

models and systems. 

In a recent commentary by a number of the biggest names in the domain of 

healthcare CDS [1], a synthetic circular model depicting the major themes around 

the elaboration of CDS (Figure 1) has been suggested and explained. This model 

can serve as a reference for tackling the design challenges of AI-based models and 

CDS systems and for building a CDS design, evaluation and validation framework. 

As for the reporting frameworks concerning the ML-based predictive models, 

Figure 2 shows an example list of a minimal set of reporting variables important 

to guarantee transparency and minimal bias, adapted from Hernandez-Boussard et 

al. [2]. Table 2, adapted from a study by Bates et al. [3] depicts a list of 

recommendations and minimal reporting themes relative to the design of studies 

and interventions involving ML and other AI techniques, and can serve a practical 

checklist for model design check and reporting methodologies fine tuning. 

Other tools are aiming to help users and buyers of CDS solutions to evaluate the 

“usability” of these products. For example, the “Trust and Value Checklist” 

proposed by Silcox et al. regarding choice and adoption of AI-enabled CDS 

systems can be a practical tool to use to check the main issues related to adoption 

by clinicians and hospitals of AI-enabled CDS systems (Table 3). 

Another recent example is the Medical Digital Score Solution[118], elaborated 

with the help of 130 French publishers of e-health solutions, health establishments, 

doctors, health authorities’ recommendations and patient associations. This tool 

aims to help professionals and healthcare institutions in the evaluation of the 

clinical quality and relevance of eHealth Apps through 26 questions covering the 

following themes: the medical specialty and claims of the clinical application, the 

target users of the solution, the clinical evaluation of the solution, the editor 

(software publisher) and the likelihood of obtaining reimbursement. 
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Figure 1: Synthetic circular model depicting the major themes around the elaboration of CDS 

(Greenes et al., 2018 [1]) 
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Figure 2: MINIMAR (MINimum Information for Medical AI Reporting): Developing 

reporting standards for artificial intelligence in health care (adapted from Hernandez-

Boussard et al., 2020  [2]) 
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Table 2: Recommendations for Study Design and Conduct and Reporting in Interventions 

Involving Machine Learning and Artificial Intelligence (adapted from Bates et al., 2020 [3]) 

Issue Recommendations for Study Design 

and Conduct 

Recommendations: Reporting 

Validation Validate performance in a separate 

data set, ideally from another site, and 

consider using a proactive algorithm 

accounting for differences between 

sites 

Describe how the model was 

validated in a separate data set and 

how any other additional sites were 

chosen Describe whether a proactive 

algorithm was used to account for 

differences between the sites 

Describe any existing models that have 

been developed to predict the same 

outcome 

Report how the model performed 

against any existing models 

Measure accuracy by using multiple 

segments of a data set 

Describe how the model performed 

in the main segments of the data set 

Uncertainty Use approaches to let users know 

when specific predictions are more 

uncertain than others 

Report whether the certainty of 

predictions was displayed to users 

and how this was done 

Implementation Use standard approaches for 

introducing CDS 

Report which standard approaches 

for CDS introduction were used and 

the extent to which they were 

followed 

Data Determine which variables will be 

taken from standardized sources versus 

unstructured data or free text 

Report which variables came from 

standardized sources vs. unstructured 

data or free text 

Make explicit data assumptions 

regarding missing data and censoring 

Describe how missing data were 

addressed and what if any censoring 

was done 

Define how the study sample was 

obtained and the extent to which it was 

socio-demographically diverse 

Report how the study sample was 

selected and the extent to which it 

was socio-demographically diverse 
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Table 3: The Clinician’s AI-enabled CDS Software “Trust and Value Checklist” 

(adapted from Silcox et al., 2020 [4]) 

 

The Value of the CDS System 

1- Does use of this AI- enabled CDS software or system yield clinically important 

improvement compared to the status quo? 

2- Will use of this AI-enabled CDS software fit into my clinical workflow and/or my team’s 

workflow? 

• Does this tool make sense within my current workflow? 

• Does it make recommendations in a timely manner? 

• Does it require me to manually enter information, move to another screen, or 

otherwise make additional “clicks”? 

• If so, does the clinical benefit warrant this additional activity and possible 

annoyance? 

3- What information does the AI-enabled CDS software provide at the point of use about the 

logic behind the decisions or recommendations that it produces and the degree of certainty 

that these recommendations are correct? 

The Data Behind the CDS System 

4- What was the source of the data used to develop and train the AI-enabled CDS software? 

5- How were the training data labeled? 

6- Does this AI-enabled CDS software appropriately respect patient privacy? 

Testing 

7- Does this AI-enabled CDS software fall under the FDA’s regulatory authority, and, if so, 

has it been cleared or approved by the agency? 

8- If a software system is not under the FDA’s authority, how was it tested, against what 

standard, and by whom (other than by its developers)? 

9- Has this AI-enabled CDS software been tested on data from my own hospital or health 

system? 

Maintaining and Improving the Software Over Time 

10-What provisions has the developer made for monitoring and updating the AI-enabled CDS 

software over time to account for potential degradation in performance? 
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3. Preliminary study:  

Automated detection of patient harm: 

implementation and prospective evaluation of a 

real-time broad-spectrum surveillance application 

in a hospital with limited resources 

 

3.1. Introduction: 

The detection and understanding of patient harm to improve patient safety and quality of care 

has become a top priority in healthcare recently, with healthcare systems around the globe 

attempting to mobilize resources for the prevention of such harms. 

Although it has been over two decades since the eye-opening 1999 Institute of Medicine (IOM) 

report “To Err is Human”[22], which served to lay the foundations for the subsequent patient 

safety efforts to come, patient adverse events (AE) remain to be one of the leading causes of 

morbidity and mortality in healthcare [14]. Inpatient harm has also other negative consequences 

including increased costs, extended hospital stays and higher readmission rates [15]–[19]. It is 

estimated that 10-15% of healthcare expenditure is consumed by the direct sequelae of 

healthcare-related patient harms [20].  

 

One of the factors that can explain this is the lack of accurate measurement and regular 

monitoring of AE rates, both at national and institutional levels [13]. Hence, stemming from 

the “one cannot improve what one cannot measure” principle, it is crucial that healthcare 

systems measure AE levels timely, efficiently, reliably, and regularly in order to deploy 

appropriate actions to lower the level of harm. 

  

Several tools have been developed in the literature to help detect AEs. These include morbidity 

and mortality conferences, autopsies, malpractice claims analysis, error reporting systems, 

administrative data analysis, chart review, and clinical surveillance through patient safety 

indicators[27]. However, all these methods are retrospective, limited in matter of detection 
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scope, and resource intensive. In fact, voluntary reporting systems have been estimated to detect 

only 2-8% of actual AEs occurring during hospitalizations [28][29]. 

The latest recommended “gold standard” approach, currently used in many hospitals 

worldwide, is to perform a review of patient medical records, using a standardized approach 

such as the Institute for Healthcare Improvement’s Global Trigger Tool(GTT) 

methodology[30]. Although this method has shown to have a higher sensitivity versus other AE 

detection methods, its practical disadvantages include its resource-intensiveness due to time 

and personnel required, limitations in detection associated with the quality of clinical 

documentation, in addition to low inter-rater reliability, which are all limiting factors in its 

adoption[32], [33]. Recent research has suggested that automated AE detection methods using 

“data mining” techniques are showing to be superior to manual tools [34], [35], [66] allowing 

for healthcare professionals to provide timely feedback and safety interventions [37]. Indeed, 

by design, automated AE detection methods can consistently screen large numbers of patients 

in real time to save valuable resources, something which would be extremely tedious if done 

manually by reviewers with the same accuracy [66]. 

Efforts to automate the detection of AEs have been driven by the increase in the adoption of 

electronic medical records (EMR) worldwide over the last decade [38], with some incorporating 

a modified automated GTT methodology based on laboratory values, ICD-10 diagnosis codes 

and text mining of clinical documentation[32][39]. Since the safety benefits from EMRs have 

not been reaped as much as expected [40][41], recent reports indicate that investments should 

now be focused on developing automated detection methods using EMR data, to routinely and 

continuously measure the frequency and types of patient harm [42].While most implemented 

automated AE systems detect only certain categories of AEs, such as hospital acquired 

infections, patient falls or adverse drug events [43]–[47], very few [48]–[50] offer the 

surveillance of a broad spectrum of AEs, and those who did were built on top of mature and 

complex EMR systems, not accessible to hospitals with limited resources.  

The objective of this contribution is to prospectively validate and implement an application that 

fully automates the detection of broad categories of hospital AEs extracted from a basic hospital 

information system. This validation involves the measurement of the Positive Predictive Value 

(PPV) of the tool, as well as an estimated “detection sensitivity” by harm category, a metric 
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which, to the best of our knowledge, is not commonly observed in the validation studies of 

similar systems. This application is an enhanced version of a previously validated non-AI based 

method[124].  

3.2. Materials and Methods 

 

Study Design and Setting: 

This is a prospective single-site observational study conducted in a 250 bed university hospital 

localized in Beirut (Lebanon), aiming to evaluate the implementation of an automated detection 

system built to identify patients with hospital acquired AEs. 

Data extracted in the study ranged from October 2019 till June 2020. All hospital admissions 

during this period were included, with the exception of outpatient and 1-day non interventional 

hospitalizations.  

This study was approved by the hospital’s IRB and exempt from full-board review, due to the 

absence of human subjects research. 

Data sources/ Measurements: 

The application data was collected/refreshed in near real time (automatic run every 30 minutes) 

and comprised of the extraction of 14 indicative patient harm triggers, querying various 

databases of the Hospital Information System (HIS). The HIS is a basic information system 

which can be classified as stage 1 as per the Healthcare Information and Management Systems 

Society’s (HIMSS) Electronic Medical Record Adoption Model (EMRAM). The team also 

receives a daily electronic report of all the triggered cases in the past 24 hours, classified per 

trigger type, as well as a push-notification of new results every 30 min.  

The choice of triggers was derived from the Institute for Healthcare Improvement’s Global 

Trigger Tools methodology, with specific inclusion/exclusion criteria and algorithms for each 

trigger developed in a previous study [124]. Such triggers include readmissions within 30-days, 

positive microbiological cultures, critical laboratory values, urgent diagnostic imaging and 

specific medications orders. They were selected to be indicative of a wide array of possible 

adverse event categories. Thus the system was intended to function as an automated broad-

spectrum active adverse-event surveillance system. 
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A clinical validation of a representative sample of the results yielded by each trigger from the 

software, through clinical chart review methodology was performed. The sample for each 

trigger was drawn randomly during the data collection period, until a sample number relative 

to a confidence interval (CI) of 95% and an accuracy of 10% was achieved. For the 

microbiological culture triggers, the data collection period was extended up to December 2020 

until the above-mentioned accuracy objective was reached. 

 

Validating if the patient was subject to an AE consisted of a two-phase process as shown in 

Figure 3. First, a team of two patient safety professionals and a nurse reviewed systematically 

all cases identified by the triggers, and analyzed the patient file for any documented occurrence 

in the medical or nursing files of any associated patient harm, and when this evidence was 

available, this team validated the result of the trigger and classified the associated harm 

according to the Florida Hospital AE/Harm Classification[125][126]. For all cases where harm 

occurrence documentation was not available, validation moved to the second phase, where the 

team would submit the cases anonymously to a multidisciplinary consensus expert panel 

comprising, in addition to the team members, three experienced physicians (a surgeon, an 

internal medicine physician and a radiologist) for final validation. The panel was expanded 

when needed to include healthcare professionals from other specialized disciplines, depending 

on the expertise needed. All members would vote anonymously and the result for each trigger 

would be reached via panel consensus. Consensus was defined as the majority of panel 

members reaching the same vote. If no consensus was reached, the case would be submitted 

anonymously to a clinical expert opinion, deemed fit to review the case based on expertise and 

relevance of specialty. A re-vote would be conducted after briefing the expert’s opinion. The 

core members of the panel remained the same throughout the study.  
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Figure 3: Data collection and triggered cases review process flowchart 

 

 
 

 

The information was collected using an electronic data sheet with the following entries: trigger 

date, trigger type, AE occurrence status, patient name, age, medical file number, case number, 

admission and discharge dates, treating physician, case description, harm category, and level of 

harm according to the National Coordinating Council for Medication Error Reporting and 

Prevention (NCC MERP) index [127]. Data collection was performed without any 

discrimination of sex, nationality, or socioeconomic status.  

Outcome variables 

The Positive Predictive Value (PPV) was calculated for each trigger as the ratio of detected 

AEs, relative to the total case alerts generated by the trigger. 

Since the measurement of the system’s sensitivity requires knowing the true incidence of patient 

harm in the institution through a thorough review of all inpatient files during the study period, 
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thus necessitating the investment of resources beyond the capabilities of the institution, an 

alternate method to approximate sensitivity was adopted. The sensitivity level was estimated 

by the ratio of the system’s detected AEs per harm subcategory, to an estimated total number 

of AE cases for that subcategory. This estimate was extrapolated from incidence studies in the 

literature targeting the corresponding subcategory [128]–[145] after the application to the 

corresponding included hospital population (Table 7).  

Statistical association between the occurrence of AEs and a number of demographic variables, 

namely age, sex, length of stay (LOS) was also conducted (Table 3). The tests were based on 

the comparison of these variables between the population with identified AEs and a 

representative sample of the overall included population.    

 

Definitions: 

Patient harm is defined as “death, temporary or permanent impairment of body 

function/structure requiring intervention”[14] 

An Adverse Event is defined as any injury caused by medical management rather than by the 

underlying disease or condition of the patient and does imply harm [22].  

A trigger is used as a ‘flag’ for potential harm, but is not a harm in itself. For example, an 

abnormal laboratory result, a medication antidote or escalation to a higher level of care [30]. 

Active surveillance is the review of the medical records while the patient is hospitalized, rather 

than retrospectively following discharge [146].  

Statistical analysis: 

Data analysis was performed using Addinsoft (2021) XLSTAT version 2021.4 statistical and 

data analysis solution, New York, USA (www.xlstat.com).  

Demographic data are presented as means. Statistical significance was defined when the P value 

< 0.05. As the populations were verified not to have a normal distribution through a d'Agostino-

Pearson goodness-of-fit test, a Wilcoxon- Mann Whitney rank sum test was preformed to 

examine if the differences in the mean age and length of stay (LOS) for those who were subject 

to an AE vs. those who were not, were statistically significant.   
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A chi-square test of independence was performed to examine the relationship between the 

variables sex and the occurrence of an AE.   

 

3.3. Results 

 

The data study period included a total of 8,760 admissions, corresponding to 9 months of daily 

active surveillance. After the application of inclusion and exclusion criteria for each trigger, the 

system yielded 946 cases that were subject to review (Figure 3). Of these 946 triggered cases, 

394 were identified as AEs, occurring with 291 patients, yielding an overall PPV for the 

surveillance system of 42%, and an average of 1.4 AEs identified per surveillance day. 83% of 

patients were subject to one AE during their stay, 11% subject to two AEs, and 6% were subject 

to at least three AEs.  

 

On average, 10 minutes were required to discuss each case by the team, and 25 minutes to 

discuss the case with the consensus panel. For all triggered cases, the primary data collection 

for case investigation was performed while the patients were still hospitalized.  

The mean age of patients with an AE showed to be slightly higher than the mean age of the 

overall included patient population, M=62.7 years [SD=22.5] vs. M=59.4 years [SD=23.9] 

respectively, with fair evidence of results (p-value <0.1), where men were significantly more 

likely to be subject to an AE than women (X2 (1, N = 291) = 10.5, with moderate evidence p-

value <0.05)   

 

Furthermore, the mean LOS of patients with an AE showed to be significantly higher than the 

mean LOS of the overall included patient population; with 42.1 days [41.8] vs. 8.7 days [11.8], 

respectively, with high evidence p-value <0.001. These results are summarized in Table 4. 
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Table 4: Demographic data of reviewed cases and corresponding statistical analyses 

 

Variable 
Overall population 

sample 

Population with 

identified Adverse 

Events 

Statistical Test and p value 

Age Mean =59.4  yrs 

 

SD =23.9 

95% CI, 58.7- 60.0 

(n=3007) 

Mean =62.7yrs 

 

SD =22.5 

95% CI, 60.2- 65.2 

(n=394) 

Wilcoxon- Mann Whitney 

rank sum test  

p < 0.1 

Sex 

         Men 

         Women 

 

n=2695 

n=2761 

 

228 

165  

 

Chi-Square 

p < 0.01 

LOS 8.7 days 

 

SD =11.8 

95% CI, 8.4 -9.0 

(n=3007) 

42.1 days 

 

SD =41.8 

 95% CI, 37.5- 46.7 

(n=394) 

Wilcoxon- Mann Whitney 

rank sum test  

 

p < 0.001 

LOS: Length of Stay; SD: Standard Deviation; n: sample number; CI: Confidence Interval 

 

Results also show variability in the PPV among the five trigger categories/modules (Table 5). 

