
HAL Id: tel-04417620
https://theses.hal.science/tel-04417620

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cross-Layer Fault Analysis for Microprocessor
Architectures (CLAM)

Ihab Alshaer

To cite this version:
Ihab Alshaer. Cross-Layer Fault Analysis for Microprocessor Architectures (CLAM). Micro and
nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2023. English. �NNT :
2023GRALT062�. �tel-04417620�

https://theses.hal.science/tel-04417620
https://hal.archives-ouvertes.fr

 DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : EEATS - Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Spécialité : Nano électronique et Nano technologies

Unité de recherche : Laboratoire de conception et d'intégration des systèmes

Analyse multi-niveaux des fautes dans les architectures de

processeurs

Cross-Layer Fault Analysis for Microprocessor Architectures (CLAM)

Présentée par :

Ihab ALSHAER

 Vincent BEROULLE Directeur de thèse

PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Paolo MAISTRI Co-encadrant de thèse
CHARGE DE RECHERCHE, Université Grenoble Alpes
Brice COLOMBIER Co-encadrant de thèse
MAITRE DE CONFERENCES, Université Jean-Monnet Saint-Étienne

Vincent BEROULLE Directeur de thèse

PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Jean-Max DUTERTRE Rapporteur

PROFESSEUR DES UNIVERSITES, Ecole Nationale Supérieure des

Mines de Saint-Étienne

Pascal BENOIT Rapporteur

MAITRE DE CONFERENCES HDR, LIRMM, CNRS, Université de

Montpellier

Giorgio DI NATALE Examinateur

DIRECTEUR DE RECHERCHE, CNRS, Université Grenoble Alpes

Marie-Laure POTET Présidente

PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Athanasios PAPADIMITRIOU Examinateur

ASSISTANT PROFESSOR, University of the Peloponnese, Greece

Thèse soutenue publiquement le 16 octobre 2023, devant le jury composé de :

Rapporteurs :

Jean-Max DUTERTRE

PROFESSEUR DES UNIVERSITES, Ecole Nationale Supérieure des Mines de Saint-Étienne

Pascal BENOIT

MAITRE DE CONFERENCES HDR, LIRMM, CNRS, Université de Montpellier

Invités :

Christophe DELEUZE

MAITRE DE CONFERENCES, Université Grenoble Alpes

Direction de thèse :

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis supervisors: Prof. Vincent
Beroulle, Dr. Paolo Maistri, Dr. Brice Colombier, and Dr. Christophe Deleuze. Their in-
valuable assistance, kindness, and unwavering support throughout these years have
been instrumental in my progress. They have broadened my perspective and greatly
enhanced my ability to analyze and interpret various aspects.

I would also like to extend my appreciation to my CSI members: Prof. Jean-Max
Dutertre and Prof. David Hély, for generously dedicating their time, providing insight-
ful comments, and offering valuable feedback at the start of each year of my PhD jour-
ney.

I am also grateful to Prof. Jean-Max Dutertre and Dr. Pascal Benoit for taking the
time to review my manuscript. I would also like to thank Prof. Giorgio Di Natale, Prof.
Marie-Laure Potet, and Dr. Athanasios Papadimitriou for agreeing to be members of
the jury for my defense.

Special thanks go tomy colleagues in the LCIS andTIMA labs, particularly themem-
bers of the CTSYS team in LCIS and the AMFORS team in TIMA. I am thankful to Ca-
role, Caroline, and Karine for their assistance with administrative matters during my
PhD. Also, thanks a lot to Oumayma and Gijs for their contribution to my thesis during
their internships.

Last but not least, I would like to express my heartfelt appreciation to my friends
here in France and in Palestine, as well as my beloved family in Palestine. To my sister
Nour, and my brothers Mohammed, Mohannad, Bahaa, and Tamer, your unwavering
support and encouragement mean the world to me.

This thesis has been supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-
01) and the FrenchNational Research Agency in the framework of the “Investissements
d’avenir” program (ANR-15-IDEX-02). Finally, I would like to thank Arm for giving us
the opportunity to dealwith RTLdescriptions for real IP cores under theArmAcademic
Access Agreement.

3

“This thesis is dedicated to the soul of my mother Aisha,
to my aunt Fatima,

and to my father Basheer”

Titre : Analyse multi-niveaux des fautes dans les architectures de processeurs

Mot clés : Sécurité matérielle, Attaques par injection de fautes, Modélisation des fautes, Si-

mulation des fautes RTL, Jeu d’instructions de longueur variable, Analyse de vulnérabilités

Résumé : Avec l’utilisation de plus en
plus répandue des systèmes embarqués, les
concepteurs matériels et les développeurs de
logiciels accordent une attention croissante
aux problèmes de sécurité afin de proté-
ger ces dispositifs contre les menaces poten-
tielles. Parmi ces menaces, les attaques phy-
siques représentent un risque important, et
les attaques par injection de fautes sont par-
mis les méthodes les plus puissantes dans ce
cadre. Cependant, une mauvaise compréhen-
sion de l’impact causé par l’injection de fautes
peut conduire à proposer des contre-mesures
excessives ou insuffisantes pour ces disposi-
tifs. Cela affecte négativement le rapport per-
formance/coût et/ou la sécurité globale du dis-
positif. Pour relever ce défi, des modèles de
fautes réalistes sont indispensables pour com-
prendre les effets de l’injection de fautes. Ces
modèles jouent un rôle crucial dans l’analyse
des vulnérabilités potentielles des codes lo-
giciels et des blocs matériels, ce qui permet
de protéger les systèmes numériques contre
de telles attaques tout en assurant un surcoût
maîtrisé. Cependant, se fier uniquement à des
observations empiriques de microprocesseurs
où des fautes sont injectées pose des défis
lors de l’inférence des modèles de fautes, limi-
tant ainsi notre compréhension des effets cau-
sés par ces fautes.

Cette thèse présente des preuves expé-

rimentales qui mettent en évidence les défis
liés à la caractérisation et à la modélisation
des effets de l’injection de fautes lorsqu’on
considère un seul niveau d’abstraction du sys-
tème. Pour relever cette limitation, une ap-
proche d’analyse multi-niveaux est introduite
pour combler le fossé entre les études pré-
cédentes et permettre une meilleure compré-
hension des effets des fautes. De plus, cette
thèse démontre la mise en œuvre réussie de
cette méthodologie, aboutissant à l’inférence
de nouveaux modèles de fautes, réalistes et
précis, à la fois au niveau logiciel et maté-
riel. De plus, l’applicabilité de ces modèles de
fautes est mise en évidence pour différents
programmes, cibles matérielles et techniques
d’injection de fautes. Enfin, cette thèse illustre
comment ces modèles de fautes peuvent être
exploités pour effectuer une analyse de vul-
nérabilité de codes logiciels, permettant ainsi
de développer des contre-mesures efficaces
pour un coût maîtrisé.

Cette thèse a été réalisée dans le cadre
du projet CLAM en collaboration entre le labo-
ratoire LCIS à Valence et le laboratoire TIMA
à Grenoble. Cette thèse a été supervisée par
Prof. Vincent Beroulle (LCIS) et co-supervisée
par Dr. Paolo Maistri (TIMA), Dr. Brice Co-
lombier (LabHC) et Dr. Christophe Deleuze
(LCIS).

5

Title: Cross-Layer Fault Analysis for Microprocessor Architectures (CLAM)

Keywords: Hardware security, Fault injection attacks, Fault modeling, RTL fault simulation,

Variable-length instruction set, Vulnerability analysis.

Abstract: With the widespread use of em-
bedded system devices, hardware designers
and software developers started paying more
attention to security issues in order to protect
these devices from potential threats. Among
these threats, physical attacks pose a sig-
nificant risk, with fault injection attacks be-
ing a very powerful attack method. Never-
theless, an inaccurate understanding of the
impact caused by fault injection can result
in the proposal of either excessive or insuffi-
cient protections for these devices. This, in
turn, adversely affects the performance/cost
ratio and/or the overall device security. To
address this challenge, realistic fault models
are indispensable for comprehending the ef-
fects of fault injection. Such models play a
crucial role in analyzing potential vulnerabili-
ties in software codes and hardware designs,
thereby enabling the protection of digital sys-
tems against such attacks while maintaining
cost-effectiveness. However, relying solely on
limited observations of faulty microprocessors
poses challenges when inferring fault models,
ultimately limiting our understanding of the ef-
fects caused by these faults.

This thesis presents experimental evi-

dence that highlights the challenges in char-
acterizing and modeling the effects of fault in-
jection when considering a single layer of sys-
tem levels. Therefore, a cross-layer analy-
sis approach is introduced to bridge the gap
between previous studies and enable a bet-
ter understanding of the effects of the faults.
Furthermore, the thesis demonstrates the suc-
cessful implementation of this methodology,
resulting in the inference of reliable and novel
fault models at both software and hardware
levels of abstraction. Moreover, the applicabil-
ity of these fault models is showcased across
various target programs, target devices, and
different fault injection techniques. Finally, the
thesis illustrates how these fault models can
be leveraged to perform vulnerability analysis
of software codes, offering the capability to de-
velop suitable and cost-effective countermea-
sures.

This thesis has been performed under the
CLAM project in a joint position between LCIS
lab in Valence and TIMA lab in Grenoble. It
has been supervised by Prof. Vincent Beroulle
(LCIS) and co-supervised by Dr. Paolo Maistri
(TIMA), Dr. Brice Colombier (LabHC), and Dr.
Christophe Deleuze (LCIS).

6

TABLE OF CONTENTS

Introduction 11

1 State-of-the-art 15
1.1 Timing constraints in a digital circuit . 15
1.2 Timing-based fault injection . 17

1.2.1 Clock glitch fault injection . 17
1.2.2 Voltage glitch fault injection . 19
1.2.3 Electromagnetic fault injection 21
1.2.4 Heating fault injection . 22
1.2.5 Summary . 23

1.3 Fault injection effect analysis and modeling 23
1.3.1 Random fault effect . 24
1.3.2 Fault effect analysis at ISA and microarchitecture levels 27
1.3.3 Fault effect analysis at lower levels of abstraction 30
1.3.4 Summary . 32

1.4 Conclusion . 33

2 The need for cross-layer analysis and proposed methodology 35
2.1 Experimental evidence . 35

2.1.1 Experimental Setup . 36
2.1.2 Experimental results . 40
2.1.3 Discussion . 47

2.2 Proposed methodology . 50
2.2.1 Physical fault injection . 51
2.2.2 RTL fault simulation . 52
2.2.3 Software fault simulation . 53
2.2.4 Discussion . 54

2.3 Fault models evaluation . 56
2.3.1 Coverage . 56

7

TABLE OF CONTENTS

2.3.2 Fidelity . 57
2.3.3 Complexity . 57
2.3.4 Summary . 58

2.4 Conclusion . 58

3 Preliminary RTL simulation and new binary encoding fault models 61
3.1 Preliminary RTL fault simulation and analysis 62

3.1.1 Internal clock glitch simulation 63
3.1.2 RTL fault simulation using bit manipulation fault models 64

3.2 Variable-length instruction sets . 66
3.3 Inferred binary encoding fault models . 67

3.3.1 Experimental setup . 67
3.3.2 Experimental results and analysis 71

3.4 Exploitation and vulnerability analysis 83
3.4.1 Program Counter modification 83
3.4.2 Vulnerability analysis of AES implementations 85

3.5 Fault models simulation . 90
3.6 Fault models evaluation . 91
3.7 Conclusion . 95

4 Hardware fault simulation and partial update fault model 97
4.1 Hardware fault simulation . 97

4.1.1 RTL fault simulation methodology 98
4.1.2 RTL fault models . 100
4.1.3 Post-synthesis timing simulation 101
4.1.4 Summary . 104

4.2 Partial update fault model . 104
4.2.1 Inference examples . 105
4.2.2 Sub-cases of partial update fault model 107
4.2.3 Experimental results of partial update from precharge value . . . 109
4.2.4 Experimental results of partial update from previous value 118
4.2.5 Conclusion on the results of partial update fault model 121

4.3 Fault models evaluation . 122
4.4 Conclusion . 125

8

TABLE OF CONTENTS

5 Further results and details 127
5.1 Program Counter modification . 127

5.1.1 Misaligned code . 128
5.1.2 Aligned code . 129
5.1.3 Countermeasure: register substitution 130
5.1.4 Trojan . 130

5.2 Multiple glitch fault injection . 133
5.3 Voltage glitch fault injection . 135
5.4 Conclusion . 138

Conclusion and perspectives 141

Publications 147

Bibliography 149

Sommaire 172

9

INTRODUCTION

The utilization of embedded system devices is rapidly growing across various spheres
of life. For instance, according to forecasts, the number of Internet of Things (IoT)
devices in use worldwide is estimated to reach approximately 30 billion by 2030 [1],
as depicted in Figure 1. However, the complexity of these devices, along with their
running applications, is continuously increasing. This opens the door to two consider-
ations: The need for high performance and new methods to deal with such advances
and on the other hand, the emergence of new vulnerabilities exploitable by attackers
at different levels. As sensitive data are frequently processed by embedded systems,
some form of protection is necessary to prevent information leakage or modification.
The actual processing and protection might be vulnerable to attacks that aim at ex-
tracting this sensitive information. Physical attacks in particular are a serious threat to
embedded systems.

2019 2020 2021 2022* 2023* 2024* 2025* 2026* 2027* 2028* 2029* 2030*

Io
T

de
vi

ce
s i

n
bi

llio
ns

8.6
9.76

11.28
13.14

15.14
17.08

19.08
21.09

23.14
25.21

27.31
29.42

Figure 1: Number of IoT devices worldwide 2019-2021, with forecasts to 2030 (from
[1]).

In the context of hardware security, physical attacks refer to various techniques and
methods aimed at compromising the security of digital devices. These attacks exploit
vulnerabilities in the physical properties or implementation of the device’s hardware to
delete, modify, gain or prevent access to confidential data.

11

Introduction

The most prevalent physical attacks are side-channel and fault injection attacks.
Side-channel attacks are passive physical attacks that primarily aim to exploit the unin-
tentional leakage of information from a device’s physical characteristics, such as power
consumption [2], electromagnetic emissions [3], or timing information [4]. By captur-
ing and analyzing these side-channel signals, attackers can infer sensitive information,
such as cryptographic keys.

Fault injection attacks, on the other hand, are active physical attacks, possibly non-
invasive, where the attacker will intentionally try to change the normal behavior of a
device during program execution by inducing one or more faults, then observing the er-
roneous behavior. The resulting fault(s) could reveal an interesting behavior that could
be further exploited as a vulnerability. Fault injection became an attractive research
topic since the well-known Boneh et al. attack [5], where they were able to break some
cryptographic protocols by inducing faults into the computations.

To inject a fault, a physical interference is applied on the digital device: radiations [6],
laser light [7], electromagnetic pulses [8], variations of power supply [9], perturbations
of clock signal [10], or changes in the environmental conditions such as the tempera-
ture [11] or else. Moreover, recent studies [12]–[14] have demonstrated the capability
to perform fault injection attacks remotely by utilizing software to manipulate voltage
regulators and/or energy management systems in modern devices. This has brought
more attention to fault injection attacks.

In order to analyze vulnerabilities that can be exploited using fault injection attacks
and propose effective countermeasures, evaluators, developers, and designers require
accurate fault models. These fault models serve as abstract representations of the ac-
tual effects caused by faults, and are constructed through analysis and characterization
of these effects across various levels of digital systems. It is crucial to ensure proper
characterization and understanding of fault injection effects to avoid incomplete fault
models. Failure to do so can result in either under-engineered or over-engineered
implementations of protection measures. In the former case, security threats may per-
sist, leaving room for exploitation, while in the latter case, unnecessary costs may be
incurred, potentially leading to performance degradation.

The main objective of this thesis is to perform cross-layer analysis to examine the
effects of fault injection, allowing for a better understanding of these effects at both
software and hardware levels. As a result, the research will propose realistic, explain-
able, and trustworthy fault models across different levels of system abstraction. These

12

Introduction

fault models will facilitate comprehensive vulnerability analysis processes and enable
the effective design and development of countermeasures.

Contributions

Firstly, this thesis presents a survey of fault injection techniques that utilize timing vio-
lations to induce faults in digital systems. It also includes real-world attack examples
corresponding to each technique. Additionally, the thesis examines the current state-
of-the-art in terms of characterizing and modeling the effects of fault injection attacks.
This analysis reveals that previous studies predominantly focused on either software
or hardware aspects separately. Although some studies attempted to bridge the gap
between the two levels, they only conducted simulations at the Instruction Set Architec-
ture (ISA) and Register-Transfer Level (RTL), without validating their analysis through
physical fault injections.

Furthermore, the thesis offers experimental evidence that demonstrates the limita-
tions of characterizing and modeling fault injection effects based on a single level of
analysis. As a result, the thesis proposes a comprehensive approach for cross-layer
fault analysis, aiming to establish reliable fault models at various levels of abstraction.
It also introduces metrics for evaluating the effectiveness of the proposed fault models.

Moreover, implementing the proposed methodology, while involving fault injections
and simulations on various Arm Cortex-M processors, led to infer realistic fault mod-
els at the binary encoding of the instructions: “Skip”, “Skip and repeat”, and “non-
sequential skip and repeat” for a specific number of bits. These fault models enable
to explain a wide range of the obtained faulty behaviors at higher levels of abstraction,
including assembly and application levels, regardless of the target instructions and tar-
get device. The provided explanations are also applicable to a diverse range of the
observed faulty behaviors that have been documented in the literature. Based on the
proposed models, the thesis provides exploitation and vulnerability analysis examples.
This showcases the high fidelity of the proposed fault models. In addition to that, a tool
to simulate these models is also presented.

Similarly, analyzing the fault effects at lower levels of abstraction led to derive reli-
able fault models at RTL: anticipating the update and preventing the update of a register
value at a given clock cycle. By utilizing these fault models, it becomes possible to ob-
serve faults that are identical to faulty behaviors obtained by physical fault injection, or

13

Introduction

by simulating the aforementioned binary encoding fault models. Additionally, gaining
an understanding of the effects of fault injection at the RTL level led to the deduction
of a novel fault model known as the Partial update fault model. This model offers a
significant increase in the ability to explain faulty behaviors.

Finally, the thesis opens up avenues for various research directions. This encom-
passes utilizing the proposed fault models to assess the vulnerabilities of software
based on predefined security properties. Furthermore, the thesis demonstrates the
feasibility of developing cost-effective countermeasures by comprehending the poten-
tial effects of fault injection. Additionally, the thesis highlights the ability to combine
faulty behaviors through the injection of multiple glitches. It also showcases the appli-
cability of the fault models when employing different fault injection techniques.

Outline

The rest of this thesis is organized as follows: chapter 1 provides background on timing-
based fault injection techniques with examples of successful attacks. Additionally, it
reviews the state-of-the-art for characterization and modeling of the effects of fault
injection. Experimental evidence for the need for cross-layer analysis, in addition to the
proposed methodology, are demonstrated in chapter 2. Chapter 3 presents preliminary
hardware fault simulation experiments. Additionally, it provides a detailed description
of the inferred fault models at the binary encoding level. A detailed analysis at the
hardware level and the inference of Partial update fault model are provided in chapter 4.
Chapter 5 offers further analysis and results based on the presented work. The thesis
is concluded along with future research perspectives in Conclusion and perspectives.

14

1
State-of-the-art

This chapter starts with describing briefly the timing constraints in a digital circuit that
ensure correct operation of the circuit. It then displays the main fault injection tech-
niques that could lead to violate these timing constraints, along with practical examples
of actual attacks from the literature. These attacks show the efficiency of such injection
techniques in real-life. Afterward, it reviews the state-of-the-art in terms of fault injection
effects characterization and modeling. Characterizing and modeling the effects of the
fault injection are significant for the sake of analyzing possible vulnerabilities of codes
or designs . Moreover, this is extremely necessary to develop or design countermea-
sures against fault attacks. Finally, the chapter is concluded, along with comments on
the presented works.

1.1 Timing constraints in a digital circuit

When designing a synchronous digital circuit, timing is of prime importance to guaran-
tee a proper operation of the circuit. A synchronous digital circuit is a type of digital
circuit that utilizes a clock signal to synchronize its components. These circuits consist
of both sequential and combinational elements, which are interconnected. Combina-
tional elements are made up of logical gates that perform digital computations, while
sequential elements are memory cells known as flip-flops. Flip-flops are designed to
store stateful data, which is used in the digital computations performed by the combina-
tional elements. A standard flip-flop has an input D, and an output Q. When receiving
a rising edge of a new clock cycle, a flip-flop adjusts the output Q to the value of the
input D.

15

Chapter 1 – State-of-the-art

source
flip-flop

QD

destination
flip-flop

QD

clk

tlogic

tskew

tclk_to_Q

tsetup

thold

stable
D input

Figure 1.1: Timing metrics in a simple digital design.

The clock signal plays a crucial role in coordinating the operation of the sequential
and combinational elements in synchronous digital circuits, ensuring that the computa-
tions are executed in a synchronized and orderly manner. Additionally, the clock period
of a clock cycle (i.e., the time between a rising edge and the next rising edge) must
respect the maximum delay needed for the data to be propagated between a source
flip-flop and a destination flip-flop. The path that has this maximum delay is known as
the critical path in the circuit. In order to ensure correct operation of a synchronous
digital design, timing must satisfy the setup and hold equations [15], [16], as presented
in Equations 1.1 and 1.2 and illustrated in Figure 1.1 where:

• tclk is the clock period,

• tsetup is the duration for which data on the D input must be stable before the rising
edge of the clock signal [17],

• thold is the duration for which data on the D input must be stable after the rising
edge of the clock signal [17],

• tlogic is the propagation delay in the combinational logic between the source and
destination flip-flops,

• tskew is the time difference between the arrival of the clock signal at source flip-flop
and destination flip-flop,

• tclk_to_Q is the delay from the rising edge of the clock input to the Q output inside
source flip-flop [18].

tclk_to_Q + tlogic + tsetup ≤ tclk + tskew (1.1)

16

1.2. Timing-based fault injection

tclk_to_Q + tlogic ≥ thold + tskew (1.2)

Performing a timing-based fault injection could result in a violation of the inequalities
found in one or both of Equations 1.1 and 1.2, leading to observe a faulty behavior.

1.2 Timing-based fault injection

This work primarily focuses on fault injection techniques that can lead to timing viola-
tions. Many of the currently employed and established techniques heavily depend on
these violations to introduce faults in digital circuits. Moreover, these techniques offer
a significant benefit in terms of cost-effectiveness when compared to alternatives like
laser or radiation-based methods. Additionally, they require less expertise to success-
fully carry out the fault injections.

The following subsections describe the major fault injection techniques that can
lead to violate the timing constraints in a synchronous digital circuit. For each outlined
technique, examples of actual attacks from the literature are also given.

1.2.1 Clock glitch fault injection

Applying perturbations to the main clock signal that is fed to the digital circuit is a
non-invasive and an effective fault injection technique. Clock glitch is considered as
a low-cost fault injection technique compared to other techniques like laser and EM
pulses. Also, it is highly controllable with respect to the temporal accuracy, and hence,
the instant of the injection. This facilitates the pinpointing of specific instructions within
the target program. However, since the glitch is injected in the global clock, there is no
particular knowledge about which architectural element could be affected as a result of
the injection. In particular, when the target device is a black box for the attacker, so has
no knowledge of the device architecture. The ability of achieving the clock glitch in a
remote way, as mentioned in [19], gives this kind of technique greater attention, when it
comes to designing or developing protections against fault attacks. The remote attack
can be accomplished using software-control of the energy management mechanisms
in digital systems [19].

During a normal execution, for example, in a 3-stage pipeline, at every rising edge

17

Chapter 1 – State-of-the-art

of the clock, an instruction(s) is fetched by the microprocessor from the instruction
memory, while another instruction (previously fetched) is being decoded or executed
in another stage of the pipeline. Figure 1.2 shows a normal behavior when having a
regular clock signal.

clk
fetch instr2

decode instr1
exec instr0

fetch instr3
decode instr2

exec instr1

fetch instr4
decode instr3

exec instr2

fetch instr5
decode instr4

exec instr3

Figure 1.2: Normal behavior of a 3-stage processor pipeline with a regular clock signal.

When performing clock glitch fault injection, a glitch is injected just before or after
the rising edge of the clock. This glitch would appear as a new clock cycle for the
microprocessor, disrupting the regular behavior of the clock signal. Thus, resulting in
a violation of the inequalities found in one or both of Equations 1.1 and 1.2, leading to
various kinds of faulty behaviors.

When performing a clock glitch, three parameters must be tuned, as shown in Fig-
ure 1.3:

• Delay: the time between the rising edge of the trigger signal (used for synchro-
nization) and the rising edge of the targeted clock cycle.

• Shift: the distance between the rising edge of the glitch and the rising edge of the
targeted clock cycle.

• Width: the duration of the glitch itself.

trigger

clk
width

shift

delay

Figure 1.3: Clock glitch parameters.

18

1.2. Timing-based fault injection

It is worth mentioning that shift and width values should not be too large or too
short. The too short values will not be enough to obtain a timing violation, while too
large values will allow an instruction to be executed normally. Therefore, such values
will result in non-observing any fault.

Examples of clock glitch fault injection attacks

Schmidt et al. [20] were capable of skipping a square step in the square and multiply al-
gorithm by inducing glitches into the clock signal of an AVR microcontroller. This would
facilitate breaking RSA (Rivest-Shamir-Adleman) algorithm [21]. In another work, Yuce
et al. [10] were able to retrieve the secret key of a fault-protected implementation of
the LED block cipher [22]. This is done by performing differential fault analysis attack
(DFA), using clock glitch fault injection, on a LEON3 [23] processor implemented on an
FPGA. DFA is a side-channel attack under the category of cryptanalysis attacks [24].
It aims at inferring secret keys by collecting several faulty outputs as a result of a fault
injection campaign. Furthermore, Dobraunig et al. [25] succeeded in breaking differ-
ent implementations of software and hardware AES (Advanced Encryption Standard)
encryption algorithm [26] by carrying out clock glitch fault injection campaigns.

1.2.2 Voltage glitch fault injection

Introducing variations to the power supply that feeds a digital circuit is another effec-
tive and low-cost fault injection technique. This injection technique provides acceptable
controllability in terms of temporal accuracy. However, it is hard to determine the af-
fected part of the digital circuit as a result of the injection. As clock glitch, voltage glitch
can also be performed remotely [19].

For the sake of explaining the effect of the power supply variations, or the effect
of inducing glitches into the voltage that is provided to a digital circuit, several studies
have been carried out. In [27]–[32], the authors showed that the propagation delay
of logical gates inside a digital circuit depends on the power supply noise, in particu-
lar its average noise. Moreover, [33]–[36] showed that underpowering or introducing
negative power supply glitches into a circuit led to timing violations, resulting in faulty
behaviors that are identical to the ones resulting from clock glitch fault injection. The
timing violation is achieved as a result of increasing the propagation delay of the logical
gates, which include t_setup and t_clk_to_Q. Similarly, Zussa et al. [37] demonstrated

19

Chapter 1 – State-of-the-art

that positive power supply glitches can also lead to violate the timing constraints in the
setup Equation 1.1. They explain the violation as a result of negative oscillations that
are induced by the voltage pulse edges.

As an example, [34], [35] provided explanations of how the propagation delay of an
inverter can be increased as a result of underpowering. Figure 1.4 shows an inverter
circuit with its response propagation delay from low to high (tpLH) and from high to low
(tpHL). The propagation delay tpLH is given in Equation 1.3 [38]. Where, Vdd is the
voltage source, CL is the load capacitance, Vth,p is the PMOS threshold voltage, µp is
the holes’ mobility, Cox is the gate oxide capacitance, and (Wp

Lp
) is the aspect ratio of

the PMOS. It is obvious that decreasing the voltage source (Vdd) will result in increasing
the propagation delay tpLH. By replacing the PMOS parameters in Equation 1.3 with the
corresponding ones for the NMOS (e.g., Vth,p with Vth,n) , an equation for tpHL can be
derived.

tpLH =
CL

[
2|Vth,p|

Vdd−|Vth,p| + ln
(

3− 4 |Vth,p|
Vdd

)]
µpCox

Wp
Lp

(Vdd − |Vth,p|)
(1.3)

Figure 1.4: Inverter circuit with its propagation delay parameters (from [39]).

The main tuning parameters of the glitch, that need to be taken into account when
performing voltage glitch fault injection, are as the following, and illustrated in Fig-
ure 1.5:

• Delay: the required time to determine the moment of injection with respect to a
trigger synchronization signal.

20

1.2. Timing-based fault injection

• Length: the period of time in which the variation on the power supply will be
applied.

• Amplitude: the voltage value of the pulse or the drop that is introduced to the
digital circuit.

trigger

voltage
supply

delay

length

amplitude

Figure 1.5: Voltage glitch parameters.

Examples of voltage glitch fault injection attacks

Bittner et al. [40] were able to retrieve the whole bootloader’s code and decryption
keys for later boot stages in a Nvidia system-on-chip, which is used in Tesla’s autopilot
and Mercedes-Benz’s Infotainment system. Furthermore, Timmers et al. [9] presented
voltage glitch-based attacks that led to privilege escalation in a Linux operating system,
running on an Arm Cortex-A9 processor [41]. Finally, Takahashi et al. [42] were able
to recover the full key that is used in an OpenSSL’s implementation of Elliptic Curve
Digital Signature Algorithm (ECDSA) [43].

1.2.3 Electromagnetic fault injection

Applying EM pulses to a digital device is an effective and a highly practical fault injection
technique. This technique does not need to decapsulate the device, as the case in
laser fault injection [19]. It offers better spatial accuracy than voltage and clock glitches,
and roughly comparable temporal accuracy.

The EM pulses generate a magnetic field around the digital device’s target part.
This field may interfere with the device’s normal operation. This interference may
cause voltage perturbations in the circuit, leading to a rise in the propagation delay,

21

Chapter 1 – State-of-the-art

and hence, a setup timing violation may occur [44]–[46]. Nonetheless, other works
showed that EM pulses can result in faulty behaviors that are not only explained by
timing violations [47]–[49]. For example, authors in [47] illustrated that explaining EM
faults as only timing violations is not enough to understand all the experimental ob-
served faulty behaviors. This is because they were able to induce faults using EM
pulses in a circuit at rest, where timing fault cannot occur.

The main parameters that need to be considered, when performing EM fault injec-
tion, are as the following:

• Probe: the coil that is used to generate the EM fields, where its physical design
and characteristics play a vital role in EM fault injection [50].

• Delay: determines the time of injection with respect to a synchronized trigger
signal.

• Amplitude: the voltage pulse value, which is usually produced by a pulse gener-
ator.

• Length: the amount of time in which the pulse is being generated.

• Position: determines the location of the target device with respect to the probe
according to X-, Y-, and Z- axes.

Examples of EM fault injection attacks

Dehbaoui et al. [51] managed in recovering the encryption key of an AES software
implementation by injecting a short EM pulse on a 32-bit microcontroller. Likewise,
Liao et al. [52] succeeded in retrieving the full AES key when targeting a PIC16F687
[53]. As another example, Cui et al. [54] were able to perform a secure-boot violation
attack on a modern multicore 1GHz Arm-based VoIP phone.

1.2.4 Heating fault injection

Changing the environmental conditions around a digital circuit, particularly the tem-
perature, is another way to disrupt the circuit’s normal behavior, which could result in
observable faults. Heating a digital device may lead to an increase in the propagation
delay inside it, resulting in timing violations [35], [55]. For example, in Equation 1.3, the

22

1.3. Fault injection effect analysis and modeling

holes’ mobility (µp) is directly related to the temperature. Thus, decreasing its value as
a result of increasing the temperature would lead to increase tpLH propagation delay
[34], [55], [56]. Additionally, in [57], the authors showed that heating the target device
while performing clock glitch attacks increases the observable fault rate, and hence,
the success rate of the attacks.

Examples of Heating fault injection attacks

By overheating ATmega162 devices [58] beyond their maximum temperature ratings,
Hutter et al. [59] succeeded in breaking an implementation of CRT-RSA algorithm. In
another example, Govindavajhala et al. [60] were able to induce multiple multi-bit flips
in the contents of memory chips in a desktop computer by increasing the temperature
to 100◦C.

1.2.5 Summary

Table 1.1 summarizes the main characteristics of each of the presented fault injection
techniques in terms of: The cost of performing the injection technique, its spatial and
temporal accuracy, the possibility of damaging the target device as a result of the in-
jection, the capability of carrying out the injection remotely, and the required technical
skill level to carry out the injection. The contents of this table are based on previous
works in [19], [61]–[63].

Characteristic
Technique Cost Spatial accuracy Temporal accuracy Device damage Remote Technical skill
Clock glitch low low ns no yes moderate
Voltage glitch low low ns-µs no yes moderate
EM pulses moderate moderate ns-µs possible no moderate
Heating low low none possible no low

Table 1.1: Summary of the characteristics of the presented fault injection techniques.

1.3 Fault injection effect analysis and modeling

Securing digital components, such as microprocessors and microcontrollers, against
fault attacks requires a thorough understanding of the faults’ propagation: on the one

23

Chapter 1 – State-of-the-art

hand, this means characterizing, studying, and analyzing the faults that could lead to
exploitable code vulnerabilities. On the other hand, it also requires designing counter-
measures at different levels, hardware and software, with an acceptable cost, in terms
of overhead and performance.

Fault effect analysis and characterization are performed to build the so-called "Fault
models". Fault models are abstract representations of the physical fault effect. They
provide description for the effects of the fault injection at different abstraction levels of
a digital system. These levels refer either to software (high) or hardware (low) layers of
a digital system, as shown in Figure 1.6.

Software developers and hardware designers need realistic fault models to evalu-
ate the vulnerabilities of their codes or designs in presence of fault injection attacks.
Based on this evaluation, software and/or hardware countermeasures will be devel-
oped and/or designed. On the other hand, the sufficiency of using impractical or simply
random fault models will result in poor and inaccurate vulnerability analysis. Therefore,
over-engineered or under-engineered countermeasures will be developed or designed.
The following chapters will go into further details on these themes.

A review of the main works that employed fault injection attacks is given in the
following subsections. The focus is on the level(s) at which their fault effect is described.
In other words, the fault models they utilized to enable the success of their attacks
and/or the fault models they proposed based on their characterization and analysis.

1.3.1 Random fault effect

This subsection presents a group of successful fault injection attacks from the literature.
In all of these attacks, the employed fault models, that describe the injection effect, were
random faults at the bit or byte level. In such attacks, the adversary has no control on
the faulty bit/byte, and he/she relied on obtaining a random faulty value to allow the
success of the attack.

Khelil et al. [33], for example, were capable of retrieving the encryption key of
an AES implementation on an FPGA chip using voltage glitch fault injection. Their
attack relied on faulting only one byte of the 9th round of AES and before the Mix
column transformation. To do so, a reduction on the power supply of the FPGA is
applied. To explain the obtained fault, they simply refer to the fact that destination flip-
flops will capture bad random values as a result of increasing the propagation delay in

24

1.3. Fault injection effect analysis and modeling

Figure 1.6: Fault propagation and modeling layers.

25

Chapter 1 – State-of-the-art

the computational logic between flip-flops. This increase of the delay results from the
power supply reduction.

In another example, Tang et al. [64], succeeded in breaking the security of Arm
Trustzone [65] of a Nexus6 smartphone. They were able to deduce cryptographic keys
from the Trustzone. Additionally, they managed in loading self-signed applications into
the Trustzone. To perform these attacks, they manipulated the clock frequency and the
power supply from the voltage regulators of the Dynamic Voltage and Frequency Scal-
ing (DVFS). DVFS is an energy-management technique that can be found in several
digital devices. Such manipulation would result in violating the timing constraints of the
digital elements of the target device. They described this violation with the following:
an output of a source flip-flop failed in latching properly to the input of a destination
flip-flop. Thus, the destination flip-flop continued to operate with stale data, which may
be translated as a random bit-flip.

Similarly, Qiu et al. [66], exploited an implementation of the DVFS to extract the
encryption key of an AES implementation that is executed in an Intel Software Guard
Extensions (SGX) enclave [67]. To do so, they induced undervolting perturbations
to the processor’s power supply. This, as mentioned earlier, will result in violating
timing constraints in the digital circuit. Thus, random faulty behaviours could occur.
Their voltage glitch fault injection is totally utilized and controlled by a software that
manipulates the core’s voltage.

Furthermore, Chen et al. [68] built VoltPillager, which is a low-cost tool that allows
controlling an Intel CPU voltage. They did so by exploiting a 3-wire bus called Serial
Voltage Identification (SVID). SVID is responsible for transmitting the required voltage
to the voltage regulator that is connected to the CPU. By injecting packets into SVID,
using VoltPillager, in order to undervolting the voltage delivered to the CPU, they were
able to break the confidentiality and the integrity of the CPU SGX enclaves.

Finally, Buhren et al. [69] succeeded in breaking the security of AMD Secure En-
crypted Virtualization (SEV) [70] by carrying out voltage glitch fault injection attacks.
SEV provides protections for virtual machines when used in insecure environments.
As a result of their voltage glitch attack, they were able to deploy a malicious SEV
firmware, which allows an attacker to decrypt the memory of the virtual machine. Ad-
ditionally, they succeeded in retrieving SEV’s endorsement keys, which can be used to
generate fake certificates, and hence, can be used to perform software-based attacks.
To perform the attack, they connect the target bus with a Teensy microcontroller [71].

26

1.3. Fault injection effect analysis and modeling

Then, this microcontroller is used to program the voltage regulator of the target to apply
voltage drop.

1.3.2 Fault effect analysis at ISA and microarchitecture levels

Dealing with ISA, as a result of fault injection, means involving the assembly instruc-
tions and /or their binary encoding in the characterization and analysis process. Addi-
tionally, it consists of describing the fault effect at the general-purpose registers of the
processor and/or the memory locations of the target device. Several research studies
have characterized faults at ISA level, due to the fact that it can be considered as the fo-
cal point for bringing high (software) and low (hardware) levels of abstraction together.
On the other hand, providing description of fault effect at microarchitectural level, in-
cludes determining the faulty microarchitectural component, the pipeline stage, and/or
the path inside a microcontroller or a microprocessor, where the fault is propagated. In
the following, works dealt with one or both levels together are presented.

