
HAL Id: tel-04416424
https://theses.hal.science/tel-04416424v1

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representation of uncertainty and imprecision between
clusters with belief functions

Zuowei Zhang

To cite this version:
Zuowei Zhang. Representation of uncertainty and imprecision between clusters with belief functions.
Other [cs.OH]. Université de Rennes; Northwestern Polytechnical University (Chine), 2022. English.
�NNT : 2022REN1S003�. �tel-04416424�

https://theses.hal.science/tel-04416424v1
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE 

L'UNIVERSITE DE RENNES 1

ECOLE DOCTORALE N° 601  
Mathématiques et Sciences et Technologies 
de l'Information et de la Communication 
Spécialité : Informatique 

« Representation of uncertainty and imprecision between clusters with 
belief functions »  

Thèse         présentéet soutenue à  Rennes, le 18 Janvier 2022 
Institut de recherche en informatique et systèmes aléatoires (IRISA) 

Par 

« Zuowei ZHANG » 

Rapporteurs avant soutenance : 

Pr. Thierry DENOEUX Professeur, Université Technologique de Compiègne 
Pr. Zied ELOUEDI Professeur, Institut Supérieur de Gestion de Tunis 

Composition du Jury : 

Président :     Pr. Christelle VRAIN   Professeur, Université de Orléans   
Examinateurs :     Pr. Christelle VRAIN   Professeur, Université de Orléans 

Pr. Thierry DENOEUX      Professeur, Université Technologique de Compiègne 
Pr. Zied ELOUEDI   Professeur, Institut Supérieur de Gestion de Tunis  
Pr. Deqiang HAN   Professeur, Xi’an Jiaotong University 
Pr. Kuang ZHOU  Associate professor, Northwestern Polytechnical University 

Dir. de thèse :     Pr. Arnaud MARTIN  Professeur, Université de Rennes 1 
Co-dir. de thèse :  Pr. Zhunga LIU  Professeur, Northwestern Polytechnical University 



 

 



Abstract

Clustering aims to divide massive data without any prior information into groups

with similar data structures or physical structures. To derive such a proposal, several

different clustering strategies have been proposed, such as partition based methods,

hierarchical based methods, distribution based methods, spectral based methods, den-

sity based methods, grid based methods, machine learning based methods, and neural

networks based methods. But most of the methods cannot characterize the uncertainty

and imprecision between clusters at the same time. In recent years, evidential cluster-

ing (EC), based on the concept of credal partition, has received a lot of attention for

its ability to deal with this problem. It inherits the advantages of the theory of be-

lief functions (TBF) in reasoning about uncertain and imprecise knowledge. However,

since EC is still in the development stage, there are still issues such as basic concepts,

high computational complexity, and inability to detect imbalanced or arbitrary clusters,

limiting the applications of EC.

In this thesis, we work on proposing some alternative solutions to solve these issues.

Specifically, four works are brought forward to handle them one by one.

We start from a systematic study of EC. In this work, we present the concepts and

definitions of data (inputs), methods (models), and clusters (results) of EC, as well as

that of the other types (i.e. hard/fuzzy/possibilistic ones), based on different theories

(i.e. probability theory, fuzzy set theory, possibility theory, and the theory of belief

functions). This is because EC is regarded as the evidential version of hard, fuzzy, and

possibilistic clustering under the TBF. These concepts and definitions explain why EC

can better characterize the uncertainty and imprecision between clusters. Moreover, we

also study EC from the seminal to state-of-the-art methods in the context of data-based

inputs, resulting in a coherent and comprehensive survey to analyze these methods.

Based on the analysis of some representative techniques from different perspectives

(e.g. center, measure type, complexity), we provide a guiding scheme to help users to

choose appropriate evidential methods in their cases.

Afterward, we introduce a dynamic evidential clustering (DEC) algorithm for the

issue of the high computational complexity of traditional EC when characterizing the

uncertainty and imprecision between clusters. In DEC, most query objects are con-

sidered to have precise cluster information, so an FCM-like objective function is first

employed and minimized to obtain the support levels of the real singletons (specific)

clusters to which the query objects belong. Then the query object is initially adap-

tively assigned to the outlier, precise or imprecise one via a new rule based on the

conflicts between the different support levels. Each imprecise object is finally reas-

signed to the singleton clusters or related meta-cluster by partial credal redistribution

with the corresponding dynamic edited framework to reduce the computational bur-

den. The proposed DEC method can reduce the complexity to a level similar to that
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of fuzzy/possibilistic clustering, extending EC’s application in big data.

Then, we extend EC to detect imbalanced clusters (clusters with different sizes)

by combining mean shift with traditional EC under the TBF, mainly containing two

characteristics. First, the query object is preliminarily assigned as the noise, precise,

or imprecise object based on the notion of “belief shift”. Second, partial credal re-

distribution with dynamic cluster centers, to avoid the “uniform effect” (imbalanced

clusters), is established to reassign imprecise objects to the singleton cluster or related

meta-cluster. Once an object is assigned to a meta-cluster, it indicates that the imbal-

anced singleton clusters involved in the meta-cluster cannot be distinguished because

this object may be located in the overlapping or intermediate areas of these imbalanced

singleton clusters. By doing this, the BSC can reasonably characterize the uncertainty

and imprecision between imbalanced singleton clusters.

To avoid losing generality, we also investigate the representation of uncertainty and

imprecision between clusters regardless of their shape, size, and dimensionality based

on density peaks clustering and the TBF. First, we consider that different neighbors

can provide complementary evidence supporting the object as a cluster center and

redefine a distance-based density function to obtain more robust cluster centers in

the decision graph. Then, we present a new evidential convergence rule to assign the

remaining objects to different clusters. Finally, similar to BSC, the objects located

in the overlapping or intermediate areas of different arbitrary singleton clusters are

assigned to corresponding meta-clusters to characterize the uncertainty and imprecision

between these arbitrary clusters.

The effectiveness of the proposed algorithms is estimated on different artificial and

natural datasets. Experiments show that our proposed algorithms effectively improve

the execution efficiency of traditional EC and detect imbalanced or arbitrary clusters,

and characterizes the uncertainty and imprecision between these clusters.



Résumé

Le clustering vise à diviser des données massives, sans aucune information préalable,

en groupes présentant des structures de données ou des structures physiques similaires.

Pour y parvenir, plusieurs stratégies de clustering ont été proposées : des méthodes de

partitionnement, des méthodes hiérarchiques, des méthodes fondées sur des distribu-

tions de probabilité, des méthodes spectrales, des méthodes fondées sur la densité, des

méthodes à base de grilles, et des méthodes fondées sur l’apprentissage automatique tels

que les réseaux neuronaux. Cependant, la plupart de ces méthodes ne peuvent pas car-

actériser en même temps l’incertitude et l’imprécision entre les clusters. Ces dernières

années, le clustering crédibiliste (Evidential clustering EC), fondé sur le concept de

credal partition, a reçu beaucoup d’attention pour sa capacité à traiter ce problème.

Il hérite des avantages de la théorie des fonctions de croyance (TBF) qui permet la

modélisation des connaissances incertaines et imprécises. Cependant, comme le clus-

tering crédibiliste est encore au stade de développement, il reste des problèmes tels que

des concepts sous-jacents peu clairs, une complexité de calcul élevée et l’incapacité de

détecter des clusters déséquilibrés ou arbitraires, ce qui limite les applications de la

méthode EC.

Dans cette thèse, nous travaillons à proposer des schémas alternatifs pour résoudre

ces problèmes. Plus précisément, quatre travaux sont mis en avant pour les traiter un

par un.

Nous commençons par une étude systématique des approches crédibiliste de clus-

tering. Dans ce travail, nous présentons les concepts et les définitions des données

(entrées), des méthodes (modèles) et des groupes (résultats) de l’EC, ainsi que ceux

des autres types (durs/flous/possibilistes), fondés sur différentes théories de lincertain

(théorie des probabilités, théorie des ensembles flous, théorie des possibilités et théorie

des fonctions de croyance). En effet, l’EC est considéré comme la version crédibiliste du

clustering dur, flou et possibiliste dans le cadre de la TBF. Ces concepts et définitions

expliquent pourquoi l’EC peut mieux caractériser l’incertitude et l’imprécision entre

les clusters. En outre, nous étudions l’EC depuis les méthodes séminales jusqu’aux

méthodes de pointe dans le contexte des entrées fondées sur les données, ce qui donne

lieu à une étude cohérente et complète pour analyser ces méthodes. Sur la base de

l’analyse de certaines techniques représentatives sous différents angles (centre, type de

mesure, complexité), nous fournissons un schéma directeur pour aider les utilisateurs à

choisir les méthodes crédibilistes appropriées à leur données et cas d’étude.

Ensuite, nous introduisons un algorithme de clustering dynamique (DEC) pour

résoudre le problème de la complexité de calcul élevée de l’EC traditionnel lors de la

caractérisation de l’incertitude et de l’imprécision entre les clusters. Dans l’algorithme

DEC, la plupart des objets de la requête sont considérés comme ayant des informa-

tions précises sur les clusters. Ainsi, une fonction objective de type FCM est d’abord
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employée et minimisée pour obtenir les niveaux de soutien des clusters singletons (sp-

cifiques) auxquels les objets de la requête appartiennent. Ensuite, l’objet de la requête

est initialement assigné de manière adaptative à l’objet aberrant, précis ou imprécis, via

une nouvelle règle fondée sur les conflits entre les différents niveaux de support. Chaque

objet imprécis est finalement réaffecté aux clusters singleton ou aux méta-cluster appar-

entés par redistribution crédale partielle avec une approche dynamique correspondant

pour réduire la charge de calcul. La méthode DEC proposée peut réduire la complexité

à un niveau similaire à celui du clustering flou/possibiliste, ce qui étend l’application

de l’EC aux données volumineuses.

Ensuite, nous étendons l’EC pour détecter les clusters déséquilibrés en combinant

le déplacement de la moyenne avec l’EC traditionnel sous le TBF, contenant princi-

palement deux caractéristiques. Premièrement, l’objet de la requête est préalablement

assigné comme étant le bruit, précis ou imprécis, en se fondant sur la notion de “change-

ment de croyance”. Deuxièmement, une redistribution crédale partielle avec des centres

de grappes dynamiques, pour éviter “l’effet uniforme” (pour les clusters déséquilibrées),

est établie pour réaffecter les objets imprécis à un singleton cluster ou à un méta-cluster

connexe. Une fois qu’un objet est assigné à un méta-cluster, cela indique que les clusters

singletons déséquilibrés impliqués dans le méta-cluster ne peuvent pas être distingués

car cet objet peut être situé dans les zones de chevauchement ou intermédiaires de ces

clusters singletons déséquilibrés. En procédant ainsi, l’approche BSC proposée peut

raisonnablement caractériser l’incertitude et l’imprécision entre les clusters singletons

déséquilibrés.

Pour éviter de perdre en généralité, nous étudions également la représentation de

l’incertitude et de l’imprécision entre les clusters, indépendamment de leur forme, de

leur taille et de leur dimensionnalité, sur la base des pics de densité et du TBF.

Tout d’abord, nous considérons que différents voisins peuvent fournir des preuves

complémentaires soutenant l’objet comme centre de cluster et redéfinissons une fonc-

tion de densité fondée sur la distance pour obtenir des centres de cluster plus robustes

dans le graphe de décision. Ensuite, nous présentons une nouvelle règle de conver-

gence crédibiliste pour affecter les objets restants à différents clusters. Enfin, comme

dans le cas de lapproche BSC, les objets situés dans les zones de chevauchement ou in-

termédiaires de différents clusters singletons arbitraires sont assignés aux méta-clusters

correspondants pour caractériser l’incertitude et l’imprécision entre ces clusters arbi-

traires.

L’efficacité des algorithmes proposés est estimée sur différents jeux de données ar-

tificiels et réels. Les expériences montrent que les algorithmes proposés améliorent effec-

tivement l’efficacité d’exécution de l’EC traditionnel et détectent les clusters déséquilibrés

ou arbitraires, et caractérisent l’incertitude et l’imprécision entre ces clusters.
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Abbreviations and notations

In the following, a list as exhaustive as possible of basic abbreviations and notations

used in this thesis:

Basic clustering

• Ω: is the frame of discernment (FoD);

• {ω1}, {ω2}, . . . , {ωc}: hypothesis in Ω; they are singletons;

• X : the set of objects in the analyzed dataset;

• xi: denotes the i-th object in X ;

• xij : denotes the j-th attribute in xi;

• c: the number of clusters in X ;

• n: the number of objects in X ;

• dij = ‖xi − xj‖: denotes the Euclidean distance between objects xi and xj .

• A or Aj : is a focal set, and it can be a singleton or a compound focal set;

• |Aj |: is the cardinality of Aj ;

• M : is the mass function matrix;

• V : is the center matrix;

• mij ,m ({ωj}): is the mass of belief of object xi on focal set {ωj} or Aj ;

• mi: is the mass function of object xi;

• vj : is the center of singleton cluster {ωj};

• vj : is the center of the cluster that is associated with focal set Aj ;

ix



Belief functions

• 2Ω: the power-set on the FoD Ω;

• ωij , {ωi, ωj}: the compound focal set including {ωi} and {ωj};

• m, mj : is a mass function, m is a mass function defined on any frame of discern-

ment Ω; mj is the mass function provided by a source j;

• Kij = 1−m1∩2(∅): is the degree of conflict between mi and mj ;

• Bel(A): is the belief function Bel on the focal set Aj ;

• Pl(A): is the plausibility function Pl on the focal set Aj ;

• ⊕: is the resulting operation of Dempster’s rule of combination;

• BetPm({ωj}): is the pignistic probability function BetPm on the focal set {ωj}.

Related to concepts and definitions

• π: is a possibility distribution (function) in possibility theory;

• Π: is a possibility measure in possibility theory;

• N : is a necessity measure in possibility theory;

• f(xi): is the probability function in probability theory;

• pij : is the probability of the event xi ∈ Aj ;

• Ψ= (ψij): is a n× n dissimilarity matrix;

• ψij : is the degree of dissimilarity between objects xi and xj ;

• Θ= {θ1,...,θd}: is a FoD including d events or classes;

• u(f)
ij : is the fuzzy membership degree of object xi in class {θj};

• u(p)
ij : is the possibilistic membership degree of object xi in class {θj}.

Related to DEC

• Mi: is the set of potential singleton clusters for xi;

• MΩ
i : is the new frame for xi under the TBF;

• n1: is the number of imprecise objects;

• β: is the weighting exponent;

x



• γ: is the weighting factor of the distance;

• ϕ: is a chosen meta-cluster threshold.

Related to BSC

• Ω̃: is a FoD describing xi as the cluster center (C) or unknown (C);

• Xim: is the set of imprecise objects;

• Xpr: is the set of precise objects;

• Ti: is the total number of searched times for xi;

• T : is the average of Ti for all objects in X ;

• Fi: is a new edited dynamic framework for xi under the TBF;

• [·]: is the rounding symbol;

• K1: is the number of neighbors of xi;

• K2: is number of neighbors of xi in each related cluster ωl;

• n1: is the number of imprecise objects;

• n2: is the number of precise objects;

• yk: is the k-th neighbor of xi;

• α: is the outlier adjustment factor;

• β: is the weighting exponent;

• γ: is the weighting factor of the distance;

Related to DPEC

• ΩC : is a FoD describing xi as the cluster center (C) or unknown (U ;

• SK1(xi): is the set of of neighbors of xi;

• SK2(xi): is the set of potential singleton clusters for xi;

• K1: is the number of neighbors in SK1(xi);

• K2: is the number of neighbors in each related cluster ωφ;

• Φ: is the number of clusters in SK2(xi);

xi



• ρi: is the local density in DPC;

• dc: is a cutoff distance in DPC;

• γi: is a quantity, for example, γi = ρiδi in DPC;

• δi: is the minimum distance;

• ϑi: is an adjustable distance factor;

• ρf : is the distance δi-based function;

• ζ: is a threshold controlling the number of objects assigned to meta-clusters.
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1
Introduction

Abstract: In this chapter, we first state the motivation for the research of this thesis,

i.e., representation of uncertainty and imprecision between clusters with the theory of

belief functions. After that, the main objectives of this thesis are discussed. Then,

we highlight four significant contributions of this thesis. Finally, the structure of this

thesis is presented in detail.
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1.1 Motivations

Clustering analysis, also called unsupervised learning, has been widely used as an ex-

ploratory data analysis tool in many fields (Jain et al., 1999; Saxena et al., 2017). The

goal of clustering is to group a set of objects X= {x1, ...,xn} into c (small value) clusters

Ω= {ω1,...,ωc} in such a way that objects in the same cluster are as similar as possible

while objects in different clusters are as dissimilar as possible. To measure the similar-

ities (or dissimilarities), the datasets are described by either object data or relational

data. Object data are described explicitly by a p-dimensional vector. For relational

data, the available information arises from the pairwise similarities or dissimilarities,

which is usually stored in an n×n matrix named the similarity (or dissimilarity) matrix.

A clustering algorithm is usually formulated by taking the requirements of the partic-

ular task and the nature of the dataset to be handled into consideration. A number of

clustering technologies with various philosophies have been proposed, such as objective

functions-based (Jain, 2010; Bezdek, 2013), distribution-based (McLachlan and Krish-

nan, 2007), density-based methods (Fayyad et al., 1996; Rodriguez and Laio, 2014).

These above methods achieve good results for clusters, however, they ignore a very

common problem in some applications. There may be some uncertain and imprecise

information between these clusters. Imprecision refers to that the cluster information of

objects distributed in the overlapping or intermediate areas of different specific clusters

may be imprecise or ambiguous. Uncertainty refers to that the process of assigning

objects to these clusters may be uncertain.

Area 1

Area 2

Area 3Area 4

Area 5

Fig. 1.1. Illustration of uncertainty between different clusters.

As a simple example, Fig. 1.1 shows a 7-class problem with two dimensions. It

can easily find that the objects, distributed in the overlapping areas (e.g. Area 1)

or intermediate areas (e.g. Area 3) of different clusters, are difficult to be recognized

by specific clusters. It is unreasonable to accurately assign these objects to specific
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clusters only depending on the current knowledge and it may increase the risk of errors

if they are forced to be assigned. Thus, there may be some uncertainty and imprecision

between these clusters. In such a case, these objects are imprecise and can be assigned

to the union of some specific clusters, which is further explained as follows.

In clustering problems, one object simultaneously close to several specific clusters

can be difficult to classify correctly since these close specific clusters appear not very

distinguishable for this object. In such a case, we consider that the object can belong

to the union of these specific clusters, called meta-cluster. In contrast, if an object is

significantly close to a specific cluster, we assign it to that cluster. By doing this, we

can characterize the uncertainty and imprecision in the clustering process and results.

Recently, a new way, called evidential clustering (EC), is appealing for dealing with

such a case based on the theory of belief functions (TBF) (Shafer, 1976; Dempster, 2008;

Smets and Kennes, 1994; Smets, 1990). TBF, also known as Dempster-Shafer theory

or evidence theory, is famous for dealing with uncertain and imprecise information,

and EC inherits this ability. Inspired by hard, fuzzy, and possibilistic clustering (Jain

et al., 1999; Bezdek, 2013; Pal et al., 2005), Denœux and Masson first define this way

(EC) on a new concept, named credal partition (Denœux and Masson, 2004; Masson

and Denœux, 2008). It can generate three clusters, named singleton (specific) cluster,

meta-cluster, and noise cluster. Meta-cluster, considered as a new cluster, is defined

as the union of several singleton (specific) clusters. In credal partition, it allocates,

for each object, a “mass of belief”, not only to singleton clusters but also to any

meta-clusters of Ω= {ω1, ..., ωc}. Experiments have shown that, compared with other

ones, this additional flexibility allows to gain a deeper insight into the data and to

improve robustness with respect to outliers. However, there are still some issues with

EC. First, as a variant of other classical methods, EC is a relatively new branch. The

differences and connections between EC and other classical methods need to be further

clarified. Second, EC extends Ω to the power-set 2Ω to offer flexible and rich tools to

model uncertainty and imprecision. Still, the introduction of meta-clusters also brings

high complexity in classical EC compared with hard, fuzzy, and possibilistic clustering.

Third, EC cannot handle uncertainty and imprecision between imbalanced clusters

(clusters with different sizes) or clusters with arbitrary shapes and sizes. These issues

hinder the applications of EC in different scenarios. Therefore, in this thesis, we aim

to give some alternatives to address these issues.

1.2 Objectives

The goal of this thesis is to normalize some basics of evidential clustering (EC) and im-

prove the ability of EC in characterizing uncertainty and imprecision between clusters,

especially for imbalanced or clusters with arbitrary shapes and sizes. To achieve this

goal, we first review the origin of EC, related concepts and definitions, and give the
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differences and connections with other methods. Then, for the limitations of classical

EC methods, including high complexity and unable to handle imbalanced clusters and

arbitrary clusters, we propose corresponding solutions for each to improve the ability

of EC in characterizing uncertainty and imprecision between clusters. More precisely,

we propose a dynamic evidential clustering algorithm to solve the high computational

complexity of classical methods. Afterward, we present two new algorithms to deal

with imbalanced clusters and clusters with arbitrary shapes and sizes, respectively.

1.3 Contributions

In the process of achieving our objectives, we have proposed several contributions in

the field of clustering, which can be summarized in the following four parts.

• Normalization of concepts, definitions, and methodologies of eviden-

tial clustering A systematic study of evidential clustering (EC) is presented.

We first give the concepts and definitions of data (inputs), methods (models),

and clusters (results) of EC, as well as that of the other types (i.e. hard, fuzzy,

possibilistic ones), based on different theories (i.e. probability theory, fuzzy set

theory, possibility theory, and the theory of belief functions). According to these

concepts and definitions, we analyze the differences and connections between EC

and other types and thus declare the advantages of EC in characterizing uncer-

tainty and imprecision between clusters. Afterward, we also study EC from the

seminal to state-of-the-art methods in the context of data-based inputs, resulting

in a coherent and comprehensive survey to analyze these methods. Based on the

analysis of some representative techniques from different perspectives (e.g. cen-

ter, measure type, complexity), we provide a guiding scheme to help users choose

appropriate methods in their cases.

– This work is in preparation and and is detailed below.

Zuo-wei Zhang, Arnaud Martin, Yi-ru Zhang, Zhun-ga Liu, Kuang Zhou. A

survey of evidential clustering: definitions, methods, and applications. Under

Review.

• DEC: Dynamic evidential clustering algorithm A dynamic evidential clus-

tering algorithm (DEC) is introduced to address the computational burden of

classical methods. In DEC, an FCM-like objective function is first employed and

minimized to obtain the support levels of the real singletons (specific) clusters to

which the query objects belong. Then, the query object is initially adaptively as-

signed to the outlier, precise or imprecise one via a new rule based on the conflicts

between the different support levels. Each imprecise object is finally reassigned

to the singleton clusters or related meta-cluster by partial credal redistribution

with the corresponding dynamic edited framework to reduce the computational

4



burden. The proposed DEC method can reduce the complexity to a level similar

to that of fuzzy and possibilistic clustering, which can effectively extend the ap-

plications of EC, especially in big data. The effectiveness of the DEC method is

tested by four experiments with artificial and real datasets.

– This work has been published and the details are as follows.

Zuo-wei Zhang, Zhe Liu, Arnaud Martin, Zhun-ga Liu, Kuang Zhou. Dynamic ev-

idential clustering algorithm. Knowledge-based systems, 213:106643, 2021. DOI:

10.1016/j.knosys.2020.106643.

• BSC: Belief shift clustering A new belief shift clustering (BSC) algorithm

is introduced to deal with imbalanced data via extending mean shift under the

TBF, which mainly contains two characteristics. First, the query object is pre-

liminarily assigned as the noise, precise, or imprecise one based on the notion of

“belief shift”. Second, partial credal redistribution with dynamic cluster centers,

to avoid the “uniform effect”, is established to reassign imprecise objects to the

singleton cluster or related meta-cluster. Once an object is assigned to a meta-

cluster, it indicates that the singleton clusters involved in the meta-cluster cannot

be distinguished because this object may be located in the overlapping or inter-

mediate areas of these singleton clusters. By doing this, the BSC can reasonably

characterize the uncertainty and imprecision between imbalanced clusters. The

effectiveness of BSC has been validated on several synthetic and real datasets by

critically comparing with some related methods.

– This work is in the second round of review and is detailed below.

Zuo-wei Zhang, Zhun-ga Liu, Arnaud Martin. BSC: Belief shift clustering. Under

Review.

• DPEC: Density peaks-based evidential convergence We investigate the

representation of uncertainty and imprecision between clusters regardless of their

shape, size, and dimensionality based on density peaks clustering and the TBF.

First, we consider that different neighbors can provide complementary evidence

supporting the object as a cluster center and redefine a distance-based density

function to obtain more robust cluster centers in the decision graph. Then, we

present a new evidential convergence rule to assign the remaining objects to differ-

ent clusters. Similar to BSC, the objects located in the overlapping or intermedi-

ate areas of different singleton clusters are assigned to corresponding meta-clusters

to characterize the uncertainty and imprecision between these arbitrary clusters.

The effectiveness of DPEC is validated by comparing with related methods.

– This work is under review and the details are as follows.

Zuo-wei Zhang, Zhun-ga Liu, Liang-bo Ning, Arnaud Martin, Kuang Zhou. Rep-

resentation of uncertainty and imprecision between clusters with arbitrary shapes

and sizes. Under Review.
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1.4 Structure of the thesis

The thesis is organized in the following six chapters:

In Chapter 2, some related preliminary knowledge is introduced, including the the-

ory of belief functions (TBF) and other uncertainty theories, such as probability theory,

fuzzy set theory and possibility theory.

In Chapter 3, the concepts and definitions of data, clusters, and methods of EC and

other type methods, i.e. hard, fuzzy, and possibilistic clustering, are presented. These

concepts and definitions are used as benchmarks for the studies of EC. Besides, the

differences and connections between EC and these types are discussed, thereby declaring

EC’s advantages in characterizing uncertainty and imprecision between clusters. In

addition, clustering techniques based on TBF are also reviewed and discussed from the

seminal to state-of-the-art methods.

In Chapter 4, a dynamic evidential clustering algorithm is presented to make credal

partitions converge quickly and characterize the uncertainty and imprecision between

spherical clusters. It is regarded as an improvement of classical EC in terms of reducing

the computational complexity.

Chapter 5 and Chapter 6 present two different algorithms to detect non-spherical

clusters, i.e. imbalanced clusters and arbitrary clusters. In Chapter 5, a new belief shift

clustering algorithm is introduced to deal with imbalanced clusters via extending mean

shift under the TBF. In Chapter 6, we investigate the representation of uncertainty and

imprecision between clusters regardless of their shape, size, and dimensionality based

on density peaks clustering and the TBF.

Chapter 7 concludes this thesis and presents some perspectives.
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2
Background

Abstract: In this chapter, we mainly introduce some basics and related concepts

used in this thesis, including the theory of belief functions and other theories related

to dealing with uncertainty.

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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2.1 Introduction

Due to the importance of clustering in various tasks of exploratory data mining, consid-

erable efforts have been made the develop clustering algorithms by scholars or engineers

from multiple disciplines. Common open issues in clustering analysis include how to

determine the number of clusters, robustness, scalability, and additional challenges in

clustering some specific types of datasets. Instead of discussing general issues and pro-

viding an exhaustive survey of various clustering approaches, we concentrate mainly

on issues and clustering approaches related to credal partition. To provide a basis for

subsequent studies, the review of some related background knowledge in this chapter

contains the following two components: the theory of belief functions (TBF) in Sec-

tion 2.2, and some links with related theories in Section 2.3, such as Probability theory,

Fuzzy set theory, and Possibility theory.

2.2 The theory of belief functions

In this section, we briefly recall some basic notions of the theory of belief functions

(TBF), also well-known as Dempster-Shafer theory or evidence theory, (Shafer, 1976;

Dempster, 2008; Smets and Kennes, 1994; Denœux, 2008a, 2016; Shafer, 2016; Smets,

2005). In this theory, the set of values that an uncertain quantity can take is defined as

a frame of discernment (FoD) consisting of c events. In FoD, the c events are exclusive

and exhaustive.

Definition 2.1 The frame of discernment (FoD) is a finite set of disjoint elements,

defining the domain of reference, formally:

Ω= {ω1,...,ωc}, (2.1)

where {ωj} are exclusive and exhaustive.

The TBF extends this FoD to the power-set 2Ω to offer flexible and rich tools to

model uncertainty and imprecision.

Definition 2.2 Given a FoD Ω, the power-set 2Ω is defined by:

2Ω= {∅, {ω1},..., {ω1, ω2},...,Ω}. (2.2)

If we have c = 3, for example, 2Ω = {∅, {ω1}, {ω2}, {ω3}, {ω1,ω2}, {ω1,ω3}, {ω2,ω3},Ω}.
For generalizing well-known models such as probabilities or possibility distributions,

an evidential body or basic belief assignment (BBA) is given by a mass function.
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Definition 2.3 Given a FoD Ω, a function m is defined as a mapping from 2Ω → [0,1]

and called mass function on 2Ω, such that:∑
A⊆Ω

m(A) = 1. (2.3)

The subsets A of Ω such that m(A) > 0 are called the focal sets of m with A named

focal element. A mass function m is called normalized if we have m(∅) = 0.

For any evidential body or BBA m, there are other equivalent representations of a

mass function such as the belief, and plausibility functions to represent different cases

(Shafer, 1976; Dempster, 2008).

Definition 2.4 Given a function m and focal elements A and B, the belief function

Bel and plausibility function Pl are defined by:

Bel(A) =
∑
∅6=B⊆A

m(B), (2.4)

Pl(A) =
∑

A∩B 6=∅

m(B). (2.5)

Bel and Pl respectively represent the lower bound and upper bound of the support

degree to each event A in m. The combination of mass functions plays a critical role

in uncertain information fusion, called Dempster’s rule of combination.

Definition 2.5 Let m1 and m2 be two mass functions from two different sources that

are reliable and cognitively independent. The conjunctive combination of m1 and m2

yields the unnormalized mass function:

m1∩2(A) =
∑

B∩C=A

m1(B)m2(C),∀A ⊆ Ω. (2.6)

If necessary, the normality condition m(∅) = 0 may be recovered by dividing each mass

m1∩2(A) by 1 −m1∩2(∅). The resulting operation is noted ⊕ and is called Dempster’s

rule of combination:

m1⊕2(A) =
m1∩2(A)

1−m1∩2(∅)
, ∅ 6= A ⊆ Ω. (2.7)

Both rules are commutative, associative and admit the total ignorance Ω as a unique

neutral element.

In the TBF, a well-known pignistic probability transformation method (Smets and

Kennes, 1994; Smets, 2005), which approximates a mass function to probabilities, is

usually used for decision-making. The pignistic probability of the singleton class {ωj}
is defined as follows.
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Definition 2.6 Let m be a mass function on Ω, a pignistic probability function BetPm:

Ω→ [0, 1] corresponding to m is defined by:

BetPm({ωj}) =
∑

A⊆2Ω,{ωj}∈A

1

|A|
m(A)

1−m(∅)
, m(∅) 6= 1 (2.8)

where |A| is the cardinality of the subset A, i.e. the number of elements included in A.

The DS rule is inapplicable when there is a high conflict between different evidence.