The highest average PPV was shown to be for the Healthcare Associated Infections Module 

with a PPV of 84.6%, whereas for the Medications, Radiology, Laboratory and 

Admission/Discharge Modules, the PPVs were 68.3 %, 42.4%, 18.5% and 11.2 %, respectively 

(Table 5). 
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Table 5: List of automated triggers and their Positive Predictive Values (PPV)  

CATEGORY/ 

MODULE 
TRIGGER 

NUMBER 

OF CASES 

NUMBER 

OF AEs 

POSITIVE 

PREDICTIVE 

VALUE 

Healthcare 

Associated 

Infections  

Positive respiratory cultures 

(VAP detection algorithm)  
69 57 82.6% 

Positive urinary cultures 

(CAUTI detection algorithm) 
64 59 92.1% 

Positive blood cultures 

(CLABSI detection algorithm) 
58 47 81.0% 

Clostridium Difficile Toxin A & B 

result 
10 7 70.0% 

 AVERAGE 201 170 84.6% 

Admission/ 

Discharge Module 
Readmissions within 30 days 419 47 11.2% 

Laboratory 

Module 

Hb drop of more than 25% 30 18 60.0% 

Creatinine raise (> 2 x baseline or 

raise of more than 0.3 in last 72 hrs) 
55 29 52.7% 

INR> 6 37 6 16.2% 

 AVERAGE 541 100 18.5% 

Radiology Module 

Doppler Ultrasound-Upper Limbs 23 16 70.0% 

Urgent CT or MRI exam ordered 

more than 48 h of admission 
14 6 42.9% 

Urgent radiology exam ordered more 

than 4 days after admission 
22 3 13.6% 

 AVERAGE 59 25 42.4% 

Medications 

Module 

Pressure ulcer therapies order 116 88 75.9% 

High dose anticoagulants order 16 8 50.0% 

Anticoagulants reversal agents order 13 3 23.1% 

 AVERAGE 145 99 68.3% 

TOTAL  946 394 41.7% 

AE: Adverse Event; CAUTI: Catheter Associated Urinary Tract Infection; CLABSI: Central line 

Associated Bloodstream Infection; CT: Computed Tomography; Hb: Hemoglobin; INR: International 

Normalized Ratio; MRI: Magnetic Resonance Imaging; VAP: Ventilator Associated Pneumonia 

 

Table 6 shows the distribution of the severity of the detected AE, where the majority (78%) of 

the detected AE fell under Category F, followed by 18.5% under Category E, which is 

considered as an elevated level of harm. 
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Table 6: Distribution of the severity of detected AEs using the NCC MERP index 

Level of Harm (NCC MERP categories) 
Number 

of AEs 

% of 

AEs 

Category A-Circumstances or events that have the capacity to cause 

error 
5 1.3 

Category D- An error occurred that reached the patient and required 

monitoring to confirm that it resulted in no harm to the patient and/or 

required intervention to preclude harm 

3 0.8 

Category E- An error occurred that may have contributed  to or 

resulted in temporary harm to the patient and required intervention 
73 18.5 

Category F- An error occurred that may have contributed to or 

resulted in temporary harm to the patient and required initial or 

prolonged hospitalization 

309 78.4 

Category I- An error occurred that  may have contributed to  or 

resulted in the patient’s death 
4 1.0 

TOTAL 394 100 

AE: Adverse Event; NCC MERP:  National Coordinating Council for Medication Error 

Reporting and Prevention 

 

The estimated sensitivity of the systems in detecting AEs varied among the four harm categories 

(Table 7). The estimated detection sensitivity relative to Hospital Acquired Infections was the 

highest (Ventilator Associated Pneumonia 80%, Central Line Associated Bloodstream 

Infection 75-96%, Catheter Associated Urinary Tract Infection 60-70%, Surgical Site Infection 

40%), followed by events related to surgery or other procedures (13.3-36.3%), events related 

to patient care (4.9-44.2%) and events related to medications (5.7-21.1%).Some AE categories 

commonly found in hospitals, such as inpatient falls, and medication related constipation were 

not detected.  



 
 

  

Table 7: Estimated sensitivity through comparison of detected cases per AE category to applied literature incidence ranges 

AE/Harm Categories* Target population 
Incidence range 

in literature 

No. of patients 

in target 

population 

Estimated range 

of cases based on 

literature 

incidence 

No.  of 

detected 

cases 

Estimated 

Detection 

Sensitivity 

Triggers used  

(number of detected cases) 

 

Events Related to Medications/ 

Intravenous (IV) Fluids 

 
    

  

Clostridium difficile medication 

associated infection 

All inpatient 

admissions  

(excluding 1-day) 

[0.73%-1.35%] 

of patient 

admissions 

4238 
30-57 

(mean=43.5) 
7 16.1% 

Clostridium Difficile Toxin A 

& B (5) 

Readmissions within 30 days 

(1) 

Kidney damage due to contrast 

dye 

Diagnostic or 

interventional 

coronary 

angiography 

admissions 

[5-7.5%] of 

diagnostic or 

interventional 

coronary 

angiography 

admissions  

1127 
56-84 

(mean=70.0) 
4 5.7% 

Creatinine raise [> 2 x 

baseline or raise of more than 

0.3 in last 72 hrs] (4) 

 

Medication related renal 

insufficiency 

All inpatient 

admissions 

[0.5-1.25%] of 

patient 

admissions 

8760 
43-109 

(mean=76) 
16 21.1% 

Creatinine raise [> 2 x 

baseline or raise of more than 

0.3 in last 72 hrs] (16) 

Medication related bleeding 

All inpatients on 

high risk oral and 

IV anticoagulants 

[6% to 10.2%] of 

patients on 

anticoagulants 

  

2073 
124-211 

(mean=167.5) 
10 5.9% 

INR  critical value (6) 

Use of anticoagulant reversal 

agents (3) 

Hb drop more than 25% (1) 
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Table 7: Estimated sensitivity through comparison of detected cases per AE category to applied literature incidence ranges (continued) 

AE/Harm Categories* 
Target 

population 

Incidence 

range in 

literature 

No. of patients 

in target 

population 

Estimated 

range of cases 

based on 

literature 

incidence 

No.  of 

detected 

cases 

Estimated 

Detection 

Sensitivity 

Triggers used  

(number of detected 

cases) 

 

Events Related to Patient 

Care  

 
    

  

DVT/VTE 

All inpatient 

admissions  

(excluding 1-day) 

[0.9% -1.3%] 

of patient 

admissions 

4238 
38-55 

(mean=46.5) 
7 15.0% 

High dose anticoagulants 

(7) 

Hospital acquired pressure 

ulcer 

All inpatient 

admissions  

(excluding 1-day) 

[1.4-4.5%] of 

medical and 

surgical 

admissions 

(non-ICU)  

 

[8.8-10.3%] of 

ICU admissions 

 

4238 non-ICU 

 

 

 

792 ICU 

129-269 

(mean=199) 
88 44.2% 

Use of pressure ulcer 

treatments (88) 

Phlebitis Grade 3 and above  

(Visual Infusion Phlebitis 

Score) 

All inpatient 

admissions 

[1-6.4%] 

 (Grade 3 and 4 

phlebitis) 

8760 
87-556 

(mean=321.5) 
16 4.9 % 

 

 

Doppler Ultrasound-Upper 

Limbs (16) 
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Table 7: Estimated sensitivity through comparison of detected cases per AE category to applied literature incidence ranges (continued) 

AE/Harm Categories* Target population 
Incidence range 

in literature 

No. of patients 

in target 

population 

Estimated range 

of cases based on 

literature 

incidence 

No.  of 

detected 

cases 

Estimated 

Detection 

Sensitivity 

Triggers used  

(number of detected cases) 

 

Hospital Acquired Infections        

Catheter Associated Urinary Tract 

Infection (CAUTI) 

 

All inpatient 

admissions with 

inserted urinary 

catheters  

(excluding 1-day) 

Non ICU 

[1.6-2.7/1000 

device days]  

 

ICU  

[4.7-4.9/1000 

device days]  

Catheter days: 

23,292 

 

Catheter days: 

8,352  

37.2-62.8 

(mean= 50) 

 

39.2-40.9 

(mean = 40) 

59 

 

 

 

65.5% 

 

 

 

Positive urinary cultures (59) 

Central Line Associated Blood 

Stream Infection (CLABSI) 

All inpatient 

admissions with 

central lines 

(excluding 1-day) 

Non ICU 

 [4.1-4.3/1000 

device days]  

 

ICU  

[4.1-4.3/1000 

device days]  

Catheter days: 

7,851 

 

 

Catheter days: 

5319 

 

32.2-33.7 

(mean=32.9)   

 

 

21.8-22.9 

(mean=22.3) 

 

47  

 

 

 

 

85.1% 

 

 

 

 

 

Positive blood cultures (47) 

Surgical Site Infection (SSI) 
All surgical 

admissions 

 [1.4-2.4%]of 

surgical 

admissions 

3032 
42-72 

(mean=57) 
23 

 

40.3% 

Readmissions within 30days 

(21) 

Radiological triggers (1) 

Hb drop more than 25% (1) 

Ventilator Associated Pneumonia 

(VAP) 

All inpatient on 

ventilators 

ICU 

[20.7-27.1/1000 

device days] 

 

Ventilation days: 

2970 

 

 

61.5-80.5 

(mean=71.0) 

 

 

57 

 

 

80% 
Positive respiratory cultures 

(57) 
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Table 7: Estimated sensitivity through comparison of detected cases per AE category to applied literature incidence ranges (continued) 

AE/Harm Categories* 
Target 

population 

Incidence 

range in 

literature 

No. of patients 

in target 

population 

Estimated 

range of cases 

based on 

literature 

incidence 

No.  of 

detected 

cases 

Estimated 

Detection 

Sensitivity 

Triggers used  

(number of detected 

cases) 

 

Events Related to Surgery or 

Other Procedures 

 
    

  

Abnormal bleeding following 

surgery or procedure 

All hospital 

surgical and 

interventional 

admissions 

[0.82-2.5%]  4242 
34.8-106.0 

(mean=70.4) 
15 21.3% 

Readmissions within 30 

days (3) 

Hb drop more than 25% 

(12) 

Blood clots and other 

occlusions related to surgery or 

procedure 

All hospital 

surgical and 

interventional 

admissions 

0.26% of 

surgical and 

interventional 

admissions 

4242 11.0 4 36.4% 

Urgent radiological exam 

(1) 

Readmissions within 30 

days (3) 

Post-op acute renal failure 

All hospital 

surgical 

admissions 

[0.8-1%] of 

surgical 

admissions 

3032 
24-30.3 

(mean=27.2) 
9 33.1% 

Creatinine raise [> 2 x 

baseline or raise of more 

than 0.3 in last 72 hrs]  (9) 

Respiratory complications 

related to surgery (pneumonia, 

respiratory failure, 

pneumothorax, ARDS, 

atelectasis, pleural effusion, 

etc.) 

All hospital 

surgical 

admissions 

[1.8-2.2]% of 

surgical 

admissions 

3032 
54.6-66.7 

(mean=60.6) 
8 13.2% 

Readmissions within 30 

days (7) 

Radiological trigger (1) 

ARDS: Acute Respiratory Distress Syndrome; AE: Adverse Event; DVT/VTE: Deep Vein Thrombosis/Venous Thromboembolism; Hemoglobin: Hb; INR: 

International Normalised Ratio; IV: intra-venous; ICU: Intensive Care Unit  

 



 
 

 

3.4. Discussion 

 

Performance of the surveillance system and benchmarking with other comparable 

studies  

The overall PPV of the system (42%) is comparable to other studies using trigger-tool based 

automated detection AE systems which have shown to have a median PPV of 40%[66] . 

Nevertheless, results showed inter and intra-trigger category PPV variability. The highest PPV 

belonged to the Healthcare Associated Infections triggers with an average PPV of 84.6%, 

followed by Pressure ulcer treatment (75.9%), Doppler Ultrasound for Upper Limbs (70%), 

Hemoglobin level drop (60%) and Creatinine raise (52.7%).  

As found in other studies [147][148], LOS and age were also associated with a greater risk of 

AE occurrence.  

On an individual trigger level, and compared with other automated trigger tools for the detection 

of AE[48], [66], a number of triggers showed an improved PPV. For example the mean PPV in 

the literature for the creatinine raise trigger was found to be approximately 45.2%, the pressure 

ulcer trigger 53%, the positive urinary culture 35%, and positive blood culture trigger 66.7 %, 

whereas our surveillance system showed a PPV of 52.7%, 75.9%, 92.1% and 81%, respectively. 

On the other hand, some triggers showed a lower PPV than that found in the literature[49], [66], 

[149], [150], such as the INR > 6 trigger (37.8% versus 16.2% in our study) and anticoagulant 

reversal agents trigger (29.5% versus 23.1% in our study). 

For certain triggers, such as HAI triggers, the higher PPV is comparable to findings in the 

literature [43], [66], and can be partially attributed to the fact such triggers use guideline-based 

exclusion criteria and algorithms [151], that are applied to a rich set of objective variables in 

the HIS, thus mimicking the clinician’s thought process for confirmation of such AEs without 

need for additional analysis of the patient case.  On the other hand, some triggers (such as 

readmissions within 30 days and INR > 6) rely in their definition on the evidence of clinical 

symptoms (i.e fever, loss of consciousness, bleeding, pain etc.) and thus can be affected by the 

quality of documentation which may contribute towards having lower PPVs. This highlights 
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furthermore the need for the standardization of triggers and AE definition in the field [66], [152] 

in order to optimize benchmarking. 

With regards to the estimated incidence detection, the tool showed variable levels of 

“estimated” sensitivity across and within categories, ranging relatively between high (> 50% 

sensitivity), moderate (between 20-50%) and poor (< 20 % sensitivity). For example, the tool 

seems to be detecting between 65% and 80% of the most common types of healthcare associated 

infections. Moderately detected harms include pressure ulcers (44%), blood clots and other 

occlusions related to surgery or procedure (36%) and post-op acute renal failure (33%). 

Whereas those poorly detected harms include DVT/VTE (15%), kidney damage due to contrast 

dye (5.7%), and phlebitis (4.9%). Several factors could explain this variability. In addition to 

documentation bias, the lack of prescription of confirmatory exams can affect the level of 

detection. For example, not prescribing systematically serum creatinine post cardiac 

angioplasty procedures can cause the system to miss certain acute kidney injuries due to contrast 

dye administration.  Standardizing such clinical practices would help address this limitation.   

Implementation and incorporation into routine patient safety surveillance and quality 

improvement  

This application has been used daily by our quality and patient safety team for approximately 

two years, with the objective to lead to tangible outcomes and continuous quality improvement 

efforts and is currently an integral part of the hospital’s AE detection efforts.  

Automation of the data collection has reduced the daily time burden of the patient safety team 

required to collect and prepare data, from approximately two hours [124]  to almost five 

minutes. 

The application provided a near real-time triggering of cases through push notifications sent to 

the safety team, allowing for more timely investigations to be made close to the event date and 

time. This can maximize the chance of understanding factors that could have lead to the detected 

AE, that otherwise would be difficult to acquire using classical retrospective approaches. These 

investigations helped lead to proactive improvement efforts in various domains such as 

infection control, medication safety and management, nursing and medical practices.  
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Certain detected AEs were also subject to expert discussions, submitted for mortality and 

morbidity reviews or the modification of certain protocols. For example, the detection of 

pressure ulcers lead to the complete update of the pressure injury assessment tools and 

management protocols involving multi-disciplinary teams that included experts in nursing and 

plastic surgery.  

Despite the increased number of automated AE detection systems being developed in recent 

years, most are targeting specific types of harms and there is a need to develop and validate 

systems with a broader scope of AE categories [42], [66]. The results of this study show that 

our system was able to detect diverse categories of AEs with promising detection performance 

(Table 4). 

Moreover, this tool can have a potential use in monitoring clinical performance with minimal 

human effort and collection bias. The highly or moderately detected AE categories could even 

be used as a source of quality key performance indicators, such as 30-day readmissions for a 

number of standard surgical procedures, acute kidney injury rate, rate of HAIs, etc.    

Finally, results have shown that the mean LOS of patients who have experienced an AE is 

almost five-fold more than the overall population and that the majority of detected AE are 

classified under severity MCCMERP Category F.  We believe that collecting this severity index 

for detected AEs and relating it to associated costs can be useful to showcase to the hospital 

administration the financial impact of these events along with how targeted safety efforts can 

help alleviate this burden. 

Furthermore, it has been found that at least 60% of hospitals between the US, Europe and Asia 

still have a basic EMR system[153], the majority being Stages 0-2 according to the HIMSS 

EMRAM model. The fact that our system stemmed from a basic HIS itself (Stage 1), it renders 

its results promising for hospitals with basic HIS and limited resources.   

Limitations and future directions 

In the calculation of the system’s detection rate, a methodology based on extrapolated AE 

incidences from the literature was used instead of the “gold standard” chart review 

methodology. This choice was due to feasibility reasons and limited resources. However, it 

could have introduced some inaccuracies associated with the difference between the real 
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incidences of the AE categories found in the hospital and the benchmark. Moreover, the 

detection performance of certain triggers was affected by the prescription practice of clinicians 

as well as the quality of documentation. Increasing the sample number by prolonging the time 

period or conducting a multicentric study may also improve the results’ reliability and 

generalizability. Furthermore, some triggers rely on the request of certain items that can be 

subject to change with time. This would require the algorithms used to be regularly reviewed.  

Future efforts may be mobilized towards the integration of more advanced technologies and 

methods, such as text mining [43], [50] and machine learning into hospital AE detection 

applications[154], although this would require relatively more sophisticated technical 

resources. When used with standardized healthcare data exchange frameworks [155] for 

interoperability, such systems can have the potential to connect to broad types of EMR, 

regardless of their maturity level.  

