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Résumé : Ce travail se concentre sur la quantification 
de l’incertitude pour les réseaux de neurones 
profonds, qui est vitale pour la fiabilité et la précision 
de l’apprentissage profond. Cependant, la 
conception complexe du réseau et les données 
d’entrée limitées rendent difficile l’estimation des 
incertitudes. Parallèlement, la quantification de 
l’incertitude pour les tâches de régression a reçu 
moins d’attention que pour celles de classification en 
raison de la sortie standardisée plus simple de ces 
dernières et de leur grande importance. Cependant, 
des problèmes de régression sont rencontrés dans un 
large éventail d’applications en vision par ordinateur.  

Notre principal axe de recherche porte sur les 
méthodes post-hoc, et notamment les réseaux 
auxiliaires, qui constituent l’un des moyens les plus 
efficaces pour estimer l’incertitude des prédictions 
des tâches principales sans modifier le modèle de 
la tâche principale. Dans le même temps, le 
scénario d’application se concentre principalement 
sur les tâches de régression visuelle. En outre, nous 
fournissons également une méthode de 
quantification de l’incertitude basée sur le modèle 
modifié de tâche principale et un ensemble de 
données permettant d’évaluer la qualité et la 
robustesse des estimations de l’incertitude. 
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Abstract : This work focuses on uncertainty 
quantification for deep neural networks, which is vital 
for reliability and accuracy in deep learning. However, 
complex network design and limited training data 
make estimating uncertainties challenging. 
Meanwhile, uncertainty quantification for regression 
tasks has received less attention than for 
classification ones due to the more straightforward 
standardized output of the latter and their high 
importance. However, regression problems are 
encountered in a wide range of applications in 
computer vision.  

Our main research direction is on post-hoc 
methods, and especially auxiliary networks, which 
are one of the most effective means of estimating 
the uncertainty of main task predictions without 
modifying the main task model. At the same time, 
the application scenario mainly focuses on visual 
regression tasks. In addition, we also provide an 
uncertainty quantification method based on the 
modified main task model and a dataset for 
evaluating the quality and robustness of 
uncertainty estimates. 
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Abstract

This work focuses on uncertainty quantification for deep neural networks, which is vital for reliabil-
ity and accuracy in deep learning. However, complex network design and limited training data make
estimating uncertainties challenging. Meanwhile, uncertainty quantification for regression tasks has
received less attention than for classification ones due to the more straightforward standardized out-
put of the latter and their high importance. However, regression problems are encountered in a wide
range of applications in computer vision. Our main research direction is on post-hoc methods, and
especially auxiliary networks, which are one of the most effective means of estimating the uncertainty
of main task predictions without modifying the main task model. At the same time, the application
scenario mainly focuses on visual regression tasks. In addition, we also provide an uncertainty quan-
tification method based on the modified main task model and a dataset for evaluating the quality and
robustness of uncertainty estimates.

We first propose Side Learning Uncertainty for Regression Problems (SLURP), a generic approach
for regression uncertainty estimation via an auxiliary network that exploits the output and the interme-
diate representations generated by the main task model. This auxiliary network effectively captures
prediction errors and competes with ensemble methods in pixel-wise regression tasks.

To be considered robust, an auxiliary uncertainty estimator must be capable of maintaining its perfor-
mance and triggering higher uncertainties while encountering Out-of-Distribution (OOD) inputs, i.e.,
to provide robust aleatoric and epistemic uncertainty. We consider that SLURP is mainly adapted for
aleatoric uncertainty estimates. Moreover, the robustness of the auxiliary uncertainty estimators has
not been explored. Our second work presents a generalized auxiliary uncertainty estimator scheme,
introducing the Laplace distribution for robust aleatoric uncertainty estimation and Discretization-
Induced Dirichlet pOsterior (DIDO) for epistemic uncertainty. Extensive experiments confirm ro-
bustness in various tasks.

Furthermore, to introduce DIDO, we provide a survey paper on regression with discretization strate-
gies, developing a post-hoc uncertainty quantification solution, dubbed Expectation of Distance (E-
Dist), which outperforms the other post-hoc solutions under the same settings.

Additionally, we investigate single-pass uncertainty quantification methods, introducing Discriminant
deterministic Uncertainty (LDU), which advances scalable deterministic uncertainty estimation and
competes with Deep Ensembles on monocular depth estimation tasks.

In terms of uncertainty quantification evaluation, we offer the Multiple Uncertainty Autonomous
Driving dataset (MUAD), supporting diverse computer vision tasks in varying urban scenarios with
challenging out-of-distribution examples.

In summary, we contribute new solutions and benchmarks for deep learning uncertainty quantifi-
cation, including SLURP, E-Dist, DIDO, and LDU. In addition, we propose the MUAD dataset to
provide a more comprehensive evaluation of autonomous driving scenarios with different uncertainty
sources.
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Résumé

Ce travail se concentre sur la quantification de l’incertitude pour les réseaux de neurones profonds,
qui est vitale pour la fiabilité et la précision de l’apprentissage profond. Cependant, la conception
complexe du réseau et les données d’entrée limitées rendent difficile l’estimation des incertitudes.
Parallèlement, la quantification de l’incertitude pour les tâches de régression a reçu moins d’attention
que pour celles de classification en raison de la sortie standardisée plus simple de ces dernières et
de leur grande importance. Cependant, des problèmes de régression sont rencontrés dans un large
éventail d’applications en vision par ordinateur. Notre principal axe de recherche porte sur les méth-
odes post-hoc, et notamment les réseaux auxiliaires, qui constituent l’un des moyens les plus effi-
caces pour estimer l’incertitude des prédictions des tâches principales sans modifier le modèle de la
tâche principale. Dans le même temps, le scénario d’application se concentre principalement sur les
tâches de régression visuelle. En outre, nous fournissons également une méthode de quantification de
l’incertitude basée sur le modèle modifié de tâche principale et un ensemble de données permettant
d’évaluer la qualité et la robustesse des estimations de l’incertitude.

Nous proposons d’abord Side Learning Uncertainty for Regression Problems (SLURP), une approche
générique pour l’estimation de l’incertitude de régression via un réseau auxiliaire qui exploite la sortie
et les représentations intermédiaires générées par le modèle pour la tâche principale. Le réseau auxil-
iaire apprend l’erreur de prédiction du modèle pour la tâche principale et peut fournir des estimations
d’incertitude comparables à celles des approches des ensembles pour différentes tâches de régression
par pixel.

Pour être considéré comme robuste, un estimateur d’incertitude auxiliaire doit être capable de main-
tenir ses performances et de déclencher des incertitudes plus élevées tout en rencontrant des en-
trées des examples Out-Of-Distribution (OOD), c’est-à-dire de fournir une incertitude aléatoire et
épistémique robuste. Nous considérons que SLURP est principalement adapté aux estimations de
l’incertitude aléatoires. De plus, la robustesse des estimateurs auxiliaires d’incertitude n’a pas été
explorée. Notre deuxième travail propose un schéma d’estimateur d’incertitude auxiliaire général-
isé, introduisant la distribution de Laplace pour l’estimation aléatoire robuste de l’incertitude et le
Discretization-Induced Dirichlet pOsterior (DIDO) pour l’incertitude épistémique. Des expériences
approfondies confirment la robustesse dans diverses tâches.

De plus, pour présenter DIDO, nous présentons un article d’évaluation des solutions qui appliquent
des stratégies de discrétisation aux tâches de régression, développant une solution de quantification
d’incertitude post-hoc, baptisée Expectation of Distance (E-Dist), qui surpasse les autres solutions
post-hoc dans les mêmes conditions.

De plus, nous étudions les méthodes de quantification de l’incertitude en un seul passage basées sur
le modèle de tâche principale ajusté. Nous proposons Latent Discreminant deterministic Uncertainty
(LDU), qui fait progresser l’estimation déterministe de l’incertitude évolutive et rivalise avec les Deep
Ensembles sur les tâches d’estimation de profondeur monoculaire.

En termes d’évaluation de la quantification de l’incertitude, nous proposons un ensemble de données
Multiple Uncertainty Autonomous Driving (MUAD), prenant en charge diverses tâches de vision par
ordinateur dans différents scénarios urbains avec des différents exemples OOD difficiles.
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En résumé, nous proposons de nouvelles solutions et références pour la quantification de l’incertitude
de l’apprentissage profond, notamment SLURP, E-Dist, DIDO et LDU. De plus, nous proposons
l’ensemble de données MUAD pour fournir une évaluation plus complète des scénarios de conduite
autonome avec différentes sources d’incertitude.
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Résumé étendu en français

Ce travail se concentre sur la quantification de l’incertitude pour les réseaux de neurones profonds. Il
est devenu essentiel pour les algorithmes d’apprentissage profond de quantifier leurs incertitudes de
sortie afin de satisfaire aux contraintes de fiabilité et de fournir des résultats précis. Cependant, les
réseaux de neurones profonds sont conçus de manière complexe et ont été entrainés dans la pratique
sur des ensembles de donnés finis. Cela rend difficile l’obtention d’estimations d’incertitude pour ces
modèles entraînés. Parallèlement, la quantification de l’incertitude pour les tâches de régression a
reçu moins d’attention que celles de classification en raison de la sortie standardisée plus simple de
ces dernières et de leur grande importance. Cependant, des problèmes de régression sont rencontrés
dans un large éventail d’applications en vision par ordinateur. Notre principal axe de recherche porte
sur les méthodes post-hoc, et notamment les réseaux auxiliaires, qui constituent l’un des moyens les
plus efficaces pour estimer l’incertitude des prédictions des tâches principales sans modifier le modèle
de la tâche principale. Dans le même temps, le scénario d’application se concentre principalement sur
les tâches de régression visuelle. En outre, nous fournissons également une méthode de quantification
de l’incertitude basée sur le modèle modifié de tâche principale et un ensemble de données permettant
d’évaluer la qualité et la robustesse des estimations de l’incertitude.

Nous proposons d’abord SLURP, une approche générique pour l’estimation de l’incertitude de régres-
sion via un réseau auxiliaire qui exploite la sortie et les représentations intermédiaires générées par le
modèle pour la tâche principale. Le réseau auxiliaire apprend l’erreur de prédiction du modèle pour
la tâche principale et peut fournir des estimations d’incertitude comparables á celles des approches
des ensembles pour différentes tâches de régression par pixel.

Pour être considéré comme robuste, un estimateur d’incertitude auxiliaire doit être capable de main-
tenir ses performances et de déclencher des incertitudes plus élevées tout en rencontrant des en-
trées des examples Out-Of-Distribution (OOD), c’est-à-dire de fournir une incertitude aléatoire et
épistémique robuste. Nous considérons que le design de SLURP est principalement adapté aux es-
timations de l’incertitude aléatoires. De plus, la robustesse des estimateurs auxiliaires d’incertitude
n’a pas été explorée. Dans le deuxième travail, nous proposons un schéma d’estimateur d’incertitude
auxiliaire généralisé pour une quantification plus robuste de l’incertitude sur les tâches de régression.
Concrètement, pour obtenir une estimation aléatoire plus robuste de l’incertitude, différentes hy-
pothèses de distribution sont considérées pour le bruit hétéroscédastique et la distribution de Laplace
est finalement choisie pour approximer l’erreur de prédiction. Pour l’incertitude épistémique, nous
proposons une nouvelle solution nommée Discretization-Induced Dirichlet pOsterior (DIDO), qui
modélise le Dirichlet postérieur sur l’erreur de prédiction discrétisée. Des expériences approfondies
sur l’estimation de l’âge, l’estimation de la profondeur monoculaire et les tâches de super-résolution
montrent que notre méthode proposée peut fournir des estimations d’incertitude robustes face à des
entrées bruyantes et qu’elle peut être évolutive à la fois pour des tâches au niveau de l’image et au
niveau des pixels.

De plus, pour présenter DIDO, nous présentons un article d’enquête sur les solutions qui appliquent
des stratégies de discrétisation aux tâches de régression en passant en revue les travaux d’estimation
de profondeur monoculaire utilisant des approches de classification sur la régression. Parallèlement,
nous développons une solution de quantification d’incertitude post-hoc basée sur les modèles de ré-
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gression basés sur la discrétisation, baptisée Expectation of Distance (E-Dist), qui surpasse les autres
solutions post-hoc en utilisant une propagation unique vers l’avant.

En plus des solutions post-hoc, nous étudions également les méthodes de quantification de
l’incertitude en un seul passage basées sur le modèle de tâche principale ajusté. Nous proposons
l’incertitude de Latent Discreminant deterministic Uncertainty (LDU), qui propose des méthodes
d’incertitude déterministe évolutives et efficaces qui assouplissent la contrainte de Lipschitz, ce qui
entrave généralement le caractère pratique de telles architectures. Nous apprenons un espace latent
discriminant en exploitant une couche de maximisation de distinction sur un ensemble de proto-
types entraînables de taille arbitraire. Notre approche permet d’obtenir des résultats compétitifs par
rapport aux Deep Ensembles, l’état de l’art en matière de prédiction de l’incertitude, sur les tâches
d’estimation de profondeur monoculaire.

En termes d’évaluation de la quantification de l’incertitude, nous fournissons à la communauté un
nouvel ensemble de données synthétiques, l’ensemble de données de Multiple Uncertainty Au-
tonomous Driving (MUAD). L’ensemble de données MUAD prend en charge différentes tâches
de vision par ordinateur, telles que les tâches de segmentation sémantique et d’estimation de pro-
fondeur monoculaire, et contient divers scénarios urbains avec différentes conditions d’éclairage et
météorologiques ainsi que différents exemples OOD difficiles sur les ensembles de tests pour une
évaluation équitable de la qualité de la quantification de l’incertitude et de sa robustesse.

En résumé, nous proposons de nouvelles solutions et critères d’évaluation pour la tâche de quan-
tification de l’incertitude de l’apprentissage profond. Les solutions se concentrent principalement
sur les méthodes post-hoc, et nous avons successivement proposé SLURP, E-Dist et DIDO. De plus,
nous avons également proposé la méthode déterministe d’estimation de l’incertitude LDU basée sur
la modification du modèle de tâche principale. En termes de références d’évaluation, nous proposons
l’ensemble de données MUAD pour fournir une évaluation plus complète des scénarios de conduite
autonome avec différentes sources d’incertitude.
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Importance of uncertainty quantification
in deep learning

In the deep learning era, models based on deep learning techniques [127] have become integral to
numerous domains and applications, including the development of breakthrough technologies, such
as GPT-4 [183], AlphaGo [214], AlphaFold [111], and advanced video generation [58]. With the
remarkable progress witnessed in these areas, deep learning is reshaping the landscape of AI and
world development. Within this transformative shift, computer vision stands as a vital domain since
vision is the most widely recognized and the most widely studied perceptual modality [218]. Driven
by the capabilities of deep learning models, computer vision has made substantial strides in replicating
and augmenting human visual perception, being applied to diverse fields like healthcare [144] and
autonomous vehicles [20].

However, as these AI models become increasingly sophisticated, it becomes crucial to address not
only their main task predictive ability but also their reliability. This brings us to the aspect of model
uncertainty quantification [73]. In this thesis, we dive into novel approaches for estimating uncertainty
for deep learning models, aiming to meet the increasing need for uncertainty quantification in deep
learning. This endeavor has the potential to enhance the precision, dependability, and trustworthiness
of AI applications significantly.

Specifically, uncertainty quantification can be applied in some deep learning-based systems. For ex-
ample, in active learning [210], uncertainty quantification can act as an acquisition function to provide
the annotation system with the most uncertain samples of the current model for manual labeling. More
importantly, uncertainty quantification is an important supplement to the outputs of the deterministic
models, providing valuable decision-making references for human users and making the models more
credible.

The uncertainty quantification in deep learning is mostly based on the theory of probabilistic ma-
chine learning [174]. However, compared with the rapidly expanding application scenarios and high-
performance models with increasing parameters, the application of probabilistic machine learning
methods in deep learning is still a process of practice and exploration. When facing more complex
models and some pixel-wise tasks, the scalability of uncertainty quantification methods also has to be
taken into account.

The main goal of this thesis is to introduce and develop such scalable and practical tools to reason
about the uncertainty in deep learning. In the rest of the chapter, I will introduce some of the applica-
tions that involve deep learning and uncertainty quantification as one of the most important roles.

Uncertainty quantification often lacks direct and explicit application in computer vision applications.
Take image classification or image semantic segmentation, for instance. Typically, users are only
aware of the semantic information associated with the input picture, without knowledge of the model’s
uncertainty level regarding the decision made. However, uncertainty plays a crucial role in deep
learning models, as each decision made by the model inherently involves a degree of uncertainty.
This uncertainty is as significant as the decision itself and should be provided to the user to aid in
making final decisions.
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Moreover, uncertainty is not only valuable for users but also crucial on the unseen side, involving
model training and data annotation. In this section, we will briefly explore various specific applica-
tions where uncertainty becomes relevant.

Active learning

Deep
learning 
model

Labeled
Data

Unlabeled
data pool

Annotator

Selected
data

Acquisition 
function

Figure 1: Demonstration of pool-based active learning [135, 210].

Active learning is a powerful method in machine learning that aims to improve the performance of
models by actively selecting the most informative samples for training. In deep learning, large labeled
datasets are required to train models effectively. However, labeling data can be expensive and time-
consuming, especially when dealing with complex tasks or rare categories, such as lesion labeling
that requires expert knowledge, emotional fluctuations labeling based on human speech, etc. Active
learning selects the instances for the annotators according to the performance of the in-system model,
thus making the best use of limited labeled data. At the same time, active learning can also make
the model fit faster and achieve similar performance as when training with more labeled data [11].
Figure 1 shows the pool-based active learning procedure [135, 210]. The deep learning model will
go through the unlabeled data pool and provide the necessary information on the unlabeled data, e.g.,
uncertainty estimates, for the acquisition function. The acquisition function will select the data for
the annotator to label according to the provided information.

One of the cores of active learning is the acquisition function, which is a key component that drives the
information sample selection process. It evaluates the potential of each unlabeled instance to reduce
model uncertainty or improve its performance when labeled and included in the training set. Usually,
the acquisition function quantifies the uncertainty of the unmarked points, obtains the most uncertain
sample set of the currently trained model that the acquisition function considers, and submits it to the
annotator for labeling.

A variety of acquisition functions are used in active learning. One of the most commonly used acqui-
sition functions is the estimation of the uncertainty of a single model. It involves selecting instances
where the model’s predictions are uncertain or have high variance. For example, the model may be
uncertain about the class assignment of some data points near the decision boundary. More specifi-
cally, we can use some different uncertainty estimation measures, such as entropy [211], energy [147],
etc., to rank the uncertainty. By selecting the most ambiguous samples for labeling, the model can
better understand the need to improve performance.

Another popular acquisition function is the query-by-committee approach. It involves training mul-
tiple models, often referred to as a "committee" or an "ensemble," with different initializations or
architectures. The disagreement among the committee members on the labeling of a particular in-
stance indicates uncertainty and, consequently, the sample’s potential informativeness. This is very
similar to ensemble methods [123, 261]. Instances that caused significant disagreement among com-
mittee members were considered informative and prioritized for flagging.
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Uncertainty quantification in autonomous driving and healthcare

In the realm of robotics and autonomous navigation, the machine needs to perceive the environment,
make decisions, interact with humans, etc. The real world is full of uncertainty, for example, dy-
namic environments, noise from sensors, and unforeseen obstacles that have never been seen before.
Uncertainty quantification emerges as a cornerstone of enhancing the robustness and reliability of
autonomous systems in the uncertain real world.

In safe navigation and autonomous driving, machines may encounter unpredictable environmental
changes, such as changing weather conditions, sudden appeared objects, changes in terrain, etc. Un-
certainty estimation combined with deep learning can continuously evaluate the predictions given by
the machine, which allows the machine to adjust its decisions and behaviors in a timely manner, such
as slowing down and changing routes [22, 102].

In the field of healthcare, where risks are often a matter of life and death, the combination of
deep learning and uncertainty quantification provides many advantages in aspects such as diagnostic
decision-making. In the process of using deep learning to quickly analyze and diagnose MRI images,
uncertainty quantification can provide a confidence interval that quantifies the likelihood of malignant
lesions. Doctors can develop treatment plans based on confidence levels. This method can provide
convenience for more patients in remote areas that lack good medical conditions and save money
and time. At the same time, the confidence of the diagnosis at each stage of the treatment can be
effectively communicated to the patient, thereby ensuring that patients fully understand their current
physical condition. Such transparency not only allows patients to better understand their condition,
but also reduces the distrust between doctors and patients, reduces the occurrence of disputes, and
improves the employment environment for doctors.

There are many more cases where uncertainty quantification is combined with deep learning, for
example, learning with imbalanced classes [114, 137] and noisy labels [101, 241]. In short, as an
indispensable part of deploying deep learning models, the study of uncertainty estimation is crucial.
This thesis will carry out some research, experiments, and discussions around uncertainty quantifica-
tion, hoping to provide some insights and inspiration for the field of uncertainty estimation.

The problem being addressed in the thesis

This thesis will primarily address uncertainty quantification and aim to devise a method for estimating
model output uncertainty without necessitating alterations to the model’s architecture and parameters
or only making minor structural adjustments. Given that deep neural networks (DNNs) are meticu-
lously tailored for specific tasks, and these networks inherently lack an inherent mechanism for uncer-
tainty estimation, this is particularly relevant for regression tasks where model outputs often lack the
necessary information for making reliable judgments. Estimating uncertainty for the model’s outputs
without introducing substantial modifications to the network is a prudent and efficient approach since
it preserves the accuracy and robustness of the model. Concurrently, this thesis also delves into the
underexplored domain of uncertainty stemming from distribution disparities between inference and
training data in regression tasks and tries to address the challenge of identifying out-of-distribution
samples and providing uncertainty estimates in the context of regression problems.

Outline of work

In this thesis, we deal with the uncertainty quantification problem for deep learning models, especially
for the ones targeted to regression tasks. We aim to provide more feasible and reliable uncertainty
quantification solutions for the deployed or under-deploying deep learning models.

The main parts of the thesis can be summarized as follows:
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1. State-of-the-art uncertainty quantification solutions in deep learning and its evaluation
(Part I). We study the fundamental problem of uncertainty quantification in deep learning, in-
cluding the state-of-the-art solutions in the field and the evaluation strategies. The goal is to find
inspiration and perspectives for improving the existing solutions and deriving our proposed so-
lutions. At the same time, while introducing the evaluation metrics and the datasets, we propose
a new dataset in Chapter 2. This new autonomous driving dataset contains multiple uncertain-
ties, including the different weather conditions (e.g., rain, fog, and snow), lighting conditions
(daytime and nighttime), and semantically out-of-distribution objects. This new dataset pro-
vides richer comparison possibilities for uncertainty quantification of both classification and
regression problems.

2. Error prediction in pixel-wise regression tasks using an auxiliary network (Part II). We
deal with uncertainty quantification for regression problems using the auxiliary network. Ap-
plying an auxiliary network to the main task model is a kind of post-hoc solution for uncertainty
quantification. We propose to train the auxiliary by learning the total uncertainty, i.e., the pre-
diction error, provided by the main task model. The design of the auxiliary network is novel.
Specifically, we use both the input and output of the main task model as the inputs to the auxil-
iary model. For the model architecture, we use the rich features from the image encoder to build
a coarse-to-fine decoder with multiple atrous convolutions. Our experiment shows that the pro-
posed auxiliary network is able to provide comparable uncertainty estimates to state-of-the-art
solutions.

3. Introducing classification into uncertainty quantification problems in regression (Part
III). In this part, we manage to introduce classification strategies into the regression tasks for
uncertainty quantification and auxiliary networks. In the first chapter of this part, we present a
survey on applying classification approaches to regression for both the main task and the un-
certainty estimation. Focusing on the task of monocular depth estimation, we summarize and
discuss all solutions that have reused classification methods in this task so far. At the same
time, we propose a new post-hoc uncertainty quantification method for this kind of model.
Experiments have shown that this method, without modifying the model and using only one
forward propagation, has better uncertainty estimation quality than other methods under the
same conditions. In the next step, we introduce the classification approaches to auxiliary net-
work learning. We are the first to apply the discretization to the prediction error and model the
distributional uncertainty split from predictive uncertainty by applying the Dirichlet distribu-
tion to the discretized prediction error. Our solution is scalable and able to be applied to both
image-level and pixel-wise vision tasks.

4. Single-forward-propagation uncertainty quantification methods (Part IV). Apart from the
auxiliary networks, we also deal with the robust uncertainty quantification by modifying the
main task model. We introduce a distinction maximization layer into the penultimate layer of
the main task model to provide bi-lipschitz features to the final classification and uncertainty
quantification layers. With a single-forward propagation, the uncertainty estimator can provide
more robust out-of-distribution example detection results on semantic segmentation tasks and
image classification tasks. This method is scalable to the regression tasks. We observe an
improved main task prediction performance and a comparable uncertainty quantification quality
compared to the benchmark methods.
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Chapter 1

Approaches in uncertainty quantification
in deep learning
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Deep learning has emerged as a powerful and versatile solution for addressing complex problems
across diverse domains, spanning image classification to natural language processing. However, a
notable hurdle in deep learning models lies in their ability to capture and quantify uncertainty in their
predictions effectively. The accurate estimation of uncertainty is essential in applications that rely
on reliable uncertainty estimates, such as medical diagnosis or autonomous systems, as it has been
mentioned in the previous chapter. This chapter aims to comprehensively explore and analyze various
approaches to uncertainty quantification within the realm of deep learning. Specifically, we will delve
into three distinct categories of approaches: distribution learning on the output space, ensembles and
sampling-based methods, and post-hoc techniques. Each of these approaches will illuminate unique
techniques and methodologies employed to tackle the formidable challenge of quantifying uncertainty
in deep learning models. By gaining a profound understanding of these approaches and comparing
their strengths, limitations, and potential applications, we can pave the way for improved decision-
making and enhance the robustness of deep learning systems.
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Figure 1.1: Visualization of two types of uncertainty on 1D regression tasks. Left: Visualizations on high
aleatoric uncertainty. Right: Visualizations on high epistemic uncertainty.

1.1 Uncertainty modeling on Deep Neural Networks

1.1.1 Preliminary

We define a training dataset D = {xi , yi }N
i where N is the number of samples/images depending on the

task at hand. We consider that x,y are drawn from a joint distribution P(x,y). We denote a DNN fω
with parameters ω applied to fit the samples to the corresponding labels in the dataset D.

1.1.2 Predictive uncertainty and its decomposition

Most of the distribution-related solutions for DNN uncertainty quantification [5, 33, 34, 70, 108, 113,
123, 156, 157, 180, 209] start from the predictive uncertainty in the Bayesian framework. Given a
new input x∗, consider the corresponding ground truth is y∗, the predictive uncertainty of fω will be
described by P(y∗|x∗,D) and it can be decomposed as aleatoric uncertainty and epistemic uncertainty:

P(y∗|x∗,D) =
∫

P(y∗|x∗,ω)P(ω|D)dω (1.1)

The P(y∗|x∗,ω) is the likelihood of the prediction target given the input and the model. It is about
how probable this prediction is compared to the ground truth, and normally, we need to assume the
predictions follow a certain type of distribution. When we only talk about P(y∗|x∗,ω), the model
parameters can be regarded as fixed, the probability here is then interpreted as the data uncertainty or
aleatoric uncertainty. The P(ω|D) is a probability only about model parameters given the dataset. It
describes model uncertainty or epistemic uncertainty, which represents the level at which the model
learns the dataset. Figure 1.1 illustrates two types of uncertainty on a 1D regression task.

Based on the above formula, many works have been proposed providing solutions to measure these
two types of uncertainties. In the following sections, we group these schemes into distributional
learning approaches [5, 33, 34, 108, 113, 156, 157, 180, 209, 228], sampling and ensembling ap-
proaches [70, 123, 167, 237], and post-hoc approaches [40, 41, 92, 197, 229, 252]. Among them,
the distribution learning and the post-hoc methods are mainly oriented to the estimation of aleatoric
uncertainty, and the sampling and ensembling methods involve epistemic uncertainty estimation. In
particular, post-hoc methods are mainly aimed at DNNs, which can estimate the aleatoric uncertainty
of DNN predictions without updating model parameters and adjusting DNN structure. One of the
themes of the thesis is post-hoc methods and their applications in regression tasks.

1.2 Distribution learning on the output space

As we introduced in the previous section, the prediction is the most likely result given an output
distribution. Yet, in practice, when we use DNNs, we often choose point estimates as the final decision
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estimates, especially on regression tasks. So if we only focus on the output of the model, we tend to
ignore this important distribution. In short, under the Bayes framework, the prediction given by the
DNN is a distribution, and we choose the most likely value from this distribution as the final result.
Given the model parameters ω, or more ideally, assuming that ω are perfect parameters given by
an ideal oracle, the distribution still exists and will not (always) be a Dirac. This is due to aleatoric
uncertainty, i.e., due to the uncertain component of the given observations acquired in the real world
under different conditions, the results will contain the noise.

Therefore, we consider both network prediction and the noise in the forecast as the main factor that
makes up the outcome distribution P(y∗|x∗,ω). For regression tasks, a widely used distribution is the
Gaussian distribution N (µ,σ2). Specifically, µ corresponds to the DNN point estimation. The noise
is a zero mean Gaussian random variable with the variance denoted as σ2. When σ2 is the same for
all the input, we call the noise homoscedastic. For different inputs, if the variance of the noise distri-
bution changes, we call the noise heteroscedastic. Back in 1994, Nix and Weigend [180] introduced
heteroscedastic noise prediction into artificial neural networks and 2D data regression tasks. Recently,
Kendall and Gal [113] adapted the principle to the DNNs and more complex computer vision tasks,
which turns to be a strong baseline in output space distribution learning.

1.2.1 Gaussian distribution learning on the output space

Training a DNN with parameters ω involves maximizing the likelihood P(y |x,ω) given the dataset
D. When the above-mentioned Gaussian assumption is applied, we can achieve negative Gaussian
likelihood minimization:

ω̂= argmax
ω

P(D|ω) = argmax
ω

N∑
i=1

log(P(yi |xi ,ω))

= argmax
ω

N∑
i=1

log(N (yi |µi ,σ2
i ))

= argmax
ω

N∑
i=1

−(
1

2
log2πσ2

i +
(yi −µi )2

2σ2 )

= argmin
ω

N∑
i=1

1

2
log2πσ2

i +
(yi −µi )2

2σ2
i

(1.2)

If only homoscedastic noise is considered, i.e., the same variance σ2
const construct the noise distribu-

tions, we have:

ω̂= argmin
ω

N∑
i=1

1

2
log2πσ2

const +
(xi −µi )2

2σ2
const

(1.3)

The first thing based on the above equations, is the DNN architecture design, especially the output
space. The µ and σ2 are generated by the DNN with parameters ω̂, which is related to the architecture
of the DNN. Since µ solves the main task, the output space will be adjusted according to different
settings on σ2:

1. We ignore the σ2 and keep the DNN output only the µ. This is equivalent to taking the σ2

as σ2
const and without estimating them. Thus, based on Eq. 1.3, we can obtain the well-known

mean square error (MSE) loss for regression tasks [17].

2. We take the noise as homoscedastic, and estimate both µ and σ2
const. The DNN output space

will be adjusted to additionally output a trainable parameter, which represents σ2
const and is not

affected by the previous features but only trained by the Eq. 1.3.

3. We take the noise as heteroscedastic, and estimate µ and σ based on Eq. 1.2. Different from
estimating σ2

const, the estimation of σ2 here is more similar to the µ estimation. Normally, in
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practice, the feature map on the penultimate layer (or the pre-logit layer) will be chunked into
two maps with equivalent shapes according to the feature channel. Some implementations will
also duplicate these feature maps. There is no exact optimal implementation for this dual-task
architecture design, yet they all follow the Eq. 1.2 principle. These two feature maps will then
be the inputs of the main task and the uncertainty estimator on top of the DNN.

The third design direction follows Nix and Weigend [180] and is applied widely in the following
works such as in Kendall and Gal [113], lightweight probabilistic DNN [72], mono-uncertainty [191],
evidential regression [5] and so on. It also leads to and influences the creation and design of the
auxiliary networks for uncertainty quantification. We will go into the details of the auxiliary networks
in Section 1.4.

It is easy to see from Eq. 1.2 that the optimal σ2 is the prediction error given the fixed main task
prediction µ. We can thus consider the other symmetric distributions, such as the Laplace distribution
in lightweight probabilistic DNN [72], which has a similar property, to replace the Gaussian distribu-
tion in the assumption. In practice, different distribution assumptions might cause different aleatoric
uncertainty quantification performance. We investigate this phenomenon in the Chapter III.5.

1.2.2 Prior/Posterior distribution learning on the output space

In the previous section, we model the output of the DNN as a Gaussian distribution, which originally
comes from the likelihood in Eq. 1.1. Furthermore, the Eq. 1.1 can be further decomposed. By
introducing the prior distribution P(α) of the likelihood, we can disentangle P(y∗|x∗,ω) to two parts:

P(y∗|x∗,D) =
∫

P(y∗|x∗,ω)P(ω|D)dω

=
Ï

P(y∗|α)P(α|x∗,ω)P(ω|D)dωdα (1.4)

where P(α|x∗,ω) can describe the distributional uncertainty [157]. More specifically, the parameters
of the prior distribution can be updated during model training and become the posterior given the
dataset and the model parameters. The final distribution of the prediction target y∗ is drawn from its
posterior distribution. The diversity of the posterior distribution will show how the final distribution
is distributed. Note that, the previous-defined aleatoric uncertainty is disentangled, we call P(y∗|α)
the new data or aleatoric uncertainty, and the P(α|x∗,ω) distributional uncertainty, according to the
literature such as Malinin and Gal [157].

This ‘distribution of distribution’ modeling is also called evidential deep learning [228], which is one
of the single-pass uncertainty quantification solutions. There are other single-pass uncertainty quan-
tification methods, such as geometry-based or prototype-based discriminative uncertainty methods
(DUM) [194]. We will introduce them in the last section of this chapter, and also provide a novel
solution in Chapter IV.6.

The reason why it is also called evidential deep learning is mainly according to Subjective logic [110].
The author Jøsang considers that subjective logic provides a principled way to connect beliefs to
Dirichlet distributions, and Dirichlet distribution is equivalent to a multinomial opinion. Beliefs are
the expressed subjective opinions on the truth with certain degrees of uncertainty. In Dempster-Shafer
Theory (DST) [47], the authors offered a systematic way to combine and update evidence to form
beliefs in situations where uncertainty and incomplete information are prevalent. Denoeux [49] first
uses DST to combine the evidence provided by a radial basis function layer [192] and applies it to the
image classification task using a shallow artificial neural network. Recently, Jøsang [110] introduced
Dirichlet distribution to multinomial belief learning. Since DST is also called evidence theory or the
theory of belief functions, and the first ones who applied this theory to DNNs named the technique
Evidential classification [209], such methods of using prior distributions of the distribution over the
final prediction in DNNs are sometimes loosely referred to as evidential deep learning. Different
from the works applying DST on the top of the model using DS layers and utility layers [224], the
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evidential learning presented in this work mainly discusses the modeling of the output space, such as
the conjugate prior distribution of the assumed distribution of the training data.

Dirichlet distribution is the prior distribution of the categorical distribution. Yet in the regression
tasks, since we make Gaussian assumption on the final outputs, we can find a proper prior of Gaussian
distribution to model the distributional uncertainty of the output, such as the Normal Inverse-Gamma
distribution proposed in Evidential regression [5].

In the regression tasks, since we make Gaussian assumption on the final outputs, we can find a proper
prior of Gaussian distribution to model the distributional uncertainty of the output, such as the Normal
Inverse-Gamma distribution proposed in Evidential regression [5] and Normal-Wishart distribution in
Regression Prior Networks [156]. The former is used for modeling univariate Gaussian distributions,
and the latter is used for modeling multivariate Gaussian distributions. We will mainly introduce
Normal Inverse-Gamma distribution in the following paragraphs, yet the principles are the same using
different prior distributions.

We consider that given an input image, the DNN will output multiple Gaussian distributions, and
these Gaussian distributions are sampled from a distribution over them, which is a Normal Inverse-
Gamma (NIG) distribution NIG(γ,ν,α,β), where the mean of the Gaussian distributions follows a
Gaussian distribution N (γ,σ2ν−1) and the variance follows an Inverse-Gamma distribution Γ−1(α,β).
The goal is to obtain the posterior distribution P(µ,σ2). Follow the Evidential regression [5] and
Statistical field theory [185], the approximation can be obtained as P(µ,σ2) = P(µ)P(σ2). Then, this
approximation can take the Normal Inverse-Gamma distribution, which is the conjugate prior of the
Gaussian distribution:

P(µ,σ2|γ,ν,α,β) = βα
p
ν

Γ(α)
p

2πσ2

(
1

σ2

)α+1

exp
{
−2β+ν(γ−µ)2

2σ2

}
(1.5)

The conjugate prior distribution can provide ‘virtual- observations’ to interpret the parameters [168],
which is similar to the Energy [147] in classification DNNs. For NIG distribution, Amini et al. [5]
define the total evidence Φ as the sum of all inferred virtual-observations counts Φ= 2ν+α.

