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Abstract

Abstract. Modern interactive systems shape our internet experience. From search to recom-
mendation engines, these systems organise vast amounts of content, allowing users to efficiently
find answers to their needs. The quality of user experiences within these systems can vary sig-
nificantly, and the ability to provide users with relevant options at the right moment can greatly
enhance both user satisfaction and the profitability of the businesses operating these systems.
In recent years, there has been a concerted effort to leverage machine learning techniques to
improve interactive systems by combining various signals. This thesis focuses on harnessing a
specific type of signal: user interaction logs. These logs are uniquely valuable as they directly
capture successes and failures in previous interactions. Nonetheless, the interactive nature of
the logs makes their analysis more challenging compared to classical supervised learning prob-
lems. The Offline Contextual Bandit formalises an idealized version of this learning problem.
It reduces the interaction logs to triplets of an observed context, an action made by the system
and a reward received. These triplets are core to analyse the problem and to learn improved
interactive systems. Notwithstanding recent advances, there remains significant challenges to
learn decision systems with performance certificates and scale current approaches to real world
problems.

Our first concern is being able to measure how well an interactive system will perform before it
engages with the environment. Statistical learning theory focuses on studying the generalization
ability of algorithms, and presents itself as the perfect candidate to answer this question. His-
torically, its tools were used to improve our understanding of the supervised learning paradigm,
resulting in Empirical and Structural Risk minimization principles. More recently, statistical
learning theory was adapted to learning from interaction logs, and resulted in the Counterfactual
Risk minimization principle. This new objective captures the difficulties of learning from con-
textual bandit logs, but its application is limited to simple scenarios. In particular, the learning
objective is non-convex, it cannot be accelerated with stochastic gradient methods, it introduces
new hyperparameters that are difficult to tune and fails to provide performance certificates on
the newly trained interaction systems. The first part of the thesis focuses on developing new
statistical learning ideas to address these challenges. We reframe the Counterfactual Risk min-
imization using Distributionally Robust Optimization. This change of perspective allows us to
improve the optimization procedure, to automatically calibrate hyperparameters while enjoying
the same guarantees. Furthermore, we explore PAC-Bayesian learning, a statistical learning
framework that provides a finer analysis of the generalization ability of algorithms. Using this
paradigm, we build new strategies that require no hyperparameter tuning, that enable fast op-
timization and can provide strong guarantees on the performance of our interactive systems.
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Another concern is to efficiently learn decision systems operating on massive action spaces. The
second part of the thesis addresses this challenge, focusing primarily on large scale recommenda-
tion. Efficient learning in this case can be achieved by exploiting different signals and speeding
up the optimization routine. Existing methods rely solely on the bandit signal: the log of the
past successes and failures. However, non-bandit signal, such as collaborative filtering, can be
extremely valuable. Building on this observation, we dedicate a chapter to develop a Bayesian
approach to recommendation that combines both signals. We give proper computational tools
to scale the learning to large datasets and prove empirically that the resulting systems enjoy
improved recommendation quality.

Large scale recommender systems are updated frequently to match the ever-shifting interests
of the users. The ability to perform these updates regularly relies on the efficiency of the op-
timization routine. When confronted with exceedingly large action spaces, these systems are
constrained to the maximum inner product search (MIPS) structure for rapid query responses.
Despite their prevalence in the industry, optimizing these systems with common learning objec-
tives tend to be slow. Indeed, every gradient iteration scales at least linearly with the catalog
size. This complexity can be detrimental to learning recommender systems operating on bil-
lions of items. The last two chapters address this issue by proposing optimization routines with
sublinear complexities; a first solution is based on a new importance sampling variant of the
reinforce algorithm, and a second one introduces a novel architecture and method for optimizing
MIPS-based interactive systems. The proposed solutions accelerate optimization without losing
on the recommendation quality.

