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Introduction

The origins of knot theory, which is the main topic of this thesis, are probably to be found in the work of C. F. Gauss 1833 in electrodynamics. There, he defined the number of 'intertwinings' of two trajectories and showed how this number, that we call today the linking number, can be computed by a double integral. Several decades later two physicists, W. Thomson (lord Kelvin) and P. G. Tait, set the foundations of knot theory, see [START_REF] Silver | Knot theory's odd origins: The modern study of knots grew out an attempt by three 19th-century scottish physicists to apply knot theory to fundamental questions about the universe[END_REF]. The former proposed a model of matter in which atoms are represented by knot-shaped vortices, the type of the knot determining the atom's physico-chemical properties. To understand matter, it was therefore necessary to classify knots. This initiated the work undertaken by Tait. He provided the first attempt of a classification of knots with less than ten crossings. It was H. Poincaré at the end of the 19th century, who provided, the formal framework for the study of knots, with the development of algebraic topology [START_REF] Poincaré | Analysis situs[END_REF].

Knot theory has the advantage of being inspired by real-life objects. It is the study of knots as they are commonly understood: a piece of string tied in space. The two ends of the string are glued together, so that the resulting knot cannot in general be trivially untied. We then seek to understand the topology of the knot without worrying about its physical characteristics: length, strength, nature of the string, etc. More rigorously, a knot is defined as a smooth embedding of the circle in the threedimensional ball. The simplest knot of all, pictured in Figure 1, is just the unknotted circle, which we call the unknot or the trivial knot. The next simplest knot is called the trefoil knot, illustrated in Figure 2. Figure 2: The trefoil knot.

We typically consider and study knots up to several kind of deformations (see below), for which two questions naturally arise. If we give ourselves a knot, can we untie it? If we give ourselves two knots, are they equivalent up to deformation? To answer these questions, we use the notion of knot invariants. An invariant is a quantity (number, matrix, polynomial, etc.) associated to each knot, such that if two knots are equivalent, the associated quantities are the same. In practice, it is the contrapositive of this proposition that is used, i.e., if two knots do not have the same invariant, then these knots are not equivalent up to the considered type of deformation.

The first and main type of deformation considered by topologists is the notion of isotopy. We say that two knots are isotopic if they are related by an ambient isotopy of the three-ball. This transformation corresponds to manipulations that do not involve cutting or passing the string through itself. Figure 3 gives an illustration of an ambient isotopy of the unknot. To date, no isotopy knot ↔ ↔ ↔

Figure 3: Ambient isotopy untying a tangled unknot.

invariant is really satisfactory. They are generally incomplete in the sense that some non-isotopic knots have the same invariant values. This is definitely the case for well-known invariants such as the crossing number, the unknotting number, the genus, the Jones polynomial or the Alexander polynomial. For some others, whether or not they are complete remains an open question. It is for instance the case for the family of finite-type invariants. Finally, the fundamental group of the knot complement, when endowed with the peripheral structure, forms a complete invariant [START_REF] Waldhausen | On irreducible 3-manifolds which are sufficiently large[END_REF]; but this invariant is difficult to handle, and determining whether two groups are isomorphic is no easy matter either. Another equivalence relation that later interested knot theorists is concordance, initially defined in [START_REF] Fox | Singularities of 2-spheres in 4-space and cobordism of knots[END_REF]. Two knots are concordant if they co-bound a cylinder smoothly and properly embedded in B ˆr0,1s, with B the three-dimensional ball, each knot lying respectively in B ˆt0u and B ˆt1u. Isotopy implies concordance, it is therefore a more permissive notion, and a priori simpler to study. To illustrate our point, let us present the connected sum operation on knots (more precisely, we consider here oriented knots). Given two knots, we define their connected sum by removing a small arc from each knot and then connecting the four endpoints two by two as in Figure 4. We stress that the Figure 4: The connected sum of two trefoil knots. connected sum endows the set of knots up to concordance with an abelian group structure, whereas up to isotopy we only obtain an abelian monoid. However, concordance is still very hard to study, and is still poorly understood. In fact, we do not even know how to determine whether a knot is trivial up to concordance, a property that qualifies it as slice knot. This question is the subject of R. H. Fox's famous ribbon/slice conjecture [START_REF] Fox | Some problems in knot theory[END_REF]. This conjecture arose from the observation that any ribbon knot, i.e., a knot bounding an immersed disk that admits only ribbon singularities, is always concordant to the trivial knot.

Finally, let us consider link-homotopy, another type of deformation central to our study. It is a more permissive equivalence relation than the previous two, in the sense that concordance (and therefore isotopy) implies link-homotopy. Link-homotopy was first studied in 1954 by J. W. Milnor in [START_REF] Milnor | Link groups[END_REF]. It is an equivalence relation on links (embedding of several circles, called components), that allows continuous deformations during which two distinct components remain disjoint at all times, but each component may self-intersect. We give in Figure 5 an example of a link-homotopy; the first deformation in the figure is a self-crossing change, a local move that generates link-homotopy. Any

↔ ↔ ↔

Figure 5: The Whitehead link is trivial up to link-homotopy.

knot is link-homotopic to the trivial one, but for links with more than one component this equivalence relation turns out to be quite rich and intricate. Since J. W. Milnor's seminal work, link-homotopy has been the subject of numerous works in knot theory see e.g., [START_REF] Goldsmith | Homotopy of braids -in answer to a question of E. Artin[END_REF][START_REF] Levine | An approach to homotopy classification of links[END_REF][START_REF] Orr | Homotopy invariants of links[END_REF][START_REF] Habegger | The classification of links up to link-homotopy[END_REF], but also more generally in the study of co-dimension 2 embeddings (and in particular knotted surfaces in dimension 4) [MR85, BT99, AMW17] and link-maps (self-immersed spheres) [START_REF] Fenn | Spheres may link homotopically in 4-space[END_REF][START_REF] Kirk | Link maps in the four sphere. Differential topology[END_REF][START_REF] Koschorke | On link maps and their homotopy classification[END_REF][START_REF] Schneiderman | The group of disjoint 2-spheres in 4-space[END_REF]. In this manuscript, we are interested in the study of link-homotopy for various objects of low-dimensional topology: braids and links in the classical and welded cases. We will also investigate the notion of link-homotopy for homology cobordisms.

The following paragraphs provide an overview of our work and its historical context. The content of the thesis will be briefly outlined, along with the main results. Then, at the end of this introduction, the precise structure of the various chapters will be presented.

Braids are ubiquitous objects that can be considered and defined from several points of view. We recall here their geometrical definition due to E. Artin in [START_REF] Artin | Theorie der zopfe[END_REF]. Let us take a 2-dimensional disk D and let us also take n aligned points p 1 , . . . , p n in the interior of D. An n-strand braid β " pβ 1 , . . . , β n q is a smooth and proper embedding: pβ 1 , . . . , β n q : ğ n r0,1s Ñ D ˆr0,1s satisfying two conditions. Firstly, there exists an n-permutation π, such that for any integer i, the endpoints satisfy β i p0q " pp i ,0q and β i p1q " pp πpiq ,1q. Secondly, for any t P r0,1s, the slice D ˆttu intersects β in exactly n points, see Figure 6. A braid is said to be pure if its associated permutation π is the identity.

E. Artin's work focused mainly on braids up to isotopy (note that, in the context of braids, the ambient isotopies are required to fix the boundary). In [START_REF] Artin | Theory of braids[END_REF], he describes precisely the braid group. This is the group obtained by endowing the set of braids up to isotopy with the braid composition, an operation illustrated in Figure 7 which consists in stacking braids on top of each other. In addition, he shows that the braid group acts faithfully on the fundamental group of the punctured disk Dztp 1 , ¨¨¨,p n u. From this action stems a representation, known as the Artin representation. This representation has since been declined in various settings and is still being studied today. Finally, E. Artin in [START_REF] Artin | Theory of braids[END_REF] was the first author to mention the notion of link-homotopy in the context of braids. He raises the question of whether the notions of isotopy and link-homotopy of braids are different.

In [START_REF] Goldsmith | Homotopy of braids -in answer to a question of E. Artin[END_REF] D. L. Goldsmith answers the question, giving an example of a non-trivial braid up to isotopy that is trivial up to link-homotopy, see Figure 8. She also gives a presentation of the homotopy braid group, i.e., the group of braids up to link-homotopy with braid composition, which appears as a quotient of the classical braid group.
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Figure 8: D. L. Goldsmith's example of a braid that is trivial up to link-homotopy, but non-trivial up to isotopy.

Motivated by the 'torsion problem' (see below), S. P. Humphries further pursued the study of braids up to link-homotopy. He defined in [START_REF] Humphries | Torsion-free quotients of braid groups[END_REF] a linear representation of the homotopy braid group. However, this representation is not faithful. In contrast, we obtain the following.

Theorem A. There exists a faithful linear representation of the homotopy braid group for any number of strands.

We give the detailed definition in Section 2.3; roughly speaking, this representation can be thought of as the 'linearization' of the Artin representation.

Let us state now the torsion problem.

The torsion problem. Is there torsion in the homotopy braid group?

This problem was first investigated by S. P. Humphries, who showed in [START_REF] Humphries | Torsion-free quotients of braid groups[END_REF] that for less than 6 strands, the homotopy braid group is torsion-free. The torsion problem also appears in [START_REF] Bardakov | On homotopy braids[END_REF], where the authors mention the more general question of V. Lin, formulated in [START_REF] Lin | Braids, permutations, polynomials[END_REF] and taken up in the Kourovka notebook [START_REF] Mazurov | The Kourovka notebook. Unsolved problems in group theory[END_REF]: 'Is there a non-trivial epimorphism of the braid group onto a non-abelian group without torsion?'. P. Linnell and T. Schick in [START_REF] Linnell | Finite group extensions and the Atiyah conjecture[END_REF] provide a complete solution by showing that the braid group is residually torsion-free nilpotent-by-finite, hence in particular has plenty of non-trivial torsion-free quotients. However, they only give an existence proof, and explicit examples are not known for more than 6 strands. Our second main result on the homotopy braid group solves the torsion problem: Theorem B. The homotopy braid group is torsion-free for any number of strands.

We tackle this problem in two stages. We first prove a weak version, by showing that the homotopy braid group is torsion-free for 10 strands or less, using purely classical techniques of braid theory. We then extend this result, proving the statement for any numbers of strands, by using the broader context of welded braids (see below). Interestingly, both proofs are based on similar techniques. However, if we restrict ourselves to the case of classical braids, we obtain only a partial result (namely the above weak version). Hence, Theorem B can be seen as one of the few known topological application of the welded (and virtual) knot theory; see for instance [START_REF] Goussarov | Finite type invariants of virtual and classical knots[END_REF][START_REF] Audoux | Homotopy classification of ribbon tubes and welded string links[END_REF][START_REF] Audoux | Characterization of the reduced peripheral system of links[END_REF][START_REF] Meilhan | Link concordances as surfaces in 4-space and the 4-dimensional milnor invariants[END_REF].

Furthermore, as a corollary of Theorem B, we obtain that the braid group is torsion-free for any number of strands (Corollary 4.3.10). This is a well-known fact due to Fadell and Neuwirth in [START_REF] Fadell | Configuration spaces[END_REF]Theorem 8]. Another classical proof of this result is based on a stronger property, shown by P. Dehornoy in [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF], which states that braid groups are left-orderable. The property of leftorderability for the homotopy braid group is not known to this day and constitutes an interesting open question, as discussed in Remark 4.3.11.

Finally, the pure homotopy braid group has been studied by N. Habegger and X.-S. Lin in [HL90] as an intermediate object for the classification of links up to link-homotopy. They use the notion of reduced free group, which is the quotient of the free group in which each generator commutes with any of its conjugates, a notion due to Milnor [START_REF] Milnor | Link groups[END_REF].

We next address the problem initially posed by J. W. Milnor in [START_REF] Milnor | Link groups[END_REF], of classifying links in the 3-sphere up to link-homotopy. J. W. Milnor himself answered the question for the 2 and 3-component cases. Furthermore, N. Habegger and X.-S. Lin [START_REF] Habegger | The classification of links up to link-homotopy[END_REF] proposed a complete classification, using a subtle algebraic equivalence relation on pure braids, where two equivalent braids correspond to linkhomotopic links. This classification result remains however somewhat non-effective, owing to this intricate equivalence relation involved. A more direct algebraic approach had been proposed by J. Levine [START_REF] Levine | An approach to homotopy classification of links[END_REF] just before the work of N. Habegger and X.-S. Lin in the 4-component case. Our main result concerning links is a new geometric proof of J. Levine's classification of 4-component links up to link-homotopy. Concretely, this accounts to make completely explicit, in a geometric way, the algebraic ingredients used in Habegger-Lin's work, thus providing an effective classification result. This also provides a geometric interpretation of Levine's work. The result can be roughly formulated as follows, see Theorem 3.2.3 for a precise statement.

Theorem C. There is a complete classification of links up to link-homotopy for less than 4 components, by computable numerical invariant.

Our approach seems to apply, at least in principle, to links with a higher number of components; we illustrate this with the case of algebraically-split 5-component links (that is, 5-component links with vanishing linking numbers). As a matter of fact, the general 5-component case has since been treated independently using our approach by Y. Kotorii and A. Mizusawa in [START_REF] Kotorii | Clasper presentations of Habegger-Lin's action on string links[END_REF]. The central tool for our geometric proof is the theory of claspers.

The notion of claspers was developed by K. Habiro in [START_REF] Habiro | Claspers and finite type invariants of links[END_REF], and independently by M. Goussarov in [START_REF] Goussarov | Finite type invariants and n-equivalence of 3-manifolds[END_REF][START_REF] Goussarov | Geometric techniques of n-equivalence[END_REF] in the context of three-manifolds. These are thickened graphs in three-manifolds with some additional structure, on which surgery operations can be performed. They can be use effectively to study knotted objects and their invariants; see for example [START_REF] Habiro | Claspers and finite type invariants of links[END_REF][START_REF] Yasuhara | Self delta-equivalence for links whose Milnor's isotopy invariants vanish[END_REF][START_REF] Meilhan | Milnor invariants and the HOMFLYPT polynomial[END_REF]. In [START_REF] Habiro | Claspers and finite type invariants of links[END_REF], K. Habiro describes the clasper calculus up to isotopy, which is a set of geometric operations on claspers that yield isotopic surgery results. In particular, he showed the close relationship between claspers and the theory of finite type invariants (also known as Vassiliev invariant). It is well known to experts how clasper calculus can be refined for the study of knotted objects up to link-homotopy (see for example [START_REF] Fleming | Milnor's invariants and self C k -equivalence[END_REF][START_REF] Yasuhara | Self delta-equivalence for links whose Milnor's isotopy invariants vanish[END_REF]). This homotopy clasper calculus, which we review in Section 1.1.2, is a central tool in our work on both links and braids.

Other important objects of this thesis are welded braids. Roughly speaking, welded braids are generalized braid diagrams, where virtual crossing are allowed in addition to the classical ones, regarded up to certain local deformations generalizing the usual Reidemeister moves. An example of a welded braid is given in Figure 9, where virtual crossings are represented by transverse double points. As with classical braids, welded braids can be endowed with a group structure, resulting in the welded braid group, which was first introduced by R. Fenn, R. Rim'anyi, and C. Rourke, in [START_REF] Fenn | The braid-permutation group[END_REF]. This group turns out to have several equivalent definitions, of rather different natures, and appears in various contexts under different names. A. G. Savushkina defines it in terms of automorphism of the free group in [START_REF] Savushkina | On the group of conjugating automorphisms of a free group[END_REF]; the pure welded braid group appears as the so-called McCool group in this setting [START_REF] Mccool | On basis-conjugating automorphisms of free groups[END_REF]. Other authors define it in terms of motion group of circles: J. C. Baez, D. K. Wise, and A. S. Crans [START_REF] Baez | Exotic statistics for strings in 4d BF theory[END_REF] call it loop braid group, while in [START_REF] Brendle | Configuration spaces of rings and wickets[END_REF], T. E. Brendle and A. Hatcher call it the group of untwisted rings. Finally, welded braids can also be seen as certain cylinders properly embedded in the four-dimensional ball, see for instance [START_REF] Audoux | Homotopy classification of ribbon tubes and welded string links[END_REF]. We will not discuss here these different points of view, but we refer the reader to C. Damiani's survey [START_REF] Damiani | A journey through loop braid groups[END_REF] for more details. We shall rather focus on the notion of link-homotopy for virtual and welded objects in this context.

H. A. Dye and L. H. Kauffman in [START_REF] Dye | Virtual homotopy[END_REF] gave a first definition of link-homotopy for virtual objects in terms of self-crossing change, which proves somewhat unsatisfactory (for example, virtual knots are not always trivial up to self-crossing change). Subsequently, B. Audoux, P. Bellingeri, J.-B. Meilhan and E. Wagner in [START_REF] Audoux | Homotopy classification of ribbon tubes and welded string links[END_REF] and [START_REF] Audoux | On usual, virtual and welded knotted objects up to homotopy[END_REF] defined what appears to be the correct notion of linkhomotopy in the welded context in terms of self-virtualization. The authors, in light of N. Habegger and X.-S. Lin [START_REF] Habegger | The classification of links up to link-homotopy[END_REF], give a correspondence between pure welded braids up to link-homotopy and conjugating automorphisms of the reduced free group. These results have been then extended by J. Darné in [START_REF] Darné | Milnor invariants of braids and welded braids up to homotopy[END_REF], who gave a presentation of the pure welded braid group up to link-homotopy. Based on this presentation and using the technology of arrow calculus, we obtain new presentations of welded braid groups up to link-homotopy. Here, the notion of arrow calculus, developed by J.-B. Meilhan and A. Yasuhara in [START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF], is the analogue of claspers calculus in the welded framework. We also use it to extend our linear representation of Theorem A to the homotopy welded braid group. Finally, we return to the torsion problem from the welded point of view. We show that the homotopy braid group is torsion-free for any number of strands (Theorem B), thus giving an explicit solution to V. Lin's question.

The last objects discussed in this manuscript are homology cobordisms. These are 3-dimensional manifolds that co-bound a surface and induce isomorphisms at the homology level. In the early 2000s, M. Goussarov in [Gou99, Gou01] and K. Habiro in [START_REF] Habiro | Claspers and finite type invariants of links[END_REF] defined these objects independently, along with the associated clasper calculus as an important class of objects in the theory of finite type invariant of 3-manifolds. Subsequently, N. Habegger, J. Levine and S. Garoufalidis in [Hab00a, [START_REF] Levine | Homology cylinders: an enlargement of the mapping class group[END_REF][START_REF] Garoufalidis | Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism[END_REF] studied homology cobordisms as an enlargement of the mapping class group. We refer the reader to survey [START_REF] Habiro | From mapping class grou ps to monoids of homology cobordisms: a survey[END_REF] for a precise description of these works.

The question of link-homotopy in this context is motivated by the so-called 'Milnor-Johnson correspondence' which draws a strong analogy between braids, string-links, concordance, Milnor invariants on one hand, and mapping class groups, homology cobordisms, homology cobordism classes, and Johnson homomorphisms on the other hand. We first observe that the natural algebraic approaches to this question do not yield a satisfactory theory. Thus leads us to consider a graph-claspers-based definition instead. We explain, based on several counterexamples, how we are naturally led to a definition which, although seemingly rigid, appears to be a promising candidate for a theory of link-homotopy for homology cylinders. This thesis consists of 5 chapters. Let us outline a bit more precisely the content of each.

Chapter 1 contains the topological and algebraic prerequisites that we will be using throughout the thesis. In Section 1.1, we review the homotopy clasper calculus: after briefly recalling from [START_REF] Habiro | Claspers and finite type invariants of links[END_REF] K. Habiro's clasper theory, we recall how a fundamental lemma from [START_REF] Fleming | Milnor's invariants and self C k -equivalence[END_REF], combined with K. Habiro's work, produces a set of geometric operations on claspers having link-homotopic surgery results. In Section 1.2 we introduce the reduced quotient of a group and study mainly that of the free group. We prove, in Theorem 1.2.10, the existence and the unicity of a normal form for any element of the reduced free group as a product of well-chosen commutators.

Chapter 2 is dedicated to the study of braids up to link-homotopy. We start by reinterpreting braids in terms of claspers. In Section 2.1 we define comb-claspers, a family of claspers corresponding to braid commutators. They are next used to define a normal form on braids up to link-homotopy, thus allowing us to rewrite any braid as an ordered product of comb-claspers. In Section 2.2, we give presentations of homotopy braid groups (Theorem 2.2.1 and Corollary 2.2.6), using the work of [START_REF] Goldsmith | Homotopy of braids -in answer to a question of E. Artin[END_REF] and [START_REF] Murasugi | A study of braids[END_REF] as well as the technology of claspers. In Section 2.3, we define and study the representation of the homotopy braid group of Theorem A. We give its explicit computation in Theorem 2.3.5 (see also Example 2.3.7 for the 3-strand case) and show its injectivity in Theorem 2.3.11. Moreover, from the injectivity of the representation follows the uniqueness of the normal form and thus the definition of the clasp-numbers, a collection of braid invariants up to link-homotopy. In Section 2.4, we address the torsion problem in the homotopy braid group. Thanks to clasper calculus and a refinement, up to conjugation, of the normal form, we exhibit a potential torsion candidate. We then show that its clasp-numbers must verify a certain equality for it to be a torsion element (see Lemma 2.4.15). Then, in Theorem 2.4.19, we test the equality with the previously defined representation, showing the absence of torsion for 10 strands or less. The proof is based on a computer program (available on [Gra22]), so we can improve the result by optimizing the program or using greater computing power; but this method will always yield a partial result. However, as mentioned above, the ideas in this section combined with welded tools provide a complete answer to the torsion problem.

Chapter 3 focuses on the study of links up to link-homotopy. The method used is based on the precise description of some operations, which generate the algebraic equivalence relation mentioned above in the classification result of N. Habegger and X.-S. Lin [START_REF] Habegger | The classification of links up to link-homotopy[END_REF]; we provide them with a topological description in terms of claspers. This new point of view allows us, for a small number of components, to describe when two braids in normal form have link-homotopic closures. We translate in terms of clasp-number variations the action of those operations on the normal form. In this way, we recover the classification results of J. W. Milnor [START_REF] Milnor | Link groups[END_REF] and J. Levine [START_REF] Levine | An approach to homotopy classification of links[END_REF] for 4 or less components (Theorem C). Moreover, we also classify 5-component algebraically-split links up to link-homotopy (Theorem 3.2.6).

Chapter 4 deals with the study of welded objects. General definitions are first given in Section 4.1, including a review of the arrow calculus developed in [START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF]. Then, in Section 4.2, building on the work of Chapter 2, we show analogous results in the welded context. We give in Theorem 4.2.15 and Corollary 4.2.16 presentations of homotopy welded braid groups, using the work of [START_REF] Darné | Milnor invariants of braids and welded braids up to homotopy[END_REF] and [START_REF] Damiani | A journey through loop braid groups[END_REF] as well as arrow calculus. We also show that the linear representation of Theorem A extends to the group of homotopy welded braids. We give its explicit computation in Theorem 4.2.28 and show its injectivity in Theorem 4.2.34. Finally, Section 4.3 returns to the torsion problem. We recast the techniques of Section 2.4 in the larger welded setting using arrow calculus. This allows us to show in Lemma 4.3.5 that the torsion problem is equivalent to whether a given welded braid is conjugate to a classical braid up to link-homotopy. However, using algebraic techniques, we show that such conjugate do not exist, which implies the absence of torsion in the homotopy braid group for any number of strands, as stated in Theorem B.

The final exploratory chapter 5 deals with the study of homology cobordisms over a once-bordered surface Σ. We aim to reinterpret the notion of link-homotopy for these objects. Our initial approach, in Section 5.2, is algebraic in nature and aims to define an action of homology cobordisms on an appropriate 'reduced' quotient of the fundamental group of Σ. However, this action cannot be defined using Milnor's notion of reduced quotient (Counter-examples 5.2.1 and 5.2.2). In Section 5.2.2, we attempt to restrict the action to a larger quotient, namely the fully reduced quotient, but this quotient turns out to be too coarse, as illustrated by Theorem 5.2.8. Next, we explore a new approach to defining link-homotopy in terms of graph-claspers in Section 5.3. We explain how this boils down to defining a notion of repetition on leaves (analogous to Lemma 1.1.10). In Section 5.3.2.1, an initial naive definition of repetition is proposed, but it proves unsatisfactory, as illustrated by Example 5.3.11. Finally, in Section 5.3.2.2, a less intuitive definition is suggested. Although we do not delve deeper into the study of this notion within this manuscript, we consider it as a potential avenue for future research.

It should be noted that the results of the first three chapters are essentially contained in the publication [START_REF] Graff | On braids and links up to link-homotopy[END_REF]. These three chapters however contain more material than [START_REF] Graff | On braids and links up to link-homotopy[END_REF], including in particular our first (partial) solution to the torsion problem.

Chapter 1

Requirements

In this chapter, we give the basic topological and algebraic tools that will be used throughout the document. In Section 1.1, we define tangles. They encompass the objects that we will study in the following sections: braids, string-links, knots and links. We also define claspers, powerful topological tools which are particularly well-suited for the study of link-homotopy. Then, in Section 1.2, we turn our attention to the reduced quotient of a group. More specifically, we study the reduced free group, for which we propose a normal form as a product of well-chosen commutators.

Tangles and claspers

Clasper calculus has been developed by K. Habiro in [START_REF] Habiro | Claspers and finite type invariants of links[END_REF] in the context of tangles up to isotopy (Definition 1.1.1). Claspers turn out to be in fact a powerful tool to deal with link-homotopy (Definition 1.1.2). In Section 1.1.1 we define the main objects and their associated vocabulary. Then we describe in Section 1.1.2 how to handle claspers up to link-homotopy.

General definitions

For simplicity, we decide to define and study tangles in the 3-dimensional ball. However, the results presented in this section are naturally adaptable to the study of tangles in any 3-dimensional manifold. Definition 1.1.1. An n-component tangle is a smooth embedding of an n-component, ordered, and oriented 1-manifold (a disjoint union of circles and intervals) in the 3-dimensional ball. We also required the embedding to be proper, which mean that the boundary of the 1-manifold must be sent to the boundary of the 3-ball. We often identify the tangle with its oriented image (the orientation is induced by the embedding). Each of the embedded component is called a component of the tangle.

Two tangles are isotopic if they are related by an ambient isotopy of the ball, fixing its boundary.

Definition 1.1.2. Two tangles are link-homotopic if there is a homotopy between them fixing the boundary, and such that distinct components remain disjoint during the deformation.

Remark 1.1.3. Tangles are faithfully represented by a generic planar projection; generically, the intersection points will not be more than double. By specifying at each crossing which strand passes over the other, and specifying the orientation of the components, we get a tangle diagram. 
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Figure 1.1: The Reidemeister moves.

In the following theorem, we recall an alternative characterization from [START_REF] Milnor | Link groups[END_REF] of the linkhomotopy in terms of diagrams.

Theorem 1.1.5. Two tangles are link-homotopic, if and only if, their diagrams are related by a sequence of Reidemeister moves (see Figure 1.1), planar isotopies and self-crossing changes, i.e., crossing changes of arcs from the same component (see Figure 1.2).

Same component

∼ Figure 1.2: A self-crossing change.
Definition 1.1.6. A disk T smoothly embedded in the interior of the 3-ball is called a clasper for a tangle θ if it satisfies the following three conditions:

-T is the embedding of a connected thickened uni-trivalent tree with a cyclic order at each trivalent vertex. Thickened univalent vertices are called leaves, and thickened trivalent vertices, nodes.

-θ intersects T transversely, and the intersection points are in the interior of the leaves of T .

-Each leaf intersects θ in at least one point.

It should be noted that our definition differs from that of [START_REF] Habiro | Claspers and finite type invariants of links[END_REF]; claspers as defined here are referred to in K. Habiro's terminology as strict tree-claspers.

Diagrammatically, a clasper is represented by a uni-trivalent graph corresponding to the one to be thickened. The trivalent vertices are thickened according to Figure 1.3. On the univalent vertices we specify how the corresponding leaves intersect θ, and we also indicate how the edges are twisted using markers called half-twists (see Figure 1.3). Definition 1.1.7. Let T be a clasper for a tangle θ. We define the degree of T , denoted by degpT q, as its number of nodes plus one, or equivalently, its number of leaves minus one. The support of T , denoted by supppT q, is defined to be the set of components of θ that intersect T . Definition 1.1.9. We say that a simple clasper T for a tangle θ has repeats if it intersects a component of θ in at least two points.

Given a disjoint union of claspers F for a tangle θ, there is a procedure called surgery detailed in [START_REF] Habiro | Claspers and finite type invariants of links[END_REF] to construct a new tangle, denoted θ F . We illustrate on the left-hand side of Figure 1.4 the effect of a surgery on a clasper of degree one. Now if F contains some claspers with degree higher or equal than one, we first apply the rule shown on the right-hand side of Figure 1.4, at each trivalent vertex: this breaks up F into a disjoint union of degree one claspers, on which we can perform surgery.

••• ••• ••• ••• ••• ••• Figure 1.4: Rules of clasper surgery.
Note that clasper surgery commutes with ambient isotopy. More precisely, for i an ambient isotopy and F a disjoint union of claspers for a tangle θ we have that ipθ F q " pipθqq ipF q . This is an elementary example of clasper calculus, which refers to the set of operations on unions of tangles with some claspers, that allow to deform one into another with isotopic surgery result. These operations are developed in [START_REF] Habiro | Claspers and finite type invariants of links[END_REF], and we give in the next section the analogous calculus up to link-homotopy.

Clasper calculus up to link-homotopy

In the whole section, T and S denote simple claspers for a given tangle θ. We use the notation T " S, and say that T and S are link-homotopic when the surgery results θ T and θ S are so. For example, if i is an ambient isotopy that fixes θ, then T " ipT q. Moreover, if θ T is link-homotopic to θ, we say that T vanishes up to link-homotopy and we denote T " H.