To combine the virtual multiple Gaussian distributions sampled from the NIG distribution, we can
use some statistics about µ and σ2:

E[µ] = γ, E[σ2] = β

α−1
, Var[µ] = β

ν(α−1)
(1.6)

where theE[µ] represents the main task prediction,E[σ2] represents aleatoric uncertainty, and Var[µ]
represents distributional uncertainty. In the original paper [5], the authors dub the Var[µ] as the
epistemic uncertainty, yet we could also state that the uncertainty here comes from the scale of the
posterior distribution over the final distribution, which should represent the distributional uncertainty.
However, sometimes the two names are used interchangeably because the distributional uncertainty
might also be interpreted as the uncertainty caused by the model not having learned data with a
different distribution than the training data. At the same time, in previous works [70, 209], both kinds
of uncertainties were proved to be feasible for out-of-distribution detection, which also led to the
confusion of their names.

Figure 1.2 provides the visualizations of the desired behaviors of the regression result, where we
assume that the final result is given by a set of potential outputs drawn from different Gaussian dis-
tributions. The distributions behind the potential outputs indicate different types of uncertainty that
the final output has. When the final output has low uncertainty, the virtual Gaussian distributions are
more concentrated and identical, with smaller variances for each distribution, as shown in the right
sub-figure. When output has a big irreducible aleatoric uncertainty and low epistemic or distribu-
tional uncertainty, the virtual distributions should have more identical means and variances but the
variances should be big for all the distributions. This is because all the distributions show similar av-
erage opinions on the final decision due to the low epistemic uncertainty, yet big randomness around
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Low uncertainty High distributional uncertainty High data uncertainty

Figure 1.2: Visualizations on desired behaviors of regression results. Three different cases on the distribu-
tion of the Gaussian distributions for the output with different types of uncertainty.

this decision, as shown in the left sub-figure. The middle sub-figure shows the case that the high dis-
tributional uncertainty occurs in the final output. Facing input sampled from a different distribution
to the ones of the training data, the virtual distributions given by the model should be more diverse
and provide different opinions on the final decision, i.e., high Var[µ] across the virtual distributions,
which is also shown by Amini et al. [5].

However, since the distributional uncertainty should consider the diversities between the virtual Gaus-
sian distributions, both µ and σ2 of each distribution should be considered. In Chapter III.5, we will
introduce the observation that when the virtual Gaussian distributions share the same mean, the dif-
ference in the variances of virtual Gaussian distributions can also serve as a measure of distribution
uncertainty.

In the next paragraphs, we follow Amini et al. [5] to describe the DNN training based on NIG prior
assumption, especially the loss functions, and provide our insights on the training procedure.

The loss function consists of two parts. The design of the first one follows the likelihood function, yet
we change the Gaussian parameters to the NIG parameters, and the likelihood of the training target
turns to be P(y∗|γ,ν,α,β). The DNN parameters ω are placed in the NIG parameters. According
to [5], in this case, the likelihood follows a Student-t (St) distribution:

P(y∗|γ,ν,α,β) = St

(
y∗;γ,

β(1+ν)

να
,2α

)
(1.7)

Then, we can follow the negative log-likelihood to build the first part of the loss function.

The second part is a regularization term, which regularizes the virtual counts according to the pre-
diction error. The lower the prediction error is, the lower the regularization is attached to the virtual
observations, and vice versa.

Then we have the loss function for training DNNs based on NIG assumption:

L1 = 1

2
log

(π
ν

)
−α log(Ω)+

(
α+ 1

2

)
log((y −γ)2ν+Ω)+ log

(
Γ(α)

Γ(α+ 1
2 )

)
(1.8)

L2 = |y −γ| · (2ν+α) (1.9)

L =L1 +λNIG ·L2 (1.10)

where Ω= 2β(1+ν) and λNIG is the hyperparameter for the regularization. There are two following
works on the reporting observations for the ineffectiveness of evidential regression and provided the
adjustments. Oh and Shin [182] observed the gradient conflict when optimizing γ and {ν,α,β} in
the same time. Meinert et al. [164] observed that this solution offers only a heuristic approximation
of epistemic uncertainty. Moreover, the evidential regression modeling is also over-parameterized,
which makes the efficiency of the evidential regression seam almost unreasonable. Respectively, Oh
and Shin [182] provide an evidential regularization during training, which uses a Lipschitz-modified
MSE loss as the additional training objective to ensure that the uncertainty estimation of the negative
log-likelihood is not disturbed by the main task training. On the other hand, Meinert et al. [164]
propose to modify the evidential regression loss function. The new loss function prevents a too-fast
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convergence and stabilizes the convergence for uncertainty-related parameters during optimization.
In short, according to the following works, we can see that the design of the evidential regression loss
function can not make the DNNs effectively converge, and the uncertainty estimates provided also do
not fully convince the readers. We will not go through the details for these modifications, but we will
provide some new points of view here and go into the details in Chapter 5.

As we mentioned before, the L1 in Eq. 1.8 is the negative log-likelihood (NLL) loss, which uses
the Student-t assumption, rather than the Gaussian assumption. We argue that the main difference
between this work and simple NLL is the penalization term L2 on the total evidence based on the
prediction error. This idea is very similar to the design of Sensoy et al. [209] about penalizing the total
evidence based on classification errors in evidence classification. However, one intuitive problem will
arise in this design. When the structure of DNN becomes more and more refined and well-designed,
the main task performance becomes much better than before. It results in lower prediction errors,
which corresponds to the |y −γ| term in Eq. 1.9. Lower prediction errors will cause the regularization
to be hard to be effective since the current data samples are biased, and most of the samples have very
small prediction errors.

The perturbation on the total evidence normally is a constraint on the combination of some parameters
in the DNNs, which could represent the total evidence according to the evidential theory. The pertur-
bation of the parameter magnitude in the classification will affect the final classification decision less,
because the final decision is often to choose the category with the most evidence. At the same time,
the total magnitude of evidence can provide information on the uncertainty from another perspective.
In regression tasks, the regularization of the magnitude of the parameters or their combinations might
hurt the main task predictions. This point of view is similar to Oh and Shin [182], while they modified
the loss to avoid the main task performance reduction, which is a remedy in our opinion, but it is not
guaranteed to work all the time.

For the uncertainty measure, the epistemic uncertainty or the distributional uncertainty is defined as
the variance of the means of the virtual Gaussian distributions Var[µ]. However, the variance of the
means alone lacks a concrete description of these Gaussian distributions, and we admit that capturing
the variance of these distributions is difficult in practice because they are not truly sampled. We can
only observe them through some statistics of their conjugate prior distribution. This point of view
is similar to Meinert et al. [164], where the authors considered the epistemic uncertainty estimation
to be a heuristic approximation. Some more recent works also show the drawbacks on using the
prior/posterior distribution learning for epistemic uncertainty estimation, such as loss minimisation
does not work for such second-order predictors [12], Dirichlet distribution is not robust to the adver-
sarial attacks [119], and so on. These works are important supplements to evidential learning, and we
can further improve the robustness and effectiveness of evidential learning-based models regarding to
these works.

In conclusion, according to our observations and the following works [164, 182], we argue that the
current evidential regression strategies on DNNs might cause the main task performance reduction,
may not effectively constrain the total evidence on better and larger DNNs, and cannot provide a
good definition of cognitive uncertainty. Based on these, we will introduce an alternative solution in
Chapter 5, dubbed Discretization-Induced Dirichlet pOsterior (DIDO) [254].
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Figure 1.3: Illustration on MC-Dropout [70].

1.3 Ensembles and Sampling approaches

In the previous section, we talked about the solutions for achieving P(y∗|x∗,ω) in Eq. 1.1. In this
section, we will talk about some solutions for achieving P(ω|D) which can be used to represent
the epistemic uncertainty. Bayesian Deep Learning involves modeling the uncertainty in DNNs by
treating model parameters as probability distributions. However, calculating the exact posterior dis-
tribution of these parameters becomes intractable due to the complex and high-dimensional nature of
DNNs. Sampling and ensembling are used to approach the distribution of the parameters. They are
more general and scalable with respect to the tasks and the model architecture.

1.3.1 Sampling-based approaches

DNNs are typically trained using deterministic optimization algorithms, which result in a single set
of learned parameters. This deterministic nature will leave the DNN’s predictions devoid of uncer-
tainty estimates. Sampling methods, such as Monte Carlo Dropout (MC-Dropout) [70] and Bayesian
Neural Networks [19], introduce stochasticity into the prediction process. By sampling from different
configurations of the model, these techniques generate a distribution of predictions, allowing for the
quantification of uncertainty.

Rather than regarding model parameters as fixed values, Bayesian Neural Networks (BNNs) regard
them as probability distributions. Referring to Eq. 1.1, the integral over ω is intractable, yet it can be
estimated by taking the average of a limited set of parameter configurations {ω1, . . . ,ωJ} in practical
terms, where there are J sets sampled from the posterior distribution. The approximation for the
predictive distribution can be expressed as follows:

P(y∗|x∗,D) =
∫

P(y∗|x∗,ω)P(ω|D)dω

≈ 1

J

J∑
j=1

P(y∗|x∗,ω j ) (1.11)

BNNs are elegant and easy to formulate, yet their inference is non-trivial. In recent years, the progress
in variational inference [109] has enabled a recent revival of BNNs. The variational approach takes a
known distribution Q(ω|φ) and finds the parameters φ that approximates Q(ω|φ) to the true Bayesian
posterior distribution of the weights P(ω|D). This process is optimized by minimizing the Kullback-
Leibler (KL) divergence between variational and true posteriors, which is also known as the expected
lower bound (ELBO) loss:

LELBO = ∑
(x,y)∈D

DKL(Q(ω|φ)||P(ω))−EQ(ω|φ)(logP(y |x,ω)) (1.12)

However, the integral over ω is still unavoidable when taking derivatives with respect to φ. To
optimize this loss function, Blundell et al. [19] proposed Bayes by Backprop, by leveraging the re-
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Figure 1.4: Illustration on Bayesian Neural Network (BNN) [19]. In a standard NN, each weight has a
fixed value. In most BNNs, the weights follow a known distribution, such as the Gaussian distribution, and are
assumed to be mutually independent.

Figure 1.5: Illustration on Deep ensembles [123]. Here is a case of the regression task.

parameterization trick [115] and assume Q(ω|φ) a Gaussian distribution. A simple illustration in
Figure 1.4 shows the comparison between normal NN and BNN. During inference, these parameter
distributions are sampled to generate a distribution of predictions.

MC-Dropout is another approach to approximate the true posterior. Dropout [217] is a regularization
technique commonly used during training to prevent overfitting. Dropout layers apply a form of
Bernoulli distribution with a certain probability, i.e., the dropout rate, to sample the input feature
maps. In MC-Dropout, the dropout layers remain activated during inference, and we can do forward
propagations multiple times to have different predictions, as shown in Figure 1.3.

This process introduces stochasticity into the prediction process, effectively simulating the idea that
different predictions are generated by different neuron subsets of the DNN. We can achieve the mean
and the variance of the sampled predictions, and the latter can be regarded as the epistemic uncertainty,
which represents the uncertainty of DNN’s internal structure and parameters.

1.3.2 Ensemble-based approaches

Ensembles can mimic and attain the properties of BNNs [61]. Deep Ensembles (DE) [123] is a pop-
ular and pragmatic alternative to BNNs. Figure 1.5 demonstrates the DE of the DNNs with modified
output space using Gaussian distribution assumption. The idea of the DE is to train multiple DNNs
using different random seeds. The stochasticity comes from the random initialization and the stochas-
tic gradient descent during training, and results in diverse DNN parameters after the training [61].
These separate networks explore different regions of the parameter space, effectively sampling from
the space of possible model configurations. Moreover, Allen-Zhu and Li [4] recently proved that
the ensemble can learn the multi-view of training data and provide better test accuracy and diverse
knowledge of the given data. By combining the predictions of these different models, we can obtain
a more reliable estimate of uncertainty, even if we cannot directly compute the posterior distribution.
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However, despite the high accuracy and good uncertainty quantification performance the DE pro-
vides, its need for high computational cost during both training and inference makes the deployment
difficult. Many following works try to decrease the cost and preserve the performance. Snapshot
ensembles take the intermediate checkpoints or the final checkpoints using adjusted learning rates in
order to save the training-time cost [71, 99]. TRADI [64] computes the posterior distribution of the
weights by tracking their trajectory during training. Multi-head networks are also applied to intro-
duce the diversity of the parameters within one DNN [104, 133]. The ensembles composed of small
models can also achieve performances comparable to a single large model [117, 150]. OVNNI [65]
shows that the ensembles using one-vs-all models can outperform the deep ensembles with the same
amount of model components. Ensemble Distillation [159] distills the distribution of the predictions
from an ensemble into a single model and retains both the improved accuracy and the information
about the diversity of the ensemble. BatchEnsembles [237] addresses computational and memory
overhead through multiple low-rank weights tied to a backbone network. Packed-Ensembles [124]
leverage grouped convolutions to parallelize the ensemble into a single shared backbone and forward
pass to improve training and inference speeds. It is a recently proposed strategy to design and train
lightweight structured ensembles by carefully modulating the dimension of their encoding space.
More and more solutions manage to mirror and approach the main task and uncertainty quantification
quality of DE in a computationally efficient manner close to a single DNN in terms of memory usage,
number of forward passes, and image throughput.

1.4 Post-hoc uncertainty quantification solutions

The DNNs have more and more parameters, and the structure becomes more and more complex.
For specific vision tasks, the researchers design sophisticated architecture for the DNNs in order
to achieve better accuracy on the corresponding benchmarks. Even though for classification-based
models, the normalized outputs, such as the Softmax outputs, can be regarded as the confidence
measure [88] of the final decision, for the regression models, it lacks outputting more information
on uncertainty besides a point estimation. Adjusting the main task model to achieve uncertainty
estimates is not guaranteed not to bring negative effects on, for example, changing the robustness and
the accuracy of the main task model.

For example, some modifications to existing models may lead to instability in model training, diffi-
culty in searching for hyperparameters, or a decrease in the main task accuracy, etc. Post-hoc solutions
can avoid adjusting or re-training the DNNs to achieve uncertainty estimates.

We classify post-hoc solutions into supervised-learning-based and non-learning-based methods. The
former is based on auxiliary neural networks, while the latter is based on observations such as gradi-
ents during backpropagation, mostly achieving uncertainty estimates based on empirical experience.
Both types of solutions have pros and cons. Supervised-learning-based solutions need to train an
auxiliary DNN, yet their performance is usually better than the non-learning-based solutions. The
non-learning-based ones do not need to design or train extra DNNs, but they usually require more
inference time due to the sampling or other operations.

1.4.1 Supervised-learning-based post-hoc methods

Despite the various DNN architectures existing in supervised-learning-based solutions, this type of
solution is also based on the Bayesian framework. Given a trained main task DNN, we assume the ω
in Eq. 1.1 is fixed and optimized, and we denote it as ω̂. Therefore, we can re-write P(ω|D) in Eq. 1.1
as:

P(ω|D) = δ(ω− ω̂) (1.13)
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Figure 1.6: Illustration on SLURP procedure [252].

where δ(·) is the Dirac function. In this case, the Eq. 1.1 and Eq. 1.4 can be re-written as follows in
Eq. 1.14 and Eq. 1.15, as also provided by Malinin and Gal [157]:

P(y∗|x∗,D) ≈ P(y∗|x∗,ω̂) (1.14)

P(y∗|x∗,D) =
Ï

P(y∗|α)P(α|x∗,ω)P(ω|D)dωdα

=
∫

P(y∗|α)P(α|x∗,D)dα (1.15)

As the assumption shown in Eq. 1.13, the distribution given by the DNN parameters ω is transferred
as point estimates, which is the basis of post-hoc solutions, i.e., no adjustment and re-training on the
given trained main task DNN. In theory, these solutions omit the epistemic uncertainty estimates dur-
ing modeling. Yet during training, total uncertainty could be involved, and according to the empirical
observations in the experiments, we can see that post-hoc solutions are already able to achieve high
performance on OOD examples detection.

Aleatoric uncertainty modeling solutions Normally, the prediction errors on the training set are
the most important training targets for the auxiliary DNNs. The prediction error1 ϵ = (y − fω̂(x))2

has two perspectives to explain. Firstly, we can take it as the total uncertainty. The aleatoric and
epistemic uncertainty principally corresponds to the data noise and the imperfect model design (w.r.t.
the impossible perfect model parametersω∗). Another one is just the aleatoric uncertainty. According
to the Eq. 1.2, the ϵ can replace the (x−µ)2 term. In this case, the auxiliary DNN will only provide
the estimation for σ2

i , and the ground truth for σ2 is the corresponding prediction error ϵ. Thus, the ϵ
can be regarded as the aleatoric uncertainty.

In practice, during training the main task DNN, the epistemic uncertainty of the model’s outputs
will decrease. This also makes it difficult for the auxiliary DNN to learn useful information and
generalize to other scenes or patterns, but can only provide uncertainty estimates for cases where
aleatoric uncertainty may occur, such as the intersection of the objects in semantic segmentation and
depth estimation tasks. We consider that aleatoric uncertainty makes up the vast majority of the
prediction error ϵ, and we do not expect epistemic uncertainty in ϵ learned by the auxiliary DNN to
generalize well.

Based on Eq. 1.14 and the above descriptions, we proposed Side Learning Uncertainty for Regression
Problems (SLURP) [252]. Figure 1.6 shows the general architecture of the SLURP, which takes both
the input image and the output of the main task DNN as the inputs of the auxiliary network. We will go
through the details in Chapter 3. Additionally, there are some previous works for classification tasks,
for instance, the ConfidNet [41, 42] as shown in Figure 1.7. Different from SLURP, ConfidNet only
uses the intermediate features as the inputs of the auxiliary networks. Yet in SLURP, we observe that
taking the output of the main task DNN as the input can greatly improve the uncertainty quantification

1We can also take the absolution error here, i.e., ϵ= |y− fω̂(x)|. For simplicity in the later descriptions, we use the square
error.
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performance, especially on pixel-wise tasks. In short, a task-specific auxiliary DNN is designed to
capture better the uncertainty, especially for pixel-wise tasks. The auxiliary DNN learns the prediction
errors, which is the total uncertainty in theory, yet we cannot ensure that the learned total uncertainty
can be well generalized to other scenarios, but only the empirical observations are provided.

Figure 1.7: Illustration on ConfidNet. ConfidNet takes the features from a trained main task DNN as the
input. Lconf represent the loss between the predicted confidence score and the true class probability given by
the main task DNN [41].

There are some other works based on the error learning principle, and we are going to go through them
here. Mono Uncertainty [191] aims at uncertainty quantification for self-supervised monocular depth
estimation. The idea is to take the main task DNN as the teacher network and an identical DNN as
the student network. The student network takes the output of the teacher network as the depth ground
truth and models the output space the same as Kendall and Gal [113]. Hu et al. [96] also take the
student-teacher strategy, take the ensemble of the main task DNNs as the teacher, and let the student
DNN learn the prediction error given by the teacher networks. The main problem with these methods
is that they do not model epistemic or distributional uncertainty. In applications, the auxiliary DNNs
cannot guarantee to provide correct uncertainty estimates for OOD objects that appear.

Some solutions are proposed to modify the auxiliary DNNs. BayesCap [229] replaces the Gaussian
distribution assumption with the generalized Gaussian distribution since the generalized Gaussian
distribution is a long-tailed distribution, which can help the auxiliary DNN fit the biased prediction
error and provide better uncertainty on the patterns or samples with higher prediction error. Yet,
there is still no modeling on the distributional or epistemic uncertainty estimation. Qu et al. [197]
proposed a training strategy for auxiliary DNNs using meta-learning. By building virtual training
and validation sets during training, the new training procedure highly improved the performance of
the auxiliary DNNs. The following work provided by the same group [196] extends the proposed
strategy by introducing an additional loss function to help auxiliary DNNs fall on a flattened loss
landscape when encountering hard examples. This new strategy shows an improved OOD detection
performance. Besnier et al. [13] proposed another improved auxiliary DNN training strategy that can
be applied to semantic segmentation. Specifically, they performed data augmentation on the input
images for training the auxiliary DNN, and the content of the data augmentation was the adversarial
noise oriented to the main task DNN. We consider that these new training procedures are more general
and can be applied to the auxiliary DNNs both with or without distributional/epistemic uncertainty
modeling.

Epistemic/Distributional uncertainty modeling solutions Epistemic uncertainty modeling is not
common in post-hoc solutions, since the basis of this solution is assuming the model parameters to
be fixed. Yet, distributional uncertainty modeling is still possible in auxiliary DNNs and provides
well OOD example detection performance [108, 157, 209]. Shen et al. [212] proposed an auxiliary
network to model the distributional uncertainty for the trained main task DNN. They extract and fuse
the feature maps from different layers of the main task DNN, and send the fused features to the uncer-
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tainty estimation head. The output space is modeled as a Dirichlet distribution, as introduced in the
previous section. For the regression tasks, we modified the auxiliary DNN proposed in SLURP [252]
to Discretization-Induced Dirichlet pOsterior (DIDO) [254]. We will go through the details in Chap-
ter III.5.

Furthermore, there are some other auxiliary DNNs. KLoS [40] learn the true class evidence for the
evidential classification networks based on the fact that according to Joo et al. [108], the upper
bound of the evidence of the true class can be calculated. Thus, similarly to ConfidNet, which learns
the true class probability, it is also possible to learn the true class evidence but oriented only to
the evidential classification models. Direct Epistemic Uncertainty Prediction (DEUP) [107] uses
the density estimator [201] and the model variance estimator to construct the auxiliary DNN. The
authors reported good uncertainty quantification performance for the sequential model and also for
reinforcement learning models. However, it is hard to adjust the principle to the pixel-wise task
because of the density estimator.

In conclusion, in supervised-learning-based post-hoc solutions, various auxiliary DNNs are proposed
to obtain the uncertainty estimates without adjusting and re-training the main task DNN. The develop-
ment of these solutions is similar to that based on the output space of the main task models. Auxiliary
networks have also evolved from simple aleatoric uncertainty modeling to modeling simultaneously
aleatoric uncertainty and distributional uncertainty. There are also some works that improve the train-
ing methods of the auxiliary DNNs so that they can learn better on imbalanced samples and generalize
better to more complex scenarios.

1.4.2 Non-learning-based post-hoc methods

There are two general types of solutions for non-learning-based post-hoc methods, namely sampling-
based and gradient-based. Both of them are scalable to both image-level and pixel-wise tasks.

Sampling-based post-hoc solutions The representative work for the sampling-based solutions is
the Sensitivity as a Surrogate of uncertainty estimation [167], which aims at uncertainty quantification
for regression tasks. In this work, the authors proved that two Pearson correlations are proportionally
related. One correlation is between the true prediction error and the variance of the model output.
Another correlation is between the variance of the model output given a clean input and the variance
of the model output given a perturbed input or perturbed model layers. This relation between the
two correlations represents the link between the sensitivity and the uncertainty. In this case, without
having the ground truth, we can also achieve the uncertainty estimates according to the sensitivity
of the model by perturbations. Specifically, there are three ways of the perturbation. In the case of
having a black-box trained model, i.e., one cannot get access to the architecture of the model, we can
apply simple data augmentation to the input images, for instance, rotations [39] and flipping. For the
grey-box trained models, i.e., one can get access to the model architectures, we can apply the dropout
layers [217] or the Gaussian noise layers to the intermediate layers of the given DNN. After multiple
forward propagations, the variance of the outputs can be regarded as the sensitivity of the model.
Using the relation between the sensitivity and the uncertainty, we can consider this variance as the
uncertainty estimation of the output. Figure 1.8 illustrates the inference procedures.

Gradient-based post-hoc solutions The gradient-based solution is another uncertainty quantifica-
tion strategy. With once or twice forward and backward propagations, one can achieve uncertainty
quantification with an empirical good quality. These approaches are based on a basic consensus
that gradients can provide valuable insights into a model’s familiarity and certainty about the input.
Oberdiek et al. [181] and Lee and AlRegib [129] provided solutions for the image-level classifica-
tion task. Both of them use one forward and backward propagation to collect the gradients given
by different layers. Oberdiek et al. [181] proposed to use the gradient of the NLL at the predicted
class label, i.e., take the current prediction result as the true class label 1, then calculate the NLL
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Figure 1.8: Method description of Sensitivity as a Surrogate of uncertainty estimation [167]. Applying
Infer-transformation T (left) and infer-noise or infer-dropout P (right) to a trained DNN F during inference.

Figure 1.9: Inference procedure of gradient-based uncertainty for monocular depth estimation [92]. T(·)
and T−1(·) are the data transformation and its inverse operation. Here the flipping is chosen. x, d, g, and u
represent the input image, depth map, gradient map and uncertainty map, respectively.

loss. Yet, the reported results underperform the entropy over the Softmax outputs. We argue that the
OOD examples might provide high confidence, resulting in fake gradient information, which shows
the high familiarity from the model given this input. Lee and AlRegib [129] modified the solution by
proposing the so-called confusing label to form the loss function. In detail, the confounding labels
are a kind of multi-hot or zero-hot vectors, which can include multiple classes or none. Given the
number of class C, we have the new target y[new] = {0,1}C with n number of 1, and n ∈ {0, . . . ,C}\{1}.
Then, the loss function given the input x becomes:

L = 1

C

C∑
c=1

(y [new]
c · log(ŷc )+ (1− y [new]

c ) · log(1− ŷc )) (1.16)

where ŷ is the DNN output vector.

The authors argue that by using confounding labels and familiar inputs, the model only needs to learn
the relationship between the features it has learned and the confounding labels. Yet, if the DNN is
unfamiliar with the input, it needs to learn new features to represent the input and associate it with
confounding labels correctly. The squared L2 norm of the gradient is calculated, then the results from
different intermediate layers are concatenated to represent the given input.

Closer to the topic of this thesis is the gradient-based uncertainty for monocular depth estimation [92].
Figure 1.9 illustrates clearly the procedure. The input images consist of the original one and the
augmented one. After forward propagation of the DNN, we can achieve two different outputs, and
the outputs construct the loss. The DNN backpropagation minimizes this loss. We can extract the
gradients from the intermediate layers and finally obtain the uncertainty estimation map after max-
imization, pooling, and normalization. On the main task model of unsupervised monocular depth
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estimation, the quality of uncertainty estimations obtained by this method outperforms that of meth-
ods using auxiliary networks [191]. Mainly based on previous work in classification tasks, the author
provides extensions and empirical conclusions of this method on monocular depth estimation tasks.
The research also discusses what data augmentation methods produce the best uncertainty estimates,
and it shows that simple image flipping works best.

The non-learning-based post-hoc method is a scalable uncertainty quantification method. This method
usually requires more than one forward or backward propagation, and more effective methods usually
require the main task DNN to be a gray-box model rather than a black-box model, i.e., the intermedi-
ate features can be obtained. In addition, there is currently no clear connection between this method
and Bayesian methods, and the results are usually empirical. We believe that finding a reasonable
way to combine this method with Bayesian-based methods will be a valuable research direction.

1.5 Challenges in uncertainty quantification for regression tasks

We consider that there are two main challenges in uncertainty quantification for regression tasks.
The first one is the uncertainty quantification benchmarks on the In-distribution dataset. We argue
that learning-based and non-learning-based solutions should be considered and compared separately.
Based on the ID dataset, learning-based solutions can get access to the ground truth and the cor-
responding prediction errors, which are strongly related to metrics such as AUSE, which will be
introduced in the next chapter. Merging the two types of solutions will cause an unfair comparison.
Even though some benchmarks are provided in the literature [86], the community still lacks the ones
for pixel-wise tasks and the corresponding robustness analysis.

The second challenge is about OOD example detection in regression tasks. OOD example detection
solutions in classification tasks are developing rapidly. The proposed solutions are far more than
the types we have mentioned in the above sections. For example, the solutions based on the feature
space [131], based on the output space [140, 147], and based on the combination of the feature and
the output space [55, 240], etc. However, it is not intuitive to know whether these solutions could be
applied to regression tasks. In conclusion, we consider that the fair and standard evaluation of the ID
dataset and exploration of the OOD example detection for regression tasks are the current challenges.
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Chapter 2

Evaluation for uncertainty quantification
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In this chapter, we introduce evaluation metrics to assess the quality of uncertainty quantification.
We also go through the commonly used datasets in uncertainty quantification for different computer
vision tasks. At the same time, we present a new synthetic dataset, dubbed multiple uncertainty for
autonomous driving (MUAD) dataset. We provide the main task, and the uncertainty quantification
benchmarks for the proposed dataset, and some insights from the results. The fair and complete
uncertainty quantification evaluation is still a challenge, especially for regression tasks.

2.1 Evaluation for uncertainty quantification

There are usually two perspectives for evaluating the uncertainty or confidence of model outputs. The
first part is to evaluate the calibration degree on the in-distribution dataset, such as the test set or
validation set. The second part is to evaluate the uncertainty performance on the out-of-distribution
(OOD) dataset.

2.1.1 Evaluation on In-Distribution dataset

Evaluating the uncertainty quantification on the ID dataset is more about the model calibration [83,
121]. Guo et al. observed that modern DNNs, such as the ResNet [87], are over-confident in their
predictions, which provide uncalibrated results. For a calibrated model, its confidence should match
its accuracy. For instance, if we have a DNN output with class cat and confidence 0.2, it means that,
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among all the outputs with confidence 0.2, the average accuracy of being a cat should also be 0.2. We
call the prediction overconfident if the average accuracy is lower than the corresponding confidence,
and vice versa. Formally, we have:

P(ŷ = y |p̂ = p) = p ∀p ∈ [0,1] (2.1)

where the ŷ is the DNN class prediction, p̂ is the corresponding confidence. However, Eq. 2.1 is a
perfect case. To measure the gap between the calibrated confidence and the current one, we can use
the Expected Calibrated Error (ECE) to describe this degree of matching:

ECE=Ep̂ [|P(ŷ = y |p̂ = p)−p|] (2.2)

In practice, we have to binarize the confidence scores into M sets, and we denote Bm as the mth set.
The expectations in Eq. 2.2 can be re-written as:

ECE=
M∑

m=1

|Bm |
N

|acc(Bm)− con f (Bm)| (2.3)

where: acc(Bm) = 1

|Bm |
∑

i∈Bm

I(ŷi = yi )

con f (Bm) = 1

|Bm |
∑

i∈Bm

p̂i

where I(ŷi = yi ) is the Indicator function which is equal to one if ŷi = yi and zero otherwise.

In terms of classification, the calibration diagnosis method is relatively intuitive, the Softmax or
Sigmoid output can be seen as the confidence level, and it needs to be consistent with the accuracy
obtained by the output set with this confidence [83].

Regression calibration evaluation In the regression setting, Kuleshov et al. [121] consider that to
study the regression calibration, we need to evaluate the cumulative distribution function (CDF) of the
DNN outputs. Then we evaluate if quantiles of the CDF have a proportion of data corresponding to the
confidence score. Following the classification settings, to achieve the CDF, we construct the Gaussian
distributions with the main task prediction ŷ as means, and the uncertainty estimation values p̂ as
variances. Note that, we use p̂ to make the notations consistent, yet here the p̂ could be any positive
value, rather than bounded between 0 and 1. We consider that the ground truth y is sampled from the
corresponding Gaussian distribution. We also let p be a real value between 0 and 1, representing a
confidence score. We denote CDF−1 the inverse CDF such that CDF−1(p) = inf{y |p ≤ CDF(y |ŷ , p̂)}.
Formally, a regression model is calibrated if:∑N

i=1 I(yi ≤CDF−1(p))

N
→ p ∀p ∈ [0,1] (2.4)

where I(yi ≤ CDF−1(p)) is the Indicator function which is equal to one if yi ≤ CDF−1(p) and zero
otherwise.

In the case of an ideally calibrated model for which the observed confidence level matches the ex-
pected confidence level, the calibration curve will be a diagonal line. To define the calibration degree
of an uncertainty estimation method, we compute the area between the curves made by different
uncertainty estimation approaches, and the ideal one will be a good idea. We call the sum of the
distances for each confidence level the calibration error.

Area Under the Sparsification Error curve in pixel-wise regression tasks The Sparsification
curve and the corresponding Area Under the Sparsification Error curve (AUSE) are commonly used
as an uncertainty evaluation approach for pixel-wise regression tasks. It was first proposed by Aodha
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et al. [152] for evaluating the uncertainty quantification quality in the optical flow task. The following
works, such as MonoUncertainty [191], extend this metric to the monocular depth estimation task.
The core of AUSE is to measure the consistency between the predicted uncertainty and the ground
truth error. Thus this metric can only be applied on the ID dataset. To build the predicted sparsification
curve, first sort the data points in descending order of predicted uncertainty. Then, a certain proportion
of the pixels with the highest current uncertainty are removed, and the current average prediction error
is recalculated to construct the y-axis of the curve, while the proportion of removed pixels is the x-
axis of the curve. When the pixels are removed according to their ground truth prediction error, we
can obtain the oracle curve. The AUSE is then defined as the area between the oracle curve and the
predictive curve. Depending on the different prediction error metrics, such as root mean square error
(RMSE), absolute relative error (AbsRel), etc., different AUSE can be obtained, and we can denote
them as AUSE-RMSE, AUSE-REL, etc.

In addition to AUSE, there are some other metrics, such as Uncertainty Calibration Error (UCE) [125]
and Area Under the Random Gain (AURG) [191]. We will introduce them in Chapter 5, and we also
apply them to evaluate the uncertainty quantification.

2.1.2 Evaluation on Out-Of-Distribution examples

OOD example detection task and its evaluation are more well-known tasks in classification than in
regression. Following the classification tasks [89, 247], we separate the evaluation of uncertainty
quantification for regression tasks on OOD data into image-level and pixel-wise.

Image-level uncertainty quantification evaluation of OOD examples For image-level tasks, the
definition of the OOD examples is similar to the one proposed in classification tasks [223]. In detail,
Techapanurak and Okatani categorized the OOD examples into three types: irrelevant inputs, exam-
ples with novel classes, and examples with domain shift. We argue that this definition also works
in image-level regression tasks. For example, in the age estimation, the DNNs are trained on a face
dataset composed of people from ages 5 to 10. In this case, the irrelevant inputs can be the MNIST
handwritten digits dataset [126], the examples with novel classes can be older people images, and the
last case could be some cartoon children images.

The image-level uncertainty quantification evaluation on OOD data is essentially a binary-class clas-
sification. When we want to evaluate the uncertainty, we take the in-distribution dataset as class zero
and the OOD dataset as class one. Then, we can apply the metrics that work for evaluating classifi-
cation performance. Area Under the Receiver Operating Characteristic Curve (AUROC), Area Under
Precision-Recall curve (AUPR) and the False Positive Rate at 95% Recall (FPR95) are three widely
used metrics for evaluating the OOD example detection task. In practice, we need to find a threshold
of the predicted uncertainty to indicate whether the sample is an OOD example. In this case, we need
to find an OOD dataset to build the receiver operating characteristic curve and find the optimal point
on the Pareto front as the threshold.

Pixel-wise uncertainty quantification evaluation of OOD examples For pixel-wise tasks, the
definition of the OOD examples is relatively vague. Different from the semantic segmentation task,
where the OOD examples are semantically far from the ID examples, the OOD examples in regression
tasks are not necessarily to be semantically different. For example, on the MUAD benchmark [67],
we observe that the examples that are OOD in the semantic segmentation task will not make the main
task or the uncertainty quantification a big difference in the monocular depth estimation task. We
argue that there are two ways to define the OOD examples on pixel-wise tasks, the images from the
OOD dataset and the OOD patterns from the same distribution. The former is similar to the image-
level tasks. For instance, our monocular depth estimator is trained on the MUAD dataset [67], which
is a synthetic urban dataset, and the OOD data can be sampled from the NYU in-door dataset [176].
Concerning the OOD patterns from the same distribution, they are very specific and need to be picked
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(a) RGB image example from KITTI dataset. (b) The corresponding ground truth depth map.

(c) The corresponding semantic segmentation map. (d) Overlapped ground truth map for uncertainty evaluation.

Figure 2.1: Visualization on the ground truth building for evaluating OOD example detection on the
monocular depth estimation task. On the sub-figure (d), green points represent the depth ground truth, i.e.,
the in-distribution part. White parts represent the sky pattern, which is the OOD part.

according to the task. For example, in monocular depth estimation, we define the sky pattern in the
image as the OOD pattern, as in our proposed work DIDO [254]. The depth of the sky is undefined
and the DNN never sees this pattern or the positions of this pattern during training. We are sure that
the depth prediction on this pattern is unreliable, and the uncertainty quantification on this pattern
should be consistent and numerically highest on the prediction map. Even though we find a case of
the OOD example on a pixel-wise task, the definition is still unclear, and it is also useful to find more
cases like this in other tasks, such as optical flow estimation and the crowd counting task.

The evaluation of the uncertainty estimates for OOD examples on pixel-wise tasks has two types
according to the two definitions in this last paragraph. For the OOD dataset case, we can take the
uncertainty quantification ground truth on the ID dataset as 0 and the ones on the OOD dataset as 1.
Then, we use AUROC, AUPR, and FPR95 to evaluate per-pixel uncertainty and take the average as
the final score. For the OOD pattern case, we take the uncertainty quantification ground truth on the
sky area as 1 and 0 for the pixels with the main task ground truth. Figure 2.1 provides an example
taken from the KITTI dataset, where the sky part is annotated. Thus, we can take this image for
evaluation.

