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Abstract

The presence of cavitation phenomena in hydraulic machines cause several structural damages and alter the machine
performances. Hence, the investigation of the cavitation in hydraulic turbine is of great industrial interest. Among
the hydraulic turbine, Kaplan turbine are known for their flexibility. The guide vane opening and the runner blade
position can be continuously regulated during machine operation maximizing the efficiency for a large range of
operating conditions. This implies the presence of shroud and hub gaps that leads to additional cavitation structures
in the runner. In this context, the principal aim of this thesis is the development of a numerical methodology able to
predict and characterize the cavitation in Kaplan turbine and its impact on the machine performance. The analysis
refers to a scale model of a 5-blades Kaplan turbine. RANS/URANS equations have been solved modeling the
cavitating flow by using a homogeneous approach and a barotropic state law. The methodology have been defined for
optimal operating conditions and, after has been tested also on the full load operating point. Experimental data have
been used to validate the developed numerical method of cavitation prediction. The numerical predictions of the
performances and the vapor structures obtained by applying the new cavitation calculations strategy are in very good
quantitative and qualitative agreement with the available experimental data. Once the numerical methodology has
been defined in-deep analyses of the cavitating flow evolution in the machine have been performed. The developed
approach appears to be very reliable, robust and precise.

Keywords: Kaplan turbines, Cavitation, Performance analysis, RANS/URANS simulations, Hydroelectric
energy

Résumé

La présence de structures de vapeur dans la machine peut provoquer des dommages structurels et altérer les per-
formances de la turbine. Ainsi, l’étude de la cavitation dans les machines hydrauliques est d’un très grand intérêt
pour les industriels. Parmi les turbines hydrauliques, les turbines Kaplan sont réputées pour leur flexibilité. En effet,
l’ouverture des directrices et la position des aubes de la roue peuvent être régulées en continu pendant l’utilisation
de la machine, optimisant son rendement sur une large plage de fonctionnement. En contrepartie, Cela implique la
présence de jeux entre les parties fixes et mobiles des turbines Kaplanà qui conduit à des structures de cavitation
supplémentaires à ce niveau des machines. Dans ce contexte, l’objectif principal de cette thèse est de développer une
méthodologie numérique capable de prédire et de caractériser la cavitation dans des turbines Kaplan et son impact
sur les performances de la machine. Dans cette thèse, un modèle réduit de turbine Kaplan à 5 pales a été analysé. Les
équations RANS/URANS ont été résolues,modélisant l’écoulement cavitant à l’aide d’une approche homogène et
d’une loi d’état de type barotrope. Tout d’abord, la méthodologie a été définie pour des conditions de fonctionnement
optimales, puis elle a été testée également sur un point de fonctionnement à forte charge. La méthode numérique de
prédiction de la cavitation qui a été développée a pu être validée à l’aide de données expérimentales. Les prédictions
numériques des performances et de l’évolution des structures de vapeur obtenues en appliquant la nouvelle stratégie
de calcul de la cavitation sont en très bon accord quantitatif et qualitatif avec les données expérimentales. Une fois
que la méthodologie numérique a été définie, des analyses approfondies de l’évolution des écoulements cavitants
dans la machine ont été effectuées. L’approche développée apparaît très fiable, robuste et précise.

Mots clef : Turbines Kaplan, Cavitation, Analyses des performances, Simulations RANS/URANS, Energie
hydroélectrique.
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Chapter 1

Introduction

1.1 The development of the renewable energy

In the last decade, the global energy consumption has increased by nearly twice the averaged
growth rate since 2010, reaching a growth rate of 2.3% in 2018 (figure 1.1). This rise has been
driven by a robust global economy and higher heating and cooling needs in some parts of the
world. Higher electricity demand was responsible for over half of the growth in energy needs.

Figure 1.1 Average annual global primary energy demand growth by fuel, 2010-18 [1].

As a consequence of higher energy consumption, global energy-related CO2 emissions rose,
hitting the historical record of 33.1 Gt CO2 in the last year. It was the highest growth rate since
2013 and 70% higher than the average increase since 2010. Looking further back, emissions
have more than doubled since the early seventies and increased by around 40% since 2000.
The IEA (International Energy Agency) assessed the impact of the fossil fuel use on global
temperature increases. It found that the CO2 emitted from coal combustion was responsible for
over 0.3 C◦ of the 1 C◦ increase in the average annual surface temperatures above pre-industrial
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Figure 1.2 CO2 emissions by region [1].

levels. As is shown in figure 1.2, since the early 2000s, Asia is the dominant source of emissions,
reaching in 2016 twice the level of the Americas and three times the one of Europe. On the
contrary, across Europe, emissions have dropped by 1.3%. The emission decline is mainly due
to a drop in the coal consumption. This decrease is concentrated in the power sector, where the
percentage of the renewable energies continue to rise in the energy mix. For example, France
saw a significant drop in greenhouse emissions, as electricity generation from hydroelectric
and nuclear power stations meant that coal and gas plants saw lower utilization in 2018 than in
2017.

This exigency to reduce the greenhouse gas emission has boosted the development of the
renewable energies. Nowadays, the renewables are the second largest contributor to the global
electricity production accounting the 23.8% of the world generation (figure 1.3), after the coal
(39.2%). Since 1990, worldwide renewable electricity generation grew on average by 3.7% per
annum, which is slightly faster than the total electricity growth rate (2.9%).

Figure 1.3 Fuel shares in world electricity production in 2016 [2].
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The hydroelectricity supplies the vast majority of the renewable energy, generating 16.3%
of the world electricity and the 68.4% of total renewable energy. Most of the hydro energy is
produced in the OECD (Organization for Economic Co-operation and Development) countries.
China, in second position, has also experienced a sharp increase of this source of energy
production in the last 15 years. Similar trend has been observed in other Asian countries. The
hydroelectric technology is relatively mature compared to other energy sources and is nearing
its potential capacity limit in most of the OECD member states, yielding an averaged annual
increase of 0.6%. Yet, the hydroelectric power is still the largest electricity producer among
renewable energies. Other energy sources, such as solar photovoltaic and wind, characterized
by higher growth rates (43.3% and 21.4%, respectively) are intermittent so they are not suitable
for frequent changes in energy demand. On the contrary, hydropower facilities are very flexible
since they can quickly go from zero power to maximum output. Moreover, since hydro power
plants can generate power to the grid immediately, they provide essential back-up power during
major electricity outages or disruptions. Thus, in the design phase it is necessary to ensure that
the turbine can work on a very wide operating range. Using water potential energy with the
efficiency over 90% it is also considered as the most efficient way to produce electricity.

Finally, another advantage of the hydro power plant is the durability. The expected life time
of a plant is estimated to be around 40 years, however, there are many hydro power plants that
were built more than 50 or even 100 years ago. Therefore, some upgrades and refurbishments
can significantly extend the lifetime of power plants and consequently reduce the price of the
electricity provided by hydropower. Moreover, the refurbishment can significantly improve the
overall efficiency of the hydro power plants and increase the electricity production.

1.2 Hydroelectric power plants and hydraulic turbines

A hydraulic turbine is a machine that converts the kinetic and the potential energy of water into
mechanical work. The water flowing through the machine puts in rotation the turbine blades.
The turbine shaft drives an alternator which operates as a generator producing electric energy.

Hydraulic turbines can be divided into two groups:

• Impulse turbines: they are put in rotation using only the kinetic energy of the fluid, in
the form of jets hitting the blades of the machine. The turbine blades are curved in order
to change the flow direction. The resulting change in momentum (impulse) causes a
force on the turbine blades. The turbine is not submerged so the pressure of the fluid
is constant. The most widely used impulse turbine is the Pelton turbine. The Pelton
turbines are often used in very high head applications (H > 500 m).
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• Reaction turbines: they generate electrical energy by using the mutual action of the
pressure and the moving water. Contrary to the impulse turbines, the reaction turbines are
completely submerged in order to induce a static pressure drop between the upstream and
the downstream of the runner. Moreover, the flow is deflected by the blades generating a
torque that puts the runner in rotation.

Reaction turbines can be further distinguished into Francis and axial turbines. Francis
turbines are vertical axis turbines characterized by a radial inflow and an axial outflow. Due to
their configuration these turbines are suitable for relatively high head (100 m < H < 500 m)
applications. Kaplan turbines have also a vertical axis but they have an axial inflow and outflow
so they have been developed mainly for low heads (10 m < H < 100 m) and high flow rates
(Q > 10 m3/s). Contrary to Francis turbines, they have few blades, characterized by a slight
curvature that allows to have low energy losses even with high flow rate. Finally, for the lowest
head applications (H < 20 m) the Bulb turbines are used. They are very similar to Kaplan
turbines but they have a horizontal axis. The operating range of Kaplan and Bulb turbines can
be further extended due to their double-regulated characteristic (see paragraph 1.3.1).

Figure 1.4 The different type of hydraulic turbine according to the head and the discharge [3].

This work is focused on the Kaplan turbines that will be presented in detail in the following
section 1.3.
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Figure 1.5 Scheme of a Kaplan turbine.

1.3 Kaplan Turbines

1.3.1 Machine description

The main parts of a Kaplan turbine (schematized in figure 1.5) are:

• the distributor, is connected to the upstream reservoir via a penstock and drives the flow
towards the runner. It is generally spiral shaped to feed the runner evenly over the entire
circumference.

• the stay vane composed by fixed blades with have structural function and to drive the
flow to the guide vane. To support the structure, the stay vane has several large vanes
which are profiled to reduce the hydraulic losses of the flow coming from the distributor.

• the guide vane consisting in adjustable blades. The guide ring has a double function: to
provide a kinetic momentum to the upstream runner flow and to control the flow rate by
adjusting the blades opening angle.

• the runner, the most important part of the turbine. The kinetic momentum provided by
the guide vane is transformed by the runner mostly into rotational mechanical energy.
In order to have an efficient production of reaction force for different flow conditions,
the rotor blades angle is adjustable. For this reasons Kaplan turbines are also called
double-regulated turbines. A flat profile is used for very low flow rates, whereas a
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heavily-pitched profile is set for high flow rates. This involves that the operating range of
the Kaplan turbine varies widely.

• the draft tube, characterized by a divergent geometry to increase the flow pressure
decreasing its velocity. This allows to recover the kinetic energy presented in the flow on
the runner outlet reducing the energy losses and improving the machine efficiency. In the
vertical axial turbine, the draft tube is composed by three parts: the cone, the elbow and
the liner.

1.3.2 Machine performance

In figure 1.6 is reported the scheme of an hydroelectric facility: the turbine works between two
reservoirs, one upstream and one downstream.

Figure 1.6 Cross-section view of a hydro power plant [4].

The hydraulic head in a given point of the system x can be defined as :

Hx =
Px

ρg
+ zx +

V 2
x

2g
, (1.1)

where Px is the static pressure, ρ is the fluid density, g is the gravity acceleration, zx is the
elevation from a determined reference axis and Vx is the flow velocity.
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Considering the total pressure as the sum of the static, potential and dynamic pressures:

Ptot = P+ρzg+ρ
V 2

2
, (1.2)

the head can be expressed as a function of the total pressure:

H =
Ptot

ρg
. (1.3)

The amount of energy that can be transformed into electricity by the turbine and generator
in an hydro power plant corresponds to the head difference between the upstream and the
downstream tanks:

Hg = Hup−Hdown =

(
Pup

ρg
+ zup +

V 2
up

2g

)
−
(

Pdown

ρg
+ zdown +

V 2
down
2g

)
. (1.4)

In both tanks, the gauge pressure is equal to the ambient one and the flow velocities on the
surface are neglectable. Thus, it can be reduced to the difference between the upstream and the
downstream levels. No losses have been considered in this formulation so, the real amount of
energy that can be harnessed by the turbine will be lower. This recovered energy quantity is
the net head Hn and corresponds to the difference of the head values on the distributor inlet
(section 1 in figure 1.6) and on the draft tube outlet (section 2 in figure 1.6). In the hypothesis
of a stationary and uniform flow in both sections, the net head can be expressed as:

Hn = H1−H2 =

(
P1

ρg
+ z1 +

V 2
1

2g

)
+

(
P2

ρg
+ z2 +

V 2
2

2g

)
. (1.5)

The net hydraulic power recovered by the runner is a function of the net machine head Hn and
the flow rate Q:

Ph = ρgQHn . (1.6)

An amount of this net power is lost in the different parts of the turbine. The actual mechanical
power to the runner shaft can be calculated as a function of the rotational speed ω and the
torque T resulted on the turbine shaft:

Pm = T ω . (1.7)
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The efficiency of the turbine is called the hydraulic efficiency and can be evaluated as the ratio
between the mechanical and hydraulic powers:

ηh =
Pm

Ph
=

T ω

ρgQHn
. (1.8)

Introducing the internal head quantity Hi that represents the amount of the energy transfered
from the flow to the turbine, the mechanical power can be also expressed as:

Pm = ρgQHi . (1.9)

The hydraulic efficiency ηh can be also considered as the internal and net heads ratio ηh =

Hi/Hn.

Hereafter, we will be refer to the net head as head and it will be indicated with H and to the
hydraulic efficiency as efficiency and it will be indicated as η .

1.3.3 Hill chart

A Kaplan turbine is defined as a double-regulated turbine since both of the guide vane opening
(γ) and the runner blade (α) angles can be adjusted. It allows the machine to adapt to imposed
discharge Q and head H, widening its operating range. A turbine operating point is defined by
a guide vane opening γ (that fix the inlet flow rate Q), the blade angle α and the machine head
H. So, the combination of these three parameters that allows to maximize the energy recovered
by the runner is called the CAM relation. When the CAM relation is respected, for a given
H, the guide vane opening is adapted to the blade angle and the operating point is defined as
“on-cam”. On the contrary, the turbine works in “off-cam”operating conditions when the guide
vane and the blade angles do not respect the CAM relation (i.e. in turbine start or stop phases).
The range of the turbine operating conditions can be defined by means of characteristic curves.
Usually, these curves are plotted as a function of two parameters, derived from the similarity
laws, that link the flow rate, the net head and the runner rotational speed as [5]:

Q11 =
Q

D2
√

H
n11 =

nD√
H

, (1.10)

where D is the runner outlet diameter, H is the net head and n is the turbine rotational speed.
The parameters defined in equation 1.10 are the unitary discharge Q11 and the unitary rotational
speed n11. They represent the discharge and the rotational machine velocity of an equivalent
turbine with a 1 m diameter and a 1 m head. Fixing the blade angle α , the evolution of the
machine efficiency η as a function of Q11 is reported in figure 1.15 a. The top of this curve
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(a) (b)

Figure 1.7 Characteristic curves of a double-regulated turbine: (a) with fixed blade angle α and (b) the final hill
chart [3].

corresponds to the “on-cam”point for a given head H and blade angle α values. The set of
the “on-cam”points for the different H and α values constitutes the performance hill chart
of the turbine (figure 1.15 b). So, the double-regulated turbine hill chart consists in η and α

iso-values curves that define the turbine performances for fixed operating conditions. They are
obtained by experimental measurements.

1.3.4 Velocity triangles

In a Kaplan turbine the fluid exits from the guide vane with a radial direction. Before the runner
inlet, the channel deviates the flow to ensure an axial entry in the runner. A fluid flows through
the runner with an absolute velocity V⃗ , in the inertial reference frame, and a relative velocity
W⃗ , in the reference frame that rotates with the runner at the angular velocity ω . Considering
that the runner tangential velocity U⃗ can be defined as:

U⃗ = ω⃗× r⃗ , (1.11)

where r⃗ is the fluid particle vector position, the following relation can be determined:

V⃗ = W⃗ +U⃗ , (1.12)
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(a) (b)

(c)

Figure 1.8 Velocity triangles in a Kaplan turbine in three different operating points: (a) optimal load, (b) partial
load and (c) full load [3].

The equation 1.12 allows to define the fluid velocity triangle on the runner inlet and outlet.
Considering a cylindric frame of reference (r,θ ,z), the velocity vector V⃗ can be decomposed
in three components: the radial Vr, the tangential Vt and the axial Vz velocities. Usually the
flow in turbomachinery is analyzed in two planes: the meridian and the blade-to-blade planes
(indicated with a and b in figure 1.9, respectively) . The component of the velocity in the
meridian plane Vm is given by the vectorial sum of the radial Vr and the axial Vz velocities. In
the runner of a Kaplan turbine, Vr is negligible compared to the other velocity components so
axial and meridional velocities are almost equal.

In figure 1.8 are reported the velocity triangles, plot at mid-hight of the blade, for three
different turbine operating points: in a) optimal load, b) partial load and c) full load conditions.
The fluid angle α is determined by the absolute velocity V⃗ and the tangential velocity U⃗ . The
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Figure 1.9 Meridian and blade-to-blade planes [6] (on the left) and their 3D visualization [7] (on the right) .

blade angle β is between the relative velocity W⃗ and the tangential velocity U⃗ . The index 1
indicates the runner inlet quantities and the index 2 the runner outlet variables. So the angle β1

is imposed to the fluid by the guide vanes while the angle β2 is imposed by the runner blade
trailing edge inclination.

In optimal conditions (figure 1.8 a) almost the entire kinetic momentum given by the guide
vane to the flow is recovered by the runner. In ideal conditions, on the runner outlet, Vt is null
and the flow is quasi-axial (there still remains a little radial component).

In the partial load operating point (figure 1.8 b) the guide vane opening angle γ and the flow
rate Q are smaller than the optimal point. As a consequence, Vz is reduced while Vt increases.
This means that, on the runner outlet, there is a Vt that puts the flow on the draft tube inlet in
rotation, in the same direction than the runner rotation.

On the contrary, at full load (figure 1.8 c), the guide vane angle and the discharge values
are higher than the optimal point so Vt on the runner inlet is smaller. As a result, Vt on the
runner outlet is negative and puts the flow in counter-rotation with respect to the runner rotation
direction.

Thus, the optimal operating conditions corresponds to a null Vt on the runner outlet in order
to maximize the internal head Hi. For this reasons, the runner blades are designed to minimize
the tangential velocity component on the runner outlet to avoid the flow separation phenomena
in the draft tube.

1.3.5 Energy conversion in the runner

The machine torque can be correlated to the flow dynamic in the runner by means of the Euler
Theory. This formulation is established for a steady inviscid flow, in a runner composed by
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an infinite number of blades, in order to consider a uniform flow in the runner upstream and
downstream sections.

Figure 1.10 Runner inlet/outlet sections.

The torque T transfered from the fluid to the turbine shaft can be linked to the tangential
velocity fields on the runner inlet and outlet (indicated as 1 and 2 in figure 1.10, respectively),
applying the balance moment equation between these two sections:

T = ρQ(R1Vt1−R2Vt2) . (1.13)

Starting from this torque definition (equation 1.13), the internal head Hi becomes:

Hi =
ω

g
(R1Vt1−R2Vt2) . (1.14)

The internal head represents the amount of the theoretical head recovered by the runner. The
quantity of energy that can be actually used by a turbine is much lower. Indeed, real runners
consist in a finite number of blades. Moreover, the fluid flowing in the turbine has a viscosity
that introduces in the system additional losses. This causes a reduction of the machine head
and, as a result, the internal head. Finally, in off-cam operating conditions, losses due to the
perturbation of the angle flow incidence on the blades have to be considered. Despite this,
the Euler theory allows to preliminary estimate the losses in the runner. The losses in this
component can be calculated as:

∆ los=Hrun−Hi =

[
P1

ρg
+ z1 +

1
g

(
V 2

1
2
−U1Vt1

)]
−
[

P2

ρg
+ z2 +

1
g

(
V 2

2
2
−U2Vt2

)]
. (1.15)
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Considering the velocity diagrams in both upstream and downstream runner sections (fig-
ure 1.8): V 2 =V 2

z +V 2
t

W 2 =V 2
z +(U−Vt)

2
⇒ 1

2
V 2−U Vt =

1
2
(
W 2−U2) . (1.16)

Replacing the equation 1.16 in the equation 1.17 the ∆ los in the runner can be expressed in the
following form:

∆ los =
[

P1

ρg
+ z1 +

1
2g

(
W 2

1 −U2
1
)]
−
[

P2

ρg
+ z2 +

1
2g

(
W 2

2 −U2
2
)]

. (1.17)

In the study of flows within rotating system a fluid mechanic property of some importance is
the Rothalpy defined as:

R = P+ρgz+
1
2

ρ
(
W 2

1 −U2
1
)
. (1.18)

So, the losses in an hydraulic turbine runner can be calculated as a function of the Rothalpy
variation between the runner inlet and outlet:

∆ los =
R1−R2

ρg
. (1.19)

Cavitation phenomena can occur in hydraulic turbine in different operating regimes. One
of the main consequence is the introduction of additional losses terms in the energy balance of
the machine.

1.4 The Cavitation

The cavitation phenomenon can be described as the appearance of vapor bubbles in an initially
homogeneous liquid medium. The cavitation structures in the liquid occur due to a local
pressure decrease, while the temperature remains approximately constant. The threshold value
of the pressure that triggers the cavitation is called vapor pressure PV .

Considering the P−T phase diagram for the water (figure 1.11), the vapor pressure is
represented by the line between the triple point Tr and the critical point C, separating the liquid
phase from the vapor phase. This means that crossing the curve under static conditions causes
the change of the phase from liquid to vapor. As it is possible to observe in figure 1.11, the
vapor pressure of a liquid is function of the temperature and the pressure. The cavitation in
cold water (operating condition of the hydraulic turbine) usually occurs at almost isothermal
conditions, while the local pressure varies (a similar phenomenon to the cavitation is the boiling,
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Figure 1.11 Water phase diagram on the P-T plane (on the left) and on the (P-v) plane (on the right) [8].

where the vaporisation occurs as a consequence of the temperature increase while the pressure
remains constant).

Generally, after the liquid has cavitated, the pressure returns back to the initial value (above
the PV ) and the produced bubbles start to implode. During the bubble collapse, strong pressure
waves can be emitted, and one of the consequences can be serious damage of the nearby solid
walls.

According to Franc [9, 10], four different types of cavitation can be identified depending
on the generating cause:

• Hydrodynamic cavitation: caused by a submerged body (i.e. rotor blade, profile, etc...).

• Acoustic cavitation: generated by the sound waves that spread through the fluid.

• Optic cavitation: caused by the laser lights.

• Particles cavitation: caused by other elementary particles, e.g. protons.

The hydrodynamic and the acoustic cavitations is provoked by strains in the fluid; on the
contrary, the optical cavitation and the cavitation of particles start because of a local energy
input into the fluid. In hydraulic machines, hydrodynamic cavitation is the most important.

The appearance of the hydrodynamic cavitation is due to several effects as the shape of the
submerged body, the surface roughness, the presence of a boundary layer between the vapor
and water which have different velocities and the vibrations of the submerged body.

Different types of cavitation are observed depending on the flow conditions and the geometry
of the submerged body. Five different hydrodynamic of cavitation exist, presented on the
figure 1.12:

• a) Transient isolated bubbles. Type of cavitation where individual bubbles form in the
liquid and move with the flow. They occur in low pressure regions, travel with the flow
until they implode in the regions with high pressure.
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• b) Sheet cavitation. It is attached to the leading edge of the submerged bodies, i.e. low
pressure side of blades and foils. The shape of the sheet can change with time.

• c) Cloud cavitation. Cloud cavitation is the origin of the most engineering problems
related with hydrodynamic cavitation, including erosion, vibrations and noise. It is
provoked by the vorticity in the flow field. The periodic shedding of cavitation clouds is
caused by the re-entrant jet.

• d) Supercavitation. This cavitation occurs when the sheet cavitation envelopes the
whole submerged solid body.

• e) - f) Cavitating vortices. Usually occurs as a result of high shear stresses in the region
inside the low-pressure cores of vortices. It is most commonly observed on the tips of
the rotating blades or behind the outlet of the runner.

1.4.1 Cavitation in hydraulic turbines

In different types of hydraulic machines, the cavitation phenomena and their effects have been
studied and presented by [11, 12]. The vapor structures in the turbine lead to several issues :

• Turbine performance alteration: the attached cavitation sheets on the runner blades
deviate the flow path influencing its incidence angle on both of the leading and the trailing
edge. This leads to an alteration of the torque on the shaft T and, as a result, of the
machine efficiency η .

• Modification of the mechanical stresses applied on the machine: the dynamic of the
vapor structures in the liquid, in proximity of the blade, influences the equilibrium of the
efforts applied by the flow on the runner.

• Material erosion: the implosion of the cavitation bubbles nearby walls generates a
premature erosion of the runner components. In Kaplan turbines, major erosion effects
are observed on the blades and on the discharge ring.

• Pressure and discharge fluctuations: The cavitation is an unsteady phenomenon that
generates low and high frequency pressure and flow rate oscillations.

• Noises and vibrations: The pressure oscillations are linked to the cavities dynamic and
collapses. As a result, vibration and acoustic noises are generated and propagated through
the hydrodynamic and mechanical system.
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Figure 1.12 Types of cavitation: a) Traveling bubble cavitation, b) Sheet cavitation, c) Cloud cavitation, d)
Supercavitation, e) and f) Cavitating vortices [10].

Consequently, the cavitation must to be prevented in turbomachinery and its prediction is
essential in order to improve the turbine design.

As mentioned before, the cavitation occurs in the turbine when the local pressure drops
under the critical vaporisation pressure. To characterize the level of cavitation, the Thoma
number (or cavitation number) σ is used and is defined as:

σ =
NPSH

H
. (1.20)

where NPSH is the Net Positive Suction Head and H is the machine head (see section 1.3.2).

The NPSH is the net available energy at the low pressure side of the machine since it
corresponds to the difference between the available energy on the machine outlet and the vapor
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pressure PV

NPSH =
P2−PV

ρg
+

V 2
2

2g
−
(
zre f − z2

)
, (1.21)

where the subscript 2 denotes the low pressure reference section (the draft tube outlet) and zre f

is the machine reference level. The NPSH represents the safety margin to complete cavitation
conditions; the lower, the higher the cavitation risk. So, the limit of the NPSH define the setting
level hs = zre f − z2 to avoid the cavitation.

Lower cavitation number σ leads to more intense cavitation phenomena. Usually, the
evolution of the influence of the cavitation on the turbine performance is evaluated by means
of the σ -break cavitation. This curve represents the machine efficiency η as a function of the
Thoma number σ (as is shown in figure 1.13).

Figure 1.13 σ -break curve.

According to the the International Electrotechnical Commission IEC 60193 Code [13],
several typical values of the cavitation number are marked on the chart:

• σi: the incipient cavitation value. Usually it is set by a visual experimental observation.
The incipient cavitation value is lower when the flow rate is close to optimal load
conditions, therefore the attack angle is well adapted to the blades. On the contrary,
increasing or decreasing the inlet discharge value, this value raises due to a variation of
the flow incidence angle.

• σp: the lowest Thoma number value when the machine is still allowed to operate.

• σs: the smallest cavitation number value when the level of the cavitation does not
influence the turbine performance curve.

• σ−1%: marks the level of the cavitation that causes 1% of the machine efficiency drop
η−1% (sometimes also σ−0.5% is considered).
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An increase of the efficiency is observed in figure 1.13 during high cavitating flow for
σ lower than σs. This behavior is not always present and usually occurs at the partial load
conditions. The origin of the phenomenon is a better flow adaptation to the blades due to the
presence of the cavitation sheets on the turbine blades [13].

1.4.2 Cavitation phenomena in Kaplan turbines

The peculiarity of the Kaplan turbine is its flexibility: the guide vane opening γ and the runner
blade position α can be continuously regulated during machine operation to maximize the
efficiency for a large range of operating conditions. However, this implies the presence of
shroud and hub gaps that leads to additional cavitation phenomena in the runner.

For the design operating range a cavity development occurs at the root of the blade (fig-
ure 1.14). This type of cavitation is known as hub cavitation and is due to the combination of
the spherical shape of the hub and to the presence of a gap between the blade and the runner hub.
Among the cavitation phenomena, the hub cavitation most affects the turbine performance [12].
When the hub cavity reaches the trailing edge of the blade a drop of the machine efficiency is
observed. It depends significantly on the σ and determines the machine NPSH.

Figure 1.14 Hub cavitation [14].

Likely at the hub the presence of a tip clearance between the shroud and the blades causes
two cavitation phenomena [14]. The first type is called the tip clearance cavitation and takes
place on the tip of the blade (figure 1.15 a). The pressure difference between the pressure
and the suction sides of the blades causes a flow through the tip clearance. When the local
pressure drops below the vapor pressure, the tip clearance cavitation occurs. The second type
of cavitation is the tip vortex cavitation. It occurs when the tip clearance flow leaves the
gap creating a jet (see figure 1.15 b). The jet leaves the suction side of the blade generating
a vortex near the tip. The vortex begins nearby the blade leading edge, detaches the blade
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surface and continues downstream along the blade profile, in the trailing edge direction. The
flow in the shroud gap does not contribute to the torque causing a consequent reduction of the
turbine efficiency. Moreover the tip cavitation phenomena cause erosion of the blade tip and the
discharge ring. Several possibilities exist in order to avoid the tip cavitation. For instance the
gap between the shroud and the blade can be reduced to its technological minimum. In addition,
anti-cavitation lips can be installed on the blade tip that push the tip vortex core away from the
blade surface [14]. The tip cavitation usually occurs as the first from all types of cavitation and
it is not very dependent on the Thoma number. Depending on the head, limited amounts of tip
clearance and vortex cavitation are tolerated in standard operating conditions [12].