We begin by recalling a fundamental lemma from [START_REF] Fleming | Milnor's invariants and self C k -equivalence[END_REF]; more precisely, the next result is the case k " 1 of [FY09, Lemma 1.2], where self C 1 -equivalence corresponds to link-homotopy. (1) If S is a parallel copy of T which differs from T only by one half-twist (positive or negative), then S Y T " H.

(2) If T and S have two adjacent leaves and if T 1 Y S 1 is obtained from T Y S by exchanging these leaves as depicted in (2) from Figure 1.5, then T Y S " T 1 Y S 1 Y T , where T is as shown in the figure .   (3) If T 1 is obtained from T by a crossing change with a strand of the tangle θ as depicted in (3) from (5) If T 1 is obtained from T by a crossing change between two edges of T then T " T 1 . Idea of proof. The result of [START_REF] Habiro | Claspers and finite type invariants of links[END_REF] used here are up to C k -equivalence, that is, up to claspers of degree up to k. The key observation is that, by construction, all such higher degree claspers have same support as the initial ones, hence they are claspers with repeats. Lemma 1.1.10 then allows us to delete them up to link-homotopy.
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Remark 1.1.12. Lemma 1.1.10 combined with Proposition 1.1.11 gives us some further results:

-First, statement (4) implies that if |supppT qXsupppSq| ě 1 then we can realize crossing changes between the edges of T and S.

-Moreover, if |supppT q X supppSq| ě 2 thanks to statement (2) we can also exchange the leaves of T and S.

-Furthermore, statement (3) allows crossing changes between T and a component of θ in the support of T Indeed, in each case the clasper T involved in the corresponding statement has repeats and can thus be deleted up to link-homotopy.

The next remark describes how to handle half-twists up to link-homotopy.

Remark 1.1.13. We have the following link-homotopy equivalences (illustrated in Figure 1.6).

(6) If T 1 is obtained from T by turning a positive half-twist into a negative one, then T " T 1 .

(7) If T 1 is obtained from T by moving a half-twist across a node then T " T 1 .

(8) If T and T 1 are identical outside a neighborhood of a node, and if in this neighborhood T and T 1 are as depicted in (8) from Figure 1.6, then T " T 1 .

T ′ T T ′ T T ′ T (6) ∼ (7) ∼ (8) ∼ Figure 1
.6: How to deal with half-twist up to link-homotopy.

Remark 1.1.14. Remark 1.1.13 allows us to bring all the half-twists on a same edge and then cancel them pairwise. Therefore, we can consider only claspers with one or no half-twist. [CST07] Let T I , T H , T X be three parallel copies of a given simple clasper that coincide everywhere outside a 3-ball, where they are as shown in Figure 1.7. Then T I Y T H Y T X " H. We say that T I , T H and T X verify the IHX relation. 
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Reduced groups and commutators

In this document, the groups will be denoted multiplicatively, and ra,bs :" aba ´1b ´1 will denote the commutator of two elements a,b. Definition 1.2.1. Let G be a group generated by tx 1 , . . . , x n u. We define J G Ÿ G to be the normal subgroup generated by elements of the form rx i ,λx i λ ´1s, for all i P t1, . . . , nu, and for all λ P G. We call reduced quotient, the quotient G{J G and we denote it by RG. Remark 1.2.2. This definition depends on the choice of the generators tx 1 , . . . , x n u. We will develop this point further in Chapter 5, when we discuss the notion of fully reduced groups.

In what follows, we work essentially with the free group F n on n generators x 1 , . . . , x n . The reduced quotient RF n " F n {J of the free group is called reduced free group, where J :" J Fn . Definition 1.2.3. Let G be a group and x 1 , ¨¨¨,x n elements in G. A commutator in x 1 , ¨¨¨, x n of weight k pk ą 0q can be defined recursively, as follows:

• The commutators of weight one are x 1 , . . . , x n .

• The commutators of weight k are words rC 1 ,C 2 s where C 1 , C 2 are commutators verifying k " wgpC 1 q `wgpC 2 q where wgpC) denotes the weight of C.

Definition 1.2.4. We denote Occ i pCq " r and we say that x i occurs r times in a commutator C if one of the following holds:

• If C " x j , then r " 1 if i " j and r " 0 if i ‰ j. • If C " rC 1 ,C 2 s, then r " Occ i pC 1 q `Occ i pC 2 q.
We say that a commutator C has repeats if Occ i pCq ą 1 for some i. We call support of the commutator C, the set of elements x i (or by abuse just the set of indices i) such that Occ i pCq ą 0 and we denote it supppCq.

The following is a reformulation of Definition 1.2.1 that is used throughout the document.

Proposition 1.2.5. [Lev88, Proposition 3] The subgroup J is generated by commutators in x 1 , . . . , x n with repeats. Hence, these commutators are trivial in the reduced free group. The reduced quotient of a group G generated by x 1 , . . . , x n is given by adding to G, the relations C " 1 for any commutator C with repeats in x 1 , . . . , x n .

Corollary 1.2.6. The subgroup J is generated by commutators in x 1 , . . . , x n with repeats, subject to the condition wgpCq ď 2n. Equivalently, the reduced quotient of a group G generated by x 1 , . . . , x n admits a finite set of relations given by C " 1 for any commutator C with repeats in x 1 , . . . , x n , satisfying the condition wgpCq ď 2n.

Proof.

Let us first observe that for any commutator C " rC 1 ,C 2 s satisfying wgpCq ą 2n, there exists (at least one) i P 1,2 such that wgpC i q ą n and wgpC i q ă wgpCq. Also, note that any commutator C " rC 1 ,C 2 s belongs to the normal subgroups generated by C 1 and C 2 . Thus, by iterating these two results, we demonstrate that any commutator of weight strictly greater than 2n, and therefore with repetitions, is generated by a commutator C satisfying n ă wgpCq ď 2n, and thus also has repetitions. This shows, in particular, that any commutator with repetitions is generated by commutators with repetitions of weight less than or equal to 2n and completes the proof.

The notion of basic commutators was first introduced in [START_REF] Hall | A contribution to the theory of groups of prime-power order[END_REF] and was further studied in [START_REF] Lyndon | Combinatorial group theory[END_REF][START_REF] Hall | The Theory of Groups[END_REF][START_REF] Magnus | Combinatorial group theory[END_REF] to describe the lower central series of the free group. It was then naturally adapted in [START_REF] Levine | An approach to homotopy classification of links[END_REF] to the framework of the reduced free group. In the next definition, we describe a well-chosen family of commutators. This family will replace the reduced basic commutators from [START_REF] Levine | An approach to homotopy classification of links[END_REF] and will follow us throughout the whole document. Definition 1.2.7. Let us define the following family of commutators without repeats in RF n :

F " tri 1 , . . . , i l s | i 1 ă i k , 2 ď k ď lu lďn .
Here, we use the notation ri 1 ,i 2 , ¨¨¨, i l s :" rr¨¨¨rrx i 1 ,x i 2 s,x i 3 s, ¨¨¨,x i l´1 s,x i l s. This is a finite set and we can thus choose an arbitrary order on it, F " trα 1 s, rα 2 s, . . . , rα m su. We say that an element ω P RF n is in normal form with respect to the order if ω " rα 1 s e 1 rα 2 s e 2 ¨¨¨rα m s em for some integers te 1 , e 2 , . . . , e m u. Definition 1.2.8. We can define the order given for two commutators rαs " ri 1 ¨¨¨i l s and rα 1 s " ri 1 1 ¨¨¨i 1 l 1 s by rαs ď rα 1 s if: • wgpαq ă wgpα 1 q, or • wgpαq " wgpα 1 q and i 1 . . . i l ă lex i 1 1 . . . i 1 l . Example 1.2.9. With respect to this order, the normal form of an element ω P RF 3 " xx 1 , x 2 , x 3 y is given by 8 integers te 1 , . . . , e 8 u as follows:

ω " r1s e 1 r2s e 2 r3s e 3 r12s e 4 r13s e 5 r23s e 6 r123s e 7 r132s e 8 .

The following theorem is a kind of reduced analogue of Hall's basis theorem [START_REF] Hall | The Theory of Groups[END_REF]Theorem 11.2.4]. It is to be compared with [START_REF] Levine | An approach to homotopy classification of links[END_REF]Proposition 6], where a different family of commutators is used, see Remark 1.2.12. Theorem 1.2.10. For any word ω P RF n there exists a unique ordered set of integers te 1 , . . . , e m u associated to the ordered family of commutators F " trα 1 s, rα 2 s, . . . , rα m su such that ω " rα 1 s e 1 rα 2 s e 2 ¨¨¨rα m s em .

Proof. Let us first express any commutator C as a product of commutators in F with the same weight as C. To do so, we use the following three relations in RF n .

(i) rX,Y s ´1 " rY,Xs " rX ´1,Y s " rX,Y ´1s with X,Y commutators.

(ii) rX,rY,Zss " rrX,Y s,Zs ¨rrX,Zs,Y s ´1 with X,Y,Z commutators.

(iii) rU V,Xs " rU,XsrV,Xs with U,V commutators such that supppU q X supppV q ‰ H. Relation (i) allows us to move the generator x i 1 with i 1 " minpsupppCqq at the desired position; we obtain C " r¨¨¨rx i 1 ,C 1 s, ¨¨¨,C k s ˘1. Relations (i), (ii) and (iii) are used to decrease the weight of the commutator C i in this expression. We start with C 1 " rC 1 1 ,C 1 2 s supposing its weight is bigger than one, and we get:

C " r¨¨¨rx i 1 ,rC 1 1 ,C 1 2 ss, ¨¨¨,C k s ˘1 " r¨¨¨rrx i 1 ,C 1 1 s,C 1 2 s ¨rrx i 1 ,C 1 2 s,C 1 1 s ´1, ¨¨¨,C k s ˘1 " r¨¨¨rrx i 1 ,C 1 1 s,C 1 2 s, ¨¨¨,C k s ˘1r¨¨¨rrx i 1 ,C 1 2 s,C 1 1 s ´1, ¨¨¨,C k s ˘1 " r¨¨¨rrx i 1 ,C 1 1 s,C 1 2 s, ¨¨¨,C k s ˘1r¨¨¨rrx i 1 ,C 1 2 s,C 1 1 s, ¨¨¨,C k s ¯1.
Since wgpC 1 1 q ă wgpCq and wgpC 1 2 q ă wgpCq we know that by iterating this operation on the new terms we can rewrite C as a product of commutators of the form r¨¨¨rx i 1 ,x i 2 s,C 2 s, ¨¨¨,C k s, having in particular the same weight as C. We finish by repeating the process on C 2 , . . . , C k .

For any ω P RF n , we can now demonstrate the existence of a decomposition ω " ś αPF rαs eα . We begin by expressing w as a product of weight 1 commutators belonging to F. This is possible because weight 1 commutators in F are precisely the generators x 1 , . . . , x n of RF n . Next, we rearrange these weight-one commutators according to the order given by the family F. This is achieved up to commutators of weight strictly higher than one, as two commutators commute up to commutators of strictly higher weight. Using the argument given at the beginning of this proof, we may safely assume that these higher weigh commutators belong to F. We then consider, among these new commutators, those of weight two and rearrange them according to the order in F. Again, this introduces higher weight factors, which can also be assumed to be elements of F. By iterating this procedure, we eventually obtain the desired decomposition. Indeed, the procedure terminates because any commutator of weight strictly bigger than n has repeats and is then trivial according to Proposition 1.2.5.

To prove the unicity of the decomposition, we work with the unit group U n of the ring of power series in non-commuting variables X 1 , . . . , X n . More precisely, we consider its quotient Ũn in which the monomials X α " X α 1 X α 2 ¨¨¨X αn vanish when they have repetition (i.e., α i " α j for some i ‰ j). The elements that we will consider in Ũn are of the form 1 `Q with Q a sum of monomials of positive degree, and their inverses are given by p1 `Qq ´1 " 1 `Q with Q " ´Q `Q2 ´Q3 `¨¨¨p´1q n Q n . Now we can define the reduced Magnus expansion M . This is a homomorphism from the reduced free group RF n to Ũn , defined by M px i q " 1 `Xi . The following computation shows that M respects the relations of the reduced free group, meaning that M prx i ,λx i λ ´1sq " 1 for any generator x i and any λ in F n : M pλx i λ ´1q M px i q " ´M pλqp1 `Xi q M pλ ´1q ¯p1 `Xi q " 1 `Xi `M pλqX i M pλ ´1q " p1 `Xi q ´M pλqp1 `Xi q M pλ ´1q " M px i q M pλx i λ ´1q.

An easy induction on the weight l of the commutator rαs P F defined in Definition 1.2.7 gives the following: Claim 1.2.11. For every rαs " rα 1 , ¨¨¨,α l s P F, M prαsq " 1 `Xα `Ql pX α 1 , ¨¨¨,X α l q where Q l is a sum of monomials of degree l " wgprαsq not starting with X α 1 , and where each variable X α i for i P t1, . . . , lu appears exactly once. Now, we take ω " ś αPF rαs eα " ś αPF rαs e 1 α two decompositions of an element ω P RF n . We prove by induction on the weight of rαs that e α " e 1 α for any commutator rαs P F. Suppose that e α " e 1 α for any rαs of weight ă k and compare the coefficients of the monomial X α in both M p ś αPF rαs eα q and M p ś αPF rαs e 1 α q for a fixed commutator rαs of degree k. According to Claim 1.2.11, commutators of weight ą k do not contribute to this coefficient and the only contributing weight k commutator is rαs itself with coefficient e α (resp. e 1 α ). Commutators of weight ă k may also contribute to this coefficient, but the induction hypothesis ensures that the contribution is the same in both expressions. This proves that e α " e 1 α for any rαs of weight k and concludes the proof.

Remark 1.2.12. Unlike Levine's proof of [Lev88, Proposition 6], this proof does not require M. Hall's basis theorem [START_REF] Hall | The Theory of Groups[END_REF]Theorem 11.2.4].

Definition 1.2.13. To the ordered set of commutators F " trα 1 s, . . . , rα m su in RF n we associate a Z-module V formally generated by tα 1 , . . . , α m u. We also define the linearization map ϕ : RF n Ñ V by: ϕpωq " e 1 α 1 `¨¨¨`e m α m where rα 1 s e 1 ¨¨¨rα m s em is the normal form of ω.

We keep calling 'commutators' the generators of V and we define the support and the weight of α to be those of rαs.

We stress that the normal form and the linearization map ϕ both depend on the ordering on F.

Lemma 1.2.14. The Z-module V is of rank, rkpVq "

ÿ 0ďlďkăn k! l! .
Moreover we can decompose V into a direct sum of submodules V i generated by the commutators of weight i. Then we obtain that:

rkpV i q " ˆn i ˙pi ´1q!.
Proof. The first equality comes by counting the cardinality of F. To do so, we first count the elements rαs with first term α 1 " k. To choose α 2 , α 3 , . . . , α l with 0 ď l ă n ´k we only have to respect the condition that α 1 ă α i . Thus they can be freely chosen in tk `1, . . . , nu and therefore:

rkpVq " n ÿ k"1 n´k`1 ÿ l"1
pn ´kq! pn ´k ´l `1q! "

n´1 ÿ k"0 k ÿ l"0 k! pk ´lq! " n´1 ÿ k"0 k ÿ l"0 k! l! .
For the second equality, we follow the same kind of reasoning, but this time α 1 " k must be chosen in t1, . . . , n ´i `1u, then we choose the i ´1 last numbers α 2 , . . . , α i without restriction in tk `1, . . . , nu. We obtain:

rkpV i q " n´i`1 ÿ k"1 pn ´kq! pn ´k ´i `1q! " n´1 ÿ k"i´1 k! pk ´i `1q! " ˜n´1 ÿ k"i´1 ˆk i ´1˙¸p i ´1q!,
and we conclude using the so-called Hockey-stick identity.

Chapter 2

Braids up to link-homotopy

This chapter is dedicated to the study of braids up to link-homotopy. In the next section, we introduce the notion of comb-claspers for braids, that yields a normal form result up to link-homotopy. Then, in Section 2.2, we give a new presentation of the homotopy braid group inspired from that of Goldsmith [START_REF] Goldsmith | Homotopy of braids -in answer to a question of E. Artin[END_REF] with a more symmetric structure. Section 2.3 deals with a linear representation of the homotopy braid group, defined and studied using clasper calculus. Finally, in Section 2.4, we begin to tackle the torsion problem, to which we provide a partial answer, to be completed later in chapter 4.

Braids and comb-claspers

Let D be the unit disk with n fixed points tp i u iďn on a diameter δ, and let I be the unit interval r0, 1s. Set also I 1 , . . . , I n , n copies of I, and Ů iďn I i their disjoint union.

Definition 2.1.1. An n-component braid β " pβ 1 , . . . , β n q is a smooth proper embedding pβ 1 , . . . , β n q :

ğ iďn I i Ñ D ˆI
such that, for some permutation of t1, . . . , nu associated to β, denoted πpβq, we have β i p0q " pp i , 0q and β i p1q " pp πpβqpiq , 1q for any i. We also require the embedding to be monotonic, which means that β i ptq P D ˆttu for any t P r0, 1s. We call (the image of ) β i the i-th component of β. We say that a braid β is pure if its associated permutation πpβq is the identity.

We emphasize that braids are oriented from top to bottom; in particular, the interval I is parametrized in an unconventional manner, runing from '0' at the top to '1' at the bottom.

The composition of braids consists in stacking the braids one below the other: it is defined as follows. Let β and β 1 be two braids. Then their composition ββ 1 is a braid defined by

ββ 1 i ptq " " h 0 pβ i p2tqq, for t P r0, 1 2 s, h 1 pβ 1 πpβqpiq p2pt ´1 2 qq, for t P r 1 2 ,1s,
with i P rr1,nss, and where the maps h 0 and h 1 : D ˆI Þ Ñ D ˆI are defined for x P D and t P I by h 0 px,tq " px, 1 2 `t 2 q, and h 1 px,tq " px, t 2 q.

See Figure 2.1 for illustration. Remark 2.1.4. In [START_REF] Artin | Theory of braids[END_REF], Artin raises the question of whether the notions of isotopy and linkhomotopy of braids are different or identical. Goldsmith, in [START_REF] Goldsmith | Homotopy of braids -in answer to a question of E. Artin[END_REF], shows that the two notions are in fact different. As an illustration, we present Goldsmith's example of a braid in Figure 2.2, which is trivial up to link-homotopy but non-trivial up to isotopy.
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.2: Example of a trivial braid up to link-homotopy, but non-trivial up to isotopy.

Remark 2.1.5. Braids are tangles without closed components, and with boundary and monotonic conditions. But any (pure) tangle without closed components is link-homotopic to a (pure) braid (in the pure case, such tangles are called string-links in the literature). Thus, when regarding braids up to link-homotopy we can freely consider them as tangles, i.e., we can forget the monotonic condition. This is useful from the clasper point of view since clasper surgery does not respect this condition in general.

We introduce next comb-claspers and their associated notation. Consider the usual representative 1 of the trivial n-component braid given by 1 i " tp i u ˆI for i P t1, . . . , nu. Denote by pD ˆIq `and pD ˆIq ´the two half-cylinders determined by the plane δ ˆI, where δ is the fixed diameter on D. In figures, we choose pD ˆIq `to be above the plane of the projection. Definition 2.1.6. We call comb-clasper a simple clasper without repeats for the trivial braid such that:

-Every edge is in pD ˆIq `.

-The minimal path running from the smallest to the largest component of the support meets all nodes.

-At each node, the edge that does not belong to the minimal path leaves 'to the left' as locally depicted in Figure 2.3.

Minimal path

Edge to the left An example is given in Figure 2.4.

The second condition of Definition 2.1.6 implies that every node is connected (by an edge and a leaf) to a component of 1 that is not the smallest or the largest of the support. Using this fact, we can order the support of a comb-clasper: we start with the smallest component, then we order the components according to the order in which we meet them along the minimal path, and finally, we end with the largest one. For example, in Figure 2.4 the ordered support is t1, 2, 6, 4, 5, 8u.

Once the ordered support ti 1 , i 2 , . . . , i l u is fixed, the only remaining indeterminacy in a combclasper is the embedding of the edges in pD ˆIq `. This depends on the relative position of the edges, and on the number of half-twists on each of them. However, up to link-homotopy the relative position of the edges is irrelevant (by move (5) from Proposition 1.1.11). Besides, by Remark 1.1.14, we can always suppose that a comb-clasper contains either one or no half-twist; moreover by Remark 1.1.13 we can freely assume that the potential half-twist is located on the edge connected to the i l -th component. We can thus unambiguously (up to link-homotopy) denote by pi 1 ,i 2 , ¨¨¨,i l q the combclasper with such a half-twist and by pi 1 ,i 2 , ¨¨¨,i l q ´1 the same clasper without any half-twist; we call them respectively twisted and untwisted comb-claspers. For example, the twisted comb-clasper p126458q is illustrated in Figure 2.4.

In what follows we blur the distinction between comb-claspers and the result of their surgery up to link-homotopy. From this point of view, a comb-clasper is a pure homotopy braid and the product pαqpα 1 q of two comb-claspers is the product 1 pαq 1 pα 1 q . In particular, according to move (1) from Proposition 1.1.11, the inverse of a comb-clasper pαq is given by pαq ´1.

Lemma 2.1.7. Let T be a simple clasper of degree k for the trivial braid 1, then 1 T is link-homotopic to a product of comb-claspers with degree greater than or equal to k. Proof. First, we use isotopies and move (3) from Proposition 1.1.11 to turn T into a product of clasper with edges in pD ˆIq `. This step may create claspers of higher degree (corresponding to clasper T in move (3)): in that case we also apply isotopies and move (3) on them until we get the desired product. Note that the procedure must stop. Indeed, move (3) always creates claspers of strictly higher degree, and when the degree is higher than the number of strands, the claspers have repetitions and are therefore trivial up to link-homotopy (Lemma 1.1.10). Then, by the IHX relation of Proposition 1.1.15, we can further assume that for each clasper, the minimal path running from the smallest to the largest component meets all its nodes. Finally, we apply move (8) from Remark 1.1.13 to satisfy the third condition of Definition 2.1.6 and obtain a product of comb-claspers.

Definition 2.1.8. We say that a pure homotopy braid β P hP n given by a product of comb-claspers β " pα 1 q ˘1pα 2 q ˘1 ¨¨¨pα m q ˘1 is :

• stacked if pα i q " pα j q for some i ď j implies that pα i q " pα k q for any i ď k ď j,

• reduced if it contains no redundant pair, i.e., two consecutive factors are not the inverse of each other.

If β is reduced and stacked, we can then rewrite β " ś pα i q ν i for some integers ν i and with pα i q ‰ pα j q for any i ‰ j. Moreover, given an order on the set of twisted comb-claspers, we say that a reduced and stacked writing is a normal form of β for this order if pα i q ď pα j q for all i ď j.

We stress that the notion of normal form is relative to a given order on the set of twisted combclaspers. The following definition will be relevant for Chapter 3. Definition 2.1.9. Given two twisted comb-claspers pαq " pi 1 ¨¨¨i l q and pα 1 q " pi 1 1 ¨¨¨i 1 l 1 q we can choose the order pαq ď pα 1 q defined by:

• maxpsupppαqq ă maxpsupppα 1 qq, or

• maxpsupppαqq " maxpsupppα 1 qq and degpαq ă degpα 1 q, or • maxpsupppαqq " maxpsupppα 1 qq and degpαq " degpα 1 q and i 1 . . . i l ă lex i 1 1 . . . i 1 l , where ă lex denotes the lexicographic order.

Example 2.1.10. With respect to this order, the normal form of an element β P hP 4 is given by 12 integers tν 12 , . . . , ν 1324 u as follows:

β " p12q ν 12 p13q ν 13 p23q ν 13 p123q ν 123 p14q ν 14 p24q ν 24 p34q ν 34 p124q ν 124 p134q ν 134 p234q ν 234 p1234q ν 1234 p1324q ν 1324 .

Theorem 2.1.11. Any pure homotopy braid β P hP n can be expressed in a normal form, for any order on the set of twisted comb-claspers.

Proof. Note that the comb-clasper pijq corresponds to the usual pure braid group generator A ij P hP n (see Figure 2.6). Thus it is clear that β " ś pαq ˘1 for some degree one comb-claspers pαq ˘1. Now we rearrange these degree one factors according to the chosen order by moves (2) and (4) from Proposition 1.1.11. This introduces new claspers of degree strictly higher than one, and by Lemma 2.1.7 we can freely assume that these are all comb-claspers. Next we consider, among these new comb-claspers, those of degree two and we rearrange them according to the order. Again this introduces higher degree factors, which can all be assumed to be comb-clasper according to Lemma 2.1.7. By iterating this procedure degree by degree, we eventually obtain the desired normal form. Indeed, the procedure terminates because claspers of degree higher or equal than n are trivial in hP n by Lemma 1.1.10.

Remark 2.1.12. This result is to be compared with Theorem 4.3 of [START_REF] Yasuhara | Self delta-equivalence for links whose Milnor's isotopy invariants vanish[END_REF], which uses a different notion of comb-clasper, ordered according to the clasper degree.

Braid group presentations

In this section, we use the usual Artin braid generators σ i for i P t1, . . . , n ´1u illustrated in Figure 2.5 and the usual pure braid generators

A ij " σ j´1 σ j´2 ¨¨¨σ i`1 σ 2 i σ ´1 i`1 ¨¨¨σ ´1 j´2 σ ´1 j´1 for 1 ď i ă j ď n, illustrated in Figure 2.6. n i 1 i+1 • • • • • • Figure 2.5: ¨¨¨The Artin generator σ i . n j i 1 • • • • • • • • • Figure 2.6: The pure braid generator A ij .
We first recall the usual presentations of the braid group from [START_REF] Artin | Theory of braids[END_REF] and the pure braid group from [START_REF] Birman | Braids, links, and mapping class groups[END_REF].

Theorem 2.2.1. A presentation1 for the braid group is given by:

B n " x σ i ˇˇˇr σ i ,σ j s " 1 if |i ´j| ą 1 σ i σ j σ i " σ j σ i σ j if |i ´j| ď 1 y .
A presentation for the pure braid group is given by:

P n " x A ij ˇˇˇˇˇˇˇr A rs ,A ij s " 1 for r ă s ă i ă j or r ă i ă j ă s rA rs ,A rj s " rA ´1 sj ,A rj s for r ă s ă j rA rs ,A sj s " rA ´1 sj ,A ´1 rj s for r ă s ă j rA ri ,A sj s " rrA ´1 ij ,A ´1 rj s,A sj s for r ă s ă i ă j y .
The following theorem is based on the result of [START_REF] Goldsmith | Homotopy of braids -in answer to a question of E. Artin[END_REF].

Proposition 2.2.2. Let J Ÿ B n denote the normal subgroup generated by all elements of the form rA ij ,λA ij λ ´1s where λ belongs to P n . We obtain the homotopy braid group hB n as the quotient:

hB n " B n {J.
This induces the following presentation2 for hB n :

hB n " x σ i ˇˇˇˇˇσ i σ j σ i " σ j σ i σ j if |i ´j| ď 1 rσ i ,σ j s " 1 if |i ´j| ą 1 " A ij ,λA ij λ ´1‰
" 1 for i ă j and λ P hP n y .

Proof. In [START_REF] Goldsmith | Homotopy of braids -in answer to a question of E. Artin[END_REF], the homotopy braid group hB n appears as the quotient B n {J 1 , where J 1 Ÿ B n is the normal subgroup generated by elements of the form rA ij ,λA ij λ ´1s where λ belongs to the normal subgroup generated by tA 1,j , . . . , A j´1,j u. Our result relies on the observation that J " J 1 . Obviously J 1 Ă J thus we only need to show that J Ă J 1 . This is equivalent to showing that for any λ P P n , the pure braid A ij and λA ij λ ´1 commute up to link-homotopy. Let us remind that A ij is the surgery result 1 pijq of the comb-clasper pijq. Take Λ a given representative of λ, and consider an ambient isotopy ι sending Λ1Λ ´1 to the trivial braid 1. Now, consider the comb-clasper pijq as a clasper for the braid Λ1Λ ´1 and denote it by ΛpijqΛ ´1. Apply ι to the braid Λ1Λ ´1 together with the clasper ΛpijqΛ ´1. This isotopy sends ΛpijqΛ ´1 to a clasper for the trivial braid, denoted C, whose surgery result is the conjugate λA ij λ ´1. Since ambient isotopies preserve the support, it is clear that supppCq " supppΛpijqΛ ´1q " ti,ju. Hence, according to Remark 1.1.12, we have pijqC " Cpijq, and the result is proved.

Remark 2.2.3. The presentation provided in Proposition 2.2.2 is not a finite presentation due to the infinite set of reduced-type relations " A ij ,λA ij λ ´1‰ " 1. However, by using the characterization in terms of repeated commutators, as seen in Proposition 1.2.5, we can use Corollary 1.2.6 to reduce it to a finite set of relations.

Remark 2.2.4. This proposition can also be demonstrated purely algebraically. It was the subject of the master's thesis of I. Mazzotti, which I co-supervised in Caen. The proof is much more technical and it is based on commutator calculus [START_REF] Murasugi | A study of braids[END_REF] and braid group presentation results [START_REF] Goldsmith | Homotopy of braids -in answer to a question of E. Artin[END_REF][START_REF] Minghui | On homotopy braid groups and Cohen groups[END_REF].

In order to obtain a similar result for the pure homotopy braid group we need the following.

Lemma 2.2.5. The subgroup J ŸB n normally generated in B n by elements of the form rA ij ,λA ij λ ´1s for λ P P n , seen as a subgroup of P n , coincides with the normal subgroup of P n generated by elements of the form rA ij ,λA ij λ ´1s for λ P P n .