Finally, using the system’s results to create live patient safety dashboards displaying the levels 

of certain hospital AEs can be interesting for hospital administrations to monitor clinical 

performance. Such advanced approaches may help address some of the previously mentioned 

limitations. 

 

Conclusion 

As the science of patient safety evolves, more tools are being developed for the detection of 

patient harm, in a more reliable and efficient manner. In this study, an internally developed 

automated AE detection surveillance application was able to identify AEs across a broad 

spectrum of harm categories, in a near-real time manner, with an overall 42% positive predictive 

value. The implementation of the system led to various clinical interventions and quality 

improvements actions. Such a system could serve as a promising patient safety tool, allowing 

for timelier, targeted and resource efficient interventions, even for hospitals with limited 

resources. 

 



 
 

49 
 

 

4. Contribution 1:  

Comparison of Machine Learning Algorithms for 

Classifying Adverse-Event Related 30-Day Hospital 

Readmissions: Potential Implications for Patient 

Safety 
 

4.1. Introduction 

 

Nearly one in five patients is re-hospitalized within 30 days of discharge [156], incurring 

significant costs to the healthcare system [157]. Therefore, minimizing post-discharge adverse 

events has become a priority for many health care systems around the globe. 

Many studies in the last decade have focused on identifying patients at risk of readmission using 

predictive models [158], [159]. However, few attempts have been made to identify potentially 

preventable readmissions [160], and, to the best of our knowledge, no studies have explored 

models to predict or identify readmissions related to hospital adverse-events.   Moreover, study 

review highlights the need to use more standardized hospital information system (HIS) data 

related to the readmission (e.g. biological, radiological, billing and administrative data) instead 

of institution-specific or clinical judgement-based data, for an earlier and more benchmarkable 

prediction.  

The main objective of the study was to construct a model, based on routinely available data 

from the HIS, that could determine, on a near real time basis, if the patient readmission within 

30 days was associated with a hospital acquired adverse event that occurred in the previous 

admission (response variable). 

 

4.2. Materials and Methods 

 

The dataset used for training and testing of algorithms was built using the gold-standard 

approach, by a multidisciplinary consensus panel (internal medicine physician, radiologist, 

nurse, and patient safety professionals), expanded when needed to include physicians from 

specialized disciplines. The panel analyzed and classified 307 patient readmissions (within 30 

days) extracted from the HIS from October 2019 till March 2020 (excluding readmissions of 
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oncology patients and elective readmissions) that occurred in a 250-bed university hospital in 

Beirut, Lebanon where the study took place. On average, 30 min were required for every case 

preparation, and 25 min for the panel discussion and classification of each medical case. 46 of 

these cases were labeled as related to adverse events, to which 47 cases non-related to adverse 

events were randomly chosen from the remaining dataset, to define a final balanced dataset of 

93 cases, containing almost equal cases for each of the two classification classes: “Readmission 

related to adverse event”, and “Readmissions not related to adverse events”.  

23 features (explanatory variables) were identified by the panel based on previous research 

results accomplished on this subject [161]and were extracted from the HIS. The features consist 

of both binary and continuous variables corresponding to the readmission and the previous 

admission cases.  

A supervised learning approach was adopted using different machine learning algorithms: 

Random Forests (RF), Decision Tree (DT), Boosting (BT), Artificial Neural Networks (ANN) 

and Logistic Regression (LR).  

Cross-validation of the model generated by each algorithm was performed using established 

methods (K-Folds=5 and Leave-One-Out) to avoid the results being influenced by the 

partitioning of the original dataset. 

Results of the different algorithms were reported and compared using model classification 

accuracy, based on the information entropy.  Variable importance was determined by 

calculating the relative influence of each feature on the classification (except for ANN where 

this method is complex and not standard). 

This study was submitted to the hospital’s institutional review board (IRB) and was exempt 

from further review since it does not directly involve human subjects. 

4.3. Results 

 

All algorithms showed good accuracy (>0.85) in the model training phase, which underlines 

their ability to fit data to a theoretical model using the proposed features.  

Table 8 shows the accuracy obtained from different algorithms when the predictions of the 

generated models were compared against the test dataset.  Among the different algorithms, 

ANN showed to be the most predictive (0.88), followed respectively by LR (0.62), RF (0.62), 

DT (0.60), and BT (0.55).  

Table 9 shows the features’ different weight importance, when this option was possible by the 

type of algorithm used, and highlights the features with significant weight (>5%). 
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Table 8: Accuracy result on evaluation for algorithms tested, with chosen algorithm parameters 

Algorithm Mean 

accuracy  

 StdDev 

of 

accuracy  

Parameters 

(algorithm-specific function arguments used 

for result optimization,  

as per SKLEARN and KERAS libraries 

definitions) 

ANN 0.88 0.07 24/6/4/1 architecture, optimizer RMSprop, 

lr=0.0001, epochs=10000, batch size=30 

LR 0.62 0.10 penalty='l2', dual=False, tol=0.0001, C=1, 

fit_intercept=False, intercept_scaling=1, 

class_weight='balanced', solver='lbfgs', 

max_iter=30000 

RF 0.62 0.06 n_estimators = 30, criterion="entropy", 

max_depth=8, 

min_samples_leaf=2,min_samples_split=4,ma

x_leaf_nodes=15,bootstrap=False 

DT      0.60 0.06 criterion='entropy', max_depth=8, 

min_samples_leaf=2,min_samples_split=4 

BT      0.55 0.07 XGBClassifier    max_depth = 8, learning_rate 

= 0.001, gamma = 1,min_child_weight = 1.0, 

n_estimators=200 
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Table 9: Feature importance by model (highlighted are those with mean importance ≥ 0.05)  

Feature RF DT BT LR Mean 

Days since last discharge 0.15 0.15 0.25 0.01 0.14 

White Blood Cells (WBC) value upon readmission 0.08 0.05 0.06 0 0.0475 

Microbiological culture ordered in first 48h of 

readmission 

0.03 0.1 0.08 0.07 0.07 

C-Reactive Protein (CRP) value upon readmission 0.04 0 0.11 0 0.0375 

Creatinine serum differential ratio  0.05 0.04 0.13 0.06 0.07 

Potassium level differential 0.05 0 0.05 0 0.025 

White Blood Cells (WBC) level differential 0.05 0.08 0.07 0 0.05 

C-Reactive Protein (CRP) level differential 0.1 0.11 0 0 0.0525 

Combined WBC-CRP levels 0 0 0 0.11 0.0275 

Hemoglobin differential ratio 0.05 0.17 0.04 0.01 0.0675 

Calcium level differential 0.03 0 0.06 0.01 0.025 

Patient age 0.06 0.08 0 0.04 0.045 

Patient sex 0.08 0 0.08 0 0.04 

Paracetamol use on readmission 0 0 0 0.09 0.0225 

Number of biological exams ordered in first 24h of 

readmission 

0.07 0 0.04 0.01 0.03 

Number of radiological exams ordered in first 24h of 

readmission 

0.04 0 0.04 0.01 0.0225 

Remarks in radiological requests ordered in first 24h 

of readmission 

0.01 0 0 0.12 0.0325 

Number of different types of medication during 

previous admission  

0.06 0.06 0.05 0 0.0425 

International Normalized Ratio (INR) raise 0.1 0.12 0 0.12 0.085 

Number of surgical procedures performed in previous 

admission 

0.04 0 0.11 0.04 0.0475 

Cerebral CT-Scan performed on readmission 0 0 0 0.07 0.0175 

Abdominal CT-Scan performed on readmission  0 0 0 0.06 0.015 

Thoracic CT-Scan performed on readmission 0.03 0.06 0 0.11 0.05 

Readmission type (Inpatient/ Outpatient) 0 0 0 0.08 0.02 
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4.4. Discussion and Conclusion 

4.4.1. Predictive performance of the different algorithms 

 

While accuracy levels across different algorithms seem to be moderate to low, they remain 

comparable to studies in the literature on 30-days readmissions [159], [162] . However, the 

significance of the features adopted in this study versus other models in the literature is that 

they permit a near real-time computation of the classification as soon as the patient is 

readmitted, thus allowing the possibility for immediate proactive administrative and/or clinical 

interventions to reduce the risk of any preventable adverse event.  A few factors could 

potentially explain and lead to improving this result. First, the sample size can be improved 

with additional expert time and resources. Another factor is inherent to the nature of the 

classification outcome variable itself which can only be built on expert opinion and thus 

contains, despite all methods used to lower the risk of judgement bias, a residual level of 

uncertainty. Finally, the high number of harm categories in the medical field [31], and patient-

specific influencing factors that should be taken into consideration, induce a need for a high 

number of features to encompass this domain’s complexity.     

4.4.2. Feature importance and possible interpretations 

 

In contrast with other similar studies, the features were chosen in this study to be all directly 

extractable from a basic HIS, and not needing human intervention for data aggregation or 

interpretation. This choice is in line with the need to standardize such tools and benchmark 

results across different healthcare systems. 

In the majority of tested models, the features impacting most of the results are: Days since last 

discharge, respective differential of CRP/WBC/INR/Creatinine serum, hemoglobin differential 

ratio, Thoracic CT-Scanner and Microbiological Cultures performed upon readmission. This 

result can be intuitively interpreted as a higher sensitivity towards detection of infections, 

hemorrhages and acute kidney injury cases. Interestingly, from the results obtained, the models 

insinuate also that readmissions occurring within 12 days of previous discharge are more prone 

to be associated with patient harm. 

4.4.3. Potential practical implications for patient safety  

 

Validating automated models for classifying 30-day readmissions can have some important 

implications for patient safety efforts in hospitals. Firstly, through correctly estimating the true 

level of nosocomial harm relative to readmissions, and using this information to analyze and 

improve clinical practices, hospitals will be able to measure the impact of deployed patient 
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safety efforts over time. Secondly, permitting a proactive management of such cases as soon as 

they enter the hospital, can help prevent any further harm and address any implications that may 

arise. Finally, the results can pave the way to more proactive models that can predict risks of 

preventable readmissions due to adverse-events before patients are physically discharged from 

the hospital, or identify the patients “at risk” and follow up with them by phone before they 

actually return to the hospital, thus preventing extra costs for the healthcare system and third-

party payers.  

4.4.4. Limitations 

 

Given the time and effort that was needed to construct a training and testing dataset on this 

domain, the validated sample size used in this study was relatively small. Also, some specific 

data (such as radiology reports, medical notes) could not be extracted from the HIS at this point 

of the system’s integration.  These limitations will be taken into consideration in future studies 

to improve outcomes. 
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5. Contribution 2: 

Early prediction of all-cause clinical deterioration in 

general wards patients: development and validation 

of a biomarker-based machine learning model 

derived from Rapid Response Team activations 
 

5.1. Introduction 

 

Delays in medical interventions in clinically deteriorating patients have been found to be 

associated with increased morbidity and mortality[163]–[165]. Therefore, early and continuous 

detection of gradually worsening patient conditions in hospital wards might allow for more 

rapid treatments, and thus, improved outcomes[166].  

The most common forms of clinical deterioration are respiratory instability, hemodynamic 

instability, sepsis, bleeding, cardiac decompensation, and acute hepatic/renal failure[167]. 

Deteriorating patients often require transfer to a higher level of care (such as Intensive Care 

Units, ICU) and the urgent call for medical and nursing professionals for assessment and 

interventions.  

Studies have documented that clinical signs and symptoms of patient deterioration (such as 

hypotension, bradycardia, tachypnea, tachycardia, altered level of consciousness, etc.)  can be 

detected as early as six to eight hours before the deterioration event or cardiorespiratory arrest 

[168].  

These findings, derived from the late 1990s, led to the development and wide implementation 

of specific hospitals Early Warning Systems (EWS) called “track-and-trigger” systems which 

can help predict clinical deterioration.  These systems rely on the periodic observation of 

selected basic clinical signs (‘tracking’) with predetermined calling or response criteria 

(‘trigger’) for requesting the attendance of staff who have specific competencies in the 

management of acute illness and/or critical care [169]. In practice, most of these systems are 

based on the regular measurement of vital signs [59], that would serve to calculate a paper-

based or electronic severity score with predetermined thresholds triggering a call for a rapid 

response team. This team then evaluates the patient and takes clinical actions to prevent or 

manage the deterioration[59]. “Track-and-Trigger” systems are currently still considered as the 

gold standard with regards to detecting and responding to clinical deterioration, and have been 

shown to increase the number of calls to the rapid response team, decrease the number of cardiac 

arrests and improve the response time of emergency medical teams [170].  
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However, these track-and-trigger systems have practical limitations. Firstly, the time from 

detection to actual deterioration is relatively short (0-8 hours), which provides a small window 

of opportunity for appropriate interventions that could prevent or mitigate the clinical risks. 

Secondly, the deterioration prediction score is sensitive to data quality and availability. Thus, 

any delays, omissions or errors in the measurement of vital signs, which are all human 

dependent factors, can potentially affect the performance of the deterioration prediction score. 

Moreover, automated versions of such track-and-trigger systems cannot be effectively 

implemented in hospitals with basic EMRs (i.e staged as 0, 1 or 2 according to the HIMSS 

EMRAM adoption model classification [171]), since they do not include an electronic nursing 

flowsheet documentation module. It is to be noted that the proportion of hospital with such 

basic EMRs is significant worldwide, especially in third-world countries[172].  

A new and promising approach described in recent studies [173]–[177] involves the addition 

of physiological biomarkers measurements to the traditionally measured vital signs and 

demographic patient data routinely available in the EMR. Biomarkers are defined as biological 

characteristics (such as for example the C-Reactive Protein, Procalcitonin, Serum Creatinine, 

etc.) that are objectively measured and used as indicators of certain physiopathological 

processes [178]. This approach is based on the hypothesis that changes in certain biomarkers 

can precede the onset of clinical signs and symptoms, sometimes as early as 48-72 hours [179] 

[180], theoretically permitting an earlier prediction of deterioration than traditional track-and-

trigger systems. 

Moreover, most of the prediction models were trained according to cases with the following 

outcome variables: cardiorespiratory arrest/death/unexpected transfer to ICU.  Only few studies  

[181] [182]have adopted the activation of the RRT as an outcome for the training and validation 

of the predictive model [94][93], even though such an outcome encompasses a broader and 

richer perspective of clinical deteriorations. In fact, a significant percentage (almost half) of 

RRT deterioration cases end with stabilization of patients on wards [183], [184], a clinical 

scenario otherwise not used by most systems.  

Finally, recent studies have shown that machine learning–based early warning systems can 

achieve greater accuracy than aggregate-weighted early warning systems [93], thus their 

increased use in the derivation of new models. 

The aim of this study is to elaborate and validate a biomarker-based model (without including 

vital signs data) based on absolute and differential biomarker values for the prediction of 

general (all-cause) clinical deterioration, using machine-learning (ML) algorithms as a 

derivation method, and expert-reviewed Rapid Response Team calls as the main outcome for 

model training and validation. Our hypothesis is that such a model could predict all-cause 

clinical deterioration earlier than track-and-trigger systems, without the need to use vital signs 

and other complex patient data (e.g. diagnosis, clinical notes…), thus allowing such an 

approach to be used in healthcare settings which have even the most basic EMR systems. 
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Ultimately, this may provide opportunities to intervene earlier, help allocate resources more 

effectively and potentially improve the patients’ health outcomes.   

 

5.2. Materials and Methods 

 

The hospital Institutional Review Board deemed this study as “Exempt” from further review, 

as it does not directly involve human subjects. 

Study Design and Setting 

We conducted a retrospective single-institution cohort study of all consecutive adult (>18 years) 

hospitalized patients in non-critical wards for whom a Rapid Response Team (RRT) was called 

after 24h of their admission over more than a two years period (1 April 2018 through 30 June 

2020). 

The study took place in a 250-bed tertiary university hospital in Beirut, Lebanon. The hospital's 

EMR can be considered as basic (stage 1 as per the Healthcare Information and Management 

Systems Society’s EMRAM model). The system contains admissions/discharge/transfer data, 

basic ancillaries with limited integration (laboratory, radiology and pharmacy), billing 

(procedures and consumables), but no electronic nursing or medical documentation, nor 

computerized physician order entry or clinical decision support applications. 

Definitions 

We have adopted the following complementary definitions for the clinically deteriorating 

patient: “one who moves from one clinical state to a worse clinical state which increases their 

individual risk of morbidity, including organ dysfunction, protracted hospital stay, disability, 

or death” [185] and “a dynamic state experienced by a patient compromising hemodynamic 

stability, marked by physiological decompensation accompanied by subjective or objective 

findings” [186].  

 

Data collection 

A multidisciplinary expert consensus panel (an internal medicine physician, a nurse, two patient 

safety professionals, and a panel of physicians from specialized disciplines consulted on 

demand) analyzed all 514 RRT calls that were extracted from the hospital telephone log data. 

Of these 514, the panel selected the 237 cases where sufficient documentation about the event 

was found. Sixteen patients for whom an RRT call was initiated within the first 24 hours were 

excluded. The remaining dataset included 221 cases, for which the panel judged if a clinical 

deterioration occurred after a full review of the patient’s medical file. The deterioration was 

also classified by the panel according to preset deterioration categories that are listed in 
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Supplementary Material. Then, after accounting for three false alarm calls, the final dataset 

included 218 deterioration cases.  