Moro et al. [72] performed EM fault injection campaigns on a 32-bit microcontroller
that embeds an Arm Cortex-M3 processor [73]. They provided a comprehensive study
to analyze the effects of EM fault injection on a real microcontroller. To explain the
obtained faulty behaviors, they proposed a fault model called instruction replacement.
Their approach is based on carrying out an exhaustive instruction simulation to find out
which instruction can generate the same result as the observed faulty behavior. It is
clear that such fault model is quite generic. Also, performing an exhaustive simulation
for each faulty instruction is extremely costly. Additionally, most likely, different instruc-
tions could lead to the same result as the faulty one. Thus, uncertainty of the executed
instruction would remain. With respect to fault description at microarchitectural level,
they claimed that some bits, of the instruction encoding, might become faulty because
of either a metastability phenomenon or the precharge value of the microcontroller’s
bus.

In another work, Rivière et al. [74] carried out practical EM fault injection experi-
ments on an Arm Cortex-M4 processor [73]. As a result, they observed a faulty behav-
ior where four complete 32-bit instructions are skipped, while the previous four 32-bit
instructions are replayed. Based on that, they proposed a fault model where up to four
32-bit instructions or eight 16-bit instructions can be skipped, while the previous 128
bits of complete instructions are repeated. The reason behind this is the instruction

27

Chapter 1 – State-of-the-art

cache size, which is 128 bits. At the microarchitectural level, they described the injec-
tion effect as a fault affects the cache read at a given clock cycle, resulting in preventing
the update of the cache contents. In addition to that, they provided some high level ap-
plications, where their fault model would lead to a successful attack or at least simplify
an existing attack. This includes, for example: performing DFA on AES, and Bellcore
[5] attack on CRT-RSA implementation.

Similar work has been presented by Trabelsi et al. [75]. Nonetheless, they provided
additional faulty behaviors, where a combination of instructions, inside the instruction
cache buffer, are affected, resulting in corrupting the value of some general purpose
registers. Additionally, faults on special-purpose program status register (xPSR) are
reported. In spite of that, they did not explain the rationale behind their obtained faulty
behaviors. They also offered analysis at the binary encoding level of instructions, where
they noticed that some faults can be explained with a single- or multi-bit reset without
further explanation.

In [76], Dureuil et al. tried to generalize fault models as a result of performing laser
and EM injections on RAMs and Flash memories of smart cards. Then, they simulated
faults, based on the inferred fault models, in order to provide a so-called “vulnerability
rate” for such faults. Their inferred fault models are: volatile bit set or reset on the
instructions’ code or data loaded from memory, non-volatile faults that affect a stored
value in memory, and instruction skip. They performed their injections on two different
architectures: EM injection on ARMv7-M [77], laser on a CISC machine. For evaluation
purposes, they target VerifyPIN application.

In a comparable way, Werner et al. [78] carried out laser fault injection along with
software fault simulation. However, they focused mostly on performing multi-fault at-
tacks rather than proposing new or more thorough fault models. In particular, they
aimed at combining complete instruction-skips faulty behaviors as a result of injecting
multi-faults at different times. To evaluate their approach, they also target VerifyPIN
application.

Moreover, Timmers et al. [79] were able to modify the value of the Program Counter
register by targeting ARMv7-A architecture [80]. Firstly, they showed, by simulation,
how this could lead to violate a secure boot. This is performed by corrupting LOAD
instructions to have the Program Counter as a destination register. After that, they
illustrated the possibility of doing so by corrupting LOAD instructions in a simple pro-
gram composed of assembly instructions. In the best case, their success rate reached

28

1.3. Fault injection effect analysis and modeling

2.7 %. In their work, they referred to the instruction corruption as bit flips over the binary
encoding of the LOAD instructions.

Furthermore, Kelly et al. [81] illustrated a well-controlled laser fault injection cam-
paigns on Atmel ATtiny841 8-bit microcontroller [82], which embeds an AVR proces-
sor. They focused on targeting codes that manipulate branches. As a result, they
noticed different faulty behaviors that can be classified under either instruction skip,
multi-registers corruption, memory corruption, or status register corruption. For the
sake of vulnerability analysis, they presented areas of vulnerability in a defensive code
that is used in smart cards. For instance, certified EMV (Europay, Mastercard, and
Visa) cards, and a National ID card scheme.

Another work is [8], where Proy et al. succeeded in corrupting the iteration counter
of a secure and unsecure implementations of for loops. They carried out EM fault injec-
tion campaigns on Arm Cortex-A9 processor. Based on their analysis, they provided
characterization at ISA level for the observed faulty behaviors. This includes: complete
instruction skip and replay, source operand substitution, control-flow hijacking (the fault
breaks the control-flow integrity of the target program), and register corruption. This
corruption might correspond to a reset over the most significant 16 bits of the regis-
ter expected value. At the binary encoding level, they refer to the observed faults as
bit flips. Nonetheless, the authors explicitly stated that some of the obtained faults
remained unexplained, without a corresponding fault model.

In a different work [83], Given-Wilson et al. performed only software simulation on
the executable binaries of the target software. This is done for the sake of providing
an automated formal process to discover fault injection vulnerabilities. As fault models,
they consider a modification of conditional or unconditional Jump instructions, instruc-
tion skip, and the ability to reset one or two bytes. They illustrated the efficiency of their
method by detecting vulnerabilities in the PRESENT encryption algorithm [84], [85].

Back to practical fault injections, Menu et al. [86] conducted EM fault injection cam-
paigns on the flash memory of an 8-bit ATmega328P microcontroller [87]. As a result,
they proposed consecutive instructions skip fault model. Consequently, by considering
their faut model, they succeeded in bypassing the verification of VerifyPIN application.

Moreover, Trouchkine et al. [88] described EM fault campaigns on two modern pro-
cessors: ArmBCM2837, which embeds Cortex-A53 [89], and Intel Core i3-6100T CPU
[90]. The authors also provided characterization at ISA level to propose general fault
models for different architectures: one of their proposed models is random register cor-

29

Chapter 1 – State-of-the-art

ruption; moreover, some of their faults were still left unexplained, with unknown fault
model. Other proposed fault models include instruction corruption and bit reset. With
respect to evaluate the security of high-level applications based on their characteriza-
tion process, they performed DFA on OpenSSL AES [91] implementation.

Finally, Khaut et al. [92] carried out laser fault injection campaigns on a 32-bit
microcontroller that embeds an Arm Cortex-M0+ processor [93]. Based on the position
of the laser shots, they obtained different faulty behaviors. This includes: complete
instructions skip, and complete instructions skip and replay. At the microarchitectural
level, they hypothetically refer to skip and replay faults as preventing the update of an
instruction buffer with either 32-bit or 64-bit size. On the other hand, they assume
that skip faults can be as a result of instructions’ opcode corruption, or bit resets while
the instruction is propagated from the flash memory till the execute stage in the core
pipeline.

1.3.3 Fault effect analysis at lower levels of abstraction

Other studies attempted to analyze fault injection effects at lower hardware levels, such
as RTL and transistor levels. This is accomplished either by focusing only on a lower
level of abstraction, or by including lower levels of abstraction in the analysis along with
higher levels. Following are some examples from the literature.

Fault effect analysis at RTL

For the sake of better understanding the fault propagation and bridging the analysis
gap between high levels and low levels of abstraction, some studies included RTL level
in the fault effect analysis process. Including RTL means trying to describe, illustrate,
and show how the fault affects a single or a group of flip-flops, i.e., a register or a part
of it. Additionally, it shows how the fault effect is propagated between these flip-flops
or registers.

Among these studies, Laurent et al. [94], [95], where they suggested that fault ef-
fect analysis using typical software fault models are no longer enough to characterize
the observed faulty behaviors, in particular when targeting complex microprocessors
that have numerous internal elements, i.e., registers and combinational logic. In their
work, they provided a comprehensive analysis to assess and propose new software
fault models. To put into practice, they defined an approach that is based on analyzing

30

1.3. Fault injection effect analysis and modeling

and comparing the results that can be obtained when performing software and RTL
fault simulations on a RISC-V microprocessor [96], while executing simple assembly
instructions. In terms of used fault models: at RTL, they employed bit flips fault model
that is applied to a single or a few flip-flops (up to 5) within the processor pipeline.
On the other hand, different versions of instruction skip, test inversion, and forwarding
are employed as software fault models. Forwarding fault model corresponds to a fault
that affects data forwarding (also called bypassing). Data forwarding is an optimiza-
tion technique used to solve hazards whenever there are data dependencies between
instructions in a program. It has been noticed that a forwarding fault could invert condi-
tional branches. To evaluate their fault models at higher levels, they targeted VerifyPIN
and LittleXorKey applications.

In a similar work, Tollec et al. [97] presented an automated approach of analyzing
hardware and software fault simulation experiments. Their approach is based on formal
verification methods by model checking. While modeling the fault effect, they explore
all possible next states from a current state. They then check for states that may lead
to any vulnerability that could violate a predefined security property. With respect to
employed RTL fault models, they utilized bit set, bit reset, bit flip, and bit random fault.
For software models, they considered instruction skip, instruction replay, incorrect order
of instruction replay, and branch corruption. At application level, they evaluated their
approach over four different versions of VerifyPIN application.

It should be noticed that in both previous works, physical fault injections were not
performed to validate the realism of their proposed RTL and software fault models.
Moreover, different architectures should be taken into account in order to generalize
the assumptions of their works.

It is worth noticed that bit fault model at RTL considers disrupting input or output
signals of a specific flip-flop inside a specific architectural element, which is not nec-
essarily correspond to a bit within the binary encoding of the instructions’ data, for
example. It may correspond, for instance, to a control signal as described in [94].

Fault effect analysis at Transistor level

Other research works provided characterization for the fault injection effects at Transis-
tor level. Two of these studies are presented in the following.

Dutertre et al. [98] conducted laser fault injection campaigns on a specific test
chip that consists of CMOS 28 nm technology node, where special D flip-flops were

31

Chapter 1 – State-of-the-art

designed. These flip-flops were assembled in an in-line shift register composed of 10
D flip-flops, and a matrix-shaped shift register composed of 64 D flip-flops. While fault
injection, they were able to identify sensitive areas of the transistors that form these
flip-flops, where single-bit set/reset or flip faults could be obtained. Additionally, more
faulty bits were achievable by increasing the laser pulse energy. At a higher level, they
evaluated their analysis on a hardware AES encryption unit embedded on the same
chip test.

In another study, Colombier et al. [7] carried out laser fault injection campaigns
on a 32-bit microcontroller that embeds an Arm Cortex-M3 processor. They provided
a comprehensive analysis of how the laser shots could affect connected transistors
in parallel between a bit-line and the ground. By exploiting these bit lines, they were
able to induce a single bit set or two adjacent bit sets to the binary encoding of the
instructions while being fetched from the flash memory. As a result, corruption over
either the operands or the opcode of the instruction was observed. As a propagation
effect, control-flow corruption was achieved. For high level applications, they performed
attacks over an implementation of VerifyPIN, and an implementation of AES encryption
algorithm.

1.3.4 Summary

To summarize, this section begun by presenting recent fault injection attacks from the
literature, which primarily focused on achieving successful fault injection. However, it
is worth noting that these attacks typically refer to the resulting fault effect either as
random bit or byte faults. In contrast, subsection 1.3.2 and subsection 1.3.3 provided
a more detailed characterization of the fault effects and proposed fault models based
on the analysis. Obviously, these works focused either on a single level of analysis or
on simulation. As a result, they provided quite generic fault models that would make
the vulnerability analysis harder. Consequently, insecure and/or costly countermea-
sures will be designed or developed. Table 1.2 summarizes the presented works, in
subsection 1.3.2 and subsection 1.3.3, in terms of the following: the injection type (the
employed injection technique and/or the level of the implemented simulation; software
or hardware), the target processor or embedded architecture, the high-level target ap-
plication, the used and/or proposed fault models at ISA, binary encoding of instructions
or memory data, and RTL levels. This table clearly indicates that no prior work has

32

1.4. Conclusion

provided a comprehensive cross-layer analysis that combines hardware and software
levels while conducting physical fault injection experiments.

Reference Injection type Target Application ISA Binary RTL
Moro et al. EM, Cortex-M3 none instruction replacement mulit-bit fault none

[72] SW simulation
Rivière et al. EM Cortex-M4 AES, multi instructions none none

[74] CRT-RSA skip and replay
Trabelsi et al. EM Cortex-M4 none register, xPSR corruption, multi-bit reset none

[75] opcode operand substitution
Dureuil et al. EM, laser, ARMv7-M, VerifyPIN instruction skip, bit (re)set none

[76] SW simulation CISC (non)-volatile memory fault
Werner et al. Laser, Cortex-M4 VerifyPIN multi-instrucion skip none none

[78] SW simulation
Timmers et al. Voltage glitch, ARMv7-A secure-boot instruction corruption bit flips none

[79] SW simulation
Kelly et al. Laser AVR defensive code instruction skip, memory none none

[81] in smartcards & registers corruption
instruction skip and replay, bit flips none

Proy et al. EM Cortex-A9 for loops register corruption,
[8] operand substitution,

control-flow hijacking
Given-Wilson SW simulation none PRESENT jump modification, 1 or 2 bytes none
et al. [83] Instruction skip reset
Menu et al. EM AVR VerifyPIN skip consecutive none none

[86] instructions
Trouchkine et al. EM Cortex-A53, OpenSSL AES register corruption, bit reset none

[88] i3-6100T instruction corruption
Khaut et al. Laser Cortex-M0+ none instructions skip, bit resets none

[92] skip and repaly
Laurent et al. HW simulation, RISC-V VerifyPIN instruction skip, none bit flips
[94], [95] SW simulation LittleXorKey test inversion, forwarding
Tollec et al. HW simulation RISC-V VerifyPIN Instruction skip, replay none bit reset,

[97] SW simulation incorrect order of replay, set, flip,
forwarding, branch corruption random

Dutertre et al. Laser ASIC hardware AES none none bit(s) set,
[98] reset, flip

Colombier et al. Laser Cortex-M3 VerifyPIN instruction corruption, single bit set, none
[7] AES control-flow corruption two adjacent

bit sets

Table 1.2: Summary for the state-of-the-art of fault injection effect characterization and
modeling.

1.4 Conclusion

To sum up, this chapter presented the timing constraints in a simple digital design.
Then, it demonstrated different fault injection techniques that could lead to violating

33

Chapter 1 – State-of-the-art

these constraints, resulting in various faulty behaviors. Several given examples demon-
strated how these resulting faulty behaviors could be used to carry out harmful attacks.

After that, this chapter reviewed the state-of-the-art in terms of fault injection effect
characterization, analysis, and modeling. It was shown that many works described
the effect of the fault injection as random bit or byte faults. Conversely, several stud-
ies concentrated on characterizing the fault injection effect only at a single abstraction
level, specifically at the ISA level. Nonetheless, some of these works tried to provide
additional analysis at the microarchitectural level by considering the faulty architectural
component or fault propagation path. However, all of these studies proposed rather
broad fault models, such as instruction skip and instruction corruption. These fault
models are clearly not enough to evaluate vulnerabilities of software codes or hard-
ware designs. Additionally, they would lead to develop or design non-optimal counter-
measures. This certainly will affect either the cost, the performance or the security of
the device. A few studies, on the other hand, combined high and low levels of abstrac-
tion in an effort to promote comprehension of the effect of fault propagation in a digital
system. However, they only carried out fault simulations on a RISC-V processor and
no physical injections at all were performed. By incorporating physical fault injections,
the realism, and reliability of the proposed models can be better assessed, and the
findings can be more applicable to a wider range of system architectures. Finally, other
works attempted to focus their analysis at the lowest level of abstraction by describing
how the induced fault affects the normal behavior of transistors.

34

2
The need for cross-layer analysis and

proposed methodology

In the context of the increasing complexity in embedded microprocessors and the as-
sociated behaviors in the presence of fault injection attacks, the need for realistic fault
models becomes crucial for studying code vulnerabilities and protecting digital systems
from these attacks. However, deriving accurate fault models based on limited observa-
tions of faulty microprocessors poses significant challenges. In this chapter, we present
experimental evidence that highlights the difficulty of characterizing and modeling fault
injection effects, in particular when only focusing on a single abstraction level for anal-
ysis. From there, we propose a holistic approach for fault analysis that encompasses
different abstraction levels of a digital system, aiming to develop comprehensive fault
models. This proposed methodology will definitely ease the process of vulnerability
analysis and facilitate the design of effective countermeasures at a reasonable cost.
Finally, we provide metrics to evaluate the quality of fault models, which can aid in
assessing the accuracy and reliability of the proposed models.

2.1 Experimental evidence

Previous works usually focus on one single abstraction level of a digital system for
fault effect analysis, and model the faulty behaviors at just one level. This section
highlights the strong need of addressing several abstraction layers at the same time in
order to fully understand the fault occurrence mechanisms. To achieve this, physical
fault injection experiments are conducted on various target codes and devices. These

35

Chapter 2 – The need for cross-layer analysis and proposed methodology

experiments aim to determine if the obtained faulty behaviors can be consistently char-
acterized when making modifications to the target codes or other parts of the program.
Additionally, the experiments are carried out to assess if the observed behaviors differ
among different target devices.

This section presents the experimental setup, the results of the experiments and
the related discussion that followed.

2.1.1 Experimental Setup

Clock glitch fault injection campaigns have been performed as physical fault injection.
As mentioned in subsection 1.2.1, it is a low-cost, non-invasive, and effective fault
injection technique. In the following, the target devices, the target programs, and the
injection parameters are presented.

Target devices

The boards that are used for the experiments are the ChipWhisperer [99] boards:
CW1173 ChipWhisperer-Lite (Figure 2.1a), ChipWhisperer-Lite Capture (Figure 2.1b),
and CW308 UFO baseboard (Figure 2.1c) with different targets (e.g., Figure 2.1d).
These ChipWhisperer boards have a dedicated environment for side channel analysis,
voltage, and clock glitch of the target Arm core. We will leverage the clock glitch capa-
bilities of this setup in the experiments. During an experiment, the ChipWhisperer-Lite
or ChipWhisperer-Lite Capture board is connected to a control computer through a
USB cable.

The targets are 32-bit microcontrollers, each of them embeds one of the Arm
Cortex-M cores: STM32F0 embeds Cortex-M0 [100], STM32F1 embeds Cortex-M3
[73], and STM32F3 embeds Cortex-M4 [73]. STM32F3 is the connected target in
CW1173 ChipWhisperer-Lite board, as shown in Figure 2.1a. The Cortex-M0 core
supports the Thumb-1 instruction set [101] and a small part of the Thumb-2 instruction
set [102], while Cortex-M3 and Cortex-M4 cores support Thumb-2 entirely.

Each of these Arm cores has 13 general-purpose 32-bit registers; R0 to R12. The
cores also include a pipeline with three stages: fetch, decode and execute. Addition-
ally, Cortex-M3 and Cortex-M4 have a hardware integer divide. Cortex-M4 has also
additional components compared to the others, for example, it has a floating point unit
and a digital signal processing unit.

36

2.1. Experimental evidence

(a) CW1173 ChipWhisperer-Lite board (b) ChipWhisperer-Lite Capture board

(c) CW308 UFO baseboard (d) CW308 target board

Figure 2.1: ChipWhisperer boards used in the experiments.

Target programs

The injection is performed directly into inline assembly instructions within a C program
in order to provide fault effect characterization at ISA level. In order to better analyze
the process of the injection, the program is divided into three parts as follows:

• Prologue: instructions for the initialization and putting the processor in a known
state before the injection happens.

• Target: instructions targeted by the fault injection, as well as extra instructions
that would allow observing any propagation effect.

• Epilogue: instructions for reading general purpose registers [R0-R12] and Ap-
plication Program Status Register (APSR i.e., Negative (N), Zero (Z), Carry (C)
and Overflow (V) flags); the values are transferred through serial communication
commands to the control computer.

Two series of NOP instruction are used to isolate the three parts. This is done to
ease the process of the injection by limiting the search space of the injection parame-
ters, especially the delay. This also ensured that the prologue and the epilogue are not

37

Chapter 2 – The need for cross-layer analysis and proposed methodology

affected by the injection. The NOPs were not deleted after compilation, as no optimiza-
tion option is used for the compiler.

In the injection campaigns, two programs are targeted as shown in Listing 2.1 and
Listing 2.2. Specific instructions in the target part of these programs are used to allow
observing faulty effects on the control- and/or the data-flow of the program, respec-
tively: any real-life application can be described in terms of its data flow and/or its
control flow.

The use of these instructions also allows for observing other things. Firstly, it shows
if the resulting faulty behaviors are related to these instructions or not, hence giving a
better understanding of what triggers the faulty behavior. Secondly, it allows to check
if we will be able to reproduce some faulty behaviors that are already mentioned in the
literature. It also aims at obtaining the possible faulty behaviors based on the program
flow, either the control flow as in Listing 2.1 or the data flow as in Listing 2.2. This
includes, for example, a fault that could break the control-flow integrity, or a fault that
could propagate to later instructions, and thus, breaks the data-flow integrity. Finally,
it helps to understand if software characterization at the ISA level is sufficient to build
realistic fault models based on the observations.

1 CMP R4, R6 // r4-r6 then updates APSR
2 BNE labelx // if (Z!=1): jump to labelx
3 ADD R2, R4, R6 // r2 = r4 + r6
4 labelx:
5 ADD R5, R4, R6 // r5 = r4 + r6

Listing 2.1: Target part in Program 1: target control flow.

1 ADD R1, R1, 0x6 // r1 = r1 + 0x6
2 ADD R3, R3, 0xA // r3 = r3 + 0xA
3 ADD R4, R4, 0xB // r4 = r4 + 0xB
4 ADD R5, R6, R3 // r5 = r6 + r3
5 ADD R3, R3, 0xF // r3 = r3 + 0xF

Listing 2.2: Target part in Program 2: target data flow and arithmetic operations.

Our goal is not to provide a complete characterization of every possible instruction,
but rather provide a simple yet efficient approach that will cover as much as possible the
target architecture, and emphasize diverging behaviors due to fault occurrences. For

38

2.1. Experimental evidence

this reason, we used instructions that explicitly have effects on different architectural
elements, such as the APSR flags and the arithmetic logic unit. For the rest of this
chapter, we will refer to the first target program in Listing 2.1 as Program 1 and to the
second target program in Listing 2.2 as Program 2.

For Program 1, the glitch is injected at the beginning of the target part. The remain-
ing instructions aim at observing possible propagation effects. The registers R4 and R6
used in the experiments were initialized in the prologue to different values. Therefore,
in a golden run, the Zero flag remains clear, the branch is taken, and the instruction at
line three is not executed. We use the term "golden" to refer to the normal behavior of
a program execution (i.e., without any injection).

For Program 2, just as Program 1, the glitch is injected to affect the beginning of
the target part. However, we distinguish two cases of execution, as two different delay
values are used for the glitch. This was undertaken because different kind of faulty
behaviors were observed on the targeted instructions when using another delay value,
aimed at the execution of the NOP series before the target part.

Injection parameters

The injection campaigns consist in repeating the clock glitch fault injection 10 000 times
for the same shift, width, and delay parameters. A single glitch is injected during each
program execution. In the performed experiments, the glitch parameters were tuned to
obtain successful faults and trying to maximize the number of the observed faults for
the instructions at the beginning of the target part of each program. Nevertheless, no
exhaustive search of parameters has been followed. The parameters’ values are given
here for reference, but it is important to emphasize that they can change according
to the target device and the target program that are used in the experiment, or even
environmental conditions such as temperature.

Table 2.1 shows the shift and the width values that are used for each target de-
vice (these parameters have been presented in subsection 1.2.1). The values are
expressed in percentage of one clock period. The negative value of the shift means
that the glitch is injected before the rising edge of the targeted clock cycle. With re-
spect to the delay parameter, different factors can affect its value: the starting point of
the trigger, the number of instructions in the prologue, the number of NOPs between the
prologue and the target, and the position of the target instruction in the target part.

39

Chapter 2 – The need for cross-layer analysis and proposed methodology

Device
Parameter Width Shift

Cortex-M0 16 -14
Cortex-M3 10 -12
Cortex-M4 10 -12

Table 2.1: Glitch width and shift values used in the fault injection campaigns experi-
ments (values in % of clock period).

2.1.2 Experimental results

This subsection presents the results of the performed experiments, and it also de-
scribes the obtained faulty behaviors for the different used target devices. Three cases
can occur as a result of the fault injection, regardless of the target program, with respect
to a golden (reference) behavior as follows:

• Silent: this corresponds to the case when the outcome of the injection is identical
to the golden state.

• Fault: this happens when the outcome state is different from the golden one.

• Crash: this class contains the cases when the fault injection causes a crash,
a reset, or a failure when getting the final state of the target through the serial
channel.

The rest of this subsection is organized as follows: firstly, it presents the results for
Program 1, secondly, it presents the outcomes for Program 2. The detailed analyses
of the obtained results are discussed in subsection 2.1.3.

Program 1 results: Control flow target

The results of the injection campaigns for the different target devices with regard to
the three categories are shown in Table 2.2. Cortex-M4 target device has the most
successful faults, while Cortex-M3 has the most silent cases and Cortex-M0 has the
most crashes. The obtained faulty behaviors for the different devices are described in
Figure 2.2. The x-axis presents the different observed faulty behaviors, while the y-
axis shows their percentages out of the successful faults, i.e. without Crash and Silent
cases.

40

2.1. Experimental evidence

Double skip Single skip

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
am

on
g

fa
ul

ty
 b

eh
av

io
ur

s [
%

]

57.65

42.35

Cortex-M0

Do
ub

le
 sk

ip

Si
ng

le
 sk

ip

R1
 c

or
ru

pt
io

n
+

sin
gl

e
sk

ip

R3
 c

or
ru

pt
io

n
+

do
ub

le
 sk

ip

R1
, R

4
an

d
AP

SR
 c

or
ru

pt
io

n

R1
 a

nd
 R

4
co

rru
pt

io
n

+
do

ub
le

 sk
ip

51.67

26.67

11.67
5 3.33 1.67

Cortex-M3

Si
ng

le
 sk

ip

R0
 a

nd
 A

PS
R

co
rru

pt
io

n

R0
 c

or
ru

pt
io

n
+

sin
gl

e
sk

ip

R0
 to

 R
5

re
se

t
+

sin
gl

e
sk

ip

98.25

1.25 0.49 0.01

Cortex-M4

Figure 2.2: Observed faults for Program 1 for all target devices.

Complex faulty behaviors appeared as a combination of simpler faults, even if we
only performed single fault injections. For example, the result of a single fault could be
an instruction skip and corruption of R0 at the same time.

Device
Case Silent Crash Fault

Cortex-M0 44.08 35.66 20.26
Cortex-M3 97.76 1.64 0.60
Cortex-M4 0.01 1.18 98.81

Table 2.2: Percentage of classification cases when performing clock glitch fault injection
on each target device running Program 1.

During these campaigns, the following faults have been observed:

• Skip: it can be either a single or a double skip. In other words, either we skip
only the CMP instruction at line one in Listing 2.1, only the BNE instruction at line
two, or both. If APSR flags have not been updated, then we assume that the CMP
instruction was skipped. If APSR flags have been updated correctly and the ADD
instruction at line three is executed, then we assume that the BNE instruction was
skipped. If APSR flags have not been updated and the ADD instruction at line three
is executed, then we assume that both instructions were skipped.

• R0 corruption: the value of R0 is different from its golden value. Among these
corrupted values, we noticed the following: 0 (i.e., the value of R0 becomes 0),
right shift by 8, 16 or 24 bits.

41

Chapter 2 – The need for cross-layer analysis and proposed methodology

• R1 Reset: R1 value becomes 0.

• R3 Reset: R3 value becomes 0.

• R4 corruption: either reset or right shift by 1 bit.

• R0-R5 Reset: all the values of R0 to R5 become 0.

• APSR corruption: one or more of APSR flags have different values from the golden
ones.

• Propagation effect on R2: it is caused by executing the ADD instruction at line
three. The execution of this instruction can be explained as the consequence of
two events. The first explanation is that the BNE instruction at line two in Listing 2.1
was skipped. The second explanation is that the Zero flag was corrupted. This
leads to the branch not being taken as in a normal case, where the Zero flag is
0. Instead, as a result of the injection, the Zero flag was set to 1. These two
cases could not be discriminated, as both of them might even occur together. In
this experiment, this behavior only appeared in Cortex-M0 and Cortex-M3, but
not Cortex-M4.

• Propagation effect on R5: as a result of the corrupted value in R4, R5 has a wrong
value at the end, since it is the sum of R4 and R6.

A second experiment has been carried out with the same fault injection parameters
(i.e., shift, width and delay) and initialization values but with a duplicated CMP instruction
as shown in Listing 2.3. The second experiment has been performed to see if the faulty
behaviors were consistent and to improve the understanding of the induced errors. In
particular, its objective was to gain insight about the reason for the propagation effect
on R2 as described above.

Regarding the three cases, Table 2.3 shows their percentages after this experiment.
We can see that more faults were observed for Cortex-M0 in the second experiment,
while no crash cases were obtained. Regarding the Cortex-M4, there was a significant
increase in the crash category and a decrease in the successful faults. For Cortex-M3,
both experiments were comparable in terms of population.

The results are shown in Figure 2.3. In addition to skip, APSR corruption and propa-
gation effect on R5, the following behaviors were observed:

42

2.1. Experimental evidence

1 CMP R4, R6
2 CMP R4, R6
3 BNE labelx
4 ADD R2, R4, R6
5 labelx:
6 ADD R5, R4, R6

Listing 2.3: Target part in Program 1 in the second experiment with duplicated CMP.

Board
Case Silent Crash Fault

Cortex-M0 61.29 0.0 38.71
Cortex-M3 96.07 2.69 1.24
Cortex-M4 0.88 39.32 59.80

Table 2.3: Percentage of classification cases when performing clock glitch fault injection
on each target device running Program 1 with duplicated CMP.

Double skip R8 corruption
+ double skip

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
am

on
g

fa
ul

ty
 b

eh
av

io
ur

s [
%

]

79.36

20.64

Cortex-M0

R4
 c

or
ru

pt
io

n
+

do
ub

le
 sk

ip

Do
ub

le
 sk

ip

R4
 a

nd
 A

PS
R

co
rru

pt
io

n

R5
 c

or
ru

pt
io

n

42.74 37.91

17.74

1.61

Cortex-M3

Do
ub

le
 sk

ip

R0
 a

nd
 A

PS
R

co
rru

pt
io

n

R0
, R

4
an

d
AP

SR
co

rru
pt

io
n

R0
 to

 R
5

re
se

t a
nd

AP
SR

 c
or

ru
pt

io
n

59.7

36.07

3.86 0.37

Cortex-M4

Figure 2.3: Observed faults for Program 1 with duplicated CMP after the second experi-
ment for all target devices.

• R0 Reset.

• R4 corruption: different faulty values appeared in R4: 0, left shift of R6 value by 10
or 14 bits, and another faulty value that is equal to R7.

• R5 Corruption: either R5 has its initial value or the value of R7. Having the initial
value can be considered as a single skip as well. This could happen due to a
fault while fetching this instruction and executing the previous ones.

43

Chapter 2 – The need for cross-layer analysis and proposed methodology

• R8 corruption: either set (i.e., every bit has 1) or the value of R2.

• Propagation effect on R2: since we target only the beginning of the target instruc-
tions, this can not be caused by a skip or other perturbation of the BNE instruction.
Therefore, this is necessarily caused by corruption of the Zero flag. This time,
this behavior only appeared in Cortex-M3.

Program 2 results: Data flow and arithmetic operations target

The results of the three categories for this experiment are shown in Table 2.4. Again,
almost all the injections resulted in successful faults in the Cortex-M4 device, while
they were silent in the Cortex-M3 device. The obtained faulty behaviors are presented
in Figure 2.4.

Board
Case Silent Crash Fault

Cortex-M0 75.51 17.28 7.21
Cortex-M3 97.93 1.2 0.87
Cortex-M4 0.0 1.16 98.84

Table 2.4: Percentage of classification cases when performing clock glitch fault injection
on each target board running Program 2.

A wide range of faulty behaviors is observed after this experiment as the following:

• Skip: it can only be skipping the first instruction, only the second, only the third,
both the first and the third, both the second and the third, or the first 4 instructions
(i.e. quad skip).

• Repeat: repeat the first instruction. This behavior appeared as a combination
with skipping the second and the third instructions. In this experiment, it is only
observed for the Cortex-M0 target device.

• R0 corruption: different faulty values observed in R0: set, reset, right shift of its
original value by 4 or 20 bits, left shift of R2, etc.

• R1 corruption: Among the faulty values, there were: reset, a value that is related
to the program counter, left shift of R2, the sum of R3 and 0x6 instead of R1 and
0x6, etc.

44

2.1. Experimental evidence

• R2 corruption: set only the most significant bit of the 32 bits. It only appeared for
Cortex-M4 device.

Do
ub

le
 sk

ip
 a

nd
 re

pe
at

Do
ub

le
 sk

ip
 a

nd
 re

pe
at

+
R0

 c
or

ru
pt

io
n

R4
 c

or
ru

pt
io

n

Si
ng

le
 sk

ip
+

R0
 c

or
ru

pt
io

nPe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
am

on
g

fa
ul

ty
 b

eh
av

io
ur

s [
%

]

68.86

26.56

4.51 0.07

Cortex-M0

Si
ng

le
 sk

ip
+

R6
 c

or
ru

pt
io

n

Al
l r

eg
ist

er
s r

es
et

Qu
ad

ru
pl

e
sk

ip

R3
 c

or
ru

pt
io

n

Si
ng

le
 sk

ip
+

R1
 a

nd
 R

4
co

rru
pt

io
n

R3
 a

nd
 R

4
co

rru
pt

io
n

Si
ng

le
 sk

ip

30.63
17.92 15.03 12.14 12.14 8.67 3.47

Cortex-M3

Sk
ip

 1
st

 a
nd

 3
rd

+
R0

 a
nd

 R
3

co
rru

pt
io

n

R6
 c

or
ru

pt
io

n

Si
ng

le
 sk

ip
+

R0
 a

nd
 R

6
co

rru
pt

io
n

R0
, R

1
an

d
R6

 c
or

ru
pt

io
n

Si
ng

le
 sk

ip
+

R0
, R

1
an

d
R3

 c
or

ru
pt

io
n

Si
ng

le
 sk

ip
+

R3
 a

nd
 R

6
co

rru
pt

io
n

Si
ng

le
 sk

ip
+

R1
, R

2
an

d
R3

 c
or

ru
pt

io
n

R1
 a

nd
 R

6
co

rru
pt

io
n

49.91 48.76

0.8 0.3 0.19 0.02 0.01 0.01

Cortex-M4

Figure 2.4: Observed faults for Program 2 for all target boards.

• R3 corruption: faulty value related to the program counter, left shift of the original
value of R1, the sum of the initial of R3, 0x6 and 0xF instead of R3, 0xA and 0xF,
and other faulty values with no obvious relation.

• R4 corruption: between the faulty values that are found: the sum of R0 and 0xB,
R1 and 0xB, R2 and 0xB or R3 and 0xB instead of R4 and 0xB.

• Propagation effect on R5: as a result of a faulty value that is found either in R3 or
R6.

• R6 corruption: reset, the most significant bit is only set, the value of R0, left shift
of R0 by 4 bits, left shift of R2, etc.

• All registers reset: it is only observed for Cortex-M3 target device.

A second experiment has been carried out for Program 2, but with adding only
a NOP instruction to the prologue part. The main objective of this experiment was to
investigate the consequences of a simple modification in the prologue to the target
part of the program. Identical injection parameters were used, except adjusting one of
the delay values. This is done to take into consideration the instruction that is added to
the prologue. Table 2.5 shows the percentages of the obtained results classes. We can
see a significant decrease in the successful faults for Cortex-M4 device, while similar

45

Chapter 2 – The need for cross-layer analysis and proposed methodology
Do

ub
le

 sk
ip

Do
ub

le
 sk

ip
+

R2
 c

or
ru

pt
io

n

Do
ub

le
 sk

ip
+

R0
 c

or
ru

pt
io

n

Si
ng

le
 sk

ipPe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
am

on
g

fa
ul

ty
 b

eh
av

io
ur

s [
%

]

49.03

22.81 19.72
8.44

Cortex-M0

Sin
gle

 sk
ip

an
d r

ep
ea

t

Sin
gle

 sk
ip

+ R1 c
orr

up
tio

n

R3 c
orr

up
tio

n

41.3 35.87
22.83

Cortex-M3

Do
ub

le
 sk

ip

Do
ub

le
 sk

ip
+

R0
 c

or
ru

pt
io

n

Si
ng

le
 sk

ip
+

R0
 a

nd
 R

1
co

rru
pt

io
n

Do
ub

le
 sk

ip
+

R0
 a

nd
 R

4
co

rru
pt

io
n

90.47

8.5
0.79 0.24

Cortex-M4

Figure 2.5: Observed faults for Program 2 with additional NOP for all target devices after
the second experiment.

proportions for other targets with respect to the first experiment. The observed faulty
behaviors are shown in Figure 2.5.

Board
Case Silent Crash Fault

Cortex-M0 75.07 12.78 12.15
Cortex-M3 98.55 0.99 0.46
Cortex-M4 49.85 0.24 49.91

Table 2.5: Percentage of classification cases when performing clock glitch fault injection
on each target board running Program 2 with additional NOP.

In addition to the propagation effect on R5, the following faults have been observed:

• Skip: single skip only appeared for the second instruction, while double skip only
occurred for the first and the second instruction.

• Repeat: again, the first instruction is repeated. This time, it is obtained as a com-
bination with skipping only the second instruction. This behavior only appeared
for the Cortex-M3 device.

• R0 corruption: only the following cases are observed this time: set, reset, only the
most significant bit is set.

• R1 corruption: reset, a value related to the program counter, the sum of R0 and
0x6 and other faulty values without an obvious relation.

46

2.1. Experimental evidence

• R2 corruption: set, reset and other large values. This behavior only appeared for
the Cortex-M0 device.