Proof. For k P t1, . . . , n ´1u, 1 ď i ă j ď n and λ P P n we compute:

σ k rA ij ,λA ij λ ´1sσ ´1 k " $ ' ' ' ' & ' ' ' ' % rA i`1j ,λ 1 A i`1j λ ´1 1 s if i " k and j ‰ k `1 rA i`1j ,λ 2 A i`1j λ ´1 2 s if j " k A kk`1 rA i´1j ,λ 3 A i´1j λ ´1 3 sA ´1 kk`1 if i " k `1 A kk`1 rA ij´1 ,λ 4 A ij´1 λ ´1 4 sA ´1 kk`1 if i ‰ k and j " k `1 rA ij ,λ 5 A ij λ ´1 5 s otherwise,
with λ i P P n for i P t1, 2, 3, 4, 5u. Therefore, the conjugates σ k rA ij ,λA ij λ ´1sσ ´1 k are always conjugates of rA i 1 j 1 ,λ 1 A i 1 j 1 pλ 1 q ´1s in P n for some 1 ď i 1 ă j 1 ď n and some λ 1 P P n , and the proof is complete.

Corollary 2.2.6. Let J Ÿ P n be the normal subgroup generated by elements of the form rA ij ,λA ij λ ´1s for any λ P P n . We obtain the pure homotopy braid group hP n as the reduced quotient relative to the generative system tA ij | i ă ju of the pure braid group:

hP n " P n {J " RP n .
This induces the following presentation for hP n :

hP n " x A ij ˇˇˇˇˇˇˇr A rs ,A ij s " 1 for r ă s ă i ă j or r ă i ă j ă s rA rs ,A rj s " rA rj ,A sj s " rA sj ,A rs s for r ă s ă j rA ri ,A sj s " rrA ij ,A rj s,A sj s for r ă s ă i ă j " A ij ,λA ij λ ´1‰ " 1
for i ă j and λ P hP n y .

Proof. The first half of the statement is a direct consequence of Proposition 2.2.2 and Lemma 2.2.5. The presentation is obtained from that of Theorem 2.2.1, using the relation rA rs ,A ´1 ij s " rA rs ,A ij s ´1 which holds in RP n .

Remark 2.2.7. Once again, in Corollary 2.2.6, we provide an infinite presentation of the pure homotopy braid group seen as a reduced quotient. However, using Corollary 1.2.6, we can simplify this type of presentation to obtain a finite one.

We next recall two classical representations of braid groups.

Definition 2.2.8. We call Artin representation the homomorphism ρ : B n Ñ AutpF n q defined as follows:

ρpσ i q : $ & % x i Þ Ñ x i`1 , x i`1 Þ Ñ x i`1 x i x ´1 i`1 , x k Þ Ñ x k if k R ti, i `1u.
Similarly, the homomorphism ρ h : hB n Ñ AutpRF n q defined by the same expressions is called the homotopy Artin representation.

As the name suggests, ρ was introduced by Artin in [START_REF] Artin | Theory of braids[END_REF], where its faithfulness is also shown. As for the link-homotopic version ρ h , it is proved in [START_REF] Habegger | The classification of links up to link-homotopy[END_REF] that its restriction to the pure homotopy braid group is faithful. Furthermore, for any braid β P hB n and any generator x i P RF n , the image ρ h pβqpx i q is a conjugate of x π ´1pβqpiq . In particular, the kernel of ρ h must belong to the pure homotopy braid group. The homotopy Artin representation ρ h is therefore clearly faithful.

A linear faithful representation of the homotopy braid group

This section is devoted to the definition and study of a faithful linear representation of the homotopy braid group. We first define it algebraically, then give a procedure based on clasper calculus to compute it explicitly. Finally, we show its injectivity and use it to prove the uniqueness of the normal form in the homotopy braid group.

Algebraic definition

Let GLpVq be the general linear group of the Z-module V introduced in Definition 1.2.13. In order to define our linear representation γ : hB n Ñ GLpVq, we state the following preparatory lemma. Let us denote by N j the subgroup normally generated by x j in RF n for j P t1, . . . , nu; note that N j is an abelian group.

Lemma 2.3.1. Let β P hB n be a homotopy braid and C P N j a commutator in RF n . If the product rα 1 s e 1 ¨¨¨rα m s em is the normal form of ρ h pβqpCq (associated to a given order), then we have that e i " 0 if rα i s R N π ´1pβqpjq . Here π ´1pβqpjq is the image of j by the permutation induced by β ´1.

In other words, in the image of C P N j by ρ h pβq, the letter x π ´1pβqpjq occurs in each factor of the normal form.

Proof. Note first that any element of N j is sent by ρ h pβq to an element of N π ´1pβqpjq . This is clear for the Artin generators σ i , and so is it for any braid β. Next, for a given integer k P t1, ¨¨¨, nu, consider the endomorphism of RF n defined by

x i Þ Ñ 1, if i " k and x i Þ Ñ x i , otherwise.
This endomorphism sends a commutator to 1 if it belongs to N k and to itself otherwise. In addition, it sends the normal form of any ω P N k to the normal form of 1. So by unicity of the normal form in RF n (Theorem 2.3.12), for any ω P N k , the normal form ω " rα 1 s e 1 ¨¨¨rα m s em contains only commutators in N k , i.e., e i " 0 if rα i s R N k .

Recall from Definition 1.2.13 the linearization map ϕ : RF n Ñ V. Recall also from definition 1.2.7 the family F of (basic) commutator in RF n .

Proposition 2.3.2. The map γ : hB n Ñ GLpVq defined for β P hB n and rαs P F by γpβqpαq " ϕ ˝ρh pβqprαsq is a well-defined homomorphism. Moreover, γ does not depend on the chosen order on F.

Proof. Since ϕ is not a homomorphism in general, it is not clear that γ is a representation. Yet we do have that γpββ 1 q " γpβqγpβ 1 q for any two homotopy braids β and β 1 , which is shown as follows. Let rαs be a commutator in F and α its corresponding commutator in V. We choose some j P suppprαsq so that rαs is in N j . Set γpβ 1 qpαq " ř i e i α i for some commutators α i P V associated to the commutators rα i s P F and some integers e i . Then we have

γpββ 1 qpαq " ϕ ˝ρh pβqρ h pβ 1 qprαsq " ϕ ˝ρh pβq ´ź i rα i s e i ¯" ϕ ´ź i ρ h pβqprα i sq e i ¯.
Now, using Lemma 2.3.1 we know that rα i s is in N π ´1pβ 1 qpjq for any i. Moreover, Lemma 2.3.1 implies that any commutator in the normal form of ρ h pβqprα i sq is in the abelian group N π ´1pββ 1 qpjq for any i. But note that for C 1 , . . . , C k a collection of commutators in F such that rC i ,C j s " 1 for any i, j, we have that ϕpC 1 ¨¨¨C k q " ϕpC 1 q `¨¨¨`ϕpC k q. Hence ϕ behaves like a homomorphism on the product ś i ρ h pβqprα i sq e i , and finally,

ϕ ´ź i ρ h pβqprα i sq e i ¯" ÿ i e i ϕ ´ρh pβqprα i sq ¯" ÿ i e i γpβqpα i q " γpβq ´ÿ i e i pα i q ¯" γpβqγpβ 1 qpαq.
This shows that γ is a well-defined homomorphism.

To prove the independence on the chosen order on F we use Lemma 2.3.1 again. For any β P hB n and any rαs P F, all the commutators in the normal form of ρ h pβqprαsq commute with each other. In particular, if we set two orderings trα 1 s, . . . , rα m su and trα σp1q s, . . . , rα σpmq su on F then the two associated normal forms ρ h pβqprαsq " rα 1 s e 1 ¨¨¨rα m s em " rα σp1q s e 1 σp1q ¨¨¨rα σpmq s e 1 σpmq satisfy e i " e 1 i for any i and therefore ϕ˝ρ h " ϕ 1 ˝ρh for the two linearization maps ϕ and ϕ 1 associated to the orderings.

Remark 2.3.3. The homomorphism γ is in fact injective. Since ϕ is clearly injective, this can be shown using the injectivity of ρ h . However, we will give below another proof of this result in Theorem 2.3.11 using clasper calculus, which in turn reproves the injectivity of ρ h . Furthermore, our approach by clasper calculus allows explicit computations of the representation, as shown in the next section.

Clasper interpretation

We first give a topological interpretation of the Artin (resp. homotopy Artin), representation. We can see the free group F n (resp. reduced free group RF n ) on which B n (resp. hB n ) acts, as the fundamental group (resp. the reduced fundamental group) of the complement of the n-component trivial braid. Therefore, an element of F n (resp. RF n ) can also be seen as the homotopy (resp. the reduced homotopy3 ) class of an pn `1q-th component in this complement. On the diagram, we place this new strand to the right of the braid and we label it by '8'. Thus, the generators x i of F n (resp RF n ) are given by the pure braids A i8 shown in Figure 2.7, which can be reinterpreted with the comb-claspers pi,8q depicted in the same figure. There and in subsequent figures, we simply represent with a circled '8' the leaf intersecting the 8-th component. In this context, the automorphism ρpβq (resp. ρ h pβq) associated to an element β in B n (resp. hB n ) is given on a generator x i P F n (resp.

(i,∞) n i 1 ∞ n i 1 2 2 n-1 n-1 xi ∞ • • • • • • • • • • • •
RF n ) by considering the conjugation β1 pi,8q β ´1 illustrated in Figure 2.8. Then, we apply an isotopy, transforming β1β ´1 into 1, as in the proof of 2.2.2. By doing so the clasper pi,8q is deformed into a new clasper which we are able to reinterpret as an element of F n or RF n .

In this way, we obtain an explicit procedure to compute our representation γ from Proposition 2.3.2 using clasper calculus, as follows. Given β P hB n and α P V, the computation of γpβqpαq goes in 3 steps:

Step 1 Consider the conjugate of the comb-clasper pα,8q by the braid β (see Figure 2.8). Step 2 Use clasper calculus to re-express this conjugate as an ordered union of comb-claspers with 8 in their support (the order comes from the order on F).

¯

-1 n i 1 n i 1 ⟼ ½(¯) ∞ ∞ • • • • • • • • • • • •
Step 3 The number of parallel copies of a given comb-clasper in this product is the coefficient of the associated commutator in γpβqpαq.

Explicit examples of computations using this procedure are given in the proof of Theorem 2.3.5 below.

We note that we have a nice correspondence between the family F, of commutators, and the comb-claspers having 8 in their support, by the following proposition.

Proposition 2.3.4. Let pαq " pi 1 ¨¨¨i n´1 8q and pα 1 q " pi 1 ¨¨¨i n´1 i n 8q be two comb-claspers. Then we have the relation:

pα 1 q " rpαq,pi n 8qs " pαq ¨pi n 8q ¨pαq ´1 ¨pi n 8q ´1.
For example in Figure 2.9 we illustrate the equivalence p12548q " rp1258q,p48qs.

2 5 1 4 3 2 5 1 4 3 ∼ ∞ ∞ ∞ ∞ ∞ Figure 2
.9: The comb-clasper p12548q is link-homotopic to the commutator rp1258q,p48qs.

Proof. Consider the product of comb-claspers α ¨pi n 8q ¨α´1 ¨pi n 8q ´1 (as for example on the righthand side of Figure 2.9). First, we use move p2q from Proposition 1.1.11 to exchange the 8-th leaves of pi n 8q and pαq ´1; this move creates an extra comb-clasper, which is exactly pα 1 q. Now by Remark 1.1.12 we can freely move pα 1 q and finish exchanging the edges of pα n 8q and pαq ´1, thus obtaining the product pαq ¨pαq ´1 ¨pα 1 q ¨pi n 8q ¨pi n 8q ´1 " pα 1 q.

In practice, by iterating this proposition, we obtain a correspondence between the commutators rαs P F (or α P V) and the comb-claspers pα,8q. For example the equivalence p12548q " rrrp18q,p28qs,p58qs,p48qs corresponds to r1254s " rrrx 1 ,x 2 s,x 5 s,x 4 s in RF n .

Explicit computations

We now apply the 3-steps procedure of Section 2.3.2, to compute our representation γ for each generator σ i of hB n and each commutator in V. In general, the image of the commutator pi 1 ,i 2 , ¨¨¨,i l q :" ϕpri 1 ,i 2 , ¨¨¨,i l sq P V by the map γpσ i q depends on the position of the indices i and i `1 in the sequence i 1 , i 2 , . . . , i l , as stated in Theorem 2.3.5 below. Note that a program in Python that computes explicitly the representation γ is available on [Gra22].

Theorem 2.3.5. For suitable sequences I, J, K in t1, . . . , nuzti, i `1u, I ‰ H, we have:

γpσ i q : $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % pIq Þ Ñ pIq paq pJ,i,Kq Þ Ñ pJ,i `1,Kq pbq pi `1,Kq Þ Ñ pi,Kq `pi,i `1,Kq pcq pI,i `1,Kq Þ Ñ pI,i,Kq `pI,i,i `1,Kq ´pI,i `1,i,Kq pdq pI,i,J,i `1,Kq Þ Ñ pI,i `1,J,i,Kq peq pI,i `1,J,i,Kq Þ Ñ pI,i,J,i `1,Kq pf q pi,J,i `1,Kq Þ Ñ ř J 1 ĎJ p´1q |J 1 |`1 pi,J 1 ,i `1,JzJ 1 ,Kq pgq
where in (g), the sum is over all (possibly empty) subsequences J 1 of J, and J 1 denotes the sequence obtained from J 1 by reversing the order of its elements, see Example 2.3.6.

Example 2.3.6. If J " pj 1 , j 2 , j 3 q and K " H in (g), then γpσ i q maps pi,J,i `1q to :

´pi,i `1,j 1 ,j 2 ,j 3 q `pi,j 1 ,i `1,j 2 ,j 3 q `pi,j 2 ,i `1,j 1 ,j 3 q `pi,j 3 ,i `1,j 1 ,j 2 q ´pi,j 2 ,j 1 ,i `1,j 3 q ´pi,j 3 ,j 1 ,i `1,j 2 q ´pi,j 3 ,j 2 ,i `1,j 1 q `pi,j 3 ,j 2 ,j 1 ,i `1q.

The proof below explains how this follows from the IHX relations of Figure 2.14.

Proof of Theorem 2.3.5. Following the 3-steps procedure of Section 2.3.2, we consider the conjugate σ i pα,8qσ ´1 i and apply clasper calculus to turn it into a union of comb-claspers. For paq it is clear that pI,8q commutes with σ i , passing over or next to it. The computation of pbq is given by a simple isotopy of the braid shown in Figure 2.10.

∼ (J,i,K,∞) (J,i+1,K,∞) i i+1 i i+1 ∞ ∞ Figure 2.10: Computation of pbq. (i,K,∞) ∼ (i,i+1) (i,i+1) -1 i i+1 ∼ i i+1 (i,K,∞) (i+1,K,∞) i i+1 (i,i+1,K,∞) ∞ ∞ ∞ ∞ Figure 2.11: Computation of pcq. ∼ (I,i+1,K,∞) (I,i,K,∞) ∼ (i,i+1) (i,i+1) -1 i i+1 i i+1 i i+1 (I,i,K,∞) ∼ i i+1 (I,i,K,∞) (I,i,i+1,K,∞) (I,i+1,i,K,∞) ∞ ∞ ∞ ∞ ∞ ∞ ∞ Figure 2.12: Computation of pdq.
The proofs of pcq and pdq are similar and are given in Figures 2.11 and 2.12 respectively. There, the first equivalence is an isotopy, and the second one is given by move (2) from Proposition 1.1.11. For pdq there is a further step given by an IHX relation.

For peq and pf q we apply the same isotopy as Figure 2.10 on components i and i `1, thus interchanging pI,i,J,i `1,Kq and pI,i `1,J,i,Kq. Note that we also need a crossing change between the pi `1q-th component and a clasper edge, which is possible according to Remark 1.1.12.

Proving pgq is the last and hardest part and goes in two steps. The first step is illustrated in Figure 2.13: we proceed as before with an isotopy and a crossing change, then we use move (8) of Remark 1.1.13. This turns σ i pi,J,i `1,K,8qσ ´1 i into a new clasper which is not a comb-clasper.

(J,i,K,∞) ∼ i i+1 i i+1 J ∼ i i+1 ∞ ∞ ∞ J J Figure 2.13: Turning σ i pi,J,i `1,K,8qσ ´1 i into a new clasper.
In the second step, we use IHX relations repeatedly to turn this new clasper into a product of comb-claspers. This is illustrated in Figure 2.14 where J " pj 1 ,j 2 ,j 3 q. We conclude by simplifying the half-twists with Remark 1.1.14.

Example 2.3.7. We illustrate Theorem 2.3.5 by computing completely and explicitly the representation γ on the 3-component homotopy braid group hB 3 . To do so, we set p1q, p2q, p3q, p12q, p13q, p23q, p123q and p132q to be the generators of V, with the order of Definition 1.2.8, and we compute γ This gives us the following matrices:

γpσ 1 q " ¨0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ´1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ´1 ´1 0 1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , γpσ 2 q " ¨1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 ´1 0 0 0 0 0 0 0 0 0 0 1 0 0 ´1 0 0 1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
The global shape of these matrices was predicted by Theorem 2.3.5. Indeed in general we have the following.

Proposition 2.3.8. For β P hB n a homotopy braid, the matrix associated to γpβq in the basis of V, endowed with the order resulting from Definition 1.2.8, is given by a lower triangular block matrix of the following form:

¨B1,1 0 ¨¨¨0 B 2,1 B 2,2 ¨¨¨0 . . . . . . . . . . . . B n,1 B n,2 ¨¨¨B n,n ‹ ‹ ‹ '
where B i,i is a finite order matrix of size rkpV i q " ř n´1 i´1 k! pk´i`1q! which is the identity when β is pure. Moreover, B 1,1 corresponds to the left action by permutation k Þ Ñ π ´1pβqpkq, and B 2,2 corresponds to the left action on the set tpk, jqu kăj given by:

pk, jq Þ Ñ " `π´1 pβqpkq, π ´1pβqpjq ˘if π ´1pβqpkq ă π ´1pβqpjq,
´`π ´1pβqpjq, π ´1pβqpkq ˘if π ´1pβqpjq ă π ´1pβqpkq.

Proof. The triangular shape is a direct consequence of Theorem 2.3.5. Indeed, the chosen order respects the weight, and Theorem 2.3.5 shows that γ maps a commutator of weight k to a sum of commutators of weight at least k. Proposition 1.2.14 gives the size of the square diagonal blocks B i,i . The fact that these diagonal blocks are the identity when β is a pure braid may require some more explanations. We only need to show this result on the generators β " A i,j " 1 pi,jq . By Proposition 1.1.11, conjugating pα,8q by pi,jq may only create a clasper pα 1 ,8q of strictly higher degree. This shows that γpβqpαq " pαq `(strictly higher weight commutators) so that B i,i is the identity. The block matrix B 1,1 describes the action on degree one comb-claspers modulo claspers of higher degree: the claim follows on an easy verification on the generators σ i . Similarly, the claim on the block matrix B 2,2 amounts to focusing on degree two comb-claspers.

Remark 2.3.9. Note that the blocks B i,1 formed by the first n columns of the matrix encode the images of γpβqpx i q on all the weight one commutators x 1 , . . . ,x n of V. In particular, these blocks encode the image of the homotopy Artin representation ρ h pβqpx i q on all the generators x 1 , . . . ,x n of RF n , and thus the full image of ρ h pβq. Therefore, the n first columns of the matrix completely determine the full matrix γpβq. Moreover, each block B i,i encodes the action of γpβq on weight i commutator up to higher weight commutators in V. At the clasper level, this corresponds to the action on the degree i comb-claspers of the form pα,8q, up to claspers of higher degrees. According to Proposition 1.1.11, we can exchange clasper edges with other clasper edges or with strands of braids up to higher-degree claspers. This implies that each block B i,i is determined by the permutation πpβq associated with the braid β P hB n .

Injectivity

In order to prove the injectivity of γ, we need the following preparatory lemma.

Lemma 2.3.10. Let pi 1 , ¨¨¨,i l q be a comb-clasper. We have γ `1pi 1 ,¨¨¨,i l q ˘pi l q " pi l q ´pi 1 , ¨¨¨,i l q, where, on the right-hand side, pi 1 , ¨¨¨,i l q now denotes the corresponding commutator in V.

Proof. Following the 3-steps procedure of Section 2.3.2, we consider the product pi 1 , ¨¨¨,i l qpi l ,8qpi 1 , ¨¨¨,i l q

´1

and re-express it with only comb-claspers with 8 in their support. To do so, as illustrated in Figure 2.15, we apply move p2q from Proposition 1.1.11 on the leaves on the i l -th component, which introduces the comb-clasper pi 1 , ¨¨¨,i l ,8q ´1, and we simplify pi 1 , ¨¨¨,i l q and pi 1 , ¨¨¨,i l q ´1. We can now state the injectivity of the representation γ from Proposition 2.3.2.

i1 il n 1 i1 il n 1 ∼ ∞ ∞ ∞ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Theorem 2.3.11. The representation γ : hB n Ñ GLpVq is injective.

Proof. Let β P hB n be such that γpβq " Id. First, Proposition 2.3.8 imposes that β is a pure braid; indeed the block B 1,1 must be the identity, which means that the permutation πpβq is trivial. According to Theorem 2.1.11 we can consider a normal form for β:

β " ź pαq να ,
for some integers ν α . Let I Ă t1, . . . , nu be any sequence of indices. Let also V I be the subspace of V spanned by commutators with support included in I. We can then define the associated projection p I : V Ñ V I , and its composition with the restriction of γ to V I , denoted by γ I :" p I ˝γ| V I

. Note that it corresponds to keeping only the components with index in I. It is clear using Proposition 1.1.11 that γphP n qpVzV I q Ă VzV I , thus for β 1 , β 2 P hP n we have that γ I pβ 1 β 2 q " γ I pβ 1 qγ I pβ 2 q. Moreover γ I p1 pαq q " Id for any comb-clasper pαq with supppαq Ć I. Hence γ I pβq " γ I pβ I q for β I defined by:

β I " ź supppαqĂI pαq να .
Now we show by strong induction on the degree of pαq that ν α " 0. For the base case, we consider I of the form I " ti, lu with i ď l. Using Lemma 2.3.10 we obtain: γ I pβ I qplq " γ I ´´1 pilq ¯νil ¯plq, " plq ´νil ¨pilq.

Since β P kerpγq, we have that γ I pβqplq " plq, and this implies that ν α " 0 for any pαq of degree one. To prove that ν α " 0 for any pαq of degree k we take I of length k `1 and using the strong induction hypothesis, we get then:

β I " ź supppαq"I pαq να .
It is worth noting that for any comb-clasper pαq with support I and any commutator pα 1 q P V I , we have γ I p1 pαq qpα 1 q " pα 1 q. This follows from the 3-steps procedure of Section 2.3.2 and Remark 1.1.12 given that supppαq X supppα 1 ,8q ě 2. Thus thanks to Lemma 2.3.10, denoting by l the largest index of I we finally obtain: γ I pβ I qplq " plq ´ÿ supppαq"I ν α ¨pαq.

Because β P kerpγq, we have that γ I pβqplq " plq, and this implies ν α " 0 for any pαq with support I.

Repeating the argument for any I Ă t1, . . . , nu of length k `1, we get that ν α " 0 for any pαq of degree k, which concludes the proof.

Corollary 2.3.12. The normal form is unique in hB n , i.e., if β " ś pαq να " ś pαq ν 1 α are two normal forms of β for a given order on the set of twisted comb-claspers, then ν α " ν 1 α for any pαq. Proof. The proof follows closely the previous one. As before for a given I Ă t1, . . . , nu we have γ I pβq " γ I pβ I q for β I defined by :

β I " ź supppαqĂI pαq να " ź supppαqĂI pαq ν 1 α .
We show again by strong induction on the degree that ν α " ν 1 α for all comb-claspers α. The base case is strictly similar, but for the inductive step one cannot in general write β I with only combclaspers with support I. However, by Remark 1.1.12, two comb-claspers pαq and pα 1 q satisfying supppαqXsupppα 1 q ě 2 commute in hB n . Hence, any comb-clasper with support equal to I commutes with any comb-clasper with support included in I. In particular, we get: Clearly, the commutator family pαq with support equal to I is a free family in V, so their coefficients ν α and ν 1 α on both sides coincide, which complete the induction and the proof.

γ I pβ I qpmq
Remark 2.3.13. Corollary 2.3.12 shows that the numbers ν α of parallel copies of each comb-clasper in a normal form are a complete invariant of pure braids up to link-homotopy. We call those numbers the clasp-numbers. Other well known complete homotopy braid invariants are the Milnor numbers [START_REF] Milnor | Link groups[END_REF]. As a matter of fact, Milnor numbers can be used, using the techniques of [START_REF] Yasuhara | Self delta-equivalence for links whose Milnor's isotopy invariants vanish[END_REF], to give another proof of Corollary 2.3.12. In this thesis we will not try to make explicit the relation between clasp-numbers and Milnor numbers, since we work solely with clasp-numbers.

A foretaste of the torsion problem

V. Lin in the Kourovka Notebook [START_REF] Mazurov | The Kourovka notebook. Unsolved problems in group theory[END_REF] asks the following: does the braid group B n have proper non-abelian torsion-free factor-groups? P. Linnell and T. Schick in [START_REF] Linnell | Finite group extensions and the Atiyah conjecture[END_REF], give a positive answer to the question, showing that B n is residually torsion-free nilpotent-by-finite. However their approach does not provide explicit examples. The homotopy braid groups hB n appear as potential candidate. Indeed, S. P. Humphries shows in [START_REF] Humphries | Torsion-free quotients of braid groups[END_REF] that hB n is torsion-free for n ď 6. In this section we extend this result to n ď 10, using a new approach based on clasper calculus. Note that we will show the general result for all n later in the manuscript (see Section 4.3), using the broader context of homotopy welded braids. In this section, we focus on the study of torsion in the homotopy braid group, confining ourselves to their classical framework. Later, we will build on the results established in this section and extend them using the welded context.

Preparation

Throughout this section, we use the notion of normal form (Definition 2.1.8) in the pure homotopy braid group hP n as a product of comb-claspers. To do this, we fix an order on the set of twisted comb-claspers, inspired by Definition 1.2.8. For two twisted comb-claspers pαq " pi 1 ¨¨¨i l q and pα 1 q " pi 1 1 ¨¨¨i 1 l 1 q we set pαq ď pα 1 q if:

• degpαq ă degpα 1 q, or • degpαq " degpα 1 q and i 1 . . . i l ă lex i 1 1 . . . i 1 l .
This order is used implicitly throughout the rest of the section. to mean that θ and θ 1 are C k -homotopic.

Definition 2.4.2. For two integers k ď n we define a projection map, p k : hP n Ñ hP n that sends a pure homotopy braid in normal form θ " ś pαq ναpθq to its image p k pθq " ś degpαqďk pαq ναpθq .

Proposition 2.4.3. Let θ,θ 1 P hP n be two pure homotopy braids, then for all k P N the following assertions are equivalent:

(i) θ lh " C k`1 θ 1 (ii) ν α pθq " ν α pθ 1 q, @ degpαq ď k, (iii) p k pθq " p k pθ 1 q.
Proof. Let us first show that (i) implies (ii) i.e., for any comb-clasper pαq of degree k or less, we have ν α pθq " ν α pθ T q for any clasper T for θ of degree k `1. To do so, we drag T by an isotopy along θ to re-express θ T as the product θ1 T 1 for some claspers T 1 for 1 of degree k `1. By lemma 2.1.7, there exist a product pα 1 q ¨¨¨pα m q of degree k `1 comb-claspers such that 1 T 1 " pα 1 q ¨¨¨pα m q. Therefore, θ T " ´źpαq ναpθq ¯pα 1 q ¨¨¨pα m q, with ś pαq ναpθq the normal form of θ. Starting with this expression, we apply the induction from the proof of Theorem 2.1.11, to get the normal form of θ T . Note that in the process, we will only create claspers of degree greater than k `1, which does not change the value of the clasp-numbers ν α with degpαq ď k.

Let us now prove that (ii) implies (iii). We consider the normal forms θ " ś pαq ναpθq and θ 1 " ś pαq ναpθ 1 q . It is clear that

p k pθq " ź degpαqďk pαq ναpθq " ź degpαqďk pαq ναpθ 1 q " p k pθ 1 q
if ν α pθq " ν α pθ 1 q for all comb-claspers pαq with degpαq ď k.

Finally we conclude showing that (iii) implies (i). Since C k`1 -moves allow to remove claspers of degree strictly higher than k, it is clear that θ is C k`1 -homotopic with its projection p k pθq. So by transitivity if p k pθq " p k pθ 1 q then θ and θ 1 are C k`1 -homotopic, and the proof is complete.

Let us fix p a prime number. Let λ P hB p be the homotopy braid illustrated in Figure 2.16, given by λ " σ ´1 1 σ ´1 2 ¨¨¨σ ´1 p´1 . We denote by τ the cycle pp p ´1 ¨¨¨2 1q " πpλq associated to λ. Definition 2.4.4. Let us denote by O a set of representative of the orbits for the action of τ ´1 on the subsets of t1, ¨¨¨,pu `i.e., τ ´1pti 1 , ¨¨¨,i l uq " tτ ´1pi 1 q, ¨¨¨,τ ´1pi l qu ˘. We define R as the set of comb-claspers with support in O and R k as the subset of degree k comb-claspers in R. Finally, we order R with the order fixed above.

1 2 p-1 p 3 • • • • • •
Example 2.4.5. Let illustrate Definition 2.4.4 with p " 5. The action of τ ´1 :" p12345q on the subset of t1,2,3,4,5u contains 7 non-empty orbits. We choose a representative for each of them, thus obtaining:

O " ␣ t1u,t1,2u,t1,3u,t1,2,3u,t1,2,4u,t1,2,3,4u,t1,2,3,4,5u ( .