Second, these cases were complemented by 146 “non-event” patient cases where no 

deterioration event had occurred during hospitalization, which were randomly chosen from a 

pool of patients admitted in the same study period, to the same wards and discharged home after 

a hospital stay between 3 and 7 days (5 days being the median Length of Stay (LOS) of patients 

admitted to the included general wards). 

This constructed dataset was later split into three separate parts that were used respectively for 

the training, validation and testing of the model. We used an oversampling algorithm 

(SMOTE)[187] to balance the dataset distribution, after dataset splitting. Figure 4 illustrates the 

dataset selection and inclusion steps.  

 

Figure 4: Flowchart of cases recruitment and dataset construction 

 
 

 

Explanatory variables (model features) 

Forty-four explanatory variables (model features) available in the EMR that could potentially 

be early predictors of the patient deterioration outcome were identified by the expert panel 

based on a literature review 

 [188][189][190][191][192][193][194][195][196][197][198][199][200][201] of the predictors 

of most common in-hospital clinical deterioration situations. These variables included 

demographic patient data (e.g. age and sex), laboratory values (absolute value and difference 

from the previous value, noted Δ) and use of specific medical devices or interventions on the 
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patient (such as BiPAP, mechanical ventilation), but did not include vital signs.  The complete 

list of variables is listed in the Supplementary digital content 1. 

 

Measurement and Prediction timing 

Several time points for prediction were considered to account for the model’s time dependency.  

Time of prediction, Tp, was defined as the time prior to T0 at which the prediction was 

generated, where T0 is the time of the deterioration event. 

For each patient, we selected measurements (values of explanatory variables) at the following 

prediction time points Tp: T0-3h, T0-6h, T0-12h, T0-18h, T0-24h, T0-30h, T0-36h, T0-42h, T0-

48h. These prediction time points were chosen based on the frequency of patient clinical 

reevaluation (every 6h-8h) adopted for non-critical wards in clinical practice 

recommendations[202], and observed in most hospitals. For non-deteriorating patients, T0 was 

set as the time of discharge.  

For each prediction time point (Tp), the most recent value relative to Tp of each explanatory 

variable was measured and documented, all the way up to three days (72h) before Tp, in line 

with similar studies [173]. This interval between Tp and Tp-72h will be called the explanatory 

variables collection (or sampling) window. In fact, this window was chosen to be wide enough 

in order to take into consideration the values of different laboratory exams that are not 

necessarily ordered by the medical team in the same day nor repeated with the same frequency 

as per clinical guidelines [203]. At the same time, that same window should be sufficiently 

limited in time (3 days) not to exceed the maximal predictive horizon of physiological 

biomarkers in the literature [204][205] relative to clinical deterioration (72h), hence close 

enough to the prediction time point so that the contained values of the requested exams can still 

be associated with the physiological and clinical status of the patient at the time of prediction. 

Differential (delta) variables (for example ΔCRP) were defined as the difference between the 

available value of the variable closest to Tp in time and the available value of the variable 

furthest from Tp in time, all within the explanatory variables collection window. 

Missing values among any explanatory variable in the window were imputed by using the mean 

value of the same variable over the entire cohort in the same time window. An illustration of 

the prediction timeline and its associated concepts can be found in Figure 5. 
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Figure 5: Timeline for prediction and concepts definition 

 

Model training, validation, and testing/ Algorithms 

The Python programming language was used for developing the scripts to create and analyze 

the models. A supervised learning approach was adopted using different machine learning 

algorithms: Random Forests (RF), Gradient Boosting (GB), Artificial Neural Networks (ANN) 

and Logistic Regression (LR). We used the implementation from the Sklearn Python module 

for RF and LR, XGBoost for GB, Keras for ANN. 

50% of the dataset was used as a training set, and the rest of the dataset was equally split to be 

used for validation and testing using a 5-fold cross-validation. 

 

Outcomes and Evaluation Metrics 

The area under the receiver operating curve (AUROC) and the F1-score (defined as the 

harmonic mean of the precision and recall of the model outcome) were used for reporting the 

performance results of the different algorithms for each class of deterioration, calculated on the 

basis of a “one versus rest” approach.  

In order to identify the important predictors of the model, variable importance was determined 

by calculating the relative influence of each explanatory variable on the algorithm classification 

results using the Python Sklearn library (Python Software Foundation. Python Language 

Reference, version 3.7). 

https://en.wikipedia.org/wiki/Harmonic_mean


 
 

61 
 

The model parameters were fine tuned for the different algorithms using only the training and 

validation datasets (not the testing dataset) and using specific tools in the Python Sklearn model 

selection library, such as GridSearchCV.   

5.3. Results 
 

Descriptive statistics 

Patient deterioration events in the study occurred in the following hospital departments: internal 

medicine (48%), infectious diseases (22%) and medico-surgical (30%). 

The deterioration cases distribution by diagnosis and clinical outcome distribution 

(Stabilization on floor, Transfer to ICU, Code Blue, Not For Resuscitation) of the different 

deterioration cases by class are shown in Table 10.  

Table 10: Distribution of the clinical outcomes of the deterioration cases included in the 

model 

 Number of cases per outcome type 

Deterioration type 

(typical examples) 

Stabilized 

on floor 

Transfer 

to ICU 

Code 

Blue 

Not For 

Resuscitation 

Total 

Cases 

Percentage 

Cardiological 

(Atrial fibrillation, 

Tachyarrythmia, Supraventricular 

tachycardia, Cardiac infarct) 

38 8   46 21.1% 

Pneumonia 

(Pneumonia, Aspiration 

pneumonia, Pneumonitis, 

Bronchiolitis) 

32 21   52 23.9% 

Pulmonary edema /  

Fluid overload  

(Heart Failure decompensation, 

Fluid overload) 

16 4  1 21 9.6% 

Sepsis 

(Sepsis / Severe sepsis / Septic 

shock) 

25 31 3 2 62 28.4% 

Hepatic / Pancreatic failure 

(Hepatic encephalopathy) 
5 4   9 4.1% 

Hypovolemia/ Hypovolemic 

shock  

(Hemorrhage) 

3 6   9 4.1% 

Other  

(Hospital induced/acquired 

conditions including 

hypoglycemia, medication 

errors/adverse effects, etc.) 

9 8 1  16 7.3% 

Total 128 82 4 3 218 100.0% 
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Model performance 

Performance of the various algorithms was calculated and depicted in Table 11. The best 

performance was achieved with the Random Forests algorithm, with a maximal AUROC of 

0.90 and F1-score of 0.85 obtained at prediction time T0-6h. This slightly decreases but is still 

acceptable at T0-42h, with an AUROC of 0.82 and an F1-score of 0.77



 
 

 

Table 11- Algorithms performance versus prediction time 

Algorithm/  

Number of test cases 
Model parameters Metrics T0-3h T0-6h T0-12h T0-18h T0-24h T0-30h T0-36h T0-42h T0-48h 

Random Forest 

Classifier  

N=108 

(n_estimators = 600, 

criterion="entropy", 

max_depth=12, 

min_samples_leaf=2,min_s

amples_split=4) 

precision 

(Deterioration/No 

deterioration) 

0.81/ 

0.80 

0.85/ 

0.85 

0.81/ 

0.80 

0.85/ 

0.79 

0.8/ 

0.77 

0.76/ 

0.77 

0.74/ 

0.78 

0.8/ 

0.75 

0.71/ 

0.74 

recall 

(Deterioration/No 

deterioration) 

0.79/ 

0.80 

0.85/ 

0.85 

0.79/ 

0.80 

0.77/ 

0.87 

0.75/ 

0.81 

0.77/ 

0.75 

0.79/ 

0.72 

0.74/ 

0.81 

0.75/ 

0.70 

f1-score  0.81 0.85 0.81 0.82 0.78 0.76 0.75 0.77 0.73 

AUROC score 0.87 0.9 0.88 0.87 0.88 0.87 0.83 0.82 0.78 

Boosting Classifier 

(XG-Boost) 

N=108 

(max_depth = 12, 

learning_rate = 0.01, 

gamma = 0, 

min_child_weight = 1, 

n_estimators=600) 

precision 

(Deterioration/No 

deterioration) 

0.75/ 

0.76 

0.84/ 

0.79 

0.67/ 

0.69 

0.74/ 

0.69 

0.76/ 

0.70 

0.65/ 

0.62 

0.76/ 

0.70 

0.65/ 

0.65 

0.63/ 

0.62 

recall 

(Deterioration/No 

deterioration) 

0.77/ 

0.74 

0.77/ 

0.85 

0.72/ 

0.64 

0.66/ 

0.77 

0.66/ 

0.79 

0.58/ 

0.68 

0.66/ 

0.79 

0.64/ 

0.66 

0.60/ 

0.64 

f1-score 

(Deterioration/No 

deterioration) 

0.75 0.81 0.68 0.72 0.73 0.63 0.73 0.65 0.62 

AUROC score 0.85 0.86 0.81 0.83 0.85 0.76 0.79 0.73 0.72 
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Table 11- Algorithms performance versus prediction time (continued) 

Algorithm/  

Number of test cases 
Model parameters Metrics T0-3h T0-6h T0-12h T0-18h T0-24h T0-30h T0-36h T0-42h T0-48h 

Artificial Neural 

Networks 

N=108  

(architecture 20/8/1, 

loss='binary_crossentropy', 

optimizer='Adam', 

metrics=['accuracy'], 

BS=43, EPOCH=4000) 

precision 

(Deterioration/No 

deterioration) 

0.74/ 

0.74 

0.75/ 

0.71 

0.71/ 

0.66 

0.76/ 

0.73 

0.75/ 

0.61 

0.79/ 

0.70 

0.62/ 

0.69 

0.71/ 

0.74 

0.69/ 

0.69 

recall 

(Deterioration/No 

deterioration) 

0.74/ 

0.74 

0.68/ 

0.77 

0.60/ 

0.75 

0.72/ 

0.77 

0.45/ 

0.85 

0.64/ 

0.83 

0.75/ 

0.55 

0.75/ 

0.70 

0.68/ 

0.70 

f1-score 

(Deterioration/No 

deterioration) 

0.74 0.73 0.68 0.75 0.65 0.74 0.65 0.73 0.69 

AUROC score 0.78 0.78 0.82 0.79 0.76 0.8 0.72 0.78 0.75 

Logistic Regression 

N=108 

(penalty='l2', dual=False, 

tol=0.0001, C=1, 

fit_intercept=False, 

intercept_scaling=1, 

class_weight='balanced', 

random_state=None, 

solver='lbfgs', 

max_iter=30000,, 

warm_start=False, 

n_jobs=None, 

l1_ratio=None) 

precision 

(Deterioration/No 

deterioration) 

0.85/ 

0.70 

0.90/ 

0.71 

0.70/ 

0.86 

0.86/ 

0.79 

0.88/ 

0.74 

0.87/ 

0.77 

0.78/ 

0.76 

0.80/ 

0.74 

0.74/ 

0.71 

recall 

(Deterioration/No 

deterioration) 

0.62/ 

0.89 

0.62/ 

0.93 

0.70/ 

0.86 

0.77/ 

0.88 

0.68/ 

0.91 

0.73/ 

0.89 

0.75/ 

0.79 

0.71/ 

0.82 

0.70/ 

0.75 

f1-score 

(Deterioration/No 

deterioration) 

0.76 0.78 0.78 0.82 0.79 0.81 0.77 0.77 0.72 

AUROC score 0.81 0.85 0.82 0.87 0.86 0.88 0.83 0.81 0.8 



 
 

Explanatory variables’ importance 

Explanatory variables’ importance for the Random Forests model were calculated and 

represented in Figure 6, using a “heatmap” representation warm-to-cool color scheme, with the 

warm colors representing high-value impact of the variable and the cool colors representing a 

low-value impact.  

The most contributing variables to the prediction result (in decreasing order) were the 

following: CRP, Lymphocytes count, Sodium minus Chloride, Sodium differential, Alkaline 

Reserve differential, Age, BUN differential, Potassium differential and Neutrophil-to-

Lymphocyte ratio.  Also, we illustrated in Supplemental material- 2 one example (among 

others) of a logical visualization of the decision-making process of the model using the Decision 

Tree algorithm at T0-12h, showing the above-mentioned variables and the model chosen 

thresholds.  

Benchmark against other all-cause deterioration models 

Benchmarks to track-and-trigger (vital signs based) deterioration prediction models and to other 

more hybrid deterioration prediction models (vital signs, laboratory values, patient 

demographics, diagnosis, etc.) from the literature are given in Table 3, both in terms of 

performance metrics, outcome variables and best time-to-prediction.    

The prediction model showed an earlier prediction horizon (up to 42h) with acceptable 

performance (AUROC more than 0.8), relative to most track-and-trigger systems (6h-24h), but 

also most hybrid all-cause deterioration prediction systems (12-48h).    

The F1-Score (and specifically the positive predictive value) of the model is good (>0.8) and 

scored better than most track-and-trigger models, which could mean in practice a lower rate of 

false alarms generated.  



 
 

Figure 6: Explanatory variables importances by deterioration class (Random Forest Classifier), prediction at T0-6h 
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Table 12: Benchmark relative to a number of recent studies and reviews with similar scope 

Model 

category 
Study/ Model name Study phase Study type 

Statistical 

Methods 

Used for model 

derivation 

Prediction 

performance 

Types of 

variables used 

 

Outcome measure 
Prediction horizon 

(window) 

Track-and-

trigger 

models 

(vital signs 

based) 

Campbell et al., 2020/ Q-

ADDS [206] 

Prediction model 

performance 

benchmark 

Retrospective 

single-center 

cohort 

Clinical 

consensus-based 

0.71 

(AUC) 
Vital signs 

Death/ unanticipated 

admission to intensive 

care 

30h 

Kia et al., 2020 / 

MEWS++ [207] 

Prediction model 

validation 

Retrospective 

single-center 

cohort 

Machine 

Learning 

algorithms 

0.85  

(AUROC) 
Vital signs 

Death/ unanticipated 

admission to intensive 

care 

6h 

Kirkland et al., 2013 [181] 
Prediction model 

validation 

Retrospective 

single-center 

cohort 

Multivariate 

regression 

analysis 

0.71 

(AUROC) 

Vital signs, Braden 

score, Fall risk 

score 

Rapid response team 

activation 
2-12h 

Cho et al., 2020 [208] 

Automated 

system 

performance 

benchmark  

Retrospective 

single-center 

cohort 

Machine 

Learning 

algorithms 

0.86 

(AUC) 
Vital signs 

Cardiac arrest/ 

unanticipated admission 

to intensive care 

0.5h-24h 

Gerry et al., 2020 [120] 

 

Systematic Review 

AI and non-AI 

algorithms 

 

0.55 to 0.96 

(C-index) 
Vital signs 

Death/ unanticipated 

admission to intensive 

care 

24h/Inpatient stay 

Fu et al., 2020 [209] 

 

Systematic Review 
AI and non-AI 

algorithms 

0.71-0.96 

(AUC) 
Vital signs 

Death/ unanticipated 

admission to intensive 

care 

24h/Inpatient stay 

Peelen et al., 2021 [182]  Systematic Review 
AI and non-AI 

algorithms 

0.65-0.93 

(AUC) 
Vital signs 

Rapid response team 

activation, 

cardiopulmonary 

resuscitation, 

unanticipated transfer to 

an ICU, or death 

2h-24h 

Muralitharan et al, 2021 

[93] 

 

 

Systematic Review 

Machine 

Learning 

algorithms 

0.57 to 0.97 

(AUC) 
Vital signs 

Cardiac arrest/ Death/ 

unanticipated admission 

to intensive care 

4-24h 
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Table 12: Benchmark relative to a number of recent studies and reviews with similar scope (Continued) 

Model 

category 
Study/ Model name Study phase Study type 

Statistical 

Methods 

Used for model 

derivation 

Prediction 

performance 

Types of 

variables used 

 

Outcome measure 
Prediction horizon 

(window) 

Hybrid 

deterioration 

prediction 

models (vital 

signs, 

biomarkers,  

and patient 

demographics 

data) 

Jefferey et al., 2018 [210] 

 

Prediction model 

validation 

Retrospective 

single-center 

cohort 

Machine 

Learning 

algorithms 

0.85 

(AUROC) 

0.27 (F1-

score) 

Vital signs, 

Laboratory tests, 

ICD-10 diagnosis, 

Demographic data 

Cardiopulmonary arrest 48h 

Churpek et al., 2016/ 

eCART [211] 

Prediction model 

validation 
Retrospective 

multicenter cohort 

Machine 

Learning 

algorithms 

0.77  

(AUC) 

Vital signs, 

Laboratory tests, 

Demographic data 

Cardiac arrest/ Death/ 

unanticipated admission 

to intensive care 

24h 

Kipnis et al., 2016 / AAM 

[173] 

Evaluation of 

implemented 

system 

Retrospective 

multicenter cohort  

Discrete-time 

logistic 

regression 

0.82 

(AUC) 

Vital signs, 

Laboratory tests, 

Severity of illness, 

Comorbidity 

index, 

Demographic data  

Unanticipated admission 

to intensive care 
12h-24h  

Pimentel et al., 2021/ 

HAVEN [212] 

 

Evaluation of 

implemented 

system 

Retrospective 

multicenter cohort 

Machine 

Learning 

algorithms 

0.90 

(AUC) 

