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Abstract
In order to gather sufficient sample size and representativity of clinical populations, the
multi-centric analysis paradigm is often adopted for statistical and machine learning
studies of biomedical data, particularly in the field of neuroimaging. Conventional
multi-centric analysis paradigms are based on meta-analysis and mega-analysis, often
in conjunction with data harmonization, to account for systematic biases and improve
the combined analysis of data from multiple sources. However, while meta-analyses are
mainly suited for standard statistical testing only, mega-analyses require centralizing the
data, which can undermine data privacy and security. Today, data protection regulations
such as the General Data Protection Regulation (GDPR) and the California Consumer
Privacy Act (CCPA) impose strict governance on sensitive patient information, significantly
limiting researchers’ access to such data.

Federated learning (FL) is an alternative paradigm to multi-centric studies enabling
multiple parties to train a model collaboratively without sharing sensitive data. FL thus
addresses data governance challenges while enhancing patients’ data privacy. However,
to facilitate real-life applications of FL, a series of challenges must be addressed: i) het-
erogeneity and generalization due to differences in data distributions and discrepancies
across different institutions which can result in biased models that do not generalize
properly, ii) occasional requirements of considerable amounts of computational resources
that hospitals or institutions may not have, limiting its practicality and, ii) a common
framework and infrastructure to put in place real-life applications while fulfilling research
and governance demands. This thesis aims to contribute to the evolving landscape of neu-
roimaging research by investigating the potential of FL to transform the way researchers
collaborate and analyze data, ultimately paving the way for more efficient and effective
advancements in neuroimaging.

We start by addressing the issue of data heterogeneity in federated learning setups, by
introducing two methods, namely "Fed-ComBat" and "federated mixed-effect model-
ing", which aim to perform data harmonization and modeling on heterogeneous data
respectively.

Secondly, we introduce a black-box optimization scheme for FL aiming to improve
the optimization process in federated setups. This method is based on gradient-free
optimization of a global model, through the collaborative iterative refinement of the
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cost function associated with the distributed optimization problem across clients. This
approach aims to centralize computational costs and mitigate overfitting issues linked to
gradient-descent-based approaches while enabling institutions and hospitals with limited
computational resources to participate in federated learning setups while achieving
accurate and generalizable models.

Finally, to enable and empower real-life federated applications, we introduce Fed-BioMed
as an open-source framework for federated learning in healthcare, aiming to fulfill the
need for a common collaborative framework that is also compliant with privacy and
ethical standards.

Overall, this thesis comprises methodological and technical contributions that tackle the
challenges of data heterogeneity, optimization, and infrastructure in federated learning
setups for neuroimaging research, with the ultimate goal of facilitating more efficient
and effective advancements in healthcare while preserving patient privacy and data
governance.

Keywords: federated learning, healthcare, data protection, GDPR, CCPA, medical imag-
ing, data harmonization, meta-analysis, mega-analysis, Fed-BioMed, Bayesian optimiza-
tion, random effect models, FedComBat.
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Résumé
Afin de rassembler une taille d’échantillon suffisante et une représentativité des popu-
lations cliniques, le paradigme de l’analyse multi-centrique est souvent adopté pour les
études statistiques et d’apprentissage automatique des données biomédicales, en partic-
ulier dans le domaine de la neuroimagerie. Les paradigmes d’analyse multi-centrique
conventionnels reposent sur la méta-analyse et la méganalyse, souvent conjointement
avec l’harmonisation des données, pour tenir compte des biais systématiques et améliorer
l’analyse combinée des données provenant de sources multiples. Cependant, alors que les
méta-analyses sont principalement adaptées aux tests statistiques standard, les méganal-
yses nécessitent une centralisation des données, ce qui peut nuire à la confidentialité et à
la sécurité des données. Aujourd’hui, les réglementations sur la protection des données
telles que le Règlement Général sur la Protection des Données (RGPD) et la California
Consumer Privacy Act (CCPA) imposent une gouvernance stricte sur les informations
sensibles des patients, limitant considérablement l’accès des chercheurs à ces données.

L’apprentissage fédéré (FL) est un paradigme alternatif aux études multi-centriques
permettant à plusieurs parties de former un modèle en collaboration sans partager de
données sensibles. Le FL répond ainsi aux défis de la gouvernance des données tout
en améliorant la confidentialité des données des patients. Cependant, pour faciliter
les applications réelles du FL, une série de défis doit être relevée : i) l’hétérogénéité
et la généralisation en raison des différences dans les distributions de données et les
écarts entre les différentes institutions qui peuvent entraîner des modèles biaisés qui
ne se généralisent pas correctement, ii) les besoins occasionnels en ressources de calcul
considérables que les hôpitaux ou les institutions peuvent ne pas avoir, limitant ainsi
sa praticité et, ii) un cadre et une infrastructure communs pour mettre en place des
applications réelles tout en répondant aux exigences de recherche et de gouvernance.
Cette thèse vise à contribuer au paysage évolutif de la recherche en neuroimagerie en
étudiant le potentiel du FL pour transformer la manière dont les chercheurs collaborent
et analysent les données, ouvrant ainsi la voie à des avancées plus efficaces et efficientes
en neuroimagerie.

Nous commençons par aborder la question de l’hétérogénéité des données dans les
configurations d’apprentissage fédéré, en introduisant deux méthodes, à savoir "Fed-
ComBat" et "modélisation à effets mixtes fédérée", qui visent à réaliser respectivement
l’harmonisation des données et la modélisation sur des données hétérogènes.
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Deuxièmement, nous introduisons un schéma d’optimisation boîte noire pour le FL visant
à améliorer le processus d’optimisation dans les configurations fédérées. Cette méthode
est basée sur l’optimisation sans gradient d’un modèle global, grâce à l’affinement
itératif collaboratif de la fonction de coût associée au problème d’optimisation distribué
entre les clients. Cette approche vise à centraliser les coûts de calcul et à atténuer les
problèmes de surajustement liés aux approches basées sur la descente de gradient, tout
en permettant aux institutions et aux hôpitaux disposant de ressources informatiques
limitées de participer aux configurations d’apprentissage fédéré tout en obtenant des
modèles précis et généralisables.

Enfin, pour permettre et renforcer les applications fédérées dans la vie réelle, nous présen-
tons Fed-BioMed, un cadre open source pour l’apprentissage fédéré dans le domaine de
la santé, visant à répondre au besoin d’un cadre collaboratif commun qui est également
conforme aux normes de confidentialité et d’éthique.

Dans l’ensemble, cette thèse comprend des contributions méthodologiques et tech-
niques qui abordent les défis de l’hétérogénéité des données, de l’optimisation et de
l’infrastructure dans les configurations d’apprentissage fédéré pour la recherche en neu-
roimagerie, avec pour objectif ultime de faciliter des avancées plus efficaces et efficientes
dans les soins de santé tout en préservant la confidentialité des patients et la gouvernance
des données.

Mots-clés: apprentissage fédéré, santé, protection des données, RGPD, CCPA, imagerie
médicale, harmonisation des données, méta-analyse, méganalyse, Fed-BioMed, optimisa-
tion bayésienne, modèles à effets aléatoires, FedComBat.
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1.1 Clinical context

Rapid advancements in information technology and the digitization of healthcare services
have led to a remarkable growth in the volume and variety of data generated by hospitals
and healthcare institutions. Electronic health records (EHRs), medical imaging, wearable
devices, and genomic data are just a few examples of the diverse sources contributing to
this data explosion [Undavia et al., 2020; Miotto et al., 2018]. The increasing adoption
of telemedicine, remote monitoring systems, and mobile health applications further
accelerates the production of such digital health information [Wosik et al., 2020; Torous
et al., 2018]. As a result: massive and complex datasets, often referred to as "big data,"
which hold the potential to revolutionize medical research, improve patient care, and
streamline healthcare operations [Murdoch et al., 2013].

The wealth of information contained in these datasets offers numerous opportunities for
data-driven research, including the identification of new biomarkers, optimization of treat-
ment strategies, and development of personalized medicine approaches [Schneeweiss,
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2014; Jensen et al., 2012]. Additionally, the analysis of this data can provide valuable
insights into healthcare service delivery and quality of care [Rumsfeld et al., 2016]. Given
the geographical distribution and immense volume of such data, storage often takes place
across multiple, geographically dispersed facilities, each with its own unique patient
population and data characteristics. To leverage the advantages of this geographical
and demographic diversity, multicentric studies have emerged as a key initiative in the
scientific community. These studies pool data from numerous sources, thus creating
larger and more heterogeneous cohorts. In turn, this allows for a more robust and
generalized understanding of biological phenomena, such as diseases.

In the field of neurosciences, particularly when dealing with neuroimaging data, hetero-
geneity plays a pivotal role in medical studies. The success of these studies often depends
on population diversity, including demographic differences and other factors that may
be outside of primary scientific interest [Benkarim et al., 2022]. The understanding of
neurodegenerative diseases, such as Alzheimer’s disease or Parkinson’s, is also highly
impacted by such heterogeneity [Maito et al., 2023; Devignes et al., 2022; Ibanez et
al., 2021]. This implies that larger and more diverse datasets are crucial for uncovering
relevant findings and advancing our knowledge of these complex disorders, ultimately
contributing to improved healthcare outcomes and patient care.

However, the vast volumes and complexity of neuroimaging data also pose several
challenges, including data storage, management, integration, and analysis [Sun et al.,
2013; Webb-Vargas et al., 2017]. The sensitive nature of health information necessitates
strict adherence to data protection regulations such as the General Data Protection
Regulation (GDPR) [Voigt et al., 2017] and the California Consumer Privacy Act (CCPA)
[Solove et al., 2020], which can further complicate data sharing and collaboration efforts.
The growing need to harness the full potential of healthcare data while overcoming these
challenges has motivated significant interest in the development of novel computational
methods and infrastructures tailored to the unique requirements of medical research.

1.2 Data Protection Regulations: GDPR and CCPA

As the volume of healthcare data continues to grow, so does the need for robust data
protection and privacy regulations. Health information is often sensitive, and its unautho-
rized disclosure can have serious consequences for individuals and organizations alike.
To address these concerns, governments have enacted strict data protection laws, such as
the European Union’s General Data Protection Regulation (GDPR) [Voigt et al., 2017]
and the United States’ California Consumer Privacy Act (CCPA) [Solove et al., 2020].
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The GDPR came into effect in 2018 as a comprehensive data protection regulation
applicable to all EU member states, aims to unify data privacy laws across Europe and
empower individuals with greater control over their personal information. The GDPR
imposes stringent requirements on organizations that process personal data, including
the need to obtain explicit consent from individuals, the right to data portability, and
the right to be forgotten [Voigt et al., 2017]. Additionally, the GDPR mandates that
organizations implement appropriate technical and organizational measures to ensure
data security and privacy, with significant penalties for non-compliance.

The CCPA, a data protection regulation similar to GDPR, was enacted in 2020 by the state
of California in the United States. It grants Californian residents several rights concerning
their personal information, such as the right to know what personal data is collected, the
right to delete personal information held by businesses, and the right to opt-out of the
sale of personal data [Solove et al., 2020]. Although the CCPA is not as extensive as the
GDPR, it serves as a significant step toward strengthening data protection and privacy in
the United States.

Compliance with data protection regulations such as the GDPR and CCPA is a critical
consideration for medical researchers working with healthcare data. It can be particularly
challenging in the context of multi-institutional collaborations and large-scale data
sharing efforts, where data must be anonymized and de-identified to protect patient
privacy while preserving its utility for research purposes [El Emam et al., 2014]. Moreover,
these regulations may limit data accessibility, potentially hindering the development and
deployment of innovative data-driven solutions in healthcare.

As a result, there is a growing interest in exploring alternative approaches, such as
federated learning, that enable collaborative research and model development without
the need to share raw patient data [Brisimi et al., 2018; Higgins et al., 2019]. In the next
section, we discuss the most common methods used for multicentric data analysis, and
how federated learning may offer a better solution.

1.3 Multi-centric studies in neuroimaging

To address the challenges and maximize the potential of large scale neuroimaging data
sets, researchers often rely on multicentric studies involving the collaboration of multiple
institutions and research centers. These studies enable the aggregation of larger and
more diverse datasets, thereby increasing the statistical power and generalizability
of the findings. Within the context of multicentric studies, conventional approaches
are established such as meta-analysis [Glass, 1976] and mega-analysis [Costafreda,
2009] in order to facilitate collaborative research efforts. Meta-analysis and mega-
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analysis focus on pooling summary statistics or raw data, respectively, from individual
studies. Nevertheless, these methods come with their own set of challenges, particularly
concerning data privacy and governance concerns.

1.3.1 Meta-analysis and Mega-analysis

Meta-analysis and mega-analysis are two well-established techniques for combining
and synthesizing information from multiple independent studies. Both methods aim to
increase statistical power, improve effect size estimates, and provide more generalizable
results by pooling data from individual studies [Hedges, 1992; Higgins et al., 2019].
However, they differ in their respective approaches and underlying assumptions.

Meta-analysis is a statistical technique that combines the effect size estimates from
multiple studies to derive an overall effect size estimate. The method generally involves
two steps. First, an effect size measure (e.g., odds ratio, risk ratio, or standardized
mean difference) is calculated for each study included in the analysis. Then, a weighted
average of these effect size measures is computed, with weights typically assigned based
on the inverse of the variance of each study’s effect size estimate. This process can be
represented mathematically as:

θ̂meta =
∑k

i=1 wiθ̂i∑k
i=1 wi

, (1.1)

where θ̂meta is the overall effect size estimate, k is the number of studies, θ̂i is the
effect size estimate for study i, and wi is the weight assigned to study i [Hedges, 1992].
Meta-analysis can employ either fixed-effects or random-effects models, depending on
the assumptions made about the true effect sizes and the between-study heterogeneity
[Higgins et al., 2019].

Mega-analysis, on the other hand, is a large-scale, collaborative research approach that
involves the analysis of individual participant data (IPD) from multiple studies. This
approach is particularly useful when the original studies use different outcome measures,
as the individual-level data can be harmonized and analyzed in a consistent manner.
Unlike meta-analysis, which involves compiling results from published studies, mega-
analysis focuses on directly analyzing IPD using an agreed-upon processing strategy. This
approach offers several advantages over traditional meta-analysis, such as improved
consistency in inclusion criteria across sites, better treatment of confounds and missing
data, verification of statistical model assumptions, standardized procedures, increased
statistical power, and reduced biases.
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Both meta and mega-analysis require the transfer of data to coordinating facilities. In the
case of aggregated data, such as histograms of quality metrics, effect sizes, confidence
intervals, and standard errors, the risk of reidentification is minimal, as the data is not
identifiable at the individual level. However, it is important to note that without proper
precautions, repeated computation of aggregate results using slightly varying subsets of
participants could expose information about individuals [Dwork, 2006]. This risk can
be minimized by establishing agreements among researchers regarding the nature and
amount of aggregated data to be transferred.

For mega-analyses, where individual participant data (IPD) is transferred, further at-
tention is required due to differences in regulations across sites that protect the confi-
dentiality, integrity, and security of the IPD and their use in human research. Although
mega-analyses with IPD have been shown to provide superior results compared to meta-
analyses in terms of higher statistical power and acceptable false-positive rates, the major
challenge of mega-analysis is the need for at least one site to possess the necessary
resources and expertise to handle large datasets. Additionally, this approach is only
possible when IPD can be shared with a central facility, which is often limited due to
varying data protection regulations among research projects, consortia, and countries
[Mathew et al., 1999; Eisenhauer, 2021].

An exemplary illustration in the utilization of meta-analyses and mega-analyses is the
Enhancing Neuro Imaging Genetics through Meta-Analysis. The ENIGMA consortium
is a global network of researchers that aims to identify genetic and environmental
factors that affect brain structure and function using imaging and other measures. The
consortium was established in 2009 and has since grown to include over 70 research
groups worldwide. Figure 1.1 provides a visual comparison highlighting the distinctions
between meta-analyses and mega-analyses, specifically within the context of the ENIGMA
consortium [Zugman et al., 2022].

The ENIGMA consortium has conducted many influential studies that have shed light
on the genetic and environmental factors that underlie brain development, aging, and
disease. For example, a meta-analysis of 94 studies conducted by ENIGMA found that
the volume of the hippocampus, a brain region associated with memory and learning, is
reduced in individuals with major depressive disorder [Schmaal et al., 2016]. ENIGMA
has also investigated the genetic architecture of brain structure and identified novel
genetic variants associated with brain volume [Satizabal et al., 2019], underscoring the
importance and potential of such collective efforts in the field.

While both meta-analysis and mega-analysis are valuable techniques for synthesizing
information from multiple studies, they each have their limitations. Meta-analysis relies
on summary statistics from individual studies, which may not capture the full complexity
and heterogeneity of the underlying data. Mega-analysis, in contrast, requires access
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Fig. 1.1.: Comparison between classical literature-based meta-analyses conducted without access
to individual participant data (IPD) (upper panel) and approaches used by different
ENIGMA working groups with access to IPD (lower panel). The lower panel shows three
main approaches: (top) data processed using common methods at each site, summary
statistics computed and sent to a coordinating facility for meta-analysis; (middle)
data processed using common methods at each site, sent to the coordinating facility
for mega-analysis; and (bottom) raw data sent to the coordinating facility for batch
processing and mega-analysis while accounting for site-specific effects. Reprinted
with permission from Andre Zugman, Mega-analysis methods in ENIGMA: The
experience of the generalized anxiety disorder working group, 2022.
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Fig. 1.2.: Illustration of the actors and the federated learning process in a collaborative setting.
The diagram depicts two main actors: the central server and data owner institutions.
It showcases the step-by-step process involved in federated learning: 1) The central
server initiates the training by sending a common initialization to all participating
institutions. 2) Each institution, serving as a data owner for a specific data source,
performs local training using its own data without sharing or compromising data
privacy. 3) The locally trained model (local updates) are securely transferred to the
central server’s model database. The central server’s computing node then aggregates
these updates to create a global model. 4) The aggregated model is sent back to the
institutions, serving as a reinitialization point for the next round of training. This
iterative process continues until convergence criteria are met or a predetermined
communication or computing budget is reached. To ensure secure communication and
data privacy, it is recommended to employ techniques such as a virtual private network
(VPN) or cloud (VPC), which offer additional encryption layers.

to individual-level data, which can be challenging to obtain and share due to privacy
concerns and data protection regulations, such as GDPR and CCPA [Voigt et al., 2017;
Solove et al., 2020]. These challenges have directed the attention of researchers towards
new paradigms that align with privacy regulations without compromising the robustness
of the analysis. In this context, federated learning emerges as a viable alternative
approach that meets these criteria.

1.4 Federated Learning

Federated learning (FL) enables privacy-aware collaborative model training on distributed
data, while addressing governance concerns. It holds significant promise for multi-centric
studies in healthcare, empowering researchers to conduct analyses across multiple
institutions while prioritizing the privacy and confidentiality of sensitive data [Konečnỳ
et al., 2016; McMahan et al., 2017].

Instead of centralizing data or querying it from all participants, Federated Learning (FL)
performs decentralized optimization where only parameters of a model are allowed to
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be shared without compromising the privacy of sensitive information. In FL, the model
training process typically involves the following steps, as illustrated in Algorithm 1:

1. Initialization: A central server initializes the global model parameters θ and shares
them with all participating clients (e.g., healthcare institutions). This is represented
in the algorithm as the initialization of θ.

2. Local Training: Each client k trains the model on their local dataset Dk using
the current global model parameters θ, producing local model updates θk. This
is performed in parallel across all clients, and each client performs E iterations of
Stochastic Gradient Descent (SGD) on their local dataset, minimizing the local loss
function Lk.

3. Aggregation: After local training, clients send their local model updates θk to the
central server. The server aggregates these updates to produce a new global model.
The aggregation is a weighted average, where the weights are the sizes of the local
datasets. This is represented in the algorithm as the update of θ.

4. Global Update and Penalization: The central server shares the updated global
model parameters θ with all clients, and the process repeats from step 2 until
convergence. Each repetition of this cycle is considered as a round of communica-
tion. Additionally, the global model parameters θ can be penalized based on some
criteria (e.g., model complexity, divergence from prior round, etc.) to discourage
overfitting and encourage stability.

This process, which is iterated for T communication rounds, allows the model to learn
from all clients’ data without the need to directly access or centralize the data, thus
preserving privacy.