This gives us the following ordered set of comb-claspers:

R " ␣ p12q,p13q,p123q,p124q,p1234q,p1324q,p12345q,p12435q,p13245q,p13425q,p14235q,p14325q ( .

which is partitioned by the subsets R 1 " ␣ p12q,p13q ( , R 2 " ␣ p123q,p124q ( , R 3 " ␣ p1234q,p1324q ( and R 4 "
␣ p12345q,p12435q,p13245q,p13425q,p14235q,p14325q ( .

Lemma 2.4.6. For any comb-clasper pαq, not necessarily in R, and any pair pα 1 q,pα 2 q P R k with k ď p ´2 we have the three following relations.

(1) There exist some integers l P N such that,

λ l pαqλ ´l " ź pα 1 qPR degpαq pα 1 q.
(2) We have, ν α 1 ´λl pα 2 qλ ´l¯" " 1 if pα 1 q " pα 2 q and l " 0 rps, 0 if pα 1 q ‰ pα 2 q or l ı 0 rps.

(3) For any integer l P N, ν 1,¨¨¨,p ´λl pαqλ ´l¯" " 1 if pαq " p1, ¨¨¨,pq, 0 if pαq ‰ p1, ¨¨¨,pq.

Proof. Let us denote by i the isotopy sending λ1λ ´1 to 1, then λpαqλ ´1 " ipαq and supppipαqq " τ ´1psupppαqq, thus for some integer l, the support supp `il pαq ˘belongs to O. Finally, using move (8) from Remark 1.1.13 and IHX relations, we turn i l pαq into a product of comb-claspers and we get the first relation.

For the second one, if l ı 0 then supp `il pα 2 q ˘R O and therefore ν α 1 `il pα 2 q ˘" 0. Moreover, it is clear that ν α 1 pα 2 q " 0 if pα 1 q ‰ pα 2 q.

Finally, the first relation implies the third if degpαq ‰ p ´1. Otherwise, let us consider the global shape of degree p ´1 comb-claspers. If pαq " p1, ¨¨¨,p ´1, ¨¨¨,i,pq with i ă p ´1 then by move (8) from Remark 1.1.13 and IHX relations, ipαq is given by a product of comb-claspers of the form p1,i `1, ¨¨¨,2, ¨¨¨, pq as schematically illustrated in Figure 2.17.

If pαq " p1, ¨¨¨,j, ¨¨¨,i, ¨¨¨,p ´1,pq with 1 ă i ă j ă p ´1 then by IHX relations, ipαq is given by a product of comb-claspers of the form p1, ¨¨¨,j `1, ¨¨¨,i `1, ¨¨¨, pq or p1, ¨¨¨,i `1, ¨¨¨,2, ¨¨¨,pq. This fact is depicted in Figure 2.18. Definition 2.4.7. Let θ P hP p be a pure homotopy braid, we say that θ is in nice position if the normal form of θ satisfies:

ź pαq ναpθq " ź pαqPR pαq ναpθq .
In other words we require that ν α pθq " 0 if pαq R R.

Remark 2.4.8. We emphasize that the normal form depends on the order on comb-claspers. Likewise, the property of being in nice position depends on the chosen order. Additionally, being in nice position also depends on the chosen set of orbit representatives O.

Lemma 2.4.9. For any pure homotopy braid θ P hP p the product θλ is conjugate to θ ˚λ, for some pure homotopy braid θ ˚P hP p in nice position.

Proof. Suppose that in the normal form of θ, the clasp-number ν 0 :" ν α 0 pθq is not zero for some combclasper pα 0 q R R. Let us further assume that pα 0 q is of minimal degree, i.e., we have degpα 0 q ď degpαq for all pαq R R such that ν α pθq ‰ 0. Then according to equality (1) in Lemma 2.4.6, for some integer l, the conjugate λ l pα 0 qλ ´l is a product of comb-claspers in R. We consider and compute the conjugate

θ 1 λ of θλ: θ 1 λ " ˜ź 0ďkăl λ k pα 0 q ν 0 λ ´k¸´1 θλ ˜ź 0ďkăl λ k pα 0 q ν 0 λ ´k¸, " ˜ź 0ďkăl λ k pα 0 q ν 0 λ ´k¸´1 θλ ˜ź 0ďkăl λ k pα 0 q ν 0 λ ´k¸λ ´1λ, " ˜ź 0ďkăl λ k pα 0 q ν 0 λ ´k¸´1 θ ˜ź 0ăkďl λ k pα 0 q ν 0 λ ´k¸λ , " ˜ź 0ăkăl λ k pα 0 q ν 0 λ ´k¸´1 pα 0 q ´ν0 θ ˜ź 0ăkăl λ k pα 0 q ν 0 λ ´k¸´λ l pα 0 q ν 0 λ ´l¯λ .
Now note that, according to Lemma 2.4.6, the conjugates λ k pα 0 qλ ´k for 0 ă k ă l can be seen as products of comb-claspers with same degree as pα 0 q. Moreover thanks to moves (2) and (4) of Lemma 1.1.11, two comb-claspers commute up to claspers of higher degree, and by Lemma 2.1.7 we can assume that these higher degree claspers are also comb-claspers. Then in the previous expression, up to comb-claspers of degree greater than that of pα 0 q, we can simplify the terms λ k pα 0 qλ ´k for 0 ă k ă l with their inverse to obtain:

θ 1 " pα 0 q ´ν0 θ ´λl pα 0 q ν 0 λ ´l¯¨ź degpα 0 qădegpαq pαq '.
Since the factor α ν 0 0 appears in the normal form θ " ś pαq ναpθq , we can, using the same argument, express θ 1 as follows:

θ 1 "
¨ź pαq‰pα 0 q pαq ναpθq '´λ l pα 0 q ν 0 λ ´l¯¨ź degpα 0 qădegpαq pαq '.

We recover the normal form of θ 1 using the same method as in proof of Theorem 2.1.11, rearranging claspers degree by degree. Let us compare the clasp-numbers of θ and θ 1 . First, if degpαq ă degpα 0 q then ν α pθq " ν α pθ 1 q since no claspers of degree lower than pα 0 q appeared in the procedure. Second, it is clear that ν α 0 pθ 1 q " 0. Finally, ν α pθ 1 q " ν α pθq for almost all others comb-claspers pαq of same degree as pα 0 q. The only exceptions come from the conjugate λ l pα 0 q ν 0 λ ´l and involve comb-claspers belonging to R. In summary, for any comb-clasper pαq R R of degree degpαq ď degpα 0 q the clasp-numbers ν α pθ 1 q remain unchanged, except for ν α 0 pθ 1 q which is now zero. Hence, by repeating the above argument, we eventually obtain another conjugate of θλ of the form θ 2 λ satisfying ν α pθ 2 q " 0 for any comb-clasper pαq R R such that degpαq ď degpα 0 q. Moreover, since above the degree p all claspers are trivial up to link-homotopy, using the same argument degree by degree, we will finally obtain a conjugate θ ˚λ of θλ with θ ˚in nice position.

Lemma 2.4.10. Let θ P hP p be in nice position. Then for any comb-clasper pαq P R k with k ď p ´2 we have the following relations on the clasp-numbers:

ν α `pθλq p ˘" ν α `pp k´1 pθqλq p ˘`ν α pθq.
Moreover for the comb-clasper pαq " p1, ¨¨¨,pq we similarly have: ν 1,¨¨¨,p `pθλq p ˘" ν 1,¨¨¨,p `pp p´2 pθqλq p ˘`p ˆν1,¨¨¨,p pθq.

Proof. Since we ordered comb-claspers along their degree and since θ is in nice position, for any k ď p ´1, if we set δ k :"

ź pαqPR k pαq ναpθq ,
then θ is C k`1 -homotopic with p k´1 pθqδ k . This gives us the following relation:

pθλq p " ˜p´1 ź l"0 λ l θλ ´l¸λ p lh " C k`1 ˜p´1 ź l"0 ´λl p k´1 pθqλ ´l¯´λ l δ k λ ´l¯¸λ p .
To handle this expression and compute the clasp-number of pθλq p , we need the following claim.

Claim 2.4.11. Let T be a degree k ď p ´1 clasper for the trivial braid and let Θ P hP p be a pure homotopy braid. Let also pαq be a degree k comb-clasper. Then,

Θ1 T lh " C k`1 1 T Θ. (1) 
(2) ν α pΘ1 T q " ν α pΘq `να p1 T q.

Statement (1) is already true up to C k`1 -equivalence and follows from [Hab00b, Proposition 5.8]. By Lemma 2.1.7, the clasper T is given by a product of comb-claspers of degree k. Then, by statement (1), up to C k`1 -homotopy, we can freely reposition these comb-claspers in the normal form of Θ. Therefore, using the implication (i) implies (ii) of Proposition 2.4.3 we deduce statement (2).

For any integer l, the conjugate λ l δ k λ ´l is given by a union of claspers of degree k. Then, using statement (1) of the claim, we shift these claspers to the right in the above expression, and obtain:

pθλq p lh " C k`1 ˜p´1 ź l"0 ´λl p k´1 pθqλ ´l¯¸λ p ˜p´1 ź l"0 λ l δ k λ ´l¸.
By simplifying the first product with λ p , and writing δ k as the product ś pαqPR k pαq ναpθq , we obtain:

pθλq p lh " C k`1 `pk´1 pθqλ ˘p ¨p´1 ź l"0 ź pαqPR k ´λl pαqλ ´l¯ν αpθq '.
For any comb-clasper pαq P R k and any integer l, the conjugate λ l pαqλ ´l is a clasper of degree k. Then, for any comb-clasper pα 0 q P R k , using statement (2) repetitively we obtain the following equality:

ν α 0 `pθλq p ˘" ν α 0 ´`p k´1 pθqλ ˘p¯`¨p ´1 ÿ l"0 ÿ pαqPR k ν α pθqν α 0 ´λl pαqλ ´l¯' .
Now, according to relation (2) of Lemma 2.4.6, if k ď p ´2, the only non-zero term in the sum is the factor ν α 0 pθqν α 0 pα 0 q " ν α 0 pθq. This gives us the first equality of the lemma. Finally if pα 0 q " p1, ¨¨¨,pq, by relation (3) of Lemma 2.4.6, for all l, we have ν α 0 `λl pαqλ ´l˘"

1 if pαq " p1, ¨¨¨,pq and ν α 0 `λl p1, ¨¨¨,pqλ ´l˘" 0 otherwise. This gives us the second equality of the lemma.

First results

Definition 2.4.12. By induction, we construct a family tθ k u kďp´2 P hP p of pure homotopy braids as follows:

$ ' & ' % θ 0 :" 1, θ k`1 :" θ k ˜ś pαqPR k`1 pαq ´να `pθ k λq p ˘¸.
We emphasize that the construction of θ k`1 requires clasp-numbers of pθ k λq p , so it is necessary to compute its normal form.

Remark 2.4.13. Since the order on R corresponds to the one on the set of all comb-claspers, and because we chose an order by increasing degree, we have that the family tθ k u kďp´2 P hP p of pure homotopy braids are in nice position.

Lemma 2.4.14. Let θ P hP p be in nice position. If pθλq p " 1 then for any k ď p ´2, we have

θ lh " C k`1 θ k ,
where tθ k u kďp´2 is defined in Definition 2.4.12.

Proof. Firstly, thanks to piq equivalent to piiq in Proposition 2.4.3 and since θ and θ k for any k ď p ´2 are in nice position, it is equivalent to show that for any k ď p ´2 and any pαq P R k , ν α pθq " ν α pθ k q.

We proceed by induction on the degree k of pαq. Let us start with pαq P R 1 ; by Lemma 2.4.10 we have ν α pθq " ´να pλ p q.

Moreover by construction we also have:

ν α pθ 1 q " ´να pλ p q.
Thus ν α pθq " ν α pθ 1 q for any pαq P R 1 and the initialization step is done. For the induction we use Lemma 2.4.10 again and, for any pαq P R k with k ď p ´2, we get the relation:

ν α pθq " ´να `pp k´1 pθqλq p ˘.
Furthermore, by construction we also see that ν α pθ k q " ´να `pθ k´1 λq p ˘, " ´να `pp k´1 pθ k´1 qλq p ˘.

Now by induction and piiq equivalent to piiiq in Proposition 2.4.3, we have that p k´1 pθq " p k´1 pθ k´1 q then ν α pθq " ν α pθ k q for any pαq P R k , which concludes the proof.

Lemma 2.4.15. Let θ P hP p be in nice position. If pθλq p " 1 then ν 1,¨¨¨,p `pθ p´2 λq p ˘" 0 mod rps, where θ p´2 is defined in Definition 2.4.12.

Proof. Consider first the equality from Lemma 2.4.10: ν 1,¨¨¨,p ppθλq p q " p ˆν1,¨¨¨,p pθq `ν1,¨¨¨,p ppp p´2 pθqλq p q.

By Lemma 2.4.14, θ and θ p´2 are C p´1 -homotopic. Hence by Proposition 2.4.3, we have p p´2 pθq " p p´2 pθ p´2 q " θ p´2 , thus ν 1,¨¨¨,p ppp p´2 pθqλq p q " ν 1,¨¨¨,p ppθ p´2 λq p q and the above equality becomes: ν 1,¨¨¨,p ppθ p´2 λq p q " ´p ˆν1,¨¨¨,p pθq.

The following theorem is well-known, it appears for example in [START_REF] Habegger | The classification of links up to link-homotopy[END_REF][START_REF] Humphries | Torsion-free quotients of braid groups[END_REF]; we give here a new proof based on clasper calculus.

Theorem 2.4.16. The pure homotopy braid group hP n is torsion-free for any n P N.

Proof. Let θ P hP n with θ ‰ 1 be a pure homotopy braid and let k P N be the minimal integer such that θ is not C k`1 -homotopic to the trivial braid `i.e., k " mintl P N | p l pθq ‰ 1u ˘. Then we have:

θ m lh " C k`1 ¨ź degpαq"k pαq ναpθq 'm lh " C k`1 ź degpαq"k pαq mναpθq,
and θ m is not C k`1 -homotopic to the trivial braid for any m.

Lemma 2.4.17. If there is torsion in hB n then for some prime number p ď n there exists a torsion element of order p in hB p .

Proof. Let β P hB n be a torsion element of prime order p and πpβq its associated permutation. Now, by Theorem 2.4.16, hP n is torsion-free, thus πpβq ‰ 1 and πpβq is a torsion element of order p in the symmetric group S n . More precisely πpβq is a product of p-cycles pp ď nq with disjoint supports. Let us denote by pi 1 , ¨¨¨,i p q one of them, and by G the subgroup of hB n generated by elements whose associated permutation sends the set ti 1 , ¨¨¨,i p u to itself. The homomorphism ϕ : G Ñ hB p , which keeps only the strands i 1 , ¨¨¨,i p , sends β onto a torsion element of order p in hB p and the proof is complete.

Remark 2.4.18. This lemma also holds for the usual braid group B n and the proof works the same.

Theorem 2.4.19. There is no torsion in hB n for n ď 10.

Proof. According to Lemma 2.4.17, we only need to show that for any prime number p ď 7 there is no torsion elements of order p in hB p . But, if such an element exists, it should be a conjugate of θλ, for some θ P hP p , assumed to be in nice position by Lemma 2.4.9. We developed a program in Python, as presented in Appendix A and accessible on [Gra22], which constructs the family tθ k u kďp´2 defined in Definition 2.4.12 for a given prime number p and returns ν 1,¨¨¨,p ppθ p´2 λq p q. We ran it for p " 2,3,5,7 and each time ν 1,¨¨¨,p ppθ p´2 λq p q " 1 so the condition of Lemma 2.4.15 does not hold and hB n is torsion-free for n ď 10.

Remark 2.4.20. It is likely that this method will enable us to extend the result to a larger number of strands. A more optimized program or greater computing power, would enable us to test the next prime numbers. However, it seems unlikely that a general result for any number of strands could be obtained this way. To demonstrate such a result, we need to consider the wider context of welded objects. This is done in Section 4.3, where we will reapply and adapt the ideas developed here to welded setting. Nevertheless, we have chosen to keep this first weak version in this manuscript, for the following two reasons. Firstly, this is the path we followed in our thesis work. We first addressed the torsion problem as presented in this section, then reconsidered it with welded techniques. Secondly, this illustrates the strength of welded theory. Indeed, we obtain a complete result while the same reasoning fails in the classical context.

Chapter 3

Links up to link-homotopy

In this chapter, we will focus on the study of links up to link-homotopy. More precisely, we will describe in terms of clasp-numbers variation when two normal forms have link-homotopic closures.

The main purpose of this section is to use clasp-numbers, defined in Remark 2.3.13 above, to provide an explicit classification of links up to link-homotopy. In this way we recover results of J.W. Milnor [START_REF] Milnor | Link groups[END_REF] and J. Levine [START_REF] Levine | An approach to homotopy classification of links[END_REF] for 4 or less components, and extend them partially for 5 components. To do so we first revisit in terms of claspers the work of N. Habegger and X.-S. Lin [START_REF] Habegger | The classification of links up to link-homotopy[END_REF].

Remark 3.0.1. Y. Kotorii and A. Mizusawa also addressed the question of using clasper theory to classify 4-component links up to link-homotopy in [START_REF] Kotorii | Link-homotopy classes of 4-component links and claspers[END_REF] and [START_REF] Kotorii | Clasper presentations of Habegger-Lin's action on string links[END_REF]. In their first paper, they use a different kind of normal form, arranged along a tetrahedron shape, adapted to the 4-component case. The main difference with the present work, however, is that their result makes direct use of Levine's classification. Here we instead reprove the latter using Theorem 3.1.8 and clasper calculus. Our approach is likely to extend to the general case: as an illustration of this fact, we treat the algebraically-split 5-component case in Section 3.2.4. Their other paper also also follows a similar direction. In this work, they ultimately adopted a similar technique and give a complete classification for links with at most 5 components.

Habegger-Lin's work revisited

There is a procedure on braids called closure, that turns a braid into a link in S 3 . The question is to determine when two braids have link-homotopic closures. The purpose of this section is to answer this question by following the work of [START_REF] Habegger | The classification of links up to link-homotopy[END_REF] and reinterpreting it in terms of claspers. Let us first recall from [HL90, Theorem 1.7 & Corollary 1.11] that for any integer n we have the decomposition:

hP n " hP n´1 ˙RF n´1
where the first term corresponds to the braid obtained by omitting a given component, and the second term is the class of this component as an element of the reduced fundamental group of the disk with n ´1 punctures.

In particular, if we iterate this decomposition by omitting the last component recursively, we obtain the decomposition illustrated in Figure 3.1 (see Convention 3.1.1) :

hP n " RF 1 ˙¨¨¨˙RF n´1 .
Moreover the normal form in hP n with respect to the order of Definition 2.1.9 corresponds to this decomposition, where each individual factor is in normal form with respect to the order of Definition 1.2.8. To answer the question, N. Habegger and X.-S. Lin in [START_REF] Habegger | The classification of links up to link-homotopy[END_REF] study an action of hP 2n on hP n´1 ṘF n´1 , which leads them to considering certain elementary operations p xi , xi q k , px i ,x i q k and p xi ,x i q k , whose definition we recall here in terms of claspers. Definition 3.1.2. Let β P hP n be a pure homotopy braid, and let i, k be two distinct integers in t1, . . . , nu.

• p xi , xi q k pβq is the pure homotopy braid β ∆ ¨1pikq ´1 , where ∆ and pikq ´1 are degree one claspers as shown in the left-hand side of Figure 3.2.

• px i ,x i q k pβq is the pure homotopy braid 1 pikq ¨β∆ 1 , where ∆ 1 and pikq ´1 are degree one claspers as shown in the central part of Figure 3.2.

• p xi ,x i q k pβq is the pure homotopy braid 1 pikq β ¨1pikq ´1 , where pikq and pikq ´1 are degree one claspers as shown in the right-hand side of Figure 3.2.

Remark 3.1.3. In fact, in [START_REF] Habegger | The classification of links up to link-homotopy[END_REF] those operations are only defined for k " n, but the definitions extend naturally to any k ‰ i. Moreover, Figure 2.8 in [START_REF] Habegger | The classification of links up to link-homotopy[END_REF] does not correspond exactly to Figure 3.2, due to convention choices. Firstly, in [START_REF] Habegger | The classification of links up to link-homotopy[END_REF] braids are oriented from bottom to top whereas we orient them from top to bottom. Secondly, here the basepoint of the second term in the decomposition hP n " hP n´1 ˙RF n´1 is taken above the n ´1 punctures, and not under the n ´1 punctures as in [START_REF] Habegger | The classification of links up to link-homotopy[END_REF].
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.2: The elementary operations p xi , xi q k , px i ,x i q k , and p xi ,x i q k . By taking a closer look at the operations p xi , xi q k and p xi ,x i q k and more precisely their effect on the decomposition hP n " hP n´1 ˙RF n´1 , N. Habegger and X.-S. Lin come to the following central definition.

Definition 3.1.4. Let β P hP n , we set β " θω a decomposition in hP n " hP n´1 ˙RF n´1 . A partial conjugate of β is an element of hP n of the form θλωλ ´1 for some λ P RF n´1 . We speak of a k-th partial conjugation, or partial conjugation with respect to the k-th component, when the decomposition hP n " hP n´1 ˙RF n´1 is obtained by omitting the k-th component.

The computations in [START_REF] Habegger | The classification of links up to link-homotopy[END_REF]p. 413] show that the operations p xi , xi q k and p xi ,x i q k are partial conjugations. We use clasper calculus to reprove it for the operation p xi , xi q k in Proposition 3.1.5 and later for the operation p xi ,x i q k in Proposition 3.1.7. Proposition 3.1.5. Let β be a pure homotopy braid. The operation p xi , xi q k pβq is the k-th partial conjugation of β by x i . In particular the operations p xi , xi q k with i ‰ k in t1, . . . , nu generate the partial conjugations.
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Proof. We set first β " θω the decomposition of β in hP n " hP n´1 ˙RF n´1 obtained by omitting the k-th component. Through surgery, we see the factor θ P hP n´1 as a union C of simple claspers for the trivial braid 1, where the k-th component is disjoint from and passes over all claspers in C.

The factor ω P RF n´1 is given by a union C 1 of simple claspers for the trivial braid, all containing k in their support. In this setting, the k-th partial conjugation by x i (i.e., β Þ Ñ θx i ωx ´1 i ) corresponds to the product CpikqC 1 pikq ´1 as shown in the left-hand side of Figure 3.3. To prove the proposition it suffices to slide the leaf k of pikq upwards by an isotopy (this is possible since C is disjoint from the k-th component), and slide the leaf i downwards: by moves p2q and p4q from Proposition 1.1.11 this creates claspers with repeats, which by Lemma 1.1.10 are trivial up to link-homotopy.

J. R. Hughes in [START_REF] Hughes | Partial conjugations suffice[END_REF] showed that partial conjugations generate conjugations. We reprove this result below using clasper calculus. Proposition 3.1.6. Partial conjugations generate conjugations, in other words operations p xi , xi q k generate operations p xi ,x i q k for i ‰ k in t1, . . . , nu.

Proof. It suffices to show that partial conjugations generate all conjugations by any comb-clasper pikq. Let β P hP n , seen as the surgery on 1 along a union of simple claspers denoted C. By the procedure given below, we decompose C into a product C " CC i C k C i,k such that:

-C i,k is a union of claspers each having i and k in their support, -C i , resp C k , is a union of claspers, each having i, resp k, in their support, and such that the k-th, resp i-th, component of 1 is disjoint from and passes over all claspers in C i , resp C k , -C is a product of claspers that are disjoint from and pass under the i-th and k-th components.

n 1 k i Ci,k Ci Ck C • • • • • • • • • Figure 3.4: Decomposition C " CC i C k C i,k .
This decomposition is illustrated in Figure 3.4. To obtain such a decomposition, we first consider those claspers in C that are disjoint from the i-th and k-th components, and we apply move (3) from Proposition 1.1.11 to ensure that they all are behind those components. We use moves Note that the product p CC i qpC k C i,k q corresponds to the decomposition hP n " hP n´1 ˙RF n´1 given by omitting the k-th component. We can then apply a k-th partial conjugation by x i to obtain CC i pikqC k C i,k pikq ´1. We then exchange the relative position of pikq with C k using moves (2) and (4) from Proposition 1.1.11, this creates a union K i,k of claspers with i and k in their support, such that:

pikqC k " C k K i,k pikq. (3.1)
We can then freely (up to link-homotopy) exchange pikq and C i,k by Remark 1.1.12, thus obtaining the decomposition CC i C k K i,k C i,k . Now we similarly use moves (2) and (4) from Proposition 1.1.11 to exchange C i and C k , which creates a union R i,k of claspers with i and k in their support, such that:

C i C k " C k R i,k C i . (3.2)
We obtain in this way the product p CC k qpR i,k C i K i,k C i,k q corresponding to the decomposition hP n " hP n´1 ˙RF n´1 given by omitting the i-th component. We can then perform an i-th partial conjugation by

x k to obtain CC k pikqR i,k C i C i,k K i,k pikq ´1 that is link-homotopic to CC k pikqR i,k C i C i,k pikq ´1K i,k
according to Remark 1.1.12. Then with further partial conjugations, we relocate K i,k and we ob-

tain CC k pikqK i,k R i,k C i C i,k pikq ´1.
Finally using equality (3.1) and (3.2) from above we simplify the expression as follows:

CC k K i,k pikqR i,k C i C i,k pikq ´1 " CpikqC k R i,k C i C i,k pikq ´1 " CpikqC i C k C i,k pikq ´1,
and we conclude by exchanging C and pikq via an isotopy, thus obtaining the conjugate pikqCpikq ´1.

Proposition 3.1.7. The operations p xi , xi q k generate the operations p xi ,x i q k for i ‰ k in t1, . . . , nu.

Proof. Clearly, from the clasper point of view, the operation px i ,x i q k is the composition of the inverse of the operation p xk , xk q i with the conjugation by the comb-clasper pikq (i.e., the operation p xi ,x i q k ).

Hence we conclude the proof using Proposition 3.1.6.

We state now the main classification theorem of links up to link-homotopy.

Theorem 3.1.8. [HL90, Hug05] Let β, β 1 P hP n be two pure homotopy braids. The closures of β and β 1 are link-homotopic, if and only if there exists a sequence β " β 0 , β 1 , . . . , β n " β 1 of elements of hP n such that β j`1 " p xi , xi q k pβ j q for some i ‰ k in t1, . . . , nu.

Proof. Firstly, [HL90, Theorem 2.13.] states that β and β 1 have link-homotopic closures if and only if there exists a sequence β " β 0 , β 1 , ¨¨¨, β n " β 1 of elements of hP n such that β i`1 is a conjugate, or a partial conjugate of β i . Moreover, as mentioned above (Proposition 3.1.5) the operations p xi , xi q k generate the partial conjugations, and we conclude the proof using the result from [START_REF] Hughes | Partial conjugations suffice[END_REF] (see Proposition 3.1.6).

Link-homotopy classification

This section is dedicated to the explicit classification of links up to link-homotopy. The starting point of the strategy is Theorem 3.1.8 which allows us to see links up to link-homotopy as pure homotopy braids up to operations p xi , xi q k with i ‰ k in t1, . . . , nu. Moreover, with Corollary 2.3.12 we show that a braid is uniquely determined by its normal form, encoded by a sequence of integers: the claspnumbers. The goal is then to determine how the normal form, or equivalently the clasp-numbers, vary under operations p xi , xi q k . By using clasper calculus, we recover in this way the link-homotopy classification results from J. W. Milnor [START_REF] Milnor | Link groups[END_REF] and J. Levine [START_REF] Levine | An approach to homotopy classification of links[END_REF] in the case of links with at most 4 components. We then apply these techniques to the 5-component algebraically-split case.

In order to use Corollary 2.3.12, we need to fix an order on the set of twisted comb-claspers. In the rest of the document, we fix the following order, which is inspired from Definition 1.2.8. For two twisted comb-claspers pαq " pi 1 ¨¨¨i l q and pα 1 q " pi 1 1 ¨¨¨i 1 l 1 q we set pαq ď pα 1 q if: • degpαq ă degpα 1 q, or • degpαq " degpα 1 q and i 1 . . . i l ă lex i 1 1 . . . i 1 l . This order is used implicitly throughout the rest of the document.

The 2-component case.

As a warm-up, we consider the 2-component case in order to illustrate the techniques of this section.

Let L be a 2-component link, then L can be seen as the closure of a 2-component string-link β. As mentioned in Remark 2.1.5, up to link-homotopy, string-links correspond to pure braid. Thus by Corollary 2.3.12 there is a unique integer ν 12 such that:

β " p12q ν 12 .
So by Theorem 3.1.8 the link-homotopy class of L is uniquely characterized by the integer ν 12 modulo the indeterminacy introduced by the operations p x2 , x2 q 1 and p x1 , x1 q 2 . However, in both cases, |suppp∆qXsuppp12q| " 2 as illustrated in the right-hand side of Figure 3.5 for p x2 , x2 q 1 . Thus, Remark 1.1.12 shows that p x2 , x2 q 1 and p x1 , x1 q 2 leave the normal form unchanged, and the clasp-number ν 12 is therefore a complete link-homotopy invariant for 2-component links. Note that this number is in fact the linking number between the two components, which is well known to classify 2-component links up to link-homotopy.