Vital signs, 

Laboratory tests, 

Comorbidities 

index, Frailty 

Cardiac arrest/ 

unanticipated admission 

to intensive care 

24h-48h 

Blackwell et al., 2020 

[188] 

Prediction model 

validation 

Retrospective 

single-center 

cohort 

Multivariate 

regression 

analysis 

0.71-0.84 

(AUC) 

depending on 

outcome 

Vital signs, 

Laboratory tests 

and  continuous 

seven-lead 

electrocardiogram 

(ECG) signal 

Unanticipated admission 

to intensive care 
12h 

Hybrid 

deterioration 

prediction 

models ( 

Biomarkers, 

devices and 

demographics 

data only) 

Our model 
Prediction model 

validation 

Retrospective 

single-center 

cohort 

Machine 

Learning 

algorithms 

0.82-0.9 

(AUROC) 

0.77-0.85 

(F1-Score) 

Laboratory tests, 

Attached devices, 

Demographic data 

Rapid response team 

activation 
24h-48h 

 



 
 

 

Table 13 – List of explanatory variables by type 

 

(Blue: biomarkers; Green: Patient demographic data; Yellow: clinical procedure status) 

Absolute variables Differential variables  

White Blood Cells (WBC) Δ_WBC 

Neutrophils Δ_Neutrophils 

Lymphocytes Δ_Lymphocytes 

Sodium Δ_Sodium 

Potassium Δ_Potasium 

Chloride Δ_Chloride 

C-reactive protein (CRP) Δ_CRP 

Procalcitonin Δ_Procalcitonin 

Troponin T Δ_Troponin_T 

D-Dimer Δ_D-Dimer 

proBNP Δ_Hemoglobin 

NLR Δ_Creatinine 

ChlorideDivSodium Δ_Urea 

SodiumMinChloride Δ_Activite 

Age Δ_CPK (creatine phosphokinase) 

Gender 

Δ_CPK MB (creatine phosphokinase myocardial 

band) 

Aspiration in the last 24h Δ_Bicarbonate 

Tracheostomy status Δ_Platelets 

OnVentilator status Δ_Albumin  

BiPAP patient status Δ_SGPT (serum glutamate-pyruvate transaminase) 

Blood transfusion in the last 24h Δ_SGOT (aspartate aminotransferase) 

Surgical intervention in the last 24h Δ_GammaGT (Gamma-glutamyltransferase) 

 

 



 
 

Figure 7 – Example of model decision process visualization (using Decision Tree algorithm) 



 
 

 

5.4. Discussion 

 

In this retrospective, single-center study, we developed and evaluated a machine-learning 

model for the prediction of all-cause patient deterioration. The model’s explanatory variables 

were mainly biomarkers values routinely available in basic EMRs, without inclusion of vital 

signs data.  

1) Potential use of the model for predicting clinical deterioration and supporting clinical 

decision making 

If transformed into an automated clinical decision support tool and applied systematically to all 

hospital inpatients, this model could potentially stratify patients based on their deterioration risk 

score, and proactively alert the healthcare team of patients possibly at high risk of deterioration 

within the next hours/days. The update or refreshing of the model data prediction result would 

basically rely on the arrival of new laboratory data, thus on the frequency of blood sample 

extraction, which in practice can range from 12h to 48h for most in-hospital patients. 

This prediction is based on the capture of a rich “physiological picture” (mainly through 

biomarkers) which precedes chronologically the “clinical picture” (captured by track-and-

trigger models, through observation of vital signs and clinical examination), hence an earlier 

prediction of deterioration.  

This earlier prediction (up to 42h versus 6h to12h for track-and-trigger models) can give the 

healthcare team a window of opportunity to try to stabilize or manage at-risk patients on general 

wards, preventing as much as possible their transfer to the intensive care units or any further 

escalation in care. This information can also permit the medical and nursing team to selectively 

increase surveillance for patients at high risk of deterioration, hence trying to prevent or 

promptly mitigate expected deterioration events. In the context of a global shortage of health 

workers, this information can help in focusing resources on the patients that need those the 

most. 

A complementary use of such a model can be for patient safety professionals in hospitals, who 

can make use of the prediction data on a daily basis to audit and verify the follow-up and safety 

actions taken by the healthcare team in order to manage the deterioration risks, including 

suitability of the level of care provided to the clinical status of the patient.   

2) Model explainability and the road towards clinical validation and clinician adoption 

Explainability, or the possibility to understand the model’s classification logic is an important 

feature that can facilitate the “clinical interpretation” of the results by the clinicians.  

In this study, the deterioration model permits a certain level of “explainability” for most 

algorithms applied and in particular Random Forests and Decision Tree, in the sense that it is 

possible to identify the main variables that influence most the model prediction results, along 
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with their respective weights. Further explainability can be obtained with Decision Tree 

algorithm where a visualization of the decision tree could be obtained, showing the logic behind 

the classification (Supplementary Digital Material 2).   

Such data insight can help users understand the prediction results, and facilitate any future effort 

to clinically interpret and validate the model by an experienced panel of physicians. This 

“clinical validation” is an important step towards the practical adoption of the model by 

clinicians, where the latter are often reluctant to use “black box” models, even when they show 

good results.  

 

3) Model specificities relative to other predictive models, and possible impact on results 

While most deterioration models in the literature were derived from cases with specific 

outcomes of cardiac arrests, death and unplanned transfer to ICU (Table 3), the model 

elaborated in this study was trained and validated on deterioration cases linked to RRT 

activations that were confirmed by a panel of clinical experts. It is to be noted that RRT 

activation cases depict a broader image of clinical deterioration, since they include an additional 

outcome in clinical practice, which is the patient stabilization on the floor, amounting to almost 

half of deterioration cases (Table 1), in addition to the classical aforementioned outcomes.      

Furthermore, almost all of the deterioration models in the literature which include laboratory 

variables (such for example those of the LAPS-2 score [173] ) use the absolute form of the 

exam values. To the best of our knowledge [182], our model is among a few (if not the only 

one) that use differential (or delta) biomarker variables in deterioration prediction models. It is 

known however that changes in biomarker values (delta) within a specific timeframe can 

indicate certain underlying pathophysiological changes, such as for example in case of bleeding 

(delta in hemoglobin values) or acute kidney injury (delta in creatinine values). 

The analysis of variable importances (Figure 5) shows that a number of differential variables 

(for example: ΔSodium, ΔPotassium, ΔCRP) have a significant weight in the model prediction 

function. 

We believe that the results of the prediction model were impacted to a certain extent by these 

specificities, but also the broad choice of biomarkers that intended to cover multiple 

deterioration mechanisms that are common to various deterioration etiologies. These 

mechanisms include but are not limited to respiratory and metabolic acidosis/alkalosis, 

systemic inflammation, electrolyte imbalance, volume imbalance and hypoperfusion/ischemia. 

Finally, we believe that the exclusion of vital signs data from the model might have in a certain 

way contributed to an earlier prediction horizon. In fact, in pathophysiological processes 

leading to clinical deterioration, changes in biomarkers usually occur hours before clinical signs 

and symptoms. Furthermore, even in hybrid models (where variables comprise vital signs, 

laboratory data and other patient data), the importance of biomarkers could have been eclipsed 
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by the direct association (however late in matter of prediction) between the occurrence of 

clinical signs (vitals) with the deterioration event outcome. Further research might be needed 

to better elucidate the relation between the choice of variable type and the impact this has on 

the prediction horizon of clinical deterioration models.  

Limitations 

The study was conducted in a single center, which might have amplified the effect of certain 

factors on the results, such as the quality of the medical documentation and the specific practice 

of exam prescriptions for diagnosis and monitoring. An external and a prospective validation 

of the study model should be a undertaken to understand its performance in a real clinical 

context, before it can be implemented as a clinical decision support system. 

Also, the number of deterioration events per explanatory variable is relatively small, which 

might have impacted to a certain extent the performance metrics and the statistics of the 

variables’ importance. This is due to the limited sample size of the study. However, it 

corresponded to almost two years of systematic data collection of deterioration events in our 

hospital, and a thorough and time consuming validation by an expert panel of the cases 

outcome.  

 

Conclusion 

We have developed and validated an explainable prediction model for inpatient deterioration in 

general wards, trained on expert validated deterioration events with rapid response team 

activation. The model is mainly based on biomarkers, without use of vital sign data. The model 

performed better than most gold standard track-and-trigger systems, both in prediction 

performance and prediction horizon. Such a model can also be suitable for hospitals with 

limited resources and a basic EMR. Further increase of the data sample could contribute to 

improving its performance, and the model would gain to be externally and prospectively 

validated.  
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6. Contribution 3: 

Implementation and validation of a CDS application 

for the early identification and risk management of 

hospitalized patients at high-risk for clinical 

deterioration on regular floors- The “VIGIL” 

project 
 

Note: this study is still in progress regarding the data collection for the validation phase. Design 

and implementation of the clinical decision support application are completed and described 

below.  

 

6.1. Introduction 

 

Delays in identifying and managing clinically deteriorating patients have been found to be 

associated with increased morbidity and mortality[163]–[165] and this theme was identified as 

one of the emerging priorities in patient safety [13].  

The current “gold standard” solutions adopted in hospitals worldwide to address this issue are 

the Rapid Response System (RRS), which are comprised of an afferent recognition limb, known 

as Early Warning System (EWS), and an efferent limb which handles the response to the alert, 

in matter of escalation and clinical interventions. RRS vary in their design and escalation 

mechanism, but most involve a nurse that receives or identifies the EWS alert and escalates to 

the medical team or to Medical Emergency Team (MET). 

The increase in adoption of Electronic Medical Records (EMR) has rendered available the data 

that was once calculated manually by the nurses to identify the patient deterioration scores, and 

more and more automated EWS are available in commercial solutions and published in the 

literature. EWS data was revolving in the early years around the patient vital signs and some 

basic demographic data, but has since been extended to more categories, such as medical 

diagnosis, laboratory data, patient medications and medical imaging data. This data enrichment 

has permitted the elaboration of more complex and refined prediction models, and allowed the 

use of advanced statistical and computational techniques (such as machine learning) for their 
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derivation. It was reported that such complex models can achieve greater accuracy than classical 

aggregate-weighted EWS scores [93], 

A recent review [94] has shown that although there is an increase in the number of automated 

and more complex EWS, the vast majority of these system have not been subject to 

implementation and validation in real clinical workflows, and therefore data on the real impact 

of these automated systems on patient outcomes is still scarce and more outcome studies are 

needed in this field. 

Another even more recent review [213] did not detect improvements in patient outcomes 

following the implementation of automated real-time deterioration alerts, but recommended 

that more attention be given to the RRS efferent limb (response to the alert) rather to the alert 

itself, through reviewing the workflow of alert recipients and incorporating model features into 

the decision process to improve clinical utility. 

In this study, we report a real-world implementation of a relatively new approach in RRS, which 

tries to bridge the gap between the deterioration alert and the clinical decision. The approach 

can be summarized as follows: 1) regarding the afferent limb, proposing an explanation of the 

results of a machine learning deterioration prediction model, using both the presentation of its 

features’ values, and a clinical interpretation of these values through the identification of 

“clinical risks” via expert rules, and 2) regarding the efferent limb, formulating specific 

recommendations both to medical and nursing teams, relative to each “clinical risk” identified. 

These recommendations being are based on evidence-based medical and nursing guidelines. 

We also present an evaluation protocol for this system, on many layers: validity of components, 

clinical usefulness and system usability. The evaluation study is still recruiting and the results 

are not available. 

We adopted the framework described by Greenes et al. [1] for the characterization of the 

application design and implementation aspects. 

 

6.2. Materials and Methods 

 

6.2.1. CDS application description 

 

a. The CDS application structure and components 

 

A hybrid AI/Rules-based approach was adopted, in an attempt to combine in one 

application the capabilities of a machine learning  model for clinical deterioration 

prediction with a rules-based module for clinical risk identification and 

management.  
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The application applies the machine learning model described in the previous 

chapter [214] for the stratification of the clinical deterioration risk of patients in non-

critical wards (component 1), and combines it with an expert rules-based model 

(component 2) that was developed in collaboration with a panel of internal medicine 

physicians, which identifies a number of “clinical risks” for the patient, based on 

preset interpretation rules applied to the values of the explanatory variables of 

component 1 in addition to additional variables imported from the computerized 

patient medical record.  

These “clinical risks” are not to be confused with the patient diagnosis, which in 

terms of causality is the primary and holistic reason explaining the patient condition. 

In fact, they are to be understood as describing the dynamic physiological paths that 

are secondary to this diagnosis, to the patient evolution or even to the hospital care, 

and that can directly trigger patient deterioration mechanisms if left untreated. 

 

For each of the identified clinical risks, the CDS application then suggests a number 

of best-practice medical and nursing interventions (component 3) associated to each 

category of clinical risk, interventions that were validated by an expert panel based 

on the review of international practice guidelines. Figure 8 illustrates the different 

components of “VIGIL”. 

 

These “clinical risks” were identified further to a literature review in addition to a 

discussion with clinical experts. To illustrate through an example (Figure 9), an 85-

year-old patient can be admitted for a community acquired pneumonia (diagnosis), 

but throughout his hospital stay his clinical status can deteriorate for example due to 

“clinical risks” such as sepsis and increasing oxygen requirements, both 

complications related to his initial diagnosis, or acute kidney injury further to 

administration of nephrotoxic drugs, which is a hospital-acquired condition. These 

risks can trigger a deterioration mechanism that will eventually translate into a 

clinically noticeable deterioration (such as hypotension, desaturation, tachycardia or 

decrease level of consciousness) requiring the intervention of a medical emergency 

team (MET) and in some conditions a transfer to a higher level of care.   

 

All in all, the three different components would offer for each hospitalized patient a 

prediction score of the clinical deterioration risk, the  identification of the clinical 

risks that can potentially explain and trigger his clinical deterioration, and finally 

suggest best-practice interventions in order to prevent or mitigate the effects of these 

risks, hopefully before the patient shows noticeable signs of clinical deterioration 

and necessitate transfer to a higher level of care. 
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Figure 8: "VIGIL" CDS application components 

 

 

Figure 9: Illustration of the adopted conceptual framework regarding clinical deterioration 
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b. Cognitive tasks/ reasoning processes supported 

 

The objective of the application is 1) to help the healthcare team identify the level 

of “clinical severity” of the patients based on a machine learning based prediction 

algorithm that “aggregates and synthesizes” a rich set of routinely available 

variables, mainly biological,  2) to support, through automated screening of data, the 

medical and the nursing team in identifying in a “systematic and reliable way” a 

number of common “clinical risks” that are associated with the patient condition, 

and 3) to “remind” the medical and the nursing team about the main clinical 

interventions to keep in mind for each of the “clinical risks”, in order to ensure 

adherence to best practice guidelines. 

 

6.2.2. CDSS application evaluation 

 

a. A multifaceted evaluation for the CDS application performance 

 

In order to evaluate the performance of the CDS application, we will evaluate each 

component’s outcome, in terms of reliability (were there any data-related issues that 

caused a false alarm?) and validity (was there clinical justification for this alarm?), 

as well as the clinical usefulness (was the alert clinically useful to the healthcare 

team?) of the application alerts and recommendations for a panel of users. Finally, 

a usability measurement method will be used to evaluate user satisfaction of the 

application and identify its potential strengths and areas for improvement. These 

different evaluation methods are listed below and summarized in Figure 10. 

 

An impact measurement of the application relative to its ability to prevent or better 

manage clinical deterioration risks in hospitalized patient is planned but is outside 

the scope of this study. 
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Figure 10: Evaluation methods of the different application components and output 

 

b. Validation of the deterioration prediction component 

 

Data regarding deterioration cases identified by Rapid Response Team (RRT) 

interventions was systematically collected between February and August 

2022. The daily prediction results of the application for the patients in this 

same period was then crossmatched with the cohort of deteriorated patients’ 

cases. A deterioration case was considered as correctly predicted by the 

application if a prediction score above a certain threshold (e.g: > 0.7) was 

given by the application on any day up to 96 hours from the deterioration date 

and time. Otherwise it was considered that the application did not predict the 

deterioration event. 

The area under the receiver operating curve (AUROC) and the area under the 

precision-recall curve (AUPRC) were used to reporting the performance 

results of the prediction model.  

 

In order to identify the optimal classification threshold for the prediction 

score was calculated with the objective of maximizing sensitivity and 

specificity. Such threshold is important for the practical implementation of 

the application and the stratification of patients. Given the described 

threshold, the confusion map for this specific threshold was calculated. 

 

Finally, the prediction model calibration was assessed using a calibration 

curve on the same dataset described above.  
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c. Validation of the clinical risks alerts  

 

Based on a random sample of patients hospitalized in non-critical wards from 

September to December 2022, a multidisciplinary team composed of a senior 

patient safety officer and two physicians adopted the following protocol. For 

each patient, the team discussed with the treating attending physician the case 

of the patient (including reason for admission, diagnosis and evolution), and 

asked the physician to identify the current applicable types of clinical risks to 

the patient at this point of his hospitalization, from the predefined list of 

clinical risks illustrated in Table 13. 

This list was compared to the list of risks identified by the CDSS, and 

whenever a discrepancy was found, the concerned identified risk(s) were 

discussed until a consensus was reached. The differences between the list 

identified by the attending physician and that of the CDSS were documented 

and analyzed. 