Thus, there have been many evidence combination methods for DS rule improvements,

such as the well-known Smets’ conjunctive rule (used in his TBM (Smets, 1990, 2007)),

Dubois-Prade (DP) rule (Dubois and Prade, 1988), and the very sophisticate pro-

portional conflict redistributions (PCR) rules (Smarandache and Dezert, 2005, 2013;

Martin, 2019). However, these methods may still have some problems in applications,

and we will propose some new fusion rules according to the actual scenarios in the

subsequent works.

2.3 Some links with other related theories

In this section, we introduce three common theories characterizing uncertainty that

are both distinct from and related to TBF. Many clustering methods based on these

theories have been developed, which will be discussed in detail in the next chapter.

2.3.1 Probability theory

Probability theory is the branch of mathematics concerned with probability (Jeffreys,

1998; Durrett, 2019). Although there are several different probability interpretations,

probability theory treats the concept in a rigorous mathematical manner by expressing

it through a set of axioms. Typically these axioms formalize probability in terms of a

probability space, which assigns a measure taking values between 0 and 1, termed the

probability measure, to a set of outcomes called the sample space.

Definition 2.7 Given a FoD Ω, it is assumed that for each element xi ∈ Ω, an intrin-

sic “probability” value f(xi) is attached, which satisfies the following properties: f(xi) ∈ [0, 1],xi ∈ Ω;∑
xi∈Ω

f(xi) = 1. (2.9)

We can find that the probability function f(xi) lies between 0 and 1 for xi, and the

sum of f(xi) over all xi in Ω is equal to 1. An event is defined as any subset Aj of Ω.
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Definition 2.8 The probability of the event xi ∈ Aj, is defined as:

pij =
∑

xi∈Aj

f(xi). (2.10)

In this case, the probability of the FoD is 1, and the probability of the null event is

0. The function f(xi), mapping a point in the FoD to the “probability” value is called

a probability mass function. That is, mass functions generalize probabilities.

2.3.2 Fuzzy set theory

In mathematics, fuzzy sets are sets whose elements have degrees of membership. In

classical set theory (Zadeh, 1996), the membership of an element in a set is either

1 or 0 (either belongs or does not belong to the set). By contrast, fuzzy set theory

permits the gradual assessment of the membership of elements in a set with the help

of a membership function valued in the interval [0, 1]. The classical bivalent sets are

usually called crisp (hard) sets. Fuzzy sets generalize classical sets, since the indicator

functions of classical sets are special cases of the membership functions of fuzzy sets, if

the latter only take values 0 or 1.

2.3.3 Possibility theory

Possibility theory is another popular choice for representing uncertain information

(Dubois and Prade, 2012, 1988). At the semantic level, a basic function in possi-

bility theory is a possibility distribution denoted as π which assigns each possible world

in the FOD Ω with a value in [0,1] (or a set of graded values). From a possibility

distribution, two measures are derived, a possibility measure (demoted as Π) and a

necessity measure (denoted as N). The former estimates to what extent the true event

is believed to be in the subset and the latter evaluates the degree of necessity that the

subset is true.

Definition 2.9 Given π, Π, and N , we have:

Π(A) = max({π(ω)|ω ∈ Ω}), N(A) = 1−Π(A). (2.11)

Π(Ω) = 1, Π(∅) = 0. (2.12)

Π(A ∪B) = max(Π(A),Π(B)), N(A ∩B) = min(N(A), N(B)). (2.13)

A belief function is called a consonant function if its focal elements are nested

(Shafer, 1976). That is, if A1, A2, · · ·, An are focal elements then A1 ⊂ A2 ⊂ · · · ⊂ An.
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Definition 2.10 Suppose the credibility function and plausibility function of the con-

sonant bba are Bel and Pl, we have:

Bel(A ∩B) = min(Bel(A), Bel(B)), P l(A ∪B) = max(Pl(A), P l(B)). (2.14)

These two properties are exactly the requirements of necessity and possibility mea-

sures in possibility theory. Necessity and possibility measures are special cases of credi-

bility and plausibility functions when the focal sets of BBA are nested. The TBF thus,

in a sense, is more general than the theory of possibilities.

2.3.4 Rough set theory

Rough set theory is another mathematical tool to deal with uncertainty (Pawlak, 1982,

1991; Pawlak and Skowron, 2007). The rough set concept can be defined quite generally

by means of topological operations, interior and closure, called approximations. Given

a space represented by the pair (U , R), U is a universe of objects, and R ⊆ U ×U is an

indiscernibility relation defined by an attribute set (i.e. R = I(A) for some attribute

set A). In this case, R is the equivalence relation. Let [x]R denote an equivalence class

of an element x ∈ U under the indiscernibility relation R, where [x]R = y ∈ U : xRy.

In this context, R-approximations of any set X ⊆ U are based on the exact (crisp)

containment of sets. Then set approximations are defined as follows:

• x ∈ U belongs with certainty to X ⊆ U (i.e. x belongs to the R-lower approxi-

mation of X), if [x]R ⊆ X.

• x ∈ U possibly belongs X ⊆ U (i.e. x belongs to the R-upper approximation of

X), if [x]R ∩X 6= ∅.

• x ∈ U belongs with certainty neither to the X nor to U −X (i.e. x belongs to

the R-boundary region of X), if [x]R ∩ (U ∩X) 6= ∅ and [x]R ∩X 6= ∅.

2.4 Conclusion

In this chapter, we provided some background knowledge on uncertainty theories.

Specifically, we start this chapter by introducing the TBF. Then we describe the links

between TBF and other related theories. In the sequel of this thesis, some of the

challenges mentioned will be solved by some alternative solutions.
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3
Concepts, definitions and

techniques of evidential clustering

Abstract: In this chapter, we redefine the concepts related to evidential clustering

based on different theories from three perspectives: input (data), model (method), and

output (cluster). We also explain that uncertainty and imprecision can be characterized

simultaneously by evidential clustering and discuss the differences and connections

between evidential clustering and other related clustering methods. After that, we

review the existing works related to evidential clustering, from the seminal to state-of-

the-art methods. Finally, the chapter is concluded.
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3.1 Introduction

In the previous chapter, we introduced the basics of different theories, i.e. probability

theory, fuzzy set theory, possibility theory, rough set theory. These theories are widely

used in data mining and machine learning because of their ability to handle uncertainty

well. Many different clustering methods that deal with uncertainty between clusters

have also been proposed based on these theories, such as rough clustering (Lingras

and Peters, 2011; Peters et al., 2012). Besides, some methods are not based on these

theories but also consider the uncertainty between clusters, such as overlapping clus-

tering (Banerjee et al., 2005; Baadel et al., 2016). All these methods have achieved

good clustering results. Since evidential clustering (EC) (Masson and Denœux, 2008)

is considered as an extension of hard/fuzzy/possibilistic c-means under the theory of

belief functions (TBF), we only consider the underlying theories and the associated

clustering algorithms in this thesis, i.e. hard clustering (Jain, 2010), fuzzy cluster-

ing (Bezdek et al., 1984), and possibilistic clustering (Krishnapuram and Keller, 1993).

Although EC inherits the advantages of TBF in characterizing uncertainty and im-

precision, as one of the new branches of cluster analysis, still EC has some concepts

and definitions that need to be standardized. Therefore, we aim to give some related

concepts and definitions to regulate the subsequent in-depth study here. Specifically,

this chapter contains three sections. They are about the concepts and definitions of

data in Section 3.2, clusters in Section 3.3, and methods in Section 3.4 under different

theoretical frameworks respectively. These concepts and definitions correspond to the

inputs (data), models (methods), and outputs (clusters).

3.2 Concepts and definitions of data

In clustering tasks, empirical information can generally be grouped into two families,

namely, certain and precise information, uncertain and imprecise information, which

are normalized and characterized by “data” due to different requests. In the subsequent

research, we focus on modeling and characterizing the uncertainty and imprecision be-

tween clusters, so the corresponding definitions should be given first. Here uncertainty

is defined as a state of limited (insufficient) information (knowledge) where it is im-

possible to describe the existing state exactly. By contrast, imprecision is defined as

a state of fuzzy (imprecise) information (knowledge) where it is impossible to describe

the existing state precisely. Hard data is generally used to represent certain and precise

empirical information. By contrast, fuzzy, possibilistic, and evidential data are used to

represent uncertain and imprecise empirical information. In this section, basic concepts

and definitions of hard, fuzzy, possibilistic, and evidential data are given as follows.
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3.2.1 Hard data

In clustering, the certain and precise information records in the form of “data” for

further analysis, which can be observations, items, or feature vectors, etc. Here we

refer to these data as hard data, such as object data, and relational data1. That is,

given a dataset H, if regarded as a hard one, there is no uncertainty and no imprecision

on H. For example, object data is often presented in the form of feature vectors, and

can be defined as follows.

Definition 3.1 Given a dataset X with n objects, and each object is explicit described

using s numeric attributes. In this case, the dataset X mathematically defined by:

X= {xi= (xi1, ..., xip) : i = 1, ..., n; p ≥ 1} (3.1)

where X is an object dataset, and xi is the i-th object in X .

3.2.2 Fuzzy data

Following fuzzy set theory (Zadeh, 1996; Zimmermann, 2011), fuzzy data is used to

represent imprecise/fuzzy information (Coppi et al., 2012; Han et al., 2011). There

are also a few definitions of fuzzy data. For example, in many real-life situations,

measurements may be imprecise and the observations vaguely defined. These can be

appropriately represented by fuzzy numbers (Dubois and Prade, 1978), which in turn

evolve into LR fuzzy data (Coppi et al., 2012; Denoeux and Masson, 2004). In contrast,

since a fuzzy membership function quantifies the degree of membership of the object

belonging to different classes, an intuitionistic fuzzy set is proposed based on fuzzy

membership-like functions (Atannasov, 1999; Han et al., 2011, 2013). This set can also

be considered as fuzzy data if it is used as an input. Since we focus on fuzzy set theory

based clustering methods, such as fuzzy c-means (Bezdek et al., 1984), we consider

fuzzy data as the set of fuzzy membership functions defined as follows.

Definition 3.2 Given a dataset X and FoD Θ= {θ1,...,θd}, for an object xi, it is used

to represent imprecise information for the object xi belonging to different classes by a

function u(f). The function u
(f)
ij : Θ→ [0, 1] is called fuzzy membership function on Θ,

such that:
d∑
j=1

u
(f)
ij = 1, u

(f)
ij ∈ [0, 1] (3.2)

where u
(f)
ij represents the fuzzy membership degree of the object xi in the class {θj}.

1In the following, object data will be employed as the benchmark (example) when a generalized descrip-
tion of other concepts or definitions is needed.
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In fuzzy set theory, the object xi is allowed to belong to different classes at the same

time, for example, the events xi ∈ {θj} and xi ∈ {θj′}, j 6= j′, can occur simultaneously.

In fuzzy data, u
(f)
ij just represents the fuzzy degree of xi ∈ {θj}. In such a case, if

u
(f)
ij ∈ (0, 1), it is used to characterize the imprecision of the event xi ∈ {θj}. In other

words, fuzzy data can represent imprecise information (imprecision of knowledge). Of

course, fuzzy data can also represent precise information in a specific case defined as

follows.

Definition 3.3 Given a set U (f) including n fuzzy membership functions u(f), the set

U (f) will be a hard one if we have:

u
(f)
ij = 1, ∀i,∃j (3.3)

where u
(f)
ij = 1 indicates that xi ∈ {θj} is a event with precise information.

3.2.3 Possibilistic data

It is not enough to describe the imprecision of information, and in some cases, it is

considered necessary to provide a reasonable description of the uncertainty (Aggar-

wal and Philip, 2008; McClean et al., 2001). Following possibility theory (Dubois and

Prade, 2012, 1988), possibilistic data can represent uncertain information. In cluster-

ing analysis, there are a few shortcomings of a fuzzy membership function in semantic

interpretation and applications (Krishnapuram and Keller, 1993). Therefore, in clus-

tering, the fuzzy membership function is further improved and called a possibilistic

membership function based on possibility theory. Here we consider possibilistic data as

the set of possibilistic membership functions defined as follows.

Definition 3.4 Given a dataset X and FoD Θ, for an object xi, it is used to represent

uncertain information for the object xi belonging to different classes by a function u(p).

The function u
(p)
ij : Θ → [0, 1] is called possibilistic membership function on Θ, such

that:
d∑
i=1

u
(p)
ij ≤ 1, u

(p)
ij ∈ [0, 1] (3.4)

where u
(p)
ij represents the possibilistic membership degree of i-th object in j-th class.

In possibilistic membership function u(p),

c∑
i=1

u
(p)
ij < 1 is allowed, which is used to

against noise and outliers (Krishnapuram and Keller, 1993). From possibility theory

perspective, the object xi belonging to different classes, for example, xi ∈ {θj} and

xi ∈ {θj′}, j 6= j′, are mutually exclusive events. That is, the object xi is only allowed

to belong to one class {θj} on the FoD Θ, and u
(p)
ij is used to represent the possibilistic
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degree of xi ∈ {θj}. In such a case, if u
(p)
ij ∈ (0, 1), it can characterize the uncertainty of

the event xi ∈ {θj}. That is, possibilistic data can not only represent uncertain infor-

mation (uncertainty of knowledge) but can also represent certain information (certainty

of knowledge).

Definition 3.5 Given a set U (p) including n possibilistic membership functions u(p),

the set U (p) will be a hard one if we have:

u
(p)
ij = 1,∀i,∃j (3.5)

where u
(p)
ij = 1 indicates that xi ∈ {θj} is a event with certain information.

3.2.4 Evidential data

To make it easier to analyze a wide variety of information expression, following TBF, a

new form, called evidential data or evidence body, is proposed to unify all the imprecise

or uncertain data, which can characterize in greater depth the uncertainty and impre-

cision caused by data or model. Therefore, evidential data is defined as the set of mass

functions. A mass function have been introduced in Eq. (2.3). In specific cases, given

a mass function, it can transform into fuzzy, possibilistic, or probability ones, for ex-

ample, by pignistic probability transformation (Smets and Kennes, 1994; Smets, 2005).

Thus, evidential data can unify various kinds of uncertain and imprecise information.

Example 3.1: Let consider an object xi identified by different sensors with a FoD

Θ= {θ1, θ2, θ3} and get the corresponding evidence bodies, as shown in Table 3.1.

Table 3.1: Evidence bodies of xi from different sources

∅ {θ1} {θ2} {θ3} {θ1, θ2} {θ1, θ3} {θ2, θ3} Θ

m1 1 0 0 0 0 0 0 0
m2 0 0.3 0.2 0.5 0 0 0 0
m3 0 0.1 0.05 0.3 0 0.5 0.05 0
m4 0 0.1 0.15 0 0.7 0.02 0.03 0
m5 0 0 0 0 0 0 0 1

We can see from the evidence body m1 that the object xi does not belong to any

of the three classes and is an outlier. In this case, m1 characterizes certain and precise

information. By contrast, m5 makes us believe that xi belongs to any class, but we

are completely ignorant. It can be regarded as an imprecise empirical information. For

m2, we find that m(A) = 0 if A = ∅ or |A| 6= 1. In this case, we have a probability mass

function/possibilistic membership function, which can be regarded as possibilistic data.

From m3 and m4 we can find that the class information is partially ignorant. For m3,

xi may belong to {θ1} or {θ3}, and according to m4, xi may belong to {θ1} or {θ2}.

18



Thus, we consider that m3 and m4 contain both uncertain and imprecise information.

From this numerical example, we can see that it is reasonable to use evidential data to

unify different empirical information into one form.

3.2.5 The difference and relations of different data

Based on the above analysis, we have Venn diagram of different data in Fig. 3.1.

Possibilistic data
Hard
data

Fuz
zy

 da
ta

Evidential data

Fig. 3.1. Venn diagram of hard, fuzzy, possibilistic, and evidential data.

To illustrate more intuitively the characterization of different forms of data, we give

the following example.

Example 3.2: Given a set of classes Θ = {θ1, θ2, θ3} with “{θ1} = young”,

“{θ2} = adult”, and “{θ3} = old”, we discuss the following cases based on 3 people.

Case 3.1: Let us consider that one has the basic information of 3 people (xi,

i = 1, 2, 3), as shown in Table 3.2.

Table 3.2: Basic information of 3 people

Age (years) Salary (euro) Children (number)

x1 34 1900 2
x2 25 1800 0
x3 42 2200 1

• Assume that the given set X = {x1,x2,x3} with, for example, x2 = (25, 1800, 0),

then it is regarded as an object data or object dataset;

• Assume that the given matrix Ψ = (ψii′)3×3 with, for example, ψ1×2 charac-

terizing the dissimilarity between the objects x1 and x2, then this dissimilarity

matrix Ψ is regarded as a relational data or dissimilarity data. If the squared
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Euclidean ∆ is used to measure the dissimilarity between objects, then we have

∆ = (ψii′). In this case, ψii′ = ‖xi − xi′‖2, for example,

ψ1×2=‖x1 − x2‖2 = (34− 25)2 + (1900− 1800)2 + (2− 0)2 = 10085. Thus, the

relational data defined on the matrix Ψ is given by:

Ψ =

 0 10085 90065

10085 0 160290

90065 160290 0

.

Based on the above example, we can find that there is no uncertainty and no

imprecision on hard data.

Case 3.2: Let us consider a set of fuzzy membership function u(f) on the set of

classes Θ, as shown Table 3.3.

Table 3.3: Fuzzy data for 3 people

{θ1} {θ2} {θ3}
u

(f)
1 0.3 0.5 0.2

u
(f)
2 0.7 0.3 0

u
(f)
3 0.2 0.7 0.1

• Following fuzzy set theory, the data defined by a function u(f) on Θ is considered

as a fuzzy membership function, and is also regarded as a fuzzy data. For

example, the fuzzy data u
(f)
2 = [0.7, 0.3, 0] is given for the second person (the

object x2), where u
(f)
21 = 0.7, u

(f)
22 = 0.3 represent the fuzzy membership degrees

of the second people (the object x2) belonging to “young” or “adult” (the classes

{θ1} or {θ2}), respectively. The concepts of “young”, “adult”, and “old” may be

fuzzy or imprecise in some cases, for example, we can say that a person is a young

or adult. In this case, fuzzy data represent the imprecision of knowledge.

Case 3.3: Let us consider a set of possibilistic membership function u(p) on the

set of classes Θ, as shown Table 3.4.

Table 3.4: Possibilistic data for 3 people

{θ1} {θ2} {θ3}
u

(p)
1 0.2 0.7 0.1

u
(p)
2 0.9 0.1 0

u
(p)
3 0.1 0.8 0.1

• Following possibility theory, the data defined by a function u(p) on Θ is considered

as a possibilistic membership function, and is also regarded as a possibilis-

tic data. For example, the possibilistic data u
(p)
1 = [0.2, 0.7, 0.1] is given for the
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first person (the object x1), where u
(p)
1i represents the possibilistic membership

degree of the object x1 belonging to the class {θi}, i = 1, 2, 3. Although the defi-

nitions of “young”, “adult”, and “old” are clear in some cases, limited knowledge

may lead to uncertainty. For example, u
(p)
11 = 0.2, u

(p)
12 = 0.7, and u

(p)
13 = 0.1

represent the possibilistic degrees of the object x1 belonging to the classes {θ1},
{θ2} and {θ3}, respectively. Thus, possibilistic data can represent the uncertainty

of knowledge.

Case 3.4: Let us consider a set of mass functions m on the power-set 2Θ, as shown

Table 3.5.

Table 3.5: Evidential data for 3 people

∅ {θ1} {θ2} {θ3} ... Θ

m1 0 0.2 0.3 0 ... 0.5
m2 0 0.3 0.0 0 ... 0.7
m3 0 0 0.4 0.1 ... 0.5

• Following the TBF, the data defined by a function m on 2Θ is considered as a

mass function, and is also regarded as a evidential data. For example, for

the object x3, we have the mass function m3. In this case, m3({θ2}) represents

the degree of the object x3 associated with the focal element (class) {θ2}, and

m3({θ2}) = 0.4 is used to characterize the degree of uncertainty due to limited

information. Θ represents total ignorance, and m3(Θ) = 0.4 is used to character-

ize the degree of this ignorance. In terms of spatial distribution, once the object

x3 belongs to the total ignorance Θ, it means that x3 may be in the overlapping

or intermediate region of all the classes (i.e. {θ1}, {θ2}, {θ3}). In this case, x3

may belong to any of these classes contained in Θ3. The class of x3 is imprecise

or fuzzy at this point. Thus, we can say that evidential data can characterize

both uncertainty and imprecision of knowledge.

3.3 Concepts and definitions of clusters

In clustering tasks, different data, i.e. empirical information, will be grouped into

several clusters in different ways. In fact, there is no universally agreed upon definition

of “cluster”, which are also called groups, subsets, or categories in some cases (Xu and

Wunsch, 2005). Here we use the word “cluster” and consider that a partition of the

given dataset X is a set of clusters. That is, different kinds of clusters give different

kinds of partitions, for example, fuzzy cluster gives fuzzy partition. Typically, given

a FoD Ω= {ω1, ..., ωc}, a hard/fuzzy/possibilistic c-partition of X is usually defined

by a set of values pij/uij that can be conveniently arrayed as a (c × n) matrix (Pal
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et al., 2005), i.e. hard partition with P = (pij), fuzzy partition with U = (u
(f)
ij ), and

possibilistic partition with U = (u
(p)
ij ). By contrast, a collection of n mass functions

on the power-set 2Ω is called credal partition with M = (mij) (Denœux and Masson,

2004, 2003). In this section, we will give the concepts and definitions of clusters from

hard, fuzzy, possibilistic, and evidential perspectives as follows.

3.3.1 Hard clusters

In clustering, if a cluster collects a number of objects in a certain/precise way, we call

it a hard cluster. That is, hard cluster is defined as a set consisting of one or more

certain/precise objects with some specific properties (both concrete and abstract). The

objects in hard cluster have a clear and certain affiliation. Following probability theory

(Jeffreys, 1998; Durrett, 2019), we give the definition as follows.

Definition 3.6 Given a FoD Ω= {ω1, ..., ωc} and a cluster {ωj}, {ωj} ∈ Ω, for any

object xi ∈ {ωj}, the cluster {ωj} with p·j : Ω→ 0/1 is called a hard cluster, such that:

pij = 1, p
ij′ = 0, ∀xi ∈ {ωj} 6= {ωj′} ∈ Ω (3.6)

where pij represents the probabilistic degree of i-th object belonging to j-th cluster.

Although pij = 1, p·j is still constrained by
c∑
i=1

pij = 1. Essentially, p·j : Ω → 0/1

is a mapping function based on probability theory. Following this definition, once an

object is assigned to a hard cluster, the probability that the object belongs to this

cluster is 1. Hence, there is no uncertain/imprecise information in hard clusters.

3.3.2 Fuzzy clusters

In clustering, unlike hard clusters, there are also many fuzzy concepts that describe

properties of objects that cannot be answered simply by “yes” or “no”. A fuzzy cluster

is considered to be a set of objects that have the properties described by a fuzzy concept.

Following fuzzy set theory (Zadeh, 1996), fuzzy cluster is also called fuzzy set, and we

give the definition of fuzzy cluster as follows.

Definition 3.7 Given a FoD Ω and a cluster {ωj} ∈ Ω, then the cluster {ωj} with

u(f)
·j : Ω → [0, 1] is called a fuzzy cluster/set on Ω. The mapping u(f)

·j is called fuzzy

membership function of the fuzzy cluster/set {ωj}. Given a dataset X , for any xi ∈ X ,

we have:

u
(f)
ij , u

(f)
ij ∈ [0, 1] (3.7)

where u
(f)
ij is used to represent the fuzzy membership degree of the object xi belonging

to the j-th cluster.
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Unlike hard one, fuzzy cluster has imprecise information. If u
(f)
ij < 1, it indicates

that although the object xi is assigned to the cluster {ωj}, it may belong to other clus-

ters at the same time. Thus, fuzzy clusters can characterize the imprecision of results

in clustering task. Of course, for any xi ∈ {ωj}, if u
(f)
ij = 1, then {ωj} degenerates to a

hard cluster. In this case, the cluster {ωj} does not contain any imprecise information.

3.3.3 Possibilistic clusters

In clustering, it is known that an event must happen (the object belongs to a specific

cluster), but due to insufficient information, we cannot completely certain this event. In

this case, it is a good choice to use possibilistic clusters to characterize the uncertainty

of this event. Following possibility theory (Dubois and Prade, 2012, 1988), possibilistic

clusters can represent the uncertainty of clustering results.

Definition 3.8 Given a FoD Ω and a cluster {ωj}, then the cluster {ωj} with u(p)
·j :

Ω→ [0, 1], is a possibilistic cluster on Ω. The mapping u(p)
·j is possibilistic membership

function of the cluster {ωj}. Given a dataset X , for any xi ∈ X , we have:

u
(p)
ij , u

(p)
ij ∈ [0, 1] (3.8)

where u
(p)
ij is used to represent the possibilistic membership degree of the object xi be-

longing to the j-th cluster, i.e. it characterizes the possibility of event xi ∈ {ωj}.

Note that once an object xi is assigned to cluster {ωj}, it indicates that for xi, the

event xi ∈ {ωj} is most likely to occur. Here different events are mutually exclusive,

i.e. the events xi ∈ {ωj} and xi ∈ {ωj′}, j 6= j′, cannot occur at the same time, which

is different from fuzzy clusters. Specifically, u
(p)
ij characterizes the uncertainty of event

xi ∈ {ωj} and u
(f)
ij characterizes the imprecision of event xi ∈ {ωj}. Thus, possibilistic

clusters can characterize the uncertainty of results in clustering task. Of course, for

any xi ∈ {ωj}, if u
(p)
ij = 1, then we have a hard cluster {ωj}. In this case, the cluster

{ωj} does not contain any uncertain information.

3.3.4 Evidential clusters

Given a FoD Ω, unlike other ones, the TBF extends it to the power-set framework 2Ω.

For example, if c = 3, we have 2Ω = {∅, {ω1}, {ω2}, {ω3}, {ω1,ω2}, {ω1,ω3}, {ω2,ω3},Ω}.
In other words, the object can be assigned to three clusters: singleton (specific) cluster

(e.g. {ω1}), meta-cluster (e.g. {ω1,ω2}) and the noise cluster represented by ∅. These

clusters are collectively referred to as evidential cluster here. In this theory, the object

xi belonging to different clusters are considered independent events, and these events

cannot occur simultaneously. That is, in the decision, each object must be assigned to

one of these clusters. The definition of these clusters are given as follows.
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Definition 3.9 Singleton cluster, also called specific one, similar to possibilistic clus-

ter, aims to characterize the uncertainty of the results. Given an object xi, once it is

assigned to the singleton cluster Aj, i.e. xi ∈ Aj, we have:

mi(Aj) > mi(Aj′), ∀j′, Aj 6= Aj′ ⊆ Ω, |Aj | = 1. (3.9)

where the mass of belief mi(Aj) denotes the degree of the object xi associated with the

focal element (singleton cluster) Aj.

As analyzed, the mass of belief mi(Aj) can be fuzzy, possibility, or probability values

in special cases (Masson and Denœux, 2008).

Definition 3.10 Meta-cluster is used to characterize imprecision in results. Given a

meta-cluster Aj, it is defined by the disjunction (union) of several singleton clusters

and has the following form:

Aj = {ωk, ..., ωl}, k 6= l ∈ [1, c]. (3.10)

Meta-cluster is regarded as a real and new cluster with the same properties as a

singleton cluster and can be considered as a transition cluster among these different

close singleton clusters. If an object is assigned to a meta-cluster, this indicates that

the object may belong to any of the singleton clusters in the meta-cluster (Liu et al.,

2015; Zhang et al., 2021d). For example, if xi ∈ Aj = {ω1, ω2}, we consider that xi may

belong to both cluster {ω1} and cluster {ω2}. In this case, event xi ∈ {ω1} and event

xi ∈ {ω2} can occur simultaneously. In this case, after a transformation, e.g. Eq. (2.8),

the mass values obtained, i.e. mi1, mi2, can be viewed as the fuzzy membership

degrees of xi belonging to {ω1} and {ω2}, respectively. Hence, meta-cluster is used to

characterize imprecise information in results.

In spatial distribution, if xi is assigned to meta-cluster, the object xi may simulta-

neously close to several singleton clusters included in the meta-cluster. In this case, we

can say that the object xi is imprecise or we have an imprecise object xi. By contrast,

for the object xi, once it is assigned to a singleton cluster, it indicates that the object

xi is obviously close to one and only one singleton cluster. In this case, we thereby say

that this object xi is precise. In other words, we can say that xi is a precise object if

we are sure that xi belongs to one singleton cluster only. Thus, we have the following

definition of precise/imprecise object.

Definition 3.11 Given an object xi, we have a precise object xi if it is assigned to the

singleton cluster Aj, such that:

xi ∈ Aj , |Aj | = 1, Aj 6= ∅. (3.11)
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Definition 3.12 Given an object xi, we have an imprecise object xi if it is assigned

to the meta-cluster Aj, such that:

xi ∈ Aj , |Aj | ≥ 2. (3.12)

By contrast, some objects may be far from all singleton clusters at the same time. In

this case, they are considered as a set of noise. Thus, we have the following definition.

Definition 3.13 Noise cluster, represented by ∅, is considered as a separate cluster

and is defined as the set of those objects that are far from all singleton clusters. Given

an object xi, if it is assigned to noise cluster, we have:

mi(∅) > mi(Aj), Aj 6= ∅, Aj ⊆ Ω. (3.13)

Once object xi is assigned to noise cluster, it is regarded as a noise or outlier.

Each of these clusters has a unique and important role in the clustering task, es-

pecially the meta-cluster and noise cluster allows us to gain a deeper insight into the

data and to improve robustness with respect to outliers (Masson and Denœux, 2008).

3.3.5 The difference and relations of different clusters

Inspired from (Denœux and Kanjanatarakul, 2016), we have the relationship between

different clusters, as shown in Fig. 3.2.

Hard cluster

Fuzzy cluster Possibilistic cluster

certain and precise 

uncertain imprecise 

Evidential cluster

uncertain and imprecise 

Hard cluster

Fuzzy cluster Possibilistic cluster

certain and precise 

uncertain imprecise 

Evidential cluster

uncertain and imprecise 

Special

General

Fig. 3.2. Relationship between hard, fuzzy, possibilistic, and evidential clusters.

Example 3.3: Let us consider that a dataset X is a collection of n people, defined

as X = {x1,x2,x3, ...,xn}, where the basic information of xi, i = 1, 2, 3 has been shown

in Table 3.2. A partition of the given dataset X is a set of c clusters defined on the

FoD Ω. Specifically, given a set of clusters Ω= {ω1, ω2, ω3} with c = 3, let us consider

that all objects in X are grouped into these 3 clusters and we have the following cases.

• Case 1: In the results, if we are sure that all the objects are assigned to these

clusters with no uncertainty and no imprecision, we consider these clusters, such
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as {ω1}, to be hard clusters. Following probability theory, for example, if

x1 is assigned to cluster {ω1}, we have p2({ω1}) = 1. Thus, hard clusters can

characterize the certainty and precision of the results.