• R3 Corruption: R3 has a seemingly random value. It only appeared for the Cortex-
M3 device.

• R4 corruption: the sum of 0xB and setting the most significant bit. It is only ob-
served for the Cortex-M4 device.

2.1.3 Discussion

The aforementioned experimental results led to various conclusions, observations, and
questions. The following subsections discuss the results in details with respect to dif-
ferent aspects.

Target device dependency

For the same target program, different faulty behaviors can be observed depending
on the target device that is used in the experiment. For example, in Program 1 ex-
periments, R8 corruption is only observed for the Cortex-M0 device, while R0 to R5
reset is only observed for the Cortex-M4 device. Another example, in Program 2 ex-
periments, all registers reset behavior is obtained only for the Cortex-M3 device,
while skip and repeat faulty behavior is observed for the Cortex-M0 and the Cortex-
M3 but not for the Cortex-M4. In addition to that, Cortex-M4 target device has the most
successful faults among the injections compared to the other devices. This could be
explained with the fact that this device has more features and microarchitectural ele-
ments. Faulty behaviors may appear with different percentages as well. However, we
have found that the occurrence probability of a specific behavior can be increased or
decreased by fine adjustments of the glitch parameters. Tuning the glitch parameters,
for the different devices in order to target different locations of the program could make
some faulty behaviors appear or disappear.

Target program dependency

With respect to the target programs, small changes in the target code have large con-
sequences on the observed faults, as noticed for Program 1 experiments: some faulty

47

Chapter 2 – The need for cross-layer analysis and proposed methodology

behaviors disappeared, such as R1 and R3 reset. New faults appeared, such as R8
corruption. Also, different corrupted values are observed: for instance, R0 had right
shift by 8, 16 or 24 bits in the first experiment, but it only had reset in the sec-
ond round. In addition to that, in our published work [103], a similar target program was
used for the same target device but with different registers, and some of the obtained
faults were different. For example, the propagation effect on the ADD instruction at line
three in Listing 2.1 was obvious, but this time, it is not observed for the Cortex-M4
device. In addition, targeting the same sequence of instructions (i.e. the same target
part) with two different prologues, even with a simple modification like adding a single
NOP, could lead to various faulty behaviors, as observed in Program 2 experiments. As
an example, for Cortex-M3 device, single skip with R6 corruption occurred only in
the first experiment, while complete instruction skip and repeat is only observed
in the second experiment.

On the difficulty of analyzing the program flow faults

For the second experiment of Program 1, one might think that duplicating CMP will work
as a countermeasure for APSR corruption since instruction duplication could work as
a software countermeasure as described in [72], [104]. It did not, however, as the
injection affects two instructions in most cases, which might be related to the microar-
chitectural possibility to fetch two instructions at the same time. Hence, the corruption
of APSR might still occur as a result of either corruption in the second CMP or corruption
in the first and skipping the second. However, we cannot ensure that a single skip in
one of the CMP instructions has occurred as executing one of them, either properly or
improperly, will mask the single skip effect. Thus, at this step, we can only say that
either double skip or APSR corruption have occurred.

The corruption of APSR flags can be due to several causes: a change in the values
of the registers while executing CMP, an error while decoding the register numbers, an
error that occurred when updating the APSR flags, a fault in the ALU while executing the
subtraction between the registers, or a fault in a control signal related to the APSR flags.
All these hypotheses cannot be validated or discarded without a better knowledge of
the microarchitecture or looking at other levels of abstraction, which will help in having
a suited fault model at the end.

For all injection campaigns on the two target programs, different forms of instruction
skip are obtained: single, double and quad. This can refer to the possibility to fetch

48

2.1. Experimental evidence

two or more instructions at the same time or having a prefetch unit that could have a
maximum size of 128 bits. More investigation and experiments are needed to uncover
the origin of such faults at lower levels of abstraction.

Registers corruption

In terms of the injection effects on the registers, some registers that are not used in
the program end up being corrupted as well: R0, R1, R3 and R8 for Program 1; R0 and
R2 for Program 2. A question arises about what would be the proper fault model to
account for this effect. In particular, such errors may have several causes: it might
be related to the instruction opcode (i.e., a fault during the instruction fetch) or to the
execution stage of the pipeline. And most importantly, there is no explanation at this
level for some corrupted values found in the registers, either used or not in the tar-
get part of the programs: 0, values related to the program counter, shifted or
seemingly random. We believe that some of these values are related to the microar-
chitecture, which will affect how a corrupted instruction will be executed.

Some observed faulty values, however, can be explained as a source operand
replacement. For example, in Program 2 experiments, some corrupted values in R4
were the result of the sum of R0 and 0xB or the sum of R3 and 0xB instead of R4 and
0xB. The former case can occur due to a fault in the decode stage (R0 instead of R4);
while the latter can occur due to a fault of not updating one of the inputs to the arithmetic
logic unit in the execute stage (R3 was just used in the previous instruction as shown in
Listing 2.2). This explanation cannot be confirmed without further investigations.

State-of-the-art fault models reproducibility

A very interesting point is also observed: using clock glitch fault injection, we were able
to observe faulty behaviors that were obtained in the literature using other fault injection
techniques. For example, skip, repeat, and source operand substitution were
observed in [8] using EM fault injection, although, in their experiments, they used super-
scalar microarchitecture: Cortex-A9. Also, skip and replay faults were observed in
[92] as a result of performing laser fault injection on a microcontroller that embeds
Cortex-M0+. Such a result could help researchers to study the effects of costly fault
injections using low-cost equipment and techniques such as clock glitch.

49

Chapter 2 – The need for cross-layer analysis and proposed methodology

Summary

Finally, the aforementioned faults could be exploited as vulnerabilities in a security
application. For example, an APSR corruption can lead to test-inversion where tests
are considered very important in the control-flow of critical applications.

To sum up, we saw how fault characterization is difficult based on a single level of
analysis. These results show the difficulty of building consistent fault models that allow
designers to predict the fault injection effects and design efficient and cost-effective
countermeasures. Thus, additional research is necessary. In the next section, we
propose a methodology that takes into consideration multiple levels of analysis by in-
cluding software and RTL fault simulations as well as physical fault injections. This will
help in explaining the observed points and answering the above-mentioned questions.

2.2 Proposed methodology

This section provides a full description of the proposed methodology to validate and
infer fault models that will help in designing hardware and software countermeasures
at an optimal cost. In addition to that, these fault models can be used to evaluate
vulnerabilities of software codes and/or hardware designs with respect to fault injection
attacks. This methodology deals with three different levels of understanding in order to
provide a cross-layer fault analysis.

Fig. 2.6 depicts the proposed methodology. It is centered around a comparison
between the obtained results from performing three distinct operations of fault injec-
tions and simulations: physical fault injection, RTL fault simulation and software fault
simulation, in order to make decisions about the consistency and applicability of RTL
and software fault models. In other words, starting from the observations obtained
at the lowest level of abstraction (i.e., from physical fault injection), it will be possible
to optimize fault models at the RTL level, for example, by removing RTL models that
do not correspond to experimental observable faulty outputs. Similarly, the models at
software level will be optimized, by adjusting them to not include behaviors that can-
not be observed at RTL or physical level. This will help in not over-engineering the
countermeasures. Also, if a faulty behavior observed from the physical injection does
not belong to any faulty output from the RTL simulation, a new RTL fault model must
be proposed, or an already existing model must be enhanced. Comparably, a new

50

2.2. Proposed methodology

software fault model must be inferred, or an existing one must be improved. Thus, this
will help in not under-engineering the countermeasures. The following three subsec-
tions explain each of the three parts in more details, while the last subsection provides
additional discussion on how the proposed methodology is implemented.

Software
fault models

Software
fault simulation

software
faults

RTL
fault models

RTL
fault simulation

RTL
faults

Fault injection
parameters

Physical
fault injection

Observed
faulty

behaviors

Software
contexts

Hardware
contexts

Low level
of abstraction

High level
of abstraction

Figure 2.6: Proposed methodology.

2.2.1 Physical fault injection

At this stage, the goal is to perform physical fault injections using a variety of injection
techniques using dedicated printed circuit boards and suitable generators. In each
injection campaign, the following procedure is applied:

• Define software contexts as target programs for the injection process. Faults
are going to be injected while executing these programs on one of the hardware
physical targets. These hardware targets include, for instance, microcontrollers,
ASICs and FPGAs. A target part (or parts) within each software has also to be
defined where faults should be injected.

• Define the set of injection parameters. For example, in the case of clock glitch
attacks, the range of values for the shift and the width of the glitch, as well as the
delay, as described and explained in the previous section. These parameters as

51

Chapter 2 – The need for cross-layer analysis and proposed methodology

well as the target device layout must be taken into account when describing the
fault model.

• Get a snapshot of the state of the target: for example, the registers and memory
states will be put in a known state at the beginning, and these states will be read
at the end of the program execution (using a serial communication link with the
host computer for example). The richer the information that can be accessed,
the more precise the model will be: for instance, hidden performance counters
could be used to get a more detailed view of the internal state, in particular when
advanced microarchitectural features are implemented. Then, the snapshot will
be compared with the configuration of a golden run. The faulty behaviors will be
stored in a dedicated file or database, as visually shown in Figure 2.6. This step
will allow us to observe the relation between the observed faulty behaviors and
the instructions in the target part. In other words, the aim is to assess if there is
a direct relation (i.e., the effect corresponds to the target instructions), an indirect
relation (i.e., the effect is a result of a propagation effect), or no relation at all,
which may require further analysis.

2.2.2 RTL fault simulation

In order to understand what is exactly happening internally at the microarchitectural
level and be able to know the origin of a fault, fault simulation campaigns are performed
at the RTL description of the target processor. This helps in characterizing further the
obtained faulty behaviors by giving more observability and controllability.

With RTL fault simulation, it is possible to inject faults in a very precise manner
into the microarchitecture. For instance, inter-stage pipeline registers, multiplexers and
different arithmetic units that are involved in executing an instruction in the pipeline
stages can be targeted. The fault simulation will consist in forcing the corresponding
signals according to existing fault models such as single or multiple bit-flips, bit-sets and
bit-resets. Nonetheless, and as mentioned earlier, these fault models will be assessed
to better describe the fault effect. To put it in another way, if a new fault model can be
inferred to better describe and understand the faulty behavior at RTL, then this new
model will be the one to be used and proposed. Therefore, a new fault model could
replace an existing or classical fault model that could be either an unexplained model
or a very generic model.

52

2.2. Proposed methodology

As in the case of physical injection, the resulting RTL faults will be stored in a ded-
icated file or database and then be compared with those observed from the physical
fault injections. To ease the comparison and the fault characterization at the RTL level,
a divide-and-conquer approach is used to reduce the complexity: the fault simulation is
applied to a specific RTL module or specific microarchitectural component at once. Ad-
ditionally, to better assess and understand the fault effect at hardware level in general
and at RTL in particular, other kinds of hardware fault simulation are conducted, for ex-
ample, post-syntheses timing simulation. This would necessarily help in assessing or
improving an existing fault model, or even proposing a new model that better describes
the fault effect. More details are provided in chapter 4.

The comparison process helps in two aspects, as shown visually in Figure 2.7.
On the one hand, this aims at explaining at the hardware level the faulty behaviors
observed from physical injections, and hence, making the fault effect characterization
easier. The explanation is done by revealing the origin of the fault at the RTL level
and determining the responsible microarchitectural component, the register, or even
the single flip-flop behind obtaining the faulty behavior resulting from injecting the fault.
On the other hand, it also helps in validating and assessing the realism of the used
RTL fault models. Hence, it provides a full overview to the hardware designer in order
to build the required countermeasures.

observed faulty
behavior

RTL fault
model

validates

explains

Figure 2.7: Relation between observed faulty behavior and RTL fault model.

2.2.3 Software fault simulation

Software faults will be injected into different target programs. This can be done by
performing modification, deletion or addition of instructions in the original program.
The software faults may correspond to a large variety of faulty behaviors modeled at
the ISA level. This includes, for example, simulating the fault at the instruction level,
or even on the binary encoding of the instruction. It also provides description for the
fault effect at higher level, when software applications are targeted for exploitation or
evaluation purposes.

53

Chapter 2 – The need for cross-layer analysis and proposed methodology

Firstly, typical fault models such as instruction skip, instruction replacement, in-
struction corruption, register value corruption, test-inversion, or a combination between
these models, are injected into the programs by modifying the instructions. However,
inference of new fault models, or improvement of existing fault models issued from
other levels, will be applied to better understand the fault effects at software level, and
also to cover any observed fault behavior where no corresponding fault model existed
beforehand.

The expected faulty outputs will again be stored in a corresponding database. Then,
a comparison process similar to the one mentioned earlier will take place between the
RTL and the software faulty results on the one hand, and on the other hand, a com-
parison with the obtained faulty behaviors from physical injection will take also place.
Thus, an RTL model (and/or an observed faulty behavior) validates the consistency of
a software model, whereas a software model will be usable to describe the occurrence
and explain an RTL model (and/or an observed faulty behavior) at application level,
which makes the fault effect characterization at this level easier.

2.2.4 Discussion

It must be noted that the comparison between the results of injections and simulations
is not only one-way direction, or only between two levels; the comparison takes into
account all levels as shown in Figure 2.8. This also includes analyzing the effect on
sub-levels. For instance, for software level, this includes binary encoding of instruc-
tions, assembly, and application levels. Additionally, there is no specific order that must
be followed while comparing and analyzing the results. This is because the implemen-
tation of the methodology will follow an iterative flow. In other words, whenever a fault
model is improved or a new fault model is inferred at a specific level, simulations and
injections on other levels must be conducted to validate this enhanced or proposed
fault model.

For the sake of proposing new realistic fault models, fault model inference approach
is applied, as shown in Figure 2.9. This approach is part of the whole methodology,
which particularly focuses on inferring fault models while making sure of their realism.
Therefore, they are able to produce results similar to the results observed from phys-
ical injection. More precisely, physical fault injections are performed, with appropriate
injection parameters, on a target device that is executing a target program (step 1 in

54

2.2. Proposed methodology

RTL faults Software faults

Observed
faulty behaviors

Figure 2.8: Comparison of simulations and injection results

Figure 2.9). Then, from the physical fault injection results, we infer fault models at a
specific abstraction level (step 2 in Figure 2.9). Applying the inferred fault models to
perform fault simulation over the same target program, that was used in step 1 , is the
next step (step 3 Figure 2.9). The outcomes of the physical fault injection and the fault
simulation are then compared, as before, in order to validate the inferred fault models
(step 4 in Figure 2.9).

Fault injection
experiments

Target device Fault injection
parameters

Fault injection
simulation

Target
program

specifc-level (e.g., ISA)
fault models

Comparison

inference 2
1

3

4

Figure 2.9: Fault model inference approach.

Finally, it is important to highlight that the proposed methodology is independent in
terms of physical fault injection technique, target device, and target program. In our
scenarios, over this dissertation, we chose embedded microcontrollers that are widely
used in the IoT domain, and represent thus a significant test case. It is also worth
mentioning that authorized access to the architectures used in this work is provided
under the Arm Academic Access (AAA) agreement. This allows us to apply the RTL
fault simulation to the three architectures: Cortex-M0, Cortex-M3 and Cortex-M4. Re-
garding the injection technique, chapters 3 and 4 provide results of clock glitch fault
injection, while chapter 5 presents results of voltage glitch fault injection.

55

Chapter 2 – The need for cross-layer analysis and proposed methodology

Simulated
faults

(area S)

Observed
faulty

behaviors
(area P)

(area O)

Figure 2.10: Faults generated from simulation and injection with overlapping area.

2.3 Fault models evaluation

For the sake of assessing and validating the proposed fault models, Laurent et al. [95],
[105] defined two metrics: Coverage and Fidelity. In this work, we also use these
two metrics. In addition to these two quantitative metrics, we define a new metric
called Complexity to introduce a qualitative assessment of the complexity of a fault
model. These metrics evaluate a proposed fault model at a specific level of abstraction
with respect to the observed faulty behaviors resulting from physical fault injection. In
other words, the observed faulty behaviors represent the reference to measure these
metrics. Conversely, in the work of Laurent et al., they measured Coverage and Fidelity
based only on simulations, where the results of RTL fault simulation were the reference
to assess software fault models. The following subsections describe these metrics in
detail.

2.3.1 Coverage

It measures the portion of the observed faulty behaviors that the used fault models
accurately predicted. Thus, it represents the faulty behaviors that fall in the overlapping
area in Figure 2.10. The circle on the right in Figure 2.10 corresponds to the observed
faulty behaviors from physical fault injection, while the circle on the left represents the
faults generated from fault simulation while applying a set of fault models at a specific
level of abstraction.

Mathematically, the fault Coverage (C) is defined in Equation 2.1. Where:

• |area P| is the number of observed faulty behaviors from Physical fault injection
that are not predicted by fault models, i.e., the red area in Figure 2.10.

56

2.3. Fault models evaluation

• |area O| is the number of observed faulty behaviors from physical fault injection
that are predicted by fault models, i.e., the Overlapping green area in Figure 2.10.
|area O| also represents the number of obtained faults from fault simulation that
correspond to actual observed faulty behaviors.

C = |area O|
|area O| + |area P |

× 100% (2.1)

2.3.2 Fidelity

It measures the portion of the obtained faults from fault simulation that correctly pre-
dicts observed faulty behaviors. Thus, it represents the simulated faults that fall in the
overlapping area in Figure 2.10. To better differentiate Fidelity from Coverage with
respect to the overlapping area, one should notice that the size of the two circles in
Figure 2.10 does not necessarily be the same.

Mathematically, the Fidelity metric (Fd) is defined in Equation 2.2. Where:

• |area O| as defined in subsection 2.3.1.

• |area S| is the number of the obtained faults from fault Simulation that does not
correspond to actual observed faulty behaviors, i.e., the blue area in Figure 2.10.

Fd = |area O|
|area O| + |area S|

× 100% (2.2)

2.3.3 Complexity

This metric provides a qualitative measurement for a fault model. More precisely, it
measures how applicable is the fault model in a vulnerability analysis process. More-
over, it takes into account how easy is the fault model to be used by a software de-
veloper or hardware designer to develop or design a countermeasure. Also, other
properties of a fault model can be considered when assessing its complexity, this in-
cludes:

• Description: how generic is a fault model description, is another attribute that
can affect the Complexity. For example, "Corruption" fault model is an extremely
generic term that surely increases the complexity of a fault model.

57

Chapter 2 – The need for cross-layer analysis and proposed methodology

• Explainability: providing an explanation of a fault model, at single or multi-abstraction
levels, would definitely decrease its complexity. On the other hand, having an un-
explained fault model, for instance: "Random corruption" would clearly increase
its complexity.

• Target dependency: the independence of a fault model with respect to a target
program or a target device would certainly make it a better model, and thus, a
less complex model that is applicable to different scenarios, with no additional
constraints.

To evaluate the quality of a fault model with respect to the Complexity metric, we
will use adjectives that convey the degree or intensity of its difficulty when applying it
to evaluate vulnerabilities or to design countermeasures. This includes, for example,
easy, hard, very hard, etc. Additionally, to assess Complexity with respect to the above-
mentioned properties, we may use words, such as, low, high, very low, etc.

2.3.4 Summary

In summary, these metrics will absolutely help in evaluating fault models, and hence,
refining the inferred fault models. Therefore, realistic fault models will be proposed.
Based on the Coverage and Fidelity metrics, the main objective will be to increase
the overlapping area in Figure 2.10 as much as possible. However, this might not be
enough for the quality of a fault model. Thus, we defined Complexity as an additional
metric. The objective for Complexity will be to have the simplest possible fault model
that can be used in vulnerability analysis or in countermeasure design. In addition, we
seek to obtain the lowest level of Complexity in terms of the aforementioned properties.

2.4 Conclusion

In this chapter, we presented the existing problems in analyzing and understanding
fault attacks in complex microarchitectures, while focusing only on ISA level for the
analysis. We highlighted this by providing experimental evidence of intrinsically mi-
croarchitectural faults, using clock glitch as the fault injection technique. The exper-
imental results showed that the observed faulty behaviors can be target-dependent,
prologue-dependent, and architecture-dependent.

58

2.4. Conclusion

After that, we proposed a new methodology to provide a cross-layer analysis for
characterizing faulty behaviors. Such methodology can be used to build realistic fault
models at different levels, such as RTL and software levels. It can also provide an
explanation for the origin of the observed faults. Hence, this gives the possibility to
design suited countermeasures at the most appropriate cost at hardware and software
levels. Additionally, it makes the process of vulnerability analysis easier.

Finally, metrics to evaluate and assess the realism and the quality of the proposed
fault models are provided.

59

3
Preliminary RTL simulation and new binary

encoding fault models

With the increasing complexity of embedded systems, the use of variable-length in-
struction sets has become essential to achieve higher code density and better per-
formance. However, security aspects are closely linked to this, as attack techniques
and equipment continue to improve. One such rising physical attack technique is fault
injection. Yet, as detailed in the previous chapters, hardware designers and software
developers lack accurate fault models to evaluate the vulnerabilities of their designs or
codes in the presence of such attacks.

To follow the proposed methodology, this chapter presents preliminary RTL fault
simulation experiments. These experiments demonstrate that the alignment of instruc-
tions in memory greatly affects the observed faulty behaviors, due to the target proces-
sors supporting variable-length instruction set. As a result, fault models at the binary
encoding level of instructions are inferred. These models provide an explanation for
a wide range of faulty behaviors that are experimentally observed when a processor
running a variable-length instruction set is targeted. The analysis and characteriza-
tion process include the binary encoding of instructions and show how the obtained
behaviors depend on the alignment in memory. Moreover, applying the proposed fault
models leads to provide a proof of concept exploitation example, where we were able
to break the control flow integrity of a program by modifying the value of the program
counter. Additionally, vulnerability analysis on three different implementations of AES
encryption algorithm is provided, which serves as a real-life application example.

In the following sections, section 3.1 presents a series of fault simulation experi-

61

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

ments, at hardware level, that unravels the relation between the observed faulty behav-
iors and the alignment of instructions in memory. Section 3.2 provides the necessary
background on variable-length instruction sets. Fault models along with experimental
setup and findings are detailed in section 3.3. Exploitation and vulnerability analy-
sis scenarios are carried out in section 3.4. A tool to automate the simulation of the
fault models and analyze the injection results is described in section 3.5. Evaluation
of the proposed fault models is provided in section 3.6. The chapter is concluded in
section 3.7.

3.1 Preliminary RTL fault simulation and analysis

To start validating the proposed approach, a preliminary analysis study has been con-
ducted by performing RTL fault simulation experiments on an RTL description version
based on the Arm Cortex-M3 processor. This version is called Arm Cortex-M3 Design-
Start Eval RTL [106]. It is an open-source version. Its RTL description is for an FPGA
and is based on the Arm Cortex-M3 processor. It provides a flexible way for designers
to evaluate their embedded system designs using the Arm Cortex-M3 processor. It
also enables easy SoC design and simulation, followed by hardware prototyping.

The DesignStart RTL description consists of many subsystems, as shown in Fig-
ure 3.1. This includes: preconfigured obfuscated Cortex-M3 processor, memory sub-
system, peripherals for application use, etc.

Subsection 3.1.1 presents the initial simulation experiments where clock glitch sim-
ulation has been conducted on this RTL description, at the behavioral level. As a
result, subsection 3.1.2 tries to model the observed faulty behaviors using typical RTL
fault models.

It should be mentioned that the RTL simulation experiments in this section have
been done before the academic access agreement with Arm (AAA) was signed. More-
over, DesignStart version can be described as a gray-box setting, where it has an
obfuscated RTL for the core itself, while non-obfuscated RTL for the surrounded sub-
systems. Therefore, these simulation experiments are considered preliminary. This
is because the obtained results need further analysis, formalization and confirmation
from additional experiments on a non-obfuscated RTL description, as will be detailed
in chapter 4.

62

3.1. Preliminary RTL fault simulation and analysis

Figure 3.1: Cortex-M3 DesignStart Eval system diagram (from [107])

3.1.1 Internal clock glitch simulation

Since an RTL description may contain thousands of flip-flops, a simple and fast ap-
proach is needed to accelerate the fault simulation process. Moreover, as the already
observed faulty behaviors are resulting from clock glitch fault injection, a method to
simulate the clock glitch is the first thing thought of. In clock glitch fault injection, as
previously mentioned, the glitch is injected on the global clock, thus, there is no partic-
ular information about which microarchitectural element could be affected as a result
of the injection. Fortunately, as DesignStart version consists of multi-subsystems, it is
possible to simulate the glitch for a specific clock that is fed to a specific subsystem
without affecting other clocks. This allows simulating the glitch on an internal clock
signal. Hence, creating a timing violation between a subsystem and other subsys-
tems within the whole system. This is because the glitch manifested as an additional
clock cycle exclusively for the target subsystem, while other subsystems are under the
normal clock cycle.

The simulation is performed by forcing an internal clock signal to have Logic 1 for a
given period of time in a specific clock cycle, where the clock signal is originally having

63

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

a Logic 0, between a falling edge and the following rising edge, as shown in Figure 3.2.

Normal clk
Glitched clk

Figure 3.2: Clock glitch simulation.

Simulating the clock glitch, while executing the data-flow target program used in
chapter 2 (also shown in Listing 3.1), allows obtaining faulty behaviors similar to some
of the observed faulty behaviors resulting from physical clock glitch fault injection. This
is achieved when the faulty clocks are either: the system clock that is fed to the AHB
(Advanced High-Performance bus) and the processor subsystem (IoT Subsystem in
Figure 3.1). This clock is called CPU0HCLK, also faulting its successor (HCLK) led to
the same kind of faulty behaviors. Or, the clock that is fed to the Flash memory
(Flash Subsystem surrounded by a dashed rectangle in Figure 3.1). This clock is
called SRMAFHCLK. Furthermore, adding a single NOP at the beginning of Listing 3.1,
and performing the same clock glitch simulation again, allows obtaining different faulty
behaviors that are also similar to observed behaviors from physical clock glitch fault
injection.

1 ADD R1, R1, 0x6 // r1 = r1 + 0x6
2 ADD R3, R3, 0xa // r3 = r3 + 0xa
3 ADD R4, R4, 0xb // r4 = r4 + 0xb
4 ADD R5, R6, R3 // r5 = r6 + r3
5 ADD R3, R3, 0xf // r3 = r3 + 0xf

Listing 3.1: Target part used in the internal clock glitch simulation.

Based on these observations, the goal is now to find the RTL registers or signals
that allow obtaining these faulty behaviors, and hence, being able to model these faults
at RTL, as will be described in the next subsection.

3.1.2 RTL fault simulation using bit manipulation fault models

While analyzing how the clock glitch simulation affected RTL signals, it is found that
some signals are erroneously updated at the rising edge of the glitch. These signals

64

3.1. Preliminary RTL fault simulation and analysis

are located in both directions of the path between the Flash memory and the core.
Figure 3.3 shows this path in a schematic way. This path is the instructions’ data path,
where the data propagate while fetching the instructions.

Flash
memory Interface

E
Bus
mux Core/

128-bit

/
32-bit

/
32-bit

Figure 3.3: Instructions’ fetch data path from the Flash memory to the processor core.

Using classical RTL fault models, we were able to observe various faulty behaviors
similar to real. For example, by single or double bit-set or bit-reset to specific signals
that are located in the fetch path, in particular in the interface, as shown in Figure 3.3,
we were able to observe the following faults:

• Skip an instruction and repeat the previous one.

• 128-bit complete instructions skip and repeat the previous 128-bit block. This
behavior is described in [74].

Adding a single NOP at the beginning of the target part in Listing 3.1 and applying the
same RTL fault model, that led previously to Skip an instruction and repeat the previous
one fault, allowed observing a totally different faulty behavior, which can be described
as double instruction corruption. This outcome was also similar to a realistic behavior
observed from physical clock glitch fault injection. As a result of analyzing the related
faulty signals, the rationale behind such observation was figured out: the instructions’
data (i.e., the binary encoding of the instructions) that are carried by these signals
(e.g., HRDATAI) did not necessarily belong to complete instructions. For instance, they
might correspond to two different instructions. This is because the supported ISA of-
fered variable-length instructions. Thus, misaligned instructions can be fetched. This
knowledge led us to infer various fault models, at the binary encoding level of the
instructions. These models allowed explaining a wide range of the observed faulty be-
haviors from physical injections. The models and the related experimental results are
detailed within this chapter in the following sections. Before digging into details, the
next section provides a background on variable-length instruction sets.

65

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

3.2 Variable-length instruction sets

Reducing code size is a well-known method to reduce power consumption and memory
usage. It lowers the overall cost of an embedded system, highly affected by program
coding and the fetch stage in the pipeline [108]. Code size reduction, targeting the
highest possible code density, can be achieved by using a variable-length instruction
set [108]–[111]. Additionally, less power is consumed due to the smaller number of
fetches [109].

A variable-length instruction set can be defined as a combination of two instruction
sets:

• a first set of short instructions (with respect to their encoding), mainly used for
common operations, while providing the same functionality as if possessing larger
encoding;

• a second set composed of instructions with a larger encoding that cannot be
compacted while giving the same functionality.

For this reason, the first set can also be referred to as the compressed set. High
code density is achieved by the compressed instructions, while the second set allows
for the preservation of high performance and expressive power. An example of the
effect of a variable-length ISA on cost and performance is the instruction cache: shorter
encoding needs smaller caches for the same performance [111], [112]. Therefore,
having a shorter encoding induces fewer cache misses, with a given cache size, thus
increasing the overall throughput of the processor. On the other hand, dealing with
different lengths of encoding increases the complexity of the instruction decoder [112].

Several variable-length instruction sets exist. The x86 [113] instruction set, sup-
ported by Intel and AMD processors, offers various lengths of encoding from 1 to 15
bytes. Another example of a variable-length instruction set is microMIPS [110], pro-
viding a set of 16-bit instructions that correspond to the most commonly used ones,
in addition to all the instructions from the MIPS32/64 instruction sets [114], [115]. Mi-
croMIPS shows 35 % smaller code size, although almost the same performance as
MIPS32 [110]. In 2015, a draft proposal [111] was published to procure 16-bit en-
codings for some instructions in the RISC-V instruction set. This new instruction set
has been known as RISC-V Compressed (RVC) and reduces the code size by more
than 25 % [111]. RVC extension is now part of the recent RISC-V specifications [116].

66

3.3. Inferred binary encoding fault models

Finally, most Arm processors, including Cortex-M3, Cortex-M4 and Cortex-A9, sup-
port a dedicated variable-length instruction set as well, known as Thumb2 instruction
set [102]. It consists of two sets of 16-bit and 32-bit instructions. Thumb2 delivers 30 %
of code size reduction on average [109].

In this work, Cortex-M3 and Cortex-M4 have been chosen as target processors, for
their wide adoption in embedded systems. Thumb2 is the target instruction set, but it
is straightforward to generalize our findings to other variable-length instruction sets, as
the fetching mechanisms are similar in most devices regardless of the alignment of the
code in memories. For example, Intel and AMD architectures usually support fixed-size
of caching blocks called cache lines [117], [118]. Consequently, as these cache lines
have fixed size, Intel and AMD architectures allow splitting the instructions’ data over
the cache lines. This splitting may occur when an instruction spans across two or more
cache lines. In such cases, the processor fetches the necessary cache lines to obtain
the complete instruction.

3.3 Inferred binary encoding fault models

In order to investigate the effects of fault injection on a variable-length instruction set,
several physical fault injection experiments have been carried out. They aim at con-
firming the analysis of the preliminary simulation to provide better characterization and
description, at ISA level, for a wide range of faulty behaviors obtained when performing
fault injection campaigns. The following subsections present the experimental setup,
the experimental results and the related discussion and analysis.

3.3.1 Experimental setup

Clock glitch fault injection experiments have been conducted using the ChipWhisperer
environment. In the following, the target devices and programs are described.

Target devices

The target devices are two 32-bit microcontrollers: STM32F1, which embeds an Arm
Cortex-M3 processor, and STM32L4, which embeds an Arm Cortex-M4 processor.

67

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

The Arm Cortex-M3 and Cortex-M4 cores both include a 3-stage pipeline: fetch, de-
code, and execute. Both are based on the ARMv7-M [77] architecture and support the
Thumb2 instruction set, consisting of variable-length instructions as mentioned in the
previous section: 16-bit and 32-bit instructions.

In the Arm Cortex-M3 device, the fetch size from the memory to the AHB (Advanced
High-performance Bus) is fixed and equal to 32 bits, regardless of the size of the in-
struction. Hence, as a result of having variable-length instructions, the fetched 32 bits
can belong to one of the cases in Figure 3.4 or Figure 3.5. Figure 3.4 represents
the fetching cases when code is aligned in memory, while Figure 3.5 represents the
misaligned cases.

The Arm Cortex-M4 device supports cache lines of 64 bits. Therefore, in this case,
the flash memory access size is 64-bit wide. Consequently, the fetched 64 bits from the
memory to the cache line can belong to two combined blocks of cases in Figure 3.4
or Figure 3.5. How these different possibilities affect the observed execution, as a
reaction of fault injection campaigns, will be addressed in Section 3.3.2.

The processor detects whether the instruction that is about to be executed is a 16-
bit or 32-bit one by analyzing the five most significant bits of the half-word that arrives
first [77]. If these five bits have one of the following three values, then the word contains
a 32-bit instruction:

• 0b11101,

• 0b11110,

• 0b11111.

All the other values define a 16-bit instruction. This understanding is central to unravel
the monitored faulty behaviors, as detailed in Section 3.3.2.

In the following sections and chapters, the big-endian representation for the binary
encoding of instructions is used for readability. Thus, for a 32-bit instruction, the most
significant 16 bits arrive first in the pipeline.

Target programs

As in chapter 2, the injection is performed into inline assembly instructions within a C
program. Also, the program is divided into three parts, referred to as Prologue, Target,
and Epilogue, and separated by NOP instructions to ease the fault injection process.

68

3.3. Inferred binary encoding fault models

I32

(a) Fetching one 32-bit instruction.

I16 I16

(b) Fetching two 16-bit instructions.

Figure 3.4: Fetching aligned instructions.

I32 I32

(a) Fetching the bottom half of a 32-bit instruction and the top half of another 32-bit instruction.

I16 I32

(b) Fetching one 16-bit instruction and the top half of a 32-bit instruction.

I32 I16

(c) Fetching the bottom half of a 32-bit instruction and one 16-bit instruction.

Figure 3.5: Fetching misaligned instructions.

In the experiments, arithmetic instructions have been used in the Target part as
shown in Listings 3.2 and 3.3. These instructions are similar to the target instructions
in Listing 3.1, however, two instructions are added at the beginning of the Target part,
i.e. MOV and LSLS. These two instructions are 16-bit instructions. Conversely, all the
ADD instructions are 32-bit instructions. The additional two instructions aim at clarifying
the effect of the injection on variable-length instructions. Moreover, they also illustrate
how the code alignment in memory greatly affects the resulting faulty behaviors.

Listing 3.2 shows an example of an aligned code. In this case, when 32 bits are
fetched, they are either two full 16-bit instructions or one 32-bit instruction, as shown
in Figure 3.4. At the end of a normal execution, each register has a different value
from the others. Therefore, faults can be more easily identified whenever they occur.
Various small immediate values are used with the ADD instructions to assess whether
one would be replaced by a register number or vice versa, for example, whether R3
becomes 0x3. More details are given in 3.3.2.

69

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

1 MOV R8, R4 // R8 = R4
2 LSLS R2, R0, 0x10 // R2 = R0 « 0x10
3 ADD R1, R1, 0x6 // R1 = R1 + 0x6
4 ADD R3, R3, 0xa // R3 = R3 + 0xa
5 ADD R4, R4, 0xb // R4 = R4 + 0xb
6 ADD R5, R6, R3 // R5 = R6 + R3
7 ADD R3, R3, 0xf // R3 = R3 + 0xf

Listing 3.2: Target part in the aligned code.

A misaligned code is illustrated in Listing 3.3. It is similar to Listing 3.2 except that
the first MOV instruction has been removed. Only one 16-bit instruction is now fetched.
Therefore, the code is misaligned. When 32 bits are fetched, they now belong to either
two different 32-bit instructions, or one 16-bit instruction and half of a 32-bit instruction,
as shown in Figure 3.5. Section 3.3.2 will develop how such a small modification of the
Target code can greatly affect the observed faulty behaviors at ISA level.

1 LSLS R2, R0, 0x10 // R2 = R0 « 0x10
2 ADD R1, R1, 0x6 // R1 = R1 + 0x6
3 ADD R3, R3, 0xa // R3 = R3 + 0xa
4 ADD R4, R4, 0xb // R4 = R4 + 0xb
5 ADD R5, R6, R3 // R5 = R6 + R3
6 ADD R3, R3, 0xf // R3 = R3 + 0xf

Listing 3.3: Target part in the misaligned code.

The Prologue is always aligned in the code memory space and does not influence
the overall code alignment, which only depends on the instructions of the Target part.

Injection parameters

Each injection campaign involves repeating the clock glitch fault injection 10 000 times
for each combination of glitch parameters to maximize the number of captured faults.
Thus, for each of the presented examples in Section 3.3.2, 10 000 executions are con-
ducted. Table 3.1 shows the shift and width values that allowed observing the pre-
sented faulty behaviors, for each target device. The values are expressed in percent-
age of one clock period. The negative value of the shift means that the glitch is injected
before the rising edge of the target clock cycle. These shift and width values reproduce

70

3.3. Inferred binary encoding fault models

similar faulty behaviors when targeting other microcontrollers of the same series (i.e.
other STM32F1 and STM32L4). The glitch is timed accordingly to target specific in-
structions. Thus, the delay value depends on the target instruction(s), the number of
instructions in the Prologue, and the number of NOP instructions that precede the Target
part. A single glitch is injected during each program execution.