(a) (b)

Figure 1.15 Cavitation phenomena on the runner tip : (a) tip clearance and (b) tip vortex cavitation [14].

Cavitation phenomena can occur on the blade leading edge due to a deviation of the flow
incidence angle from the design value. Attached cavities can be observed on the blade suction
side at higher head than the optimal operating conditions and also on the pressure side at lower
head values (see figure 1.16). If unstable, the leading edge cavitation is a very aggressive
cavitation and can lead to erosion phenomena. This type of cavitation can be avoided by
improving the shape of blade leading edge.

Figure 1.16 Leading edge cavitation [14].
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Finally, the vortex rope cavitation, shown in figure 3.3, can occurs in both partial and full
load conditions. Due to the presence of a residual tangential velocity component on the runner
outlet, a vortex-core cavitation flow can be formed in the draft tube. This vortex rotates in
the same direction than the runner in partial load conditions and in the opposite direction in
overload. At partial load, the vortex rope introduce in the system low frequency circumferential
pressure pulsations. If they match one of the free natural oscillation frequencies of the draft
tube strong vibrations can occur which can damage the draft tube structure [15, 16].

Figure 1.17 Leading edge cavitation [16].

1.5 Thesis Objectives

The cavitation in hydraulic machinery is a very dangerous phenomenon that lead to several
negative effects, e.g. the risks of erosion and the alteration of the turbine performances.
Experimental cavitation tests allow, for each investigated operating point, to identify the limit
of the cavitation, to plot the σ -break curve, to observe the appearance and the evolution of
the vapor structures and to estimate the pressure fluctuations introduced in the system by the
cavitating flow. But, experiments are expensive, time-consuming and do not allow in-deep
analyses of the cavitating flow. CFD simulations provide a useful, cost-efficient tool to analyze
complex flows in turbomachinery. Therefore, the development of a numerical methodology
able to accurately reproduce the flow behavior in cavitating conditions is very attractive for the
industry. The present study focuses on the prediction and the analysis of cavitation phenomena
inside a Kaplan turbine. The objectives of the thesis are the following:

• The main objective is to develop a numerical approach to enable the accurate prediction
of the cavitation influence on the Kaplan turbines performances. The computational
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methodology have to predict, as accurate as possible, the shape and the evolution of
the vapor structures in the turbine and the consequential alterations of the machine
performances. The knowledge of the cavitation limits is very useful in the turbine
concept phase in order to improve the design of the machine components increasing the
turbine flexibility.

• Another objective is to make a detailed analysis of the cavitating flow in the turbine. The
analysis should include the investigations, all along the σ -break curve, of the velocity
and the pressure fields in the runner and in the draft tube, the two most critical parts of the
machine. The identification of the different sources of energy losses in the turbine and
their evolution with the increase of the vapor amount in the runner is essential to relate
the modification of the performance to the cavitation. Finally, the analysis of the pressure
spectra and of the vapor structure in several cavitating conditions has a fundamental role
in order to characterize the dominant cavitation frequencies. These analyses allow to
perform more sophisticated investigation of the cavitation flow in the turbine and its
related phenomena.

The methodology, the developed numerical tools and the analyses could be an important
basis for the future studies of the cavitating phenomena in Kaplan turbines, not only for the
presented geometry and operating conditions, but also for any kind of Kaplan turbine, in
different points of the turbine hill chart.

1.6 Document organization

In this first chapter, the general context of the study has been described. The importance of the
renewable energies and in particular of the hydroelectricity in the current energy scenario has
been presented. Afterwards, the main peculiarity of hydro power plants and hydraulic turbines
have been introduced. The description have been focused on the Kaplan turbine defining its
fundamental characteristics. In the second part of the introduction, the phenomenon of the
cavitation was explained, detailing the effects on the Kaplan turbines. Finally, the objective of
the thesis in correlation to the described background have been clarified.

The second chapter (2) will describe the numerical and the physical models applied in
this work. The governing equations, the turbulence and the cavitation modeling used will be
presented followed by a brief description of the numerical schemes. This chapter will end with
the state of the art of the numerical simulation of the cavitating flow in Kaplan turbines. This
overview will be very useful in order to understand the starting background of the developed
numerical methodology.
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The third chapter (3) will start with an overview of the literature for cavitation experiments
in Kaplan turbines. Indeed, the previous works have been fundamental to the determination of
the experimental tests planning. Subsequently, the experimental setup and techniques used in
this work will be described.

The developed numerical methodology will be detailed in chapter four (4). Firstly, the
reduced scale model and the operating points investigated will be presented. For the two
operating conditions (optimal load and full load), the discretization meshes, the tested turbulence
models and the determination technique of the boundary conditions setup will be described.

The results will be divided into two chapters: the fifth chapter (5) will be dedicated to
the results of the steady simulations and the chapter six (6) to the results of the unsteady
investigations. In the first part of the chapter five (5) the numerical strategy definition steps will
be presented and validated thanks to comparisons with experimental data. In the second part,
after the methodology will be fully determined, in-deep analyses of the cavitating flow and of
the losses in the different components of the machine will be shown. In the sixth chapter (6) the
results obtained in optimal load conditions will be firstly analyzed and compared with steady
investigations. Secondly, to validate the generality of the developed calculation methodology,
the analyses in unsteady conditions of the full load operating point will be presented.

In the seventh chapter (7), the conclusions and the perspectives of this work will be drawn.



Chapter 2

Numerical and physical models

In this chapter, the numerical and physical models applied in the present work will be presented.
The first section is dedicated to the numerical models used to simulate a single phase flow in
turbomachinery. In the second part the two-phases flow modeling techniques will be introduced
focusing on the cavitating flow models. Afterwards the numerical schemes of FINE™/Turbo
will be described. Finally, a literature review of the numerical studies of cavitating flow in
Kaplan turbines will be proposed.

2.1 Single phase flow modeling

2.1.1 Governing equations

In order to describe the behavior of the fluid an Eulerian approach can be used. The flow
is considered as a deformable continuum where variable fields changing in the space and in
the time (i.e. velocity, pressure, density, ...) are defined in every point of the domain, hence
defining a field for the considered variable. In the hypothesis of a Newtonian fluid, the mass
and the momentum balance equations in the vectorial form, in a Cartesian coordinate system
can be written in the form:

∂ρ

∂ t
+∇ ·

(
ρV⃗
)
= 0 , (2.1)

∂ρV⃗
∂ t

+
(

V⃗ ·∇
)

ρV⃗ =−∇p+∇ · τ + F⃗ , (2.2)

where:

• the left side of the equation represents the Lagrangian acceleration;

• ∇p is the pressure forces;
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• F⃗ is the volume external forces applied on the fluid (in the case of study only the gravity
force will be considered);

• τ is the shear stress tensor. For a Newtonian fluid it can be defined as:

τ = ∇ ·
(

µ

(
∇V⃗ +∇V⃗ T

))
− 2

3
µ

(
∇ ·V⃗

)
I . (2.3)

In the present thesis, the investigated fluid is cold water so it can be considered as isothermal
and the energy balance equations can be neglected.

In the turbomachinery analysis, the momentum equation can be defined in the runner
rotating reference frame. In the case of a constant rotation speed ω , two additional source terms
appear in the equation, which account for the centrifugal and Coriolis forces. The balance
equation of the momentum in the relative reference of frame is written as:

∂ρW⃗
∂ t

+
(

W⃗ ·∇
)

ρW⃗ =−∇p+∇ · τ + F⃗−2ω⃗ ∧W⃗ − ω⃗ ∧ (ω⃗ ∧ r⃗) , (2.4)

where W⃗ is relative velocity (see chapter 1).

2.1.2 RANS and URANS models

A turbulent flow is characterized by chaotic changes in pressure and flow velocity. It is in
contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption
between those layers. Thus, the resolution of Navier-Stokes equations for a turbulent flow can
be more complex than in laminar case. The limit between laminar and turbulent regimes is
determined by means of the Reynolds number. It is the ratio of inertial and viscous forces
within a fluid which is subjected to relative internal movement due to different fluid velocities :

Re =
ρvL

µ
=

ρUD
µ

. (2.5)

The value of the Re in the case of study reaches 7.8 ·106, which means that the turbulence is
fully developed. Three different approaches exist to solve turbulence flows, classified according
to the decreasing computational cost and turbulence modeling fidelity (figure 2.1):

1. The DNS (Direct numerical simulation): the Navier-Stokes equations are solved without
any turbulence model. This means that the whole range of spatial and temporal scales of
the turbulence are solved;
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Figure 2.1 Classification of the turbulence models [17].

2. The LES (Large eddy simulation): only the large energy-containing scales are directly
computed, while the influence of the smallest scales is modeled;

3. The RANS (Reynolds averaged Navier-Stokes equations): the average flow is solved and
the impact of the fluctuations on the flow is modeled.

The DNS and the LES methods furnish more accurate solutions than the RANS equations
application. However, they are still computationally too expansive. For this reason, the RANS
approach remaining the most widely used, specially in industrial applications.

The RANS method is based on the Reynolds decomposition: the instantaneous flow
variable are decomposed into mean ⟨v⟩ and fluctuating v′ quantities. The instantaneous velocity
is defined as

vi = ⟨vi⟩+ v′i . (2.6)

Analogously for the pressure:
P = ⟨P⟩+P′ . (2.7)

In a statistical steady flow, the variables can be written as the sum of a time-averaged value and
a fluctuation about the value:

vi (⃗x, t) = ⟨vi⟩ (⃗x)︸ ︷︷ ︸
solved

+v′i (⃗x, t) . (2.8)

The time-averaged value is calculated as:

⟨vi⟩ (⃗x) = lim
T→∞

1
T

ˆ T

0
v(xi, t)dt . (2.9)
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where t is the time and T is the averaging interval. This interval T must be large compared to
the typical time scale of the fluctuations. If T is large enough, ⟨vi⟩ does not depend on the time
at which the averaging is started. In the case of an unsteady flow, the time averaging cannot be
used and it must be replaced by the ensemble averaging defined as:

⟨vi⟩ (⃗x, t) = lim
N→∞

1
N

N

∑
n=1

v(xi, t) . (2.10)

where N is the number of members of the ensemble and must be large enough to eliminate the
effects of the fluctuations. Hence, in the URANS formulation variables can be defined as:

vi (⃗x, t) = ⟨vi⟩ (⃗x, t)︸ ︷︷ ︸
solved

+v′i (⃗x, t) . (2.11)

The determination of the physical time step in the unsteady resolution has a fundamental role
to correctly reproduce the flow behavior. Indeed, it should be large enough to consider a mean
value and short enough to capture changes in the flow. In the case of study, local variation
of the flow density can occur. The Reynolds decomposition must to be applied also to the
instantaneous ρ:

ρ = ⟨ρ⟩+ρ
′ . (2.12)

Decomposing the flow density, additional correlations are introduced in the system, complicat-
ing the flow modeling. In order to avoid this problem, a new density weighted average, called
Fauvre average, can be applied. So the generic variable f can be expressed as:

f = f̃ + f ′′ =
⟨ρ f ⟩
⟨ρ⟩

. (2.13)

Thus, the governing equations (2.1 and 2.2) in the local form can be written as :

∂ ⟨ρ⟩
∂ t

+
∂

∂x j

(
⟨ρ⟩ṽ j

)
= 0 . (2.14)

∂ ⟨ρ⟩ṽ j

∂ t
+

∂

∂x j

(
⟨ρ⟩ṽiṽ j

)
=

∂ ⟨P⟩
∂x j

(
τi j−⟨ρv′′i v′′j ⟩

)
+ fi . (2.15)

In the equation 2.15, the term ⟨ρv′iv
′
j⟩ is the Reynolds stress and it represents the influence of

the small turbulent scale on the large eddies. This tensor introduces further six unknowns into
the system of equations. In order to close the system an approximation of the Reynolds stress
term is required, involving the turbulence modeling.
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2.1.3 Turbulence models

In literature several approaches are presented to model the Reynolds stress term. The most
common for RANS equation is based on the Boussinesq hypothesis which supposes that the
Reynolds stress proportional to the eddy viscosity µT :

⟨ρv′′i v′′j ⟩= µT

(
∂ ṽi

∂x j
+

∂ ṽ j

∂xi

)
− 2

3
⟨ρ⟩k̃δi j . (2.16)

where k̃ is the kinetic turbulent energy and δi j is the Kronecker symbol. The kinetic turbulent

energy represents the kinetic energy associated with eddies in turbulent flow
(

k̃ = 1
2

ṽ′′i v′′i
⟨ρ⟩

)
.

The turbulence models are usually classified according to the number of additional equations
introduced in the system to calculate the eddy viscosity:

• 0 - equation models (Algebraic models): the definition of the turbulence characteristic
length and velocity are based on the characteristics of the flow. The determination of
the eddy viscosity depending on these two quantities, is not accurate since they change
as a function of the investigated flow. This kind of model is typically used for fast
and numerically stable calculations. However, to simulate more precisely the turbulent
quantities with good rate of convergence, the higher level turbulence models are advised.
An example of the algebraic model is Baldwin-Lomax model [18];

• 1 - equation models: these approaches are very robust numerically and less demanding
in the near-wall resolution. This type of model, as Spalart-Allmaras model [19], are
largely used to simulate external flows, which use a modified viscosity to compute the
Reynolds stress term; this variable is computed thanks to a transport equation.

• 2 -equations models: two additional transport equations are used to define the intensity
and the length scale of turbulence. The most widely used groups of models for industrial
and academic applications are based on the k− ε and the k−ω models;

• Reynolds stress models (RSM) (Second order closure models): The Reynolds stress
term is defined by six separate transport equations. It is the most generalized of all
turbulence models and works relatively well for a wide range of engineering problems.
However, is computationally very expensive since 6 transport equations are solved.
Moreover, compared to 2 - equations models, it required high mesh quality and is
more demanding to achieve the satisfying converged solution. GE Renewable Energy’s
experience in hydraulic turbine calculations shows that the improvements provided by
the RSM models are not significant enough to justify this additional cost [20].
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More information about the presented turbulence models and their application to the turboma-
chinery can be found in [21].

In this work, according to the literature and the previous know–how of the LEGI laboratory
and GE Renewable Energy, two 2 – equations models have been used and compared: the k− ε

and the k−ω SST. All the details of the two turbulence models and of the wall treatments will
be presented in the following subsections.

2.1.3.1 The k-ε turbulence model

In the standard k− ε model, initially proposed by [22], a additional transport equations for the
kinetic energy k and for the dissipation rate ε are added to the system. Hence, the dissipation ε

and the turbulent kinetic energy k are related by the turbulence length scale L:

ε ≈ k3/2

L
. (2.17)

The turbulent eddy viscosity µT can be expressed as a function of the turbulent kinetic energy
k and the dissipation ε:

µT = ρCµ

k2

ε
. (2.18)

Where Cµ is a constant equal to 0.09. This model is very robust and, as a consequence, is
widely used in industrial application [23]. Commonly, it gives good results in the free stream
areas away from the walls but is inadequate to predict the flow separation in the boundary
layers. The flow inside a hydraulic turbine is characterized by very large gradient pressure, so a
wall function is required to correctly model the flow behavior near the walls and, consequently,
to accurate predict the performances evolution.

2.1.3.2 The k-ω turbulence models

The k−ω model introduced by Wilcox [24] defines the eddy viscosity µT using the turbulent
kinetic energy k and the specific turbulent dissipation rate (or turbulence frequency) ω:

µT = ρ
k
ω

; ω =

√
k

CµL
. (2.19)

The k−ω model is substantially more accurate than the k− ε in the near wall regions and has
therefore been successful for flows with adverse pressure gradients but the flow in the free
stream is very sensitive to the boundary conditions. Menter [25] has proposed the k−ω SST
(shear stress transport) model, combining the approach of the k−ω model in the boundary
layers and the k− ε in the free stream flow,. The k−ω SST model is not significantly more
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complicated than the original k−ω model. A blending function F1, null near the wall and equal
to 1 out of the boundary layer is introduced on the model. The equations system of the k−ω

model is multiplied by F1 while the equations of the k− ε are multiplied by (1−F1). Finally,
the two obtained system are added together. The final system consisting in two equations for
k and ω . The constants of the model are the linear combinations of the constants of the two
turbulence models:

c = F1c1 +(1−F1)c2 , (2.20)

where the indexes 1 and 2 refer respectively to the k−ω and to the k− ε models. In order
to limit the turbulent viscosity production in the boundary layer, another blending function
is defined F2 equal to 1 on the wall and null in the free-stream. So the turbulent viscosity
becomes:

νT =
µT

ρ
=

a1k
max(a1ω;SF2)

, (2.21)

where a1 is a constant and S is the scalar invariant of the strain rate tensor.

Thus, the k−ω SST model compensates the weakness of one model by the qualities of the
other one, adapting to the different flow areas. The advantages and the experiences of the k−ω

SST model application on turbomachinery are presented in [26].

2.1.4 Wall treatments in applied turbulence modeling

The adhesion of the fluid on the walls implies the presence of a region inside the flow, called
the boundary layer, characterized by high velocity gradients. To properly capture those large
gradients in a numerical simulation, it is important to have a sufficient amount of grid points
inside the boundary layer. Moreover, an appropriate size of the first inner cell is necessary to
obtain a correct prediction of the turbine performance. The boundary layer can be described
using the following dimensionless variables:

y+ =
yuτ

ν
; u+ =

⟨uτ⟩
uτ

; with uτ =

√
τw

ρ
. (2.22)

The y+ and the u+ represent, respectively, the dimensionless distance from the wall and the
dimensionless velocity parallel to the wall.

The inner region of a turbulent boundary layer in equilibrium (without pressure gradients)
can be separated into three different parts, shown in figure (2.2), depending on the importance
of the laminar and turbulent stress tensor components:
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Figure 2.2 Boundary layer description [27].

• The viscous sublayer: (y+ < 5)

Thin region where the viscous effects are predominant over the inertial (laminar) effects.
In this zone, the velocity profile is linear:

u+ = y+ . (2.23)

• The logarithmic region: (y+ > 30)

In this region, the turbulent effects are stronger than the viscous effects. The extension of
this zone is difficult to define since it depends on the Reynolds number and the pressure
gradient. The velocity profile in this part of the boundary layer follows a logarithmic law:

u+ =
1
κ

ln
(
y+
)
+C . (2.24)

where C is a constant.

• The buffer layer: (5 < y+ < 30)

It is the zone of connection between the two previous regions where the properties of the
viscous sublayer and the logarithmic zones coexist.

In order to accurately model the boundary layer region of the flow two approaches are
possible:

1. The velocity profile is modeled by means of wall laws based on the boundary layer
description presented before. This method allows to use a coarse discretization near the
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wall, reducing the computational costs. This approach is applied in particular with the
k− ε standard model since it does not use any dumping function and therefore produces
excessive turbulence in the viscous and buffer sublayers. Several modification of the
k− ε turbulence model are proposed in literature to simulate the flow in the boundary
regions [28–30].

The approach used in this PhD study is the Extended wall function (EWF) presented
initially by Hakimi et al. [31] and implemented in the Numeca CFD solver FINE™/Turbo.
In this improved k− ε model the turbulent equations are not solved in the first layer
close to the wall, as in classic low Reynolds models (i.e. the k−ω turbulence models).
Instead, a dumping function is applied which is consistent with the wall functions for
k and ε derived from the DNS data of Kim et al. [32], for a fully-developed plane
channel. To take advantage of the EWF use, an adequate discretization is required. The
FINE™/Turbo guide [33] advises to locate the first inner node in the viscous sublayer
(y+< 5).

2. The second approach consists in directly solving the turbulent equations in the boundary
layer. In contrast, a fine mesh is required. This method is suitable for turbulence models
based on the k−ω model, known also as low-Reynolds models, referring to the laminar
viscous sublayer. For the k−ω SST model, a y+ < 2 is required [26]. In case of
complex industrial flows this requirement remains a challenge and in most cases not is
not achieved.

To get around the problem the k−ω SST model has been implemented in FINE™/Turbo
with a wall function similar to the EWF. This law is automatically used when the mesh is
not fine enough to properly solve the boundary layer.

2.2 Cavitating flows modeling

The numerical modeling of cavitating flows can be very difficult due to three principal factors:
the thermodynamic equilibrium, the modifications induced by the cavitation on the turbulence
field and the numerical stability [34].

From a thermodynamic point of view, the cavitation is a very complex phenomenon.
The phase changes occur in a non-equilibrium state, difficult to simulate. So, simplifying
assumptions are required (see, for example section 2.2.1).

The simultaneous presence of the liquid and the vapor phases and their interactions introduce
compressibility effects that modify the level of the turbulence. Source terms related to the flow
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compressibility could be included in the turbulence model equations but this is not a common
practice.

Finally, the high density gradients and the local reduction of the Mach number cause
numerical instabilities. For these reasons, specific numerical methods are required to obtain a
correct numerical reproduction of the cavitation phenomena.

The two-phases models can be divided into two macro categories: the 2-flows models and
the homogeneous models.

In the 2-flows models, the behavior of each fluid is considered including in the formulation
terms of exchanges at the interfaces. Depending on the volume fractions of both phases, they
can be modeled as:

• separated flows: the lengths of the characteristic scales of the two phases are comparable
and they are separated by clear and distinct interfaces. Its applications are limited to
simpler problems where the cavity can be described as a well-defined closed volume of
pure gas or in case of stratified flow.

• dispersed phase flows: the characteristic scale of one phase (dispersed) is much smaller
than the other one (continuous). In the case of a cavitating flow, the liquid phase is
considered as the continuous while the gas (vapor) is the dispersed phase.

For the dispersed phase flows two possible approaches exist:

• Eulerian-Lagrangian approach: the liquid is considered as a continuum while the dis-
persed phase consisting in particles that are tracked during the simulation. Applications of
this method concerning mostly simulations of very simple cavitation structures (i.e. sin-
gle bubbles [35] and cloud cavitation [36]) or cavitating flow in case of basic geometries
(i.e. diesel injector nozzles [37] and hydrofoils [38]).

• Eulerian-Eulerian approach: both of the phases are considered as continua interacting
each other by means of interfaces. Examples are the 6-equations model used by Mimouni
et al. [39] to model a critical flow in a nozzle, the 4-equations model proposed by
Goncalvès and Charrière [40] to a sheet cavitation developing along a Venturi tube.

For 2-flows models, a system of governing equations is solved for each phase. An additional
equation is introduced in the system for the volume fraction of the disperse phase. The
interactions between the phases are taken into account by adding source terms in the governing
equations. These interactions are related to the phase changes (i.e. mass transfers) or they have
an hydrodynamic origin (i.e. the drag and the lift forces, surface tension, etc...).
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Contrary to the 2-flows models, the homogeneous methods treat the cavitating flows as a
mixture of the two fluids behaving as one. So, a single set of equations is required.

Comparing these approaches, the 2-flows models generally provides a more accurate
reproduction of the cavitating flows. On the other hand, they are more complex and require
higher computational costs. Moreover, the source terms introduced in the equations system to
simulate the interaction between the interfaces are difficult to determine. For these reasons,
they are not suitable in case of complex geometries. On the contrary, the homogeneous models,
because of their simplicity are widely used to investigate the cavitating flow in different type
of hydraulic turbomachinery. In literature, many examples exist of their application for the
cavitation study in pumps (i.e. centrifugal pumps [41], pump-turbines [42]) and in turbines (i.e.
Pelton turbines [43], Francis turbine [44], double-regulated turbines [45], [46] and [47]). Based
on these previous works and on the LEGI experience about simulation in cavitating conditions
in hydraulic machines, in the present investigation, the two phases flow has been modeled as an
homogeneous mixture.

2.2.1 Homogeneous approach

In the homogeneous approach the cavitating flow is considered as a mixture of liquid and vapor
phases. It relies on the hypothesis that the two phases are in local kinematic and thermodynamic
equilibrium: the slip velocity on the border between the phases are negligible, and they share
the same instantaneous velocity, turbulence and pressure fields. The proprieties of the flow
depend on the local void ratio α , defined, under homogeneous hypothesis, as:

α =
Ωv

Ω
. (2.25)

where Ωv is the vapor volume in the single discretization element and Ω is the total cell volume.
The void ratio α should be comprised between 0 and 1 for the volume conservation. If α is
equal to 1, the full cell is filled with vapor. On the contrary, if α is equal to 0, the cell is filled
with liquid.

The density ρ and dynamic viscosity µ of the mixture can be expressed as function of
the void ratio α of the liquid-vapor mixture according to equations (2.26) and (2.27), as
initially proposed by [48]. The index l represents the liquid phase and v the vapor phase of the
considered fluid.

ρ = αρv +(1−α)ρl . (2.26)

µ = αµv +(1−α)µl . (2.27)
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So, the mixture density ρ is not a constant but changes in the flow field between the vapor
density ρV and the liquid density ρL. Consequently, a cavitation model is required to determine
the mixture density. In literature, two type of models can be distinguished:

• The void ratio transport equation models: an additional mass conservation equation
for one of the phases is introduced in the governing equations system, including source
terms;

• The Barotropic model: the mixture density is directly defined by the local pressure
field.

The two cavitation models will be presented in the following sections. For a more detailed
description of these two approaches see [34].

2.2.2 Void ratio transport equation

In this approach a mass balance equation for the vapor phase is added to the homogeneous
model equation system. The additional equation is defined as (2.28):

∂ (ρvα)

∂ t
+

∂ (ρvαu)
∂x

= m++m− . (2.28)

with m+ and m− the vaporization and the condensation source terms. Different modeling
techniques of the source terms have been developed in the last decades, e.g. see table (2.1),
most based on a simplified Rayleigh-Plesset equation that relates pressure and bubble volume.
In this approach the time influence on the mass transport is taken into account by means of
empirical equations to model the source terms. However, the main difficulty of these models
relies on the determination of the source terms, which depend on different constants of the
vapor production and destruction, respectively Cprod and Cdest , that are not universally defined.
In the table 2.1 are reported the equations of the source terms for the most common void
transport models.

Among these models, the most used in hydraulic turbomachinery applications are:

• the Kunz et al. [49], applied in centrifugal pumps [50] and in propellers [51] studies;

• the Shingal et al. [52], used to investigate pumps and inducers [53], Francis turbines [54]
and also Kaplan turbines [55];

• the ZGB et al. [56], employed for pumps studies [57] and also turbine studies, in particular
Francis [58], Kaplan [46, 45] and also Pelton [43] turbines.
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Table 2.1 Vaporization/condensation source terms in different void ratio transport equation cavitation models

Authors m+ m−

Kunz et
al. [49]

Cprodρv(1−α)min(0,p−pvap)
0.5ρ2

l C2
re f t∞

Cdestρv(1−α)2
α

t∞

Li,
Merkle [59]

Cprodρl(1−α)min(0,p−pvap)
0.5ρ2

l C2
re f t∞

Cdestρvαmax(0,p−pvap)
0.5ρ2

l C2
re f t∞

Schenerr,
Sauer [60]

3Cprod
Rb

ρvρlα(1−α)
ρ

√
2
3

max(0,p−pvap)
ρl

3Cdest
Rb

ρvρlα(1−α)
ρ

√
2
3

max(0,p−pvap)
ρl

Shingal et
al. [52]

CprodCre f ρlρv
σS

[
2
3

max(0,pvap−p
ρl

]1/2
(1− fv)

CdestCre f ρlρv
σS

[
2
3

max(0,p−pvap
ρl

]1/2
fv

Zwart-
Gerber-
Belamri
(ZGB) [56]

3Cprodαnucρv(1−α)
Rb

√
2
3

max(0,pvap−p)
ρl

3Cdestαρv
Rb

√
2
3

max(0,p−pvap)
ρl

2.2.3 Barotropic model

The objective of the barotropic formulation is to join the state laws that describe each pure
phase. Thus, the evolution of the mixture density ρ in the cells will be strongly related
to the local pressure p by a barotropic law (ρ = f (p)). Different kind of barotropic laws
have been proposed in the last decades such as the logarithmic laws (i.e. Schmidt [61]), the
sinusoidal laws (as the one presented by Delannoy and Kueny [62]) and more complex laws
(i.e. the law proposed by Sinibaldi et al. [63]). The simplest and the largest used to predict
cavitation phenomena in hydraulic machines, e.g. in pumps see Refs. [41, 64, 42], is the
sinusoidal function, shown in figure (2.3). This connection law has been developed, tested
and implemented in the numerical code FINE™/Turbo in collaboration between the LEGI
laboratory and Numeca International and has been used in this work. When the local pressure
p is lower than pv−∆p/2, the whole cell is filled with vapor. On the contrary, when the
local pressure is higher than pv−∆p/2, the full cell is filled with liquid. The pure phases
are considered as incompressible. The mixture region, where pv−∆p/2 < p < pv +∆p/2, is
defined by the minimal speed of sound in the liquid-vapor mixture cmin and it can be written
as a c2

min =
∂ p
∂ρ

. To provide a smooth density transition from the liquid to the vapor phase, the
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Figure 2.3 Barotropic state law ρ = ρ(P).

density ρ is described by the following sinus function (2.29):

ρ =
ρl +ρv

2
+

ρl−ρv

2
sin
(

p− pv

c2
min

2
ρl−ρv

)
. (2.29)

The slope of the evolution law is defined by the inverse of the minimum speed of sound in the
mixture, 1

cmin
. As a consequence, smaller cmin leads to smaller mixture region. In FINE™/Turbo

it is not possible to directly set cmin. So, the parameter Amin is used instead of cmin and can be
defined as (2.30):

Amin =

√
ρl−ρv

2
c2

min . (2.30)

The void ratio inside a cell can be calculated by the local density of the mixture as (2.31):

α =
ρ−ρl

ρv−ρl
. (2.31)

The vapor density ρv is a function of the temperature. The typical value at 20°C and 100%
humidity is ρv = 17.3g/m3. In spite of that, in literature different values for the vapor density ρv

have been tested, always comprised between 1g/m3 < ρv < 100g/m3, to increase the robustness
of the simulations. Modeling cavitation by the barotropic law has normally shown a good
agreement between experimental and numerical results, especially for cavitating flows in
complex geometries, with a reduced impact on computational costs.