• Case 2: In the results, if there is some fuzzy or imprecise knowledge in these

clusters, following fuzzy set theory, they can be considered as fuzzy sets or

fuzzy clusters. For example, for the object x2 in cluster {ω1}, we thereby have

u
(f)
2 ({ω1}) > u

(f)
2 ({ωi}) (i = 2, 3) with u

(f)
2 ({ω1}) ∈ (0, 1). In this case, we

can say that the object x2 in cluster {ω1} with the biggest fuzzy degree, and if

u
(f)
2 ({ω2}) > 0, we can also say that it may be in cluster {ω2}, only with a smaller

fuzzy degree. Thus, fuzzy clusters can characterize the imprecision of the results.

• Case 3: In the results, if there is some uncertain knowledge in these clusters,

following possibility theory, they can be considered as possibilistic clusters. For

example, for the object x3 in cluster {ω1}, we thus have u
(p)
3 ({ω1}) > u

(p)
3 ({ωi})

with u
(p)
3 ({ω1}) ∈ (0, 1), i = 2, 3. In this case, we can only say that the object

x3 belongs to cluster {ω1}, but there is uncertainty in this proposition due to

limited knowledge. Thus, possibilistic clusters can characterize the uncertainty

of the results.

• Case 4: In the results, following the TBF, all the objects are assigned to different

clusters, including the noise cluster ∅, the singleton clusters {ωi}, i = 1, 2, 3,

and the meta-clusters {ω1, ω2}, {ω1, ω3}, {ω2, ω3}, Ω. These clusters are called

evidential clusters. For example, for the object x1 in the singleton cluster

{ω1}, we have m1({ω1}) > m1(Aj′) with m1({ω1}) ∈ (0, 1), where Aj′ represents

all the evidential clusters except {ω1} under the power-set 2Ω. In this case,

we can say that the object x1 belongs to cluster {ω1}, but there is uncertainty

in this proposition due to limited knowledge. Again, for the object x2 in the

meta-cluster {ω2, ω3}, we can say x2 belongs to cluster {ω2} or cluster {ω3}.
In this case, the meta-cluster {ω2, ω3} is used to describe partial ignorance of

information (knowledge), i.e. there is imprecise or fuzzy information (knowledge)

in this proposition. Thus, evidential clusters can characterize the uncertainty and

imprecision in the results.

3.4 Concepts and definitions of methods

In clustering, empirical information, i.e. data or dataset, is usually grouped into several

clusters by the ways that we call methods. Given the dataset X , the methods will group

n objects xi (xi ∈ X , i = 1, ..., n) into different clusters in a hard/soft way, where

the members (objects) are similar in each cluster. In this section, we refer to those

methods that group objects into different clusters in a certain way as hard methods,
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e.g. K-means (Jain, 2010). By contrast, those methods that group objects into clusters

in a soft (uncertain/imprecise) way are called fuzzy, possibilistic, or evidential methods,

e.g. Fuzzy c-means (Bezdek, 2013), Possibilistic c-means (Krishnapuram and Keller,

1996), Evidential c-means (Masson and Denœux, 2008). We will give clear definitions

and review some classical fuzzy/possibilistic methods in this section.

3.4.1 Hard methods

In clustering, hard method usually submit the object to a songleton (specific) cluster in

a completely certain way under the established rules, models, etc. That is, hard method

give hard clusters. In this case, each object only belongs to one singleton cluster, which

is regarded as a certain event. If allowed, from the view of probability theory, we give

the following definition.

Definition 3.14 Given a dataset X and a FoD Ω, if we have a hard method, each

object xi should be submitted to a singleton cluster {ωj}, such that:

pij = 1 (3.14)

where pij represents the probabilistic degree of i-th object belonging to the j-th cluster.

In applications, a number of hard methods have been proposed. In hierarchy-based

clustering (Murtagh, 1983; Johnson, 1967), it attempts to construct a tree-like nested

structure partition where neighbors are adapt and gradually merge into a cluster as

needed. In partition-based K-means/K-medoids (Jain, 2010), the objects are always

assigned to the nearest center. An objective function, typically the sum of the dis-

tance to a set of putative cluster centers, is optimized (Kaufman and Rousseeuw, 2009;

Frey and Dueck, 2007; Höppner et al., 1999) until the best cluster centers candidates

are found. In distribution-based EM methods (McLachlan and Krishnan, 2007), one

attempts to reproduce the observed realization of objects as a mix of predefined prob-

ability distribution functions. In density-based DPC methods (Rodriguez and Laio,

2014), inspired by DBSCAN (Ester et al., 1996) and Mean-shift (mode seeking) (Cheng,

1995), one characterizes the cluster centers by a higher density than their neighbors

and by a relatively large distance from objects with higher densities. Then the non-

central objects gradually converge to different clusters based on the known information

of neighbors. There also exist some methods based on machine learning (Ben Hur et al.,

2001) and neural networks (Vesanto and Alhoniemi, 2000). These methods have been

applied with good results.

3.4.2 Fuzzy methods

Unlike hard methods, following the fuzzy set theory, fuzzy methods believe that an

object xi can belong to all singleton clusters with different fuzzy membership degrees.
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The definition is shown as follows.

Definition 3.15 Given a dataset X and FoD Ω, for each object xi, we have a fuzzy

method, such that:

c∑
j=1

u
(f)
ij = 1, ∀i,

n∑
i=1

u
(f)
ij < n, ∀j, u(f)

ij ∈ [0, 1] (3.15)

where u
(f)
ij represents the fuzzy membership degree of the i-th object in the j-th cluster.

Fuzzy methods have a complete theoretical and mathematical framework, and a

number of fuzzy methods have been proposed and applied in the past decades.

In these methods, the most popular is Bezdek’s Fuzzy c-means (FCM) algorithm

(Bezdek, 2013; Bezdek et al., 1984) for object data. It can be considered as the fuzzy

version of K-means because they are similar regarding the definition of the objective

function and the optimization mechanism. The difference is that FCM also needs to

optimize the fuzzy matrix U = (u
(f)
ij ) in Eq. (3.15). Fuzzy methods have been widely

used in many fields. For example, for clustering images, spatial information, considered

as the summation of the membership function in the neighborhood of each pixel, is

incorporated into the membership function (Chuang et al., 2006).

3.4.3 Possibilistic methods

Possibilistic methods are considered as the possibilistic version of FCM under possibility

theory. It interprets and normalizes fuzzy methods from possibility distribution.

Definition 3.16 Given a dataset X and FoD Ω, for each object xi, we have a possi-

bilistic method, such that:

c∑
j=1

u
(p)
ij ≤ 1, ∀i,

n∑
i=1

u
(p)
ij < n, ∀j, u(p)

ij ∈ [0, 1] (3.16)

where u
(p)
ij represents the possibilistic membership degree of i-th object in j-th cluster.

In Eq. (3.16), the normalization constraint

c∑
i=1

u
(p)
ij = 1 is relaxed to against noise

and outliers, and 1−
c∑
i=1

u
(p)
ij can be regarded as the possibilistic degree of i-th object

belonging to the noise and outliers.

In the early version, the possibilistic clustering (PCM) (Krishnapuram and Keller,

1993, 1996) works by modifying the objective function to be minimized. In PCM, the

membership u
(p)
ij is interpreted as a typicality degree or a possibilistic degree (under

possibility theory) that the object xi belongs to the cluster {ωj}. Experiments have
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shown that PCM can improve robustness with respect to noise or outliers. In (Zhang

and Leung, 2004), an improved possibilistic c-means (IPCM) is proposed to address the

issue that PCM tend to find identical clusters. The key is to integrate the fuzzy partition

into PCM, so that the IPCM can determine proper clusters. The idea of combining

the fuzzy partition and the possibilistic partition has been verified in improving the

robustness of the methods.

3.4.4 Evidential methods

The seminal evidential methods, following the TBF, has been introduced in (Denœux

and Masson, 2004; Masson and Denœux, 2008). It extends the existing concepts of

hard, fuzzy, and possibilistic partitions by allocating, for each object, a “mass of belief”,

not only to singleton clusters, but also to any subsets of the given FoD Ω= {ω1, ..., ωc}.
Roughly speaking, a mass function can be seen as a collection of sets with corresponding

masses. A collection of such mass functions for n objects is called credal partition

(Denœux and Masson, 2004, 2003; Su and Denœux, 2018). Experiments have shown

that this additional flexibility allows to gain a deeper insight in the data and to improve

robustness with respect to outliers (Masson and Denœux, 2008). Evidential methods

have been reviewed in Section 3.5, and here we give some basic concepts and definitions.

Definition 3.17 Let consider a dataset X with n objects and a power-set 2Ω on FoD Ω,

given a set of n mass functions, we have an evidential method, for each m, such that:∑
Aj⊆Ω

mi(Aj) = 1, ∀i, mi(Aj) ∈ [0, 1] (3.17)

where mi(Aj), a mass of belief, denotes the degree of the object xi associated with the

focal element (cluster) Aj.

Since credal partition is considered as an extended version of hard, fuzzy, and

possibilistic partitions of the given dataset X under the TBF, it can be degraded to

either hard, fuzzy, or possibilistic partitions in specific cases.

Definition 3.18 Given a set of n mass functions, for the dataset X , we have a set of

hard mass functions, such that:

mi(Aj) = 1, ∀m, Aj 6= ∅, |Aj | = 1. (3.18)

In this case, each object xi is completely associated with the focal element (cluster)

Aj , |Aj | = 1, i.e. Aj = {ωj}.

Definition 3.19 Given a set of n mass functions, for the dataset X , we have a set of

fuzzy membership functions, such that:

mi(Aj) = 0, ∀m, Aj 6= ∅, |Aj | ≥ 2. (3.19)
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In this case, for each object xi, it is allowed to belong to different singleton clus-

ters simultaneously and the sum of mass of belief that the object xi belongs to these

singleton clusters is equal to 1.

Definition 3.20 Given a set of n mass functions, for the dataset X , we have a set of

possibilistic membership functions, such that:

c∑
j=1

mi(Aj) ≤ 1, |Aj | = 1,

mi(Aj) = 0, |Aj | 6= 1,

mi(Aj) ∈ [0, 1].

(3.20)

In this case, the object xi belongs to one of these specific clusters, and if

mi(Aj) < 1, it represents the possibilistic degree of the i-th object in the j-th clus-

ter. The relationship between credal partition and other partition structures has been

discussed (Denœux and Kanjanatarakul, 2016).

3.4.5 The overview of different data, methods, and clusters

In this subsection, we will give a diagram of hard, fuzzy, possibilistic, and evidential

clustering from data, methods and clusters perspectives, as shown in Fig. 3.3. The solid

path in Fig. 3.3 indicates that it is feasible and relevant literature is available, while

the others are not found.

DATA METHODS CLUSTER

Hard

Fuzzy

Hard

Fuzzy

Hard

Fuzzy

Possibilistic Possibilistic Possibilistic

Evidential Evidential Evidential

Probability theory

Fuzzy set theory

Possibility theory

Evidence theory

Fig. 3.3. Illustration of data, methods, and clusters of existing methods.

3.5 Clustering techniques based on TBF

Evidential clustering is still under development and existing methods are mainly for

object data and relational data. In this section, therefore, the existing methods are
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reviewed from these two aspects in the Subsections 3.5.1 and 3.5.2, respectively. Af-

terward, some practical applications of evidential clustering are discussed in Subsec-

tion 3.5.3. Then, the advantages and disadvantages of different methods are analyzed

and the applicable scenarios are given in Subsection 3.5.4. Finally, the challenges faced

by evidential clustering are discussed.

3.5.1 Object data-based methods

Evidential clustering based on the concept of credal partition (Denœux and Masson,

2004, 2003; Denœux and Kanjanatarakul, 2016; Masson and Denœux, 2004) is proposed

by Denœux and Masson. Afterward, they present an early version for object data in

2008, named evidential c-means (ECM) (Masson and Denœux, 2008), which can be

considered as the evidential version of fuzzy c-means (FCM) (Bezdek, 2013) and noise

clustering (NC) (Dave, 1991; Sen and Davé, 1998) under the TBF. In ECM, it allows the

object to be in any singleton clusters and meta-clusters with different masses of beliefs,

and the noise cluster is represented by ∅. Inspired by FCM and NC, the objective

function of ECM is defined by:

JECM=

n∑
i=1

∑
Aj 6=∅,Aj⊆Ω

|Aj |amijdij +

n∑
i=1

δ2mβ
i∅, (3.21)

subject to ∑
Aj 6=∅,Aj⊆Ω

mij +mi∅ = 1 (3.22)

where dij represents the Euclidean distance between the i-th object and the center of j-

th cluster. The center (v̄j) of meta-cluster (Aj) is the average of the involved singleton

cluster centers, defined by:

v̄j =
1

|Aj |

c∑
k=1

skjvk, skj =

{
1, if {ωk} ∈ Aj
0, otherwise

(3.23)

where |Aj | is the cardinality of Aj and vk is the center of the singleton cluster {ωk}.
Similar to FCM and NC, ECM also assigns objects to the nearest centers by min-

imizing an objective function. Since the mass of belief only depends on the distance

between the object and the center of this cluster, it may produce unreasonable results

when meta-cluster centers are close to the centers of singleton clusters. To overcome

this limitation, new methods, belief c-means (BCM) (Liu et al., 2012) and credal c-

means (CCM) (Liu et al., 2015) are introduced by redefining the distance between the

object and the centers. For example, in CCM, the dstance between the object and

meta-cluster is not only related to the center of this meta-cluster but also related to

the associated singleton clusters included in this meta-cluster. By doing this, it can

prevent some objects from being unreasonably assigned to meta-clusters.
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In applications, prior knowledge about cluster membership is sometimes available.

To integrate such auxiliary information, an interesting constrained evidential c-means

algorithm (CECM) (Antoine et al., 2010, 2012) is proposed. In CECM, the pairwise

constraints are translated into the framework of TBF and integrated into the cost

function. Besides, based on a small set of labeled data (or seeds), an evidential seed-

based semi-supervised clustering (SECM) is proposed in (Antoine et al., 2014a), which

is considered as the first semi-supervised extension of evidential clustering. Interest-

ingly, Denœux presents a calibrated model-based evidential clustering method recently

(Denœux, 2020a). It first computes the bootstrap percentile confidence intervals for all

pairwise probabilities, i.e. the probabilities for any two objects to belong to the same

class. Then, the pairwise belief and plausibility degrees are made to approximate the

bounds of the confidence intervals by calibrating the evidential partition. The practical

applicability of the method is verified in the real world. In (Zhang et al., 2021c), eviden-

tial clustering is first applied to missing data, suggesting an advantage in characterizing

the uncertainty and imprecision due to missing values.

In addition to the above methods, there are some approaches that combine with

other techniques to better extend the applications of evidential clustering on object

data. For example, inspired by other methods (Fred and Lourenço, 2008; Hadjitodorov

et al., 2006), an evidential version of ensemble clustering is proposed in (Masson and

Denœux, 2011). In this method, belief functions, defined on the lattice of intervals

partitions of a set of objects, are investigated as a suitable framework for combining

multiple clusterings. Based on classical K-modes (Huang, 1998; Huang and Ng, 1999)

and DBSCAN (Ester et al., 1996), a series of evidential methods (Hariz et al., 2006;

Hariz and Elouedi, 2010a; Hariz et al., 2007; Hariz and Elouedi, 2011, 2010b; Bessrour

et al., 2020) in uncertain contexts are developed, aiming to handle uncertainty in the

attribute values of objects, such as belief k-modes method (BKM) (Hariz et al., 2006),

and to handle the belongs of the objects to different clusters with various mass degrees,

such as evidential DBSCAN (E-DBSCAN) (Bessrour et al., 2020). In (Denœux, 2011),

a variant of the EM algorithm (McLachlan and Krishnan, 2007; Dempster et al., 1977),

called evidential EM (E2M), is presented under the TBF and the maximization of a

generalized likelihood criterion. This criterion can be interpreted as a degree of agree-

ment between the statistical model and the uncertain observations and the proposed

method can iteratively maximize this criterion. In particular, in a new method, named

belief-peaks evidential clustering (BPEC) (Su and Denœux, 2018; Gong et al., 2021),

cluster centers can be adaptively obtained and credal partition is achieved by com-

bining evidential clustering with density peak algorithm (Rodriguez and Laio, 2014).

To overcome the shortcomings of BPEC in manual center selection and inability to

detect arbitrary clusters, a new evidential clustering algorithm, named CBP-EKNN

(Gong et al., 2020), is proposed by finding the “cumulative belief peaks” and evidential

K-nearest neighbor rule. In (Zhou et al., 2019), an evolutionary version of evidential
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clustering for multi-objective, called MOE2CM, is proposed with an underlying evo-

lution strategy called NSGA-II (Deb et al., 2002). It aims to present a number of

non-dominated solutions for the decision-maker based on the problem requirements.

Interestingly, they further propose an evidential evolving c-means (E2CM) (Su et al.,

2020) clustering method in the framework of evolutionary computation. It aims to ac-

tively obtaining the cluster centers by encoding the centers in a population of variable

strings (or particles) while searching for the optimal number and location. Recently, an

evidential version of the Gaussian mixture model (EGMM) for clustering object data

has also been recently announced (Jiao et al., 2020), which also allows to automatic de-

termination of the proper number of clusters. In (Zhou et al., 2021), a prototype-based

evidential transfer clustering algorithm, named transfer evidential c-means (TECM), is

introduced to handle the insufficiency and uncertainty problems in the clustering task

simultaneously. The proposed algorithm employs the cluster prototypes of the source

data as references to guide the clustering process of the target data. These methods can

model uncertainty and imprecision in the clustering process and achieve good results

from different perspectives.

3.5.2 Relational data-based methods

The TBF is also first extended to clustering analysis for relational data (proximity

data) by Denœux and Masson and introduced the concept of credal partition in detail

(Denœux and Masson, 2004, 2003). Inspired by some fuzzy methods (Sen and Davé,

1998; Dave, 1991), they call this relational data-oriented method as EVidential CLUS-

tering (EVCLUS) (Denœux and Masson, 2004). It does not require the data to be

characterized as a vector, but in order not to lose generality, we take the example of

object data here. The input is a n × n dissimilarity matrix Ψ= (ψij), where ψij ≥ 0

measures the degree of dissimilarity between objects xi and xj . The objective function

of EVCLUS is defined by:

JEV CLUS =
1

cons

∑
i<j

(aKij + b− ψij)2

ψij
(3.24)

where a and b are two coefficients, cons is a normalizing constant. Kij is the degree of

conflict between mi and mj , defined by:

Kij =
∑

A∩B=∅
mi(A)mj(B). (3.25)

The above objective function JEV CLUS can be implemented by optimizing the credal

partition matrix M = (mij) and the parameters a, b (Denœux and Masson, 2004, 2003).

To control the complexity of the model, they suggest adding a penalty term to JEV CLUS

for supporting simple and more informative evidence. The informativeness of the mass
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function mi can be defined in terms of entropy by:

E(mi) =
∑

A 6=∅
log2(

|A|
mi(A)

) +mi(∅)log2(
|Ω|
mi(∅)

). (3.26)

The value of E(mi) is smaller when more confidence is assigned to the focal element

with smaller potential. The final objective function to be optimized is written by:

JEV CLUS1 = JEV CLUS + λ
n∑
i=1

E(mi) (3.27)

where the weight factor λ is used to balance the two terms.

Afterward, EVCLUS is extended to a semi-supervised learning framework, called

CEVCLUS (Antoine et al., 2011, 2014b). This method aims to improve the cluster-

ing accuracy by considering the must-link and cannot-link restrictions between some

objects in the optimization objective function. Furthermore, two much faster and effi-

cient versions of CEVCLUS, such as called k-CEVCLUS (Li et al., 2018) are introduced

to make it applicable to large datasets (Li et al., 2018; Denœux and Kanjanatarakul,

2016). Interestingly, a new clustering method for relational data, named EK-NNclus

(Denœux et al., 2015), is proposed recently. It initially assumes that all objects indi-

vidually form a cluster, and then gradually merges the clusters through the EK-NN

rule (Denœux, 2008b) and the idea of label propagation, eventually forming a stable

cluster structure. Besides, a new neural-network based evidential clustering method

is presented, called NN-EVCLUS (Denœux, 2020b), where the neural network can be

paired with a one-class support vector machine to make it robust to outliers and allow

for novelty detection. Unlike ECM (Masson and Denœux, 2008), most of these above

methods only includes singleton clusters and the total ignorance Ω. Fortunately, the

relational version of ECM, called RECM (Masson and Denœux, 2009), has been de-

rived. In particular, in some cases, it may not adequately model different types of group

structure by using one center to represent a class, and thereby a new prototype-based

clustering method with multiple prototypes, named evidential c-medoids (ECMdd), is

proposed for relational data (Zhou et al., 2015b, 2016a). In ECMdd, a single or multi-

ple weighted medoids are used to flexibly represent one cluster. These aforementioned

methods have made important contributions in clustering relational data.

3.5.3 Applications of evidential methods

In fact, evidential clustering has been applied to many fields (Mahamadou et al., 2019;

Saidi et al., 2018b; Lian et al., 2017b; Ayed et al., 2017; Serir et al., 2012; Zhou et al.,

2015a, 2018b, 2014, 2016b, 2018a; Saidi et al., 2018a; Abdelkhalek et al., 2019a,b, 2018).

For example, to model, fuse, and reason with uncertain and imprecise knowledge from

noisy and blurry PET-CT images, a co-clustering algorithm is proposed to concur-
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rently segment 3D tumors in PET-CT images (Lian et al., 2017b,a). In this method, it

is considered that the two PET-CT and mono-modal imaging modalities can provide

complementary information to improve segmentation performance by combining func-

tional and anatomical information. The validity has been demonstrated on PET-CT

images for non-small cell lung cancer patients. In (Serir et al., 2012), a new online

clustering method called evidential evolving Gustafson-Kessel (E2GK) is introduced.

It aims to achieve a credal partition of data streams online by applying an algorithm

resulting from the adaptation of the evolving Gustafson-Kessel (EGK) algorithm (Filev

et al., 2010). In particular, a new prototype-based clustering method, called median

evidential c-means (MECM) (Zhou et al., 2015c), is presented, which can be considered

as an extension of median c-means (Cottrell et al., 2006) and median fuzzy c-means

(Geweniger et al., 2010) under the framework of TBF. Since it relaxes the restric-

tions on the object embedding metric space and restricts the prototypes to be in the

original dataset, the proposed MECM method based on credal partition has a better

understanding of the graph structures in detecting community for social networks. Af-

terward, a few domain knowledge is incorporated into the community detection and

thereby a semi-supervised clustering based on an evidential label propagation strategy

is proposed (Zhou et al., 2016b, 2018a). Also, evidential collaborative filtering is pro-

posed in recommender systems for helping and guiding users towards items of interest

(Abdelkhalek et al., 2019a,b, 2018). The successful practice of these methods enhances

the prospects for the applications of evidential clustering in different scenarios.

3.5.4 Analysis of different evidential methods

To further advance the applications of evidential clustering in various fields, we summa-

rize the advantages and disadvantages of some representative methods from different

perspectives, such as data type, center, complexity, as shown in Table 3.6. It should

be noted that some methods provide schemes to optimize the number (c) of cluster

centers, but we generally consider it necessary to provide c in our applications, e.g.

ECM (Masson and Denœux, 2008), MECM (Zhou et al., 2015c). In this case, we group

these methods as those that require the number (c) of cluster centers. By the way, in

order to easily distinguish the advantages and disadvantages of the different methods,

we evaluate the practicality of these methods in 5 main aspects, which are included in

the notes to comment. It is easy to find from Table 3.6 that different methods have

their own scope of applications, so users can choose a suitable method as a benchmark

according to different scenarios. To make it as easy as possible for the user in appli-

cations, we give the basic principles for choosing some classical methods as potential

solutions, as shown in Fig. 3.4.
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Table 3.6: Comparisons of different evidential methods

Method Data
type

Center Measure
type

Cluster
number

Complexity Disadvantage

ECM Object Centroids Euclidean Known O(n2c) (1), (3), (4)

CCM Object Centroids Euclidean Known O(n2c) (1), (3), (4)

CECM Object Centroids Adaptive
metric

Known O(n2c) (1), (2), (3)

BPEC Object Medoids Euclidean Unknown O(n2 + n2c) (3), (4)

CBP-EKNN Object Medoids Euclidean Unknown O(n3) (3), (5)

EGMM Object Centroids Covariance
matrix

Known O(n2c) (1), (3)

EVCLUS Relational / Dissimilarity
matrix

Known O(n2c2) (1), (3)

CEVCLUS Relational / Dissimilarity
matrix

Known O(n22c) (1), (2), (3),
(5)

k-CEVCLUS Relational / Dissimilarity
matrix

Known O(n2c) (1), (2), (5)

RECM Relational Centroids Euclidean Known O(nc2 +cn2) (1), (3), (4)

MECM Relational Medoids Euclidean Known O(n2c) (1), (3), (4)

EK-NNclus Relational / Dissimilarity
matrix

Unknown O(n22c) (3)

NN-EVCLUS Relational / Dissimilarity
matrix

Known O(n22c) (1), (2), (3)

ECMdd Relational Medoids Dissimilarity
matrix

Known O(cn2 +n2c) (1), (3), (4)

(1) The users need to know the number of clusters; (2) The users know some prior knowledge about the
objects/clusters; (3) The method has a high computational complexity; (4) This method is not applicable
to non-spherical symmetric data; (5) This method cannot detect partial ignorance (e.g. the meta-cluster
Aj) among singleton clusters, |Aj | ≥ 2, Aj ⊂ Ω.

3.5.5 Challenges of evidential clustering

The successful applications of evidential clustering, such as in image segmentation,

community detection, have demonstrated the potential, but many challenges remain,

at least but not limited to the following.

• The relevant concepts, definitions, etc., involved in evidential clustering need to

be further standardized.

• How to reduce the computational burden due to the introduction of meta-clusters

has not been effectively addressed;

• Existing evidential methods are mainly focused on the detection of spherical clus-
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Fig. 3.4. The basic principles for choosing different evidential methods.

ters, with insufficient attention to clusters with arbitrary shape and size in space;

• Existing evidential methods are mainly developed for object and relational data.

However, exploring soft data, including fuzzy/possibilistic/evidential ones, re-

mains a challenging task;

• The applications of evidential clustering in different fields are still in the explo-

ration stage, and many of the advantages are still to be explored.

3.6 Conclusion

In this chapter, we gave the concepts and definitions related to clustering. These

normative fundamentals facilitate the in-depth study of evidential clustering as well

as its applications. Besides, we also discussed the differences and connections between

evidential clustering and other clustering methods. Afterward, we comprehensively

reviewed evidential clustering (EC) from five aspects, i.e. object data-based methods,

relational data-based methods, applications and analysis of different methods, and

challenges of existing methods. Compared with other clustering methods, evidential

clustering has the advantage of characterizing both uncertainty and imprecision between

clusters. However, the existing evidential methods still have some defects, such as high

computational complexity, and not applicable to non-spherical data. Based on this,

we will propose three clustering algorithms in the subsequent Chapters 4, 5, and 6

to reduce the complexity and reasonably characterize the uncertainty and imprecision

between imbalanced clusters or even clusters with arbitrary shapes and sizes.
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4
Dynamic evidential clustering

algorithm

Abstract: In this chapter, we present a dynamic evidential clustering algorithm. To

this end, we first review the related clustering algorithms such as evidential c-means

and credal c-means. After that, we present in detail the implementation of the proposed

algorithm. Then, we validate the effectiveness of the proposed algorithm on different

datasets and conclude the chapter at the end.
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4.1 Introduction

In the previous chapter, the concepts and definitions related to evidential clustering

(EC) are given, and the differences and connections between evidential clustering and

other clustering methods are discussed. Based on this, EC is proved to characterize the

uncertainty and imprecision between clusters well. However, due to the introduction

of meta-cluster, traditional EC, such as ECM (Masson and Denœux, 2008) and CCM

(Liu et al., 2015), often requires a large amount of computation in extracting cluster

structures, which limits the applications of EC in big data. In this chapter, we propose

a dynamic evidential clustering (DEC) algorithm (Zhang et al., 2021d) to improve the

efficiency of traditional EC. Since the DEC is an improvement of ECM and CCM, we

first give the corresponding basics in Section 4.2, respectively. Afterward, the proposed

DEC algorithm is presented in detail in Section 4.3. Then, experiments based on

synthetic and real datasets illustrate the performances of DEC and show its difference

from other methods in Section 4.4. Finally, we conclude this chapter in Section 4.5.

4.2 Review of evidential c-means and credal c-means

4.2.1 Evidential c-means (ECM)

Evidential c-means (ECM) (Masson and Denœux, 2008) is regarded as the evidential

version of the fuzzy c-means (FCM) (Bezdek, 2013) and noise clustering (NC) (Sen

and Davé, 1998; Dave, 1991) to characterize the uncertainty and imprecision between

different clusters, and it will be briefly introduced as follows.

Let us consider a data set X including n objects with s attributes over the FoD

Ω = {ω1, ..., ωc}. For the object xi ∈ X , i = 1, ..., n, the mass of belief mij , mi(Aj)

for associating the object xi with an element Aj of the power-set 2Ω. Particularly,

Aj ⊆ Ω, Aj 6= ∅, i.e. Aj can be any singleton cluster or meta-cluster included in 2Ω.

The cluster center v̄j associated to Aj has been defined in Eq. (3.23).

In ECM, the value of mij depends on the distance dij between the object xi and

the cluster center v̄j of Aj , i.e. the higher distance dij leads to lower mij . ECM looks

for the matrix M of credal partition and the matrix V of cluster centers by minimizing

the objective function defined in Eqs. (3.21)-(3.22). In the function, the noise (outlier)

threshold, denoted as δ, represents the distance between any object xi (i = 1, ..., n)

and the noise cluster. mi∅ represents the mass of belief that the object assigned to the

noise cluster and it can be adjusted by the threshold δ. A bigger threshold δ will lead

to a lower mass of belief mi∅, and the object may be far away from the other objects if

it is assigned to the noise cluster.

Afterward, the object function JECM is minimized by the Lagrange multipliers to

provide the matrix M of credal partition for the objects and the matrix V of cluster
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centers, defined by:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)d

−2/(β−1)
ik + δ−2/(β−1)

, ifAj 6= ∅

mij = 1−
∑
Aj 6=φ

mij , ifAj = ∅

(4.1)

where dij represents the distance between the xi and the center of cluster Aj . The

exponent α is used to control the degree of penalization and the β is a weighting

exponent and it is generally set β = 2 as default.

The centers of the cluster are given by the rows of the matrix Vc×s, given by:

Vc×p = H−1
c×cBc×p (4.2)

subject to

Blq =

n∑
i=1

xiq
∑
{ωl}∈Aj

|Aj |α−1mβ
ij (4.3)

Hlk =
n∑
i=1

∑
{ωl,ωk}⊆Aj

|Aj |α−2mβ
ij (4.4)

where Blq (l ∈ [1, c], q ∈ [1, p]) and Hlk (l, k ∈ [1, c]) represent the elements in the

matrix Bc×p and Hc×c, respectively.

4.2.2 credal c-means (CCM)

Credal c-means clustering (CCM) method (Liu et al., 2015) addresses the disadvantages

of ECM when the singleton cluster centers and the meta-cluster centers are very close,

which may produce unreasonable results.