Résumé. Les systèmes interactifs modernes façonnent notre expérience de l’internet. Des mo-
teurs de recherche aux moteurs de recommandation, ces systèmes organisent de vastes quantités
de contenu, permettant aux utilisateurs de trouver efficacement des réponses à leurs besoins.
La qualité de l’expérience utilisateur au sein de ces systèmes peut varier de manière significa-
tive, et la capacité à fournir aux utilisateurs des options pertinentes au bon moment peut, non
seulement améliorer leur satisfaction, mais aussi la rentabilité des entreprises qui exploitent
ces systèmes. Ces dernières années, des efforts concertés ont été déployés pour exploiter les
techniques d’apprentissage automatique afin d’améliorer les systèmes interactifs en combinant
différents signaux. Cette thèse se concentre sur l’exploitation d’un type spécifique de signaux :
les données d’interaction. Ces données ont une valeur unique car ils enregistrent directement
les succès et les échecs des interactions précédentes. Néanmoins, la nature interactive de ces
données rend leur analyse plus difficile par rapport aux problèmes classiques d’apprentissage.
Le bandit contextuel hors-ligne formalise une version idéalisée de ce problème d’apprentissage.
Il réduit les données d’interaction à des triplets; un contexte observé, une action effectuée par
le système et une récompense reçue. Ces triplets sont essentiels à l’analyse du problème et à
l’apprentissage de systèmes interactifs améliorés. Malgré les progrès récents, il reste des défis
importants à relever pour apprendre des systèmes de décision avec des certificats de performance
et pour adapter les approches actuelles aux problèmes de grande échelle.

Notre première préoccupation est de pouvoir mesurer les performances de notre système avant
qu’il intéragisse avec l’environnement. La théorie de l’apprentissage statistique se concentre sur
l’étude de la capacité de généralisation des algorithmes et se présente comme le candidat idéal
pour répondre à cette question. Historiquement, ses outils ont été utilisés pour améliorer notre
compréhension du paradigme de l’apprentissage supervisé, donnant naissance aux principes de
minimisation du risque empirique et structurel. Plus récemment, la théorie de l’apprentissage
statistique a été adaptée à l’apprentissage à partir de données d’interactions, ce qui a donné nais-
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sance au principe de minimisation du risque contrefactuel. Ce nouvel objectif tient compte des
difficultés liées à l’apprentissage à partir de données de bandits contextuels, mais son application
est limitée à des scénarios simples. En particulier, l’objectif d’apprentissage n’est pas convexe, il
ne peut pas être accéléré avec des méthodes de gradient stochastique, il introduit de nouveaux
hyperparamètres qui sont difficiles à régler et ne parvient pas à fournir des certificats de per-
formance sur les systèmes d’interaction nouvellement formés. La première partie de la thèse se
concentre sur le développement de nouvelles idées d’apprentissage statistique pour relever ces
défis. Nous recadrons la minimisation du risque contrefactuel (CRM) en utilisant l’optimisation
distributionnellement robuste (DRO). Ce changement de perspective nous permet d’améliorer
la procédure d’optimisation, de calibrer automatiquement les hyperparamètres tout en bénéfi-
ciant des mêmes garanties. En outre, nous nous intéressons à l’apprentissage PAC-Bayésien,
un cadre d’apprentissage statistique capable de mieux analyser la capacité de généralisation des
algorithmes. En utilisant ce paradigme, nous construisons de nouvelles stratégies qui ne nécessi-
tent aucun réglage des hyperparamètres, qui permettent une optimisation rapide et qui peuvent
fournir des garanties solides sur la performance de nos systèmes interactifs.

Une autre préoccupation est d’apprendre efficacement les systèmes de décision fonctionnant sur
des espaces d’action massifs. La deuxième partie de la thèse aborde ce défi, en se concentrant
principalement sur la recommandation à grande échelle. L’apprentissage efficace dans ce cas peut
être réalisé en exploitant différents signaux et en accélérant la procédure d’optimisation. Les
méthodes existantes s’appuient uniquement sur le signal de bandit : les données d’intéraction du
système avec les utilisateurs. Cependant, les signaux autres que le signal bandit, tels que le com-
portement organique, peuvent s’avérer extrêmement précieux. Sur la base de cette observation,
nous consacrons un chapitre au développement d’une approche bayésienne de la recommanda-
tion qui combine les deux signaux. Nous fournissons les outils d’optimisation appropriés pour
étendre l’apprentissage à de grands ensembles de données et prouvons empiriquement que les
systèmes résultants bénéficient d’une meilleure qualité de recommandation.