Comparing the advantages and the disadvantages of the two family cavitation models
presented and considering the LEGI experience in calculations of cavitating flows the barotropic
law has been finally considered the most suitable model for the thesis purposes.



2.3 Numerical schemes 37

Following previous studies [65–67] on cold water, cmin has been imposed equal to 1 m/s
(consequently an Amin = 23) and the density ratio between the vapor and the liquid phase has
been set to 0.01.

2.3 Numerical schemes

All the simulations presented in this work of thesis have been performed with the commercial
solver of Numeca International FINE™/Turbo. It is a density-based code characterized by a cell-
centered spatial discretization approach. The resolution algorithm is based on an explicit time-
marching method: every iteration a multistage Runge-Kutta temporal discretization scheme is
therefore applied. The calculation convergence is enhanced by a multigrid approach. For low
Mach number applications a preconditioning method is used. Hereafter, the main generalities of
the discretization schemes, the multigrid and preconditioning method are introduced. Detailed
descriptions are reported in [66, 68].

2.3.1 Spatial discretization approach

The spatial discretization is based on a cell centered control volume approach. In this methods,
the governing equations are integrated on the computational cell of volume Ω limited by a
surface Σ, with an outer normal n⃗, applying the theorem of Gauss-Ostrogradki (2.32):

∂

∂ t

ˆ
Ω

V⃗ dΩ+

˛
Σ

F⃗dΣ =

ˆ
Ω

SSSdΩ . (2.32)

In this equation, V⃗ is the vector of the conservative variables and SSS is a source term. The vector
of the conservative variables is defined as:

V⃗ =


ρ

ρVx

ρVy

ρVz

 . (2.33)

The flux term F⃗ can be divided into an inviscid F⃗I and a viscous F⃗V parts, F⃗ = F⃗I− F⃗V .
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The inviscid vector consists in:

F⃗I =


ρVi

ρVxVi +nxP
ρVyVi +nyP
ρVzVi +nzP

 . (2.34)

While, the viscous part is defined as:

F⃗I =


0

nxτxx +nyτxy +nzτxz

nxτyx +nyτyy +nzτyz

nxτzx +nyτzy +nzτzz

 . (2.35)

The viscous fluxes F⃗V can be determined using a pure central scheme so gradients must be
evaluated on the cell faces (as reported in figure 2.3.1). Applying the theorem of Gauss-
Ostrogradki, the gradient of the generic variable Φ can be calculated as (2.36):

∇Φ =
1
Ω

ˆ
Ω

∇ΦdΩ =
1
Ω

ˆ
Σ

ΦdΣ . (2.36)

Figure 2.4 Control volume used to calculated gradients in cell faces

In the inviscid flux formulation, artificial dissipation terms are added to the purely central
evaluation of the flux:(

F⃗I⃗n
)

i+1/2
=

{
1
2

(
F⃗I⃗n
)

i
+
(

F⃗I⃗n
)

i+1

}
︸ ︷︷ ︸

purely central

− di+1/2︸ ︷︷ ︸
dissipation

. (2.37)

Following the scheme proposed by Jameson et al. [69] the numerical dissipation is modeled by
means of tunable second-order and four-order terms.
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2.3.2 Time discretization approach

In the steady simulations a pseudo-time step (∆τ) is defined and for each iteration a 4 steps
Runge-Kutta scheme is applied to reach the convergence. The pseudo-time step can be global
or local. On one hand, if the pseudo-time is local, it is different from cell to cell and it is defined
as :

∆τ

Ω
=

CFL
u

. (2.38)

Where CFL is the Courant-Friedrichs-Lewy number, Ω is the cell volume and u is the flow
velocity that cross the cell. In FINE™/Turbo the CFL is set constant in the whole domain. A
higher value of the CFL number results in a faster convergence but will lead to divergence if the
stability limit is exceeded. As has been investigated by Pouffary [66], the CFL stability limit
is 3. But in cavitating conditions, the CFL must be reduced to 1 in order to avoid instability
problems. Contrary to the CFL number which is a global parameter, both of u and Ω are
local parameters and depend on the cell dimensions. On the other hand if the pseudo-time
step is global, it is set as the minimum local pseudo-time step on all the numerical domain.
Consequently, the calculation time increases. So, a local pseudo-time step allows to accelerate
the convergence although it requires more memory. In the unsteady calculations, a dual-time
stepping technique is applied: each physical time step is considered as a steady problem in
which the solution is obtained iterating in each pseudo-time step.

In this thesis a local time step has been used.

2.3.3 The preconditioning

The described time-marching algorithm is designed for compressible flows and is unsuitable
for low Mach number applications. Indeed, in case of incompressible flows, the magnitude of
the flow velocity becomes small in comparison with the acoustic speeds and the time-marching
compressible codes converge very slowly.

In order to provide a fast convergence and accurate solutions, a low speed preconditioner
has been developed. This method consists in multiplying the pseudo-time derivative terms in
the governing equations by a preconditioning matrix. This allows to reduce the convergence
time without consequence on the final solution since the pseudo-time terms are not physical
and it goes to zero when the convergence is reached.
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The preconditioning technique implemented in FINE™/Turbo has been developed by
Hakimi [70] in which the preconditioning matrix is defined as:

Γ
−1

=


1

β 2 0 0 0
(1+α)vx

β 2 ρ 0 0
(1+α)vy

β 2 0 ρ 0
(1+α)vz

β 2 0 0 ρ

 . (2.39)

The parameters used to regulate the preconditioning system are α , generally considered

equal to−1, and β , defined as a function of the reference velocity: β 2 = β ∗ ·U⃗2
re f = β ∗ ·

(
ω⃗R
2

)2
.

The value of the parameter β changes as a function of the Reynolds number, Re. The default
value of β ∗ is 3. The FINE™/Turbo theory guide [33] recommended to increase this value in
presence of convergence difficulties at the very beginning of a computation. However, a too
large value of β ∗ could introduce excessive artificial dissipation into the solution.
Introducing the preconditioning matrix in the equations system, the physical acoustic waves
are replaced by pseudo-acoustic modes that are much closer to the flow velocity, reducing the
stiffness and enhancing the convergence.

2.3.4 The multigrid method

The multigrid method is an algorithm for solving differential equations using a hierarchy of
discretization. The main idea of the multigrid approach is to accelerate the convergence by
solving the system of equations on different grid levels. The information is propagated from
one level to another allowing to eliminate low frequency errors.

Figure 2.5 Multigrid cycle scheme V 1-2-3 .

The interactions suppress more effectively the high frequency errors. Each level of the mesh
is correlated to a frequency level: at smaller cell dimensions correspond higher frequencies.
Thus, iterating on a grid level coarser than the real one, the lowest frequencies of the fine level
become the highest frequencies of the coarse level, smoothing the errors.
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The most used multigrid cycle is characterized by a scheme V 1-2-3, reported in figure 2.5.
Starting from the finest grid level, the result of one iteration on this grid level is restricted (one
takes for each node on the coarse grid simply the value of the grid function at the corresponding
node on the fine grid to the next mesh level) dampening the residual errors. Subsequently,
two iterations are performed on the intermediate grid and the result is restricted to the coarse
mesh level. Three iterations are computed on the coarse mesh and the solution is prolongated
(interpolated) to the intermediate level, interpolating the correction computed on the coarse
grid. Afterwards, two iterations are performed on the intermediate grid and the solution is
prolongated on the finest mesh level, obtaining the final solution of the multigrid cycle.
The application of the multigrid method is mostly limited by two factors. Firstly, the use of
this technique introduces constraints in the discretization process. Indeed, in order to define
less refined grid levels one point out of two of the starting mesh, in all the directions, must be
deleted. The other aspect to consider is that, as all convergence acceleration techniques, it can
destabilize the numerical scheme. This occurs especially when increasing the iterations on the
coarse level.

2.4 The State of the art of the numerical investigations of
the cavitating flow in Kaplan turbines

To fix the starting point of the development of the numerical methodology and to contextualize
the present work of thesis it is necessary to introduce the current state of the art about the
investigated subject. The bibliographic review presented hereafter is focused on the numerical
works in the cavitating regime only in Kaplan turbines. This choice is based on two principal
reasons:

• Even if Similitudes can be found with propellers and bulb turbines, the Kaplan turbines
differ from all the others hydraulic turbines. Indeed, the blades of a propeller are fixed and
they are not wrapped in a casing that interfere with the flow on the blade tip. Regarding,
bulb turbines, they work mostly in very low head conditions and the water does not flow
through a spiral casing before to enter in the runner. Therefore, the phenomena that occur
in this kind of machines are very different from those observed in the Kaplan turbines
and, consequently, their numerical modeling concentrates on different aspects.

• The cavitating flow are characterized by the simultaneous presence of two phases, sudden
variations and compressible aspects. Thus, the numerical modeling of a single-phase
flow is not similar to a two-phases modeling.
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The main objective of the present thesis is to develop a numerical methodology able to
predict the cavitation phenomena inside a Kaplan turbine and their effect on the machine
performances. This is the same purpose of the work presented in 2006 by Balint et al. [71].
This research mostly focused on steady numerical simulations in order to obtain the σ -break
curve and the cavitation structures in the case of a Kaplan turbine in optimal conditions. The
considered calculation domain consists in a single full-periodic interblade runner channel.
The velocity and turbulence profiles imposed on the inlet were computed from a decoupled
calculation of the distributor while a radial pressure equilibrium has been imposed on the outlet.
The two-phase flow has been considered as an homogeneous flow and the mass transfer rates
due to cavitation were regulated following the ZGB model [56]. From the analysis of the
computed iso-density surfaces and the cavitation curves a correlation between the occurrence
of the leading edge cavitation and the efficiency reduction has been identified. Unfortunately,
no experimental data have been presented in order to support this thesis and to validate the
developed numerical methodology.

A more complete study was presented in 2015 by Jošt et al. [72]. Using the same approach
applied by Balint et al. [71], the evolution of the cavitating flow in a 6-blades Kaplan turbine
has been investigated out of the optimal operating conditions. The mass flow rate has been
considered as the inlet boundary condition and the average static pressure has been imposed on
the computational outlet. Steady and unsteady simulations were performed in order to find the
most suitable configuration to accurately reproduce the cavitation phenomena and the turbine
behavior. The efficacy of the numerical model was validated by means of the experimental
data. The best results in terms of performance and cavities predictions have been obtained for
the unsteady case (see figure 2.6). Discrepancies between numerical results and measurements
wereobserved mostly due to different values of the head and the flow rate. The numerical
methodology can be further improved changing the boundary conditions on the inlet.

Figure 2.6 Comparison of shape and size of cavity in experiments and simulations performed by Jošt et al. [72] in
a experiment, b steady state simulation, tuned coefficients and c time dependent simulation, tuned coefficients.

Another investigation of the cavitating flow in the Kaplan turbine has been proposed in
2017 by Leguizamón et al. [46]. The main objective of this study, developed in collaboration
between the EPFL university and GE Renewable Energy, is to characterize the efficiency
alteration mechanism due to cavitation in Kaplan turbines. For this purpose, two different
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Kaplan geometries operating in full and in partial load conditions, respectively, have been
tested and compared. As in the other two works, the cavitating flow has been modeled by
means of the transport-equation-based homogeneous ZGB model. Steady simulations have
been performed on a simplified computational domains comprising a single one blade-to-blade
passage (using the periodicity boundary conditions) including the guide vane and the turbine
blade. The total pressure is proposed as inlet boundary condition instead of the mass flow rate.
The static pressure, which is extrapolated from the draft tube pressure drop measurements, is
defined et the outlet. The analysis of the results, supported by the experimental observations
(as reported in figure 2.7), have shown that, in both investigated cases, along the σ -break curve,
the evolution of the vapor structures causes firstly the reduction of the dissipation energy. In
a second step the occurrence of turbulent phenomena on the blade trailing edge leads to an
increase and a subsequently reduction of the machine efficiency.

Figure 2.7 Comparison of shape and size of cavity in experiments and simulations performed by Leguizamón et
al. [46].

In the table 2.2 are summarized the calculation setups of the cited works.

Table 2.2 Computational setup of numerical cavitation studies in Kaplan turbine.

Authors Domain Inlet BC Turbulence model Cavitation model
Balint et al. [71]. runner single channel velocity profiles

k-ω SST ZGB model [56]Jošt et al. [72] whole machine Q
Leguizamón et al. [46] GV + runner single channel Ptot

Other numerical studies on cavitating flow in Kaplan turbine focus on a single cavitation
phenomena: the cavitation at the blade tip. This phenomenon occurs due to the presence of the
gap between the blade and the shroud and in Kaplan turbines usually arises before all other
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types of cavitation. Moreover, depending on the machine head, the limited amount of the
cavitation on the tip is allowable in standard operating points. This cavitation type is known to
cause only a mild efficiency variation but generates erosion phenomena (a detailed review of
the different cavitation types that occur in Kaplan turbine is presented in the introduction 1).
For these reasons, the development of experimental (refer to the state of the art in chapter 3)
and numerical methodologies able to predict tip cavitation in this hydraulic turbine is of great
industrial interest.

Two-phases unsteady simulations have been performed in 2007 by Nennemann et al. [73]
using the homogeneous approach and a Reyleigh-Plesset based cavitation model to investigate
the evolution of the cavitation structures on the blade tip and their impact on the pressure
fluctuations in the discharge ring region. The whole guide vane and the runner have been
considered as the numerical domain. The comparison of the computed and the experimental
pressure spectra has allowed to find the frequency signature of the tip cavitation.

In a more recent paper presented in 2012 by Motycak et al. [14] the analysis of the
computed cavitation structures and pressure profiles on the runner blade has allowed to validate
the experimental observations of the tip cavities.

From all these works, it is clear that in order to develop a numerical methodology able to
predict the cavitating phenomena in Kaplan turbines and applicable to any geometry in any
operating conditions, it is necessary to consider the following aspects:

• The two-phases flow and cavitation models: the suitable use of the homogeneous model
in this kind of hydraulic turbines has been demonstrated. For what concerns the cavitation
model, the most used is the ZGB model [56]. This model depends on condensation and
vaporization coefficients that have to be calibrated according to the simulated problem.
For this reason, the barotropic law has been preferred for the present investigation.

• The turbulence model and the mesh refinement : these two aspects have a huge
influence on the simulations results in particular on the shape of the cavitation sheet near
walls.

• The computational domain and the boundary conditions : computational domain and
tested model have to be in fluid dynamic similitude to obtain numerical results consistent
with respect to the experimental data. The positions of the inlet and outlet sections and
the boundary conditions setup affect the cavitation parameters value (i.e. H, NPSH)
influencing the correct reproduction of the cavitating flow in the turbine.

Starting from these observations, the computational strategy to predict cavitating flow in
Kaplan turbines has been developed and validated. This is presented in details in the chapter 4.
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Experimental setup

In the present study, experimental test in non-cavitating and in cavitating regimes have been
performed in order to validate the developed numerical methodology of cavitation prediction
in Kaplan turbines. A brief review of the main experimental works in cavitation conditions in
Kaplan turbine will be presented. Starting from bibliographical the experimental tests planning
was set. Afterwards, the experimental setup and techniques used in our work will be described.

3.1 State of the art of cavitation experiments in Kaplan tur-
bines

In the literature, experimental studies on Kaplan Turbine in cavitation regime are mostly
focused on the detection and the characterization of the cavitation structures. Motycak et
al. [14], by means of a high speed camera, observe four different cavitation types: the hub, the
leading edge, the tip clearance and vortex cavitations (figure 3.1). The hub and the leading edge
cavitations are surface cavitations They depend significantly on the Thoma number and they
are mainly responsible for the machine efficiency reduction. Depending on the head, a limited
amount of cavitation on the tip is allowed in standard operating points. The tip cavitation
slightly affects the turbine performance but can cause erosion phenomena on the runner blade.
For this reason, it is considered as a very dangerous cavitating phenomena and an accurate
prediction of the vortex cores shape and intensity is essential to avoid runner pitting.

The same cavitation phenomena have been recognized by Grekula and Bark [74],who
focused their investigations on creation and transformation mechanisms (figure 3.2). The vapor
structures observed on the leading edge are attached sheets resulting from a flow separation
caused by a mismatched incidence angle. In the closure region, these structures disintegrate,
generating bubbles, re-entrant jets and vortices. On the hub region, the cavitation sheets are
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Figure 3.1 Experimental observation of the tip vortex cavitation by Motycak et al. [14].

originated from traveling bubbles gathering together. Finally, a detachment and a reattachment
phases have been observed in the tip vortex mechanism, repeating over the blade length. A
link between the vortex pattern and the vortices and wakes generated by the guide vanes is
assumed. This hypothesis is confirmed by the pressure spectra analysis presented in the works

Figure 3.2 Experimental observation of the hub and the leading edge cavitation by Grekula and Bark [74].

of Nennemann and Vu [73] and Rus et al. [75]. An amplification of the pressure amplitudes
at the guide vane passing frequency has been observed in the tip vortex cavities vicinity. The
signature frequency of the leading edge cavitation has been found by Escaler et al. [76]. A
vibration analysis in different load conditions has shown that the vibration amplitude increase
in full load conditions. This confirms that the leading edge cavitation occurs mostly when the
machine operates at maximum load.

Finally, Jonsson et al. [77], by means of air injection have identified and characterized a
vortex rope in the draft tube occurring in partial loading conditions in non-cavitating regime
(figure 3.3) This turbulent structures generally occurs out of the optimal load conditions, due to
the presence of a residual circumferential component of the velocity on the draft tube inlet. The
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vortex becomes a cavitation structures when the pressure in the core is lower than the vapor
pressure threshold.

Figure 3.3 Experimental observation of the vortex rope cavitation by Jonsson et al. [77].

The principal aim of all of these experimental works is to investigate the cavitation structures
in order to define the erosion limits. The effect of the cavitation structures on the machine
performances have been rarely analyzed.

3.2 Objective of the experimental tests in the work

In the present work, the experimental investigations aim to support and validate the numerical
methodology of cavitation prediction. The measurements of the machine performance and the
runner outlet velocity fields in free-cavitation regime have allowed to calibrate the numerical
strategy. Indeed, mesh refinement level, turbulence model and the boundary conditions setup
are chosen to approach as much as possible the numerical operating point to the experimental
one (see chapters 4 and 5). The predictive ability of the developed numerical strategy is
evaluated by the qualitative comparison of the experimental σ -break curves and the cavitation
structures. The visualizations of the vapor structures allow to firstly identify a correlation
between the cavitating flow evolution and the machine performance reduction. This will be
further investigated and confirmed by numerical analyses (chapters 5 and 6). Finally, the
experimental investigation of the pressure fluctuations on the runner outlet evidences the
presence of unsteady phenomena impacting the turbine performances.
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3.3 Test rig

Any hydraulic machine must be specifically designed to cover the head and the discharge range
associated with the installation site. So, every design is unique and the turbine installed on the
site is called the prototype. To evaluate its performances for different operating conditions,
experiments are carried out on a reduced scale model respecting, as much as possible, the
geometrical, hydraulic and mechanic similitudes. This is necessary to transpose the reduce
model results to the prototype. The experimental tests on the scale model are regulated by
the International Electrotechnical Commission IEC 60193 Code [13]. This code defines the
physical quantities that characterize the model operating points, the measurement methods, the
test conditions and the formulas used to link the scale model to the prototype.

In this thesis, the Kaplan turbine scale model has been tested on the GE Renewable Energy
laboratory platform. The main elements of the closed loop hydraulic system (figure 3.4) are:

• Two tanks, upstream and downstream of the reduced model;

• A pumping unit, which allows the fluid flow into the loop providing the machine head;

• A vacuum pump regulates the pressure at the free surface of the downstream tank and
the absolute pressure level in the tested model;

• A generator, that sets the turbine rotation speed and allows the torque measurement;

• Different transducers measure the hydraulic and mechanical parameter characteristics for
the different operating points.

The regulation of the rotation speed n sets the net head H between the upstream and the
downstream of the reduced model. The power supply to the generator imposes the rotational
speed of the shaft and the runner. The mass flow rate Q on the turbine inlet is determined by
changing the guide vane opening γ . In a Kaplan turbine, also the runner blade angle α can
be changed. Hence, the operating point is defined by regulating both the γ and the α (see
chapter 1).
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Figure 3.4 Scheme of a test platform at GE Renewable Energy laboratory [78]

3.4 Static measurements

3.4.1 Performance measurements

The turbine hydraulic efficiency is defined as the ratio of the mechanical output power of runner
Pm and the hydraulic input power Ph:

η =
Pm

Ph
=

T ω

ρgHQ
. (3.1)

On the laboratory platform, the error on the efficiency measurement does not exceed the 0.25%
of its value.

To define Pm, it is necessary to measure:

• The rotating speed of the turbine (ω = 2πn), measured by an encoder located on the
generator shaft.

• The mechanical torque (T ): is evaluated considering the contributions of the shaft
torque Ts of the runner and the friction torque Tl , due to seal and bearing arrangement
(T = Ts +Tl). On the test rig, the stator of the generator is supported by a hydrostatic
bearing. If a torque is applied on the rotor, the stator starts to rotate with it. So, the
torque Ts corresponds to the momentum necessary to block the stator. This momentum
is evaluated as the product of the force applied to a lever arm attached to the stator and
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the lever arm length. This force applied to balance the stator is measured by weighing
masses on a lever system (calibrated weights and calibrated lever arm). A torque sensor
is used to measure the residual momentum necessary to completely balance the stator.
The friction torque Tl due to the shaft mechanical connections is measured by means of a
special device mounted on the shaft line. The uncertainty on the torque value is 0.1%.

Ph is evaluated by measuring :

• The fluid density (ρ), evaluated from the measured water temperature. The temperature
is measured in the downstream tank with an error of ±0.1 C◦.

• The gravity acceleration (g), whose value is corrected according to the geographic
coordinates of the test laboratory.

• The volumetric water discharge (Q), which is measured using two electromagnetic
flowmeters placed in series upstream of the turbine. The measurement is doubled to
ensure that the value does not derived over time. The electromagnetic flow meters do not
generate any disturbance of the flow nor pressure loss and are not sensitive to wear. The
uncertainty on the flow rate measurement is 0.1% of the value.

• The net head of the machine (H). Following the IEC 60193 standards [13], it is evaluated
as:

H =

(
1

ρg

)
(P1−P2)︸ ︷︷ ︸

Static

+
Q2

2gρ2

(
1
S2

1
− 1

S2
2

)
︸ ︷︷ ︸

Dynamic

. (3.2)

The static and dynamic parts of the head are assessed separately. The static head is measured
by pressure differential transducers. The pressure transducers are located on the wall of the
distributor inlet section (1 in figure 3.5) and the draft tube outlet (2 in figure 3.5).The measure
sensors may be manifolded through a connecting pipe and the final pressure is the average of
the measured pressure values on each sensor. The difference between inlet and outlet sections
levels, (z1− z2), is included in the static pressure difference term by means of a constant value.
In the hypothesis of a turbulent uniform flow on the machine inlet and outlet sections, the
dynamic head is estimated as function of the bulk velocity (Q/S). As for the discharge, the
H measurement is doubled. The error in the net head evaluation is about 0.1%. During the
experimental tests, the H and the Q are constantly adjusted by controlling the rotation speed of
the circuit pump.
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Figure 3.5 Pressure measurement setup according to the IEC code [13]: 1 distributor inlet and 2 IEC plane in the
draft tube outlet.

3.4.2 Measurements of the losses in the draft tube

The draft tube is one of the main losses sources, especially for operating conditions, which
deviate from the optimal ones. As it is shown in figure 3.6, pressure transducers have been
located on a section near the inlet of the cone. The chosen probing plane is placed at 170mm
from the reference axis (which corresponds to the blade axis according to the IEC code). So,
the static head in the draft tube is assessed as the pressure difference between the probing plane
(3, figure 3.6) and the IEC plane on the draft tube outlet (2, figure 3.6).

3.4.3 Velocity profiles on the runner outlet

Velocity profiles at the runner outlet were measured by a LDV (Laser Doppler Velocimetry)
technique. The LDV is a non-intrusive, unsteady, optical measurement technique of the seeding
particles velocity in a flow. Two laser beams focused on the same point in the flow and their
intersection creates a measurement volume of a few millimeters (figure 3.7). Due to the
Doppler effect, the particles passing through this measurement volume diffuse the laser light at
a frequency different from the laser beam frequency. The particle velocity is calculated as the
difference between the frequency of the laser beam and the frequency emitted by the particle.
Thus, it is an indirect and local measurement technique of the flow velocity since it measures
the velocity of particles supposed to follow perfectly the flow.

In order to perform LDV measurements, particles have to be added to the flow. In the
General Electric laboratory, for environmental reasons, it is not possible to add particles to the
water passing through the turbine. But, as particles and bubbles are naturally present in the
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Figure 3.6 Probing planes positions on the scale model: 1 distributor inlet; 2 IEC plane in the draft tube outlet; 3
probing plane for the differential pressure transducers and for the LDV measurements; 4 pressure fluctuations
probing plane.

water, it is possible to perform these measurements. The optical measurement is carried out
along a diameter which is discretized by an acquisition grid, refined in the boundary layers.
At each point of the grid the measurement is limited by the acquisition time, set at 20s (≈ 16
runner rotations), or by the maximum number of particles tracked, set at 5000. The mean
velocity in each point of the diameter is obtained by the averaging every acquired particle
velocities. The uncertainty in the resulting velocity profiles varies from 1% to 10%, depending
on the quality of the acquisition. More information about the LDV technique can be founded
in [80]. The LDV measurements have been performed at 170mm from the reference axis (3,
figure 3.6). Only the axial Vz and tangential Vt velocity components have been measured. The
velocity profiles obtained by laser measurement are not symmetric since the probing area is
influenced by different factors (as is shown in figure 3.8):

• The presence of two stagnation areas, one due to the runner tip and one due to the presence
of an observation window. This local modification of the cone geometry is necessary to
ensure the orthogonality between the laser beam and the observation window.

• The measurement length is limited by the maximum length of the laser beam.
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Figure 3.7 Scheme of the operating principle of the LDV (Laser Doppler Velocimetry) measurement tech-
nique [79].

The measurements were performed only in the non-cavitating regime. In developed cavitating
regime the vapor structures disturb the laser.

Figure 3.8 Scheme of the LDV setup.

3.4.4 Cavitation measurements

The objective of the cavitation model test is to monitor the effect of cavitation development
on the hydraulic characteristics of the machine, as well as establishing the type of cavitation
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that could develop during the operation of the machine [12]. Common practice [13, 12] is to
monitor the evolution of σ -break curve (η = f (σ), see chapter 1). In the cavitation tests, the
pressure in the downstream tank is progressively reduced inducing cavitation phenomena in the
machine. During these experiments, the temperature, the net head and the rotating speed are
keep constant. The experimental NPSH is estimated as:

NPSH =
(P2−PV )

ρg︸ ︷︷ ︸
Static

+
1

2g

(
Q
S2

)2

︸ ︷︷ ︸
Dynamic

, (3.3)

where:

• P2 is the static pressure measured on the IEC plane (2, figure 3.6);

• PV is the water vapor pressure which depends on the test temperature and pressure;

• Q
S2

is the bulk velocity in the hypothesis of a turbulent uniform flow at the draft tube
outlet.

It is important to state that the cavitation curves are strongly influenced by the nuclei content
in water, i.e. number and size distribution of micro bubbles [9]. At present, knowledge is not
enough to standardize the minimum nuclei and dissolved gas content for cavitation tests [13].
Measurements show that water is always saturated at prototype scale hydraulic installations
(i.e. the cavitation phenomenon at prototype is not limited by a lack of active nuclei) [9]. It is
thus recommended to have saturated water for cavitation model tests; this saturation condition
is achieved by injecting micro bubbles until the efficiency stops decreasing for a given sigma
value. In other words, for a threshold value of nuclei content, efficiency stops decreasing by
increasing nuclei content, for a given value of Thoma number [9, 12].

The appearance and evolution of the cavitating structures is recorded by two high-speed
cameras. The cameras setup is illustrated in figure 3.9.