Compared with ECM, the mass of belief that the object xi assigned to the meta-

cluster in CCM depends not only on the distance from xi to the meta-cluster center

but also the distance between xi and the singleton clusters included in meta-cluster,

which can avoid the unreasonable result provided by ECM in clustering the dataset

with special distribution. Additionally, CCM sets a threshold tc ∈ [2, 2c] to eliminate

some meta-clusters with big cardinality so as to reduce the computational complexity

especially in the dataset with abundant clusters. Thereby, the set of the selected

available clusters SΩ is given by SΩ = {Aj , |Aj | < tc}. According to the above basic
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principle, the object function JCCM of CCM can be defined by:

JCCM (M,V ) =

n∑
i=1

∑
Aj∈SΩ

mβ
ijD

2
ij , (4.5)

subject to ∑
Aj∈SΩ

mij = 1 (4.6)

and

D2
ij =



δ2, if |Aj | = ∅

d2
ij , if |Aj | = 1∑

ωl∈Aj
d2
il + γd2

ij

|Aj |+ γ
, if |Aj | > 1

(4.7)

where dij is the Euclidean distance between xi and the meta-cluster (Aj) center, and dil

represents the distances from xi to the singleton cluster ({ωl}) center in meta-cluster

Aj such that |Aj | > 1. γ is the weighting factor of the distance between the object and

the meta-cluster center, and it is used to control the imprecision rate. The bigger the

value of γ is, the more objects will be assigned to the meta-clusters, and it is generally

taken γ ∈ [0.5, 3]. The weighting exponent β is set β = 2 as default.

The function JCCM (M,V ) is minimized by the Lagrange multipliers method to get

the matrix M of credal partition and the matrix V of cluster centers, defined by:

mij =
D
−2/(β−1)
ij∑

Ak∈SΩ

D
−2/(β−1)
ik

. (4.8)

The centers of the cluster are given by the rows of the matrix Vc×p, given by:

Vc×p = H−1
c×cBc×nXn×p (4.9)

subject to

Bli = mβ
il +

∑
Al∈Aj

mβ
ij

1 + γ

|Aj |+ γ
(4.10)

Hll =
n∑
i=1

mβ
il +

n∑
i=1

∑
Al∈Aj

mβ
ij

1 + γ

|Aj |2

|Aj |+ γ
(4.11)

Hlq =
n∑
i=1

∑
{Al,Aq}∈Ak

mβ
ij

γ

|Ak|2(|Ak|+ γ)
, l 6= q (4.12)

where Bli (l ∈ [1, c], i ∈ [1, n]) and Hlq (l, q ∈ [1, c]) represent the elements in the matrix

42



Bc×n and Hc×c, respectively.

Since the proposed DEC algorithm in this chapter is an improvement of EC in

improving the computational efficiency. After introducing the classical ECM and CCM

algorithms, we next present the proposed DEC algorithm in detail.

4.3 Dynamic evidential clustering (DEC)

To reduce the computational complexity of existing EC methods, a new alternative

version, named dynamic evidential clustering (DEC) (Zhang et al., 2021d), is proposed

in this section. It is based on the following two assumptions.

1) For the same query set, the centers obtained in the fuzzy (possibilistic) partition

and that of singleton clusters obtained by the credal partition are very similar. This

means that the meta-clusters can be ignored in the initial iterations because the centers

of meta-clusters are defined on the related singleton clusters.

2) Only a part of objects in the query set is difficult to be accurately assigned to

singleton clusters. They are then assigned to the related meta-clusters composed of

only several close singleton clusters. Thus, it is not necessary to assign all the objects

under the power-set 2Ω.

Based on the above assumptions, the DEC method can be summarized as two steps:

1) Preliminary credal partition; 2) Partial credal redistribution.

4.3.1 Preliminary credal partition

The purpose of this subsection is to preliminary assign each object in the query set

as the outlier, precise or imprecise one adaptively. To derive such a proposal, let’s

consider a query set X including n objects in s-dimensions with Ω = {ω1, ..., ωc}. The

support degrees of each object belonging to different singleton (specific) clusters and

the noise cluster, called the mass of beliefs in credal partition, can be minimized by an

FCM-like objective function at first. There exist many methods to obtain the mass of

beliefs. For example, Davé’s noise-clustering (Sen and Davé, 1998; Dave, 1991) can be

applied for the query set, and we have modified it as the version of the credal partition

to facilitate the presentation. The objective function can be expressed as follows:

JDEC−NC(M1, V1) =

n∑
i=1

c∑
j=1

mβ
ij · d

2
ij +

n∑
i=1

δ2 ·mi∅
β (4.13)

subject to
c∑
j=1

mij +mi∅ = 1, ∀i = 1, n (4.14)
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where M1 = (m1, ...,mn) is the mass of belief matrix for n objects in X , and V1 is the

matrix of the centers of singleton clusters. dij is the Euclidean distance between the

object xi and the center of singleton cluster {ωj}. Parameters β, δ are adjustable with

the same meanings as those in NC, ECM and CCM. Since it has the same structure as

NC, we directly give the mass of beliefs of the query object xi belonging to different

clusters (i.e. the noise and singleton clusters) as follows:

mij =
d
−2/(β−1)
ij

c∑
k=1

d
−2/(β−1)
ik + δ−2/(β−1)

(4.15)

and

mi∅ = 1−
c∑
j=1

mij , ∀i = 1, n (4.16)

where mij is the mass of belief of the object xi belonging to the cluster {ωj}, and mi∅
represents the possibility of xi belonging to the noise cluster (i.e. ∅).

By doing this, we can assign the query object to different clusters according to the

mass of belief matrix. Here the maximum of belief function Bel(.) given in Eq. (2.4) is

used as the criteria for the decision-making of the cluster which is strongly supported

by the various mass of beliefs. Specifically, the object xi is directly assigned to the

noise cluster if Bel(∅) is larger than the others, and defined by:

Beli(∅) > Beli({ωj}), j ∈ [1, c]. (4.17)

where Beli(∅) = mi∅ and Beli({ωj}) = mij since Bel(.) has a straight corresponding

relationship in such particular BBAs structure (Liu et al., 2014). In such a case, we

don’t further assign the object since it is obviously considered as the outlier. Whereas

if the cluster {ωj} is the most believed cluster for xi, defined by:

Beli({ωj}) = max[Beli({ω1}), ..., Beli({ωc})]. (4.18)

We need to further judge the possibility that the object belongs to {ωj}, because

Beli({ωj}) maybe not significantly different from others.

Example 4.1: The 4-tuple M = (m1, m2, m3, m4) in Table 4.1 is an example of

preliminary credal partition. One can see that the objects x1 and x2 likely belong to

the outlier ∅ and the singleton cluster ω1, respectively. In contrast, the objects x3 and

x4 will be assigned to the clusters {ω2} and {ω1} respectively from the probabilistic

perspective, but it has the risk of error since this slight difference may be caused by

multiple reasons. The objects like x3 and x4 should be further assigned because they

would be better to assigned to the meta-clusters {ω2, ω3} and {ω1, ω2}, respectively.

In practice, it also happens that the belief Beli({ωl}) of the other cluster {ωl}
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Table 4.1: The numerical example

∅ {ω1} {ω2} {ω3}

m1 1.0 0 0 0

m2 0 0.9 0 0.1

m3 0 0.01 0.5 0.49

m4 0 0.43 0.42 0.15

(l ∈ [1, c], l 6= j) is very close (or equal) to the Beli({ωj}) of the strongest cluster {ωj}.
In such a case, the object can also potentially belong to {ωl} with a high likelihood,

and we should adopt a more cautious strategy in the preliminary credal partition. That

is, we need to consider all the very likely specific clusters as the potential solution for

xi. The set of these potential singleton clusters can be called Mi
2, defined by:

Mi = {ωj , ..., ωl}, Beli({ωj})−Beli({ωl}) ≤ ϕ (4.19)

where ϕ ∈ [0, 1] is a chosen meta-cluster threshold depending on the imprecision one

can accept. In fact, ϕ is a very interesting threshold, which determines the several

frameworks of clustering as follows.

• Fuzzy/possibilistic partition: We have a fuzzy/possibilistic partition with

ϕ = 0 since all objects will be assigned directly to specific (singleton) clusters

in the Bayesian framework. We don’t need to partial credal redistribution for

imprecise objects since there is no meta-cluster at this time. In contrast, the

query set will be clustered under credal partition with ϕ > 0.

• Traditional credal partition: We have a traditional credal partition with

ϕ = 1, which means that all objects are imprecise ones in preliminary credal

partition. All query objects need to be redistributed under the power-set 2Ω.

• Dynamic credal partition: We have a dynamic (partial) credal partition with

ϕ ∈ (0, 1) to consider {ωl} differently because only a part of objects in the query

set is difficult to be accurately assigned to singleton clusters.

Based on the above analysis, all clusters in Mi may very likely correspond to the

real (unknown) clusters for xi, and they appear indistinguishable with respect to the

threshold ϕ. That is, the imprecise object xi needs to be further assigned under the

2Here we provide a corresponding Mi for each imprecise object xi, called the specific dynamic edited
framework. In fact, since in DEC, eachMi is specific, we can also call it an adaptive edited framework
for each imprecise object.
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new frame MΩ
i , and defined by:

MΩ
i = {{ωj}, ..., {ωl}, {ωj ∪ ωl}, ...,Mi} (4.20)

By doing this, one can easily find that only a few objects need to be further reas-

signed. It can greatly reduce the computational complexity, and each imprecise object

has a specific dynamic edited framework. An example is given to illustrate this.

Example 4.2: Let us consider a chosen meta-cluster threshold ϕ = 0.1, and the

objects x3, x4 in Table 4.1 are employed here to illustrate the specific dynamic edited

framework. For the object x3, one can obtain that ω2 is the most likely cluster with

Bel3({ω2}) = max[Bel3({ω1}), Bel3({ω2}), Bel3({ω3})]. However, it does not mean

that x3 is directly assigned to the singleton cluster {ω2} since there is another cluster

(i.e. {ω3}) that the object may belong to under the chosen meta-cluster threshold

ϕ = 0.1 with M3 = {ω2 ∪ ω3 |Bel3({ω2})− Bel3({ω3}) ≤ 0.1}. The object x3 thereby

is considered as an imprecise object by preliminary credal partition, and it will be

reclustered by partial credal redistribution with the specific dynamic edited framework

MΩ
3 = {ω2, ω3, {ω2, ω3}}. One can also deduce that the imprecise object x4 will be

reassigned under the specific dynamic edited framework MΩ
4 = {ω1, ω2, {ω1, ω2}}.

The flowchart in Fig. 4.1 explicitly shows how the preliminary credal partition works.

4.3.2 Partial credal redistribution

In DEC, the center vj of the meta-cluster Aj is also defined as mean value of that of the

singleton clusters included in Aj , which is similar to ECM and defined in Eq. (3.23).

Whereas the distance between the object xi and the meta-cluster Aj depends not

only on the distance between the object xi and the center vj , but also on the distance

between the object xi and the center vk of all the singleton clusters included in Aj .

Thus, the distance D2
ij from the object to different clusters can be defined as follows:

D2
ij =


d2
ij , if |Aj | = 1∑
Ak∈Aj d

2
ik + d2

ij

|Aj |+ 1
, if |Aj | > 1

(4.21)

where dij is the Euclidean distance between the object xi and the center vj of the

cluster Aj . If Aj is a singleton cluster, vj is the center of Aj . In contrast, vj is the

mean value of the included singleton cluster centers if Aj is a meta-cluster.

We can find that the distance between the object and the meta-cluster is similar

to that in CCM, but they are different. In DEC, |Aj | + 1 in Eq. (4.21) denotes the

number of distances from the object to different clusters. Whereas |Aj |+ γ varies with

the change of γ of CCM, it may lead to some specific objects being assigned to meta-

clusters and then increase the number of objects in meta-clusters unreasonably. Once
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Fig. 4.1. Flowchart of the adaptive credal partition.

MΩ
i is obtained, we only need to calculate the distance between the object and the

related clusters in one iteration. This is the reason why the DEC can greatly reduce

the computing time and produce similar clustering results with ECM and CCM.

For the imprecise object xi with MΩ
i , we need to update its mass of beliefs m(·)

belonging to different clusters under the edited framework MΩ
i . Assuming that there

are n1 imprecise objects after preliminary credal partition. Since the centers of singleton

and meta-clusters have been obtained, we can directly update the mass of belief m(·) for

each imprecise object. Inspired by ECM and CCM, the update formula of mass values

can be derived by minimizing the other sub-objective function denoted as follows:

JDEC−CR(M2, V2) =

n1∑
i=1

∑
j/Aj∈MΩ

i

mβ
ijD

2
ij (4.22)

subject to ∑
j/Aj∈MΩ

i

mij = 1 (4.23)

where n1 is the number of imprecise objects, and V2 is the center matrix of singleton

clusters and meta-clusters. Although Eq. (4.22) is inspired by ECM and CCM, the noise

cluster is no longer considered here since noise has been well identified in preliminary

credal partition.

Since we have known the centers of singleton clusters and meta-clusters, i.e. V2 is

known, Lagrange multipliers λi are used to solve the constrained minimization problem
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with respect to M2 as follows:

L(M2, λ1, . . . , λn) = JDEC−CR(M2, V2)−
n1∑
i=1

λi(
c∑
j=1

mij − 1). (4.24)

By differentiating the Lagrangian with respect to the mij and λi and setting the

derivatives to zero, we obtain:

∂L
∂mij

= βmβ−1
ij D2

ij − λi = 0, (4.25)

∂L
∂λi

=
∑

j/Aj∈MΩ
i

mij − 1 = 0. (4.26)

From Eq. (4.25), we thus have:

mij =

(
λi
β

) 1
(β−1)

(
1

D2
ij

) 1
(β−1)

, (4.27)

Using Eqs. (4.26) - (4.27):

(
λi
β

) 1
(β−1)

=
1∑

j/Aj∈MΩ
i

D
−2

(β−1)

ij

. (4.28)

Returning in Eq. (4.27), one obtains the necessary condition of optimality for M2:

mij =
D

−2
(β−1)

ij∑
k/Ak∈MΩ

i

D
−2

(β−1)

ik

. (4.29)

We can find that only one iteration is needed to obtain the mass of beliefs for each

imprecise object xi because V2 is known. Once the imprecise object is reassigned to a

specific cluster, it indicates that the object is precise under the current knowledge. In

contrast, if the object is final assigned to a meta-cluster, the object may belong to any

singleton clusters included in the meta-cluster depending on the known information.

4.3.3 The involved parameters

There are three parameters involved in the DEC method: the meta-cluster threshold

ϕ, the weighting exponent β and the outlier threshold δ. The meta-cluster threshold

ϕ can control the number of objects assigned in meta-clusters, and the larger the ϕ,

the more objects in meta-clusters. Thus, ϕ can be adjusted according to the number
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of objects in meta-clusters that one can accept, and ϕ = 0.3 is the default value. The

use of the tuning parameter β is similar to ECM and CCM, and β = 2 can be used as

default value. Parameter δ is strongly dependent on the dataset to be clustered and

controls the amount of data considered as outliers which has been discussed in NC.

4.3.4 The complexity of DEC

In order to reduce the computational complexity of existing EC, the DEC first uses an

FCM-like objective function to iteratively obtain the real centers of singleton clusters

and preliminary adaptively assign the query object as the outlier, precise or imprecise

one by the preliminary credal partition, and then the results of the partial credal

redistribution for imprecise objects are used as the final decision-making. Since the

partial credal redistribution is only for a part of objects and only needs to be iterated

once, the computational complexity of DEC mainly depends on the preliminary credal

partition. Thus, the computational complexity is O(n · c) which is much lower than

that of ECM (O(n · 2c)) where n is the number of the objects in the query set and c is

the real number of singleton clusters.

By the way, the proposed DEC can obtain the real singleton cluster centers in the

first step, which is very important to reduce the complexity. After that, we can di-

rectly update the mass value under the TBF framework. This is heuristic, and from

this point of view, we can take a similar way to obtain the real singleton cluster centers

and then globally optimize all the parameters, keeping the power-set 2Ω unchanged to

reduce the complexity of other classical EC methods (Zhang et al., 2021a). In addi-

tion, there are some improved EC methods to handle large-scale relational data. For

example, the classical EVCLUS (Denœux and Masson, 2004) method is improved to k-

EVCLUS (Denœux and Kanjanatarakul, 2016), making it applicable to very large rela-

tional data. First, the gradient-based optimization procedure in the original EVCLUS is

replaced by a much faster iterative row-wise quadratic programming method (Ter Braak

et al., 2009). Second, they also show that EVCLUS can be provided with only a random

sample of the dissimilarities, reducing the time and space complexity from quadratic to

roughly linear. The complexity of k-EVCLUS is O(k ·n), where k is a given parameter

in applications. We can find that DEC and k-EVCLUS are similar in terms of com-

putational complexity, which means that we can use the corresponding methods when

dealing with different large-scale object and relational datasets.

The pseudo-code shown in Algorithm 1 is used to clearly explain the working

principle of the DEC method.
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Algorithm 1 Dynamic Evidential Clustering Algorithm

Require: Data to cluster: X = {x1, ...,xn} in Rp; Parameters: c, β, δ, ϕ.
Ensure: Cluster decision results

Step 1
Construct the objective function JDEC−NC without meta-clusters by Eqs. (4.13)-

(4.14);
Iterate the mass of beliefs for each object by Eqs. (4.15)-(4.16);

for the 1 -th to n-th query object Preliminary assign the object as the outlier,
precise or imprecise one using Eqs. (4.17)-(4.20);

end
Subreturn: Preliminary credal partition.

Step 2
Calculate the centers of meta-cluster using Eq. (3.23);

Reconstruct the objective function JDEC−CR for credal redistribution using
Eqs. (4.22)-(4.23);

Reiterate the mass of beliefs for the n1 imprecise objects using Eqs. (4.21), (4.29);
for the 1-th to n1-th imprecise object

Reassign the object to singleton cluster or meta-cluster.
end

Subreturn: Partial credal redistribution.
Return: Dynamic credal partition.

4.4 Experiments

4.4.1 Performance evaluation

In this section, four experiments are conducted to evaluate the performance of the

proposed DEC method compared with K-means (Jain, 2010), FCM (Bezdek, 2013),

NC (Sen and Davé, 1998), ECM (Masson and Denœux, 2008), CCM (Liu et al., 2015),

BPEC (Su and Denœux, 2018). Except for the parameters set in the experiments,

the others are all defaults. Since the introduction of meta-cluster, the error rate and

imprecision rate (Liu et al., 2015) are used as the indicators of different methods. The

error rate denoted by Re (in %) is calculated by Re = ne/n, where ne is the number

of clustering errors, and n is the number of objects under the test. The imprecision

rate denoted by Ri (in %) is calculated by Ri = ni/n, where ni is number of objects

assigned to meta-clusters. Moreover, we also evaluate the clustering resuts using Credal

Rand Index (CRI) (Denœux et al., 2017), which is employed to measure the closeness

of credal partition and ground truth. It is defined by:

CRI = (M,M∗) =

∑
i<j plij(s)

r∗ijplij(¬s)1−r∗ij

n(n− 1)/2
(4.30)
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where M represents the evidential partition and M∗ is the true hard partition, n is the

number of objects in the dataset and r∗ij = 1 if the i-th and j-th object truly belong

to the same cluster, and r∗ij = 0 otherwise. Particularly, CRI and ARI are equal

when comparing the closeness of hard partitions to truth, so the performance index

is uniformly denoted by “CRI” in this thesis. The upper bound of CRI is 1, a larger

value corresponds to a better clustering result. In order to compare the computational

complexity of all algorithms more fairly, in ECM, CCM, and BPEC, the number of

focal elements in meta-clusters is limited to 2 by a given threshold tc = 2. For more

detailed explanation, please see (Liu et al., 2015; Su and Denœux, 2018). In addition

to the above indexes, pieces of literature put forward some other optimality criteria.

Here we employ the objective function value and the number of iterations to evaluate

the performance of DEC. In the tests, we report the average of these indexes based on

all methods that have been run 10 times. The elapsed time denoted by T (in second).

4.4.2 Gaussian and round shape data

This experiment is mainly to explain the use of the DEC in clustering on two 3-class

datasets clearly, which we called Gaussian Data and Round Shape Data, respectively.

(1) Gaussian Data: A 3-class gaussian dataset is employed, as shown in Fig. 4.2,

to test ECM and DEC. The set has 3× 100 = 300 data points from three 2D Gaussian

distributions with the mean variance parameters as follows:

µ1 = (3, 3),Σ1 = 1.5I;

µ2 = (0, 0),Σ2 = I;

µ3 = (8, 8),Σ3 = I.

where µi (i = 1, 2, 3) is the mean vector, Σi (i = 1, 2, 3) is the covariance matrix, and

I is the identity matrix.

In ECM and DEC, the noise threshold is set as δ = 5, and other parameters are

the defaults. The clustering results of different methods are shown in Fig. 4.2 (b)-(c).

We can see from Fig. 4.2 (a) that there are some objects in the overlapping areas

of different clusters {ω1} and {ω2}, which are difficult to be correctly distinguished for

the clusters. The clusters {ω2} and {ω3} are far apart, however, many of the objects

belonging to {ω1} are incorrectly assigned to the meta-cluster {ω2, ω3} labeled by pink

plus in ECM, as shown in Fig. 4.2 (b). In addition, a lot of objects belonging to {ω1}
are assigned to the total ignorant cluster Ω labeled by the black multiplier. Meanwhile,

some objects belonging to {ω1} are assigned to the meta-cluster {ω1, ω3} labeled by

the green plus, although there is no overlapping area between {ω1} and {ω3}. These

unreasonable clustering results are mainly caused by the close proximity of different

cluster centers (i.e. v1,v2,3,v1,2,3). In contrast, there is no object in DEC assigned
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(a) Original gaussian data.
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(b) ECM (Re= 3.00, Ri= 8.00,
T = 0.3011).
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(c) DEC (Re = 1.00, Ri = 4.00,
T = 0.0028).

Fig. 4.2. Clustering results of 3-class of gaussian dataset by different methods.

to the meta-clusters {ω2, ω3} and Ω, as shown in Fig. 4.2 (c), and the objects in the

overlapping area are reasonably assigned to the corresponding meta-cluster {ω1, ω2}.
The DEC has obtained reasonable results, which not only reduces the clustering error

rate but also reduces the clustering imprecision compared with ECM.
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(c)

Fig. 4.3. Clustering results of 3-class of round shape dataset by different methods.
(a) Original artificial data. (b) CCM (Re = 7.07, Ri = 17.34, T = 0.5897). (c) DEC
(Re = 4.23, Ri = 20.81, T = 0.0072).
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(2) Round Shape Data: We consider a particular 3-class dataset in the round

shape as shown in Fig. 4.3 (a), and some objects are in the overlapping areas. The

dataset consists of 594 data points, including 3 outlier data points. The radius of the

round is r = 2 and the centers of the three rounds are given by the points c1 = (1.5, 2.5),

c2 = (0, 0), c3 = (3, 0).

Here CCM and DEC are applied to clustering the dataset with δ = 3. Fig. 4.3

(b)-(c) show the clustering results of CCM and DEC respectively. The error rate

(in %), the imprecision rate (in %), and computation time are given in the caption.

We can see from Fig. 4.3 (a) that the objects in the clusters {ω1}, {ω2}, and {ω3}
overlap partially at their edges, and these objects in overlapping areas are difficult

to cluster accurately and clearly. In Fig. 4.3 (b), we can see that CCM assigns data

points in the overlapping areas of different clusters to the corresponding meta-clusters:

{ω1, ω2}, {ω1, ω3}, {ω2, ω3}. However, some objects in the middle area of these three

clusters are not accurately assigned. This unreasonable assignment is mainly because

the meta-cluster threshold is selected as tc = 2 in CCM. This also shows that it may

be unreasonable for ECM and CCM to reduce the computational burden by limiting

the number of elements in the meta-cluster in a few cases.

In Fig. 4.3 (c), the DEC assigns the objects in the overlapping areas of {ω1} and

{ω2}, {ω1} and {ω3}, {ω2} and {ω3} to meta-clusters {ω1, ω2}, {ω1, ω3} and {ω2, ω3}.
Meanwhile, the DEC can reasonably assign the objects in the overlapping area of these

three clusters to the meta-cluster Ω because these objects are totally unrecognized.

Three objects labeled with the black hexagram are far away from the others, the CCM

and DEC have better detection, and all of them are regarded as the outliers. Meanwhile,

the execution time of DEC is much shorter than that of CCM, which indicates that the

computational complexity of DEC is significantly less than CCM.

4.4.3 Large data

In this experiment, we test the methods on the dataset consisting of 180000 points

generated by different Gaussian distributions where each class contains 30000 data

points. The dataset is shown in Fig. 4.4 (a). Here we take δ = 10, and the meta-cluster

threshold ϕ = 0.2 and ϕ = 0.3 in DEC. The results obtained by different methods are

specified in the caption of each subfigure.

In Fig. 4.4 (a), we can clearly see that the objects in the overlapping areas are

difficult to be accurately assigned to singleton clusters. The ECM and BPEC obtain

similar clustering results in Fig. 4.4 (b) and (d), and they assign the imprecise objects

to the corresponding meta-clusters with credal partition, for instance, the objects lying

in the overlapping areas of {ω1} and {ω2} are assigned to the meta-cluster {ω1, ω2}.
However, ECM and BPEC also unreasonably assign the objects that originally belong

to singleton clusters to the unrelated meta-clusters. In Fig. 4.4 (a), {ω2} and {ω6} are
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completely separated, for example, ECM and BPEC still assign some objects belonging

to {ω1} to the meta-cluster {ω2, ω6} labeled by purple plus.

(a) (b)

(c) (d)

(e) (f)

Fig. 4.4. Clustering results of 6-class of dataset by different methods. (a) Original
artificial data. (b) ECM (Re = 1.13, Ri = 1.23, T = 4354.21). (c) CCM (Re = 0, Ri =
0.30, T = 3833.51). (d) BPEC (Re = 0.82, Ri = 1.14, T = 10534.04). (e) DEC with
ϕ = 0.2 (Re = 0, Ri = 0.21, T = 85.31). (f) DEC with ϕ = 0.3 (Re = 0, Ri = 0.44, T =
110.90).

CCM and DEC overcome the limitation since the mass of belief of the object be-
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longing to the meta-cluster is related not only to the distance from the object to the

meta-cluster center but also to the distance between the object and the centers of the

singleton clusters included in the meta-cluster. Therefore, in CCM and DEC, only

imprecise objects in overlapping areas of different clusters are assigned to appropriate

meta-clusters as shown in Fig. 4.4 (c) and (e)-(f). Whereas CCM and DEC are dif-

ferent in some cases, especially the computational complexity of DEC is much lower

than that of CCM, which greatly expands the use of DEC especially in big data. From

Fig. 4.4, we can see that the DEC take only T = 85.31(s) and T = 110.90(s) under

different meta-clusters threshold, while ECM, CCM and BPEC take T = 4354.21(s),

T = 3833.51(s) and T = 10534.04(s) respectively. In DEC, it will lead to a slight

increase in the number of objects assigned to meta-clusters with the increase of ϕ (e.g.

ϕ = 0.2 and ϕ = 0.3). In applications, we can adjust the parameter ϕ according to the

acceptable imprecision rate.

4.4.4 Real world data

Table 4.2: Basics of the used datasets

Name #Clus. #Attr. #Inst.

Iris 3 4 150

Seeds 3 7 210

Haberman 2 3 306

Wine 3 13 178

Magic 2 10 19020

Contraceptive 3 9 1573

Vehicle 4 18 846

Satimage 7 36 6435

Glass 7 9 214

In this experiment, nine real-world datasets are selected from the UCI repository to

test the performance of DEC with respect to ECM, CCM, and BPEC. The basic infor-

mation of nine datasets including the number of clusters (#Clus.), attributes (#Attr.),

and instances (#Inst.) are shown in Table 4.2, and all the detailed information can be

found with the link3.

For the Iris and Seeds datasets, the outlier thresholds of ECM, CCM, BPEC, and

3http://archive.ics.uci.edu/ml/.
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(a) Original dataset.
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(b) ECM.
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(c) CCM.
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(d) BPEC.
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(e) DEC with ϕ = 0.2.
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(f) DEC with ϕ = 0.3.
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(g) Original dataset.
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(h) ECM.
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(i) CCM.
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(j) BPEC.
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(k) DEC with ϕ = 0.2.
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(l) DEC with ϕ = 0.3.

Fig. 4.5. Clustering results of Iris dataset.

DEC are set as δ = 10, and the Haberman and Appendicitis datasets with δ = 100,

while for other datasets, the outlier thresholds are δ = 1000. Furthermore, the number

of nearest neighbors and quantile of these nearest neighbors are set for BPEC as follows,

for the nine datasets from Iris to Appendicitis: (30,0.5), (20,0.9), (20,0.9), (15,0.5),

(300,0.9), (115,0.9), (100, 0.9), (500, 0.9) and (5, 0.5). The other parameters in this

experiment are default, and the clustering results are shown in Table 4.3.
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(b) Haberman data.
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(e) Contraceptive data.
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Fig. 4.6. ROC curves for imprecision and error rates of ECM and DEC.

For most of the datasets, CCM and DEC usually obtain similar results, they provide

fewer errors than ECM and BPEC. For the Wine dataset, the error rate of ECM and

BPEC is lower than that of DEC, whereas its imprecision is much higher, and even

some objects are assigned to total ignorant cluster Ω. In parallel, DEC has the highest

CRI values in most situations, which truly shows the results obtained by the DEC are

much more reasonable. The execution time of DEC is much lower than that of ECM,

CCM, and BPEC, especially in the case of a large number of instances or clusters,

which indicates that the DEC can still ensure good performance.

Furthermore, we visualize the clustering result of Iris real dataset in Fig. 4.5. Four

features are measured from each object. They are the length and width of sepal and

petal. From the original dataset shown in Fig. 4.5 (a) and (g), we can see that {ω1} is

significantly distinct from {ω2} and {ω3}, but {ω2} and {ω3} are partially overlapped.

These four methods can easily separate {ω1} from {ω2} and {ω3}. However, it is difficult

to separate {ω2} and {ω3} in the overlapping area. In ECM, CCM, and BPEC, although

several objects in the overlapping area are assigned to the meta-clusters, there are still

some objects that are misclassified. In DEC, the error rate of clustering is significantly

reduced when the meta-cluster threshold is from ϕ = 0.2 to ϕ = 0.3. More precisely,

the number of objects with error clustering is reduced from 11 to 8, while the number

of objects in the meta-clusters is increased from 10 to 13. The experiment shows that

some objects in the overlapping area, which are misclassified by other methods, are

regarded as imprecise objects and assigned to corresponding meta-clusters in DEC.
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Fig. 4.6 shows the ROC curves for imprecision rates and error rates of ECM and

DEC based on different datasets, where the x-axis denotes the mean of the imprecision

rate, and the y-axis denotes the mean of the error rate with scale reversed. From

Fig. 4.6, we can find that with the reduction of error rate, the imprecision rate will be

incremented correspondingly. Besides, the error rate of DEC, in most cases, is lower

than that of ECM when the methods have the same imprecision rate. In practical

applications, both ECM and DEC can control the number of objects assigned to the

meta-clusters by adjusting the parameters thereby controlling the imprecision rate.