Les systèmes de recommandation à grande échelle sont fréquemment mis à jour pour s’adapter
aux intérêts en constante évolution des utilisateurs. La capacité à effectuer ces mises à jour
régulièrement dépend de l’efficacité de la procédure d’optimisation. Lorsqu’ils sont confrontés à
des espaces d’action extrêmement vastes, ces systèmes sont contraints à la structure (MIPS):
recherche du produit scalaire maximal pour répondre rapidement aux requêtes. Malgré leur pré-
valence dans l’industrie, l’optimisation de ces systèmes avec des objectifs d’apprentissage com-
muns tend à être lente. En effet, le calcul de chaque gradient a une complexité au moins linéaire
par rapport à la taille du catalogue. Cette complexité peut être préjudiciable à l’apprentissage
de systèmes de recommandation fonctionnant sur des milliards d’éléments. Les deux derniers
chapitres abordent ce problème en proposant des procédures d’optimisation avec des complex-
ités sous-linéaires ; une première solution est basée sur une nouvelle variante d’échantillonnage
préférentiel, et une seconde introduit une nouvelle architecture et une méthode pour optimiser les
systèmes interactifs de la structure (MIPS). Les solutions proposées accélèrent l’optimisation
sans nuire à la qualité de la recommandation.
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Introduction en français

1 Présentation générale
Ce manuscrit présente des contributions récentes, allant de la théorie aux applications à grande
échelle, à un formalisme hors ligne du problème de la prise de décision séquentielle. Il s’agit
d’un problème important avec de nombreuses applications dans le monde réel où un décideur,
chargé d’optimiser un objectif spécifique, intéragit avec un environnement inconnu, enregistre
ces intéractions et les exploite afin de mieux résoudre la tâche. Dans ce contexte, nous souhaitons
répondre à la question suivante :

Comment tirer parti des interactions antérieures du décideur pour améliorer ses performances?

La réponse à cette question peut avoir un impact important sur les problèmes pratiques du
monde réel. Par exemple, elle peut aider une campagne de marketing en ligne à obtenir plus
de dons pour une campagne caritative, elle peut rendre plus précise la prescription des médica-
ments, ou elle peut simplement améliorer la qualité de la recommandation de votre plateforme
de streaming préférée. Dans cette introduction, nous présentons le problème de l’apprentissage
des décideurs à l’aide de l’exemple de la recommandation, qui sera au centre d’une grande partie
de cette thèse. Les systèmes de recommandation se présentent comme le plus grand pilier de
l’expérience Internet moderne. Dans chaque interaction, ces systèmes naviguent silencieusement
une quantité écrasante d’informations et la traitent pour répondre aux besoins spécifiques de
l’utilisateur. Une seule interaction d’un moteur de recommandation peut être résumée comme
suit : le système rencontre un utilisateur, il choisit un article (ou plusieurs articles) à recomman-
der dans un catalogue potentiellement vaste, délivre la recommandation et observe un retour de
l’utilisateur.

Le retour obtenu est précieux car il représente les succès et les échecs des interactions passées.
Ces interactions sont enregistrées et sont ensuite utilisées pour améliorer la qualité des recom-
mandations du système. La nature interactive de l’ensemble des données collectées fait que les
paradigmes d’apprentissage courants, tels que l’apprentissage supervisé, ne sont pas adaptés à
l’étude de ce problème. Récemment, on s’est intéressé à l’adaptation des formalismes de prise
de décision séquentielle pour améliorer la recommandation à partir des interactions enregistrées.
L’apprentissage par renforcement (RL) (Sutton and Barto, 2018) et les bandits contextuels (CB)
(Lattimore and Szepesvári, 2020) commencent à s’imposer comme de bons candidats pour mod-
éliser ce problème d’apprentissage. Le cadre RL repose sur l’idée que les actions effectuées
peuvent avoir un impact sur l’environnement. Ce paradigme peut modéliser des problèmes de
décision séquentielle complexes et permet la planification. Ses outils peuvent optimiser les sys-
tèmes de recommandation pour des objectifs long terme ; par exemple, augmenter l’engagement
et la rétention des utilisateurs (Afsar et al., 2022). L’adoption de ce formalisme a toutefois