Two main actors are to be identified in a FL setup as shown in Figure 1.2, two main
actors are to be identified in a FL setup: the clients and the server. Clients, also known
as data owners or nodes, are individual entities, such as healthcare institutions, that
possess their local datasets. These clients are connected to a network and participate
in the federated learning process by training their local models and communicating
with the central server. The central server, sometimes referred to as a third-party
aggregator or coordinator, facilitates the federated learning process by initializing the
global model, aggregating local model updates from clients, and sharing the updated
global model back with the clients. The central server plays a crucial role in managing
the communication and coordination among the clients, ensuring that the federated
learning process converges to a global model that benefits from the collective knowledge
of all participating clients.

14 Chapter 1 Introduction



Algorithm 1: Federated Learning
Data: Global model parameters θ, local datasets Dk, learning rate η, number of local

iterations E, number of communication rounds T
Result: Trained global model parameters θ
for t← 1 to T do

foreach client k in {1, 2, ..., K} in parallel do
θk ← θ (initialize local model parameters)
for i← 1 to E do

θk ← θk − η∇Lk(θk) + µ(θk) (perform local SGD on Dk)
Penalize θ using µ based on some criteria (e.g., model complexity,
divergence from prior round, etc.)

end
end
θ ← Aggregate(θk) (aggregate local model parameters)

end

Mathematically, federated learning can be formulated as follows. As previously defined,
Dk denote the local dataset of the k-th participant, and fk(θ) denote the local objective
function that measures the quality of the model parameters θ on the local dataset Dk (e.g.
loss function). The global objective function is the average of local objective functions:

F (θ) = 1
K

K∑
k=1

fk(θ), (1.2)

where K is the total number of participants. In FL, the goal is to minimize F (θ) by
updating θ through a collaborative optimization process.

A commonly used approach for aggregation federated learning is Federated Averaging
(FedAvg) [McMahan et al., 2017], which is a variant of the stochastic gradient descent
(SGD) algorithm adapted for the federated setting. In each round of FedAvg, participants
compute gradients on their local datasets and send the gradients or model updates to
the central server. The server aggregates the updates and computes the global model as
follows:

θ(t+1) =
K∑

k=1

|Dk|
|D|

∆θ
(t)
k , (1.3)

where θ(t) is the global model at round t, ∆θ
(t)
k denote the gradients of the model from

the k-th participant, and D is the union of all local datasets where |Dk| defines the
number of observations for participant k.
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Despite FedAvg’s guarantees and practicality, there have been additional efforts to tackle
some of the challenges discussed in Section 1.5, which also depend on the particular
use case. Some of these aggregation schemes simply extend the advantages of existing
centralized optimizers, such as FedAdam, FedYogi, and FedAdagrad [Reddi et al., 2020],
which extend Adam [Kingma et al., 2014], Yogi [Zaheer et al., 2018], and Adagrad
[Lydia et al., 2019], respectively. Other methods, like FedProx [Li et al., 2020a], focus
on mitigating the effects of heterogeneous data on the generalizability of the models.
Finally, some aggregation schemes aim to reduce communication rounds by scheduling
learning rates under different strategies [Chang et al., 2018; Sheller et al., 2019].

1.5 Challenges in Federated Learning and impact on
Applications to Healthcare

Despite the considerable potential of federated learning in advancing multi-centric studies
in healthcare, FL also faces a unique set of challenges. These challenges stem from the
need to maintain data privacy and security, the inherent heterogeneity of healthcare data,
communication constraints, and the demands of model convergence and interpretability.
Addressing these challenges is critical for the successful application of federated learning
to healthcare and the development of reliable, generalizable, and privacy-preserving
models.

1.5.1 Framework and Infrastructure

Developing a robust and scalable federated learning framework for healthcare appli-
cations is a significant challenge. The framework should accommodate a wide range
of data types, models, and optimization methods while ensuring that data privacy and
security are maintained. Additionally, the infrastructure should be adaptable to different
computational resources, hardware configurations, and network conditions, allowing for
seamless collaboration between institutions with varying technical capabilities [Brisimi
et al., 2018; Chang et al., 2018].

1.5.2 Communication Efficiency and Resource Utilization

In federated learning, communication between the central server and participating clients
(e.g., healthcare institutions) is crucial for model updates and coordination. The com-
munication efficiency directly impacts the overall performance of the federated learning
process, particularly in settings with limited bandwidth or unreliable network connec-
tions. It is essential to develop communication-efficient federated learning algorithms
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and techniques that minimize the amount of transmitted information while maintaining
model accuracy [Konečnỳ et al., 2016; Li et al., 2019c].

Resource utilization is another critical aspect of federated learning. The computational
resources of participating clients can be heterogeneous, ranging from high-performance
computing clusters to resource-constrained devices. Efficient resource utilization strate-
gies should be devised to balance the workload and ensure that clients can participate
in the federated learning process without overburdening their computational resources
[Smith et al., 2017; Lim et al., 2020].

1.5.3 Heterogeneity

The inherent heterogeneity among participating institutions in federated learning can
result in biased model updates and suboptimal learning performance, limiting the ac-
curacy and generalizability of the resulting models. Such heterogeneity can come from
different data distributions, demographic compositions, and data collection protocols. To
address this issue, two main approaches can be taken: developing robust models that
can generalize well despite the heterogeneity [Li et al., 2020a; Zhao et al., 2018], or, as
is typically suggested in medical studies, correcting biases via harmonization methods
[Orlhac et al., 2022].

Harmonization techniques aim to account for variations in the data that can result from
differences in data collection, preprocessing, and other factors that could introduce biases.
By adjusting the data to minimize these biases, harmonization methods can improve
the performance of models trained on multi-center data. This approach is particularly
relevant in medical imaging studies, where differences in imaging protocols and scanner
hardware can lead to significant variations in the data.

Despite the widespread use of harmonization techniques in medical studies, their adop-
tion in federated learning has been relatively limited. This is because the main objective
of harmonization is to remove biases that could lead to misleading findings while preserv-
ing the effect of interest. In contrast, machine learning approaches may prioritize better
classification or regression performance on unseen data which could be one reason why
harmonization techniques are not as extensively utilized in federated learning compared
to traditional medical studies. Currently, the proposals for harmonization remain valid
mostly for multi-centric studies centralizing the data. These proposals range from the
widely adopted ComBat model in multi-centric medical studies [Johnson et al., 2007a],
to more complex solutions such as nonlinear versions of it such as ComBat-GAM [Pom-
ponio et al., 2020a]. In addition, differently driven approaches like domain adaptation
integration using generative adversarial networks (GANs) have also been proposed, as
suggested by Wachinger et al. [Wachinger et al., 2021]. Incorporating harmonization
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techniques in federated learning is a promising area of research that could improve the
performance and generalizability of models trained on heterogeneous data.

1.5.4 Privacy and Security

While federated learning is inherently designed to preserve privacy, ensuring the con-
fidentiality and security of sensitive patient data remains a challenge. Potential risks
include model inversion attacks, membership inference attacks, and adversarial machine
learning attacks. Thus, it is crucial to integrate advanced privacy-preserving mecha-
nisms, such as differential privacy and secure multi-party computation, into the federated
learning framework to protect against potential threats [Geyer et al., 2017; Bonawitz et
al., 2017].

1.5.5 Model Convergence and Stability

The distributed nature of federated learning can make model convergence and stability
more challenging compared to traditional centralized machine learning approaches.
Communication delays, resource constraints, and data heterogeneity can lead to slow
or inconsistent model convergence. Developing techniques to monitor and improve
convergence rates, as well as ensuring model stability under varying conditions, is
essential for the practical application of federated learning in healthcare [Li et al., 2018;
Sattler et al., 2019].

1.6 Aims and Structure of the Thesis

The primary aim of this thesis is to address the challenges and explore the potential of
federated learning in healthcare. We investigated the development of a robust federated
learning framework, optimize resources required for effective federated learning, and
improve data harmonization techniques within a federated learning framework, particu-
larly in the context of medical imaging. This work may potentially enable researchers
to access and analyze previously inaccessible data in a more robust and generalizable
manner while adhering to privacy and ethical standards.

The thesis is structured as follows:

• Chapter 2 introduces Fed-ComBat, a federated approach for harmonization on
decentralized data that preserves nonlinear covariate effects.
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• In Chapter 3, we present another effort in bias modeling based on our proposed
federated mixed-effects variational autoencoders.

• Chapter 4 focuses on optimizing the utilization of communication and computation
resources in federated learning through black-box optimization.

• Chapter 5 highlights the need for a common framework for federated learning in
healthcare and proposes: Fed-BioMed, an open-source infrastructure for federated
learning that fulfilling such need.

By addressing these key aspects, this thesis will contribute to the ongoing develop-
ment and adoption of federated learning in healthcare, enabling more accurate and
personalized medicine.

1.7 Publications

As a result of the previously described work, following publications have been achieved:

• (Under review) Silva, Santiago, et al. "Fed-ComBat: A Generalized Federated
Framework for Batch Effect Harmonization in Collaborative Studies." Humman
Brain Mapping, 2023.

• Silva, Santiago, et al. "Fed-BioMed: A general open-source frontend framework for
federated learning in healthcare." Domain Adaptation and Representation Transfer,
and Distributed and Collaborative Learning: Second MICCAI Workshop, DART 2020,
and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020,
Lima, Peru, October 4–8, 2020, Proceedings 2. Springer International Publishing,
2020.

1.7.1 Collaborations

During the conception and course of this thesis, various collaborations were pursued,
resulting in the following publications:

• Terrail, J. O. D., Ayed, S. S., Cyffers, E., Grimberg, F., He, C., Loeb, R., ... & Andreux,
M. (2022). FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning
in Realistic Healthcare Settings. NeurIPS, 2022.
CRediT Statement: Data Curation, Formal Analysis, Software, Writing - Original
Draft.
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• Balelli, I., Silva, S., Lorenzi, M., & Alzheimer’s Disease Neuroimaging Initiative.
(2021). A probabilistic framework for modeling the variability across federated
datasets. In Information Processing in Medical Imaging: 27th International Con-
ference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings 27 (pp.
701-714). Springer International Publishing.
CRediT Statement: Data curation, Software, Writing - Original Draft.

• S. Silva, B. A. Gutman, E. Romero, P. M. Thompson, A. Altmann and M. Lorenzi,
"Federated Learning in Distributed Medical Databases: Meta-Analysis of Large-Scale
Subcortical Brain Data," 2019 IEEE 16th International Symposium on Biomedical
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Abstract: In neuroimaging research, the use of multi-centric analyses is crucial for
obtaining sufficient sample sizes and representative clinical populations. Data harmo-
nization techniques are typically employed in the pipeline of multi-centric studies to
address systematic biases and ensure the interoperability of the data. However, most
multicentric studies require data centralization at some point during the analysis
pipeline, thus presenting the risk to expose individual patient information. This
poses a significant challenge in data governance. To mitigate the risk of exposing
patient information, various privacy regulations such as the General Data Protection
Regulation (GDPR) and the California Consumer Privacy Act (CCPA), have been
introduced. While these regulations address such governance concerns, they also hin-
der data access for researchers. Federated learning (FL) offers a privacy-preserving
alternative approach in machine learning, enabling models to be collaboratively
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trained on decentralized data without the need for data centralization or sharing. FL
provides a solution to the problem of data centralization. However, for FL models to
effectively work with decentralized data, it is crucial to ensure data harmonization.

In this paper, we present Fed-ComBat, a federated framework for batch effect har-
monization on decentralized data. Fed-ComBat extends existing centralized linear
methods, such as ComBat and distributed as d-ComBat, and nonlinear approaches
like ComBat-GAM in accounting for potentially nonlinear and multivariate covariate
effects. By doing so, Fed-ComBat enables the preservation of nonlinear covariate
effects without requiring centralization of data and without prior knowledge of which
variables should be considered nonlinear or their interactions, differentiating it from
ComBat-GAM. We assessed Fed-ComBat and existing approaches on simulated data
and multiple cohorts comprising healthy controls (CN) and subjects with various
disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and autism
spectrum disorder (ASD).

Results indicate that our nonlinear version of Fed-ComBat outperforms centralized
ComBat in the presence of nonlinear effects and is comparable to centralized methods
such as ComBat-GAM. Using synthetic data, Fed-ComBat is able to better reconstruct
the target unbiased function by 35% (RMSE = 0.5952) with respect to d-ComBat
(RMSE = 0.9162) and 12% with respect to our proposed federated d-ComBat-
GAM (RMSE= 0.6751) and exhibits comparable results on MRI-derived phenotypes
to centralized methods as ComBat-GAM without the need of prior knowledge on
potential nonlinearities.

2.1 Introduction

Neuroimaging studies, especially those incorporating machine learning (ML) techniques,
greatly benefit from large sample sizes. However, the current approach of centralizing
data for analysis faces significant challenges due to data protection regulations such as
the General Data Protection Regulation (GDPR) and the California Consumer Privacy
Act (CCPA) [European Commission, 2016; Bukaty, 2019; Calzada, 2022]. Despite
efforts in anonymization, such as defacing, it is important to note that these techniques
may introduce alterations in certain image-derived phenotypes, and some report re-
identification rates of around 30%. [Schwarz et al., 2021]. This underscores the need
for a reevaluation of the traditional paradigms for multicentric clinical studies, which
heavily rely on data centralization.

Data harmonization is known to be a crucial factor in tackling certain challenges of
multicentric data analysis due to systematic errors or batch effects commonly present
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in such studies [Wachinger et al., 2021]. Harmonization aims to address biases and
variations among data collected from different sources (e.g., scanner brands or institu-
tions), ensuring that the data is comparable and can be combined effectively for analysis.
[Johnson et al., 2007a] proposed ComBat in the field of gene expression analysis, as a
way to correct these batch effects while preserving the desired covariate effects (e.g., sex,
diagnosis, age). Later, this method was adapted to brain magnetic resonance imaging
(MRI) phenotypes [Fortin et al., 2017; Fortin et al., 2018]. However, the typical use
of ComBat in multicentric studies still requires data to be centralized, thus limiting the
application to real-life collaborative analysis scenarios. To overcome this problem, [Chen
et al., 2022] proposed d-ComBat to harmonize data within a distributed setup by extend-
ing the optimization of ComBat to allow bias correction without the need to exchange
the data across centers. To achieve this, d-ComBat shares full local covariance matrices
computed at each site, and the subsequently aggregates these covariance matrices to
estimate the effect parameters at a global level. This method was shown to achieve almost
an exact solution with respect to its centralized version requiring only a few rounds of
communication. However, sharing full covariance matrices represents a potential risk
of sensitive data leakage [Kesteren et al., 2019], and like ComBat, d-ComBat considers
that covariates have a linear influence on phenotypes, which may not always be the case
as reported by [Bethlehem et al., 2022] where age shows a clear nonlinear influence
on MRI-derived phenotypes. To handle nonlinear covariate effects, [Pomponio et al.,
2020a] introduced ComBat-GAM, which relies on generalized additive models (GAMs)
for the preservation of such nonlinear effects. By using smoothing functions, such as
polynomial or splines, to decompose covariate effects into basis functions, ComBat-GAM
approximates the aforementioned covariate influences. Although ComBat-GAM showed
better performance than ComBat in the LIFESPAN dataset [Pomponio et al., 2020a], it
remains limited by design as it has been conceived only for centralized settings. Moreover,
ComBat-GAM requires an explicit definition of covariate interactions, typically limited
to additive or multiplicative terms (e.g., Sex × Diagnosis). Despite efforts, a gap still
exists in the availability of methods for nonlinear covariate effect preservation without
requiring data centralization. Furthermore, as highlighted by [Gebre et al., 2023] in a
study conducted at the Mayo Clinic, the harmonization problem remains unsolved, calling
for further research and collaborative efforts in the field to address this challenge.

Federated learning (FL) is a machine learning paradigm that allows for collaborative
model optimization while maintaining data privacy and governance [Konečnỳ et al.,
2016]. In FL, models are trained on data that remains decentralized across multiple
institutions or devices, ensuring that sensitive data stays securely within the respective
entities [Konečnỳ et al., 2016]. FL operates by sharing only model updates or parameters,
aggregating these updates on a central server, and distributing the updated global model
back to each institution. This iterative process continues until convergence is achieved.
Federated Averaging (FedAvg) is a popular approach for aggregation in federated learn-
ing. It adapts the stochastic gradient descent (SGD) optimization algorithm for the
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federated setting providing similar convergence guarantees [McMahan et al., 2017]. FL
facilitates access to larger cohorts and it has successfully been applied in neuroimaging
for tumor segmentation and diagnosis [Li et al., 2019b; Mahlool et al., 2022], disease
studies in functional magnetic resonance imaging (fMRI) [Li et al., 2020b], intracranial
hemorrhage (ICH) detection[Cheung et al., 2023] and continues to be increasingly
adopted in neuroimaging applications.

An opportunity opens for the development of flexible and effective harmonization ap-
proaches that can be easily integrated into FL pipelines, enabling harmonization of
neuroimaging data across sites while accounting for complex covariate effects on het-
erogeneously distributed data. And with this approaches, to have the potential to fill
the current gap and allow for more comprehensive analysis of distributed cohorts using
FL. We contribute to tackling these challenges by first introducing a generalized formu-
lation of ComBat that extends to multivariate and nonlinear covariate effect modeling
by allowing the incorporation of more complex functions. This enables a more nuanced
representation of covariate effects during the harmonization process while encompass-
ing ComBat and ComBat-GAM as specific cases. Secondly, we propose Fed-ComBat,
a generalized federated ComBat framework designed specifically for data batch effect
harmonization in federated settings. This framework enables the harmonization of data
while preserving privacy and security within distributed environments, aligning with the
principles of federated learning.

We benchmarked and compared our proposed methods with existing centralized ap-
proaches (ComBat, and ComBat-GAM) and distributed (d-ComBat) [Johnson et al.,
2007a; Pomponio et al., 2020a; Chen et al., 2022]. Moreover, for the sake of comparison
we also formulated and implemented a distributed version of ComBat-GAM (d-ComBat-
GAM), which relies on distributed covariance estimation, and extend the method of
[Chen et al., 2022] by allowing basis decomposition to interpolate nonlinear covariate
effects using smoothing functions.

The different methods were compared for their ability to harmonize batch effects and
preserve the quality of covariate effects on simulated data (Section 2.4). Furthermore,
we performed an evaluation on derived phenotypes from MRI-brain images from nine
cohorts: A4 [Sperling et al., 2014], ABIDE-I [Di Martino et al., 2014], ABIDE-II [Di
Martino et al., 2017], ADNI [Weiner et al., 2013], AIBL [Ellis et al., 2009], MIRIAD
[Malone et al., 2013], OASIS3 [LaMontagne et al., 2019], PDPB [Rosenthal et al., 2016],
PPMI [Marek et al., 2018]. Comprising controls and people with different brain disorders:
patients with different subtypes of Parkinson’s disease (PD), Alzheimer’s disease (AD)
and Autism spectrum disorder (ASD).

Using synthetic data, we find that Fed-ComBat achieves an RMSE of 0.9162(i.e., 35%)
improvement in reconstructing the target unbiased function compared to d-ComBat,
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and a 12% improvement compared to our federated extension of ComBat-GAM, d-
ComBat-GAM (RMSE = 0.6751). In addition, our application on real data shows that
Fed-ComBat on MRI-derived phenotypes is comparable to centralized ComBat-GAM. This
implies that the studied cohorts may not have exhibited complex nonlinear effects or
interactions that could not be captured by a GAM. However, Fed-ComBat requires no
prior assumptions of nonlinearities unlike ComBat-GAM and automatically captures such
effects and interactions through the model. Moreover, Fed-ComBat can be considered a
better approach towards privacy preserving methods as it only shares model parameters,
while d-ComBat and our included extension d-ComBat-GAM share full covariance and
cross-covariance matrices [Kesteren et al., 2019].

2.2 Methods

2.2.1 Generalized ComBat model

Following the original ComBat formulation proposed by [Johnson et al., 2007a], let us
denote a batch (represented by different scanners protocols, machines, or institutions)
indexed by i ∈ {1, 2, ..., S} on a particular phenotype (e.g., a brain region) indexed by
g ∈ {1, 2, ..., G}. Each batch contains ni number of observations, and the total number
of observations is N =

∑S
i ni. S can denote for simplicity the number of sites in the

study, but it can also be extended to the total number of scanners between sites or any
other number of batch effects. We can model a specific phenotype g observed in the j-th
patient who belongs to the i-th site denoted by yijg as follows:

yijg = αg + ϕ(xij , θg) + γig + δigεijg, (2.1)

where xij denotes the covariate effects expected to be preserved after removing the batch
effects (e.g., sex and age), αg acts as a global fixed intercept (i.e., the mean), while γig

indicates a random intercept that accounts for the site-specific shift. εijg is a noise model
that captures the variability of each phenotype εijg ∼ N (0, σ2

g), and δig is a multiplicative
effect that scales the “unbiased” phenotype variability to fit the one at each site.