Overall, the uncertainty quantification evaluation for OOD examples is different on image-level and
pixel-wise tasks in regression. We use binary-class classification metrics for both cases, while the
difference is in the definition of the OOD examples. On pixel-wise tasks, the definition of the OOD
examples is different from the semantic segmentation, making this type of OOD example detection
evaluation uncommon.

2.2 Evaluation datasets for uncertainty quantification

2.2.1 Datasets for calibration evaluations

For classification tasks, evaluation usually includes the calibration degree of the model and the OOD
example detection performance. The former is measured on the in-distribution dataset, i.e., the test
set or the validation set of the training dataset. ImageNet [48], CIFAR10, and CIFAR100 [120] are
the commonly used in-distribution datasets. The robustness of the calibration degree can also be
evaluated by applying the image corruption techniques to these datasets. For instance, the following
eighteen perturbations with five severities can be applied to the validation or the test set: Gaussian
noise, shot noise, impulse noise, iso noise, defocus blur, glass blur, motion blur, zoom blur, frost,
fog, snow, dark, brightness, contrast, pixelated, elastic, color quantization, and JPEG. Hendrycks
and Dietterich [90] provide a benchmark for the model robustness based on the previous-mentioned
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datasets.

Similarly, on the semantic segmentation task and the object detection task, the perturbations can also
be applied to the images. Michaelis et al. [169] provide benchmarks for the robustness of the object
detection task. The authors follow the image corruption settings in [90] to build Pascal-C, Coco-C,
and Cityscapes-C based on the original clean datasets [43, 59, 143]. For the semantic segmentation
task, except for the above-mentioned corruptions, Sakaridis et al. [206] and Hu et al. [97] also pro-
vide the synthesized foggy and rainy weather conditions on the original Cityscapes dataset, named
FoggyCityscapes and RainyCityscapes, respectively.

For regression tasks, the consistency between the predicted uncertainty and the prediction error is
evaluated on in-distribution datasets. For the optical flow task, Ilg [104] and Yu et al. [252] evaluate
this consistency on Sintel [24], KITTI [227] and FlyingChairs [54] datasets. For the monocular depth
estimation task, Malini and Gal [156] and Amini et al. [5] use NYU indoor dataset [176]. Poggi et
al. [191] and Yu et al. [252] use KITTI [75]. Moreover, in the RoboDepth challenge [118], similar
corruptions as in [90] are applied to the KITTI and NYU datasets, while the goal is to measure the
robustness of the main task prediction and test images are in a smaller resolution. In our proposed
DIDO [254], we apply the same corruptions to the KITTI dataset and keep the original resolution for
the uncertainty quantification evaluation.

2.2.2 Datasets for out-of-distribution example detection evaluations

For image classification tasks, according to Techapanurak and Okatani [223], based on the in-
distribution dataset, we can use irrelevant inputs, examples with novel classes, and examples with
domain shift to build the OOD datasets. For instance, the models trained on CIFAR10 are often eval-
uated on MNIST [126], iNaturalist [233], SUN [243], Places [259], and Textures [38], which are the
irrelevant inputs. The evaluation can also be applied based on the CIFAR100 dataset, which belongs
to a similar color space distribution yet contains novel classes. The domain shift is to turn the dataset
to a closer domain. For example, CIFAR10 is a real-world tiny image dataset, while a dataset with
a closer domain could be the one that has similar content but is composed of stick figures or comic-
style pictures. In the semantic segmentation task, OOD examples are defined as objects with different
semantics from the training dataset. For instance, in our proposed MUAD dataset [67], the trains,
bicycles, motorcycles, and animal patterns are not in the training and validation dataset but only exist
in the OOD test set. More datasets will be mentioned in Section 2.3.

In regression tasks, we provide the KITTI Seg-Depth dataset for evaluating the OOD pattern detection
performance using both the KITTI depth dataset and KITTI segmentation dataset [3]. This design
follows the examples with novel classes setting in [223]. The evaluation based on the dataset change
OOD detection can be applied to the two different datasets with different scenarios. For example,
as we mentioned in Section 2.2.2, we can choose two datasets with outdoor and indoor scenarios,
respectively, based on the irrelevant input setting, for example, NYU [176] and KITTI [75] datasets.
Meanwhile, we can also follow the setting of the examples with domain shift, such as the synthetic
MUAD [67] dataset and the real-world KITTI dataset.

As we have seen, perturbations applied to images (such as different weather conditions) are often
post-added. At the same time, we believe that the community lacks a dataset that has OOD objects,
different weather conditions with the same distribution as the dataset and supports both regression and
classification tasks. In the next section, we present the MUAD dataset [67]. It contains the previous-
mentioned conditions and aims to have a fair and complete evaluation for uncertainty quantification
solutions.
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2.3 Multiple uncertainty for autonomous driving (MUAD) dataset

2.3.1 Introduction

For autonomous driving, uncertainty estimation and reliability are essential for safely deploying
DNNs in real-world conditions. Here, DNNs are expected not only to reach high predictive per-
formance and real-time inference speed but also to deal effectively with the two types of uncertainty
under various forms (noise, distribution shift, out-of-distribution samples, sensor degradation, etc.).
In the last years, numerous works have moved the needle towards more reliable predictive uncertainty
for DNNs [13, 19, 63, 70, 113, 123, 171, 172, 237]. However, evaluating such methods is not obvious
as there is no ground truth for uncertainty, and the different sources of uncertainty are conflated due
to prior data curation.

Most datasets aim to improve the predictive performance of DNNs [43, 77, 178, 251], only recently
datasets addressed the robustness of DNNs under unseen weather conditions [45, 207, 208] or ob-
jects [18, 30, 89]. However, these datasets are either limited to only one task, typically semantic
segmentation, or only focus on a single type of uncertainty, or are not precise enough in the different
levels of uncertainties.

We introduce a new dataset to study uncertainty estimation methods for perception in autonomous
vehicles and address these limitations in our dataset. Our dataset, MUAD (Multiple Uncertainties
for Autonomous Driving), is composed of 3,420 images for training, 492 for validation, and 6,501
for testing. The training and validation sets contain only the daytime and nighttime clear-weather
urban scenarios. Yet the images in test sets not only cover day and night conditions, but they also
contain different weather conditions and multiple OOD objects, which allows us to quantify all levels
of uncertainty.

Contributions

1. We introduce MUAD: a new automotive dataset with annotations for multiple tasks and multi-
ple uncertainty sources.

2. We perform a wide range of benchmarks on the MUAD dataset for multiple computer vision
tasks and settings (semantic segmentation, depth estimation, object detection) to further support
research in this area.

3. We conduct an extensive study on uncertainty quantification for pixel-wise classification and
regression tasks.

2.3.2 Related work

A variety of real-world datasets for autonomous driving have been recently released [26, 32, 43, 77,
93, 198, 221, 234, 251]. They have enabled tremendous progress in the area but they typically focus
on a single task, e.g., semantic segmentation [43, 198, 251], object detection [26, 77, 221], motion
prediction [32, 93] and do not have evaluation tracks for uncertainty and out-of-distribution detection.
Synthetic datasets, e.g., GTA-V [202], SYNTHIA [204], virtual KITTI [69] can provide abundant
training data alleviating the need for costly annotation of real images as well as privacy preservation
concerns in the case of real data. Currently, they are mostly designed and used for domain adaptation,
typically imitating the content and classes from a given real dataset. Several datasets have emerged
towards meeting the reliability requirement for self-driving vehicles [18, 30, 89, 189] and evaluate
the performance of semantic segmentation DNNs when facing out-of-distribution objects (OOD).
Other datasets investigate the robustness against different weather conditions, e.g., night [45, 46, 208],
rain [208, 226], fog [206, 208], however, they are often acquired in different locations and conditions
leading to a performance drop that overlaps with the one from the difficult weather conditions.

In order to provide images of the same locations, to address the lack of diversity in real environments
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Foggy Driving[206] 101 ✓ - - - 19 - - ✓ -

Foggy Zurich [45] 40 ✓ - - - 19 - - - -

Nighttime Driving [46] 50 - ✓ - - 19 - - - -

Dark Zurich [207] 201 - ✓ - - 19 - - - -

Raincouver [226] 326 - ✓ ✓ - 3 - - - -

WildDash [257] 226 ✓ ✓ ✓ ✓ 19 - - - -

BDD100K [251] 1346 ✓ ✓ ✓ ✓ 19 - - - -

ACDC [208] 4006 ✓ ✓ ✓ ✓ 19 - ✓ ✓ -

Virtual KITTI 2 [25] 21260 ✓ - ✓ - 14 - ✓ ✓ ✓

Fishyscapes [18] 373 - - - - 19+2 ✓ - - -

LostAndFound [189] 1203 - - - - 19+9 ✓ - - -

RoadObstacle21 [30] 327 - ✓ - ✓ 19+1 ✓ - - -

RoadAnomaly21 [30] 100 - - - ✓ 19+1 ✓ - - -

Streethazard [89] 6625 - - - - 13+250 ✓ - - -

BDD anomaly [89] 810 ✓ ✓ ✓ ✓ 17+2 ✓ - - -

MUAD 10413 ✓ ✓ ✓ ✓ 16+9 ✓ ✓ ✓ ✓

Table 2.1: Comparative overview of the different datasets for uncertainty on autonomous driving.

and to evaluate better the impact on the epistemic uncertainty, some works promoted inpainting of
virtual objects [89] or synthesized weather conditions [225]. In this setting, however, questions may
be raised about the veracity of the result. Therefore, the recent ACDC dataset [208] is composed
entirely of real images taken from the same locations, and includes multiple sources of aleatoric
uncertainty. However, not having any control over the noise level makes it harder to quantify the
link between noise and uncertainty. Acquiring images with uncertainty corner cases is problematic
as these cases are rare (long tail) and also costly to annotate, e.g., 3.3 hours/image [208]. Given this
scarcity, such images are better used for validation as a small test set to assess the reliability of DNNs
before deployment. These system validation stages can be seen as stress tests with corner cases to
mirror challenging real-world conditions. It is thus interesting, even from a more applied standpoint,
to have a synthetic dataset that mimics these rare conditions with some good fidelity constraint to
quantify the robustness of DNNs. Synthetic data is abundant and can allow us to measure finer drifts
in the input distribution. In addition, most such datasets mainly focus on semantic segmentation, while
we propose to address multiple tasks (semantic segmentation, monocular depth, object detection, and
instance segmentation).

In Table 2.1, we provide a summary of the main existing uncertainty datasets. Here, we propose a fully
synthetic dataset called MUAD, integrating different weather conditions with various intensities and
suitable for a multitude of vision tasks and for the comprehensive characterization of their uncertainty.
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Figure 2.2: Number of annotated pixels per class in MUAD.

2.3.3 Multiple Uncertainties for Autonomous Driving dataset description

According to the categorization of the uncertainty in line with the current works of the commu-
nity [73], we propose to use the dataset to better evaluate the results and uncertainty estimations given
by the DNNs in the context of autonomous driving. Let us link the two main types of uncertainty -
aleatoric and epistemic - to the specific context of our application. In the scenario of autonomous
driving, we believe that the aleatoric uncertainty of the DNNs will occur due to different weather
conditions than the ones present in the training set. The epistemic uncertainty of the DNNs should
arise when the class or the appearance of objects in the picture differ from those of the data provided
in the training set. The design of the MUAD dataset is based on this hypothesized relationship be-
tween uncertainty and autonomous driving scenarios. In the remainder of this section, we will detail
the composition of the MUAD dataset.

The goal of MUAD is to confront DNNs in uncertain environments and to characterize numerically
their robustness in adverse conditions, more specifically in the presence of rain, fog, and snow. Photo-
realism is essential for guaranteeing that synthetic datasets are challenging with respect to real-world
conditions and also for keeping them relevant for use in industrial applications. This is particu-
larly important for accommodating weather artifacts [138, 225, 236]. Our dataset is generated us-
ing a physics-based synthetic image rendering engine to produce high-quality realistic images and
sequences. The engine uses an accurate light transport model [155, 235] and provides a physics de-
scription of lights, cameras, and materials. This allows for a detailed simulation of the amount of light
that is reaching the camera sensor. The camera sensor itself is simulated, converting the energy com-
ing from the scene in the form of photons into electrons. Electrons are finally converted into a voltage
that is digitized to produce the digital values that represent the color image. We provide the photore-
alistic rendering descriptions for different weather conditions in Section 2.3.3.3. For each sample in
MUAD, the corresponding ground truth information contains the semantic segmentation, the depth
map, and for some specific classes (pedestrian, car, van, traffic light, traffic sign) the instance segmen-
tation with the corresponding bounding boxes. We follow the standard data split strategy. However,
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Figure 2.3: Illustration of semantic segmentation images of MUAD dataset. The first row is composed of
the original images of the high adv. set. The second row is their corresponding ground truth.

Figure 2.4: Illustration of instance segmentation images of MUAD dataset. The three images are selected
from the high adv. set. We illustrated fog, rain, and snow conditions.

the training and validation set contains only images with normal weather conditions and without some
specific classes, which are denoted as OOD. The test set is organized into seven subsets following the
intensity of the adverse weather conditions:

• normal set: images without OOD objects nor adverse conditions.

• normal set overhead sun: images without OOD objects nor adverse conditions, in which we
simulate the sun with a zenith angle of 0◦, that we denote for the sake of simplicity as overhead
sun.

• OOD set: images with OOD objects and without adverse conditions.

• low adv. set: images with medium intensity adverse conditions (fog, rain or snow).

• high adv. set: images containing high intensity adverse conditions (fog, rain or snow).

• low adv. with OOD set: images containing both OOD objects and medium intensity adverse
conditions (fog, rain or snow).

• high adv. with OOD set: images containing both OOD objects and high intensity adverse
conditions (fog, rain or snow).

In Figure 2.3 and 2.4, we illustrate the instance segmentation and the semantic segmentation of three
images. In Figure 2.5, we show three images from the OOD test set.

The adverse weather conditions are realistic and challenging as they bring a mix of difficult (unknown
during training) environment conditions and perturbation of the visibility in the scene. We argue that
such settings are helpful for autonomous driving since the autonomous system must face and be robust
against a variety of weather conditions and situations.

2.3.3.1 MUAD statistics

Our dataset contains 3,420 images in the train set and 492 in the validation set. The test set is com-
posed of 6,501 images divided as follows: 551 in the normal set, 102 in the normal set no shadow,
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Figure 2.5: Illustration of images with OOD examples from MUAD dataset. The three images are selected
from the OOD set. The animal, rocks, trash bags, and food track are the OOD examples.

Cityscapes

classes
MUAD classes

nb. of images with

the annotations

Road

Bots, Tram Tracks, Crosswalk, Parking Area, Garbage - Road,

Road Lines, Sewer Longitudinal Crack, Transversal Crack, Road, Asphalt hole,

Polished Aggregate, Vegetation - Road, Sewer - Road, Construction Concrete

9,055

Sidewalk Lane Bike, Kerb Stone, Sidewalk, Kerb Rising Edge 8,948

Building

House, Construction Scaffold, Building, Air Conditioning, Construction Container,

TV Antenna, Terrace, Water Tank, Pergola Garden, Stairs, Dog House,

Sunshades, Railings, Construction Stock, Marquees, Hangar Airport

9,089

Wall Wall 1,101

Fence Construction Fence, Fences 8,622

Pole Traffic Signs Poles or Structure, Traffic Lights Poles, Street lights, Lamp 8,984

Traffic light Traffic Lights Head, Traffic Cameras, Traffic Lights Bulb (red, yellow, green) 8,222

Traffic sign Traffic Signs 2,672

Vegetation Vegetation 9,072

Terrain Terrain, Tree Pit 8,377

Sky Sky 8,591

Person Walker, All colors of Construction Helmet, All colors of Safety Vest, Umbrella, People 8,843

Rider Cyclist, Biker 3,470

Car Car, Beacon Light, Van, Ego Car 9,026

Truck Truck 5,533

Bus Bus 0

Train Train, Subway 2,240

Motorcycle Motorcycle, Segway, Scooter Child 2,615

Bicycle Bicycle, Kickbike, Tricycle 2,816

Animals Cow, Bear, Deer, Moose 603

Objects anomalies Food Stand, Trash Can, Garbage Bag 352

Background Others -

Table 2.2: Overview of annotated classes

1,668 in the OOD set, 605 in the low adv. set, 602 in the high adv. set, 1,552 in the low adv. with
OOD set and 1,421 in the high adv. with OOD set. All of these sets cover day and night conditions
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with 2/3 of day images and 1/3 of night images. Test datasets address diverse weather conditions
(rain, snow, and fog with different levels), and various OOD objects. The resolution of all images is
1024×2048.

The dataset aims to provide general and consistent coverage for a typical urban and suburban envi-
ronment under different times of day and weather conditions. Ego-vehicle poses are drawn randomly
within a complex environment, and in the second stage, the field of view is populated stochastically
with dynamic objects of interest following distributions in compliance with their expected behavior.
The pose and context changes, as well as the variation of the models for the objects of interest, ensure
that content diversity is high, in addition to images being photorealistic. The simulator makes use
of approximately 300 different person models and 150 different vehicle models, which are sampled
while varying their visual characteristics.

2.3.3.2 Class labels

The class ontology of MUAD is presented in Table 2.2. MUAD comprises 155 different classes that
we have regrouped into 21 classes. The first 19 classes are similar to the CityScapes classes [43], then
we added object anomalies and animals to have more diversity in the anomalies. In addition to ensur-
ing high content diversity, this ontology facilitates the mapping of MUAD to specific environments
that require or impose a lower number of more generic classes. Consequently, trained models are
easily transferable for existing datasets, and we provide the mapping towards the 21 classes widely
used by the community, e.g., [36, 43, 202, 204]. The dataset statistics for the 21 classes are presented
in Figure 2.2. For the evaluation of OOD detection, we have excluded nine classes (train, motorcycle,
bicycle, bears, cow, deer, moose, food stand, and garbage bags) from the training and validation sets.
These classes are present in the test set as OOD objects. DNNs that process samples belonging to one
of these nine classes are expected to have a low confidence score.

2.3.3.3 Photorealistic rendering

Our physically based approach simulates the weather conditions taking into consideration the amount
of ozone and humidity, among other factors. Regarding the sky, the renderer uses a physical model
of the light coming from the sky. The amount of ozone and humidity in the atmosphere changes the
emissive spectral profile of the sky, impacting the color of the objects in the scene. Apart from ozone
and humidity, there are other factors that the render takes into account, for instance, turbidity and
scattering asymmetry. Regarding the rain and the snow, the simulation of every raindrop allows us
to model physical dispersion. For improved realism, we choose the falling speed and size of raindrops
according to observed real rain [9, 173]. For snow, the same principle applies, but changing, in this
case, the material and the dynamics. Regarding the fog, we use a full volumetric approach for the
simulation where scattering effects are considered. Regarding the level of noise, to the best of our
knowledge, there is no standard procedure to measure the intensity of adverse weather conditions for
driving scenarios. We empirically selected the number of raindrops, snowflakes, and fog intensity
from a human point of view. All the efforts mentioned above improved our dataset realism. A study
[163] was performed that confirmed that our render enhances the realism of MUAD compared to
SYNTHIA.

2.3.4 Experiments

We will provide the semantic segmentation and object detection experiments in the Appendix. Here
we only present the experiments on monocular depth estimation tasks.

2.3.4.1 Supervised monocular depth estimation

We provide results for monocular depth using NeWCRFs [256], which is one of the SOTA on the
KITTI dataset [77]. NeWCRFs does not output uncertainty by default. Similarly to [104, 113, 180],
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Figure 2.6: Visualization of monocular depth estimates on the testing images given by the NeWCRFs
model. The first row and the second rows show the clear weather cases, and the rest show the rainy cases.
The train and bicycle on the last three inputs are semantically OOD examples, which do not exist on the
training and validation set.

we modify the DNN to output the parameters of a Gaussian distribution (i.e., the mean and variance).
We denote the result as single predictive uncertainty (Single-PU). Based on this modification, we train
a Deep Ensembles [123] with three DNNs. We also provide the results from SLURP [252], which
needs two DNNs to predict the depth and the uncertainty, respectively, and MC-Dropout [70]. For
depth evaluation, we use the same metrics as Eigen et al. [56], which are used in many following
works [130, 256]. For uncertainty quality evaluation, we follow the implementation of Poggi et
al. [191]. Table 2.3 lists some of the depth and uncertainty results of the above techniques on our
dataset due to the space limit. We provide the full results of each test set in the Appendix.

We observe that in the presence of OOD, the uncertainty results of Deep Ensembles are comparatively
better, while MC-Dropout provides more robust depth estimations under different perturbations. Fig-
ure 2.6 shows the qualitative results of the depth predictions given by the NeWCRFs model. We can
see that the depth model is more robust on the semantically OOD examples, i.e., even though the train
and bicycle in the images have different semantics than other objects in the training and validation
sets, the predictions given by the depth model for these objects are not much different from other ob-
jects. In comparison, different weather has a greater impact on depth models. As shown in Table 2.3,
the result difference between the OOD set and the normal set is smaller than the difference between
the normal set and the low/high adv. sets. The difference between low/high adv. with OOD sets and
low/high adv. without OOD sets follows the tendency of the one between normal and normal OOD
sets.

We also propose a baseline method for depth domain adaptation from MUAD to KITTI and report
its performance in Table 2.4. Compared to the direct adaptation from Virtual KITTI2 [69], which
is specifically designed based on the target dataset KITTI, the model trained on MUAD can achieve
competitive performance.

2.3.4.2 Self-supervised monocular depth estimation

In this section, we provide the self-supervised monocular depth results for MUAD. In order to provide
a wider variety of urban scenarios, there are no consecutive frames in MUAD, but still provide pictures
taken by the left and right cameras. We provide self-supervised monocular depth results on MUAD in
Table 2.5 using DIFFNet [260] and left-right consistency [79] strategy. DIFFNet is one of the SOTA
on the KITTI dataset. We train a DIFFNet model with 12 images as the batch size, randomly crop the
image to 512*1024, and train 20 epochs in total.
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Methods

normal set low adv. without OOD set

Depth results Uncertainty results Depth results Uncertainty results

d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓
d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓

Baseline 0.922 0.114 3.357 - - 0.786 0.147 5.005 - -

Deep Ensembles [123] 0.929 0.111 3.199 0.291 0.060 0.767 0.156 4.892 0.740 0.105

MC Dropout [70] 0.919 0.119 3.209 0.634 0.061 0.798 0.151 4.580 1.063 0.098

Single-PU [113] 0.905 0.132 3.230 0.313 0.081 0.773 0.159 4.865 0.789 0.112

SLURP [252] 0.922 0.114 3.357 0.467 0.048 0.786 0.147 5.005 1.167 0.090

Methods

high adv. without OOD set normal set overhead sun

Depth results Uncertainty results Depth results Uncertainty results

d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓
d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓

Baseline 0.632 0.207 6.989 - - 0.951 0.090 3.646 - -

Deep Ensembles [123] 0.566 0.243 7.498 1.182 0.153 0.955 0.083 3.479 0.336 0.055

MC Dropout [70] 0.657 0.207 6.278 1.382 0.128 0.948 0.092 3.407 0.786 0.058

Single-PU [113] 0.571 0.248 7.680 1.740 0.171 0.946 0.105 3.546 0.358 0.079

SLURP [252] 0.632 0.207 6.989 1.707 0.128 0.951 0.090 3.646 0.525 0.033

Methods

OOD set low adv. with OOD set high adv. with OOD set

Depth results Uncertainty results Depth results Uncertainty results Depth results Uncertainty results

d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓
d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓
d1 ↑ AbsRel ↓ RMSE ↓ AUSE

RMSE ↓
AUSE

Absrel ↓

Baseline 0.896 0.125 3.616 - - 0.713 2.637 4.764 - - 0.555 0.459 6.916 - -

Deep Ensembles [123] 0.903 0.114 3.447 0.427 0.074 0.709 1.810 4.707 0.692 0.129 0.521 0.331 7.411 1.072 0.151

MC Dropout [70] 0.893 0.145 3.432 0.724 0.080 0.744 3.925 4.364 0.927 0.206 0.610 0.545 6.176 1.245 0.314

Single-PU [113] 0.888 0.132 3.463 0.447 0.095 0.714 4.349 4.716 0.744 0.482 0.529 0.351 7.627 1.347 0.156

SLURP [252] 0.896 0.125 3.616 0.721 0.068 0.713 2.637 4.764 1.072 0.212 0.555 0.459 6.916 1.564 0.151

Table 2.3: Comparative results for monocular depth on MUAD. We use NeWCRFs [256] as the based DNN
for the monocular depth task.

We observe that OOD objects have less impact on the results of monocular depth estimation in the
Self-supervised monocular depth. According to [52], monocular depth estimation based on left-right
coherence is sensitive to illumination conditions, particularly to object shadows. However, our results
on the Normal set and Overhead sun set do not seem to confirm this point. We believe that DNNs
learn depth without necessarily paying much attention to shadows; hence they have no impact on the
performance of the self-supervised monocular depth model.

2.3.5 Discussion

The experiments show that the best main task contender might not always be the most suited against
different sources of uncertainty. Thus, it is important to test thoroughly and adapt the processing
pipeline to the expected type of perturbations. The similar ranking of methods on our synthetic
dataset and on real data (see [62, 89]) is encouraging as it allows us to generalize the analysis per-
formed on MUAD to actual scenarios. An additional benefit of synthetic datasets is related to the
reduced data privacy concerns and regulations that typically affect real-world datasets, in particular in
urban settings that include pedestrians. All these traits allow for faster validation of new algorithms
before their deployment in real-world settings. Finally, a potential different usage of MUAD con-
cerns unsupervised domain adaptation from synthetic to real domains. Our preliminary results are
encouraging.
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KITTI

Training set d1↑ d2↑ d3↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ SILog↓

KITTI [77] 0.975 0.997 0.999 0.052 0.148 2.072 0.078 6.9859

Virtual KITTI 2 [25] 0.835 0.957 0.989 0.129 0.706 4.039 0.177 15.534

MUAD 0.731 0.927 0.983 0.187 1.059 4.754 0.227 18.581

Table 2.4: Comparative results for monocular depth estimation simple domain adaptation from MUAD
to KITTI eigen-split [56]. The first row is the original baseline, and the second and the third rows are the
performance of the model trained directly on Virtual KITTI 2 [69] and MUAD, respectively.

Evaluation sets AbsRel ↓ log10 ↓ RMSE ↓ SqRel ↓ log_RMSE ↓ d1 ↑ d2 ↑ d3 ↑

Normal 0.365 0.111 5.646 2.234 0.350 0.638 0.874 0.919

Overhead sun 0.174 0.079 5.875 1.426 0.249 0.693 0.953 0.978

low adv. without OOD 0.312 0.185 10.472 3.951 0.586 0.442 0.716 0.824

high adv. without OOD 0.510 0.432 15.578 8.513 1.194 0.227 0.417 0.531

OOD 0.312 0.101 6.170 2.663 0.331 0.648 0.899 0.941

low adv. with OOD 1.462 0.192 9.356 6.054 0.601 0.431 0.697 0.807

high adv. with OOD 1.141 0.415 14.415 25.281 1.194 0.236 0.426 0.543

Table 2.5: Self-supervised monocular depth results on all test sets given by DIFFNet [260]. Since the
results are provided by a single solution, we do not make the comparisons here.

2.3.6 Conclusion

In this section, we propose a novel dataset on autonomous driving scenarios named MUAD. In addi-
tion to different urban scenarios, the dataset also contains test images with different lighting condi-
tions and weather conditions. Furthermore, the various semantically OOD examples are also provided
in the test sets. The dataset is synthetic, which means it has more precise and correct annotations than
human annotations. This work covers semantic segmentation, depth estimation and object detection
tasks, making multi-modal domain transfer possible. More importantly, since the OOD examples and
the weather conditions come from the same data distribution as the other parts, we argue that this
dataset can provide a complete and fair evaluation of uncertainty estimates and their robustness.
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Chapter 3

SLURP: Side Learning Uncertainty for
Regression Problems

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Auxiliary uncertainty estimator SLURP . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Problem description and motivation . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Side learner’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Loss design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 1D regression task toy example . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Evaluation protocols for pixel-wise tasks . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Monocular depth estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.4 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.5 Model efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 More visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Introduction

Side learners [41, 107], also called auxiliary networks [42] or meta-models [212], are a kind of
training-based post-hoc approach for uncertainty quantification. A side learner could be regarded
as a post-processing operation applied to the main task model. Therefore, it is a straightforward ap-
proach to provide a precise uncertainty estimation without influencing the performance of the main
task model or further refining its hyper-parameters. However, for some pixel-wise regression tasks,
such as monocular depth estimation and optical flow estimation, this approach may be challenging
because of the importance of the semantic context.

Compared with the uncertainty for time series data that pays more attention to long short-term in-
formation, the uncertainty of image-based tasks should give more consideration to the semantics of
the image. The uncertainty map is based on the prediction map because of the similar higher-level
encoded semantics. However, obviously, the prediction result might miss relevant semantics with
respect to the ground truth, which may have a detrimental effect on the uncertainty estimation. Our
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work intends to fill this gap by introducing SLURP, a general side learning approach for regression
problems able to recover semantic information absent from the main task prediction.

SLURP is not only a specific network architecture facing regression tasks but also a general novel
idea to solve uncertainty quantification problems for pixel-wise tasks. More specifically, the previous
design only uses the single brunch, taking either the image or the intermediate features of the main
task model as the input of the auxiliary networks. We use both the input and the output of the main
task model to feed the auxiliary network in SLURP, which is proven more suitable for pixel-wise
tasks in the experiments.

Contributions

1. With SLURP, we were the first to solve the uncertainty estimation problem for general pixel-
wise regression tasks with an auxiliary network. Since then, multiple works such as [197] have
proposed modifications and alternative strategies and extended the SLURP idea.

2. We proposed a transposable architecture that may be used along with the main task model
without modifying/re-training/affecting the performance of the latter, thus greatly improving
our proposal’s adoption potential.

3. We demonstrate our side learner’s flexibility on two fundamental vision tasks. The extensive
experiments validate our algorithm’s consistent performance in line with SOTA uncertainty
estimation algorithms. The main advantage of our proposed solution is the efficiency and sim-
plicity of its implementation and its competitive uncertainty performance.

3.2 Related Works

Apart from the major uncertainty quantification approaches, we here provide a quick review of the
methods related to side learners.

Side learning for uncertainty estimation

With the development of deep learning, DNNs are becoming more sophisticated, and the training
of DNNs and the selection of hyperparameters have also become essential, such as in optical flow
estimation task [220]. As it avoids changing the main task model structure, a side learner is, in this
respect, a convenient approach to estimating uncertainty.

Most previous works are applied initially to image-level tasks. Yoo et al. [250] design a side learner
for learning the loss supplied by the main task model. However, this work aims to provide a single pre-
dicted loss for the main task, which is unsuitable for pixel-wise uncertainty estimation. DEUP [107]
not only uses a side learner to predict the loss but to obtain the epistemic uncertainty better, it en-
riches the input of the side learner, but it needs to train three models, including a main task model
with aleatoric uncertainty estimator, a data density estimator, and a loss side learner. This has high
requirements for model selection and training.

Like SLURP, which is mainly oriented to or can be extended to pixel-wise tasks, Lee et al. [132] use a
conditional GAN [106] as an auxiliary model. The conditional GAN learns to project the images to the
uncertainty map provided by MC-Dropout [70] on the main task model. The goal is to reduce the time
cost of the MC-Dropout sampling, but its performance can be limited to the uncertainty quantification
quality given by MC-Dropout. Based on [123] and [113], Hu et al. [95] trains sequentially a network
identical to the main task model to fit the prediction error of the main task model ensembles. It can
improve the stability of uncertainty training, but the memory cost of the uncertainty estimator will
increase with the increase of the main task model scale. Corbière et al. [41] introduces ConfidNet,
which can conveniently provide the uncertainty by adding an auxiliary network after the main task
encoder. It shows a good performance, but it initially works only for classification tasks and takes only
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Figure 3.1: Multi-scale ConfidNet applied in domain adaptation for semantic segmentation.

Figure 3.2: An example for the uncertainty quantification in optical flow task.

the image as the input. It has to re-tune the encoder part for uncertainty prediction, so it structurally
depends on the main task network and requires two-stage training. The follow-up work, published
later on [42], extended ConfidNet to domain adaptation tasks. In domain adaptation for semantic
segmentation, the authors propose the concept of multi-scale ConfidNet as shown in Fig 3.1, which
is similar to SLURP. Yet, our work still differs, such as feeding outputs of pixel-wise tasks into an
auxiliary network.

The number of data points is vast for pixel-wise regression tasks, and data preparation will be costly.
SLURP does not need to modify the main task model and does not require data preparation. It faces
general pixel-wise regression tasks, and differs from all the works mentioned above. We use a direct
and explicit design and only train the side learner once to get the uncertainty. This can circumvent
the difficulty of modifying the main task model caused by the complexity of the structure or the
lack of training codes. Using only the in-distribution data, we can get better quality and robust
uncertainty without touching the main task model. Fig. 3.2 provides an illustration of the uncertainty
quantification of our work. The predicted flow is made by FlowNetS [54]. The prediction error is
the end-point-error between ground truth flow and predicted flow. Our uncertainty quantification map
can correspond well to the true error, including the semantic loss area (middle left) and the edges in
the connected domains of the prediction flow map.

3.3 Auxiliary uncertainty estimator SLURP

3.3.1 Problem description and motivation

Our training procedure is a two-step process that first consists of training a DNN f to perform its
main regression task. Then in the second stage, the parameters in f are fixed and will not be updated
anymore. Based on a primary DNN f with trained parameters ω̂, we train a second DNN σ with
trainable parameters Θ to predict the uncertainty of the first DNN.

Task 1 Given dataset D = {(xi , yi )}i , we write P(y |x) the conditional distribution for the ground truth
value given an input value x (e.g. an RGB image). Let us denote f , the main task predictor, which is
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Figure 3.3: General solution for pixel-wise uncertainty estimation. We take monocular depth estimation as an
example. The convolutional layers are described as (shape, number, and dilation ratio).

trained by minimizing the objective function Lω( fω(x), y) over the dataset.

Task 2 Once the DNN f is trained and ω̂ is obtained, we propose to add a new task, namely the
prediction error estimation. Our goal is to predict the error done by the DNN, i.e., to learn to predict
Lω̂( fω̂(x), y). Note that the loss does not need to be the same as Lω̂, since in some cases, Lω̂ could
follow a specific design such as in focal loss [142], in scale-invariant error [57], etc. Hence we aim
to predict the error loss Lu( fω̂(x), y). As is the case with regression tasks, a sensible choice for Lu

is the mean square or absolute error. Our uncertainty DNN σ with trainable parameters Θ, will have
the following training objective:

argmin
Θ

L
(
Lu( fω̂(x), y),σΘ( fω̂(x),x)

)
(3.1)

where L denotes an objective function that needs to be minimized to obtain a model able to predict
the error of f .

Note that the error prediction task of task 2 is related to predicting the total uncertainty of the
DNN. The total uncertainty U( f ,x) may then be interpreted as the sum of prediction errors according
to [107]:

U( fω̂,x) =
∫

Lu( fω̂(x), y)dP(y |x) (3.2)

In subsection 3.3.2, we explain the structure of the side learner σ, and in subsection 3.3.3, we present
the design of the loss L to learn to predict the uncertainty.

3.3.2 Side learner’s architecture

The side learner σΘ takes two inputs: x and fω̂(x). The combination of image features and prediction
results in uncertainty maps that depends on the initial image and on the prediction of f . The design
of this architecture is inspired by empirical observations on the prediction error maps. We notice that,
for pixel-wise regression tasks, prediction errors are organized by the following two properties:

1. Edges of connected domains in the prediction map;

2. Hard predictable areas that are not captured in the prediction map but only exist in the RGB
image, e.g., distant or small objects and occlusions.
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Therefore, the RGB image needs to be combined with the prediction map to recover the semantic
information absent from the main task prediction. Meanwhile, we use convolutional features given by
the encoders with a final fusion block to better capture the edge information [148]. The concatenated
convolutional features are followed by a context block [219].

We structure the side learner σ in three parts described as follows:

1. Feature encoders The feature encoders aim to learn and extract the richer convolutional feature
pyramids [148] from raw input (RGB data) and from the final prediction map preparing for the next
steps. We choose the widely used backbone DenseNet [100]. Note that the architecture is agnostic,
and DenseNet could be replaced by the other backbones like ResNet [87], depending on the context.
The image encoder in σ can be trained from scratch but can also be replaced by the trained and
frozen image encoder from f . It depends on how closely the image input is related to the prediction
error. If we have multiple images as a concatenated input, we need to encode the image on which the
prediction error is based. We recommend using the same structure for the feature extractors of the
image and the prediction map so as to avoid information asymmetry by using feature extractors with
similar capabilities. The following operations will be done from coarse to fine.

2. Feature fusion For each pair of RGB and final prediction features, we concatenate them followed
by the convolutional layers, in order to reduce the channel number. Dropout layers are implemented
before the features are input to the convolutional layer to reduce the bias caused by focusing on
specific patterns. The goal is to find the similarities and the differences between two sources of
features to bring out the lost information during main task training.