3.5 Dynamic measurements

During the experiments, the fluctuations of several physical quantities of interest could be
measured. In the present work, considering that in Kaplan turbine cavitation phenomena are
concentrated on the runner, the evolution of the pressure fluctuations with the σ reduction
have been measured at the downstream of the runner. Four piezoelectric pressure transducers
have been positioned on a fixed wall, around the cone diameter, a 120mm from the reference
axis (plane 4 in figure 3.6). This kind of pressure sensors use the property of the piezoelectric
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Figure 3.9 High-speed cameras setup.

materials to produce a voltage under mechanical stresses. Therefore, the dynamic part of the
pressure applied on the sensor sensitive surface generates voltage variations, which correspond
to the fluctuations on the reduced model walls. Raw data of pressure fluctuations can be
difficult to analyze and a spectral analysis can allow us to identify peculiar pressure phenomena.
Indeed, some frequencies can indicate particular phenomena that occur in the machine during
its operations. Considering the runner rotation frequency f0, the sample frequency used is equal
to f

f0
= 156 corresponding to a blade rotation of 4.5°. So, the signal analysis is only possible

for frequencies below about f
f0
= 78 (Nyquist-Shannon sampling theorem). This limit is much

higher than the frequency signatures analyzed in this study, i.e. the tip cavitation frequency
(Chapter 6).

3.5.1 Spectra analysis

Considering the real signal x(t), N values x1, ...,xN of this signal are recorded during the time
T at the sample frequency fs. In the hypothesis of a periodic signal, it can be decomposed
in Fourier series. So the time signal is decomposed into a sum of sinusoidal signals with
different amplitudes, frequencies and phases. These parameters can be deduced from the
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Fourier transform X̂T ( f ) of the periodic signal x(t), defined as:

X̂T ( f ) =
ˆ

IR
x(t)exp−i2π f tdt . (3.4)

The module of the transform is the spectrum signal that describes the evolution of the different
amplitudes as a function of the frequency. The fundamental hypothesis of the Fourier transform
formulation of a periodic signal over the time T is not verified since it very difficult that the first
and the last values of the measured signal are equal. The discontinuity of the measured signals
disturbs the estimation of the frequency content. So, the signal is multiplied by a function which
is zero at the edges of the measurement interval [0;T ], called window, obtaining a T-periodic
signal. However, windowing causes a loss of information at the edges of the measurement
interval. Several window types exist in signal processing. The most used in the turbomachinery
applications is the Hann’s window [81], defined as:

h(t) =

1
2 −

1
2cos

(
2π

t
T

)
t ∈ [0;T ]

0
. (3.5)



Chapter 4

Numerical methodology

In the present chapter, the numerical methodology of cavitation prediction will be described.
For the two investigated operating points the steady and the unsteady computational strategies
will be presented. The tested numerical domain, mesh levels and boundary conditions setup
will be introduced. Details also on the computational resources used will be furnished. The
results obtained will be analyzed in chapters 5 and 6).

4.1 Reduced-scale Kaplan turbine model

1 2
3

4
5

6

7 8

(a) (b)

Specific speed ns 170
Number of stay vanes 14

Number of guide vanes 24
Number of runner blades 5

Number of draft tube piers 1

Figure 4.1 (a): Scheme of the tested turbine model: (1) The semi-spiral distributor; (2) the stay ring; (3) the guide
vanes; (4) the runner blades and (5) the runner tip; (6,7,8) the draft tube: (6) the cone, (7) the elbow and (8) the
pier. (b): table summarizing the geometrical characteristics of the tested turbine.
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The investigated machine is a reduced-scale Kaplan turbine model developed and tested at
the GE Renewable Energy Laboratory in Grenoble (France), whose schematic is reported in
figure 4.1 a. The water is conveyed by a spiral distributor into the turbine. Crossing the stay
ring and the guide vanes, the flow then passes through a 5-blades runner. Finally, a draft tube
recovers the flow kinetic energy. The main characteristics of the tested turbine are enlisted in
the table reported in figure 4.1 b. Experiments and simulations have been performed for two
operating points, highlighted on the hill chart shown in figure 4.2:

1. In optimal load conditions (OP1) (indicated with the blue circle in figure 4.2): guide
vanes opening, γ = 39.53° and a blade angle, α = 25.93°;

2. In full load conditions (OP2) (indicated with the red circle in figure 4.2): γ = 51.19° and
α = 40.16°.

ns

Q
s

Figure 4.2 Kaplan turbine model hill chart.
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The OP1 is the machine design point and, for this reason, it has been chosen as a starting point
for the development of the numerical methodology. Given the high flow stability, cavitation
predictions with both steady and unsteady analyses have been performed in these conditions.
Afterwards, to check the generality of the calculation strategy, the numerical analyses are
repeated also for the OP2 point. Differently from the OP1, this is a full load operating point
where the machine works out of the design operating conditions. This results in a strongly
unstable flow, for which only unsteady simulations have been possible. In the following sections
the developed numerical methodology for the cavitation prediction will be presented starting
from the numerical investigation of the optimal load point OP1 and after of the full load point
OP2. The results in terms of global performances evolution and flow analyses of the two
analyzed operating points will be described in the chapter 5 and in the chapter 6.

4.2 Numerical investigation of the optimal load operating
point OP1

4.2.1 Computational domains

Figure 4.3 Numerical domain D1 with the boundary conditions used; the inlet is in blue and the outlet in red. Left:
meridional view. Right: 3D view.
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In the numerical methodology for the steady simulations different levels of geometry details
of the analyzed system figure 4.1 have been tested. At first, preliminary simulations have been
performed on the partial domain shown in figure 4.3 (this configuration will be referred to
as D1), comprising only a single interblade channel consisting of the guide vane, the runner
blades and the cone. The tip and hub clearances, typical of Kaplan turbines, are included in
the numerical model since well description of the flow through these gaps is fundamental to
determine the behavior of the hub and the blade tip cavitation regions. A periodic boundary
condition is imposed to account for the entire machine. Then, the draft tube has been included in

Figure 4.4 3D view of the numerical domain D2 with the boundary conditions used; the inlet is in blue and the
outlet in red.

the analysis and the numerical domain has been extended (domain D2 presented in figure 4.4).

Differently for the steady case, the unsteady calculations have required the complete
geometry. This in order to simulate all the interblade channels in the guide vane and in the
runner. The periodicity condition was not used anymore so all the 24 guide vanes and the 5
runner blades have been modeled as shown in figure 4.5 (domain referred to as D3).

Should be further underlined that to improve the numerical stability of the simulations an
additional volume (highlighted in pink in figure 4.4) has been added after the draft tube outlet
in both steady and unsteady analyses. On the contrary, the spiral casing was neglected given its
negligible influence. A detailed analysis and influence study of the spiral casing are reported in
the Annex A.

4.2.2 Discretization of the numerical domains

The generation of a high quality computational mesh for the analyzed Kaplan turbine is not a
trivial operation. This is because multiple constrains should be respected. The most important
of them are listed hereafter:



4.2 Numerical investigation of the optimal load operating point (OP1) 61

Figure 4.5 3D view of the numerical domain D3 with the boundary conditions used; the inlet is in blue and the
outlet in red.

1. The geometry configuration: compared to the blade or to the hub of the runner, the partial
gaps on the hub have reduced dimensions. A local mesh refinement is required, which
could not allow to ensure the homogeneity of the grid.

2. The phenomena to simulate: cavitating flows are characterized by huge density gradients
due to the presence of vaporization and condensation processes. Thus, during simulations,
it is possible that two contiguous cells are filled one by pure vapor and one by pure water.
This density discontinuity could be difficult to manage from a numerical point of view on
an extremely fine discretization [82]. On the other hand, to obtain a correct reproduction
of the flow behavior in the turbine, a refinement of the mesh near to the wall is required.

3. The turbulence model and the wall functions: the determination of the dimensions of the
inner cells depends on the turbulence model and on the wall functions used. A coarse
mesh (y+ > 20) could strongly influence the numerical results (see paragraph 2.1.4).

4. The application of the multigrid strategy (see paragraph 2.3.4).

5. The computational costs.

For these reasons, at first an optimization study of the mesh has been performed in steady
conditions on the reduced domain D1 (figure 4.3). Starting from an initial coarse mesh M1,
the numbers of elements have been increased until a more adequate fine mesh (M2) was
obtained. A fully-structured discretization approach involving only hexahedral cells was
used in this analysis. Meshing was performed by using the Numeca software AutoGrid 5.
The characteristics of these two grids, the initial coarse mesh M1 (figure 4.6 a) and the final
optimized one M2 (figure 4.6 b), are summarized in details in table (4.1). A particular mesh
treatment was required for the discretization of the numerical domain D1 (figure 4.3). Indeed,
the particular shape of the tip of the runner induced a distortion of the grid. To improve the
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(a) (b)

Figure 4.6 Mesh levels tested: (a) coarse M1 and (b) fine M2.

Table 4.1 Characteristics of the meshes of the domain D1 (M1 and M2).

Component Number of elements Min.skewness Max. expansion ratio yyy+++mmmeeeaaannn

MMM111 : Level 1, coarse mesh
Guide vane 0.1M 38° 3 3

Runner 1M 9° 4.5 4.7
Cone 0.6M 15° 1.8 3.6
Total 1.7M 4.3

MMM222 : Level 0, fine mesh
Guide vane 0.8M 38° 3 1.3

Runner 8.1M 9° 4.5 2
Cone 4.7M 15° 1.8 1.1
Total 13.6M 1.2

quality of curved geometry meshes, a multi–blocks method, called the butterfly technique, has
been applied. This consists in splitting a single block in an inner block surrounded by other
blocks (as is shown in figure 4.7). Doing this the mesh is better adapted to the shape of the
geometry is achieved, at the price of incrementing the total number of mesh elements (for more
details about the this technique see [33]).

(a) (b)

Figure 4.7 (a) Classical and (b) butterfly topology on a circle.

From the analyses performed on the domain D1 (presented in chapter 5), the extended
domain D2 has been studied. The domain D2 (figure 4.4) has been discretized using two
fully-structured meshes. The mesh of periodic interblade channel of the guide vane and the
runner was obtained cutting the fine mesh of the domain D1 above the runner tip. Then, the
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runner tip and the draft tube have been discretized separately. This second mesh was performed
with the software IGG. This has allowed to reduce the number of the grid elements in the first
part of the domain since the butterfly technique is no more used. Finally, the mesh of the draft
tube was also joined to the first part of the domain obtaining the final computational domain
(M3). The main characteristics of the mesh M3 are listed in the table 4.2.

Table 4.2 Characteristics of the mesh of the domain D2 (M3).

Component Number of elements Min.skewness Max. expansion ratio yyy+++mmmeeeaaannn
Guide vane 0.8M 38° 3 1.3

Runner 7.3M 9° 4.4 2
Draft tube 6M 18° 1.8 8.7

Total 14.1M 8.4

Table 4.3 Characteristics of the mesh of the domain D3 (M4).

Component Number of elements Min.skewness Max. expansion ratio yyy+++mmmeeeaaannn
Guide vane 19.2M 38° 3 1.3

Runner 36.5M 9° 4.4 2
Draft tube 6M 18° 1.8 8.7

Total 61.7M 8.4

In the case of the numerical domain D3 used in unsteady calculations, the periodicity has
not been used as a boundary condition neither in the guide vane nor in the runner. The mesh
M4 of the numerical domain D3 was created starting from M3. Since, the simulations have been
performed on the fine level of the grid, to compute the total number of grid elements one need
to multiply the number of the nodes of the mesh M3 by 24 for the guide vane and by 5 for the
runner. This results in about 61.7 M elements (the characteristics of the mesh M4 are reported
in table 4.3).

Mesh quality is now discussed focusing the attention on three fundamental parameters: the
dimensionless number y+, the skewness and the expansion ratio. The mean value of the y+ for
the meshes M1 and M2 is less than 5 (see table 4.1). This in order to locate the first inner node
in the viscous sublayer (for the y+ limit values, see paragraph 2.1.4). For both grids, the highest
y+max values, i.e., y+max = 14 for the mesh M1 and y+max = 7.5 for the mesh M2, are reached on
the leading edge near the blade tip where the flow has the highest velocity. Concerning the
meshes M3 and M4, the average y+ in the draft tube is between 5 and 20, so the inner cells are
located in the buffer layer. Values of y+ = 20 are reached in the additional volume (colored in
pink in figure 4.4), whereas in the nose of the pier a lower value of y+ = 12 is achieved, since
this is a stagnation point. Considering that an accurate prediction of the losses in the draft tube
is not in the main interest of this thesis, these values of y+ are considered acceptable and no
more mesh refinements are required.
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The other two parameters used to asses mesh quality are the skewness, an index of the cells
orthogonality and the expansion ratio, which represents the change in volume between two
neighboring cells. Generally, a minimum skewness of 15° and a maximum expansion ratio of 5
are sufficient to ensure a proper mesh (see [33]). The characteristics of the structured meshes
created accord to these limit values, as indicated in tables 4.1 and 4.2. The only value out of
the acceptability ranges is the minimum skewness on the runner which is equal to 9°. Indeed,
due to the complex shape of the blade and considering the presence of thin gaps on the hub and
on the shroud, a structured discretization of this part of the domain is very difficult. The final
mesh has been obtained after several optimization studies and was considered appropriate for
our applications.

4.2.3 Rotating blocks and interfaces

To accurately reproduce the real behavior of the turbine, the numerical domain must be divided
in stationary and rotating parts. The software FINE™/Turbo, as default, solves the governing
RANS and URANS equations for the relative velocity components in the relative system. This
means that for the blocks with a rotational speed equal to zero, the source terms composed by
the Coriolis and the centrifugal forces are neglected. As shown on the left side of figure 4.3,
in the computational domain D1 while the guide vanes has been set as a non–rotating block,
the rotor and the cone consist of a single rotating block. All the solid parts were assumed as
adiabatic non-slip walls. Inside the rotating block, non-rotating walls have been defined. The
shroud and the upper part of the hub, nearest to the guide vane, are set to be static with respect
to the rotational frame.

In the numerical domains D2 and D3 (figure 4.4), the draft tube has been considered as a
non-rotating block with the boundary with the runner placed at the middle of the runner tip.
Consequently, the part of the tip inside this stationary block has been considered as rotating
with respect to this frame. The connection between stationary and rotating blocks has been
ensured by means of the interfaces. In this work, for the steady calculations the interfaces
were modeled by a Full Non Matching Mixing Plane, which allows to conserve the mass
flow and the momentum between the static and the rotating parts (for more informations
about the Full Non Matching Mixing Plane see Ref. [33]). For the unsteady simulations, the
Domain Scaling method is used to simulate the rotor/stator interfaces. Using this technique
the effect of displacement due to rotation is taken into account. At each time step, the rotor is
set at its correct position and equations are solved for that particular time step for the whole
computation domain. The final solution is therefore a succession of instantaneous solutions
for each increment of the rotor position. This explain why all the guide vanes and the blades
runner were included in the computational domain.
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4.2.4 Numerical methodology for steady calculations

All the steps of the developed methodology for steady simulations are detailed in the following
paragraphs. The description of the computational strategy is structured as follows: at first,
the discussion focus on the simulations performed on the reduced domain D1. Then, the
calculations performed on the extended computational domain D2 are presented.

4.2.4.1 Simulations performed on the domain D1

The preliminary simulations on the reduced domain D1 (figure 4.3) have been performed
to define the optimal numerical setups of the methodology aiming to a reduction of the
computational costs. The tested geometry and the meshing characteristics have been presented
in the paragraphs 4.2.1 and 4.2.2, respectively. The strategies used to determine the appropriate
turbulence model and the grid refinement level, and the boundary conditions treatment are set
out in the following subsections.

Turbulence model and mesh refinement In the conception process of a numerical methodol-
ogy, the first step consists in the determination of the turbulence closure. Indeed, in simulations,
turbulence models and wall functions can influence the correct reproduction of the flow and of
the cavitation structures in the turbine and, as a consequence, the prediction of the machine
performances evolution. Another very important aspect in numerical calculations is the eval-
uation of the level of the mesh refinement. The domain discretization have a fundamental
role in the flow simulation and it is strictly linked to the criterion of the turbulence model and
wall functions used (see chapter 2). The k− ε with Extended wall function (EWF) and the
k−ω SST turbulence models, detailed in chapter 2, have been tested and compared on the two
different grid levels, i.e., the coarse mesh M1 and the one optimized fine M2, presented in the
paragraph 4.2.2. At first, simulations have been performed in non-cavitating regime imposing
classical boundary conditions for incompressible calculations: the experimental mass flow rate
value Qexp as inlet and a static pressure equal to the ambient one Pamb as outlet. The mass
flow rate Q on the inlet has been coupled with the velocity profiles that come from the stay
ring and supposed to be linear. The law to determine these profiles has been furnished by GE
Renewable Energy Laboratory, Grenoble, France. Afterwards, the cavitation has been induced
in the system by decreasing the Cavitation number (or the Thoma number) σ . The downstream
Thoma number in FINE™/Turbo is defined as 4.1:

σdownstream =
Pre f −PVAPS

ρU2 , (4.1)
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where the Pre f is the reference pressure imposed equal to the ambient pressure value Pamb,
PVAPS is the relative saturation pressure and U = ωR is the reference velocity. In order to
decrease the cavitation number σ , the relative saturation pressure PVAPS is increased to reach
different values of the σ , keeping the downstream pressure Pout constant. All the calculation
parameters are summarized in table 4.4.

Table 4.4 Numerical setup for the turbulence model and grid level determination strategy.

Case Turbulence model Mesh level Inlet BC Outlet BC Cavitation model
1 k− ε (EWF)

M1
Q = Qexp P = Pamb Barotropic law2 k−ω SST

3 k− ε (EWF)
M24 k−ω SST

Inlet and outlet boundary conditions As for the turbulent model, imposed boundary con-
ditions will greatly influence the stability and the results of the simulations. So, their correct
definition is another fundamental step of the setup of a calculation strategy. At first, starting
from the classical set of boundary conditions for incompressible flows, a mass flow rate equal
to the experimental one, Qexp, has been imposed at the inlet of the guide vane channel and
the ambient pressure value Pamb was fixed at the outlet (Case A). Each operating point of a
turbine is identified on the machine hill chart by a couple of machine speed n and mass flow
rate Q values. Moreover, for a fixed value of the head H, at each couple (n,Q) will correspond
a single value of the efficiency η . Considering this, a correct comparison of the numerical
results with experimental data will be achieved only if a small mismatch is obtained between
the numerical and experimental values of the machine speed n, the head H and the mass flow
rate Q. However, in a numerical computation it is possible to control only two of these three
parameters.

In the simulations performed on the reduced domain D1, the mass flow rate Q and the
machine speed n are imposed, whereas the machine head H is computed. However, as will be
discussed in more details in section 4.2.4.2, considering that the extension of the computational
domain D1 is reduced compared to the real geometry, it was not possible to have the same
experimental and numerical head H value. This suggested that to ensure the fluid dynamic
agreement between the experimental and the simulated machine another parameter should be
fixed. Among the machine performance indicators, the torque T has been chosen since its
determination is strictly linked to the flow incidence on the blades and on the hub of the runner.
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Indeed, the machine torque T can be calculated as 4.2:

T =

ˆ
S

rrr×FFFdS , (4.2)

where rrr is the vector distance from the rotation axis z and FFF = FFFV +FFF p is the sum of all
the viscous and pressure forces acting on the considered surface S. Furthermore, a numerical
torque value closer to the experimental one ensures that the work of the turbine is correctly
reproduced.

At first, keeping the experimental mass flow rate Qexp as inlet boundary condition, various
tests in non-cavitation conditions have been computed to reduce the difference between the
experimental and numerical torque :

• The guide vanes opening γ and the blade angle α have been modified within the mea-
surement uncertainty range (±0.2°). In this range, several (γ,α) combinations have
been tested in non-cavtating regime. Slight improvements in terms of torque value and
velocity profiles at the runner outlet predictions have been achieved reducing only the
blade angle of 0.2°. Hence, this geometrical configuration has been used for all the
following calculations;

• The velocity and the turbulence profiles obtained from the simulation of the single
distributor have been imposed as inlet boundary condition on the domain D1 (more
information about this test are in Annex A). Considering that this method has not led to
any significant improvement of the torque value and it requires higher computational
costs, it has not been further used in the rest of the present study.

Finally, the following iterative procedure is tested: starting from the experimental value Qexp,
the mass flow rate is varied until the target value of torque is obtained (Case B). The corrected
numerical mass flow rate will be referred to as Qcor. This correction could be justified by the fact
that during cavitation experiments, the machine head H is the parameter that is kept constant,
whereas the mass flow rate on the inlet Q could change with the cavitation development of about
2.5% of its nominal value. This procedure has been applied in a non-cavitating regime and, once
the Qcor has been fixed, simulations have been performed also in cavitating conditions. These
simulations have been performed on the fine mesh M2, applying the k−ω SST turbulence
model. The used numerical parameters are summarized in the table 4.5.

4.2.4.2 Simulations performed on the domain D2

After the preliminary tests on the reduced domain D1, the extended domain D2 (shown in
figure 4.4) is considered. In this domain the draft tube has been included in the analysis in
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Table 4.5 Numerical parameters used on the inlet boundary condition tests on D1.

Case Inlet BC Outlet BC Mesh level Turbulence model Cavitation model
A Q = Qexp Pout = Pamb M2 k−ω SST Barotropic law
B Q = Qcor

order to estimate its effect on the flow and, consequently, on the machine performance leading
to an accurate comparison between simulations and experiments. This appears more evident if
the definition of the turbine head H is recalled. Assuming an uniform flow at the distributor
inlet Sin and at the draft tube outlet sections Sout , the experimental value of the turbine head
Hexp is evaluated as 4.3:

Hexp =
(Pin−Pout)

ρg
+

1
2g

(
Q
ρ

)2( 1
S2

in
− 1

S2
out

)
, (4.3)

The equation (4.3) shows that the machine head definition depends on the position of the inlet
and outlet sections of the machine. In the reduced numerical domain D1, the outlet differs
from the experimental setup so the computed and measured heads cannot be directly compared.
Furthermore, also modifying the inlet mass flow rate value to fix the torque, is not possible to
ensure that the computed flow is the same than experimental observations. On the contrary,
considering the draft tube in the numerical domain, the numerical and the experimental outlet
sections will match.

Concerning the position of the inlet section, in both domains D1 and D2, the spiral case has
not been taken into account for computational costs reasons so experimental and numerical
inlet sections are different. However, experimentally it has been observed that the contribution
of the distributor in the turbine head is negligible (it is almost 0.1% of the total amount) and
numerical analyses (described in detailed in the Annex A) have shown that it has no influence
on the non-cavitating flow behavior. This justifies the chosen to neglect this component in the
present study.

The new numerical domain D2 has been discretized with the mesh M3 (presented in detail
in section 4.2.2) and two different inlet boundary conditions have been tested in both non-
cavitating and cavitating regimes:

1. Case C: The mass flow rate value Qcor obtained from the iterative procedure performed
on D1 has been imposed on the inlet. The calculation with this boundary condition has
been performed to estimate the influence of the draft tube on the flow by comparing the
results obtained on the numerical domains D1 and D2;

2. Case D: The total pressure Ptot , computed from the previous simulation on the domain
D2 (Case C), has been imposed as inlet boundary condition. In this way, the machine
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head has been fixed whereas the flow rate has not been controlled during the development
of the cavitation, exactly how is done for the real machine.

As done for the calculation with domain D1, a static pressure equal to the ambient pressure is
imposed on the draft tube outlet (Pout = Pamb) and the cavitation has been introduced increasing
the relative saturation pressure PVAPS. The used calculation parameters are summarized in the
table 4.6.

Table 4.6 Numerical parameters used on the inlet boundary condition tested on D2.

Case Inlet BC Outlet BC Mesh Turbulence model Cavitation model
C Qcor P = Pamb M3 k−ω SST Barotropic law
D Ptot

4.2.5 Numerical methodology for unsteady calculations

Unsteady simulations have been performed in optimal load conditions, OP1 to improve and
complete the numerical methodology to predict the cavitation evolution inside the analyzed
Kaplan turbine. As previously discussed, the points of the σ -break curve at low Thoma number
(σ ) values are characterized by intense and unsteady cavitation phenomena. So, calculations in
steady regime could not be adapted to represent the cavitating flow behavior for these points.

The main properties of the numerical setup used for the steady calculation strategy (see 4.2.4)
have been re-used also to perform the the unsteady simulations. In particular:

• The mesh refinement level;

• the turbulence model;

• the inlet and outlet boundary conditions.

are the ones chosen for the steady cases.
Differently from steady calculations, all the 24 guide vanes and the 5 runner blades have

been considered in the computational domain (D3, see figure 4.5) in order to ensure a different
flow behavior in each interblade channel of the runner.

One of the most important parameter to define for unsteady calculations is the physical
time step ∆t since it can greatly affects the duration and precision of the simulations and have a
strong impact on the the computational cost. Typical time discretization choices for hydraulic
turbine are of the order of 1°, 2° or 3° of the rotation of the machine, depending on the
typology of the phenomena that should be captured by the simulations. In this work, the main
objective is to predict the appearance and the evolution of the cavitation structures on the
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runner blades and their effects on the machine performances. So, the value of the physical time
step has been chosen to ensure the observations of the only high frequency phenomena. In
a previous study on the prediction of the efficiency of a Kaplan turbine presented by Jošt et
al. [83], a physical time step ∆t of 0.5° of the rotation of the turbine is suggested in order to
obtain an accurate solution.

Therefore, two values of ∆t=0.5°and ∆t=1°of the machine rotation have been initially tested.
Having notice a negligible impact on the results, the time step equal to 1°has been imposed
for all the unsteady simulations obtaining a reduction of the computational cost. The main
calculation parameters are reported in the table 4.7.

Table 4.7 Numerical parameters used to perform unsteady calculation on the optimal load operating point OP1.

Case Computational domain Mesh Inlet BC Outlet BC Turbulence model Cavitation model ∆∆∆ttt
E D3 M4 Ptot Pout = Pamb k−ω SST Barotropic law 1°

4.3 Numerical investigation of the full load operating point
OP2

Another operating point of the studied Kaplan turbine indicated on the turbine hill chart
(figure (4.2)) as OP2, is successively studied. This point has been chosen far from the optimal
load conditions in order to check the applicability range of the proposed numerical methodology.
In OP2 the machine works at same head H and rotational speed n as in the optimal load operating
point OP1, but with a higher mass flow discharge Q. This raises more developed and unstable
cavitation phenomena even at higher σ values. This makes the steady calculations of this point
not reliable and therefore only the chosen methodology for the unsteady simulations will be
discussed below.

4.3.1 Computational domain

The computational domain used in the investigation (referred to as D4) comprises all the
elements considered for the unsteady study of the point OP1 (domain D3 represented in
figure 4.5): all the guide vanes and the blades runner have been modeled and the distributor is
not taken into account. However, compared to the domain D3, the opening angle of the guide
vanes and the inclination of the blades of the runner have been changed to 51.19°and to 40.16°,
respectively.
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4.3.2 Discretization of the numerical domain

The discretization procedure is the same used for the study of the OP1: the computational grid
consists of two structured meshes. At first, the guide vanes and the runner have been discretized
together, then this mesh has been merged with the one of the draft tube, which is the same used
for the analyses of previous operating point. Only the coarse mesh level M5 has been tested. Its
main characteristics are reported in table (4.8).

Table 4.8 Mesh characteristics of the domain D4 (M5).

Component Number of elements Min.skewness Max. expansion ratio yyy+++mmmeeeaaannn

MMM555 : Level 1, coarse mesh
Guide vane 2M 34° 1.9 3.4

Runner 3M 13° 4.6 5
Draft Tube 1M 18° 1.8 30

Total 6M 12.8

The values of the minimum skewness and maximum expansion ratio are within the pre-
scribed range to ensure a good discretization (see the paragraph 4.2.2). An exception to this is
the skewness in the runner that, also in this case, is slightly lower than 15°. This is due to the
complex shape of the blade and to the presence of the hub gap. The y+mean is lower than 5 in
the guide vanes and in the runner domains, ensuring that the cells near to the wall are in the
viscous sublayer. The maximum registered value of y+ in the runner is of y+max = 15. However,
this concern only few cells on the leading edge and in the middle of the blade tip, where the
fluid is more accelerated. In the draft tube, the y+mean is higher than 20 so the inner cells are
placed in the logarithmic layer. The quality of this meshes have been considered adequate for
preliminary investigations of OP2.

4.3.3 Rotating blocks and interfaces

As for unsteady calculations in optimal load conditions, OP1, the guide vanes and the draft
tube have been considered as stationary blocks, whereas the runner is rotating. The interfaces
between rotor/stator parts have been placed respectively at the guide vanes outlet and at the
middle of the runner tip and they have been simulated by using the Domain scaling technique.

4.3.4 Numerical methodology for unsteady calculations

The turbulence model, the inlet/outlet boundary conditions and the physical time step ∆t are
the same used for the unsteady simulations in the OP1 (see paragraph 4.2.5). To reduce the
computational costs, the study was performed on a coarse mesh level, M5. The characteristics
of the numerical setup are summarized in the table 4.9.
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Table 4.9 Numerical parameters used to perform unsteady calculation on the full load operating point OP2.

Case Mesh Inlet BC Outlet BC Turbulence model Cavitation model ∆∆∆ttt
F M5 Ptot Pout = Pamb k−ω SST Barotropic law 1°

4.4 Convergence criteria

In the performed steady and unsteady simulations a good convergence should be ensured in
order to achieve reliable results. If this is not a difficult goal to accomplish in the operating
points close to the BEP (as the OP1) and in non-cavitating regime, things are less straightforward
when cavitation phenomena occur, especially in high load conditions points (i.e. at the OP2).
Chosen convergence criteria are now described.