In case the “clinical risk” alert was false due to a data reliability issue, the 

reliability score of the alert was assigned as Zero. 

The reliability results were then reported for each type of “clinical risk” 

alarm. 

The validity results were reported in the form of a confusion matrix for each 

type of clinical risk, where true positive, true negative, false positive and false 

negative rates of each type of “clinical risk” alarm was calculated. 

 

Furthermore, for the “clinical risk” alerts deemed “valid” by the reviewers 

and the treating physician, the “clinical usefulness” of the alerts were 

assessed after comparative review of the patient medical prescription sheets 

just before and one day after the discussion with the treating physician. A 

“usefulness” score was then given as follows to the alert: Zero = alert already 

taken into consideration in the medical prescription sheets; 1 = alert did not 

induce relevant changes in the prescriptions; 3 = relevant changes in the 

medical prescription sheets noticed after discussion of alert. 

The “clinical usefulness” results were reported for each type of clinical alert 

as a distribution of these scores.  

  

d. Evaluation of the proposed interventions identified by the application 

 

For the same sample of patients aforementioned, and for the “clinical risk” 

alerts deemed “valid” both by the reviewers and the treating physician, a 

discussion of the relative proposed medical and nursing interventions was 

respectively performed with the treating physician and the nurse in charge. 

The “clinical usefulness” of these automatically proposed medical and 

nursing interventions were assessed after a comparative review of the patient 

medical prescriptions and nursing plan just before and one day after the 
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discussion. A score was then given as follows to each proposed intervention: 

Zero= recommendation deemed not applicable or not indicated for the patient 

case, 1= recommendation applicable to the patient case and already ordered 

or executed by the healthcare team, 2= recommendation applicable to the 

patient case but not ordered by the healthcare team, 3= recommendation 

applicable to the patient case and ordered by the healthcare team post-

discussion. 

The “clinical usefulness” results were reported for each type of medical and 

nursing interventions as a distribution of these scores.  

 

e. Application usability evaluation with a panel of users 

 

Usability testing was undertaken in order to determine whether the 

application was judged as usable, effective and acceptable to users.  We 

adopted the ‘Think Aloud’ qualitative method in order test the usability on a 

one-to-one basis for a group of physicians and a group of nurses.  The 

sessions were moderated by one of the authors using a standardized, 

structured worksheet combined with a semi-structured discussion using 

open-ended questions to evaluate each tool component. Participants were 

encouraged to 'think aloud' and verbalize their thoughts about the component 

being tested. We also administered to each participant a validated, 10-item 

System Usability Scale [215] to assess their satisfaction regarding the 

usability of the tool. 
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Figure 11: System Usability Scale questionnaire 
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6.3. Results 

 

The CDS application, which we named “VIGIL”, is a web application that can be 

accessed through an internet browser inside the hospital. The application, developed in 

Flask Python web framework [216], incorporated the predictive model described in the 

second contribution, with the addition of the two additional rules-based modules for the 

“clinical risk” evaluation and the medical and nursing interventions recommendations. 

The application is in the piloting phase before launching a wider evaluation before the 

end of 2022. 

6.3.1. Identification of “clinical risks” and recommended “clinical interventions” 

 

The medical panel identified 41 “clinical risks” and defined for each of these 

risks a formal practical definition (trigger) based on values of certain variables 

directly imported from the patient medical record, most of which are the 

explanatory variables of the deterioration prediction score (component 1). For 

these identified risks, the medical panel identified more than 119 best-practice 

medical interventions, paralleled by more than 105 nursing interventions, 

identified by the specialist nursing expert panel.  

The list of “clinical risks”, their formal triggers and the associated medical and 

nursing interventions are listed in Table 13. 

6.3.2. Integration of the solution/ adaptation to the clinical workflow 

 

“VIGIL” is a standalone web application that is one-way integrated to the 

hospital information system (HIS) (reads only from the HIS databases). At preset 

intervals (by default every day at 10 am), the application automatically imports 

from the HIS data that is required to load the variables required by the 

components 1 and 2. The application renders its outputs within 90 minutes of 

process initiation, a timing which coincides with the morning round of the 

medical teams on the floors.  

In each clinical department (with the exception of critical wards), the application 

is accessible on the PCs in the physicians’ room to the members of the medical 

team and on the PCs of the nursing desk for the members of the nursing team.  

Hence, the application can be ideally consulted in the beginning of the medical 

rounds, when the attendings and residents usually check the updates of lab exams 

of their patients before the physical round. 
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Access to the application is also granted to the Senior Patient Safety Officer and 

to the Medical and Nursing Administrators, for auditing and overview purposes. 

6.3.3. Features displayed in the User Interface 

 

Once required HIS data is extracted, the CDSS computes and presents the results of 

all patients in a table where each row is a patient entry. The main results of the 

models are presented in eleven specific columns: 

 

Patient information: In this column are displayed the patient’s name, age, 

admission date 

Case number: displays the unique identifier related to the medical case of the 

patient in the hospital 

Treating doctor: displays name of the patient’s treating physician 

Patient bed: displays the current bed number of the patient 

Diagnosis, recent procedures and medications: this section aggregates contextual 

data on the patient, such as his current and last ICD-10 diagnosis, the dates and 

names of the interventional procedures the patient had performed in the last month, 

as well as the list of medications ordered for the patient in the last 3 days. 

Deterioration prediction score: this is the score yielded by the prediction model 

(component 1) that should be correlated with the risk of clinical deterioration. 

Deterioration dynamic: relative to the last prediction score, this column shows the 

evolution and labels it as “improving”, “status quo” or “worsening”. 

Verify the following risks: displays the inferred “clinical risks” based on the patient 

data. 

Proposed medical interventions: displays the automatically proposed medical best 

practice interventions relative to the identified “clinical risks”. 

Proposed nursing interventions: displays the automatically proposed nursing best 

practice interventions relative to the identified “clinical risks”. 

All variables: displays all important variables taken into consideration by the 

different components, highlighting in red critical values of the variables. 

An example of the information presentation is given in Figure 12. 

 

 

 



 
 

 

 

Figure 12: VIGIL user interface with a case example 

 



 
 

 

Table 13: Definition of clinical risks adopted in the study, and listing of corresponding medical and nursing risk management interventions 

Category of 

clinical risks 

Classes of clinical risks Practical rule Medical risk management Nursing risk management 

Infectious/ Septic 

risk 

Onset of bacterial 

infection 

(Increase of CRP of at least 30pts   

OR 

 Increase of Procalcitonin of at least 0.5 pts) 

AND 

increase of WBC of at least 4000pts 

"Blood, sputum, urine and urine 

analysis, wound drainage and 

stool cultures depending on the 

presenting signs", 

 

"CBC with differential, routine 

chemistries, LFTs, CRP,  

procalcitonin, and according to 

situation: troponin, lactic acid 

level, coagulation profile ", 

 

"Monitor according to 

severity and need: vital signs, 

fever, consciousness level, 

patient color- alert if 

hypotension, fever, 

hypoxia/cyanosis, 

oliguria/anuria, confusion or 

decreased level of 

consciousness" 

 

“Verify patient labs to 

monitor evolution” 

 

Onset of viral infection (Increase of CRP of at least 20pts  

OR 

WBC<4000)  

AND  

increase of %Lymphocytes of at least 20pts 

“Consider patient isolation” “Apply patient isolation after 

verification with medical 

team” 
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Acute infection (WBC>12000 OR WBC<4000)  

 

AND  

 

CRP>40  

 

AND  

 

5<Neutrophil-to-Lymphocyte ratio<10 

 

"Blood, sputum, urine and urine 

analysis, wound drainage and 

stool cultures depending on the 

presenting signs", 

 

"CBC with differential, routine 

chemistries, LFTs, CRP,  

procalcitonin, and according to 

situation: troponin, lactic acid 

level, coagulation profile ", 

 

Order Urine analysis", 

 

Start empirical ATB coverage and 

readapt according to culture 

results”, 

 

"Monitor evolution of 

inflammation markers and adapt 

ATB type/dose", 

 

 

"Monitor according to 

severity and need: vital signs, 

fever, consciousness level, 

patient color- alert if 

hypotension, fever, 

hypoxia/cyanosis, 

oliguria/anuria, confusion or 

decreased level of 

consciousness" 

 

“Verify patient labs to 

monitor evolution” 
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Sepsis CRP>100 

AND 

Neutrophil-to-Lymphocyte ratio >10 

"CBC with differential, routine 

chemistries, LFTs, CRP,  

procalcitonin, and according to 

situation and severity: troponin, 

lactic acid level, coagulation 

profile ", 

 

"Blood, sputum, urine and urine 

analysis, wound drainage and 

stool cultures depending on the 

presenting signs", 

 

Order Urine analysis", 

 

Start empirical ATB coverage and 

readapt according to culture 

results”, 

 

“Fluid hydration if hypotensive/ 

consider transfer to ICU if non-

responsive, 

 

"Monitoring at least q4h and 

according to needs: vital signs, 

consciousness level, patient 

color", 

 

"Monitor evolution of 

inflammation markers and adapt 

antibiotherapy", 

 

 

"Verify good function of IV 

access", 

 

"Urine output monitoring", 

 

“Administer first ATB doses 

timely without delay” 

 

"Monitor according to 

severity and need: vital signs, 

fever, consciousness level, 

patient color- alert if 

hypotension, fever, 

hypoxia/cyanosis, 

oliguria/anuria, confusion or 

decreased level of 

consciousness" 

 

“Verify patient labs to monitor 

evolution” 

Acute Sepsis ( 

CRP>70 

AND  

Same interventions as for “Acute 

infection/ Sepsis” 

+ 

Same interventions as for 

“Acute infection/ Sepsis” 

+ 
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NLR>10 

AND 

Increase in CRP of more than 30 pts 

AND 

( 

Decrease in platelets count >50 000 units 

OR 

Decrease in Serum Bicarbonate  of more than 

5 pts 

OR  

Increase in Serum Creatinin of more than 0.5 

pts ) 

) 

 

OR 

 

( 

CRP>100 

AND  

NLR>10 

AND 

( 

Platelets count <150 000 units 

OR 

Serum Bicarbonate<20) 

) 

 

"Consider transfer to intensive 

care unit" 

"Monitoring q2h of vital 

signs, consciousness level, 

patient color" 

 

"Consider continuous 

monitoring of vitals" 

 

Severe Neutropenia Neutrophil count<750 "Check for onset of infection or 

adverse drug effect", 

 

"In case of infection, start 

empirical ATB coverage and 

readapt according to culture 

results", 

 

"Consider protective 

isolation", 
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"Consider protective isolation"   

    

Severe Leukopenia WBC <2000 AND  

Hemoglobin>10 AND 

 Platelets>100000  

"Check for onset of infection or 

adverse drug effect- consider 

protective isolation" 

 

“Implement protective 

isolation following physician 

request” 

Respiratory distress 

risk 

High oxygen 

requirements/Risk of 

desaturation 

Increase in oxygen requirement (device 

billing) 

OR 

Use of high flow oxygen device 

“Perform ABGs and chest 

imaging” 

 

“Perform clinical examination of 

the patient’s lungs. 

 

"CBC with differential, routine 

chemistries, LFTs, CRP,  

procalcitonin, and according to 

situation: troponin, lactic acid 

level, coagulation profile ", 

 

“Order sputum or aspirate 

culture” 

 

“Start empirical ATB coverage or 

readapt existing ATB according 

to culture results”, 

 

"Perform clinical examination to 

R/O pulmonary embolism or 

DVT", 

 

"Monitoring q4h of vital signs, 

consciousness level, patient 

color", 
“Consider transfer to ICU if 

aggravation” 

 

“Monitor the effects of 

sedation and analgesics on the 

patient’s respiratory pattern; 

use judiciously”. 

 

“Suction as necessary”, 

 

“Help patient deep breathe 

and perform controlled 

coughing” 

 

“If the patient is permitted to 

eat, provide oxygen to the 

patient but differently 

(changing from mask to a 

nasal cannula).” 

 

“Maintain an oxygen 

administration device as 

ordered, attempting to 

maintain oxygen saturation at 

90% or greater.” 
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Frequent need for suction/ 

Risk of obstruction 

Use of aspiration tube (device billing)  Suction as necessary 

 

Monitor patient’s behavior 

and mental status for the onset 

of restlessness, agitation, 

confusion, and (in the late 

stages) extreme lethargy 

BiPAP/Risk of 

hypercapnia 

Use of BiPAP (device billing) “Monitor with ABGs regularly” “Verify BiPAP mask face 

sealing” 

 

“Monitor water level in 

BiPAP machine” 

 

“Apply prevention for BiPAP 

related pressure ulcer” 

 

Cardiac risk Elevated troponin Troponin>0.04 AND Age>50 AND Serum 

Creatinine<2 

"Order EKG" 

“repeat troponin cycle +EKG”, 

“Evaluate for chest pain and 

cardiac risk factors” 

"Order cardiac consult" 

 

“Monitor vital signs and report 

chest pain and tachycardia” 

“Vitals monitoring q2h and 

monitor for chest pain", 

Elevated and Increasing 

troponin 

Increase in Troponin>0.04 AND Age>50 

AND Serum Creatinine<2 

“Order continuous monitoring” 

 

“Consider transfer to ICU if 

aggravation” 

"Verify good function of IV 

access", 

 

“Implement continuous 

monitoring, assess for chest 

pain" 

 

Heart Failure proBNP>900  AND Serum Creatinine<1.5 “Check for fluid overload” 

 

“Check for respiratory distress, 

dyspnea” 

“Monitor fluid status”,  

 

“Assess respiration rate and 

depth and report any distress”   

https://nurseslabs.com/acute-confusion/
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“R/O infection or ischemic 

changes” 

 

“Start diuretics and monitor urine 

output” 

 

“Monitor regularly vital signs and 

assess for desaturation, 

tachycardia, hypotension” 

“Re-evaluate HF treatment” 

 

 

“Daily body weight”, 

 

 "Verify/Adapt patient diet 

(low sodium diet)”, 

 

“Promote daily activity within 

patient tolerance” 

Renal insufficiency 

risk 

Acute Kidney Injury Increase of Serum Creatinine >0.5mg/dl 

within 3 days 

"Urine output monitoring", 

 

"IV hydration", 

 

"Identify and stop possible 

nephrotoxic drugs", 

 

"Correction of electrolyte and 

acid-base abnormalities", 

 

"Ultrasound of kidneys to 

evaluate kidney size and presence 

of obstruction", 

 

"Monitor kidney function through 

lab panel (Serum Creatinine, 

BUN, electrolytes and Serum 

Bicarbonate)" 

“Monitor fluid intake and 

output” 

  

“Assess for presence of blood 

in urine”, 

 

"Verify/Adapt patient diet", 

 

“Check electrolyte balance to 

monitor evolution, and restore 

fluid balance according to 

prescription”, 

 

“Assess and report early signs 

of infection such as fever”, 

 

“Assess and report oliguria/ 

anuria”, 

“Verify with physician that 

medications are adapted for 

renal doses”, 
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Uremia Blood Urea  Nitrogen (BUN) >50 mg/dl 

or increase in BUN of more than 20 

points within 3 days 

"Urine output monitoring", 

 

"IV hydration", 

 

"Identify and stop possible 

nephrotoxic drugs", 

 

"Correction of electrolyte and 

acid-base abnormalities", 

 

"Monitor kidney function through 

lab panel (Serum Creatinin, BUN, 

electrolytes and Serum 

Bicarbonate)" 

 

“Consider acute dialysis in severe 

cases” 

“Monitor fluid intake and 

output”   

 

“Assess and report oliguria/ 

anuria”, 

 

“Assess for presence of blood 

in urine, anorexia, confusion, 

lethargy, bleeding, itching, 

fetor mouth odor” 

 

“Check electrolyte balance to 

monitor evolution, and restore 

fluid balance according to 

prescription”, 

 

“Assess and report early signs 

of infection such as fever”, 

 

“Verify with physician that 

medications are adapted for 

renal doses”, 

 

 

Renal Failure Serum Creatinine>3 "Identify and stop possible 

nephrotoxic drugs", 

 

"Verify/Adapt patient diet" 

 

“Monitor kidney function through 

lab panel (crea, BUN, electrolytes 

and Bicarbonate)”, 

 

"Urine output monitoring", 

“Verify with physician that 

medications are adapted for 

renal doses and not 

nephrotoxic” 

 

“Monitor fluid intake and 

output”  

 

“Limit fluid intake (IV and 

oral) as ordered” 
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"intervention20":"Correction of 

electrolyte and acid-base 

abnormalities", 

 

“Assess for edema, swelling of 

feet and ankles, and shortness of 

breath, and chest pain” 

 

 

“Assess and report edema, 

swelling of feet and ankles, 

and shortness of breath, and 

chest pain”  

 

"Adopt a renal diet that 

avoids high in sodium, high 

in potassium, high in protein 

foods", 

 

“Monitor and record vital 

signs to obtain baseline data: 

report any hypertension” 

 

Assess labs for hyperkalemia, 

electrolyte imbalances and 

creatinine/BUN raises” 

 

“Assess and report nausea 

and vomiting, ammonia odor 

on breath, diarrhea, clotted 

fistula, and signs of infection” 

 

“Assess the thrill and the 

condition of the AV fistula” 

      

“Daily weight of the patient” 

 

“Monitor glucose levels in 

diabetic patients” 

 

“Seek immediate medical 

reevaluation in severe 

hypertension, hyperkalemia, 
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dyspnea, altered mental status 

and acute anuria” 

Hepatic 

insufficiency risk 

Risk of liver function 

perturbation 

Increase in SGPT>10 OR  

Increase in SGOT>10 OR 

Increase in GGT>20 OR 

SGPT>100 OR 

SGOT>100 OR 

GGT>30 

"Monitor LFTs daily, monitor 

glycemia, monitor chemistry 

panels, serum albumin and 

PT/INR as needed", 

  

”Adapt medication treatment to 

liver function”, 

 

"Identify possible etiology for 

hepatic dysfunction. Order 

ultrasound imaging if necessary" 

“Monitor for icteria, lower 

limb edema, ascites, 

petechiae, bleeding and 

glycemia" 

 

“Monitor patient nutritional 

status and adapt his diet 

accordingly as per 

physician’s 

recommendations” 

 

“Assess for any alteration in 

the patient’s consciousness 

level.” 