This formulation generalizes the original linear model proposed by [Johnson et al., 2007a]
and the nonlinear covariate effect model proposed by [Pomponio et al., 2020a]. While
the original model considered ϕ(x; θg) to be a linear function of x, and the nonlinear
model considered ϕ(x; θg) to be an univariate spline, this formulation treats ϕ(x; θg) as
a general function that can potentially be multivariable and nonlinear and parametrized
by θg. This generalization allows for the use of more complex approximating functions
such as kernel-based models or neural networks as the multilayer perceptron (MLP),
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which is known to be an universal function approximator. However, it is essential to use
cross-validation techniques to avoid overfitting and ensure the model generalizes well to
unseen data.

Some constraints are defined during the fixed effect parameter estimation (α̂g, θ̂g, γ̂ig, σ̂g):

arg max
α̂g ,θ̂g ,γ̂ig ,σ̂g

P (yijg|α̂g, θ̂g, γ̂ig, σ̂g) (2.2)

subject to Eg[γ̂i] =
S∑
i

ni

N
γ̂ig = 0, ∀g ∈ {1, ..., G} (2.3)

and ϕ(x, θg)|x=0 = 0 (2.4)

A first constraint in Equation (2.3) is set to allow identifiability of the intercept parameters
as explained by [Johnson et al., 2007a] (explained in practice in Appendix A.4). However,
in the same regard, the constraint in Equation (2.4) ensures that no batch effects are
captured by the covariate function ϕ(·). This second constraint, despite not being
mentioned, is also fulfilled by [Johnson et al., 2007a] and [Pomponio et al., 2020a];
making ComBat and ComBat-GAM a particular case of the proposed formulation in this
work.

For a centralized setup, the estimation of all these parameters is performed in three steps:
i) maximum likelihood estimation (MLE) for parameters α̂g, θ̂g, γ̂ig (see Equation (2.2))
and of the phenotype variance σ̂2

g = 1
N

∑
ij

(
yijg − α̂g − ϕ(xij ; θ̂g) − γ̂ig

)2, ii) residual
standardization mapping the residuals to satisfy the form yijg → zijg ∼ N (γig, δ2

ig) as
follows:

zijg = yijg − α̂g − ϕ(xij ; θ̂g)
σ̂g

(2.5)

and iii) estimation of the additive and multiplicative batch effects γ̂∗
ig and δ̂∗

ig as in
Equation (2.6), using empirical Bayes (EB) with priors on γig and δ2

ig to iteratively
estimate these parameters as in Equation (2.7) [Johnson et al., 2007a, Sec. 3.2].

γig ∼ N (Yi, τ2
i ) and δ2

ig ∼ Inverse Gamma(λi, ϑi) (2.6)

γ∗
ig =

niτ̄
2
i γ̂ig + δ2∗

ig γ̄ig

niτ̄2
i + δ2∗

ig

, δ∗
ig =

θ̄i + 1
2
∑ni

j=1(zijg − γ∗
ig)2

ni
2 λ̄i − 1

(2.7)
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Lastly, phenotypes can be harmonized while preserving the covariate effects of interest
as follows:

yComBat
ijg = σ̂g

δ̂∗
ig

(
zijg − γ̂∗

ig

)
+ α̂g + ϕ(xij ; θ̂g) (2.8)

In the following section, we will discuss how this formulation facilitates the incorporation
of harmonization within the federated learning framework.

2.2.2 Federated ComBat: Fed-ComBat

Considering the formulation previously presented in Equation (2.1), the parameters
αg, θg and γig can be optimized by minimizing an objective function F . As data is now
siloed, it is only possible to have an evaluation of the cost function at each site Fi, thus
defining the federated optimization problem as:

arg min
αg ,θg ,γig

F (αg, θg, γig), (2.9)

where, F (αg, θg, γig) :=
S∑

i=1

ni

N
Fi(αg, θg, γig) (2.10)

We rely on Federated averaging (FedAvg) to tackle this optimization problem [McMahan et
al., 2017] by allowing each site to conduct partial optimization using stochastic gradient
descent (SGD) locally on their data, followed by an aggregation step that combines
the shared parameters of each site. The convergence of the resulting iterative process
has been demonstrated for both IID and non-IID data distribution across clients [Li et
al., 2019c].

The Fed-ComBat framework requires the following steps for harmonization: i) a federated
standardization step to avoid scaling issues in gradient descent as proposed by [Silva et
al., 2019], ii) a federated estimation of αg, θg and γig as presented in Equation (2.10),
and iii) a local estimation of the random effects following using EB as in Equations (2.6)
and (2.7). A description of the steps followed in federated harmonization using Fed-
ComBat is described in Algorithm 2 including standardization as preprocessing, local
updates relying on SGD, global updates across sites of shared parameters using FedAvg
and random effect estimation using Empirical Bayes.

2.2.3 Related works

d-ComBat
[Chen et al., 2022] proposed a distributed version of ComBat that allows correction
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Algorithm 2: Fed-ComBat
Data: Non-harmonized phenotypes (yijg) and covariates (xij).
Result: Harmonized phenotypes with siloed data.
x← FEDERATEDSTANDARDIZATION(x);

// Estimation of fixed effects and random intercept
initialization of parameter space Ω := {θg, αg, γig}Gg=1;
while not converged do

foreach site i do
Ωt

i ← Ω(t+1) ; // Initialization.
// Partial local optimization using SGD.
foreach local gradient step t do

Ω(t+1)
i = Ω(t)

i − η∇ΩiF (Ωi
(t)) ;

// Aggregate and update every parameter using FedAvg.
Ω(t+1) ←

∑
i

ni
N Ωt

i

forall site i do
// Standardize using estimated parameters

zijg ← yijg−α̂g−ϕ(xij ;θ̂g)
σ̂g

// Estimate γ∗
ig and δ∗

ig using EB
γ∗

ig, δ∗
ig ← EMPIRICALBAYES(x) ; // Equations (2.6) and (2.7)

// Correct data
return yComBat

ijg ← σ̂g

δ̂∗
ig

(
zijg − γ̂∗

ig

)
+ α̂g + ϕ(xij ; θ̂g)

for batch effects in a distributed manner. This is achieved by taking advantage of the
multivariate linear regression problem solved in ComBat, requiring to compute the
product between the inverse of a covariance matrix and the data-targets cross-covariance.
Both can be computed by aggregating the individual matrices provided by each site. This
allows us to reformulate Equation (2.1) as done by [Chen et al., 2022]:



y11g

...
yijg

...
ySnsg


︸ ︷︷ ︸

yg

=


x111 . . . x11C 1 · · · 0 1

... xijc
...

...
. . .

...
...

xSnS1 . . . xSnsC 0 . . . 1 1


︸ ︷︷ ︸

X



θ̂g1
...

θ̂gc

γ̂1g

...

α̂g



⊺

︸ ︷︷ ︸
Θ̂g

+δgεg (2.11)

Starting from the panel formulation where yg is the stacked vector of all subjects across
all sites i, and X is a design matrix containing the covariate effects to be preserved
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indexed by c in subject j from site i (xijc), an indicator matrix encoding the site, and a
column of ones to capture αg, we can estimate the augmented parameter matrix Θ̂g using
maximum likelihood. The estimator can be decomposed as a sum of the covariance and
the cross-covariance matrices at each site, as shown in Equation 2.12. This formulation
has also been used to distribute latent variable models, such as PCA and PLS, among
multiple sites [Silva et al., 2019; Lorenzi et al., 2018]. The authors have also suggested
sharing a partial-eigen decomposition to mitigate the risk of data leakage, as shown in
Equation 2.13 where the least squares problem is decomposed by X⊺X which denotes the
covariance matrix, X⊺yg the cross-covariance matrix for phenotype g, Qi, Λi the eigen
decomposition for the covariance matrix in site i and, UiΣiVi the SVD decomposition
for the cross-covariance matrix in site i.

Θ̂g =
(
X⊺X

)−1X⊺yg =
(

S∑
i=1

X⊺
i Xi

)−1( S∑
i=1

X⊺
i yig

)
(2.12)

=
(

S∑
i=1

QiΛiQ−1
i

)(
S∑

i=1
UiΣiV⊺

i

)
(2.13)

d-ComBat-GAM
Seeking a federated nonlinear approach, we here propose d-ComBat-GAM as an adapta-
tion for d-ComBat for non-linear covariate effect preservation via generalized additive
models (GAM) as proposed in its centralized version by [Pomponio et al., 2020a]. This
method, as d-ComBat, allows a fast estimation in a closed form by sharing either full or
partial decomposition of the covariance and cross covariance matrices but transforming
covariates in a design matrix using smooth functions such as polynomials or splines.

We can consider d-ComBat-GAM as a particular case of Fed-ComBat where ϕ(·) becomes
a linear combination parametrized by θ. Let b(·) be an arbitrary basis representation, the
covariate function approximate is then defined as follows:

ϕ(xij ; θg) =
C∑

c=1

Kc∑
k=1

θgkbgk(xijc) where θg = [θg1, . . . , θgKc ] (2.14)

Note that Equation (2.14) expresses a linear combination of parameters, hence the same
procedure as in Section 2.2.3 can be followed to estimate the fixed effects. Although
polynomial decomposition is straightforward as it is the equivalent of transforming and
appending the variable to a design matrix, splines require a set of defined control points
based on the covariate range. We rely on federated standardization to map the nonlinear
covariate to a normalized distribution where the range is known and thus the control
points of the splines can be predefined.
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2.3 Materials

We evaluated Fed-ComBat on synthetic data accounting for different sources of batch-
and covariate-wise heterogeneity. In addition we benchmarked this approach on a collec-
tion of nine cohorts corresponding to different studies in neurodegenerative disorders
including participants diagnosed with or at risk of developing Parkinson’s and Alzheimer’s
disease, Autism spectrum disorder as well as cognitively normal.

2.3.1 Synthetic data

We created simulated datasets under three main scenarios: i) when cohorts have similar
distributions for covariates and sample size effects (IID), ii) when covariate distributions
slightly overlap but follow different patterns, and when there are differences in sample
sizes (mid-non-IID), and iii) when there is no overlap between covariate distributions
between cohorts and there are evident differences in sample sizes (non-IID). An example
of IID and non-IID covariate distributions on synthetic data is shown in Figure 2.1.
We simulated ComBat parameters following the methodology outlined in [Reynolds et
al., 2022], using the graphical model depicted in Figure 2.2. The primary difference
between our approach and that of [Reynolds et al., 2022] was the model used to relate
the covariates and phenotypes ϕ. We used a nonlinear function in this step, which was
employed as the unbiased target function to be learned after the harmonization process
for the synthetically biased phenotypes.

Sex was generated by sampling from a Bernoulli(p(sex)
i ) distribution, which modulated

sex proportion distribution across sites. Age was drawn from a N (µ(age)
i , σ

(age)
i

2
) dis-

tribution, where µ
(age)
i and σ

(age)
i were sampled from a Uniform(a, b) distribution, with

heterogeneity modulated by the width of the distribution (b − a). Sample size hetero-
geneity was simulated using a concentration model pi ∼ Dir(α), as previously suggested
for measuring the effects of heterogeneity in Federated Learning by [Hsu et al., 2019].

As shown in Figure 2.3 and explained by multiple authors in the review by [Zhu et
al., 2021], non-IID scenarios consistently pose the greatest challenges for federated
approaches. Therefore, we chose to focus on non-IID setups to provide a more realistic
and comprehensive evaluation.

2.3.2 Brain MRI-Data

We evaluated our method on a cross-sectional cohort of 7265 participants from nine
public studies, utilizing MRI-derived phenotypes from baseline structural T1-weighted
magnetic resonance imaging (MRI).
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Fig. 2.1.: Population distribution of synthetic data across cohorts in two different scenarios. The
left panel shows the sex distribution, the middle panel shows the age distribution, and
the right panel shows the sample size distribution. Panel 2.1a shows a homogeneous
and IID population, while panel 2.1b shows a non-IID distribution of covariates, which
is more commonly observed and used in this work.

Participants were categorized by diagnosis as follows: 3992 cognitively normal (CN), of
which 731 of them were considered at risk of cognitive impairment from the A4 study
[Sperling et al., 2014]; 1065 were identified as having mild cognitive impairment (MCI)
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [Weiner et al., 2013] and
the Australian Imaging, Biomarker and Lifestyle Flagship Study of Aging (AIBL) [Ellis
et al., 2009]; 998 had been diagnosed with Autism Spectrum Disorder (ASD) from
ABIDE-I and ABIDE II [Di Martino et al., 2014]; and 538 were patients diagnosed with
Alzheimer’s disease (AD) from ADNI and Open Access Series of Imaging Studies (OASIS)
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Fig. 2.2.: Graphical model used to generate synthetic data. The shaded circles indicate observed
measurements, including covariates and imaging feature values, while unshaded circles
represent latent parameters.

dataset [LaMontagne et al., 2019] and, 686 participants diagnosed in multiple phases of
Parkinson’s disease from the Parkinson’s Disease Biomarkers Program (PDPB) [Rosenthal
et al., 2016] and the Parkinson’s Progression Markers Initiative (PPMI) [Marek et al.,
2018]. More detailed demographic information can be found in Table 2.1. Covariate
distribution across the multiple cohorts used in this work can be better observed in
Figure 2.3, showing that when using multiple cohorts, it’s very likely to have non-IID
distributions.
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Fig. 2.3.: Population pyramid representing the demographics of the real data used in this study.
The left panel shows the distribution of sex, the middle panel shows the distribution of
age, and the right panel shows the sample size distribution. Cohorts were sorted by
ascending median age. The demographics for the population are described in Table 2.1.
The figure shows a clear non-IID distribution, similar to the distribution observed in
Figure 2.1b.

Image processing
Cortical thickness and subcortical volume were extracted from MRI scans using FreeSurfer
v7.1.1 (documented and freely available for download online at: http://surfer.nmr
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.mgh.harvard.edu/) [Dale et al., 1999; Fischl et al., 2004]. Steps for phenotypical
measures extraction included skull stripping [Ashburner et al., 2005], Non-uniform
intensity Normalization (N3) [Sled et al., 1998], segmentation using the Desikan–Killiany
atlas [Desikan et al., 2006] and extraction of the MRI-derived phenotypes.

Harmonization was carried out preserving age, sex, diagnosis and intracranial volume
(ICV / eTIV), and each study was considered a site whose systematic biases are expected
to be corrected [Reynolds et al., 2022].

N Age in years ± SD [age range]
site Group \ Sex Female Male Female Male
A4 CN 728 515 71.3 ± 4.5 [65.0 - 85.7] 72.9 ± 5.1 [65.0 - 85.7]

Autism 59 434 16.3 ± 8.1 [8.1 - 45.0] 17.4 ± 8.6 [7.0 - 64.0]
ABIDE I

CN 98 446 15.4 ± 6.6 [7.8 - 46.0] 17.4 ± 7.6 [6.5 - 48.0]
Autism 74 416 13.1 ± 8.1 [5.2 - 54.0] 15.0 ± 9.3 [5.1 - 62.0]

ABIDE II
CN 175 397 13.5 ± 7.4 [5.9 - 46.6] 15.6 ± 10.0 [5.9 - 64.0]
AD 156 190 73.6 ± 7.8 [55.0 - 91.0] 75.0 ± 7.6 [55.0 - 90.0]
CN 444 345 71.8 ± 6.2 [55.0 - 90.0] 74.0 ± 6.1 [60.0 - 90.0]ADNI
MCI 406 555 71.5 ± 7.8 [55.0 - 88.0] 73.6 ± 7.2 [54.0 - 90.0]
AD 34 25 75.6 ± 8.1 [58.0 - 93.0] 72.7 ± 6.9 [60.0 - 83.0]
CN 237 169 71.9 ± 6.0 [60.0 - 89.0] 73.0 ± 6.3 [60.0 - 90.0]AIBL
MCI 44 46 75.8 ± 8.4 [56.0 - 95.0] 74.1 ± 5.6 [64.0 - 87.0]
AD 22 17 69.5 ± 6.3 [58.1 - 80.2] 69.4 ± 7.5 [55.7 - 86.1]

MIRIAD
CN 11 12 66.3 ± 4.9 [58.8 - 73.8] 73.6 ± 7.2 [63.5 - 86.3]
AD 45 41 75.6 ± 6.8 [62.9 - 95.6] 75.2 ± 7.3 [60.5 - 91.7]

OASIS
CN 162 109 67.6 ± 8.6 [45.7 - 88.8] 69.1 ± 8.3 [42.5 - 86.2]

PDPB PD 97 129 67.8 ± 9.1 [50.7 - 90.0] 67.2 ± 9.7 [36.0 - 91.0]
CN 51 84 59.1 ± 11.6 [31.0 - 81.9] 60.8 ± 11.7 [30.6 - 82.8]

GenCohort PD 29 27 65.2 ± 8.0 [51.7 - 81.2] 63.9 ± 9.3 [32.2 - 78.6]
GenCohort Unaff 52 35 61.1 ± 8.2 [33.7 - 84.3] 61.3 ± 7.6 [46.8 - 75.0]

PD 94 164 61.2 ± 10.2 [33.5 - 81.7] 62.2 ± 9.4 [34.8 - 82.9]
Prodromal 2 14 70.1 ± 4.3 [67.1 - 73.2] 69.0 ± 6.7 [61.7 - 82.5]

PPMI

SWEDD 15 26 61.7 ± 8.9 [46.8 - 77.6] 61.9 ± 9.9 [39.2 - 77.0]

Tab. 2.1.: Subject demographics of real data used in this work.

2.4 Results

Two versions of Fed-ComBat were used for comparison: a first one defining a linear model
(ϕ(x; θ) = x⊺θ) to show equivalence with respect to ComBat and d-ComBat, and a second
one defining ϕ as a multi-layer perceptron model (MLP) for nonlinear effect preservation.
These two versions of Fed-ComBat were tested jointly with our extended proposal d-
ComBat-GAM against their two centralized versions: ComBat1 (a.k.a. NeuroComBat),
ComBat-GAM2 and the only reported distributed version d-ComBat-GAM3.

1https://github.com/Jfortin1/neuroCombat
2https://github.com/rpomponio/neuroHarmonize
3https://github.com/andy1764/Distributed-ComBat
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2.4.1 Synthetic data

Reconstruction of an unbiased phenotype function depending on age and sex after
harmonizing using different methods is shown in Figure 2.4a. As observed, centralized
ComBat, d-ComBat, and Fed-ComBat in its linear version follow similar trends. It can also
be observed that for nonlinear covariate effects linear correction can even induce biases
due to its limitation to capture complex relationships between covariates and phenotypes
(see Non-harmonized vs. NeuroCombat in Figure 2.4a).

While both ComBat-GAM and our distributed adaptation d-ComBat-GAM demonstrate
improved correction for nonlinear covariate effects compared to ComBat (as shown
in Figure 2.4a), it is worth noting that d-ComBat-GAM requires a priori definition of
covariate interactions. In cases where these interactions are not defined, the performance
of d-ComBat-GAM is reduced to that of ComBat. A better reconstruction of the target
unbiased trajectories is achieved with Fed-ComBat using a two-layer perceptron neural
network with 100 hidden units and with no hyperparameter tuning. Hyperparameter
tuning was out of the scope of this work. Root mean square errors (RMSE) evaluating
the reconstruction quality is presented in Table 2.2 for all centralized and federated
methods.

Bland-Altman plots contrasting the difference between the different harmonization
methods and the ground truth are presented in Figure 2.4b highlighting that there is
less error variability (σε) in estimating the unbiased function after harmonization for
nonlinear methods and, particularly for Fed-ComBat in terms of the Root mean square
error (RMSE = 0.5952) compared to the second federated best d-ComBat-GAM (RMSE
= 0.6751).

34 Chapter 2 Fed-ComBat: Secure Data Harmonization via Federated Learning



Centralized Federated

Linear Non−linear Linear Non−linear

Ground−truth (unbiased) Non−harmonized NeuroComBat SGD−ComBat Linear ComBat−GAM SGD−ComBat MLP Fed−ComBat Linear d−ComBat Fed−ComBat MLP d−ComBat−GAM

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

0

5

10

15

20

Age [years]

M
ea

su
re

d 
ph

en
ot

yp
e

site Site 0 Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Sex Female Male
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(b) Bland-Altmann plots and root mean square errors (RMSE) contrasting the different centralized and
federated harmonization methods against the groundtruth.