3. Context block The architecture of this block follows that of the context network in PWC-
net [219]. With various dilation ratios, the convolutional layers can take the features from differ-
ent sizes of receptive fields. The output intermediate uncertainty from the previous stage will be
up-sampled and concatenated as a guide feature to the input of the current stage.

After obtaining the output of the context block with different resolutions, we up-sample these outputs
toward the same size as the prediction target and then use a simple convolutional layer to sum them
up with different weights as a final fusion output.

Figure 3.3 shows the general design for our pixel-wise uncertainty estimator. As we can see from
the figure, in the main procedure, Main task stream f is first trained and frozen. Then we use the
input and the output of fω̂ to train σΘ. An uncertainty generation block is implemented on feature
pairs from different stages. The n outputs of context blocks from different stages will be sent to the
final fusion block.

3.3.3 Loss design

1. Natural loss A straightforward way is to use mean square error loss (MSE) for Lu in Eq. 3.1
and Eq. 3.2. Since the main task model f is trained, most of the predictions on the training dataset
will have smaller prediction errors, which is also stated in the later work [229]. In order to prevent the
distribution of the training target, i.e., the prediction errors, from being too sparse, we take absolute
error Lu( fω̂(x), y) = | fω̂(x)− y |.

2. Target scaling The uncertainty of the regression task is expressed across support based on the
current value of the variable, with the support being contained in R. The uncertainty of the classifica-
tion task is related to the confidence of the classifier output, which is set to take values in the range
of [0,1]. Hence we process Lu( fω̂(x), y) to bound it between 0 and 1. This can also avoid the influ-
ence of the effect from the outliers, which have significant prediction errors, thanks to the following
equation:
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Figure 3.4: 1D synthetic regression task comparison example. X-axis: spatial coordinate of the Gaussian
process. Green curve: ground truth; Blue points: training samples; Red curves: main task prediction; Orange
zooms: the uncertainty coverage (1-sigma for inner interval, 2-sigma for outer interval).

L̃u( fω̂(x), y) = tanh
(
λ∗Lu( fω̂(x), y)

)
(3.3)

where λ is a stretch hyper-parameter that can spread the training target as much as possible between
0 and 1, and L̃u( fω̂(x), y) is the normalized uncertainty target.

3. Cross-Entropy Loss After having normalized the uncertainty Lu , we select cross-entropy loss
to describe the probability distance between training target L̃u and our predicted uncertainty. Since
L̃u ∈ [0,1], we choose a binary cross entropy (BCE) loss as L in Eq. 3.1:

L (Θ) =−
N∑

i=0

[
L̃u

(
fω̂(xi ), yi

) · log
(
δ(σΘ( fω̂(xi ),xi ))

)
+ (

1−L̃u( fω̂(xi ), yi )
) · log

(
1−δ(σΘ( fω̂(xi ),xi ))

)]
(3.4)

where δ(.) denotes the Sigmoid function. Note that here we use BCE loss not for doing classifica-
tion but for regression, and BCE can support a faster convergence for a Sigmoid output value. By
calculating the first derivation of Eq. 3.4 with respect to δ(σΘ), we can find that the optimum will be
δ(σΘ) = L̃u .

3.4 Experiments

Our main focus is on obtaining high-quality uncertainty maps on pixel-level regression tasks. How-
ever, in order to illustrate our approach more comprehensively and show its applicability in a different
context, we also apply SLURP on a 1D toy dataset. Overall, our proposed method is illustrated on
a synthetic 1D regression dataset and on two fundamental computer vision tasks: optical flow and
monocular depth estimation. For the former, we just visualize it to give some reference and insights.
For the later ones, we evaluate the quality of predicted uncertainty maps. The basic idea is to see
whether the predicted uncertainty map matches the prediction error. To this end, we re-implemented
the transferable uncertainty estimation approaches MC-Dropout (MC) [70], Single predictive uncer-
tainty (Single-PU) [113], Empirical ensembles (EEns.), ConfidNet (Confid) [41] and Deep ensembles
(DEns.) [123] to the main task as the comparisons. Due to its particularity, we reproduce the multi-
hypothesis prediction network (MHP) [104] only for the optical flow task. Specifically, to transfer
the Confid solution from the classification task to the regression task, we duplicate the last few layers
from the last de-convolutional layer (or up-sample operation) and add three extra 3x3 convolutional
layers without changing the resolution as ConfidNet for regression. We keep the training schedule,
and the pixel-wise square error maps will replace the original training targets. We use two evaluation
criteria: AUSE and AUROC, to evaluate uncertainty maps generated by different methods. Addition-
ally, we measure the efficiency of the main task + uncertainty estimator system from two perspectives:
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Hyper-parameters MC EEns. DEns. (Single-PU)
SLURP

joint-training

SLURP

sequential-training

number of main task latent features 3000

learning rate for main task model 1e-1 1e-1 1e-2 1e-1 /

learning rate for

side learner feature extractor
/ / / 1e-1 1e-4

learning rate for

side learner uncertainty generation blocks
/ / / 1e-4 1e-4

batch size 50

number of training epoch 50

weight decay for

main task model
1e-2 1e-2 1e-2 1e-2 /

weight decay for

side learner feature extractor
/ / / 1e-2 1e-3

weight decay for

side learner uncertainty generation blocks
/ / / 1e-3 1e-2

Model structure and other settings

loss MSE MSE Gaussian NLL Gaussian NLL MSE

dropout rate 0.4 / / / /

ensemble size M 1 3 3 (1) 1 1

Table 3.1: 1D regression task model settings.

Runtime and Number of parameters. The specific formulas as well as the implementation details for
the methods we compare with, are provided in the Sec. 3.5.

3.4.1 1D regression task toy example

We compare our proposed solution with MC [70], EEns., Single-PU [113] and DEns. [123] on a 1D
regression task dataset. The toy dataset is generated by the Gaussian process. Our spatial coordinate
range is xi ∈ [−10,10]. For generating yi , we first define the RBF kernel and compute the covariance
matrix associated with inputs x. Then, we generate separate samples from a Gaussian with mean 0
and covariance. From xi ∈ [−7,7], we cross-select 875 data points as the training set and 175 data
points as the validation set. From xi ∈ [−10,10], we randomly select 400 points as the test set. The
main task predictor f with single output has only one hidden layer, the Single-PU, and DEns. are
implemented based on a modified dual-output f .

The detailed model and training settings for all the methods are detailed as follows. Because of the
simplicity of the data, the main task predictor we use is a neural network composed of one hidden
layer and 3000 neurons. We use two modes to train our SLURP side learner g . One is that we first
train one f , then we freeze it and train the g with the prediction results from f and the latent feature
extracted from the single hidden layer in f , i.e., sequential training, which is the original design of our
approach. Another one is that we train f and g at the same time by using the negative log-likelihood
loss [113], i.e., joint training. Because of the data dimension, the side learner shown in Fig 3.3
is modified. For the side learner, following the general SLURP solution, we use the same hidden
layer as the prediction result feature extractor and three hidden layers with 128, 64, and 16 neurons,
respectively, as the context block in the uncertainty generation block, since we have only one stage,
there is no fusion block in the end. The training details for all uncertainty estimation approaches are
listed in Table 3.1.

As illustrated in Fig 3.4, the results of MC [70] and EEns. give a good uncertainty on the unseen area
but little on the training part. While DEns. [123] and Single-PU [113] can give sufficient uncertainty
to all areas. But in comparison, their main task prediction accuracy has been affected. SLURP can
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achieve both reasonable main task accuracy and tight uncertainty coverage, especially for the joint-
training one. We can give an insight that the SLURP strategy can also work on 1D-regression tasks.
In addition, the structure of the SLURP side learner is variable, and other uncertainty estimation
methods are limited to the structure of the main task model.

3.4.2 Evaluation protocols for pixel-wise tasks

monocular depth estimation and optical flow are two fundamental regression tasks that have signif-
icant implications in a wide range of applications. In terms of inputs, the main difference is that
monocular depth estimation requires a single RGB image, while optical flow requires an image pair.
For each pixel, the monocular depth estimation output is a depth value yd ∈ R+, while the optical
flow output is a 2-channel displacement vector yo ∈R2. We introduce below the evaluation criteria.

Uncertainty ordering Let us consider that we want to remove the worst pixels based on an un-
certainty estimator; we expect that a good uncertainty estimator should allow us to remove the less
reliable data. This is evaluated thanks to the sparsification curve (SC), and the area under spar-
sification error (AUSE) [23, 104, 116, 122, 191]. To build the SC, given a set of data and their
uncertainty, we iteratively erase m% (we take m = 5 in our experiments) of the data that exhibit the
highest uncertainty. Then we calculate the average prediction error for the remaining data. Hence we
have the SC. To evaluate the Oracle SC, we remove the m% data with the most significant predic-
tion error and we calculate the average prediction error for the remaining data. We denote the area
between the two SC curves as AUSE. The smaller the AUSE, the closer the order of the predicted
uncertainty and the order of the Oracle. As a note, AUSE could be changed if we change the error
metric. Therefore, we denote AUSE based on different error metrics as AUSE-xxx.
Implementations: Specifically, for monocular depth estimation, we choose square error and abso-
lute relative error [57]. The corresponding AUSEs are AUSE-RMSE and AUSE-Absrel. For optical
flow, we use EPE, which is the error map representing the Euclidean distance between the ground
truth motion and the predicted one, we denote its AUSE as AUSE-EPE.

AUROC Since we have access to a soft evaluation of uncertainty, it is feasible to threshold the
dataset into two sets, namely the reliable set and the unreliable set. We propose for monocular depth
estimation to set the data as reliable if they check the inlier metrics threshold d1 criterion proposed
in [98], and for optical flow data is reliable if its EPE is below k = 2. We scale the predicted uncer-
tainty between 0 and 1 with min-max scaling and evaluate the ROC curve. The larger the AUROC, the
more data points are given correct confidence (uncertainty) and the better the uncertainty estimator is.

Monocular depth estimation evaluation metrics Let us consider a monocular depth dataset D =
{(xi ,di )}i where di ∈R+ is the ground truth depth value for pixel xi . Below, d̂i represents the depth
prediction. The metrics we used in the evaluations are as follows:

• Root mean square error (RMSE)

RMSE =
√

1

|D|
∑

di∈|D|
||d̂i −di ||2 (3.5)

• Absolute relative error (Absrel)

Absr el = 1

|D|
∑

di∈D
|d̂i −di |/di (3.6)

• Threshold δk
Inlier metrics as proposed in [57], k in δk indicates the power of the threshold (thr ), we take
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thr = 1.25. In this case, δ1: thr = 1.25; δ2: thr = 1.252; δ3: thr = 1.253, and δk represents
the proportion of pixels that meet the threshold condition:

δk = max(
d̂i

di
,

di

d̂i
) = δ< thr k (3.7)

δk = |A|
|D| ,where A =

{
xi ,such that δi = max(

d̂i

di
,

di

d̂i
) and δi < thr k

}
(3.8)

• Squared relative difference (SqRel)

SqRel = 1

|D|
∑

di∈D
||d̂i −di ||2/di (3.9)

• Root mean square log error (RMSElog)

RMSElog =
√

1

|D|
∑

di∈|D|
|| log d̂i − logdi ||2 (3.10)

• Average log10 error (log10)

l og 10 = 1

|D|
∑

di∈|D|
| log10 d̂i − log10 di | (3.11)

These six metrics measure the performance of the MDE models we use and are shown in
Table 3.4. Additionally, for AUROC, we choose k = 1 when applying threshold δk metric.

We will keep these metrics in the next sections and parts for evaluating depth estimates.

Model efficiency Due to the different schemes of uncertainty generation design, we will measure
the number of model parameters and time consumption of the entire system (# Param.), including the
main task model and uncertainty generator. We count the running time (Runtime) while processing
a whole testing dataset in one NVIDIA TITAN RTX GPU and Intel Core i9-10900X CPU, then take
the average according to the number of samples.

3.4.3 Monocular depth estimation

In this section, we introduce uncertainty estimations for monocular depth estimation. We choose
BTS [130] as the depth estimator, and the uncertainty estimators will be implemented based on this
architecture. BTS is one of the state-of-the-art architectures on monocular depth estimation bench-
marks [74, 213]. As an encoder-decoder-based network, it is well suited for the extraction of latent
image features, as shown in Fig 3.3. However, note that our strategy is agnostic to the main task ar-
chitecture. In accordance with the default setting, we choose DenseNet161 [100] as encoder for BTS.
So for our side learner, we take the trained and fixed image encoder of BTS as our image encoder and
implement a new DenseNet161 encoder for the estimated depth map.

Datasets and procedures We choose two widely used datasets and their variations to train and
evaluate uncertainty estimators as follows. Training set: KITTI [74, 227] Eigen-split training set [57];
Fine-tuning set: Cityscapes training set [43]; Test set: KITTI Eigen-split test set, Cityscapes test set,
Foggy Cityscapes-DBF test set [205] with three severity levels and Rainy Cityscapes test set [97]
with three parameter sets which indicate three severities. The KITTI depth dataset and the Cityscapes
dataset are both outdoor datasets. However, since the ground truth on KITTI is sparse and has only
half the content of the image, the model performance is limited if training on KITTI and testing on
Cityscapes. Therefore, we first train models on the KITTI Eigen-split training set and then evaluate
the uncertainty on the KITTI Eigen-split test set and the Cityscapes test set. After that, we fine-tune
the models on the Cityscapes training set and evaluate the uncertainty on all Cityscapes test sets listed
above.
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Training settings In the monocular depth estimation task, we choose to use a sequential train-
ing strategy for single predicted uncertainty (Single-PU) [113], deep ensembles (DEns.) [123] and
our SLURP side learner. In other words, we first complete the training of the main task models
(BTS [130]) and then train different uncertainty predictors according to the settings. Specifically,
for Single-PU, we use an identical BTS model to estimate the uncertainty by using the output of the
main task and its corresponding main task model in the loss. For DEns., it is a mixture of multiple
Single-PUs, so we just repeat the previous procedures. Because of the ensemble property of empirical
ensembles (EEns.) and DEns., EEns. and DEns. can share the same main task predictors. In the same
sense, the main task predictor of our side learner is chosen from one of EEns. (DEns.)’s main task
predictors, which is the same one as the main task model of Single-PU. This method can ensure that
the prediction accuracy of the main task will not be affected by the training of the uncertainty predic-
tor. The ConfidNet [41] (Confid) implementation for BTS references its implementation on SegNet.
We build our side learner according to the SLURP solution shown in Fig 3.3 for BTS, and here are
some supplements. We directly use the frozen RGB feature maps from the encoder of the main task
BTS model. To convert a 1-channel predicted depth map to a 3-channel input, we expand it three
times. The detailed settings for different uncertainty estimation models are listed in Table 3.2. All
main task models are trained identically according to the original BTS [130] model training settings.

Uncertainty quantification and main task results Table 3.3 presents the performance of differ-
ent methods in normal circumstances and against gradual input perturbations. The top-performing
method is highlighted in bold, while the second one is highlighted in blue. SLURP, ConfidNet, and
Deep ensembles exhibit competitive performance being both ranked close in terms of uncertainty
ordering on the different metrics, with our proposal being clearly more robust against strong input
perturbations.
Table 3.4 shows the main task model performance for different uncertainty estimation approaches [70,
113, 123]. We have noticed that after the model is trained on KITTI, it cannot obtain reasonable ac-
curacy on Cityscapes. This is because the ground truth of the KITTI dataset is sparse, and only the
lower half of the content is present. At the same time, the scene of Cityscapes is more complicated.
Therefore, we fine-tune all models on Cityscapes to obtain reasonable accuracy.

3.4.4 Optical flow

FlowNetS [54] is a popular optical flow architecture as the first learning-based optical flow estimation
method. We apply it as our main task model and implement the uncertainty estimators based on it
since it can be regarded as a good example for uncertainty estimation on early structures with special
inputs. FlowNetS is also an encoder-decoder network, however - differently from the more recent
architectures with a separate feature extractor implemented for the first image [103, 105, 191, 219,
245], FlowNetS takes directly image pairs as encoder input, so the features from different encoder
stages will be mixture feature maps of two RGB images. Since the ground truth motion is based on
the first image, the true error will be based only on the first image. We use a new encoder to extract
the RGB features only for the first image. In this case, in our side learner, we use two trainable
encoders, respectively, for the first image and the predicted flow. We choose both DenseNet161
and DenseNet121 [100] as the encoders in our experiments, and we denote the latter Ours-light as a
lightweight version of the former.

Datasets Training set: synthetic FlyingChairs training set [54]; Testing set: FlyingChairs test set,
synthetic Sintel training set [24] and real-world KITTI 2015 training set [74, 165, 166]. The train-
test split file for the FlyingChairs dataset is provided officially. Sintel has more complex moving
objects and movements than FlyingChairs, while KITTI is taken from real-world, and exhibits larger
movement magnitude.
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Hyper-parameters MC EEns. DEns. (Single-PU, Confid) Ours

learning rate for

main task model (Training on KITTI)
1e-4 1e-4 / /

number of training epoch (Training on KITTI) 50 50 50 8

learning rate for side learner (Training on KITTI) / / / 1e-4

learning rate for

main task model (Fine-tuning on Cityscapes)
5e-5 5e-5 / /

number of training epoch (Fine-tuning on Cityscapes) 30 30 30 16

learning rate for

side learner (Fine-tuning on Cityscapes)
/ / / 8e-5

learning rate for identical uncertainty estimator / / 5e-5 /

learning rate for side learner / / / 1e-4

batch size 4

number of training epoch 50 50 50 8

weight decay for

main task model
1e-2 1e-2 / /

weight decay for

identical uncertainty estimator
/ / 1e-2 /

weight decay for

side learner feature extractor
/ / / 1e-3

weight decay for

side learner uncertainty generation blocks
/ / / 4e-4

Model structure and other settings

encoder backbone for main task model,

identical uncertainty estimator and

side learner feature extractor

Densenet 161 [100]

loss same as BTS [100] same as BTS [100] Laplacian NLL
BCE

λ= 0.0125

number of latent stages n / / / 5

number of latent stage output channel c / / / 1

number of final uncertainty output channel Cout / / / 1

dropout rate pd 0.4 / / /

ensemble size M 1 3 3 (1) 1

during inference time

number of forward propagation
8 3 3 (1) 1

Table 3.2: monocular depth estimation model settings for MC, EEns., DEns., Single-PU, Confid and Ours.

Training settings In the optical flow task, for EEns., we directly train multiple main task prediction
models FlowNetS [54], and our side learner selects one of the models as our main task predictor. For
Single-PU, because FlowNetS is relatively simple, we directly modify the original model to output
two values for each pixel, one representing the predicted value of the main task and the other the
uncertainty value. For DEns., we train multiple Single-PU models. For multi-hypothesis prediction
network (MHP) [104], we modified FlowNetS so that it can output eight (number of hypotheses) pairs
of main task-uncertainty results. Furthermore, we use another FlowNetS as the MergeNet. It should
be noted that the authors did not mention the structural information about MergeNet in the paper. We
choose FlowNetS based on the use of model stacking in the article.
For our SLURP side learner, since the encoder in FlowNetS is designed for capturing the object
movement for two images and the total uncertainty will reflect only the semantics from the first
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Datasets Criteria MC EEns. Single PU DEns. Confid Ours

KITTI

AUSE-RMSE 8.14 3.17 1.89 1.68 1.76 1.68

AUSE-Absrel 9.48 5.02 4.59 4.32 4.24 4.36

AUROC 0.686 0.882 0.882 0.897 0.892 0.895

CityScapes

AUSE-RMSE 9.42 11.56 9.91 11.47 10.48 9.48

AUSE-Absrel 9.52 13.14 9.96 9.36 5.75 10.90

AUROC 0.420 0.504 0.386 0.501 0.519 0.400

After fine-tuning on CityScapes

CityScapes

AUSE-RMSE 7.72 8.20 4.35 3.03 4.05 3.05

AUSE-Absrel 8.13 7.50 6.44 6.81 6.34 6.55

AUROC 0.705 0.786 0.741 0.856 0.821 0.849

CityScapes

Rainy s=1

AUSE-RMSE 7.06 7.29 4.17 3.42 4.89 3.39

AUSE-Absrel 8.73 6.92 6.55 6.68 7.26 5.62

AUROC 0.659 0.757 0.731 0.746 0.697 0.788

CityScapes

Rainy s=2

AUSE-RMSE 7.14 6.9 4.27 3.35 4.68 3.36

AUSE-Absrel 8.36 6.48 6.79 6.24 6.86 5.28

AUROC 0.667 0.767 0.731 0.756 0.714 0.794

CityScapes

Rainy s=3

AUSE-RMSE 7.30 6.66 4.35 3.28 4.59 3.41

AUSE-Absrel 8.27 6.03 6.44 5.85 6.64 5.05

AUROC 0.665 0.778 0.742 0.767 0.729 0.801

CityScapes

Foggy s=1

AUSE-RMSE 7.80 7.82 3.42 3.05 3.98 3.04

AUSE-Absrel 8.36 7.33 6.78 6.58 6.21 6.25

AUROC 0.700 0.783 0.842 0.852 0.824 0.847

CityScapes

Foggy s=2

AUSE-RMSE 7.82 7.53 3.42 2.98 3.86 3.01

AUSE-Absrel 8.20 7.09 6.55 6.35 6.02 6.06

AUROC 0.704 0.791 0.847 0.857 0.833 0.852

CityScapes

Foggy s=3

AUSE-RMSE 7.84 7.28 3.48 2.93 3.70 3.08

AUSE-Absrel 7.87 6.80 6.19 6.01 5.78 5.80

AUROC 0.715 0.801 0.851 0.863 0.846 0.857

Table 3.3: monocular depth estimation uncertainty performance. Bold value: result with the best performance,
Blue value: second performance. s (e.g s=1) indicates severity, the higher the s value, the higher the severity.

image, we use two DenseNet161 backbones [100] as RGB and prediction map encoders respectively.
We also used two DenseNet121 backbones for the lighter version. In order to transfer the 2-channel
flow prediction to a 3-channel input, we just add one convolution layer to expand the channel number
before the RGB feature extractor. All uncertainty model training settings are shown in Table 3.6.

Uncertainty quantification and main task results Table 3.5 shows the uncertainty estimation per-
formance on the various optical flow datasets. Even though all uncertainty estimators are not fine-
tuned on datasets other than the training set, they maintain a good estimation level. On this very
different scenario, MHP did a good job due to its pertinence, but our side learner performs competi-
tively and robustly across all tests/metrics.
Table 3.7 shows the main task precision for different uncertainty estimation strategies. Our SLURP
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Models Datasets
higher is better lower is better

δ1 ↑ δ2 ↑ δ3 ↑ AbsRel ↓ SqRel ↓ RMSE ↓ RMSElog ↓ log10 ↓

MC
KITTI 0.945 0.992 0.998 0.072 0.287 2.902 0.107 0.031

Cityscapes 0.103 0.255 0.453 1.051 18.942 18.986 0.842 0.324

EEns. (DEns.)
KITTI 0.957 0.993 0.999 0.059 0.233 2.688 0.093 0.026

Cityscapes 0.214 0.430 0.560 0.837 14.459 18.441 0.845 0.298

Ours KITTI 0.955 0.993 0.998 0.060 0.249 2.798 0.096 0.027

(Single-PU, Original [130]) Cityscapes 0.183 0.386 0.519 0.963 17.230 18.948 0.896 0.321

After fine-tuning on Cityscapes

MC Cityscapes 0.882 0.974 0.992 0.117 0.917 5.625 0.169 0.049

EEns. (DEns.) Cityscapes 0.920 0.983 0.995 0.098 0.635 4.889 0.149 0.043

Ours (Single-PU) Cityscapes 0.906 0.980 0.993 0.104 0.711 5.216 0.159 0.046

Table 3.4: The performance on KITTI and the performance on the Cityscapes dataset before and after fine-
tuning the models. Before fine-tuning: Training set: KITTI Eigen-split training set, Test set: KITTI Eigen-split
test set and Cityscapes test set; After fine-tuning: Fine-tuning training set: Cityscapes training set, Test set:
Cityscapes test set. The three main task models used in EEns. are also used in DEns. and Single-PU also
shares the same main task model with our approach.

Datasets Criteria MC EEns. Single PU DEns. Confid MHP Ours-light Ours

FlyingChairs
AUSE-EPE 2.75 1.97 1.28 1.26 1.92 1.88 1.16 1.20

AUROC 0.896 0.900 0.977 0.959 0.945 0.936 0.977 0.974

KITTI
AUSE-EPE 3.57 4.41 3.71 3.45 6.56 5.48 5.20 4.69

AUROC 0.870 0.904 0.848 0.866 0.687 0.854 0.791 0.800

Sintel Clean
AUSE-EPE 3.33 2.89 2.74 3.02 5.28 2.61 3.02 2.91

AUROC 0.861 0.825 0.925 0.895 0.767 0.886 0.889 0.896

Sintel Final
AUSE-EPE 3.30 3.02 3.09 3.05 6.06 2.71 2.95 2.86

AUROC 0.858 0.814 0.916 0.899 0.728 0.878 0.901 0.906

Table 3.5: optical flow uncertainty performance. Bold value: result with the best performance. Blue value:
second performance.

side learner picks one of the models from EEns. as our main task predictor. The main task models are
trained only on FlyingChairs training set with official split, and the KITTI dataset we choose for main
task precision evaluation and also uncertainty estimation/evaluation is KITTI 2015 with occlusions.
In the original FlowNetS paper [54], the precision evaluation is based on KITTI 2012 [76].

3.4.5 Model efficiency

Datasets and settings We select to use Sintel training set [24] and KITTI [74] Eigen-split validation
set [57] as the testing sets for Runtime evaluation. We use three models to form EEns. and DEns. and
eight forward propagations for MC. In monocular depth estimation, due to the instability of training,
we use sequential training for Single-PU and DEns.

Results Table 3.8 shows the model efficiency in two tasks. In the optical flow task, due to the
convenience of modifying the main task model, we confirm that Single-PU is more efficient than the
other methods, while our lightweight version can achieve comparable performance. For monocular
depth estimation, due to the complexity of implementation for joint uncertainty generation, the side-
learner-based methods have a fixed computational footprint and take significant advantage of the cost.
In addition, our solution can be reused without re-tuning the main task encoder, so it is lighter and
faster than the other auxiliary networks.
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Hyper-parameters MC EEns. DEns. (Single-PU, Confid) Ours

learning rate for (modified) main task model 1e-4 1e-4 1e-4 /

learning rate for side learner / / / 1e-4

batch size 8

number of training epoch 216 216 216 30

weight decay for (modified) main task model 4e-4 4e-4 4e-4 /

weight decay for side learner feature extractors / / / 1e-4

weight decay for side learner uncertainty generation blocks / / / 4e-4

Model structure and other settings

loss
same as

FlowNetS [54]

same as

FlowNetS [54]
Laplacian NLL

BCE

λ= 0.05

number of latent stages n / / / 5

number of latent stage output channel c / / / 2

number of final uncertainty output channel Cout / / / 1

dropout rate pd 0.4 / / /

ensemble size M 1 3 3 (1) 1

during inference time number of forward propagation 8 3 3 (1) 1

Table 3.6: optical flow model settings for MC, EEns., DEns., Single-PU, Confid, MHP and Ours. MHP training
setting is followed by the same schedule provided by its original paper.

Datasets EEns. MC Single-PU DEns. Ours Orginal [54]

FlyingChairs test 1.79 3.71 2.04 1.93 1.96 2.71

KITTI 2015 occ 18.36 16.53 21.21 20.78 19.39 /

KITTI 2012 noc 6.77 19.02 8.34 8.40 7.65 8.26

Sintel clean train 5.10 6.31 5.12 5.00 5.20 4.50

Sintel final train 6.50 6.97 6.53 6.41 6.62 5.45

Table 3.7: The main task accuracy for the uncertainty estimators in optical flow task. The values present the
end-point error (EPE). Training set: FlyingChairs training set [54], Test set: FlyingChairs test set, KITTI 2012
noc [76] which was used in the original FlowNetS paper, KITTI 2015 occ [74, 165, 166] and Sintel full training
set [24]

.

Task Criteria MC EEns. Single-PU DEns. Confid MHP Ours-light Ours

monocular depth estimation
Runtime (ms) 386 144 98 286 106 - - 88

# Param. (M) 47.0 141.0 94.0 282.0 94.7 - - 87.2

optical flow
Runtime (ms) 79 65 64 66 65 67 65 76

# Param. (M) 38.7 116.1 38.7 116.3 78.6 78.8 57.0 105.3

Table 3.8: Average time cost for processing one image and number of parameters of the model(s) (main task +
uncertainty task). Bold value: result with the best performance. Blue value: second performance.

3.5 Ablation study

As a goal, we want to highlight the impact of the two considered inputs on the final performance
(namely the image features and the prediction results features) and the impact of the considered loss
(binary cross entropy loss and mean square error loss).
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Conditions

Input source
RGB Input ✓ ✗ ✓ ✓

Prediction map Input ✗ ✓ ✓ ✓

Loss
MSE ✗ ✗ ✓ ✗

BCE ✓ ✓ ✗ ✓

Datasets Criteria Ours RGBOnly Ours PredOnly Ours MSE Ours BCE

FlyingChairs
AUSE-EPE 1.82 1.24 1.41 1.20

AUROC 0.944 0.972 0.967 0.974

KITTI
AUSE-EPE 8.40 4.87 5.40 4.69

AUROC 0.586 0.800 0.793 0.800

Sintel Clean
AUSE-EPE 7.43 2.73 3.19 2.91

AUROC 0.639 0.898 0.883 0.896

Sintel Final
AUSE-EPE 8.24 2.71 3.11 2.86

AUROC 0.575 0.907 0.889 0.906

Table 3.9: Ablation study for the optical flow task. Bold value: result with the best performance. Blue value:
second performance.

Settings The ablation study for the monocular depth estimation task is implemented on KITTI [74,
227] Eigen-split test set [57], Cityscapes test set [43], Foggy Cityscapes-DBF test set [205] and Rainy
Cityscapes test set [97]. The ablation study for the optical flow (optical flow) task is implemented on
FlyingChairs test set [54], Sintel training set [24] and KITTI 2015 training set [74, 165, 166]. We use
the same uncertainty evaluation metrics (AUSE and AUROC) as in Section 3.4.2.

Results The models with different inputs and different loss functions are presented as follows. Ta-
ble 3.9 presents the model performance on the optical flow task, and Table 3.10 illustrates the results
of the monocular depth estimation task. Note that in the tables BCE and MSE denote binary cross
entropy loss and mean square error loss, respectively, PredOnly and RGBOnly denote the models
taking only prediction map as input and the models taking only RGB image as input, respectively. No
special note means that the model will use both RGB and prediction results as input and BCE as the
loss function (the default behavior).

Discussions Firstly, regarding the performance of the different loss functions, we found that the
results obtained with the BCE loss are almost systematically better than those provided when using
MSE loss. We think this is because when we have a correctly trained predictor for the main task, most
of the data points have minor errors, while a small number of data points have high errors. Using the
MSE loss will amplify the more significant prediction errors and reduce the minor errors, making the
model unable to fit well. Our target scaling uses a soft clipping strategy to centralize the distribution
of data for better fitting.

For different inputs, we found that it is essential to use the prediction map as the input through
the evaluation results. The input of the RGB image sometimes affects the generalization ability
of uncertainty estimation if the main task model can generate already very good prediction results.
According to the visualizations and evaluation results, we can see that the influence of the input of
the prediction map is dominant because the uncertainty map of dual input and the one with only the
prediction map input are similar. On the other hand, the RGB image can supplement some missing
semantics of the prediction map, such as the Fig 3.5 FlyingChairs where RGB input can supplement
the lack of chair legs and in the Fig 3.6 where RGB input supplement the uncertainty of the sky
(although the sky does not have ground truth of depth, it should have a high degree of uncertainty).
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Conditions

Input source
RGB Input ✓ ✗ ✓ ✓

Predinction map Input ✗ ✓ ✓ ✓

Loss
MSE ✗ ✗ ✓ ✗

BCE ✓ ✓ ✗ ✓

Dataset Criteria Ours RGBOnly Ours PredOnly Ours MSE Ours BCE

KITTI

AUSE-RMSE 1.84 1.76 1.74 1.68

AUSE-Absrel 4.45 4.31 4.19 4.36

AUROC 0.879 0.890 0.894 0.895

Cityscapes

AUSE-RMSE 9.95 9.40 9.82 9.48

AUSE-Absrel 10.68 9.23 10.29 10.90

AUROC 0.344 0.446 0.414 0.400

After fine-tuning on Cityscapes

Cityscapes

AUSE-RMSE 3.47 3.45 4.77 3.05

AUSE-Absrel 6.71 6.47 6.93 6.55

AUROC 0.837 0.844 0.766 0.849

Cityscapes

Rainy s=1

AUSE-RMSE 3.97 3.43 4.80 3.39

AUSE-Absrel 6.95 5.52 7.30 5.62

AUROC 0.739 0.795 0.68 0.788

Cityscapes

Rainy s=2

AUSE-RMSE 3.98 3.39 4.92 3.36

AUSE-Absrel 6.68 5.16 7.09 5.28

AUROC 0.747 0.801 0.689 0.794

Cityscapes

Rainy s=3

AUSE-RMSE 4.11 3.41 5.07 3.41

AUSE-Absrel 6.77 4.85 7.06 5.05

AUROC 0.748 0.811 0.694 0.801

Cityscapes

Foggy s=1

AUSE-RMSE 3.55 3.42 4.92 3.04

AUSE-Absrel 6.40 6.15 6.92 6.25

AUROC 0.835 0.841 0.763 0.847

Cityscapes

Foggy s=2

AUSE-RMSE 3.51 3.39 5.03 3.01

AUSE-Absrel 6.23 5.98 6.89 6.06

AUROC 0.838 0.845 0.767 0.852

Cityscapes

Foggy s=3

AUSE-RMSE 3.48 3.36 5.24 3.08

AUSE-Absrel 5.97 5.72 6.75 5.80

AUROC 0.845 0.852 0.773 0.857

Table 3.10: Ablation study for the monocular depth estimation task. Bold value: result with the best perfor-
mance. Blue value: second performance. s (e.g s=1) indicates severity, the higher the s value, the higher the
severity.
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Figure 3.5: Uncertainty estimation examples in ablation study for optical flow task. The first row of each
dataset block represents the input image pair, ground truth and predicted optical flow, and the prediction error.
The prediction map and error map are made by a single FlowNetS model as an example. The second row of
each dataset block represents the uncertainty results in using the SLURP side learner with different inputs and
different loss functions. Black indicates higher uncertainty, and white indicates lower uncertainty.
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Figure 3.6: Uncertainty estimation examples in ablation study for monocular depth estimation task. The first
row of each dataset block represents the input image, ground truth depth map, depth prediction map, and the
prediction error. Since the ground truth is sparse, we use interpolation to rebuild the ground truth map just
for visualization. The predicted depth map and error map are made by a single BTS model as an example.
The second row of each dataset block represents the uncertainty results in using the SLURP side learner with
different inputs and different loss functions. For uncertainty maps, black indicates higher uncertainty, and white
indicates lower uncertainty. For depth maps, black represents deeper depth, and white represents shallower
depth.

52



CHAPTER 3. SLURP: SIDE LEARNING UNCERTAINTY FOR
REGRESSION PROBLEMS

3.6 More visualization

In this section, we provide more visualization results. For monocular depth estimation, as shown
in 3.7, the depth prediction map and the error map are generated by a single BTS model as an ex-
ample. MC-Dropout uncertainty maps are obtained by eight forward propagation, Deep ensembles
and Empirical ensembles uncertainty maps are obtained from three model ensembles. The results for
optical flow are shown in Figure 3.8. The optical flow prediction maps and the error maps are gen-
erated by a single FlowNetS model as an example. MC-Dropout uncertainty maps are obtained by
eight forward propagation, Deep ensembles, and Empirical ensembles uncertainty maps are obtained
from three models ensembles.

Figure 3.7: Uncertainty estimation results for monocular depth estimation task. The ground truth maps are re-
built by interpolation just for visualization. For uncertainty maps, black indicates higher uncertainty, and white
indicates lower uncertainty. For depth maps, black represents deeper depth, and white represents shallower
depth.
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Figure 3.8: Uncertainty estimation results for optical flow task. For uncertainty maps, black indicates higher
uncertainty, and white indicates lower uncertainty.

3.7 Conclusion

In this work, we introduced SLURP, a learning-based side learner for uncertainty quantification in
regression problems, especially on pixel-wise regression tasks. It is a post-hoc solution in which the
main task model will not be modified or re-trained. The network architecture design is based on the
observations on the prediction error maps. In the experiment, we discover that using both images and
the main task predictions as the inputs of the auxiliary network is more effective and can be a general
concept in pixel-wise uncertainty quantification tasks.
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However, although the prediction errors can be regarded as the total uncertainty in the training set,
SLURP has no guarantee to provide higher uncertainty to the rarely seen or even unseen patterns.
This is because, first, the training dataset only provides the limited cases of patterns that have higher
prediction errors, and SLURP will only learn these patterns and generalize them to similar cases.
However, when there is a bigger dataset shift, for instance, from the outdoor training scenario to the
unseen indoor one, SLURP has a risk of missing the alert. With limited data resources, the uncertainty
estimators should explicitly better model the epistemic uncertainty to provide higher uncertainty to
the out-of-distribution patterns.