4.4.1 Convergence criteria for steady simulations

Typically, the convergence of steady state CFD analyses is assessed by monitoring the residuals
values, the solution imbalances and the stability of the quantities of interest. Undoubtedly ,
among these the global residuals are the most fundamental parameters: they measure the local
imbalance of a conserved variable in each control volume. The lower the residual value is,
the more accurate the solution is. However, in iterative numerical solutions the residuals will
never be exactly zero, therefore the stability of the convergence curve should be monitored and
limit values and fluctuation ranges for monitored integrated quantities, such as mass flow rate,
torque and total pressure difference, can be defined to establish the simulations convergence. A
further obstacle to convergence is the presence of important flow instabilities, as the one usually
obtained in presence of cavitation conditions. For cavitating simulations usually the considered
convergence limits are less strict. Also the imposed boundary conditions, the complexity of
the numerical domain and the mesh refinement level could influence the convergence. The
convergence criteria for steady simulations applied in this thesis are based on:

• Mass flow convergence: the difference between the inlet and outlet mass flow rates.
For the optimal load operating points OP1, in non-cavitating conditions with the mass
flow imposed at the inlet the maximum acceptable imbalance is 0.02%. When the
total pressure is imposed an higher difference of 0.05% is accepted given since flow
instabilities are introduced. Finally, in cavitating regime, difference below 0.3% are
accepted.

• Torque convergence: For points in non-cavitating regime the fluctuations are less
than 0.01%. In cavitation conditions, a satisfying convergence level is reached when
fluctuations are less than 0.3%.
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• Total pressure difference convergence: For the calculations on the reduced domain
D1, the fluctuations of the total pressure difference between the inlet and the outlet of the
domain in cavitation condition reaches the value of 0.02%. On the contrary, in the case
of the complete domain D2, the fluctuations for converged solution are negligible, also in
cavitating conditions.

Satisfying convergence is usually reached in non-cavitating conditions after 2000 iterations
on the coarse mesh level and up to 4000 iterations on the fine mesh. In cavitating regime the
iterations required to obtain a converged calculation are, in both regimes, two times higher.

4.4.2 Convergence criteria for unsteady simulations

For the unsteady simulations the Dual Time Stepping approach is applied. The convergence
should be achieved on two levels: first of all, each physical time step must converge and
secondly, a stabilization of the global quantities should be obtained. Each time step ∆t is
considered similar to a steady simulation. The number of the internal iterations of a physical
time step is the Pseudo-time step, ∆τ , and it can fix to a chosen value or by setting a satisfying
convergence level for the global residuals. The convergence is reached when the residuals of
several consecutive iterations have the same level of convergence. To achieve the convergence
in each time step of the present simulations, a Pseudo-time step ∆τ = 20 has been chosen.

In addition to the condition on the ∆t, reliable solutions are obtained when a certain level of
stability of the fluctuations of the mass flow, of the torque and of the total pressure difference is
achieved. The number of the machine rotations required to stabilize the global quantities can
be different depending on the physical time step considered, on the amount of the cavitation
and on the stability of the investigated operating point. In the studied cases, considering that a
time discretization ∆t = 1° has been chosen, for the optimal load operating point OP1 only 3
rotations of the turbine have been proved to be enough to reach a good convergence level, also
in presence of cavitation phenomena. On the contrary, for the full load operating point OP2,
at least 7 machine rotations, in non-cavitating regime, and 12 turbine rotations, in cavitating
conditions, have been required

4.5 Calculation strategies and computational resources

In the setup of a simulation, the initial conditions have a fundamental role in order to obtain
a correct solution reducing the convergence time. This is especially true for calculations in a
strong cavitating regime where the density gradient between to adjacent cells could be very
intense. Initializing a calculation with a field near to the final solution helps to solve this
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problem and, as a consequence, to reduce the residual values. For the steady and unsteady
calculations performed in this work, calculations strategies have been developed to impose the
best initial conditions optimizing computational times and resources.

4.5.1 Calculation strategies and computational resource for steady sim-
ulations

For the steady simulations, to obtain well-converged solutions for each investigated point of
the σ -break curve, the developed calculation strategy consists in five steps:

1. A preliminary simulation is performed in non-cavitating regime, on the coarse mesh
level, with the one-equation turbulence model S-A. The simulation is initialized by using
constant values: the numerical domain is divided in stationary and rotating blocks and the
static pressure, the velocity field and the turbulent viscosity µT are uniformly imposed
on each part

2. The results of the simulation at step (1) is imposed as initial condition on the entire
domain to carry on a second calculation in non–cavitating conditions on the coarse mesh
level, using a two-equations turbulence model (in the case of this work the k− ε or the
k−ω SST model) to close the system of equations.

3. The converged solution of the calculation at step (2), is used to initialize the first sim-
ulation in cavitation conditions. So, the cavitation module is activated and a very little
relative saturation pressure value PVAPS is firstly imposed (near to zero or in some case
also a negative value).

4. The relative saturation pressure value PVAPS is increased from a point to point, in order to
numerically replot the σ -break curve. The converged solution of each point is imposed
as initial condition for the simulation of the following point.

5. Once the complete σ -break curve is calculated on the coarse mesh level, all of the
points of the curve are recalculated on the fine mesh level using as initial condition the
converged result of the simulation performed at the same relative saturation pressure
value PVAPS on the coarse mesh.

For the optimal load operating point OP1, eight points of the σ -break curve have been consid-
ered for the steady analyses. The computational resources needed to perform each simulation
and the time required to reach a satisfying converged result can be very different depending
on the considered numerical domain, the mesh size, the turbulence model and the account of
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vapor in the flow. The approximate estimation of the necessary computational resources for a
non-cavitating simulation with a two-equations turbulence model are presented in the table 4.10.
Since the computational time are affected by the intensity of the cavitation phenomena, sim-
ulations in cavitating conditions could be require 2-3 times more CPU hours comparing to
non-cavitating points.

Table 4.10 Computational resources to steady simulations on the OP1 (domains D1 and D2).

Computational Domain Number of elements Cores CPU h Output

D1
1.7 M (Level 1) 16 24 0.4 GB

13.6 M (Level 0) 32 224 2.5 GB

D2
1.9 M (Level 1) 43 1.8 0.4 GB

14.1 M (Level 0) 48 480 3 GB

4.5.2 Calculation strategies and computational resource for unsteady sim-
ulations

In optimal load conditions OP1, only six points of the σ–break curve of the eight considered
in the steady analysis have been investigated in unsteady regime. The calculation domain has
been modified including all the guide vanes and the runner blades (computational domain D3).
Following the steady calculation methodology (see paragraph 4.2.4.1), unsteady simulations
have been carried out on a fine mesh M4. The procedure applied to obtain converged results is
detailed below:

1. Chosen points of the σ -break curve are recalculated in steady conditions on the domain
D3, using the calculation strategy presented in the previous section 4.5.1;

2. Each point is simulated in unsteady regime using as initial conditions the converged
results obtained from the steady simulation preformed with the same relative saturation
pressure value PVAPS.

An estimation of the computational resources required to carry out steady and unsteady
simulations on the numerical domain D3, in low cavitation conditions are presented in the
table 4.11. From a computational point of view unsteady simulations are more expensive

Table 4.11 Computational resources to unsteady simulations on the OP1 (domain D3).

Type Number of elements Cores CPU h Output
Steady

61.7 M 128
1280 8 GB

Unsteady 16/rev 2048 GB/rev
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than the steady ones. Indeed, using a ∆τ = 20 and a ∆t = 1°, for each revolution 190 GB of
storage and 16 CPU hours are required. Moreover, it is important to consider that in case of
calculation in strong cavitation conditions, the computational time needed could be two times
higher. For these reasons, not all the points of the σ -break curve have been recalculated in
unsteady conditions. Concerning the analysis of the operating point in full load conditions OP2,
it was not possible to perform preliminary analyses in steady regime in cavitation conditions.
Unsteady simulations have been directly carried out on a coarse mesh (M5). Consequently, the

Table 4.12 Computational resources to steady and unsteady simulations on the OP2.

Mesh M5
Type Steady Unsteady

Number of elements 6 M
Cores 32
CPU h 2 12/rev
Output 2 GB 15 GB/rev

calculation strategy have been modified compared to the optimal load case:

1. A preliminary steady calculation is performed in non-cavitating conditions on the coarse
discretization level M5.

2. The converged result of the simulation at step (1) is used to initialized a second steady
simulation, on the coarse mesh M5, in cavitation regime, with a very little relative
saturation pressure value PVAPS.

3. The results of the steady calculation at step (2) are imposed as initial conditions for a
unsteady simulation at the same relative saturation pressure value PVAPS.

4. The relative saturation pressure value PVAPS is increased to reach different σ values
using as initial conditions the converged results of the last revolution of the calculation
performed with the precedent PVAPS.

The computational time and storage dimensions required for a simulation with a low PVAPS

value, in steady and unsteady conditions,are reported in the table 4.12.
In developed cavitation conditions, the computational time required to reach converged

solutions is 2-3 times higher.



Chapter 5

Steady investigation of the optimal load
point (OP1)

The numerical methodology to predict the appearance and the evolution of the cavitation
phenomena in a Kaplan turbine has been developed starting from the investigation of the
optimal load operating point OP1. Simulations have been performed firstly on the reduced
computational domain D1 (figure 4.3) determining the main calculation parameters as the
turbulence model, the mesh refinement level and the adequate set of inlet/outlet boundary
conditions. Subsequently, the domain has been extended (D2, figure 4.4) including in the
analysis also the draft tube. The total pressure has been finally imposed on the inlet of the
domain, instead of the mass flow, defining the new numerical methodology for the cavitation
prediction (for more details, refer to chapter 4). In this chapter, the results obtained from the
steady simulations performed on both numerical domains will be presented. In non-cavitating
regime, the global quantities (η , T , H and Q) and the velocity profiles on the runner outlet
will be compared with the experimental data. Cavitation analysis will be mostly focus on the
performances curves and on the cavitation sheets. Calculations performed on D2, will be further
investigated. In particular, analysis of the losses evolution in the machine and of the flow in the
runner and in the draft tube will be presented.

5.1 Results on the computational domain D1

5.1.1 Turbulence models and mesh refinement

The k− ε turbulence model with the extended wall function (EWF) and the k−ω SST model
with a wall function (WF) have been tested on two different grid levels, M1 and M2 (for more
details about the numerical setup see chapter 4). In order to determine the most suitable
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turbulence model and mesh refinement level for the aim of this thesis, results have been
compared in non-cavitating and in cavitating conditions with the experimental data.

The calculation parameters already presented in chapter 4 are recalled in table 5.1.

Table 5.1 Numerical setup for the turbulence model and grid level determination strategy.

Case Turbulence model Mesh level Inlet BC Outlet BC Cavitation model
1 k− ε (EWF)

M1
Q = Qexp P = Pamb Barotropic law2 k−ω SST

3 k− ε (EWF)
M24 k−ω SST

5.1.1.1 Analyses in non-cavitating regime

In this step of the numerical methodology definition, a mass flow rate value Q equal to the
experimental one Qexp has been imposed on the inlet of D1. Thus, the torque T and the machine
head H are considered as results of the calculation. The torque is computed summing the
viscous and pressure force acting on the runner blades and on the hub (equation 4.2 in chapter 4).
Considering that the inlet and the outlet sections of the calculation domain D1 are not the
same than the tested machine (see figure 5.1), for preliminary comparison in non-cavitating
conditions, a correction has been applied on the machine head definition (5.1):

H = ∆Hdist +

(
PinD1−Pprob

ρg

)
+∆HDT +

1
2g

Q2
(

1
S2

indist
− 1

S2
outIEC

)
. (5.1)

Where:

• ∆Hdist is the static pressure difference between the inlet of the distributor, 1, and the inlet
of the guide vanes 2, computed from a previous calculation of the distributor and the
guide vanes (see Annex A);

• ∆HDT is the measured static pressure difference between the probing plane 3 and the
draft tube outlet reference section (IEC plane [13]) 5;

• PinD1 is the static pressure value computed as the mass flow average on the inlet surface
on the domain D1, 2:

PinD1 =
1˜

S ρ (⃗v · n⃗)dS

¨
S

P×ρ (⃗v · n⃗)dS . (5.2)
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• Pprob is the static pressure value calculated on the probing plane, 5, as the average of the
values of four control points located on the runner shroud in the same position of the
experimental transducers (the pressure measurements are detailed in the chapter 3);

• Sindist is the measured value of the inlet section of the distributor 1;

• SoutDT is the measured value of the outlet reference section of the draft tube (IEC plane)
5.

In the numerical approach the elevation z of the reference surfaces is taken into account in
the static pressure value. This formulation has been used to evaluate the machine head in
non-cavitating conditions, in all the follow simulations performed on the reduced computational
domain D1.

Figure 5.1 Scheme of the machine with the experimental and the numerical inlet and outlet positions. The parts
colored in pink are not considered in D1. 1 Distributor inlet 2 D1 inlet 3 Probing plane 4 D1 outlet 5 Draft tube
outlet reference section (IEC plane) 6 Real draft tube outlet.

At first, the discrepancy between experiments and simulations has been evaluated in non-
cavitating conditions comparing measured and computed global quantities (η , T and H).
Table 5.2 summarizes the numerical global results obtained with the both mesh levels (M1 and
M2) and turbulence models (k− ε and k−ω SST) in terms of difference from the experimental
values. The global quantities in table 5.2 show that the discrepancy between numerical and
experimental torques is reduced using a k−ω SST turbulence model (Case 2) instead of the
k− ε model (Case 1). The agreement with measurement has been further improved refining
the mesh (Case 4). The machine head value, in all the configurations, has not been correctly
predicted. Considering that the static pressure differences in the distributor and in the draft tube
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Table 5.2 Performance parameters computed on D1 in the mesh and turbulence model test.

Case Mesh level Turbulence model ∆T =
(Texp−Tnum)

Texp
∆H =

(Hexp−Hnum)
Hexp

∆η =
(ηexp−ηnum)

ηexp

1
M1

k− ε 15.9% 13.8% 2.4%
2 k−ω SST 13.5% 14.6% 1.8%
3

M2
k− ε 15.7% 13.5% 2.5%

4 k−ω SST 10.8% 13.7% 3.4%

are constants, the only contribution to the machine head evaluation computed is the difference
of the static pressure between the guide vane inlet and the probing plane. Indeed, the different
position of the outlet sections in the numerical domain D1 and in the real test rig geometry (see
figure 5.1) does not allow a direct comparison between computed and measured head values.
Finally, concerning the efficiency value η , the best result has been obtained in using a k−ω

SST on a coarse mesh (Case 2) but the analysis of the efficiency is biased by cross-variations in
H and T .

Subsequently, the numerical and experimental profiles of tangential, Vt , and meridional, Vm,
components of velocity on the runner outlet, in non-cavitating conditions have been compared.
The analysis of the velocity fields helps to determine the mesh refinement level and the
turbulence model more suitable to purposes of this study evaluating the difference between the
real and the computed flow in terms of flow angles on the runner outlet and, consequently, of the
turbine work. The measurements of the velocities on the test rig were performed by means of a
Laser Doppler velocimetry (LDV) technique. The probing plane was placed under the runner,
at 170 mm from the blade axis (as indicated by 5 in figure 5.1). The velocity measurements
are presented in the details in the chapter 3. According to experimental measurements, the
velocity values have been calculated by the weighted integration in θ direction, along the
radius. Computed and measured velocities have been normalized by ωR and plotted along the
normalized radius for all the four computational cases. Figure 5.2 presents the evolution of (a)
the Vm/ωR and (b) the Vt/ωR, measured and computed on the coarse mesh level M1, using the
k− ε (Case 1) and the k−ω SST (Case 2) turbulence models.

The computed meridional component of velocity profiles with both turbulence models have
a similar behavior (5.2 a). Near the hub (placed in the 0 of the normalized radius) and in the
middle of the channel, the k− ε model allows to better approximate the measured data. On the
contrary, close to the shroud (the 1 of the normalized radius), the curve computed with the k−ω

SST fits better with the experimental one. On the coarse mesh level M1, both turbulence models
are not able to correctly reproduce the peak of Vm near the hub. In the two cases, the difference
between experimental and numerical value of the peak is about 15%. The tangential component
of velocity profile (5.2 b) calculated in the Case 1 agrees better with experimental data than the
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(a) (b)

Figure 5.2 Evolution of the normalized (a) meridional, Vm, (b) and tangential, Vt , velocities along the normalized
radius, measured by LDV (black crosses) and computed on the coarse mesh M1 using the k− ε (Case 1 - green
line) and the k−ω SST (Case 2 - black line) turbulence models. 0 is the hub and 1 is the shroud.

profile calculated in the Case 2. Only close to the hub, the curve obtained by using the k−ω

SST turbulence model has a peak higher and similar to the experimental measurements than
the curve computed using the k− ε model. In Case 2 the peak value deviates by 15% from the
experimental one compared to Case 1, where the deviation is about 27%. In both cases, the
calculated peak is shifted to the middle of the channel, compared to the experimental position.
For calculations performed on a coarse grid level (i.e. the M1), best results in terms of velocity
profiles are obtained applying the k− ε turbulence model.

(a) (b)

Figure 5.3 Evolution of the normalized (a) meridional, Vm, and (b) tangential, Vt , component of velocity along the
normalized radius, measured by LDV (black crosses) and computed on the fine mesh M2 using the k− ε (Case 3 -
blue dashed line) and the k−ω SST (Case 4 - red dashed line) turbulence models. 0 is the hub and 1 is the shroud.

However, due to the presence of the tip, a coarse mesh does not allow the correct reproduc-
tion of the flow in the hub region. The velocities profiles obtained applying the two turbulence
models on the fine mesh M2 have been also compared. Figure 5.3 shows that the meridional (a)
and the tangential (b) component of velocity are better predicted by using the k−ω SST model
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(Case 4) than by applying the k− ε model (Case 3). Near the hub, the difference between the
height of the measured and the calculated peak of the Vm in Case 4 is 10% while in Case 3 is
about 27%. Concerning the peak of the Vt , in Case 4 the discrepancy from the experimental
data is 7%, compared to Case 3 where is about 22%. Also the shift from the real position is
reduced using the k−ω SST model.

Thus, the analyses of the global quantities and the velocity fields on the runner outlet,
have shown that the best agreement between numerical results and experimental measures in
non-cavitating conditions is reached performing simulations on the fine mesh level M2 using
the k−ω SST turbulence model.

5.1.1.2 Analyses in cavitating regime

The effects of the cavitation development on the machine performance are generally evaluated
by means of the σ -break curve. This curve, already presented in the chapter 1, represents the
evolution of the efficiency η as a function of the reduction of the cavitation number, σ . In
simulations carried out on D1, the quantitative comparison between experimental and numerical
machine head H and Net Positive Suction Head, NPSH is not accurate. The correction on H
definition proposed in non-cavitating conditions (equation 5.1) cannot be used anymore. In
investigations in cavitating regime, the numerical H has been evaluated as the difference of the
total pressure average computed on the inlet and on the outlet of D1 (indicated in figure 5.1 as
2 and 4, respectively) as :

H =
1

ρg
(Ptot222−Ptot444) . (5.3)

This computed value of H has been used to estimate both σ and η . The total pressure in
FINE™/Turbo is calculated as :

Ptot = Pstat +ρ
V 2

2
+ρk . (5.4)

where Pstat is the static pressure, V is the absolute velocity of the fluid and k is the turbulent
kinetic energy. Generally, the contribution of the turbulent kinetic energy term to the total
pressure is less important than the other two. Also the NPSH has been computed as a function
of the total pressure outlet value :

NPSH =
1

ρg
(Ptot444−PVAPS) . (5.5)

Considering that σ is defined as the ratio between the NPSH and H, higher is the relative
saturation pressure value PVAPS, lower is the σ .
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Figure 5.4 reports the cavitation curves computed with both turbulence models, on the
coarse mesh M1 (a) and on the fine mesh M2 (b). To help the comparison between numerical
and experimental σ -break curves, the efficiency values η have been divided for the first value
of each curve in non-cavitating conditions.

(a) (b)

Figure 5.4 σ -break curves measured (black crosses) and computed on (a) M1 and on (b) M2 with the k-ε (Case 1
- green line with the stars and Case 3 - blue dashed line with circles) and with the k-ω SST (Case 2 - black line
with squares and Case 4 - red dashed line with the diamonds) turbulence models. The experimental points σs,
σ−0.5% and σ−1% are plotted with red crosses.

Common practice to evaluate the prediction ability of the numerical model is to estimate the
discrepancy between measured and calculated σ values at three point (represented in figure 5.4
by red crosses): the efficiency starting drop point (σs) and at a drop of 0.5% (σ−0.5%) and
1% (σ−1%) of the efficiency. In all the four cases, the computed Thoma number values at σs

differ from the experimental one of less than 1%. On the contrary, the σ−0.5% and the σ−1%

are predicted with a discrepancy between 10% and 15%. Even without having the corrected
values of Thoma number and efficiency, the overall aspect of the σ -break curves may provide
valuable information concerning the cavitation performance of a turbine. For instance, the fact
that the efficiency is almost constant until the efficiency starts to drop suggests that at this point
there is suction side leading edge cavitation as well as hub cavitation. However, the analysis of
the efficiency evolution as a function of the cavitation number seems to not provided enough
information about the turbulence model and the mesh refinement level adequate to correctly
predict the cavitation in the turbine. Indeed, similar curves have been obtained in the four
computational cases. The efficiency is function of three parameters: the mass flow rate Q, the
net head H and the torque T . In simulations performed on D1, the Q is always imposed as
inlet boundary condition and it is kept constant during the PVAPS augmentation (see chapter 4).
On the contrary, the H and the T result from the calculations. Experimentally, the machine
head is almost fixed during the cavitation development while, numerically, is free to vary even
outside the range of the measurement uncertainty (±0.2%). This contributes to improve the
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error on the efficiency determination. In order to quantify the real impact of the turbulence
model and the mesh refinement on the performances, also an analysis of the evolution of these
two parameters with the σ reduction is required.

The computed and the measured head and torque divided for the first value of each curve,
in non-cavitating conditions, have been plotted as function of the σ , for all the calculations
performed.

(a) (b)

Figure 5.5 (a) The head and (b) the torque evolution with the σ reduction measured (black crosses) and computed
on M1 with the k-ε (Case 1 - green line with the stars) and with the k-ω SST (Case 2 - black line with squares)
turbulence models. The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses.

In the figure 5.5, the head (a) and the torque (b) evolution with the Thoma number reduction,
computed on the coarse mesh M1, applying both turbulence models are compared with experi-
mental data. The trend of the head and the torque curves is very similar between the two cases.
According to measurements, before the efficiency drop starting points (σs = 0.602, reported
with a red cross on the graph), H and T are almost constant. After this point, numerical torque
and head values suddenly increase by 1.5%. This discrepancy from the experimental data is not
observable from the σ -break curve since T and H increase in the same amount compensate each
other. In both computational cases, at σ−0.5%, the torque values are higher than the experiments
so the efficiency reduction of 0.5% is mainly linked to a numerical head augmentation. At
σ−1%, the torque is better predicted in Case 1 but the numerical head still drops. From figure 5.6,
it is possible to observe that, also for the simulations performed on the fine mesh M2, the head
and the torque curves show the same tendency with both turbulence models. Comparing to the
results of the calculations on M1, the T and the H peaks are more slight (less than 0.6%). In
the last part of the curves, for the lowest σ values, the head drop predicted using the k−ω

SST model is less huge and agrees better with experimental measurements. Concerning the
torque, at σ−0.5%, is better predicted using the k− ε model. On the contrary, in the last point of
the curve (σ−1%) the decrement of the torque computed with the k−ω SST model is closer
to the measured value. Finally, the head and torque curves computed applying the k−ω SST
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model fits better with the experimental data. In conclusion, the best results in terms of head
and torque prediction, have been obtained using a k−ω SST turbulence model and performing
simulations on M2.

(a) (b)

Figure 5.6 (a) The head and (b) the torque evolution with the σ reduction measured (black crosses) and computed
on M2 with the k− ε (Case 3 - blue dashed line with circles) and with the k−ω SST (Case 4 - red dashed line
with the diamonds) turbulence models. The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses.

Indeed, with this configuration the peaks on the torque and on the head have been minimized.
However, the presence of this abruptly augmentation is mainly due to the boundary condition
imposed on the inlet of the domain. In all the investigated cases, the σ value of the efficiency
drop starting point is perfectly predicted. On the contrary, the computed σ values at 0.5% and
at 1% of the efficiency drop are predicted for higher σ values than the measured ones.

In addition to the performances analysis, the shape and the position of the computed vapor
structures are compared with the available experimental data. The cavities in the runner of the
scaled model have been observed using of a high speed camera for two points of the investigated
σ -break curve: the efficiency drop staring point (σs = 0.602) and the point that corresponds to
an efficiency drop of 0.5% (σ−0.5% = 0.480).

The videos have been recorded from two different points of view: one bellow the runner
(one frame is reported on figure 5.7 a) and one on the side of the runner (one frame is represented
on figure 5.7 b). The experimental setup are detailed in the chapter 3. The calculated cavities
are visualized by means of iso-density surfaces at ρ = 980 kg/m3 that corresponds to a void
fraction α = 10%. Experimentally, at σs = 0.602, two vapor structures have been observed in
the flow:

• An attached cavitation sheet appears near the shroud. It starts from about 1/3 of the runner
tip and ends just before the trailing edge, covering part of the blade profile (figure 5.7a);

• A little vapor structure appears on the root of the blade, near the leading edge, starting to
develop in the opposite direction of the machine rotation.
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(a) (b)

Figure 5.7 Experimental visualizations of cavitation structures at σs = 0.602.(a) Meridian and (b) lateral views.

(a) (b)

Figure 5.8 Experimental visualizations of cavitation structures at σs = 0.480.(a) Meridian and (b) lateral views.

The position of the cavity close to the shroud is correctly predicted in all the computational
cases (figure 5.9). However, only in the Case 4 (5.9 d), the cavitation starts to grow in the
trailing edge direction, according to experimental visualizations. In all the computational cases,
the start point of the vapor structure on the root of the blade is in good qualitative agreement
with the experimental observation but its size seems to be underestimated.

At σ = 0.480 (figure 5.8), point where the efficiency value is reduced of 0.5%, the two
cavitation sheets observed at σ = 0.602 (figure 5.7) on the tip and on the root of the blade
evolve :

• The size of the vapor structure near the shroud increase, coming up to the trailing edge
and covering more on the blade profile;

• The cavity on the hub expands toward the trailing edge.
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(a)

(b)

(c)

(d)

Figure 5.9 Frontal and lateral views of the computed iso-density surfaces (ρ = 980 kg/m3) in (a) Case 1
(σ = 0.601), (b) Case 2 (σ = 0.602), (c) Case 3 (σ = 0.601), and (d) Case 4 (σ = 0.601).
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(a)

(b)

(c)

(d)

Figure 5.10 Frontal and lateral views of the computed iso-density surfaces (ρ = 980 kg/m3) in (a) Case 1
(σ = 0.520), (b) Case 2 (σ = 0.526), (c) Case 3 (σ = 0.517), and (c) Case 4 (σ = 0.536).
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Observing the frontal views of the computed iso-density surfaces reported in figure 5.10 it
is evident that only in the Case 4 (figure 5.10 d) two separated cavitation sheets are predicted,
according to the experimental visualizations in figure 5.8. In the other cases (figures 5.10 a-b-c),
from the hub to the shroud, only one big cavity is computed covering also the blade profile.
The analyses of the results of simulations performed in cavitation conditions, have shown that
a better agreement with experimental data in terms of performances and cavitation structures
prediction has been obtained refining the mesh and applying as turbulence closure the k−ω

SST model. The discretization level achieved on the fine mesh M2 seems to be suitable for
the purposes of the present work. No more mesh refinement has been done. Based on the
results of this preliminary tests in non-cavitating and in cavitating conditions, all the subsequent
simulations presented in this work have been performed on the fine mesh level using the k−ω

SST model.

5.1.2 Inlet boundary conditions

After the refinement mesh level (M2) and the turbulence model (k−ω SST) have been defined,
the following step of the methodology was to approach the numerical operating point to the
real one. This can be achieved reducing the difference between computed and measured torque
values. For this purpose, the value of the mass flow rate on the inlet has been iteratively
changed, in non-cavitating regime, targeting the experimental torque. The iterative procedure
is summarized with the graph in figure 5.11.

Once the new value of the inlet mass flow Qcor has been determined, simulations have
been performed also in cavitating conditions (Case B). To determine the impact of this new
boundary condition, the results have been compared with the ones obtained imposing the
experimental mass flow rate value Qexp on the inlet (Case A) and with experimental data. The
main calculation parameters, presented in chapter 4, are recalled in table 5.3.

Table 5.3 Numerical parameters used on the inlet boundary condition tests on D1.

Case Inlet BC Outlet BC Mesh level Turbulence model Cavitation model
A Q = Qexp Pout = Pamb M2 k−ω SST Barotropic law
B Q = Qcor

5.1.2.1 Analyses in non-cavitating regime

Firstly, the performance parameters (η , T , H and Q) computed in Case A and in Case B have
been compared. Also in this analysis, the numerical H has been evaluated, in non-cavitating
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Figure 5.11 Scheme of the iterative procedure of modification of the mass flow rate value on inlet of D1.

conditions, by means of the equation 5.1. In the table 5.4, the global results calculated imposing
Qexp and Qcor, are reported as the difference in percentage from the measured values.

Table 5.4 Performance parameters computed on D1 in the inlet boundary condition test.