The 3-component case

Let L be a 3-component link seen as the closure of the normal form: We now investigate how these numbers vary under the operations p xi , xi q k for i ‰ k P t1, 2, 3u; we apply for example p x2 , x2 q 1 . By Definition 3.1.2 this corresponds to introducing the claspers ∆ and p12q ´1 as shown in the right-hand side of Figure 3.6, which we then put in normal form. This is done by sliding the 1-leaf of ∆ along the first component to obtain p12q and simplify it with p12q ´1. By move p2q from Proposition 1.1.11, this sliding creates new claspers, but by Lemma 1.1.10, the only claspers that do not vanish up to link-homotopy, are those created when ∆ crosses the leaves of p13q ν 13 : more precisely, in this process, ν 13 copies of t1, 2, 3u-supported claspers appear. Finally, according to Remark 1.1.12 we can rearrange these new claspers and the normal form becomes p12q ν 12 p13q ν 13 p23q ν 23 p123q ν 123 `ν13 .

p12q ν 12 p13q ν 13 p23q ν 23 p123q ν 123 ,
The other operations p xi , xi q k act in a similar way, by changing ν 123 by a multiple of ν 12 , ν 13 or ν 23 . Summarizing, we have shown that ν 12 , ν 13 , ν 23 and ν 123 mod gcdpν 12 , ν 13 , ν 23 q, form a set of complete invariants for 3-component links up to link-homotopy.

Note that we recover here Milnor invariants µ 12 , µ 13 , µ 23 and µ 123 , that we already knew to be complete link-homotopy invariants for 3-component links (see [START_REF] Milnor | Link groups[END_REF]).

The 4-component case

Before proceeding with the link-homotopy classification of 4-component links, we need the following technical result. Lemma 3.2.1. Let C be a union of simple claspers for the trivial n-component braid 1, and let l P t1, . . . , nu. Let T be a clasper in C with l in its support and let C T,l " Ť T 1 be the union of all claspers T 1 in C such that supppT 1 q X supppT q " tlu. Suppose that an l-leaf f of T is disjoint from a 3-ball B containing all l-leaves of C T,l . Then the closure of 1 C is link-homotopic to the closure of 1 C 1 where C 1 is obtained from C by passing f across the ball B as shown in Figure 3.7.

Proof. First the result is clear if T has several l-leaves, since by Lemma 1.1.10, T vanishes up to link-homotopy. By Remark 1.1.12 the edges of any clasper in C T,l can freely cross those of T but f and the l-leaves of claspers in C T,l cannot be freely exchanged. However, according to Remark 1.1.12 again, the leaf f can be freely exchanged with any l-leaf of claspers in CzC T,l , since their support contain at least some k ‰ l which is in supppT q. By using the closure we can thus slide f in the other direction, using the closure of 1, and bypass the l-leaves of claspers in C T,l all gathered in B. Although the assumption of Lemma 3.2.1 may seem restrictive, it turns out to be naturally satisfied for normal forms. For instance, we have the following consequence. Proposition 3.2.2. Let C " pα 1 q ν 1 ¨¨¨pα m q νm be the normal form of a pure homotopy n-component braid and let pαq be a degree n´2 comb-clasper. Then C and C 1 " pα 1 q ν 1 ¨¨¨pαqpα i q ν i pαq ´1 ¨¨¨pα m q νm have link-homotopic closures, for any i P t1, . . . , mu.

Proof. We first consider the product pα 1 q ν 1 ¨¨¨pα i q ν i pαqpαq ´1 ¨¨¨pα m q νm where we just insert the trivial term pαqpαq ´1 in C. We next want to exchange pαq and pα i q ν i . This is allowed if |supppαq X supppα i q| ě 2 by Remark 1.1.12, but if supppαq X supppα i q " tlu we can only realize crossing changes between the edges of pαq and pα i q ν i (see Remark 1.1.12). However in that case pα i q is a comb-clasper of support tk, lu with k the only component not in the support of pαq, thus we can apply Lemma 3.2.1 to the l-leaf of pαq, and bypass the block pα i q ν i (corresponding to C T,l in Lemma 3.2.1).

Let us now return to the classification of links up to link-homotopy and let L be a 4-component link seen as the closure of the normal form: p12q ν 12 p13q ν 13 p14q ν 14 p23q ν 23 p24q ν 24 p34q ν 34 p123q ν 123 p124q ν 124 p134q ν 134 p234q ν 234 p1234q ν 1234 p1324q ν 1324 , for some integers ν 12 , ν 13 , ν 14 , ν 23 , ν 24 , ν 34 , ν 123 , ν 124 , ν 134 , ν 234 , ν 1234 , and ν 1324 . See Figure 3.8.

We can apply Proposition 3.2.2 to the degree 2 comb-claspers p123q, p124q, p134q and p234q. For example, applying Proposition 3.2.2 to pαq " p234q and pα i q " p12q, we get that L is link-homotopic to the closure of: p234qp12q ν 12 p234q ´1p13q ν 13 p14q ν 14 p23q ν 23 p24q ν 24 p34q ν 34 p123q ν 123 p124q ν 124 p134q ν 134 p234q ν 234 p1234q ν 1234 p1324q ν 1324 . By clasper calculus (Proposition 1.1.11 and Remark 1.1.12), we have that p234qp12q ν 12 p234q ´1 is linkhomotopic to p12q ν 12 p1234q ν 12 . The product of claspers p1234q ν 12 can be freely homotoped by Remark 1.1.12, thus producing the normal form p12q ν 12 p13q ν 13 p14q ν 14 p23q ν 23 p24q ν 24 p34q ν 34 p123q ν 123 p124q ν 124 p134q ν 134 p234q ν 234 p1234q ν 1234 `ν12 p1324q ν 1324 , whose closure is link-homotopic to L. This is recorded in the first row of Table 3.1, which records all possible transformations on clasp-numbers obtained with Proposition 3.2.2. Each row represents a possible transformation, where the entry in the column ν α represents the variation of the clasp-number ν α . Note that an empty cell means that the corresponding clasp-number remains unchanged. Note also that, we only need two columns because for the comb-claspers of degree 1 or 2 the associated clasp-numbers remain unchanged.

ν 1234 ν 1324 ν 12 ν 34 ν 13 ν 24 ν 14 -ν 14 ν 23 -ν 23 Table 3.1: Some clasp-numbers variation with same closures.

Let us now describe how operations p xi , xi q k for i ‰ k in t1, . . . , 4u affect clasp-numbers. As for the 3-component case, p xi , xi q k corresponds to sliding the i-leaf of a simple clasper of support ti, ju (denoted ∆ in Definition 3.1.2) along the i-th component. Along the way ∆ encounters leaves and edges of other claspers, that can be crossed as described by moves p2q and p4q from Proposition 1.1.11. In doing so, claspers of degree 2 and 3 may appear, that we must reposition in the normal form. Those of degree 3 commute with any clasper by Remark 1.1.12, but since they may not be comb-claspers we have to use IHX relations (Proposition 1.1.15) to turn them into comb-claspers. Claspers of degree 2 can be repositioned using Remark 1.1.12 and Lemma 3.2.1 (the fact that Lemma 3.2.1 applies is clear according to the shape of the normal form, where factors are stacked). We detail as an example operation p x4 , x4 q 2 . In that case ∆ has support t2, 4u and we slide its 2-leaf along the 2nd component. According to Remark 1.1.12, ∆ can freely cross the edges of claspers with 4 in their support and the 2-leaves of claspers containing 2 and 4 in their support. Thus, we only consider the claspers that appear when ∆ meets the edges of p13q ν 13 and the 2-leaves of p12q ν 12 , p23q ν 23 and p123q ν 123 . Once repositioned we obtain in order the factors p1324q ν 13 , p124q ν 12 , p234q ´ν23 and p1324q ´ν123 . However according to Table 3.1, p1324q ν 13 can be removed up to link-homotopy and thus we get the following normal form: p12q ν 12 p13q ν 13 p14q ν 14 p23q ν 23 p24q ν 24 p34q ν 34 p123q ν 123 p124q ν 124 `ν12 p134q ν 134 p234q ν 234 ´ν23 p1234q ν 1234 p1324q ν 1324 ´ν123 .

In the same way, we compute all operations p xi , xi q k and record them in Table 3.2. The entry in row p xi , xi q k represents the corresponding variation. As in Table 3.1, an empty cell means that p xi , xi q k does not change the clasp-number. Moreover the ν ik columns are omitted because they remain unchanged by any operations. There are however algebraic redundancies in Table 3.2, i.e., some lines are combinations of other lines, which means that some operation p xi , xi q k generate the others. So we can keep only these ones (or their opposite), which we call 'generating' operations, and which we record in Table 3 k, then the j-th, then the opposite of the i-th and finally the opposite of the j-th. Thus, Table 3.3 generates the rows of Table 3.1 as follows:

ν 123 ν 124 ν 134 ν 234 ν 1234 ν 1324 p x2 , x2 q 1 ν 13 ν 14 ν 134 p x3 , x3 q 1 ´ν12 ν 14 ν 124 p x4 , x4 q 1 ´ν12 ´ν13 ´ν123 ν 123 p x1 , x1 q 2 ´ν23 ´ν24 ´ν234 p x3 , x3 q 2 ν 12 ν 24 ν 124 ´ν124 p x4 , x4 q 2 ν 12 ´ν23 ´ν123 p x1 , x1 q 3 ν 23 ´ν34 ν 234 p x2 , x2 q 3 ´ν13 ´ν34 ´ν134 ν 134 p x4 , x4 q 3 ν 13 ν 23 ν 123 p x1 , x1 q 4 ν 24 ν 34 ν 234 ´ν234 p x2 , x2 q 4 ´ν14 ν 34 ´ν134 p x3 , x3 q 4 ´ν14 ´ν24 ´ν124
rR 1 s 3.1 " rR 6 ,R 2 s 3.3 , rR 2 s 3.1 " rR 1 ,R 5 s 3.3 , rR 3 s 3.1 " rR 6 ,R 7 s 3.3 , rR 4 s 3.1 " rR 3 ,R 2 s 3.3 , rR 5 s 3.1 " rR 2 ,R 1 s 3.3 , rR 6 s 3.1 " rR 5 ,R 6 s 3.3 .

Note that J. Levine in [START_REF] Levine | An approach to homotopy classification of links[END_REF] already proved a similar result. The purpose of this paragraph is to explain the correspondence between the two approaches. The strategy adopted in [START_REF] Levine | An approach to homotopy classification of links[END_REF] consists in fixing the first three components and let the fourth one carry the information of the link-homotopy indeterminacy. J. Levine used four integers k, l, r, d to describe a normal form for the first three components, and integers e i with i P t1, . . . , 8u to describe the information of the last component. Finally, in [START_REF] Levine | An approach to homotopy classification of links[END_REF]Table3] he gives a list of all possible transformations on e i -numbers that do not change the link-homotopy class. Fixing the last component corresponds in our setting to fixing the clasp-number ν 123 : this is why [Lev88, Table 3] has one less column than Tables 3.2 and 3.3. Moreover, the five rows of [Lev88, Table 3 

] correspond to p x3 , x3 q ´1 1 ,p x4 , x4 q ´1 2 ,p x1 , x1 q 4 , p x3 , x3 q 4 and p x1 , x1 q ´c 2 ˝p x3 , x3 q ´a 1 ˝p x2 , x2 q ´b 1 ,

The 5-component algebraically-split case

This section is dedicated to the study of 5-components algebraically-split links. These are links such that the linking number is zero for any pair of components. Equivalently, algebraically-split links are given by the closure of a normal form with trivial clasp-numbers for any degree one comb-clasper.

The following proposition is the algebraically-split version of Proposition 3.2.2. The proof is essentially the same and is left to the reader. Proposition 3.2.5. Let C " pα 1 q ν 1 ¨¨¨pα m q νm be a normal form of a pure homotopy n-component braid with ν i " 0 for any pα i q of degree one, and let pαq be a degree n ´3 comb-clasper. Then C and C 1 " pα 1 q ν 1 ¨¨¨pαqpα i q ν i pαq ´1 ¨¨¨pα m q νm have link-homotopic closures, for any i P t1, . . . , mu. Now, let L be a 5-component algebraically-split link seen as the closure of the normal form:

C "p123q ν 123 p124q ν 124 p125q ν 125 p134q ν 134 p135q ν 135 p145q ν 145 p234q ν 234 p235q ν 235 p245q ν 245 p345q ν 345 p1234q ν 1234 p1235q ν 1235 p1245q ν 1245 p1324q ν 1324 p1325q ν 1325 p1345q ν 1345 p1425q ν 1425 p1435q ν 1435 p2345q ν 2345 p2435q ν 2435 p12345q ν 12345 p12435q ν 12435 p13245q ν 13245 p13425q ν 13425 p14235q ν 14235 p14325q ν 14325 .

The strategy is similar to the 4-component case. We see links as braid closures, and with Theorem 2.3.12 we know that any braid is uniquely determined up to link-homotopy by a set of clasp-numbers tν α u. In this case, the algebraically-split condition results in the vanishing of clasp-numbers ν ij (i.e., ν α " 0 for all pαq of degree 1). Now, as mentioned by Theorem 3.1.8, the classification of links up to link-homotopy reduces to determining how operations p xi , xi q k for i ‰ k in t1, . . . , 5u affect the clasp-numbers.

We first use Proposition 3.2.5 to simplify the upcoming computations. In that case Proposition 3.2.5 concerns degree 2 comb-claspers p123q, p124q, p125q, p134q, p135q, p145q, p234q, p235q, p245q and p345q. We record in Table 3.4 all possible transformations on clasp-numbers obtained with Proposition 3.2.5. As before, each row represents a possible transformation, where the entry in the column ν α represents the variation of the clasp-number ν α , and an empty cell means that the corresponding clasp-number remains unchanged. Note also that we only need columns corresponding to degree 4 comb-claspers because the other clasp-numbers remain unchanged.

Finally, we compute the effect of all operations p xi , xi q k using Definition 3.1.2 and Table 3.4, and simplify the results keeping only the 'generating' operations, as in the 4-component case. We record the corresponding clasp-number variations in Table 3.5. As for the 4-component case, Table 3.5 contains all the data for the classification of 5-component algebraically-split links. In other words we obtain the following classification result. Theorem 3.2.6. Two 5-component algebraically-split links, seen as closures of braids in normal forms, are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations from Table 3 Chapter 4

Welded objects

This chapter deals with welded objects. The structure is very similar to that of Chapters 1 and 2. First, general definitions are given in Section 4.1, including a review of arrow calculus, which is the welded analogue of clasper calculus, developed by J.-B. Meilhan and A. Yasuhara in [START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF]. Section 4.2 is devoted to the homotopy welded braids group. We give in Theorem 4.2.11 a group presentation inspired by that of J. Darné [START_REF] Darné | Milnor invariants of braids and welded braids up to homotopy[END_REF]. We then extend the representation of Section 2.3 to the welded framework. Finally, Section 4.3 takes up the elements developed in Section 2.4 from the welded point of view. We end with the main result of this thesis, namely Theorem 4.3.8: the homotopy braid group is torsion-free for any number of strands.

General definitions 4.1.1 Virtual diagrams

This section focuses on the study of welded tangles, a generalization of the usual tangles previously studied.

Definition 4.1.1. An n-component virtual tangle diagram is the image of a smooth immersion of an n-component, ordered, and oriented 1-manifold (a disjoint union of circles and intervals) in the disk. We require the embedding to be proper, meaning that the boundary of the 1-manifold must be sent to the boundary of the disk. Additionally, we require the singularities to consist of a finite number of transverse double points labeled either as a classical crossing or as a virtual crossing, as illustrated in Figure 4.1. In what follows, we will often simply say 'diagram' instead of virtual tangle diagram.

Definition 4.1.2. An n-component welded tangle is the equivalence class of an n-component virtual tangle diagram under welded isotopies given by:

• planar isotopies,

• classical Reidemeister moves,

• virtual Reidemeister moves, which are the exact analogues of the classical ones with all classical crossings replaced by virtual ones,

• mixed Reidemeister move, as shown on the left-hand side of Figure 4.2,

• OC moves (for overcrossings commute), as shown in the central part of Figure 4.2. Remark 4.1.3. Recall that there is a 'forbidden' local moves, called UC moves (for undercrossings commute), illustrated on the right-hand side of Figure 4.2. Recall also that the notion of virtual tangle arises by deleting the OC move from Definition 4.1.2 [Kau99, GPV00].

UC OC Mixed

Remark 4.1.4. It is shown in [START_REF] Kauffman | Virtual knot theory[END_REF] that the set of tangles up to isotopy is injected into the set of welded tangle up to welded isotopy. In other words, if two classical tangles are related by welded isotopy, then they are also related by classical isotopy.

As in the context of classical knot theory, we can study the notion of link-homotopy, where each individual component is allowed to cross itself. In the welded context, however, it turns out that the right analogue of this relation is generated by the self-virtualization move, where a crossing involving two strands of the same component can be replaced by a virtual one or vice versa, as depicted in Figure 4.3 see [START_REF] Audoux | Homotopy classification of ribbon tubes and welded string links[END_REF]. In what follows, we will study this equivalence relation and call it homotopy; we use the same notation as in the classical case '"' to denote this equivalence relation. 

Same component

Arrow calculus

Arrow calculus has been developed by J.-B. Meilhan and A. Yasuhara in [START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF]. It is the analogue of claspers calculus in the welded context. In particular, it turns out to be a powerful tool to deal with homotopy. In the following we define and recall the homotopy arrow calculus. Now if F contains some w-trees with degree higher than one, we first apply the expanding rule shown on Figure 4.61 at each trivalent vertex: this breaks up F into a union of w-arrows, on which we can perform surgery. We describe in the following the homotopy arrow calculus. It refers to the set of operations on unions of welded tangles with some w-trees, which enable link-homotopic surgery results. These operations are developed in [START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF], and we summarize them in the next lemmas. Proposition 4.1.9. [START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF] We have the following homotopy equivalences.

• Arrow isotopy. Virtual Reidemeister moves involving edges of w-trees and/or strands of diagrams, together with the following local moves:

∼ ∼ ∼ ∼ ∼ ∼
• Head/Tail Reversal. Changing the side of the strand from which an endpoint of a w-tree is attached has the following effect.

• Inverse. Two parallel copies of a w-tree which differ only by one twist, can be deleted up to homotopy. (1) If T is obtained from S by removing two consecutive twists on an edge then T " S.

∼

(2) If T is obtained from S by moving a twist across a crossing involving either an edge of a w-tree or a strand of a diagram then T " S.

(3) If T is obtained from S by moving a twist across a trivalent vertex then T " S.

(4) If T and S are identical outside a neighborhood of trivalent vertex, and if in this neighborhood T and S are as depicted in (4) from Figure 4.7, then T " S. The following lemma describes how to exchange endpoints up to homotopy. Proposition 4.1.12. [MY19, Lemma 7.14 ] Let T I , T H , T X be three parallel copies of a given w-tree that coincide everywhere outside a disk, where they are as shown in Figure 4.9. Then T I Y T H Y T X " H. We say that T I , T H and T X verify the IHX relation. 

T S T S T S T S T (1) ∼ (2) ∼ (2) ∼ (3) 

Welded braids

This section is dedicated to homotopy welded braids. Our approach is similar to the one followed in Chapter 2 for classical braids. We will first define comb-trees which are the analogue of comb-claspers in the welded case. Then we study and improve presentations of welded braid groups using arrow calculus. We also show that the representation defined in Section 2.3 extends well in the welded context. Finally, we return to and fully solve the torsion problem addressed in Section 2.4.

Comb-trees

Let us take n fixed points, in the unit interval r0,1s, denoted by p 1 ă p 2 ă ¨¨¨ă p n . Definition 4.2.1. An n-component virtual braid diagram β " pβ 1 , . . . , β n q is the image of a immersion pβ 1 , . . . , β n q : ğ iďn r0,1s Ñ r0,1s ˆr0,1s such that, for some permutation of t1, . . . , nu associated to β, denoted πpβq, we have β i p0q " pp i , 0q and β i p1q " pp πpβqpiq , 1q for any i. We require the singularities to be a finite number of transverse double points, which are labeled either as classical crossings or as virtual crossings. Additionally, we require the immersion to be monotonic, which means that β i ptq P r0,1s ˆttu for any t P r0, 1s and any i. We call the image of β i the i-th component of β. We say that a virtual braid diagram β is pure if its associated permutation πpβq is the identity.

The set of virtual braid diagrams up to welded isotopy (resp. homotopy), equipped with the stacking operation, forms a group: the welded braid group denoted by W B n (resp. the homotopy welded braid group, denoted by hW B n ). Elements of hW B n are called homotopy welded braids. The set of pure braids up to welded isotopy (resp. homotopy) forms a subgroup of W B n (resp. hW B n ) denoted by W P n (resp. hW P n ). Note that we do not require welded isotopy or homotopy to preserve the monotonic property during the deformation. As in the classical case (Remark 2.1.5), we will regard homotopy welded braid as welded tangles up to homotopy. Proposition 4.2.2. [ABMW17a, Theorem 3.10] Any welded string-link is link-homotopic to a pure welded braid, and if two pure welded braids are link-homotopic as string-links, then they also are as braids.

We next introduce comb-trees and their associated notation. Let I " pi 0 , i 1 , . . . , i l q be a sequence of nonrepeated indices in t1, . . . , nu such that i 1 ă i j for any 2 ď j ď l.

Definition 4.2.3. The comb-trees χ I and χ ´1 I , are the w-trees for the trivial n-braid diagram 1 n , shown in Figure 4.10. We say that χ I is positive and that χ ´1 I is negative. In what follows, we blur the distinction between comb-trees and the result of their surgery up to homotopy. From this point of view, a comb-tree is a pure homotopy welded braid and the product χ I χ I 1 of two comb-trees is the product

i2 il-1 il i1 i0 i2 il-1 il i1 i0 ÂI ÂI -1 • • • • • •
1 χ I 1 χ I 1 .
Example 4.2.4. The two comb-trees χ I and χ ´1 I are, up to homotopy, inverse to each other. Indeed, consider the product χ I χ ´1 I and apply an arrow isotopy to make the two comb-trees parallel. Then using the Inverse move from proposition 4.1.9 we delete the two w-trees. We illustrate this operation with the comb-trees χ 314 and χ ´1 314 in Figure 4.11. Lemma 4.2.5. Let T be a w-tree of degree l for the trivial braid 1 with head on the i-th component, then 1 T is link-homotopic to a product of comb-trees of degree l with head on the i-th component. braid generators

χ ij " " ρ i ρ i`1 ¨¨¨ρ j´2 σ j´1 ρ j´1 ρ j´2 ¨¨¨ρ i`1 ρ i if 1 ď i ă j ď n, ρ i´1 ρ i´2 ¨¨¨ρ j`1 ρ j σ j ρ j`1 ¨¨¨ρ i´2 ρ i´1 if 1 ď j ă i ď n, illustrated in Figure 4.13. n i 1 i+1 n i 1 i+1 • • • • • • • • • • • • Figure 4
.12: The welded generator σ i and ρ i . Remark 4.2.10. Note that, the notation χ ij is already used for degree one comb-trees from Section 4.2.1: this is because the pure welded braid generator χ ij is the surgery result of the comb-tree χ ij on the trivial braid.

n j i 1 n i j 1 • • • • • • • • • • • • • • • • • •
The (pure) homotopy welded braid group appears as a quotient of the (pure) welded braid group of which we recall a presentation from [START_REF] Damiani | A journey through loop braid groups[END_REF] in Theorem 4.2.11. The end of the section consists in using the arrow calculus to describe some relations of the homotopy quotient in order to obtain a presentation for the (pure) homotopy welded braid group. Theorem 4.2.11. [Dam17, Corollary 3.15; Corollary 3.19.] A presentation2 for the welded braid group is given by: W B n " x σ i ,ρ i ˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇr σ i ,σ j s " 1 if |i ´j| ą 1

σ i σ i`1 σ i " σ i`1 σ i σ i`1 for 1 ď i ă n ´1 rρ i ,ρ j s " 1 if |i ´j| ą 1 ρ i ρ i`1 ρ i " ρ i`1 ρ i ρ i`1 for 1 ď i ă n ´1 ρ 2 i " 1 for 1 ď i ă n rσ i ,ρ j s " 1 if |i ´j| ą 1 σ i ρ i`1 ρ i " ρ i`1 ρ i σ i`1 for 1 ď i ă n ´1 ρ i σ i`1 σ i " σ i`1 σ i ρ i`1 for 1 ď i ă n ´1 y .
A presentation for the pure welded braid group is given by: W P n " x χ ij ˇˇˇˇˇr χ ij ,χ kl s " 1 if ti,ju X tk,lu " H rχ ik , χ jk s " 1 for any i,j,k rχ ik χ jk ,χ ij s " 1 for any i,j,k y .

we use Lemma 4. 

rχ ik χ jk ,χ ij s " 1, ô χ ik χ jk χ ij χ ´1 jk χ ´1 ik χ ´1 ij " 1, ô χ ik χ jk χ ij χ ´1 ik χ ´1 jk χ ´1 ij " 1, by commuting χ ´1 jk with χ ´1 ik ô χ ik χ jk χ ij χ ´1 ik χ ´1 ij χ ij χ ´1 jk χ ´1 ij " 1, ô χ ik χ ij χ ´1 ik χ ´1 ij χ jk χ ij χ ´1 jk χ ´1 ij " 1, by commuting χ jk with χ ij χ ´1 ik χ ´1 ij ô rχ ik ,χ ij srχ jk ,χ ij s " 1, ô rχ ij ,

A linear faithful representation of the homotopy welded braid group

In this section, we extend the construction of the representation γ of Section 2.3 to the framework of the homotopy welded braid group. As a result, the construction of this section is very similar to that of Section 2.3. To avoid being too redundant, we will go a little faster and omit some proofs when we consider them too identical to those of Section 2.3.

Algebraic definition

Let us first recall some algebraic ingredients from Section 1.2. First, we need the reduced free group RF n from Definition 1.2.1. It is the quotient of the free group in which the generators x i commute with their conjugates. We showed in Theorem 1.2.10 that any element ω P RF n has a unique normal form, i.e., there exists a unique ordered set of integers te 1 , . . . , e m u associated to the ordered family of commutators F " trα 1 s, rα 2 s, . . . , rα m su such that we have a unique writing ω " rα 1 s e 1 rα 2 s e 2 ¨¨¨rα m s em .

Recall that the elements rαs P F are given for a sequence of indices α " pi 1 ,i 2 , ¨¨¨,i l q, by the following expression: rαs :" rr¨¨¨rrx i 1 ,x i 2 s,x i 3 s, ¨¨¨,x i l´1 s,x i l s P RF n .

Finally, in Definition 1.2.13, we defined the Z-module V generated by the formal commutators tα 1 , α 2 , ¨¨¨, α m u associated to the family F. We also defined the linearization map ϕ : RF n Ñ V given on an ordered normal form by: ϕprα 1 s e 1 rα 2 s e 2 ¨¨¨rα m s em q " e 1 α 1 `e2 α 2 `¨¨¨`e m α m .

In order to define a linear representation of the homotopy welded braid group, we need the homotopy welded Artin representation. Definition 4.2.18. We call welded Artin representation the homomorphism denoted by ζ : W B n Ñ AutpF n q and defined as follows:

ζpσ i q : $ & % x i Þ Ñ x i`1 , x i`1 Þ Ñ x ´1 i`1 x i x i`1 , x k Þ Ñ x k if k R ti, i `1u,
and,

ζpρ i q : $ & % x i Þ Ñ x i`1 , x i`1 Þ Ñ x i , x k Þ Ñ x k if k R ti, i `1u.
Similarly, the homomorphism ζ h : hW B n Ñ AutpRF n q defined by the same expressions is called the homotopy welded Artin representation.

The fact that the homotopy welded Artin representation is well-defined is discussed in [START_REF] Dahm | A generalization of braid theory[END_REF]; see also [START_REF] Wattenberg | Differentiable motions of unknotted, unlinked circles in 3-space[END_REF][START_REF] Fenn | The braid-permutation group[END_REF]. The fact that the homotopic version of this representation, it is shown in [ABMW17a, Section 4.4.1] that it is well-defined.

Theorem 4.2.19. Let GLpVq be the general linear group of the Z-module V. The map γ W : hW B n Ñ GLpVq defined for β P hW B n and rαs P F by γ W pβqpαq " ϕ ˝ζh pβqprαsq is a well-defined homomorphism. Moreover, γ W does not depend on the chosen order on F.

The proof of Theorem 4.2.19 is strictly similar to that of Proposition 2.3.2. It is based on Lemma 4.2.20, which is the welded analogue of Lemma 2.3.1, and which is proved in the same way.

Lemma 4.2.20. Let us denote by N j the subgroup normally generated by x j in RF n for j P t1, . . . , nu. Let β P hW B n be a homotopy welded braid with associated permutation πpβq, and let C P N j be a commutator. If the product rα 1 s e 1 ¨¨¨rα m s em is the normal form of ζ h pβqpCq then we have that e i " 0 if rα i s R N π ´1pβqpjq .

Remark 4.2.21. We mention that, like the representation γ, the homomorphism γ W is injective. This can be shown using the injectivity of ϕ and ζ h (see [ABMW17a, Proposition 2.33]). However, in the next Section 4.2.3.4, we will give another proof of this result using arrow calculus. This is stated in Theorem 4.2.34, which in turn reproves the injectivity of ζ h . Furthermore, our approach by arrow calculus will allow explicit computations of the representation in Section 4.2.3.3. In the following proposition, we prove the well-know fact that the natural inclusion of hB n in hW B n is injective. Proposition 4.2.23. The homotopy braid group hB n injects into the homotopy welded braid group hW B n as follows:

ι :

hB n Ñ hW B n σ i Þ Ñ σ i
Proof. Let us take β P hB n in the kernel of ι, then γ W ˝ιpβq " γ W p1q. Moreover, we see from the definition that the image γpσ i q of σ i P hB n by the representation γ defined in Section 2.3, coincides with the image γ W pσ i q of σ i P hW B n for any 1 ď i ď n. In particular we obtain the equality γ W ˝ιpβq " γpβq " Id. Finally, using the injectivity of γ from Theorem 2.3.11, we get that β " 1 and the proof is complete.

Remark 4.2.24. From this proof, we can freely regard the representation γ of Section 2.3, as the restriction of γ W to hB n , seen as a subgroup of hW B n .