9



10 1. Présentation générale

xi ai ri

i ∈ [n]

Figure 1: L’ensemble des données enregistrées Dn représentant n interactions du système de
recommandation. Tous les triplets (contexte, action, récompense) sont indépendants.

un coût. La prise en compte des effets à long terme de la recommandation sur les utilisateurs
rend l’analyse de cette approche plus difficile, ce qui nous incite à envisager un formalisme plus
simple. Le bandit contextuel offre un compromis utile entre l’analyse formelle et l’impact pra-
tique. Son hypothèse sous-jacente est que les actions effectuées par le système n’influencent pas
les résultats futurs. Si cette formulation est moins convaincante lorsqu’il s’agit de récompenses
différées (Afsar et al., 2022), son utilisation est raisonnable si nous voulons nous concentrer sur
l’apprentissage de systèmes de recommandation qui optimisent des objectifs à court terme, lim-
itées à l’action, telles que le taux de clics (Sakhi et al., 2020a) ou la durée de visionnage (Chen
et al., 2019a). Dans cette thèse, nous adoptons la boîte à outils des bandits contextuels hors
ligne (Bottou et al., 2013; Nguyen-Tang et al., 2022) pour formaliser l’apprentissage à partir
des données d’interaction. Nous donnons de nouvelles approches fondées théoriquement pour
apprendre des politiques avec de fortes garanties de performance et proposons de nouveaux al-
gorithmes pour élargir l’impact de ce cadre à des applications à grande échelle du monde réel.

L’interaction d’un utilisateur avec un article recommandé peut être réduite à l’exemple suivant.
Un utilisateur navigue sur un site web, le système de recommandation choisit un article dans
un catalogue et le montre à l’utilisateur, l’utilisateur interagit avec l’article (clique ou non) et
le résultat de cette interaction est encodé dans un retour d’information (présence/absence de
clic) que le système enregistre. Dans le cadre du bandit contextuel, un utilisateur est représenté
par un contexte x, généralement un vecteur réel vivant dans un espace à d dimensions X ⊆ Rd.
Ces contextes, et donc les utilisateurs, sont échantillonnés indépendamment à partir de la même
distribution inconnue ν(X ). Après avoir vu un utilisateur, le moteur de recommandation lui
fournit un article a issu d’un catalogue A de taille |A| dansN. Le système de recommandation
est modélisé comme une politique π : X → P (A), qui est une fonction qui prend un contexte x
et produit une distribution π(·|x) sur l’espace des actions possibles A. Recommander un article
a pour le contexte x revient à échantillonner l’article à partir de la distribution produite a ∼
π(·|x). Après avoir livré l’article a à l’utilisateur du contexte x, notre système reçoit un retour
de l’utilisateur; une récompense stochastique r ∈ R+ provenant d’une distribution inconnue
p(·|x, a). Cette récompense encode la performance de l’élément recommandé par rapport à
la mesure souhaitée ; plus la récompense est élevée, plus la performance l’est aussi. Notre
objectif est de trouver des politiques très performantes, en minimisant le risque, défini comme la
récompense négative attendue en tirant des actions de notre politique. Le risque d’une politique
donnée π peut être exprimé comme suit :

R(π) = −Ex∼ν,a∼π(·|x)
[︂
Er∼p(·|x,a)[r]

]︂
.