STM32F1 STM32L4
faulty behavior shift width times shift width times
skip 32 bits aligned -49 4 9.06% -14 10 92.68%
skip 64 bits aligned - - - -13 10 100%
skip & repeat 32 bits aligned -13 3 99.8% - - -
skip & repeat 64 bits aligned - - - -6 2 75.98%
skip 32 bits misaligned example1 -49 5 1.97% - - -
skip 32 bits misaligned example2 -12 3 99.51% -12 6 100%
skip 64 bits misaligned - - - -13 10 100%
skip & repeat 32 bits misaligned -13 3 99.98% - - -
skip & repeat 64 bits misaligned - - - -6 2 65.34%

Table 3.1: Shift and width values used in Section 3.3.2 experiments, and percentage of
occurrence of each faulty behavior over 10 000 executions.

In the next section, we focus on an observable subset of captured faults, discarding
crashes and silent cases. This subset is the largest subset of the obtained faults, and
our focus is on the occurrence of these faults, not their probability. Nonetheless, Ta-
ble 3.1 shows the percentage of occurrence for each of the presented faulty behaviors
over 10 000 executions.

3.3.2 Experimental results and analysis

Different faulty behaviors have been observed after performing clock glitch fault injec-
tion campaigns. In the following three subsections, we only focus on faulty behaviors
related to two specific inferred fault models: the ones referring to the encoding of the
instructions “Skip” or “Skip and repeat” a specific number of bits, which can either be
32 or 64 bits. Other special faulty behaviors, also related to the encoding of the in-

71

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

structions, are described in the last subsection of section 3.3.2. These additional faulty
behaviors depend on the target device. Thus, extra fault models are provided.

In the following presented results, all the occurrences of 32-bit faulty behaviors
were observed when targeting the Arm Cortex-M3 device. Some of them were also
monitored when targeting the Arm Cortex-M4 device, as shown in Table 3.1. On the
other hand, 64-bit faulty behaviors were only obtained when targeting the Arm Cortex-
M4 device. Their fetch size is the reason, as previously detailed in section 3.3.1.

Aligned code scenario

Listing 3.4 represents the binary encoding of the target program previously shown in
Listing 3.2. Each line corresponds to one 32-bit instruction, except line 1, which cor-
responds to the two 16-bit instructions. Therefore, this code is aligned in memory.

1 46a00402 // MOV R8, R4 // LSLS R2, R0, 0x10
2 f1010106 // ADD R1, R1, 0x6
3 f103030a // ADD R3, R3, 0xa
4 f104040b // ADD R4, R4, 0xb
5 eb060503 // ADD R5, R6, R3
6 f103030f // ADD R3, R3, 0xf

Listing 3.4: Binary encoding for the aligned code in hexadecimal format.

Assuming that i is the line number that points to a 32-bit block of the target program
binary encoding , then the “Skip” and “Skip and repeat ” fault models can be detailed
as such:

• Skip 32 bits: the 32 bits at line i are skipped, and the execution resumes from
line i + 1.

• Skip & repeat 32 bits: the 32 bits at line i + 1 are skipped and the 32 bits at line i

are repeated.

• Skip 64 bits: the 32 bits at line i and the 32 bits at line i + 1 are skipped, and the
execution resumes from line i + 2.

• Skip & repeat 64 bits: the 32 bits at line i + 1 and the 32 bits at i + 2 are skipped,
while the 32 bits at line i, and the 32 bits at line i− 1 are repeated.

72

3.3. Inferred binary encoding fault models

The following subsections show samples of the observed “Skip” and “Skip and re-
peat” faulty behaviors after performing the fault injection campaigns.

Although we target a given instruction inside the target part for discussion, the con-
clusions drawn from these examples can also be applied to other locations of the target
program without any loss of generality. For each subsection, faults are described at two
different abstraction levels: binary encoding and ISA levels. Note that all the presented
examples have been experimentally observed during clock glitch fault injection cam-
paigns.

Skip 32 bits / single instruction skip Except line 1 related to the binary encoding
of two 16-bit instructions, skipping any line in Listing 3.4 has led to a single instruc-
tion skip. This is because each line corresponds to a full 32-bit instruction. Skipping
the ADD R4, R4, 0xb instruction at line 4 in Listing 3.4 is an example; the observed
execution at ISA level is reported in Listing 3.5.

1 MOV R8, R4
2 LSLS R2, R0, 0x10
3 ADD R1, R1, 0x6
4 ADD R3, R3, 0xa
5 ADD R5, R6, R3
6 ADD R3, R3, 0xf

Listing 3.5: Observed execution for Skip 32 bits / single instruction skip.

Naturally, skipping line 1 in Listing 3.4 has led to a double instruction skip since this
line corresponds to two 16-bit instructions.

Skip 64 bits / double instruction skip Skipping line 2 and line 3 in Listing 3.4 has
brought a double instruction skip since these two lines contain two 32-bit instructions.
Listing 3.6 shows the observed execution at ISA level for this sample.

Skip & repeat 32 bits / single instruction skip & single instruction repeat Skipping
the ADD R3, R3, 0xa instruction at line 3 in Listing 3.4 and repeating the ADD R1, R1, 0x6
instruction at line 2 is an illustration of this fault model. The monitored execution at ISA
level is exposed in Listing 3.7.

73

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

1 MOV R8, R4
2 LSLS R2, R0, 0x10
3 ADD R4, R4, 0xb
4 ADD R5, R6, R3
5 ADD R3, R3, 0xf

Listing 3.6: Observed execution for Skip 64 bits / double instruction skip.

1 MOV R8, R4
2 LSLS R2, R0, 0x10
3 ADD R1, R1, 0x6
4 ADD R1, R1, 0x6
5 ADD R4, R4, 0xb
6 ADD R5, R6, R3
7 ADD R3, R3, 0xf

Listing 3.7: Observed execution for Skip & repeat 32 bits / single instruction skip &
single instruction repeat.

Skip & repeat 64 bits / double instruction skip and double instruction repeat Skip-
ping line 4 and line 5, and repeating line 2 and line 3 in Listing 3.4 is an example of this
fault model. The observed execution at ISA level is shown in Listing 3.8.

1 MOV R8, R4
2 LSLS R2, R0, 0x10
3 ADD R1, R1, 0x6
4 ADD R3, R3, 0xa
5 ADD R1, R1, 0x6
6 ADD R3, R3, 0xa
7 ADD R3, R3, 0xf

Listing 3.8: Observed execution for Skip & repeat 64 bits / double instruction skip &
double instruction repeat.

Misaligned code scenario

The focus is now on misaligned code. It is achieved by removing the leading MOV
instruction, a 16-bit instruction, from the Target part in the program as displayed in
Listing 3.3. Listing 3.9 shows the binary encoding of the misaligned code.

74

3.3. Inferred binary encoding fault models

Each line still contains 32 bits, but unlike the previous case, it does not correspond
to a single 32-bit instruction. For the sake of clarity, each instruction has been high-
lighted with a different color: the reader will notice that each 32-bit instruction is split
over two consecutive lines.

1 0402f101
2 0106f103
3 030af104
4 040beb06
5 0503f103
6 030fbf00 // bf00: NOP.

Listing 3.9: Binary encoding for the misaligned code in hexadecimal format.

There again, similar fault models are used on 32-bit or 64-bit data. However, as
a line now consists of two 16-bit blocks belonging to two separate instructions, as
previously shown in Figure 3.5, different faulty behaviors have been examined at ISA
level. The actual recorded faulty behaviors depend on the target location of the glitch
injection. The following subsections provide various observations of each model, i.e.
different examples of “Skip” and “Skip and repeat” models. It is interesting to highlight
that the monitored behaviors in this scenario are significantly more complex than in
the aligned code scenario. Among several outcomes, for instance, we have witnessed
double instruction corruption or even new instruction execution.

Skip 32 bits / single instruction skip and single instruction corruption This case
refers to Figure 3.5a, and happens when skipping line 3 in Listing 3.9 for example. The
observed execution at ISA level is in Listing 3.10.

1 LSLS R2, R0, 0x10
2 ADD R1, R1, 0x6
3 ADD R4, R3, 0xb // f103040b
4 ADD R5, R6, R3
5 ADD R3, R3, 0xf

Listing 3.10: Observed execution for Skip 32 bits / single instruction skip and single
instruction corruption.

75

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

The ADD R4, R4, 0xb instruction is skipped and the ADD R3, R3, 0xa instruction is
corrupted, replacing two of its operands by the corresponding ones from the skipped
instruction.

Skip 32 bits / double instruction skip and new instruction execution Figure 3.5b
illustrates this case; Line 1 in Listing 3.9 is skipped for example. As a result, 0x0106
arrives first to the core and, since the five most significant bits of 0x0106 are 0b00000,
a 16-bit instruction is executed, with the following encoding: 0x0106. This instruction is
LSLS R6, R0, 0x4. The other instructions in the target program are not affected and
are executed normally.

Listing 3.11 displays the monitored execution of this example at ISA level. The first
instruction is painted blue since its encoding comes from the original blue instruction.
It is shown that two instructions have been skipped: a 16-bit and a 32-bit one; a new
16-bit instruction has been executed instead.

1 LSLS R6, R0, 0x4 // 0106
2 ADD R3, R3, 0xa
3 ADD R4, R4, 0xb
4 ADD R5, R6, R3
5 ADD R3, R3, 0xf

Listing 3.11: Observed execution for Skip 32 bits / double instruction skip and new
instruction execution.

To prove that the new LSLS instruction is not related to the original LSLS instruction,
section 3.3.2 supplies a variety of instructions that can be executed as a result of this
observed behavior.

Skip 64 bits / single instruction corruption, double instruction skip and new in-
struction execution This case relates to two consecutive blocks of Figure 3.5a, and
happens when skipping lines 2 and 3 in Listing 3.9 for instance. Listing 3.12 shows its
observed execution at ISA level.

The ADD R1, R1, 0x6 is corrupted after skipping its bottom half (0x0106). Since
0xf101 means a 32-bit instruction is about to be executed, it should be padded with
another 16-bit block. However, in this case, it is not padded with 16 bits from an up-
coming or skipped instruction, as observed previously. Instead, it is padded with zeros:

76

3.3. Inferred binary encoding fault models

1 LSLS R2, R0, 0x10
2 ADD R0, R1, 0x0 // f1010000
3 LSLS R3, R1, 0x10 // 040b
4 ADD R5, R6, R3
5 ADD R3, R3, 0xf

Listing 3.12: Observed execution for Skip 64 bits / single instruction corruption, double
instruction skip and new instruction execution.

0x0000. This might be due to the unavailability of another 16-bit block from the bus
or in the fetch unit, when the decision of executing a 32-bit instruction is taken. The
ADD R3, R3, 0xa instruction is skipped as all of its bits had been discarded. 0x040b,
the remaining part of the original ADD R4, R4, 0xb instruction, is executed as a new
16-bit instruction, since the five most significant bits, 0b00000, identify a valid 16-bit
instruction: LSLS R3, R1, 0x10.

The skipped 32 bits (0x030af104) might also be replaced by zeros. Here it is worth
mentioning that the encoding of 0x0000 belongs to a 16-bit dummy instruction that has
no effect: MOVS R0, R0. Thus, executing 0x00000000 would have no effect.

This behavior is also observed when considering 32 bits, not only 64 bits, when the
code is misaligned in memory.

Skip & repeat 32 bits / double instruction corruption This section refers to Fig-
ure 3.5a as a reference; when two half instructions are affected. By way of illustration,
in Listing 3.9 it happens when line 4 is skipped and line 3 is repeated.

1 LSLS R2, R0, 0x10
2 ADD R1, R1, 0x6
3 ADD R3, R3, 0xa
4 ADD R3, R4, 0xa // f104030a
5 ADD R5, R4, 0x3 // f1040503
6 ADD R3, R3, 0xf

Listing 3.13: Observed execution for Skip & repeat 32 bits / double instruction
corruption.

As a consequence, two instructions are corrupted, as shown in Listing 3.13. 0xf104
means that the instruction to be executed is a 32-bit one, as the five most significant bits
are 0b11110. The repeated red section (0x030a) is part of the new executed instruction.

77

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

In addition, since 0xf104 is repeated, another new 32-bit instruction is executed. Its
first half is from the ADD R4, R4, 0xb instruction (0xf104) and its second one is from
the 16 bits that remained from the ADD R5, R6, R3 instruction at line 5 in Listing 3.9
(0x0503).

To report the observed behaviors at ISA level and generalize the obtained faults to
other target programs with similar structure of encoding, the corruption of two 32-bit
instructions is explained as follows:

• For the ADD R4, R4, 0xb instruction: the destination operand and the second
source operand are replaced by the corresponding operands from the previous
instruction.

• For the ADD R5, R6, R3 instruction: the first source operand is replaced by the
first source operand from the previous instruction. Its opcode (ADD with register)
is also replaced by the previous opcode (ADD with immediate). Therefore, reg-
ister number R3 is now considered as an immediate value: 0x3.

Skip & repeat 64 bits / double instruction corruption, single instruction skip and
single instruction repeat This case concerns two consecutive blocks of Figure 3.5a,
when two 32-bit blocks are skipped and two 32-bit blocks are repeated; it happens
when skipping lines 4 and 5 and repeating lines 2 and 3 in Listing 3.9 for example.
Listing 3.14 displays its recorded execution at ISA level.

1 LSLS R2, R0, 0x10
2 ADD R1, R1, 0x6
3 ADD R3, R3, 0xa
4 ADD R1, R4, 0x6 // f1040106
5 ADD R3, R3, 0xa
6 ADD R3, R4, 0xf // f104030f

Listing 3.14: Observed execution for Skip & repeat 64 bits / double instruction
corruption, single instruction skip and single instruction repeat.

The ADD R4, R4, 0xb instruction is corrupted, as the bottom half of it (0x040b) is
replaced by the repeated part of the blue instruction (0x0106). The ADD R5, R6, R3 in-
struction is skipped, and instead, the ADD R3, R3, 0xa instruction is repeated, since all
of its 32 bits have been repeated. Finally, the ADD R3, R3, 0xf instruction is corrupted

78

3.3. Inferred binary encoding fault models

as the top half of it (0xf103) is replaced by the repeated part of the ADD R4, R4, 0xb
instruction (0xf104).

More on the ability to execute a new instruction

Since the encoding of the new Logical Shift Left instruction in Listing 3.11 is coming
from the destination register and the second source operand in the ADD R1, R1, 0x6
instruction, then changing these two operands to other values essentially enables to
“craft” new instructions.

Table 3.2 shows examples of new instructions when changing these two operands.
They have all been experimentally validated by clock glitch fault injection campaigns
on both the Arm Cortex-M3 and Cortex-M4 devices. In other words, replacing the
0xf1010106 instruction from Listing 3.9 with an instruction from the first column of Ta-
ble 3.2 enables to observe the execution of the corresponding instruction in the third
column of Table 3.2. The second column illustrates the encoding of the new instruction,
coming from the least-significant 16 bits of the original 32-bit instruction.

Original instruction Least-significant New instruction
16 bits

ADD R4, R1, 0x9 0x0409 LSLS R1, R1, 0x10
ADD R0, R1, 0x46c 0x406c EORS R4, R5
ADD R12, R1, 0x60c 0x6c0c LDR R4, [R1, 0x40]
ADD R0, R1, 0x161 0x1061 ASRS R1, R4, 0x1
ADD R0, R1, 0x205 0x2005 MOVS R0, 0x5
ADD R3, R1, 0x416 0x4316 ORRS R6, R2

Table 3.2: Possible 16-bit instructions coming from different destination registers
and/or immediate value in the original 32-bit instruction.

These observations are particularly enlightening when it comes to previously ob-
served fault models left unexplained. Trouchkine et al. examined a corruption of R8
and R0 when targeting a series of AND R8, R8, R8 instructions [88]. They stated that
corruption sometimes lead to a complete reset of the register. This AND instruction has
the following encoding: 0xea080808. Thanks to the proposed analysis, it is possible
to fully explain the corruption they observed on the Arm Cortex-A53 processor, sup-
porting the Thumb2 instruction set. In fact, the fault injection leads to the creation and
execution of the 16-bit instruction 0x0808. It is the encoding of LSRS R0, R1, 0x20.

79

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

This operation brings a reset of R0, since the value in R1 is shifted to the right by 32
bits and its result, obviously 0, is stored in R0.

Many instructions from Table 3.2 may lead to violate various security properties. For
instance, executing an LDR (Load) instruction could reveal some values in the memory,
breaking the confidentiality property. As another example, executing the EORS (XOR)
instruction may allow an attacker to observe a collision in a cryptographic algorithm,
which could lead to recover secret data. Or moving an immediate value to a register
could result in corrupting a loop counter value if this register is used to store it.

It should also be noticed that most of the 16-bit instructions end with an S. This
means that the APSR flags will be updated on the result of the instruction. Thus, exe-
cuting new instructions that end with S explains why the APSR flags could be corrupted
as a result of the fault injection, as already observed in chapter 2. Therefore, this could
break the control-flow integrity of a program, in case these flags are going to be reused
within the following instructions.

Furthermore, to show how powerful executing new instructions could be, and how
the observed behavior depends on the original target encoding, another example is
provided when targeting Listing 3.15. As a result of skipping the first 32 bits (0x0402f8d1),
a totally new program is executed as shown in Listing 3.16. It is shown that two new
instructions have been executed; one 32-bit instruction, and one 16-bit instruction

1 LSLS R2, R0, 0x10 // 0402f8d1
2 LDR R14,[r1,0xb00] // eb00f103
3 ADD R3, R3, 0xe // 030ebf00
4 NOP

Listing 3.15: Target program to exectue more than one new instruction.

1 ADD R1, R0, R3, lsl #28 // eb00f103
2 LSLS R6, R1, 0xc // 030ebf00
3 NOP

Listing 3.16: Observed exection for Skip 32 bits when targeting line 1 in Listing 3.15.

80

3.3. Inferred binary encoding fault models

Additional faulty behaviors

This section gives examples of other observed faulty behaviors that can also be ex-
plained at the binary encoding level of the instructions, benefiting from the fact that the
target ISA supports variable-length instructions. Nonetheless, these observed faulty
behaviors depend on the target device.

Non-sequential skip and repeat 32 bits in Cortex-M4 device (STM32L4) This fault
model is similar to the above-mentioned “Skip and repeat 32 bits”. However, instead of
skipping the 32 bits at line i + 1, the 32 bits at line i + 2 are skipped, while the 32 bits at
line i are repeated. Figure 3.6 shows a possible faulty execution along with its golden
one as a result of this specific faulty behavior.

1st 32-bit 2nd 32-bit

3rd 32-bit 4th 32-bit

(a) Golden execution.

1st 32-bit 2nd 32-bit

1st 32-bit
E

4th 32-bit

(b) Faulty execution.

Figure 3.6: Golden execution and observed faulty execution example as a result of “non-
sequential 32-bit skip and repeat” in STM32L4.

This behavior can be explained as a result of having 64-bit cache lines in the target
device. Thus, each 64-bit cache line might be divided into two 32-bit chunks. Therefore,
as a result of the injection, a 32-bit chunk can be affected by not updating its contents,
resulting in repeating an already existing 32 bits and skipping another 32 bits, as shown
in Figure 3.6. It should be noticed that the 32 bits can belong to any of the cases in
Figure 3.4 and Figure 3.5.

Non-sequential skip and repeat 32 bits in Cortex-M3 device (STM32F1) Two kinds
of this behavior are observed based on the order of the repeat:

• Out-of-order repeat: The repeated 32 bits are executed at the position of the
skipped 32 bits. Nonetheless, only possible situation is observed for this behavior.
It is when the distance between the repeated and the skipped bits are 96 bits, as
shown in Figure 3.7. However, this does not mean that the 2nd 32 bits can replace

81

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

the 6th 32 bits based on this model. Instead the 5th 32 bits can replace the 9th 32
bits, and so on. A new fault model, defined in chapter 4, can explain this behavior
as a result of a fault that affects the address of the fetched 32 bits in the Flash
memory. As a result, the probability of observing this behavior depends on where
the target code resides in memory.

• In-order repeat: The repeated 32 bits are repeated sequentially, regardless of the
position of the skipped 32 bits. However, it was noticed that the maximum dis-
tance between the repeated 32 bits and the skipped 32 bits is 64 bits, excluding
their bits, as shown in Figure 3.8.

1st 32-bit

2nd 32-bit

3rd 32-bit

4th 32-bit

5th 32-bit

(a) Golden execution.

1st 32-bit

2nd 32-bit

3rd 32-bit

4th 32-bit

1st 32-bit
E

(b) Faulty execution.

Figure 3.7: Non-sequential skip and repeat 32 bits in Cortex-M3 device (STM32F1)with
out-of-order repeat.

It is worth mentioning that several injection campaigns on programs that allow the
detection of these behaviors are performed, for both aligned and misaligned codes.

Some other faulty behaviors can be explained as repeat an instruction, or skip and
repeat the next instruction, which is the opposite of the defined “Skip and repeat”.
However, these two behaviors had a very low probability of occurrence, were not easy
to reproduce, and were obtained when using a large value of shift: -49, and low values
of width (e.g., 1 or 3).

82

3.4. Exploitation and vulnerability analysis

1st 32-bit

2nd 32-bit

3rd 32-bit

4th 32-bit

(a) Golden execution.

1st 32-bit

1st 32-bit
E

2nd 32-bit

4th 32-bit

(b) skip 3rd & repeat 1st.

1st 32-bit

1st 32-bit
E

2nd 32-bit

3rd 32-bit

(c) skip 4th & repeat 1st.

Figure 3.8: Non-sequential skip and repeat 32 bits in Cortex-M3 device (STM32F1)with
in-order repeat.

3.4 Exploitation and vulnerability analysis

In their work [119], the authors showed, through static analysis, that flipping some bits
of variable-length instructions encoding could realign the code, resulting in dangerous
erroneous behaviors. In addition, it was claimed in another paper [120] that variable-
length instructions might bring more return-oriented programming (ROP) attacks. More
on ROP attacks in [121].

This section presents a proof-of-concept example of how executing a new instruc-
tion can modify the Program Counter, resulting in breaking the control flow of the pro-
gram. Moreover, this section provides a vulnerability analysis of implementations of the
AES encryption algorithm using the preceding fault models, specifically when the code
is misaligned in memory.

3.4.1 Program Counter modification

In this example, we leverage the ability to execute a new 16-bit instruction to control the
Program Counter, where those 16 bits are originally belonging to a 32-bit instruction
as already explained above. We consider this specific example, because controlling
the Program Counter, as mentioned in [9], [79], could lead to harmful attacks, like
privilege escalation or secure boot violation. Thus, the provided example works as a
proof-of-concept for the potential exploitation of the presented results.

In the following, we assume that R8 stores an address that points to a critical part of

83

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

the code, which can only be executed in a secure mode. Hence, our security property
is to not modify the program counter to that critical address. This security property is
violated if one manages to execute the MOV PC, R8 instruction, for example. The 16-bit
encoding of this instruction is 0x46c7.

Several examples lead to violating this security property. Table 3.3 summarizes
some of the instructions allowing that. Having one of these instructions in a misaligned
code allows controlling the Program Counter to the value of R8 when applying a fault in-
jection attack. To validate this theoretical analysis, clock glitch fault injection campaigns
were performed on the code in Listing 3.17.

Original instruction Least-significant 16 bits
ADD R6, R1, 0x4c7 0x46c7
SUB R6, R1, 0x4c7 0x46c7
MOVW R6, 0x4c7 0x46c7
LDR R4, [r0, 0x6c7] 0x46c7
ORR R6, R6, 0x63800000 0x46c7

Table 3.3: Instructions that lead to modify the PC to the value in R8 when performing
clock glitch fault injection.

1 //prologue
2 MOVW R8, 0x056e // storing the critical-
3 MOVT R8, 0x0800 // -address in R8
4 //series of NOPs
5 LSLS R2, R0, 0x10
6 //any instruction from Table 3.3
7 ADD R3, R3, 0xa
8 ADD R4, R4, 0xb
9 ADD R5, R6, R3
10 ADD R3, R3, 0xf
11 //series of NOPs
12 LDR R1, [R1,0xf00]
13 MOV R9, R6
14 //epilogue

Listing 3.17: Target program for Program Counter modification experiments.

A specific address is stored in R8 in the Prologue. This address refers to line 12
in Listing 3.17. The instruction at line 6 can be any instruction from Table 3.3, and we

84

3.4. Exploitation and vulnerability analysis

were able to validate all of them. In other words, we were always able to jump to line
12 in Listing 3.17 when performing the attack on any of the instructions in Table 3.3.

Other instructions may be a source for such vulnerability, especially if other source
registers store critical addresses, and not only R8 as in this example. However, most
of the original instructions that could be a source of such vulnerability have R6 as a
destination register, as already shown in Table 3.3. Gratchof et al. [122] said that
there is a higher probability to change the value of the program counter when the des-
tination register of a MOV instruction is R6. They observed various jumps in a program
when performing fault injection attacks on a Cortex-A9, which supports two execution
states: Thumb2 and ARM32. Hence, these observations can reasonably explain their
experimental results regarding the R6 register, assuming that their execution state was
Thumb2.

3.4.2 Vulnerability analysis of AES implementations

This study focuses around three different AES implementations: BroAES1, TinyAES1282

and MbedTLS-AES3. Such tests illustrate the real-life applicability of misaligned faults.
First, we concentrate on an exploitable branch logic error within BroAES, experimen-
tally validated by clock glitch fault injection. Then, we cover two general observations
with examples from TinyAES128, then MbedTLS-AES.

AES is a round-based symmetric encryption algorithm. It iteratively transforms an
input plaintext into a ciphertext. The last round differs slightly from the previous ones,
omitting the MixColumns transformation and adding an extra AddRoundKey. Con-
sequently, software implementations of the algorithm usually loop over the iterations,
while making an exception for the last round. The first section targets this branch logic.

It must be mentioned that the work in this section was done in collaboration with
Gijs Burghoorn while he was an intern at TIMA.

Branch logic error on BroAES

A clock glitch attack on BroAES is depicted here, exposing the key in a “known plain-
text” scenario with the use of the described fault models.

1. https://github.com/brobwind/bro_aes
2. https://github.com/kokke/tiny-AES-c
3. https://github.com/Mbed-TLS/mbedtls

85

https://github.com/brobwind/bro_aes
https://github.com/kokke/tiny-AES-c
https://github.com/Mbed-TLS/mbedtls

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

In BroAES, all rounds are encapsulated in a for loop. Depending on the round,
some transformations are excluded. Listing 3.18 shows the instructions initializing the
memory, used to keep track of iterations and branching.

1 |b087|e9d0 // SUB SP, 0x1c
// LDRD R7, R8, [R0, 0x8]

2 7802|f8d2 // LDR.W R0, [R2, 0xb0]
3 00b0|9001| // STR R0, [SP, 0x4]

// [SP+4] = num_rounds
4 |3801|9002| // SUBS R0, 0x1

// STR R0, [SP, 0x8]
// [SP+8] = num_rounds-1

5 |2000|f102 // MOVS R0, 0x0
// ADD.W R4, R2, 0xb4

6 04b4|9000| // STR R0, [SP, 0x0]
// [SP+0] = iteration count

7 |e9dd c000| // LDRD R12, R0, [SP]
8 |4560|da06| // CMP R0, R12

// BGE.N <...>

Listing 3.18: Initialization of memory used for iteration.

Before the instructions at line 8, checking the loop condition and branch to the
transformations, there are three STR instructions pushing values onto the stack. Line 3
causes [SP+4] to contain the value of num_rounds. Later instructions use it to verify
the loop condition and determine whether to perform the SubBytes and ShiftRows
transformations. Line 4 causes [SP+8] to contain the value of num_rounds - 1. Later,
the loop body uses it to assess whether to perform MixColumns transformation. Line 6
makes [SP+0] contain the loop iteration value.

Targeting the instruction LDR.W R0, [R2, 0xb0] at line 2, with the fault model de-
scribed above in order to skip 32 bits at line 3, leads to what is reported in Listing 3.19:

The value of [SP+4] not being set, it is therefore an arbitrary value. Since no earlier
instruction touches this part of the stack, one can reasonably assume that in the first
round [SP+4] is set to 0. The value of [SP+8] is set to R0 which is initially a pointer
to a stack value. The value of [SP+0] is handled normally and set to 0. Then, after
executing the LDRD instruction at line 6, R12 is set to [SP+0], which is 0 and R0 is set
to [SP+4], which is also 0. This causes the CMP instruction at line 7 to compare 0 with
0. As a result, the loop only runs once. The flags set by the CMP instruction are reused

86

3.4. Exploitation and vulnerability analysis

within the loop body to select transformations.

At a higher level, the effect is a such: First, the loop body performs the AddRound-
Key transformation, then it skips SubBytes and ShiftRows transformations because the
flags set by CMP are reused; lastly, it performs MixColumns transformation. However,
since the loop is not executed any more, the resulting value of this transformation is
never used again.

1 |b087|e9d0 // SUB SP, 0x1c
// LDRD R7, R8, [R0, 0x8]

2 7802|f8d2 // LDR.W R3, [R2, 0x801]
3 3801|9002| // STR R0, [SP, 0x8]
4 |2000|f102 // MOVS R0, 0x0

// ADD.W R4, R2, 0xb4
5 04b4|9000| // STR R0, [SP, 0x0]
6 |e9dd c000| // LDRD R12, R0, [SP]
7 |4560|da06| // CMP R0, R12

// BGE.N <...>

Listing 3.19: Observed execution for Skip 32 bits / single instruction skip and single
instruction corruption when targeting line 3 in Listing 3.18.

In the end, only the AddRoundKey transforms the output ciphertext. Therefore, in
a known plaintext scenario, Equation (3.1) holds and allows to recover the secret key.

ciphertext = plaintext⊕ key

key = ciphertext⊕ plaintext (3.1)

Clock glitch campaigns on Arm Cortex-M3 device (STM32F1) and Cortex-M4 de-
vice (STM32L4) have confirmed the presence of this behavior beyond theoretical anal-
ysis. It should be mentioned that the “Skip 64 bits” fault model could also lead to the
same exploitation. On both devices, this exploitation is highly reproducible.

Early return on TinyAES128

This section illustrates a possible future attack vector with the described fault models,
allowing for an Early Return from a function. An excerpt from TinyAES128 containing
the necessary instruction pattern is detailed here.

87

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

The new fault models enable the exploitation of consecutive branch instructions.
In TinyAES128, the encryption function utilizes separate functions to perform various
encryption transformations. The encryption function then calls these functions sequen-
tially. Listing 3.20 highlights a part of the resulting instructions. When these calls use
misaligned 32-bit B or BL instructions, the fault models allow attackers to turn branches
into Early Returns, giving way to return from the encryption function itself before per-
forming the transformations.

After an Early Return, the memory for the resulting ciphertext contains an internal
state used during the encryption process. A similar attack to the one described in
BroAES can then be mounted.

1|f7ff // BL <SubBytes>
2 ffd1|f7ff // BL <ShiftRows>
3 ff9d|....

Listing 3.20: Misaligned consecutive branch instructions within TinyAES128.

Thumb2 branch instructions use a relative instruction offset. The 32-bit branch
instruction encoding stores the 12 least-significant bits of this offset in the second-half
(16 bits) of the encoding [77]. Because of these two points, applying the “Skip 32 bits”
model on the first of two consecutive misaligned 32-bit branch instructions effectively
ignores the first branch and executes the second branch offset by -32 bits as shown in
Listing 3.21.

Usually, 32 bits before a function is the POP/return instruction of the calling function.
Since no PUSH instruction was given beforehand, the result is an Early Return from the
calling function, which is the whole encryption function in our case.

Certain conditions apply on functions to witness this behavior: for example, the
position of the function declarations, the similarity of function parameter types, and the
usage of the link register. It is also important to consider that not all registers might be
properly restored when returning. This is especially true for the BL instruction.

1|f7ff // BL <ShiftRows-0x4>
2 ff9d|....

Listing 3.21: Observed execution for Skip 32 bits / single instruction skip and single
instruction corruption when targeting line 2 in Listing 3.20.

88

3.4. Exploitation and vulnerability analysis

Hint and control instructions in MbedTLS-AES

This section describes the usage of hint and control instructions to mimic instruction
skips. This would simplify conducting DFA attacks on this implementation of AES.

The Thumb2 instruction set contains hint and miscellaneous control instructions [77].
They detail a requested internal behavior to the processor concerning memory usage
(e.g. PLD), system events (e.g. WFI), speculative execution (e.g. CSDB) and pipelining
(e.g. ISB). In most places, these instructions have no impact on execution and behave
like a NOP within the execution flow. This makes them of special interest when exploiting
the portrayed instruction corruption fault models.

Within the explored targets, instruction corruption only ever yields PLD hint instruc-
tion. Within TinyAES128, PLD instruction has undefined arguments and is therefore
unusable. In MbedTLS-AES, both the -O1 and -O2 compiler optimization levels yield
corrupted instructions to precise PLD instructions. Listing 3.22 and Listing 3.23 show
how the LDRB.W instruction has been corrupted to a PLD one.

1|fa53 // UXTAB LR, R3, LR
2 fe8e|f89e // LDRB.W R2, [LR, #40]
3 2028|69f6| // LDR R6, [R6, #28]
4 |4072|.... // EORS R2, R6

Listing 3.22: Selection of MbedTLS-AES encryption instructions.

1|fa53 // UXTAB LR, R3, LR
2 fe8e|f89e // PLD [LR, #3726]
3 fe8e|f89e // LDRB.W R4, [LR, #114]
4 4072|....

Listing 3.23: Observed execution for Skip & repeat 32 bits / double instruction
corruption when skipping line 3 and repeating line 2 in Listing 3.22 .

Further remarks

An important point to be noticed is that any exploitation using the described fault mod-
els is extremely sensitive to minor choices made by the compiler and linker. The op-
timization levels, positions of functions and chosen instructions encoding play a major

89

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

Target Optimization Inserted Undefined
code level faults instructions
BroAES -O0 29 10 (34.5%)

-O1 59 16 (27.1%)
-O2 87 31 (35.6%)
-Os 85 19 (22.4%)

TinyAES128 -O0 33 11 (33.3%)
-O1 44 21 (47.7%)
-O2 106 17 (16.0%)
-Os 52 26 (50.0%)

MbedTLS-AES -O0 69 35 (50.7%)
-O1 293 84 (28.7%)
-O2 283 60 (21.2%)
-Os 193 52 (26.9%)

Table 3.4: Number of possible fault insertions with 32-bit misaligned instruction cor-
ruptions within the encryption function and the number of created undefined instruc-
tions for the explored target codes at several optimization levels.

role in deciding whether these fault models would produce exploitable behaviors. Fur-
thermore, many applications of the misaligned instruction corruption fault models lead
to undefined instructions which would cause a crash or a fault handler to trigger. An
indication of the frequency of these undefined instructions for the different implemen-
tations of AES is reported in Table 3.4. Other applications can create unpredictable
instructions which may behave differently across architectures and activate fault han-
dlers too.

Even after considering all these comments, every target and optimization level still
creates numerous possible injection points. Therefore, it is common to find multiple
injection points that execute without crashing and where changes to the output or con-
trol flow of the program can be witnessed. Whether these injection points are fully
exploitable depends on the target program and the target architecture.

3.5 Fault models simulation

In order to simulate the inferred fault models and be able to analyze the outcomes of
larger fault injection campaigns, a Software simulator and analyzer automation tool

90

3.6. Fault models evaluation

was developed by Oumayma Teyeb during her internship. This internship was done
at LCIS lab under my supervision. This tool is available online on GitHub4.

The main functionalities of the tool are as the following:

• Emulate a Cortex-M processor so that the tool can run any assembly program
written using the Thumb2 instruction set.

• Simulate “Skip” and “Skip and repeat” for a specific number of bits fault models,
either with aligned or misaligned code. The tool considers various numbers of
bits. This includes, for example, 32 and 64 bits.

• Simulate the “non-sequential skip and repeat” fault model for aligned codes.

• Automate the comparison between the outcomes of software fault models sim-
ulation and the outcomes of physical fault injection or RTL fault simulation. The
comparison is performed based on the values of the general purpose registers.

• Provide statistical analysis of the percentage for the silent cases, the crashes, the
faulty behaviors that have defined fault models (i.e. Coverage), and the ones that
do not have known fault models.

• Generate a PDF report of the analysis and the comparison results.

It should be mentioned that the tool has some limitations for misaligned codes. This
is because the simulation was mostly based on the assembly level and not the binary
encoding level. More details and how the tool can be installed and used are available
on the GitHub link.

3.6 Fault models evaluation

Metrics from section 2.3 (i.e. Coverage, Fidelity, and Complexity) are used to evaluate
the aforementioned fault models. Extensive clock glitch fault injection campaigns, using
four different target devices, were performed while executing the target program shown
in Listing 3.24. The experimental parameters of these campaigns are illustrated in
Table 3.5. Three different delay values are used to target different locations within the
target program. These delay values depend on the number of initialization instructions

4. https://github.com/oumTe/fault_model_simulator

91

https://github.com/oumTe/fault_model_simulator

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

in the Prologue, and the number of NOPs between the Prologue and the Target parts.
Although the same target program is used for all devices, different delay values had to
be used for STM32F4 to observe faulty behaviors. This can be explained as this device
has additional hardware components. Repetition is the number of executions for each
combination of parameters. For each fault injection campaign on a target device, the
total number of experiments corresponds to 750 000 executions, as summarized in the
last row of the table. It should be mentioned that only the STM32F1 embeds an Arm
Cortex-M3 core, while the rest embeds an Arm Cortex-M4 core.

1 ADD R1, R1, 0x6
2 ADD R3, R3, 0xa
3 ADD R4, R4, 0xb
4 ADD R5, R5, 0x1
5 ADD R2, R6, 0xd
6 ADD R3, R3, 0x9
7 ADD R6, R6, 0x4
8 ADD R2, R2, 0x3

Listing 3.24: Target part for fault models evaluation campaigns.

Target device
STM32F1 STM32F3 STM32L4 STM32F4

Shift [-49,0]
Width [0,49]
Delay {38, 39, 40} {63, 64, 65}

Repetition 100
Total 750 000

Table 3.5: Experimental setup for fault models evaluation experiments.

Table 3.6 shows the results in terms of Silent, Crash, and Faults. Additionally, it
shows the Coverage percentage within the observed faulty behaviors. It is shown
that the Coverage is very high for almost all devices. This shows how the inferred
fault models are useful, and they were able to cover most of the obtained faults. It is
worth mentioning that the described tool in section 3.5 was used for this analysis and
computing the Coverage percentage.