Arrow interpretation

We first give an interpretation of the welded Artin (resp. homotopy welded Artin) representation in terms of arrow calculus. As in the classical case, we first add a new strand to the right of the braid and we label it by '8'. Then we give in the following lemma a diagrammatic interpretation of the free group F n (resp. reduced free group RF n ) on which W B n (resp. hW B n ) acts. To do so we introduce the pure generator χ 8,i for 1 ď i ď n shown in Figure 4.14. This generator χ 8,i can be reinterpreted in terms of arrows as depicted in the same figure. There and in subsequent figures, we simply represent a small part of the 8 component on which the arrow head is located.

Lemma 4.2.25. The family tχ 8,i " ρ n ρ n´1 ¨¨¨ρ i`1 ρ i σ i ρ i`1 ¨¨¨ρ n´1 ρ n u 1ďiďn seen as pure welded braids in W B n`1 (resp. homotopy welded braid in hW B n`1 ) generate a free group (resp. reduced free group). Proof. We only provide the proof in the homotopy setting, since this is the version that we will use afterwards. Note, however, that the proof is very similar in the non-homotopic case. We first use the homotopy welded Artin representation to reinterpret the χ 8,i as automorphisms of the reduced free group generated by x 1 , . . . , x n , x 8 as follows:

n i 1 ∞ n i 1 2 2 n-1 n-1 ∞ • • • • • • • • • • • •
ζ h pχ 8,i q " " x 8 Þ Ñ x ´1 i x 8 x i , x k Þ Ñ x k if k ď n.
In particular, for any element χ 8,i 4.15. Then we re-express this element as a product of w-trees with heads on the 8-strand, which we are able to reinterpret as elements of F n or RF n . This fact is explicitly stated in the following lemma in the homotopic framework.

¯ -1 ∞ ∞ n i 1 n i 1 ⟼ ³h(¯) • • • • • • • • • • • •
Lemma 4.2.26. We have the following equalities in hW B n`1 :

ρ i χ 8,k ρ i " $ & % χ 8,i`1 if k " i, χ 8,i if k " i `1, χ 8,k otherwise,
and,

σ i χ 8,k σ ´1 i " $ & % χ 8,i`1 if k " i, χ ´1 8,i`1 χ 8,i χ 8,i`1 if k " i `1, χ 8,k otherwise.
Proof. We compute ρ i χ 8,k ρ i using arrow calculus. If k R ti,i `1u, the equality is clear since χ 8,k commutes with ρ i up to virtual isotopy. If k " i (resp. k " i `1) we slide the tail of χ 8,i (resp. χ 8,i`1 ) through ρ i , obtaining χ 8,i`1 (resp. χ 8,i ), and then simplify the two virtual associated with ρ 2 i . Next, we turn our attention to the classical generators σ i , and we compute σ i χ 8,k σ ´1 i . Again, when k R ti,i `1u we have that χ 8,k commutes with σ i and the equality is clear. If k " i, we rewrite the conjugate as

σ i χ 8,i σ ´1 i " σ i ρ 2 i χ 8,i ρ 2 i σ ´1 i " χ i,i`1 χ 8,i`1 χ ´1 i,i`1
, where the second equality use the equality proved just above and the following σ i ρ i " χ i,i`1 . Thanks to the tails exchange move from Lemma 4.1.11, χ i,i`1 and χ 8,i`1 commute and we have the desired equality. For the last case, if k " i `1, applying the same trick transforms the conjugate into:

σ i χ 8,i`1 σ ´1 i " χ i,i`1 χ 8,i χ ´1 i,i`1 .
This yields a new conjugate, illustrated on the left side of Figure 4.16. Finally, we conclude using a slide move from [MY19, Section 4.3] to transform this conjugate into χ ´1 8,i`1 χ 8,i χ 8,i`1 , as depicted on the right-hand side of Figure 4.16.

n 1 n 1 i i+1 ∞ ⟶ Slide move i i+1 ∞ ∞ ∞ • • • • • • • • • • • • Figure 4
.16: Slide move between χ i,i`1 χ 8,i χ ´1 i,i`1 and χ ´1 8,i`1 χ 8,i χ 8,i`1 .

Therefore, as in the classical case, we have an explicit 3-steps procedure to compute γ W pβqpαq for any β P hW B n and any α P V:

Step 1 Consider the conjugate of the w-tree χ 8,α by the braid β (see Figure 4.15).

Step 2 Use arrow calculus to re-express this conjugate as an ordered union of comb-trees of the form χ 8,α 1 (the order comes from the order on F).

Step 3 The number of parallel copies of a given comb-tree in this product is the coefficient of the associated commutator in γ W pβqpαq.

In the proof of Theorem 4.2.28 below, we will use explicitly this procedure to compute the representation.

Let us give first, in the following proposition, a correspondence between the family of commutators F and comb-trees of the form χ 8,I .

on the virtual generators ρ 1 , ρ 2 : γ W pρ 1 qp1q " p2q, γ W pρ 2 qp1q " p1q, γ W pρ 1 qp2q " p1q, γ W pρ 2 qp2q " p3q, γ W pρ 1 qp3q " p3q, γ W pρ 2 qp3q " p2q, γ W pρ 1 qp12q " ´p12q, γ W pρ 2 qp12q " p13q, γ W pρ 1 qp13q " p23q, γ W pρ 2 qp13q " p12q, γ W pρ 1 qp23q " p13q, γ W pρ 2 qp23q " ´p23q, γ W pρ 1 qp123q " ´p123q, γ W pρ 2 qp123q " p132q, γ W pρ 1 qp132q " ´p123q `p132q, γ W pρ 2 qp132q " p123q. This gives us the following matrices: 

γ W pρ 1 q " ¨0 1 
´1 ´1 0 1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , γ W pρ 2 q " ¨1 0 
‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
Given the similarities between these matrices and those for γpσ i q " γ W pσ i q given in example 4.2.30, it is not surprising to have the following analogue of Proposition 2.3.8 and Remark 2.3.9 in the welded case. The proof are omited since they are strictly similar to those given in Section 2.3. Proposition 4.2.31. For β P hW B n a homotopy welded braid, the matrix associated to γ W pβq in the basis of V, endowed with the order resulting from Definition 1.2.8, is given by a lower triangular block matrix of the following form:

¨B1,1 0 ¨¨¨0 B 2,1 B 2,2 ¨¨¨0 . . . . . . . . . . . . B n,1 B n,2 ¨¨¨B n,n ‹ ‹ ‹ '
where B i,i is a finite order matrix of size rkpV i q " ř n´1 i´1 k! pk´i`1q! which is the identity when β is pure. Moreover, B 1,1 is the matrix of the left action by permutation k Þ Ñ π ´1pβqpkq, and B 2,2 is the matrix of the left action on the set tpk, jqu kăj given by: pk, jq Þ Ñ " `π´1 pβqpkq, π ´1pβqpjq ˘if π ´1pβqpkq ă π ´1pβqpjq,

´`π ´1pβqpjq, π ´1pβqpkq ˘if π ´1pβqpjq ă π ´1pβqpkq.

Remark 4.2.32. By the same argument as in Remark 2.3.9, the image γ W pβqpkq on all weight 1 commutators pkq, is encoded in the blocks B i,1 given in the first n columns, and these blocks thus completely determine γ W pβq. Additionally, the blocks Bi,i are entirely determined by the permutation πpβq associated with the braid β P hW B n .

comb-trees of the form χ 8i 0 i τ p1q ¨¨¨i τ pkq , for some permutation τ . Note that, in the process, the only factor χ 8i 0 i τ p1q ¨¨¨i τ pkq satisfying τ p1q " 1 is the comb-tree χ 8i 0 J .3 Theorem 4.2.34. The representation γ W : hW B n Ñ GLpVq is injective.

Proof. We take β P kerpγ W q, which is pure according to Proposition 4.2.31; otherwise the block B 1,1 is not the identity. Then, we consider a normal form for β using Theorem 4.2.7:

β " ź χ ν iJ iJ .
The rest of the proof follows the same strategy as in Theorem 2.3.11. However, this time we use another sub-representation adapted to the welded case. Consider À iďk V i , the subspace of V spanned by commutators of weight less than or equal to k. We can define the associated projection

p k : V Ñ À iďk V i ,
and its composition with the restriction of γ W to

À iďk V i , denoted by γ k :" p k ˝γW | À iďk V i
. Thanks to Proposition 4.2.31, γ k is a representation with matrices given by the rows and columns corresponding to the blocks B s,s for s ď k. Moreover γ k pχ iI q " Id for any comb-tree χ iI with degpχ iI q ą k. Hence we have γ k pβq " γ k pβ 1 q for β 1 defined by:

β 1 " ź degpχ iJ qďk χ ν iJ iJ .
Now we show by strong induction on the degree k of χ iJ that ν iJ " 0. For the base case k " 1, we take i 0 P t1, . . . , nu. Then using Lemma 4.2.33 iteratively and the fact that γ 1 pχ iI q " Id if degpχ iI q ą 1, we obtain:

γ 1 pβ 1 qpi 0 q " γ 1 ˜ź 1ďi‰jďn χ ν ij ij ¸pi 0 q " pi 0 q ´ÿ i 1 ăi 0 ν i 0 i 1 ¨pi 1 i 0 q `ÿ i 0 ăi 1 ν i 0 i 1 ¨pi 0 i 1 q.
Since β P kerpγq, we have that γ 1 pβqpi 0 q " pi 0 q, and this implies that ν i 0 i 1 " 0 for any i 1 P t1, . . . , nu.

To prove that ν iJ " 0 for any χ iJ of degree k we use the strong induction hypothesis, we get then:

β 1 " ź degpχ iJ qďk χ ν iJ iJ " ź degpχ iJ q"k χ ν iJ iJ .
Thus thanks to Lemma 4.2.33 again and the fact that γ k pχ iI q " Id if degpχ iI q ą k, we finally obtain for all i 0 P t1, . . . , nu that:

γ k pβ 1 qpi 0 q " γ k ¨ź degpχ iJ q"k χ ν iJ iJ 'pi 0 q " pi 0 q ´ÿ J"pi 1 ,...,i k q i 1 ăi 0 ν i 0 J ¨pJi 0 q `ÿ J"pi 1 ,...,i k q i 0 ăi 1 i 1 "minpJq ν i 0 J pi 0 Jq `S,
where S is a sum of commutators of the form pi 0 ,i 1 , ¨¨¨,i k q with i 1 ‰ minti 1 , . . . ,i k u. So in particular no commutator in S occurs in the two above sums. Now, since β P kerpγq we have that γ k pβqpi 0 q " pi 0 q.

Thus considering the terms of the first sum we have that ν i 0 J " 0 for any J " pi 1 , . . . , i k q such that i 1 ă i 0 . Moreover, considering the second sum, we have that ν i 0 J " 0 for any J " pi 1 , . . . , i k q such that i 0 ă i 1 . Finally ν iJ " 0 for any χ iJ of degree k which concludes the induction and completes the proof.

Corollary 4.2.35. The normal form is unique in hW B n , i.e., if β " ś χ ν iJ iJ " ś χ ν 1 iJ iJ are two normal forms of β for a given order on the set of positive comb-trees, then ν iJ " ν 1 iJ for any integer i and any sequence J.

Proof. Recall that for a given integer k, the sub-representation γ k from the previous proof satisfies γ k pβq " γ k pβ 1 q for β 1 defined by:

β 1 " ź degpχ iJ qďk χ ν iJ iJ " ź degpχ iJ qďk χ ν 1 iJ iJ .
As in the proof of Theorem 4.2.34, we proceed by strong induction on the degree that ν iJ " ν 1 iJ , the base case being strictly similar. For the inductive step, note that by Proposition 4.1.11, a comb-tree of degree k commutes with any comb-tree up to higher degree w-trees. Hence if χ iJ is a comb-tree of degree k then γ k pχ iJ q commutes with γ k pχ I q for any comb-trees χ I . In particular we get:

γ k pβ 1 qpi 0 q "γ k ¨ź degpχ iJ qăk χ ν iJ iJ '˝γ k ¨ź degpχ iJ q"k χ ν iJ iJ 'pi 0 q, "γ k ¨ź degpχ iJ qăk χ ν 1 iJ iJ '˝γ k ¨ź degpχ iJ q"k χ ν 1 iJ iJ 'pi 0 q.
By induction hypothesis ν iJ " ν 1 iJ for all χ iJ such that degpχ iJ q ă k. Hence, multiplying by the inverse of γ k ˜ś degpχ iJ qăk χ ν iJ iJ ¸we obtain the equality:

γ k ¨ź degpχ iJ q"k χ ν iJ iJ 'pi 0 q " γ k ¨ź degpχ iJ q"k χ ν 1 iJ iJ 'pi 0 q.
Finally, with Lemma 4.2.33 we obtain:

pi 0 q ´ÿ J"i 1 ,...,i k i 1 ăi 0 ν i 0 J ¨pJi 0 q `ÿ J"i 1 ,...,i k i 0 ăi 1 i 1 "minpJq ν i 0 J pi 0 Jq `S " pi 0 q ´ÿ J"i 1 ,...,i k i 1 ăi 0 ν 1 i 0 J ¨pJi 0 q `ÿ J"i 1 ,...,i k i 0 ăi 1 i 1 "minpJq ν 1 i 0 J pi 0 Jq `S1 ,
where S and S 1 are sums of commutators of the form pi 0 ,i 1 , ¨¨¨,i k q with i 1 ‰ minti 1 , . . . ,i k u. In particular, they are distinct from the commutators in the other sums. Therefore, we deduce from the above equality that ν iJ " ν 1 iJ for all χ iJ such that degpχ iJ q " k, which concludes the induction as well as the proof.

Proof. Up to conjugation, we can suppose that πpβq " τ . Then β " θλ with θ " βλ ´1 a pure homotopy welded braid with normal form given by:

θ " χ ν 1 I 1 χ ν 2 I 2 ¨¨¨χ νm Im . (4.1)
Let us assume that ν i ‰ 0 for some χ I i whose head is not on the n-th component. Let us further suppose that χ I i is of minimal degree, i.e., the head of all comb-trees of degree smaller than degpχ I i q are on the n-th component. By Lemma 4.3.3 there exists some integer l ą 0, such that the conjugate λ l pχ I i qλ ´l is link-homotopic to a product of comb-trees with head on the n-th component and with same degree as χ I i . We consider β 1 , the conjugate of β given by:

β 1 " ˜ź 0ďkăl λ k χ ν i I i λ ´k¸´1 β ˜ź 0ďkăl λ k χ ν i I i λ ´k¸, " ˜ź 0ďkăl λ k χ ν i I i λ ´k¸´1 θ ˜ź 0ăkďl λ k χ ν i I i λ ´k¸λ , " ˜ź 0ăkăl λ k χ ν i I i λ ´k¸´1 χ ´νi I i θ ˜ź 0ăkăl λ k χ ν i I i λ ´k¸´λ l χ ν i I i λ ´l¯λ .
Now note that, according to Lemma 4.3.3, the conjugates λ k pχ I i qλ ´k for 0 ă k ă l can be seen as products of comb-trees with same degree as χ I i . Moreover, thanks to Lemma 4.1.11 two comb-trees commute up to higher degree w-trees, and by Lemma 4.2.5 we can assume that these higher degree w-trees are also comb-trees. Then in the previous expression, up to comb-trees of degree greater than that of χ I i , we can simplify the terms λ k pχ I i qλ ´k for 0 ă k ă l with their inverse to obtain:

β 1 " χ ´νi I i θ ´λl χ ν i I i λ ´l¯¨ź degpχ I i qădegpχ I q χ I 'λ.
Since the factor χ ν i I i appears in the normal form θ " χ ν 1 I 1 χ ν 2 I 2 ¨¨¨χ νm Im , we can, using the same argument, express β 1 as follows:

β 1 " ´χν 1 I 1 ¨¨¨χ ν i´1 I i´1 χ ν i`1 I i`1 ¨¨¨χ νm Im ¯´λ l χ ν i I i λ ´l¯¨ź degpχ I i qădegpχ I q χ I 'λ.
Finally we denote by θ 1 the pure part of the product β 1 " θ 1 λ, the last step consists in computing the normal form,

θ 1 " χ ν 1 1 I 1 χ ν 1 2 I 2 ¨¨¨χ ν 1 m Im . (4.2) Starting with θ " ´χν 1 I 1 ¨¨¨χ ν i´1 I i´1 χ ν i`1 I i`1 ¨¨¨χ νm Im ¯´λ l χ ν i I i λ ´l¯¨ź degpχ I i qădegpχ I q χ I ',

It is clear by computation that

ζ h pσ i qpx 1 x 2 ¨¨¨x n q " x 1 x 2 ¨¨¨x n for any classical Artin generator σ i . In particular, this implies the well-known fact that if β P hW B n is a classical braid, then ζ h pβqpx 1 x 2 ¨¨¨x n q " x 1 x 2 ¨¨¨x n , or equivalently, Zpβq `M px 1 x 2 ¨¨¨x n q ˘" M px 1 x 2 ¨¨¨x n q.

Let us make the observation that M px 1 x 2 ¨¨¨x n q contains exactly one monomial of degree n, given by X 1 X 2 ¨¨¨X n . Furthermore ZpλqpX 1 X 2 ¨¨¨X n q ‰ X 1 X 2 ¨¨¨X n , so Zpλq `M px 1 x 2 ¨¨¨x n q ˘‰ M px 1 x 2 ¨¨¨x n q. In the following lemma, we go a little further in describing elements that are not fixed points of Zpλq.

Lemma 4.3.7. The automorphism Zpλq has no fixed point of the form Zpβq `M px 1 x 2 ¨¨¨x n q ˘for any β P hW B n .

Proof. Let us denote by A the polynomial algebra in non-commuting variables X 1 , . . . , X n in which monomials X α 1 X α 2 ¨¨¨X α k vanish if α i " α j for some i ‰ j. Now, consider the additive homomorphism F : A Ñ Z defined on the monomials. by:

F pX α 1 X α 2 ¨¨¨X α k q " " 0 if k ă n, 1 if k " n.
In other words, the homomorphism F sends a polynomial to the sum of the coefficients of its monomials of degree n. Let us note on the one hand that F `Zpρ i qpW q ˘" F pW q and F `Zpσ i qpW q ˘" F pW q for any W P I n and any i. This is clear for ρ i , which simply permutes the variables X i and X i`1 of a given polynomial W P I n . It is less clear for σ i , which, after the permutation, substitutes X i with X i `Xi X i`1 `Xi`1 X i , potentially introducing new monomials of degree n. However, these monomials appear in pairs and with opposite signs and thus do not change the value of F . So it is clear that F `ZpβqpW q ˘" F pW q, for any β P hW B n and any W P I n . Moreover note that, F `M px 1 x 2 ¨¨¨x n q ˘" F `p1 `X1 qp1 `X2 q ¨¨¨p1 `Xn q ˘, " 1, hence F ´Zpβq `M px 1 x 2 ¨¨¨x n q ˘¯" 1 for any β P hW B n . But on the other hand, Zpλq acts on the nontrivial monomials by permuting the variables X i cyclically, and the orbits of the action are of cardinality n. Therefore, if an element W P I n zt1u satisfies that ZpλqpW q " W then it has to verify F pW q " 0 mod rns.

Hence such a fixed point W of Zpλq cannot be of the form Zpβq `M px 1 x 2 ¨¨¨x n q ˘for any β P hW B n

For simplicity, we often denote the homology cobordism pC,iq by C, in particular, we denote the trivial homology cobordism pΣ ˆr´1, 1s, Idq simply by Σ ˆr´1, 1s. We call homology cylinders of Σ the homology cobordisms for which the composition pi ´q´1 ˝pi `q is the identity of H ˚pΣ; Zq.

We say that two homology cobordisms are homeomorphic if there is an orientation-preserving homeomorphism f : C Ñ C 1 such that f | BC ˝i " i 1 . The composition '˝' of two homology cobordisms C and C 1 is defined by 'stacking' C 1 on top of C, i.e., we define

C ˝C1 :" C Y i`˝pi 1 ´q´1 C 1 ,
with B ´pC ˝C1 q " B ´pCq parameterized by i ´and B `pC ˝C1 q " B `pC 1 q by i 1 `. With this operation, the set of homeomorphism classes of homology cobordisms of Σ, denoted by CpΣq, forms a monoid. The set of homeomorphism classes of homology cylinders of Σ, denoted by ICpΣq is a submonoid of CpΣq. Moreover, the mapping class group is embedded in CpΣq using the mapping cylinder construction ι : MpΣq Ñ CpΣq, defined as follows:

ιpϕq :" ´Σ ˆr´1, 1s, `Id ˆt´1u ˘Y pBΣ ˆIdq Y `ϕ ˆt1u ˘¯.

In fact, the image of ι is the group of invertibles in the monoid CpΣq, see [HM12, Proposition 2.4]. Similarly, the Torelli group embeds in ICpΣq through the same mapping cylinder construction.

Thanks to Stallings' theorem [START_REF] Stallings | Homology and central series of groups[END_REF] we can extend the nilpotent Dehn-Nielsen representations to homology cobordisms.

Theorem 5.1.7. [GL05, Theorem 3] For any homology cobordism C P CpΣq and any k P N, the composition pi ´q´1 ˝pi `q induces a homomorphism:

ρ k : CpΣq Ñ Autpπ{Γ k`1 πq.
Note that the restriction of this morphism to ιpMpΣqq coincides with the previously defined Dehn-Nielsen representation, justifying the continued use of the same notation. Furthermore, if we denote by CpΣqrks :" kerpρ k q, we obtain a decreasing sequence of submonoids:

CpΣq " CpΣqr0s Ą CpΣqr1s Ą CpΣqr2s Ą CpΣqr3s Ą ¨¨ẅ hich extends the filtration (5.1), and is still referred to as the Johnson filtration.

Link-homotopy in an algebraic way

There is a strong analogy between homology cobordisms and string-links. Firstly, the pure braid group (which can be defined as the mapping class group of the punctured disk), forms the subgroup of invertibles in the string-links monoid, as does the mapping class group of Σ for the monoid CpΣq. Moreover, as discussed in [GL05, Remark 5.3], CpΣq can be converted into a group by considering their homology cobordism classes, similarly as string-links do up to concordance. Finally, Milnor stringlinks invariants, appears as the analogues of the homomorphisms ρ k , as pointed in [GL05, Remark 2.6] and [START_REF] Habegger | johnson, and tree level perturbative invariants[END_REF]. See [Ver21, Section 2.4] for a good exposition of this so-called Milnor-Johnson correspondence. In light of this correspondence, it is thus natural to investigate an analogue of the link-homotopy relation of string-links in the context of homology cobordisms.

Reduced group

To establish a notion of link-homotopy for homology cylinders, or more generally for homology cobordisms, it is natural, at the algebraic level, to consider them as automorphisms of the reduced free group. Since the fundamental group of Σ, is a free group, Theorem 5.1.7 seems to be a good first step in this direction. Let us fix the family of generators x 1 , y 1 , . . ., x g , y g , illustrated in Figure 5.2. We recall from Proposition 1.2.5 the subgroup J :" J π of π generated by commutators in x 1 , y 1 , . . . , x n , y n with repeats and the reduced quotient of π given by Rπ :" π{J. We make the observation that, for k ě 2g, Rπ is given by the quotient of π{Γ k`1 π by J{Γ k`1 π. This follows from the fact that any commutator of weight greater than 2g has repeats and therefore Γ k`1 π Ă J. Then for k ě 2g we may hope that ρ k will be turned into a homomorphism from CpΣq to AutpRπq. The only condition that must be verified to do so is that for any homology cobordism C we have:

ρ k pCqpJ{Γ k`1 πq " J{Γ k`1 π.
(5.2) Moreover, if the homology cobordism C ϕ is given by a mapping cylinder construction, i.e., C ϕ " ιpϕq for some ϕ P MpΣq, then it induces an automorphism of the free group ρpC ϕ q :" ρpϕq, and to see it as an element of AutpRπq, we simply need: ρpC ϕ qpJq " J.

(5.3) But this is not the case in general as the following two counter-examples show. Let us set Σ 2,1 the surface with genus g " 2 and one boundary component.

Counter-example 5.2.1. We consider the mapping cylinder ιpT c q of the Dehn twist T c along the simple closed curve c, illustrated in Figure 5.3. This element, denoted by C c , seen as an automorphism of the fundamental group, is given by:

ρpC c q : π Ñ π x 1 Þ Ñ x 1 , y 1 Þ Ñ y 1 , x 2 Þ Ñ x 2 , y 2 Þ Ñ y 2 x 2 .
We compute the image of the commutator with repeats rrx 1 ,y 2 s,y 2 s P J by the automorphism ρpCq: ρpC c qprrx 1 ,y 2 s,y 2 sq " rrx 1 ,y 2 x 2 s,y 2 x 2 s. This element, seen as an element of the reduced free group, has normal form (Definition 1.2.7) given by: ρpC c qprrx 1 ,y 2 s,y 2 sq " rrx 1 ,x 2 s,y 2 srrx 1 ,y 2 s,x 2 s, By uniqueness of the normal form (Theorem 1.2.10), the image ρpC c qprrx 1 ,y 2 s,y 2 sq does not belong to J. Therefore condition (5.3) is not verified, and we cannot see C c as an automorphism of the reduced free group.

But the homology cobordism in Counter-example 5.2.1 is not a homology cylinder, and one might expect the desired construction to be satisfied by these objects. However, as shown in Counterexample 5.2.2, we still have the same problem for homology cylinders. This homology cobordism, induces an automorphism on the fundamental group given by:

ρpC a,b q : π Ñ π x 1 Þ Ñ x 2 ry 1 ,x ´1 1 sx 1 rx ´1 1 ,y 1 sx ´1 2 y 1 Þ Ñ x 2 ry 1 ,x ´1 1 sy 1 rx ´1 1 ,y 1 sx ´1 2 x 2 Þ Ñ x 2 ry 1 ,x ´1 1 sx 2 rx ´1 1 ,y 1 sx ´1 2 y 2 Þ Ñ y 2 x 2 rx ´1 1 ,y 1 sx ´1 2
We have that:

ρpC a,b q ´"rx 2 ,y 2 s,y 2 ‰ ¯"" " " rx 1 ,y 1 s,x 2 ‰ x 2 ,y 2 " x 2 ,ry 1 ,x 1 s ‰ ry 1 ,x 1 s ı ,y 2 " x 2 ,ry 1 ,x 1 s ‰ ry 1 ,x 1 s ȷ mod rJs " " " x 2 ,y 2 ry 1 ,x 1 s ‰ ,y 2 ry 1 ,x 1 s ı mod rJs " " rx 2 ,y 2 s,ry 1 ,x 1 s ‰ " " x 2 ,ry 1 ,x 1 s ‰ ,y 2 ı mod rJs " " " rx 1 ,y 1 s,y 2 ‰ x 2 ı" " rx 1 ,y 1 s,x 2 ‰ y 2 ı ´2 mod rJs
and once again we come across a normal form which is not that of the trivial element. Hence this homology cobordism does not induce an automorphism of the reduced fundamental group.

To address the issue highlighted by Counter-examples 5.2.1 and 5.2.2, we aim to identify another normal subgroup, denoted as H Ÿ π, such that homology cobordisms can be viewed as automorphisms of the quotient group π{H. Our objective is twofold: firstly, we require that for any sufficiently large integer k ą 0, the subgroup Γ k π is contained within H to leverage the applicability of Theorem 5.1.7. Secondly, to ensure the quotient's relevance in terms of link-homotopy, we seek a reduced-type quotient, meaning that some elements commute with their conjugates. As a result, in the subsequent section, we are led to consider the notion of fully reduced group.

Fully reduced group

In this section, we extend the definition of reduced groups in order to obtain a quotient which does not depend on a chosen family of generators.

Definition 5.2.3. Let G be a group and let us define H Ÿ G to be the normal subgroup generated by elements of the form rω,λωλ ´1s, for any ω,λ P G. We call fully reduced quotient, the quotient G{H and we denote it by R F G. Roughly speaking, R F G is the quotient of G in which any element commutes with its conjugates. Proposition 5.2.4. For any group G and any x,y,z P R F G, the following equalities hold in R F G: Proof. The first equality corresponds to the following fully reduced relations:

p1q
x ´1yxy ´1 " yxy ´1x ´1 " xy ´1x ´1y.

For the second relation we recall first the well known Hall-Witt identity:

x ´1"
ry,x ´1s,z ‰ x ¨z´1 " rx,z ´1s,y ‰ z ¨y´1 " rz,y ´1s,x ‰ y " 1.

Then we turn all the factors into the desired ones. For example, applying p1q to " ry,x ´1s,z ‰ yields " rx,ys,z ‰ , which is equal to its conjugate by x due to the fully reduced quotient relations. Finally, the last equality is derived from the observation that, on the one hand, the commutator " rx,yzs,yz ‰ is trivial in RFG and, on the other hand, that we have the two equalities " a,rb,cs ‰ " ra,bs " c,ra,bs ‰ ra,cs, " rc,bs,a ‰ " " b,rc,as ‰ rc,asrb,as, for any a, b, c in any group G. Then, by iterating these relations we rewrite the commutator " rx,yzs,yz ‰ as a product of commutators in x, y, and z. However, commutators of degree four or higher necessarily contain repetitions and are therefore trivial in RFG. Consequently, we ultimately find that Similarly we have that " rx,ys,z ‰ " " ry,zs,x ‰ , then we conclude using p2q from Proposition 5.2.4.

"
In view of Proposition 5.2.5, it would seem that the fully reduced quotient is not suitable for our study. Too much information is lost, and it is unlikely that link-homotopy translates algebraically into this quotient. To convince ourselves, let us take a look at what the 'fully reduced' condition generates in the context of braids. Recall from Corollary 2.2.6 that the pure homotopy braid group hP n is given by taking the reduced quotient of the pure braid group generated by the generators A ij for 1 ď i ă j ď n. We consider first some relations of the fully reduced pure braid group R F P n . Proposition 5.2.6. If we set three indices 1 ď r ă i ă j ď n then the associated pure braids generators in R F P n satisfy: rA ri ,A rj s " rA rj ,A ij s " rA ij ,A ri s.