Moreover, the value of ϕ in DEC determines different partition methods. The DEC

becomes a fuzzy/possibilistic partition when ϕ = 0, i.e. all objects are assigned to

different singleton clusters, and DEC has a traditional credal partition when ϕ = 1, i.e.

all objects are imprecise ones, which are assigned to singleton clusters or meta-clusters

under the power-set 2Ω. The result of DEC also present that the known information

does not allow us to accurately classify the objects in the meta-clusters. If we want to

get more accurate results, some other (possibly expensive) techniques seem necessary

to distinguish and classify these imprecise objects.

In order to verify the effectiveness of the DEC method from different perspectives,

Table 4.4 shows the objective function values and number of iterations of all datasets.

One can see from Table 4.4 that the number of iterations required for convergence of

the DEC method is significantly less than that of ECM and CCM. For some datasets,

however, the final objective function value of DEC is greater than that of ECM and

CCM. The reason is that the objective function value of an object depends mainly

on the mass of belief of its most believed cluster and its distance from the cluster

center. We can find that although DEC, ECM, and CCM can assign objects to the

most believed singleton cluster, the mass of beliefs for the objects belonging to the

most believed cluster in DEC is greater than that of ECM and CCM. This is because

most precise objects are directly assigned to the c singleton clusters in DEC without

considering meta-clusters, which will result in a greater mass of beliefs compared to

that of ECM and CCM. Thus, the objective function value of DEC is sometimes greater

than that of ECM and CCM, especially when the number of clusters is large.

4.4.5 Discussion

The management of parameters and sensitivity analysis are important components for

the application of the proposed method. In this subsection, three parameters, i.e. the

meta-cluster threshold ϕ, the weighting exponent β and the outlier threshold δ, are

involved in the proposed DEC method. One can find that the proposed DEC method

can deal with fuzzy partition/classical credal partition/dynamic credal partition mode

switching by controlling the threshold ϕ. This can help us to achieve fuzzy partition

when imprecise information is not allowed in the results. However, sometimes users are
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(a) Iris data.
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(b) Seeds data.
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(c) Magic data.
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(d) Contraceptive data.

Fig. 4.7. Clustering results of different datasets for various ϕ.

more willing to obtain reliable imprecise results because the risk of incorrect clustering

may be unbearable. In such a case, DEC can switch to dynamic credal partition, which

greatly reduces the computational complexity compared to traditional credal partition.

Fig. 4.7 shows the statistical results of the error and imprecision rates based on the

Iris, Seeds, Magic, and Contraceptive datasets as ϕ changes from 0 to 1. It is easy

to see that as ϕ increases the error rate decreases and the inaccuracy rate increases,

but this does not last forever. The method has a high sensitivity when ϕ = 0.4,

as measured from the point of view of prudent decision-making, which is consistent

with our intuition. This also demonstrates the validity of the method, i.e. it is time-

consuming and pointless to subject all query objects to the power-set 2Ω. However, this

does not imply that ϕ = 0.4 is the only value to be taken, as there are also applications

where it is desirable to obtain precise clustering results. Therefore, we suggest that

ϕ ∈ [0, 0.4] and ϕ = 0.3 as the default. Users could set the threshold ϕ based on an

acceptable imprecision rate.

Moreover, the parameters β and δ also should be selected in applications. We

generally consider the selection of β to be relatively easy because there has been a lot

of work on β. In general, β = 2 can be taken as the default and is applicable in most

cases. However, the selection of δ is very difficult because it is highly dependent on the
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dataset. We can find that different δ values are chosen manually in different datasets,

which is a reactive strategy. We generally select δ based on the acceptable noise level

in applications.

4.5 Conclusion

We introduced a new dynamic evidential clustering (DEC) algorithm in this chapter. It

is an improved version of traditional evidential clustering, such as ECM and CCM, to

reduce the computational complexity of existing methods. It provides a dynamic edited

frameworkMΩ
i (MΩ

i ⊂ 2Ω) including several close singleton clusters and related meta-

clusters for each imprecise object to be assigned more reasonably. The DEC overcomes

the shortcomings of ECM and CCM and greatly reduces the complexity. In addition, it

eliminates the possible negative impact of other meta-clusters on imprecise objects and

avoids many invalid computations compared with the framework of the power-set 2Ω.

The DEC can effectively extend the applications of credal partition, especially in big

data, because it reduces the complexity of credal partition to a level similar to that of

the fuzzy and possibilistic partition (such as FCM, PCM, and NC). Four experiments

with artificial and real datasets have been done to verify the performance of DEC with

respect to other methods. It should be noted that in credal partition, once the object

is assigned to the meta-cluster, the object may belong to any singleton cluster included

in the meta-cluster under the known information, which is also one of the advantages

of credal partition – it can reasonably characterize and represent the imprecision and

uncertainty caused by a variety of reasons. However, the proposed DEC algorithm

in this chapter only improves the execution efficiency of traditional EC methods and

does not effectively detect non-spherical clusters. For this reason, we will present two

algorithms for detecting imbalanced or even clusters with arbitrary shapes and sizes in

subsequent Chapters 5 and 6, respectively.
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Table 4.3: Clustering results of different datasets (in %)

Datasets Indexes ECM CCM BPEC DEC

Re 8.00 5.33 6.00 5.33

Iris Ri 4.67 8.00 8.00 8.67

CRI 0.8509 0.8631 0.8549 0.9184

T 0.1600 0.0695 0.2949 0.0050

Re 7.62 5.71 7.62 5.71

Seeds Ri 11.43 10.00 10.00 10.95

CRI 0.7977 0.7912 0.7760 0.8367

T 0.0754 0.0730 0.3810 0.0075

Re 43.46 42.16 39.87 42.16

Haberman Ri 11.11 12.42 15.03 12.42

CRI 0.6631 0.7064 0.6821 0.5494

T 0.0912 0.0883 0.2943 0.0104

Re 17.98 27.53 18.54 26.97

Wine Ri 32.02 9.55 29.21 7.30

CRI 0.8207 0.7343 0.8076 0.8814

T 0.5020 0.3813 0.9520 0.0086

Re 43.32 39.33 40.85 37.15

Magic Ri 0.37 8.25 18.05 10.88

CRI 0.6245 0.7421 0.6987 0.5754

T 9.15 9.05 34.66 0.6273

Re 57.91 56.48 54.38 56.82

Contraceptive Ri 7.49 8.35 12.90 12.90

CRI 0.6245 0.6419 0.6519 0.7712

T 2.63 1.53 4.29 0.0600

Re 52.84 51.73 54.14 48.23

Vehicle Ri 8.16 6.03 6.38 10.28

CRI 0.7490 0.7973 0.7558 0.7251

T 2.77 1.69 3.92 0.0626

Re 28.08 30.54 31.45 24.07

Satimage Ri 5.44 8.66 4.83 12.56

CRI 0.7279 0.7523 0.7101 0.8482

T 23.72 18.17 44.58 1.70

Re 48.13 47.66 49.07 46.26

Glass Ri 2.34 6.07 2.34 13.08

CRI 0.6470 0.7007 0.6411 0.7805

T 0.6993 0.3673 2.15 0.0678
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Table 4.4: Clustering results of different datasets

Datasets Methods Objective function values Number of iterations

ECM 47.57 33

Iris CCM 42.44 18

DEC 56.91 15

ECM 294.99 27

Seeds CCM 263.81 24

DEC 371.24 16

ECM 18071.77 20

Haberman CCM 15519.06 23

DEC 18860.38 17

ECM 796031.24 75

Wine CCM 1177975.85 86

DEC 1647084.50 40

ECM 115788607.23 40

Magic CCM 91457280.53 66

DEC 109617350.83 38

ECM 12886.81 67

Contraceptive CCM 11627.91 33

DEC 16199.99 26

ECM 1460608.50 97

Vehicle CCM 1366180.72 87

DEC 2182377.66 56

ECM 4859854.19 140

Satimage CCM 3120338.23 136

DEC 5325419.18 63

ECM 96.97 31

Glass CCM 56.30 31

DEC 76.45 29
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5
Belief shift clustering algorithm

Abstract: In this chapter, we present a belief shift clustering algorithm. The purpose

is to characterize the uncertainty and imprecision between imbalanced clusters (clusters

with different sizes). We first review the benchmark algorithm, mean shift. After

that, we present in detail the implementation steps of the proposed algorithm. Then,

the effectiveness of the proposed algorithm is demonstrated experimentally on several

datasets. Finally, we conclude the chapter.

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Review of mean-shift . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Belief shift clustering (BSC) . . . . . . . . . . . . . . . . . . . 65

5.3.1 Belief shift for preliminary credal partition . . . . . . . . . . 65

5.3.2 Evidential clustering rule for credal redistribution . . . . . . 69

5.3.3 The involved parameters . . . . . . . . . . . . . . . . . . . . . 73

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.2 Imbalanced data . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.3 Medical and natural data . . . . . . . . . . . . . . . . . . . . 77

5.4.4 Some real world data . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.5 Olivetti Face data . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

63



5.1 Introduction

In the previous chapter, we proposed a dynamic evidential clustering (DEC) algorithm

(Zhang et al., 2021d) to reduce the computational complexity of traditional ones, but

they are only applicable to spherical data. In this chapter, we work on detecting clus-

ter structures of imbalanced data and characterizing the uncertainty and imprecision

between clusters. To drive this goal, we combine traditional evidential clustering (EC)

and mean-shift techniques. The main content of this chapter thus consists of three

parts. We briefly review the classical mean-shift algorithm in Section 5.2. Afterward, a

belief shift clustering algorithm based on the TBF is proposed in Section 5.3 and then

verified in Section 5.4. Section 5.5 concludes this chapter.

5.2 Review of mean-shift

Mean shift, a simple nonparametric iterative procedure that shifts each object to the

average of the objects included in its neighborhood, is introduced by Fukunaga and

Hostetler (Fukunaga and Hostetler, 1975; Cheng, 1995). The generalized version of

mean shift procedure is briefly introduced as follow.

Let us consider a dataset X including n objects with s attributes over the FoD

Ω = {ω1, ..., ωc}. For the object oi in the s-dimensional space, if it is the initial cluster

center (mode), then the new cluster center oi+1 which oi shifts to is given by:

oi+1 =

∑
xj∈X

K(xj − oi)xj∑
xj∈X

K(xj − oi)
(5.1)

with

K(xj − oi) =

 1, if djo ≤ h

0, if djo > h
(5.2)

where djo is the Euclidean distance between the object xj and the object oi, and h is

called the bandwidth.

The function K(xj −oi) is the unit flat kernel here and it can also be other kernels

(e.g. Gaussian kernel (Cheng, 1995)). The cluster center oi shifts to the new cluster

center oi+1, denoted as oi ← oi+1, according to the mean shift vector, named m(oi), can

be concluded by m(oi) = oi+1 − oi. The mean shift algorithm repeatedly updates the

cluster center oi using Eqs. (5.1)−(5.2) until the deviation between the estimations of

two consecutive cluster centers is less than the value of threshold ε, i.e. ‖oi+1 − oi‖ < ε.

In the process of iterations, each object will be searched by other ones that coverage to

one or more clusters. That is, the object is searched by one or multiple clusters, and it

will be assigned to the cluster that searches it the most times.
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5.3 Belief shift clustering (BSC)

In this section, we propose a new belief shift clustering (BSC) algorithm based on the

notion of “belief shift”, which can be considered as an evidential version of mean shift

(mode seeking) under the TBF. The BSC mainly consists of two parts.

1) Belief shift for preliminary credal partition. It mainly assigns each object as

a noise (outlier) that far away from other objects, or a precise object belonging to a

specific cluster, or an imprecise object that may belong to several possible clusters;

2) Evidential clustering rule for partial credal redistribution. It can further assign

the imprecise objects to different clusters including singleton clusters or meta-clusters

composed of several singleton clusters that the object likely belongs to.

These two parts will be discussed in Subsections 5.3.1 and 5.3.2, respectively.

5.3.1 Belief shift for preliminary credal partition

Let us consider a dataset X including n objects with s attributes over the FoD

Ω = {ω1, ..., ωc}. Belief shift for preliminary credal partition can be detailed as fol-

lows. For a specific object xi (i = 1, ..., n), the neighbors can be obtained by using the

Euclidean distances between xi and the others, defined by:

dij =

√√√√ s∑
q=1

(xiq − xjq)2 (5.3)

where xj ∈ X and xj 6= xi.

The distances are ranked from small to large, and the K1 neighbors, y1, ...,yK1 , with

the corresponding minimum distances can be obtained. These neighbors are selected

from the entire dataset and each neighbor provides a piece of evidence represented

by a mass function mik(.) for the object xi being a cluster center in a new frame of

discernment Ω̃ = {C, C}, which is defined to describe the belief degree of the object as

the cluster center (C) or unknown (C). The basic principle is that cluster centers are

most likely to be distributed in areas with the highest global (local) density. Thus,

if an object is very close to all its neighbors, it has the potential to become a cluster

center. Inspired by the pieces of literature (Denœux, 2008b; Liu et al., 2013), we define

the mass function mik(.) on Ω̃ as follows:

mik(B) =


1

K1
· e−d2

ik , if B = C

1− 1

K1
· e−d2

ik , if B = C
(5.4)

where dik is the Euclidean distance beyween the object xi and the object yk. The mass

function mik(C), for example, can be regarded as the support degree that the object
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yk believes the object xi as a cluster center. We can see from Eq. (5.4) that the nearer

the neighbor to xi, the larger the mik(C) obtained, i.e. this neighbor strongly supports

it as a cluster center.

Afterward, the K1 pieces of evidence can be fused by the DS rule to obtain the

degree of belief mi(.) that the object xi is a cluster center, calculated by:

mi(A) =
⊕

k∈[1,K1]

mik(A) (5.5)

where
⊕

represents the DS rule operation symbol4. We can get mi(A) = Beli(A) by

deriving the Eq. (5.5), and the proof process is similar to that of the literature (Su and

Denœux, 2018). Thus, the degree of belief Beli(A) can be further defined by:

Beli(A) =


1−

K1∏
k=1

(1−mik(C)) , if A = C;

K1∏
k=1

mik(C) , if A = C.
(5.6)

By doing this, we can calculate the belief degrees of all the n objects, and each of

them then is regarded as the initial cluster center for belief shift5, similar to mean shift

(Cheng, 1995). In the belief shift process, for the specific object xi (i = 1, ..., n), as the

initial cluster center, it will shift to the new center (object), called xµ, corresponding

to the neighbor yk with the highest belief degree, and defined by:

xµ = arg max{Beli1(C), ..., BeliK1(C)} (5.7)

where Belik(C) (k = 1, ...,K1) represents the belief degree (the possibility) of the k-th

neighbor yk to become a cluster center.

Then, the new cluster center xµ keeps shifting until the belief degree Belµ(C) is

higher than that of its new neighbors, and defined by:

Belµ(C) ≥ max{Belµ1(C), ..., BelµK1(C)} (5.8)

By doing this, we can obtain the final cluster center xµ that xi converges to. After

all the objects as the initial cluster center to shift, they will eventually converge to

c different cluster centers, i.e. c different real objects, with the highest belief degree

4Since these K1 pieces of evidence come from neighbors, they are generally no conflict or low conflict.
In this case, compared with other combination rules (Dubois and Prade, 1988; Martin, 2019), the DS
rule is more suitable, which is commutative and associative.

5In the process of belief shift, each object will be selected as initial cluster center to eliminate the
negative impact of random selection, and the final cluster centers are all from the real objects since the
advantage of such prototype based clustering method is their intuitive understanding by prototypes as
representatives for the clusters (Zhou et al., 2015c; Hariz et al., 2007; Haykin and Network, 2004).
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compared with the corresponding neighbors. We can easily find that although the

object xi will converge to a specific (singleton) cluster, it may also be searched by

other singleton clusters as the neighbor of different query objects. In this case, for an

object xi, we will temporarily divide it as an imprecise object. To more intuitively show

the principle of belief shift and explain its difference from the classical mean shift, we

give the following example.

4O 5O

6O

7O8O

1O

2O
3O

9O

1ω

10O
11O

12O

15

10

5

0 5 10 15 20 x

y
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Fig. 5.1. Illustration of the belief shift process.

As a simple example, Fig. 5.1 shows a 2-class problem with two attributes corre-

sponding to x-coordinate and y-coordinate. It is assumed that the objects O2 and

O12 have the highest degree of beliefs, i.e. Bel2(C) and Bel12(C), to be the centers

of the clusters {ω1} and {ω2}, respectively, and the number of neighbors K1 = 5 for

each query object is the default in the belief shift process. More intuitively, the K1

neighbors of the object are in the range of black dotted line and the trajectory of belief

shift is marked as a red line with an arrow in Fig. 5.1. The object O4, for example, as

the initial cluster center will find the K1 neighbors (i.e. O3, O5, O7, O8, O9), and then

shifts to the neighbor O3 with the highest belief degree, and finally converges to the

cluster center O2, i.e. O4 ∈ {ω1}. Of course, the object O10 will converge to the cluster

center O12, i.e. O10 ∈ {ω2}. For objects like O4 and O10, both classical mean shift or

belief shift will directly assign them to specific clusters like {ω1} and {ω2}, which is the

similarity between the methods.

For the object O5, however, the classical mean shift will also directly assign it to

the cluster {ω1} or {ω2} depending only on the times of the object searched by these

two clusters, i.e. the cluster with the most search times will own the object. This may

exist a high risk of error, since the search times are related to the randomly initialized

cluster centers in mean shift and depending only on the search times is unreasonable.
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Different from mean shift, the proposed belief shift considers that once the object like

O5 is searched as a neighbor by different clusters, it indicates that the object may

be distributed in the overlapping or middle areas of these clusters6. We can also get a

similar inference from the object O6 if interesting. In this case, it is unwise to assign the

object O5 (or O6) to the singleton cluster {ω1} or {ω2}, since it may increase error risks.

Thus, they are temporarily assigned to the specific edited framework Mi = {ω1, ω2},
Mi ⊆ Ω and i = 5, 6, as imprecise objects to wait for credal redistribution.

By contrast, we can also infer that although the object O1 as the initial center

can converge to the cluster {ω1}, it will not be searched, as a neighbor of other query

objects, by different clusters because it is too far away from all objects except itself. In

such a case, the object O1 is more suitable to be assigned to the noise cluster, i.e. the

object O1 is regarded as a noise (outlier). The classical mean shift, however, does not

have the ability to deal with such a case.

Based on the above analysis, the query object xi will have two general indexes after

belief shift, i.e. the number of different clusters that search the object, denoted as |Mi|,
and the number of times the object is searched by other ones as a neighbor, named Ti.
In fact,Mi is the corresponding specific dynamic sub-framework that the query object

xi will be assigned to, and Mi (if |Mi| > 1) is a set of clusters that have searched the

object xi in the process. The total number Ti of searched times for xi is defined by:

Ti =
∑

{ωj}∈Mi

T ji (5.9)

where T ji represents the number of times that the object xi, as the neighbor(s), is

searched by the other objects that converge to cluster {ωj}. As we analyzed earlier, if

xi is searched significantly less than that of others, it will be assigned directly to the

noise cluster, i.e. ∅, defined by:

∅ = {xi | Ti ≤
[
T α
]
} (5.10)

with

T =
1

n

n∑
i=1

Ti (5.11)

where [·] is the rounding symbol and T is the average of Ti for all objects in the query

set. The parameter α is the outlier adjustment factor, which controls the number of

objects assigned to the noise cluster, i.e. ∅.
The flowchart of preliminary adaptive credal partition by belief shift is shown in

Fig. 5.2. We can see from the flowchart that the query object xi will be regarded as the

6At this time, the belief shift will not use the simple search times as the indicator to assign the object
O5 to a specific cluster.
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Fig. 5.2. Illustration of preliminary adaptive credal partition.

noise (outlier) if it is searched as a neighbor by very few or even no other objects after

belief shift, which also means that it is far away from others. If |Mi| = 1 with Ti >
[
T α
]
,

it indicates that the object xi is an precise object with definite cluster information

and should be assigned to the singleton cluster Mi, otherwise, it will be temporarily

regarded as an imprecise object and processed in the next part.

5.3.2 Evidential clustering rule for credal redistribution

For the imprecise object xi, the masses of belief will be partially redistributed by EC

rule to assign xi to different clusters under the corresponding specific dynamic sub-

framework Mi (|Mi| > 1). We consider that there are n1 (0 < n1 < n) imprecise

object in the set Xim = (x1, ...,xn1) ∈ Rn1×s and n2 (0 < n2 < n) precise object in the

set Xpr = (x1, ...,xn2) ∈ Rn2×s, n1 + n2 = n, after preliminary credal partition based

on belief shift. For the query object xi ∈ Xim, it will be identified under the new edited

dynamic framework Fi with 2|Mi|−1 elements and Fi ⊂ 2Ω under the TBF. The credal
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partition mij , mi(Aj) ∈ R2|Mi|−1 with the j-th focal element Aj in Fi, i.e. Aj ∈ Fi, is

provided for each imprecise object xi (i = 1, ..., n1). For instance, if Ω = {ω1, ω2, ..., ω5}
with |Ω| = 5 for the query set and Mi = {ω1, ω3, ω5} with |Mi| = 3 for the imprecise

object xi, then Fi = {{ω1}, {ω3}, {ω5}, {ω1, ω3}, {ω1, ω5}, {ω3, ω5},Mi}.
In credal partition, the dataset converges in c clusters and related meta-clusters by

alternating iterations of the center matrix and the mass of belief matrix (Liu et al.,

2015; Zhou et al., 2015c). Although the real (final) cluster centers have been obtained

by belief shift, they cannot be used directly to iterate the masses of belief for imprecise

objects, since it is unreasonable to use one fixed center to represent the cluster with

arbitrary shape and size. For imbalanced clusters (Liang et al., 2012), for example,

these centers based on belief shift tend to assign the objects of the majority clusters

into the minority clusters. Thus, the BSC will provide specific simulation centers for

related clusters supervised by Fi when clustering the imprecise object xi, which can be

explained by a concrete example, as shown in Fig. 5.3, with a 2-class dataset.

In Fig. 5.3, the black pentagrams represent the cluster centers of {ω1} and {ω2}
after belief shift, and the objects specifically assigned to different clusters are precise

objects while the objects O1, O2 and O3 are imprecise objects. One can see from Fig. 5.3

that the center of meta-cluster {ω1, ω2} marked as purple pentagram is obtained by

calculating the mean values of {ω1} and {ω2} in credal partition (Liu et al., 2015; Zhou

et al., 2015c). However, the center is located in the cluster {ω1}, which is obviously

unreasonable and runs counter to our intuitive perception since the cluster center of

meta-cluster should be located in the overlapped area of the different singleton clusters

or midpoint of the edges of the different clusters. Those objects like O4 that originally

belongs to the cluster {ω1} will be assigned to the meta-cluster {ω1, ω2} and the objects

like O1 will be assigned to the cluster {ω2} if we use the meta-cluster center to assign

them directly in this case.
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Fig. 5.3. Illustration of the simulated cluster centers based on imbalanced data.

To address this problem, the simulated cluster centers based on KNNs technology
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are used here to partial assign the imprecise objects. Specifically, the object xi will find

K2 neighbors from the different clusters contained inMi to simulate the corresponding

centers of the singleton clusters by calculating the mean value of the neighbors, re-

spectively. Then, the simulated singleton cluster centers are employed to calculate the

related meta-cluster centers, i.e. we adaptively provide particular centers of clusters

included in Fi for each imprecise object xi according to its distribution. For example,

the imprecise object O1 finds different neighbors included in black dashed circle form

precise objects in clusters {ω1} and {ω2} as shown in Fig. 5.3, respectively. The black

triangle represents the simulated singleton cluster center obtained from the average

value of neighbors, and the midpoint marked as the green triangle between the two

cluster centers is the meta-cluster center for O1. We can intuitively see that the meta-

cluster center obtained by simulated centers is located at the halfway of {ω1} and {ω2},
which is more reasonable than the center marked as the purple pentagram.

On the basis of the above analysis, the singleton cluster center vil is given by:

vil =
1

K2

K2∑
k=1

ylk, l = 1, ..., c (5.12)

where ylk (k = 1, ...,K2) represents the k-th neighbor of xi from the cluster {ωl} ⊂ Xpr.
The method calculating meta-cluster centers is the same way as ECM (Masson and

Denœux, 2008). That is, the center of meta-cluster Aj with |Aj | > 1 is the mean of

the singleton cluster centers included in Aj , which has been defined in Eq. (3.23).

Inspired by CCM (Liu et al., 2015), we can thereby use the given EC rule with the

simulated center matrix V to update the masses of belief for the object xi, defined by:

mij =
D
−2/(β−1)
ij∑

j|Aj∈Fi
D
−2/(β−1)
ij

(5.13)

subject to

JBSC(M,V ) =

n1∑
i=1

∑
j|Aj∈Fi

mβ
ijD

2
ij (5.14)

and

D2
ij =


d2
ij , if |Aj | = 1∑

{ωl}∈Aj
γ−1d2

il + d2
ij

|Aj |+ 1
, if |Aj | > 1

(5.15)

where dij is the Euclidean distance between xi and the meta-cluster (Aj) center, and dil

represents the distances from xi to the singleton cluster ({ωl}) center in meta-cluster

Aj such that |Aj | > 1, and n1 is the number of imprecise objects. The tuning parameter
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β, such that β > 1, is a weighting exponent (Masson and Denœux, 2008) and γ is the

threshold to control the number of objects in meta-clusters (Liu et al., 2015). One can

find that the distance between the object xi and the meta-cluster Aj with |Aj | > 1

depends not only on the distance from xi to the center of Aj , but also on the distance

between xi and the centers of all the singleton clusters included in Aj , which is similar

to CCM and has been detailed explained in CCM.

However, different from CCM, we do not consider noise clustering here because we

have solved this problem well in the preliminary credal partition. Since the simulated

cluster centers are reliable, only one update is needed to produce the masses of beliefs

that each imprecise object xi belongs to different clusters, which can decrease the

computation brought by the iterative process while ensuring the rationality. By doing

this, each imprecise object in the set Xim is partial credal redistributed again based on

EC. In the process, some objects will be assigned to singleton clusters, which means

that these objects are precise ones with definite cluster information. By contrast,

the others will be assigned to related meta-clusters to model the imprecision of their

cluster information. This prudent decision-making method can well characterize the

uncertainty and imprecision between different clusters with arbitrary shapes and sizes

in the space, and this may be very important in some applications.

The pseudo-code is presented in Algorithm 2 to clearly show how BSC works and

illustrate its basic principle.

Algorithm 2 Belief shift clustering.

Require: Dataset: X = {x1, ...,xn}; Given the parameters: K1,K2, α, β, γ.
Ensure: Cluster decision results.

Step 1
Search the neighbors for all objects using Eq. (5.3);
Calculate (Beli(C)) for all objects using Eqs. (5.4)−(5.6);

for i = 1 to n
repeat

Each object is employed to belief shift using Eq. (5.7);
until Satisfy the judgment condition of Eq. (5.8).

end
Assign the outlier using Eqs. (5.9)−(5.11);
Assign precise and imprecise objects using |Mi| and Ti;
Step 2
for i = 1 to n1

Calculate simulated cluster centers using Eq. (5.12);
Obtain meta-cluster centers based on that of simulated singleton clusters;
Reassign the imprecise object again using Eq. (5.13).

end
Return: Output the results.
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5.3.3 The involved parameters

In BSC, some parameters including K1,K2, α, β, γ play a very important role, and

they should be selected in advance to implement the proposed BSC method. K1 is the

number of not only the neighbors that are used to provide the pieces of evidence for

the object being a cluster, but also the neighbors that the objects are looking for in

the process of belief shift. The value of K1 should not be too small since it may cause

the object to fall into the local maximum belief degree during belief shift. Whereas

some clusters with very close data distribution may not be able to correctly distinguish

if too large K1 value is set. Here the value of K1 is determined by the number n of

objects in the dataset, and we find that K1 ∈ [0.05n, 0.15n] can be used as the default

in most cases according to the experience. K2 is the number of neighbors that are

used to get simulated cluster centers of different clusters, and it does not need to take

too large and it is an open value. Thus, we recommend a common default value, i.e.

K2 = 7. The parameter α is the outlier adjustment factor, which controls the number

of objects regarded as the noise. In general, the bigger α causes the more objects

assigned to the noise cluster, and we recommend that α ∈ [0, 0.6] and take α = 0.3

in applications. The use of the tuning parameter β is similar to FCM (Bezdek, 2013),

ECM (Masson and Denœux, 2008), and β = 2 can be used as default value. The

weighting factor γ can be used to control the number of objects in meta-clusters. The

smaller γ is, the fewer objects are assigned to the meta-clusters, which will increase

the number of misclassified objects. Whereas, γ is not the bigger the better since a

big value of γ will lead to high imprecision and is not conducive to make decisions.

Therefore, the selection of γ should be based on the imprecision rate one can accept,

and we recommend γ ∈ [0.5, 2.5], similar to CCM (Liu et al., 2015), and take γ = 1.

5.4 Experiments

Five experiments have been done to evaluate the performance of the proposed BSC

method with respect to MC (Liang et al., 2012), DPC (Rodriguez and Laio, 2014),

MS-type (Yamasaki and Tanaka, 2019), and BPEC (Su and Denœux, 2018). Subsec-

tions 5.4.1 and 5.4.2, based on particular synthetic data, are used to illustrate the use

of BSC and the limitations of other methods. Subsections 5.4.3 and 5.4.4 with real

images is presented to evaluate the effectiveness of BSC compared with other methods.

Subsection 5.4.5 reveals the potential of BSC in image classification with face datasets.

All parameters are default except the ones we adjust in the sequel experiments so

as to make the comparison experiment intuitive. The error rate Re, the impression

rate Ri, and the Credal Rand Index CRI are used as indexes of the performances of

different methods (Liu et al., 2015; Masson and Denœux, 2008; Denœux et al., 2017).
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5.4.1 Synthetic data

In this experiment, a synthetic dataset named SD15 is employed to validate the ef-

fectiveness of BSC and reveal the limitations of hard partition methods including MC,

DPC, and MS-type in clustering data with high overlap and noise (outlier) in the

space. SD15 can be obtained from (Fränti and Virmajoki, 2006) that contains 5000

data points, and it consists of fifteen classes. In addition, we take three noisy points

marked by black dots in the top left corner of SD15. The original data points of SD15

is shown in Fig. 5.4(a) while Fig. 5.4(b) reveals their probability distribution. The

data points included in different clusters marked by various colors. All the attributes

of SD15 are normalized into [0,1] by the min-max rule introduced in (Su and Denœux,

2018) to eliminate the influence of differences in various dimensions.
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(a) Original data points in SD15.
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(b) The probability distribution of SD15.

Fig. 5.4. The basic information of the SD15 dataset.

Here we choose f = 0.02 in DPC and the bandwidth r = 0.08 in MS-type, re-

spectively. K1 = 80 are taken in BSC. We can see from Fig. 5.4(a) that the different

clusters of the dataset SD15 are partly overlapped on their borders, and the points

in these areas are really difficult to be clearly classified, which can be verified by the

clustering results of MC, DPC, and MS-type as shown in Fig. 5.5(a)−(c). We can see

that the points in the overlapping areas are all assigned to singleton clusters by these

methods and most of them are misclassification. It is worth noting that the noisy points

marked with black dots are far from the other points, and they cannot be detected by

MC and DPC but clustered into specific clusters. Although MS-type yields a singleton

cluster for the noisy data, it also does not correctly assign these special points due to

the limitations of the probability framework that does not introduce the noise cluster.