Case Mesh level Turbulence model ∆Q =
(Qexp−Qnum)

Qexp
∆T =

(Texp−Tnum)
Texp

∆H =
(Hexp−Hnum)

Hexp
∆η =

(ηexp−ηnum)
ηexp

A
M2 k−ω SST

0% 10.8% 13.7% 3.4%
B 2.5% 1% 6.6% 5.4%

Applying the iterative procedure, the mismatch between experimental and computed torque
has been reduced from the 10.8% in Case A to the 1% in Case B, with a discrepancy of 2.5%
between experimental and numerical mass flow rate (see table 5.4). Considering that the
measured value of the mass flow can vary with the cavitation development of maximum 2.5%,
this discrepancy could be still considered acceptable. Also the difference on the head value has
been lessened from the 13.7% to the 6.6%, even if it is necessary to keep in mind that computed
and experimental heads cannot be directly compared. On the contrary, the computed η value
seems to be farther from the measured value in Case B (5.4%) than in Case A (3.4%). The
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increment of the discrepancy on the η value in the Case B is due to the concurrent errors on T ,
H and Q. For this reason, all the performances parameters have to be analyzed in the validation
process of the numerical results.

To further assess the effect of the variation of the discharge value on the inlet, the velocity
profiles computed, in non-cavitating conditions, on the probing plane (see figure 5.1) in Case B
have been compared with the numerical distribution obtained in Case A and with experimental
data. The evolution of the meridional, Vm, and the tangential, Vt , components of velocity along
the normalized radius are reported in figures 5.12 a and b, respectively. The meridional velocity

(a) (b)

Figure 5.12 Evolution of the normalized (a) meridional, Vm, and (b) tangential, Vt , components of velocity along
the normalized radius, measured by LDV (black crosses) and computed on the fine mesh M1 using the k−ω SST
turbulence model with Qexp (Case A - black line) and Qcor (Case B - red dashed line) as inlet boundary condition.
0 is the hub and 1 is the shroud.

profile computed with Qcor seems to be in better agreement with the experimental results than
the distribution calculated with Qexp (see figure 5.12 a). Best improvements are observed near
the hub: the difference between the height of the Vm measured and the calculated peaks is 0.1%
in Case B while is about 10% in the Case A. The change of the inlet discharge value leads
also to improve the prediction of the Vt profile, mostly in the middle of the channel and in the
shroud region (figure 5.12 b). Close to the runner tip, the discrepancy between the computed
and experimental peak is higher in Case B (10%) than in Case A (7%).

Thus, the correction on the mass flow rate inlet value, allows to improve the numerical
prediction in non-cavitating conditions of the global quantities and the velocity fields on the
runner outlet.

5.1.2.2 Analyses in cavitating regime

In figure 5.13, the σ -break curves computed in Case A and in Case B are compared with the
measured efficiency evolution. No major improvements are observed imposing the new value
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of the discharge Qcor as inlet boundary condition: in both cases, the σs value is predicted with
a discrepancy from the experimental value less than 1% while numerical σ−0.5% and σ−1%

values are higher than experimental ones.

Figure 5.13 σ -break curves measured (black crosses) and computed on M2 with the k-ω SST imposing Qexp
(Case A - black line with squares) and Qcor (Case B - red dashed line with the diamonds) as inlet boundary
conditions. The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses.

(a) (b)

Figure 5.14 H and T as function of σ measured (black crosses) and computed on M2 with the k-ω SST imposing
Qexp (Case A - black line with squares) and Qcor (Case B - red dashed line with the diamonds) as inlet boundary
conditions. The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses.

Observing the evolutions of T (figure 5.14 b) and H(figure 5.14 a) with the σ reduction,
their behavior are worse predicted modifying the discharge inlet value. Indeed, in Case B at
σ = 0.530, the head and the torque rise abruptly, increasing of about 1.7% while in Case A
the augmentation of these two quantities was limited to 0.7%. At σ−0.5% and σ−1%, head and
torque values are overestimated and the discrepancy with experimental data is higher than in
Case A.
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The torque behavior with the cavitation development could be explained comparing the
cavities structures computed in the two cases in the torque peak point (that corresponds to
σ = 0.538 in Case A and to σ = 0.530 in Case B). The iso-density surfaces computed near the
hub in Case B (figure 5.15 b) are under predicted with respect to the vapor structures calculated
in Case A (figure 5.15 a). In Case B, the cavitation sheet near the shroud is less extended on the
blade profile than the one computed in Case A. Moreover, in the hub region only one structures
is predicted in Case B, contrarily to Case A where two cavities are observed. The absence of
vapor structures in the middle of the blade root and profile in Case B involves an excessive
increase of the torque value, not observed experimentally.

(a)

(b)

Figure 5.15 Frontal and lateral views of the computed iso-density surfaces (ρ = 980 kg/m3) in (a) Case A
(σ = 0.538) and in (b) Case B (σ = 0.530).

Thus, modifying the discharge value on the inlet, the prediction of the global quantities and
the velocity fields on the runner outlet in non-cavitating conditions is improved but the flow
behavior in cavitating regime is deteriorated. This inadequate prediction of the cavitating flow
behavior is a consequence of the fact that numerically the operating point changes with the σ

reduction. This variation could results from two main factors:
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• Considering that the draft tube is not included in the computational domain D1, experi-
mental and computed cavitating flow can never been the same;

• Using the mass flow rate as inlet boundary condition, it is not possible to fix the machine
head during the cavitation development as in the experiments.

5.2 Results on the computational domain D2

In order to investigate the role of the draft tube in the analysis and to fix the head during the σ

decrease procedure, the computational domain D2 (presented in chapter 4 in figure 4.4) has
been considered. As a consequence of the preliminary tests carried out on the domain D1 (see
paragraph 5.1), the analyses on D2 have been performed on the fine mesh level, using the k−ω

SST turbulence closure.

5.2.1 Study of the draft tube influence

The inlet boundary condition test performed on the domain D1 (see paragraph 5.1.2) have shown
that the correction on the inlet discharge value leads, in non-cavitating regime, to approach the
numerical operating point to the experimental one. On the contrary, with the development of
the cavitation in the machine, the numerical operating point moves from the real position on the
hill chart. A first solution may be to include the draft tube in the analysis. In order to estimate
the influence of the draft tube on the flow simulations, the results obtained in non-cavitating and
cavitating conditions, imposing the Qcor on the inlet of D1 and D2 will be compared hereafter.
In table 5.5 are recalled the main calculation parameters for the two investigated cases, already
presented in chapter 4.

Table 5.5 Numerical parameters used on the draft tube influence study.

Case Domain Inlet BC Outlet BC Mesh Turbulence model Cavitation model
B D1 Qcor P = Pamb

M2 k−ω SST Barotropic law
C D2 M3

5.2.1.1 Analyses in non-cavitating regime

The effect of the draft tube on the flow is already evident in non-cavitating regime. At equal
inlet boundary condition, the torque computed on D2 deviates from the experimental value of
1.5%, more than the one computed on D1 (table 5.6). The heads computed in the two cases can
not be compared directly since the domains outlet sections are not the same. In simulations



5.2 Results on the computational domain D2 95

performed on D1, the computed head is corrected using the equation 5.1. On the contrary,
no corrections are needed to evaluate the head in simulations on D2 since the static pressure
on the draft tube outlet reference section (IEC plane, reported with 5 in figure 5.1 can be
computed by means of equation 4.3 presented in chapter 4. Despite the draft tube has been
included in the analysis, the numerical head still differs from the experimental one of 8.3%. The
discrepancy between computed and measured efficiency is reduced (4.7%) as a consequence of
the complementary variation of the torque and head. The draft tube affects also the velocity

Table 5.6 Performance parameters computed on D1 and D2 in the draft tube influence study.

Case Domain Turbulence model ∆Q =
(Qexp−Qnum)

Qexp
∆T =

(Texp−Tnum)
Texp

∆H =
(Hexp−Hnum)

Hexp
∆η =

(ηexp−ηnum)
ηexp

B D1 k−ω SST 2.5%
1% 6.6% 5.4%

C D1 1.5% 8.3% 4.7%

distribution on the runner outlet. Improvements of the meridian velocity Vm prediction are
observed in Case C in the shroud region while the peak near to the hub disappears (figure 5.16
a). The tangential velocity Vt profile (figure 5.16 b) has been greatly changed compared to
Case B. The peak close to the tip is overrated of 25% and the computed profile near the shroud
deviates more from the experimental distribution. Slightly improvements are observed only in
the middle of the channel.

(a) (b)

Figure 5.16 Evolution of the normalized (a) meridional, Vm, and (b) tangential, Vt , components of velocity along
the normalized radius, measured by LDV (black crosses) and computed using the k−ω SST turbulence model
with Qcor imposed on the inlet of D1 (Case B - blue dashed line) and D2 (Case C - black line). 0 is the hub and 1
is the shroud.

The investigation about the influence of the draft tube on the flow in non-cavitating condi-
tions could be finally completed comparing the losses evolution in the two numerical domains.
The calculation method used to determine the head losses in the machine has been already
presented in chapter 1. Several sections have been created in D1 and in D2 (as is shown
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in figure 5.17 a and b, respectively) to individuate the contribution to the net head of each
component of the machine. The net machine head, H, can be defined as :

(a) (b)

Figure 5.17 Sections for losses investigation in (a) D1 and (b) D2. Guide vane: (A) inlet and (B) outlet; Runner:
(C) leading edge, (D) middle and (E) trailing edge of the blade; Cone: (F) probing plane and (G) D1 outlet; Draft
tube outlet: (H) IEC plane.

H = ∆los +Hi = ∆
dist
los +∆

gv
los +∆

run
los +∆

dt
los +Hi . (5.6)

Where:

• ∆dist
los are the losses in the distributor. Since in both computational domains the distributor

is not taken into account , this term is not considered in the present analysis;

• ∆
gv
los =

1
ρg

(
PA

tot−PB
tot
)

are the guide vanes losses computed as the difference between the
total pressure on the inlet A and on the outlet B of the guide vanes;

• ∆run
los = 1

ρg

[(
PB

tot−PC
tot
)
+
(
RotC−RotE)] are the losses in the runner calculated as the

sum of the losses in the fix part (considered as the total pressure difference between
the guide vanes outlet B and the runner blade leading edge C) and in the rotating part
(computed as the difference of the rothalpy values between the leading edge C and the
trailing edge E of the blade);

• ∆dt
los =

1
ρg

(
PE

tot−PH
tot
)

are the losses in the draft tube. To directly compare the results of
D1 and D2, the draft tube has been divided into two parts: the cone (between the trailing
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edge of the blade, E, and the outlet of D1, G) and the draft tube outlet (between the D1

outlet, G, and the IEC plane H).Only the losses in the cone have been compared between
the two domains;

• Hi =
T ω

ρgQ = ∆Hrun−∆run
los = 1

ρg

[(
PC

tot−PE
tot
)
−
(
RotC−RotE)] is the internal head. It

represents the amount of energy transferred to the turbine.

The total pressure and the rothalpy values are computed as the mass weighted average on each
surface. In figure 5.18 are reported the values of Hi and of the losses calculated in each part
of the machine in the two cases, divided by the experimental H. Due to the presence of the
draft tube, the head predicted on D2 is higher than the one computed on D1 (see figure 5.18 a).
Including the draft tube in the analysis, the energy absorbed by the turbine, Hi, decreases while
the total amount of the losses increases. As it is possible to observe in figure 5.18 b, also the
distribution of the losses between the components of the machine changes from Case B to
Case C. In particular, in Case C, the losses decrease in the guide vanes and increase in the
runner with respect to Case B. The losses in the cone are almost constant between the two
computational cases. The Hi reduction and the increase of the losses in the runner observed in

(a) (b)

Figure 5.18 Investigation of (a) the Hn and (b) the losses in D1 and D2.

Case C could be explained considering that the draft tube influences the flow on the outlet of
the runner. The analysis of the velocity fields on the probing plane (figure 5.16) has shown that
the in Case C the tangential velocity is higher than in Case B. The Hi can be approximated by
means of the Euler equation 5.7 between the inlet (C) and the outlet (E) of the runner :

Hi =
ω

g

(
RCVC

t −REV E
t

)
. (5.7)

In equation 5.7 R is the radius and Vt is the tangential component of the velocity, computed as
the mass weighted average on the inlet (C) and outlet (E) runner surfaces. Considering that
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the inlet boundary condition is the same in the two cases, in Case C increasing Vt on the outlet
the Hi will decrease. On the contrary, no evident reasons could explain the link between the
presence of the draft tube and the losses decrease observed in the guide vane in Case C. A
first step could be to locate the losses in the guide vanes. The dot product of the momentum
equation for a steady flow (equation 2.2 in chapter 2) by the velocity V⃗ gives the kinetic energy
balance equation :

∇ ·
(

ρ
V 2

2
V⃗
)
=−∇ ·

(
p⃗V
)
+∇ ·

(
τ ·V⃗

)
− τ : ∇(⃗V )−∇(ρgz) . (5.8)

A control volume Ω bounded by the guide vanes inlet (A), outlet (B), shroud and hub surfaces
can be defined. Applying the divergence theorem (or Gauss-Ostrogradsky theorem) and
integrating the equation 5.8 on Ω, we obtain:

"
S

P+
1
2

ρV 2 +ρgz︸ ︷︷ ︸
Ptot

V⃗ · n⃗dS =

"
S

(
τ ·V⃗

)
n⃗dS−

˚
Ω

τ : ∇(⃗V )dΩ . (5.9)

The left side of the equation represent the global losses in the machine while on the right side
there are the local losses.

∆
tot
los = ∑∆

global
los = ∑∆

local
los . (5.10)

The local losses can be divided in two contributions: the losses due to the shear stress (first
term on the right side of equation 5.9) and the losses due to the viscous dissipation (second
term on the right side of equation 5.9). In the viscous dissipation term also account for the
energy transfer due to turbulent fluctuations (the eddy viscosity µT ). Considering the shear
stress term negligible compared to the viscous dissipation term, only the dissipation losses will
be considered in the analysis. The viscous dissipation term, in an inertial frame of reference,
can be expressed as :

∆
dis
los =

1
ρgQ

˚
Ω

τ : ∇(⃗V )dΩ =
1

ρgQ

˚
Ω

δ
dis
los dΩ . (5.11)

where δ dis
los is defined as:

δ
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los = 2(µ +µt)
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where µ is the dynamic viscous of the considered fluid and µt is the turbulent viscosity. To
compare the losses in the guide vanes, the dissipation term has been computed in the control
volume Ω in the two cases. The difference between the Case B (characterized by higher global
losses in the guide vane) and the Case C, δ dis

los = δ dis
los D1−δ dis

los D2, has been plotted on the guide
vanes blade by means of iso-value surfaces (figure 5.19). The negative values of the losses
difference, reported in blue, mean that the losses increase adding the draft tube (domain D2).
On the contrary, the positive values, plotted in red, indicate that the losses are higher in D1.

LE

←
TE

←

Hub

Shroud
Figure 5.19 Iso-value surfaces of the difference of losses due to the dissipation in the guide vanes between D1
and D2, plotted on the guide vane δ dis

los = δ dis
los D1−δ dis

los D2. The negative values (blue surfaces) represent higher
losses in D2; the positive values (red surfaces) mean higher losses in D1.

The red surfaces are more extended than the blue ones. This means that the local losses in
the guide vanes are greater in D1 than in D2, according to the global losses analysis (figure 5.18).
On the hub, on the pressure side and on the trailing edge of the blade the red regions are more
developed than the blue ones. For the instance the cause of the increment of the losses in these
regions of the guide vanes is under investigation but could be have a numerical origin.

The comparison between Case B and Case C in non-cavitating regime have shown that the
draft tube has an influence on the global quantities, on the velocity profiles on the runner outlet
and on the losses in the different parts of the machine.
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5.2.1.2 Analyses in cavitating regime

At first, in cavitating regime, the torque (figure 5.20 a) and the head evolution (figure 5.20 b)
with the Thoma number, computed on the extended domain D2 are compared with the results
obtained on the reduced domain D1 and with the measured data. In order to emphasize the
discrepancy between calculations and experiments, the numerical T curves are normalized
by the first value of the experimental curve in non-cavitating conditions. The effects of the
introduction of the draft tube in the analysis begin evident after the efficiency starting drop
point (σS = 0.600). The torque values predicted at σS and σ−0.5% in Case C are closer to the
experimental measurements than the values predicted at same σ in Case B. However, even
including the draft tube, the torque evolution is still characterized by a peak after σS linked to
the numerical head variation with the σ reduction (figure 5.20 a).

(a)

(b)

Figure 5.20 (a) H and (b) T as function of σ measured (black crosses) and computed imposing Qcor as inlet
boundary condition on D1 (Case B - red dashed line with the diamonds) and on D2 (Case C - blue line with the
circles). The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses.
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The draft tube influences also the evolution of the cavitation structures. The greatest
differences between the two computational cases are observed at σ−0.5%: in Case C (at
σ = 0.542, reported in figure 5.21 b) two cavities appear near the hub, covering the blade
root, close to the leading edge and at mid-chord of the blade, in agreement with experimental
observations (see figure 5.8 ). In Case B (figure 5.21 a at σ = 0.5231), in the equivalent point
of the σ -break curve, only one vapor structure is computed in the hub region.

(a)

(b)

Figure 5.21 Frontal and lateral views of the computed iso-density surfaces (ρ = 980 kg/m3) at σ−0.5% in (a) Case
B (σ = 0.523) and in (b) Case C (σ = 0.542).

In conclusion, the draft tube has a great influence on the flow in the turbine in both non-
cavitating and cavitating regimes. In order to correctly predict the effects of the cavitation
phenomena on the machine, this geometrical component will be considered in the analysis. On
the other hand, the mass flow imposed as inlet boundary condition does not allow to correctly
reproduce the real behavior of the turbine in cavitating regime. To improve the numerical
methodology, a new inlet boundary condition is required.
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5.2.2 New inlet boundary condition

In order to keep constant H during the cavitation development, the total pressure Ptot has been
imposed on the inlet of D2 instead of the discharge value Qcor. The results obtained with
the two inlet boundary conditions in both non-cavitating and in cavitating regimes have been
compared. The numerical setup for the two computational cases are recalled in table 5.7 (for
more details see chapter 4). Finally, further investigations of the losses evolution in the machine

Table 5.7 Numerical parameters used on the inlet boundary condition test on D2

Case Inlet BC Outlet BC Mesh Turbulence model Cavitation model
C Qcor P = Pamb M3 k−ω SST Barotropic law
D Ptot

with the cavitation development and of the cavitating flow have been performed for the Case D.

5.2.2.1 Comparison in non-cavitating regime

The total pressure value used as inlet boundary condition in the Case D has been calculated
from Case C. As a consequence, the computed global quantities (T , Q and H) are almost the
same in the two cases (difference < 0.3%). On the contrary, the flow in the turbine is greatly
affected by the change of the inlet boundary condition. In figure 5.22, the meridional (a) and
the tangential (b) velocity profiles computed on the runner outlet in Case C and in Case D are
compared with the velocity distributions measured by LDV.

(a) (b)

Figure 5.22 Evolution of the normalized (a) meridional, Vm, and (b) tangential, Vt , components of velocity along
the normalized radius, measured by LDV (black crosses) and computed using the k−ω SST turbulence model
with Qcor (Case C - black line) and Ptot (Case D - red dashed line) imposed on the inlet of the domain D2. 0 is the
hub and 1 is the shroud.

Both velocity profiles are in better agreement with experimental data in Case D than in Case
C. The prediction of the meridional velocity is improved in the hub region, with a discrepancy
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between the computed and experimental highest velocity value of 7%. Also the tangential
velocity fit better with experimental data, mostly near the shroud and the runner tip. In the hub
region, the difference between experimental and computed peak value is 0.8%.

In order to analyze and compare the losses in each part of the machine in the two computa-
tional cases, the same method used in the draft tube influence analysis (see paragraph 5.2.1)
has been applied. In figure 5.23 are reported the Hi and the losses values, divided by the
experimental H, computed using the two inlet boundary conditions. The H computed in Case

(a) (b)

Figure 5.23 Investigation of (a) the Hn and (b) the losses in D2 imposing Qcor and Ptot as inlet boundary conditions.
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(a) (b)

Figure 5.24 Evolution of the normalized (a) radial, Vr, and (b) tangential, Vt , components of velocity along a
normalized arc length computed using the k−ω SST turbulence model with Qcor (Case C - red dashed line) and
Ptot (Case D - blue line) imposed on the inlet of the domain D2.

C and in Case D are very similar (difference < 0.1%). Main discrepancies are observed in the
distribution of the losses between the guide vanes and the runner. Imposing the Ptot on the
inlet, the losses in the guide vanes increase with a consequent decrease of the losses in the
runner. This variation in the losses distribution can be explained considering that the velocity
profiles on the inlet of the domain are different in the two cases (figure 5.24). Indeed, imposing
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a constant value of Ptot is not possible to control anymore the velocity profiles on inlet. So
the velocity distribution will slightly changes adapting to the total pressure value. Thus, in
non-cavitating conditions, using this new inlet boundary condition, the performance values are
unchanged while the velocity profiles on the runner outlet are improved.

5.2.2.2 Comparison in cavitating regime

Imposing the Ptot on the domain inlet instead of Q the variation of the head during the cavitation
development are limited. As it possible to observe in figure 5.25 a, the maximum variation of
H in Case D is 0.5% while in Case C is 2%. Thus, the results computed in cavitating regime
in Case D are not influenced by the head variation so they can be directly compared with the
measurement data.

(a) (b)

Figure 5.25 (a) H and (b) Q as function of σ measured (black crosses) and computed imposing Qcor (Case C -
blue line with the circles) and Ptot (Case D - black dashed line with the squares) as inlet boundary condition on the
domain D2. The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses. The variations observed
on the Q outlet value in Case C are < 0.1% and are mostly due to numerical dissipation.

Figure 5.26 T as function of σ measured (black crosses) and computed imposing Qcor (Case C - blue line with
the circles) and Ptot (Case D - black dashed line with the squares) as inlet boundary condition on the domain D2.
The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses.
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As a consequence, differently from Case C, in Case D the mass flow value on the outlet
is a result of the simulation so it can change with the Thoma number reduction. The Q curve
plotted in Case D fits well with the experimental one (see figure 5.25 b). In the last point of
the curve, the cavitation phenomena are very strong and a sudden increment of the mass flow
value is numerically predicted. This means that the simulated operating point differs from the
experimental one.

The torque evolution with the σ reduction calculated in Case D is in better agreement with
the experimental data than the torque curve computed in Case C. In the efficiency drop starts
point σS, the exaltation of the torque value computed imposing Qcor on the inlet disappears
changing the inlet boundary condition, according to the measured curve. The reduction of the
torque value at σ−0.5% is more closer to the experimental observations in Case D than in Case C.
The percentage of the torque drop compared to the first value of the curve at σ−1% is correctly
predicted in both computational cases. Finally, as for the mass flow value, an augmentation
of the torque value is predicted in Case D at the lowest σ value. The simultaneous increase
of the discharge and the torque could means that, in developed cavitating conditions, the flow
becomes unstable and the steady approach is no longer suitable. For these reasons, this last
point of the curve is not anymore considered in the follow steady analyses.

At σS, the H and the T computed in the two cases have an opposite behavior: in Case C,
both head and torque start to increase while in Case D they begin to decrease. In order to
explain this, the cavities sheets computed at σS in the two cases have been compared. As it is
possible to see in figure 5.27, no major differences are observed between the two cases in the
vapor structures shape or location. So, the augmentation or the reduction of the torque value
is due to a different distribution of the force acting on the blade that is not necessarily linked
to the presence of different kind of cavities. Considering that the greatest contribution to the

(a) (b)

Figure 5.27 Frontal and lateral views of the computed iso-density surfaces (ρ = 980 kg/m3) at σS in (a) Case C
(σ = 0.590) and in (b) Case D (σ = 0.580).

torque is due to the inviscid force, in order to visualize the difference in the force distribution,
the static pressure fields computed on the blade in the two cases at σS can be compared. The
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static pressure can be represented by means of a dimensionless pressure coefficient:

Cp1 =
P−Pre f

1
2ρ (ωR)2 . (5.12)

In figure 5.28 are plotted the Cp1 fields on the runner blade in Case C and in Case D. The
parts colored in dark blue are the regions of the blade where the static pressure is less than the
vaporization pressure so their contours correspond to the extension of the cavities. In Case D
(figure 5.28 b), a second area at low pressure is detected in the middle of the blade root, not
observed in Case C (figure 5.28 a). The presence of this low pressure zone could be explain
the different behavior of T at same σ value in the two cases. This discrepancy observed in the

(a) (b)

Figure 5.28 Contours of Cp1 plotted at σS in (a) Case C (σ = 0.590) and in (b) Case D (σ = 0.580).

static pressure fields between the two cases is related to the boundary conditions chosen on the
inlet. Indeed, imposing the Ptot is not possible to impose the velocity distribution on the inlet.
Consequently, the flow angle on the runner blade leading edge will be different, changing the
pressure distribution on the blade.

In conclusion, by imposing Ptot on the calculation domain inlet instead of Q, the prediction
of the flow in both non-cavitating and cavitating conditions is improved. The velocity profiles
computed on the runner outlet in non-cavitating regime fit better with the measured profiles.
In cavitation conditions, the total pressure as inlet boundary condition allows to fix the head
while the discharge varies during the cavitation development (as during the laboratory tests).
Consequently, the performances curves and the vapor structures computed in Case D are in
better agreement with experimental data than the ones predicted in the Case C.
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The overall aspect of the T , H and Q curves computed with the new inlet boundary
conditions fit perfectly with the experimental curves. The computed σ values after σS are still
higher than the experimental ones. On the other hand, the first objective of this work of thesis
is to correctly reproduce the shape of the performance curves also with a discrepancy on the σ

values. Unsteady calculations (see chapter 6) have been performed in order to try to reduce this
discrepancy and to improve the cavitating flow reproduction. For unsteady calculations, the
same computational configuration will be used (see chapter 4).

5.2.3 Cavitating flows investigations

Once the methodology for steady simulations has been defined, losses and cavitating flow in
different parts of the machine have been analyzed in details. The investigations will be hereafter
discussed.

5.2.3.1 Evolution of the losses in the machine with the cavitation

In order to investigate the evolution of the losses in the machine with the cavitation development,
the first and the last points of the computed σ -break curve have been analyzed and compared.
The point in non-cavitating conditions and at σ−1% are reported in figure 5.29 with the 1 and
the 7, respectively.

1234

5

6

7

Figure 5.29 σ - break curve measured (crosses) and computed imposing Ptot (Case D - black dashed line with the
squares) as inlet boundary condition on the domain D2. The experimental points σs, σ−0.5% and σ−1% are plotted
with red crosses.

The methodology applied to estimate the losses and the Hi has been detailed in para-
graph 5.2.1. The difference of the net head values computed in the two conditions is less than
0.1%. On the contrary, the percentage of losses and energy transfered to the turbine has been
changed (figure 5.30): at σ−1% the Hi has been reduced of the 1% while the losses have been
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(a) (b)

Figure 5.30 Investigation of (a) the Hn and (b) the losses imposing Ptot on the inlet of D2 in the first (NCAV ) and
in the last (σ−1%) point of the σ -break curve.

Figure 5.31 Cutting surfaces defined for the runner losses analysis. C is near the leading edge, D is near the
middle of the blade and E is near the trailing edge

increased of the same amount. In figure 5.30 b are reported the contribution to the total losses
furnished by each component of the machine. The losses in the guide vanes are the same in
the two points. This means that the cavitation does not affect the flow in the guide vanes ring.
An augmentation of the losses amount is observed in the runner where the contribution to H
increase from 6.5% in non-cavitating conditions to the 6.8% at σ−1%. Also in the draft tube
the losses increase from 2.8% to 3.5% with the development of the cavitation.

A detailed investigation of the evolution of the cavitating flow in the runner and in the draft
tube will be presented in the following sections.
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5.2.3.2 Losses evolution in the runner

In order to evaluate the losses in the runner, three cutting planes have been created (see
figure 5.31): C on the leading edge (LE), D on the middle and E on the trailing edge (TE) of
the runner blade.

The losses have been divided in two contributions:

• ∆los = RC−RD are the losses in the first part of the blade (from the leading edge to the
middle of the blade);

• ∆los = RD−RE are the losses in the last part of the blade (from the middle to the trailing
edge of the blade ).

In the present analysis, the same point of the σ -break curve considered in the analysis of the
losses in all the machine have been investigated (the points in non-cavitating conditions, 1, and
at σ−1%, 7). The evolution of the losses distribution on the blade is given in figure 5.32. The
histogram shows that with the cavitation development the losses decrease on the leading edge
part while increase on the trailing edge part.

Figure 5.32 The losses on the runner blade computed in non-cavitating conditions and at σ−1%, shared between
the leading edge (LE) and the trailing edge (TE).

To improve the losses visualization on the blade a control volume Σ, delimited by the
surfaces 2 and 4 and by the shroud and hub of the runner, is determined. Defining the
equation 5.8 in the rotating reference frame and integrating the equation on Σ, we finally obtain
the dissipation losses term as a function of the relative velocity W⃗ :

∆
dis
los =

1
ρgQ

˚
Σ

τ : ∇(W⃗ )dΩ
1

ρgQ

˚
Σ

δ
dis
los dΩ . (5.13)
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The difference between the dissipation terms computed at σ−1% and in non-cavitating conditions
(δ dis

los = δ dis
los CAV −δ dis

los NCAV ) is plotted in figure 5.33 by using iso-value surfaces. Considering
that the losses are higher at σ−1%, the red surfaces are the regions where the losses have been
increased while the blue surfaces represent the zones where the losses have been decrease with
the development of the cavitation phenomena.