Fig. 2.4.: Qualitative comparison across harmonization methods evaluating the quality of har-
monization for a simulated phenotype with a nonlinear relationship with age and
following a different trajectory per group (males and females). Results are shown
for the extreme non-IID covariate distribution is depicted in Figure 2.1b. This can be
seen as certain centers contain extremely young or old cohorts (tails). (a) Expected
result after harmonization: groundtruth (unbiased), worst case scenario: biased data
(non-harmonized), and harmonized phenotypes using the different ComBat methods
considered and proposed in this work. As shown, ComBat could even insert biases
when data is too heterogeneous. Fed-ComBat preserves better the real trajectories
than the linear approaches and ComBat-GAM without the need of defining where the
nonlinearities may be. Fed-ComBat using a multi-layer perceptron (MLP) shows the
best reconstruction with an improvement of 35% in RMSE with respect to d-ComBat
and 12% with respect to d-ComBat-GAM.

Setup Approach Method |ε̄| (MAE) σε RMSE
Federated Non-linear Fed-ComBat MLP 0.55710 0.20960 0.59520
Federated Non-linear d-ComBat-GAM 0.55160 0.38930 0.67510
Centralized Non-linear SGD-ComBat MLP 0.55420 0.42150 0.69620
Centralized Non-linear ComBat-GAM 0.55530 0.46120 0.72180
Federated Linear Fed-ComBat Linear 0.56540 0.70020 0.89990
Centralized Linear NeuroComBat 0.55230 0.73110 0.91620
Federated Linear d-ComBat 0.55230 0.73110 0.91620
Centralized Linear SGD-ComBat Linear 0.58640 0.81000 0.99990

Tab. 2.2.: Quantitative results for Figure 2.4a in terms of mean absolute error between methods
and the target hidden unbiased trajectories (|ε̄|), its standard deviation (σε) and root
mean square error (RMSE). Highlighted values correspond to the best metric across
different methods.
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2.4.2 Brain MRI-data

To provide evidence for nonlinear covariate effects of age on brain phenotypes, we
compared the goodness of fit of two models: a linear model and a generalized additive
model (GAM). Data was firstly centralizd and harmonized accounting for study as the
batch source using ComBat. The criterion used to evaluate the presence of nonlinearities
was the difference in the Akaike Information Criterion (AIC) between the GAM and the
linear model. When the difference is negative, it indicates that the GAM is a better fit,
and the magnitude of the difference indicates by how much. Figure 2.5b shows the AIC
metric across the regions of the brain using the Desikan-Killiany parcellation and cortical
thickness across regions and the ASEG atlas for subcortical volumes as the dependent
variables. The data was controlled for sex, diagnosis, ICV, and diagnosis group, and age
was considered an independent variable. Figure 2.5a shows the top three regions that
are better explained by a nonlinear model of age in terms of AIC, as well as the residuals
after the regression illustrating remaining effects or trends. More detailed results on the
AICs differences is presented in Table A.1.

Then data was decentralized and we illustrate the ages trajectories by regrouping partici-
pants in two trajectories: cognitively normal were labeled as “Healthy controls“ while
those diagnosed with a particular neurological disorder were labeled as “Atypical”. The
harmonized phenotypes were obtained using as linear centralized method: ComBat,
nonlinear centralized: d-ComBat, linear federated: d-ComBat and our adaptation Fed-
ComBat using a linear model, and nonlinear federated: our extension d-ComBat-GAM
and Fed-ComBat using an MLP with two layers and 100 hidden units.

A GAM was used to estimate these trajectories after each method controlling for Sex
and ICV. Resulting trajectories are illustrated in Figure 2.7. The results show that our
proposals Fed-ComBat Linear and d-ComBat-GAM produce consistent results with respect
to ComBat, d-ComBat, and ComBat-GAM. After the integration of the MLP as covariate
effect approximating function, both centralized and federated show similar trajectory
derivation. The structure of the trajectories is preserved with the main difference being
the exacerbation or attenuation of certain effects like the higher rate of deterioration in
thickness for the right rostral middle frontal cortex in the young population presented
in Figure 2.7 bottom right panel using Fed-ComBat MLP, and a less attenuated effect in
the elder cohort on the right hippocampal volume confirming not only the viability of
global harmonization without sharing data, but also doing it with a more privacy-aware
approach using FL and integrating more complex models such as networks.

Trajectories traced after harmonizing with ComBat-GAM and d-ComBat-GAM suggest
an increase in right hippocampal volume which does not seem to be supported by the
literature and seems more like a residual site effect.
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Fig. 2.5.: Evidence of nonlinear effects present in used cohorts. Subjects were harmonized by
cohort using ComBat [Fortin et al., 2018].
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Another important point to remark is the inflection points in age where right hippocam-
pal volume reduction begins. While the non-harmonized data shows that reduction
starts to occur in the late 50s, linear approaches exacerbate this effect in this cohorts
suggesting a declination after 25 years old in cognitively normal populations, which can
be questionable with respect to what has been reported so far in this region [Nobis et
al., 2019; De Francesco et al., 2021; Liu et al., 2021b].
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Fig. 2.6.: Residual terms after harmonization for top three regions discuses in Figure 2.5a for
federated methods. Additional comparisons using all the methods are presented in
Appendix A.3.

Figure 2.6 shows the residuals of each distributed model comprehended in this work after
harmonization. The residual harmonized term σ̂g

δ̂∗
ig

(
zijg − γ̂∗

ig

)
should follow a normal

standard noise distribution by definition and should not have center residual effects.
[Pomponio et al., 2020a] proposed fitting a GAM and then extract the residuals. However,
by definition, fitting a GAM will work better with a ComBat model that is GAM-based.
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Instead, we use the corresponding model for each method (e.g., linear for ComBat, GAM
for ComBat-GAM and MLP for Fed-ComBat MLP). This results are almost identical and
do not show residual batch effects after harmonization. This is due to the nature of the
formulation of each ComBat model, suggesting this visualization not to be the best for
qualitative evaluation.
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Fig. 2.7.: Harmonized phenotypes mentioned in Figure 2.5a in each row. Non-harmonized,
d-ComBat and all the proposed methods in this work in each column. Trajectories
are drawn after accounting for sex, and ICV after harmonization preserving age, sex,
diagnosis and ICV.

Further analysis and evaluation on datasets and cohorts specially where data sharing is
prohibited is required. As pointed by [Gebre et al., 2023] further exploration is needed
in harmonization methods as some of the centralized methods evaluated in this study
may result in non-satisfactory results.

2.5 Limitations and Future Directions

While Fed-ComBat has demonstrated promising results for data harmonization in a
federated learning setting, there are potential limitations and challenges that should be
considered, as well as opportunities for future research directions.

Model architecture: The choice of model architecture, such as the two-layer perceptron
function employed in the current implementation of Fed-ComBat, can influence the per-
formance of the harmonization process. In order to better capture complex nonlinearities
in various harmonization problems, it may be useful to explore alternative architec-
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tures and conduct hyperparameter tuning if necessary, while respecting the constraints
required for integration within the Fed-ComBat framework (see Equation (2.4)).

Heterogeneity: The performance of Fed-ComBat may be affected by the level of het-
erogeneity across participating institutions. In cases where there is extreme disparity in
data distributions, demographic compositions, or data collection protocols, the method
might struggle to correct biases effectively. Therefore, the suitability of Fed-ComBat or
any ComBat method in such cases should be carefully evaluated. Alternative directions
could include exploring optimization methods such as FedProx[Li et al., 2020a].

Computational resources and connectivity: The current implementation of Fed-ComBat
relies on the assumption that the participating institutions have enough computational
resources and connectivity to perform federated learning. In practice, resource constraints
or network issues might limit the applicability of this method, particularly in low-resource
settings or in cases where institutions have unreliable or slow network connections.

Application to imaging data: The current implementation of Fed-ComBat focuses on
derived phenotypes just like the first version of ComBat [Johnson et al., 2007a], but
future work could explore the application of this method directly to imaging data. By
making ϕ(xij , θg) a convolutional neural network (CNN), Fed-ComBat could be extended
to handle image data directly, which would open up new opportunities for harmonization
in multi-centric imaging studies in federated setups.

By addressing these limitations and challenges, and exploring potential future directions,
Fed-ComBat could be further improved and extended to a wider range of applications, ul-
timately enhancing its utility in federated learning and data harmonization for healthcare
research.

2.6 Discussion and Conclusion

In conclusion, we have shown that it is possible to achieve acceptable results compared
to the linear case without the need to share full covariance matrices or assume nonlinear-
ities. The proposed Fed-ComBat method offers a novel, generalized approach for data
harmonization, inspired by ComBat, and is suitable for scenarios where data sharing
is restricted and nonlinear covariate effects might be present. By relying on federated
learning, Fed-ComBat can capture these nonlinearities and interactions through its fully
connected architecture, allowing for comparable results with centralized approaches and
d-ComBat while keeping data decentralized and potentially avoiding data leakage.
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In contrast to ComBat-GAM, Fed-ComBat does not require predetermined definitions
of variables to be decomposed or possible interactions across variables (i.e., smoothing
factor). This is because complex approximation functions like multi-layer perceptrons
can effectively capture nonlinearities and interactions without explicit definitions.

As a future direction, it would be beneficial to explore the performance of Fed-ComBat
on larger cohorts, as in [Bethlehem et al., 2022], where nonlinear effects are better
exacerbated. This would provide further evidence of the method’s effectiveness in
handling complex harmonization problems in neuroimaging research.
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2.9 Supplementary Material

For a more detailed exploration of the topics discussed in this section, including the
relationship between the indicator matrix and its elements as composites of αg and γig,
please refer to the supplementary material (specifically, Appendix A). The supplementary
material provides additional insights and information on the optimization problem
and the generalized approach proposed for comparing centralized and Fed-ComBat’s
formulation. It also includes harmonization results on synthetic and real data, evidence of
non-linear effects on brain phenotypes, residual ComBat effects on real data, identifiability
of ComBat parameters, and the CRediT author statement.
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Data harmonization plays a crucial role in integrating and reconciling information
from various sources and formats to navigate the inherent heterogeneity and extract
meaningful insights. In multicentric neuroimaging studies, bias is introduced due to
variations in acquisition protocols, scanner brands, and other factors. Current har-
monization techniques, such as surrogate variable analysis and ComBat, are limited
in capturing complex relationships and nonlinearities. Additionally, these methods
rely on centralized data, conflicting with data protection regulations. Federated
learning (FL) emerges as a promising paradigm for multicentric studies, ensuring
data governance and security while complying with privacy regulations. However,
existing FL methods have their limitations and may require retraining when new
institutions join the study. This chapter explores the use of conditional genera-
tive models, specifically variational autoencoders (VAEs), for data harmonization
in federated learning. The proposed approach aims to address the limitations of
existing techniques by capturing complex relationships, accounting for mixed effects,
and ensuring data privacy. This work-in-progress chapter presents the motivation,
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methodology, results, and challenges of using CVAEs for data harmonization in the
context of federated learning. We present some preliminary results on synthetic data
and we expect to move forward to imaging aplications.

3.1 Introduction

In multicentric neuroimaging studies, bias is introduced due to different acquisition
protocols, magnetic resonance imaging (MRI) scanner brands, and other factors [Orlhac
et al., 2022]. This bias can significantly affect the generalizability of the derived models
and limit the potential of collaborative research. Several harmonization techniques
have been developed to address this bias, including surrogate variable analysis [Leek et
al., 2012], ComBat [Johnson et al., 2007a] and random effect models [Kim et al., 2022].
However such methods remain univariate and are not able to properly capture more
complex relationships like nonlinearities. Also, these methods currently rely on data
being centralized which as discussed, is conflicting with the current data protection
regulations.

Federated learning (FL) is an emerging paradigm in the field of machine learning
that enables multicentric studies in brain imaging data to remain compliant with data
protection regulations such as the General Data Protection Regulation (GDPR) and
California Consumer Privacy Act (CCPA). By distributing the learning process across
multiple institutions while keeping the data locally, FL ensures better data governance
and security [Li et al., 2020a].

In the field of neuroimaging data harmonization, several methods have been developed to
address the challenge of scanner-related biases and inter-site variability. Notable among
these are ComBat [Johnson et al., 2007a], NeuroHarmony [Garcia-Dias et al., 2020],
and domain adaptation methods on raw imaging data [Zuo et al., 2021]. These methods
have significantly contributed to the field, but it’s crucial to understand their inherent
limitations and the contexts where they excel.

ComBat, one of the most widely used methods, is known for adjusting batch effects in
high-throughput data. It employs empirical Bayes frameworks to estimate batch effect
magnitudes and adjust for them. Although ComBat is effective and commonly used, it
is designed for simpler linear adjustments and may fall short when dealing with more
complex, non-linear data transformations that are often encountered in neuroimaging
data.

NeuroHarmony, a specialized tool, was developed to harmonize neuroimaging data and
mitigate scanner-related biases in MRI datasets. It uses a machine learning approach and
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a set of Image Quality Metrics (IQMs) to harmonize individual images from previously
unseen scanners. Despite its novel approach, NeuroHarmony is primarily designed for
linear shifts and scaling adjustments. Also, when data from a new scanner is introduced,
the model may require retraining, posing challenges in dynamic research environments.

Zuo’s method, on the other hand, uses convolutional layers for domain adaptation
on raw imaging data, offering flexibility and the ability to handle more complex data
transformations. However, this method is not without its limitations. Improper training
of the convolutional layers may introduce artifacts, potentially distorting the data and
leading to inaccurate analyses.

The aim of this chapter is to explore conditional generative models such as variational
autoencoders (VAEs) for data harmonization in federated learning and their potential
to address the limitations of existing techniques by capturing complex relationships
and interactions while accounting for mixed effects introduced by different sites or
institutions.

The chapter is organized as follows: Section 3.2 provides a background on the importance
of data harmonization in biomedical research, while Section 3.3 introduces the concept
of CVAEs and their potential for addressing data harmonization challenges and a detailed
methodology for implementing CVAEs in this context. Section 3.4 discusses the results
and performance evaluation of CVAEs in data harmonization, followed by an exploration
of the challenges and future directions in Section 3.5. The chapter concludes with a
summary of the key findings in Section 3.6.

3.2 Challenges of Data Harmonization

Data harmonization is a process that aims to create consistency and compatibility between
datasets originating from different sources, formats, and measurement units, thereby
enabling researchers to analyze and draw meaningful conclusions from the combined
data. The need for data harmonization arises from the growing volume and complexity
of biomedical data, which often exhibit heterogeneity due to variations in data collection
methodologies, experimental conditions, and measurement units. In this section, we
discuss the significance of data harmonization in biomedical research, as well as the
common challenges and issues associated with harmonizing heterogeneous datasets.

Data harmonization plays a critical role in biomedical research, as it allows for the
integration and comparison of data from different sources, ultimately enhancing the
reproducibility and generalizability of research findings [Fortin et al., 2014]. Furthermore,
data harmonization can facilitate the discovery of novel associations and patterns in data,
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leading to new insights and hypotheses in biomedical research. By enabling researchers
to leverage the full potential of the available data, data harmonization contributes to the
acceleration of scientific discovery and the improvement of patient care.

While existing methods such as ComBat, NeuroHarmony, and Zuo’s method provide
valuable solutions for harmonizing neuroimaging data, they all rely on data centralization,
are either univariate, or are tailored to specific types of data. These characteristics limit
their applicability in diverse, multi-site studies that require a multivariate approach and
mandate decentralized data handling for privacy preservation.

In response to these limitations, our proposed method aims to approximate the underlying
data distribution, capturing the batch effects in a multivariate manner in a federated
setup. This approach allows us to account for covariate effects comprehensively. Our
technique leverages a regularized generative model, specifically a conditional variational
autoencoder (CVAE), trained in a Bayesian fashion [Sohn et al., 2015].

The Bayesian nature of our method applies not only to the latent space of the CVAE but
also to its parameters. This dual application of Bayesian principles helps avoid overfitting
while preserving the essential covariate effects. The CVAE model is trained using the
Federated Averaging (FedAvg) algorithm [McMahan et al., 2017], ensuring that the
training process respects a decentralized data setup where data is not exchanged.

Once the model is trained, we exploit the generative abilities of the CVAE to mitigate the
batch effects. We achieve this by conditioned sampling, effectively eliminating the bias in
expectation. Consequently, our proposed federated, multivariate harmonization method
offers a promising solution to tackle the challenges in neuroimaging data harmonization,
prioritizing both effectiveness and privacy preservation.

3.3 Methods

In what follows, we outline the methods used for data harmonization in a federated
setting using Conditional Variational Autoencoders (CVAEs). We introduce the concept of
Federated Harmonization with CVAEs and discuss the derivation of the Evidence Lower
Bound (ELBO) as the objective function for the harmonization process.
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3.3.1 Federated Harmonization with Conditional Variational
Autoencoders (CVAEs)

To address the challenges of data harmonization in a federated setting, we propose a fed-
erated harmonization framework based on Conditional Variational Autoencoders (CVAEs)
[Sohn et al., 2015]. CVAEs have shown promise in capturing complex relationships and
generating harmonized data samples conditioned on specific attributes or features [Zuo
et al., 2021; Russkikh et al., 2020].

Let y denote the site indicator variable, z represent the latent space of the autoencoder,
x is an observation of a design matrix containing the measured phenotypes and the
covariates to be preserved, and θ and ϕ parametrize the autoencoder. We model θ and ϕ

as random effects, centered at zero and with a variance σ2. We begin by defining the
notation and deriving the evidence lower bound (ELBO).

3.3.2 Derivation of the Variational Lower Bound

In this subsection, we will focus on the derivation of the variational lower bound for our
proposed model, based on the work of [Sohn et al., 2015]. This derivation will provide
a detailed explanation of the mathematical framework underlying our model’s training
process.

Consider a set of observed phenotypes and covariates denoted by x coming from a design
observation matrix. Additionally, let y represent the site or batch indicator variable,
which indicates the source or origin of the data points. This variable allows the model
to account for any variations or discrepancies that may arise from different sources. As
proposed by [Sohn et al., 2015], we aim to approximate the joint distribution to gain
valuable insights into the dependence of the observed data with respect to the batch
effects by defining a set of latent variables or factors and site indicators as part of a
generative process.

Such joint distribution over the observed variables, latent variables, and parameters, can
be defined as:

p(x, y, z, θ, ϕ) = p(x|y, z, θ)p(z|y, ϕ)p(y)p(θ)p(ϕ) (3.1)

Here, p(x|z, y, θ) is the likelihood of the observed phenotypes and the covariates x given
the latent variable z, the batch indicator variable y, and the parameters θ of the decoder.
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Similarly, p(z|x, y, ϕ) is the prior over the latent variable z given the observed variables
x, the site indicator variable y, and the parameters ϕ of the encoder. Finally, p(θ) and
p(ϕ) are the priors over the parameters θ and ϕ, respectively. These priors represent
our initial beliefs about the distribution of the parameters before observing any data.
During training, these parameters are updated to maximize the likelihood of the observed
variables.

From Equation (3.1), we can derive the log marginal likelihood as:

log p(x | y) = log
∫

z

∫
θ

∫
ϕ

p(x, y, z, θ, ϕ)dϕdθdz (3.2)

Now, we introduce an approximate posterior distribution q(z, θ, ϕ|x, y) to make the
problem tractable. By multiply and divide the integrand by this distribution:

log p(x | y) = log
∫

z

∫
θ

∫
ϕ

p(x, y, z, θ, ϕ)
q(z, θ, ϕ | x, y)q(z, θ, ϕ | x, y)dϕdθdz (3.3)

Then we use Jensen’s inequality, which states that the log of an expectation is greater
than or equal to the expectation of the log, hence:

log p(x | y) ≥
∫

z

∫
θ

∫
ϕ

q(z, θ, ϕ | x, y) log p(x, y, z, θ, ϕ)
q(z, θ, ϕ | x, y)dϕdθdz (3.4)

Finally we can rewrite Equation (3.4) in terms of expectations:

L(q) =Eq[log p(x | y, z, θ)] + Eq[log p(z | y, ϕ)] + Eq[log p(θ)] + Eq[log p(ϕ)]

− Eq[log q(z | x, y, ϕ)]− Eq[log q(θ)]− Eq[log q(ϕ)]
(3.5)

Equation (3.5) presents the Evidence Lower Bound (ELBO) denoted by L. The ELBO is
a measure used to approximate the likelihood of observed data in probabilistic models,
especially valuable when the likelihood function is intractable, as it provides a surrogate
function that serves as an approximation of the true likelihood. Here q is short for
q(z, θ, ϕ|x, y). The expectation is taken over z, θ and ϕ.
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In the transition from the expanded expectation to the ELBO, we recognize certain terms
as Kullback-Leibler (KL) divergences. Allowing us to rewrite the ELBO as:

L(q) =Eq[log p(x | y, z, θ)]

−KL(q(z | x, y)|p(z | y))−KL(q(θ)|p(θ))−KL(q(ϕ)|p(ϕ))
(3.6)

Here, KL(p||q) = Ep[log p− log q] is the Kullback-Leibler divergence.