In the next chapter, we will focus on how to better model the aleatoric and epistemic uncertainty, re-
spectively, and introduce a general solution based on the auxiliary uncertainty estimators. Specifically,
we will introduce a new epistemic uncertainty quantification approach called Discretization-Induced
Dirichlet pOsterior (DIDO). Before introducing the general uncertainty estimator and DIDO, we will
first present a pilot work that discusses how to use discretization methods in regression tasks.
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Chapter 4

Classification approach for regression in
monocular depth estimation
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4.1 Introduction

In machine learning, regression tasks predict a continuous output based on a given input. Yet, if the
ground truth (prediction target) is within a specific range, e.g., in the case of age estimation [134],
one can quantize the ground truth and cast regression into a classification problem. As an example,
monocular depth estimation (MDE), which is an ill-posed problem [215], consists of predicting the
scene depth given only an RGB image as the input. Deep Neural Networks (DNNs) learn the mapping
between the single RGB images and their corresponding depth maps to solve MDE, and show good
performance on indoor and outdoor benchmarks [176, 227].

We refer to these techniques as Classification Approaches for Regression (CAR), and we explore
CAR techniques applied to monocular depth estimation.

Classification Approaches for Regression (CAR) [15, 28, 51, 68, 136, 244] have emerged recently in
the spotlight among MDE algorithms. The core idea is to transfer regression to a classification prob-
lem using quantization (or discretization) strategies. The classification models can natively provide
confidence for prediction results, which also has the potential to improve the prediction accuracy [51].

59



CHAPTER 4. CLASSIFICATION APPROACH FOR REGRESSION IN
MONOCULAR DEPTH ESTIMATION

As discussed previously, DNNs are prone to two kinds of uncertainty: aleatoric uncertainty and epis-
temic uncertainty [113], thus is crucial to study the uncertainty of DNNs if we want to rely on their
predictions. Some works proposed to estimate the uncertainty of MDE DNNs by using an auxiliary
network [191, 252], or ensembling [123]. Here we gain access to the uncertainty directly using the
CAR DNN.

This work will investigate and show the complete picture of the CAR MDE methods. The contribu-
tions are as follows:

Contributions

1. We systematically summarize and formalize all fundamental CAR MDE mechanisms. The goal
is to find the similarities and differences between these methods and find the best CAR solution
under the same settings.

2. We propose a new, effective uncertainty estimation method named Expectation of Distance for
CAR MDE models, which is a weighted variance of the network outputs. It outperforms the
previous solutions, such as entropy based on CAR.

We implement these mechanisms on top of two different backbones, comparing depth prediction and
uncertainty quality on various evaluation metrics.

4.2 Related works

To better unify the terms and make it easier to grasp the differences in contributions of CAR strategies,
we propose to decompose the CAR problems into three key components: discretization, loss function
and post-processing. Table 4.1 offers an overview of the specific strategies used in the previous works.
The details are provided in the following sections.

The contributions of previous CAR-based MDE solutions fall into two main groups:

1. Novel strategies in the three components mentioned above [15, 28, 51, 68, 136, 244];

2. Architecture and/or loss modifications based on the previous strategies [139, 141, 149, 188,
200, 249]

In most papers, CAR can improve model accuracy, making it outperform its regression version [15,
28, 51, 68, 136, 139, 244], or may improve model performance as part of multi-task learning [141,
200]. We will summarize them according to the most distinguished designs with respect to the three
key components in the following sections. The visual summary is shown in Fig. 4.1 for a more direct
understanding.

Discretization

Fully Handcrafted

AdaptiveHandcrafted Handcrafted Handcrafted
CAR-MDEs

+ One-hot + Ordinal + Smooth

Post

processing

KL divergence/

Weighted CE loss

- - SORN [51] - Argmax

- - - Cao et al. [28] ([249]) -
Soft

weighted

sum

CE loss Li et al. [136] ([139, 141]) - - -

Multiple BCE loss - - Yang et al. [244] -

Regression loss DS-SIDENet [200] - - Adabins [15]L
os

sf
un

ct
io

n

Ordinal

Regression loss
-

DORN [68]

([149, 188])
- - Ordinal sum

Table 4.1: Summary on typical CAR-MDE solutions. In parentheses are methods that use the corresponding
schemes as part of their solutions.
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4.3 Classification Approaches for Regression

4.3.1 General notations

Let us first consider a monocular depth dataset D = {(xi ,di )}i , where xi ∈R3×H×W , and di ∈ (R+)H×W

represents the ground truth depth di for the image xi . We denote {di , j }N
j all the pixel values in di ,

where N is the number of pixels with valid ground truth. a,b are two real values representing the
minimum and maximum depth values for the dataset, respectively.

For CAR strategies, we denote K as the number of classes, which represents the level of discretization.
Additionally, to simplify the notations, we use log as the logarithm with base e for all papers except
for [139, 200], where the log refers to the logarithm with base 10. We denote fω1 the DNN with
parameters ω1. Given xi , the prediction of fω1 :

ŷi = e fω1 (xi )∑c−1
p=0 e[ fω1 (xi )]p

(4.1)

where fω1 (xi ) ∈ Rc×H×W is the logit map and [ fω1 (xi )]p its p-th coefficient, and ŷi is the Softmax
output. The number of its channels c = K by default, otherwise equals to the specific settings as in
DORN [68] (2K) and Adabins [15] (128). Table. 4.2 lists some of the notations we denote and will
use in the following sections.

4.3.2 Discretization: Fully Handcrafted

The discretization function will output two components given d: a depth table d = {d p }K
p ∈RK where

the possible discrete depth values are set ordinally, and an indicator map equivalent to a classification
map yi = {{yi , j ,p }K

p }N
j ∈ (R+)K×H×W which points for each pixel the closest discrete depth value. This

closest depth value can be considered as a class, leading to a classification task. Both d and yi are
handcrafted, and the goal becomes the learning of yi .

Handcrafted d d contains K values representing the centers of intervals [d 0,d 1[, .., [d K−1,d K[ with
an interval width q:

d =
{

d p

}K

p
=

{
(d 0 +d 1)/2, ..., (d K−1 +d K)/2

}
(4.2)

d k = log a +k ·q,k ∈ [0,K], q = (logb − log a)/K

Types Notations Meanings

sub/super-

scripts

i subscript for image/depth index

j subscript for pixel index

p subscript for channel index

[method name] superscript for indicating different methods

common

capital letters

N number of pixels with valid ground truth

K number of bins, the level of discretization

some other

notations

di = {di , j }N
j ground truth depth values

d = {d p }K
p handcrafted logarithm depth table

d̂i = {d̂ p }K
p learned (adaptive) depth table for a given image

q width between two side-by-side bins in the depth table

fω1 (xi ) output logits of the DNN fω1

ŷi = {{ŷi , j ,p }K
p }N

j softmax output of the DNN fω1

Table 4.2: Reminder for the notations
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Handcrafted d + One-hot yi Given d, constructing yi is done using one-hot encoding, as applied
in [136, 139, 141, 200]:

y[onehot]
i , j =

[
yi , j ,0 . . . yi , j ,k . . . yi , j ,K−1

]
∈RK (4.3)

with yi , j ,k = 1, if k = ⌊(log(di , j /a))/q⌉, and 0 otherwise.

in which, ⌊.⌉ is a rounding operator, q is defined in Eq. 4.2.

Handcrafted di + Ordinal yi Furthermore, there are several variants of Eq 4.3. Ordinal properties
can be applied on it as presented in [68] and the followed works [149, 188]:

y[ordi]
i , j =

[
yi , j ,0 . . . yi , j ,k . . . yi , j ,K−1

]
∈RK (4.4)

with yi , j ,k = 1, if k ≤ ⌊(log(di , j /a))/q⌉, and 0 otherwise.

Handcrafted di + Smooth yi It is also possible to predict a smooth discrete map from the initial
discrete map y[onehot]

i , j . The indicator in the classification map is softened by applying on d a Gaussian
kernel, as to predict distance within a coarser range. The smooth yi are defined by:

y[smo1]
i , j = e−γ|| log(di , j )−d||2 (4.5)

y[smo2]
i , j = e−γ|| log(di , j )−d||2∑K−1

p=0 e−γ|| log(di , j )−d p ||2
(4.6)

where γ is a hyperparameter which can be regarded as the scale of the discrete distribution (the
smaller γ, the flatter the label distribution in yi , j ). Specifically, Yang et al. [244] use Eq 4.5 as the
unnormalized soft target labels, while SORN [51] applies the normalized version in Eq 4.6. Moreover,
Cao et al. [28] introduce a K ×K symmetric “information gain" matrix H in their loss function with
elements H(k,p) = e−γ||k−p||2 , where p = [0, ...,K−1] and k is the discrete ground truth index as defined
in Eq 4.3. In this case:

y[smo3]
i , j = e−γ||k−p||2 = e−γ·q

−2|| log(di , j )−(d−0.5q)||2 (4.7)

Since q is a constant, this strategy can be regarded as being equivalent to the y[smo1]
i , j in Eq 4.5.

4.3.3 Discretization: Adaptive

In the absence of the handcrafted depth table or the classification map, one may also implicitly train
both of them using a regression loss as in Adabins [15]. Thus the goal of the DNN is changed
from fitting the handcrafted classification maps to fitting the continuous ground truth depth while still
following the principle of building depth tables and classification maps.

In Adabins [15], the depth table is implicitly trained along with the classification map using a non-
linear block gω2 with ω2 the parameters of g , which is a mini ViT [15, 53]. In this case, gω2 is set on

top of the backbone fω1 , and it will output d̂
[ada]

i and ŷ[ada]
i given fω1 (xi ):

d̂
[ada]

i =
{

a + (b −a)(
p∑

s=0
d̂

[ada]
i ,s )

}K−1

p=0

, ŷ[ada]
i , j = e li , j∑K−1

p=0 e li , j ,p
(4.8)

with {d̂
[ada]
i }K

p , li = gω2 ( fω1 (xi ))

where, ŷ[ada]
i , j is the product of a Softmax function, and d̂

[ada]

i is a cumulative summation output fol-

lowed by a normalization operation which is included in gω2 . Since d̂
[ada]

i is a product of gω2 taking
fω1 (xi ), for each xi , not only a unique classification map but also a unique depth table will be pro-
vided.
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4.3.4 Loss function

Based on the previous discretization strategies, we introduce here the loss function design. Mod-
els should fit their output to the designed y or d. For brevity, we define first the total loss
Ltotal =

∑
i
∑N−1

j=0 Li , j where Li , j is the loss for pixel j , on the i -th data. We just define Li , j in the
following sections for simplicity.

Cross entropy (CE) loss CE loss is a straightforward solution given a one-hot classification map:

L[CE]
i , j (ω1) =−(y[onehot]

i , j log ŷi , j ) (4.9)

Ordinal regression loss It is essentially an implicit ordinal selection plus a multiple binary cross
entropy (BCE) loss. Instead of directly using ŷi , j , it requires to do an ordinal selection on the logit
map fω1 (xi ) with c = 2K to c = K as the predicted classification map, then to apply a Multiple-BCE
loss on it:

L[ordi]
i , j (ω1) =−

[
y[ordi]

i , j log ŷ[ordi]
i , j + (1−y[ordi]

i , j ) log(1− ŷ[ordi]
i , j )

]
(4.10)

with ŷ[ordi]
i , j = e[ fω1 (xi )]2p+1

e[ fω1 (xi )]2p+1 +e[ fω1 (xi )]2p

where 2p +1 and 2p represent the indices of the coefficient.

Weighted CE loss This loss is applied when the target vector is a soft discrete distribution. The CE
loss turns out to be equal to the following:

L[WCE]
i , j (ω1) =−(y[smo2]

i , j log ŷi , j ) (4.11)

and it has the same form as the Kullback-Leibler divergence loss.

Multiple BCE loss This loss is another solution when the target is a soft discrete distribution. Yang
et al. [244] apply BCE loss in every class. The loss function is similar to Eq. 4.10:

L[MBCE]
i , j (ω1)=−

[
y[smo1]

i , j logδ([ fω1 (xi )] j )+(1−y[smo1]
i , j ) log(1−δ([ fω1 (xi )] j )

]
(4.12)

where δ(·) represents the Sigmoid function.

Regression loss (Smooth L1 loss) DS-SIDENet [200] applies CAR with a smooth L1 loss [31] to
fit the one-hot classification map target:

L[smoL1]
i , j (ω1) =

 0.5(d̂i , j −k)2 if |d̂i , j −k| < 1

|d̂i , j −k|−0.5 otherwise
(4.13)

with d̂i , j =
K−1∑
p=0

ŷi , j ,p · (p +1)

where k is defined in Eq. 4.3.

Regression loss (Scale-Invariant loss) This loss is applied along with post-processing to produce

the continuous depth. Adabins [15] uses the per-image adaptive depth table d̂
[ada]

i defined in Eq. 4.8
instead of the fixed d, then applies a Scale-Invariant loss [57]:

L[SI]
i (ω1,ω2) =ω

√√√√ 1

N

N∑
j=0

h2
i , j −

λ

N2 (
N∑

j=0
hi , j )2 (4.14)

with hi , j = log d̂ [ada]
i , j − logdi , j ; d̂ [ada]

i , j =
K−1∑
p=0

ŷ [ada]
i , j ,p · d̂

[ada]

i ,p

where ω and λ are hyper-parameters.
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Figure 4.1: Visual summary of the three key components applied in CAR.

4.3.5 Post-processing

Post-processing aims to restore the discrete predicted labels to continuous depth values. In the fol-
lowing equations, we use the power function in base e. See Sec. 4.3.1.

Ordinal sum For DORN [68], the continuous depth is restored from the sum of the output Sigmoid
labels which are higher than or equal to 0.5:

d̂i , j = exp

{
log(a)+q ·

[
K−1∑
p=0
1{ŷ [ordi]

i , j ,p ≥ 0.5}+0.5

]}
(4.15)

in which q and ŷ [ordi]
i , j ,p are defined in Eq. 4.2 and Eq. 4.10 respectively.

Soft weighted sum This solution can be applied to both handcrafted or learned depth tables. It
sums the Hadamard product between the depth table and the classification map:

d̂i , j = exp

{
K−1∑
p=0

d p · ŷi , j ,p

}
(4.16)

Note that essentially Eq. 4.14 also follows this pattern.

Argmax The authors of SORN [51] claim that Argmax outperforms Soft weighted sum in their
case:

d̂i , j = exp

{
log(a)+q ·

[
argmax

p
({ŷi , j ,p }K

p )+0.5

]}
(4.17)

where q is defined in Eq. 4.2.

4.3.6 Uncertainty estimation of CAR MDE

In this section, we will discuss the previous works on uncertainty estimation for CAR MDE, the
difficulty of this problem and our proposed approaches on estimating CAR uncertainty.

The ground truth uncertainty or the Oracle should be the model’s prediction error. The previous
works on MDE uncertainty estimation [191, 252] mainly use the principle of learning the prediction
error [113]. Meanwhile, the Variance among the point estimations given by MC-Dropout [70] and
Deep Ensembles [123] can also be applied for this task. Unlike the previous works, the likelihoods
of the predicted class (the quantified depth value) given the input data provided by CARs can offer
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(a) Input image (b) Ground truth depth (c) Predicted depth (d) Variance uncertainty

(e) Predicted depth (f) 1-MCP uncertainty (g) S-Entr uncertainty (h) E-Dist uncertainty

(i) Predicted depth (j) 1-MCP uncertainty (k) S-Entr uncertainty (l) E-Dist uncertainty

(m) Predicted depth (n) 1-MCP uncertainty (o) S-Entr uncertainty (p) E-Dist uncertainty

Figure 4.2: Illustrations of predicted depth and uncertainty for the selected strategies applied on KITTI dataset.
For both depth and uncertainty, the brighter the pixel is, the higher the depth/uncertainty value is. The figures
are arranged as follows:
Input image and ground truth depth: (a) (b). For the different strategies: Deep Ensembles [123]: (c) (d);
Adabins based [15]: (e) - (h); Dorn based [68]: (i) - (l); Yang et al. based [244]: (m) - (p). All these strategies
are based on FCN-ResNet101 [87, 151] backbone.

another possibility to estimate the uncertainty mentioned in the previous works but rarely discussed.
Yang et al. [244] suggest to use Shannon Entropy (S-Entr) [211] among the output Softmax classi-
fication map:

S-Entr=−
K−1∑
p=0

ŷi , j ,p log ŷi , j ,p (4.18)

Moreover, they showed cases where the depth is well predicted, yet the entropy is high, leading
to an under-confident uncertainty score. The output of other strategies such as 1-Maximum Class
Probability (1-MCP) can also be regarded empirically as an uncertainty estimation [11]:

1-MCP= 1−max
p

({ŷi , j ,p }p ) (4.19)

These are typical solutions used in classification tasks, and we argue that they will be suitable in the
case of using Argmax in post-processing for CAR problems. Widely used soft weighted sum (see
Table 4.1) makes the property of CAR unique: not only the classification map but also the depth table
should be considered in the final result.

Following these remarks, we propose a new solution for CAR uncertainty here. We first note that
the previously mentioned methods lack consideration of the depth table and further its relationship to
the classification map. Hence, we define as CAR uncertainty metric: the Expectation of Distance
(E-Dist) between the quantified depth values (either handcrafted logarithm depth table d (Eq. 4.2) or

the learned one d̂
[ada]
i (Eq. 4.8)) and the final predicted depth d̂i (Eq. 4.15, 4.16, 4.17) :

E-Dist=
K−1∑
p=0

ŷi , j ,p · (ed p − d̂i , j )2 or E-Dist=
K−1∑
p=0

ŷi , j ,p · (d̂
[ada]
i ,p − d̂i , j )2 (4.20)

In the recent work [94], the authors share a similar idea of using Eq. 4.20 as the uncertainty estimation
for CAR-based models, where the conditional probability mass function is used to model the CAR
problem and the Eq. 4.20 is regarded as the error variance that can provide information about the
spread of predicted probability mass.

Additionally, to our knowledge, no previous works discuss the uncertainty of the ordinal regression
model [68]. According to its CAR strategy, only values greater than or equal to 0.5 in its classification
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Figure 4.3: Visual summary of the uncertainty quantification methods using CAR.

map will be considered in the final depth calculation. Thus we argue that the uncertainty comes from
this part. The modified E-Dist for ordinal regression is as below: we propose to discretize the depth
prediction d̂i using Eq. 4.4, that we denote as y′[ordi]

i , j . Then we calculate the distance between y′[ordi]
i , j

and ŷ[ordi]
i , j (defined in Eq.4.10) weighted by the depth table and only consider the part with ŷ[ordi]

i , j ≥ 0.5:

K−1∑
p=0

ed p · (y ′[ordi]
i , j ,p − ŷ [ordi]

i , j ,p )2 ·1{ŷ [ordi]
i , j ,p ≥ 0.5} (4.21)

The visual summary is shown as Fig. 4.3. Our E-dist involved all three components and formalized
the uncertainty quantification as a depth variance weighted by the predicted classification map. Note
that in contemporaneous works, we found Hu et al. [94] to be consistent with our idea. They used the
variance from the estimated conditional probability mass function to infer the variance of the response
error (see Eq.11-12 in [94]), which has the same form in the end as our proposed E-dist.

4.4 Experiments

The previous works collected in Table 4.1 lack a full comparison, and the network structures and
hyperparameters they use are different, as we summarized in Table 4.3. In this section, we fill in
the missing comparisons of the previous works. Meanwhile, our experiments provide an extensive
analysis of CAR MDE uncertainty estimation. While it is not trivial to propose a model-agnostic
approach, the ensuing discussion establishes some important guidelines for performing this task on
CAR models.

4.4.1 Experiment settings

All the experiments are based on Eigen-split [57] KITTI dataset [227]. We followed the original
settings in the corresponding papers for CAR strategies and applied them on a regression-based and
a classification-based backbone, respectively. In addition, we added experiments with K = 80 to
the methods with originally different choices for K for better comparison. Fig 4.4 illustrates the
experiment pipeline.

4.4.1.1 Backbones

Regression-based backbone We choose BTS-DenseNet161 [100, 130] as the backbone. We add a
classifier head as in FCN [151] for a smoother output of a multiple-channel map on the top. We find
that this can get better results than just adjusting the number of output channels. We use the same
BTS training settings for all the methods.
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CAR MDE

solutions

Encoder

Backbone

Choice

of K

Param.

smooth

Uncertainty

eval.?

Comp. with

other CAR?

Comp. with

Reg?

DORN [68] ResNet-101 [87] 80 - % ! !

Cao et al. [28] ResNet-101 [87] 50 65 % % !

Li et al. [136] ResNet-152 [87] 50 (150 [139]) - % % !

SORN [51] Xception [37] 120 1 % % !

Yang et al. [244] ResNet-50 [87] 128 15 ! ! !

DS-SIDE [200] Self-made 80 - % ! !

Adabins [15] EfficientNet [222] 256 - % ! !

Table 4.3: Summary on KITTI experiment settings for typical CAR strategies. Param. smooth: Coefficient
used for label smoothing. Uncertainty eval.: Whether this work evaluates the uncertainty and compared with
the other works. Comp. with other CAR: Whether this work compared their proposed CAR strategy with the
other CAR methods. Comp. with Reg.: Whether this work compared the CAR with the regression version of
its model.
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Figure 4.4: Experiment pipeline and three types of architectures for monocular depth estimation task.
I. original regression version; II. modeling using handcrafted discretization; III. modeling using adaptive dis-
cretization using a mini ViT module [15, 53] on the top.

Classification-based backbone We choose FCN-ResNet101 [87, 151] as the backbone. FCN is
originally designed for semantic segmentation, thus, it is suitable for CAR methods. For the one-
channel regression version (org), followed BTS, we apply a Sigmoid on the top and multiply the
output by b.

4.4.1.2 Evaluation matrices

Uncertainty quality evaluation We use the area under sparsification error curve (AUSE), as
in [191, 244, 252]. 1% of pixels are removed each time and we calculate RMSE and AbsRel for
the rest. The pixels are removed according to their RMSE and AbsRel from high to low as the Or-
acle curves and removed based on their predicted uncertainty order as the predictive curves. The
areas between the predictive curves and the Oracle curves are denoted as AUSE-RMSE and AUSE-
AbsRel. The uncertainty estimation methods we used are introduced in Sec. 4.3.6. We will compare
the CAR MDE uncertainty with widely used MC-Dropout [70] (with 8 forward passes) and Deep
Ensembles [123] (with 3 models).

Training time consumption We use one NVIDIA Titan RTX to count the time consumption to
train 500 images for all CAR methods with K = 80 as well as the original regression method and the
Deep Ensembles [123] using the same training settings.
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Backbones BTS FCN

K
Metrics δ1↑ δ2↑ δ3↑ Abs

Rel↓
Sq

Rel↓
RMSE↓ RMSE

log↓
log10↓ δ1↑ δ2↑ δ3↑ Abs

Rel↓
Sq

Rel↓
RMSE↓ RMSE

log↓
log10↓

DORN [68] 0.952 0.992 0.998 0.069 0.267 2.802 0.103 0.029 0.940 0.990 0.998 0.076 0.292 2.962 0.113 0.033 80

Cao et al. [28] 0.945 0.992 0.998 0.077 0.292 2.988 0.111 0.034 0.928 0.989 0.998 0.084 0.344 3.223 0.122 0.036 50

Li et al. [136] 0.950 0.990 0.998 0.070 0.287 2.928 0.106 0.030 0.940 0.988 0.997 0.075 0.314 3.190 0.116 0.033 150 [139]

SORN [51] 0.947 0.992 0.998 0.071 0.290 2.929 0.107 0.031 0.863 0.976 0.995 0.119 0.563 3.938 0.163 0.051 120

Yang et al. [244] 0.951 0.991 0.998 0.065 0.276 2.897 0.103 0.029 0.940 0.989 0.997 0.072 0.302 3.096 0.113 0.032 128

DS-SIDE [200] 0.950 0.991 0.998 0.071 0.275 2.886 0.106 0.032 0.931 0.990 0.998 0.079 0.331 3.353 0.119 0.035 80

Adabins [15] 0.935 0.990 0.998 0.078 0.347 3.143 0.114 0.033 0.937 0.991 0.998 0.079 0.331 3.027 0.113 0.033 256

DORN [68] 0.952 0.992 0.998 0.069 0.267 2.802 0.103 0.029 0.940 0.990 0.998 0.076 0.292 2.962 0.113 0.033 80

Cao et al. [28] 0.953 0.991 0.998 0.066 0.268 2.857 0.103 0.029 0.934 0.989 0.997 0.076 0.319 3.124 0.117 0.033 80

Li et al. [136] 0.949 0.990 0.997 0.087 0.305 2.982 0.116 0.037 0.933 0.988 0.997 0.096 0.350 3.157 0.126 0.040 80

SORN [51] 0.949 0.993 0.998 0.072 0.283 2.902 0.106 0.031 0.863 0.976 0.995 0.122 0.573 3.950 0.165 0.052 80

Yang et al. [244] 0.948 0.991 0.998 0.070 0.284 2.973 0.107 0.031 0.940 0.990 0.997 0.076 0.308 3.067 0.115 0.034 80

DS-SIDE [200] 0.950 0.991 0.998 0.071 0.275 2.886 0.106 0.032 0.931 0.990 0.998 0.079 0.331 3.353 0.119 0.035 80

Adabins [15] 0.933 0.989 0.998 0.079 0.357 3.203 0.116 0.033 0.937 0.990 0.998 0.076 0.318 3.062 0.112 0.032 80

Org 0.955 0.993 0.998 0.060 0.249 2.798 0.096 0.027 0.944 0.992 0.998 0.069 0.275 2.938 0.107 0.030 1

MC-Dropout [70] 0.941 0.992 0.998 0.083 0.308 2.910 0.114 0.035 0.918 0.984 0.996 0.085 0.369 3.157 0.125 0.036 1

Deep Ensembles [123] 0.957 0.993 0.999 0.059 0.233 2.688 0.093 0.026 0.946 0.992 0.998 0.068 0.269 2.923 0.106 0.030 1

Table 4.4: Depth accuracy evaluations. Org: the original BTS [130] model and the regression version applied
on FCN [151] model.

4.4.2 Performance and discussions

Table 4.4 and Table 4.5 provide all depth and uncertainty results. The best/second-best values are
highlighted in dark/light blue. We only highlight the CAR-based results. The results from regression-
based models are settled as the reference. Figure 4.2 shows some illustrations for predicted depth as
well as the predicted uncertainty given by different uncertainty estimation strategies.

4.4.2.1 Depth

We find that all CAR MDE methods are portable, but training directly with the settings of the original
backbones degrades performance. We discover that the Adabins, DS-SIDE, and SORN [15, 51, 200]
based models are more sensitive to the selected backbone than the other ones. Despite the influence of
the backbones, we also consider that the training settings for the original Adabins are more different
from the ones of BTS. This difference may cause Adabins to produce worse performance after porting.
We report that the biggest difference is the batch size, where the original Adabins uses 4 times the
batch size (16 images) than the original BTS (4 images). DORN-based model [68] achieves the best
result among CAR DNNs, which confirms the effectiveness of ordinal constraints.

4.4.2.2 Uncertainty

Our proposed E-Dist shows good and robust performance in most cases given a CAR MDE method.
As we can see in Figure 4.2, E-Dist empirically concentrates more on the aleatoric uncertainty (which
frequently appears on the edges of the prediction) than S-Entr and 1-MCP. We also argue that S-Entr
can provide a higher uncertainty to the sky (upper part in the prediction maps), which is a good
property, but it is hard to analyze the uncertainty quality for this part.

Among the CAR strategies, we found that the uncertainty quality is related to the sharpness of the
labeling during discretization and also to the loss function. Li et al. [136], Yang et al. [244] and Cao
et al. [28] based DNNs perform better for the uncertainty. Li et al. [136] model has one-hot encoded
labels in the classification map which leads to the sharpest label distribution. Yang et al. [244] model
has γ = 15 in Eq. 4.5 and we can also have γ · q−2 = 65 in Eq. 4.7 for Cao et al. [28] model. This
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Backbones BTS FCN

KMetrics AUSE RMSE↓ AUSE AbsRel↓ AUSE RMSE↓ AUSE AbsRel↓

Methods 1-MCP S-Entr E-Dist 1-MCP S-Entr E-Dist 1-MCP S-Entr E-Dist 1-MCP S-Entr E-Dist

Cao et al. [28] 0.542 0.770 0.133 0.382 0.424 0.411 0.532 0.701 0.127 0.354 0.375 0.375 50

Li et al. [136] 0.174 0.153 0.187 0.276 0.262 0.409 0.137 0.138 0.132 0.241 0.235 0.259 150

SORN [51] 1.371 1.394 0.157 0.939 0.982 0.427 1.244 1.283 0.170 0.754 0.755 0.451 120

Yang et al. [244] 0.141 0.145 0.094 0.232 0.219 0.256 0.142 0.161 0.111 0.225 0.226 0.247 128

DS-SIDE [200] 0.698 0.806 0.293 0.525 0.544 0.397 1.212 1.331 0.995 0.630 0.722 0.484 80

Adabins [15] 0.855 0.827 0.179 0.536 0.527 0.377 0.984 0.945 0.191 0.608 0.589 0.398 256

DORN [68] 0.188 0.158 0.128 0.530 0.430 0.303 0.202 0.165 0.135 0.593 0.445 0.283 80

Cao et al. [28] 0.371 0.476 0.119 0.323 0.329 0.356 0.349 0.393 0.117 0.284 0.265 0.308 80

Li et al. [136] 0.206 0.178 0.181 0.355 0.348 0.449 0.170 0.163 0.124 0.318 0.310 0.333 80

SORN [51] 1.367 1.390 0.157 0.900 0.941 0.444 1.228 1.275 0.175 0.725 0.737 0.473 80

Yang et al. [244] 0.194 0.179 0.099 0.273 0.259 0.271 0.156 0.169 0.104 0.258 0.252 0.274 80

DS-SIDE [200] 0.698 0.806 0.293 0.525 0.544 0.397 1.212 1.331 0.995 0.630 0.722 0.484 80

Adabins [15] 0.823 0.683 0.181 0.499 0.450 0.360 0.775 0.710 0.234 0.502 0.478 0.391 80

DORN [68] 0.188 0.158 0.128 0.530 0.430 0.303 0.202 0.165 0.135 0.593 0.445 0.283 80

MC-Dropout [70] 0.460 (Variance) 0.501 (Variance) 0.322 (Variance) 0.456 (Variance) 1

Deep Ensembles [123] 0.165 (Variance) 0.261 (Variance) 0.184 (Variance) 0.290 (Variance) 1

Table 4.5: Depth uncertainty evaluations. MC-Dropout [70] and Deep Ensembles [123] will only provide the
uncertainty with one method.

big coefficient can sharpen the label distribution. Conversely, in SORN [51], the γ in Eq. 4.6 is much
smaller, which results in the evener distributed labels, and we consider this is the main cause of its
worse performance. Yang et al. [244] based model outperforms the others, which indicates that the
Multi-BCE loss is more suitable for uncertainty estimation, which is similar to the one-versus-all
strategy [65].

4.4.2.3 Choices of K

According to two sets of results separated by K, we observed that the performance of uncertainty
quantification is positively related to the number of K, while we argue that the depth estimation
performance depends on the methods. Most depth estimation performance increases with K, but the
opposite for SORN [51]. We think the reason is that the label smoothing strategy of SORN makes
the label too smooth. When K becomes large, the label weight around the correct label will be much
larger than other methods. In addition, Argmax strategy is used during post-processing, which makes
the final depth value easier to estimate around the correct label. On the contrary, the performance
of uncertainty estimation is almost always positively related to K. In comparison, the uncertainty
estimate is more robust to K, and in the context of monocular depth estimation, we argue that post-
hoc methods are less affected by model training and three key components.

In the ablation studies of the previous works, the authors also show that the performance of depth
estimation is not always positively correlated with the value of K. However, due to the lack of uncer-
tainty experiments in the previous works, we cannot know the impact of K on uncertainty estimation
from experiments in previous work. Our work fills this gap to a certain extent.

4.4.2.4 Time efficiency

According to Table. 4.6, we argue that the CAR strategy will slightly slow down the training, espe-
cially for the ones requiring label smoothing in discretization [28, 68, 244]. However, Deep Ensem-
bles [123] with only three models still require the most training time.
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Time consumption (ms)

CAR

Solutions
DORN [68]

Cao

et al. [28]
Li et al. [136] SORN [51]

Yang

et al. [244]
DS-SIDE [200] Adabins [15] Org

Deep

Ensembles [123]

BTS 610.96 509.18 431.32 444.66 613.98 430.14 421.06 378.98 1136.94

FCN 735.38 614.52 538.92 556.84 722.80 540.70 588.26 517.66 1552.98

Table 4.6: Time consumption on Forward+Backward passes for one image using 1 NVIDIA Titan RTX.

4.5 Conclusion

In this work, we choose monocular depth estimation as the carrier to summarize the classification
approaches for regression in detail, along with three key components, and conduct experiments for
evaluating both depth and uncertainty quality. At the same time, we propose the expectation of dis-
tance (E-dist), an uncertainty quantification method that is not based on direct learning of prediction
errors. On almost all evaluated CAR methods, E-dist can obtain better uncertainty quantification
quality than entropy.

This work is a guide that gives us a clearer and more detailed understanding of solving regression
problems from the perspective of classification using discretization techniques, especially for uncer-
tainty quantification. In the next chapter, we propose a general auxiliary network solution. Moreover,
we pioneered exploring the usage of discretization on epistemic uncertainty estimation in regression
problems. By combining discretization with Dirichlet posterior estimation, we show empirically bet-
ter epistemic uncertainty quantification results in regression.
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5.1 Introduction

As mentioned in the previous chapters, from auxiliary uncertainty estimator SLURP [252] to classi-
fication approach for regression CAR [253], we discussed the design of auxiliary networks for uncer-
tainty quantification and the usage of discretization to transfer the regression to classification. These
guide works lead to this chapter, in which we will introduce a more robust Auxiliary Uncertainty
Estimator (AuxUE) design for uncertainty quantification.

A robust AuxUE is required in this case to provide stable aleatoric uncertainty estimates when fac-
ing In-Distribution (ID) inputs and robust epistemic uncertainty estimates when encountering OOD
inputs. This can help to make effective decisions under anomalies and uncertainty [84], such as in
autonomous driving [7]. Based on these requirements, the prerequisite for a robust AuxUE thus to be
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disentangling the two types of uncertainty. This can help to estimate the epistemic uncertainty and to
find a more robust aleatoric uncertainty estimation solution.

For vision regression tasks, the basic AuxUE addresses only aleatoric uncertainty estimation [252].
In recent works, Upadhyay et al. [229] and Qu et al. [197] aim to improve the generalization ability
of the basic AuxUEs. In DEUP [107], the authors propose to add a density estimator based on
normalizing flows [201] in the AuxUE, yet challenging to apply on pixel-wise vision tasks. In the
current context, both the robustness analysis and modeling of epistemic uncertainty are underexplored
for vision regression problems.

To further explore robust aleatoric and epistemic uncertainty estimation in vision regression tasks, in
this work, we propose a novel uncertainty quantification solution based on AuxUEs. For estimating
aleatoric uncertainty, we follow the approach of previous works such as [113, 180, 229, 252] and
model the heteroscedastic noise using different distribution assumptions. For epistemic uncertainty
quantification, we use a discretization approach to the continuous prediction errors of the main task.
This helps to mitigate the numerical impact of the training targets, which may be distributed in a
long-tailed manner. With the discretized prediction errors, we propose parameterizing Dirichlet pos-
terior [34, 108, 209] for estimating epistemic uncertainty without relying on OOD data during the
training process.

Contributions

In this work, we aim to propose a solution based on AuxUEs for more robust uncertainty quantifica-
tion. To achieve this:

1. We propose a generalized AuxUE solution for aleatoric and epistemic uncertainty estimation.

2. We propose Discretization-Induced Dirichlet pOsterior (DIDO), a new epistemic uncertainty
estimation strategy for regression, which, to the best of our knowledge, is the only existing
work employing this distribution for regression.

3. We demonstrate that assuming the noise that affects the main task predictions to follow Laplace
distribution can help AuxUE achieve a more robust aleatoric uncertainty estimation.

4. We propose a new evaluation strategy for the OOD analysis of pixel-wise regression tasks based
on systematically non-annotated patterns.

We show the robustness and scalability of the proposed generalized AuxUE and DIDO on the age
estimation, super-resolution, and monocular depth estimation tasks.