 

 

 Risk of severe liver 

dysfunction 

( 

Increase in SGPT>10 OR  

Increase in SGOT>10 OR 

Increase in GGT>20 OR 

) 

AND 

decrease of Prothrombin activity of more 

than 20 pts 

“Monitor serum glucose” 

 

“Order a high-calorie and a 

medium to high protein diet” 

 

« Restrict fluids and sodium” 

 

"Monitor vital signs, fever, 

consciousness level, patient 

color- alert if hypotension, 

fever, hypoxia/cyanosis, 

oliguria/anuria, confusion or 

decreased level of 

consciousness" 

https://nurseslabs.com/glucose-elevating-agents/
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« Monitor intake and 

output », 

 

 

“Monitor for icteria, lower 

limb edema, ascites, 

petechiae, bleeding and 

glycemia" 

 

“Monitor patient nutritional 

status and adapt his diet 

accordingly as per 

physician’s 

recommendations” 

 

“Assess for any alteration in 

the patient’s consciousness 

level.” 

 

Postoperative event 

risk 

Risk of postoperative 

events 

Invasive procedure in the last 48h "Order and monitor evolution of 

inflammation markers and 

hemoglobin level” 

 

 

 

“Inspect wound for any signs of 

infection, pain or dehiscence” 

 

“Perform physical exam to rule out 

any surgical complication” 

 

 

"Monitor vital signs, fever, 

consciousness level, patient 

color- alert if hypotension, 

fever, hypoxia/cyanosis, 

oliguria/anuria, confusion or 

decreased level of 

consciousness" 

 

“Verify patient labs for 

indicators of systemic 

infection” 

 

“Regularly inspect the 

wound(s), observing its 

qualities and integrity. Inspect 
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breaks or skin irritation 

around surgical site” 

 

“Change wound dressing as 

per hospital protocol using 

stringent aseptic techniques” 

 

“Assess postoperative pain 

(characteristics, location, 

intensity) every 2h and when 

needed” 

 

“Monito function and note 

output of  indwelling 

catheters and drainage tubes” 

 

 

 

Metabolic risk  Dehydration 1.86*(Sodium+Potassium) 

+1.15*4.75+0.357*BUN+14 >300 

 

“Identify etiology of dehydration 

and correct accordingly” 

 

"IV hydration” 

 

"Monitor kidney function through 

lab panel (Serum Creatinin, BUN, 

electrolytes and Bicarbonate", 

 

"Correction of electrolyte and 

acid-base abnormalities" 

"Urine output monitoring", 

 

“Encourage fluid intake”,  

 

“Monitor and record vital 

signs to obtain baseline data: 

report any hypotension, 

tachycardia or change in 

mental status” 

 

“Assess skin turgor”, 

 

“Monitor active fluid loss 

from wound drainage, tubes, 

diarrhea, bleeding, vomiting, 

etc.” 
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“Assess labs for 

hyperkalemia, electrolyte 

imbalances and 

creatinine/BUN raises” 

 

“Weight patient daily” 

 

 

Fluid overload 1.86*(Sodium+Potassium)+1.15*4.75+0.35

7*BUN+14 <265 

 

“According to patient case, 

consider loop diuretics and reduce 

IV hydration” 

 

“Identify and correct etiology 

(renal, hepatic, cardiac, etc.)” 

 

“Monitor urine output” 

 

“Correction of electrolyte and 

acid-base abnormalities", 

 

“Monitor vital signs, and report 

tachycardia and hypertension”, 

 

« Monitor intake and 

output », 

 

“Verify  and adapt IV serum 

flow rate”, 

 

“Daily weight of the patient”, 

 

 

“Monitor vital signs, 

especially for tachycardia and 

hypertension”, 

 

“Assess labs for electrolyte 

imbalances”, 

 

“Educate patient and enforce 

fluid restriction”, 

 

“Administer diuretics after 

prescription by medical 

team”, 

 

“Review dietary restriction 

depending on cause of fluid 

overload (heart failure, renal 

failure, etc.)”, 
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“Assess patient and report: 

cough, shortness of breath, 

any altered mental status or 

anxiety, edema, swelling of 

feet and ankles” 

 

Metabolic acidosis Serum Bicarbonate<20 "Identify etiology of metabolic 

acidosis (dilutional, renal 

insufficiency, sepsis, ischemia, 

severe diarrhea/fluid loss from 

lower GI tract, etc.) and correct 

according to cause " 

"Monitor kidney function through 

lab panel (Serum Creatinin, BUN, 

electrolytes and Bicarbonate"), 

 

“Monitor urine output” 

 

"Correction of electrolyte and 

acid-base abnormalities", 

 

“Monitor vital signs and assess 

for hypotension, desaturation, 

respiratory rate“ 

 

“Perform ABGs” 

 

"Monitoring q4h of vital 

signs, consciousness level, 

heart rhythm, patient color- 

alert if tachycardia, change in 

respiratory rate or depth, 

headache, seizures, confusion 

or decreased level of 

consciousness" 

 

“Monitor fluid intake and 

output” 

 

“Monitor for electrolytes, 

especially potassium” 

 

“Ensure availability of 

Sodium Bicarbonate if 

needed” 

 

"Consider patient as high risk 

for fall" 

Metabolic alkalosis Serum Bicarbonate>30 "Identify etiology of metabolic 

alkalosis (dehydration, excess use 

of diuretics, etc.) and correct 

according to cause" 

 

“Monitor urine output” 

 

"Monitoring q4h of vital 

signs, consciousness level, 

heart rhythm, patient color, 

neuromuscular status- alert if 

tingling/numbness, severe 

vomiting, change in 

respiratory rate or depth, 
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"Correction of electrolyte and 

acid-base abnormalities", 

 

“Monitor vital signs and assess 

for hypotension, desaturation, 

respiratory rate“ 

 

“Perform ABGs” 

 

headache, seizures, confusion 

or decreased level of 

consciousness" 

 

"Ensure good patient IV 

hydration" 

 

“Restrict oral intake and 

encourage intake of foods 

high in potassium and 

calcium” 

 

“Identify potassium -losing 

drugs such as thiazide and 

furosemide and discuss their 

discontinuation with medical 

team” 

 

 

Hyponatremia Sodium<135 “Order blood and urine 

osmolarity, and urine electrolytes 

“ 

 

"Determine etiology of 

hyponatremia (fluid overload, 

infection, SIADH, etc.) and 

correct according to cause" 

 

“Adapt type and quantity of IV 

hydration according to etiology” 

 

“Stop medications that can 

aggravate hyponatremia (certain 

families of pain killers, SSRIs, 

etc.)” 

"Verify/Adapt patient diet 

card and tray", 

 

“Fluid restrictions to prevent 

dilution of sodium” 

 

"Monitor fluid intake and 

output; Calculate fluid 

balance to prevent overload", 

 

"Monitoring vital signs, 

consciousness level- alert if 

hypotension, confusion, 

headache, irritability or 

decreased level of 
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“Correct hyponatremia gradually 

according to guidelines” 

 

“Assess for neurological status 

alteration (coma, somnolence, 

confusion…)” 

consciousness and seizure, 

edema  or muscle cramps”         

         

“Apply seizure and fall 

precautions” 

 

Hypernatremia Sodium>145 “Order blood and urine 

osmolarity, and urine electrolytes 

“ 

 

"Determine etiology of 

hypernatremia (dehydration, 

osmotic diuretics, diarrhea, etc.) 

and correct according to cause " 

 

“Check for severe dehydration” 

 

“Adapt type and quantity of IV 

hydration according to etiology” 

 

“Correct hypernatremia gradually 

according to guidelines” 

 

“Stop medications that can 

aggravate hypernatremia 

(diuretics, IV saline perfusion, 

etc.)” 

 

“Assess for neurological status 

alteration (coma, somnolence, 

confusion…)” 

 

"Verify/Adapt patient diet 

card and tray" (avoid food 

rich in sodium”, 

 

“Retrict sodium intake” 

 

“Apply regular mouth care” 

 

"interventionN10": "Ensure 

good patient hydration 

(PO/IV)", 

 

"interventionN11":"Monitorin

g of vital signs, consciousness 

level, patient color- alert if 

hypertension, hypotension, 

confusion or decreased level 

of consciousness", 

 

“Monitor fluid intake and 

output” 

 

“Apply seizure and fall 

precautions” 
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Hypokalemia Potassium <3 "Repeat potassium level” 

 

“Obtain stat ECG and examine for 

changes relative to hypokalemia.”  

 

“Perform neurological and 

muscular clinical assessment.” 

 

“Correct hypokalemia with 

potassium supplementation if 

needed" 

 

"Monitoring q4h of vital 

signs, assess for tachycardia, 

hypoventilation and altered 

neuromuscular function such 

as tetany, paresthesia, apathy, 

drowsiness, irritability", 

 

"Verify/Adapt patient diet 

card and tray (potassium rich 

food)", 

 

“IV potassium 

supplementation after order 

from physician”, 

 

"When giving potassium 

supplement through IV, 

ensure controlled delivery of 

medication to prevent bolus 

effect and reduce associated 

discomfort such as burning 

sensation at IV site"            

 

Hyperkalemia Potassium>5.5 "intervention37a":"Repeat 

potassium level (check for sample 

hemolysis)”, 

 

“Obtain stat ECG and examine for 

changes of hyperkalemia”, 

 

“Correct hyperkalemia with 

calcium gluconate or insulin with 

dextrose if needed", 

 

“Monitoring q4h of vital 

signs, heart rate and rhythm, 

respiratory rate- assess for 

bradycardia, hypoventilation 

and decreased level of 

consciousness or 

neuromuscular function 

(muscular paresthesia or 

weakness)", 

 

“Monitor urine output”, 

 



 
 

103 
 

“Check for heart rate 

irregularities” 

         

"Verify/Adapt patient diet 

card and tray (reduce source 

of potassium and encourage 

intake of carbohydrates", 

 

“Limit or stop medications 

containing potassium after 

discussion with medical 

team” 

 

 

Hyperlactatemia/lactic 

acidosis 

Serum lactate >4 "Identify hyperlactatemia etiology 

(sepsis, severe ischemia and/or 

shock, etc.)", 

 

"Perform ABGs to check for 

acidosis", 

 

"Consider transfer to intensive 

care unit" 

"Monitoring q2h of vital 

signs, consciousness level, 

patient color" 

 

"Consider continuous 

monitoring of vitals" 

“Start 2 large bore IVs for 

fluid resuscitation” 

“Monitor fluid intake and 

output” 

 

“Administer oxygen if 

saturation is less than 94%” 

 

“Place patient on cardiac 

monitor” 

“Check labs to ensure patient 

lactate levels are dropping” 
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“Check peripheral pulses” 

 
Vascular/Circulato

ry/ 

Hematological risk  

Thrombocytopenia Platelets<50 000 AND 

Hemoglobin >10 AND 

WBC>4000 

"Identify thrombocytopenia 

etiology: adverse drug effect, 

hepatic dysregulation, etc.", 

 

"Check for signs of hemorrhage 

(purpura, petechia…)", 

 

“Review anticoagulation 

medications”, 

 

"Monitor for bruises", 

 

“Minimize patient activity 

that can cause bleeding or 

fall, and educate the at-risk 

patient and caregivers about 

precautionary measures to 

prevent tissue trauma or 

disruption of the normal 

clotting mechanisms.  

 

“Review laboratory results 

for coagulation status as 

appropriate.” 

“Avoid use of restraints; 

obtain a physician’s order if 

restraints are needed”. 

 

Pancytopenia Platelets<50 000 AND 

Hemoglobin <9 AND 

WBC<2000 

“Check for signs of hemorrhage 

(purpura, petechia…)”, 

 

“Check for adverse drug effect”, 

 

“Review anticoagulation 

medications”, 

 

“Monitor for signs of bleeding”, 

 

“Consider protective isolation” 

"Monitor for bruises", 

 

“Minimize patient activity 

that can cause bleeding or 

fall, and educate the at-risk 

patient and caregivers about 

precautionary measures to 

prevent tissue trauma or 

disruption of the normal 

clotting mechanisms.  
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“Review laboratory results 

for coagulation status as 

appropriate.” 

“Avoid use of restraints; 

obtain a physician’s order if 

restraints are needed”. 

“Apply protective isolation 

precautions” 
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 Disseminated 

Intravascular Coagulation 

Platelets <100000 AND  
 

decrease of Prothrombin activity of more 

than 20 pts AND 
 

D -Dimer>1000 

 

“Identify etiology of DIC and 

provide treatment for the 

underlying disorder (infectious, 

oncological, etc.)” 

 

“Consider transfer to higher level 

of care” 

“Assess for changes in the 

level of consciousness” 

 

“Assess the respiratory depth, 

rate, and rhythm, in addition to 

breath sounds. Assess cough 

for signs of bloody sputum.” 

 

“Assess for tachycardia, 

shortness of breath, and use of 

accessory muscles.” 

 

“Monitor oxygen saturation 

and assess arterial blood gases 

(ABGs).” 

 

“Assist with coughing or 

suction as indicated.” 

 

“Anticipate the need for 

intubation and mechanical 

ventilation.” 

 

“Change patient position 

every 2hours and position the 

patient in a high-Fowler’s 

position as indicated” 

 

“Maintain an oxygen 

administration device as 

ordered.” 
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Hemorrhage (  

Decrease in Hemoglobin of more than 

1.5 pts  

AND 

(1.86*(Sodium differential+Potassium 

differential) + 0.357* (BUN 

differential) ) > (-20) 
AND   

Chloride differential <7 

) 

 

OR 

( 

Decrease in Hemoglobin of more than 1.5 

pts  

AND 

(1.86*(Sodium+Potassium)+1.15*4.75+0.3

57*BUN+14) <300 

AND 

(1.86*(Sodium+Potassium)+1.15*4.75+0.3

57*BUN+14 )>265 

) 

"Perform clinical evaluation to 

R/O bleeding- Obtain blood 

group, order coagulation panel 

and medical imaging if 

necessary", 

 

“Assess the effect of use of 

anticoagulants and NSAIDs that 

can induce or affect bleeding” 

 

“Collect urine and stool samples 

and test for occult blood” 

 

“Monitor vital signs and assess 

for hypotension or tachycardia” 

"Verify good function of IV 

access", 

 

"Monitor q2h and according 

to severity and need: vital 

signs, consciousness level, 

patient color- alert if 

hypotension, 

hypoxia/paleness, 

oliguria/anuria, confusion or 

decreased level of 

consciousness" 

 

“Check stool and urine for 

occult blood”, 

 

“Assess skin for signs of 

petechia, signs of bruising”, 

 

"Consider patient as high risk 

for fall" 

 

 

Anemia (  

Hemoglobin <8 

AND 

(1.86*(Sodium differential+Potassium 

differential) + 0.357* (BUN differential) ) > 

(-20) 

AND   

Chloride differential <7 

) 

 

OR 

( 

"Identify anemia etiology/perform 

anemia workup", 

 

"Monitoring q4h of vital signs, 

consciousness level, patient 

color", 

 

"Consider blood transfusion" 

“Assist the patient in 

prioritizing activities and 

establishing balance between 

activity and rest that would be 

acceptable to the patient” 

 

“Encourage a healthy diet that 

is packed with essential 

nutrients” 

 

"Monitor vital signs, 

consciousness level, patient 
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Hemoglobin <8  

AND 

(1.86*(Sodium+Potassium)+1.15*4.75+0.3

57*BUN+14) <300 

AND 

(1.86*(Sodium+Potassium)+1.15*4.75+0.3

57*BUN+14 )>265 

) 

 

color- alert if hypotension, 

hypoxia/paleness, 

oliguria/anuria, confusion or 

decreased level of 

consciousness" 

 

“Assess for vertigo” 

 

“Consider patient as high risk 

for fall” 

Risk of blood clotting 

disorder/Emboli 

formation 

D-Dimer > 500  

"Adjust/ Add anticoagulants", 

 

"Monitoring q4h of vital signs, 

consciousness level, patient color" 

"Monitor signs of heat, 

redness, edema or pain in 

limbs", 

 

"Monitor vital signs, 

consciousness level, patient 

color. Observe changes in 

cardiac rhythm and respiration 

rate and rhythm” 

Acute risk of blood 

clotting disorder/Emboli 

formation 

Increase in D-Dimer > 500 "Perform clinical and if necessary 

radiological examination to R/O 

pulmonary embolism or DVT", 

 

"Adjust/ Add anticoagulants", 

 

"Monitoring q4h of vital signs, 

consciousness level, patient color" 

 

"Monitor vital signs, 

consciousness level, patient 

color. Observe changes in 

cardiac rhythm and respiration 

rate and rhythm” 

 

“Arrange for someone to stay 

with the patient, as indicated”. 