Fig. 5.5(d) shows the trajectory of the belief shift in BSC, where the trajectories of the

objects in the process of belief shift are marked as red lines and they finally coverage to
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(a) MC (Re = 24.45, CRI =
0.6159).
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(b) DPC (Re = 14.69,
CRI=0.7226).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) MS-type (Re = 16.41,
CRI=0.6950).

(d) The trajectory of BSC.
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(e) Preliminary credal parti-
tion.
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(f) BSC(Re = 11.29, Ri=7.06,
CRI=0.9338).

Fig. 5.5. Clustering results of the SD15 dataset by different methods.

the fifteen points with the highest belief degrees marked by blue dots. One can see from

Fig. 5.5(e) that BSC preliminary yields credal partitions for the points according to the

results of belief shift. The three points marked by black dots are the noisy points that

are only searched by few in the belief shift process since they are far away from others.

By contrast, the points that are searched multiple times as a neighbor by other ones

and searched by only one cluster can be directly assigned to specific clusters. Whereas

the points, marked as gray and searched by multiple clusters in the process, are impre-

cise points and most of them are lying in overlapping areas of different clusters. The

final clustering results of BSC as shown in Fig. 5.5(f), where these imprecise points are

prudently assigned to the exact singleton clusters and proper meta-clusters marked by

points and crosses with different colors, respectively. By doing this, BSC can effectively

reduce the errors and reasonably characterize uncertainty between the different clusters

since it can provide the credal partition for the imprecise objects under the TBF.

5.4.2 Imbalanced data

This experiment is used to reveal the limitations of traditional EC in dealing with imbal-

anced clusters, i.e. the clusters with imbalanced sizes. We investigate the performance

of BSC with respect to BPEC in clustering a 4-class 2-D dataset named SD4 that con-
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tains not only overlapping areas in different clusters but also has nonspherical shapes

and imbalanced sizes in the space. The dataset is made up of 3300 data points with

two dimensions. The points arise from a mixture of four bivariate Gaussian densities

are given in Table 5.1, where µi is the means vector and Σi is the covariance matrices,

and Ni, i = 1, 2, 3, 4, represents the number of data points in different clusters.

Table 5.1: The basic information of the SD4 dataset

Data Indexes {ω1} {ω2} {ω3} {ω4}

µi [2.5, 5]T [7.5, 5]T [5, 7]T [5, 1.5]T

SD4 Σi

(
1 0
0 0.05

) (
1 0
0 0.05

) (
0.05 0
0 0.5

) (
1 0
0 2

)
Ni 500 500 300 2000
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(b) The probability distribu-
tion of SD4.
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(c) BPEC (Re = 3.79, Ri =
14.55, CRI = 0.8368).

(d) The trajectory of BSC.
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(f) BSC (Re = 1.03, Ri = 2.12,
CRI = 0.9571).

Fig. 5.6. Clustering results of the SD4 dataset by different methods.

Fig. 5.6(a) intuitively shows the distribution of the points in this dataset and their

probability distribution are given by Fig. 5.6(b). We take K = 70, α = 3, ∆ = 5

in BPEC and K1 = 200 in BSC, respectively. The clustering results of dataset SD4

by different methods are given in Fig. 5.6(c)-(f). The BPEC and BSC based on the

TBF can assign the points in overlapping areas of different classes to appropriate meta-
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clusters so as to characterize the uncertainty and imprecision of these points and reduce

the risk of errors. We can see that BSC yields a lower error rate and imprecision rate

than BPEC. Although BPEC can also provide credal partition, it assigns a part of

points belonging to the majority clusters to the minority clusters in dealing with the

imbalanced data, for instance, some points in the cluster {ω4} are assigned to {ω1}
and {ω2}, since the method based on symmetric distance only considers the symmetry

of points in the feature space and does not take into account the distribution or the

number of points in different clusters. In such a case, the center of meta-cluster tends to

shift to the singleton cluster with majority points, so we may obtain the unreasonable

clustering results. By contrast, BSC simulates cluster centers using neighbors at the

boundary of different clusters, which can effectively decrease the negative impact of

clusters with arbitrary sizes, i.e. imbalanced data, on the methods based on symmetric

distance.

5.4.3 Medical and natural data

In this experiment, a medical image and a natural image are employed to demonstrate

the effectiveness of BSC applying to image segmentation.

(a) Original image.
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(b) Data distribution. (c) Ground truth. (d) MC.

(e) DPC. (f) MS-type. (g) BPEC. (h) BSC.

Fig. 5.7. Clustering results of the medical image by different methods.

The true color dermoscopic image (invasive malignant melanoma) of 66 × 86 pixels,

named DI2, as shown in Fig. 5.7(a), can be obtained from the EDRA Interactive Atlas

of Dermoscopy (Argenziano et al., 2002). It consists of two classes including lesion

and non-lesion and its ground truth is given by Fig. 5.7(c). The distribution of the

pixels is shown in Fig. 5.7(b). The blue and red points with three dimensions including

R, G, and B value represent the pixels of the lesion and non-lesion according to the
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ground truth, respectively. Here we choose f = 0.02 in DPC and r = 150 in MS-type.

K = 2000, α = 3, ∆ = 500 and K1 = 1000 are set in BPEC and BSC, respectively.

We can see from Fig. 5.7(a) that the lesion edge is ambiguous and the distribution of

the pixels given in Fig. 5.7(b) intuitively reveals that there are some pixels distributed

in the overlapping area of different clusters. These pixels correspond to the lesion

edge, and they are really difficult to be accurately distinguished. The segmentation

results of MC, DPC, and MS-type are shown in Fig. 5.7(e)-(g), where some pixels

in the lesion edge are assigned to the specific cluster (i.e. lesion or non-lesion), and

most of them are misclassification. Interestingly, we can observe from Fig. 5.7(h),(d)

that BPEC and BSC cautiously assign the pixels in lesion edge to the meta-cluster

composed of the lesion and non-lesion under the TBF. That is, the pixels in this area

are indistinguishable for clusters of the lesion or non-lesion. By doing this, it cannot

only reduce the risk of error but also characterize the uncertain information between

different clusters. The analysis of a natural gray image of 60 × 90 pixels from the

Berkeley Segmentation Dataset (Martin et al., 2001), named NI2, a goose floating on

the lake, is given in Fig. 5.8. The clustering results of different methods based on these

two images are given in Table 5.2.

(a) Original image. (b) Data distribution. (c) Ground truth. (d) MC.

(e) DPC. (f) MS-type. (g) BPEC. (h) BSC.

Fig. 5.8. Clustering results of different methods with a goose floating on the lake.

5.4.4 Some real world data

In this experiment, we evaluate the performances of BSC compared with other methods

based on the UCI databases7. The basic information of these datasets including the

number of clusters (#Clus.), attributes (#Attr.), instances (#Inst.), and the number

7available at http://archive.ics.uci.edu/ml/.
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Table 5.2: The results of different methods with DI2 and NI2

Data Indexes MC DPC MS-type BPEC BSC

Re 4.61 3.91 6.93 3.11 2.24

DI2 Ri / / / 3.46 2.40

CRI 0.8201 0.8554 0.7255 0.9031 0.9476

Re 5.76 4.83 3.85 2.85 2.63

NI2 Ri / / / 3.50 3.17

CRI 0.7464 0.7878 0.8313 0.9106 0.9235

of objects of different clusters are reported in Table 5.3.

Table 5.3: Basic information of the UCI datasets

Data #Clus #Attr. #Inst. {ω1} {ω2} {ω3}

Appendicitis(Ap) 2 7 106 21 85 /

Biodeg(Bi) 2 41 1055 356 699 /

Spambase(Sp) 2 56 4597 1812 2785 /

Abalone(Ab) 3 7 600 233 239 128

Seeds(Se) 3 7 210 70 70 70

Contraceptive(Co) 3 8 1473 629 333 511

Table 5.4: Selection of the parameters in different methods

Method DPC MS-type BPEC BSC

Indicators f r K α ∆ K1

Ap 0.02 0.55 50 2 30 10

Bi 0.02 70 100 2 200 400

Sp 0.02 12000 200 2 5000 2000

Ab 0.02 3 30 6 30 60

Se 0.02 2 20 3 30 20

Co 0.02 7 30 2 30 200

The main parameters of DPC, MS-type, and BPEC in clustering different datasets

are given in Table 5.4 and the other parameters in this experiment are default. Here

the cluster label of these real datasets does not contain noise and we take proper ∆

in BPEC and α = 0 in BSC, respectively. That is, the clustering results of different

methods do not include outlier. The clustering results of different methods are shown
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Table 5.5: Clustering results of different methods with the UCI datasets (In %)

Data Indicators MC DPC MS-type BPEC BSC

Re 24.53 13.21 20.75 19.81 12.26

Ap Ri / / / 2.83 2.83

CRI 0.2410 0.4194 -0.0139 0.7127 0.7795

Re 37.63 33.84 34.60 41.99 32.13

Bi Ri / / / 2.09 13.65

CRI -0.0268 -0.0009 -0.0081 0.6121 0.7138

Re 37.11 35.81 39.37 33.41 28.52

Sp Ri / / / 4.74 7.50

CRI 0.0077 0.0450 0.0005 0.5927 0.6426

Re 55.00 54.50 60.17 57.17 52.17

Ab Ri / / / 5.00 0

CRI 0.0455 0.0985 -0.0008 0.5896 0.5570

Re 18.10 11.43 13.33 8.57 7.62

Se Ri / / / 6.19 7.62

CRI 0.5702 0.7027 0.6592 0.8242 0.9027

Re 61.10 59.06 60.56 57.98 56.96

Co Ri / / / 7.26 6.65

CRI 0.0236 0.0099 0.0186 0.6861 0.6244
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Fig. 5.9. Detection performance of BSC with different γ.

in Table 5.5. From these results, we can see that the error of BSC is obviously lower

than that of MC, DPC, MS-type, and BPEC, and its imprecision rates are within an

acceptable range, which can truly reflect that BSC is superior to other methods. The

data sets Appendicitis, Biodeg, Spambase, and Seeds are employed to test the effect

of different parameter γ on the clustering results of BSC as shown in Fig. 5.9, where

the x-coordinate denotes the value of γ, ranging from 0.5 to 2.5, and the y-coordinate

represents its error rate and imprecision rate, which is expressed in [0, 1]. We can see
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that the error rate of BSC gradually decreases as the parameter γ changes from 0.5

to 2.5, while the imprecision rate increases, which indicates that γ can well adjust the

degree of the imprecision and help to reduce the error rate. In real applications, the

parameter γ should correspond to a compromise between the error rate and imprecision

rate and it can be chosen depending on the imprecision rate that we can accept.

5.4.5 Olivetti Face data

In this experiment, the Olivetti Face Database (Rodriguez and Laio, 2014), a widespread

benchmark for machine learning, is applied to further evaluate the potential of the BSC

in unsupervised image classification. The image data, called FI5, contains five people,

each of whom has 10 face pictures with different shooting angles and expressions. The

original data of these faces are shown in Fig. 5.10(a), where the faces of the same color

belong to the same cluster, i.e. the same person. Here we take f = 0.2 in DPC and

r = 9 is set in MS-type. K = 8, α = 3, ∆ = 10 in BPEC and K1 = 6, α = 0.1 are

taken in BSC, respectively. The other parameters are default8.

The images of the clustering results of comparison methods are shown in Fig. 5.10.

It can be intuitively seen that women’s faces are accurately identified by these methods.

However, for the faces of four other people, MC, DPC, and MS-type mistakenly cluster

them, since some faces are not clearly distinguished. For instance, the faces of the

fourth and fifth people are very similar, and they are assigned exactly by MC, DPC,

and MS-type, which may increase the risk of errors. We can see from Fig. 5.10(b),(f)

that BPEC and BSC both produce the credal partitions to reduce errors. However,

it is worth noting that BPEC assigns two faces marked by black of the fourth person

to meta-cluster composed of the second and the fifth person, i.e. it believes that the

two faces are difficult to distinguish between the second and the fifth person, which

is obviously unreasonable. BSC can accurately recognize the first three people, and

for two faces marked by cyan of the fifth people, it considers that they are hard to

distinguish between the fourth and the fifth people only using the existing information,

which is a prudent decision that can effectively reduce the error rates and fits with

what we reasonably expect. These imprecise images in meta-cluster can be eventually

distinguished using some other techniques or with extra information sources. The

clustering results of different methods are shown in Table 5.6 and the results verify

that BSC has potential in image classification.

5.4.6 Discussion

Since the parameters β, γ involved in BSC are very similar to these in ECM (Masson

and Denœux, 2008), CCM (Liu et al., 2015), MECM (Zhou et al., 2015c), we will

8We take K2 = 5 since only a few objects in each class. In this case, BSC needs to obtain different
neighbors from various clusters of the precise objects to yield simulated cluster centers.
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(a) Original data. (b) MC.

(c) DPC. (d) MS-type.

(e) BPEC. (f) BSC.

Fig. 5.10. Clustering results of FI5 by different methods.

not discuss them separately here. In this section, the outlier adjustment factor α,

controlling the number of objects assigned to the noise cluster, will be discussed in

detail. In order to verify the effectiveness of parameter α in controlling the number of
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Table 5.6: Clustering results of different methods with FI5

Data Indexes MC DPC MS-type BPEC BSC

Re 20.00 22.00 26.00 32.00 14.00

FI5 Ri / / / 0 4.00

CRI 0.7278 0.5571 0.6251 0.7701 0.9343
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(c) The result of BSC with α = 0.6.
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(d) The number of noise with different α.

Fig. 5.11. The results of BSC with different α.

noise, the dataset, as shown in Fig. 1.1, is employed and clustered by BSC with various

α values. The clustering results with three values of α, i.e. α ∈ [0, 0.4, 0.6], are shown

in Fig. 5.11(a)-(c), where the exact singleton clusters and proper meta-clusters marked

by points and crosses with different colors, respectively. The black points represent the

noise (outlier), and the number of noise with α from 0 to 0.6 is given by Fig. 5.11(d).

The value of α corresponds to the x-coordinate and the y-coordinate represents the

number of noise. Interestingly, we can intuitively observe that BSC can assign all
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points to proper clusters without noise if we take a very small α, e.g. α = 0, as shown

in Fig. 5.11(a). As α increases, of course, those objects far from the clusters will be

gradually assigned as noise, which is consistent with our intuitive perception. Some

objects that are far from the clusters, for example, are regarded as noise if one takes a

big α, e.g. α = 0.6, as shown in Fig. 5.11(c). We can also continue to infer that with

the continuous increase of α, increasingly objects will be assigned as noise. Fig. 5.11(d)

reveals that the parameter α can effectively adjust the number of noise in BSC and it

can be taken depending on the number of noise that we can accept.

5.5 Conclusion

In this chapter, we proposed a new belief shift clustering (BSC) method to capture the

uncertainty and imprecision between imbalanced clusters, which can be regarded as the

evidential version of mean shift or mode seeking under the TBF. For each query object,

it is preliminarily assigned as the noise, precise, or imprecise one based on the notion

of “belief shift”. For the imprecise object, the BSC tries to reassign it to the singleton

cluster or related meta-cluster again by partial credal redistribution with EC rule. The

objects clustered into the meta-clusters, of course, are usually lying in the overlapping or

middle areas of different singleton clusters. We need to combine with other technologies

if further distinguish them. By doing this, it can effectively reduce the error rates and

reasonably capture the uncertainty and imprecision between the imbalanced clusters,

which has been verified by four experiments. However, we may deal with clusters

of arbitrary shapes and sizes in some specific cases. The proposed BSC method in

this chapter is still based on masses of belief obtained from the minimization of the

objective function in the second step (credal redistribution), which may not apply to

clusters of arbitrary shapes and sizes in space. For this reason, we will propose a new

method in the next Chapter 6 that can detect clusters of arbitrary shapes and sizes,

and characterize the uncertainty and imprecision between these clusters.
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6
Density peaks-based evidential

convergence algorithm

Abstract: In this chapter, we present a density peaks-based evidential convergence

algorithm to detect arbitrary clusters and characterize the uncertainty and imprecision

in results. To this end, we first review the relevant benchmark algorithm, density peaks

clustering. After that, we present the proposed algorithm and discuss the involved

parameters in detail. Then, we demonstrate the effectiveness of the proposed algorithm

based on several datasets. Before concluding the chapter, we also discuss the complexity

of the algorithm and the sensitivity of the involved parameters.
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6.1 Introduction

In the previous chapter, we proposed a belief shift clustering (BSC) algorithm, which

can effectively extract the structure of non-spherical and imbalanced clusters. How-

ever, its core is still based on traditional evidential clustering (EC) methods, i.e. it is

designed based on minimization of the objective function. In this chapter, we propose a

method that can detect clusters of arbitrary shapes and sizes. Recently, a novel method

called density peaks clustering (DPC) (Rodriguez and Laio, 2014) has attracted a lot

of attention and is known for its ability to rapidly converge to clusters regardless of the

shape and of the dimensionality of the space in which they are embedded. It should be

noted that DPC is a medoid-based clustering algorithm where the cluster center ma-

trix is composed of real objects (Krishnapuram et al., 2001; Zhou et al., 2016a). Our

proposed clustering algorithm for evidential convergence is precisely based on DPC,

and named density peaks-based evidential convergence (DPEC) algorithm. The rest of

this chapter is organized as follows. After a brief introduction of DPC in Section 6.2,

the DPEC is introduced in Section 6.3. The performance of DPEC is then tested in

Section 6.4 and compared with several classical methods, followed by conclusions.

6.2 Review of density peaks clustering

Density peaks clustering (DPC) (Rodriguez and Laio, 2014) has attracted a lot of

attention and is known for its ability to rapidly converge clusters regardless of the

shape and of the dimensionality of the space in which they are embedded. In DPC, it

is assumed that cluster centers are surrounded by neighbors of lower local density and

that their distances from points of higher local density are relatively large. Thus, for

each object xi, two quantities can be computed, namely the local density ρi and the

distance dij from objects of higher density. The local density ρi is first defined by:

ρi =
∑

j 6=i
χ(dij − dc) (6.1)

where dc is a cutoff distance and ρi is the number of objects that are closer than dc.

For another quantity δi, it is measured by calculating the minimum distance between

xi and any other object of higher density:

δi = min
j:ρj>ρi

(dij) (6.2)

For the object xi of the highest density, δi = max
j

(dij) is the default. Next, a decision

graph with ρi and δi is drawn to choose the cluster centers, specifically, defined as the

objects that have both high density ρi and large distance δi. For convenience, DPC

also gives a quantity γi, denoted as γi = ρiδi, and the objects with the largest γi values
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are selected as the centers. Afterward, each remaining point is converged to the same

cluster as its nearest neighbor of higher density. Due to the significant advantages in

recognizing clusters with arbitrary shapes and dimensionality of the space, a number

of interesting works on DPC have emerged, for example, see (Zhang et al., 2016; Bian

et al., 2020; Pizzagalli et al., 2019; Yao Hui et al., 2017; Su and Denœux, 2018).

6.3 Density peaks-based evidential convergence (DPEC)

In this section, we present a detailed description of the DPEC method. Similar to

DPC, the main procedure also consists of two steps: 1) Definition of cluster centers by

evidence-based density peaks, and 2) Assignment of the remaining objects by evidential

convergence. These are discussed in Subsections 6.3.1 and 6.3.2, respectively.

6.3.1 Evidence-based density peaks

The purpose of this subsection is to define a small number of objects as cluster centers.

For the object xi, whether it is selected as a center depends on the quantities: ρf and

δi. Thus, we will describe the process of calculating each of these two quantities.

First of all, the neighbors are the basis for providing useful information of xi be-

coming a center. Let’s consider a dataset X including n objects with Ω = {ω1, ..., ωc}.
For xi, the set SK1(xi) of its neighbors is defined by:

SK1(xi) = {xk ∈ X | dik ≤ diK1} (6.3)

where K1 is the number of neighbors, and diK1 denotes the Euclidean distance from xi

to the K1-th neighbor. In other words, every object whose distance to xi is less than or

equal to diK1 provides one evidence to support xi as a center. The evidence is denoted by

a mass function mik(.) in a new frame of discernment ΩC = {Center(C), Unknown(U)},
which describes whether the degree of belief of xi as a center (C) or unknown (U). The

mass function mik(.) is defined by:

mik(A) =


1

K1
· e−ϑidik , A = C

1− 1

K1
· e−ϑidik , A = U

(6.4)

where dik is the Euclidean distance from xi to the k-th neighbor. ϑi is an adjustable

distance factor, and it has been discussed in detail in (Su and Denœux, 2018; Denœux,

2008b). Here, it is defined as the inverse of a quantile of the distances between xi and

its k-th neighbor xk, i.e. ϑi = 1/quantile(dik, 0.9), and 0.9 is the quantile number. If

interesting, see (Su and Denœux, 2018).

We can find from Eq. (6.4) that the smaller the distance dik, in general, the more the
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neighbor xk strongly supports xi as a center. In essence, the principle of the computed

mik(C) is the same as that of the density ρi in DPC. That is, if the chosen K1 neighbors

are all very close to xi, it also precisely means that for a given cutoff distance dc, a

larger density ρi can be obtained in DPC. By combining these mass functions using

Eq. (2.7), i.e. the DS rule, a normalized mass function mi can be obtained as well as

equal to the belief function Beli (Su and Denœux, 2018), defined by:

Beli(A) =


1−

K1∏
j=1

(1−mij(C)), A = C

1−
K1∏
j=1

mij(C), A = U
(6.5)

where Beli(C) provide us with the final mass of belief on the possibility of the object

xi becoming a center. Thus, similar to DPC, we can first redefine the quantity δi

depending on Beli(C), and denoted as follows:

δi =


max
xj
{dij}, if ∀xj , Beli ≥ Belj ;

min
xj :Beli<Belj

{dij}, otherwise.
(6.6)

In the dataset X , there may be large variability in the distribution of different

clusters, we consider δi to be more reliable than Beli(C) (or ρi in DPC) in supporting

xi as a cluster center. Therefore, another quantity ρf is introduced to replace ρi as the

density of xi, and ρf is defined as the distance δi-based function. If the object xi, as

a cluster center, already has a relatively large δi, at this point, the quantity ρf is also

desired to be relatively large. In this case, we have a larger γi = ρfδi, which is helpful

to correctly choose xi as a center in the decision graph. Based on the above analysis,

it is easy to find that ρf and δi are positively correlated, so a common and easy to

understand method is employed here to define the function ρf as follows:

ρf = eδi . (6.7)

By doing so, the two quantities ρf and δi of each object in the set X can be computed

by Eqs. (6.6)-(6.7). Thus, we can construct a ρf -δ decision graph by plotting ρf versus

δ, where the objects with higher ρf and larger δi are chosen as the cluster centers. The

center objects obtained by this evidence-based density peaks method are more distinct

in the decision graph, which provides a better comparison for the definition of centers.
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6.3.2 Evidential convergence

The purpose of this subsection is to assign the remaining objects to different clusters, i.e.

singleton clusters, meta-clusters, and the noise cluster, by a new evidential convergence

rule. After the cluster centers have been found, similar to DPC, the remaining objects

will be converged to different clusters one by one. The difference is that, in DPC, each

object is assigned only on the basis of cluster information from the nearest neighbor. In

contrast, we think that cluster information based on multiple neighbors would be more

robust. This allows for both the potential representation of imprecision and avoidance

of noise interference. More precisely, the remaining objects are sorted by Beli from

largest to smallest, and the object with larger Beli is assigned first. In this case, it

is conceivable that the neighbors for the first assigned object are exactly the cluster

centers. Next, we will generalize the convergence process.

For the remaining object xt, refers to Eq. (6.3), the set SK2(xt) of the neighbors can

be obtained, and K2 is the number of objects in the set. Assume that the set SK2(xt)

contains Φ cluster information, i.e. these neighbors are from Φ clusters, 1 ≤ Φ ≤ K2.

Inspired by (Denœux, 2008b; Su et al., 2018; Liu et al., 2013), each neighbor provides

a piece of evidence by a mass function mk
xt(·) for the assignment, defined by: mk

xt({ωφ}) = e−ϑtdtk

mk
xt({ωφ}) = 1− e−ϑtdtk

(6.8)

where mk
xt({ωφ}) denotes the degree to which the k-th neighbor xk supports the object

xi is assigned to the same cluster {ωφ}, φ = 1, ...,Φ. In contrast, mk
xt({ωφ}) is the

probability that xt does not belong to {ωφ}, i.e. the sum of the probabilities9 that xt

belongs to all other singleton clusters, including the noise cluster ∅, except for {ωφ}.
The factor ϑt is the same as ϑi in Eq. (6.4). From Eq. (6.8), we can find that if xk is

closer to xt, the more it supports xt belonging to {ωφ}.
For Φ, if we have Φ = 1, it implies that all K2 neighbors are from the cluster

{ωφ} and that xt is naturally assigned to {ωφ}; If we have 1 < Φ < K2, it implies

that some neighbors come from the same clusters. In this case, we can use the DS

rule to preferentially fuse these pieces of evidence from the same clusters directly be-

cause they are non-conflicting or low-conflicting. Thus, for 1 < Φ ≤ K2, we end up

with Φ pieces of evidence, and they are the key to assigning xt to different clusters.

Since these Φ pieces of evidence support xt assigned to Φ different singleton clus-

ters, some evidence may be highly conflicting. For example, we have two evidence,

9Note that each neighbor only provides some uncertain information so here we get is probabilistic
knowledge. mk

xt
({ωφ}) includes the probability that xt belongs to any other clusters, e.g., {ωφ′},

{ωφ′}=∅ or φ′ ∈ [1,Φ], φ 6= φ′, but the quantification of the probability is unknown. In evidence

theory, mk
xt

({ωφ}) can be regarded as the (partial) ignorance, and it plays a neutral role in the fusion
process. This is critical and will also be mentioned in the new fusion rules.
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m1(·) = [m1
xt({ω1}) = 0.93,m1

xt({ω1}) = 0.07] and m2(·) = [m2
xt({ω2}) = 0.94,

m1
xt({ω2}) = 0.06]. Clearly, these two evidence strongly support the assignment of

xt to the singleton clusters {ω1} and {ω2}, respectively, suggesting that both neighbors

are very close to xt. In this case, DPC may assign xt to {ω2} because the neighbor

{x2} seems to be a little closer, but this could be a huge risk of error. Here, we consider

that xt may be distributed in the middle or overlapping region of these two singleton

clusters. Therefore, it is more reasonable to assign xt to the meta-cluster {ω1, ω2} to

represent imprecision. To achieve this goal, inspired by (Liu et al., 2013, 2014), we

generalize the process and propose a new set of fusion rules, described as follows.

For simplicity and notation convenience, assume that there is a set of quantities,

listed as m1
xt({ω1}), ..., mΦ

xt({ωΦ}), and that {ωmax} is the most believed singleton

cluster of xt with m
{max}
xt ({ωmax}) = max{mφ

xt({ωφ})
∣∣∣φ ∈ [1,Φ]}. There are also

other masses of belief, e.g., mφ′
xt({ωφ′}), very close or equal to mmax

xt ({ωmax}) but

{ωmax} 6= {ωφ′}. In this case, xt can also potentially belong to {ωφ′} with a high

likelihood. Thus, we define a new dynamic framework Mt by a threshold ζ that con-

tains all possible solutions to the singleton cluster of xt, defined by:

Mt = {ωmax, ..., ωφ|mmax
xt ({ωmax})−mφ

xt({ωφ}) ≤ ζ} (6.9)

where Mt ⊆ Ω, and ζ ∈ [0, 1] is a chosen threshold. With the viewpoint of evidence

theory, xt will be assigned in a new power-set 2|Mt| ⊆ 2Ω. From Eq. (6.9), we can

see that the clusters that are excluded under ζ are not in the possible solutions, for

example, the cluster {ωl} with mmax
xt ({ωmax})−ml

xt({ωl}) > ζ. That is, ζ can further

compress the assignment range, which can eliminate noise due to oversized K2. In this

case, the K2 neighbors only provide a small possibility of xt belonging to {ωl}, because

the neighbor xl is relatively far away from xt. After having the new power-set 2|Mt|,

these |Mt| evidence can be fused by a new set of fusion rules, defined by:

mMt(A) =



If A ∈Mt, A = {ωφ}, |A| = 1,

mφ
xt({ωφ}) ·

|Mt|∏
φ′ 6=φ,φ′=1

mφ′
xt({ωφ′})

If A ∈Mt, |A| ≥ 2, {ωφ} ∈ A,
|A|∏
φ=1

mφ
xt({ωφ}) ·

|Mt|∏
φ′=|A|+1

mφ′
xt({ωφ′})

If A = ∅,
|Mt|∏
φ′=1

mφ′
xt({ωφ′})

(6.10)
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where |·| represents the cardinality of the set. For example, if Mt= {ω1, ω2, ω3}, then

|Mt| = 3, and |Mt| ≤ Φ.

In Eq. (6.10), the mass of belief (i.e. BBA) that xt belongs to a cluster is the

continuous product of |Mt| values. More precisely, in the first part of Eq. (6.10), when

calculating the BBA of xt belonging to the singleton cluster {ωφ}, it considers not

only the BBA, i.e. mφ
xt({ωφ}), provided by neighbors belonging to {ωφ}, but also the

other |Mt| − 1 BBAs, e.g. mφ′
xt({ωφ′}), provided by other neighbors since they also

provide evidence that xt belongs to {ωφ}. Moreover, mφ′
xt({ωφ′}) can be regarded as

the ignorance, and it plays a neutral role in the fusion process. In the second part of

Eq. (6.10),

|A|∏
φ=1

mφ
xt({ωφ}) represents the partial conflict and this product characterizes

in fact the joint belief that the object simultaneously belongs to these |A| singleton

clusters. In contrast, for any BBA, i.e. mφ
xt({ωφ}), φ ∈ [1,Φ], if it is small, it indicates

that xt is far away from all the neighbors. In this case, we can obtain a largermφ′
xt({ωφ′})

and define

|Mt|∏
φ′=1

mφ′
xt({ωφ′}) as the BBA of xt belonging to the noise ∅, as shown in the

third part of Eq. (6.10). In fact, these conjunctive combinations are very similar to the

unnormalized DS rule, thus, we can normalize these combined BBAs before making a

final decision.

6.3.3 The involved parameters

In this new DPEC method, the parameters K1 in Eq. (6.3), K2 in Eq. (6.8), and

the threshold ζ in Eq. (6.9) should be tuned in applications. (i) The parameter K1

plays a critical role on determining the distribution of objects in the decision graph,

and we give a simple suggestion to increase K1 until it is possible to visually separate

some objects (i.e. clustering centers) from others. In most cases, the distribution of

cluster centers in the decision graph is robust to K1. It has been discussed in detail

in (Su and Denœux, 2018); (ii) Similar to KNN-based classifiers, K2 is an open value.

The principle of selecting K2 is not to be too large or too small, because the choice

of extremes may introduce noise. Interestingly, the DPEC is not too sensitive to the

change of K2. (iii) The threshold ζ controls the number of objects assigned to meta-

clusters, adjusted by users according to the acceptable imprecision rate. In fact, ζ is

an interesting threshold since it allows DPEC to degrade to the DPC algorithm.