LETE

Figure 5.33 Iso-value surfaces of the difference of losses due to the dissipation in the runner in non-cavitating
conditions and at σ−1%, plotted on the runner blade δ dis

los = δ dis
los CAV −δ dis

los NCAV . The negative values (blue surfaces)
represent higher losses in non-cavitating conditions; the positive values (red surfaces) mean higher losses at σ−1%.

LETE

Figure 5.34 The computed iso-density surfaces (ρ = 980 kg/m3) at σ−1% in Case D (σ = 0.550).

The red surfaces are mostly located on the hub and on the shroud regions. Near the shroud
gap, the losses increase mostly close to the trailing edge. The blue surfaces are concentrated
on the blade profile and near the shroud. In the shroud gap regions, the losses reduce near the
leading edge. According to the histogram in figure 5.32, as a consequence of the presence of the
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cavities structures, the losses decrease near the leading edge and increase close to the trailing
edge. The extension of the blue zones (the regions of the losses reduction) is very similar to
the shape of the computed vapor structures at σ−1% (figure 5.34). The red surfaces are mostly
concentrated near the shroud gap in a region characterized by strong flow recirculation.

LE

TE

Figure 5.35 The difference of (µ +µT ) computed in the runner in non-cavitating conditions and at σ−1%, plotted
on the runner blade.

The term of dissipation is function of the turbulent and the fluid viscosities and of the
gradient of velocity. In the vapor regions, (µ +µT ) decreases and, consequently, the losses
due to the dissipation will be reduced. Indeed, plotting the difference between (µ +µT )

computed at σ−1% and in non-cavitating conditions (figure 5.35) it is evident that the most
negative difference value regions are almost in the same position of the blue surfaces plotted
in figure 5.32. On the contrary, near the shroud gap the presence of huge velocity gradients
causes the increase of the dissipation losses term.

In conclusion, it is possible to stated that the reduction of the torque value with the cavitation
development is mostly linked to the hub and tip cavitation. Indeed, vapor structures in the gaps
regions provoke flow recirculation, increasing the dissipation losses.

5.2.3.3 Cavitation structures and pressure profile on the runner blade

In order to validate the developed methodology for the cavitation prediction based on the
new inlet boundary condition, the computed iso-density surfaces have been compared to the
experimental observations for two σ values:
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• At σS (the efficiency drop starts point), the position and the extension of the cavities
structures predicted on the hub and on the shroud in figure 5.36 b are in very good
agreement with the experimental observations (figure 5.36 a);

• At σ −0.5%, the computed cavity on the shroud (figure 5.37 b) is congruent with the
vapor structure observed experimentally (figure 5.37 a). Near the hub, the starting points
of the cavitation sheets are correctly predicted. However, it is not possible to reproduce
the detachment of the structure and its expansion towards the trailing edge by using the
numerical models applied in this work. In order to simulate cavitation shedding, URANS
approach with the correction on the turbulent viscosity term proposed by Reboud et
al. [84] must to be used.

The static pressure distributions around the runner blade for the same σ values have been
analyzed and compared with the blade loads computed in non-cavitating regime to investigate
the influence of the cavitation on the pressure fields. Figure 5.38 shows the different blade
sections considered for the study of the pressure fields: a section near the hub (1% of the blade
height, plotted with the green line), at 75% of the blade height (plotted with a blue line) and a
section near the shroud (95% of the blade height, plotted by the purple line).

A dimensionless coefficient Cp2 has been defined to represent the static pressure:

Cp2 =
P−Pv

1
2ρ (ωR)2 . (5.14)

In equation 5.14, Pv is the vapor pressure of the water at the reference temperature. In non-
cavitating regime the pressure distributions in figure 5.39 a show two peaks of depression close
to the hub :

• The first one, located on the leading edge, is not linked to cavitation phenomena but it is
due to a defect of incidence;

• The second one, more slightly than the first one, placed at streamwise 0.18. However,
the local static pressure value is not low enough to allow the generation of the vapor.

At σS (corresponding to σ = 0.580 on the computed cavitation curve), others depression
regions begin to appear: one on the hub (figure 5.39 a), extending from the leading edge to the
streamwise= 0.19, and two others on the shroud (figure 5.39 c), the larger one from 0.14 to
0.63 of the streamwise and a smaller one from 0.66 to 0.75 of the streamwise. According to the
blade loads, the computed iso-density surfaces in figure 5.36 b, show three vapor structures:
one is located near the hub, on the leading edge, and the other two are on the blade tip. This
alteration of the pressure distribution on the blade could leads, in combination with the increase
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(a)

(b)

Figure 5.36 (a) Experimental vapor structure (σ = 0.600) and (b) Frontal and lateral views of the computed
iso-density surfaces (ρ = 980 kg/m3) (σ = 0.580).
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(a)

(b)

Figure 5.37 (a) Experimental vapor structure (σ = 0.480) and (b) Frontal and lateral views of the computed
iso-density surfaces (ρ = 980 kg/m3) (σ = 0.560).
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Inlet

Figure 5.38 Blade sections at 1%(green line), 75% (blue line) and 95%(purple line).

of the dissipation losses, to a slight reduction of the torque (graph in figure 5.26) with respect
to the non-cavitating value. At σ = 0.560, when the efficiency is reduced of −0.5%, the low
pressure region on the blade tip increases (figure 5.39 a). Close to the shroud (figure 5.39 c), the
blade load has been changed and a single huge depression region extends in the trailing edge
direction. A low pressure zone appears also at 75% of the blade height (figure 5.39 b). This
means that the vapor structure has been covered a part of the blade profile, deviating the flow
and causing a reduction of torque value. The analysis of the blade loads agree well with the
cavities computed at σ−0.5% in figure 5.37 b: comparing to the iso-density surfaces computed
σS (figure 5.36 b), the two cavities on the blade root and tip have been increased. The vapor
structure observed on the middle of the hub, due to is position, cannot be detected by the blade
load.
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Figure 5.39 Pressure distribution around the blade for decreasing σ values at (a) near the hub (1%), (b) at (75%)
and (c) near the shroud (95%).
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5.2.3.4 Cavitating flow analysis in the runner

Two parameters have been considered to analyze the cavitating flow behavior: the meridional
velocity, Vm and the normalized helicity, H. The helicity is a scalar quantity defined as the dot
product of relative velocity and vorticity vectors. In the rotating frame of reference can be
defined as :

He = W⃗ ·
(

∇×W⃗
)
. (5.15)

The physical meaning of helicity becomes clearer when is used in the normalized form. The
normalized helicity is defined as:

Henorm =
W⃗ ·
(

∇×W⃗
)

∥W⃗∥ · ∥∇×W⃗∥
. (5.16)

where ∥W⃗∥ and ∥∇×W⃗∥ are the magnitudes of the relative velocity and the vorticity vectors,
respectively. The normalized helicity physically represents the angle between velocity and
vorticity vectors so its value ranges from -1 to 1. As such, the normalized helicity can be used
as an indicator of the velocity vector orientation with respect to vorticity vector field for a
given flow field. The normalized helicity value will be very close to 1 or -1 at the core of the
streamwise vortices. This leads to locate the core of those streamwise vortices. The meridional
velocity and the normalized helicity have been investigated in three different sections of the
interblade channel, perpendicular to the streamwise direction, reported in figure 5.40: on the
leading edge (1 - the blue line), in the mid-chord (2 - the green line) and on the trailing edge (3
- the red line). Two points of the σ -break curve have been considered for the analyses: the point

Inlet

Figure 5.40 Blade sections at 1%(green line), 75% (blue line) and 95%(purple line).

in non-cavitating regime and the point at σ−1% (σ = 0.550). The analysis of the normalized
helicity in plane 1 (figure 5.41) shows that, in non-cavitating conditions, the greatest vorticity
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structures are observed near the shroud (Hnorm =+1) and the hub (Hnorm =−1) gaps. As it
is possible to observe in figures 5.41 b and c, in developed cavitating conditions the vapor
structure near the hub influences the helicity field and the vorticity structure at Hnorm = +1
disappears. Before the appearance of the cavities (figure 5.42 a), the distribution of the mass
flow on the inlet is uniform in the interblade section 1. An acceleration zone is observed near
the blade profile, mostly close to the gaps. However, the development of the cavitation does
not greatly affect the mass flow distribution (figures 5.42 b and c). In non-cavitating regime,
at mid-chord (plane 2), the vortices observed near the hub and shroud on plane 1, are more
developed (see figure 5.43 a). At σ−1% a large vapor structure on the blade tip deviates the
flow changing the sign of the helicity field in this region (figures 5.43 b and c). Observing
the velocity fields in section 2 (figure 5.44), the development of the cavity sheet leads to a
slight increase of Vm close to the root of the blade. Perturbations of the mass flow field are also
observed near the shroud, where the velocity slightly increases. In plane 3, close to the trailing
edge (figure 5.45 a), already in non-cavitating regime the flow is perturbed also far from the
blade. Indeed, a vorticity structure characterized by a Hnorm =+1 appears in the middle of the
interblade channel. The region near the shroud is the most influenced by the cavitation (see
figures 5.45 b and c). Flow alterations with the development of the cavitation are observed
also in the velocity fields (figure 5.46) close to the blade tip where an increase of Vm value is
observed. This augmentation of the velocity leads to increase the losses on the blade tip close
to the trailing edge, according to the runner blade losses analysis (figure 5.33).

The analysis of the velocity and the helicity fields in the interblade channel has been shown
that the vapor structures developing on the blade influence the flow in the runner. These
cavities modify the flow path, especially on the runner outlet, altering the machine work,
according to the performances and the blade loads predictions. In the optimal load condition,
the cavitation phenomena are concentrated in some parts of the blade and they cause only minor
flow alterations.
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(a)

(b)

(c)

Figure 5.41 Normalized Helicity (a) in non-cavitating conditions and (b) at σ−1% and (c) their difference plotted
near the leading edge of the blade (plane 1).
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(a)

(b)

(c)

Figure 5.42 Meridian velocity (a) in non-cavitating conditions and (b) at σ−1% and (c) their difference plotted
near the leading edge of the blade (plane 1).



5.2 Results on the computational domain D2 121

(a)

(b)

(c)

Figure 5.43 Normalized Helicity (a) in non-cavitating conditions and (b) at σ−1% and (c) their difference plotted
mid-chord of the blade (plane 2).
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(a)

(b)

(c)

Figure 5.44 Meridian velocity (a) in non-cavitating conditions and (b) at σ−1% and (c) their difference plotted
mid-chord of the blade (plane 2)



5.2 Results on the computational domain D2 123

(a)

(b)

(c)

Figure 5.45 Normalized Helicity (a) in non-cavitating conditions and (b) at σ−1% and (c) their difference plotted
near the trailing edge of the blade (plane 3).
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(a)

(b)

(c)

Figure 5.46 Meridian velocity (a) in non-cavitating conditions and (b) at σ−1% and (c) their difference plotted
near the trailing edge of the blade (plane 1).
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5.2.3.5 Cavitating flow analysis in the draft tube

The analysis of the losses evolution with the cavitation have been shown that the losses in the
draft tube increase with the development of the cavitation. The evolution of the flow in the draft
tube with the Thoma number reduction has been analyzed to investigate the influence of the
cavitation in this part of the machine. Three points of the σ -break curve have been considered:
the point in non-cavitating conditions, the efficiency drop starting point (σS) and the σ−1%.

Firstly, the evolution of the streamlines (plotted in figure 5.47), from the inlet to the outlet of
the draft tube, has been investigated. Out of the cavitating regime (figure 5.47 a) the flow rate is

(a) (b)

(c)

Figure 5.47 Streamline in the draft tube (a) in non-cavitating conditions, (b) at σS and (c) at σ−1%.

higher in the channel on the right. In the left channel, a recirculation zone is observed near the
wall, slowing down the flow. Despite the presence of this vortex, the flow on the outlet is linear.
When the efficiency starts to drop (figure 5.47 b), at σS, the flow in the right channel begins to
slow down. The vortex in the left channel becomes more intense and wider, expanding towards
the outlet. Localized backflow phenomena are observed on the outlet. At σ−1% in figure 5.47 c,
in the right channel, the flow slows down more and more and the first vortexes start to form.
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On the contrary, the vortex in the left channel is almost completely disappeared. No backflow
phenomena are observed on the draft tube outlet.

Also the normalized helicity (figure 5.48) and the meridional velocity (figure 5.49) have
been analyzed in the last part of the draft tube on three different cuts, perpendicular to the flow
direction : before the pier (section 1), after the pier (section 2) and just before the draft tube
outlet (section 3).

(a) (b)

(c)

Figure 5.48 Normalized helicity plotted before 1 and after 2 the pier and 3 just before the draft tube outlet (a) in
non-cavitating conditions, (b) at σS and (c) at σ−1%.

In non-cavitating regime (figure 5.48 a), the flow coming from the runner in section 1 is
very chaotic. Great vortical structures characterized by negative and positive helicity values,
are observed both near the wall and in the middle of the channel. In section 2, the secondary
structures on the left are almost unchanged while the positive helicity zone in the middle of
the right channel disappeared. Close to the outlet (section 3), the largest vortical structures
are located in the right channel. The flow coming out from the left channel is almost uniform.
Decreasing the σ value (figures 5.48 b and c), the main variation of the helicity field are
observed mostly on 2 and 3. In 2, reducing the σ value, the vortex at positive helicity on the
right channel grows. On the section 3, as a consequence of the cavitation development, the
vortex reduce on the right channel but increase on the left one.
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(a) (b)

(c)

Figure 5.49 Vm plotted before 1 and after 2 the pier and 3 just before the draft tube outlet (a) in non-cavitating
conditions, (b) at σS and (c) at σ−1%.

The analysis of the meridional velocity in the draft tube is very useful to visualize the
partition of the flow in the two channels. In the first point of the σ -break curve (figure 5.49 a),
the flow rate coming from the runner, before it separates in the two channels, is more on
the right than in the left part of the section 1. Deceleration zones are observed on the left
channel, near the pier, on both sections 2 and 3. With the reduction of the cavitation number
(figures 5.49 b and c), the flow discharge in the inlet decreases on the right side, increasing on
the left. The zones at Vm almost equal to zero, observed in the left channel in non-cavitating
regime, become smaller and less intense. In the channel on the right deceleration regions
appear in the efficiency drop starting point (figure 5.49 b) and they increase with the cavitation
development (figure 5.49 c). Indeed, at σ−1%, the channel with the highest mass flow rate is
the left. The observed deceleration regions are coherent with the vortical structures recognized
in the streamlines analysis (figure 5.47). The evolution of the flow partition in the two channels
accords well with the helicity field prediction (figure 5.48): more the secondary flows increase,
more the discharge rate decreases.

Thus, the cavitation in the runner has an influence on the flow in the draft tube. In particular,
more the cavitation structures in the runner increase, more the vortex structures in the draft tube
getting stronger and after decrease, passing from a channel to the other one. As a consequence,
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the flow partition between the two channels is modified during the cavitation development
changing the performances values. However, it is important to keep in mind that steady analysis
represent only a single position of the runner blades. In order to improve the cavitating flow
numerical reproduction in the draft tube, unsteady simulations are required.

5.3 Chapter conclusions

In order to develop a numerical methodology able to predict the cavitation evolution inside a
Kaplan turbine and the consequence on the machine performances, the optimal load operating
point OP1 has been analyzed in steady conditions.

Preliminary simulations performed on the reduce domain D1 have been shown that the best
agreement between numerical results and measurements is achieved refining the mesh and
using the k−ω SST turbulence closure. However, the computed performance values still differ
from the experimental data.

Thus, to approach the numerical operating point to the real one, an iterative procedure has
been applied: the mass flow rate value on the inlet has been changed targeting the experimental
torque. This parameter has been chose in order to obtain a fluid dynamic agreement with
experiments since it is strictly linked to the flow incidence on the runner blade. A reduced
difference between experimental and numerical torques ensures the correct reproduction of the
turbine work. As a consequence of the inlet boundary condition modification, the mismatch
between the numerical prediction and the measurement of the global quantities and of the
velocity fields on the runner outlet has been reduced but the reproduction of the cavitating flow
behavior has been deteriorated. The inadequate prediction of the flow in cavitating conditions
results from a discrepancy between the numerical and experimental operating point at lowest
sigma values.

To approach the computational domain to the real geometry the draft tube has been consid-
ered in the analysis and its influence on the flow has been investigated. Results in non-cavitating
conditions have been shown that the presence of the draft tube affects the velocity profiles on
the runner outlet and the losses distribution in the machine changing the performance values.
The draft tube influence also the cavitating flow altering the evolution with the σ reduction of
the global quantities and of the cavitation structures. So it is fundamental to include the draft
tube in the analysis to achieve a correct simulation of the flow in the machine.

On the other hand, the mass flow rate imposed on the inlet of the domain does not allow
to adequately reproduce the experimental conditions. Indeed, during cavitation break down
laboratory tests, the machine head is imposed while the mass flow could vary. Thus, a new
inlet boundary condition has been proposed instead of the classical one: the total pressure.
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Imposing the total pressure on the inlet the prediction of the non-cavitating and cavitating
flow is improved. The discrepancy between numerical and measured velocity distributions
on the runner outlet has been reduced. During the cavitation development the head is fixed
allowing to obtain performance curves with the same overall aspect of the experimental ones.
The predicted σ value after the efficiency drop starting point are still higher than the measured
ones. In order to try to reduce this difference and to improve the reproduction of the cavities
structures unsteady simulations are required.





Chapter 6

Unsteady investigation

The steady investigation of the optimal load operating point OP1 reported in chapter 5 has
allowed to define a numerical methodology able to predict the cavitation development in the
machine and to perform first analyses of the flow.

The scopes of the unsteady simulations that will be presented in this chapter was firstly to
try to reduce the discrepancy between predicted and measured σ values in developed cavitation
conditions and, secondly, to improve and complete the cavitating flow analyses. Furthermore,
in order to test the generality of the calculation strategy, the full load operating point OP2 is
also investigated. Differently from the design operating conditions, this point is characterized
by a very unstable flow making the steady simulations impossible.

6.1 Unsteady investigation of the optimal load point (OP1)

In the unsteady regime, only 6 points of the σ–break curve of OP1 (reported in blue in figure 6.1)
of the 8 considered in the steady analysis have been investigated. The calculation domain now
also includes the guide vanes and the runner blades (domain D3 presented in chapter 4). The
used computational parameters are summarized in table 6.1.

Table 6.1 Numerical parameters used to perform the unsteady calculations on the optimal load operating point
OP1.

Domain Mesh Inlet BC Outlet BC Turbulence model Cavitation model ∆∆∆ttt ∆∆∆τττ

D3 M4 Ptot Pout = Pamb k−ω SST Barotropic law 1° 20

The same analyses of the cavitating flow presented in the steady case have been performed.
The evolution of the machine performances, the vapor structures on the runner blade and the
cavitating flow in the draft tube computed in the unsteady case have been compared with the
steady results. In addition, the pressure fluctuations in the cone have been also analyzed.
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Figure 6.1 Experimental σ -break curve for OP1. The points indicated by the blue stars are considered in the
unsteady analysis.

6.1.1 Comparison of the performances and cavities structures predicted
in steady and unsteady regimes

For unsteady case, the characteristic quantities of the machine, i.e., T , H and Q have been
evaluated as the average of each time step over 3 turbine rotations. Considering that in this
operating point the flow in non-cavitating conditions is very stable, the global quantities
fluctuations are very small. So, the difference between the averaged quantities evaluated in
unsteady regime and the corresponding values computed in steady conditions results to be less
than 0.2%.

In figure 6.2, the σ -break curve plotted from unsteady results is compared with the steady
curve and experimental data. The overall aspect of the two computed curves is very similar.
Slight improvements in the σ values prediction are observed in developed cavitation conditions.

Figure 6.2 Comparison between measured (plotted by black crosses) and computed σ -break curve in steady
(black dashed line with squares) and unsteady conditions (blue stars).The experimental points σs, σ−0.5% and
σ−1% are plotted with red crosses.

Indeed, in the unsteady conditions, the discrepancy between the calculated and the measured
Thoma number values at σ−0.5% and at σ−1% has been reduced of the 4% with respect to the
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steady results. Also the torque values predicted in unsteady regime (figure 6.3 a) are close to
the steady ones. Main differences are observable in the mass flow prediction (figure 6.3 b). For
unsteady results at σ−0.5% (σ = 0.53) the Q value decreases considerably, deviating from the
experimental data, whereas at σ−1% (σ = 0.52) the mass flow starts to increase following the
experimental trend better than the steady case.

(a) (b)

Figure 6.3 (a) The torque and (b) the mass flow rate evolution with the σ reduction measured (black crosses) and
computed in steady (black dashed line with squares) and unsteady (blue stars) conditions. The experimental points
σs, σ−0.5% and σ−1% are plotted with red crosses.

The evolution of the vapor structures during a runner rotation at σs (figure 6.6) and at σ−0.5%

(figure 6.7) are compared with the iso-density surfaces computed in the steady simulations and
with the experimental observations (reported in figure 6.4 and figure 6.5, respectively). The
cavities predicted in unsteady conditions at σs and σ−0.5% have the same shape, extension and
position of the vapor structures computed in the steady case at the same points (figures 6.4 b
and 6.5 b). In both of the analyzed points of the σ -break curve, the vapor structures at the tip
and at the root of the blade do not change during the runner rotation.

From the experimental visualizations shown in figure 6.8 it is possible to observe that the
cavity sheet on the blade root is not exposed to a clear volume change during the runner rotation,
while the vapor structure on the tip is almost a vortex that leaves the blade surface, makes a
turn and then approaches the blade surface again.

Moreover, the numerical method applied in this work does not allow to simulate the vapor
shedding. On the other hand, the position and the overall shape of the cavities is correctly
predicted.

It is then possible to conclude that due to the steady character of the flow in the optimal load
operating point, the introduction of the time in the governing equations leads only to marginal
improvements in the prediction of the performance evolution with the cavitation development.
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(a) (b)

Figure 6.4 (a) Experimental vapor structure (σs = 0.602) and (b) computed iso-density surfaces (ρ = 980 kg/m3)
in steady conditions(σs = 0.580).

(a) (b)

Figure 6.5 (a) Experimental vapor structure (σ−0.5% = 0.480) and (b) computed iso-density surfaces (ρ =
980 kg/m3) in steady conditions(σ−0.5% = 0.560).
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Figure 6.6 Iso-density surfaces (ρ = 980 kg/m3) computed in the unsteady conditions at σs (σ = 0.590) during a
runner rotation each 60°.
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Figure 6.7 Iso-density surfaces (ρ = 980 kg/m3) computed in the unsteady conditions at σ−0.5% (σ = 0.530)
during a runner rotation each 60°.
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Figure 6.8 Experimental visualization of the tip vortex cavitation at σ−0.5% = 0.480.

6.1.2 Comparison of the cavitating flow in the draft tube in steady and
unsteady regimes

The steady analyses presented in Chapter 5 have shown that the development of the cavitation
influences also the flow in the draft tube. In particular, the presence of cavities on the runner
blades modifies the vortices and the flow partition in the two channels of draft tube. Furthermore,
a steady calculation is representative only of a single runner blades position. Therefore, to

Figure 6.9 Streamlines evolution in the draft tube in non-cavitating conditions during a runner rotation each 120°.

further investigate this phenomena, the evolution of the stream lines in the draft tube during a
rotation of the runner, in non-cavitating and in cavitating conditions has been analyzed. The
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Figure 6.10 Streamlines evolution in the draft tube at σs = 0.590 during a runner rotation each 120°.

Figure 6.11 Streamlines evolution in the draft tube at σ−1% = 0.520 during a runner rotation each 120°.
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points of the σ -break curve considered in the unsteady regime are the same investigated for the
steady conditions: the first point (non-cavitating conditions), the efficiency drop starting point
(σs) and at σ−1%. For each one of these points, four instant of time have been considered.

For all conditions, the flow in the draft tube is very stable: the vortical structures computed
in the steady regime (see chapter 5) are observed also in the unsteady conditions. In non-
cavitating conditions (figure 6.9), the vortex on the left channel is more extended than the one
predicted with steady simulations, reaching the outlet of the draft tube. As a consequence,
backflow phenomena are observed in the outlet section which have not been identified by steady
calculations.

At σs (figure 6.10) when the first cavities structures begin to appear on the tip and on the
root of the blade, according to the steady prediction, the vortex in the left channel expands and
the back flow phenomena observed on the outlet, in non-cavitating conditions, become more
intense. On the contrary, the deceleration of the flow observed in the steady analysis is not
observed in the unsteady case.

At σ−1%, the unsteady results (figure 6.11) are in good agreement with the steady prediction:
the vortex on the left channel is almost completely disappeared and the flow accelerates while a
vortical structure begins to form in the right channel. The flow on the outlet is no more affected
by the backflow phenomena.

So according to these results, the influences on the draft tube flow of the cavitation phe-
nomena occurring in the runner which have been observed in the steady analysis has been
confirmed also by the unsteady analyses.

6.1.3 Analysis of the pressure fluctuations

The main advantage of the unsteady analysis is the possibility to investigate the temporal
fluctuations of the flow characteristic quantities, i.e. the pressure, the torque, etc.

The pressure fluctuations have been measured below the runner for 3 points of the σ -break
curve: in non-cavitating conditions, at the efficiency starts drop point (σs) and when the
efficiency is reduced of 1% (σ−1%). Four pressure taps have been located on the discharge ring,
downstream of the runner blade, at 120 mm from blades axis (figure 6.12 a). The position of
the pressure sensors on the circumferential section are reported in figure 6.12 b.

Indicating with f0 the runner rotation frequency, the sample frequency used is equal to
f = 156 f0 corresponding to a blade rotation of 4.5°. The pressure signals have been recorded
along 360 rotation of the runner. More informations about the experimental setup are reported
in chapter 3.

To identify the most energetic frequencies of the pressure signal a fast Fourier transform
(FFT) has been applied. The amplitudes have been normalized by the the experimental head
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(a) (b)

Figure 6.12 The Position of the experimental four pressure taps(a) with respect to the reference axis and (b) on
the runner circumferential section.
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Figure 6.13 Measured pressure spectra in non-cavitating conditions at σs = 0.602. The frequencies are normalized
by the runner rotation frequency f0. The amplitude is divided by the experimental head Hexp.
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value (Hexp). The study of vibrations, acoustic emissions and dynamic-pressure levels in the
high frequency range is a well-known technique to detect cavitation activity (see [15]). The
amplitude of a given frequency band can be compared for various points of the σ -break curve.
Considering that the main objective is to recognize the signature of the cavitation, the signal
spectrum in non-cavitating conditions is used as reference for the others two points. In all
cases the signals have been cut to a frequency f = 30 f0 since in the experiments no interesting
phenomena have been found in the high frequency region.
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Figure 6.14 Measured pressure spectra in non-cavitating conditions and at σ−1% = 0.460. The frequencies are
normalized by the runner rotation frequency f0. The amplitude is divided by the experimental head Hexp.

At σs, first cavitation structures appear on the tip and on the root of the blade (figure 6.6). In
the frequency domain, at the same point (figure 6.13) a very low intensity peaks are observed in
all the four spectra between f = 20 f0 and f = 26 f0, close to the guide vane passing frequency
( f = 24 f0). The most energetic peak is identified at f = 5 f0 corresponding to the runner
passing frequency. In developed cavitation conditions at σ−1% (figure 6.14), the intensity of
the peaks in the range between 20 f0 and 26 f0 increases and the most energetic peak is located
at f = 24 f0. This is evident mostly on the pressure taps P1 and P4. The intensity of the peak at
f = 5 f0 does not change with the increase of the vapor amount in the runner.
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To compare the experiments with the numerical simulations, four control points have been
located in the numerical domain in the same position of the pressure taps. The sample frequency
chosen in the simulations is f/ f0 = 360 corresponding to a blade rotation of 1°. To limit the
computational costs, the pressure signal have been computed only for a single runner rotation.
The experimental and the numerical spectra have been normalized by the highest computed and
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Figure 6.15 Comparison between computed and measured pressure spectra in the OP1 at σs. The frequencies
are normalized by the runner rotation frequency f0. The amplitudes are normalized by highest computed and
measured peak value, respectively.

measured peak value, respectively. The simulations show that the pressure starts to fluctuate
when the cavitation phenomena begin to occur. At σs (figure 6.15), in all the four spectra,
a single peak appears at 24 f0, which corresponds to the guide vane passing frequency. At
σ−1% (figure 6.16) the amplitude of this peak increases. In agreement with the experimental
measurements, the most energetic peaks are observed in the control points P1 and P4. However,
the peak measured experimentally at 5 f0 is not identified in the computed spectra. This could
be due to the reduced length of the numerical signal and to the use of the URANS model that
does not allow to simulate turbulence phenomena.