Coagulation disorder Decrease in Prothrombin Activity of at least 

20% 

“Check for anticoagulant 

treatment effect and correct 

accordingly “ 

 

“Assess liver function through 

liver enzymes and coagulation 

profile” 

“Assess the patient for any 

signs of bleeding and teach the 

patient and family how to 

lower the risk of bleeding 

(trauma, risk of fall, accidental 

cuts, etc.) and what symptoms 

to look for that require 
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“Check for bleeding signs and 

manage bleeding if necessary” 

 

“Consider administration of 

Vitamine K if needed” 

medical attention (headache or 

altered mental status, 

vomiting blood, dark urine, 

change in heart rhythm or 

blood pressure, joint pain, etc. 

).” 

Nutritional risk Nasogastric tube 

feeding/Increased risk of 

aspiration pneumonia 

Use of nasogastric tube (device billed) “Consider ordering ACE 

inhibitors  for the reduction of risk 

of aspiration pneumonia 

in at-risk patients who also require 

blood pressure control” 

 

“If aspiration is doubted, order to 

put several drops of blue or green 

food coloring in tube feeding to 

help test for aspiration” 

“Check placement before 

feeding, using tube markings, 

x-ray study (most accurate), 

pH of gastric fluid, and color 

of aspirate as guides.” 

 

 “If ordered by physician, put 

several drops of blue or green 

food coloring in tube feeding 

to help indicate aspiration. In 

addition, test the glucose in 

tracheobronchial secretions to 

detect aspiration of enteral 

feedings.” 

 

“Elevate the head of bed to 30 

to 45 degrees while feeding 

the patient and for 30 to 45 

minutes afterward if feeding is 

intermittent. Turn off the 

feeding before lowering the 

head of bed. Patients with 

continuous feedings should be 

in an upright position.” 

 

“Position patients with a 

decreased level of 

consciousness on their side.” 
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“Apply good oral hygiene in 

elderly patients 

to prevent aspiration 

pneumonia” 

Severe 

hypoalbuminemia/Increa

sed risk of edema/loss of 

muscle/pressure ulcer 

Serum albumin < 3 "Determine and manage etiology 

of hypoalbuminemia through 

performing LFTs, urine albumin, 

protein measurement, BNP/NT-

proBNP" and inflammation 

markers” 

 

 

“Encourage patient to eat a 

balanced diet full of dairy, 

protein and whole-grain 

carbohydrates or taking 

supplements to increase 

the amount of protein and 

calories in his diet, and to 

removing foods high in 

sodium (salt) from his 

diet”, 

 

“Assess for peripheral edema 

in the lower extremities” 

 

“Monitor urine output”, 

 

“Monitor level of serum 

albumin in order to assess 

outcome of interventions” 

 

Interpretation risk Possible serum 

contaminated blood sample 

Increase of Serum Chloride of more than 10 

pts 

Order another sample Withdraw another sample 



 
 

6.3.4. Validation results of the different application components 

 

Results still under process 

6.3.5. Usability evaluation results 

 

Results still under process 

 

6.4. Discussion (part of the discussion will be waiting the completion of the data 

collection phase) 

6.4.1. Possible applications of the tool in the clinical workflow 

 

“VIGIL” consolidates in one view a digest of information regarding the patient 

case, its overall deterioration risk score, and the different clinical risks that are 

stemming from his/her clinical status. It can be used by the medical team for 

example in medical “sitting rounds” in order to discuss on a daily basis the 

evolution of the patient’s clinical risks, and decide upon adequate actions to 

counter or manage those risks. The tool can provide a personalized risk 

assessment and management report for each patient, against which the clinicians 

can critically compare their evaluations and clinical decisions.  

On a more administrative level, the tool can be exploited to identify “high risk” 

patients on regular floors or post transfer from critical care units, in order to 

verify medical and nursing staffing issues, provide appropriate monitoring and 

risk management, or even study appropriateness of transfer decisions. 

Moreover, it can be possible to use the tool to filter “high risk” patients and round 

on them at night by the hospital night supervisors, so as to verify their condition 

and the care they are receiving. 

In addition to that, “VIGIL” can be used as a practical educational tool for 

medical or nursing interns, since it has the advantage of presenting real and up-

to-date cases of patients in the hospital. 
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7. Discussion, Perspectives, and Conclusions 

 

7.1. Potential impact of the elaborated AI-enabled models on patient 

safety practice 

 

• Improving the detection performance of AEs relative to gold standard tools 

 

The rules-based tool developed in the first study was tested prospectively and used in 

the real workflow on daily basis, as a tool for the Patient Safety Department. Till date, 

few such tools have been used routinely in practice, beyond validation or pilot study. 

This tool mimics to a certain extent the reasoning process of a clinical auditor when 

trying to identify an AE in the patient medical file. 

When comparing the results given by this tool in matter of AE detection, to the standard 

technique which is used by most hospitals to detect AEs, namely the incident reporting 

system, it was found that in 9 months, 394 AEs were identified, occurring with 291 

patients, with an average of 1.4 AEs identified per surveillance day. Whereas only x% 

of these AEs were reported through the incident reporting system, which shows a 

significant gain in the detection performance of AEs. This result is also well documented 

in the literature, when comparing automated AE detection tools to AEs detected through 

incident reporting systems (reference). 

When compared to another audit tool used for determining AE incidence in a hospital 

or healthcare system, which is the paper based chart review, this rules-based automated 

method permits a systematic, reliable and routine use for AE detection surveillance, 

which cannot be performed with chart audit due to its resource intensiveness. 

 

The ML-based model relative to the AE-related readmissions developed in the second 

study portrays a potential of machine learning algorithms in improving the detection 

performance of trigger-based or even rule-based systems. In fact, data driven ML 

algorithms have performance advantages over rules-based approaches, as they allow 

simultaneous consideration of multiple data sources to identify predictors and outcomes 

[25]. Regarding the identification of AI-related 30-days patient readmissions, the 

potential is to improve the positive predictive value of the current detection trigger 

(which is estimated to be around 12%) to at least 50% in timely manner and using 

immediately available variables in the HIS. For this purpose, the two methods gain to 

be used consecutively to obtain the best results.  
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• Provide prediction of various patient safety risks and events  

 

The third study relative to the prediction of clinical deterioration highlights the potential 

of using ML-algorithms with a complex array of biomarkers, and an expert labeled high 

quality dataset to derive a model for the prediction of the risk of clinical deterioration 

in patients. In order to further improve the performance of the model, a study of its 

performance relative to subgroups of patient deterioration diagnosis (e.g sepsis, 

pneumonia, heart failure decompensation, etc.). This will be performed in the 

prospective evaluation of the model (fourth study – “VIGIL”). 

The model can be also used to evaluate the risk of readmission at the point where a 

discharge decision is made by the treating team, to further examine the conditions of 

discharge and prevent hospital-related complications or AEs which can lead to 

readmission within 30 days and the associated clinical and financial burden. 

 

• Improve adherence to best practice in terms of managing clinical deterioration 

risks 

 

In the fourth study, the application “VIGIL” combined the deterioration prediction 

capacity with a rules-based identification of clinical risks that could lead to clinical 

deterioration. Based on these identified risks, the application used a second rules-based 

module based on clinical practice guidelines to recommend medical and nursing 

minimal interventions. These recommendations can be useful both for the medical 

teams (especially residents or interns) and nursing teams as a reference that provides 

timely information relative to their patients. This tool can be used in the clinical 

workflow but also as an educational tool in the training curriculum of both medical and 

nursing professionals.  

These recommendations do not replace the physician’s judgement nor are a mandatory 

step in the clinical workflow. However, as an independent reference, they can be used 

to double check the clinical management, or guide any investigation in case of a 

suspected preventable patient deterioration. 

 

• The potential link between diagnostic aid and prediction of deterioration: 

towards clinical practice evaluation 

 

Theoretically, the variation of the clinical deterioration prediction score can be 

correlated to the clinical evolution of the patient. In cases where clinical deterioration 

can be potentially reversed, measuring the dynamics of the patient’s deterioration score 

plot during his hospital stay can be evaluated as an outcome indicator of clinical 

practice. For example, it can be used to compare between clinical outcomes of same 

type of patient diagnosis between physicians or between healthcare institutions.  
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The medical and nursing processes generally follow the following logical steps that 

form a cycle: clinical evaluation-diagnosis- care planification- care implementation- and 

finally clinical reevaluation. 

Therefore, the evaluation and diagnosis steps play a very important role in the whole 

clinical process and affect directly the process outcomes.  

Coupling a module for evaluation/diagnostic aid to clinicians to a clinical outcome score 

in the same application (such as in the fourth study, “VIGIL”) promises to open a new 

approach to the evaluation of clinical practices and to patient safety research, which is 

lately focusing on the diagnostic errors phenomenon [13], its mechanisms and impact.    

 

7.2. Rules-based approach and machine learning: the power of synergy 

 

• Using rules-based inferences to improve explainability of ML algorithms 

 

Explainability of ML algorithms is a major challenge that can affect the adoption of 

such a technology by clinicians and healthcare institutions. This challenge is also more 

or less complex depending on the type of algorithm involved. For example, multilayered 

perceptron neural networks and similar structures used in Deep Learning are considered 

as “black boxes”. 

Traditionally, two approaches are commonly used by developers and clinicians for AI-

driven applications. 

The first is to use exclusively “explainable algorithms”, which are algorithms that are 

relatively easily understandable and interpretable by the users ( such as Logistic 

Regression or Decision Tree). This, however, might limit the level of complexity of the 

algorithm, and with that negate the possible benefits of using AI. 

The second is using more complex algorithms but with computing a statistical “weight” 

for each feature (explanatory variable) used in the algorithm. In fact, for clinicians, it is 

important to know which features are considered relevant by the algorithm and how 

much weight is assigned to this feature. Having that information, a clinician can judge 

whether the features that the system picks out are indeed relevant or not [115] and 

evaluate algorithm outcomes accordingly, even if he doesn’t the exact explanation on 

how the outcome was decided by the system. 

 

In our fourth study (the “VIGIL” application), where a Random Forest algorithm for the 

prediction score, we have adopted two complementary approaches. First, the classical 

approach, where we displayed the values of all main features (with significant weight) 

along with the overall prediction score in order for the clinician to try to interpret the 

result according to the values of the main features. Second, we adopted another 

approach, which can be described as adding an interpretative layer based on expert 

system inferences. Practically, a number of rules were programmed to yield a number 
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of inferences in the form of “clinical risks” based on the values and combination of 

values of the different variables used by the predictive model. In addition to that, the 

critical values of the model variables were highlighted in red to facilitate identification 

and interpretation by the user. This constitutes an example of how rules-based 

inferences can be used to improve the explainability of ML algorithms. 

 

• Using rules-based inferences to augment the dataset of ML algorithms and 

improve their prediction performance 

 

One of the biggest challenges faced in the elaboration of ML-derived models is to ensure 

a quality dataset with a sufficient volume (rule of thumb of at least 10 event cases per 

feature). In the domain of clinical deterioration (third study), high quality labeling needs 

a verification by human experts, especially if subtypes of deterioration (respiratory 

deterioration, cardiac deterioration, infectious deterioration, etc.) need to be identified 

for further fine tuning of the model. This renders the process resource intensive and 

limits the speed of dataset constitution.  

Expert rules-based inferences about “clinical risks” based on the model features (such 

as the ones used in the “VIGIL” study) can help identify, in prospective or even 

retrospective implementation, certain high risk categories of patients that can be for 

example cross-matched with the database about transfers from regular floors to critical 

care in the hospital information system, in order to prepare new cohorts by type of 

deterioration risk, that can be added to the dataset and require less time intensive expert 

confirmation.   

Furthermore, it could be practical to add this possibility in the application, so that the 

clinician user can directly “label” a certain patient case and add it to the updated dataset 

of patient cases, while this case is fresh in his/her memory. This could render the 

application suitable to be “unclocked”, with the possibility of automatically updating its 

algorithms.   

   

• Using ML algorithms to improve classification performance of rules-based 

models 

 

Rules-based models are very useful in automating a clinical recommendation or a 

thought process. In the medical field however, every patient is unique when it comes to 

the combination of his clinical history, his comorbidities, and genetic signature that can 

impact the body response to diseases as well as to therapeutics. 

When formulating guidelines and recommendations, often in the form of decision trees, 

a margin is left for the clinician’s judgement to adapt the recommendations to the patient 

case specificities or to identify non-indicated recommendations. 

Rules-based models have a real challenge when dealing with this complexity, and this 

translates in a lower performance than expected in the classification or predicting 
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functions. For example, the rules-based “AE- related 30 day-readmission” in the first 

study has a PPV of less than 12%. The reason behind this is partially the high number 

of scenarios for readmission that cannot be easily modeled through strict rules. For 

example, a hospitalized patient may be readmitted for a complementary already planned 

elective procedure (e. g planned removal or readjustment of a urinary stent) or further 

to new findings (e. g anapath results), which is not considered as an AE. 

Where rules-based models can easily draw the “main” lines in the thought process and 

be as close as possible to clinical recommendations guidelines, a ML add-on can 

potentially help in handling this variability of sub-scenarios, since it can allow 

simultaneous consideration of multiple predictors and optimize fitting to the desired 

outcomes. 
 

7.3. CDSS vs. AI Models: The map is not the territory 

 

• Insight into the maturation process from predictive model to a CDSS software 

Very few predictive models grow to become CDS applications. And this is not mainly 

due to a lack of programming skills needed to transform the model into a software 

application. The reason behind this challenge lies more into a number of important but 

delicate steps that are mandatory to cross in this maturation process. 

The path from the model described in the third study to the application described in the 

fourth study included the following milestones. 

o Setting a cutoff value for the classifier relative to discrimination between classes 

of patients, relative to the risk of deterioration. From what prediction score value 

do we consider a patient to have a significant risk of clinical deterioration? This 

threshold was set through performing an evaluation of the model results on a 

prospective labeled dataset, and measuring the AUROC of the classifier. The 

threshold for the classifier was then identified by setting a minimal value for the 

true positive rate (TPR) and a maximal value for the false positive rate (FPR), 

and optimizing the threshold to fulfill this condition. Hence, the threshold was 

selected to be 0.85, for a minimal TPR of 0.7 and a maximal TPR of 0.3. 

o Solving the missing data and uncertainty of prediction problems. Predictive 

model are born good but incomplete data makes them corrupt!  

o In fact, the derivation process of models is performed on a complete dataset 

where each feature has a defined value. The algorithm then computes a model 

that fits at best the values of the features to the desired outcome variables. When 

used prospectively (for example in a CDS application), all features do not have 

always have values (e. g not all patients have a CRP exam in their labs ordered), 

and sometimes this can be the case with features that have a significant 

importance or weight for the model outcomes. We have opted in our application 

to identify and label as “uncertain” predictions where values for any of the top 

model features in terms of predictive importance are missing. 
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o Addressing the explainability challenge. As mentioned in section 7.2, 

explainability is key to improve clinician users’ adoption of the application, and 

to support efficiently and reliably their decisions. The approach we adopted was 

based on highlighting the values of “important” features, in addition to 

formulating rules-based inferences (“clinical risks”) based on the values of the 

same features as the predictive model.  

o Identifying the added value of the application for the users. For the application 

to be adopted by clinicians, it needs to provide an added value to their work 

while introducing no extra burden to their workflow. We have opted to install 

the application in the medical team’s office, where medical attendings and 

residents check the patient exam results, discuss the patient cases and document 

in the medical files. Also, it was installed on the nursing desk where nurses uses 

the HIS and document in the patient file. The application intent in this workflow 

would ideally be to play a role of a clinical reference for the medical and nursing 

teams in order to double check their evaluations, their identified risks for the 

patients and their management plan, against the data and recommendations 

provided by the application. This implementation will be the subject of a 

usability study with a sample of users, in order to better understand the value of 

the solution for the users and the barriers that need to be removed. 

 

• The need for a specific validation framework for AI-enabled CDS applications  

 

The evaluation of an AI-enabled CDS involves a bigger complexity than the evaluation 

of a AI-derived model. In fact, multiple dimensions of the application need to be 

scrutinized and reported for the evaluation to be comprehensive. 

A validation framework for AI-enabled CDS applications is yet to be elaborated and 

adopted. However, the approach proposed by Greenes et al. [1] seems to identify the 

main components for such a framework.  

For our fourth study, we opted to tackle the evaluation challenge using this approach, 

combining a classical prospective evaluation of the prediction model using AUROC for 

discrimination performance and calibration plot for the goodness of fit of the model to 

real probabilities of events. 

For the application functionalities, each rules-based function (“clinical risks” and 

“medical recommendations” and “nursing recommendations”) was tested against expert 

labeled data, using a confusion matrix. 

As for the application usability, it will be object to a usability study in order to 

determine its user friendliness, its added value in their workflow and their suggestions 

in order to optimize its usability. 

Finally a “human factors” analysis will be also planned with a focus group to evaluate 

the risks and impacts of this application on patients and on the clinician users. 
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