5.2 Related works

Auxiliary uncertainty estimation solutions

Similar to the Side learning for uncertainty estimation section in Chapter 3, we will briefly go through
the Auxiliary uncertainty estimation strategies here and introduce them from two categories: unsu-
pervised and supervised. For the former, to achieve uncertainty estimates, MC-Dropout [70] and
Dropout layer [217] injection [167] sample the network by forward propagations, and [92] proposed
to use the gradients from the back-propagation. Supervised approaches apply AuxUEs to obtain the
uncertainty. For classification tasks, ConfidNet [41] and KLoS [40] learn the true class probability
and evidence for the DNNs, respectively. Shen et al. [212] apply evidential classification [108, 209]
to their AuxUE. ObsNet [13] uses adversarial noise to provide more abundant training targets in the
semantic segmentation task for their AuxUE. For regression tasks, DEUP [107] uses the density es-
timator [201] and the model variance estimator to construct the AuxUE. SLURP [252] learns the
prediction error of the main task DNN, and BayesCap [229] constructs the output as generalized
Gaussian distribution parameters. Only the latter two are applied to pixel-wise tasks.
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Evidential deep learning and Dirichlet networks

Evidential deep learning [228] (EDL) is a modern application of the Dempster-Shafer Theory [47]
to estimate epistemic uncertainty with single forward propagation. In classification tasks, EDL is
usually formed as parameterizing a prior [157, 158] or a posterior [33, 34, 108, 209] Dirichlet dis-
tribution. In regression problems, EDL estimates the parameters of the conjugate prior of Gaussian
distribution [5, 33, 156]. Oh and Shin [182] use multi-task learning to alleviate main task performance
degradation due to applying such techniques, yet using AuxUE will not affect main task performance.
Therefore, we apply EDL to our AuxUE. Moreover, we are the first to apply the Dirichlet network to
the regression tasks by discretizing the main task prediction errors.

Robustness of uncertainty estimation

A robust uncertainty estimator should show stable performance when encountering images perturbed
to varying degrees [90, 112, 169]. Similar studies are applied to evaluate the robustness of uncertainty
estimates [66, 248]. Meanwhile, it should provide a higher uncertainty when facing OOD data, such
as in classification tasks [91, 140, 212]. In image-level regression, we can use the definition of OOD
from image classification [223] in, for example, age estimation task. But for pixel-wise regression
tasks, the notion of OOD data is ill-defined. Typical OOD analysis estimates uncertainty on a different
dataset than the training dataset [33, 229]. Yet, image patterns that have never been assigned the
ground truth values in the training set can also be regarded as OOD. For instance, the sky patterns in
the real-world outdoor KITTI [75, 227] dataset have no depth ground truth, and they will be OOD
patterns in the monocular depth estimation task. In this work, we also provide a new evaluation
strategy for OOD patterns based on outdoor depth estimation to compensate for this experimental
shortfall.

5.3 Generalized auxiliary uncertainty estimator and DIDO approach

5.3.1 Preliminaries

In this section, we will first provide the notations and the problem settings. We define a training
dataset D = {x(i ), y (i )}N

i where N is the number of images. We consider that x,y are drawn from a
joint distribution P(x,y). A pipeline for the main task and auxiliary uncertainty estimation is shown in
Figure 5.1. We define a main task DNN fω with trainable parameters ω as shown in the blue area in
Figure 5.1. Similar to [19], we view fω as a probabilistic model P(y |x,ω) which follows a Gaussian
distribution N (y |µ,σ2) [17]. The variable σ2 represents the variance of the noise in the DNN’s
prediction, and the variable µ is the prediction ŷ = fω(x) in this case. The noise is considered here
to be homoscedastic as all data have the same noise. The parameter ω is optimized by maximizing
the log-likelihood: ω̂= argmaxω log(P(D|ω)) which is often performed by minimizing Negative Log
Likelihood (NLL) loss in practice. With the above-mentioned Gaussian assumption on ŷ, the NLL
loss optimizes with the same objective as the Mean Square Error (MSE) loss [17], thus only the main
prediction goal y is considered, and the uncertainty modeling is absent in the main task model training
objective.

AuxUE aims to obtain this missing uncertainty estimation without modifying ω̂. We consider two
DNNs σΘ1 and σΘ2 in our generalized AuxUE with parameters Θ1 and Θ2, i.e., the two DNNs in
the orange area of the Figure 5.1. σΘ1 is for estimating aleatoric uncertainty ualea, and σΘ2 is for
estimating epistemic uncertainty uepis. The backbone of σΘ1 and σΘ2 are based on the basic AuxUEs
such as ConfidNet [41], BayesCap [229] and SLURP [252] depending on the tasks. The input of
AuxUE can be the input, output, or intermediate features of fω̂ and it depends on the design of the
basic AuxUEs, which is not the focus of this paper. It depends on the accessibility of the information
we can get from the main task network. In practice, if we have only a black box model, we will only
use the input and the output of this model. If we have the gray box model, we can get access to the
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Figure 5.1: Pipeline of our proposed AuxUE solution. A generalized AuxUE is considered with two DNNs
σΘ1 and σΘ2 for estimating aleatoric and epistemic uncertainty, respectively. The input of AuxUE can be the
input, output, or intermediate features of fω̂, we here simplify it to the image x(i ) for brevity.

intermediate features of the main task model. For brevity, we simplify the input of AuxUE to the
image x. We detail the inputs for different experiments in Section 5.4.

5.3.2 Aleatoric uncertainty estimation on AuxUE

Based on the preliminaries of the settings, we now start with the first AuxUE σΘ1 , which addresses
ualea estimation problem as in SLURP [252] and BayesCap [229].

We consider the data-dependent noise [16, 80, 180] follows N (0,σ2). Then we use the DNN σΘ1 to
estimate the heteroscedastic aleatoric uncertainty ualea [113, 180]. Θ̂1 and the loss function L(Θ1) are
given by:

Θ̂1 = argmax
Θ1

P(D|ω̂,Θ1) = argmax
Θ1

N∑
i=1

log(P(y (i )|x(i ),ω̂,Θ1)) (5.1)

L (Θ1) = 1

N

N∑
i=1

[
1

2
log(2πσΘ1 (x(i )))+ (y (i )− fω̂(x(i )))2

2σΘ1 (x(i ))

]
(5.2)

The top of the σΘ1 is an exponential or Softplus function to maintain the output non-negative. The
aleatoric uncertainty estimation will be: û(i )

alea = σΘ1 (x(i )). Minimizing L (Θ1) is also equivalent to
making σΘ1 correctly predict the main task errors on the training set. The errors set is denoted as
ϵ= {ϵ(i )}N

i=1 = {(y (i ) − fω̂(x(i )))2}N
i=1.

Given the fact that distribution assumption on the noise affecting ŷ can be different than Gaussian,
e.g., Laplacian [161] and Generalized Gaussian distribution [175, 229] also been considered in this
work, the corresponding loss functions are listed as follows. For Laplacian distribution, the loss
function we use is Eq. 5.3.

L (Θ1) = 1

N

N∑
i=1

log(2σΘ1 (x(i )))+ |y (i ) − fω̂(x(i ))|
σΘ1 (x(i ))

(5.3)

For Generalized Gaussian distribution, the loss function is as Eq. 5.4.

L (Θ1) = 1

N

N∑
i=1

( |y (i ) − fω̂(x(i ))|
α̂(i )

)β̂(i )

− log
β̂(i )

α̂(i )
+ logΓ(

1

β̂(i )
) (5.4)

with σΘ1 (x(i )) = (α̂(i ), β̂(i )), which means σΘ1 will output two other components (except for ỹ (i ) defined
in [229] which stands for fω̂(x(i )) in our case) for Generalized Gaussian distribution.

The objective remains unchanged: employing AuxUE to estimate and predict the component associ-
ated with aleatoric uncertainty using various distribution assumptions. When input data is perturbed
in various ways and under different types of noise, the actual distribution of noise becomes difficult
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to be accurately identified. If we rely on a single distribution assumption, the choice of distribution
assumption and the loss function can impact the reliability of estimates for aleatoric uncertainty. In
our experiments, we compare the effects of using different distribution assumptions and loss functions
on the robustness of these estimates.

5.3.3 Epistemic uncertainty estimation on AuxUE

Modeling AuxUEs as formalized in Eq. 5.1 helps to estimate aleatoric uncertainty for fω̂. However,
taking this uncertainty prediction as an indicator for epistemic uncertainty is not methodologically
grounded, although some recent works have explored this direction. Upadhyay et al. [229] uses Gen-
eralized Gaussian distribution to improve their AuxUE performance on sparse data samples with high
prediction errors, and Qu et al. [197] modify the training procedure using meta-learning. Both aim
to facilitate for AuxUEs the optimization of learning heteroscedastic noise since the prediction errors
are very small on most samples when the main task model is trained, which results in a long-tailed
distribution. These methods have the potential to help AuxUE generalize better on rarely seen data
and even attach higher uncertainty on unseen ones. Still, we cannot separate epistemic uncertainty
from aleatoric uncertainty, and modeling for epistemic uncertainty is needed.

Evidential learning is considered an efficient uncertainty estimation approach [5, 209, 228], which can
capture epistemic uncertainty with a single pass. It explicitly parameterizes the prior of the assumed
distribution for the main task training target. We thus take it as an alternative to implement on AuxUE.
The loss function, in this case, will be Eq. 5.6:

L1(Θ1) = 1

N

N∑
i=1

1

2
log(

π

ν(i )
)−α(i ) log(Ω(i ))

+ (α(i ) + 1

2
)log((y (i ) − fω̂(x(i )))2ν(i ) +Ω(i ))+ log(

Γ(α(i ))

Γ(α(i ) + 1
2 )

)

L2(Θ1) = 1

N

N∑
i=1

|y (i ) − fω̂(x(i ))| · (2ν(i ) +α(i )) (5.5)

L (Θ1) =L1(Θ1)+λNIG ·L2(Θ1) (5.6)

where Ω(i ) = 2β(i )(1+ν(i )). σΘ1 (x(i )) = (α̂(i ), β̂(i ), ν̂(i )), which means σΘ1 will output three other com-
ponents (except for γ(i ) defined in [5] which stands for fω̂(x(i )) in our case) for Generalized Gaussian
distribution.

In regression tasks, the parameters of the conjugate prior (Normal Inverse Gamma (NIG) distribu-
tion [5]) of Gaussian distribution are estimated by the DNN. The training will make the model fall
back onto a NIG prior for the rare samples by attaching lower evidence for the samples with higher
prediction errors using a regularization term L2 in Eq. 5.5. Yet, long-tailed prediction errors make
AuxUE more inclined to give high evidence for most data points, which results in reducing the ability
to estimate epistemic uncertainty. Our experiments in Sec. 5.4.5.2 also confirmed this tendency.

Previous works consider the numerical value of the prediction errors for both types of uncertainty. In
our solution, we disentangle the estimation of aleatoric and epistemic uncertainty and use discretiza-
tion to decrease the numerical bias caused by long-tailed distributed prediction errors. Specifically,
as discussed in Sec. 5.3.2, σΘ1 aims to provide aleatoric uncertainty estimation considering the nu-
merical value of the prediction errors. For epistemic uncertainty, σΘ2 will consider the value-free
categories of the prediction errors. Specifically, we propose Discretization-Induced Dirichlet pOste-
rior (DIDO). The discretization will be conducted on the prediction errors. We then apply evidential
learning and estimate the Dirichlet posterior given the discrete errors. We will describe the details in
the following Sec. 5.3.3.1 and 5.3.3.3.
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5.3.3.1 Discretization on prediction errors

To prevent numerical bias caused by imbalanced data, specifically in our case where we aim to es-
timate the prediction errors, we utilize a balanced discretization approach. Discretization is widely
applied in classification approaches for regression, such as monocular depth estimation and age es-
timation [15, 27, 28, 68, 253]. The popular discretization methods can be generally divided into
handcrafted [28, 68] and adaptive [15]. The latter requires a module (e.g., a mini-ViT [15, 53]) to
extract global features, greatly increasing the computational cost. Thus, we discretize the prediction
errors in a handcrafted way uniformly, which we detail in the next paragraph.

For pixel-wise cases, discretization is applied to the per-image prediction errors using quantiles. For
other cases, e.g., image-level tasks and 1D signal estimation, discretization is applied to the per-
dataset prediction errors using quantiles, and the solution is presented as follows.

We divide the set of errors ϵ, denoted in Sec. 5.3.2, into K subsets, where the kth subset is represented
by the subscript k. To do this, we sort the errors in ascending order and create a new set, denoted
by ϵ′, with the same elements as ϵ. Then we divide ϵ′ into K subsets of equal size, represented by
{ϵk }K

k=1. Each error value ϵ(i ) is then replaced by the index of its corresponding subset k ∈ [1,K], and
transformed into a one-hot vector, denoted by ϵ(i ), as the final training target. Specifically, the one-hot
vector is defined as:

ϵ(i ) = [ϵ(i )
1 . . .ϵ(i )

k . . .ϵ(i )
K ]T ∈RK (5.7)

This process creates a new dataset, denoted by D = {x(i ),ϵ(i )}N
i , consisting of discretized prediction

errors represented as one-hot vectors, which serves for training epistemic uncertainty estimator σΘ2 .

5.3.3.2 Modeling epistemic uncertainty using ϵ in auxiliary uncertainty estimation

In a Bayesian framework, given an input x, the predictive uncertainty of a DNN is modeled by
P(y |x,D). Since we have a trained main task DNN, and as proposed in [157], we assume a point-
estimate of ω (denoted as ω̂), then we have:

P(ω|D) = δ(ω− ω̂) → P(y |x,D) ≈ P(y |x,ω̂) (5.8)

with δ being the Dirac function.

We then follow the Gaussian assumption, i.e., the prediction is drawn from N (y |µ,σ2) and according
to the modeling in evidential regression [5], we denote α as the parameters of prior distributions of
(µ,σ2). Following the same work, we first have:

P(µ,σ2|x,α,ω̂) = P(µ|σ2,x,α,ω̂)P(σ2|x,α,ω̂) (5.9)

According to Eq. 5.8, we regard the µ depends only on x and the main task model ω̂:

P(µ,σ2|x,α,ω̂) = P(µ|x,ω̂)P(σ2|x,α,ω̂)

= δ(µ− fω̂(x))P(σ2|x,α,ω̂) (5.10)

We introduce α and re-write P(y |x,ω̂) in Eq. 5.8 as:

P(y |x,α,ω̂) =
Ï

P(y |µ,σ2)P(µ,σ2|x,α,ω̂)dµdσ2

(a)
=

Ï
P(y |µ,σ2)P(µ|σ2,x,α,ω̂)P(σ2|x,α,ω̂)dµdσ2

=
Ï

P(y,µ|σ2,x,α,ω̂)P(σ2|x,α,ω̂)dµdσ2

(b)
=

∫
δ(µ− fω̂(x))dµ

∫
P(y |σ2,x,α,ω̂)P(σ2|x,α,ω̂)dσ2

=
∫

P(y |x,σ2)P(σ2|x,α,ω̂)dσ2 (5.11)
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Low uncertainty High epistemic uncertainty High data uncertainty

Figure 5.2: Visualizations on desired behaviors of regression results in auxiliary uncertainty estimation
scenario. Different types of uncertainty result in different distributions of the variance under Gaussian assump-
tion, which support the link between the posterior over y and ϵ.

where the equality (a) and (b) in Eq. 5.11 are given by Eq. 5.9 and Eq. 5.10, respectively.

In summary, we have

P(y |x,D) =
Ï

P(y |x,σ2)P(σ2|ω)P(ω|D)dσ2dω

=
∫

P(y |x,σ2)P(σ2|D)dσ2

(a)
≈

∫
P(y |x,σ2)P(σ2|x,α,ω̂)dσ2 (5.12)

where the approximation (a) in Eq. 5.12 is given by Eq. 5.11.

In this case, we first consider ϵ to be drawn from a continuous distribution parameterized by σ2.
Furthermore, we argue that P(σ2|D) describes the epistemic uncertainty when we have a trained
and fixed main task model and the variational approach can be applied [108, 157]: P(σ2|x,α,ω̂) ≈
P(σ2|D). It shows the special case of the approximation for the posterior over y , where the mean is
fixed and only variances differ. Similar to [156], we can illustrate this by using the ensembles of the
regression results as in Figure 5.2. The discrepancy in variances determines the epistemic uncertainty
of the final prediction. After discretization, we can transform the approximation to P(π|x,α,ω̂) ≈
P(π|D), with D defined as in Section 5.3.3.1, π the parameters of a discrete distribution and α re-
defined as the prior distribution parameters of this discrete distribution. In the next section, we omit
ω̂ and x for the sake of brevity.

5.3.3.3 Dirichlet posterior for epistemic uncertainty

According to the previous discussions on the epistemic uncertainty modeling and error discretization,
we model Dirichlet posterior [33, 108, 209] on the discrete errors ϵ to achieve epistemic uncertainty
on the main task.

Intuitively, we consider each one-hot prediction error ϵ(i ) to be drawn from a categorical distribution,
and π(i ) = (π(i )

1 , . . . ,π(i )
K ) denotes the random variable over this distribution, where

∑K
k=1π

(i )
k = 1 and

π(i )
k ∈ [0,1] for k ∈ {1, ...,K}. The conjugate prior of categorical distribution is a Dirichlet distribution:

q(π(i )|α(i )) = Γ(S(i ))∏K
k=1Γ(α(i )

k )

K∏
k=1

π(i )
k

α(i )
k −1

(5.13)

where Γ(·) is the Gamma function, α(i ) are positive concentration parameters of the Dirichlet distri-
bution and S(i ) =∑K

k=1α
(i )
k the Dirichlet strength.

To get access to the epistemic uncertainty, the categorical posterior P(π|D) is needed, yet it is un-
tractable. Monte-Carlo sampling [70] or ensembles [123] can be used to approximate P(π|D). How-
ever, more computational cost is required. Instead, we use a variational way to learn a Dirichlet
distribution in Eq. 5.13 to approximate P(π|D) as proposed in [108].
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In this case, we let σΘ2 output the concentration parameters α of q(π|α), and α will be updated
according to the observed inputs. It can also be viewed as collecting the evidence e as a measure
for supporting the classification decisions for each class [209], which is equivalent to estimating the
Dirichlet posterior. Since the numbers of data points are identical for each class in D, and no e(i )

output before training, we can set the initial α as 1 so that the Dirichlet concentration parameters can
be formed as in [34, 209]:

α(i ) = e(i ) +1 =σΘ2 (x(i ))+1 (5.14)

where e(i ) is given by an exponential function on the top of σΘ2 .

Then we minimize the Kullback-Leibler (KL) divergence between the variational distribution
q(π|x,Θ2) and the true posterior P(π|D) to achieve Θ̂2:

Θ̂2 = argmin
Θ2

KL[q(π|x,Θ2)||P(π|D)]

= argmin
Θ2

∫
q(π|x,Θ2) log

q(π|x,Θ2)

P(π)P(D|π)

= argmin
Θ2

−Eq(π|x,Θ2)[logP(D|π)]+KL[q(π|x,Θ2)||P(π)]

The loss function will be equivalent to minimizing the negative evidence lower bound [109], consid-
ering the prior distribution P(π) as Dir(1):

L (Θ2) = 1

N

N∑
i=1

K∑
k=1

[
ϵ(i )

k (ψ(S(i ))−ψ(α(i )
k ))

]+λKL
(
Dir(α(i ))||Dir(1)

)
(5.15)

where ψ is the digamma function, λ is a positive hyperparameter for the regularization term and ϵ is
given by Eq. 5.7.

For measuring epistemic uncertainty, we consider using the spread in the Dirichlet distribution [34,
212], which is shown in [212] to outperform other metrics, such as differential entropy. Specifically,
the epistemic uncertainty is inversely proportional to the Dirichlet strength:

û(i )
epis =σΘ̂2

(x(i )) = K

S(i )
(5.16)

σΘ2 gives more evidence for common patterns, and conversely, less evidence is attached to rare pat-
terns. The class corresponding to the maximum output value from σΘ2 can also represent the aleatoric
uncertainty. However, this is a rough estimate due to quantization error. We employed the expected
entropy of Dirichlet outputs as the aleatoric uncertainty estimates and will provide the corresponding
results in Section 5.4.5. In this case, we take only σΘ1 output as the aleatoric uncertainty.

Summary

In conclusion, under the auxiliary uncertainty quantification structure, we propose a generalized
AuxUE with two components, namely σΘ1 and σΘ2 , to quantify the uncertainty of the prediction
given by the main task model. Based on different distribution assumptions on heteroscedastic noise
in training data introduced in Sec. 5.3.2, we can train σΘ1 to estimate aleatoric uncertainty. Mean-
while, as described in Sec. 5.3.3, applying the proposed DIDO on σΘ2 and measuring the spread of
Dirichlet distribution can help to estimate the epistemic uncertainty. Overall, we integrate the opti-
mization for both uncertainty estimators, and the final loss for training the generalized AuxUE is:

LAuxUE =L (Θ1)+L (Θ2) (5.17)

For L (Θ1), in addition to the Gaussian NLL, we will test other NLL loss functions according to
different distribution assumptions in the experiment. Furthermore, there are two hyper-parameters,
namely the regularization weight λ and the number of classes K. We will talk about the choosing of
them in the ablation study in Sec. 5.4.6.
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Figure 5.3: Results on 1D toy examples. Aleatoric and epistemic uncertainty estimations given by our pro-
posed AuxUE are presented respectively as the prediction interval and the uncertainty degree (0-1).

5.4 Experiments

In this section, we first show the feasibility of the proposed generalized AuxUE on toy examples.
Then, we demonstrate the effectiveness and scalability of epistemic uncertainty estimation using
the proposed DIDO on a tabular data example, the age estimation, and the monocular depth esti-
mation (MDE) tasks. We also investigate the robustness of aleatoric uncertainty estimation on super-
resolution (SR) and MDE tasks. In the result tables, shar.enc. and sep.enc. denote respectively shared-
parameters for the encoders and separate encoders of σΘ1 and σΘ2 in the generalized AuxUE.

In the result tables, the top two performing methods are highlighted in colors. All the results are
averaged by three runs. The shar.enc. and sep.enc. denote respectively shared-parameters for the en-
coders and separate encoders of σΘ1 and σΘ2 in the generalized AuxUE. For epistemic uncertainty,
we compare our proposed method with the solutions based on modified main DNN: LDU [66], Ev-
idential learning (Evi.) [108] and Deep Ensembles (DEns.) [123], as well as training-free methods:
Gradient-based uncertainty (Grad.) [92], Variance based on Inject-Dropout (Inject.) [167].

5.4.1 Toy examples: Simple 1D regression

We generate two toy datasets to illustrate uncertainty estimates given by our proposed AuxUE, as
shown in Figure 5.3.

Dataset The Figure 5.3 (A) was generated as follows: y = 10sin(x)+ϵ, with ϵ:
ϵ∼N (0,3) x ∈ [−3,0]

ϵ∼N (0,1) x ∈ [0,3]

0 otherwise

The Figure 5.3 (B) was generated as follows: y = 10sin(x)+ϵ, with ϵ:
ϵ∼N (0,3) x ∈ [−3,−1]

ϵ∼N (0,1) x ∈ [3,5]

0 otherwise

Models Our main task model consists of an MLP with four hidden layers with 300 hidden units per
layer and ReLU non-linearities. We use a generalized AuxUE method similar to ConfidNet [41].
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Hyperparameters Main task AuxUE

learning rate 0.001 0.005

# epochs 200 100

batch size 64 64

λ - 0.01

K - 5

Table 5.1: Hyperparameters for 1D signal toy examples.

Hyperparameters Main task AuxUE

learning rate 0.001 0.001

# epochs 150 20

batch size 64 64

λ - 0.0001

K - 5

Table 5.2: Hyperparameters for tabular data example.

In particular, the input of the AuxUE is the features from the output of the penultimate layer of the
main task model. Thus, in this case, the generalized AuxUE does not need the encoders, as shown in
the general process in Figure 5.1. The architecture of this AuxUE is as follows. σΘ1 is composed of
one fully connected layer (FCL) with an exponential activation function on the top. σΘ2 is composed
of an MLP with a cosine similarity layer and a hidden layer with 300 hidden units per layer, and an
exponential activation function on the top.

The reason for using the cosine similarity layer is to decrease the impact of the numerical value. This
operation is similar to the fully connected layer operation but simply divides the output by the product
of the norm of the layer’s inputs (trainable parameters of the linear and input features).

Training The hyperparameters are listed in Table 5.1. As a reminder, λ and K are the hyperparam-
eters specifically for AuxUE (σΘ2 ), which stand for the weight for the regularization term in the loss
function, and respectively for the number of the class we set for discretization.

Discussion In both examples, a tight aleatoric uncertainty estimation is provided on training data ar-
eas. For epistemic uncertainty, in Figure 5.3 (A), DIDO provides small uncertainty until reaching the
unknown inputs x ∉ [−3,3]. In Figure 5.3 (B), we report the ‘in-between’ uncertainty estimates [60].
On the in-between part x ∈ [−1,3], DIDO can provide higher epistemic uncertainty than in training set
regions x ∈ [−3,−1] and x ∈ [3,5]. In summary, the generalized AuxUE provides reliable uncertainty
estimates in regions where training data is either present or absent.

5.4.2 Toy examples: Tabular data

To show the scalability of the proposed DIDO, we conduct the experiment on a tabular dataset.

Dataset We use the red wine quality dataset [44] for the OOD detection task. We randomly separate
the dataset in training, validation, and test sets with 72%, 8%, and 20% as the proportions of the whole
dataset for each set. We generate the OOD data using the ID test set. We first replicate two test sets as
OOD sets, one of which we set all the features in the table to be negative, and the other, we randomly
shuffle the values of the features, i.e., we shuffle the values in the columns.
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MSE ↓ AUROC ↑ AUPR ↑

DEns. 0.646 0.548 0.250

DIDO 0.646 0.936 0.863

Table 5.3: Main task and OOD detection performance on tabular data example.

Metrics Coral CE
CE

+SWS
LDU Evi. DEns.

MAE ↓ 3.47 ± 0.05 3.60 ± 0.02 3.39 3.41 3.70 ± 0.19 3.31

RMSE ↓ 4.71 ± 0.06 5.03 ± 0.03 4.52 ± 0.03 4.50 4.72 ± 0.23 4.40

Table 5.4: Main task performance for ResNet34 model based on different methods on age estimation
task. The evaluation is based on AFAD [179] test set.

Models and training Our main task model consists of an MLP with four hidden layers with 16, 32,
and 16 hidden units in the respective layer and ReLU non-linearities. We use a generalized AuxUE
method similar to ConfidNet [41].

In particular, we find it better to provide the tabular data to the AuxUE directly. We use one hidden
layer with 16 hidden units followed by ReLU as the feature extractor for σΘ1 and σΘ2 uncertainty
estimators. For the uncertainty estimators, we use the same ones as in the 1D signal data. The
hyperparameters are listed in Table 5.2.

Results We trained three models to build Deep Ensembles (DEns.) [123]. The epistemic uncertainty
estimates are obtained using the variance of DNNs’ point estimates. We evaluate the OOD detection
performance using AUROC and AUPR as the metrics. The results are shown in Table 5.3. The
proposed DIDO outperforms the DEns. on OOD detection task using one extra DNN apart from the
main task model.

5.4.3 Age estimation and OOD detection

Epistemic uncertainty estimation for age estimation is similar to one for classification problems but
has rarely been discussed in previous works. In this section, we will check OOD detection perfor-
mance using different approaches based on the age estimator.

Models and training We use (unmodified) official ResNet34 [87] checkpoints from Coral [27] as
the main task models. We observe that the age estimation result can outperform the one achieved
by Coral by applying soft-weighted-sum (SWS) [253] on the top of the models trained using cross-
entropy loss. The goal of SWS is a post-processing operation to transfer the discrete Softmax outputs
to the continuous age estimates. For this reason, we use the main task models trained by cross-entropy
loss.

Our AuxUE is applied in a ConfidNet [41] style since it is more suitable for image-level tasks. Sim-
ilarly to the toy example settings, we take the pre-logits (512 features) from the main task model as
the inputs of our AuxUE. For σΘ1 , we use an MLP with one hidden layer with 512 hidden units and
an FCL with an exponential function on the top. For σΘ2 , we use an MLP with a cosine similarity
layer and one hidden layer with 512 hidden units per layer and ReLU non-linearities, followed by an
FCL with an exponential function on the top.

We choose AFAD [179] dataset as the training set. To train the AuxUE DNN, we use the hyperpa-
rameters shown in Table 5.5. We use the same optimizer and batch size as for the main task training,
while we use 25 epochs, which is much less than training the main task.
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Hyperparameters Main task AuxUE

learning rate 0.0005 0.001

# epochs 200 25

batch size 256 256

λ - 0.01

K - 8

Table 5.5: Hyperparameters for age estimation.

AuxUE Modified main DNN Training-free

OOD Dataset Metrics Ours σΘ1 Ours σΘ2 DIDO LDU Evi. DEns. Grad. (inv.) Inject.

CIFAR10
AUROC ↑ 96.0 100 95.2 50.0 99.2 100 94.5

AUPR ↑ 91.7 100 88.3 23.4 95.1 100 87.3

SVHN
AUROC ↑ 98.3 100 94.8 50.0 99.2 100 94.0

AUPR ↑ 98.1 100 93.2 44.3 97.8 100 92.5

MNIST
AUROC ↑ 97.8 100 97.6 50.0 99.6 100 98.8

AUPR ↑ 93.9 100 93.8 23.4 97.2 100 96.9

Fashion

MNIST

AUROC ↑ 97.7 100 95.6 50.0 99.1 100 97.7

AUPR ↑ 94.0 100 89.3 23.4 93.8 100 94.2

Oxford

Pets

AUROC ↑ 82.9 55.9 31.5 50.1 56.1 50.7 48.6

AUPR ↑ 53.3 23.9 12.5 18.5 21.3 19.6 20.3

Fake

Data

AUROC ↑ 67.0 80.8 70.0 50.0 33.2 45.9 45.1

AUPR ↑ 59.7 70.2 58.8 49.5 37.8 46.3 44.6

Table 5.6: OOD detection results on Age estimation task. ID data is from Asian Face Age Dataset
(AFAD) [179].

Evaluation settings There is no benchmark for OOD detection on age estimation, the straightfor-
ward OOD inputs are irrelevant compared to the training images [223]. Thus, we use CIFAR10 [120],
SVHN [177], MNIST [126], FashionMNIST [242], Oxford-Pets [186] and Noise image generated by
Pytorch [187] (FakeData) as the OOD datasets. We employ the area under the receiver operating
characteristic (AUROC) and the precision-recall curve (AUPR) (higher is better for both) to evaluate
OOD detection performance.

Results OOD detection results are shown in Table 5.6. DIDO performs the best on most datasets.
The training-free methods also perform well, but we observe that the Grandient-based solution needs
inversed uncertainty (inv.) to provide better performance. On the Pets dataset, DIDO performs worse
than DEns. and aleatoric uncertainty estimation head σΘ1 . We argue that images of pets provide
features closer to facial information, resulting in higher evidence estimates given by DIDO. While σΘ1

performs better in this case, which can jointly make AuxUE a better uncertainty estimator. Overall,
we consider that using generalized AuxUE with DIDO is an alternative that can better detect OOD
inputs than ensembling-based solutions. Ensembling-based solutions still have advantages, such as
better main task accuracy, as shown in Table 5.4.

Additional: Main task performance For the age estimation task, we list the main task results
in Table 5.4 given by the original Coral, the original cross entropy (CE)-based models and the CE-
based models using soft-weighted-sum (SWS). We can see that SWS really improves the main task
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performance. Furthermore, by adjusting the original model to output the parameters of Gaussian
distribution [113, 180] and training three models like this from scratch, we can achieve the results
given by Deep Ensembles (DEns.) [123]. We also implement LDU [66] and Evidential learning
(Evi.) [108] based on the ResNet34 backbone. The overall difference among different techniques is
not huge, while the adjustments still reduce a bit the age estimation performance. We argue that the
adjusted DNNs might achieve comparable performance to the unchanged ones, but more tuning and
hyperparameter searching should be required.

5.4.4 Super-resolution task

In the SR task, the noise in the reconstructed image will be irreducible given the noisy low-resolution
input, and we consider this uncertainty to be aleatoric. Moreover, we argue that the definition of epis-
temic uncertainty is rather vague in this task. Therefore, in this section, we use AuxUE to estimate the
aleatoric uncertainty based on different distribution assumptions. We choose SRGan [128] as the main
task model and BayesCap [229] as the AuxUE and follow the same training and evaluation settings as
in [229]. The goal is to analyze the fundamental performance and robustness of aleatoric uncertainty
estimation under different distribution assumptions. We choose simple Gaussian (Sgau) [180], Lapla-
cian (Lap), Generalized Gaussian (Ggau) [229] and Normal-Inverse-Gamma (NIG) [5] distributions
on BayesCap [229]. We modify the loss functions and the head of the Bayescap to output the desired
parameters of the distributions.

Evaluation metrics We follow [229] to use the Uncertainty Calibration Error (UCE, lower is better)
metric [125]. It measures the difference between the predicted uncertainty and the prediction error.
Specifically, the prediction error and estimated uncertainty are assigned into bins, and the absolute
difference between the mean prediction error and mean estimated uncertainty in each bin is calculated.
UCE is the sum of the results from all bins.

Models and training In the following, our goal is to find a more robust design based on different
distribution assumptions. Meanwhile, we find that the definition of epistemic uncertainty is vague
for the super-resolution task. Thus we only have σΘ1 in our generalized AuxUE, and we take di-
rectly BayesCap as σΘ1 with some minor modifications for different distribution assumptions. We
follow [229] to use the output of the main task model SRGan [128] as the input of the AuxUE.

We only modify the prediction heads on Bayescap. Original BayesCap [229] uses multiple Residual
blocks [87] followed by three heads which output the three parameters for the Generalized Gaussian
distribution, including one as the refined main task prediction. Each head contains a set of convolu-
tional layers + PReLU activation functions. As we apply different distribution assumptions, we use
the different numbers of the same heads to construct the variants of BayesCap. Specifically, we use
two heads for two Gaussian distribution parameters, two heads for two Laplace distribution param-
eters, and four heads for four parameters in NIG distribution. We follow the same training settings
(batch size, learning rate, weight for the additional identity mapping loss, and the number of epochs)
as in the original paper [229].

Datasets We use ImageNet [48] as the training set for both SRGan and BayesCap models. For un-
certainty evaluation, we use Set5 [14], Set14 [258], and BSDS100 [162] as the testing sets. Moreover,
we generate Set5-C, Set14-C, and BSDS100-C using the code of ImageNet-C [90] to have different
corruptions on the images. We apply the following eighteen perturbations with five severities: Gaus-
sian noise, shot noise, impulse noise, iso noise, defocus blur, glass blur, motion blur, zoom blur,
frost, fog, snow, dark, brightness, contrast, pixelated, elastic, color quantization, and JPEG. Only
low-resolution images (inputs) are polluted by noise, while the corresponding high-resolution ground
truth images are clean. Castillo et al. [29] applied the noise to the input images during training, while
we apply them during inference for robust uncertainty estimation evaluation.
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Metrics Set5 Set14 BSDS100

PSNR ↑ 29.40 26.02 25.16

SSIM ↑ 0.8472 0.7397 0.6688

Table 5.7: Main task performance for SRGan model on super-resolution task.

Methods AbsRel ↓ log10 ↓ RMSE ↓ SqRel ↓ RMSElog ↓ δ1 ↑ δ2 ↑ δ3 ↑

Org 0.056 0.025 2.430 0.201 0.089 0.963 0.994 0.999

SinglePU 0.065 0.029 2.606 0.234 0.100 0.952 0.993 0.998

LDU 0.059 0.026 2.394 0.203 0.091 0.960 0.994 0.999

DEns. 0.060 0.026 2.435 0.202 0.092 0.961 0.995 0.999

Table 5.8: Main task performance for original and modified BTS models on monocular depth estimation.
The evaluation is based on KITTI [75] Eigen-split [57] validation set.

Results In the super-resolution task, we take the main task SRGan [128] model used in
BayesCap [229]. Thus we have the same main task performance as they showed in the paper.
We list the results in Table 5.7 as a reminder. The evaluation is based on Set5 [14], Set14 [258],
BSDS100 [162] dataset. For uncertainty quantification performance, as shown in Table 5.9, the
Laplacian assumption on the data-dependent noise performs better than all the other assumptions,
including the Generalized Gaussian distribution proposed in BayesCap. When the noise severity
increases, using the Laplacian assumption can provide more robust uncertainty than the others.

5.4.5 Monocular depth estimation task

For the MDE task, we will evaluate both aleatoric and epistemic uncertainty estimation performance
based on the AuxUE SLURP [252]. Our generalized AuxUE is also constructed using SLURP as the
backbone. We use BTS [130] as the main task model and KITTI [75, 227] Eigen-split [57] training
set for training both BTS and AuxUE models.

5.4.5.1 Aleatoric uncertainty estimation

In this section, we will analyze the performance of the same distribution assumptions as in Sec. 5.4.4.

Models and training We use SLURP [252] as the backbone in this experiment. We modify the
prediction heads to achieve the uncertainty estimates.

For σΘ1 , we do not modify the model when the distribution assumption only contains one parameter
(except for the main task prediction term). For the distribution assumptions with more than one
parameter output, we add one more convolutional layer with ReLU on the top for a fair comparison.

For σΘ2 , similarly to the one in age estimation, we replace the original head (a single convolutional
layer) with the cosine similarity layer followed by two convolutional layers with ReLU activation
functions. In the cases where we share the encoders to make the general AuxUE lighter, based on
the original SLURP, we doubled the number of features fed into the prediction head. We split them
into two sets, feeding them into two prediction heads. The two prediction heads are consistent in the
structures mentioned before. We follow [252] to use the depth output and the encoder features of the
main task model BTS [130] as the input of the AuxUE.