Ce risque est définie comme une espérance sous la distribution générée par la politique évaluée.
Comme nous n’avons pas accès aux interactions de la nouvelle politique π avec l’environnement,
un moyen simple d’estimer cette quantité est de laisser π interagir avec les utilisateurs en ligne.
Dans la plupart des scénarios, cela n’est pas possible, car nous n’avons pas le luxe de dé-
ployer de mauvaises politiques. Dans les applications réelles, nous disposons déjà de la version
actuelle de notre système de recommandation, représentée par la politique π0, qui interagit avec
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l’environnement et enregistre ces intéractions. Notre objectif principal est d’évaluer dans quelle
mesure une nouvelle itération du système améliorera la version actuellement déployée. Un moyen
courant d’y parvenir est de réaliser des A/B-tests en ligne (Kohavi et al., 2012). Cette approche
est considérée comme l’"étalon-or" pour estimer l’effet du remplacement de la politique actuelle
π0 par une politique potentiellement meilleure (Gupta et al., 2019). Les A/B-tests nécessi-
tent toutefois un effort d’ingénierie important et un monitoring constant s’étalant sur plusieurs
jours pour être correctement analysés. Idéalement, nous avons besoin d’outils d’évaluation et
d’apprentissage hors ligne qui puissent nous trouver des politiques prometteuses afin de réduire
le nombre d’A/B-tests inutiles. Lorsque les hypothèses du bandit contextuel sont satisfaites,
nous pouvons utiliser la boîte à outils du cadre pour y parvenir. L’idée est d’exploiter les inter-
actions existantes de π0 pour trouver des politiques plus performantes. L’ensemble de données
d’interaction est appelé dans la littérature "logged bandit feedback dataset" (Swaminathan and
Joachims, 2015a) :

Dn = {xi ∼ ν, ai ∼ π0(·|xi), ri ∼ p(·|xi, ai), π0(ai|xi)}i∈[n].

La figure 1 présente une représentation graphique des données. La principale difficulté rencon-
trée lors de l’apprentissage à partir de ces données est le biais potentiel créé par la procédure de
collecte ; nous n’avons accès qu’aux résultats des actions échantillonnées à partir de π0. Le cadre
d’apprentissage hors ligne du bandit contextuel propose deux approches distinctes pour résoudre
ce problème : l’approche de modélisation du coût et l’approche d’échantillonnage préférentiel.

l’approche de modélisation du coût ou la méthode directe exploite les données d’interaction Dn
pour construire un modèle de la récompense (Sakhi et al., 2020a; Jeunen and Goethals, 2021).
Une politique optimale est alors naturellement dérivée en jouant pour chaque contexte x, l’action
avec la récompense la plus élevée selon le modèle. La méthode directe est simple à mettre en
œuvre, car elle réduit l’apprentissage à un problème de régression (Brandfonbrener et al., 2021).
Cette approche est théoriquement bien étudiée et bénéficie de solides garanties (Nguyen-Tang
et al., 2022). Cependant, elle souffre d’un biais important et incontrôlé lorsque la récompense
est complexe, ce qui rend son efficacité entièrement dépendante de notre capacité à modéliser
la structure du problème. La méthode directe est efficace lorsque nous avons confiance en notre
capacité à comprendre le problème. Lorsque le signal de récompense est complexe, nous pouvons
préférer une autre approche qui ne dépend pas entièrement de notre effort de modélisation.

L’approche d’échantillonnage préférentiel (Horvitz and Thompson, 1952; Bottou et al., 2013;
Dudík et al., 2014), souvent appelée apprentissage hors politique, ne nécessite pas de modèlisa-
tion. Elle apprend une nouvelle politique π directement à partir des interactions Dn en utilisant
des estimateurs corrigés par échantillonnage préférentiel (Chopin and Papaspiliopoulos, 2020).
Sous des hypothèses modérées (Horvitz and Thompson, 1952), cette méthode peut produire des
estimateurs non biaisés, qui se présentent plus faciles à analyser et à optimiser (Ajalloeian and
Stich, 2020). Ces estimateurs souffrent cependant d’une variance potentiellement importante
dès que la politique apprise s’éloigne de la politique d’enregistrement π0, ce qui les rend peu
fiables pour l’apprentissage. Il est prouvé empiriquement que l’apprentissage avec ces estima-
teurs peut aboutir à des politiques peu performantes (Swaminathan and Joachims, 2015a,b),
parfois même pires que π0 (Chen et al., 2019b; London and Sandler, 2019). Cette observation
motive l’utilisation d’outils de la théorie de l’apprentissage (Zhou, 2002; McAllester, 1998) pour
proposer des objectifs avec un meilleur comportement, sans connaissance de la fonction de ré-
compenses. L’objectif de cet effort de recherche est de produire de nouvelles politiques qui sont
théoriquement meilleures que la politique d’enregistrement sans interactions additionelles
avec l’environnement. Cela est utile dans les environnements de production où nous aimerions
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proposer un nouveau système qui améliorera le système de production actuel avec certitude.