(1) The DPC algorithm: We have a classical DPC algorithm with ζ = 0 because

it only needs to consider the cluster information of the nearest neighbor. That is, xt

will be assigned to the cluster ωmax, which is essentially the same as the convergence

mechanism of DPC.

(2) The DPEC algorithm: We have the DPEC algorithm with ζ ∈ (0, 1]. In this

case, xt may be assigned to meta-clusters to represent imprecision if it is distributed
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in the middle or overlapping region of different singleton clusters. And if ζ = 1, all

clusters contained in the K2 neighbors are potential solutions.

6.4 Experiments

6.4.1 Performance evaluation

Three experiments have been conducted to test and evaluate the performances of the

proposed DPEC method with respect to DPC (Rodriguez and Laio, 2014), MC (Liang

et al., 2012), CDPC (Zhang et al., 2016), ECM (Denœux, 2008b), MS-type (Yamasaki

and Tanaka, 2019), BPEC (Su and Denœux, 2018), DPC-DBFN (Lotfi et al., 2020) and

TCASP (Pizzagalli et al., 2019). Among them, DPC and its improved methods, i.e.

CDPC, BPEC, DPC-DBFN, TCASP, are the benchmark references; MC, ECM and

BPEC are representatives of partition-based methods; DPC and MS-type are classical

density-based methods; ECM and BPEC are pioneering techniques under evidence

theory. Besides, Subsection 6.4.2 is employed to illustrate the uses of DPEC and the

limitations of comparison methods based on eight synthetic data with arbitrary shapes

and sizes. Subsections 6.4.3 and 6.4.4 are used to demonstrate the potential of DPEC

for image classification and segmentation based on face and natural data, respectively.

Moreover, since the DPEC method is proposed under the TBF and introduces

the notion of meta-cluster to represent imprecision, some common evaluation criteria

and their evidential versions are employed to quantify the performances of different

methods. They are error rate (Re), imprecision rate (Ri), Precision (P ), Recall (R),

Rand Index (RI), Evidential Precision (EP), Evidential Recall (ER) and Evidential

Rand Index (ERI). If interesting, see (Liu et al., 2015; Zhou et al., 2015c; Rand, 1971).

For evidential clustering, we can employ pignistic probabilities, defined in Eq. (2.8),

to make the clustering results crisp. Note that when comparing the closeness of crisp

partition to the ground truth, the EP , ER and ERI equal to traditional P , R and RI,

respectively. The upper bound of these criteria is 1. Except for Re and Ri, a larger

value corresponds to a better clustering performance.

6.4.2 Synthetic data

In this experiment, we conduct 8 clustering tasks to validate the effectiveness of DPEC

with K1 = 0.06N , K2 = 9, ζ = 0.1. The original datasets and the corresponding results

by DPEC are shown in Fig. 6.1. The clustering results of comparison methods and the

corresponding hyper-parameters are presented in Appendix (A). Table. 6.1 reports

the clustering results of different methods on the given evaluation indexes. We can

see that the distributions of these eight datasets are diverse, where some classes are

arbitrary shapes and sizes. Based on the clustering results of different methods, some

limitations of comparison methods can be discussed as follows.
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Fig. 6.1. Clustering results by DPEC on the eight synthetic datasets.
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Table 6.1: Clustering results of different methods on the eight synthetic datasets

Datasets Methods Re Ri P R RI EP ER ERI

SD1

DPC 0.0085 \ 0.9819 0.9822 0.9938 0.9819 0.9822 0.9938
MC 0.1012 \ 0.8310 0.8227 0.9408 0.8310 0.8227 0.9408

CDPC 0.2556 \ 0.6967 0.6944 0.8956 0.6967 0.6944 0.8956
ECM 0.1075 0.0031 0.8263 0.8091 0.9380 0.8263 0.8091 0.9380

MS-type 0.1138 \ 0.7783 0.8654 0.9346 0.7783 0.8654 0.9346
BPEC 0.0836 0.0695 0.8332 0.8458 0.9444 0.8755 0.8504 0.9509

DPC-DBFN 0.0343 0.0000 0.9315 0.9469 0.9789 0.9315 0.9469 0.9789
TCASP 0.0346 \ 0.9397 0.9464 0.9804 0.9397 0.9464 0.9804
DPEC 0.0000 0.0160 0.9849 0.9850 0.9948 1.0000 1.0000 1.0000

SD2

DPC 0.0107 \ 0.9834 0.9780 0.9948 0.9834 0.9780 0.9948
MC 0.1578 \ 0.8474 0.8537 0.9594 0.8474 0.8537 0.9594

CDPC 0.3387 \ 0.6937 0.6534 0.9140 0.6937 0.6534 0.9140
ECM 0.1703 0.0086 0.8572 0.7553 0.9498 0.8671 0.7655 0.9524

MS-type 0.0206 \ 0.9673 0.9605 0.9903 0.9673 0.9605 0.9903
BPEC 0.0335 0.1669 0.7583 0.7963 0.9381 0.9435 0.9216 0.9813

DPC-DBFN 0.0246 0.0001 0.9564 0.9490 0.9872 0.9564 0.9490 0.9872
TCASP 0.0115 \ 0.9800 0.9798 0.9946 0.9800 0.9798 0.9946
DPEC 0.0059 0.0186 0.9818 0.9801 0.9948 0.9899 0.9879 0.9970

SD3

DPC 0.0160 \ 0.9683 0.9684 0.9684 0.9683 0.9684 0.9684
MC 0.0532 \ 0.8991 0.8992 0.8992 0.8991 0.8992 0.8992

CDPC 0.0481 \ 0.9072 0.9094 0.9083 0.9072 0.9094 0.9083
ECM 0.0532 0.0000 0.8991 0.8992 0.8992 0.8991 0.8992 0.8992

MS-type 0.1474 \ 0.7328 0.7809 0.7483 0.7328 0.7809 0.7483
BPEC 0.1545 0.0000 0.7193 0.7815 0.7385 0.7193 0.7815 0.7385

DPC-DBFN 0.0532 0.0000 0.8991 0.8992 0.8992 0.8991 0.8992 0.8992
TCASP 0.0160 \ 0.9683 0.9684 0.9684 0.9683 0.9684 0.9684
DPEC 0.0010 0.0231 0.9703 0.9703 0.9703 0.9980 0.9979 0.9979

SD4

DPC 0.0320 \ 0.9168 0.9492 0.9696 0.9168 0.9492 0.9696
MC 0.1887 \ 0.6994 0.6970 0.8663 0.6994 0.6970 0.8663

CDPC 0.3487 \ 0.5513 0.5379 0.8003 0.5513 0.5379 0.8003
ECM 0.0330 0.0020 0.9188 0.9332 0.9669 0.9219 0.9399 0.9690

MS-type 0.0450 \ 0.8915 0.9221 0.9578 0.8915 0.9221 0.9578
BPEC 0.0527 0.1053 0.9066 0.8759 0.9524 0.8454 0.9128 0.9442

DPC-DBFN 0.0553 0.0120 0.8434 0.9210 0.9445 0.8424 0.9220 0.9441
TCASP 0.1640 \ 0.5889 0.8118 0.8324 0.5889 0.8118 0.8324
DPEC 0.0177 0.0303 0.9237 0.9505 0.9716 0.9546 0.9697 0.9830

SD5

DPC 0.0343 \ 0.9333 0.9340 0.9337 0.9333 0.9340 0.9337
MC 0.0414 \ 0.9182 0.9234 0.9206 0.9182 0.9234 0.9206

CDPC 0.2886 \ 0.5671 0.7491 0.5890 0.5671 0.7491 0.5890
ECM 0.0404 0.0010 0.9182 0.9234 0.9206 0.9199 0.9252 0.9224

MS-type 0.0363 \ 0.9273 0.9328 0.9299 0.9273 0.9328 0.9299
BPEC 0.0494 0.0182 0.8976 0.9080 0.9023 0.8998 0.9096 0.9043

DPC-DBFN 0.0525 0.0000 0.8956 0.9064 0.9005 0.8956 0.9064 0.9005
TCASP 0.0172 \ 0.9661 0.9663 0.9662 0.9661 0.9663 0.9662
DPEC 0.0071 0.0161 0.9721 0.9721 0.9721 0.9857 0.9857 0.9857

SD6

DPC 0.0056 \ 0.9885 0.9929 0.9933 0.9885 0.9929 0.9933
MC 0.0056 \ 0.9876 0.9939 0.9933 0.9876 0.9939 0.9933

CDPC 0.0313 \ 0.9330 0.9692 0.9639 0.9330 0.9692 0.9639
ECM 0.0064 0.0000 0.9858 0.9930 0.9924 0.9858 0.9930 0.9924

MS-type 0.0754 \ 0.8423 0.9106 0.9066 0.8423 0.9106 0.9066
BPEC 0.0048 0.0225 0.9806 0.9905 0.9895 0.9891 0.9921 0.9931

DPC-DBFN 0.0192 0.0016 0.9581 0.9801 0.9775 0.9580 0.9800 0.9774
TCASP 0.0056 \ 0.9885 0.9929 0.9933 0.9885 0.9929 0.9933
DPEC 0.0016 0.0080 0.9894 0.9947 0.9943 0.9964 0.9982 0.9981

SD7

DPC 0.0284 \ 0.9564 0.9417 0.9775 0.9564 0.9417 0.9775
MC 0.1955 \ 0.7004 0.7035 0.8674 0.7004 0.7035 0.8674

CDPC 0.3762 \ 0.5363 0.5258 0.7938 0.5363 0.5258 0.7938
ECM 0.0595 0.0020 0.8990 0.8400 0.9435 0.9043 0.8482 0.9465

MS-type 0.1313 \ 0.7848 0.7111 0.8926 0.7848 0.7111 0.8926
BPEC 0.0731 0.1103 0.8444 0.7697 0.9174 0.8365 0.8554 0.9368

DPC-DBFN 0.0325 0.0000 0.9496 0.9226 0.9720 0.9496 0.9226 0.9720
TCASP 0.0237 \ 0.9643 0.9544 0.9820 0.9643 0.9544 0.9820
DPEC 0.0169 0.0142 0.9732 0.9642 0.9862 0.9737 0.9650 0.9864

SD8

DPC 0.0396 \ 0.9320 0.9408 0.9357 0.9320 0.9408 0.9357
MC 0.1423 \ 0.8786 0.6819 0.7927 0.8786 0.6819 0.7927

CDPC 0.5483 \ 0.5626 0.4407 0.5465 0.5626 0.4407 0.5465
ECM 0.1409 0.0020 0.8792 0.6831 0.7935 0.8792 0.6838 0.7941

MS-type 0.0624 \ 0.9490 0.8503 0.9018 0.9490 0.8503 0.9018
BPEC 0.1013 0.1389 0.8806 0.6836 0.7943 0.8825 0.7691 0.8487

DPC-DBFN 0.0879 0.0094 0.8182 0.9193 0.8567 0.8241 0.9208 0.8600
TCASP 0.0799 \ 0.8426 0.9250 0.8754 0.8426 0.9250 0.8754
DPEC 0.0255 0.0416 0.9487 0.9228 0.9360 0.9710 0.9422 0.9564
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As partition-based methods, MC, ECM, and BPEC are not able to detect non-

spherical clusters because they always assign the object to the nearest cluster center.

Thus, they do not work well when dealing with these clusters with arbitrary shapes and

sizes. However, since MC proposes representing a real class with multiple centers, it

can detect spherical data with imbalanced clusters. ECM and BPEC based on evidence

theory can characterize the imprecision between clusters but are still only applicable

to spherical data, although BPEC is an improved DPC method under the TBF.

DPC and its improved methods, i.e. CDPC, DPC-DBFN, TCASP, are often effec-

tive in detecting these clusters of arbitrary shapes and sizes. Moreover, they can detect

the structures of these clusters in most cases but do not characterize the imprecision of

objects in overlapping or middle regions. Furthermore, these objects often have char-

acteristics of different clusters, which can easily result in misclassification once they are

forced to be assigned. CDPC designs a relative distance and proposes a new density

measure based on the tree structure but sometimes does not find reasonable cluster

centers. See the results on these datasets. DPC-DBFN uses a density-based KNN

graph to label backbones to prevent the chain reaction. TCASP proposes to substitute

the local association rule of DPC with the solution of a global optimization problem on

a graph. Although DPC-DBFN, TCASP can find reasonable cluster centers in most

cases, the assignment of the remaining objects is unreasonable sometimes, especially

those prone to misclassification. For example, DPC-DBFN tries to assign true labels

to those objects located on the border regions based on the labeled backbones, but the

reliability of the backbones sometimes needs to be further evaluated. See the results

on the SD1, SD2, SD5 datasets. In addition, DPC-DBFN assigns some objects away

from the backbones as noise. Here we count them as imprecise objects for a fair com-

parison. BPEC argues that all objects in the neighbors of each object provide pieces of

evidence that induce belief on the possibility of such object becoming a cluster center.

This suggestion is inherited by DPEC. However, although BPEC can find reasonable

cluster centers in most cases, it still does not address the small relative density of one

real center object due to the diversity of data distribution. Besides, BPEC detects

cluster structures based on obtained centers and is still based on the objective function

strategy, a step backward of the DPC method. Thus, although it improves DPC under

evidence theory to characterize imprecision, the ability is limited in such a case.

Like the DPC method, MS-type, another branch (mean shift or mode seeking)

of density-based methods, can easily detect cluster structures of arbitrary shape and

size. However, it may produce irrational results when different clusters are very close

and have similar densities because assigning objects based on the number of visits

by different clusters may be unreasonable in this case. See the results on the SD1,

SD3, SD5 datasets. Moreover, MS-type may be more suitable for low-dimensional data

because objects are density-sensitive in the shifting process. Thus, the results are highly

dependent on the ability to measure density (distance). In addition, MS-type cannot
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reasonably characterize the imprecision between detected clusters of arbitrary shapes

and sizes. Therefore, it can only forcibly assign objects in overlapping or middle regions

to specific clusters based on the number of times the objects are visited.

The proposed DPEC method integrates the advantages of both DPC and evidence

theory by detecting clusters of arbitrary shapes and sizes and reasonably characterizing

the imprecision between these clusters. In DPEC, we redefine a distance-based density

function that strives to allow a real center object to have a more significant density

regardless of data distribution in different clusters. Thus DPEC can obtain more robust

center objects. In converging the remaining objects, the neighbors (including centers)

with cluster labels are employed as prior knowledge. Therefore, we present a new

evidential convergence rule to assign these objects one by one to different clusters. In

the process, some imprecise objects are converged to related meta-clusters to represent

imprecision. The results on these datasets can demonstrate the power of DPEC.

6.4.3 Olivetti Face data

In this experiment, we conduct a clustering task to evaluate the performance of DPEC

on high-dimensional datasets. The Olivetti faces dataset (Samaria and Harter, 1994)

is a database widely used in the field of machine learning, which includes the facial

images of 40 people, each of whom has 10 images with different angles. Five faces, i.e.

50 images, are employed to test. Furthermore, to reduce the complexity of storage and

computation, we reduce the dimensions to 6 by principal component analysis (PCA)

(Wold et al., 1987; Ke and Sukthankar, 2004). The faces with the same color belong

to the same class, i.e. the same person. Here we take r = 10 in MS-type, α = 1 and

δ = 8 in ECM, K = 5 in BPEC, K = 15 in DPC-DBFN, and K1 = 2, K2 = 4, ζ = 0.1

in DEPC, respectively. The other parameters of different methods are defaults.

(a) Olivetti face dataset. (b) DPEC.

Fig. 6.2. Clustering results by DPEC on the Olivetti faces dataset.

Fig. 6.2 shows the Olivetti faces dataset and the clustering result by DPEC. The

clustering results of comparison methods are included in Appendix (B). Table 6.2
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reports the clustering results of different methods on this real dataset. Based on these

results, we can find that the proposed DPEC method has potential in unsupervised

image classification. In Fig. 6.2, the real cluster centers are labeled with green rectan-

gles, and DPEC can find them correctly. Furthermore, we see that DPEC can cluster

the images of the first, the fourth, and the fifth person accurately. For some images

of the second and the third person, DPEC can cautiously assign these imprecision im-

ages, labeled with yellow and azure, to proper meta-clusters, respectively. Once these

imprecise images are assigned to meta-clusters, the current knowledge cannot classify

them exactly, and forcing the assignment only increases the risk of errors.

Table 6.2: Clustering results of different methods on the Olivetti face dataset

Dataset Methods Re Ri P R RI EP ER ERI

Olivetti
faces

DP 0.3000 \ 0.6667 0.8889 0.8980 0.6667 0.8889 0.8980
MC 0.3600 \ 0.5140 0.6533 0.8229 0.5140 0.6533 0.8229

CDPC 0.2600 \ 0.6715 0.8178 0.8931 0.6715 0.8178 0.8931
ECM 0.2200 0.0400 0.7544 0.7644 0.9110 0.6930 0.7198 0.8901

MS-type 0.2400 \ 0.6771 0.8667 0.8996 0.6771 0.8667 0.8996
BPEC 0.5600 0.0000 0.2047 0.6533 0.4702 0.2047 0.6533 0.4702

DPC-DBFN 0.3400 0.0000 0.5923 0.6844 0.8555 0.5923 0.6844 0.8555
TCASP 0.4200 \ 0.5486 0.7022 0.8392 0.5486 0.7022 0.8392
DPEC 0.1200 0.0800 0.7588 0.7689 0.9127 0.8438 0.8438 0.9420

In Table 6.2, the two indexes R and ER of DPC and MS-type are higher than those

of DPEC, but this does not indicate that they outperform DPEC. In the definitions

of R and ER, their values are higher when the number of image pairs simultaneously

assigned to the same clusters is higher. In fact, we can find that DPC and MS-type do

not separate the second and third person, which means a cluster is not detected at all.

Furthermore, we can find that the error rate (Re) of DPC and MS-type is much larger

than that of DPEC, so the classification performance of DPEC on the Olivetti faces

dataset is better than that of the comparison methods including DPC and MS-type.
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Fig. 6.3. Decision graphs of DPC, CDPC, and DPEC on the Olivetti face dataset.

Moreover, to illustrate the advantages of DPEC in selecting cluster centers, we draw

the decision graphs of DPC, CDPC, and DPEC based on the Olivetti faces dataset, as
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shown in Fig. 6.3. It is well known that whether an object xi is selected as a cluster

center or not is determined by its corresponding γi = ρiδi in DPC (γi = ρiθi in CDPC,

and γi = ρfδi in DPEC). So, if xi is a real cluster center, it is expected to have larger

ρi and δi values at the same time. We can see from Figs. 6.3(a),(b) that DPC and

CDPC don’t satisfy this case because they do not consider the distribution diversity

of different clusters when calculating the density ρi. Thus, for DPC and CDPC, the

real center object may also has a small ρi. Besides, the relative distance θ defined by

CDPC may not apply to this case either, as shown in Fig. 6.3(b), where some real center

objects do not have a relatively large θi value. As a result, the cluster centers selected

by DPC and CDPC are not reasonable, as shown in 7.10(b),(d). DPEC overcomes

these limitations. In DPEC, we define ρf = eδi because a real center object always has

a relatively large δi value while defining ρf as a function of δi has significantly better

robustness. In this case, we can find that the center objects in DPEC always have

larger ρf and δi values, i.e. larger γi = ρfδi values, as shown in Fig. 6.3(c). This helps

us to find the real center objects. Overall, the proposed DPEC can obtain more robust

cluster centers, as shown in Fig. 6.2(b) and Fig. 6.3(c).

6.4.4 Natural data

In the experiment, we conduct a clustering task to evaluate the performance of DPEC

in image segmentation on a natural image, i.e. Berkeley Segmentation (BS) dataset

(Martin et al., 2001). The BS dataset is composed of bird and background, the reso-

lution ratio of wihch is 182× 134, as shown in Fig. 6.4(a). Besides, Fig. 6.4 shows the

ground truth. Here we take r = 0.5 in MS-type, α = 5 and δ = 5 in ECM, K = 250 in

BPEC, K = 250 in DPC-DBFN and K1 = 800, K2 = 12, ζ = 0.1 in DPEC. The other

parameters of different methods are defaults.

Table 6.3: Clustering results of different methods on the BS dataset

Dataset Methods Re Ri P R RI EP ER ERI

BS

DPC 0.0217 \ 0.9633 0.9834 0.9576 0.9633 0.9834 0.9576
MC 0.0208 \ 0.9673 0.9814 0.9593 0.9673 0.9814 0.9593

CDPC 0.0433 \ 0.9174 0.9829 0.9171 0.9174 0.9829 0.9171
ECM 0.0184 0.0044 0.9670 0.9816 0.9593 0.9695 0.9848 0.9637

MS-type 0.0211 \ 0.9627 0.9855 0.9587 0.9627 0.9855 0.9587
BPEC 0.0147 0.0128 0.9667 0.9823 0.9595 0.9755 0.9878 0.9707

DPC-DBFN 0.0163 0.0072 0.9667 0.9823 0.9595 0.9747 0.9847 0.9678
TCASP 0.0227 \ 0.9564 0.9885 0.9557 0.9564 0.9885 0.9557
DPEC 0.0049 0.0446 0.9786 0.9716 0.9611 0.9941 0.9932 0.9897

Figs. 6.4(c),(d) shows the clustering results by DPC and DPEC. The clustering

results of comparison methods are included in Appendix (C ). It is intuitive from

Fig. 6.4(a) that the tail of the first bird is not very different from the background

pixels, making it difficult to segment these parts accurately. However, the comparison

methods, i.e. DPC, MC, MS-type, DPC-DBFN, and TCASP, all incorrectly assign
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(a) BS dataset. (b) Ground truth.

(c) DPC. (d) DPEC.

Fig. 6.4. Clustering results by DPC and DPEC on the BS dataset.

the tail part of the bird to the background, as shown in Figs. 7.11(c),(d),(g),(i),(j). In

particular, CDPC can no longer detect the birds’ silhouettes, as shown in Figs. 7.11(e).

In this case, the methods based on the TBF, i.e. ECM, BPEC, DPEC, can characterize

this imprecision caused by the only small difference between the birds and background

(the local overlap of image pixel values) to reduce the risk of incorrect segmentation,

as shown in Fig. 6.4(d) and Figs. 7.11(f),(h). However, ECM and BPEC are objec-

tive function-based methods, so they can only partially characterize the imprecision

and incorrectly assign the bird’s tail part to the background. In contrast, DPEC can

reasonably assign indistinguishable pixels to the meta-cluster to reduce clustering er-

rors. Moreover, ζ can control the number of pixels assigned to the meta-cluster in the

DPEC method. Table 6.3 reports the clustering results of different methods on the

BS dataset. We can see that the error rate (Re) of the DPEC method is much lower

than that of comparison methods, and the evidential indexes, i.e. EP , ER, and ERI,

are significantly higher than that of comparison methods. This also indicates that it is

reasonable to assign those imprecise pixels to the meta-cluster.
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6.5 Discussions

6.5.1 Complexity analysis

Let us consider that there is a dataset X containing n objects under the FoD Ω =

{ω1, . . . , ωc}. The proposed DPEC method consists of two steps. In the first step, each

object should find K1 neighbors from X . The complexity of this process is O
(
n2
)
. In

the second step, there are n-c remaining objects. Each object should find K2 neigh-

bors from the already assigned objects. The complexity of this process is O

(
n−1∑
i=c

i

)
.

This can be simplified to O
(
n2
)

and the simplification process is presented in (6.11).

Therefore, the total computational complexity of DPEC is O
(
n2 + n2

)
= O

(
n2
)
.

O

(
n−1∑
i=c

i

)
= O (c+ (c+ 1) + . . .+ n− 1)

= O
(

(n+ c− 1)× (n− c)
2

)
= O

(
n2 − c2 − n+ c

2

)
= O

(
n2
)

(6.11)

Moreover, to compare the execution times of the different methods more visually,

Table 6.4 shows the execution time in seconds of DPEC and comparison methods on

the Olivetti face and Berkeley Segmentation datasets. We can see from Table 6.4 that

the execution time of DPEC is higher than MC, ECM, MS-type, BPEC, DPC-DBFN,

but lower than DPC, CDPC, TCASP, etc. This indicates that the proposed DPEC

method has a relative execution advantage over DPC and its improved algorithms.

However, DPEC is still time-consuming compared to traditional methods. The reason

is that finding neighbors based on the entire dataset is inefficient. Therefore, the

proposed DPEC method is more suitable for applications requiring high classification

accuracy and the ability to characterize imprecision between different clusters, while

efficient computation is not a vital requirement. In the future, we will try to combine

with other KNN techniques to reduce the reduction range and thus the computational

complexity.

6.5.2 Parametric sensitivity

There are three hyper-parametersK1, K2 and ζ involved in the proposed DPEC method.

In most cases, the number of nearest neighbors is considered an open problem and

needs to be determined based on the application. To verify the robustness of DPEC

to the number of nearest neighbors, we set K1 and K2 in {200, 250, 300, 350, 400} and

{3, 6, 9, 12, 15} to study the sensitivity of K1 and K2 on the SD1 dataset, respectively.
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Table 6.4: Execution time on the Berkeley Segmentation and Olivetti face datasets

Dataset Methods Time(s) Dataset Methods Time(s)

BS

DPC 235.8706

Olivetti faces

DPC 5.627320
MC 2.716033 MC 0.594996

CDPC 133.5187 CDPC 0.975217
ECM 4.325599 ECM 0.276391

MS-type 4.881048 MS-type 0.202248
BPEC 9.621040 BPEC 0.527620

DPC-DBFN 8.978732 DPC-DBFN 0.455501
TCASP 122.2539 TCASP 4.541309
DPEC 26.76184 DPEC 0.633895

In the experiments, K1 = 0.06n, K2 = 12, and ζ = 0.1 are the defaults. Afterward,

we also set ζ in {0, 0.03, 0.06, 0.09, 0.12} to study the imprecision of DPEC on the SD1

dataset. The clustering results of DPEC on the SD1 dataset is presented in Appendix

(D). Table 6.5 reports the evaluation criteria of DPEC with different K1, K2 and ζ on

the SD1 dataset. From these results, we can see that DPEC is robust to K1, which

is consistent with our previous analysis. For K2, it is used to assign the remaining

objects in the evidential convergence rule, so as K2 increases, we can find more and

more different clusters are included inMt. This means that local imprecision increases

as K2 increases, so the error rate Re decreases, and the imprecision rate Ri gradually

increases. However, too large K2 may introduce noise. Interestingly, DPEC is not too

sensitive to the change of K2 because DPEC controls Ri by adjusting ζ. We can find

that as ζ increases, more and more objects are assigned to meta-clusters, and thus

the imprecision rate increases while the error rate decreases. It indicates that ζ can

effectively control the number of objects assigned to meta-clusters. In particular, when

ζ = 0, no objects are assigned to meta-clusters, and then DPEC degenerates to the

DPC algorithm. At this point, each remaining object is assigned to a specific cluster

with a maximum mass of belief. Although this increases the risk of misclassification,

it is suitable for cases that do not allow imprecise results. Thus, ζ is adjusted by users

according to the acceptable imprecision rate.

6.5.3 Comparisons of proposed algorithms

To present the differences and connections of the three proposed algorithms, i.e. DEC,

BSC, DPEC, in this thesis more intuitively, we have done some experiments based

on four given datasets. The parameters of the proposed algorithms are set to the

defaults. Figs. 6.5-6.8 show the clustering results of DEC, BSC, DPEC on the given

four datasets, respectively. Since these algorithms are proposed to characterize the

uncertainty and imprecision between different clusters, we can find that the performance

of these algorithms on each dataset is different. Specifically, DEC is used to reduce the
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complexity of traditional evidential clustering. BSC aims to detect imbalanced clusters,

while DPEC can detect clusters with arbitrary shapes, sizes, and dimensionality.

More precisely, Fig. 6.5 shows the clustering results of DEC, BSC, and DPEC on

spherical clusters. We can find that the proposed algorithms effectively detect the

cluster structure and characterize the uncertainty and imprecision between spherical

clusters. Although BSC and DPEC deal with imbalanced and arbitrary clusters, re-

spectively, they can also deal with spherical clusters. It is important to note that DEC

performs more efficiently when dealing with spherical clusters.

Fig. 6.6 shows the clustering results of DEC, BSC, and DPEC on imbalanced clus-

ters. We can find that DEC cannot effectively detect these imbalanced clusters and,

subsequently, cannot characterize the uncertainty and imprecision between these clus-

ters. In contrast, BSC and DPEC can effectively detect these imbalanced clusters,

which is our motivation for proposing the BSC algorithm. DPEC, as the final general-

ization scheme, can naturally effectively detect the imbalanced clusters and characterize

the uncertainty and imprecision between these imbalanced clusters.

Fig 6.7 shows the clustering results of DEC, BSC, and DPEC on arbitrary clus-

ters, and we can find that neither DEC nor BSC can effectively detect these arbitrary

clusters. In contrast, DPEC can effectively detect arbitrary clusters and characterize

the uncertainty and imprecision between these arbitrary clusters, which is the desired

result. In summary, our proposed DEC, BSC, and DPEC can achieve the given results

and gradually generalize the constraints on clusters of shapes, sizes, and dimensional-

ity. In other words, this thesis provides alternatives for characterizing uncertainty and

imprecision between clusters, which is also verified on the real dataset, as shown in

Fig 6.8. Furthermore, we need to state that the proposed DEC, BSC, and DPEC can

control the number of imprecise objects in meta-clusters and the imprecision rate in

results. Therefore, users can set them in applications.

Table 6.5: Clustering results of DPEC with different K1, K2, and ζ on the SD1 dataset

Dataset Parameters Re Ri P R RI EP ER ERI

SD1

K1 = 200 0.0000 0.0179 0.9854 0.9855 0.9950 1.0000 1.0000 1.0000
K1 = 250 0.0000 0.0148 0.9858 0.9859 0.9951 1.0000 1.0000 1.0000
K1 = 300 0.0000 0.0148 0.9858 0.9859 0.9951 1.0000 1.0000 1.0000
K1 = 350 0.0000 0.0141 0.9854 0.9855 0.9950 1.0000 1.0000 1.0000
K1 = 400 0.0009 0.0340 0.9847 0.9850 0.9948 0.9981 0.9987 0.9994
K2 = 3 0.0041 0.0022 0.9904 0.9905 0.9967 0.9917 0.9918 0.9972
K2 = 6 0.0016 0.0104 0.9883 0.9884 0.9960 0.9968 0.9968 0.9989
K2 = 9 0.0000 0.0160 0.9849 0.9850 0.9948 1.0000 1.0000 1.0000
K2 = 12 0.0000 0.0179 0.9854 0.9855 0.9950 1.0000 1.0000 1.0000
K2 = 15 0.0000 0.0242 0.9854 0.9855 0.9950 1.0000 1.0000 1.0000
ζ = 0.00 0.0069 0.0000 0.9854 0.9855 0.9950 0.9854 0.9855 0.9950
ζ = 0.03 0.0003 0.0145 0.9854 0.9855 0.9950 0.9993 0.9993 0.9998
ζ = 0.06 0.0003 0.0170 0.9854 0.9855 0.9950 0.9993 0.9993 0.9998
ζ = 0.09 0.0000 0.0179 0.9854 0.9855 0.9950 1.0000 1.0000 1.0000
ζ = 0.12 0.0000 0.0220 0.9854 0.9855 0.9950 1.0000 1.0000 1.0000
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(c) BSC.
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(d) DPEC.