In Equation (3.6), we categorize each term into two main components. The reconstruction
term, represented by Eq[log p(x | y, z, θ)], is the expected log-likelihood of the observed
data under the model. This term ensures the model explains the observed data well.

Finally, the last three terms collectively represent the Kullback-Leibler (KL) divergence
term, which measures the difference between the approximate posterior q and the prior p.
Specifically, KL(q(z | x, y)|p(z | y)), KL(q(θ)|p(θ)) and KL(q(ϕ)|p(ϕ)) account for the
discrepancy between the approximate posterior distributions and the prior distributions
of z, θ and ϕ respectively. These terms act as a regularization that encourages the learned
parameter distributions to be close to their priors. By doing so, it helps to prevent
overfitting and ensures that the learned parameters are not too far from their initial
values, providing a form of prior knowledge or constraint on the model.

We rely on stochastic variational inference (SVI) for the optimization scheme, which
approximates the true posterior by minimizing the negative ELBO [Hoffman et al., 2013].
In the federated setting, we employ federated averaging (FedAvg) to optimize the global
parameters [McMahan et al., 2017]. This involves aggregating the local updates of the
variational parameters θ and ϕ across sites, weighted by the number of samples at each
site. This approach allows for the harmonization of multicentric data while addressing the
privacy and regulatory concerns associated with sharing raw data between institutions.

3.3.3 Harmonization

Once the CVAE model has been trained using a standard federated learning approach
such as FedAvg, we proceed to the harmonization step, which aims to align and reconcile
the distributions of the data across different institutions. This step is essential for ensuring
data consistency and comparability, enabling meaningful analysis and modeling within
the federated learning framework.
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Encoder Decoder

Reparameterization trick

Design matrix of unharmonized
phenotypes and covariates

Reconstructed design matrix after
conditioned generative process

Batch indicator matrix

The latent space is forced to
be the same after
conditioning on the batch
effects meaning, no residual
batch information is kept in
the latent space

Phenotypes

Covariates

Fig. 3.1.: Architecture of the Conditional Variational Autoencoder (CVAE) for data harmonization.
The input data x consists of a design matrix containing both phenotypes and covariates,
with the goal of preserving covariate effects. The conditioning variable y influences
the generation process, while the latent variables z capture underlying representations.
The decoder, parametrized by θ, reconstructs the input data based on the latent
variables and conditioning variable. The encoder, parametrized by ϕ, captures the
approximate posterior or inference model q(z|x, y; ϕ). In the bottom part, an example
illustrates the latent space of the CVAE. Conditioning on the batch effects ensures that
the latent space remains consistent, removing residual batch information.

We aim to mitigate any remaining batch effects captured by the parameters of the CVAE by
incorporating the site indicator variable y. This variable represents the source institution
or batch information for each data point. By sampling y from a categorical distribution,
denoted as y ∼ Cat (p1, p2, . . . , pk), we can effectively average out the batch effects
and diminish their impact on the reconstruction process. The probabilities p1, p2, . . . , pk

determine the likelihood of selecting a specific institution or batch.

Sampling y ensures that we obtain in expectation a diverse set of site indicator values for
each observation x. By considering multiple samples of y for each data point, we capture
the variability and distribution of the site indicator information. This averaging process
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Fig. 3.2.: Generative process (graph model) for the proposed CVAE. Latent variables z and
parameters θ and ϕ are drawn from their respective priors. Observed data x and y are
generated from the distributions p(x|z, y; θ) and p(y) respectively.

helps to minimize the impact of any specific batch effect on the reconstruction and leads
to a less biased representation of the underlying features.

By incorporating the expected values of y during the reconstruction step, we mitigate the
influence of batch effects, allowing for a more accurate and unbiased reconstruction of
the original data x. This approach improves the harmonization process by reducing the
residual variability associated with different institutions or batches, ultimately leading
to a more consistent and reliable representation of the underlying features across the
dataset.

We illustrate our proposed method in Algorithm 3, in which we propose a workflow
for federated data harmonization across multiple institutions. The algorithm begins
by constructing a design matrix, preprocessed through federated standardization of
numerical variables, where pooled means and variance deviations are computed for each
institution. The design matrix is then standardized accordingly. Next, the algorithm
performs federated training of the CVAE using FedAvg to update global parameters.
Local updates from each institution are aggregated to refine the global parameters until
convergence or budget achieved. Finally, the algorithm removes batch effects through
a harmonization step, generating reconstructions for each sample using CVAE and
averaging them to obtain the harmonized data. With this workflow we expect to provide
a practical solution for harmonizing data in a federated setting, facilitating collaboration
among institutions and enhancing the reliability of multi-institutional studies.

3.4 Results

We designed a synthetic dataset to evaluate the performance of the proposed harmoniza-
tion method. The dataset incorporates covariates such as Sex, Age, and Scanner effects,
which are commonly encountered in neuroimaging studies. These covariates capture
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Algorithm 3: Federated Harmonization Framework Using CVAEs
Result: Harmonized data x̂
Input: Design matrix x, batch indicator matrix y
Output: Harmonized data x̂

Step 1: Design matrix construction
1.1 Federated standardization of numerical variables
Compute pooled mean x and standard deviation s of x:
foreach site k do

xk ←
∑Nk

i=1 xki

Nk
, s2

k ←
∑Nk

i=1(xki−xk)2

Nk−1
end
Compute pooled mean and variance deviation:

x←
∑K

k=1 Nk·xk

N , s2 ←
∑K

k=1(Nk−1)·s2
k∑K

k=1(Nk−1)

Standardize x: x← x−x
s

Step 2: Federated training of CVAE
2.1 Federated Averaging
Initialize global parameters θ0, ϕ0

for each round t = 1, 2, . . . , T do
for each local node (institution) k do

Compute local updates ∆θt
k, ∆ϕt

k by optimizing local objective
(Equation (3.6))

end
Update global parameters: θt ← θt−1 + 1

K

∑K
k=1 ∆θt

k, ϕt ← ϕt−1 + 1
K

∑K
k=1 ∆ϕt

k

end
Define optimal parameters θ and ϕ

Step 3: Harmonization (batch effect removal)
for each sample i = 1, 2, . . . , Ns do

3.1 Fix x and sample y from a Categotical distribution
yi ∼ Cat(p1, p2, ..., pk)
3.2 Compute reconstruction: x̂i ← CVAE(x, yi; θ, ϕ)

end
Return average reconstructions: x̂← 1

Ns

∑Ns
i=1 x̂i

important factors that can introduce variations in brain measures across different data
sources or institutions. The graphical model on how data was generated is illustrated in
Figure 2.2.

By using principal component analysis (PCA) and analysis of variance (ANOVA), we gain
insights into the effectiveness of the data harmonization method. Figure 3.3 showcases
the results obtained through PCA. The top plot depicts the PCA of the non-harmonized
features, where distinct clusters corresponding to different sites or institutions are evident.
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These clusters highlight the presence of batch effects, indicating potential variations and
biases in the data.

After applying the data harmonization method, as illustrated in the middle plot, the
feature distributions become more aligned, reducing the variations between sites and
leading to a more integrated representation of the data. The clusters become less distinct,
suggesting that the harmonization process successfully mitigates the impact of batch
effects and promotes a more unified view of the dataset.

To further assess the impact of harmonization, ANOVA is conducted on the harmonized
data. The results reveal a significant reduction in the variability attributed to the site
indicator variable, indicating a successful harmonization outcome. This reduction in site-
specific variability supports the notion that the data harmonization approach effectively
mitigates batch effects and enables a more reliable and unbiased analysis of the dataset.

Figure 3.4 provides an overview of the feature distributions across multiple sites or
institutions. The top plot reveals distinct clusters corresponding to different sites, in-
dicating the presence of batch effects and potential biases in the data. In the middle
plot, the feature distribution after harmonization is shown, demonstrating a reduction
in variations between sites. This alignment of feature distributions aims to achieve a
more consistent representation of the underlying features, effectively mitigating the
impact of batch effects. The bottom plot represents the desired outcome: an unbiased
distribution where batch effects have been entirely eliminated. This homogeneous feature
distribution enables the collective analysis of data from different institutions, free from
the confounding effects of batch variations.

We evaluated the effectiveness of the harmonization method using Bland-Altman plots.
Figure 3.5 presents the feature differences between the unbiased dataset and the un-
harmonized dataset (Figure 3.5a), as well as between the unbiased dataset and the
harmonized dataset using the CVAE method (Figure 3.5b), stratified by batch effects.
In these plots, the x-axis represents the mean of the feature values, while the y-axis
shows the difference between the corresponding feature values. The colored dots indi-
cate different batches, enabling the assessment of batch effects on feature differences.
Comparing the two plots, we observe a substantial reduction in feature differences in the
harmonized dataset compared to the unharmonized dataset. This finding highlights the
efficacy of the CVAE-based harmonization approach in mitigating the confounding effects
of batch variations, thereby achieving a more consistent representation of the underlying
features across diverse institutions or sites.
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(a) PCA of the feature space of the test dataset after harmonization. The harmonization process effectively
aligns the distributions of the features from different institutions, resulting in reduced batch effects.

(b) PCA of the feature space of the non-harmonized features. Without harmonization, the features exhibit
distinct clusters corresponding to different institutions, indicating the presence of significant batch
effects.

(c) PCA of the feature space of the unbiased target features (ground truth). These features represent the
ideal scenario where batch effects are completely eliminated, resulting in a homogeneous distribution of
data points across different institutions.

Fig. 3.3.: Principal Component Analysis (PCA) of the feature space illustrating the effects of
harmonization. (a) Shows the harmonized features, (b) shows the non-harmonized
features, and (c) shows the unbiased target features. Comparing these plots provides
insights into the effectiveness of the harmonization method in reducing batch effects
and achieving a more consistent representation of the underlying features.
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Fig. 3.4.: Distribution of features across sites: (top) Before harmonization, (middle) After
harmonization, and (bottom) Unbiased distribution. The top plot illustrates the
initial feature distribution, where distinct clusters corresponding to different sites are
observed. In the middle plot, after applying the harmonization method, the feature
distributions are aligned, reducing the variations between sites. The bottom plot
represents the ideal scenario with an unbiased distribution, where batch effects have
been completely eliminated.
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(a) Bland-Altman plot comparing the feature differences between the unbiased dataset and the unharmo-
nized dataset, stratified by batch effects.

(b) Bland-Altman plot comparing the feature differences between the unbiased dataset and the harmonized
dataset using the CVAE method, stratified by batch effects.

Fig. 3.5.: Bland-Altman plots illustrating the feature differences between the unbiased dataset
and the unharmonized dataset (a) and the harmonized dataset (b), stratified by batch
effects.

3.5 Challenges and Future Directions

The application of CVAEs for data harmonization in the context of federated learning
presents several challenges and offers avenues for future research. While our study
demonstrates promising results using synthetic data, further exploration using real-world
datasets is necessary to validate the effectiveness of CVAEs in capturing the complex
variations present in heterogeneous neuroimaging data.
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Furthermore, it is important to investigate the impact of different data characteristics and
sources of heterogeneity on the performance of CVAEs in harmonization. This includes
exploring the influence of imbalanced data distributions, missing data, and outliers,
as well as understanding how different neuroimaging modalities and preprocessing
techniques affect the harmonization process.

In addition to these technical challenges, ethical and privacy considerations are of
utmost importance in federated learning approaches. It is crucial to establish robust
privacy-preserving mechanisms, data governance frameworks, and regulatory guidelines
to ensure the responsible and secure sharing of sensitive neuroimaging data across
institutions while maintaining patient privacy and data protection.

3.6 Conclusions

In this chapter, we have explored the potential of Conditional Variational Autoencoders
(CVAEs) for data harmonization in the context of federated learning for neuroimaging. By
leveraging the power of CVAEs, we have demonstrated the ability to align and harmonize
heterogeneous data from multiple institutions while preserving the underlying features
and mitigating the impact of batch effects. Our results on synthetic data have shown
promising outcomes, highlighting the potential of CVAEs as a valuable tool for data
harmonization.

Data harmonization plays a critical role in biomedical research, enabling the integra-
tion and comparison of data from diverse sources. The application of CVAEs in this
process offers several advantages. By utilizing the site indicator variable as a control
mechanism, CVAEs can effectively capture the variations present in the latent space and
align the distributions of the data points from different institutions. This leads to a more
consistent representation of the underlying features, enhancing the reproducibility and
generalizability of research findings.

While our preliminary exploration has provided insights into the use of CVAEs for data
harmonization, there are important challenges and future directions to consider. Real-
world validation using large-scale, diverse datasets is necessary to assess the performance
and generalizability of CVAEs in capturing the complex variations present in neuroimag-
ing data. Furthermore, addressing computational scalability, exploring the impact of
different data characteristics, and addressing ethical and privacy concerns are crucial
areas for further research.

In addition to its applications in phenotypical data, it is worth noting that the use
of Conditional Variational Autoencoders (CVAEs) for data harmonization in federated
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learning extends beyond numerical and tabular data. CVAEs can also be effectively
applied to image data, leveraging the power of convolutional layers to capture complex
spatial patterns and structures.

In conclusion, we explore a potential tool for data harmonization in federated learning,
enabling the integration and analysis of multi-centric neuroimaging data while addressing
challenges related to batch effects and data heterogeneity. The potential impact of this
approach on healthcare outcomes and scientific discoveries is significant, and ongoing
research and collaboration will drive further advancements in the field, leading to
improved understanding, diagnosis, and treatment of neurological disorders.
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Abstract: One of the most critical steps in federated learning involves the iterative
aggregation of models from multiple clients while optimizing the communication
channel to reduce communication rounds and maintain generalization. In this
work, we propose a black-box federated Bayesian optimization approach for model
aggregation in federated learning, considering the learning of search space (bounds)
for the parameters. Our method was evaluated on synthetic data and morphological
measures from multi-centric databases for Alzheimer’s disease. We assessed the
applicability of Bayesian optimization as part of the optimization scheme in federated
learning on synthetic data and on multicentric brain data from four different studies.
Results show that despite the promising potential of Bayesian optimization, standard
approaches such as FedAvg are more suitable and scalable than Bayesian optimization,
especially in complex problems where the number of parameters increases.

4.1 Introduction

Federated learning (FL) has emerged as a field that empowers institutions to participate
in multicentric studies while preserving data governance. This collaborative learning
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paradigm allows multiple clients or data owners to share only the parameters of locally
trained models with a central node, enabling larger sample access and encouraging
consensus between clinical centers and researchers without exchanging or transferring
data [Rieke et al., 2020].

Despite its potential, FL faces multiple challenges, including communication usage,
hardware heterogeneity, and resource availability across institutions, which may prevent
them from harnessing the power of their data. Additionally, ensuring the generalizability
of models in heterogeneous setups, such as those found in collaborative studies, is
crucial.

Existing federated optimization methods, like FedAvg [McMahan et al., 2017], FedProx
[Li et al., 2018], and FedDANE [Li et al., 2019a], focus on aggregating locally partially
trained models to increase generalizability. However, they often require multiple rounds
of communication and depend on institutions having the computational power and
resources to perform local gradient-based optimizations. This can be particularly chal-
lenging for institutions with limited resources or when facing hardware heterogeneity
across different participants.

In contrast to the current federated optimization methods, centralized approaches like
black-box optimization (BBO) and, more specifically, Bayesian optimization (BO) offer
alternative solutions by building a response surface to optimize complex functions. BBO
and BO optimize expensive-to-evaluate functions without relying on gradient descent,
focusing on evaluating the target function instead. BO is particularly well-suited for
tasks involving expensive-to-evaluate functions, as it offers a data-efficient and robust
approach to global optimization.

Furthermore, BO provides convergence guarantees [Bull, 2011] and is especially suitable
for problems with multiple minima due to its ability to construct a surrogate of the
response surface. By leveraging the probabilistic representation of the objective function,
BO not only accounts for the current best observation but also considers the uncertainty
in the predictive distribution. Despite its use in centralized setups, BBO approaches have
not been yet considered as an alternative for federated learning optimization.

In this work, we propose a federated optimization approach relying on black-box opti-
mization that aims to centralize the optimization process in FL, reduce communication,
and increase or be comparable in terms of generalizability by limiting participants of
collaborative studies to only evaluate the objective function without requiring local gradi-
ent optimization. We approximate a response surface with the results collected from the
institutions, leveraging BO’s probabilistic representation of the objective function, which
not only accounts for the current best observation but also considers the uncertainty in
the predictive distribution.
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Our proposed method delegates the majority of the computational load to the central
server, resulting in a centralized optimization process that is not affected by variations in
available computing resources across different institutions. This solution addresses the
challenges of communication usage, hardware heterogeneity, and resource availability
while also ensuring the generalizability of models in heterogeneous setups. By doing so,
we hope to pave the way for future research in federated learning, ultimately advancing
the field and enabling more effective utilization of decentralized data in healthcare.

4.2 Overview of Black Box Optimization

Black box optimization (BBO) is a powerful approach for optimizing complex functions
without any knowledge of their internal workings, relying solely on their evaluation at
different input points [Bajaj et al., 2021]. This technique is particularly useful when the
function is computationally expensive to evaluate, has an unknown analytical form, or
has many parameters that need to be tuned. Black box optimization has found numerous
applications in machine learning, where it is used for hyperparameter tuning [Bergstra
et al., 2012] and neural architecture search [Real et al., 2019]. It is also widely used in
engineering and scientific fields for optimizing expensive simulations and experiments
[Sobester et al., 2008].

In black box optimization, the goal is to find the optimal set of input values that minimize
or maximize the function of interest. This can be formulated as an optimization problem
of the form:

θ∗ = arg min
θ∈Ω

f(θ), (4.1)

where θ is a vector of input values, Ω is the set of feasible input values (search space),
and f(θ) is the function to be optimized. The optimization problem in Equation 4.1 is
often challenging to solve because the function f(θ) is typically complex, expensive to
evaluate, and may have multiple local minima. Black box optimization methods aim
to efficiently search the input space to find the global minimum or maximum of the
function, without relying on any knowledge of its internal workings.

Several strategies exist for solving the optimization problem in Equation 4.1. For instance,
Grid search exhaustively evaluates the function at all combinations of parameters in
the search space, which is computationally expensive and may not scale well to high-
dimensional search spaces. Random search samples parameters uniformly at random
from the search space and evaluates the target function at these points, which is more
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efficient than grid search but may still require a large number of function evaluations
[Bergstra et al., 2012].

Another popular approach to black box optimization is Bayesian optimization (BO),
which uses probabilistic models to guide the search towards promising regions of the
search space. This approach is especially useful when the objective function may not
only be complex but also has a limited number of evaluations (i.e. a communication
budget).

4.2.1 Bayesian optimization

Bayesian optimization is an optimization technique for expensive black-box functions,
where the objective function is treated as a random function and modeled using Gaussian
Processes (GPs) [MacKay et al., 2003]. It is particularly useful when evaluating the
function is time-consuming or costly, and the number of evaluations is limited. Now the
target function is consider as:

f(θ) ∼ GP(µ(θ), k(θ, θ′)), (4.2)

where f(θ) represents the surrogate model of the objective function, approximated by
a GP with mean function µ(θ) and covariance function k(θ, θ′). With its goal being to
optimize the problem in Equation (4.1), the use of a GP as a model of the target function
requires a guide for searching the optimal candidate parameters at each iteration. This
guide is a function known as an “acquisition function”.

Acquisition functions guide the search for the optimal input by balancing exploration and
exploitation. They quantify the utility of evaluating the objective function at a particular
input point, given the current model. Probability of Improvement (PI), Expected Im-
provement (EI), and Upper Confidence Bound (UCB) are some of the popular acquisition
functions used in Bayesian optimization [Brochu et al., 2010]. These are described more
in detail in Section 4.2.2.

The optimization process using BO takes place iteratively as the response surface (target
function) is approximated by the surrogate model (GP) and new samples are proposed
as follows:

1. Optimize the acquisition function over the GP to find the next sampling point in the
search space: θt = arg maxθ∈Ω a(f(θ)). Where a denotes the acquisition function.

2. Compute a noisy evaluation of the black-box function using the suggested set of
input values from step 1, θt: yt = f(θt) + ϵt.
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3. Update the GP with the new known sample from the search space and its measured
response (e.g. loss value): Ω = Ω ∪ {θt} and Y = Y ∪ {yt}.

This is repeated until a stopping criterion is met, such as a maximum number of iterations
or a convergence threshold. The optimal θ∗ will be finally defined as the set of input
values that minimize the GP model.