92

3.6. Fault models evaluation

Figure 3.9 illustrates the distribution of the obtained faults with respect to the shift
values (y-axis), and the width values (x-axis) of the glitch. Blue circles mean the
observed fault has a corresponding known fault model, while the red x corresponds
to a fault that has an unknown fault model. The darkness of the color represents the
repetition of the fault at the corresponding combination of shift and width. One can con-
clude from the figures that specific regions of shift and width lead to faulty behaviors.
In addition, specific regions of shift and width lead to explained or unexplained faulty
behaviors (i.e., have known or unknown corresponding fault models). This is obvious
in Figure 3.9c, for example.

Target device
STM32F1 STM32F3 STM32L4 STM32F4

Silent 96.77 96.84 96.4 95.2368
Crash 0.57 1.95 0.36 4.7557
Fault 2.66 1.21 3.24 0.0075

Coverage 90.16 73.05 93.28 96.43

Table 3.6: Experimental results for fault models evaluation experiments, values in %.

On the other hand, as the occurred faulty behaviors that are classified under “Skip”
and “Skip and repeat” fault models are already predicted, then Fidelity equals 100 %
for these fault models. To put it in another way, as these fault models are realistic
and can explain observed faulty behaviors from physical injection, then the Fidelity is
100 %. However, it was noticed that one model could be more probable than the other
for a device. For example, “Skip” is observed more than “Skip and repeat” in STM32F3,
while “Skip and repeat” appeared more than “Skip” in STM32F1. Nevertheless, in most
cases, tuning the glitch parameters would be able to increase the probability of a faulty
behavior. For “non-sequential skip and repeat”, the Fidelity depends on the target
device. For instance, for “non-sequential skip and repeat in STM32L4”, the Fidelity
is 100 %. However, the Fidelity of observing this model on another device, such as
STM32F3, is 0 %. But this is negligible, as it is already not expected to obtain this kind
of faults when targeting STM32F3. This is because STM32F3 does not support cache
lines, as in the case of STM32L4.

Regarding the Complexity metric, it would be easy to perform vulnerability analysis
even manually if the code is aligned. Conversely, it would be more difficult when the

93

Chapter 3 – Preliminary RTL simulation and new binary encoding fault models

(a) STM32F1 results (b) STM32F3 results

(c) STM32L4 results (d) STM32F4 results

Figure 3.9: Explained and unexplained faults classification with respect to shift and
width values of a glitch. Y-axis: Shift ∈ [-49,0], X-axis: Width ∈ [0,49].

code is misaligned. Nonetheless, having an automation tool to analyze a code at the
binary encoding level regardless of its alignment would certainly make the process eas-
ier. Similarly, for countermeasures, as the fault models are understandable, the design
or developing process of countermeasures should be easy, in particular, when security
properties are well-defined, or critical parts within the code are well recognized. Thus,
the focus will be on what kind of vulnerabilities can be exploited as a result of applying
the fault models, and then what kind of modification to the code should be applied to
prevent these vulnerabilities from getting exploited, for example, by choosing or avoid-
ing specific registers. Furthermore, the fault models are explainable, and their realism
is proved. For their description, they are clear, understandable and can be simulated
easily on a given piece of code. Finally, the previous sections showed that “Skip” and
“Skip and repeat” are applicable to different target programs and target devices. They
are therefore independent of the target program and device, which prevents limiting
them in certain conditions. Conversely, it is clear that this is not the case for more
complex fault models like “non-sequential skip and repeat”.

94

3.7. Conclusion

3.7 Conclusion

This chapter is introduced by a series of hardware fault simulation experiments that pro-
vided knowledge on the origin of some of the observed faulty behaviors at the microar-
chitectural level. More importantly, these experiments revealed the rationale behind
different faulty behaviors which were observed when applying a small modification to
the target program; this is due to the Thumb2 instruction set supporting variable-length
instructions, which can lead to aligned or misaligned code in memory. Thus, the pro-
cessor might fetch aligned or misaligned instructions. This was the prime knowledge
to infer new fault models at the binary encoding level of the instructions. The main
inferred models are “skip” and “skip and repeat” a specific number of bits. This number
of bits is related to the flash memory access size, cache line size, instruction cache, or
register size in the fetch path. Clearly, these models offered explanations for most of
the observed faulty behaviors. Moreover, their realism was proved by targeting different
instructions and using various target devices. Additionally, exploitation and vulnerability
analysis examples using the proposed models were performed and validated experi-
mentally. Finally, this chapter described an automation tool to simulate these models
and perform the comparison between the different injection and simulation results.

95

4
Hardware fault simulation and partial update

fault model

This chapter moves downward at system level and considers the hardware level in
more detail, to perform hardware fault simulation experiments. This enables a better
understanding of the faults’ propagation, validates the inferred fault models at ISA and
binary encoding levels, and reveals the origin of such faults at microarchitectural level.
These simulation experiments have led to the inference of a novel new fault model.
Many of the reported faulty behaviors that were classified under unexplained faults, in
the previous chapter, can be now understood using this new fault model.

In the following, section 4.1 describes the fault simulation at hardware level, along
with the followed approach in RTL fault simulation, the proposed RTL fault models,
and additional observations and conclusions that validate the use of the proposed fault
models at different levels of abstractions. Section 4.2 presents the partial update fault
model, along with the associated results, analysis, and conclusions. Section 4.3 eval-
uates the proposed models. The chapter is concluded in section 4.4.

4.1 Hardware fault simulation

To better understand and pinpoint the origin of the faulty behaviors described in sec-
tion 3.3, RTL fault simulation experiments have been performed on the same target
programs used in chapter 3. This should also confirm the observations regarding the
executed instructions. The RTL descriptions used in the simulation are for both the
Arm Cortex-M3 and Arm Cortex-M4 processors.

97

Chapter 4 – Hardware fault simulation and partial update fault model

It should be mentioned that these simulation experiments were performed after the
AAA agreement with Arm was accomplished. Therefore, these descriptions have non-
obfuscated RTL description for the core itself. However, they are related to a single
integrated system that includes the core. Thus, the whole system works with a single
main clock, which is not similar to the DesignStart version (described in chapter 3),
where the RTL description consists of subsystems.

The following subsections provide the chosen methodology of RTL fault simulation,
the RTL fault models permitting to observe the same faulty behaviors at higher levels,
and explanations of these fault models using post-synthesis clock glitch simulation.

4.1.1 RTL fault simulation methodology

With RTL fault simulation, the goal is to find the signals or internal registers1 that, when
faulty, lead to the erroneous behaviors described in the previous chapter, and hence, to
reveal their origin and better understand their propagation at lower levels of abstraction.
However, since there are thousands of registers in the RTL description of a processor
such as the Arm Cortex-M3, a specific methodology is necessary to accelerate the
analysis and find the target registers in a reasonable time. To this end, path delay
analysis within specific architectural components or modules has been set up. Clock
glitch being likely to cause timing errors, then critical or almost critical paths are more
inclined to be faulty [35], [123], [124]. Consequently, the registers involved in such
paths have more chances to capture faulty values as a result of path timing violations.

Based on the above, the proposed approach consists in faulting the involved reg-
isters in the paths that come first, according to the maximum paths delays, when gen-
erating a timing analysis report for specific architectural components or RTL modules.
The destination and source registers, of these paths, are the involved registers. The
fault models detailed in subsection 4.1.2 are then applied on them. A divide and con-
quer approach is used to perform the simulation on an architectural component at a
time. Vivado environment has been used to generate the timing analysis reports, while
QuestaSim has been used to conduct the RTL fault simulation.

Algorithm 1 describes the followed approach in details. It takes three lists as input:

• the RTL modules which compose the whole RTL description or a subset of it for

1. The word “register” here does not refer to a purpose register, but to one or multiple D-flip flops
that store an internal value.

98

4.1. Hardware fault simulation

a given processor,

• the RTL fault models that are used to perform the RTL fault simulation,

• the experimental results of the clock glitch fault injection.

Additional input is N , which is the maximum number of paths that are going to be
generated from the timing analysis report. The output of the algorithm is a list of the
registers R that cause faulty behaviors, that are identical to those obtained by clock
glitch. Table 4.1 provides descriptions for the functions that are used in Algorithm 1.

Algorithm 1: RTL fault simulation methodology
Input: rtl_modules, rtl_models, injection_results, N .
Output: R.

1 modules← rtl_modules;
2 models← rtl_models;
3 inj_res← injection_results;
4 R← [];
5 while !isEmpty(modules) do
6 m← pop(modules);
7 path_list← timingReport(m, N);
8 while !isEmpty(path_list) do
9 p← max(path_list);
10 delete(p, path_list);
11 dst← getDestination(p);
12 src← getSource(p);
13 while !isEmpty(models) do
14 model← pop(models);
15 rtl_res← getRegValues(dst, model);
16 if isEqual(rtl_res, inj_res) then
17 R← R ∪ dst;
18 end if
19 rtl_res← getRegValues(src, model);
20 if isEqual(rtl_res, inj_res) then
21 R← R ∪ src;
22 end if
23 end while
24 end while
25 end while
26 return R;

99

Chapter 4 – Hardware fault simulation and partial update fault model

Function Description
pop(l): returns and removes the first element from list l.
delete(e, l): delete element e from list l.
timingReport(m,n): returns list of n paths of maximum delay in module m using

Vivado. Each path consists of its source, destination, and
delay.

max(l): returns the path with maximum delay in list l.
getDestination(p): returns destination register from path p.
getSource(p): returns source register from path p.
getRegValues(r,m): returns the values of registers R0 to R12 after performing

RTL fault simulation on register r with fault model m using
QuestaSim.

isEqual(a,b): returns true if list a is identical to list b.
isEmpty(l): returns true if list l is empty.

Table 4.1: Algorithm 1 description.

4.1.2 RTL fault models

The aforementioned methodology has been applied to the RTL modules that are rel-
evant to the fetch stage of the processor, in order to confirm our assumption, in the
previous chapter, regarding the origin of the observed faulty behaviors.

To implement RTL fault simulation, two fault models have been introduced. They
follow the intuition behind timing violations, being that the value of a register might not
be correctly updated.

The first RTL fault model consists in preventing the update of a register value at a
given clock cycle. Therefore, the register keeps its previous value. This RTL fault model
validates the “Skip and repeat 32 bits” faulty behavior at binary encoding level and
explains it at RTL level. All the registers located in the fault propagation path, shown in
Figure 4.1, have generated the same faulty behavior; meaning the faulty register can
either be in the interface between the fetch unit and the AHB, in the AHB component,
or in the interface between the AHB and the flash memory. The propagation starts from
the interface between the fetch unit and the AHB: This interface and the fetch unit are
parts of the fetch microarchitectural component, which is part of the core itself. Here,
the fault propagation follows the opposite direction of the instruction data path from the
flash memory to the processor core, i.e., the fetch path. Then, the fault propagation
continues from the flash memory to the fetch unit. Thus, the origin faulty register could

100

4.1. Hardware fault simulation

Flash
memory Interface AHB Interface

E
Fetch
unit

Decode
unit

Core

Figure 4.1: Fault propagation path for Skip 32 bits or Skip & repeat 32 bits fault models.

be in the opposite path of the fetch, or in the same path as the fetch.
The second fault model involves anticipating the update of the value of a register at

a given clock cycle; at clock cycle i, the value that the register would actually store at
clock cycle i + 1 is loaded. This RTL fault model leads to the “Skip 32 bits” behavior
at binary encoding level. Fewer registers, when targeted, generate the “Skip 32 bits”
behavior, and all are located in the interface between the fetch unit and the AHB as
shown in Figure 4.1.

4.1.3 Post-synthesis timing simulation

In order to explain how the aforementioned RTL fault models have validated the same
faulty behaviors observed at higher levels of abstraction, another layer has been taken
into account: performing post-synthesis clock glitch simulation on an FPGA using Vi-
vado. There again, the implementation of this simulation has targeted modules related
to the “fetch” stage of the processor. The objective of this test has been to investigate
on the effects of the clock glitch over specific registers within these modules from the
architectural perspective.

As a result, three cases have emerged, as presented in Figure 4.2:

• Additional cycle: the glitch acts as an extra clock cycle. In other words, register R
is normally updated because of the glitch.

• Silent : the glitch has no effect on the values of R. However, it has been observed
that R is updated at the rising edge of the glitch and not at the rising edge of the
following clock cycle. Hence, the final value is not affected.

• Fault : the effect is same as Silent or Additional cycle, however, faulty values have
been monitored at the rising edge of the clock cycles following the glitch, either
the first rising edge or the ones after, as a result of a timing violation. Various
faulty values are captured based on fine-tuning of the glitch parameters. Among

101

Chapter 4 – Hardware fault simulation and partial update fault model

Normal clk
R 0 1 2 3 4 5

Glitched clk
Additional cycle 0 1 2 3 4 5 6

Silent 0 1 2 3 4 5

Fault 0 1 2 3 4 7 8

shift

Figure 4.2: Possible effects of post-synthesis clock glitch simulation on register R.

them, we could observe that the value is same as a value occurred two clock
cycles earlier, two cycles later, some are incoherent values , some bits are reset.
And more.

The glitch parameters are the reason behind these three different effects. It has to
be remembered that the effect of the glitch, with given parameters, might not be the
same for all the registers within the same module; the reason being that not all paths
between registers have the same delay. Based on that, it’s possible to observe faulty
behaviors due to the various effects on the registers. Therefore, by considering the
glitch effect on the output of source and destination registers, Figure 4.3 and Figure 4.4
report how the “Skip” and “Skip and repeat” behaviors can come up. The effect of the
glitch is similar on the source and the intermediate register in both figures: the source
register is subject to Additional cycle effect, while the intermediate undergoes Silent
effect. However, in the second clock cycle that follows the glitch, the intermediate
register captures the faulty value 4, the one available at that time. Thus, the glitch
effect on the destination register determines whether the resulting erroneous behavior
would be a “Skip” or “Skip and repeat”. In Figure 4.3, the destination register is subject
to Silent effect, and hence, no value is repeated. Therefore, the obtained effect is
“Skip”. On the other hand, in Figure 4.4, the destination register takes Additional cycle
effect, which leads to capture the value 2 twice. Thus, in this case, a “Skip and repeat”
behavior is procured. In addition to that, by combining more registers, “Non-sequential
skip and repeat 32 bits with in-order repeat” can be explained. For example, Figure 4.5
shows how “Skip 5 and repeat 2 " may occur. All the intermediate registers are subject
to Silent effect, while the destination register is under the Additional cycle effect. All
these detailed observations and conclusions validate the use of the aforementioned

102

4.1. Hardware fault simulation

fault models at higher levels.

Glitched clk
Source reg. 0 1 2 3 4 5 6

Intermediate reg. ? 0 1 2 4 5

Destination reg. ? ? 0 1 2 4

Figure 4.3: “Skip” behavior description with timing simulation: Skip 3.

Glitched clk
Source reg. 0 1 2 3 4 5 6

Intermediate reg. ? 0 1 2 4 5

Destination reg. ? ? 0 1 2 2 4

Figure 4.4: “Skip and repeat” behavior description with timing simulation: Skip 3 and
repeat 2.

Glitched clk
Source reg. 1 2 3 4 5 6 7 8

Intermediate reg. A 0 1 2 3 4 6 7

Intermediate reg. B ? 0 1 2 3 4 6

Intermediate reg. C ? ? 0 1 2 3 4

Destination reg. ? ? ? 0 1 2 2 3

Figure 4.5: “Non-sequential skip and repeat 32 bits with in-order repeat” behavior de-
scription with timing simulation: Skip 5 and repeat 2.

Figure 4.6 shows the result of applying RTL fault models on registers. In order to
model “Skip and repeat” at RTL level, preventing the update fault model is applied to ei-
ther the intermediate or the destination register or even any further destination register;
this results in getting two consecutive 2s instead of 2 then 3. On the other hand, aiming
for “Skip” requires anticipating the update fault model applied at the source register;
thus 4 appears instead of 3 after 2.

It is worth mentioning that applying preventing the update fault model on the source
register would lead to have repeat only faulty behavior, which is already observed in

103

Chapter 4 – Hardware fault simulation and partial update fault model

clk
preventing 0 1 2 2 4 5

anticipating 0 1 2 4 5 6

Figure 4.6: Result of applying RTL fault models.

very few cases as mentioned in chapter 3. On the other hand, applying anticipating the
update fault model on the intermediate or destination registers would lead to observe
skip the previous and repeat the next, which is also observed with low probability and
less reproduciblity. Finally, simulating “Non-sequential skip and repeat 32 bits with in-
order repeat” requires combining both models. For instance, to simulate “Skip 5 and
repeat 2", preventing the update is applied on the source register at clock cycle i to
repeat 2, then at clock cycle i + 3; anticipating the update is also applied on the source
register to skip 5.

4.1.4 Summary

These simulation experiments have confirmed our observations on executed instruc-
tions in the previous clock glitch experiments. Therefore, they validate the inferred
32-bit fault models at binary encoding level, in particular, “Skip 32 bits” and “Skip and
repeat 32 bits”. They also corroborate our assumption on the origin of such faulty
behaviors: the fetch stage in the pipeline. Additionally, they have unfolded the discrimi-
nating rationale behind the “Skip” and “Skip and repeat” fault models. We are confident
that performing identical simulations on RTL description with 64-bit cache-line size
would unravel the corresponding 64-bit fault models as well.

4.2 Partial update fault model

Until now, the RTL fault simulation has primarily focused on individual internal registers
as the fundamental element. However, this approach raises a pertinent question: what
if a fault only affects a subset of flip-flops within a register, rather than impacting all of
them? The motivation behind this query stems from the fact that the update of flip-flops
within a register may not necessarily occur simultaneously.

In order to address this question, a reverse analysis process was conducted on the

104

4.2. Partial update fault model

results of the unexplained faulty behaviors. This process ultimately led to the inference
of a new fault model: the partial update fault model.

In the following, subsection 4.2.1 shows examples that allowed inferring the new
model with its sub-cases. These sub-cases are defined in subsection 4.2.2. The ex-
perimental result of each sub-case are then illustrated in detail in subsection 4.2.3 and
subsection 4.2.4.

4.2.1 Inference examples

While trying to analyze and understand the unexplained faulty behaviors, it has been
noticed that the obtained faulty values of the general purpose registers can be ex-
plained as a result of executing instructions that have a partially correct binary en-
coding. Conversely, the remaining incorrect part is belonging to either zeros or to
values that are identical to the encoding of the last previously fetched data. As an
example, Listing 4.1 shows a target program, which is the same as the target used
in section 3.6. Listing 4.2 shows how one of the unexplained faulty behaviors can be
explained at ISA and binary encoding levels. The new faulty execution can be seen
as resetting 6 bits (indices: 0, 1, 28, 29, 30 & 31) of the original encoding at line 3 in
Listing 4.1 (0xf104040b). As a result, two new 16-bit instructions are executed: 0x0104,
then 0x0408. There are several other examples that have also been explained with the
same observation, which count almost for all of the unexplained faulty behaviors, as
will be illustrated in section 4.3. Additionally, this is applicable to faults either in 32 bits
or 64 bits, as will be detailed in subsection 4.2.3 and subsection 4.2.4.

1 ADD R1, R1, 0x6
2 ADD R3, R3, 0xa
3 ADD R4, R4, 0xb // 0xf104040b
4 ADD R5, R5, 0x1
5 ADD R2, R6, 0xd
6 ADD R3, R3, 0x9
7 ADD R6, R6, 0x4
8 ADD R2, R2, 0x3

Listing 4.1: Target part for partial update fault model inference example.

By applying the same analogy to other registers that are not necessarily carrying

105

Chapter 4 – Hardware fault simulation and partial update fault model

1 ADD R1, R1, 0x6
2 ADD R3, R3, 0xa
3 LSLS R4, R0, 0x4 // 0x0104
4 LSLS R0, R1, 0x10 // 0x0408
5 ADD R5, R5, 0x1
6 ADD R2, R6, 0xd
7 ADD R3, R3, 0x9
8 ADD R6, R6, 0x4
9 ADD R2, R2, 0x3

Listing 4.2: Observed exection at ISA when targeting line 3 in Listing 4.1

the binary encoding of the instructions, other faulty behaviors could be explained. For
example, Figure 4.7a shows the golden sequence of the memory addresses for the
instructions data that are going to be fetched. In contrast, Figure 4.7b shows the fault
sequence of the requested addresses that led to have “Non-sequential skip and repeat
32 bits with out-of-order repeat”. It is shown that the fifth address is partially correctly
updated, while part of it kept the same value as before (0x057-), which led to repeat the
first address and skip the fifth one. This led to skip the 5th 32 bits and repeat
the 1st 32 bits with out-of-order repeat at ISA level. Another example, where
the address 0x0560 replaced the golden 0x0570, has also led to same observation.

The next section will provide formal definitions for the sub-cases of the new inferred
fault model.

0x0570 0x0574 0x0578 0x057c 0x0580

(a) Golden sequence.

0x0570 0x0574 0x0578 0x057c 0x0570
E

(b) Faulty sequence.

Figure 4.7: Non-sequential skip and repeat 32 bits with out-of-order repeat as a result
of partial update fault on memory address request data.

106

4.2. Partial update fault model

4.2.2 Sub-cases of partial update fault model

This section presents the inferred binary encoding fault models that are derived from
partial update fault model. These fault models seek to explain the faulty behaviors that
have been observed after physical fault injection campaigns and do not correspond to
one of the previously mentioned fault models in chapter 3. These new fault models can
be defined as the following:

Partial update from the precharge value

This fault model corresponds to a fault that happens while the data or fetched instruc-
tions are propagated between internal registers from the flash memory to the core, as
shown in Figure 4.1.

The hypothesis behind this fault model is based on the fact that not all bits of the
data are propagated at the same speed from an internal register to another through
a bus or combinational logic. Consequently, not all flip-flops within the destination
register will get the update at the same time at a rising edge of a new clock cycle.

In nominal conditions, the clock period is defined such that all signals can be cor-
rectly sampled (i.e., the critical path has a positive slack). In case of a clock glitch,
however, this behavior is disrupted by the fact the clock edge occurs quite sooner than
expected. Thus, with the suitable injection parameters, it may happen that some flip-
flops will receive the correct update, while some will receive the precharge value of
the bus. Assuming that the precharge value of a bus or a wire between two registers
is zero, then the correct update of a flip-flop means receiving the correct logic one or
zero, while not receiving the correct update means capturing the precharge value of
the bus, i.e. zero.

This model is observed as a reset on some bits while the instructions are transferred
through the fetch data path in Figure 4.1, as shown experimentally in subsection 4.2.3.
Thus, multi bit-reset can be applied to the data to model this fault at RTL.

It should be mentioned that in [72], the authors claimed that some of the observed
faults, as a result of electromagnetic fault injection, might be related to the precharge
value of the target microcontroller’s bus. However, they didn’t have a clear model that
could explain their observed faults.

107

Chapter 4 – Hardware fault simulation and partial update fault model

Partial update from the previous value

This fault model is somehow similar to the previous one. It occurs on the same path
shown in Figure 4.1. However, instead of receiving the precharge value from the bus,
some flip-flops within a destination register will keep their old values, either because
the values have not been changed or because the corresponding wire still keeps the
old values, and hence, the updated values are similar to the old ones. Conversely,
and at the same time, other flip-flops in the destination register will receive the correct
updated value.

This model is formally described as a bitwise OR between the old value and the
new value of an internal register. This merge might be a full merge or a partial merge,
as shown experimentally in subsection 4.2.4. Thus, in each flip-flop, the resulting value
can be either the previous value or the correct value i.e. the value that the flip-flop
should receive under normal execution, without any fault injection.

When looking at the execution of the instructions in this case, we observe the follow-
ing behavior: The instruction(s) fetched at clock cycle i is executed normally. However,
the instruction(s) fetched at clock cycle i+1 is not the one being executed. Instead, the
observed instruction(s) is a full or partial merge between the fetched data at clock cycle
i and the fetched data at clock cycle i+1. This merge also illustrates how the observed
behavior can be simulated at RTL. More details about this behavior are provided in
subsection 4.2.4.

Discussion

Exploiting the transition value of a wire or a bus from a precharge (or a previous)
value to a new value is a well-established modeling approach in power analysis at-
tacks [125]–[128], which employ the so-called Hamming weight (or distance) leakage
model. Likewise, our approach shows a similar pattern: depending on the type of reg-
ister transition occurring (from previous or precharge value), the corresponding partial
update fault model applies.

In subsection 4.2.3 and subsection 4.2.4, it is shown that both cases can occur
for the same device. This is not in contrast with our modeling, as depending on the
actual element that is affected by the fault injection and the fine-tuning of the injection
parameters, we may see different outcomes.

It should also be noticed that these models might not only refer to the binary encod-

108

4.2. Partial update fault model

ing of the instructions but also to other propagated data, as already shown in subsec-
tion 4.2.1.

The results of the different clock glitch fault injection campaigns are discussed and
analyzed separately with respect to each fault model in the following subsections.

4.2.3 Experimental results of partial update from precharge value

This section demonstrates how the partial update from the precharge value fault model
explains many of the faulty behaviors observed during the fault injection campaigns.
Also, it demonstrates the relation between this fault model and both the target instruc-
tion and the target device. To put it another way, it determines whether some bits in the
fetched data are more sensitive to this fault model than other bits and, if so, whether
the target instruction or the target device is to blame. These dependency experiments
have been performed for the sake of trying to simplify the fault model, and make it more
understandable.

The following subsections provide detailed results when targeting different instruc-
tions, and also when targeting a new device, identical to the already used one. Addi-
tionally, it presents results when targeting a different device with a different brand. The
results presented in this section are obtained experimentally when targeting STM32F3
microcontroller. Only in one subsection, as will be indicated, the results refer to an
STM32L4.

High-Hamming weight instruction

Since the partial update from the precharge value fault model causes some bits of the
target instruction to be reset, it makes sense to choose an instruction with a large Ham-
ming Weight in order to maximize the occurrence of the considered fault model. Under
this assumption, we chose the instruction SUBS R6, 0xff, whose encoding in Thumb-
2 is 0x3eff. Our rationale is twofold: the instruction has a comparatively large Ham-
ming Weight (13) given its size. Secondly, since the partial update from the precharge
value fault model causes some bits of the target instruction to be reset, applying it on
0x3eff results in an instruction that is simple to discriminate with high probability.

The objective behind these experiments is to show that several faulty behaviors
can be explained using the partial update from the precharge value fault model. In
addition, we want to see if some bits are more vulnerable than others to be reset within

109

Chapter 4 – Hardware fault simulation and partial update fault model

a target instruction. Finally, were it the case, we need to know if this is because of the
target instruction or of the target device. Since the fetch size in the target device is
64 bits, a 16-bit instruction may reside in any of four different positions within these 64
bits. Therefore, four injection campaigns have been performed, one for each possible
position of 0x3eff in the 64-bit word. The main reason of changing the position of the
target instruction is to find out if the fault model depends on the target instruction, or it
depends on its position within the fetched 64 bits, and hence, depends on the physical
implementation of the target device. The remaining three positions are filled with three
instructions with the encoding 0x0000, in order to minimize possible side effects from
other instructions and make the analysis easier. This encoding corresponds to the
MOVS R0, R0 instruction, which is equivalent to a NOP.

Table 4.2 gives the target part code of each fault injection campaign. It also shows
the glitch parameters that are used. These parameters are chosen in order to maximize
the number of faults that can be classified under the partial update from the precharge
value fault model. Position refers to the location of 0x3eff within the fetched 64 bits.
The values of shift and width are provided as a percentage of a single clock cycle: the
glitch is introduced before the rising edge of the target clock cycle if shift is negative.
ChipWhisperer provides an additional parameter, called fine-width, which is used to
offer fine-tuning of the width parameter. It has been noticed that fine-width provides
better reproducibility of the results when it is used. Repetitions are the number of
executions for each combination of parameters. For each fault injection campaign, the
total number of experiments corresponds therefore to more than 20 000 executions,
as summarized in the last row of the table. The same value of delay is used in all the
campaigns, and it depends on the number of initialization instructions that precede the
target part.

The results of the four injection campaigns on 0x3eff with respect to the three
classes (i.e., Crash, Silent and Fault) are presented in Table 4.3. All the resulting faulty
behaviors can be classified under two fault models: “Skip” (all the general purpose
registers keep their initial values), or partial update from the precharge value . Table 4.3
also provides the number of observed behaviors linked to each fault model among the
faulty executions.

Figure 4.8 shows the encoding of the executed instructions for each injection cam-
paign, along with the number of times each of them is observed. All of these faulty
behaviors are classified under the partial update from the precharge value fault model.

110

4.2. Partial update fault model

Position 1st 2nd 3rd 4th

Target 0x3eff 0x0000 0x0000 0x0000
part 0x0000 0x3eff 0x0000 0x0000
code 0x0000 0x0000 0x3eff 0x0000

0x0000 0x0000 0x0000 0x3eff

Shift -13

Width {6, 10} {6, 10} {3, 4} {3, 4}

Fine width [-255, 255]

Repetitions 20

Total 20440

Table 4.2: Experimental parameters.

Position
Class 1st 2nd 3rd 4th

Crash 0 0 23 1
Silent 33 1574 2273 158
Fault 20 407 18 866 18 144 20 281

Skip 11 523 8295 11 107 7901
Partial update from 8884 10 571 7037 12 380the precharge value

Table 4.3: Fault obtained when targetting the 0x3eff instruction at four different posi-
tions.

This is because all of them can be seen as a reset on some bits of the original in-
struction 0x3eff. It should be noticed that resetting all the bits of 0x3eff will result in
executing 0x0000, which is an instruction with no effect as mentioned earlier, and thus
classified under the “Skip” fault model.

Additionally, Table 4.3 and Figure 4.8 show that the number of faulty behaviors
and the observed executed instructions depend on the position of the instruction in
the fetched 64 bits. Thus, the results depend on the position rather than the target
instruction. Furthermore, the results of each position show that some instructions are
more probable to be executed than others as a result of the fault injection.

To better understand the effect of the fault at each position, and hence, on each bit
in the position, we define a metric called bit sensitivity. It measures the probability for
a bit to be reset as a result of the clock glitch fault injection over the faulty behaviors

111

Chapter 4 – Hardware fault simulation and partial update fault model

Number of occurences

0x0800*
0x3a1f
0x3e9f
0x3a1b
0x0801*
0x3e1f
0x3edf
0x381b
0x3813

Bi
na

ry
 e

nc
od

in
g 2226

2116
1106

968
922

777
408

360
1

(a) 1st position
Number of occurences

0x0040
0x3eee
0x08c0
0x00c0
0x3efe
0x0cc0
0x0ec2
0x2200*
0x3eea
0x0ec0
0x0cc2
0x0ee2

Bi
na

ry
 e

nc
od

in
g

2956
1813

1618
1228

983
694

509
425

163
125

51
6

(b) 2nd position

Number of occurences

0x3ef7
0x0200
0x0600
0x3ef6
0x0e82
0x0680
0x0681
0x3686
0x3eb6
0x3682
0x0e86
0x3696
0x36b6
0x36a6
0x3e96
0x3e86
0x3ea6
0x3ed6
0x0e80
0x3ee6
0x36c6
0x36f6
0x36e6
0x36d6
0x2679
0x3ec6
0x36a2
0x0601
0x3e82

Bi
na

ry
 e

nc
od

in
g

2074
1323

1114
592

489
443

272
223

96
95
71

43
42
32
25
23
19
15
15
7
6
5
4
3
2
1
1
1
1

(c) 3rd position
Number of occurences

0x3490
0x34fa
0x3cfe
0x3cfa
0x0400
0x2410
0x34c0
0x2490
0x0410
0x34da
0x34d2
0x2400*
0x3410
0x3cff
0x34f2
0x34d8
0x34f0
0x34f8

Bi
na

ry
 e

nc
od

in
g

2452
2357

2155
1450
1419

1295
474

149
116
105
90
83
71
55
41
39
21
8

(d) 4th position

Figure 4.8: Encoding of the observed executed instructions when targeting 0x3eff at
four different positions within the target programs.

that are classified under the partial update from the precharge value fault model at a
specific position. The bit sensitivity Sp(f, b) of bit b to a given fault model f at position
p is defined in Equation (4.1).

Sp(f, b) = 1− P (b = 1 | p)
P (fault model = f | p) (4.1)

Figure 4.9 presents the bit sensitivity values for the results obtained during the fault
injection campaigns on 0x3eff at all positions. Obviously, bits that are zero in 0x3eff
(bits 8, 14, and 15) have no corresponding bit sensitivity value. We can see that the bit
sensitivity is different from one position to another and from one bit to another at the
same position. Thus, under the partial update from the precharge value fault model,
some instructions are more probable than others.

Next subsection will present the results of targeting a different instruction, in order

112

4.2. Partial update fault model

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.251
0.354

0.504
0.354
0.354

1.000
0.950

0.830
0.395

0.742
0.000

0.354
0.354

(a) 1st position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

1.000
0.667

0.736
0.720

0.907
0.720

0.040
0.320

0.619
0.589

0.436
0.720

0.680

(b) 2nd position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.666
0.450

0.534
1.000

0.586
0.592
0.615

0.347
0.000

0.190
0.513
0.530
0.530

(c) 3rd position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.996
0.495

0.821
0.502

0.160
0.508

0.451
0.241

1.000
0.000

0.704
0.247

0.124

(d) 4th position

Figure 4.9: Bit sensitivity values obtained when targeting 0x3eff at four different posi-
tions.

to confirm that the partial update from the precharge value fault model depends on the
physical implementation of the device, and not on the target instruction.

It is important to note that whenever there is a doubt about the execution of an
instruction, results are confirmed using alternative initial register values. Nonetheless,
in rare circumstances, more than one instruction may produce the same outcome, for
instance, when the value of a register is zero. For example, this might happen because
of moving zero to the register, or by shifting its value by 32 bits. In Figure 4.8, when
the encoding is starred, it means that there is an alternative instruction that could lead
to the same outcome, and we selected one based on other observed encoding at the
same position. It is important to stress that this is happening only in a few cases (4
times), and does not affect the measurements or the general conclusion.

Confirming sensitive bits

Extra experiments have been carried out on 0x3b7d, which is the encoding of the
SUBS R3, 0x7d instruction. Again, we chose this instruction since it has a relatively

113

Chapter 4 – Hardware fault simulation and partial update fault model

high Hamming weight, and allows recognizing the encoding of the executed instruc-
tions as a result of the partial update from the precharge value fault model with high
probability. However, we specifically took care to have ones in the most sensitive posi-
tions from Figure 4.9 to see if these measurements are reproducible when targeting a
different instruction.

The experimental parameters for the fault injection campaigns on 0x3b7d are iden-
tical to that of 0x3eff, given in Table 4.2. The only difference is that the target program
has 0x3b7d instead of 0x3eff. The classification results are presented in Table 4.4,
while the bit sensitivity values are plotted in Figure 4.10.

Position
Class 1st 2nd 3rd 4th

Crash 0 0 0 0
Silent 39 2304 2589 197
Fault 20 401 18 136 17 851 20 243

Skip 11 694 8386 10 528 7606
Partial update from 8707 9750 7323 12 637the precharge value

Table 4.4: Fault obtained when targeting the 0x37bd instruction at four different posi-
tions.

It is clear that the classification results and the bit sensitivity values of 0x3b7d are
very close to the corresponding results of 0x3eff. This leads us to the conclusion that
the partial update from the precharge value fault model is instruction-independent. On
the other hand, the next subsection shows that bit sensitivity greatly depends on the
target device.

0x3eff experiments on a new STM32F3 microcontroller

In this section, we present the results of targeting the 0x3eff instruction again while
using a brand new device, which we did not use to perform any experiment previously.
In any other means, it is identical to the one we used in the previous experiments. This
is done to better understand the dependency of the partial update from the precharge
value fault model on the target device. The experimental parameters of this campaign
are identical to those in Table 4.2.

114

4.2. Partial update fault model

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.266
0.509

0.335
0.335

1.000
0.941

0.228
0.422

0.000
0.333
0.333

(a) 1st position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

1.000
0.713

0.677
0.950

0.677
0.025

0.838
0.605

0.325
0.677

0.652

(b) 2nd position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.742
0.459

1.000
0.499

0.560
0.591

0.311
0.000

0.541
0.458
0.453

(c) 3rd position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.992
0.763

0.466
0.060

0.421
0.458
0.481

1.000
0.639

0.130
0.000

(d) 4th position

Figure 4.10: Bit sensitivity values obtained when targeting 0x3b7d at four different po-
sitions.

For our purposes, it is enough to present the results on the 2nd and 4th positions to
see that they are very different between the two devices. The results are presented in
Table 4.5 and Figure 4.11.

A very interesting observation is that the number of faults and the bit sensitivity
were much higher when performing the fault injection campaigns on the old device.
This is clear for the bit sensitivity of the 4th position in Figure 4.11b, as we can see the
distribution of the bit sensitivities is similar to that in Figures 4.9d and 4.10d, however,
on the old device, the sensitivity is much higher. This could be explained as an aging
effect, since the old device has been used for fault injection experiments for a few
months. We speculate that the bit sensitivity could increase over time (a common
consequence of performance degradation due to aging), but further research is needed
to confirm this observation.

It is also worth mentioning that more observations of the “Skip” fault model may be
obtained when targeting the new device. This is achieved by changing the shift value
from −13 to −12. Table 4.6 shows the classification results when targeting 0x3eff
while using the new device, with shift = −12. This also gives a clue that only the partial

115

Chapter 4 – Hardware fault simulation and partial update fault model

Position
Class 2nd 4th

Crash 0 2
Silent 18 058 16 995
Fault 2382 3443

Skip 345 0
Partial update from 2037 3443the precharge value

Table 4.5: Fault obtained when targeting the 0x3eff instruction at four different posi-
tions on the new STM32F3.

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

1.000
0.775

0.688
0.000

0.421
0.548

0.189
0.351

0.000
0.281

0.000
0.058

0.500

(a) 2nd position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.281
0.005

0.162
0.001
0.000
0.001
0.009
0.009

1.000
0.008
0.001
0.016
0.019

(b) 4th position

Figure 4.11: Bit sensitivity values obtained when targeting 0x3eff on the new STM32F3
at the 2nd and the 4th positions.

update from the precharge value faults are affected by the fact that this is a new device.