For any distinct pairs of indices tr,iu X ts,ju " H, in R F P n , we also have that:

rA ri ,A sj s " 1

Proof. The first relations are already true in hP n " RP n , as mentioned in Theorem 2.2.6, so they must hold in R F P n . The other equality is also verified most of the time in hP n " RP n , with the only

Link-homotopy using graph-claspers

In this section, we once again attempt to broaden the concept of link-homotopy within the context of homology cobordisms. We draw inspiration from the characterization in terms of repeated claspers (see Lemma 1.1.10). With this objective in mind, let us first define graph-claspers within the context of homology cylinders. To provide a rough comparison, claspers, as defined in Chapter 1, are distinguished from graph-claspers by their leaves: previously, they were disks intersecting tangle strands, whereas now they are framed knots.

Graph-claspers

Let M be a compact oriented 3-manifold.

Definition 5.3.1. A connected surface G smoothly embedded in the interior of M is called a graphclasper in M if it can be decomposed into leaves, nodes, and edges as follows:

• Edges are 1-handles that connect leaves and/or nodes, and each edge having two ' ends', namely the attaching loci of the 1-handle.

• Leaves are framed knots, i.e., embeddings of annuli. Each leaf should have precisely one end of an edge attached to it.

• Nodes are discs, and each node should have exactly three ends of edges attached to it.

When provided with a graph-clasper G Ă M , we can omit its leaves and collapse the remainder into a one-dimensional graph. This process results in a uni-trivalent graph known as the shape of G. Graph-claspers whose shape is a tree graph are called tree-claspers.

As before, we depict graph-claspers diagrammatically, as shown in Figure 5.5, for example. To We stress that the notion of degree only makes sense for graph-claspers, which are connected surfaces decomposed into nodes, edges, and leaves. In particular, boxes can be misleading in this respect; they must be thought of as the junction of three claspers.

Given a disjoint union of graph-claspers F in M , there is a procedure called surgery detailed in [START_REF] Habiro | Claspers and finite type invariants of links[END_REF] to construct a new manifold denoted M F . First, we replace each node with three leaves forming a copy of the Borromean rings, as shown in Figure 5.10. This yields a union of degree 0 to mean that the two manifolds M and M 1 are Y k -equivalent.

Surgery along a degree 1 graph-clasper, coincides with the Borromean surgery introduced by S. Matveev [START_REF] Matveev | Generalized surgery of three-dimensional manifolds and representations of homology spheres[END_REF]. It follows from the main result of [START_REF] Matveev | Generalized surgery of three-dimensional manifolds and representations of homology spheres[END_REF] that any integral homology sphere is Y 1 -equivalent to S 3 .

Homology cylinders and graph-claspers

We now delve back into the realm of homology cobordisms, specifically focusing on the set of homology cobordisms that are Y k -equivalent to Σ ˆr´1,1s, denoted as C k pΣq. These sets are indeed submonoids of CpΣq (see [START_REF] Goussarov | Finite type invariants and n-equivalence of 3-manifolds[END_REF][START_REF] Habiro | Claspers and finite type invariants of links[END_REF]). Remarkably, as shown in [MM03, Section 4.1], the first of these submonoids coincides with the monoid of homology cylinders, i.e., C 1 pΣq " ICpΣq.

In other words any homology cylinders C P ICpΣq can be presented by a union of graph-claspers in Σ ˆr´1,1s, meaning there exists a disjoint union of graph-clasper F in Σ ˆr´1,1s such that C " pΣ ˆr´1,1sq F . Additionally, as for example stated in [HM12, Proposition 5.4], the resulting Y-filtration

CpΣq " C 0 pΣq Ą C 1 pΣq Ą C 2 pΣq Ą C 3 pΣq Ą ¨¨ï s finer than the Johnson filtration, in the sense that for any k, C k pΣq Ă CpΣqrks.

Link-homotopy for homology cylinders I

As mentioned in the introduction, link-homotopy is closely related to the notion of concordance. Indeed, it constitutes a more flexible equivalence relation. More precisely, if two links are concordant, then they are also link-homotopic. Therefore, in order to define a notion of link-homotopy for homology cobordisms, it seems natural to begin by examining the analogue of concordance for homology cylinders, and its interpretation in terms of graph-claspers Definition 5.3.5. Two homology cobordisms pC 1 , i 1 q and pC 2 , i 2 q over Σ are homology cobordant if the closed, oriented 3-manifold obtained by gluing C 1 and the reverse of C 2 (i.e., C 1 Y i 1 ˝i´1

2 p´C 2 q) bounds a compact, oriented smooth 4-manifold W in such a way that both inclusions C 1 Ă W and C 2 Ă W induce homology isomorphisms. Here, ´C2 represents the homology cobordism given by reversing the orientation of C 2 together with the homeomorphism i 2 ˝τ , where τ is the involution of Σ ˆr´1,1s defined by τ px,tq " px, ´tq.

Being homology cobordant defines an equivalence relation among homology cobordisms, which is consistent with their composition. The resulting quotient monoid is known as the homology cobordism group and is denoted as HCpΣq (see [START_REF] Garoufalidis | Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism[END_REF]). As the name suggests, this monoid forms a group, with the inverse of an element C given by ´C. Moreover, by considering homology cylinders, we obtain a subgroup of HCpΣq denoted as HICpΣq. The homology cobordism class of a homology cobordism refers to its equivalence class as an element of the homology cobordism group.

Theorem 5.3.6. [Lev01, Theorem 2] Surgery along graph-claspers that are not tree-claspers does not change the homology cobordism class of a homology cobordism.

Remark 5.3.7. Theorem 5.3.6 implies that in order to define a notion of link-homotopy which is consistent with the homology cobordism group, it is necessary that surgeries induced by graph-claspers that are not tree-claspers do not change the link-homotopy class of a homology cobordism.

Let us fix B " ta 1 , b 1 , . . . , a g , b g u a symplectic basis of the first homology group H 1 pΣ; Zq illustrated in Figure 5.13. We can see a leaf of a graph-clasper in Σ ˆr´1,1s, as an element of a1 b1 ag bg The idea is to apply Lemma 5.3.12 and clasper calculus, in order to reexpress, up to higher degree graph-claspers, any disjoint union of tree-claspers in Σˆr´1,1s as a product of 'simpler' tree-claspers, with leaves of two specific types:

-B-leaves: leaves that are parallel copies of the curves a i or b i , framed along Σ and pushed inside Σ ˆr´1,1s, -Special-leaves: leaves which bound a disk disjoint from the rest of the tree-clasper and which are p´1q-framed. Let us now define the notion of a simple tree-clasper using these two types of leaves. It is important to note that the term 'simple' also appears in [START_REF] Habiro | Claspers and finite type invariants of links[END_REF], but we use it here in a different way.

Definition 5.3.13. Given a disjoint union of graph-claspers F in Σˆr´1,1s, a simple tree-clasper T , is a tree-clasper that lives in a 'slice' Σ ˆr´ϵ,ϵs of Σ ˆr´1,1s which is disjoint from GzT , and such that all of its leaves are either B-leaves or special-leaves.

Note that, in particular, having repeats for a simple tree-clasper means that it contains two B-leaves that are parallel copies of the same curve. 

Résumé

Ce mémoire explore la topologie de basse dimension, en mettant l'accent sur la théorie des noeuds. Une théorie consacrée à l'étude des noeuds tels qu'ils sont communément compris : des morceaux de ficelle enroulés dans l'espace ou, de manière plus générale, des entrelacs formés en prenant plusieurs bouts de ficelle. Les noeuds et les entrelacs sont étudiés à déformation près, par exemple, à isotopie près, ce qui implique des manipulations sans couper ni faire passer la ficelle à travers elle-même. Cette thèse explore la link-homotopie, une relation d'équivalence plus souple où des composantes distinctes demeurent séparées, mais où une composante donnée peut s'auto-intersecter. La théorie des claspers, des puissants outils de chirurgie, est développée à link-homotopie près. Leur utilisation permet une démonstration géométrique de la classification des entrelacs avec 4 composantes ou moins à link-homotopie près. Une attention particulière est ensuite accordée aux tresses, des objets mathématiques apparentés aux noeuds et aux entrelacs. Il est montré que le groupe de tresses homotopiques est linéaire, c'est-à-dire isomorphe à un sous-groupe de matrices. De nouvelles présentations de ce groupe sont également proposées. Enfin, il est établi que le groupe de tresse homotopique est sans torsion, quel que soit le nombre de composantes. Ce dernier résultat s'appuie sur le contexte plus large de la théorie des noeuds soudés.

Mots-clés : Théorie des noeuds, Link-homotopie, Claspers, Groupes de tresses, Problème de torsion, Tresses soudées, Calcul de flèches, Cobordisme d'homologie.
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 1 Figure 1: The unknot.Figure2: The trefoil knot.
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 67 Figure 6: Example of a 3-strand pure braid.
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 9 Figure 9: Example of a 3-strand pure welded braid.

Figure 1 . 3 :

 13 Figure 1.3: Local diagrammatic representation of claspers.

Lemma 1 . 1 .

 11 10. [FY09, Lemma 1.2] If T has repeats, then T vanishes up to link-homotopy. It is well known to the experts that combining Lemma 1.1.10 with the proofs of K. Habiro's technical results on clasper calculus [Hab00b], yields the following link-homotopy clasper calculus. 1 Proposition 1.1.11. [Hab00b, Proposition 3.23, 4.4, 4.5 and 4.6] We have the following linkhomotopy equivalences (illustrated in Figure 1.5).

Figure 1 .

 1 5, then T " T 1 Y T , where T is as shown in the figure.

( 4 )

 4 If T 1 Y S 1 is obtained from T Y S by a crossing change between one edge of T and one of S as depicted in (4) from Figure 1.5, then T Y S " T 1 Y S 1 Y T , where T is as shown in the figure.

1. 5 :

 5 Basic clasper moves up to link-homotopy.

Proposition 1 . 1 .

 11 11 together with Remark 1.1.13 give us most of the necessary tools to understand clasper calculus up to link-homotopy. The missing ingredient is the relation IHX which we give in the following proposition. Proposition 1.1.15.
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 1 Figure 1.7: The IHX relation for claspers.
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 21 Figure 2.1: Example of composition of two braids.
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 23 Figure 2.3: Local orientation at each node of a comb-clasper.

Figure 2 . 4 :

 24 Figure 2.4: The twisted comb-clasper p126458q.
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 27 Figure 2.7: Pure braid and clasper interpretations of the generator x i .
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 28 Figure 2.8: Clasper interpretation of the Artin representation.
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 2 Figure 2.15: Proof of Lemma 2.3.10.

Definition 2.4. 1 .

 1 Let us take an integer k the equivalence relation generated by surgery along clasper of degree k and link-homotopy is called C k -homotopy. Given β and β 1 two braids we use the notation θ

Figure 2 .

 2 Figure 2.16: The homotopy braid λ.

Figure 3 . 1 :

 31 Figure 3.1: The Habegger-Lin decomposition in terms of clasper.

  (2) and (4) from Proposition 1.1.11 to obtain a decomposition C " CC 0 where all claspers in C 0 have either i or k in their support. Next, we consider those claspers in C 0 that are disjoint from the k-th component: we apply move (3) from Proposition 1.1.11 to ensure that they all are behind this component, and then use again Proposition 1.1.11 to obtain a decomposition C " CC i C 1 where all claspers in C 1 have k in their support. Finally, by the exact same way we have a decomposition C 1 " C k C i,k with C k and C i,k as desired.
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 35 Figure 3.5: Operation p x2 , x2 q 1 on the 2-component normal form.
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 3 Figure 3.6: Operation p x2 , x2 q 1 on the 3-component normal form.
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 3 Figure 3.7: Illustration of Lemma 3.2.1
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 38 Figure 3.8: Normal form for 4 components.
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 41 Figure 4.1: A classical and a virtual crossing.

Figure 4

 4 Figure 4.2: The Mixed, OC and UC moves on virtual diagrams.
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 4 Figure 4.3: A self-virtualization move.

Figure 4 . 5 :

 45 Figure 4.5: Surgeries near a twist and crossings.

Figure 4

 4 Figure 4.6: The expanding rule.

  Lemma 4.1.8. [MY19, Lemma 9.2 ] Surgery along a repeated w-tree does not change the homotopy class of a diagram.

∼

  Until the end of the section, T and S will denote w-trees for a given diagram D. As for clasper calculus, we use the notation T " S to mean that D T " D S . The next proposition describes how to handle twists in the homotopy arrow calculus.Proposition 4.1.10.[START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF] We have the following homotopy equivalences (illustrated in Figure4.7).
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 47 Figure 4.7: How to deal with twists in homotopy arrow calculus.

Lemma 4. 1 .

 1 11. [MY19] We have the following homotopy equivalences (illustrated in Figure 4.8). (5) Tails exchange. If T and S have two adjacent tails and if T 1 Y S 1 is obtained from T Y S by exchanging these tails, then T Y S " T 1 Y S 1 . (6) Heads exchange. If the heads of T and S are adjacent and if T 1 Y S 1 is obtained from T Y S by exchanging these heads as depicted in (6) Figure 4.8, then T Y S " T 1 Y S 1 Y T , where T is as shown in the figure.

( 7 )

 7 Head/Tail exchange. If the head of T is adjacent to a tail of S and if T 1 Y S 1 is obtained from T YS by exchanging these endpoints as depicted in (7) from Figure4.8, then T YS " T 1 YS 1 Y T , where T is as shown in the figure.
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 48 Figure 4.8: How to exchange endpoints in homotopy arrow calculus.

Figure 4

 4 Figure 4.9: The IHX relation for w-trees.
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 4 Figure 4.10: The positive and negative comb-trees χ I and χ ´1 I .
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 4 Figure 4.11: The product χ 314 χ ´1 314 is trivial.

Figure 4 .

 4 Figure 4.13: The pure welded generator χ ij .

  Remark 4.2.22. The representation theory of welded braid groups is a new and rich field of research: so far, few other representations are known, and the focus is mainly on extending Burau's representation, see for instance [KMRW17, PS22, DMR23].
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 4 Figure 4.14: The pure generator χ 8,i and its arrow interpretation.

Figure 4 .

 4 Figure 4.15: Arrow interpretation of the welded Artin representation.

Figure 5

 5 Figure 5.2: Generators x 1 , y 1 , . . ., x g , y g of π.

cFigure 5

 5 Figure 5.3: The closed curve c.

Figure 5 . 4 :

 54 Figure 5.4: The bounding pair (a,b).

Figure 5 . 5 :

 55 Figure 5.5: Diagram of a graph-clasper. recover the represented graph-clasper, simply thicken the diagram using the blackboard framing convention. The nodes are represented by large dots and are thickened according to Figure 5.6. Additionally, we use markers called twists to indicate the presence of half-twists (see Figure 5.7).Finally, we also use boxes, a graphical convention representing the entanglement of three leaves, as depicted in Figure5.8. Definition 5.3.2. Let G be a graph-clasper in M . We define the degree of G, denoted by degpGq, as its number of nodes. Graph-claspers of degree 0 consist of only one edge and two leaves, see Figure5.9.
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 56 Figure 5.6: The diagrammatic node thickening pattern.

Figure 5 . 7 :

 57 Figure 5.7: The diagrammatic negative and positive twist thickening patterns.
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 58 Figure 5.8: Leaf arrangement corresponding to a box.
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 5 Figure 5.9: A degree 0 graph-clasper.

⟶Figure 5 Figure 5

 55 Figure 5.10: Replacing nodes by Borromean ring leaves.
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 515 Figure 5.13: Symplectic basis B " ta 1 , b 1 , . . . , a g , b g u of H 1 pΣ; Zq.

Figure 5 .

 5 Figure 5.16: A B-leaf.Figure5.17: A special-leaf.

#

  We now define the Inverse, Commutator, and Simplification functions to perform # operations on homotopy braids. The first two produce inverses and commutators # of braids, while the Simplification function simplifies pairs of trivial # generators $\sigma_i\sigma_i^{-1}$. def Inverse(Braid): length=len(Braid) return([-Braid[length-i-1] for i in range(0,length)]) def Commutator(Braid1,Braid2): return(Braid1+Braid2+Inverse(Braid1)+Inverse(Braid2)) def Simplification(Braid): i=0 while i<len(Braid)-1: if Braid[i]==-Braid[i+1]: Braid.pop(i+1) Braid.pop(i) i-=2 i+=1 # The function Comb_clasper_generator constructs the comb-clasper (i, j) as a # word in the homotopy braid generators $\sigma_i$. Similarly, the function # Comb_clasper constructs the comb-clasper (i1, i2, ..., in) as a word in the # homotopy braid generators $\sigma_i$. def Comb_clasper_generator(i,j): return([j-k for k in range(1,j-i)]+[i,i]+[-i-k for k in range(1,j-i)]) def Comb_clasper(I): length=len(I)-1 T=Comb_clasper_generator(I[0],I[length]) for i in I[1:length]: T=Commutator(T,Comb_clasper_generator(i,I[length])) return(T)

  Theorem 1.1.4.[START_REF] Alexander | On types of knotted curves[END_REF][START_REF] Reidemeister | Elementare Begründung der Knotentheorie[END_REF] Two tangles are isotopic, if and only if, their diagrams are related by a sequence of Reidemeister moves (see Figure1.1) and planar isotopies.

  Figure 2.17: Computation of λp1, ¨¨¨,p ´1, ¨¨¨,i,pqλ ´1.Figure 2.18: Computation of λp1, ¨¨¨,j, ¨¨¨,i, ¨¨¨,p ´1,pqλ ´1.
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 3 

2: Clasp-numbers variations under operations p xi , xi q k .

  .3. Two 4-component links, seen as closures of braids in normal forms (see Figure3.8), are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations from Table3.3. Remark 3.2.4. Table3.1 was only used here as a tool to simplify the computations summarized in Table3.2. We stress that Table3.3 alone suffices to generate Table3.1 and Table3.2. In particular, Table3.1 is obtained by 'commuting' the rows of Table3.3. More precisely let us denote by rR i s k the variation associated to the i-th row of Table k. Let us also denote by rR i ,R

	ν 123	ν 124	ν 134	ν 234 ν 1234 ν 1324
	ν 13	ν 14			ν 134
	´ν12		ν 14		ν 124
	ν 23	ν 24			ν 234
		´ν12		ν 23	ν 123
	ν 23		´ν34		ν 234
			ν 13	ν 23	ν 123
		ν 14		´ν34	ν 134
			ν 14	ν 24	ν 124
	Table 3.3: Clasp-numbers variations under generating operations.
	Finally, with Table 3.3 we reinterpret the homotopy classification of 4-component links as follows.
	Theorem 3.2.3.			

j s k the 'commutator of rows i and j' from Table k, i.e., the variation obtained by applying the i-th row of Table

  respectively, and Levine's integers correspond to clasp-numbers as follows. 12 ν 13 ν 23 ν 123 ν 14 ν 24 ν 34 ν 124 ν 134 ν 234 ´ν1324 ´ν1234

	k	r	l	d	e 1	e 2	e 3	e 4	e 5	e 6	e 7	e 8
	ν											

Table 3

 3 .5. Just as in Remark 3.2.4, only Table3.5 is needed here as it generates Table3.4. With the same notations as in Remark 3.2.4 and with the additional notation '˝' for composition, we get:ν 12345 ν 12435 ν 13245 ν 13425 ν 14235 ν 14325

	Remark 3.2.7.

.4: Some clasp-numbers variations with same closure.

  1.11 to exchange endpoints of those factors with endpoints of χ ki , we create w-trees with repeats, which are trivial up to homotopy by Lemma 4.1.8. Theorem 4.2.15. We have the following presentation for the homotopy welded braid group. hW P n " x χ ij ˇˇˇˇˇr χ ij ,χ kl s " 1 if ti,ju X tk,lu " H rχ ij ,χ jk s " rχ ik ,χ ij s for any i, j, k " χ jk ,ωχ ik ω and for certain ω P hW P n . Our observation is that, such relations are true for all indices i, j, k and all ω P hW P n , as stated in Proposition 4.2.13 and Proposition 4.2.14. We conclude the proof, by showing that the relations rχ ik χ jk ,χ ij s " 1 and rχ ij ,χ jk s " rχ ik ,χ ij s are equivalent in hW P n :

	´1‰	"	"	χ ki ,ωχ ik ω	´1‰	" 1	for any i, j, k and any word ω y .
	Proof. In [Dar23, Theorem 5.8.], a presentation for the pure homotopy welded braid group is given
	from the group presentation of Theorem 4.2.11, by adding relations of the form
	"	χ jk ,ωχ ik ω	´1‰	"	"	χ ki ,ωχ ik ω	´1‰	" 1,
	for certain indices i, j, k,							

  χ jk s " rχ ik ,χ ij s.for any i, j, k, and any ω P hW P n , to the presentation of the welded braid group in Theorem 4.2.11.Proof. The proof follows from Theorem 4.2.15, and the fact that, if a welded braid is trivial up to homotopy then it belongs to the pure welded braid group hW P n .

	Corollary 4.2.16. A presentation for the homotopy welded braid group hW B n is given by adding
	the relations							
	"	χ jk ,ωχ ik ω	´1‰	"	"	χ ki ,ωχ ik ω	´1‰	" 1,
	Remark 4.2.17. We give here, in Theorem 4.2.15 and Corollary 4.2.16, infinite presentations. How-
	ever, as in the classical framework (see Remarks 2.2.3 and 2.2.7), we can reduce them to finite pre-
	sentations using Proposition 1.2.5 and Corollary 1.2.6.		

  1 ¨¨¨χ 8,im P xχ 8,i y 1ďiďn we have: ζpχ 8,i 1 ¨¨¨χ 8,im qpx 8 q " x ´1 i 1 ¨¨¨x ´1 im x 8 x i 1 ¨¨¨x im , with x i k ‰ x 8 P RF n`1 for any 1 ď k ď m. Therefore, if a relation χ 8,i 1 ¨¨¨χ 8,im " 1 holds in xχ 8,i y 1ďiďn , then the relation x i 1 ¨¨¨x im " 1 must also hold in RF n`1 . However, RF n`1 only admits reduced-type relations (i.e., of the form rx i ,λx i λ ´1s " 1 for any i and any λ P RF n ), thus the only possible relations in xχ 8,i y 1ďiďn must be of reduced-type as well. But we have seen in Theorem 4.2.15 that the generators χ 8,i indeed satisfy all reduced-type relations rχ 8,i ,ωχ 8,i ω ´1s " 1 for any 1 ď i ď n and any ω P xχ 8,i y 1ďiďn .In this context, the automorphism ζpβq (resp. ζ h pβq) associated to an element β in W B n (resp. hW B n ) is given on a generator χ 8,i in F n (resp. in RF n ) by considering the conjugation βχ 8,i β

´1

illustrated in Figure

  rx ´1,ys " rx,ys ´1 " rx,y ´1s;

	p2q	"	rx,ys,z	‰" rz,xs,y	‰"	ry,zs,x ‰	" 1;
	p3q	"	rx,ys,z	‰	"	" rx,zs,y	‰ ´1.

  Proposition 5.2.5. For any group G and any triple x, y, z P R F G we have that:Proof. We start with equality p3q from Proposition 5.2.4, and then apply p1q from Proposition 5.2.4 twice:

	rx,yzs,yz	‰	"	"	rx,ys,yz	‰"	rx,ys,z	‰"	rx,zs,y	‰ .
				"	rx,ys,z	‰ 3 " 1
	" rx,ys,z	‰	"	"	rx,zs,y	‰ ´1,
								"	"	rx,zs ´1,y	‰	,
								"	"	rz,xs,y	‰	.

Those moves are contained in[START_REF] Yasuhara | Self delta-equivalence for links whose Milnor's isotopy invariants vanish[END_REF] and[START_REF] Meilhan | Milnor invariants and the HOMFLYPT polynomial[END_REF] together with[START_REF] Fleming | Milnor's invariants and self C k -equivalence[END_REF].

For the sake of compactness, here and in all presentations of the chapter, generators are indexed as above. That is, generators σi are indexed by integers i P t1, . . . , n ´1u, and generators Aij by pairs of integers 1 ď i ă j ď n ´1u.

By the notation λ P Pn here we mean that λ is a pure homotopy braid, i.e., a word in the pure homotopy braid generators tAij " σj´1σj´2 ¨¨¨σi`1σ 2 i σ ´1 i`1 ¨¨¨σ ´1 j´2 σ ´1 j´1 u and their inverses.

Here by reduced homotopy class, we mean the image in the reduced quotient of the homotopy class of an element.

γpσ 1 qp1q " p2q, γpσ 2 qp1q " p1q, γpσ 1 qp2q " p1q `p12q, γpσ 2 qp2q " p3q, γpσ 1 qp3q " p3q, γpσ 2 qp3q " p2q `p23q, γpσ 1 qp12q " ´p12q, γpσ 2 qp12q " p13q, γpσ 1 qp13q " p23q, γpσ 2 qp13q " p12q `p123q ´p132q, γpσ 1 qp23q " p13q `p123q, γpσ 2 qp23q " ´p23q, γpσ 1 qp123q " ´p123q, γpσ 2 qp123q " p132q, γpσ 1 qp132q " ´p123q `p132q, γpσ 2 qp132q " p123q.

Here and in the following figures, we use the diagrammatic convention adopted in [MY19, Convention 5.1].

Here and in the following presentation, generators σi and ρi are indexed by integers i P t1, . . . , n´1u, and generators χij are indexed by pairs of integers i ‰ j P t1, . . . , n ´1u.

Roughly speaking, this term arises by 'tacking the term TH ' in each occurrence of the IHX relation, see Figure

4.9.

Table 3.5: Clasp-numbers variations under generating operations in the 5-component algebraicallysplit case.

rR 1 s 3.4 " rR 12 ,R 3 s 3.5 ˝rR 5 ,R 6 s 3.5 , rR 2 s 3.4 " rR 6 ,R 5 s 3.5 , rR 3 s 3.4 " rR 11 ,R 12 s 3.5 , rR 4 s 3.4 " rR 6 ,R 14 s 3.5 , rR 5 s 3.4 " rR 5 ,R 11 s 3.5 ˝rR 3 ,R 11 s 3.5 , rR 6 s 3.4 " rR 3 ,R 11 s 3.5 , rR 7 s 3.4 " rR 12 ,R 13 s 3.5 , rR 8 s 3.4 " rR 8 ,R 9 s 3.5 , rR 9 s 3.4 " rR 1 ,R 5 s 3.5 , rR 10 s 3.4 " rR 13 ,R 5 s 3.5 , rR 11 s 3.4 " rR 2 ,R 1 s 3.5 , rR 12 s 3.4 " rR 13 ,R 14 s 3.5 , rR 13 s 3.4 " rR 6 ,R 4 s 3.5 , rR 14 s 3.4 " rR 7 ,R 9 s 3.5 , rR 15 s 3.4 " rR 5 ,R 10 s 3.5 , rR 16 s 3.4 " rR 7 ,R 3 s 3.5 , rR 17 s 3.4 " rR 4 ,R 2 s 3.5 , rR 18 s 3.4 " rR 10 ,R 11 s 3.5 , rR 19 s 3.4 " rR 1 ,R 7 s 3.5 , rR 20 s 3.4 " rR 10 ,R 1 s 3.5 .

Note that in a recent paper [START_REF] Kotorii | Clasper presentations of Habegger-Lin's action on string links[END_REF], Kotorii and Mizusawa, with techniques similar to the one presented in this section, have given a complete classification of 5-component links up to link-homotopy. • The univalent vertices of T are pairwise disjoint and are contained in Dztcrossings of Du.

• All edges of T are oriented, such that each trivalent vertex has two ingoing edges and one outgoing edge.

• We allow virtual crossings between edges of T , and between D and edges of T , but classical crossings involving T are not allowed.

• Each edge of T is assigned a number (possibly zero) of decorations, called twists, which are disjoint from all vertices and crossings.

A w-tree with a single edge is called a w-arrow.

The unique univalent vertex with an ingoing edge is called the head of the w-tree. By graphic convention, it is represented by an arrow on the figures. The other univalent vertices are called tails. When we do not need to distinguish between tails and head, we simply call all univalent vertices, endpoints. In the figures, portions of the diagram are represented by thick black lines and w-trees edges by thin blue lines. Finally, twists are represented graphically by big red dots '. Definition 4.1.6. Let T be a w-tree for a diagram D. We define the degree of T , denoted by degpT q, as its number of tails. The support of T , denoted by supppT q, is defined to be the set of the components of D that intersect the endpoints of T . The roots of T , denoted by rootspT q, is defined to be the set of the components of D that intersect the tails of T . We will often consider the number of the components rather than the components themselves. Definition 4.1.7. We say that a w-tree for a diagram D has repeats if it intersects a component of D in at least two endpoints. Otherwise, we say that the w-tree is nonrepeated.

Given a disjoint union of w-trees F for a diagram D, there is a procedure called surgery detailed in [START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF] to construct a new diagram denoted D F . We illustrate on Figure 4.4 the surgery along a w-arrow. Note that the orientation of the portion of diagram containing the tail, needs to be specified Proof. First, we may use a Head Reversal from Proposition 4.1.9 to ensure that the orientation of the head and the strand that it intersects are arranged as in Figure 4.10. Then, we may apply the IHX relation of Lemma 4.1.12, and we may arrange the cyclic order at each trivalent vertex with Proposition 4.1.10 to get the shape depicted in Figure 4.10 for each individual comb-tree. Next, we may exchange endpoints using Lemma 4.1.11 to obtain the product arrangement; this creates w-trees with repeats which are trivial up to link-homotopy by Proposition 4.1.8. Finally, with Proposition 4.1.10, we move all twists to the edge incident to the head and cancel them pairwise. Definition 4.2.6. We say that a pure homotopy welded braid β P hW P n given by a product of comb-trees β " χ ˘1 I 1 χ ˘1 I 2 ¨¨¨χ ˘1 Im is :

• reduced if it contains no redundant pair, i.e., two consecutive factors are not the inverse of each other.