4.2.2 Acquisition functions

The acquisition function serves as a guide to balance exploration and exploitation in
BO. Its main objective is to guide the search for the optimum by directing it towards
regions where the objective function is expected to be minimized/optimized. This can be
accomplished either by selecting points with low predictions based on the probabilistic
surrogate model or by targeting regions with high uncertainty in the model’s predictions
(or both).

Exploration refers to the act of seeking out and gathering information about new or
unexplored regions of the search space. It involves trying out different options and
sampling diverse areas to gain a broader understanding of the problem. The goal of
exploration is to acquire new knowledge, uncover potential opportunities, or identify
previously unknown solutions.

Exploitation, on the other hand, involves maximizing the current knowledge or exploiting
known resources to achieve immediate gains. It focuses on utilizing the existing informa-
tion, or exploiting well-established solutions to optimize the outcome of the objective
function. The aim of exploitation is to capitalize on the available knowledge to obtain
the best possible results based on the current understanding of the problem.

Among some of the most established acquisition functions there is:

Probability of Improvement (PI)

Probability of Improvement (PI) is an acquisition function that selects the next point for
evaluation based on the probability that it will improve over the current best observation
[Jones et al., 1998a]. Mathematically, PI can be defined as:

PI(θ) = P (f(θ) > f(θ+) + ξ), (4.3)
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where f(θ) is the objective function, θ+ is the current best observation, and ξ is an
exploration parameter that encourages sampling in uncertain regions. The probability
can be computed using the Gaussian process model’s predictive distribution:

PI(θ) = Φ
(

µ(θ)− f(θ+)− ξ

σ(θ)

)
, (4.4)

where Φ is the cumulative distribution function of the standard normal distribution, µ(x)
is the predictive mean, and σ(θ) is the predictive standard deviation at the input point x

[Mockus, 1998].

Expected Improvement (EI)

Expected Improvement (EI) is another acquisition function that balances exploration and
exploitation by considering the expected improvement over the current best observation
[Mockus, 1998]. EI can be defined as:

EI(x) = E
[
max(f(θ)− f(θ+), 0)

]
, (4.5)

where f(θ) is the objective function, and θ+ is the current best observation. Using
the Gaussian process model’s predictive distribution, the expected improvement can be
computed as:

EI(θ) = (µ(θ)− f(θ+)− ξ)Φ(Z) + σ(θ)ϕ(Z), (4.6)

where Z = µ(θ)−f(θ+)−ξ
σ(θ) , Φ is the cumulative distribution function, and ϕ is the probability

density function of the standard normal distribution. The parameter ξ encourages
exploration, with larger values promoting greater exploration of the search space [Jones
et al., 1998b].

Upper Confidence Bound (UCB)
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Upper Confidence Bound (UCB) is an acquisition function that selects the next point for
evaluation based on the upper confidence bound of the predictive distribution [Auer,
2002]. UCB can be defined as:

UCB(θ) = µ(θ) + κσ(θ), (4.7)

where µ(θ) is the predictive mean, σ(θ) is the predictive standard deviation at the input
point θ, and κ is a parameter that controls the exploration-exploitation trade-off. A larger
value of κ encourages more exploration.
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Fig. 4.1.: Bayesian optimization procedure with 10 iterations. Each row of two plots are result of
an iteration. First and third row of plots depict the noise-free objective function along-
side the surrogate function, represented by the Gaussian process posterior predictive
mean. Additionally, the 95% confidence interval of the mean and the noisy samples
obtained from the objective function are illustrated. The second and fourth row plots
showcases the acquisition function, specifically the expected improvement. Notably,
a vertical dashed line is included in both plots to indicate the proposed sampling
point for the subsequent iteration, which corresponds to the maximum value of the
acquisition function.

4.3 Methodology

In a federated scenario, we suppose there are K institutions participating in a federated
learning experiment, each with a local dataset Dk of size Nk. The goal is to learn a
global model θ that minimizes the expected loss over all clients, subject to privacy

4.3 Methodology 65



and communication constraints. This can be formulated as the following optimization
problem:

min
θ∈Ω

f(θ) + λR(θ), (4.8)

where,

f(θ) =
K∑

k=1

Nk

N
Fk(θ), (4.9)

Ω is the set of feasible parameters for the model, N =
∑K

k=1 Nk is the total number of
data points, Fk(w) is the local loss function for client k that measures the difference
between the predicted output of the model θ and the true output for a given input
x, and R(θ) is a regularization term that encourages the model to be simple or have
certain desirable properties, and λ is a hyperparameter that controls the strength of the
regularization.

The local average loss function value Fk(θ) for client k is computed as:

Fk(θ) = 1
Nk

∑
(x,y)∈Dk

ℓ(θ; x, y) , (4.10)

where, ℓ(θ; x, y) represents the specific loss function that is being optimized with respect
to the model parameters θ given the observed variables x and y.

We propose to solve this optimization problem by iteratively updating the global model
θ using local evaluations of the target function from each client without performing
local updates as originally proposed by [McMahan et al., 2017]. Instead of aggregating
the locally updated models at each step, a response surface is better approximated at
each iteration by a GP as explained in the next section. The process is repeated until
convergence or a stopping criterion is met.

In our approach, the regularization termR(θ) serves a similar purpose to the exploration-
exploitation trade-off terms mentioned earlier. It is a function of the acquisition function
and helps balance the exploration of new regions of the input space with the exploitation
of regions with high expected utility avoiding thus falling in local minima.
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4.3.1 Federated Bayesian Optimization

In our approach, by considering each client’s objective functions Fk(θ) as realizations of
a Gaussian process as shown in Equation (4.11), then minimizing the GP with respect to
the parameters of the model is equivalent to finding the best operating parameters θ of
the model in question. In order to accelerate convergence we conveniently consider that
θ lives in a subspace or parameters denominated the search space Ω.

Fk(θ) ∼ GP(µ(θ), k(θ, θ′) =⇒ min
θ∈Ω

f(θ) ∝ min
θ∈Ω
GP(µ(θ), k(θ, θ′)) (4.11)

Search space learning:
Accelerating the convergence of Bayesian optimization can be achieved by defining

appropriate bounds for the search space. This, in our federated BO proposal, would also
be translated as a more optimal utilization of the communication channel. To reach this
goal, we propose to introduce adaptive learnable bounds as proposed in Perrone et al.’s
work [Perrone et al., 2019]. Perrone’s method provides a framework for learning the
search space geometry from historical data, allowing to focus the optimization process
on relevant regions.

In Perrone’s work, they address the challenge of optimizing black-box functions by
automatically designing the search space based on evaluations of previous functions. By
departing from the common practice of defining arbitrary search ranges a priori, they
introduce a methodology to learn search space geometries from previous ones. This
approach endows Bayesian optimization methods with transfer learning properties and
significantly improves the optimization process.

The key idea is to minimize the volume of the search space while ensuring that all the
solutions resulting from maximizing the acquisition function are contained within the
learned bounds. Perrone’s method formulates the problem as minimizing the search
space volume Q, represented by the subspace bounds Ω, as shown in Equation 4.12.

min
Ω∈Rd

Q(Ω) such that for t ≥ 1 , θ+ ∈ Ω (4.12)

In Equation 4.12, the variable t represents the index of the previously optimized black-
box functions. It indicates that the search space should accommodate all the solutions
obtained from maximizing the acquisition function for each of the functions indexed
from 1 to t.
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As a first instantiation, Perrone et al. consider the bounding space to be a hyperrectangle,
where the search space can be described by its lower and upper bounds Ω = (l, u). The
problem can then be rewritten as follows:

min
l∈Rd,u ∈Rd

1
2 ||u− l||22 such that, l ≤ θ+ ≤ u (4.13)

(4.14)

Hence, the optimal lower and upper bounds are obtained as l∗ = min{θ+}Tt=1 and
u∗ = max{θ+}Tt=1, representing the smallest hyperrectangle containing all the previously
optimized solutions.

Optimization of the target function:
We rely on BO and the probabilistic nature of GPs to estimate not only the mean but also
the uncertainty of a function. We choose Expected Improvement (EI) as the acquisition
function, as it is considered less prone to falling into local minima. The fundamental idea
behind EI is to maximize the distance between the current point and the candidate point,
while balancing the trade-off between exploitation and exploration. EI focuses on not only
identifying candidates at the optima of µ(θ) but also penalizing the uncertainty σ2(θ) =
k(θ, θ)−k

(
θ, {θ+}Tt=1

) [
K
(
{θ+}Tt=1, {θ+}Tt=1

)
+ λ2I

]−1
k
(
{θ+}Tt=1, θ

)
[Pardalos et al.,

2021]. This balancing act enables a trade-off between exploitation (finding the minimum)
and exploration (avoiding local optima). EI, in particular, evaluates the expected positive
distance between the current point and the solution θ+, offering an effective approach to
guide the optimization process.

EI(θ) = E
[
max(f(θ)− f(θ+), 0)

]
(4.15)

EI(θ) =

(µ(θ)− f(θ+)− ξ)Φ(Z) + σ(θ)ϕ(Z) if σ(w) > 0

0 if σ(θ) = 0
(4.16)

Z =


µ(θ)−f(θ+)−ξ

σ(θ) if σ(θ) > 0

0 if σ(θ) = 0
(4.17)

Where, µ(θ) and σ(θ) correspond to the posterior prediction from the Gaussian process
(GP). Φ and ϕ represent the cumulative distribution function (CDF) and probability
density function (PDF), respectively. The parameter ξ is a penalization term that balances
exploration and exploitation in the parameter space.
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In this context, each solution θ+ serves as an exploration point within the search space,
aiming to gather as much knowledge as possible from the response function f in Equation
4.9. Unlike the aggregated model, these solutions focus on exploring regions with high
uncertainty (large σ(θ)) rather than solely advancing in the direction with the steepest
gradient.

Algorithm 4: Federated Bayesian optimization
Require: Define a modelMθ, parametrized by θ, and an objective function

f(θ) ∼ GP(µ(θ), k(θ, θ′)). NR rounds and K clients.
Ensure: Initialize set of parameters: θ+ ∼ Uniform(l, u).

while ni ≤ NR do
for k ∈ {1, 2, ..., K} do

Evaluate Fk(θ+)
end for
Compute global loss yt ←

∑K
k=1

Nk
N Fk(θ+)

Update search space Ω← Ω ∪ θ+, y← y ∪ yt

Fit response surface f(θ)← GP(·, ·)|(y, Ω)
Obtain θ+ = maxθ EI(θ), where EI(θ) is the Expected Improvement acquisition
function.

end while

The aggregation scheme, which combines Bayesian optimization (BO) and the learning
bounds strategy proposed by Perrone et al. [Perrone et al., 2019], is detailed in Algorithm
4. This algorithm iteratively optimizes the model by updating the search space and
fitting a Gaussian process response surface to guide the exploration. The optimal model
is selected based on the best-performing set of parameters θ+ obtained during the
iterations.

4.4 Results

4.4.1 Synthetic Data

Synthetic data was generated for two tasks: regression, and classification. We specifically
chose these two tasks as these problems are simple and convex in the case of linear
regression, allowing for a clear comparison between different approaches. These tasks
also provide a baseline for evaluating the scalability and performance of our proposed
federated Bayesian optimization method compared to FedAvg. By focusing on these
simple problems, we can isolate the impact of dimensionality and assess the scalability of
the two approaches more effectively.

Impact of Dimensionality on Scalability
The synthetic data experiments involved testing for five different levels of complexity,
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corresponding to different numbers of parameters: 1, 3, 10, 30, and 100. To simulate a
more realistic scenario, the data was slightly biased per site with a random shift. This
test of dimensionality allows us to compare the scalability of FedAvg and our proposed
Bayesian optimization method.

The Figure 4.3 illustrates the scalability of FedAvg and our proposed approach across
different numbers of parameters. The left panel displays the cosine distance, which
measures the angular dissimilarity between the groundtruth or target parameters (coeffi-
cients) optimized by each approach. The middle panel represents the Euclidean distance,
capturing the overall difference between the optimized and true parameters.

The results reveal that our proposed approach falls short compared to FedAvg in terms of
performance across all metrics. Both the cosine distance and Euclidean distance show
higher values for our approach, indicating a larger discrepancy from the true parameters.
Additionally, the execution time for our approach tends to be comparable to or even
longer than that of FedAvg, indicating poorer efficiency.

These observations highlight the challenges and limitations of our proposed approach
in achieving accurate parameter optimization and efficient execution. It is evident that
FedAvg outperforms our method in terms of parameter approximation and execution
time. These results underscore the need for further investigation and refinement of our
approach to address these shortcomings and enhance its performance in the context of
federated learning optimization.

As shown in Figure 4.2, we illustrate the scalability of FedAvg and our proposed approach
for linear regression with varying numbers of parameters, it is evident that FedAvg scales
better as the number of parameters increases. This finding suggests that FedAvg may
be more suitable for handling larger and more complex models in federated learning
scenarios. Figure 4.3 illustrates the scalability of both approaches with respect to the
groundtruth set of parameters and the execution time as the number of parameters
increases logarithmically.

Additionally, we explored a combination of partially locally optimized parameters using
stochastic gradient descent (SGD) as an additional exploration strategy in conjunction
with our proposed Bayesian optimization approach. This strategy involved applying SGD
for one epoch to guide the search of the parameter space towards potentially promising
regions. An example of this combination is shown in Figure 4.4, illustrating the evolution
of the R2 metric for regression in a convex problem on synthetic data and brain data.
The results demonstrate that the initial guided exploration by gradient descent can lead
to improved convergence, resulting in better optimization performance. However, it is
worth noting that the optimization progress plateaus as the exploration continues, despite
using a low balance between exploration and exploitation (ξ = 0.01). This suggests that

70 Chapter 4 Federated black-box Bayesian optimization



0 10 20 30 40
Iteration

10
0

0

N
eg

. M
S

E

Fed. Bayesian Optimization
FedAVG

(a) 1 parameter

0 10 20 30 40
Iteration

10
4

10
3

10
2

10
1

10
0
0

N
eg

. M
S

E

Fed. Bayesian Optimization
FedAVG

(b) 3 parameters

0 10 20 30 40
Iteration

10
6

10
5

10
4

10
3

10
2

10
1

10
00

N
eg

. M
S

E

Fed. Bayesian Optimization
FedAVG

(c) 10 parameters

0 10 20 30 40
Iteration

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
00

N
eg

. M
S

E

Fed. Bayesian Optimization
FedAVG

(d) 30 parameters

Fig. 4.2.: Negative mean squared error over iterations for different numbers of parameters on
synthetic data. Model optimized: Linear regression. The x-axis represents the number
of iterations or rounds of communication, while the y-axis corresponds to the negative
value of the mean squared error (MSE), which serves as a surrogate of the likelihood
(function to be maximized).

FedAvg techniques are better at achieving further improvement. Therefore, our proposed
approach may not be as effective in this context. Same plateau observed in the previous
experiments applies for the classification task on synthetic data, as shown in Figure
4.5 (left panel). The figure displays the evolution of classification metrics, specifically
accuracy and F1 score, across rounds of communication.

In spite of the results, we explored our method on a more complex and widely used
model in neuroimaging, the Variational Autoencoder (VAE). The VAE has gained sig-
nificant popularity in the field of neuroimaging due to its ability to capture complex
data distributions and generate meaningful representations. By leveraging its generative
framework, the VAE can learn latent representations that capture important features and
variations in the brain imaging data.

Figure 4.6 presents the results of our method applied to the VAE model. The figure
illustrates the evolution of the reconstruction loss, which serves as an important metric
for evaluating the quality of the VAE’s generated outputs. Despite our best efforts, the
optimization progress for the VAE model did not reach satisfactory levels, indicating
the challenges associated with optimizing complex models in the federated learning
setting.
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Fig. 4.3.: Comparison of scalability between FedAvg and our proposed approach. The left panel
shows the cosine distance between the optimized and true parameters (lower values
indicate better accuracy), the middle panel displays the Euclidean distance (lower
values indicate better convergence), and the right panel presents the execution time in
seconds.

4.4.2 Brain imaging data

A total of 87 measures, including subcortical volumes and cortical thicknesses de-
rived from T1-weighted magnetic resonance images (T1w-MRI) were extracted using
FreeSurfer 6.0. To create a realistic multi-center scenario with non-independent and iden-
tically distributed (non-iid) data, different datasets were incorporated. These datasets
consisted of 801 baseline participants from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI), 401 participants from the OASIS-I cross-sectional dataset, 1,117 participants
from OASIS-III, and 67 participants from the Minimal Interval Resonance Imaging in
Alzheimer’s Disease (MIRIAD) for a total of 2369 participants.

To assess the proposed method, a binary classification task was defined, categorizing
the participants into controls (NC) and cognitively impaired (CI) groups. This catego-
rization allows for the identification of potential differences between individuals with
normal cognitive functioning and those with cognitive impairments. A logistic classifier
was employed for the classification task, which is a widely used algorithm for binary
classification and as in the experiments with synthetic data, suitable for comparison.
Classification metrics across iterations/rounds are shown in Figure 4.5.

For a more comprehensive understanding of the study’s population demographics, please
refer to Table 4.1.

Equivalently, the right panel of Figure 4.6 presents the results on brain imaging data
using a variational autoencoder (VAE). The reconstruction errors (MSE and MAE) across
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Fig. 4.4.: Evolution of R2 for regression in a convex problem on synthetic data across different
scenarios varying the number of parameters to optimize. FedAvg settings: 10 epochs
locally. Each iteration corresponds to a round of communication/aggregation. Pa-
rameters being optimized: 30 (top left), 100 (top right), 300 (bottom left) and 1000
(bottom right).

communication rounds serve as a measure of the quality of the reconstructed phenotypes
are illustrated. Similar to the previous experiments, the results demonstrate the presence
of a plateau effect in the optimization process.

4.5 Challenges and Future Directions

The investigation into the use of Bayesian optimization in federated learning has provided
important insights and lessons learned. While our approach holds potential for hyper-
parameter tuning and optimization in the federated learning setting, several challenges
and avenues for future research and development should be considered.

Firstly, our experiments have revealed the scalability challenge associated with the
number of parameters in a model. The optimization process becomes more complex and
time-consuming as the number of parameters increases, even when adaptive bounds
are applied. This issue can limit the applicability of our proposed method to larger
and more complex models. Future research should focus on developing techniques or

4.5 Challenges and Future Directions 73



Controls
(NC)

Cognitively
Impaired (CI)

ADNI
(N=801)

N. Participants 175 621
Age at study entry
(years ± std)

75.79 ± 4.99 74.86 ± 7.23

Male proportion (%) 52% 58%

OASIS-I
(N=401)

N. Participants 314 87
Age at study entry
(years ± std)

54.22 ± 26.20 78.86 ± 11.12

Male proportion (%) 37% 41%

OASIS-III
(N=1098)

N. Participants 709 306
Age at study entry
(years ± std)

67.8 ± 9.86 74.28 ± 7.87

Male proportion (%) 41% 53%

MIRIAD
(N=69)

N. Participants 23 46
Age at study entry
(years ± std)

69.7 ± 7.2 69.4 ± 7.1

Male proportion (%) 52% 41%

Tab. 4.1.: Demographic characteristics of the patients and datasets included in the study.

optimizations to overcome this scalability limitation and enable efficient optimization in
high-dimensional parameter spaces.

Secondly, the plateau effect observed in the optimization progress suggests that further
improvement may require a more refined balance between exploration and exploitation in
the parameter space. Exploring alternative exploration strategies or incorporating adap-
tive mechanisms to dynamically adjust the balance between exploration and exploitation
could be worthwhile avenues for future investigation. Additionally, investigating the im-
pact of different acquisition functions or surrogate models in Bayesian optimization within
the federated learning context could lead to improved optimization performance.

Furthermore, the work of Dai et al. has introduced the concept of differentially private
federated Bayesian optimization with distributed exploration [Dai et al., 2021]. Their
approach integrates differential privacy into the federated Thompson sampling algorithm
to preserve user-level privacy while improving utility through distributed exploration.
This suggests that privacy-preserving optimization techniques can be further explored
and incorporated into the federated learning context to enhance the privacy guarantees
of our proposed Bayesian optimization method.