0x3eff experiments on an STM32L4 microcontroller

In order to provide more experimental evidences that the bit sensitivity is target-dependent,
Figure 4.12 shows the bit sensitivity values when targeting a different device. It is an
STM32L4 microcontroller. It should be mentioned that this target device, has been
used for a long time to perform experiments (more than a year). This could explain the
high sensitivity in many bit Indices.

Conclusion on bit sensitivity

To summarize, the bit sensitivity figures illustrate that, as a result of the partial up-
date from the precharge value fault model, the probability distribution of the corrupted

116

4.2. Partial update fault model

Position
Class 2nd 4th

Crash 178 5
Silent 9205 0
Fault 11 057 20 435

Skip 9526 19 363
Partial update from 1531 1072the precharge value

Table 4.6: Fault obtained when targeting the 0x3eff instruction on the new STM32F3
using a shift value of −12.

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.908
0.000

0.158
1.000

0.842

(a) 1st position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.000
1.000

0.020
0.065

0.741
0.317

0.954
0.942

0.300
0.000

0.992
0.000
0.000

(b) 2nd position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

1.000
0.743

0.420
1.000

0.000
0.001

1.000
0.718

1.000
1.000

0.001
1.000
1.000

(c) 3rd position

0.0 0.2 0.4 0.6 0.8 1.0
Bit sensitivity

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bi
t i

nd
ex

0.528
0.622

0.605
0.615
0.622

0.000
0.622
0.622

1.000
0.599
0.622

0.816
0.339

(d) 4th position

Figure 4.12: Bit sensitivity values obtained when targeting 0x3eff at four different po-
sitions using STM32L4 as a target device.

instruction is not random, and it depends on several features that are mostly device-
dependent. The probability of executing a given instruction differs from the probability
of executing another. This discrepancy is determined by both the instruction’s position
inside the target program and the target device itself. This is of prime importance if the
instruction results in a security vulnerability, as will be highlighted in chapter 5.

117

Chapter 4 – Hardware fault simulation and partial update fault model

4.2.4 Experimental results of partial update from previous value

In this section, the focus is on the occurrence of faulty behaviors that can be classified
under the partial update from the previous value fault model. In this case, there is
no precharge value and thus the transition occurs from the value that was previously
stored in the register. In the time while the register is updating its value, a transient
situation may occur when some bits already have the new value, whereas others are
still to be updated. We can approximate this behavior as a morphing, or merging,
between the previous and the new data.

In the following subsections, we give examples of observed faulty behaviors that
can be classified as full or partial merge. It is important to stress that all these exam-
ples were experimentally obtained in the campaigns. All the presented examples in
this section have been observed experimentally when targeting an STM32F3 micro-
controller. Nonetheless, it should be mentioned that similar results (but only in terms
of 32 bits) have been observed when targeting an STM32F1 microcontroller. Again as
before, the number of bits is related to the flash memory access size. In STM32F3, it
is 64 bits, whereas, it is 32 bits in STM32F1.

Full merge

The merge is considered full if and only if the observed executed instruction(s) can
be expressed as a bitwise OR between the data fetched at clock cycle i and the data
fetched at clock cycle i + 1. Two examples of this case are provided. The first exam-
ple shows how four new 16-bit instructions are executed as a result of a full merge
between eight 16-bit instructions. The second example illustrates how two new 32-
bit instructions are executed as a result of a full merge between eight different 16-bit
instructions.

Executing four new 16-bit instructions Listing 4.3 shows the target program and the
binary encoding of each instruction. The green instructions at lines 1 to 4 are fetched
at clock cycle i, and the blue instructions at lines 5 to 8 are fetched at clock cycle
i + 1. The bitwise OR between a MOVS R1, 0x25 instruction and an ASRS R0, R1, 0x8
instruction results in ADDS R3, 0x2d. At the binary encoding level, we have:
0x2125 | 0x1208 = 0x332d. As a result, the observed execution when performing
clock glitch fault injection is given in Listing 4.4. The last four instructions correspond

118

4.2. Partial update fault model

to four new 16-bit instructions, not present in the initial program.

1 MOVS R1, 0x25 // 0x2125
2 MOVS R1, 0x25 // 0x2125
3 MOVS R1, 0x25 // 0x2125
4 MOVS R1, 0x25 // 0x2125
5 ASRS R0, R1, 0x8 // 0x1208
6 ASRS R0, R1, 0x8 // 0x1208
7 ASRS R0, R1, 0x8 // 0x1208
8 ASRS R0, R1, 0x8 // 0x1208

Listing 4.3: Target program to execute four new 16-bit instructions as a result of full
merge.

1 MOVS R1, 0x25 // 0x2125
2 MOVS R1, 0x25 // 0x2125
3 MOVS R1, 0x25 // 0x2125
4 MOVS R1, 0x25 // 0x2125
5 ADDS R3, 0x2d // 0x332d
6 ADDS R3, 0x2d // 0x332d
7 ADDS R3, 0x2d // 0x332d
8 ADDS R3, 0x2d // 0x332d

Listing 4.4: Observed execution as a result of full merge on Listing 4.3.

Executing two new 32-bit instructions Listing 4.5 shows the target program and the
encoding of each instruction of this example. The observed execution as a result of
the clock glitch fault injection is given in Listing 4.6. The bitwise OR of the first two
hexadecimal digits at line 1 (0xa9) and the corresponding digits at line 5 (0x42) gives
0xeb. Since the most significant five bits are 0b11101, this word is decoded as a 32-bit
instruction, as explained in chapter 3. The same holds for the merging of instructions
at lines 3 and 7.

Listing 4.6 is obtained by a full merge applied on Listing 4.5 in the following way:

• Merging the 32 bits at lines 1 and 2 with the 32 bits at lines 5 and 6 respectively:
0xa9000000 | 0x42000305 = 0xeb000305.

• Merging the 32 bits at lines 3 and 4 with the 32 bits at lines 7 and 8 respectively:
0xa9000000 | 0x42020405 = 0xeb020405.

119

Chapter 4 – Hardware fault simulation and partial update fault model

1 ADD R1, SP, 0x0 // 0xa900
2 MOVS R0, R0 // 0x0000
3 ADD R1, SP, 0x0 // 0xa900
4 MOVS R0, R0 // 0x0000
5 TST R0, R0 // 0x4200
6 LSLS R5, R0, 0xc // 0x0305
7 TST R2, R0 // 0x4202
8 LSLS R5, R0, 0x10 // 0x0405

Listing 4.5: Target program to execute two new 32-bit instructions as a result of full
merge.

1 ADD R1, SP, 0x0 // 0xa900
2 MOVS R0, R0 // 0x0000
3 ADD R1, SP, 0x0 // 0xa900
4 MOVS R0, R0 // 0x0000
5 ADD R3, R0, R5 // 0xeb000305
6 ADD R4, R2, R5 // 0xeb020405

Listing 4.6: Observed execution as a result of full merge on Listing 4.5.

Partial merge

In this case, only part of the fetched data at clock cycle i and the data fetched at clock
cycle i + 1 is merged. Two examples are presented to illustrate this case. The same
target code is used for both examples and is shown below in Listing 4.7.

1 ADD R1, R1, 0x4 // 0xf1010104
2 ANDS R2, R0 // 0x4002
3 MOVS R0, R0 // 0x0000
4 ADD R2, R2, 0xa // 0xf102020a
5 MOVS R4, R0 // 0x0004
6 MOVS R0, R0 // 0x0000

Listing 4.7: Target program of a partial merge.

The first example is a partial merge that occurred over the fetched 64 bits. We
observed that not all the 32 bits at lines 1 (0xf1010104) are systematically merged
with the corresponding 32 bits at line 4 (0xf102020a): only the destination and source
registers are merged. In addition to this behavior, another partial merge occurred in
the following instructions, only over the least significant digit, between the 16 bits at line

120

4.2. Partial update fault model

2 (0x4002) and the 16 bits at line 5 (0x0004). As a consequence, only the destination
register at line 5 is affected. The observed execution of this example is shown in
Listing 4.8.

1 ADD R1, R1, 0x4 // 0xf1010104
2 ANDS R2, R0 // 0x4002
3 MOVS R0, R0 // 0x0000
4 ADD R3, R3, 0xa // 0xf103030a
5 MOVS R6, R0 // 0x0006
6 MOVS R0, R0 // 0x0000

Listing 4.8: Observed execution as a result of partial merge over 64 bits after targeting
Listing 4.7.

The second example shows a partial merge where only one instruction is affected,
when targeting the same program as in Listing 4.7. The observed execution is pre-
sented in Listing 4.9. It is clear that the immediate value (0xa) is updated normally,
while the source and the destination registers of both instructions at lines 1 and 4, in
Listing 4.7, are merged, so that R3 is affected in the resulting execution in Listing 4.9.
In both examples, we cannot discriminate on the opcode values (0xf1), as it is the same
in both instructions. It is worth mentioning that a full merge was also observed for the
target program in Listing 4.7.

1 ADD R1, R1, 0x4 // 0xf1010104
2 ANDS R2, R0 // 0x4002
3 MOVS R0, R0 // 0x0000
4 ADD R3, R3, 0xa // 0xf103030a
5 MOVS R4, R0 // 0x0004
6 MOVS R0, R0 // 0x0000

Listing 4.9: Observed execution as a result of partial merge over a single instruction
after targeting Listing 4.7.

4.2.5 Conclusion on the results of partial update fault model

Experimental evidences are presented in support of the proposed fault models. We
highlighted several different faulty behaviors that support the fault models based on

121

Chapter 4 – Hardware fault simulation and partial update fault model

partial update mechanisms. Depending on the actual low-level implementations, those
updates can overwrite previous values or precharge values.

The fault can either affect the full instruction or affect a subset of the instruction
encoding. In the former case, the resulting instruction can be easily predicted as the
behavior is deterministic; in the latter, the resulting execution is more difficult to predict
as the final result depends on the fine-tuning of the injection parameters, and on the
device itself as seen in subsection 4.2.3.

It is interesting to note, however, that this behavior may affect instructions that are
not adjacent in the memory, as the result of variable-length encoding and fetching
microarchitectures. For these reasons, different faulty behaviors, and thus different
vulnerabilities, may be obtained for different architectures even if they are supporting
the same instruction set. Additionally, simple countermeasures, such as duplication,
triplicating, or adding dummy instructions would not be efficient countermeasures, they
even may create new vulnerabilities.

4.3 Fault models evaluation

For the RTL fault models, in particular, preventing the update, and anticipating the up-
date, the Coverage is high as much as the Coverage that was obtained in section 3.6. It
reaches, in most cases, more than 90 %. Regarding Fidelity, it is also 100 %. However,
it is necessary to note that the RTL fault model takes into account the target register,
as not all registers deliver faults similar to the observed faulty behaviors when applying
these models to them.

With respect to the partial update fault model, the Coverage is increased signifi-
cantly. For example, in subsection 4.2.3, it is shown that the Coverage is 100 %, as the
observed faults are classified either under “Skip” or partial update from the precharge
value fault models, although the target device is STM32F3, which had the least Cover-
age in section 3.6 (73.05 %).

Unfortunately, as the analysis of partial update fault model is not automated, it is
very hard to measure the Coverage for a target program like the ones used in chap-
ter 3. This is because hundreds of faulty behaviors (and sometimes thousands) need
to be analyzed in order to classify the observed fault under which model. Also, it could
be impossible to do so in some cases, as the combinations, in terms of 64-bit faults,
could reach 2128 (264 × 264), which is impossible to automate by simple computers.

122

4.3. Fault models evaluation

Nonetheless, Figure 4.13 shows the Coverage percentage for each fault model when
targeting two different devices: STM32F3 and STM32L4. It is obvious that the sum
of Coverage for classified faults with known models is more than 99 %. The target
program that is used in these campaigns is a series of the same instruction. The in-
struction is ADDS R3,0x2b, which has the encoding of 0x332b. Targeting a series of
the same instruction minimizes the complexity of the analysis. In addition, in this case,
we can either observe “Skip”, or partial update from the precharge value fault models,
as effects in terms of “Skip and repeat” or partial update from the previous value will
be masked, which facilitates the analysis. It is worth mentioning that many faulty be-
haviors are classified under partial update from the precharge value fault model, for
instance, in STM32F3 experiments, the 35.51 % belongs to 92 different observations,
and the 18.89 % belongs to 36 different faulty behaviors in STM32L4 experiments. In
contrast, for “Skip”, although the Coverage is higher, it only belongs to a few number of
faults. This includes for example, “Skip” four instructions of 0x332b (i.e., 64 bits), two
instructions, or a single instruction.

Skip Partial update
from precharge value

Other faulty
 behaviors

Co
ve

ra
ge

 [%
]

63.99

35.51

0.5

STM32F3

Skip Partial update
from precharge value

Other faulty
 behaviors

80.96

18.89

0.15

STM32L4

Figure 4.13: Coverage measurement when targeting a series of 0x332b instruction.

Table 4.7 shows the experimental setup for the aforementioned experiments, along
with the classification classes. Small intervals of Width and Shift are used compared
to the previous chapter, in order to maximize the Fault %.

Khaut et. al. [92] performed laser fault injection campaigns on a series of 0x0000
instruction, in order to see if any fault can be observed other than bit resets. As a result,
they did not observe any fault. Inspired by their experiment, a clock glitch fault injection
campaign, using the same parameters in Table 4.7, has been conducted on a series

123

Chapter 4 – Hardware fault simulation and partial update fault model

Target device
STM32F3 STM32L4

Shift [-15,-6]
Width [2,11]
Delay {39, 40, 41}

Repetition 100
Total 30 000

Silent 73.98% 76.35%
Crash 10.07% 1.66%
Fault 15.95% 21.99%

Table 4.7: Experimental setup and classification cases for fault models evaluation ex-
periments on a series of 0x332b instruction.

of 0x0000. As a result, the Fault % in STM32F3 was 0.77 %, and 0.20 % in STM32L4.
This is comparable to the Coverage values obtained in Figure 4.13, as the Fault %
was 15.95 %, and 21.99 % in STM32F3 and STM32L4 respectively. To put it another
way, this experiment shows that the proposed fault models in chapter 3 and chapter 4
have very high Coverage, which is more than 99 %, but not 100 %. This is because
targeting a series of 0x0000 would result in a fault that cannot be classified under any
of the proposed fault models. Additionally, what makes the proposed models better
than the already existing ones in the literature is that the explained faults cannot simply
be classified under bit resets as already detailed in previous sections and chapters.

With respect to the Fidelity of Partial update fault model, different aspects should
be considered: if Fidelity of Partial update here means observing any fault that can
be classified under Partial update fault model, then Fidelity of Partial update equals
100 %, and thus, the overall Fidelity also equals 100 %. However, as this fault model is
a complicated fault model, the Fidelity here might mean observing all the possible faulty
behaviors as a result of applying both partial update from the precharge value and
partial update from the previous value fault models. In this case, the Fidelity of Partial
update fault model is very low. For example, when targeting single 0x3eff at 1st
position, Fidelity of partial update from the precharge value would equal 100 %, if 213

(8192) executions were observed. However, only 9 different executions were observed.
Thus, Fidelity of partial update from the precharge value equals 0.1 %, which lowers

124

4.4. Conclusion

noticeably the overall Fidelity. On the other hand, bit sensitivity measurement has been
defined to show that only a few instructions are possible to be observed as a result of
fault injection. Therefore, Fidelity does not necessarily mean observing all the possible
executions, but only the most probable ones. Hence, Fidelity is increased significantly.
Here it is very hard to quantify the Fidelity, thus, we rather stick to quality. The same
Fidelity analysis applies to partial update from the previous value in case of Partial
merge. However, in the case of Full merge, the Fidelity is 100 %, as it was always
observed when targeting STM32F1 and STM32F3.

Regarding Complexity, it is really hard to apply partial update from the precharge
value and partial update from the previous value in the case of Partial merge fault
models in vulnerability analysis or countermeasures development. However, having
well-defined security proprieties in addition to determining the critical parts of a code,
would certainly make this process much easier, and thus, the usage of these mod-
els would be clearly beneficial. Section 5.1 will present an example that supports this
claim. Also, using other indications, such as the bit sensitivity, would help in utilizing
these models. On the other hand, applying partial update from the previous value in the
case of Full merge would be very easy, as this model is very specific and deterministic.
Moreover, all the cases of Partial update fault model are explainable and understand-
able at different levels of abstraction, which lowers its complexity. Finally, based on the
bit Sensitivity measurements, it has been shown that partial update from the precharge
value fault model is highly device-dependent, and thus, enlarges the complexity. For
partial update from the previous value in the case of Full merge, it has been observed
when targeting STM32F3 and STM32F1, but not STM32L4. Thus, it could also be
device-dependent. Nonetheless, the aforementioned experiments showed that all the
sub-cases of Partial update fault models are program-independent.

4.4 Conclusion

This chapter continued the cross-layer analysis approach by covering more levels of
abstraction. In particular, it moved down at system levels and considered the hard-
ware level to perform RTL fault simulation. New RTL fault models have been proposed.
These models allowed observing identical faults to the faulty behaviors observed by
physical fault injection. Additionally, a fault simulation approach based on critical path
analysis has been presented. This approach accelerated the process of the fault sim-

125

Chapter 4 – Hardware fault simulation and partial update fault model

ulation and revealed the origin of the observed faulty behaviors.
Thanks to the RTL analysis, a new fault model at the software level has been in-

ferred: Partial update fault model, which is also applicable to RTL level. This model
comes in two sub-cases: partial update from the precharge value and partial update
from the previous value . These fault models allow explaining a wide range of the faulty
behaviors that are obtained when performing clock glitch fault injection campaigns and
were unexplained previously. Therefore, they can be used to perform vulnerability anal-
ysis of software codes against fault attacks, and help in better designing efficient and
low-cost countermeasures. However, they are more complex than the previously in-
ferred fault models: “Skip” and “Skip and repeat”.

126

5
Further results and details

While reading this dissertation, several questions may arise. For instance, how can
vulnerability analysis be conducted using the proposed models, and how would this
aid in proposing cost-effective countermeasures? Moreover, what if multiple glitches
are injected during program execution? Additionally, are the proposed fault models still
applicable when employing different fault injection techniques? This chapter aims to
address these inquiries while also paving the way for new research directions based
on this work.

Section 5.1 makes use of the presented fault models to break the control-flow in-
tegrity of a program by altering the value of the Program Counter, in order to provide
an actual application example. Also, it illustrates how understanding the fault effect
could lead to propose an efficient countermeasure. Experimental results of injecting
multiple glitches are provided in section 5.2. Section 5.3 proves the applicability of
the proposed models when performing voltage glitch fault injection experiments. The
chapter in concluded in section 5.4.

5.1 Program Counter modification

In this section, the proposed fault models are employed to change the value of the
Program Counter to an address stored in one of the general-purpose registers. This
section uses the exploitation example in section 3.4, however, different scenarios and
more details are given here. This illustrates how the fault models can be used to per-
form vulnerability analysis of a given code, based on a predefined security property.

127

Chapter 5 – Further results and details

Additionally, performing fault injection experiments, after this analysis, proves the re-
alism of the proposed fault models. Thus, enabling the design or the development of
cost-effective countermeasures.

In the following subsections, the probability of modifying the Program Counter has
been measured for the target program in Listing 5.1. The results of the different scenar-
ios, along with the fault models that led to the success of the attack, and the glitch pa-
rameters that allowed observing the results are summarized in Table 5.1. The success
rate is computed over 10 000 executions for each clock glitch fault injection scenario.
The glitch parameters are tuned to maximize the success rate. STM32F3 has been
used as a target device in these experiments.

1 R8 = address of line 11
2 // series of 0x0000
3 ADD R6, R1, 0x4c7 // 0xf20146c7
4 ADD R3, R3, 0xa
5 ADD R4, R4, 0xb
6 ADD R5, R6, R3
7 ADD R3, R3, 0xf
8 // series of 0x0000
9 ADD R5, R5, 0x5
10 // series of 0x0000
11 ADD R1, R1, 0x3
12 ADD R9, R0, R6

Listing 5.1: Target program for Program Counter modification experiments.

5.1.1 Misaligned code

In section 3.4, we were able to modify the Program Counter to an address stored in R8
as a result of the “Skip” fault model in a misaligned code. This is done by executing
the least significant 16 bits of a misaligned 32-bit instruction. The first half of the 32-bit
instruction is fetched at clock cycle i and its second half is fetched at clock cycle i + 1.
Therefore, skipping the fetched data at clock cycle i results in decoding the remaining
half that is fetched at clock cycle i + 1, and executing it as a new 16-bit instruction. The
same thing can happen for the ADD R6, R1, 0x4c7 instruction shown in Listing 5.1.
Its least significant 16 bits (0x46c7) are the encoding of MOV PC, R8, which stores the

128

5.1. Program Counter modification

value of R8 into the Program Counter. Thus, executing MOV PC, R8 leads to a jump
from line 3 to line 11, since R8 stores the address of line 11.

The attack is reproduced on Listing 5.1. Many useful and dummy instructions are
used in Listing 5.1 to make sure of detecting the execution of MOV PC, R8. The suc-
cess rate in this scenario was 100 %. It was noticed that 9996 of the executions can be
classified under the “Skip” fault model. However, four executions can be classified un-
der the partial update from the precharge value fault model. This is because resetting
some bits of the most significant 16 bits of ADD R6, R1, 0x4c7, will lead to execute two
16-bit instructions, as the most significant five bits do not identify a valid encoding for
a 32-bit instruction (as detailed in chapter 3). For these four executions, we confirmed
this is happening by observing the values of the registers that the MOVS R1, R0 instruc-
tion, of encoding 0x0001, had been executed. Thus, the instructions MOVS R1, R0 and
MOV PC, R8 are executed in sequence.

5.1.2 Aligned code

The aforementioned attack relies on the misalignment of the code in memory. we add
a single MOVS R0, R0 (0x0000) to the target program, just before ADD R6, R1, 0x4c7
instruction, to realign it. The code is now aligned, all bits of 0xf20146c7 are fetched
in a single clock cycle. In this case, the fault model that we can rely on to create
new instructions (and thus modify the Program Counter) is the partial update from the
precharge value fault model. The aim is to reset bits over the most significant 16
bits while not touching the least significant 16 bits, in order to keep the encoding of
MOV PC, R8, i.e., 0x46c7. The success rate of the clock glitch fault injection campaign,
in this case, was 0.71 %. However, no side effect is observed along with executing
MOV PC, R8, but this is normal as resetting some bits of the most significant 16 bits of
0xf20146c7 could lead to execute many 16-bit instructions with no observable effect
like MOVS R0, R0 (0x0000), or TST R0, R0 (0x4200) for example.

One could imagine that making the code aligned will protect from the misaligned
faulty behaviors that are described in chapter 3. However, this example showed that
aligning the code cannot be considered a sufficient countermeasure against clock glitch
fault injection attacks, that might focus on misaligned codes. Nonetheless, correct
alignment of the sensitive instructions can effectively decrease the success rate of an
attack, as demonstrated experimentally.

129

Chapter 5 – Further results and details

5.1.3 Countermeasure: register substitution

In this scenario, the code is misaligned, but we changed the destination register in
ADD R6, R1, 0x4c7 from R6 to R2. Other occurrences of R6 are replaced with R2 in the
rest of the program, as shown in Listing 5.2. Now, the least significant 16-bit word for
ADD R2, R1, 0x4c7 is 0x42c7. The success rate in this scenario was zero: no fault
led to modify the Program Counter to the value in R8, either when using the same
experimental parameters that previously achieved a 100 % success rate or with any
other parameters.

The R2 register was chosen because 2 in the instruction encoding can not be turned
into a 6 by resetting bits. Thus, we avoid obtaining the encoding of MOV PC, R8.

This scenario shows that a clear understanding of the fault effect led to the de-
sign of a very simple and cost-effective countermeasure. This proposal clearly has no
overhead and can easily be implemented by the compiler, except in rare cases where
registers might be under a lot of pressure.

1 R8 = address of line 11
2 // series of 0x0000
3 ADD R2, R1, 0x4c7 // 0xf20142c7
4 ADD R3, R3, 0xa
5 ADD R4, R4, 0xb
6 ADD R5, R2, R3
7 ADD R3, R3, 0xf
8 // series of 0x0000
9 ADD R5, R5, 0x5
10 // series of 0x0000
11 ADD R1, R1, 0x3
12 ADD R9, R0, R2

Listing 5.2: Protected code against executing MOV PC, R8.

5.1.4 Trojan

In this case, dummy code with no effect on the target program is added just be-
fore ADD R2, R1, 0x4c7 in Listing 5.2, where the code is protected against execut-
ing MOV PC, R8. This dummy code is shown in Listing 5.3. It implements a Tro-
jan that can be activated by clock glitch fault injection in order to controllably exe-

130

5.1. Program Counter modification

cute the MOV PC, R8 instruction. It is clear that the partial update from the previous
value fault model in the full merge case will lead to execute MOV PC, R8, since we have
that 0x4281 | 0x0446 = 0x46c7 (MOV PC, R8). The experimental success rate of this
scenario was 95.11 %.

1 CMP R1, R0 // 0x4281
2 MOVS R0, R0 // 0x0000
3 MOVS R0, R0 // 0x0000
4 MOVS R0, R0 // 0x0000
5 LSLS R6, R0, 0x11 // 0x0446
6 MOVS R0, R0 // 0x0000
7 MOVS R0, R0 // 0x0000
8 MOVS R0, R0 // 0x0000

Listing 5.3: Dummy code implementing a Trojan.

This scenario is possible if we assume that the attacker is the software developer
himself. Alternatively, the compiler used to compile the code may be untrusted and thus
represent the attacker in this situation. As a countermeasure, code review or analysis
based on the presented fault models would be enough to detect such Trojans.

Fault injection scenario
Misaligned Aligned Protected Trojan

Success rate 100% 0.71% 0.0% 95.11%
Fault models Skip (sect. 3.3) (99.96%) partial update from - partial update from

partial update from the precharge value the previous value
the precharge value (sect. 4.2.3) (sect. 4.2.4)

(sect. 4.2.3) (0.04%)
Shift -12 -13 - -9
Width 3 10 - 4

Table 5.1: Experimental results obtained, and fault injection parameters used when
attempting to modify the Program Counter.

More on Trojan

It is worth noting that the idea of implementing a Trojan is applicable to any of the pro-
posed fault models. Therefore, it also validates the reliability as well as trustworthiness
of the presented fault models.

131

Chapter 5 – Further results and details

As another example, Listing 5.4 shows a simple password verification code of five
characters. R4 is used as the loop counter. The instruction ADDw R6, R6, 0xc repre-
sents the dummy code that implements the Trojan. It has the encoding of 0xf106060c.
The least significant 16 bits (0x060c) is a valid encoding of the 16-bit instruction
LSLS R4, R1, 0x18. The initial value of R1 was 9. Thus, executing LSLS R4, R1, 0x18
would corrupt the value of R4 to be 150 994 944 (= 9 << 24), which is highly greater
than 4. As a result, the loop condition is violated, and then, the checked password is
authenticated even if it is a wrong password. Executing LSLS R4, R1, 0x18 can be
obtained as a result of applying “Skip” or partial update from the precharge value fault
models, as already detailed. NOPs are added to make sure that the injection does not
affect the original loop and to ensure that the code is misaligned. The success rate of
this example was 100 % after 100 executions: 97 of them are classified under “Skip”
fault model, while the remaining 3 executions are classified under partial update from
the precharge value fault model.

1 //pw: the sent text to be checked
2 //passwd: the correct password
3 passok = 1;
4 R4 = 0;
5 // start of inline assembly code
6 // NOPs
7 ADDw R6, R6, 0xc // 0xf106060c
8 // NOPs
9 // end of inline assembly code
10 while(R4 < 5){
11 if(pw[R4] != passwd[R4]){
12 passok=0;
13 }
14 R4++;
15 }
16 return passok;

Listing 5.4: Bypassing password verification using a Trojan.

Applying the same idea on advanced and protected programs would be a very
interesting perspective of this work.

132

5.2. Multiple glitch fault injection

5.2 Multiple glitch fault injection

Recent works started paying attention to the ability of an attacker to inject multi-faults at
different times [78], [129], [130]. Studying and characterizing this type of fault injection
would be necessary in two-fold: firstly, to see if an attacker would be able to combine
faulty behaviors, where each of these faulty behaviors can be achieved while injecting
a single fault. Thus, the need to apply combinations of the proposed fault models while
analyzing code vulnerabilities. Secondly, to see if injecting multi-faults would lead to
create new faulty behaviors that are not simply a combination of single faults. Thus, the
need to apply again the proposed methodology to infer new fault models. Nevertheless,
we need to keep in mind that injection multiple faults in real life scenarios is mush more
difficult than injecting a single fault.

This section shows the ability to combine different faulty behaviors as a result of
injecting multiple glitches. On the other hand, investigating the ability to observe totally
new faulty behaviors will be an important future work to look at.

ChipWhisperer environment allows injecting multiple consecutive glitches at a given
delay value. This capability is leveraged to perform multiple glitch fault injections.
STM32L4 was used in the experiments of this section.

As an example, two glitches have been injected while executing the target code in
Listing 5.5. As a result, effects that can be explained as a combination of the proposed
fault models have been observed. Figure 5.1 shows three different observations as
a result of combining faults under “Skip and repeat” fault model. It should be noticed
that targeting the instructions at lines 2 and 3 in Listing 5.5 allows detecting the orders
of execution that are obtained in Figure 5.1. Other operands have also been used to
confirm these orders of execution.

1 46a00602 // MOV R8, R4 // LSLS R2, R0, 0x18
2 f2030109 // ADDw R1, R3, 0x9
3 f2010308 // ADDw R3, R1, 0x8
4 f104040b // ADD R4, R4, 0xb
5 eb060503 // ADD R5, R6, R3
6 f103030f // ADD R3, R3, 0xf
7 f1060607 // ADD R6, R6, 0x7
8 f1050505 // ADD R5, R5, 0x5

Listing 5.5: Binary encoding of the aligned target code, for multiple glitch experiments,
in hexadecimal format.

133

Chapter 5 – Further results and details

Figure 5.1a represents a combination of “Skip and repeat 64 bits” and “Skip and
repeat 32 bits”, while Figure 5.1b illustrates a combination of “Skip and repeat 64 bits”
and “non-sequential Skip and repeat 32 bits”. On the other hand, Figure 5.1c shows a
combination of two “Skip and repeat 64 bits”.

1

2

3

2

3

3

7

8

(a) Skip 4, 5, 6 & repeat 2, 3, 3.

1

2

3

2

3

2

7

8

(b) Skip 4, 5, 6 & repeat 2, 3, 2.

1

2

3

2

3

2

3

8

(c) Skip 4, 5, 6 ,7 & repeat 2, 3, 2, 3.

Figure 5.1: Observed executions of combined “Skip and repeat” faults when targeting
Listing 5.5 as a result of injecting two glitches. Numbers in this figure refer to the en-
coding at the line numbers in Listing 5.5.

Similarly, targeting the misaligned code in Listing 5.6 also allowed observing a com-
bination of faulty behaviors, where each of them can be explained as a result of a single
fault that is affecting a misaligned code. This code is the same as the misaligned code
used in subsection 3.3.2. Table 5.2 shows the number of injected glitches that allowed
observing the corresponding faulty behaviors in the second column when targeting
Listing 5.6. These faulty behaviors are explained as a combination of “Skip 32 bits”
faults starting from the first line in Listing 5.6.

These examples show that different codes or alignments will not have an effect on
the ability to combine faulty behaviors as a result of injecting multiple glitches. It should
also be noticed that the effect of each injected glitch does not necessarily correspond to

134

5.3. Voltage glitch fault injection

1 0402f101
2 0106f103
3 030af104
4 040beb06
5 0503f103
6 030fbf00

Listing 5.6: Binary encoding of the misaligned target code, for multiple glitch
experiments, in hexadecimal format.

an effective glitch that causes a faulty behavior. For example, sometimes even though
more than one glitch is injected, the effect is similar to injecting only one glitch. This is
obvious in Table 5.2, for instance, “Skip” line 1 is observed when injecting either 1, 2,
or 3 glitches.

Number of glitches Faulty behavior
1, 2, or 3 Skip line 1
2 or 3 Skip lines 1 and 2
3 Skip lines 1, 2, and 3

Table 5.2: Combination of Skip faults when targeting Listing 5.6, using multiple
glitches.

5.3 Voltage glitch fault injection

ChipWhisperer supports performing voltage glitch fault injection with the same param-
eters as clock glitch. In which, Shift determines the offset of the glitch with respect
to the targeted clock cycle. Width represents the Length of the voltage glitch. While
the pulse amplitude is automatically configured with a voltage drop to zero using a
switch MOSFET transistor, which shorts the power line to ground (GND), instead of
the normal voltage supply.

“Skip”, “Skip and repeat”, “non-sequential skip and repeat”, partial update from the
precharge value , and partial update from the previous value fault models have also
been observed when performing voltage glitch fault injection experiments. Nonethe-
less, it was noticed that the Coverage of “Skip” and “Skip and repeat” fault models,

135

Chapter 5 – Further results and details

using voltage glitch, is less than their Coverage when performing clock glitch. In con-
trast, faults under Partial update fault model, using voltage glitch, were more than the
corresponding ones using clock glitch, as will be detailed in the following.

Table 5.3 illustrates the results in terms of Silent, Crash, and Fault when targeting
Listing 5.7 in large voltage glitch fault injection campaigns. This target program is the
same program used for fault models evaluation in section 3.6. Table 5.3 also shows
the Coverage percentage within the observed faulty behaviors. This Coverage includes
the faults that are classified under “Skip”, “Skip and repeat”, and “non-sequential skip
and repeat”, but not under Partial update fault model. It is shown that these values are
less than the corresponding ones using clock glitch: using clock glitch for STM32F3,
the Coverage was 73.05 %, and for STM32L4, the Coverage was 93.28 %, as shown
in Table 5.3.

1 ADD R1, R1, 0x6
2 ADD R3, R3, 0xa
3 ADD R4, R4, 0xb
4 ADD R5, R5, 0x1
5 ADD R2, R6, 0xd
6 ADD R3, R3, 0x9
7 ADD R6, R6, 0x4
8 ADD R2, R2, 0x3

Listing 5.7: Target part for fault models evaluation campaigns using voltage glitch.

Target device
STM32F3 STM32L4

voltage clock voltage clock
Silent 84.16 96.84 95.45 96.4
Crash 14.19 1.95 3.53 0.36
Fault 1.65 1.21 1.02 3.24

Coverage 56.57 73.05 84.44 93.28

Table 5.3: Experimental results for fault models evaluation experiments using voltage
and clock glitch when targeting Listing 5.7. Values in %. Coverage does not include
faults under Partial update fault model.

Table 5.4 shows the parameters used in these voltage glitch campaigns. The num-

136

5.3. Voltage glitch fault injection

ber of injected glitches is 3 for STM32L4, as performing a voltage glitch using CW308
targets requires more than one voltage glitch to have a single effective glitch. This
might be related to the fact that the glitch goes through a long SMA wire, which lowers
its effectiveness. Thus, more consecutive glitches increase the overall length of the
glitch, and hence, the more probable the success of the glitch will be. Another obser-
vation is that specific regions of Shift and Width allowed observing faulty behaviors with
either explained or unexplained faults, as shown in Figure 5.2. Again, this figure does
not consider faults under Partial update fault model. Blue circles mean the occurred
fault is classified under either “Skip”, “Skip and repeat”, or “non-sequential skip and
repeat”, while the red x corresponds to other faults.

Target device
STM32F3 STM32L4

Shift [-49,0]
Width [0,49]
Delay {38, 39, 40} {35, 36, 37}

of glitches 1 3
Repetition 100

Total 750 000

Table 5.4: Experimental setup for fault models evaluation experiments, using voltage
glitch, when targeting Listing 5.7.

(a) STM32F3 results (b) STM32L4 results

Figure 5.2: Faults classification with respect to shift and width values using voltage
glitch campaigns. Y-axis: Shift ∈ [-49,0], X-axis: Width ∈ [0,49].

On the other hand, Figure 5.3 shows the Coverage values of “Skip” and partial up-

137

Chapter 5 – Further results and details

date from the precharge value fault models, when carrying out voltage glitch campaigns
on a series of 0x332b instruction. These campaigns are similar to the experiments per-
formed in section 4.3. The overall Coverage is very high in both devices: 92.55 % in
STM32F3, and 100 % in STM32L4. Also, it is clear that faults under partial update from
the precharge value are more than faults under “Skip” when targeting STM32F3. This
explains why low Coverage values were obtained when considering only fault models
other than Partial update fault model. Table 5.5 shows the experimental setup parame-
ters that are used and the classification cases that are obtained when targeting series
of 0x332b instruction using voltage glitch fault injection.

Skip Partial update
from precharge value

Other faulty
 behaviors

Co
ve

ra
ge

 [%
]

27.57

64.98

7.45

STM32F3

Skip Partial update
from precharge value

Other faulty
 behaviors

83.23

16.77

0.0

STM32L4

Figure 5.3: Coverage measurement when targeting a series of 0x332b instruction using
voltage glitch.

Finally, as an example of partial update from the previous value fault model in the
case of Full merge; performing voltage glitch using STM32F3, on the Trojan code in
Listing 5.3 in subsection 5.1.4 led to execute MOV PC, R8 with success rate 92.10 %
(using width = 40, shift = −17). This is comparable to the success rate obtained using
clock glitch (95.11 %).