The hyperparameters used during training are listed in Table 5.11. The learning rate decrement is
consistent with the main task BTS [130] model.
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Super Resolution (Metric: UCE ↓)

Dataset S Original (Ggau) + Sgau + NIG Uncer 1 +NIG Uncer 2 Ours σΘ1 (+ Lap)

Set5

0 0.0088 0.0083 0.0018 0.0025 0.0019

1 0.0186 0.0180 0.0156 0.0171 0.0157

2 0.0253 0.0243 0.0226 0.0244 0.0227

3 0.0363 0.0341 0.0333 0.0351 0.0332

4 0.0434 0.0394 0.0392 0.0415 0.0389

5 0.0525 0.0462 0.0464 0.0056 0.0040

Set14

0 0.0137 0.0092 0.0040 0.0056 0.0040

1 0.0221 0.0195 0.0176 0.0198 0.0174

2 0.0281 0.0255 0.0241 0.0265 0.0240

3 0.0350 0.0318 0.0310 0.0334 0.0308

4 0.0408 0.0368 0.0364 0.0391 0.0362

5 0.0509 0.0465 0.0465 0.0494 0.0461

BSDS

100

0 0.0124 0.0071 0.0036 0.0048 0.0033

1 0.0204 0.0174 0.0162 0.0180 0.0160

2 0.0271 0.0237 0.0229 0.0249 0.0227

3 0.0332 0.0288 0.0286 0.0305 0.0358

4 0.0425 0.0363 0.0363 0.0385 0.0358

5 0.0539 0.0459 0.0460 0.0482 0.0453

Table 5.9: Aleatoric uncertainty estimation results on Super-Resolution task. Datasets with an S (severity)
greater than 1 are the -C variants of the corresponding clean datasets.

Evaluation metrics We first build Sparsification curves (SC) [23]: we achieve predictive SC by
computing the prediction error of the remaining pixels after removing a certain partition of pixels
(5% in our experiment) each time according to the highest uncertainty estimations. We can also
obtain an Oracle SC by removing the pixels according to the highest prediction errors. Then, we
have the same metrics used in [191] to measure: 1. the difference between predictive SC and the
Oracle SC: Area Under the Sparsification Error (AUSE, lower is better). 2. the difference between
predictive SC and a random SC (no-modeling uncertainty): Area Under the Random Gain (AURG,
higher is better). We choose absolute relative error (REL) and root mean square error (RMSE) as the
prediction error metrics.

Datasets We generate KITTI-C from KITTI Eigen-split validation set [57] using the same steps as
in Sec. 5.4.4 and take it along with the original KITTI for evaluation.

Results In monocular depth estimation, we list in Table 5.8 the results for the methods using modi-
fied main task BTS [130] models, namely SinglePU [113], Deep Ensembles (DEns.) [123], LDU [66],
as well as the original model, which is used for AuxUEs and the training-free methods. Note that we
use the evaluation code based on AdaBins [15], which corrected the error made in the BTS evaluation
code, and the result will be slightly better than the one claimed in the original BTS. The evaluation is
based on KITTI [75] Eigen-split [57] validation set. As we can see, modifying the model and training
in [113] way will affect the main task performance even after doing Deep Ensembles, LDU can pro-
vide competitive results to the original, yet only on several metrics. Overall, the AuxUE is necessary
to be applied for uncertainty estimation without changing and affecting the main task.

For aleatoric uncertainty estimation, as shown in Table 5.10, the results follow the SR task. The
Laplacian assumption is more robust when the severity increases, while the Gaussian one works bet-
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Monocular Depth Estimation

S Metrics Original + Ggau + Sgau
+ NIG

Uncer1

+ NIG

Uncer2

Ours (DIDO)

sep. enc. σΘ2

Ours (+ Lap)

shar. enc. σΘ1

Ours (+ Lap)

sep. enc. σΘ1

0

AUSE-REL ↓ 0.013 0.014 0.013 0.012 0.013 0.050 0.013 0.013

AUSE-RMSE ↓ 0.204 0.258 0.202 0.208 0.205 3.277 0.205 0.203

AURG-REL ↑ 0.023 0.023 0.023 0.024 0.023 -0.016 0.023 0.023

AURG-RMSE ↑ 1.869 1.815 1.871 1.865 1.868 -1.453 1.869 1.870

1

AUSE-REL ↓ 0.019 0.021 0.019 0.018 0.020 0.064 0.018 0.019

AUSE-RMSE ↓ 0.340 0.482 0.332 0.335 0.350 4.085 0.332 0.336

AURG-REL ↑ 0.031 0.029 0.031 0.032 0.030 -0.014 0.032 0.031

AURG-RMSE ↑ 2.357 2.215 2.365 2.362 2.347 -1.388 2.365 2.361

2

AUSE-REL ↓ 0.024 0.026 0.023 0.022 0.025 0.077 0.022 0.023

AUSE-RMSE ↓ 0.483 0.707 0.463 0.479 0.505 4.788 0.464 0.468

AURG-REL ↑ 0.038 0.035 0.039 0.039 0.037 -0.016 0.039 0.038

AURG-RMSE ↑ 2.759 2.535 2.779 2.763 2.737 -1.546 2.777 2.774

3

AUSE-REL ↓ 0.033 0.036 0.031 0.031 0.035 0.099 0.031 0.031

AUSE-RMSE ↓ 0.795 1.176 0.737 0.806 0.846 5.743 0.749 0.730

AURG-REL ↑ 0.047 0.044 0.049 0.049 0.045 -0.019 0.049 0.049

AURG-RMSE ↑ 3.243 2.862 3.301 3.232 3.192 -1.705 3.289 3.308

4

AUSE-REL ↓ 0.056 0.057 0.050 0.053 0.059 0.125 0.051 0.049

AUSE-RMSE ↓ 1.517 2.380 1.364 1.582 1.607 5.743 1.430 1.268

AURG-REL ↑ 0.051 0.051 0.058 0.054 0.049 -0.019 0.056 0.059

AURG-RMSE ↑ 3.680 2.817 3.834 3.615 3.590 -1.705 3.767 3.929

5

AUSE-REL ↓ 0.071 0.082 0.064 0.069 0.071 0.140 0.066 0.059

AUSE-RMSE ↓ 2.202 3.878 2.043 2.414 2.307 7.354 2.157 1.760

AURG-REL ↑ 0.056 0.045 0.063 0.057 0.055 -0.014 0.061 0.067

AURG-RMSE ↑ 4.054 2.377 4.213 3.842 3.949 -1.098 4.098 4.496

Table 5.10: Aleatoric uncertainty estimation results on Monocular Depth Estimation task. Datasets used
in MDE are KITTI (S=0) and KITTI–C (S>0). The top two are respectively bolded and underlined. All the
results are averaged by three models.

ter when the noise severity is smaller. We also check the proposed generalized AuxUE with a shared
encoder. It shows that the epistemic uncertainty estimation branch affects the robustness of aleatoric
uncertainty estimation in this case, especially when encountering stronger noise. Furthermore, using
the expected entropy of Dirichlet outputs, i.e., outputs of σΘ2 can achieve aleatoric uncertainty es-
timates theoretically. We also provide the partial results from the other distribution assumptions to
make a comparison. From the last column, we can see that the Dirichlet outputs cannot provide com-
parable results on quantitative metrics since the discretization affects the original numerical values of
the prediction errors on the ID training data.

In the next experiment, we will evaluate epistemic uncertainty estimation quality using DIDO. The ex-
periments are conducted from two perspectives. Firstly, we verify if DIDO can better help the model
identify the dataset change. Secondly, we check if DIDO can detect well the patterns that are rarely
seen during training. The comparison is composed of the proposed DIDO and the solutions based
on modified main task models: LDU [66], Evidential regression (Evi.Reg.) [5] and Deep Ensembles
(DEns.) [123] and training-free uncertainty estimation: Gradient-based uncertainty (Grad.) [92],
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Figure 5.4: Illustrations of uncertainty estimations for MDE task. A: input image, green points represent
pixels with depth groundtruth; B: depth prediction; C and D: aleatoric and epistemic uncertainty estimations.
The areas lacking depth groundtruth, e.g., sky and tramway, are assigned high uncertainty using DIDO.

Hyperparameters Main task AuxUE

start learning rate 1e-4 1e-4

end learning rate 1e-5 1e-5

# epochs 50 8

batch size 4 4

λ - 0.01

K - 32

Table 5.11: Hyperparameters for monocular depth estimation.

Variance based on Inject-Dropout (Inject.Var.) [167]. Furthermore, we also verify whether aleatoric
uncertainty methods based on different distribution assumptions as in Sec. 5.4.4 and Sec. 5.4.5.1
can generalize to the OOD data, i.e., provide high uncertainty to the unseen patterns, even without
explicitly modeling epistemic uncertainty.

5.4.5.2 Epistemic uncertainty estimation: robustness under dataset change

This experiment will discuss the predictive uncertainty performance encountering the dataset change.
Supervised MDE is an ill-posed problem that heavily depends on the training dataset. In our case, the
main task model is trained on the KITTI dataset, so the model will output meaningless results on the
indoor data, which should trigger a high uncertainty estimation. The results are shown in Table 5.12.

Evaluation settings and datasets We take AUROC and AUPR (higher is better for both) as evalu-
ation metrics. We take all the valid pixels from the KITTI validation set (ID) as the negative samples
and the valid pixels from the NYU [176] validation set (OOD) as the positive samples.

Results Table 5.12 shows whether different uncertainty estimators can give correct indications fac-
ing the dataset change. Generalized Gaussian and Gradient-based methods can provide competitive
results, while our method, especially DIDO, provides the best performance.

5.4.5.3 Epistemic uncertainty estimation: Robustness on unseen patterns during training

This experiment will focus on how uncertainty estimators behave on unseen patterns during training.
The unseen patterns are drawn from the same dataset distribution as the patterns used in training,
while the outputs of the main task model for such patterns may be reasonable. Still, they cannot be
evaluated and thus are not reliable. The uncertainty estimators should assign high uncertainty to these
predictions. Since this topic is rarely considered in MDE, we try to give a benchmark in this work.
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Auxiliary Uncertainty Estimator (SLURP) Modified main task model Training-free

Metrics Original + Ggau + Sgau
+ NIG

Uncer1

+ NIG

Uncer2

Ours σΘ1

sep. enc.

Ours σΘ2

sep. enc.

Ours σΘ2

shar. enc.

Single

PU
LDU

Evi.Reg.

Uncer1

Evi.Reg.

Uncer2
DEns.

Grad.

(inv.)

Inject.

Var.

AUROC ↑ 59.8 80.9 74.5 57.0 63.6 65.4 98.1 98.4 64.2 58.1 43.4 70.6 62.1 78.4 18.3

AUPR ↑ 76.7 90.9 88.4 75.5 78.8 82.5 99.3 99.4 78.3 79.5 63.5 77.8 76.7 92.6 62.3

Table 5.12: Epistemic uncertainty estimation results encountering dataset change on Monocular depth
estimation task. The evaluation dataset used here is NYU indoor depth dataset.

Auxiliary Uncertainty Estimator (SLURP) Modified main task model Training-free

S Metrics Original + Ggau + Sgau
+ NIG

Uncer1

+ NIG

Uncer2

Ours σΘ1

sep. enc.

Ours σΘ2

sep. enc.

Ours σΘ2

shar. enc.

Single

PU
LDU

Evi.Reg.

Uncer1

Evi.Reg.

Uncer2
DEns. Grad.

Inject.

Var.

0

Sky-AUROC ↑ 99.1 96.8 99.0 90.9 78.5 99.9 100.0 99.9 89.0 96.5 72.2 76.7 93.5 85.6 58.4

Sky-AUPR ↑ 94.6 80.3 91.6 57.6 39.2 99.7 100.0 99.0 62.0 93.8 48.8 42.6 70.0 76.3 28.1

Sky-Overall ↓ 0.643 0.277 0.934 0.983 0.999 0.961 0.015 0.018 0.005 0.278 0.986 0.986 0.005 0.001 0.800

1

Sky-AUROC ↑ 98.4 96.0 99.0 90.4 76.2 99.8 100.0 99.9 86.9 96.3 65.2 69.7 92.8 76.9 58.5

Sky-AUPR ↑ 93.3 77.9 92.4 57.4 37.7 99.5 99.9 98.9 59.1 93.5 43.3 37.4 68.0 69.8 28.2

Sky-Overall ↓ 0.742 0.274 0.935 0.978 0.999 0.962 0.016 0.018 0.005 0.277 0.988 0.988 0.005 0.002 0.799

2

Sky-AUROC ↑ 97.6 95.6 99.0 90.2 74.9 99.7 99.9 99.9 86.6 95.9 60.3 65.4 92.3 75.6 58.4

Sky-AUPR↑ 91.9 76.5 92.8 57.5 37.2 99.3 99.8 98.8 58.9 93.0 39.4 34.5 67.0 67.8 28.1

Sky-Overall ↓ 0.784 0.274 0.937 0.973 0.999 0.962 0.017 0.018 0.005 0.280 0.990 0.990 0.005 0.002 0.803

3

Sky-AUROC ↑ 96.8 95.0 98.9 90.0 73.7 99.4 99.9 99.7 86.6 95.9 56.3 62.3 91.6 73.6 58.4

Sky-AUPR ↑ 90.5 75.1 92.9 58.2 36.9 98.9 99.7 98.1 59.5 92.8 36.6 32.8 65.7 64.5 28.2

Sky-Overall ↓ 0.815 0.277 0.938 0.965 0.999 0.960 0.018 0.020 0.005 0.283 0.991 0.992 0.005 0.002 0.809

4

Sky-AUROC ↑ 94.9 93.2 98.5 89.8 72.9 99.0 99.6 99.5 87.2 96.1 51.2 58.8 91.8 71.3 58.4

Sky-AUPR ↑ 87.2 71.1 92.4 59.8 37.9 98.2 99.1 97.2 61.7 92.9 32.8 31.2 67.2 60.0 28.3

Sky-Overall ↓ 0.868 0.284 0.940 0.945 0.994 0.959 0.023 0.022 0.005 0.288 0.994 0.994 0.005 0.002 0.819

5

Sky-AUROC ↑ 92.5 90.3 97.6 89.6 73.4 98.2 98.5 99.0 87.5 96.5 48.2 58.5 92.2 66.8 57.8

Sky-AUPR ↑ 83.8 66.6 91.4 63.6 42.1 96.8 97.1 96.1 64.6 93.7 31.6 32.8 70.4 53.8 28.2

Sky-Overall ↓ 0.902 0.299 0.943 0.909 0.982 0.959 0.035 0.026 0.005 0.295 0.995 0.996 0.005 0.002 0.839

Table 5.13: Epistemic uncertainty estimation results encountering unseen pattern on Monocular depth
estimation task. The evaluation datasets used here are KITTI Seg-Depth (S=0) and KITTI Seg-Depth-C (S>0).

Evaluation settings and datasets We select sky areas in KITTI as OOD patterns. This setting is
based on the following reasons. Due to the generalization ability of MDE DNNs, it is inappropriate
to treat all pixels without ground truth as OOD. However, there is consistently no ground truth for
the sky parts since LIDAR is used in depth acquisition. During training, sky patterns are masked
and never seen by the DNNs (including the AuxUEs). Meanwhile, they are annotated in the KITTI
semantic segmentation dataset [3] (200 images), thus can be used for evaluation.

Three metrics are applied for evaluating OOD detection performance as shown in Table 5.13. Sky-
AUROC and Sky-AUPR (higher is better for both): we select 49 images that are not in the training set
and have both depth and semantic segmentation annotations. For each image, we take the sky pixels
as the positive class and the pixels with depth ground truth as the negative class. We use AUROC
and AUPR to assess the uncertainty estimation performance. Note that this metric does not guarantee
that the uncertainty of the sky is the largest in the whole uncertainty map. Thus, we have Sky-Overall
(lower is better): all 200 images with semantic segmentation annotations are selected for evaluation.
The ground truth uncertainties are set as 1 for the sky areas. Then we normalize the predicted un-
certainty, take the sky areas ûsky from the whole uncertainty map and measure: mean((1− ûsky)2).
For simplicity, we denote KITTI Seg-Depth for both evaluation datasets, and we also generate KITTI
Seg-Depth-C following Sec. 5.4.4.
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Results Figure 5.4 shows a qualitative example of typical uncertainty maps computed on KITTI
images. More visualizations are presented in Sec. 5.5. In Table 5.13, the Deep Ensembles and
Gradient-based methods can better assign consistent and higher uncertainty to the sky areas, but they
are unsatisfied in identifying the ID and OOD areas. Most distribution assumptions can help AuxUE
achieve good AUROC and AUPR results, which shows that these AuxUEs all fit the ID data well.
Yet, they can not assign consistent and higher uncertainty to the sky areas. Our DIDO can achieve a
balanced performance on all the metrics, and at the same time, it maintains robust performance in the
presence of noise.

5.4.6 Ablation study

The ablation studies are based on the monocular depth estimation task and arranged as follows:

1. Hyperparameters: We analyze the effect of the number of sets K defined in Sec. 5.3.3.1 for
discretization and λ for the regularization term in Eq. 5.15.

2. Necessity of using AuxUE: We also apply DIDO on the main task model to check the impact
on main task performance.

3. Effectiveness of Dirichlet modeling: We show the effectiveness of the Dirichlet modeling
instead of using the normal Categorical modeling based on the discretized prediction errors.
For the former, we apply classical cross-entropy on the Softmax outputs given by the AuxUE.

5.4.6.1 Hyperparameters

There are two main hyperparameters in our proposed DIDO: the number of the sets K in discretization
and λ for the regularization term in the loss function as shown in Eq. 5.15. In this section, we analyze
the effect of these two hyperparameters.

The evaluations are based on epistemic uncertainty estimation on unseen patterns and dataset change
detection.

The effect of K is shown in Figure 5.5a and Figure 5.5c. We test K = {8,16,32,64} and λ is fixed to
0.01. The Sky-AUROC and Sky-AUPR performance decrease when we have bigger K, while on the
Sky-Overall metric, bigger K provides better results. When the evaluation dataset is changed from
KITTI to NYU [176], bigger K can also provide better AUROC and AUPR in identifying the change.
We choose K = 32 to have a balanced performance.

The effect of λ is shown in Figure 5.5b and Figure 5.5d. We test λ = {1e − 4,1e − 3,1e − 2,1e − 1}
and K is fixed to 32. We can see the Sky-AUROC and Sky-AUPR performance decrease when we
use bigger λ during training, while on the Sky-Overall metric, it performs better when using bigger λ
during training. For the dataset change experiment, we can see when λ= 0.01, the DIDO can provide
the best AUROC and AUPR. We choose λ= 0.01 in the end for our model.

5.4.6.2 Necessity of using AuxUE

In this experiment, we apply DIDO on the main task BTS [130] model to see the impact on the
main task performance and the uncertainty estimation performance. The comparison will only be
conducted with the other modified main task models for fairness. In particular, we first adjust the
BTS model to Single Predictive Uncertainty [113, 180] variant (BTS-SinglePU), i.e., we first add
an aleatoric uncertainty estimation head parallel to and identical to the depth estimation head on top
of the original model. Then we add the same head for DIDO applied on σΘ2 . Thus there are three
prediction heads on the modified BTS model corresponding to depth prediction, aleatoric uncertainty
estimation and epistemic uncertainty estimation. We denote this variant as BTS-DIDO. We will
compare BTS-DIDO with the original BTS model (Org) and the BTS-SinglePU model to check the
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impact on the main task. We also compare the BTS-DIDO with AuxUE + original BTS, BTS-DEns.
and BTS-SinglePU models to check the uncertainty estimation performance.

To train the BTS-SinglePU models, we follow the original BTS settings for hyperparameters in train-
ing. We change the loss function to Gaussian NLL loss. For BTS-DIDO, we use the same hyper-
parameters as we used in AuxUEs for DIDO modeling, i.e., K = 32 and λ = 0.01. For the other
hyperparameters, such as the batch size and learning rate, we follow the original BTS settings.

During training, we found that combining DIDO directly with the BTS will make the training un-
stable: the loss will explode after around fifteen epochs. As shown in Table 5.14, for the main
task performance, the original BTS can outperform the others even for BTS-DEns. We argue that
there are two reasons that might result in the performance reduction: BTS-DEns. component models
(BTS-SinglePU models) are adjusted for the uncertainty output; SiLog loss [57], which is specifically
applied to the MDE task, is replaced by the Gaussian negative log-likelihood loss. However, when the
noise severity increases (S > 3), BTS-DIDO and BTS-DEns. can perform better than the others. In
particular, BTS-DIDO shows a more robust performance given the inputs with heavy perturbations.

For the uncertainty estimation performance, as shown in Table 5.15, BTS-DIDO and AuxUE achieve
similar performance on Sky-AUROC and Sky-AUPR metrics and on dataset change detection. While
on Sky-Overall, AuxUE works slightly better than BTS-DIDO. For aleatoric uncertainty, since the
main task performances for different models are different, the comparison can only be a reference.
With a sacrifice on the main task performance, BTS-DIDO has the potential to achieve good uncer-
tainty estimation performance.

We argue that it is necessary to use AuxUE to keep the main task performance when the input is
relatively clean. Meanwhile, the good performance on BTS-DIDO under high severity perturbations
makes it meaningful to work on stabilizing the training for DIDO-based models in the future.

5.4.6.3 Effectiveness of Dirichlet modeling

We show the effectiveness of the Dirichlet modeling instead of using the standard categorical model-
ing based on discretized prediction errors. For categorical modeling, we also choose K = 32 classes
for discretization. We change the activation function on the top of σΘ2 from the ReLU function to
the Softmax function, then apply classical cross-entropy on the Softmax outputs. For measuring un-
certainty, we use the Shannon-Entropy [211] on the Softmax outputs. As shown in Figure 5.6, the
Dirichlet modeling outperforms the Categorical modeling on all three metrics w.r.t. the OOD pattern
detection. On the dataset change experiment, Categorial modeling provides 90.37 for AUROC and
96.83 for AUPR, which underperforms the results given by Dirichlet modeling. This study shows the
effectiveness of DIDO and the use of evidential learning in the AuxUE.
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Main task performance

S Methods AbsRel ↓ log10 ↓ RMSE ↓ SqRel ↓ RMSElog ↓ δ1 ↑ δ2 ↑ δ3 ↑

0

Org + AuxUE 0.056 0.025 2.430 0.201 0.089 0.963 0.994 0.999

BTS-SinglePU 0.065 0.029 2.606 0.234 0.100 0.952 0.993 0.998

BTS-DEns. 0.060 0.026 2.435 0.202 0.092 0.961 0.995 0.999

BTS-DIDO 0.061 0.027 2.574 0.236 0.098 0.954 0.992 0.998

1

Org + AuxUE 0.077 0.036 3.185 0.370 0.129 0.919 0.977 0.992

BTS-SinglePU 0.094 0.043 3.581 0.476 0.149 0.890 0.969 0.989

BTS-DEns. 0.087 0.040 3.415 0.422 0.138 0.902 0.974 0.992

BTS-DIDO 0.088 0.040 3.453 0.456 0.143 0.898 0.972 0.991

2

Org + AuxUE 0.096 0.047 3.861 0.571 0.168 0.876 0.954 0.979

BTS-SinglePU 0.116 0.057 4.359 0.735 0.192 0.835 0.939 0.973

BTS-DEns. 0.109 0.053 4.189 0.661 0.178 0.848 0.947 0.979

BTS-DIDO 0.108 0.051 4.169 0.670 0.178 0.851 0.948 0.980

3

Org + AuxUE 0.130 0.069 4.905 0.985 0.237 0.805 0.908 0.949

BTS-SinglePU 0.149 0.078 5.357 1.140 0.253 0.760 0.890 0.944

BTS-DEns. 0.140 0.073 5.184 1.031 0.234 0.772 0.904 0.955

BTS-DIDO 0.134 0.067 5.134 1.003 0.228 0.789 0.912 0.961

4

Org + AuxUE 0.195 0.117 6.591 1.888 0.370 0.680 0.808 0.874

BTS-SinglePU 0.195 0.110 6.649 1.786 0.341 0.662 0.816 0.894

BTS-DEns. 0.186 0.103 6.485 1.649 0.317 0.667 0.833 0.911

BTS-DIDO 0.170 0.089 6.292 1.485 0.293 0.711 0.862 0.930

5

Org + AuxUE 0.265 0.172 8.259 2.932 0.508 0.555 0.696 0.783

BTS-SinglePU 0.231 0.135 7.731 2.328 0.410 0.585 0.757 0.853

BTS-DEns. 0.222 0.127 7.584 2.190 0.386 0.587 0.772 0.871

BTS-DIDO 0.211 0.116 7.484 2.065 0.367 0.621 0.799 0.890

Table 5.14: Ablation study on the necessity of using AuxUE. Main task performance comparison on KITTI
and KITTI-C.
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Aleatoric uncertainty estimation Epsitemic uncertainty: Unseen pattern Dataset change

S Methods AUSE-REL ↓ AUSE-RMSE ↓ AURG-REL ↑ AURG-RMSE ↑ Sky-AUROC ↑ Sky-AUPR ↑ Sky-Overall ↓ AUROC ↑ AUPR ↑

0

Org + AuxUE 0.013 0.203 0.023 1.870 100.0 100.0 0.015 98.1 99.3

BTS-SinglePU 0.016 0.222 0.026 1.978 89.0 62.0 0.005 64.2 78.3

DEns. 0.014 0.195 0.024 1.866 93.5 70.0 0.005 62.1 76.7

BTS-DIDO 0.013 0.207 0.028 1.990 100.0 100.0 0.017 98.5 99.5

1

Org + AuxUE 0.019 0.336 0.031 2.361 100.0 99.9 0.016

-

BTS-SinglePU 0.021 0.330 0.038 2.657 86.9 59.1 0.005

BTS-DEns. 0.019 0.285 0.036 2.573 92.8 68.0 0.005

BTS-DIDO 0.017 0.308 0.041 2.608 100.0 99.9 0.027

2

Org + AuxUE 0.023 0.468 0.038 2.774 99.9 99.8 0.017

BTS-SinglePU 0.026 0.443 0.046 3.150 86.6 58.9 0.005

BTS-DEns. 0.022 0.387 0.044 3.078 92.3 67.0 0.005

BTS-DIDO 0.021 0.396 0.050 3.093 100.0 99.9 0.033

3

Org + AuxUE 0.031 0.730 0.049 3.308 99.9 99.7 0.018

BTS-SinglePU 0.031 0.619 0.055 3.719 86.6 59.5 0.005

BTS-DEns. 0.027 0.526 0.054 3.685 91.6 65.7 0.005

BTS-DIDO 0.023 0.500 0.062 3.749 99.9 99.8 0.036

4

Org + AuxUE 0.049 1.268 0.059 3.929 99.6 99.1 0.023

BTS-SinglePU 0.038 0.905 0.067 4.345 87.2 61.7 0.005

BTS-DEns. 0.032 0.734 0.067 4.401 91.8 67.2 0.005

BTS-DIDO 0.029 0.680 0.074 4.446 99.8 99.7 0.041

5

Org + AuxUE 0.059 1.760 0.067 4.496 98.5 97.1 0.035

BTS-SinglePU 0.045 1.202 0.075 4.831 87.5 64.6 0.005

BTS-DEns. 0.036 0.890 0.080 5.044 92.2 70.4 0.005

BTS-DIDO 0.036 1.010 0.084 4.964 99.5 99.3 0.051

Table 5.15: Ablation study on the necessity of using AuxUE. Epistemic uncertainty estimation performance
comparison on KITTI and KITTI-C. On clean KITTI, the extra columns stand for the dataset change experi-
ment.
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(a) Ablation study on K for DIDO on unseen patterns detection in KITTI dataset. The results are given by DIDO-based
AuxUE with different numbers of classes (K) in discretization.

(b) Ablation study on λ for DIDO on unseen patterns detection in KITTI dataset. The results are given by DIDO-based
AuxUE with (K = 32) trained by using different λ for the regularization term in loss L(Θ2).

(c) Ablation study on K for DIDO on dataset change detection in monocular depth estimation. The evaluation is made
by taking the KITTI outdoor dataset as the In-Distribution data and the NYU indoor dataset as the Out-of-Distribution data.

(d) Ablation study on λ for DIDO on dataset change detection in monocular depth estimation. The evaluation is made
by taking the KITTI outdoor dataset as the In-Distribution data and the NYU indoor dataset as the Out-of-Distribution data.

Figure 5.5: Ablation study on hyperparameters for DIDO on monocular depth estimation.

Figure 5.6: Ablation study on the effectiveness of Dirichlet modeling for DIDO on monocular depth
estimation. K = 32 for both Categorical and Dirichlet modeling cases.
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5.5 More visualizations

Figure 5.7 shows more visualizations on monocular depth estimation. For aleatoric uncertainty es-
timation maps, since some of the values on the unseen part (mostly the upper part of the map) are
extremely high (>1e4), we clip the values to the maximum predicted value on the pixels with ground
truth for better illustration. As uncertainty estimates show, our proposed DIDO can highlight the
patterns rarely appearing throughout the whole dataset, e.g., the windshield of the car, the underside
of the car, the barbed wire fence, and the upper part of the image, like the sky. However, only the
sky part is a pattern that must have no groundtruth depth values and have semantic segmentation
annotations. This is the reason we choose only the sky as the OOD pattern. Note that DIDO will
not always highlight the areas without ground truth. For instance, we can see DIDO does not always
assign higher uncertainty on the parts with no ground truth for the body of the car or the road since
some of these patterns might have ground truth on the other images in the training set or share similar
patterns which have ground truth values.

5.6 Conclusion

After introducing the previous chapters, in this chapter, we try to combine the ideas from the auxiliary
network design SLURP and discretization-induced monocular depth estimation CAR MDE and im-
prove the epistemic uncertainty estimation for regression tasks. Using a newly introduced generalized
auxiliary network as a vehicle, we explore and design a method for estimating epistemic uncertainty
for regression tasks based on discretization and Dirichlet posterior estimation. It is effective and scal-
able to both image and pixel-wise tasks and even can be applied to tabular data. We link regression
tasks to the classification ones and want to unify the problem settings and provide a more scalable
and effective uncertainty quantification solution.

The Dirichlet posterior estimation introduced in this chapter is a kind of approach that requires only
a single forward propagate of the DNN to obtain uncertainty quantification. It is based on small
modifications to the model training and was originally applied to classification tasks. In the next
chapter, we will move to these single-pass uncertainty quantification approaches. Based on some
simple modifications to the original main task model architecture and training, we hope to obtain more
robust uncertainty quantification results and main task accuracy than using the original model alone,
with a single forward propagate of the DNN. At the same time, we will try to solve the uncertainty
quantification problems not only for regression tasks but also for classification ones.
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Figure 5.7: Visualizations on monocular depth estimations and corresponding uncertainty quantification
results.
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Chapter 6

Latent discriminant discriminative
uncertainty
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6.1 Introduction

In uncertainty quantification solutions, the best-performing approaches are computationally expen-
sive [123]. In the previous chapters, we introduced auxiliary networks to estimate uncertainty, which
are lighter and able to achieve comparable and even better uncertainty quantification results without
re-training or modifying the original model. Yet, it is always an alternative choice to modify the origi-
nal DNN for better uncertainty quantification if the training code of the original model is open-source
and the training consumption is acceptable. Since it only requires single forward propagation instead
of double propagation using auxiliary DNNs.

In this chapter, we study a promising new line of methods, termed deterministic uncertainty methods
(DUMs) [194], that has recently emerged for estimating uncertainty in a computationally efficient
manner from a single forward pass [146, 171, 193, 230, 231]. In order to quantify uncertainty, these
methods rely on some statistical or geometrical properties of the hidden features of the DNNs. While
appealing for their good Out-of-Distribution (OOD) uncertainty estimations at low computational
cost, they have been used mainly for classification tasks, and their specific regularization is often
unstable when training deeper DNNs [190]. We then propose a new DUM technique based on a
discriminative latent space that improves both scalability and flexibility. We achieve this by still
following the principles of DUMs of learning a sensitive and smooth representation that mirrors well
the input distribution, although not by enforcing the Lipschitz constraint directly.
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Our DUM, dubbed Latent Discriminant deterministic Uncertainty (LDU), is based on a DNN imbued
with a set of prototypes over its latent representations. These prototypes act like a memory that allows
to better analyze features from new images in light of the “knowledge” acquired by the DNN from the
training data. Various forms of prototypes have been studied for anomaly detection in the past [81]
and they often take the shape of a dictionary of representative features. Instead, LDU is trained
to learn the optimal prototypes, such that this distance improves the accuracy and the uncertainty
prediction. Indeed to train LDU, we introduce a confidence-based loss that learns to predict the error
of the DNN given the data.

As introduced in the previous chapters, SLURP [252], as well as ConfidNet [41], have shown that we
can train an auxiliary network to predict the uncertainty using a similar confidence-based loss. While
they have a more complex training pipeline and more inference steps. Here LDU is lighter, faster, and
needs only a single forward pass. LDU can be used as a pluggable learning layer on top of DNNs. We
demonstrate that LDU avoids feature collapse and can be applied to multiple computer vision tasks.
In addition, LDU improves the prediction accuracy of the baseline DNN without LDU.

Contributions

In this chapter, our contributions are as follows:

1. We introduce Latent Discriminant deterministic Uncertainty (LDU). LDU is an efficient and
scalable DUM approach for uncertainty quantification. Moreover, we also provide a study of
LDU’s properties against feature collapse, which helps identify the OOD patterns or instances.

2. We evaluate LDU on depth estimation for both In-Distribution uncertainty and OOD detection
to further encourage research in this area.

6.2 Related work

In this section, we focus on the related works from two perspectives: DUM-based uncertainty quan-
tification algorithms applied to computer vision tasks and prototype learning on DNNs.

DUM-based uncertainty quantification algorithms

DUMs [2, 146, 171, 193, 230, 231, 239] are new strategies that allow quantifying epistemic uncer-
tainty in the DNNs with a single forward pass. Different from the solutions which formalize the
DNN output as a conjugate prior distribution of the likelihood distribution, such as the evidential
DNNs [228], the DUMs here we mentioned mostly focus on learning useful and informative hidden
representations of a model by considering that the distribution of the hidden representation should
be representative for the input distribution. Most of the conventional models suffer from the fea-
ture collapse problem [231] when OOD samples are mapped to similar feature representations as
in-distribution ones, thus hindering OOD detection from these representations. DUMs address this
issue through various regularization strategies for constraining the hidden representations to mimic
distances from the input space. In practice, this amounts to striking a balance between sensitivity
(when the input changes, the feature representation should also change) and smoothness (a slight
change in the input cannot generate major shifts in the feature representation) of the model. To this
end, most methods enforce constraints over the Lipschitz constant of the DNN [146, 160, 231].

Yet, except for MIR [193], to the best of our knowledge, none of these techniques work on semantic
segmentation. Some DUMs [193, 230] also work on regression tasks. DUE [230] is applied in a
1D regression task, and MIR [193] in monocular depth estimation. We argue that the scalable and
effective DUM is still under-explored.
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Prototype learning in DNNs

Prototype-based learning approaches have been introduced on traditional handcrafted features [145],
and have been recently applied to DNNs as well, for more robust predictions [35, 81, 238, 246].
The center loss [238] can help DNNs to build more discriminative features by compacting intra-
class features and dispersing the inter-class ones. Based on this principle, Convolutional Prototype
Learning (CPL) [246] with prototype loss also improves the intra-class compactness of the latent
features. Chen et al. [35] try to bound the unknown classes by learning reciprocal points for better
open set recognition. Similar to [199, 232], MemAE [81] learns a memory slot of the prototypes
to strengthen the reconstruction error of anomalies in the reconstruction process. These prototype-
based methods are well-suited for classification tasks but are rarely used in semantic segmentation
and regression tasks. In our work, we will apply prototype learning on the penultimate layer to better
regularize and learn the semantic information of the given features.

6.3 Latent Discriminant deterministic Uncertainty (LDU)

6.3.1 DUM preliminaries

Formally, we define fω(·) a DNN with trainable parameters ω, and an input sample x from a set of
images X . Our DNN fω is composed of two main blocks: a feature extractor hω and a head gω, such
that fω(x) = (gω ◦hω)(x). hω(x) computes a latent representation from x, while gω is the final layer,
that takes hω(x) as input, and outputs the logits of x. The bi-Lipschitz condition implies that for any
pair of inputs x1 and x2 from X :

L1∥x1 −x2∥ ≤ ∥hω(x1)−hω(x2)∥ ≤ L2∥x1 −x2∥ (6.1)

where L1 and L2 are positive and bounded Lipschitz constants 0 < L1 < 1 < L2. The upper Lips-
chitz bound enforces the smoothness and is an important condition for the robustness of a DNN by
preventing over-sensitivity to perturbations in the input space of x, i.e., the pixel space. The lower
Lipschitz bound deals with the sensitivity and strives to preserve distances in the latent space as map-
pings of distances from the input space, i.e., preventing representations from being too smooth, thus
avoiding feature collapse. Liu et al. [146] argue that for residual DNNs [87], we can ensure fω to be
bi-Lipschitz by forcing its residuals to be Lipschitz and choosing sub-unitary Lipschitz constants. A
simple illustration of the difference between the DUMs and the baseline is shown in Figure 6.1.