Fig. 6.5. Clustering results of 3-class of gaussian dataset by different methods.
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(d) DPEC.

Fig. 6.6. Clustering results of the SD4 dataset by different methods.
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(b) DEC.
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(c) BSC.
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(d) DPEC.

Fig. 6.7. Clustering results of the SD1 dataset by different methods.
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(a) Original dataset. (b) DEC.

(c) BSC. (d) DPEC.

Fig. 6.8. Clustering results of the BS dataset by different methods.
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6.6 Conclusion

In this chapter, we investigated a density peak-based evidence convergence (DPEC)

algorithm that works to detect clusters of arbitrary shapes and sizes and characterize

the uncertainty and imprecision between these clusters. We hope that the proposed

DPEC can generalize EC in different scenarios, and the proposed DPEC method con-

sists of two steps. First, we design a reasonable density function to obtain more robust

cluster centers. Second, we develop an evidential convergence rule to provide evidence

using the assigned objects to aid in assigning the remaining ones. DPEC can reason-

ably assign those imprecise objects between specific clusters to proper meta-clusters

to characterize the imprecision in the results. Doing so can greatly reduce the risk

of misclassification. The experimental results show that DPEC is powerful and has a

strong generalization ability. Moreover, we also analyzed the computational complexity

of DPEC and its sensitivity to involved parameters. In particular, the differences and

connections between DPEC and the previously proposed DEC and BSC. The results

also show that DPEC is very robust to these parameters. In addition, we argue that

DPEC can be degraded to the DPC algorithm if users do not retain imprecision in

results.
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7
Conclusion and future work

Abstract: In this chapter, we conclude all the contents of this thesis and present

some ideas for future work.

Contents
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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7.1 Conclusion

Clustering is a key process in different data mining applications and it offers many

potential benefits to a wide-range of fields including data mining, pattern recognition,

information retrieval, bioinformatics, and business intelligence. Different requirements

and challenges need to be taken into consideration in designing clustering algorithms

applied to different tasks. In this thesis, we focused our study on normalizing some

basics of evidential clustering (EC) and improving the ability of EC to characterize

uncertainty and imprecision between different clusters, especially for imbalanced or

clusters with arbitrary shapes and sizes.

With this objective structure in mind, we first normalized the concepts and defini-

tions related to EC and compared the differences and connections of the corresponding

clustering algorithms under different theories. Specifically, we first gave the concepts

and definitions of data (inputs), methods (models), and clusters (results) of EC, as

well as that of the other types (i.e. hard, fuzzy, possibilistic ones), based on different

theories (i.e. probability theory, fuzzy set theory, possibility theory, and the theory of

belief functions). According to these concepts and definitions, we analyzed the differ-

ences and connections between EC and other types and thus declared the advantages of

EC in characterizing uncertainty and imprecision between clusters. Afterward, we also

studied EC from the seminal to state-of-the-art methods in the context of data-based

inputs, resulting in a coherent and comprehensive survey to analyze these methods.

Based on the analysis of some representative techniques from different perspectives

(e.g. center, measure type, complexity), we provided a guiding scheme to help users

choose appropriate methods in their cases.

Moreover, three clustering methods, DEC, BSC, and DPEC were proposed. DEC

worked to reduce the computational complexity of traditional EC to extend appli-

cations, especially for big data. In DEC, an FCM-like objective function was first

employed and minimized to obtain the support levels of the real singletons (specific)

clusters to which the query objects belong. Then, the query object was initially adap-

tively assigned to the outlier, precise or imprecise one via a new rule based on the

conflicts between the different support levels. Each imprecise object was finally reas-

signed to the singleton clusters or related meta-cluster by partial credal redistribution

with the corresponding dynamic edited framework to reduce the computational bur-

den. The proposed DEC method can reduce the complexity to a level similar to that of

fuzzy and possibilistic clustering, which can effectively extend the applications of EC,

especially in big data. The effectiveness of the DEC method was tested by different

experiments with artificial and real datasets. However, traditional EC can only detect

symmetric spherical clusters, which is not the full form of data distribution.

Furthermore, we further proposed the BSC algorithm to detect non-spherical and

imbalanced clusters. In BSC, the query object was preliminarily assigned as the noise,
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precise, or imprecise one based on the notion of “belief shift”. Then, partial credal re-

distribution with dynamic cluster centers, to avoid the “uniform effect”, was established

to reassign imprecise objects to the singleton cluster or related meta-cluster. Once an

object was assigned to a meta-cluster, it indicated that the singleton clusters involved

in the meta-cluster cannot be distinguished because this object may be located in the

overlapping or intermediate areas of these singleton clusters. In this case, the BSC can

reasonably characterize the uncertainty and imprecision between imbalanced clusters.

The effectiveness of BSC had been validated on several synthetic and real datasets by

critically comparing with some related methods.

Finally, we presented a DPEC algorithm that can characterize the uncertainty and

imprecision between clusters of arbitrary sizes and shapes. In DPEC, We first con-

sidered that different neighbors can provide complementary evidence supporting the

object as a cluster center and redefined a distance-based density function to obtain

more robust cluster centers in the decision graph. Then, we presented a new eviden-

tial convergence rule to assign the remaining objects to different clusters. Similar to

BSC, the objects located in the overlapping or intermediate areas of different singleton

clusters were assigned to corresponding meta-clusters to characterize the uncertainty

and imprecision between these arbitrary clusters. The effectiveness of DPEC was also

validated by comparing with some typical techniques.

It can be found that our research is a process of continuous enhancement and

improvement based on previous works, and our goal is to propose a flexible EC under

the TBF to detect the structure of arbitrary clusters. A series of experiments have

shown that our proposed methods can achieve good results.

To conclude, our work on EC aims to improve clustering results by combining

EC with other classical methods, providing explanatory information to describe each

detected cluster, and characterizing uncertainty and imprecision between these clusters.

Based on our proposed algorithms in this thesis, the comparison of different methods

and the principles of selection can be updated, as shown in Table 7.1 and Fig. 7.1.

7.2 Future work

In this section, we try to develop some possible future works based on the current

work that we have already presented in this thesis. We are mostly interested in several

directions as below:

Characterization of overlapping cluster edges. Compared to traditional clus-

tering methods, the algorithms we proposed in this thesis are able to characterize the

uncertainty and imprecision between (arbitrary) overlapping clusters based on mass

functions as well as meta-clusters. However, by assigning imprecise objects to meta-

clusters, we also destroy the original distributions of overlapping clusters, i.e., the edges

of the clusters in the overlapping regions.
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Table 7.1: Comparisons of different evidential methods

Method Data
type

Center Measure
type

Cluster
number

Complexity Disadvantage

ECM Object Centroids Euclidean Known O(n2c) (1), (3), (4)

CCM Object Centroids Euclidean Known O(n2c) (1), (3), (4)

CECM Object Centroids Adaptive
metric

Known O(n2c) (1), (2), (3)

DEC Object Centroids Euclidean Known O(nc) (1), (4)

BPEC Object Medoids Euclidean Unknown O(n2 + n2c) (3), (4)

CBP-EKNN Object Medoids Euclidean Unknown O(n3) (3), (5)

EGMM Object Centroids Covariance
matrix

Known O(n2c) (1), (3)

BSC Object Centroids Euclidean Unknown O(n2) (3)

DPEC Object Medoids Euclidean Unknown O(n2) (3)

EVCLUS Relational / Dissimilarity
matrix

Known O(n2c2) (1), (3)

CEVCLUS Relational / Dissimilarity
matrix

Known O(n22c) (1), (2), (3),
(5)

k-CEVCLUS Relational / Dissimilarity
matrix

Known O(n2c) (1), (2), (5)

RECM Relational Centroids Euclidean Known O(nc2 +cn2) (1), (3), (4)

MECM Relational Medoids Euclidean Known O(n2c) (1), (3), (4)

EK-NNclus Relational / Dissimilarity
matrix

Unknown O(n22c) (3)

NN-EVCLUS Relational / Dissimilarity
matrix

Known O(n22c) (1), (2), (3)

ECMdd Relational Medoids Dissimilarity
matrix

Known O(cn2 +n2c) (1), (3), (4)

(1) The users need to know the number of clusters; (2) The users know some prior knowledge about the
objects/clusters; (3) The method has a high computational complexity; (4) This method is not applicable
to non-spherical symmetric data; (5) This method cannot detect partial ignorance (e.g. the meta-cluster
Aj) among singleton clusters, |Aj | ≥ 2, Aj ⊂ Ω.

Characterization of uncertainty and imprecision in missing data. The

causes of uncertainty and imprecision in (unsupervised) classification are diverse, such

as missing data. Some original well-distributed clusters/classes may have local over-

lapping due to missing values. We have conducted researches on this uncertainty and

imprecision between clusters/classes due to missing values (Zhang et al., 2021c,b,e).

However, it is not established a long-term effective mechanism to generally character-

ize the uncertainty and imprecision due to missing data in the modeling process and

results. Therefore, it is still a challenging task.
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Appendix

A: The results of comparison methods on the eight datasets

This part is complementary to Subsection 6.4.2. Some hyperparameters need to be

set in the comparison methods. In general, we use the defaults provided by comparison

methods. However, some parameters should be reset based on the datasets. Here we set

those parameters as feasible solutions when obtaining better results. Table 7.2 reports

some parameters that need to be reset in comparison methods. Figs. 7.2-7.9 shows the

results of comparison methods on the eight datasets. The analysis of these results has

been presented in the relevant experimental parts.

Table 7.2: Some given parameters in comparison methods

Datasets ECM MS-type BPEC DPC-DBFN

SD1 α = 8, δ = 8 r = 0.9 K = 250 K = 10

SD2 α = 8, δ = 8 r = 1.0 K = 250 K = 10

SD3 α = 8, δ = 8 r = 10 K = 250 K = 10

SD4 α = 8, δ = 8 r = 2.0 K = 250 K = 10

SD5 α = 8, δ = 8 r = 0.9 K = 250 K = 10

SD6 α = 8, δ = 8 r = 1.18 K = 250 K = 30

SD7 α = 8, δ = 8 r = 2.0 K = 250 K = 30

SD8 α = 8, δ = 8 r = 1.3 K = 250 K = 50

B: The results of comparison methods on the face dataset

This part is complementary to Subsection 6.4.3. Fig. 7.10 shows the results of

different methods on the Olivetti face dataset. From Fig. 7.10 we can find that DPC and

its improved methods, i.e., CDPC, BPEC, DPC-DBFN, TCASP, fail to select the five

real (best) cluster centers because they do not consider the diversity of distribution of

different clusters. DPC and DPC-DBFN find only four valid centers, and TCASP finds

only three. Moreover, the results of these methods are not reasonable. For example,

DPC, CDPC, and DPC-DBFN could not classify the second and third person, while

BPEC and TCASP could hardly classify these five person. For MC, ECM and MS-

type, they are unable to classify some images in two or more classes, and they even
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(c) MC.
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(d) CDPC.
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(e) ECM.
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(f) MS-type.
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(g) BPEC.
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(h) DPC-DBFN.
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(i) TCASP.

Fig. 7.2. Clustering results by comparison methods on the SD1 dataset.
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(b) DPC.
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(c) MC.
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(d) CDPC.
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(f) MS-type.
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Fig. 7.3. Clustering results by comparison methods on the SD2 dataset.
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Fig. 7.4. Clustering results by comparison methods on the SD3 dataset.

118



-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

(a) SD4.

-6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

Center

(b) DPC.

-6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

Center

(c) MC.

-6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

Center

(d) CDPC.

-4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

w
1,2

w
1,5

w
2,3

Center

(e) ECM.

-4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

Center

(f) MS-type.

-4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

w
1,2

w
1,3

w
1,5

w
2,3

w
2,4

w
3,4

w
3,5

w
4,5

?

Center

(g) BPEC.

-6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

?

Center

(h) DPC-DBFN.

-6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

w
1

w
2

w
3

w
4

w
5

Center

(i) TCASP.

Fig. 7.5. Clustering results by comparison methods on the SD4 dataset.
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Fig. 7.6. Clustering results by comparison methods on the SD5 dataset.
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Fig. 7.7. Clustering results by comparison methods on the SD6 dataset.
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Fig. 7.8. Clustering results by comparison methods on the SD7 dataset.
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Fig. 7.9. Clustering results by comparison methods on the SD8 dataset.
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assign images from different classes to one cluster. In contrast, the proposed DPEC

method is able to select the real/reasonable cluster centers and can assign most of the

images correctly. For those imprecise images, they are assigned to proper meta-clusters

by the evidential convergence rule. Thus, the proposed DPEC method can effectively

characterize the imprecision between clusters.

C: The results of comparison methods on the natural dataset

This part is complementary to Subsection 6.4.4. Fig. 7.11 shows the Berkeley

Segmentation dataset and the clustering results by different methods on the given

dataset.

D: The discussions of parametric sensitivity

This part is complementary to Subsection 6.5.2. Fig. 7.12 shows the clustering

results of DPEC on the SD1 dataset when we set K1 ∈ {200, 250, 300, 350, 400},
K2 = 12, and ζ = 0.1. In contrast, Fig. 7.13 shows the clustering results when

K2 ∈ {3, 6, 9, 12, 15} with K2 = 12 and ζ = 0.1. Fig. 7.14 is used to show how DPEC

can control the imprecision rate by assigning objects to meta-clusters when setting

ζ ∈ {0, 0.03, 0.06, 0.09, 0.12}. We can find that DPEC has good robustness to these

three hyper-parameters, i.e. K1, K2, and ζ.
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(a) Olivetti faces dataset. (b) DPC.

(c) MC. (d) CDPC.

(e) ECM. (f) MS-type.

(g) BPEC. (h) DPC-DBFN.

(i) TCASP. (j) DPEC.

Fig. 7.10. Clustering results by different methods on the Olivetti face dataset.
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(a) BS dataset. (b) Ground truth. (c) DPC.

(d) MC. (e) CDPC. (f) ECM.

(g) MS-type. (h) BPEC. (i) DPC-DBFN.

(j) TCASP. (k) DPEC.

Fig. 7.11. Clustering results by different methods on the BS dataset.
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(e) DPEC with K1 = 400.

Fig. 7.12. Clustering results by DPEC with different K1 on the SD1 dataset.
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Fig. 7.13. Clustering results by DPEC with different K2 on the SD1 dataset.

127



-2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

w
1

w
2

w
3

w
4

w
5

w
6

Center

(a) DPEC with ζ = 0.
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(b) DPEC with ζ = 0.03.

-2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

w
1

w
2

w
3

w
4

w
5

w
6

w
1,2

w
3,4

w
3,6

w
4,5

w
5,6

Center

(c) DPEC with ζ = 0.06.
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(d) DPEC with ζ = 0.09.
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Fig. 7.14. Clustering results by DPEC with different ζ on the SD1 dataset.
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Bessrour, M., Elouedi, Z., and Lefèvre, E. (2020). E-DBSCAN: An evidential ver-

sion of the DBSCAN method. In 2020 IEEE Symposium Series on Computational

Intelligence (SSCI), pages 3073–3080. IEEE.

Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms.

Springer Science & Business Media.

Bezdek, J. C., Ehrlich, R., and Full, W. (1984). FCM: The fuzzy c-means clustering

algorithm. Computers & geosciences, 10(2-3):191–203.

Bian, Z. K., Chung, F. L., and Wang, S. T. (2020). Fuzzy density peaks clustering.

IEEE Transactions on Fuzzy Systems.

Cheng, Y. Z. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(8):790–799.

Chuang, K. S., Tzeng, H. L., Chen, S., Wu, J., and Chen, T. J. (2006). Fuzzy c-means

clustering with spatial information for image segmentation. Computerized Medical

Imaging and Graphics, 30(1):9–15.

Coppi, R., DUrso, P., and Giordani, P. (2012). Fuzzy and possibilistic clustering for

fuzzy data. Computational Statistics & Data Analysis, 56(4):915–927.

Cottrell, M., Hammer, B., Hasenfuß, A., and Villmann, T. (2006). Batch and median

neural gas. Neural Networks, 19(6-7):762–771.

132



Dave, R. N. (1991). Characterization and detection of noise in clustering. Pattern

Recognition Letters, 12(11):657–664.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Compu-

tation, 6(2):182–197.

Dempster, A. P. (2008). Upper and lower probabilities induced by a multivalued map-

ping. In Classic works of the Dempster-Shafer theory of belief functions, pages 57–72.

Springer.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society:

Series B (Methodological), 39(1):1–22.

Denœux, T. (2008a). Conjunctive and disjunctive combination of belief functions in-

duced by nondistinct bodies of evidence. Artificial Intelligence, 172(2-3):234–264.

Denœux, T. (2008b). A k-nearest neighbor classification rule based on Dempster-Shafer

theory. In Classic works of the Dempster-Shafer theory of belief functions, pages 737–

760. Springer.

Denœux, T. (2011). Maximum likelihood estimation from uncertain data in the be-

lief function framework. IEEE Transactions on Knowledge and Data Engineering,

25(1):119–130.

Denœux, T. (2016). 40 years of Dempster-Shafer theory. International Journal of

Approximate Reasoning, 79(C):1–6.

Denœux, T. (2020a). Calibrated model-based evidential clustering using bootstrapping.

Information Sciences, 528:17–45.

Denœux, T. (2020b). NN-EVCLUS: Neural network-based evidential clustering. arXiv

preprint arXiv:2009.12795.

Denœux, T. and Kanjanatarakul, O. (2016). Evidential clustering: a review. In Inter-

national symposium on integrated uncertainty in knowledge modelling and decision

making, pages 24–35. Springer.

Denœux, T., Kanjanatarakul, O., and Sriboonchitta, S. (2015). EK-NNclus: a clus-

tering procedure based on the evidential k-nearest neighbor rule. Knowledge-Based

Systems, 88:57–69.

Denœux, T., Li, S. M., and Sriboonchitta, S. (2017). Evaluating and comparing soft

partitions: An approach based on Dempster–Shafer theory. IEEE Transactions on

Fuzzy Systems, 26(3):1231–1244.

133



Denœux, T. and Masson, M. (2003). Clustering of proximity data using belief functions.

In Intelligent Systems for Information Processing, pages 291–302. Elsevier.

Denœux, T. and Masson, M.-H. (2004). EVCLUS: evidential clustering of proximity

data. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

34(1):95–109.

Denoeux, T. and Masson, M.-H. (2004). Principal component analysis of fuzzy

data using autoassociative neural networks. IEEE Transactions on Fuzzy Systems,

12(3):336–349.

Dubois, D. and Prade, H. (1978). Operations on fuzzy numbers. International Journal

of systems science, 9(6):613–626.

Dubois, D. and Prade, H. (1988). Representation and combination of uncertainty with

belief functions and possibility measures. Computational intelligence, 4(3):244–264.

Dubois, D. and Prade, H. (2012). Possibility theory: an approach to computerized

processing of uncertainty. Springer Science & Business Media.

Durrett, R. (2019). Probability: theory and examples, volume 49. Cambridge University

Press.

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. W. (1996). A density-based algo-

rithm for discovering clusters in large spatial databases with noise. In Proceedings

of the Second International Conference on Knowledge Discovery and Data Mining,

volume 96, pages 226–231.

Fayyad, U. M., Piatetsky Shapiro, G., Smyth, P., and Uthurusamy, R. (1996). Ad-

vances in knowledge discovery and data mining. American Association for Artificial

Intelligence.

Filev, D., Georgieva, O., Angelov, P., and Kasabov, A. (2010). An extended version

of the Gustafson-Kessel algorithm for evolving data stream clustering. Evolving

intelligent systems: Methodology and applications, pages 273–300.
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Résumé

L’analyse par regroupement, également appelée apprentissage non supervisé, a été

largement utilisée comme outil d’analyse exploratoire des données dans de nombreux

domaines. Elle vise à diviser des données massives sans aucune information préalable

en groupes présentant des structures de données ou des structures physiques similaires.

Pour y parvenir, plusieurs stratégies de clustering ont été proposéées: des méthodes

de partitionnement, des méthodes hiérarchiques, des méthodes fondées sur des distri-

butions de probabilité, des méthodes spectrales, des méthodes fondées sur la densité,

des méthodes à base de grilles, et des méthodes fondées sur l’apprentissage automa-

tique telles que les réseaux de neurones. Cependant, la plupart de ces méthodes ne

peuvent pas caractériser en même temps l’incertitude et l’imprécision entre les clusters.

L’incertitude signifie que le processus d’affectation des objets à ces clusters peut être

incertain. L’imprécision signifie que les informations sur les objets distribués dans les

zones de chevauchement ou intermédiaires de différents groupes spécifiques peuvent être

imprécises ou ambiguës. Ces dernières années, le clustering crédibiliste (Evidential clus-

tering EC), fondé sur le concept de credal partition, a reçu beaucoup d’attention pour

sa capacité à traiter ce problème. Il hérite des avantages de la théorie des fonctions de

croyance (TBF) qui permet la modélisation des connaissances incertaines et imprécises.

Cependant, comme le clustering crédibiliste est encore au stade de développement, il

reste des problèmes tels que des concepts sous-jacents peu clairs, une complexité de

calcul élevée et l’incapacité de détecter des clusters déséquilibrés ou arbitraires, ce qui

limite les applications de la méthode EC.

Dans cette thèse, nous travaillons à proposer des schémas alternatifs pour résoudre

ces problèmes. L’objectif est de normaliser certaines bases de l’Evidential Clustering

(EC) et d’améliorer la capacité de l’EC à caractériser l’incertitude et l’imprécision

entre les clusters, en particulier pour les clusters déséquilibrés ou de forme et de taille

arbitraires. Plus précisément, quatre travaux sont mis en avant pour les traiter un par

un.

Nous commençons par une étude systématique des approches crédibilistes de clus-

tering. Dans ce travail, nous présentons les concepts et les définitions des données

(entrées), des méthodes (modèles) et des groupes (résultats) de l’EC, ainsi que ceux

des autres types (durs/flous/possibilistes), fondés sur différentes théories de lincertain

(théorie des probabilités, théorie des ensembles flous, théorie des possibilités et théorie

des fonctions de croyance). En effet, l’EC est considéré comme la version crédibiliste du

clustering dur, flou et possibiliste dans le cadre de la TBF. Ces concepts et définitions

expliquent pourquoi l’EC peut mieux caractériser l’incertitude et l’imprécision entre les

clusters. En outre, selon ces concepts et définitions, nous analysons les différences et les

connexions entre EC et les autres types et déclarons ainsi les avantages d’EC dans la car-

actérisation de l’incertitude et de l’imprécision entre les clusters. De plus, nous étudions
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l’EC depuis les méthodes séminales jusqu’aux méthodes de pointe dans le contexte des

entrées fondées sur les données, ce qui donne lieu à une étude cohérente et complète pour

analyser ces méthodes. Sur la base de l’analyse de certaines techniques représentatives

sous différents angles (centre, type de mesure, complexité), nous fournissons un schéma

directeur pour aider les utilisateurs à choisir les méthodes crédibilistes appropriées à

leur données et cas d’étude.

Ensuite, nous introduisons un algorithme de clustering dynamique (DEC) pour

résoudre le problème de la complexité de calcul élevée de l’EC traditionnel lors de la

caractérisation de l’incertitude et de l’imprécision entre les clusters. Dans l’algorithme

DEC, la plupart des objets de la requête sont considérés comme ayant des infor-

mations précises sur les clusters. Ainsi, une fonction objective de type FCM est

d’abord employée et minimisée pour obtenir les niveaux de soutien des clusters sin-

gletons (spécifiques) auxquels les objets de la requête appartiennent. Ensuite, l’objet

de la requête est initialement assigné de manière adaptative à l’objet aberrant, précis

ou imprécis, via une nouvelle règle fondée sur les conflits entre les différents niveaux

de support. Chaque objet imprécis est finalement réaffecté aux clusters singleton ou

aux méta-cluster apparentés par redistribution crédale partielle avec une approche dy-

namique correspondant pour réduire la charge de calcul. La méthode DEC proposée

peut réduire la complexité à un niveau similaire à celui du clustering flou/possibiliste,

ce qui étend l’application de l’EC aux données volumineuses. Nous analysons également

la complexité informatique de l’algorithme DEC proposé de manière théorique et ef-

fectuons une comparaison et une analyse détaillées avec la complexité informatique

des méthodes EC connexes. Nous démontrons par des expériences approfondies mises

en œuvre sur des ensembles de données artificielles et réelles que DEC peut obtenir

des résultats de regroupement similaires à ceux des méthodes EC classiques, mais

avec un temps d’exécution considérablement réduit. Cela démontre pleinement que

la méthode DEC proposée est efficace et adaptée à l’application aux regroupements de

données probantes. En outre, nous discutons également des paramètres impliqués dans

DEC et nous constatons que la conversion de DEC en EC classique et en partition

floue/possibiliste peut être réalisée en fixant les paramètres. En d’autres termes, la

méthode DEC est une méthode plus généralisée.

Ensuite, nous étendons l’EC pour détecter les clusters déséquilibrés (clusters de

tailles différentes) en combinant le déplacement de la moyenne avec l’EC traditionnel

sous le TBF, appelé belief shift clustering (BSC). Le BSC proposé contient princi-

palement deux caractéristiques. Premièrement, l’objet de la requête est préalablement

assigné comme étant le bruit, précis ou imprécis, en se fondant sur la notion de “change-

ment de croyance”. Deuxièmement, une redistribution crédale partielle avec des centres

de grappes dynamiques, pour éviter “l’effet uniforme” (pour les clusters déséquilibrées),

est établie pour réaffecter les objets imprécis à un singleton cluster ou à un méta-cluster

connexe. Une fois qu’un objet est assigné à un méta-cluster, cela indique que les clusters
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singletons déséquilibrés impliqués dans le méta-cluster ne peuvent pas être distingués

car cet objet peut être situé dans les zones de chevauchement ou intermédiaires de

ces clusters singletons déséquilibrés. En procédant ainsi, l’approche BSC proposée

peut raisonnablement caractériser l’incertitude et l’imprécision entre les clusters single-

tons déséquilibrés. Ensuite, nous démontrons l’efficacité de l’algorithme BSC proposé

sur la base de données synthétiques équilibrées/déséquilibrées ainsi que de données

réelles, notamment des données médicales et des données de visage. De nombreux

résultats expérimentaux montrent que le BSC proposé peut bien traiter non seulement

les données sphériques mais aussi les données déséquilibrées et caractériser l’incertitude

et l’imprécision entre les clusters. En outre, nous discutons également des paramètres

impliqués dans le BSC. Les expériences montrent que le BSC est robuste aux paramètres

et qu’il est capable de contrôler le taux d’imprécision d’une bonne manière, ce qui peut

être réglé en fonction de la situation réelle.

Pour éviter de perdre en généralité, nous étudions également la représentation de

l’incertitude et de l’imprécision entre les clusters, indépendamment de leur forme, de

leur taille et de leur dimensionnalité, sur la base des pics de densité et du TBF, appelé

algorithme de density peaks-based evidential convergence (DPEC). Tout d’abord, nous

considérons que différents voisins peuvent fournir des preuves complémentaires sou-

tenant l’objet comme centre de cluster et redéfinissons une fonction de densité fondée

sur la distance pour obtenir des centres de cluster plus robustes dans le graphe de

décision. Ensuite, nous présentons une nouvelle règle de convergence crédibiliste pour

affecter les objets restants à différents clusters. Enfin, comme dans le cas de lapproche

BSC, les objets situéés dans les zones de chevauchement ou intermédiaires de différents

clusters singletons arbitraires sont assignés aux méta-clusters correspondants pour car-

actériser l’incertitude et l’imprécision entre ces clusters arbitraires. De nombreuses

expériences ont montré que le DPEC proposé peut bien détecter des clusters arbi-

traires et caractériser l’incertitude et l’imprécision entre ces clusters. En outre, nous

analysons la complexité de calcul du DPEC proposé. Les expériences montrent que le

DPEC proposé a un temps d’exécution légèrement plus élevé que les autres algorithmes,

mais qu’il en vaut la peine, en particulier pour certaines décisions prudentes.

Par ailleurs, nous comparons également les algorithmes DEC, BSC et DPEC pro-

posés et analysons les différences et les liens entre eux. Comme ces algorithmes sont

proposés pour caractériser l’incertitude et l’imprécision entre les différents clusters,

leurs performances sont différentes. Plus précisément, DEC est utilisé pour réduire

la complexité du clustering crédibiliste traditionnel. BSC vise à détecter les clus-

ters déséquilibrés, tandis que DPEC peut détecter des clusters de formes, de tailles

et de dimensionnalités arbitraires. L’efficacité des algorithmes proposés est estimée

sur différents jeux de données artificielles et réelles. Les expériences montrent que les

algorithmes proposés améliorent effectivement l’efficacité d’exécution de l’EC tradition-

nel et détectent les clusters déséquilibrés ou arbitraires, et caractérisent l’incertitude
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et l’imprécision entre ces clusters. Plus précisément, les algorithmes DEC, BSC et

DPEC proposés sont tous efficaces pour détecter les clusters sphériques. En revanche,

BSC et DPEC peuvent détecter efficacement les clusters déséquilibrés, tandis que

DPEC peut détecter les clusters arbitraires. En d’autres termes, cette thèse est con-

sacrée à la généralisation des méthodes EC existantes afin de parvenir progressivement

à la détection de clusters généralisés et de caractériser efficacement l’incertitude et

l’imprécision entre les clusters. Cependant, cela ne signifie pas que la méthode DPEC

est utilisée dans tous les cas, qui doit être choisie par l’utilisateur en fonction des

exigences.

Ensuite, nous concluons cette thèse, notamment sur la base des algorithmes DEC,

BSC et DPEC proposés, nous fournissons des directives de base actualisées pour la

sélection de différentes méthodes crdibilistes, ce qui facilite grandement la sélection et

l’utilisation par l’utilisateur en fonction de cas spécifiques.

Enfin, nous discutons des travaux en perspective de cette thèse, qui consistent en

deux aspects principaux. Premièrement, par rapport aux méthodes traditionnelles de

clustering, les algorithmes que nous avons proposés dans cette thèse sont capables de

caractériser l’incertitude et l’imprécision entre des clusters (arbitraires) se chevauchant

fondés sur des fonctions de masse ainsi que des méta-clusters. Cependant, en assig-

nant des objets imprécis aux méta-clusters, nous détruisons également les distributions

originales des clusters qui se chevauchent, c’est-à-dire les bords des clusters dans les

régions de chevauchement. Deuxièmement, les causes d’incertitude et d’imprécision

dans la classification (non supervisée) sont diverses, comme les données manquantes.

Certains clusters/classes bien distribués à l’origine peuvent présenter un chevauche-

ment local en raison de valeurs manquantes. Nous avons mené des recherches sur

cette incertitude et cette imprécision entre les clusters/classes dues aux valeurs man-

quantes. Cependant, il n’existe pas de mécanisme efficace à long terme pour caractériser

généralement l’incertitude et l’imprécision dues aux données manquantes dans le proces-

sus de modélisation et les résultats. Par conséquent, il s’agit encore de tâches difficiles.

Nous proposerons des solutions alternatives dans nos travaux futurs.
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