5.4 Conclusion

In this chapter, additional analysis, results, and details are provided. Also, new re-
search directions can be followed based on the work presented in this chapter. Firstly,
different scenarios to break the control-flow integrity of a program are presented. These
scenarios demonstrated how a security evaluator can predict a faulty behavior based

138

5.4. Conclusion

Target device
STM32F3 STM32L4

Shift [-35,-26]
Width {47, 48, 49}
Delay {35, 36, 37}

Repetition 350
Total 31 500

Silent 67.5% 68.69%
Crash 26.67% 4.13%
Fault 5.83% 27.18%

Table 5.5: Experimental setup and classification cases for fault models evaluation ex-
periments on a series of 0x332b instruction using voltage glitch.

on the proposed fault models. Moreover, experimental results proved the realism of
this prediction, and thus, proved the reliability of the proposed fault models. Further-
more, understanding the possible effect of the fault allowed protecting the code with
simple countermeasures that have no additional overhead. In addition to that, Trojan
idea was presented, which also increased the trustworthiness of the proposed fault
models. In addition, it shows a new Threat model as a result of fault injection. In which,
the software developer or the used compiler represents the adversary.

Moreover, this chapter shows the applicability of injecting multiple glitches to com-
bine faulty behaviors, where each of them can be obtained as a result of a single glitch.
This increases the abilities of an attacker to obtain more exploitable faults. At the same
time, it raises the complexity from a protection point of view. Looking for new faulty
effects as a result of injecting multiple faults would be an interesting perspective of this
work.

Finally, performing voltage glitch fault injection campaigns validated the applicability
of the proposed fault models when conducting different fault injection techniques from
clock glitch. It was shown that in some campaigns, the Coverage reached 100 %. This
confirms the high Fidelity and soundness of the proposed fault models even when a
distinct injection technique is employed. The possibility of witnessing faulty behaviors
using voltage glitch that are distinct from faulty behaviors observed with clock glitch
may be explored in a future study.

139

CONCLUSION AND PERSPECTIVES

As digital systems become more prevalent and the IoT market experiences significant
growth, there has been an increased focus on security among hardware designers and
software developers. The objective is to protect these devices from potential threats.
Among the various security concerns, physical attacks pose a significant risk, with fault
injection being a major form of such attacks.

In order to assess digital systems against fault injection attacks and protect them
from such threats, software developers and hardware designers must rely on realistic
fault models. However, the complexity of embedded microprocessors and their be-
havior under these attacks pose considerable challenges when attempting to derive
accurate fault models based on limited observations of faulty microprocessors, espe-
cially when the analysis is limited to a single level of abstraction. Moreover, relying on
impractical or random fault models would lead to inadequate and inaccurate vulnera-
bility analysis, potentially resulting in the development or design of countermeasures
that are either over or under-engineered.

The aim of this thesis was to provide a cross-layer analysis approach to better
analyze, characterize, and understand the effects of fault injection attacks at different
levels of abstraction of a digital system. Therefore, trustworthy and reliable software
and hardware fault models should be offered, enabling thorough vulnerability analysis
processes as well as effective design and/or development of countermeasures.

Summary of the contributions

In this thesis, fault injection techniques that affect the timing constraints in digital sys-
tems, along with examples of real attacks from the literature, have been presented in
chapter 1. In addition, chapter 1 examined various state-of-the-art studies dealing with
the characterization and modeling of fault effects. These studies, combined with the
experimental evidence presented in chapter 2, highlighted the necessity of bridging the
gap between previous research efforts in order to conduct a more comprehensive anal-
ysis and gain a deeper understanding of the implications of the fault injection. From

141

there, chapter 2 introduced a cross-layer analysis methodology aimed at optimizing
and inferring fault models for both software and hardware levels of abstraction. This
methodology involves conducting physical fault injection campaigns, following the prop-
agation of faults, performing multiple series of hardware fault simulation experiments,
and describing and simulating the fault effects across various software levels. Most
importantly is that this proposed methodology does not depend on the target devices,
the target programs, and the fault injection techniques.

By implementing the proposed methodology, it became possible to derive fault mod-
els that are realistic and explainable. Chapter 3 illustrated the inference process for the
two main fault models: “Skip” and “Skip and repeat” for a specific number of bits, which
are applied to the binary encoding of the instructions. The realism of these fault mod-
els has been substantiated by their ability to anticipate potential faulty behaviors even
before conducting actual fault injection experiments, demonstrating their high Fidelity.
Furthermore, these two fault models, along with the “non-sequential skip and repeat”
model, effectively account for the majority of observed faulty behaviors across different
target programs and devices. In most cases, when performing clock glitch fault injec-
tion campaigns on different STM32 devices, the Coverage of these models reached
approximately 90 %. Chapter 3 also included an experimental proof-of-concept ex-
ploitation example and vulnerability analysis of three distinct implementations of the
AES block cipher based on the proposed fault models, showcasing their practical ap-
plicability at the application level.

Proceeding to the hardware level within the analysis process, as depicted in chap-
ter 4, facilitated the inference of two new RTL fault models. These fault models, namely
anticipating the update, and preventing the update, led to observe RTL faults that are
identical to real faults and those generated by higher-level fault models, i.e., “Skip” and
“Skip and repeat” fault models. Moreover, understanding the propagation of faults at
the hardware level resulted in the inference of another novel fault model: Partial update
fault model, which is applicable to both levels, RTL and binary encoding of instructions.
The Partial update fault model encompasses two variations: the partial update from
the precharge value and the partial update from the previous value fault models. The
Partial update fault model has significantly enhanced the Coverage of the faulty be-
haviors, reaching, in some cases, up to 100 %. Nevertheless, it has been shown that
the Partial update fault model is significantly more complex than the others. This is be-
cause the Partial update fault model is more generic than the others. Additionally, it is

142

highly device-dependent, making it more challenging to accurately predict the potential
faulty behaviors that may arise from this model.

Finally, chapter 5 opens the doors to new research directions based on the pre-
sented work. Firstly, the proposed fault models are exploited to intentionally modify the
value of the Program Counter, thereby compromising the control-flow integrity of the
target program. This demonstration showcased how the proposed models can con-
tribute to the vulnerability analysis process. Consequently, a simple and cost-effective
countermeasure was proposed, referred to as register substitution. Additionally, an ex-
perimental presentation of a novel threat model, focusing on Trojan activation, provided
further confirmation of the high Fidelity of the proposed fault models. Furthermore,
chapter 5 showed the capability to combine diverse faulty behaviors resulting from the
injection of multiple glitches. Lastly, the suitability of the fault models for fault injection
using a different technique than clock glitch has been validated through the conduction
of voltage glitch fault injection. This demonstrated the versatility and effectiveness of
the fault models across different fault injection techniques. Notably, for voltage glitch
experiments on the STM32L4 target, the Coverage reached 100 % exactly.

Perspectives

In addition to what has already been presented in chapter 5, various research direc-
tions could be explored based on this dissertation. First of all, it would be crucial to
target devices that embed processors different from the Arm Cortex-M processors.
Particularly, RISC-V-based architectures are an intriguing target due to the growing in-
terest towards such architectures. This is mainly due to the availability of open-source
hardware descriptions for RISC-V processors, which would greatly facilitate perform-
ing cross-layer analysis on these processors. Additionally, conducting fault injection
attacks on more complex processors like Intel and AMD, especially considering their
support for variable-length instruction sets, would be highly interesting. Validating the
applicability of the provided fault models on different target processors would not only
lower their complexity but also facilitate a unified vulnerability analysis process, and
thus, enable the development of hardware-independent countermeasures. Neverthe-
less, it is possible that some faulty behaviors may arise that cannot be categorized
under the proposed fault models. In such cases, applying the same methodology pre-
sented in this work would undoubtedly help in proposing new fault models capable of

143

explaining these new faulty behaviors.

Similarly, carrying out fault injection using more advanced techniques, such as EM
or laser fault injection, presents another interesting perspective. This would provide
validation for the effectiveness of the inferred fault models when employing advanced
and local fault injection methods. However, it should be noted that different injection
techniques may yield diverse faulty behaviors that impact various stages of a proces-
sor’s pipeline. In such cases, applying the proposed methodology would certainly help
in understanding these new effects. Nonetheless, it is important to note that if a differ-
ent fault injection technique is utilized, especially a one that does not result in timing
violations, it becomes necessary to employ an RTL fault simulation method that re-
lies on a technique distinct from path delay analysis. This may encompass a divide
and conquer approach for the microarchitectural components, followed by random or
exhaustive bit-manipulation fault simulation. Furthermore, investigating the implemen-
tation of a clock or voltage glitch in a software-based manner, to manipulate energy
management systems for example, represents another interesting perspective for fu-
ture exploration. This would allow for the application of fault injection in different ways
and techniques.

Additionally, proper formalization of countermeasures against the presented fault
models, while keeping the best performance possible, will be very important and nec-
essary. These countermeasures could be investigated both at software and hardware
levels. At the software level, an automated framework made of vulnerability assess-
ment followed by automatic code protection would greatly improve the security of the
target application. This can particularly be integrated at the compiler level for example.
At a lower level, several approaches might be envisioned at different abstraction levels,
from ISA down to transistor-level approaches.

Moreover, conducting an evaluation of real-life security applications, beyond AES,
utilizing the proposed fault models would be another interesting avenue for future re-
search. This exploration would demonstrate the effectiveness of the fault models in de-
tecting software vulnerabilities that could be exploited through fault injection attacks. In-
tegrating deep learning techniques into vulnerability analysis for such scenarios would
be particularly captivating, especially when assessing large-scale applications com-
prising thousands of lines of code. Based on predefined security properties, such AI
techniques could help in finding critical parts within a code. These parts may have an
effect on the security properties. Thus, the use such AI techniques would make the

144

process of vulnerability analysis easier.
Finally, another research direction that could be considered is a deep investigation

of the effects of aging and the environmental conditions on the success rate of the fault
injection attacks, especially with respect to the Partial update fault model.

145

PUBLICATIONS AND COMMUNICATIONS

Peer-reviewed journals

• Published: I. Alshaer, B. Colombier, C. Deleuze, P. Maistri and V. Beroulle,
“Cross-layer inference methodology for microarchitecture-aware fault models”,
Microelectronics Reliability, Volume 139, 2022, 114841, ISSN 0026-2714,
https://doi.org/10.1016/j.microrel.2022.114841.

• Submitted: I. Alshaer, G. Burghoorn, B. Colombier, C. Deleuze, V. Beroulle, and
P. Maistri “Cross-Layer Analysis of Clock Glitch Fault Injection on a Variable-
length Instruction Set”. This paper concerns sections: 3.2, 3.3, 3.4, and 4.1.

International peer-reviewed conferenceswith proceedings

• Published: I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle and P. Maistri,
“Microarchitecture-aware Fault Models: Experimental Evidence and Cross-Layer
Inference Methodology”, 2021 16th International Conference on Design & Tech-
nology of Integrated Systems in Nanoscale Era (DTIS), Virual event, Apulia, Italy,
2021, pp. 1-6, doi: 10.1109/DTIS53253.2021.9505074.

• Published, Best paper award: I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle
and P. Maistri, “Variable-Length Instruction Set: Feature or Bug?,” 2022 25th Eu-
romicro Conference on Digital System Design (DSD), Maspalomas, Spain, 2022,
pp. 464-471, doi: 10.1109/DSD57027.2022.00068.

• Accepted: I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle and P. Maistri, “Mi-
croarchitectural Insights into Unexplained Behaviors under Clock Glitch Fault In-
jection”. Smart Card Research and Advanced Applications - 22th International
Conference, CARDIS 2023, Amsterdam, Netherlands, November, 2023

147

Talks

• I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle and P. Maistri,“Variable-Length
Instruction Set: Feature or Bug?,” 2022 Journée thématique sur les attaques par
injection de fautes (JAIF), Valence, France, November 2022.

• I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle, P. Maistri, The Right Level for
Fault Modelling, Virual event, Hardware Security Symposium, Amrita University,
Kerala, India, January, 2023.

• I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle and P. Maistri, “Variable-Length
Instruction Set: Feature or Bug?,” Forum International De La Cybersécurité (FIC),
Hacking Lab, Lille, France, April 2023.

Posters

• I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle and P. Maistri,“Cross-Layer Fault
Analysis for Microprocessor Architectures,” 2022 Journée thématique sur les at-
taques par injection de fautes (JAIF), Valence, France, November 2022.

• I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle and P. Maistri,“Cross-Layer Fault
Analysis for Microprocessor Architectures,” 2022 International Winter School on
Microarchitectural security, Paris, France, December 2022.

• I. Alshaer, S. Michelland, A. Al-Kaf, V. Beroulle, C. Deleuze, , V. Egloff, L. Gonnord
and D. Hely, “From hardware vulnerabilities to combined hardware/software coun-
termeasure integration,” 2023 Journée thématique sur les attaques par injection
de fautes (JAIF), Gardanne, France, September 2023.

148

BIBLIOGRAPHY

[1] Lionel Sujay Vailshery,Number of IoT connected devices worldwide 2019-2021, with
forecasts to 2030. [Accessed: July 3, 2023]. [Online]. Available: https://www.
statista.com/statistics/1183457/iot-connected-devices-worldwide/.

[2] W. Wang, Y. Yu, F. Standaert, J. Liu, Z. Guo, and D. Gu, “Ridge-based DPA:
improvement of differential power analysis for nanoscale chips”, IEEE Trans.
Inf. Forensics Secur., vol. 13, 5, pp. 1301–1316, 2018.

[3] A. Sayakkara, N.-A. Le-Khac, and M. Scanlon, “A survey of electromagnetic
side-channel attacks and discussion on their case-progressing potential for dig-
ital forensics”, Digital Investigation, vol. 29, pp. 43–54, 2019, issn: 1742-2876.

[4] R. Hund, C.Willems, and T. Holz, “Practical timing side channel attacks against
kernel space ASLR”, in 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, IEEE Computer Society, 2013, pp. 191–205.

[5] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of eliminating
errors in cryptographic computations”, J. Cryptology, vol. 14, pp. 101–119, 2001.

[6] R. Baumann, “Radiation-induced soft errors in advanced semiconductor tech-
nologies”, IEEE Transactions on Device and Materials Reliability, vol. 5, 3, pp. 305–
316, 2005.

[7] B. Colombier, A.Menu, J.-M. Dutertre, P.-A.Moëllic, J.-B. Rigaud, and J.-L. Dan-
ger, “Laser-induced single-bit faults in flash memory: instructions corruption
on a 32-bit microcontroller”, in 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2019, pp. 1–10.

[8] J. Proy, K. Heydemann, A. Berzati, F. Majéric, and A. Cohen, “A first ISA-level
characterization of EMpulse effects on superscalarmicroarchitectures: A secure
software perspective”, in Proceedings of the 14th International Conference on Avail-
ability, Reliability and Security, ARES 2019, Canterbury, UK, August 26-29, 2019,
ACM, 2019, 7:1–7:10.

149

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[9] N. Timmers and C. Mune, “Escalating privileges in linux using voltage fault in-
jection”, in 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2017, Taipei, Taiwan, September 25, 2017, IEEE Computer Society, 2017, pp. 1–8.

[10] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and P. Schau-
mont, “Software fault resistance is futile: effective single-glitch attacks”, in 2016
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 2016, pp. 47–
58.

[11] S. Skorobogatov, “Local heating attacks on flashmemory devices”, in 2009 IEEE
International Workshop on Hardware-Oriented Security and Trust, 2009, pp. 1–6.

[12] P.Qiu,D.Wang, Y. Lyu, andG.Qu, “Voltjockey: breaching trustzone by software-
controlled voltage manipulation over multi-core frequencies”, in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, L. Cavallaro, J. Kinder, X. Wang, and
J. Katz, Eds., ACM, 2019, pp. 195–209.

[13] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A. Sadeghi, “V0ltpwn: attack-
ing x86 processor integrity from software”, in 29th USENIX Security Sympo-
sium, USENIX Security 2020, August 12-14, 2020, S. Capkun and F. Roesner, Eds.,
USENIX Association, 2020, pp. 1445–1461.

[14] K. Murdock, D. F. Oswald, F. D. Garcia, J. V. Bulck, F. Piessens, and D. Gruss,
“Plundervolt: how a little bit of undervolting can create a lot of trouble”, IEEE
Secur. Priv., vol. 18, 5, pp. 28–37, 2020.

[15] S. L. Harris and D. M. Harris, “3 - sequential logic design”, in Digital Design
and Computer Architecture, S. L. Harris and D. M. Harris, Eds., Boston: Morgan
Kaufmann, 2016, pp. 108–171, isbn: 978-0-12-800056-4.

[16] Ankit Mahajan, Relation between clock skew and frequency of operation. [Accessed:
July 3, 2022]. [Online].Available: https://www.linkedin.com/pulse/relation-
between-skew-frequency-operation-ankit-mahajan/.

[17] Texas Instruments, Basics of spi: timing requirements and switching characteristics.
https://training.ti.com/sites/default/files/docs/adcs-spi-communications-timing-
presentation.pdf, [Accessed: July 3, 2022].

150

https://www.linkedin.com/pulse/relation-between-skew-frequency-operation-ankit-mahajan/
https://www.linkedin.com/pulse/relation-between-skew-frequency-operation-ankit-mahajan/

[18] D. Markovic, B. Nikolic, and R. Brodersen, “Analysis and design of low-energy
flip-flops”, in Proceedings of the 2001 international symposium on Low power elec-
tronics and design, 2001, pp. 52–55.

[19] J. Breier and X. Hou, “How practical are fault injection attacks, really?”, IEEE
Access, vol. 10, pp. 113 122–113 130, 2022.

[20] J. Schmidt and C. Herbst, “A practical fault attack on square and multiply”, in
Fifth International Workshop on Fault Diagnosis and Tolerance in Cryptography, 2008,
FDTC 2008, Washington, DC, USA, 10 August 2008, L. Breveglieri, S. Gueron, I.
Koren, D. Naccache, and J. Seifert, Eds., IEEE Computer Society, 2008, pp. 53–
58.

[21] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital sig-
natures and public-key cryptosystems”, Commun. ACM, vol. 21, 2, pp. 120–126,
Feb. 1978, issn: 0001-0782.

[22] J. Guo, T. Peyrin, A. Poschmann, andM. J. B. Robshaw, “The LED block cipher”,
IACR Cryptol. ePrint Arch., p. 600, 2012.

[23] Gaisler Research, Leon3 processor, [Accessed: March 22, 2023]. [Online]. Avail-
able: https://www.gaisler.com/index.php/products/processors/leon3.

[24] E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosys-
tems”, in Advances in Cryptology — CRYPTO ’97, B. S. Kaliski, Ed., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1997, pp. 513–525.

[25] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and R. Primas,
“SIFA: exploiting ineffective fault inductions on symmetric cryptography”, IACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2018, 3, pp. 547–572, 2018.

[26] J. Daemen and V. Rijmen, “Rijndael for AES”, in The Third Advanced Encryption
Standard Candidate Conference, New York, USA: National Institute of Standards
and Technology, Apr. 2000, pp. 343–348.

[27] G. Bai, S. Bobba, and I. Hjj, “Static timing analysis including power supply noise
effect on propagation delay in vlsi circuits”, in Proceedings of the 38th Design Au-
tomation Conference (IEEE Cat. No.01CH37232), 2001, pp. 295–300.

151

https://www.gaisler.com/index.php/products/processors/leon3

[28] J. Chen, H. Kando, T. Kanamoto, C. Zhuo, and M. Hashimoto, “A multicore
chip load model for pdn analysis considering voltage–current-timing interde-
pendency and operation mode transitions”, IEEE Transactions on Components,
Packaging and Manufacturing Technology, vol. 9, 9, pp. 1669–1679, 2019.

[29] M. Saint-Laurent andM. Swaminathan, “Impact of power-supply noise on tim-
ing in high-frequency microprocessors”, IEEE Transactions on Advanced Packag-
ing, vol. 27, 1, pp. 135–144, 2004.

[30] Y. Ogasahara, T. Enami, M. Hashimoto, T. Sato, and T. Onoye, “Validation of a
full-chip simulation model for supply noise and delay dependence on average
voltage drop with on-chip delay measurement”, IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 54, 10, pp. 868–872, 2007.

[31] Y. Shim and D. Oh, “System level modeling of timing margin loss due to dy-
namic supply noise for high-speed clock forwarding interface”, IEEE Transac-
tions on Electromagnetic Compatibility, vol. 58, 4, pp. 1349–1358, 2016.

[32] M. Ueno, M. Hashimoto, and T. Onoye, “Real-time on-chip supply voltage sen-
sor and its application to trace-based timing error localization”, in 2015 IEEE
21st International On-Line Testing Symposium (IOLTS), 2015, pp. 188–193.

[33] F. Khelil,M.Hamdi, S. Guilley, J. Danger, andN. Selmane, “Fault analysis attack
on an FPGA AES implementation”, in NTMS 2008, 2nd International Conference
on New Technologies, Mobility and Security, November 5-7, 2008, Tangier, Morocco,
IEEE, 2008, pp. 1–5.

[34] L. Zussa, J.-M. Dutertre, J. Clédière, B. Robisson, and A. Tria, “Investigation of
timing constraints violation as a fault injection means”, in 27th Conference on
Design of Circuits and Integrated Systems (DCIS), Avignon, France, Nov. 2012, pas
encore paru.

[35] L. Zussa, J.-M. Dutertre, J. Clédière, and A. Tria, “Power supply glitch induced
faults on fpga: an in-depth analysis of the injection mechanism”, in 2013 IEEE
19th International On-Line Testing Symposium (IOLTS), 2013, pp. 110–115.

[36] N. Selmane, S. Bhasin, S. Guilley, and J.Danger, “Security evaluation of application-
specific integrated circuits and field programmable gate arrays against setup
time violation attacks”, IET Inf. Secur., vol. 5, 4, pp. 181–190, 2011.

152

[37] L. Zussa, J. Dutertre, J. Clédière, and B. Robisson, “Analysis of the fault injec-
tionmechanism related to negative and positive power supply glitches using an
on-chip voltmeter”, in 2014 IEEE International Symposium on Hardware-Oriented
Security and Trust, HOST 2014, Arlington, VA, USA, May 6-7, 2014, IEEE Com-
puter Society, 2014, pp. 130–135.

[38] B. Razavi, Fundamentals of microelectronics. John Wiley & Sons, 2021.

[39] Z. Kazemi, “Fault Injection Attacks on Embedded Applications : Characteriza-
tion and Evaluation”, Theses, Université Grenoble Alpes [2020-....], Feb. 2022.
[Online]. Available: https://theses.hal.science/tel-03659627.

[40] O. Bittner, T. Krachenfels, A. Galauner, and J.-P. Seifert, “The forgotten threat
of voltage glitching: a case study on nvidia tegra x2 socs”, in 2021 Workshop on
Fault Detection and Tolerance in Cryptography (FDTC), 2021, pp. 86–97.

[41] ARM, ARM Cortex-A9, [Accessed: March 24, 2023]. [Online]. Available: https:
//developer.arm.com/Processors/Cortex-A9.

[42] A. Takahashi and M. Tibouchi, “Degenerate fault attacks on elliptic curve pa-
rameters in openssl”, in IEEE European Symposium on Security and Privacy, Eu-
roS&P 2019, Stockholm, Sweden, June 17-19, 2019, IEEE, 2019, pp. 371–386.

[43] P. Gallagher, Digital signature standard (DSS). NIST, 2013, FIPS PUB 186–4.

[44] A. Dehbaoui, J. Dutertre, B. Robisson, and A. Tria, “Electromagnetic transient
faults injection on a hardware and a software implementations of AES”, in 2012
Workshop on FaultDiagnosis and Tolerance inCryptography, Leuven, Belgium, Septem-
ber 9, 2012, G. Bertoni and B. Gierlichs, Eds., IEEEComputer Society, 2012, pp. 7–
15.

[45] P. Bayon, L. Bossuet, A. Aubert, et al., “Contactless electromagnetic active at-
tack on ring oscillator based true random number generator”, in Constructive
Side-Channel Analysis and Secure Design, W. Schindler and S. A. Huss, Eds., 2012,
pp. 151–166.

[46] M. Ghodrati, B. Yuce, S. Gujar, C. Deshpande, L. Nazhandali, and P. Schaumont,
“Inducing local timing fault through EM injection”, in Proceedings of the 55th
Annual Design Automation Conference, DAC 2018, San Francisco, CA, USA, June
24-29, 2018, ACM, 2018, 142:1–142:6.

153

https://theses.hal.science/tel-03659627
https://developer.arm.com/Processors/Cortex-A9
https://developer.arm.com/Processors/Cortex-A9

[47] S. Ordas, L. Guillaume-Sage, K. Tobich, J. Dutertre, and P. Maurine, “Evidence
of a larger em-induced fault model”, in Smart Card Research and Advanced Appli-
cations - 13th International Conference, CARDIS 2014, Paris, France, November 5-7,
2014. Revised Selected Papers, M. Joye and A. Moradi, Eds., ser. Lecture Notes in
Computer Science, vol. 8968, Springer, 2014, pp. 245–259.

[48] M. Dumont, M. Lisart, and P. Maurine, “Modeling and simulating electromag-
netic fault injection”, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 40,
4, pp. 680–693, 2021.

[49] C. O’Flynn, “Short paper: emfi for safety-critical testing of automotive systems”,
in 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), Los
Alamitos, CA, USA: IEEE Computer Society, Sep. 2021, pp. 61–66.

[50] R. Omarouayache, J. Raoult, S. Jarrix, L. Chusseau, and P. Maurine, “Magnetic
microprobe design for EM fault attack”, in 2013 International Symposium on Elec-
tromagnetic Compatibility, 2013, pp. 949–954.

[51] A. Dehbaoui, A. Mirbaha, N. Moro, J. Dutertre, and A. Tria, “Electromagnetic
glitch on the AES round counter”, in Constructive Side-Channel Analysis and Se-
cure Design - 4th International Workshop, COSADE 2013, Paris, France, March 6-8,
2013, Revised Selected Papers, E. Prouff, Ed., ser. Lecture Notes in Computer Sci-
ence, vol. 7864, Springer, 2013, pp. 17–31.

[52] H. Liao and C. Gebotys, “Methodology for EM fault injection: charge-based
fault model”, in 2019 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), 2019, pp. 256–259.

[53] Microchip, PIC16F687, [Accessed: March 24, 2023]. [Online]. Available: https:
//www.microchip.com/en-us/product/PIC16F687.

[54] A. Cui and R. Housley, “BADFET: defeating modern secure boot using second-
order pulsed electromagnetic fault injection”, in 11th USENIX Workshop on Of-
fensive Technologies, WOOT 2017, Vancouver, BC, Canada, August 14-15, 2017, W.
Enck and C. Mulliner, Eds., USENIX Association, 2017.

[55] H. Martín, T. Korak, E. S. Millán, and M. Hutter, “Fault attacks on strngs: im-
pact of glitches, temperature, and underpowering on randomness”, IEEE Trans-
actions on Information Forensics and Security, vol. 10, 2, pp. 266–277, 2015.

154

https://www.microchip.com/en-us/product/PIC16F687
https://www.microchip.com/en-us/product/PIC16F687

[56] D. Ha, K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, and D. Ham, “Time-
domain cmos temperature sensors with dual delay-locked loops for micropro-
cessor thermalmonitoring”, IEEETransactions onVery Large Scale Integration (VLSI)
Systems, vol. 20, 9, pp. 1590–1601, 2012.

[57] T. Korak, M. Hutter, B. Ege, and L. Batina, “Clock glitch attacks in the presence
of heating”, in 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2014, Busan, South Korea, September 23, 2014, A. Tria and D. Choi, Eds.,
IEEE Computer Society, 2014, pp. 104–114.

[58] AtmelCorporation.,AtmelAVRATmega162 datasheet, [Accessed:March 24, 2023].
[Online]. Available: https://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-2513-8-bit-AVR-Microntroller-ATmega162_Datasheet.pdf.

[59] M. Hutter and J. Schmidt, “The temperature side channel and heating fault at-
tacks”, IACR Cryptol. ePrint Arch., p. 190, 2014.

[60] S. Govindavajhala and A. W. Appel, “Using memory errors to attack a virtual
machine”, in 2003 IEEE Symposium on Security and Privacy (S&P 2003), 11-14
May 2003, Berkeley, CA, USA, IEEE Computer Society, 2003, pp. 154–165.

[61] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks
on cryptographic devices: theory, practice, and countermeasures”, Proc. IEEE,
vol. 100, 11, pp. 3056–3076, 2012.

[62] A. Baksi, S. Bhasin, J. Breier, D. Jap, and D. Saha, “A survey on fault attacks on
symmetric key cryptosystems”, ACM Comput. Surv., vol. 55, 4, 86:1–86:34, 2023.

[63] A. Beckers, S. Guilley, P. Maurine, C. O’Flynn, and S. Picek, “(adversarial) elec-
tromagnetic disturbance in the industry”, IEEETrans. Computers, vol. 72, 2, pp. 414–
422, 2023.

[64] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “CLKSCREW: exposing the perils
of security-oblivious energymanagement”, in 26thUSENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017, E. Kirda and
T. Ristenpart, Eds., USENIX Association, 2017, pp. 1057–1074.

[65] ARM, ARM Trustzone, [Accessed: March 29, 2023]. [Online]. Available: https:
//www.arm.com/technologies/trustzone-for-cortex-a.

155

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2513-8-bit-AVR-Microntroller-ATmega162_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2513-8-bit-AVR-Microntroller-ATmega162_Datasheet.pdf
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a

[66] P. Qiu, D. Wang, Y. Lyu, R. Tian, C. Wang, and G. Qu, “Voltjockey: A new dy-
namic voltage scaling-based fault injection attack on intel SGX”, IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 40, 6, pp. 1130–1143, 2021.

[67] Intel, Intel SGX Enclave, [Accessed:March 24, 2023]. [Online]. Available: https:
/ / www . intel . com / content / dam / develop / external / us / en / documents /
overview-of-intel-sgx-enclave-637284.pdf.

[68] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. F. Oswald, and F. D. Garcia,
“Voltpillager: hardware-based fault injection attacks against intel SGX enclaves
using the SVID voltage scaling interface”, in 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, M. Bailey and R. Greenstadt, Eds.,
USENIX Association, 2021, pp. 699–716.

[69] R. Buhren, H. N. Jacob, T. Krachenfels, and J. Seifert, “One glitch to rule them
all: fault injection attacks against amd’s secure encrypted virtualization”, in CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Vir-
tual Event, Republic of Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna, and
E. Shi, Eds., ACM, 2021, pp. 2875–2889.

[70] AMD, AMD Secure Encrypted Virtualization (SEV), [Accessed: March 24, 2023].
[Online]. Available: https://www.amd.com/en/developer/sev.html#:~:text=
AMD%5C%20Secure%5C%20Encrypted%5C%20Virtualization%5C%2DEncrypted,
to%5C%20a%5C%20CPU%5C%20register%5C%20state..

[71] PJRC, Teensy 4.0 development board. [Accessed: March 31, 2023]. [Online]. Avail-
able: https://www.pjrc.com/store/teensy40.html.

[72] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz, “Electro-
magnetic fault injection: towards a fault model on a 32-bit microcontroller”, in
2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, 2013, pp. 77–88.

[73] J. Yiu, The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors. Newnes,
2013.

[74] L. Rivière, Z. Najm, P. Rauzy, J. Danger, J. Bringer, and L. Sauvage, “High preci-
sion fault injections on the instruction cache of armv7-m architectures”, in IEEE
International Symposium onHardwareOriented Security and Trust, HOST 2015,Wash-
ington, DC, USA, 5-7 May, 2015, IEEE Computer Society, 2015, pp. 62–67.

156

https://www.intel.com/content/dam/develop/external/us/en/documents/overview-of-intel-sgx-enclave-637284.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-of-intel-sgx-enclave-637284.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-of-intel-sgx-enclave-637284.pdf
https://www.amd.com/en/developer/sev.html#:~:text=AMD%5C%20Secure%5C%20Encrypted%5C%20Virtualization%5C%2DEncrypted,to%5C%20a%5C%20CPU%5C%20register%5C%20state.
https://www.amd.com/en/developer/sev.html#:~:text=AMD%5C%20Secure%5C%20Encrypted%5C%20Virtualization%5C%2DEncrypted,to%5C%20a%5C%20CPU%5C%20register%5C%20state.
https://www.amd.com/en/developer/sev.html#:~:text=AMD%5C%20Secure%5C%20Encrypted%5C%20Virtualization%5C%2DEncrypted,to%5C%20a%5C%20CPU%5C%20register%5C%20state.
https://www.pjrc.com/store/teensy40.html

[75] O. Trabelsi Ltci, L. Sauvage Ltci, and J.-L. Danger Ltci, “Characterization of elec-
tromagnetic fault injection on a 32-bit microcontroller instruction buffer”, in
2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), 2020,
pp. 1–6.

[76] L. Dureuil, M. Potet, P. de Choudens, C. Dumas, and J. Clédière, “From code
review to fault injection attacks: filling the gap using fault model inference”,
in Smart Card Research and Advanced Applications - 14th International Conference,
CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised Selected Papers, N.
HommaandM.Medwed, Eds., ser. LectureNotes inComputer Science, vol. 9514,
Springer, 2015, pp. 107–124.

[77] ARM Limited, Armv7-m architecture reference manual. [Accessed: February 22,
2022]. [Online]. Available: https : / / developer . arm . com / documentation /
ddi0403/latest.

[78] V.Werner, L. Maingault, andM. Potet, “An end-to-end approach for multi-fault
attack vulnerability assessment”, in Workshop on Fault Detection and Tolerance in
Cryptography, Milan, Italy: IEEE, 2020, pp. 10–17.

[79] N. Timmers, A. Spruyt, andM.Witteman, “Controlling PC onARMUsing Fault
Injection”, in 2016Workshop on FaultDiagnosis and Tolerance inCryptography (FDTC),
2016, pp. 25–35.

[80] ARM, ARMv7-A Architecture Reference Manual. [Accessed: April 10, 2023]. [On-
line]. Available: https : / / developer . arm . com / documentation / ddi0406 /
latest/.

[81] M. S. Kelly, K.Mayes, and J. F.Walker, “Characterising a CPU fault attackmodel
via run-time data analysis”, in 2017 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2017, pp. 79–84.

[82] Atmel Corporation., Attiny841 datasheet. [Accessed: April 6, 2023]. [Online].
Available: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
8495-8-bit-AVR-Microcontrollers-ATtiny441-ATtiny841_Datasheet.pdf.

[83] T. Given-Wilson, N. Jafri, J. Lanet, and A. Legay, “An automated formal pro-
cess for detecting fault injection vulnerabilities in binaries and case study on
PRESENT”, in 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, August
1-4, 2017, IEEE Computer Society, 2017, pp. 293–300.

157

https://developer.arm.com/documentation/ddi0403/latest
https://developer.arm.com/documentation/ddi0403/latest
https://developer.arm.com/documentation/ddi0406/latest/
https://developer.arm.com/documentation/ddi0406/latest/
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8495-8-bit-AVR-Microcontrollers-ATtiny441-ATtiny841_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8495-8-bit-AVR-Microcontrollers-ATtiny441-ATtiny841_Datasheet.pdf

[84] A. Bogdanov, L. R. Knudsen, G. Leander, et al., “Present: an ultra-lightweight
block cipher”, in Cryptographic Hardware and Embedded Systems - CHES 2007, P.
Paillier and I. Verbauwhede, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2007, pp. 450–466.

[85] L. R. Knudsen and G. Leander, “Present – block cipher”, in Encyclopedia of Cryp-
tography and Security, H. C. A. van Tilborg and S. Jajodia, Eds. Boston, MA:
Springer US, 2011, pp. 953–955.

[86] A. Menu, J. Dutertre, O. Potin, J. Rigaud, and J. Danger, “Experimental analysis
of the electromagnetic instruction skip fault model”, in 15th Design & Technology
of Integrated Systems in Nanoscale Era, DTIS 2020, Marrakech, Morocco, April 1-3,
2020, IEEE, 2020, pp. 1–7.

[87] MICROCHIP.,ATmega328P, [Accessed:April 7, 2023]. [Online].Available: https:
//www.microchip.com/en-us/product/ATmega328P.

[88] T. Trouchkine, G. Bouffard, and J. Clédière, “EM fault model characterization
on socs: from different architectures to the same fault model”, in 2021 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC), IEEE, 2021, pp. 31–38.

[89] ARM, ARM Cortex-A53, [Accessed: April 7, 2023]. [Online]. Available: https:
//developer.arm.com/Processors/Cortex-A53.

[90] Intel Corporation, Intel Core i3-6100T Processor, [Accessed: April 7, 2023]. [On-
line]. Available: https://ark.intel.com/content/www/us/en/ark/products/
90734/intel-core-i36100t-processor-3m-cache-3-20-ghz.html.

[91] OpenSSL,OpenSSL Cryptography and SSL/TLS Toolkit, [Accessed: April 7, 2023].
[Online]. Available: https://www.openssl.org/source/gitrepo.html.

[92] V. Khuat, J.-L. Danger, and J.-M.Dutertre, “Laser fault injection in a 32-bitmicro-
controller: from the flash interface to the execution pipeline”, in 2021 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC), 2021, pp. 74–85.

[93] ARM, ARM Cortex-M0+, [Accessed: April 7, 2023]. [Online]. Available: https:
//developer.arm.com/Processors/Cortex-M0-Plus.

[94] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadimitriou,
“Cross-layer analysis of software fault models and countermeasures against
hardware fault attacks in a RISC-V processor”,Microprocessors andMicrosystems,
vol. 71, 2019.

158

https://www.microchip.com/en-us/product/ATmega328P
https://www.microchip.com/en-us/product/ATmega328P
https://developer.arm.com/Processors/Cortex-A53
https://developer.arm.com/Processors/Cortex-A53
https://ark.intel.com/content/www/us/en/ark/products/90734/intel-core-i36100t-processor-3m-cache-3-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/90734/intel-core-i36100t-processor-3m-cache-3-20-ghz.html
https://www.openssl.org/source/gitrepo.html
https://developer.arm.com/Processors/Cortex-M0-Plus
https://developer.arm.com/Processors/Cortex-M0-Plus

[95] J. Laurent, C. Deleuze, F. Pebay-Peyroula, and V. Beroulle, “Bridging the gap
between RTL and software fault injection”,ACM J. Emerg. Technol. Comput. Syst.,
vol. 17, 3, 38:1–38:24, 2021.

[96] RISC-V Foundation, The RISC-V instruction set manual, [Accessed: May 4, 2021].
[Online]. Available: https://riscv.org/technical/specifications/.