There are different approaches for imposing the bi-Lipschitz constraint over a DNN, out of which
we describe the most commonly used ones in recent works [6, 10, 82, 170]. Wasserstein GAN [6]
enforces the Lipschitz constraint by clipping the weights. However, this turns out to be prone to either
vanishing or exploding gradients if the clipping threshold is not carefully tuned [82]. An alternative
solution from GAN optimization is gradient penalty [82] which is practically an additional loss term
that regularizes the L2 norm of the Jacobian of weight matrices of the DNN. However, this can also
lead to high instabilities [146, 171] and slower training [171]. Spectral Normalization [10, 170] brings
better stability and training speed. However, on the downside, it supports only a fixed pre-defined size
for the input, in the same manner as fully connected layers. For computer vision tasks, such as se-
mantic segmentation, which is typically performed on high-resolution images, constraining the input
size is a strong limitation. Moreover, Postels et al. [193] argue that in addition to the architectural
constraints, these strategies for avoiding feature collapse risk overfitting epistemic uncertainty to the
task of OOD detection. This motivates us to seek a new DUM strategy that does not need the network
to comply with the Lipschitz constraint. The recent MIR approach [193] advances an alternative
regularization strategy that adds a decoder branch to the network, thus forcing the intermediate acti-
vations to better cover and represent the input space. However, in the case of high-resolution images,
reconstruction can be a challenging task, and the networks can over-focus on potentially useless and
uninformative details at the cost of loss of global information. We detail our strategy below.

101



CHAPTER 6. LATENT DISCRIMINANT DISCRIMINATIVE UNCERTAINTY

Figure 6.1: An overview of the DUMs.

6.3.2 Discriminant Latent space

An informative latent representation should project similar data samples close and dissimilar ones far
away. Yet, it has long been known that in high-dimensional spaces, the Euclidean distance and other
related p-norms are a very poor indicator of sample similarity as most samples are nearly equally
far/close to each other [1, 8]. At the same time, the samples of interest are often not uniformly
distributed and may be projected by means of a learned transform on a lower-dimensional manifold,
namely the latent representation space.

Instead of focusing on preserving the potentially uninformative distance in the input space, we can
rather attempt to better deal with distances in the lower-dimensional latent space. To this end, we
propose to use a distinction maximization (DM) layer [153] that has been recently considered as a
replacement for the last layer to produce better uncertainty estimates, in particular for OOD detec-
tion [153, 184]. In a DM layer, the units of the classification layer are seen as representative class
prototypes, and the classification prediction is computed by analyzing the localization of the input
sample w.r.t. all class prototypes as indicated by the negative Euclidean distance. Note that a similar
idea has been considered in the few-shot learning literature, where DM layers are known as cosine
classifiers [78, 195, 216]. In contrast to all these approaches that use DM as a last layer for classifi-
cation predictions, we employ it as a hidden layer over latent representations. More specifically, we
insert DM in the pre-logit layer. We argue that this allows us to better guide learning and preserve
the discriminative properties of the latent representations compared to placing DM as the last layers
where the weights are more specialized for classification decisions than for feature representation.
We can easily integrate this layer into the architecture without impacting the training pipeline.

Formally, we denote z ∈Rn the latent representation of dimension n of x, i.e., z = hω(x), that is given
as input to the DM layer. Given a set pω={pi }m

i=1, of m vectors ( pi∈Rn) that are trainable, we define
the DM layer as follows:

DMp (z) =
[
−∥z−p1∥, . . . ,−∥z−pm∥

]⊤
(6.2)

The L2 distance considered in the DM layer is not bounded, thus, when DM is used as the intermediate
layer, relying on the L2 distance could cause instability during training. In our proposed approach, we
use instead the cosine similarity, Sc (·, ·). Our DM layer reads now:

DMp (z) =
[

Sc (z,p1), . . . ,Sc (z,pm)
]⊤

(6.3)

The vectors pi can be seen as a set of prototypes in the latent space that can help in better placing
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Figure 6.2: Overview of LDU. The DNN learns a discriminative latent space thanks to learnable prototypes
pω. The DNN backbone computes a feature vector z for an input x and then the DM layer matches it with the
prototypes. The computed similarities reflecting the position of z in the learned feature space, are subsequently
processed by the classification layer and the uncertainty estimation layer. The dashed arrows point to the loss
functions that need to be optimized for training LDU.

an input sample in the learned representation space using these prototypes as references. This is in
contrast to prior works with DM being considered as the last layer, where the prototypes represent
canonical representations for samples belonging to a class [153, 216]. Since hidden layers are used
here, we can afford to consider an arbitrary number of prototypes that can define richer latent mapping
through a finer coverage of the representation space. DM layers learn the set of weights {pi }m

i=1 such
that the cosine similarity (evaluated between z and the prototypes) is optimal for a given task.

We apply the distinction maximization on this hidden representation and subsequently use the ex-
ponential function as an activation function. We consider the exponential function as it can sharpen
similarity values and thus facilitates the alignment of the data embedding to the corresponding pro-
totypes in the latent space. Finally, we apply a last fully connected layer for classification on this
embedding. Our DNN (see Figure 6.2) can be written as:

fω(x) = [
gω ◦ (exp(−DMp (hω)))

]
(x) (6.4)

We can see from Eq. (6.4) that the vector weights pi are optimized jointly with the other DNN
parameters. We argue that pi can work as indicators for analyzing and emphasizing patterns in the
latent representation prior to making a classification prediction in the final layers.

6.3.3 LDU optimization

Given a DNN fω, we usually optimize its parameters to minimize a loss LTask. This can lead to
prototypes specialized for solving that task that do not encapsulate uncertainty-relevant properties.
Hence we propose to enforce the prototypes to be linked to uncertainty first by avoiding the collapse
of all prototypes to a single prototype. Second, we constrain the latent representation DMp (hω) of the
DNN to not rely only on a single prototype. Finally, we optimize an MLP g unc

ω on the top of the latent
representation DMp (hω) such that the output of this MLP provides more meaningful information for
uncertainty estimation.

First, we add a loss to force the prototypes to be dissimilar:

LDis =−∑
i< j

∥pi −p j∥.

Then, we also add one loss to constrain the latent representation to stay close to different prototypes.
We achieve this with an entropy-like loss:

LEntrop =
n∑

i=1
Softmax(DMp (hω))i · log(Softmax(DMp (hω))i )
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PCA of MLP PCA of DM-MLP

Figure 6.3: PCA 2D projection on the left of a standard MLP and on the right of a DM-MLP trained on the
two moons dataset. Blue and red points indicate the features of data points of the two classes, respectively.

where the subscript index i corresponds to the i -th coefficient of a tensor. Different from per-class
prototypes [35, 238, 246], we obtain more discriminative features by increasing the distance between
prototypes and enlarging the dispersion of features corresponding to different prototypes.

We propose to train g unc
ω to predict the error of the DNN, which helps us relate the prototypes to the

uncertainty. Formally, given an input data x, its groundtruth y (y can be a scalar or a vector if we deal
with regression) and, its loss LTask(gω(x), y), we train g unc

ω by minimizing:

LUnc =BCE
([

g unc
ω ◦ (exp(−DMp (hω)))

]
(x),LTask(gω(x), y)

)
after normalizing LTask(gω(x), y) over the mini-batch such that its maximum value is equal to one and
its minimum is equal to zero. BCE stands for binary cross-entropy, which was empirically validated
to perform better than common alternatives such as the mean square error and the absolute error.

All these losses combined allow us to have a DNN that can predict uncertainty, avoid feature collapse,
and have the potential to improve the accuracy of the prediction. To summarize, the following loss
function LTotal will be optimized to train a DNN containing a DM layer:

LTotal =LTask +λ(LEntrop +LDis +LUnc) (6.5)

where λ is a hyper-parameter for the auxiliary losses.

6.3.4 Addressing feature collapse

In order to illustrate the feature collapse problem, we consider a toy example on the two-moon dataset.
We train on it two MLPs with two hidden layers, each containing 17 neurons. One of the MLP addi-
tionally integrates our proposed DM layer and is denoted as DM-MLP, while the standard architecture
is called MLP. The two networks reach the same classification performance, about 99% of accuracy.
We perform PCA on the pre-logit latent space of both networks after training and visualize PCA pro-
jections in Figure 6.3. We can observe the feature collapse as the MLP assigns strongly correlated
feature representation to both classes, which can lead to unreliable uncertainty prediction. However,
our DM layer allows a better disentangling of the latent space. Note that, as the networks have the
same performance, it is impossible to detect the feature collapse based on the test accuracy alone.

We note that our LDU layer is a Lipschitz function, hence: ∥exp(−DMp (z1))− exp(−DMp (z2))∥ ≤
k∥z1 − z2∥ with k ∈ R+. However, hω is not necessarily a Lipschitz function, and we cannot thus
guarantee that its features do not entangle ID and OOD data. Yet, using a distance function in the
DNN [154, 160] can allow it to learn to separate the two data distributions better, as illustrated in
Figure 6.3.

Most DUM methods aim for bi-Lipschitz DNNs with small Lipschitz constants. Yet, this is sub-
optimal according to the concentration theory. Indeed, let X be a set of random vectors of size d
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After the first training After the second training

Figure 6.4: Illustration of confidence score results on the two moons dataset after the first training (on original
data) on the left and with second training (on synthesized outliers) on the right. Orange and blue data points are
sampled from two classes in two moons, and the green points are OOD data points. The yellow area indicates
high confidence, and the blue area indicates uncertainty.

i.i.d. from a normal distribution N (0,σ2Id ). Id is the identity matrix of size d . Let f : Rd → R be a
Lipschitz function with Lipschitz constant K. The concentration theory ([21], p. 125) stipulates that
: P (| f (X)−E( f (X))| > t ) ≤ 2exp(− t 2

2K2σ2 ) for all t > 0. This means that the smaller K is, the more the
concentration of the data around their mean increases, leading to increased feature collapse. Hence,
it is desirable to have a Lipschitz function that will bring similar data close, but it is at the same time
essential to put dissimilar data apart.

6.3.5 LDU and Epistemic/Aleatoric Uncertainty

We are interested in capturing two types of uncertainty with our DNN: aleatoric and epistemic un-
certainty [50, 113]. Aleatoric uncertainty is related to the inherent noise and ambiguity in data or in
annotations and is often called irreducible uncertainty as it does not fade away with more data in the
training set. Epistemic uncertainty is related to the model, the learning process, and the amount of
training data. Since it can be reduced with more training data, it is also called reducible uncertainty.
Disentangling these two sources of uncertainty is generally non-trivial [171], and ensemble methods
are usually superior [61, 159].

Optional training with synthesized outliers Due to limited training data and to the penalty en-
forced by LTask being too small, the loss term LUnc may potentially force the DNN in some cir-
cumstances to overfit the aleatoric uncertainty. Although we did not encounter this behavior on the
computer vision tasks given the dataset size, it might occur on more specific data, and among other
potential solutions, we propose one relying on synthesized outliers that we illustrate on the two moons
dataset as follows. More specifically, we propose to add noise to the data similarly to [55, 157], and
to introduce an optional step for training g unc

ω on these new samples. We consider a two-stage training
scheme. In the first stage, we train over data without noise, and in the second, we optimize only the
parameters of g unc

ω over the synthesized outliers. Note that this optional stage would require for vi-
sion tasks an adequate OOD synthesizer [13, 55] which is beyond the scope of this paper, and that we
applied it on the toy dataset. In Figure 6.4, we assess the uncertainty estimation performance of this
model on the two moons dataset. The left image shows that after the first training stage, the uncertain
area is between the two classes leading to a confidence score related to aleatoric uncertainty. The
right one shows that, after the second training stage, the uncertain area is around the dataset leading
to a confidence score related to epistemic uncertainty.

Distinguishing between the two sources of uncertainty is essential for various practical applications,
such as active learning, monitoring, and OOD detection. In the following, we propose two strategies
for computing each type of uncertainty.
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Aleatoric/Epistemic uncertainty For classification and semantic segmentation tasks, we estimate
aleatoric uncertainty using maximum class probability (MCP) [91], and we can use the outputs of
g unc
ω as the epistemic uncertainty estimates. However, for regression tasks, we use only the g unc

ω

outputs as confidence scores. We argue that the outputs of g unc
ω represent aleatoric uncertainty es-

timates. However, thanks to the DM layer, the position of the feature w.r.t. the learned prototypes
carries information about the proximity of the current sample with the in-distribution features. There-
fore, although the output of g unc

ω can be interpreted as aleatoric uncertainty using the learning loss
strategy [252] under the Bayesian framework and the Gaussian data-dependent noise assumption, we
consider that the enhanced features can enable the aleatoric uncertainty estimate to generalize to rare
inputs, and gives such inputs higher uncertainty in the output.

6.4 Experiments

One major interest of our technique is that it may be seamlessly applied to any computer vision task,
be it classification or regression. We here propose to evaluate the quality of uncertainty quantification
of different techniques on monocular depth estimation, the evaluation on the other tasks can be found
in the LDU paper [66].

We use the Area Under the Sparsification Error: AUSE-RMSE and AUSE-Absrel similarly to [85,
191, 252] to evaluate the uncertainty quantification on monocular depth estimation. We also report the
OOD detection results in Section 5.4.5.2 and Section 5.4.5.3 under the monocular depth estimation
task setting.

We run all methods ourselves in similar settings using publicly available codes and hyper-parameters
for related methods. In the following tables, Top-2 results are highlighted in color.

6.4.1 Monocular depth experiments

We set up our experiments on KITTI dataset [227] with Eigen split training and validation set [56] to
evaluate and compare the predicted depth accuracy and uncertainty quality. We train BTS [130] with
DenseNet161 [100], and we use the default training setting of BTS (number of epochs, weight decay,
batch size) to train DNNs for all uncertainty estimation techniques applied on this backbone.

By default, the BTS baseline does not output uncertainty. Similarly to [104, 113], we can consider
that a DNN may be constructed to find and output the parameters of a parametric distribution (e.g.,
the mean and variance for a Gaussian distribution). Such networks can be optimized by maximizing
their log-likelihood. We denote the result as single predictive uncertainty (Single-PU). In detail, we
duplicate the top layer and double the number of output channels of the pre-logit layer. For the
last layer, we have two one-channel-map outputs: one for depth estimation, and one for uncertainty
estimation. For the Deep Ensembles [123], we train Single-PU models. We also trained an MC-
Dropout [70], and we did eight forward passes during inference to achieve uncertainty estimates.
Without the extra DNNs or training procedures, we also applied Infer-noise [167], which injects
Gaussian noise layers to the trained BTS baseline model and propagates eight times to predict the
uncertainty. For implementing LDU on BTS, we use 30 prototypes in the DM layer, and we provide
all hyper-parameters in Table 6.1.

Results We note that in the monocular depth estimation setting and in agreement with previous
works [52], the definition of OOD is fundamentally different with respect to the tasks introduced
in the prior experiments. Thus, our objective is to investigate whether LDU is robust, can improve
prediction accuracy, and still perform well for aleatoric uncertainty estimation. Table 6.2 lists the
depth and uncertainty estimation results on the KITTI dataset. Using different settings of #p and
λ, the proposed LDU is virtually aligned with the current state-of-the-art, while being significantly
lighter computationally (see also Table. 6.3).
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Hyper-parameter KITTI

Architecture BTS [130]

Backbone DenseNet161 [100]

Initial learning rate 0.0001

Batch size 4

Number of train epochs 50

Weight decay 0.01

Random crop of training images (352, 704)

Number of prototypes 30

Table 6.1: Hyper-parameter configuration used in the monocular depth estimation experiments.

Method
Depth performance Uncertainty performance

δ1↑ δ2↑ δ3↑ AbsRel↓ SqRel↓ RMSE↓ RMSElog↓ log10↓ AUSE RMSE↓ AUSE Absrel↓

Baseline 0.955 0.993 0.998 0.060 0.249 2.798 0.096 0.027 - -

Deep Ensembles [123] 0.956 0.993 0.999 0.060 0.236 2.700 0.094 0.026 0.08 0.21

MC-Dropout [70] 0.945 0.992 0.998 0.072 0.287 2.902 0.107 0.031 0.46 0.50

Single-PU [113] 0.949 0.991 0.998 0.064 0.263 2.796 0.101 0.029 0.08 0.21

Infer-noise [167] 0.955 0.993 0.998 0.060 0.249 2.798 0.096 0.027 0.33 0.48

LDU #p = 5, λ= 1.0 0.954 0.993 0.998 0.063 0.253 2.768 0.098 0.027 0.08 0.21

LDU #p = 15, λ= 0.1 0.954 0.993 0.998 0.062 0.249 2.769 0.098 0.027 0.10 0.28

LDU #p = 30, λ= 0.1 0.955 0.992 0.998 0.061 0.248 2.757 0.097 0.027 0.09 0.26

Table 6.2: Comparative results for monocular depth estimation on KITTI eigen-split validation set.

Visualization In Figure 6.5, we present qualitative results depicting uncertainty for monocular
depth estimation. We show side-by-side depth predictions and uncertainty maps generated by Single-
PU, Deep Ensembles, and LDU, respectively. We observe that for the areas with valid ground truth,
all uncertainty estimation strategies highlight the edges of the objects, where the aleatoric uncertainty
is frequently prominent. Concerning the areas without valid ground truth, Deep Ensembles does a
better job than Single-PU in highlighting them since it can capture more epistemic uncertainty due
to the ensembling of multiple predictions from the individual models. Our proposed LDU highlights
even better some distant areas, especially the upper part of the image where LiDAR beams do not go.
We consider that this result stems from LDU regarding this region as an OOD region after training on
the entire dataset. In Chapter III.5, we provide the quantitative results for OOD detection from two
aspects: OOD caused by the dataset change and unseen pattern during training.

Runtime consumption In Table 6.3, we compare the computational cost of LDU and related meth-
ods. For each approach, we measure the training (forward+backward) and inference time per image
on an NVIDIA RTX 3090Ti and report the corresponding number of parameters. We report training
and inference wall-clock timings averaged over 100 training and validation. We use the same back-
bones as mentioned in Section 6.4.1. We note that the runtime of LDU is almost the same as that of
the baseline model (standard single forward model). This underpins the efficiency of our approach
during inference, a particularly important requirement for practical applications. Furthermore, thanks
to researchers in the field, a speedup of the cosine similarity operation is available [203], which could
theoretically make the current inference speed even faster.
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Method
Monocular depth

Runtime (ms) Training time (ms) #param.

Baseline 45 92.8 47.00

Deep Ensembles 133 287.8 141.03

MC-Dropout 370 92.3 47.00

Single-PU 45 95.6 47.01

LDU (ours) 45 104.0 47.00

Table 6.3: Comparative results for training (forward+backward) and inference wall-clock timings and
number of parameters for evaluated methods. Timings are computed per image and averaged over 100
images.
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Figure 6.5: Illustration of different uncertainty maps (LDU, Deep Ensembles, Single-PU) on KITTI images
for the monocular depth estimation task. For both depth and uncertainty maps, the brighter the color is, the
bigger the value the pixel has.

6.5 Conclusions

This chapter introduced a novel deterministic uncertainty quantification method named Latent Dis-
criminant deterministic Uncertainty (LDU). We show that instead of regularizing the whole network,
adding a bi-Lipschitz constraint on the pre-logit layer can effectively avoid feature collapse and im-
prove the OOD detection performance. LDU is a relatively more portable and scalable solution than
the other DUMs.

Together with the previous chapters, we have already introduced two main kinds of uncertainty quan-
tification solutions: post-hoc uncertainty quantification using auxiliary networks and the deterministic
uncertainty method. In this way, in both cases of retaining and adjusting the original model archi-
tecture, we can flexibly choose methods to obtain uncertainty quantification of the main task and
provide assistance for downstream tasks such as learning with imbalanced classes and noisy labels,
active learning, etc.
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Conclusion and future work

Conclusion

In this work, we propose a family of methods for uncertainty estimation of the outputs of deep neural
networks. In particular, we focus on the solutions of using auxiliary neural networks to estimate the
uncertainty of regression problems when the main task model is trained. The auxiliary model is a post-
hoc solution capable of obtaining uncertainty estimates of the main task model’s predictions without
the need to modify and retrain the main task model. Additionally, we also propose solutions based on
modifying the main task model to achieve more calibrated predictions on the in-distributional dataset
and better-performed uncertainty estimates on out-of-distributional datasets.

We work on computer vision tasks, propose scalable uncertainty quantification methods, and apply
them to both pixel-wise and image-level tasks. Based on the proposed algorithm, the uncertainty
estimates can provide interpretability for the main task estimation given by the deep neural networks,
and serve as an important reference for subsequent system or human decision-making.

In Part II, we introduce a fundamental uncertainty quantification solution based on the auxiliary net-
work, dubbed SLURP, Side Learning Uncertainty for Regression Problems. Given a trained main
task deep neural network, we consider that the prediction error of the main task model contains both
aleatoric and epistemic uncertainty, and the majority is the aleatoric uncertainty since the main task
model is already trained on the in-distribution dataset. The goal of the auxiliary network is to learn
this prediction error in a more effective way, in order to provide reliable aleatoric and epistemic un-
certainty and generalize well on the shifted datasets. For this goal, we first propose a novel auxiliary
network framework. The main contribution is that we observe that using both the input and the out-
put of the main task model can improve the uncertainty quantification performance. Furthermore,
according to the observations of the prediction errors, our auxiliary network is designed based on the
edge detection model, with a sequence of atrous convolutions and a coarse-to-fine fusion block on
the top. Our experiments on optical flow and monocular depth estimation tasks show that the pro-
posed auxiliary network is able to achieve comparable uncertainty quantification results to the deep
ensembles.

In Part III, our focus switches to how to assign higher uncertainty to the unseen examples using aux-
iliary networks. Distributional uncertainty modeling is one of the most effective ways to achieve this
goal, yet it is not trivial to apply it directly on the auxiliary networks. We observe that previous so-
lutions with distributional uncertainty modeling for regression tasks are not suitable for the auxiliary
network since the trained main task model provides unbalanced and small prediction errors on the
in-distributional dataset, which will make it hard for the auxiliary network to learn the useful infor-
mation from the prediction error. We propose to involve discretization and distributional uncertainty
modeling in the auxiliary network framework.

A survey is first settled to summarize the use of discretization methods in regression problems, es-
pecially the monocular depth estimation task, in the previous literature. In the meantime, we pro-
pose a new uncertainty quantification method based on discretization-based regression tasks, named
Expectation of Distance (E-Dist). E-Dist is a post-hoc uncertainty quantification method, without
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adjusting the training procedures or the architecture of discretization-based models. The experiments
on different discretization-based solutions show that E-Dist outperforms the traditional uncertainty
quantification solutions, such as entropy and the maximum Softmax probability.

Based on the study on the discretization approaches, we pioneered the application of discretization in
distributional uncertainty modeling for regression tasks, in order to reduce the effect of the small and
unbalanced main task prediction error, which is served for the auxiliary network training. To estimate
the distributional uncertainty, we use the Dirichlet distribution over the discretized prediction error to
model the distributional uncertainty. The network will update the Dirichlet parameters and achieve
the Dirichlet posterior after training. This technique is also called evidential learning in the previous
literature. For aleatoric uncertainty, we keep the idea of learning loss provided by the fundamental
SLURP. When the main task model parameters are fixed, it means that the model is not allowed
to further learn or adapt to new data. The model’s knowledge is static. Distributional uncertainty,
which is associated with the inherent variability in the input data, may also be considered as a form
of epistemic uncertainty because the model’s fixed parameters cannot adapt to or account for this
variability. It is a form of uncertainty that arises due to the model’s inability to fully understand or
model the complexity of the data distribution. In this case, a generalized auxiliary network framework
is proposed, which contains two identical sub-auxiliary networks: one is for aleatoric uncertainty
estimation, and another is for epistemic uncertainty estimation. In this case, not only the uncertainty in
the in-distribution dataset can be measured, but the out-of-distribution examples can also be detected.
Our experiments show this property on both image-level age estimation and pixel-wise monocular
depth estimation.

Apart from the uncertainty quantification solutions based on the post-hoc methods and auxiliary net-
work, we also work on modifying the main task model to achieve calibrated predictions and scalable
out-of-distribution example detection. In Part IV, a deterministic uncertainty estimation solution is
proposed, dubbed Latent Discriminant deterministic Uncertainty (LDU). The deterministic solution
is to estimate uncertainty by single-pass. We suggest learning the prototypes for the features from
the penultimate (pre-logit) layer. The prototypes are the features that are independent of the network
inputs. This procedure is to maximize the cosine similarity between the features and the prototypes
and use the cosine similarity values as the inputs of the last layer. These values are bi-lipschitz, which
is proven to be more robust to the perturbations on the input feature space. The uncertainty estimation
solution adjusts the learning loss strategy from SLURP to the main task model.

For the fair evaluation of the robustness of the main task prediction and the corresponding uncertainty
quantification in the urban scenes, in Part I, we introduce the Multiple Uncertainty for Autonomous
Driving dataset (MUAD). This synthetic dataset consists of images of urban street scenes under dif-
ferent weather conditions. The training and validation sets consist of daytime and nighttime street
view images with clear weather. In the test sets, we added different weather conditions, including
clear, rainy, foggy, and snowy weather during the day and night. Under different weather conditions,
the objects in the test set with semantic information that was not present in the training and validation
sets are also included. We provide benchmarks for the main task and the uncertainty quantification
on this dataset based on the state-of-the-art backbones. We found that both supervised and unsuper-
vised monocular depth estimation tasks are relatively robust to out-of-distribution objects. We also
found that the angle of illumination, i.e., ordinary daytime, noon, or night, has little impact on the
performance of the state-of-the-art monocular depth estimation models.

In summary, our main work involves scalable uncertainty quantification solutions and uncertainty es-
timation evaluation for regression tasks. Our focus is mainly on post-hoc methods to avoid modifying
and retraining main task models. We propose the generalized auxiliary network framework, and in
this framework, we model both aleatoric and epistemic uncertainty for the main task prediction. Ta-
ble 6.4 provides a take-away on the proposed uncertainty quantification methods that can be deployed
under different circumstances. Additionally, we also present a synthetic dataset that we hope will
allow for a fair evaluation of the robustness of uncertainty estimates.
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Proposed uncertainty quantification solutions
Freezing

main task model

Additional

training

# forward

propagation

Simple auxiliary uncertainty estimator (SLURP) (Section 3, Part II) % ! 2

Expectation of distance (E-dist) (Section 4, Part III) ! % 1

Discretization-induced Dirichlet posterior (DIDO) (Section 5, Part III) % ! 2

Latent Discriminant deterministic Uncertainty (LDU) (Section 6, Part IV) ! % 1

Table 6.4: Features of proposed uncertainty quantification methods.

Perspectives for future works

Future work will focus on four directions: uncertainty quantification, applications of uncertainty es-
timates, model robustness and interpretability, and tasks other than computer vision. For uncertainty
quantification, we could work on the post-hoc solutions, to reduce the cost of having high-quality
uncertainty estimates. The focus will be on how to use less data to train a scalable auxiliary network
and obtain better uncertainty estimation results. After three years of work on uncertainty quantifica-
tion, it is meaningful to think about how uncertainty estimation can be explored in the most effective
manner to help with the main task. Active learning is a well-known strategy that involves uncertainty
estimation in its acquisition functions and annotation systems. Meanwhile, the visit of a machine
learning, meta-learning, and optimization group at Leiden University also made me think about in-
troducing the uncertainty in meta-learning. Uncertainty quantification, model robustness, and model
interpretability are inseparable. Models are ultimately made available for human use, and the un-
certainty estimates can be seen as part of interpretability. At the same time, when the main task is
not robust, the robustness of its uncertainty quantification is crucial. Researching and improving the
robustness of uncertainty estimation is a key guarantee for the safe deployment of the model. Finally,
a good uncertainty quantification method should be more scalable, i.e., it can be applied not only to
different tasks in computer vision but also to tasks outside of the computer vision field. For example,
natural language processing, brain electrical signals, protein graph structure, time series information
in stocks, etc. It is exciting to study uncertainty quantification in other fields. Applying the experience
obtained in computer vision to other fields, such as using post-hoc methods to estimate uncertainty,
etc., may bring interpretability to more fields and allow more trustworthy models to be deployed.
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Appendix

A1 More experiments and benchmarks on MUAD dataset

A1.1 Full results on supervised monocular depth estimation

In Section 2.3, for the sake of brevity, we provided only partial results for depth and uncertainty
metrics. We here provide full results from Table A5 to Table A11 for different uncertainty quantifica-
tion solutions introduced in the main paper applied on supervised monocular depth estimation task.
Overall, the Deep Ensembles [123] and SLURP [252] can provide better uncertainty estimations on
the test sets without perturbations. When weather perturbations exist, MC-Dropout [70] and Deep
Ensembles [123] perform better on uncertainty quantification. MC-Dropout can also provide better
depth estimations than the other solutions under weather perturbations.

Methods silog↓ AbsRel↓ log10↓ RMSE↓ SqRel↓ log_RMSE d1↑ d2↑ d3↑ AUSE↓ AURG↑
AbsRel RMSE d1 AbsRel RMSE d1

Baseline 13.9767 0.1143 0.0444 3.3575 0.5571 0.1443 0.9219 0.9833 0.9933 - - - - - -

Deep Ensembles [123] 13.6691 0.1110 0.0419 3.1994 0.6076 0.1400 0.9289 0.9843 0.9945 0.0604 0.2906 0.0431 0.0117 2.4618 0.0215

MC Dropout [70] 13.5602 0.1194 0.0447 3.2090 0.6897 0.1453 0.9193 0.9847 0.9941 0.0610 0.6339 0.0542 0.0161 2.0846 0.0193

Single-PU [113] 14.5896 0.1324 0.0484 3.2298 0.7738 0.1547 0.9054 0.9803 0.9933 0.0807 0.3131 0.0837 0.0042 2.4194 -0.0005

SLURP [252] 13.9767 0.1143 0.0444 3.3575 0.5571 0.1443 0.9219 0.9833 0.9933 0.0477 0.4672 0.0459 0.0252 2.3870 0.0237

Table A5: Supervised monocular depth results on normal set.

Methods silog↓ AbsRel↓ log10↓ RMSE↓ SqRel↓ log_RMSE d1↑ d2↑ d3↑ AUSE↓ AURG↑
AbsRel RMSE d1 AbsRel RMSE d1

Baseline 19.8427 0.1474 0.0757 5.0053 0.8301 0.2397 0.7861 0.9244 0.9613 - - - - - -

Deep Ensembles [123] 22.7950 0.1564 0.0850 4.8919 0.8508 0.2759 0.7673 0.9010 0.9419 0.1047 0.7401 0.1823 -0.0103 3.1624 0.0023

MC Dropout [70] 21.6959 0.1505 0.0765 4.5799 0.7648 0.2459 0.7980 0.9199 0.9543 0.0980 1.0627 0.1473 -0.0074 2.5851 0.0182

Single-PU [113] 24.2069 0.1588 0.0849 4.8648 0.8522 0.2800 0.7727 0.8997 0.9417 0.1115 0.7892 0.1863 -0.0145 3.1099 -0.0025

SLURP [252] 19.8429 0.1474 0.0757 5.0053 0.8301 0.2397 0.7861 0.9244 0.9613 0.0898 1.1665 0.1789 -0.0040 2.8036 -0.0037

Table A6: Supervised monocular depth results on low adv. without OOD set.

Methods silog↓ AbsRel↓ log10↓ RMSE↓ SqRel↓ log_RMSE d1↑ d2↑ d3↑ AUSE↓ AURG↑
AbsRel RMSE d1 AbsRel RMSE d1

Baseline 27.2917 0.2072 0.1148 6.9890 1.5990 0.3603 0.6316 0.8275 0.9028 - - - - - -

Deep Ensembles [123] 34.7624 0.2429 0.1478 7.4977 1.9794 0.4674 0.5657 0.7643 0.8507 0.1529 1.1824 0.3031 -0.0117 4.6140 -0.0044

MC Dropout [70] 30.5442 0.2073 0.1142 6.2782 1.3762 0.3652 0.6567 0.8292 0.8992 0.1277 1.3819 0.2169 -0.0055 3.5187 0.0393

Single-PU [113] 41.9847 0.2480 0.1588 7.6797 2.1362 0.5295 0.5708 0.7586 0.8435 0.1706 1.7402 0.3318 -0.0220 4.2634 -0.0322

SLURP [252] 27.2917 0.2072 0.1148 6.9890 1.5990 0.3603 0.6316 0.8275 0.9028 0.1281 1.7066 0.2740 -0.0100 3.7188 -0.0024

Table A7: Supervised monocular depth results on high adv. without OOD set.
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Methods silog↓ AbsRel↓ log10↓ RMSE↓ SqRel↓ log_RMSE d1↑ d2↑ d3↑ AUSE↓ AURG↑
AbsRel RMSE d1 AbsRel RMSE d1

Baseline 12.4227 0.0895 0.0387 3.6461 0.4083 0.1257 0.9513 0.9909 0.9969 - - - - - -

Deep Ensembles [123] 11.7212 0.0829 0.0351 3.4788 0.3867 0.1188 0.9553 0.9903 0.9967 0.0553 0.3363 0.0098 -0.0041 2.6248 0.0336

MC Dropout [70] 12.0129 0.0915 0.0389 3.4074 0.3888 0.1263 0.9475 0.9902 0.9969 0.0576 0.7856 0.0308 -0.0019 2.0452 0.0199

Single-PU [113] 12.4754 0.1052 0.0437 3.5463 0.4210 0.1344 0.9461 0.9895 0.9966 0.0788 0.3576 0.0308 -0.0189 2.5430 0.0212

SLURP [252] 12.4227 0.0895 0.0387 3.6461 0.4083 0.1257 0.9513 0.9909 0.9969 0.0328 0.5248 0.0100 0.0222 2.5207 0.0373

Table A8: Supervised monocular depth results on normal test set with Overhead Sun.

Methods silog↓ AbsRel↓ log10↓ RMSE↓ SqRel↓ log_RMSE d1↑ d2↑ d3↑ AUSE↓ AURG↑
AbsRel RMSE d1 AbsRel RMSE d1

Baseline 16.4332 0.1250 0.0525 3.6157 0.5875 0.1747 0.8956 0.9602 0.9783 - - - - - -

Deep Ensembles [123] 16.3795 0.1142 0.0503 3.4465 0.4812 0.1724 0.9027 0.9600 0.9777 0.0739 0.4268 0.0563 -0.0016 2.4750 0.0296

MC Dropout [70] 16.1976 0.1277 0.0525 3.4437 0.5923 0.1744 0.8934 0.9620 0.9799 0.0720 0.7253 0.0649 0.0104 2.1331 0.0292

Single-PU [113] 17.1019 0.1319 0.0561 3.4628 0.5126 0.1833 0.8884 0.9580 0.9777 0.0948 0.4474 0.0872 -0.0135 2.4091 0.0103

SLURP [252] 16.4332 0.1250 0.0525 3.6157 0.5875 0.1747 0.8956 0.9602 0.9783 0.0681 0.7208 0.0852 0.0121 2.2899 0.0054

Table A9: Supervised monocular depth results on OOD set.

Methods silog↓ AbsRel↓ log10↓ RMSE↓ SqRel↓ log_RMSE d1↑ d2↑ d3↑ AUSE↓ AURG↑
AbsRel RMSE d1 AbsRel RMSE d1

Baseline 24.2098 2.6367 0.0980 4.7962 10.3942 0.3066 0.7134 0.8775 0.9280 - - - - - -

Deep Ensembles [123] 25.9658 1.8097 0.1009 4.7072 5.1183 0.3237 0.7091 0.8652 0.9174 0.1292 0.6917 0.2091 0.1164 3.1474 0.0067

MC Dropout [70] 25.3372 3.9252 0.0924 4.3635 22.9193 0.2971 0.7437 0.8829 0.9287 0.2062 0.9267 0.1843 0.0598 2.6365 0.0125

Single-PU [113] 27.3008 4.3492 0.1009 4.7161 28.5999 0.3284 0.7140 0.8638 0.9174 0.4815 0.7444 0.2104 -0.0210 3.1238 0.0039

SLURP [252] 24.2098 2.6366 0.0980 4.7962 10.3930 0.3066 0.7134 0.8775 0.9280 0.2116 1.0715 0.2229 0.0682 2.8043 -0.0116

Table A10: Supervised monocular depth results on low adv. with OOD set.

Methods silog↓ AbsRel↓ log10↓ RMSE↓ SqRel↓ log_RMSE d1↑ d2↑ d3↑ AUSE↓ AURG↑
AbsRel RMSE d1 AbsRel RMSE d1

Baseline 32.1516 0.4588 0.1448 6.9160 10.0794 0.4422 0.5549 0.7727 0.8587 - - - - - -

Deep Ensembles [123] 37.4423 0.3308 0.1672 7.4105 2.7108 0.5183 0.5209 0.7277 0.8179 0.1509 1.0724 0.2720 0.0347 4.8398 0.0285

MC Dropout [70] 34.0965 0.5448 0.1351 6.1764 14.0074 0.4229 0.6096 0.7933 0.8672 0.3137 1.2454 0.2394 0.0811 3.7196 0.0288

Single-PU [113] 42.7338 0.3513 0.1735 7.6272 5.0461 0.5606 0.5289 0.7224 0.8106 0.1556 1.3474 0.2768 0.0611 4.7969 0.0232

SLURP [252] 32.1516 0.4588 0.1448 6.9160 10.0794 0.4422 0.5549 0.7727 0.8587 0.1514 1.5640 0.2737 0.1437 3.9450 0.0134

Table A11: Supervised monocular depth results on high adv. with OOD set.
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