Additionally, the study conducted by Holly et al. on evaluating hyperparameter optimiza-
tion approaches in an industrial federated learning system highlights the advantage of a
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Fig. 4.5.: Evolution of classification metrics across rounds of communications (iterations). The
left panel presents the results obtained on Synthetic data (iid distributed), where
classification was performed on 4 classes. The right panel displays the results for
brain data using MIRIAD as the testing set, addressing a control-case problem (NC vs
CI). FedAvg settings included 10 locally executed epochs. Additionally, a centralized
method is shown using Adam. To better estimate the response surface, a first sampling
step and a single epoch of optimization were allowed in each site as a warm up step
for the Bayesian optimization.

global optimization approach, specifically using a grid search algorithm, in improving
the performance of federated models [Holly et al., 2022]. In their approach, the global
optimization is achieved by iteratively performing the FedAvg algorithm with different
learning rates on the clients, evaluating the model’s performance on validation data, and
selecting the learning rate that yields the highest average accuracy across clients. These
findings suggest that a careful consideration of global optimization strategies, such as
grid search, can yield better results in hyperparameter optimization within the federated
learning context. Further research can explore the behavior and performance of different
hyperparameter configurations and optimization approaches, taking into account a wider
range of hyperparameters and their effects on federated learning models.

In conclusion, while our investigation has shed light on the potential of Bayesian op-
timization in the federated learning setting, challenges remain in terms of scalability
and optimization performance. Future research should focus on addressing these chal-
lenges and further refining the proposed approach to make it more efficient, scalable,
and applicable to a wider range of models. Additionally, exploring privacy-preserving
optimization techniques and incorporating insights from related works can help enhance
the privacy and utility trade-off in federated learning optimization. By overcoming
these challenges, we may unlock the full potential of Bayesian optimization in federated
learning scenarios.
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Fig. 4.6.: The left panel depicts the results on synthetic data with 4 simulated classes, while the
right panel displays the results for brain data. The brain data was segregated using two
classes: NC (controls) and CI (cognitively impaired). Federated Averaging (FedAvg)
settings consisted of 10 locally executed epochs. Furthermore, the caption includes
a comparison with the centralized approach using Adam as the optimizer. To better
estimate the response surface, a first sampling step and a single epoch of optimization
were allowed in each site as a warm up step for the Bayesian optimization.

4.6 Conclusions

We investigated in this chapter the use of Bayesian optimization as an optimization
scheme for federated learning. While it initially showed promise in centralizing the
optimization process and potentially improving the generalizability of models, scalability
remains a challenge as the number of parameters in a model impacts the optimization
process, even when adaptive bounds are applied. One potential solution to address this
issue is to guide the initial search using gradient descent. However, further exploration
is needed, as our findings indicate that the model’s performance does not improve
substantially after the initial search. In conclusion, Bayesian optimization offers a
promising direction for federated learning, but additional research is required to address
the scalability challenges and fully harness its potential in this context.
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Abstract: As the quantity of data generated by the healthcare industry continues
to grow, an array of challenges is jointly presented, particularly in terms of data
access, transfer, and privacy. Federated learning emerges as a solution to these
challenges, providing privacy-aware approaches to data analysis through decentral-
ized optimization methods that maintain data distribution siloed. However, in the
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field of neuroimaging, there is a lack of common frameworks that standardize or
allow a seamless workflow for medical studies. Besides, existing federated learning
frameworks are often constrained to specific hardware, modeling approaches or
applications, and lack the innate capacity to provide a production-ready environment
for deployment.

To address this gap, we proposed in 2020 Fed-BioMed, an open-source federated
learning frontend framework specifically designed for healthcare applications. Our
contribution lies in the development of an infrastructure that not only ensures is
compliant with privacy-preserving policies such as the CCPA and the GDPR and
inspired by industrial guidelines as the IEEE 3652.1-2020 [, 2021], but also brings
together a versatile architecture that is model agnostic and is flexible to different
optimization techniques.

This chapter outlines the pioneering work that forms the foundation of the Fed-
BioMed platform. The presented work encapsulates the essential motivations and
design principles that have driven the evolution of Fed-BioMed into a comprehensive
collaborative development project. We explore the original 2020 software compo-
nents, their deployment, and the integration of learning models into the federated
learning system. Components and functionalities that are still current as to the date
of this publication. We presented this work at the Workshop on Distributed And
Collaborative Learning (DCL) in MICCAI 2020 and published in Springer (LNCS),
this work also showcases one of the first real-world applications of federated learning
in the federated analysis of multicentric brain imaging data. It is noteworthy that
what makes up the Fed-BioMed framework today largely stems from this initial
foundation.

5.1 Context

Fed-BioMed is an open-source initiative, dedicated to the research and development of
federated learning for practical medical applications. This initiative was conceived after
our work on Federated Principal Component Analysis (fPCA) [Silva et al., 2019], after
realizing that the healthcare sector lacked a comprehensive framework for federated
learning applications.

This chapter presents how we first filled such gap, the design choices, creation of Fed-
BioMed, and a first real-life scenario benchmark using neuroimaging data. This core
was initially introduced at the 2nd edition of Domain Adaptation and Representation
Transfer, and Distributed and Collaborative Learning MICCAI Workshop in 2020 [Silva
et al., 2020]. The presentation provided a comprehensive overview of the fundamental
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aspects of Fed-BioMed, detailing its purpose, structure, and functionalities. It is worth
pointing out that the Fed-BioMed framework, as it stands today, is deeply rooted in
the foundational work presented in this chapter. The principles, design elements, and
functionalities we outlined remain at the core of the framework, showing resilience and
enduring nature in the midst of technological advancements.

Fed-BioMed, which is now continuously maintained and improved by a team of engi-
neers at the Service d’Expérimentation et de Développement (SED) in the Centre INRIA
d’Université Côte d’Azur. The team works closely with stakeholders to gather feedback,
ensuring that the framework stays relevant and effective in meeting the needs of users.
Fed-BioMed has evolved since our initial presentation, with new updates and functionali-
ties continuously being added to enhance its capabilities. For the most current details
on these updates and new features, we refer to the work of [Cremonesi et al., 2023]
and the official website (https://fedbiomed.gitlabpages.inria.fr/), in which an
up-to-date discussion on the state of the initiative is provided.

5.2 Introduction

The private and sensitive nature of healthcare information often hampers the use of anal-
ysis methods relying on the availability of data in a centralized location. Decentralized
learning approaches, such as federated learning, represent today a key working paradigm
to empower research while keeping data secure[Li et al., 2020a].

Initially conceived for mobile applications [Konečnỳ et al., 2016], federated learning
allows to optimize machine learning models on datasets that are distributed across clients,
such as multiple clinical centers in healthcare [Brisimi et al., 2018]. Two main actors play
in the federated learning scenario: clients, represented for instance by clinical centers,
and a central node that continuously communicate with the clients [Yang et al., 2019].

Federated learning methods must address three main issues: security, by preventing
data leakages and respecting privacy policies such as the EU general data protection
regulation (GDPR) [Voigt et al., 2017], communication efficiency, by optimizing the rounds
of communication between clients and the central node, and heterogeneity robustness,
by properly combining models while avoiding biases from the clients or adversarial
attacks aiming to sabotage the models [Bhagoji et al., 2019; Bagdasaryan et al., 2020].
These issues are currently tackled through the definition of novel federated analysis
paradigms, and by providing formal guarantees for the associated theoretical properties
[Li et al., 2018; Li et al., 2019a].
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Besides the vigorous research activity around the theory of federated learning, applica-
tions of the federated paradigm to healthcare are emerging [Gupta et al., 2018; Kim et
al., 2017; Lee et al., 2018]. Nevertheless, the translation of federated learning to real-life
scenarios still requires to face several challenges. Besides the bureaucratic burden, for
federation still requires to establish formal collaboration agreements across partners, the
implementation of a federated analysis framework requires to face important technical
issues, among which the problem of data harmonization, and the setup of software
infrastructures. In particular, from the software standpoint, the practical implementation
of federated learning requires the availability of frontend frameworks that can adapt to
general modeling approaches and application scenarios, providing researchers with a
starting point overcoming problems of deployment, scalability and communication over
the internet.

5.3 Goals and Contributions of Fed-BioMed

In this work we propose Fed-BioMed, an open-source production-ready framework for
federated learning in healthcare. Fed-BioMed is Python-based and provides modules
to deploy general models and optimization methods within federated analysis infras-
tructures. Besides enabling standard federated learning aggregation schemes, such as
federated averaging (FedAvg) [Konečnỳ et al., 2016; McMahan et al., 2017], Fed-BioMed
allows the integration of new models and optimization approaches. It is also designed
to enable the integration with currently available federated learning frameworks, while
guaranteeing secure protocols for broadcasting.

We expect this framework to foster the application of federated learning to real-life
analysis scenarios, easing the process of data access, and opening the door to the
deployment of new approaches for modeling and federated optimization in healthcare.
The code will be freely accessible from our repository page (https://gitlab.inria.f
r/fedbiomed).

5.4 Related works

NVIDIA Clara is a large initiative focusing on the deployment of federated learning in
healthcare [Yuhong et al., 2019], currently providing a service where users can deploy
personalized models. The code of the project is not open, and it requires the use of
specific hardware components. This may reduce the applicability of federated learning to
general use-cases, where client’s facilities may face restrictions in the use of proprietary
technology.
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The Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Compu-
tation (COINSTAC) [Plis et al., 2016] focuses on single-shot and iterative optimization
schemes for decentralized multivariate models, including regression and latent vari-
able analyses (e.g. principal/independent-component analysis, PCA-ICA, or canonical
correlation analysis, CCA). This project essentially relies on distributed gradient-based
optimization as aggregating paradigm. A frontend distributed analysis framework for
multivariate data modeling was also proposed by [Silva et al., 2019]. Similarly to
COINSTAC, the framework focuses on the federation of multivariate analysis and di-
mensionality reduction methods. The PySyft initiative [Ryffel et al., 2018] provides an
open-source wrapper enabling federated learning as well as encryption and differential
privacy. At this moment however this framework focuses essentially on optimization
schemes based on stochastic gradient descent, and does not provide natively a deployable
production-ready framework. Fed-BioMed is complementary to this initiative and allows
interoperability, for example by enabling unit testing based on PySift modules.

5.5 Implementation Overview and Architecture of
Fed-BioMed

Fed-BioMed is designed as a microservices-based architecture, organized according to
the different actors in Federated Learning (FL): (i) the clients (nodes), responsible
for managing the data they want to allow modeling on, (ii) a server or central node
(network) service, in charge of managing communication and model parameter sharing,
and (iii) the researcher, whose model or optimization method is to be deployed and
tested. The architecture is inspired by the 2018 “Guide for Architectural Framework
and Application of Federated Machine Learning” (Federated Learning infrastructure
and Application standard)1, basing it on a server-client paradigm with three types of
instances: central node, clients, and federators.

5.5.1 Client (Node) Service

Clients, nodes or institutes are responsible for storing the datasets through a dedicated
client application. Since not every client is required to store the same type of data, this
enables studies with heterogeneous or missing features across participants. Moreover,
depending on the target data source and on the analysis paradigm, centers can be either
included or ignored from the study. Each client verifies the number of current jobs in
queue with the central node, as well as data types and models associated to the running
jobs.

1https://standards.ieee.org/project/3652_1.html
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Figure 5.2 shows Fed-BioMed’s user interface which allows institutions to configure
multiple types of data for modeling consent, such as plain-text based data in the form
of CSV or TSV files, default datasets from third-party repositories, or image data. Once
configured, a client can start and stop the service whenever considered appropriate.
Clients receive commands from researchers that trigger defined events like: ping to check
node availability, local training of a specific model, and data description requests (e.g.,
sample sizes to account for size effects).

5.5.2 Central Node (Network) Service

The central node or network service serves as a trusted broker between researchers and
participating clients or institutions. It manages communication channels, model updates,
and serves as an ephemeral storage service for model aggregation, ensuring secure and
efficient collaboration between all parties involved.

In order to maintain an optimized communication channel, event triggering, messaging,
and model parameter sharing are managed by two services. Both commands and data
flow can coexist without hindering each other. Messaging is managed through MQTT, a
standard industrial protocol for efficient messaging communication. Additionally, model
flow is managed using HTTP requests via a REST API developed in Django as the backend
framework. This architecture consequently delegates parameters’ data flow to the central
node instead of being the researcher’s responsibility.

These services are also provided within Fed-BioMed in the form of Docker containers,
so they can be scaled horizontally. The central node’s role in a federated learning setup
ensures secure and efficient communication between all parties involved in the study.

Furthermore, the central node is responsible for maintaining a job queue, which keeps
track of the current jobs in progress and their associated models and data. This allows
clients to verify the number of current jobs in the queue, as well as data types and models
related to the running jobs.

5.5.3 Researcher Service

The researcher service in Fed-BioMed provides a comprehensive and efficient platform
for researchers to develop, deploy, and manage their models in a federated learning
environment. By providing support for various aggregation methods, model development,
and orchestration of the training process, Fed-BioMed enables researchers to effectively
address data heterogeneity, ensure robust model performance across diverse nodes, and
maintain control over the entire federated learning process.
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An Experiment class is included in the package and it is responsible for orchestrating the
training process on available nodes. Such orchestration involves:

• Searching for datasets on active nodes based on specific tags provided by a re-
searcher and used by the nodes to identify the dataset.

• Uploading the training plan file created by the researcher and sending the file URL
to the nodes.

• Sending model and training arguments to the nodes.

• Tracking the training process in the nodes during all training rounds.

• Verifying the nodes’ responses to ensure that each round is successfully completed
in every node.

• Downloading the local model parameters after every round of training.

• Aggregating the local model parameters based on the specified federated approach,
and eventually sending the aggregated parameters to the selected nodes for the
next round.

As of the publication of this work, Fed-BioMed supports several aggregation methods
to tackle the challenges posed by heterogeneous data in federated learning. The first
method, FedAvg, is a widely-used standard aggregation scheme in federated learning
that performs federated averaging. Additionally, we provide FedProx and SCAFFOLD
aggregation methods to further enhance the capabilities of the researcher service in
handling diverse data distributions and sample sizes.

5.5.4 Communication scheme

Every instance is packaged and deployed in form of Docker containers [Merkel, 2014]
interacting between each other through HTTP requests. Containerized instances help
to overcome software/hardware heterogeneity issues by creating an isolated virtualized
environment with a predefined operating system (OS), thus improving reproducibility as
every center run on the same software environment. This scheme also achieves scalability
and modularity when dealing with large amounts of clients. In this case, multiple
instances of the API can be created under a load balancer, while federator instances can
be separately deployed on a dedicated computation infrastructure.
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5.5.5 Security

Fed-BioMed addresses typical security issues regarding communication (e.g. man-in-the-
middle and impersonation attacks) and access permissions as follows: 1) all requests are
encrypted by using HTTP over SSL, 2) user authentication relies on a password-based
scheme, and 3) reading/writing operations are restricted by role definitions. Protection
from adversarial or poisoning attacks [Bhagoji et al., 2019] is currently not in the scope
of this work, but can be naturally integrated as part of the federator. In the future,
malicious attacks will be also prevented by implementing certification protocols attesting
the safety of the model source code before deployment [Shen et al., 2016].

5.5.6 Traceability

To allow transparency to the centers and for the sake of technical support, each instance
leverages on a logging system that allows to keep track of every request made, shared
data and of the current available jobs.

The architecture behind Fed-BioMed is illustrated in Figure 5.1. The common procedure
involves the deployment of one or multiple jobs from the researchers. Each job must con-
tain the architecture model to be trained and its initialized parameters for reproducibility,
the number of rounds, and the federator instance to be used as optimizer.

5.6 Related work

The interest in federated learning (FL) has led to a significant increase in the number of
FL frameworks in recent years. Some well-established frameworks, such as TensorFlow
Federated (TFF)2, FedML [He et al., 2020], IBM-FL [Ludwig et al., 2020], FATE [Liu
et al., 2021a], PaddleFL [Ma et al., 2019], and PySyft [Ziller et al., 2021], are not
specifically tailored for biomedical applications but could potentially be deployed in this
domain. Alternatively, more recent works that were not considered at the time of this
work have emerged and have been applied to medial imaging such as SubstraFL [Galtier
et al., 2019], OpenFL [Reina et al., 2021], and Flare [Roth et al., 2022].

5.6.1 Non-medical federated learning frameworks

IBM Federated Learning
IBM-FL [Ludwig et al., 2020] is a Python framework designed for federated learning

2https://www.tensorflow.org/federated
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Fig. 5.1.: Clients providing different data sources share their local model parameters with the
central node. The central node creates the jobs that will be run by the clients, and
transmits the initialization parameters for the models in training. The federator gathers
the collected parameters and combines then into a global model that is subsequently
shared with the clients for the next training round. As instances are isolated in
containers, new instances, such as a new federators (dashed line), can be introduced
without altering the behavior of the infrastructure.

in enterprise environments. The framework provides a basic fabric for FL, upon which
advanced features can be built. It is not dependent on any specific machine learning
framework and supports various learning topologies, such as a shared aggregator, and
protocols. IBM Federated Learning aims to offer a solid foundation for federated learning,
enabling a wide variety of learning models, topologies, and learning models, particularly
in enterprise and hybrid-cloud settings.

PySyft
PySyft[Ziller et al., 2021] is a popular choice, serving as a wrapper for TensorFlow
and PyTorch in federated learning scenarios. While PySyft offers a simple wrapper, it
lacks security and scalability features for production environments due to its reliance
on a single channel for parameter transmission and event triggering. Furthermore, it
only supports multiple nodes in development mode through Virtual workers. PySyft’s
production solution, Duet, permits only a single node-to-researcher connection, which is
suboptimal for FL in production settings.

TensorFlow Federated
TensorFlow Federated (TFF) is an open-source framework designed for machine learning
and other computations on decentralized data. It aims to facilitate research and experi-
mentation with Federated Learning (FL), an approach where a shared global model is
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Fig. 5.2.: A screenshot of the data management utility that is integrated within the Fed-BioMed
framework. This utility plays a crucial role in facilitating the secure and efficient
transfer of data between different healthcare institutions and research centers. With the
Fed-BioMed data management utility, users can securely upload, access, and share data
with other users within a federated learning setup. The utility also includes features
such as data pre-processing, quality control, and privacy-preserving mechanisms to
ensure that sensitive information is protected at all times.

trained across multiple participating clients while retaining their training data locally.
TFF allows developers to simulate federated learning algorithms on their models and
data and experiment with novel algorithms.

The TFF platform comprises two layers: the Federated Learning (FL) layer, which
offers high-level interfaces for integrating existing Keras or non-Keras machine learning
models into the TFF framework, and the Federated Core (FC) layer, providing lower-
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level interfaces for expressing custom federated algorithms. The FC layer combines
TensorFlow with distributed communication operators within a strongly-typed functional
programming environment.

Currently, TFF is designed for experimentation purposes and does not include tools for
production settings, such as deployment on mobile phones. The framework supports a
local simulation runtime for experiments. It is expected that the open-source ecosystem
surrounding TFF will evolve to incorporate runtimes targeting physical deployment
platforms.

Flower
Flower[Beutel et al., 2020], another FL framework, utilizes the same communication
channel for both event triggering and model parameter transmission. Although Flower
potentially supports a large number of nodes, researchers must distribute the same
script across nodes to run an experiment, complicating deployment. Additionally, Flower
requires file paths to be specified or hard-coded at each node for data loading, making it
unsuitable for continuous delivery-centric applications. The framework also delegates
messaging service management to the researcher, reducing system resiliency in the event
of researcher connection or availability issues.

FATE (Federated AI Technology Enabler)
FATE[Liu et al., 2021a] offers a production-grade package enabling the deployment
of existing multi-party computation (MPC) and FL solutions, including homomorphic
encryption capabilities. However, its focus on predefined methods limits flexibility for
research purposes.

Paddle FL
Paddle FL[Ma et al., 2019] presents an industrial FL solution specifically designed for the
PaddlePaddle3 machine learning library. While it provides features such as support for
differential privacy, Paddle FL remains exclusive to the PaddlePaddle framework, lacking
compatibility with PyTorch or TensorFlow.

5.6.2 Medical oriented federated learning frameworks

SubstraFL
SubstraFL [Galtier et al., 2019], developed by Owkin, is a Python library based on
the Substra library. Currently SubstraFL is utilized in healthcare applications such as
drug discovery within the MELLODY project and oncology. SubstraFL’s architecture is
built upon collaboration, privacy, and traceability. While it does not provide any tools

3https://github.com/PaddlePaddle/Paddle
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FED-BIOMED Flower Tensorflow FL FATE PaddleFL PySyft

Federated Learning:
Gradient-descent based models

Support for multiple ML libraries

Node sampling strategies support

Aggregation methods support

Model agnostic

Privacy:
f -DP mechanisms support, MPC

Other features:
Ready for production (deployable)

Node data consent management

Non-gradient-descent based models

VPN support provided

Tab. 5.1.: Comparison of Existing Frameworks in Federated Learning (FL) as of July 2021. Green
circles represent included features, while yellow circles indicate expected features.
Flare was not considered due to its closed-source nature and limited compatibility
with NVIDIA hardware.

dedicated to healthcare or biomedical assets, its distributed ledger-based architecture
ensures secure and transparent operations. However, its centralized governance and
roadmap may hinder the development of an open-source community.