[97] S. Tollec, M. Asavoae, D. Couroussé, K. Heydemann, and M. Jan, “Exploration
of fault effects on formal RISC-Vmicroarchitecturemodels”, inWorkshop on Fault
Detection and Tolerance in Cryptography, FDTC 2022, Virtual Event / Italy, September
16, 2022, IEEE, 2022, pp. 73–83.

[98] J.-M. Dutertre, V. Beroulle, P. Candelier, et al., “Laser fault injection at the cmos
28 nm technology node: an analysis of the fault model”, in 2018 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2018, pp. 1–6.

[99] C. O’Flynn and Z. (Chen, “Chipwhisperer: an open-source platform for hard-
ware embedded security research”, in InternationalWorkshop onConstructive Side-
Channel Analysis and SecureDesign, E. Prouff, Ed., ser. LectureNotes inComputer
Science, vol. 8622, Paris, France: Springer, 2014, pp. 243–260.

[100] J. Yiu,TheDefinitiveGuide toARMCortex-M0 andCortex-M0+Processors. Newnes,
2015.

[101] ARM Limited, ARMv6-M Architecture Reference Manual, [Accessed: November
22, 2021]. [Online]. Available: https://developer.arm.com/documentation/
ddi0419/c?lang=en.

[102] ARMLimited,ARMArchitecture ReferenceManual Thumb-2 Supplement, [Accessed:
May 4, 2021]. [Online].Available: https://developer.arm.com/documentation/
ddi0308/d.

[103] I. Alshaer, B. Colombier, C.Deleuze, V. Beroulle, andP.Maistri, “Microarchitecture-
aware fault models: experimental evidence and cross-layer inference methodol-
ogy”, in 2021 16th International Conference on Design Technology of Integrated Sys-
tems in Nanoscale Era (DTIS), 2021, pp. 1–6.

[104] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl, “Comprehensive analy-
sis of software countermeasures against fault attacks”, in 2013 Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2013, pp. 404–409.

159

https://riscv.org/technical/specifications/
https://developer.arm.com/documentation/ddi0419/c?lang=en
https://developer.arm.com/documentation/ddi0419/c?lang=en
https://developer.arm.com/documentation/ddi0308/d
https://developer.arm.com/documentation/ddi0308/d

[105] J. Laurent, “Modélisation de fautes utilisant la description RTL de microarchi-
tectures pour l’analyse de vulnérabilité conjointe matérielle-logicielle”, Theses,
Université Grenoble Alpes [2020-....], Nov. 2020.

[106] ARMLimited,ARMCortex-M3DesignStart Eval RTL and FPGAQuick Start Guider0p0,
[Accessed: November 29, 2021]. [Online]. Available: https://developer.arm.
com / documentation / 100895 / 0000 / introduction / what - is - cortex - m3 -
designstart-eval-?lang=en.

[107] ARM Limited, ARM Cortex-M3 DesignStart Eval RTL and Testbench User Guide
r0p0, [Accessed: November 29, 2021]. [Online]. Available: https://developer.
arm . com / documentation / 100894 / 0000 / technical - overview / example -
system.

[108] H. Pan, “High performance, variable-length instruction encodings”, Ph.D. dis-
sertation, Massachusetts Institute of Technology, 2002.

[109] PrasadKulkarni, 16/32-Bit ARM-ThumbArchitecture andAXExtensions. [Accessed:
March 2, 2022]. [Online]. Available: http://www.ittc.ku.edu/~kulkarni/
research/thumb%5C_ax.pdf.

[110] MIPS Technologies, Inc., microMIPSTM Instruction Set Architecture Uncompro-
mised Performance, Minimum System Cost. [Accessed: March 2, 2022]. [Online].
Available: https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-
documentation/login-required/micromips%5C_instruction%20%5C_set%5C_
architecture.pdf.

[111] A.Waterman, Y. Lee,D.A. Patterson, andK.Asanović, “TheRISC-V compressed
instruction set manual, version 1.7”, EECS Department, University of California,
Berkeley, UCB/EECS-2015-157, 2015.

[112] informIT,Understanding ARMarchitectures. [Accessed:March 1, 2022]. [Online].
Available: https://www.informit.com/articles/article.aspx?p=1620207%
5C&seq%20Num=3.

[113] Tom Shanley | Mindshare, Inc.,X86 instruction set architecture. [Accessed: March
2, 2022]. [Online]. Available: https://www.mindshare.com/files/ebooks/
x86%5C%20Instruction%5C%20Set%5C%20Architecture.pdf.

160

https://developer.arm.com/documentation/100895/0000/introduction/what-is-cortex-m3-designstart-eval-?lang=en
https://developer.arm.com/documentation/100895/0000/introduction/what-is-cortex-m3-designstart-eval-?lang=en
https://developer.arm.com/documentation/100895/0000/introduction/what-is-cortex-m3-designstart-eval-?lang=en
https://developer.arm.com/documentation/100894/0000/technical-overview/example-system
https://developer.arm.com/documentation/100894/0000/technical-overview/example-system
https://developer.arm.com/documentation/100894/0000/technical-overview/example-system
http://www.ittc.ku.edu/~kulkarni/research/thumb%5C_ax.pdf
http://www.ittc.ku.edu/~kulkarni/research/thumb%5C_ax.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-documentation/login-required/micromips%5C_instruction%20%5C_set%5C_architecture.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-documentation/login-required/micromips%5C_instruction%20%5C_set%5C_architecture.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-documentation/login-required/micromips%5C_instruction%20%5C_set%5C_architecture.pdf
https://www.informit.com/articles/article.aspx?p=1620207%5C&seq%20Num=3
https://www.informit.com/articles/article.aspx?p=1620207%5C&seq%20Num=3
https://www.mindshare.com/files/ebooks/x86%5C%20Instruction%5C%20Set%5C%20Architecture.pdf
https://www.mindshare.com/files/ebooks/x86%5C%20Instruction%5C%20Set%5C%20Architecture.pdf

[114] MIPS Technologies, Inc., MIPS32™ Architecture For Programmers Volume II: The
MIPS32™ Instruction Set. [Accessed:March 2, 2022]. [Online].Available: https:
//www.cs.cornell.edu/courses/cs3410/2008fa/MIPS%20%5C_Vol2.pdf.

[115] MIPSTechnologies, Inc.,Mips64™architecture for programmers volume ii: themips64™
instruction set. [Accessed: March 2, 2022]. [Online]. Available: https://scc.
ustc.edu.cn/zlsc/lxwycj/200910/%20W020100308600769158777%20.pdf.

[116] 2CS Division, EECS Department, University of California, Berkeley, “The RISC-
V Instruction Set Manual Volume I: Unprivileged ISA”, 2019. [Online]. Avail-
able: https://github.com/riscv/riscv-isa-manual/releases/download/
Ratified-IMAFDQC/riscv-spec-20191213.pdf.

[117] Intel Corporation, Intel®64 and IA-32 Architectures Software Developer Manuals,
Volume 3A: SystemProgrammingGuide, Part 1. SantaClara, CA: Intel Corporation,
2016. [Online]. Available: https://www.intel.com/content/dam/www/public/
us/en/documents/manuals/64-ia-32-architectures-software-developer-
vol-3a-part-1-manual.pdf.

[118] Advanced Micro Devices, Inc., AMD64 Architecture Programmer’s Manual Vol-
umes 1–5. Santa Clara, CA: AdvancedMicro Devices, Inc., 2023. [Online]. Avail-
able: https://www.amd.com/system/files/TechDocs/40332.pdf.

[119] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “Static analysis of seu ef-
fects on software applications”, in Proceedings. International Test Conference, 2002,
pp. 500–508.

[120] M. Escouteloup, R. Lashermes, J.-L. Lanet, and J. J.-A. Fournier, “Recommen-
dations for a radically secure ISA”, in CARRV 2020 - Workshop on Computer Ar-
chitecture Research with RISC-V, Valence (virtual), Spain: ACM,May 2020, pp. 1–
22.

[121] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented pro-
gramming: systems, languages, and applications”, ACM Transactions on Infor-
mation and System Security (TISSEC), vol. 15, 1, pp. 1–34, 2012.

[122] J. Gratchoff, N. Timmers, A. Spruyt, and L. Chmielewski, “Proving the wild
jungle jump”, Technical report, University of Amsterdam, Tech. Rep., 2015.

161

https://www.cs.cornell.edu/courses/cs3410/2008fa/MIPS%20%5C_Vol2.pdf
https://www.cs.cornell.edu/courses/cs3410/2008fa/MIPS%20%5C_Vol2.pdf
https://scc.ustc.edu.cn/zlsc/lxwycj/200910/%20W020100308600769158777%20.pdf
https://scc.ustc.edu.cn/zlsc/lxwycj/200910/%20W020100308600769158777%20.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.amd.com/system/files/TechDocs/40332.pdf

[123] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria, “When clocks
fail: on critical paths and clock faults”, in Smart Card Research andAdvancedAppli-
cation, D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 182–193.

[124] Y. Li, K. Ohta, and K. Sakiyama, “New fault-based side-channel attack using
fault sensitivity”, IEEE Transactions on Information Forensics and Security, vol. 7,
1, pp. 88–97, 2012.

[125] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage
model”, in International Workshop on Cryptographic Hardware and Embedded Sys-
tems, M. Joye and J. Quisquater, Eds., ser. Lecture Notes in Computer Science,
vol. 3156, Cambridge, MA, USA: Springer, Aug. 2004, pp. 16–29.

[126] M.Alioto,M. Poli, and S. Rocchi, “Differential power analysis attacks to precharged
buses: A general analysis for symmetric-key cryptographic algorithms”, IEEE
Transactions on Dependable and Secure Computing, vol. 7, 3, pp. 226–239, 2010.

[127] M. Randolph andW. Diehl, “Power side-channel attack analysis: A review of 20
years of study for the layman”, Cryptography, vol. 4, 2, p. 15, 2020.

[128] M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and Y. Yarom,
“Rosita: towards automatic elimination of power-analysis leakage in ciphers”,
in Annual Network and Distributed System Security Symposium, Virtual event: The
Internet Society, Feb. 2021.

[129] E. Boespflug, C. Ene, L. Mounier, and M. Potet, “Countermeasures optimiza-
tion in multiple fault-injection context”, in 17th Workshop on Fault Detection and
Tolerance in Cryptography, FDTC 2020, Milan, Italy, September 13, 2020, IEEE, 2020,
pp. 26–34.

[130] E. Boespflug,A. Bouguern, L.Mounier, andM. Potet, “A tool assistedmethodol-
ogy to hardenprograms againstmulti-faults injections”,CoRR, vol. abs/2303.01885,
2023.

[131] I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle, and P.Maistri, “Variable-length
instruction set: feature or bug?”, in 25th Euromicro Conference on Digital System
Design, Maspalomas, Spain: IEEE, Aug. 2022, pp. 464–471.

162

[132] I. Alshaer, B. Colombier, C. Deleuze, P. Maistri, and V. Beroulle, “Cross-layer in-
ference methodology for microarchitecture-aware fault models”,Microelectron-
ics Reliability, vol. 139, p. 114 841, 2022, issn: 0026-2714.

163

LIST OF FIGURES

1 Number of IoT devices worldwide 2019-2021, with forecasts to 2030
(from [1]). 11

1.1 Timing metrics in a simple digital design. 16
1.2 Normal behavior of a 3-stage processor pipeline with a regular clock

signal. 18
1.3 Clock glitch parameters. 18
1.4 Inverter circuit with its propagation delay parameters (from [39]). 20
1.5 Voltage glitch parameters. 21
1.6 Fault propagation and modeling layers. 25

2.1 ChipWhisperer boards used in the experiments. 37
2.2 Observed faults for Program 1 for all target devices. 41
2.3 Observed faults for Program 1 with duplicated CMP after the second

experiment for all target devices. 43
2.4 Observed faults for Program 2 for all target boards. 45
2.5 Observed faults for Program 2 with additional NOP for all target devices

after the second experiment. 46
2.6 Proposed methodology. 51
2.7 Relation between observed faulty behavior and RTL fault model. 53
2.8 Comparison of simulations and injection results 55
2.9 Fault model inference approach. 55
2.10 Faults generated from simulation and injection with overlapping area. . . 56

3.1 Cortex-M3 DesignStart Eval system diagram (from [107]) 63
3.2 Clock glitch simulation. 64
3.3 Instructions’ fetch data path from the Flash memory to the processor core. 65
3.4 Fetching aligned instructions. 69
3.5 Fetching misaligned instructions. 69

165

3.6 Golden execution and observed faulty execution example as a result of
“non-sequential 32-bit skip and repeat” in STM32L4. 81

3.7 Non-sequential skip and repeat 32 bits in Cortex-M3 device (STM32F1)
with out-of-order repeat. 82

3.8 Non-sequential skip and repeat 32 bits in Cortex-M3 device (STM32F1)
with in-order repeat. 83

3.9 Explained and unexplained faults classification with respect to shift and
width values of a glitch. Y-axis: Shift ∈ [-49,0], X-axis: Width ∈ [0,49]. . 94

4.1 Fault propagation path for Skip 32 bits or Skip & repeat 32 bits fault models.101
4.2 Possible effects of post-synthesis clock glitch simulation on register R. . 102
4.3 “Skip” behavior description with timing simulation: Skip 3. 103
4.4 “Skip and repeat” behavior description with timing simulation: Skip 3 and

repeat 2. 103
4.5 “Non-sequential skip and repeat 32 bits with in-order repeat” behavior

description with timing simulation: Skip 5 and repeat 2. 103
4.6 Result of applying RTL fault models. 104
4.7 Non-sequential skip and repeat 32 bits with out-of-order repeat as a re-

sult of partial update fault on memory address request data. 106
4.8 Encoding of the observed executed instructions when targeting 0x3eff

at four different positions within the target programs. 112
4.9 Bit sensitivity values obtained when targeting 0x3eff at four different

positions. 113
4.10 Bit sensitivity values obtained when targeting 0x3b7d at four different

positions. 115
4.11 Bit sensitivity values obtained when targeting 0x3eff on the new STM32F3

at the 2nd and the 4th positions. 116
4.12 Bit sensitivity values obtained when targeting 0x3eff at four different

positions using STM32L4 as a target device. 117
4.13 Coverage measurement when targeting a series of 0x332b instruction. . 123

5.1 Observed executions of combined “Skip and repeat” faults when target-
ing Listing 5.5 as a result of injecting two glitches. Numbers in this figure
refer to the encoding at the line numbers in Listing 5.5. 134

166

5.2 Faults classification with respect to shift and width values using voltage
glitch campaigns. Y-axis: Shift ∈ [-49,0], X-axis: Width ∈ [0,49]. 137

5.3 Coverage measurement when targeting a series of 0x332b instruction
using voltage glitch. 138

5.4 Nombre d’appareils IoT dans le monde 2019-2021, avec prévisions jusqu’en
2030 ([1]). 172

167

LIST OF TABLES

1.1 Summary of the characteristics of the presented fault injection techniques. 23
1.2 Summary for the state-of-the-art of fault injection effect characterization

and modeling. 33

2.1 Glitch width and shift values used in the fault injection campaigns exper-
iments (values in % of clock period). 40

2.2 Percentage of classification cases when performing clock glitch fault in-
jection on each target device running Program 1. 41

2.3 Percentage of classification cases when performing clock glitch fault in-
jection on each target device running Program 1 with duplicated CMP. . 43

2.4 Percentage of classification cases when performing clock glitch fault in-
jection on each target board running Program 2. 44

2.5 Percentage of classification cases when performing clock glitch fault in-
jection on each target board running Program 2 with additional NOP. . . 46

3.1 Shift and width values used in Section 3.3.2 experiments, and percent-
age of occurrence of each faulty behavior over 10 000 executions. . . . 71

3.2 Possible 16-bit instructions coming from different destination registers
and/or immediate value in the original 32-bit instruction. 79

3.3 Instructions that lead to modify the PC to the value in R8 when perform-
ing clock glitch fault injection. 84

3.4 Number of possible fault insertions with 32-bit misaligned instruction cor-
ruptions within the encryption function and the number of created unde-
fined instructions for the explored target codes at several optimization
levels. 90

3.5 Experimental setup for fault models evaluation experiments. 92
3.6 Experimental results for fault models evaluation experiments, values in %. 93

4.1 Algorithm 1 description. 100
4.2 Experimental parameters. 111

168

4.3 Fault obtained when targetting the 0x3eff instruction at four different
positions. 111

4.4 Fault obtained when targeting the 0x37bd instruction at four different po-
sitions. 114

4.5 Fault obtained when targeting the 0x3eff instruction at four different po-
sitions on the new STM32F3. 116

4.6 Fault obtained when targeting the 0x3eff instruction on the new STM32F3
using a shift value of −12. 117

4.7 Experimental setup and classification cases for fault models evaluation
experiments on a series of 0x332b instruction. 124

5.1 Experimental results obtained, and fault injection parameters used when
attempting to modify the Program Counter. 131

5.2 Combination of Skip faults when targeting Listing 5.6, using multiple
glitches. 135

5.3 Experimental results for fault models evaluation experiments using volt-
age and clock glitch when targeting Listing 5.7. Values in %. Coverage
does not include faults under Partial update fault model. 136

5.4 Experimental setup for fault models evaluation experiments, using volt-
age glitch, when targeting Listing 5.7. 137

5.5 Experimental setup and classification cases for fault models evaluation
experiments on a series of 0x332b instruction using voltage glitch. . . . 139

169

SOMMAIRE

L’utilisation des dispositifs des systèmes embarqués connaît une croissance rapide
dans divers domaines de la vie. Par exemple, selon les prévisions, le nombre d’appareils
Internet des objets (IoT) en utilisation dans le monde devrait atteindre environ 30 mil-
liards d’ici 2030 [1], comme illustré dans la Figure 5.4. Cependant, la complexité de ces
dispositifs, ainsi que de leurs applications en cours d’exécution, ne cesse d’augmenter.
Cela ouvre la porte à deux considérations : le besoin de hautes performances et de
nouvelles méthodes pour faire face à de telles avancées, et d’autre part, l’émergence
de nouvelles vulnérabilités exploitables par des attaquants à différents niveaux. Étant
donné que des données sensibles sont fréquemment traitées par les systèmes em-
barqués, une forme de protection est nécessaire pour prévenir toute fuite ou modi-
fication d’informations. Le traitement et la protection réels peuvent être vulnérables
aux attaques visant à extraire ces informations sensibles. Les attaques physiques en
particulier constituent une menace sérieuse pour les systèmes embarqués.

2019 2020 2021 2022* 2023* 2024* 2025* 2026* 2027* 2028* 2029* 2030*

Io
T

de
vi

ce
s i

n
bi

llio
ns

8.6
9.76

11.28
13.14

15.14
17.08

19.08
21.09

23.14
25.21

27.31
29.42

Figure 5.4: Nombre d’appareils IoT dans le monde 2019-2021, avec prévisions jusqu’en
2030 ([1]).

Dans le contexte de la sécurité matérielle, les attaques physiques désignent di-
verses techniques et méthodes visant à compromettre la sécurité des dispositifs numériques.
Ces attaques exploitent les vulnérabilités dans les propriétés physiques ou la mise en

172

œuvre matérielle du dispositif pour supprimer, modifier, obtenir ou empêcher l’accès à
des données confidentielles.

Les attaques physiques les plus courantes sont les attaques par canaux auxili-
aires et les attaques par injection de fautes. Les attaques par canaux auxiliaires sont
des attaques physiques passives visant principalement à exploiter la fuite involontaire
d’informations à partir des caractéristiques physiques d’un dispositif, telles que la con-
sommation d’énergie [2], les émissions électromagnétiques [3] ou les informations de
synchronisation [4]. En capturant et en analysant ces signaux de canaux auxiliaires, les
attaquants peuvent déduire des informations sensibles, telles que des clés de chiffre-
ment.

Les attaques par injection de fautes, en revanche, sont des attaques physiques
actives, potentiellement non invasives, où l’attaquant tentera intentionnellement de
modifier le comportement normal d’un dispositif pendant l’exécution du programme
en provoquant une ou plusieurs fautes, puis en observant le comportement erroné.
Les fautes résultantes pourraient révéler un comportement intéressant pouvant être
exploité davantage en tant que vulnérabilité. Les attaques par injection de fautes sont
devenues un sujet de recherche attrayant depuis l’attaque bien connue de Boneh et al.
[5], où ils ont réussi à compromettre certains protocoles cryptographiques en induisant
des fautes dans les calculs.

Pour injecter une faute, une interférence physique est appliquée sur le disposi-
tif numérique : radiations [6], lumière laser [7], impulsions électromagnétiques [8],
variations de l’alimentation électrique [9], perturbations du signal d’horloge [10], ou
changements des conditions environnementales tels que la température [11] ou autre.
De plus, des études récentes [12]–[14] ont démontré la capacité à effectuer des at-
taques par injection de fautes à distance en utilisant des logiciels pour manipuler les
régulateurs de tension et/ou les systèmes de gestion de l’énergie dans les dispositifs
modernes. Cela a suscité davantage d’attention pour les attaques par injection de
fautes.

Afin d’analyser les vulnérabilités pouvant être exploitées à l’aide d’attaques par in-
jection de fautes et de proposer des contre-mesures efficaces, les évaluateurs, les
développeurs et les concepteurs ont besoin de modèles de fautes précis. Ces mod-
èles de fautes servent de représentations abstraites des effets réels provoqués par
les fautes et sont construits grâce à l’analyse et à la caractérisation de ces effets à dif-
férents niveaux des systèmes numériques. Il est crucial de garantir une caractérisation

173

et une compréhension appropriées des effets de l’injection de fautes pour éviter des
modèles de fautes incomplets. Le non-respect de cette exigence peut entraîner soit
une sous-ingénierie, laissant des menaces persistantes en matière de sécurité, soit
une sur-ingénierie, entraînant des coûts inutiles et potentiellement une dégradation
des performances.

L’objectif principal de cette thèse est d’effectuer une analyse inter-couches pour
examiner les effets de l’injection de fautes, permettant une meilleure compréhension
de ces effets aux niveaux logiciel et matériel. En conséquence, la recherche proposera
des modèles de fautes réalistes, explicables et dignes de confiance à différents niveaux
d’abstraction du système. Ces modèles de fautes faciliteront les processus d’analyse
de vulnérabilités complets et permettront la conception et le développement efficaces
de contre-mesures.

Contributions

Tout d’abord, cette thèse présente une étude des techniques d’injection de fautes qui
utilisent les violations de temps pour induire des fautes dans les systèmes numériques.
Elle comprend également des exemples d’attaques réelles correspondant à chaque
technique. En outre, la thèse examine l’état actuel des connaissances en termes de
caractérisation et de modélisation des effets des attaques par injection de fautes. Cette
analyse révèle que les études précédentes se sont principalement concentrées sur les
aspects logiciels ou matériels séparément. Bien que certaines études aient tenté de
combler le fossé entre les deux niveaux, elles n’ont effectué des simulations qu’au
niveau de l’architecture du jeu d’instructions (ISA) et du transfert de registre (RTL),
sans valider leur analyse par des injections de fautes physiques.

De plus, la thèse offre des preuves expérimentales qui démontrent les limites de
la caractérisation et de la modélisation des effets de l’injection de fautes basées sur
un seul niveau d’analyse. En conséquence, la thèse propose une approche globale
pour l’analyse des fautes inter-couches, visant à établir des modèles de fautes fiables
à différents niveaux d’abstraction. Elle introduit également des mesures pour évaluer
l’efficacité des modèles de fautes proposés.

En outre, la mise en œuvre de la méthodologie proposée, tout en impliquant des in-
jections de fautes et des simulations sur divers processeurs Arm Cortex-M, a permis de
déduire des modèles de fautes réalistes au niveau de l’encodage binaire des instruc-

174

tions : “Skip”, “Skip and repeat”, et “Skip and repeat non séquentiel” pour un nombre
spécifique de bits. Ces modèles de fautes permettent d’expliquer un large éventail de
comportements défectueux obtenus à des niveaux d’abstraction plus élevés, y com-
pris aux niveaux de l’assemblage et de l’application, indépendamment des instruc-
tions cibles et du dispositif cible. Les explications fournies sont également applicables
à un large éventail de comportements défectueux observés qui ont été documentés
dans la littérature. Sur la base des modèles proposés, la thèse fournit des exemples
d’exploitation et d’analyse de vulnérabilité. Ceci démontre la haute fidélité des mod-
èles de fautes proposés. En outre, un outil permettant de simuler ces modèles est
également présenté.

De même, l’analyse des effets des fautes à des niveaux d’abstraction inférieurs a
permis de dériver des modèles de fautes fiables au niveau RTL : anticipate the update
et prevent the update de la valeur d’un registre à un cycle d’horloge donné. En utilisant
ces modèles de fautes, il devient possible d’observer des fautes qui sont identiques aux
comportements défectueux obtenus par injection de fautes physiques, ou en simulant
les modèles de fautes de codage binaire susmentionnés. En outre, la compréhension
des effets de l’injection de fautes au niveau RTL a conduit à la déduction d’un nouveau
modèle de fautes connu sous le nom de modèle de fautes partial update. Ce mod-
èle offre une augmentation significative de la capacité à expliquer les comportements
défectueux.

Enfin, la thèse ouvre des pistes pour diverses directions de recherche. Il s’agit no-
tamment d’utiliser les modèles de fautes proposés pour évaluer les vulnérabilités des
logiciels sur la base de propriétés de sécurité prédéfinies. En outre, la thèse démontre
la faisabilité du développement de contre-mesures rentables en comprenant les ef-
fets potentiels de l’injection de fautes. En outre, la thèse met en évidence la capacité
de combiner des comportements défectueux par l’injection de multiples glitches. Elle
met également en évidence l’applicabilité des modèles de fautes lors de l’utilisation de
différentes techniques d’injection de fautes.

Dans ce qui suit, un résumé de chaque chapitre de la thèse est présenté.

État de l’art

Ce chapitre a présenté les contraintes de synchronisation dans une conception numérique
simple. Ensuite, il a démontré différentes techniques d’injection de fautes pouvant en-

175

traîner la violation de ces contraintes, résultant en divers comportements défectueux.
Plusieurs exemples donnés ont illustré comment ces comportements défectueux ré-
sultants pourraient être utilisés pour mener des attaques nuisibles.

Après cela, ce chapitre a passé en revue l’état de l’art en termes de caractérisation,
d’analyse et de modélisation des effets de l’injection de fautes. Il a été montré que
de nombreuses études décrivaient l’effet de l’injection de fautes comme des fautes
aléatoires de bits ou d’octets. En revanche, plusieurs études se sont concentrées
sur la caractérisation de l’effet de l’injection de fautes uniquement à un seul niveau
d’abstraction, spécifiquement au niveau de l’ISA (architecture de jeu d’instructions).
Néanmoins, certaines de ces études ont tenté de fournir une analyse supplémentaire
au niveau micro-architectural en tenant compte du composant architectural défectueux
ou du chemin de propagation de la faute. Cependant, toutes ces études ont proposé
des modèles de fautes plutôt généraux, tels que le saut d’instruction et la corruption
d’instructions. Ces modèles de fautes ne sont clairement pas suffisants pour éval-
uer les vulnérabilités des codes logiciels ou des conceptions matérielles. De plus, ils
conduiraient à développer ou à concevoir des contre-mesures non optimales. Cela
affecterait certainement soit le coût, les performances, ou la sécurité du dispositif.

Quelques études, en revanche, ont combiné des niveaux d’abstraction élevés et
bas dans le but de promouvoir la compréhension de l’effet de la propagation de la
faute dans un système numérique. Cependant, elles n’ont réalisé que des simulations
de fautes sur un processeur RISC-V et aucune injection physique n’a été effectuée. En
incorporant des injections de fautes physiques, le réalisme et la fiabilité des modèles
proposés peuvent être mieux évalués, et les résultats peuvent être plus applicables à
un éventail plus large d’architectures de systèmes.

Enfin, d’autres travaux ont tenté de se concentrer sur leur analyse au plus bas
niveau d’abstraction en décrivant comment la faute induite affecte le comportement
normal des transistors.

Lebesoind’une analysemulti-niveaux et d’uneméthodolo-
gie proposée

Dans ce chapitre, nous avons présenté les problèmes existants dans l’analyse et la
compréhension des attaques de fautes dans les microarchitectures complexes, en

176

nous concentrant uniquement sur le niveau ISA pour l’analyse. Nous avons mis cela
en évidence en fournissant des preuves expérimentales de fautes intrinsèquement
microarchitecturales, en utilisant le glitch d’horloge comme technique d’injection de
fautes. Les résultats expérimentaux ont montré que les comportements défectueux
observés peuvent dépendre de la cible, du prologue et de l’architecture.

Ensuite, nous avons proposé une nouvelle méthodologie pour fournir une analyse
inter-couches afin de caractériser les comportements défectueux. Cette méthodologie
peut être utilisée pour construire des modèles de fautes réalistes à différents niveaux,
tels que les niveaux RTL et logiciel. Elle peut également fournir une explication sur
l’origine des défauts observés. Cela permet donc de concevoir des contre-mesures
adaptées au coût le plus approprié au niveau du matériel et du logiciel. En outre, cela
facilite le processus d’analyse des vulnérabilités.

Enfin, des mesures permettant d’évaluer le réalisme et la qualité des modèles de
défaillance proposés sont fournies. Ces mesures sont les suivantes: couverture, fidél-
ité, et complexité.

Simulation RTL préliminaire et nouveaux modèles de dé-
fauts de codage binaire

Ce chapitre est introduit par une série d’expériences de simulation de fautes matérielles
qui ont fourni des connaissances sur l’origine de certains des comportements dé-
fectueux observés au niveau micro-architectural. Plus important encore, ces expéri-
ences ont révélé la logique derrière différents comportements défectueux observés
lors de l’application d’une petite modification au programme cible ; cela est dû à
l’ensemble d’instructions Thumb2 qui prend en charge des instructions de longueur
variable, ce qui peut entraîner un code aligné ou mal aligné en mémoire. Ainsi, le
processeur peut récupérer des instructions alignées ou mal alignées. C’était la con-
naissance fondamentale pour déduire de nouveaux modèles de fautes au niveau de
l’encodage binaire des instructions. Les principaux modèles déduits sont "Skip" et
"Skip and repeat" d’un nombre spécifique de bits. Ce nombre de bits est lié à la taille
d’accès à la mémoire flash, à la taille de la ligne de cache, au cache d’instructions ou
à la taille du registre dans le chemin de récupération. De toute évidence, ces modèles
offraient des explications pour la plupart des comportements défectueux observés. De

177

plus, leur réalisme a été prouvé en ciblant différentes instructions et en utilisant divers
dispositifs cibles. De plus, des exemples d’exploitation et d’analyse de vulnérabilité en
utilisant les modèles proposés ont été réalisés et validés expérimentalement. Enfin,
ce chapitre a décrit un outil d’automatisation pour simuler ces modèles et effectuer la
comparaison entre les différentes résultats d’injection et de simulation.

Simulation de défauts matériels et modèle de défauts de
mise à jour partielle

Ce chapitre a poursuivi l’approche d’analyse inter-couches en couvrant davantage de
niveaux d’abstraction. En particulier, il est descendu au niveau du système et a pris
en compte le niveau matériel pour effectuer la simulation de fautes RTL (Register-
Transfer Level). De nouveaux modèles de fautes RTL ont été proposés. Ces modèles
ont permis d’observer des fautes identiques aux comportements défectueux observés
lors de l’injection physique de fautes. De plus, une approche de simulation de fautes
basée sur l’analyse du chemin critique a été présentée. Cette approche a accéléré le
processus de simulation de fautes et a révélé l’origine des comportements défectueux
observés.

Grâce à l’analyse RTL, un nouveau modèle de faute au niveau logiciel a été dé-
duit : le modèle de faute "Partial update", qui est également applicable au niveau
RTL. Ce modèle se décline en deux sous-cas : "Partial update from the precharge
value" et "Partial update from the previous value". Ces modèles de fautes permet-
tent d’expliquer un large éventail de comportements défectueux obtenus lors de cam-
pagnes d’injection de fautes par horloge glitch et qui étaient auparavant inexpliqués.
Par conséquent, ils peuvent être utilisés pour effectuer une analyse de vulnérabilité des
codes logiciels contre les attaques par faute et contribuer à une meilleure conception
de contre-mesures efficaces et peu coûteuses. Cependant, ils sont plus complexes
que les modèles de fautes précédemment déduits : "Skip" et "Skip and repeat".

Autres résultats et détails

Dans ce chapitre, des analyses supplémentaires, des résultats et des détails sont four-
nis. De plus, de nouvelles orientations de recherche peuvent être suivies en fonction du

178

travail présenté dans ce chapitre. Tout d’abord, différents scénarios pour compromettre
l’intégrité du flux de contrôle d’un programme sont présentés. Ces scénarios montrent
comment un évaluateur de sécurité peut prédire un comportement défectueux en se
basant sur les modèles de fautes proposés. De plus, les résultats expérimentaux ont
prouvé le réalisme de cette prédiction et, par conséquent, la fiabilité des modèles de
fautes proposés. De plus, la compréhension de l’effet possible de la faute a permis de
protéger le code avec des contre-mesures simples sans surcharge supplémentaire.

En outre, l’idée du cheval de Troie a été présentée, ce qui a également renforcé la
fiabilité des modèles de fautes proposés. De plus, cela montre un nouveau modèle de
menace résultant de l’injection de fautes, dans lequel le développeur de logiciels ou le
compilateur utilisé représente l’adversaire.

De plus, ce chapitre montre l’applicabilité de l’injection de plusieurs glitches pour
combiner des comportements défectueux, chacun d’eux pouvant être obtenu en résul-
tat d’un seul glitch. Cela augmente les capacités d’un attaquant à obtenir des fautes
exploitables. En même temps, cela complexifie la perspective de la protection. La
recherche de nouveaux effets défectueux résultant de l’injection de plusieurs fautes
serait une perspective intéressante de ce travail.

Enfin, la réalisation de campagnes d’injection de fautes par glitch de tension a validé
l’applicabilité des modèles de fautes proposés lors de la réalisation de différentes tech-
niques d’injection de fautes par rapport au glitch d’horloge. Il a été démontré que dans
certaines campagnes, la couverture atteignait 100 %. Cela confirme la haute fidélité
et la solidité des modèles de fautes proposés, même lorsque l’on utilise une technique
d’injection distincte. La possibilité d’observer des comportements défectueux à l’aide
de glitches de tension distincts des comportements défectueux observés avec des
glitches d’horloge pourrait être explorée dans une étude future.

Conclusion

À mesure que les systèmes numériques deviennent de plus en plus courants et que
le marché de l’Internet des objets (IoT) connaît une croissance significative, il y a
eu une attention accrue portée à la sécurité parmi les concepteurs matériels et les
développeurs de logiciels. L’objectif est de protéger ces dispositifs contre les menaces
potentielles. Parmi les diverses préoccupations en matière de sécurité, les attaques
physiques représentent un risque significatif, l’injection de fautes étant une forme ma-

179

jeure de telles attaques.
Afin d’évaluer les systèmes numériques contre les attaques par injection de fautes

et de les protéger contre de telles menaces, les développeurs de logiciels et les con-
cepteurs matériels doivent s’appuyer sur des modèles de fautes réalistes. Cependant,
la complexité des microprocesseurs embarqués et leur comportement sous ces at-
taques posent d’énormes défis lorsqu’il s’agit de dériver des modèles de fautes précis
basés sur des observations limitées de microprocesseurs défectueux, en particulier
lorsque l’analyse est limitée à un seul niveau d’abstraction. De plus, le recours à des
modèles de fautes peu pratiques ou aléatoires conduirait à une analyse de vulnérabil-
ité inadéquate et inexacte, pouvant potentiellement entraîner le développement ou la
conception de contre-mesures soit sur-ou sous-dimensionnées.

L’objectif de cette thèse était de proposer une approche d’analyse inter-couches
pour mieux analyser, caractériser et comprendre les effets des attaques par injection
de fautes à différents niveaux d’abstraction d’un système numérique. Par conséquent,
des modèles de fautes logiciels et matériels dignes de confiance et fiables ont été
présentés, permettant des processus complets d’analyse de vulnérabilité ainsi qu’une
conception et/ou un développement efficaces de contre-mesures.

Vous trouverez les publications et les communications basées sur ces travaux en
cliquant sur : Publications and communications

180

	Introduction
	State-of-the-art
	Timing constraints in a digital circuit
	Timing-based fault injection
	Clock glitch fault injection
	Voltage glitch fault injection
	Electromagnetic fault injection
	Heating fault injection
	Summary

	Fault injection effect analysis and modeling
	Random fault effect
	Fault effect analysis at ISA and microarchitecture levels
	Fault effect analysis at lower levels of abstraction
	Summary

	Conclusion

	The need for cross-layer analysis and proposed methodology
	Experimental evidence
	Experimental Setup
	Experimental results
	Discussion

	Proposed methodology
	Physical fault injection
	RTL fault simulation
	Software fault simulation
	Discussion

	Fault models evaluation
	Coverage
	Fidelity
	Complexity
	Summary

	Conclusion

	Preliminary RTL simulation and new binary encoding fault models
	Preliminary RTL fault simulation and analysis
	Internal clock glitch simulation
	RTL fault simulation using bit manipulation fault models

	Variable-length instruction sets
	Inferred binary encoding fault models
	Experimental setup
	Experimental results and analysis

	Exploitation and vulnerability analysis
	Program Counter modification
	Vulnerability analysis of AES implementations

	Fault models simulation
	Fault models evaluation
	Conclusion

	Hardware fault simulation and partial update fault model
	Hardware fault simulation
	RTL fault simulation methodology
	RTL fault models
	Post-synthesis timing simulation
	Summary

	Partial update fault model
	Inference examples
	Sub-cases of partial update fault model
	Experimental results of partial update from precharge value
	Experimental results of partial update from previous value
	Conclusion on the results of partial update fault model

	Fault models evaluation
	Conclusion

	Further results and details
	Program Counter modification
	Misaligned code
	Aligned code
	Countermeasure: register substitution
	Trojan

	Multiple glitch fault injection
	Voltage glitch fault injection
	Conclusion

	Conclusion and perspectives
	Publications
	Bibliography
	Sommaire