In both cavitating conditions, the computed peaks are overestimated but the overall shape
of the numerical spectra is in good-agreement with the experimental data. The pressure
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fluctuations increase with the development of the vapor structures nearby the guide vane
passing frequency. Considering that the pressure transducers are located on the runner shroud,
one could imagine that the rotor/stator interaction and the tip cavitation are linked. In the
previous study proposed by Nennemann and Vu [73] has been demonstrated that in a Kaplan
turbine the pressure amplitudes at the guide vane passing frequency are amplified in the tip
cavities proximity. The flow on the guide vane trailing edge is not circumferential uniform.
This uniformity is more pronounced near the guide vane discharge ring, where the change of
direction of the flow entering in the runner is stronger. Due to the characteristic geometry of
the Kaplan turbine, the streamlines originated near the bottom ring at the guide vane remain in
the machine periphery.
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Figure 6.16 Comparison between computed and measured pressure spectra in the OP1 at σ−1%. The frequencies
are normalized by the runner rotation frequency f0. The amplitudes are normalized by highest computed and
measured peak value, respectively.

So the non-uniformity observed in the guide vane trailing edge gets transported into the
lowest pressure area of the runner, i.e. the blade tip and the shroud gap, originating vortices
and cavitation phenomena. The vapor structures further emphasize the non-uniformity of the
flow in these regions, increasing the pressure fluctuations at guide vane passing frequency
downstream. In the present work, both experiments and simulations have shown that reducing
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the Thoma number the vapor structure on the tip expands along the blade length in the trailing
edge direction (see figures 6.4 and 6.5). The development of the cavitation in the tip region
could explain the increase of the peaks at f = 24 f0. As stated by Motycak et et al. [14], the tip
cavitation does not have a great influence on the turbine efficiency but causes the cavitation
pitting. The torque reduction is mainly due to the tip clearance flows and to the surfaces
cavitation phenomena, i.e. the hub and the leading edge cavitation, as has been explained in
the steady analysis 5. In order to find a signature of the cavitation structures responsible of the
performance variation, analyses of the pressure fluctuations in other points of the turbine (i.e.
the runner blade and the guide vane outlet [85], [76]) and of the torque spectra are required.

In conclusion the unsteady simulations have led only to marginally improve at the cavitation
prediction methodology. On the other hand, the unsteady approach has allowed to confirm the
results of the steady analyses in terms of evolution with the σ reduction of the cavities on the
runner blades and of the vortical structures in the draft tube. The investigation of the pressure
fluctuations has highlighted the existence of a correlation between the rotor/stator interaction
and the cavitation development, finding a probable signature of the tip vortex cavitation. Further
investigation of the cavitating flow are required in order to finally validate the results of the
pressure spectra analysis.

6.2 Unsteady investigation of the full load point (OP2)

The validated unsteady numerical methodology is now applied to the full load operating point,
OP2. Contrarily to the OP1, in the OP2 the machine works out of these design conditions.
Hence, the flow in the turbine is characterized by stronger pressure gradients, recirculation
phenomena and unsteady vapor structures. Steady calculations are not longer suitable to
correctly reproduce the flow in the machine in both non-cavitating and caviting regimes so only
URANS calculations have been performed. Six points of the OP2 σ -break curve (indicated
by the blue stars in figure 6.17) have been analyzed. The guide vane opening (γ) and the
blade angle (α) have been changed obtaining the numerical domain D4 (see chapter 4). The
simulations setup is recalled in the table 6.2.

Table 6.2 Numerical parameters used to perform the unsteady calculations on the full load operating point OP2.

Domain Mesh Inlet BC Outlet BC Turbulence model Cavitation model ∆∆∆ttt
D4 M5 Ptot Pout = Pamb k−ω SST Barotropic law 1°

At first, the results of the unsteady calculations have been validated in non-cavitating regime
comparing numerical and experimental performances values and velocity profiles on the runner
outlet. Then, investigations in cavitating conditions have been performed trying to reproduce
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Figure 6.17 Points of the experimental σ -break curve computed in the unsteady conditions (reported by the blue
stars).

the cavitation curves, the vapor structures and the pressure fluctuations observed during the
experiments.

6.2.1 Analyses in free-cavitation regime

At first, unsteady simulations have been performed in free-cavitating regime imposing the
experimental discharge value as inlet boundary condition (Q = Qexp). In order to compare
experimental and numerical performances, the computed values have been evaluated by the
average of each time step over 5 turbine rotations. The results obtained are reported in table 6.3,
in terms of difference from the experimental data.

Table 6.3 Performance parameters computed on D4 imposing Q = Qexp on the inlet.

Inlet BC ∆T =
(Texp−Tnum)

Texp
∆H =

(Hexp−Hnum)
Hexp

∆η =
(ηexp−ηnum)

ηexp

Q = Qexp 14% 11% 17%

As observed for the calculations in the OP1, imposing Qexp at the inlet of the domain leads
to a discrepancy between the calculated and the measured performances (T , H and η). This
means that the numerical operating conditions differ from the experimental ones. Moreover,
the mass flow on the domain outlet is 2% higher than the inlet value, so obtaining the numerical
convergence with this inlet boundary condition value is more difficult that the OP1.

Following the developed numerical methodology, the first step has been to approach, as
much as possible, the numerical and the experimental operating points. For this purpose, the
inlet discharge value has been iteratively changed targeting the experimental torque value. Once
the difference between the numerical and the experimental torque values has been reduced to
0.5%, the computed inlet total pressure Ptot has been imposed as new inlet boundary conditions.
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Table 6.4 Performance parameters computed on D4 imposing Ptot on the inlet.

Inlet BC ∆T =
(Texp−Tnum)

Texp
∆H =

(Hexp−Hnum)
Hexp

∆Q =
(Qexp−Qnum)

Qexp
∆η =

(ηexp−ηnum)
ηexp

Ptot 0.5% 8% 1.8% 7%

As shown in table 6.4, this has allowed to reduce the differences between the computed and
the measured T , Q and η values, with a discrepancy on the Q equal to 1.8%. Considering that
in this operating point, during the cavitation break down tests the mass flow can vary of ±2.5%
this difference on the discharge value was considered acceptable. Furthermore, the new inlet
boundary conditions has improved the calculation convergence, reducing the inlet/outlet mass
flow difference to less than 0.05%.

Also for this operating point, measurements of the velocity profiles on the runner outlet
(plane at 170 mm from the reference axis, see figure 3.6in chapter 3) in non-cavitating conditions
are available. Contrary to the OP1, now the flow velocity distribution changes greatly with
the runner rotation. The azimuthal average of the meridional Vm and the tangential Vt velocity
components has been computed every 10° over 3 turbine rotations (see figure 6.18). The
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Figure 6.18 Evolution of the normalized (a) meridional, Vm, (b) and tangential, Vt , velocities along the normalized
radius, measured by LDV (black crosses) and computed (red dashed line) in full load conditions (OP2). 0 is the
hub and 1 is the shroud.

mesh refinement level used in this case is not enough to correctly solve the viscous sublayer
(y+ ⩾ 5, see chapter 2). This is evident in both velocity profiles near the walls. The peak of Vt

observed in the experiments in the shroud region is numerically predicted farther to the wall
(figure 6.18 b). Near the tip, the computed Vt profile match with the measured curve but the
exaltation is predicted slightly farther from the wall. Discrepancy between the experimental
and the calculated profiles near the shroud can be observed also for Vm (figure 6.18 a). Indeed,
the computed region where the Vm increases is wider that the measured one, extending from
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the shroud to the middle of the channel. On the contrary, close to tip, the computed meridional
velocity agrees well with the measurements. Yet, it is satisfying to observe a similar overall
shape for both numerical and experimental distributions. The results obtained in non-cavitating
conditions have shown that the calculation methodology based on the new inlet boundary
condition, developed for OP1, can be effectively applied to simulate another operating points.
The predicted performances values and the velocity profiles on the runner outlet are in good
agreement with the measured data. As in optimal load conditions, the numerical results can be
further improved refining the mesh near the wall, to solve better the viscous sublayer.

6.2.2 Analyses in cavitating regime

6.2.2.1 Performances evolution

In figure 6.19 the experimental and the numerical σ -break curves are compared. The σ value
of the first point of the computed cavitation curve is the 4.5% lower than the measured one.
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Figure 6.19 σ -break curves measured (black crosses) and computed (blue line with the circles) in full load
operating conditions OP2. The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses.

On the contrary, the starting point of the efficiency drop, σs, and the points corresponding
to an efficiency reduction of 0.5% (σ−0.5%) and 1% (σ−1%) are predicted for higher σ values.
The error on the σ number evaluation at σs is higher than 10% and continues to increase with
the cavitation development becoming the 18% at σ−1%. This mismatch in the Thoma number
prediction has been already observed in optimal load conditions (see chapter 5). Considering
that the H is constant all along the σ -break curve, the η depends mostly on the torque and on
the discharge rate. The numerical and the experimental torque evolutions with the cavitation
development are reported in figure 6.20 a. The computed T and η curves are very similar: as
in the efficiency case, the numerical torque starts to decrease at higher σ and the last part of
the curve is steeper than the measured one. Concerning the mass flow rate, experimentally
(figure 6.20 b) it begins to decrease before σs reaching the minimum at σ−1%. Then in
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developed cavitation conditions a sudden increase is observed. The numerical discharge curve
fits well the experimental trend until σs. Indeed, after this point, contrarily to the experimental
measurements, the Q starts to increase.
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Figure 6.20 (a) T and (b) Q evolutions as function of σ measured (black crosses) and computed (blue line with
the circles) in OP2. The experimental points σs, σ−0.5% and σ−1% are plotted with red crosses.

As a conclusion of this analysis, it is possible to state that simulations on a coarse mesh
allows to obtain numerical performances curves with a trend similar to the experimental ones.
However, in order to reduce the mismatch on the Thoma number values, a finer mesh is
required.

6.2.2.2 Vapor structures evolution

The computed vapor structures in different points of the σ -break curve will be now discussed.
Two points have been considered for this analysis: the efficiency drop staring point (σs = 1.10)
and the point that corresponds to an efficiency reduction of the 0.5% (σ−0.5% = 1.02). The
experimental setup are reported in details in chapter 3. As for the OP1 (see chapter 5), iso-
density surfaces at ρ = 980 kg/m3 have been used to visualize the numerical vapor structures.

At σs (figure 6.21 a), the cavitation structures observed during the experiments are concen-
trated on the tip and on the root of the runner blade. In particular:

• In the tip region, a single cavity has been observed starting from the leading edge and
extending along the 2/3 of the blade length in the trailing edge direction.

• On the blade root, a vapor structure appears close to the leading edge developing in the
direction opposite to the runner rotation and another one has been identified near the
trailing edge.
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(a) (b)

Figure 6.21 Vapor structures at (a) σs = 1.10 and at (b) σ−1% = 1.02 observed in the OP2.

In the efficiency drop starting point, the quantity of vapor numerically predicted is over
estimated (figure 6.22). The cavity calculated on the tip is more widen than the experimental
one, covering the entire blade length. The two vapor regions computed near the hub wrap
almost all the blade profile and extend also on the runner hub, passing the limits observed
experimentally. Moreover, a tip clearance cavitation structure appears in the simulations results
that has not been observed during the experiments. At σ−0.5% (figure 6.21 b), the vapor
structures observed at σs increase their dimensions:

• the blade tip is completely covered by the cavity sheet, from the leading edge to the
trailing edge.

• In the hub region, the cavitation structure near the leading edge covers a bigger part of
the blade profile while the cavity near the trailing edge is unchanged.

In this point of the σ -break curve, the computed iso-density surfaces on the tip and on the root
of the blade (figure 6.23) merge in the middle of the blade generating a single sheet cavity.
Also in this case, calculations predict cavitation structures larger than the experimental ones.
The over estimation of the vapor in the simulations is mostly due to a non adequate mesh level.
Indeed, as already demonstrate in the case of the OP1 (see chapter 5), a mesh refinement near
the wall is required to correctly reproduce the cavitation structures.

Compared to the OP1, this operating point is characterized by more unsteady cavitation
phenomena that change shape and position during the runner rotation. Four different instants of
time have been investigated for both points of the σ -break curve. At σs (figure 6.22), following
a single blade (i.e. the blade 1), it is possible to observe that the extension of the vapor structure
on the blade root varies greatly, joining the cavity on the tip and after separating from it during
the rotation. On the contrary, at σ−0.5%, the computed vapor structures become bigger and
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more attached on the blade so only local variations of the cavity sheet near the hub are observed
(see figure 6.23). In particular, during the rotation, the amount of vapor evolve, covering and
uncovering the trailing edge on the blade root.

(a) (b)

(c) (d)

Figure 6.22 Computed vapor structures at σs in the OP2 for four runner positions: (a) 0°, (b) 120°, (c) 150° and
(d) 200°.
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(a) (b)

(c) (d)

Figure 6.23 Computed vapor structures at σ−1% in the OP2 for four runner positions: (a) 0°, (b) 30°, (c) 150° and
(d) 260°.

6.2.2.3 Pressure fluctuations

Contrary to the OP1, the operating point OP2 is characterized by a more unsteady flow that
introduce noises in the signal. This means that in full load operating conditions is more compli-
cated to isolate and to recognize the frequencies linked to the cavitation in the experimental
pressure spectra. The experimental and the numerical setups are the same used for the analysis
of the pressure fluctuations in the OP1 (see paragraph 6.1.3). As for the OP1, three points of the
σ -break curve have been considered in the investigation: the point in free cavitation conditions,
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the efficiency drop starts point σs and the σ−1% corresponding to a loss of the efficiency of
the 1%. The spectra of the first point of the cavitation curve is used as references for the other
two investigated points. The analyzed frequencies domain are limited to f/ f0 = 30 since no
interesting phenomena have been observed for higher frequency values.
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Figure 6.24 Measured pressure spectra in the OP2 in non-cavitating conditions at σs = 1.10. The frequencies are
normalized by the runner rotation frequency f0. The amplitude is divided by the experimental head Hexp.

At σs (figure 6.24), a slight increase of the pressure amplitude is observed nearby the runner
passing frequency ( f = 5 f0) and the guide vane passing frequency ( f = 24 f0). The other
peaks identified for multiple values of these two frequencies (i.e. f = 10 f0) can be considered
as high-order harmonics.

With the development of the cavitation structures in the runner at σ−1%, both peaks observed
at f = 5 f0 and f = 24 f0 increase. The dominant frequencies are not the same for all the four
transducers: for P2 and in P3 is the f = 5 f0, whereas for P1 and P4 is the f = 24 f0. Comparing
the experimental observations of the cavitation structures at σs and at σ−0.5% (reported in
figures 6.21 a and b, respectively), it is evident that reducing the Thoma number the extension
of the cavity on the tip increases reaching the trailing edge of the blade.
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Figure 6.25 Measured pressure spectra in the OP2 in non-cavitating conditions and at σ−1% = 1.02. The
frequencies are normalized by the runner rotation frequency f0. The amplitude is divided by the experimental
head Hexp.

From the previous investigation of the pressure spectra in the optimal load operating point
(see paragraph 6.1.3), it is reasonable to assume that also in this case the pressure fluctuations
are linked to the appearance and the development of the cavitation on the blade tip.

Overlapping the numerical spectra on the experimental ones for the two points of the
σ -break curve (see figure 6.26 and 6.27) it is possible to see that the simulations predict
the presence of a single peak in the range comprised between f = 20 f0 and f = 26 f0 that
increases with the cavitation development. Also for this operating point, the overall position of
the most energetic peak is correctly predicted. More harmonics could be captured extending
the numerical signal and refining the mesh but they will still be limited by the application of
the URANS formulation.

In conclusion, the analysis of the full operating point has allow to test the generality of the
developed numerical methodology of cavitation prediction. The use of a coarse mesh due to the
necessity to limit the computational costs, has led to discrepancies between numerical results
and experimental data in both non-cavitating and cavitating conditions, mostly concerning
the velocity profiles and the cavitation structures development. The trend of the computed



154 Unsteady investigation

performance curves approaches the measured ones, allowing to obtain a preliminary evaluation
of the effect of the cavitation on the machine.
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Figure 6.26 Comparison between computed and measured pressure spectra at σs. The frequencies are normalized
by the runner rotation frequency f0. The amplitudes are normalized by highest computed and measured peak
value, respectively.
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Figure 6.27 Comparison between computed and measured pressure spectra at σ−1%. The frequencies are
normalized by the runner rotation frequency f0. The amplitudes are normalized by highest computed and
measured peak value, respectively.

6.3 Chapter conclusions

Unsteady simulations have been performed on the optimal load operating point (OP1) in order
to improve the numerical methodology developed in steady regime and to further investigate the
cavitating flow behavior during the turbine rotation. The same analyses proposed in the steady
regime have been performed introducing the time variables in the governing equations. In
particular, the evolution of the machine performances curves, the cavitation structures and the
flow in the draft tube have been recalculated in unsteady conditions and have been compared
with the previous steady predictions. Slight improvements have been obtained in the cavitation
curves trends, in terms of Thoma number values predictions, mostly in developed cavitation
conditions. No important variations of the vapor structures shapes and positions during the
runner rotation have been observed confirming the steady characteristic of the cavitating flow in
operating conditions near the best efficiency point, according to the experimental investigations.
The analysis of the time evolution of the stream lines in the draft tube has allowed to state that
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the cavitation phenomena occurring in the runner influence also the downstream flow, changing
its distribution and introducing vortex structures in the draft tube channels.

Furthermore, the pressure fluctuations downstream the runner blades have been investigated.
Comparing the measured pressure spectra in four points on the discharge rings with the
computed spectra in the same points, a correlation between the tip cavitation and the increase
of the pressure peak has been found.

Therefore, by means of the unsteady investigations the numerical methodology has been
finally validate. The agreement between steady and unsteady results have highlighted that in
stable operating conditions, such as the OP1, just steady simulations are required to correctly
reproduce the behavior of the cavitating flows and their impact on the machine performances,
containing the computational costs. The unsteady calculations were also useful to analyze time-
variable phenomena, impossible to capture by simple steady simulations. The investigation
of the pressure fluctuations on the runner downstream has allowed to identify the signature
of the tip cavitation. To improve and complete the prediction numerical methodology, further
analysis in different parts of the machine of the pressure variations are required to characterize
the frequency signatures representative of the other cavitation types, which alter the machine
efficiency.

Once the methodology has been completely developed, even in unsteady conditions, its
generality has been validate considering another operating point. The full load operating
point (OP2) has been chosen since it is characterized by very unstable flow so only unsteady
simulations have been possible. The methodology was applied identically to the OP1: at
first, the experimental flow rate value was imposed as inlet boundary condition, then it was
iteratively changed targeting the experimental torque value and, finally, the total pressure
value was imposed on the domain inlet, improving the simulations results and the calculations
stability. However, for computational cost reasons, the OP2 simulations have been performed on
a mesh less refined than the OP1. This has led to discrepancies between measured and numerical
performances and velocity fields, already outside the cavitating regime. Prediction errors were
also observed on the cavitation curves and on the vapor structures evolution. Despite this, these
calculations have been allowed to obtain a preliminary estimation of the cavitating structures
behavior during the runner rotation and their consequences on the machine performances.
However, a more refined mesh is necessary to obtain more accurate results.

The analysis of pressure fluctuations was performed also for this operating point, in the
same position as for the OP1. Due to the unsteady characteristic of the flow in this operating
conditions, the pressure signal is more noisy and the identification of the dominant frequencies
is more complex. The analysis of the experimental pressure spectra have revealed the presence
of other dominant frequencies additionally to the one identified in the OP1. On the other hand,
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in the simulations only the guide vane passing frequency linked to the tip cavitation has been
recognized. This limit of the numerical methodology could be corrected refining the mesh and
increasing the length of the numerical signal but it could be mainly related to the limit of the
URANS formulation that averages the turbulent structures.





Chapter 7

Conclusions and perspectives

7.1 Conclusions

A new numerical methodology has been proposed to predict the cavitation phenomena in
Kaplan turbine and their effects on the machine performances. It has been developed starting
from the investigation of the optimal load operating point. Preliminary simulations have been
performed on a reduced numerical domain comprising a single full-periodic interblade channel
of the guide vane, the runner and the cone. In this first step, the adequate turbulence model,
mesh refinement and boundary conditions setup have been defined. Indeed, this three aspects
have a great impact on the stability and the results of the simulations.

The boundary condition imposed on the domain inlet has a key role in order to improve the
numerical cavitation predictions. Hence, an iterative correction procedure has been proposed,
consisting in modifying the inlet discharge to target the experimental torque value. Indeed,
the correct reproduction of this parameter ensures the fluid dynamic agreement between
experimental model and the simulated geometry since it strictly depends on the flow incidence
on the blades and on the hub of the runner.

Once the numerical setup has been determined, the draft tube has been included in the
computational domain. The modification of the numerical domain aimed to firstly evaluate the
influence of the draft tube on the cavitating flow and the machine performances and secondly
to further reduce the discrepancy between numerical and experimental conditions. Considering
the draft tube in simulations, the total pressure can be used as the inlet boundary condition
instead of the flow rate. As a consequence, the net head is constant during the Thoma number
reduction, likely in experimental break down tests.

The results have shown that the draft tube has a great influence on the flow in the turbine
in both non-cavitating and cavitating regimes. In order to accurately predict the effects of
the cavitation phenomena in the turbine, it have to be considered in the analysis. Moreover,
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changing the inlet boundary condition, the overall aspect of the T , H and Q numerical curves
fit better with the experimental ones. However, the computed σ values after the efficiency drop
starting point are still higher than the experimental ones.

The numerical results of the performance curves and the cavitation structures obtained
applying the developed computational strategy are in good agreement with the experimental
data. This ensure the prediction ability of the numerical methodology.

As soon as the steady calculation methodology has been completely defined, in-deep
analyses of the cavitating flow have been performed. The alteration of the pressure distribution
on the runner blades and the consequential modification of the torque with the cavitation
number reduction have been related to the development of the vapor structures in the hub and
in the shroud regions. On the contrary, the presence of the cavities have only slightly modified
the flow in the interblade channel. Effects of the runner cavitation have been observed on the
flow in draft tube. The intensity of the vortices and the flow distribution in the two channels are
modified by the development of the cavitation, affecting the machine performances.

Furthermore, the influence of cavitation on global and local losses has been investigated.
Despite the net head is constant during the σ -break curve, the losses distribution through
the different parts of the machine changes, increasing in the runner and in the draft tube. In
particular, when cavities occur, the losses in the runner increase mostly in the tip blade region,
due to the presence of strong velocity gradients in the shroud gap.

Unsteady simulations have been performed for the same operating point in order to improve
the performances prediction in developed cavitation conditions and to validate and complete
the steady cavitating flow analysis. The introduction of the temporal variables in the governing
equations has only marginally improved the cavitation prediction methodology. On the other
hand, the unsteady approach has allowed to validate the steady analyses results in terms of
cavities evolution and the vortical structures development in the draft tube. The pressure
fluctuations downstream the runner have been investigated, correlating the peak of the pressure
spectra to the presence of the vapor structures. This has allowed to find a link between the
rotor/stator interaction and the cavitation development, finding a probable signature of the tip
vortex cavitation.

Finally, the developed numerical methodology has been tested in full load operating condi-
tions, in order to validate its generality. Due to the high unstable characteristic of the flow in
this operating point, only unsteady simulations have been possible. to limit the computational
cost, simulations have been performed on a mesh more coarse than the optimal load point.
Applying the new strategy, numerical results are in better agreement with experimental ones.
However, the coarse mesh is responsible for discrepancies between measured and numerical
performances and velocity fields, already in free-cavitation regime. Prediction errors were also
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observed for the cavitation curves and for the vapor structures evolution. In spite of this, these
calculations have been allowed to obtain a preliminary estimation of the cavitating structures
behavior during the runner rotation and their consequences on the machine performances. The
analysis of the pressure spectra have confirmed the increase of the pressure fluctuations due to
cavitation on the blade tip, stated in the optimal load point. The other experimental dominant
frequencies have not observed in the numerical simulations.

7.2 Perspectives

The cavitation prediction ability of the computational strategy presented in this work has been
widely validated. Nevertheless, further improvements could be considered:

• The mesh refinement level has a fundamental role to accurately reproduce shape and
location of the cavitation structures and, as a consequence, to correctly predict the
performances curves. Thus, simulations on a fine grid have to performed, also in full
load operating conditions to obtain high quality results as for the optimal load point.

• The machine performances depend also on the draft tube energy recovering efficiency.
Thus, more experimental investigation of the cavitation effects on the flow in the draft
tube, in both operating conditions, are required. The analyses of streamlines and velocity
and helicity fields have to be validated by means of further experimental investigations in
the same cross-sections. Also the pressure fields and their fluctuations, with the cavitation
development, have to be analyzed numerically and experimentally in different parts of
the draft tube. Finally, a local losses analysis, as in the runner, can be useful in order to
identify the loss sources linked to the cavitation.

• The presence of vapor structures in the runner involves pressure and torque fluctuations
and pulsations. Different types of cavitation correspond to different frequency values.
Experimental and numerical investigations of the pressure spectra in other parts of the
runner (i.e. on the blade, on the hub, on the guide vane outlet,...) can be helpful to
find other cavitation signatures. Moreover, the analysis of the evolution of the torque
spectrum in various cavitating conditions can better clarify the alteration performance
mechanism due to the cavitation. Also a low frequencies analysis can be of the great
interest in order to discover more low frequencies phenomena linked to the cavitation.

• A preliminary validation of the generality of the developed cavitation prediction numeri-
cal methodology has been obtained by simulating the full load operating point. Further
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validations must to be done applying the strategy in other operating conditions and for
other machine geometries.
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Appendix A

Distributor influence

In preliminary simulations on the simplified domain D1, the experimental discharge Qexp has
been imposed as inlet boundary conditions (see chapter 4). Already in free-cavitation regime,
discrepancies between the computed and the measured performances values (H and T ) and
velocity profiles at the runner outlet were observed (see chapter 5). In order to reduce this
mismatch, the distributor has been included in the analysis. A decoupled simulation was
performed. The numerical domain has been cut into two sub-domains:

• The Dd (reported in figure A.1 a) consisted in the spiral case, in the stay vane and in the
guide vane;

• The Ds (shown in figure A.1 b) comprising the entire guide vane, runner and the first part
of the draft tube, the cone.

Due to the complex geometry of the spiral case, the Dd has been discretized by means of
an unstructured mesh approach. The meshing was performed by using the Numeca software
HEXPRESS. The obtained mesh consists in 20 M elements. The mesh quality parameters (y+,
skewness and expansion ratio) have been respected. A steady simulation has been performed on
the Numeca software Fine/OPEN imposing the Qexp on the spiral case inlet and a constant static
pressure on the guide vane outlet computed from the previous calculations on the domain D1

(see chapters 4 and 5). To be consistent with simulations performed on the second sub-domain
Ds, the k−ω SST turbulence model has been used. The numerical setup is summarized in
table A.1.

Considering that no rotating frame have been included in Dd , the required computational
resources was very low (10 cores and 5 CPU h). As it is shown in figure A.2, cylindric cutting
plane has been created on the guide vane inlet. The velocity (Vm, Vt and Vr) and the turbulence
(k and ε) profiles interpolated on this plane have been imposed on the inlet of the sub-domain Ds.
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(a) (b)

Figure A.1 Sub-domains decoupled simulations: (a) the Dd composed by the spiral case, the stay vane and the
guide vane; (b) the Ds comprising the 24 guide vanes and one full-periodic interblade runner channel.

Table A.1 Numerical setup for the decoupled simulation.

Domain Inlet BC Outlet BC Turbulence model
Dd Q = Qexp Pout = PD1 k−ω SST
Ds Q = Qexp + profiles Pout = Pamb

Figure A.2 Example of velocity profile used in the decoupled simulation.

The mesh sub-domain Ds was obtained replicating the discretization of the simplified domain
D1 for the 24 guide vanes. Hence, it has the same characteristics of the mesh M2 (see chapter 4)
but consists in 32 M elements. This has considerably affected the demanded computational
resources, increasing the required cores from 32 to 48 and the CPU time from 224 h to 432 h.



173

A steady simulations has been performed by using the commercial code FINE™/Turbo. The
velocity and turbulence profiles computed from the previous calculations on the sub-domain
Dd and the Qexp have been imposed on the guide vane inlet and a static pressure equal to the
ambient one on the cone outlet. The k−ω SST model has been used as turbulence model. The
numerical setup is reported in table A.1. The performances values (T , H and η) computed
by the decoupled simulation have been compared with the ones calculated on the simplified
geometry D1 (as is shown in table A.2). The introduction of the distributor in the analysis has

Table A.2 Performances computed without (D1) and with (Ds) distributor.

Domain ∆T =
(Texp−Tnum)

Texp
∆H =

(Hexp−Hnum)
Hexp

∆η =
(ηexp−ηnum)

ηexp

D1 10.8% 13.7% 3.4%
Ds 10.6% 13% 3.2%

not lead to significant improvements in the torque, head and efficiency values. The computed
meridional (figure A.3 a) and tangential (figure A.3 b) velocity profiles on the runner outlet
have a similar behavior using the two configurations. The computational resources demanded

(a) (b)

Figure A.3 Evolution of the normalized (a) meridional, Vm, (b) and tangential, Vt , velocities along the normalized
radius, measured by LDV (black crosses) and computed without (D1 - blue line) and with (Ds - red dashed line)
distributor.

to perform the decoupled simulation are too high against the marginal improvements of the
predictions. Thus, this technique has not been consider applicable. On the other hand, the static
an the total pressure difference value computed on the sub-domain Dd have been used in order
to estimate the losses in the distributor.
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