OpenFL
OpenFL [Reina et al., 2021] is a Python-based FL library, was originally designed for
healthcare applications and later expanded to be more general from the use case.
OpenFL’s strong focus on cybersecurity, achieved through measures like TLS-encrypted
communication and PKI certificates which is optimal for multi-institutional collaborations.
While tutorials are provided for medical applications, no core functionalities are specific
to biomedical data sources. Additionally, the adoption of OpenFL may be limited due to
its reliance on proprietary hardware.

Flare
Flare, another Python-based FL library developed by NVIDIA, has been used in various
healthcare applications, including the development of a triaging model for COVID-19
patients [Dayan et al., 2021] and classification and segmentation tasks on medical images
[Roth et al., 2020; Sarma et al., 2021]. Flare’s design principles focus on scalability,
flexibility, and lightweight, making it suitable for cross-silo FL in production settings
and simulated FL for researchers. Although Flare has been showcased in healthcare
settings, it is still a generic framework without specific tools for biomedical data sources.
Furthermore, Flare’s reliance on specialized hardware and configuration files may limit
its flexibility and applicability in hospital settings.
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5.7 Usage

Deploying a new model.
Fed-BioMed relies on a common convention for deploying a new model. A model must be
defined as a PyTorch [Paszke et al., 2019] module class, containing the common methods
for any torch module:

• __init__(**kwargs) method: defines the model initialization parameters;

• forward() method: provides instructions for computing local model updates.

Once the new class is defined, it can be integrated in the model zoo for both clients and
federators (Figure 5.3, left).

Deploying a new federator or aggregation function in the backend is obtained by creating
a containerized service that queries the API for the necessary submissions at each round,
and subsequently aggregates the submitted local updates (Figure 5.3, right).

5.8 Applications and Case Studies

This section showcases Fed-BioMed through two different experiments. The first experi-
ment involves analyzing the MNIST dataset [LeCun et al., 2010] with the participation of
25 clients. The second experiment involves a multi-centric analysis of brain imaging data,
conducted in collaboration with four research partners located in different geographical
regions."

5.8.1 MNIST analysis

The 60000 MNIST images were equally split among 25 centers. Each center was syntheti-
cally emulated and setup in order to interact with the centralized API. The model was
represented by a variational autoencoder (VAE) implementing non-linear encoding and
decoding functions composed by three layers respectively, with a 2-dimensional associ-
ated latent space. For training we used a learning rate of l = 1× 10−3, 10 local epochs
for 30 optimization rounds, while the federated aggregating scheme was FedAvg.
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Fig. 5.3.: Examples of model declaration (left) and creation of a new federator (right).

5.8.2 Brain imaging data analysis

In this experiment we use our framework to perform dimensionality reduction in multi-
centric structural brain imaging data (MRI) across datasets from different geographical
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locations, providing cohorts of healthy individuals and patients affected by cognitive
impairment.

Four centers participated to the study and were based geographically as follows: two
centers in France (Center 1 and Center 4), one in the UK (Center 3), and a last one in
the US (Center 2). The central node and the federator were also located in France. Each
center was running on different OS and the clients were not 100% online during the day
allowing to test the robustness of the framework in resuming the optimization in real-life
conditions.

For each center, data use permission was obtained through formal data use agreements.
Data characteristics across clients are reported in Table 5.2. A total of 4670 participants
were part of this study, and we note that the data distribution is heterogeneous with
respect to age, range and clinical status. 92 features subcortical volumes and cortical
thickness were computed using FreeSurfer [Fischl, 2012] and linearly corrected by sex,
age and intra-cranial volume (ICV) at each center.

This analysis involved data standardization with respect to the global mean and standard
deviation computed across centers, and dimensionality reduction was performed via
a VAE implementing a linear embedding into a 5-dimensional latent space. Federated
data standardization was implemented as in [Silva et al., 2019], while VAE’s parameters
aggregation was performed through FedAvg. Federated learning was performed by
specifying a pre-defined budget of 30 rounds of client-server iterations in total with 15
epochs/client-round at a learning rate of l = 1× 10−3.

Center 1 Center 2 Center 3 Center 4
No. of participants (M/F) 448/353 454/362 1070/930 573/780
Clinical status
No. healthy 175 816 2000 695
No. MCI and AD 621 0 0 358
Age ± sd (range) [years] 73.74 ± 7.23 28.72 ± 3.70 63.93 ± 7.49 67.58 ± 10.04
Age range [years] 54 - 91 22 - 37 47 - 81 43 - 97

Tab. 5.2.: Demographic information for each of the centers that participated in training models
using their MRI-derived brain data is provided below. The cohorts include individuals
with Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD).

5.9 Results

The evolution of the models during training can be assessed by analyzing the weights’
norm across iterations (Figure 5.4 and supplementary material for the complete set of
weights). MNIST parameters evolution is shown in the top panel, while the related
test set projected onto the latent space is shown in Figure 5.5, left panel, describing a
meaningful variability across digits and samples.
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Fig. 5.4.: Illustration of parameter evolution for VAE parameters (input layer). The federated
model closely follows the clients’ weights distribution. Top: MNIST across 25 centers
with equally distributed data. Bottom: brain-imaging heterogeneous dataset across
4 centers with unevenly distributed data. Continuous lines: clients weights’ norm.
Dashed lines: federated model weights’ norm.

Concerning the brain imaging data analysis experiment, the evolution of the encoding
parameters throughout the 30 optimization rounds is shown in Figure 5.4, bottom
panel. For this real-world application we also collected each client’s elapsed time to
report its local updates to the central node, as well as the average time per round in
the best scenario (Figure 5.6). As expected, the clients’ time varies depending on the
geographical proximity with the central node, as well as on the local upload/download
speed. The model was further investigated by inspecting the latent space on the subset
of the training data available to the coordinating Center 1. The right panel of Figure 5.5
shows that although most of the training data for the VAE comes from healthy and young
participants, the model is also able to capture the pathological variability related to
cognitive impairment in aging. The latent variables associated to the observations of
Center 1 indeed show significantly different distributions across different clinical groups,
from healthy controls (CN), to subjects with mild cognitive impairment (MCI), and
patients with Alzheimer’s disease (AD).

5.10 Conclusions

This work presents an open-source framework for deploying general federated learning
studies in healthcare, providing a production ready reference to deploy new studies
based on federated models and optimization algorithms. Our experimental results
show that the framework is stable in communication, while being robust to handle
clients going temporarily out of the grid. Scalability is obtained thanks to the use of
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Fig. 5.5.: Left: MNIST pixel data projected onto the latent space. Right: Brain features of Center
1 projected onto the first 2 components in the latent space. Although the model was
trained with unbalanced data, it is still able to capture pathological variability. CN:
healthy controls; MCI: mild cognitive impairment; Dementia: dementia due to with
Alzheimer’s disease.
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Fig. 5.6.: Top: User average elapsed time per round (since a new version of the model is made
available and each user to submit its local update). Geographical and data distribution:
Center 1 (FR) , Center 2 (US), Center 3 (UK) and Center 4 (FR). Bottom: Averaged
elapsed time across centers per round of updates.

containerized services. The ability to handle client-authentication and the use of secured
broadcasting protocols are also appealing security features of Fed-BioMed. While the
experiments mostly focused on VAE and Federated Averaging as aggregating paradigm,
our framework is completely extensible to other distributed optimization approaches.
Future work will therefore integrate additional models for the analysis of different data
modalities and bias, as well as enhanced secure P2P encryption. Concerning the clinical
experimental setup, the brain application was chosen to provide a demonstration of our
framework to a real-life analysis scenario, and it is not aimed to address a specific clinical
question. In the future, the proposed work Fed-BioMed will be a key component for
clinical studies tailored to address challenging research questions, such as the analysis
of imaging-genetics relationships in current meta-analysis initiatives [Thompson et al.,
2014].
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Conclusion

Throughout this thesis, we have presented a comprehensive investigation of federated
learning and data harmonization techniques for multi-centric neuroimaging studies. By
addressing some of the aforementioned challenges in Section 1.5. In particular, those
associated with data heterogeneity due to diverse data sources, the requirements in
the optimization process, and the need for standardized infrastructure and a unified
framework. As a result, our research contributes to the field of federated learning research
in healthcare by proposing more precise methodologies for analyzing heterogeneous
large-scale neuroimaging data. The key contributions of this work can be summarized as
follows.

Summary of the Main Contributions

Chapter 2: Fed-ComBat: Secure Data Harmonization via
Federated Learning

In Chapter 2, We make significant contributions to the field of federated learning for data
harmonization in healthcare. We introduce Fed-ComBat, a novel federated framework
that enables data harmonization via federated learning. By leveraging federated learning,
Fed-ComBat allows for batch effect harmonization on decentralized data without the need
for data centralization or sharing. Our contributions can be summarized as follows:

• We propose a generalization of the ComBat formulation by [Johnson et al., 2007b]
that allows for the adaptation of any function approximation. This generaliza-
tion extends existing efforts towards nonlinear covariate effect preservation, as
demonstrated by [Pomponio et al., 2020b].

• Thanks to the proposed formulation, we could make use of a Multi-Layer Perceptron
(MLP) as a multivariate nonlinear approximator to preserve nonlinearities and
leverage FL techniques for optimization. By incorporating the MLP, Fed-ComBat
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achieves the preservation of complex nonlinear covariate effects without prior
knowledge of which variables exhibit nonlinear behavior or interactions. This
capability enables global cohort harmonization without the need to share individual
patient data.

• By leveraging federated learning, we enabled global harmonization. Institutions
can collaboratively harmonize cohorts without the need to share individual patient
data. This privacy-aware approach ensures data control and mitigates the risk of
sensitive data leakage, facilitating secure and distributed research collaborations in
healthcare.

Chapter 3: Federated Data Harmonization in Biomedical
Research using Mixed Effects Models: A Focus on Conditional
Variational Autoencoders

This work-in-progress chapter explores the potential of Conditional Variational Autoen-
coders (CVAEs) for data harmonization in a federated learning context, focusing on
neuroimaging data. Preliminary results obtained with synthetic data are promising,
indicating the potential of CVAEs for data harmonization. However, validation with
real-world neuroimaging datasets is still needed. The ultimate goal is to establish a
federated harmonization framework capable of handling various types of data, such as
images or time series, moving beyond the current focus on neuroimaging data.

Among the current and expected contributions:

• We present a novel federated harmonization framework based on CVAEs, aiming to
overcome limitations of existing data harmonization methods by capturing complex
relationships and mixed effects.

• We demonstrate promising outcomes of CVAEs for data harmonization based on
synthetic and real data.

• We motivate future work on the validation of the approach and its potential
generalizability to different types of data such as imaging and time series, as
suggested by [Girin et al., 2021].

Chapter 4: Federated black-box Bayesian optimization

This chapter introduces a novel federated optimization approach based on black-box
Bayesian optimization (BO) to address key challenges in federated learning, including
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communication usage, hardware heterogeneity, and resource availability across partic-
ipating institutions. We have also aimed to improve the generalizability of models in
heterogeneous setups by relying on BO guarantees. The proposed method was evaluated
on synthetic data and multicentric brain data from four different studies for Alzheimer’s
disease. Despite the expected potential of BO in this context, results highlight scalability
issues as number of parameters in the models increase. This informs future research direc-
tions, including overcoming scalability limitations and investigating privacy-preserving
optimization techniques.

Main contributions:

• We Introduced a new federated optimization method leveraging black-box Bayesian
optimization, aiming to centralize the optimization process, reduce communication,
and improve generalizability.

• We revealed the scalability challenges when dealing with a larger number of
parameters in the model, indicating a need for future research to address this issue.

• We suggested potential research directions, including the investigation of privacy-
preserving optimization techniques.

Chapter 5: Fed-BioMed: A General Open-source Frontend
Framework for Federated Learning in Healthcare

Our aim in Chapter 5 was to provide Fed-BioMed as a comprehensive common framework
for federated learning (FL) in healthcare, highlighting its design principles and the under-
lying software architecture. Through collaboration with four geographically distributed
institutions in the United States, the United Kingdom, and France, we demonstrated the
effectiveness and utility of Fed-BioMed in facilitating FL experiments in the healthcare
domain. Our main contributions are as follows:

• We propose Fed-BioMed as a common framework for FL in healthcare that is
model-agnostic and independent of any specific hardware or machine learning
framework. Our open-source framework promotes transparency, collaboration, and
easy adoption by the research community and healthcare practitioners, enabling
them to leverage FL techniques in their data analysis workflows.

• We have played a pivotal role in developing and nurturing the Fed-BioMed initiative,
which extends beyond the scope of production software development. Fed-BioMed
now also aims to bring together collaborators from diverse domains, including
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data science, software programming, healthcare institutions, and researchers, with
the goal of advancing FL research and its practical implementation in real-world
medical research applications [Cremonesi et al., 2023].

• Our work stands as a significant contribution by pioneering the utilization of a
real-life scenario in FL for healthcare. Through collaboration with institutions
across different countries, we have demonstrated the practical applicability of FL
in preserving data privacy, optimizing communication efficiency, and addressing
heterogeneity in modeling. This pioneering work serves as a foundation for further
research and the adoption of FL in real-world healthcare settings.

Perspectives and Future Applications

Direct Application to Imaging

In the preceding sections, our discussion focused primarily on the methodologies pro-
posed in Chapters 2 and 3 as they relate to the derivation of phenotypes. However,
it is crucial to recognize the potential of these techniques to address other challenges,
particularly in the realm of biomedical imaging.

For instance, imaging data often suffer from an array of technical and methodological
biases that can critically distort the information they convey. One such common problem
is the "bias field" or intensity non-uniformity, which refers to low-frequency, spatially
varying intensity alterations in images, leading to difficulties in data interpretation and
analysis. Bias field correction is a routine preprocessing step in biomedical imaging to
ensure accurate subsequent analyses.

Leveraging the federated learning methods proposed in this work could serve as a
powerful means to harmonize imaging data by correcting bias field artifacts, thereby
enhancing the accuracy of biomedical image interpretation. While this application has
not been explicitly discussed, the foundation laid in the present work provides a strong
starting point for exploring this direction.

Enable Access to researchers through the Fed-BioMed
Framework

To maximize the impact of our proposed methodologies, it is vital to consider their
accessibility to the broader research community. As such, the integration of the method
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described in Chapter 2 into the Fed-BioMed framework as a harmonization plugin is an
exciting future direction.

Given the diverse range of biomedical data types and the multitude of possible biases
that could affect them, having a tool that can harmonize data through federated learning
(FL) would be highly beneficial. Our formulation covers a spectrum of harmonization
needs, from linear to non-linear, making it flexible and robust enough to address a wide
array of scenarios.

By providing these tools within the Fed-BioMed framework, we could offer a unified
solution for data harmonization that is both easy to use and highly effective. In doing
so, we could pave the way for enhanced reproducibility and more robust findings in
biomedical research, ultimately advancing our understanding of complex biological
phenomena.

Expanding the Impact on Large Multicentric Consortia

An additional promising direction for future research is extending the utilization of the
methods presented in this thesis to large multicentric consortia, such as the Enhancing
NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium [Thompson et
al., 2014]. Federated learning techniques, coupled with the Fed-BioMed framework,
can empower researchers within these consortia to collaboratively engage in extensive
neuroimaging research projects. This is achievable while ensuring the preservation of
data privacy and maintaining compliance with data protection regulations.

The methods proposed in this thesis offer a pathway to tackle the issues of data het-
erogeneity inherent in multicentric collaborations, optimize models collaboratively, and
share computational burdens. By doing so, we can drive more efficient and impactful
advancements in healthcare research and practice.

Overall, this thesis has offered methodological and technical contributions that address
pivotal challenges - data heterogeneity, optimization, and thee need of an infrastructure
standard and a common framework - within federated learning setups for neuroimag-
ing research. Our work aspires to catalyze more efficient and impactful healthcare
advancements, whilst ensuring the preservation of patient privacy and adherence to data
governance norms.

Through the development of the proposed methods and frameworks, and their integration
into real-world applications and large multicentric consortia, we aim to facilitate the
wider adoption of federated learning in healthcare research. Ultimately, we hope this
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will lead to enhanced understanding, diagnosis, and treatment of neurological disorders,
propelling us towards a positive outcome in healthcare.
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2.4 Qualitative comparison across harmonization methods evaluating the quality
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ASupplementary material for
Chapter 2: Fed-ComBat: Secure
Data Harmonization via Federated
Learning

A.1 Comparing centralized and Fed-ComBat’s
formulation

As the random effects (batch effects) in this work are assumed to be site-specific, the
model’s design matrix X is constructed under a linear assumption, jointly optimizing
the parameters α̂g and γ̂ig. However, for nonlinear scenarios, the model needs to be
reformulated, as previously done by [Pomponio et al., 2020a]. To provide a more
comprehensive understanding of the optimization problem, we propose the following
generalized approach:

yijg = ϕ(xij ; θg) + zijβg + δigεijg (A.1)

Where with respect to the model in Equation (2.1), Z := {zij}∀i,j
is an indicator matrix

as indicated in Equation (A.2) on the batch effects that allows the elements of βg be
composites of αg and γig as shown in Appendix A.1.

zij(1,S) :=

1 if xij ∈ batch i,

0 if xij /∈ batch i.
(A.2)

βg = αg +


γ1g

...
γSg

 (A.3)

s.t. E[γi] =
∑S

i=1
ni
N γig = 0 ∀g∈{1,...,G} (A.4)
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Which with the constraint in Eqn A.4 the estimation of αg and γig from βg becomes
straightforward:

αg = E[βg] =
S∑

i=0
piβig =

�
�

�
��

1
S∑

i=0

ni

N
αg +����*0

E[γig] (A.5)

γig = βig − αg (A.6)

A.2 Harmonization on synthetic data
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Fig. A.1.: Comparison between centralized and federated methods on synthetic data. The
objective is to reconstruct the unbiased (ground-truth) function. As well as their
respective bland Altman plots.

A.3 Harmonization on real data

A.3.1 Evidence of non linear effects on brain phenotypes

Table A.1 shows the difference in Akaike information criterion (AIC) between a GAM and
a GLM approximating the phenotypes (brain measures) as proposed by [Pomponio et
al., 2020a] (B-Splines for approximating age with DOF=10 and degree 3) as a function
of Age, Sex, ICV and group (diagnosis). Negative values indicate a better fit using GAMs
and hence the presence of nonlinear age effect.
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A.3.2 Residual ComBat effects on real data.

Figure A.2 presents the residual plots obtained after fitting a comprehensive model to
the harmonized MRI-derived phenotype data, incorporating variables such as age, sex,
and group. These residual plots provide insightful visual representations of the model’s
performance. Notably, the observed absence of pronounced shifts or variance scaling
in all the models suggests that a linear correction approach proves to be more than
adequate for addressing the particular use case (see Section 2.6).
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A.4 Identifiability of ComBat parameters

A statistical model is said to be identifiable if there exists a unique set of parameter values
that can explain the observed data. Mathematically, a statistical model is identifiable if
the following conditions hold:

Let X be the sample space and fθ(x) be the probability density function or probability
mass function of the statistical model, indexed by the parameter vector θ ∈ Θ.

1. θ is finite-dimensional and Θ ⊆ Rd for some integer d.

2. For any θ1, θ2 ∈ Θ, if fθ1(x) = fθ2(x) for all x ∈ X , then θ1 = θ2. In other words,
the likelihood function, which is defined as L(θ; x) = fθ(x), is injective with respect
to θ.

Condition 1 ensures that the parameter vector is finite-dimensional and belongs to
some subset of Euclidean space. Condition 2 ensures that there exists a one-to-one
correspondence between the parameter values and the probability distribution, which is
necessary for unique estimation of the parameters. These one-to-one correspondence
in the context of Fed-ComBat in Equation (2.3) ensures that there the true expectation
effect is captured by ϕ(xij ; θ) + αg and not by γ̂ig. Equivalently for Equation (2.4). In
practice this is translated to:

• No allowing intercepts in the neural network architectures so only one is estimated
by αg.

• Using a design matrix z shown in Equation (A.1) that allow the estimation of a
single set of intercepts that can then be decomposed βg = {αg + γig}Si=1.

A.5 ComBat formulations

A.5.1 Linear Combat – NeuroCombat [Johnson et al., 2007a;
Fortin et al., 2017]

yijg = αg + x⊺
ijθg + γig + δigεig (A.7)
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A.5.2 ComBat-GAM [Pomponio et al., 2020a]

yijg = αg +
C∑

c=1

Kc∑
k=1

θgkbgk (xijc) + γig + δigεig (A.8)
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