If β is reduced and stacked, then we can rewrite β as β " ś χ ν i I i for some integers ν i and with χ I i ‰ χ I j for any i ‰ j. Moreover, given any total order ď on the set of positive comb-trees, we say that a reduced and stacked writing is a normal form of β for this order if χ I i ď χ I j for all i ď j.

Theorem 4.2.7. Any pure homotopy welded braid β P hW P n can be expressed in a normal form, for any order on the set of positive comb-trees.

Proof. Note that the comb-trees χ ij correspond to the usual pure welded braid group generators χ ij shown in Figure 4.13 (see Remark 4.2.10). Thus it is clear that β is given by a product of degree one comb-trees. Now we rearrange these comb-trees according to the given order with Lemma 4.1.11. This may introduce new w-trees of degree strictly higher than one, and by Lemma 4.2.5 we can freely assume that these are all comb-trees. Next we consider degree two comb-trees and we rearrange them according to the order. Again this introduces higher degree w-trees, which can all be assumed to be combtrees according to Lemma 4.2.5. By iterating this process degree by degree, we eventually obtain the desired normal form. Indeed, the procedure terminates because w-trees of degree higher than n are trivial in hW P n by Lemma 4.1.8. Remark 4.2.8. This result is to be compared with Theorem 9.4 of [START_REF] Meilhan | Arrow calculus for welded and classical links[END_REF], which uses a different notion of comb-tree, ordered according to the degree. Their method is based on the correspondence between comb-trees and Milnor numbers. In particular, their approach also proves the unicity of the normal form and the that Milnor numbers are complete invariants of pure homotopy welded braids. We will also prove the unicity of the normal form later in Corollary 4.2.35 using another method.

Remark 4.2.9. Note that this result could be adapted to the whole homotopy welded braid group. This would require extending the notion of normal form to all homotopy welded braids. This could be done by associating a homotopy welded braid with each permutation.

Welded braid group presentations

In this section we use the usual Artin braid generators σ i for i P t1, . . . , n ´1u and the usual virtual braid generators ρ i for i P t1, . . . , n ´1u illustrated in Figure 4.12. We also use the usual pure welded In order to get a presentation for the pure homotopy welded braid group, let us first state a preparatory technical lemma. Lemma 4.2.12. For any 1 ď i ‰ k ď n and any ω P hW P n , the conjugate ωχ ik ω ´1 is obtained as the surgery on a product of nonrepeated w-trees for the trivial braid, all containing i and k in their support and having a tail on the k-th component.

Proof. Firstly, if T 1 and T 2 are two w-trees for the trivial braid 1 such that |supppT 1 q X supppT 2 q| ě 2 then their endpoints can be freely exchanged and T 1 commutes with T 2 . Indeed, exchanging two tails is always possible according to move (5) from Lemma 4.1.11, and if one of the two endpoints is a head then by move (6) or (7) from Lemma 4.1.11 the exchange creates a new w-tree. However, thanks to the condition on the supports, this w-tree has repeats and is therefore trivial up to homotopy as shown by Lemma 4.1.8. Observe also that T 1 and T 2 commute if they have disjoint support, or if the endpoints on supppT 1 q X supppT 2 q are all tails, by move (5) of Lemma 4.1.11.

The only remaining case is thus that of two w-trees T 1 and T 2 with supppT 1 q X supppT 2 q " tiu for some i, and such that the i-th component contains the head of T 1 or T 2 . Then commuting T 1 and T 2 is achieved by exchanging their endpoints lying on the i-th component. By doing so, as shown by move (6) or (7) from Lemma 4.1.11, this creates a new w-tree T 3 such that supppT 3 q " supppT 1 q Y supppT 2 q and rootspT 3 q " rootspT 1 q Y rootspT 2 q. This w-tree has then at least two endpoints in common with T 1 and T 2 , thus it can be moved freely and we get

The observations above imply that, if F is a product of w-trees all containing i and k in their support and having a tail on the k-th component, then for any w-tree W the conjugate W F W ´1 is again a product of w-trees all containing i and k in their support and having a tail on the k-th component.

Finally we express ω P hW P n as a product of w-trees ω " W m ¨¨¨W 0 . Then, since χ ik contains i and k in its support and has a tail on the k-th component, the conjugate

0 is again a product of w-trees all containing i and k in their support and having a tail on the k-th component. Therefore, by taking successive conjugates F k`1 :" W k F k W ´1 k , we eventually conclude the proof.

The two following propositions give us relations in the pure homotopy welded braid group.

Proposition 4.2.13. For any integers 1 ď i, j, k ď n satisfying i ‰ k and j ‰ k (note that i and j may be equal), and any ω P hW P n , the comb-tree χ jk commutes with ωχ ik ω ´1.

Proof. Let us denote by W a product of w-trees for the trivial braid 1 with surgery result ωχ ik ω ´1. To prove the proposition we consider the product χ jk W , and perform endpoints exchanges to move χ ij down across W . To do so, we first slide the tail of χ jk along the k-th component. Thanks to Lemma 4.2.12, all the factors of W have only a tail on the k-th component, so using move (5) from Lemma 4.1.11 we can achieve this sliding freely. Next, we slide the head of χ jk along the j-th component. We use moves (6) and (7) from Lemma 4.1.11 to cross endpoints of w-trees in W that we encounter along the sliding. This creates w-trees with repeats (they intersect the k-th component in two points), which are trivial up to homotopy by Lemma 4.1.8.

Proposition 4.2.14. For any 1 ď i ‰ k ď n and any ω P hW P n , χ ki commutes with ωχ ik ω ´1.

Proof. Let us denote by W a product of w-trees for the trivial braid 1 with surgery result ωχ ik ω ´1.

According to Lemma 4.2.12 all factors of W contains i and k in their support. In particular, when Proposition 4.2.27. Let i 1 , i 2 , . . . , i l be a sequence of nonrepeated indices such that i 1 ă i j for any j ď l. We have the following relation up to homotopy:

For example in Figure 4.17 we illustrate the equivalence χ 81324 " rχ 8132 ,χ 84 s.

.17: The w-tree χ 81324 is link-homotopic to the commutator rχ 8132 ,χ 84 s.

Proof. Consider the product of w-trees χ 8,i 1 ,...,i l´1 ¨χ8,i l ¨pχ 8,i 1 ,...,i l´1 q ´1 ¨pχ 8,i l q ´1 (as for example on the right-hand side of Figure 4.17). First, we use move (6) from Lemma 4.1.11 to exchange the heads of χ 8,i 1 ,...,i l´1 and χ 8,i l ; this move creates an extra w-tree, which is exactly χ 8,i 1 ,...,i l . Now using arrow isotopies and the inverse move from Proposition 4.1.9 we get:

By using this proposition iteratively, we obtain a correspondence between the commutators rαs P F (or α P V) and the w-trees χ 8,α . For example the homotopy equivalence χ 81324 " rrrχ 81 ,χ 83 s,χ 82 s,χ 84 s corresponds to r1324s " rrrx 1 ,x 3 s,x 2 s,x 4 s in RF n .

Explicit Computations

In Theorem 2.3.5, we computed the representation γ on the Artin generators σ i ; This readily provides the computation of γ W pσ i q by Remark 4.2.24. In order to describe the representation γ W , it thus remains to compute its image on the virtual generators ρ i . This is done in the next theorem using the above procedure. As in Theorem 2.3.5, the images of a commutator pi 1 ,i 2 , ¨¨¨,i l q :" ϕpri 1 ,i 2 , ¨¨¨,i l sq P V by the maps γ W pσ i q and γ W pρ i q, depend on the position of the indices i and i `1 in the sequence i 1 , i 2 , . . . , i l .

Theorem 4.2.28. For suitable sequences I, J, K in t1, . . . , nuzti, i `1u, I ‰ H, we have:

where in pgq and pmq, the sum is over all (possibly empty) subsequences J 1 of J, and J 1 denotes the sequence obtained from J 1 by reversing the order of its elements, see Example 4.2.29.

Example 4.2.29. If J " pj 1 , j 2 , j 3 q and K " H in pgq or pmq, then γ W pσ i q and γ W pρ i q both map pi,J,i `1q to :

The proof below explains how this follows from the IHX relations of Figure 4.20.

Proof of Theorem 4.2.28. As already observed, the former half of the statement, expressing γ W pσ i q, readily follows from Theorem 2.3.5. Hence we focus here on computing γ W pρ i q. Following the procedure given above, we consider the conjugate ρ i χ 8,α ρ ´1 i and apply arrow calculus to turn it into a union of w-trees with heads on the 8-th component. For phq it is clear that χ 8,I commutes with ρ i by arrow isotopy, since i, i `1 R supppχ 8,I q. The computations of piq, pjq, pkq and plq are given by an isotopy interchanging the i-th and i `1-th component, as shown for example in Figure 4.18 in the case piq.

For pmq, the first step is illustrated in Figure 4.19: we apply the previous isotopy followed by move (4) from Proposition 4.1.10, turning ρ i χ 8,i,J,i`1,K ρ ´1 i into a new w-tree, which is not a comb-tree. In a second step, we use the IHX relation from Proposition 4.1.12 repeatedly to turn this new w-tree into a product of comb-trees. This is illustrated in Figure 4.20 where J " pj 1 ,j 2 ,j 3 q, as in example 4.2.29; we conclude by simplifying the twists with Proposition 4.1.10 Example 4.2.30. We illustrate Theorem 4.2.28 on the 3-component homotopy welded braid group hW B 3 . To do so, we set p1q, p2q, p3q, p12q, p13q, p23q, p123q, p132q to be the generators of V, with the order of Definition 1.2.8. We already computed in Example 2.3.7 the automorphisms γpσ 1 q and γpσ 2 q, which coincide with γ W pσ 1 q and γ W pσ 2 q as mentioned by Remark 4.2.24. We compute here γ W

Injectivity

We conclude by showing the injectivity of the representation γ W and the unicity of the normal form. As a preparatory step, let us first compute the image by γ W of a braid given by the surgery result of a comb-tree. Lemma 4.2.33. Let i 0 P t1, . . . , nu and let J " pi 1 , i 2 , . . . , i k q be a sequence of non-repeated indices in t1, ¨¨¨,nuzti 0 u, such that i 1 ă i l for all l ď k. Let also i be any index in t1, . . . , nu. The image of the comb-tree χ i 0 J by the representation γ W , applied to the commutator piq P V, is given by the following:

with S a linear combination of commutators in V of the form `i0 ,i τ p1q , ¨¨¨,i τ pkq ˘, for some permutations τ such that i τ p1q ‰ i 1 " minpJq.

In Figure 4.21 we illustrate the relation γpχ 4135 qp4q " p4q ´p1354q. Proof. Following the 3-steps procedure of section 4.2.3.2, we consider the product χ i 0 J χ 8i j χ ´1 i 0 J and re-express it with only comb-trees whose head is on the 8-th component. To do this, we want to commute χ i 0 J and χ 8i j , then simplify χ i 0 J and χ ´1 i 0 J using the inverse move from Proposition 4.1.9. To commute χ i 0 J and χ 8i j , we may need Lemma 4.1.11 to exchange the tail of χ i 0 J with an endpoint of χ i 0 J . This can be achieved for free if the head of χ i 0 J is not on the i k -th component, i.e., if i 0 ‰ i k . Otherwise, we apply a Head/Tail exchange (move (7)), which creates an extra w-tree (see Figures 4.21 and 4.22 for examples). If i 1 ă i 0 , this new w-tree is exactly the comb-tree χ ´1 8Ji 0 . If i 0 ă i 1 , we have to apply the IHX relation from Proposition 4.1.12 repeatedly to turn it into a product of

The torsion problem revisited

In this section, the torsion problem in the homotopy braid group hB n is addressed again. But the welded context (in which the classical braids are embedded) provides a better understanding of the torsion. Following the reasoning in Section 2.4, along with welded techniques, we will eventually show the absence of torsion in hB n for all n (Theorem 4.3.8).

As a first result we can already state the welded analogue of Theorem 2.4.16.

Theorem 4.3.1. The pure homotopy welded braid group hW P n is torsion-free for any n P N.

Proof. The proof follows from the global shape predicted by Proposition 4.2.31 of the matrix corresponding to the image γ W pθq of any θ P hW P n by the representation γ W . It is a lower triangular matrix which contains a diagonal of 1's, and therefore satisfies γ W pθq m " Id for some integer m if and only if γ W pθq " Id. Finally, by Theorem 4.2.34, the injectivity of γ W implies that if θ m " 1 for some pure homotopy welded braid θ and some integer m then θ " 1.

Remark 4.3.2. It is well known to the experts that hW P n is torsion-free. This can indeed also be shown using the additivity of Milnor numbers.

Let us set λ n P hW B n the homotopy welded braid, illustrated in Figure 4.23, given by

We denote by τ n the cycle pn n ´1 ¨¨¨2 1q " πpλ n q associated to λ n . When the value of n is clear from the context, it will be omitted in the notation. Lemma 4.3.3. Let i P t1, . . . , nu and let I be a sequence of non-repeated indices in t1, . . . , nuztiu. Suppose further that χ iI is a comb-tree of degree d. Then, the conjugate λχ iI λ ´1 is link-homotopic to a product of degree d comb-trees, all having their head on the component τ ´1piq.

Proof. We first use an arrow isotopy to slide χ iI through λ and then simplify λ with λ ´1 with a welded isotopy. This turns χ iI into a new w-tree of degree d with head on component τ ´1piq. Then using Lemma 4.2.5 we turn it, up to homotopy, into a product of degree k comb-trees all having their head on the component τ ´1piq.

Lemma 4.3.4. Let β P hW B n be a homotopy welded braid, whose associated permutation is an ncycle. Then β is conjugate to the product θλ with a pure homotopy welded braid θ P hW P n whose normal form θ " ź χ ν I I contains only comb-trees with head on the n-th component.

this is achieved by rearranging comb-trees degree by degree as it is done in the proof of Theorem 4.2.7. Let us compare the exponents ν 1 j and ν j associated to the two normal forms (4.1) and (4.2). First, if degpχ I j q ă degpχ I i q then ν 1 j " ν j since no new comb-tree of degree lower than χ I i appeared in the procedure. Second, it is clear that the exponent ν 1 i associated to χ I i in (4.2) is now trivial, i.e., ν 1 i " 0. Finally, ν 1 j " ν j for almost all other comb-trees χ I j of degree equal to degpχ I i q. The only exceptions come from the conjugate λ l χ ν i I i λ ´l and concern comb-trees whose head is on the n-th component.

In summary, the exponents of χ I j of degree degpχ I j q ď degpχ I i q whose head is not in the n´th component remain the same, except for the exponent of χ I i which has become zero. Hence, by repeating the above argument, we eventually obtain another conjugate of β of the form θλ such that, any comb-tree of degree lower than or equal to degpχ I i q in the normal form of θ has its head on the n-th component. Moreover, since all w-trees of degree greater than n are trivial up to homotopy, by proceeding by increasing degree, we can get rid of all comb-trees whose head is not on the n-th component and finally obtain the desired conjugate.

As mentioned in Proposition 4.2.23 the group hB n appears as the subgroup of hW B n generated by the Artin generators σ i for 1 ď i ă n. We say that a homotopy welded braid is a classical braid if it belongs to this subgroup. In the following lemma we give a new characterization of the torsion in hB n using this notion of classical braid.

Lemma 4.3.5. There is torsion in hB n if and only if for some prime number p ď n the braid λ p P hW B p given by λ p " ρ 1 ρ 2 ¨¨¨ρ p´1 is conjugate to a classical braid.

Proof. According to Lemma 2.4.17 if there is torsion in hB n , we can find a torsion element β of order p in hB p , for some prime number p, which we regard as a classical braid β in hW B p . Moreover Theorem 4.3.1 implies that πpβq ‰ Id but we know that πpβq p " Id. In other words, πpβq is a torsion element of order p in the p-th symmetric group meaning that it is a p-cycle. Then by Lemma 4.3.4, β is conjugate to the product θλ where the normal form

only contains comb-trees with head on the p-th component (for clarity, here and throughout the remainder of the proof, we denote λ p simply by λ). Moreover by Lemma 4.3.3, for any integer k P t1, . . . p ´1u, the conjugates λ k θλ ´k are products of comb-trees, none of which have their head on the p-th component. Hence by Lemma 4.2.33, we have that γ W `λk θλ ´k˘p pq " ppq if 0 ă k ă p. In particular:

On the other hand, since β is a torsion element, β p " pθλq p " 1, which implies that γ W `pθλq p ˘ppq " γ W p1qppq " ppq.

By combining the two previous equality we deduce that γ W pθqppq " ppq. Moreover by Lemma 4.2.33 again, we also have that γ W pθqpkq " pkq for any k ă p. In particular, using Remark 4.2.32, we see that γ W pθq is the identity, and by injectivity of γ W , the braid θ is as well. Consequently, the classical braid β is conjugate to λ, and thus, the first half of the proof is complete.

To show the converse, we use the fact that any conjugate of λ is a torsion element of order p in hW B p and that, consequently, the braid given by the same expression in hB n is also a torsion element.

The end of this section consists in showing that for any integer n, the braid λ has no classical braid as conjugate. To do so, we will first recall the usual characterization from [START_REF] Habegger | The classification of links up to link-homotopy[END_REF] of classical braids in terms of automorphisms of the reduced free group. In fact, we will take a slightly different view by using the reduced Magnus expansion of the proof of Theorem 2.3.12. Recall that this is the homomorphism M from the reduced free group into the polynomial algebra in non-commuting variables X 1 , . . . , X n in which monomials X α 1 X α 2 ¨¨¨X α k vanish if α i " α j for some i ‰ j. The image of a generator x i is given by the polynomial M px i q " 1 `Xi . In [Yur08, Theorem 7.11] and [Dar23, Corollary 1.13], it is proved that M is injective, so it is an isomorphism onto its image, which we denote by I n . Note that I n is the group generated by 1 `Xi for i P t1, . . . , nu. We can then define a representation of the homotopy welded braid group Z : hW B n Ñ AutpI n q given by:

where ζ h is the homotopy welded Artin representation defined in Definition 4.2.18. For later use, let us compute the image of the Artin generators σ i by the representation Z,

and the image of the virtual generator ρ i ,

We also compute the image of the braid λ " ρ 1 ¨¨¨ρ n´1 by the representation Z:

Zpλq :

More simply, we can think of Zpλq as the automorphism permuting the variables X i in the full ring.

Let us now state a property, inspired from [HL90, Theorem 1.7], on classical braids in terms of automorphisms of I n .

Lemma 4.3.6. Let β P hW B n be a homotopy welded braid. If β is a classical braid then

Proof. Let us first recall the expression of the homotopy welded Artin representation on the classical Artin generators σ i :

We can now state the final theorem of this section.

Theorem 4.3.8. The homotopy braid group hB n is torsion-free for any number of components n.

Proof. Suppose by contradiction that there is a torsion element in hB n . By Lemma 4.3.5 there exist a prime number p ď n and some braid β P hW B p such that β ´1λ p β is a classical braid, where λ p " ρ 1 ρ 2 ¨¨¨ρ p´1 P hW B p . In other words, according to Lemma 4.3.6 this conjugate must satisfy,

This implies that Zpβq `M px 1 x 2 ¨¨¨x p q ˘is a fixed point of Zpλq, which yields a contradiction by Lemma 4.3.7.

It follows from Theorem 4.3.8 the well known result that the standard braid group B n is torsionfree for all n. To prove this corollary, we need the following well-known lemma, which essentially goes back to Artin: Lemma 4.3.9. The pure braid group P n is torsion-free for any number of components n.

Proof. The pure braid group P n can be expressed as a semi-direct product of free groups, known as the Artin normal form. The procedure to obtain this normal form is known as braid combing and is presented in [START_REF] Artin | Theory of braids[END_REF]. Therefore, since free groups are torsion-free, it simply follows that P n is torsion-free.

We recover in this way a result of E. Fadell and L. Neuwirth (see Remark 4.3.11).

Corollary 4.3.10. The braid group B n is torsion-free for any number of components n.

Proof. Let us consider the projection p : B n Ñ hB n . Since hB n is torsion-free (Theorem 4.3.8), any torsion element in B n must belong to the kernel K :" kerppq. However, it is clear from Proposition 2.2.2 that K Ă P n , thus K is torsion-free by Lemma 4.3.9 and the proof is complete.

Remark 4.3.11. The study of torsion in braid groups dates back to E. Fadell and L. Neuwirth in 1962. Building upon topological methods, they show in [FN62, Theorem 8] that B n is torsion-free for every n. Subsequently, P. Dehornoy establishes the stronger property that B n is left-orderable, in [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF] which in particular implies that it is torsion-free. It should be noted that the question of orderability for the homotopy braid group hB n remains open, constituting a future research direction that we intend to explore.

Chapter 5

Homology cobordisms and homology cylinders

This chapter focuses on the study of homology cobordisms. Exploratory work is conducted to define a notion of link-homotopy within this context. This pursuit holds significance as string-links and braids share many common features with homology cobordisms, as discussed at the beginning of Section 5.2. The chapter begins by defining the framework of homology cobordisms in Section 5.1 and subsequently explores several tentative definitions for link-homotopy in Section 5.2 and 5.3.

General definition

Let us denote by Σ a compact connected oriented surface of genus g. We assume for simplicity that Σ has exactly one boundary component. Let us recall the definition of the mapping class group. Definition 5.1.1. The mapping class group of the surface Σ, denoted by MpΣq, is the group of isotopy classes of self-homeomorphisms of Σ that leave the boundary pointwise invariant.

Definition 5.1.2. Let c be a simple closed curve on Σ not necessarily oriented. We choose a closed regular neighborhood N of c in Σ and we identify it with S 1 ˆr0,1s in such a way that orientations are preserved. Then, the Dehn twist along c is the homeomorphism T c : Σ Ñ Σ defined by:

We illustrate the effect of a Dehn twist on a small segment in Figure 5.1. Dehn twists generate the mapping class group as stated in the following theorem. studied by Dehn-Nielsen is known to be injective. Moreover, for each k ě 0, it induces a representation

, denotes the lower central series of π; i.e., the sequence of subgroups defined by : "

We refer to those representations as the nilpotent Dehn-Nielsen representations. The Johnson filtration of the mapping class group is the decreasing sequence of subgroups

where MpΣqrks denotes the kernel of ρ k for all k ě 1.

Definition 5.1.4. The first subgroup in this filtration, denoted by MpΣqr1s, is referred to as the Torelli group of the surface Σ. In simple terms, it is the subgroup of homeomorphisms of Σ that act trivially on its homology.

Theorem 5.1.5. [START_REF] Birman | On Siegel's modular group[END_REF][START_REF] Powell | Two theorems on the mapping class group of a surface[END_REF] The Torelli group of Σ is generated by two types of Dehn twists:

-separating twists: Dehn twists along separating curves, i.e., curves that divide the surface into two sub-surfaces.

-bounding pair maps: The composition of a Dehn twist along a non-separating curve and the inverse Dehn twist along another non-separating curve, disjoint from the first one but having the same homology class.

Let us now define the main objects of the section : homology cylinders.

Definition 5.1.6. A homology cobordism over Σ is a pair pC, iq, where C is a compact connected oriented 3-manifold and i : BpΣ ˆr´1,1sq Ñ BC is an orientation-preserving homeomorphism such that the inclusion i ˘: Σ Ñ M defined by x Þ Ñ ipx, ˘1q induce isomorphisms H ˚pΣ; Zq Ñ H ˚pC; Zq. Thus the 3-manifold C is a homology cobordism between B `C :" i `pΣq and B ´C :" i ´pΣq.

remaining case being, without loss of generality, when 1 ď r ă s ă i ă j ď n. In that case, according to Theorem 2.2.6, we have: rA ri ,A sj s " rrA ij ,A rj s,A sj s, which we rewrite using the inverse of the first relation as:

rA ri ,A sj s " rrA rj ,A ri s,A sj s.

Then applying relation ( 1) and (3) from Proposition 5.2.4 as we did in the proof of Proposition 5.2.5 we get, rA ri ,A sj s " rrA ri ,A sj s,A rj s.

And finally we conclude using Theorem 2.2.6 again,

where the last equality holds since we have a commutator with repeats.

Lemma 5.2.7. The fully reduced pure braid group R F P n is nilpotent of order 3.

Proof. Set A ij , A rs and A kl three generators in R F P n . We simply need to show that the commutator C " rA kl ,rA rs ,A ij ss is trivial in R F P n . First, according to the second equality from Proposition 5.2.6, the commutator rA rs ,A ij s is trivial if ti,ju X tr,su " H. Otherwise, we can suppose without loss of generality that j " s. We get then C " rA kl ,rA rj ,A ij ss " rA kl ,rA ij ,A ri ss " rA kl ,rA ri ,A rj ss.

Then, using p2q from Proposition 5.2.4 we also have that C ´1 " rA rj ,rA kl ,A ij ss " rA ij ,rA kl ,A ri ss " rA ri ,rA kl ,A rj ss. Now using the second relation from Proposition 5.2.6 again, we have that C is trivial if one of the following equalities hold tk,lu X ti,ju " H, tk,lu X tr,iu " H, tk,lu X tr,ju " H.

If none of these equalities holds, then we have tk,lu " ti,ju, or tk,lu " tr,iu, or tk,lu " tr,ju and C is also trivial.

Theorem 5.2.8. The fully reduced pure braid group R F P n coincides with the third nilpotent quotient of the pure braid group.

Proof. According to Lemma 5.2.7 we only need to prove that the commutator rω,λωλ ´1s belongs to the third subgroup of the lower central series. That is shown by the following computation:

rω,λωλ ´1s " ωλωλ ´1ω ´1λω ´1λ ´1 " ωrλ,ωsω ´1rω,λs " rω,rλ,ωss Remark 5.3.9. We could have proposed a larger definition of repetition, in which the leaves only need to represent the same element of H 1 pΣ; Zq. However, we will not delve further as the seemingly finer notion of Definition 5. Example 5.3.11 shows that any degree 2 tree-clasper, having a leaf representing a generator a i or b i for some i, can be deleted up to link-homotopy. Therefore, Definition 5.3.10 is not satisfactory, and we need to find a weaker definition of link-homotopy that provides better control over the nature of leaves with repeats.

Link-homotopy for homology cylinders II

The above tentative definitions of link-homotopy proved unsatisfactory, leading us to an even more constrained notion (see Definition 5.3.14). The latter is based on the simplification of leaves developed in [GGP01, Section 4.3]. Please note that the convention utilized in [START_REF] Garoufalidis | Calculus of clovers and finite type invariants of 3-manifolds[END_REF] for surgery along a graph clasper, is the opposite to the convention used in this thesis.

Definition 5.3.14. We define the link-homotopy relation between homology cylinders, presented by unions of graph-claspers in Σ ˆr´1,1s, as the equivalence relation generated by surgeries on the three following types of graph-claspers:

-Graph claspers that are not trees, -Graph claspers of degree at least 2g ´1, -Simple tree-claspers having repeats.

Let us discuss the three types of surgeries generating the link-homotopy relation in Definition 5.3.14.

Firstly, in accordance with Remark 5.3.7, surgeries on graph-claspers that are not tree-claspers must preserve homology cylinders up to link-homotopy.

Secondly, as mentioned earlier, the procedure of simplification of leaves works up to higher-degree tree-claspers. To ensure the termination of this procedure, it is necessary to eliminate all claspers beyond a certain degree. The degree 2g ´1, which corresponds to tree-claspers with 2g `1 leaves, appears to be the suitable degree for this purpose. To justify this choice, we draw upon the analogy between string-links and homology cobordisms discussed at the beginning of Section 5.2. In the case of string-links with n components, C n -equivalence implies link-homotopy: claspers with n `1 leaves inevitably have repeats and are thus trivial up to link-homotopy. Analogously, since H 1 pΣ; Zq has rank 2g, it seems natural to eliminate all graph claspers with 2g`1 leaves, which precisely corresponds to graph-claspers of degree at least 2g ´1.

Finally, we eliminate tree-claspers with repetitions once the clasper union is rewritten as a product of simple tree-claspers.

All the constraints discussed previously lead us to Definition 5.3.14, which, although somewhat unnatural, appears to be a promising candidate for a theory of link-homotopy for homology cylinders. We will not pursue this study further here, but consider this notion as a possible starting point for future research in this direction.

Remark 5.3.15. The definition of link-homotopy in terms of simple tree-clasper, can probably be further refined. Indeed, such claspers containing a special leaf, can often be deleted up to higher order claspers; see [GGP01, Lemma 4.9]. As a matter of fact, the latter result, combined with the Slide move for special leaves [GGP01, Theorem 3.1], seem to suggest that only degree 1 graph-claspers with three special leaves would remain. The first Johnson homomorphism does not detect these particular tree-claspers, as shown in [START_REF] Massuyeau | Characterization of Y 2 -equivalence for homology cylinders[END_REF], which seems to conflict with the Milnor-Johnson correspondence. Indeed, Milnor string-link invariants provide a complete link-homotopy invariants. This suggests a possible adjustment of Definition 5.3.14 making these degree 1 tree-claspers trivial up to link-homotopy. However, this would further complicate the already involved Definition 5.3.14. An alternative would be to keep the definition unchanged, knowing that these tree-claspers are 2-torsion element and can be detected by the Rochlin invariant. In other words, we can group these terms together up to isotopy and eliminate them pairwise: parity is determined by the Rochlin invariant, as shown in [START_REF] Massuyeau | Characterization of Y 2 -equivalence for homology cylinders[END_REF].