Le premier effort dans ce sens a été mené par Swaminathan and Joachims (2015a) et a abouti
au principe CRM : Counterfactual Risk Minimisation ou Minimisation du risque contre-
factuel. Le principe CRM s’appuie sur les outils de la théorie de l’apprentissage statistique
(Vapnik, 1998), un cadre qui permet d’étudier la capacité de généralisation des algorithmes
d’apprentissage. Motivé par la construction d’une borne empirique de type Bernstein (Maurer
and Pontil, 2009) sur le risque réel des politiques, et utilisant des arguments de nombre de cou-
verture (Zhou, 2002), ce principe préconise de pénaliser les estimateurs de poids d’importance
avec la racine carrée de la variance empirique du risque. Cette pénalité est contrôlée par un hy-
perparamètre λ, défini à l’aide d’une validation croisée sur une partie de validation. L’intuition
sous-jacente est que pour améliorer la politique π0, nous devrions rechercher des politiques qui
ont un petit risque empirique tout en restant proches de π0. Ce principe permet d’obtenir des
politiques plus performantes que l’optimisation directe d’estimateurs d’échantillonnage préféren-
tiel (Swaminathan and Joachims, 2015a,b). Toutefois, son paradigme d’apprentissage souffre de
différentes limitations, ce qui réduit son application à des scénarios simples. En particulier,
l’ajout de la pénalisation rend l’objectif d’apprentissage non convexe et non décomposable, ce
qui interdit l’utilisation de méthodes de gradient stochastique. Cette pénalité est également
contrôlée par un nouvel hyperparamètre λ qui est difficile à régler et qui ajoute à la complexité
de l’approche. Enfin, le principe CRM ne fournit pas de certificats de performance sur la poli-
tique nouvellement formée. Ces limites seront examinées en détail plus loin dans l’introduction.
Plus récemment, un nouveau principe a été introduit pour atténuer certaines de ces limita-
tions. En analysant ce problème d’apprentissage sous l’angle PAC-Bayesien (McAllester, 1998;
Alquier, 2021), London and Sandler (2019) développent une approche améliorée. Les auteurs
fondent leur analyse sur la borne PAC-Bayesienne de McAllester (2003). Pour les politiques
paramétriques, cela motive une régularisation L2 du paramètre de la nouvelle politique vers le
paramètre de la politique d’enregistrement π0. La régularisation est également contrôlée par un
hyperparamètre λ qui doit être réglé. Ce principe est basé sur la même intuition de rester proche
de π0, mais cette fois, il est effectué sur l’espace des paramètres. L’adoption d’une régularisation
L2 au lieu d’une pénalisation de la variance d’échantillon facilite le problème d’optimisation et
permet l’utilisation de la descente de gradient stochastique. Cependant, le paramètre λ de la
régularisation L2 souffre des mêmes limitations et le principe ne peut pas produire de meilleures
politiques. Les résultats empiriques démontrent que ces principes échouent parfois à améliorer la
politique π0 (Chen et al., 2019b). Ces limites seront développées dans la section suivante, avant
que nous ne présentions les contributions de la première partie de la thèse. Le chapitre 3 recadre
CRM en utilisant les outils de Distributionnally Robust Optimisation (Duchi et al., 2021),
un cadre statistique conçu pour la prise de décision face à l’incertain. En outre, les chapitres 4
et 5 s’appuient sur les travaux de London and Sandler (2019) et poursuivent le développement
des outils PAC-Bayésien (McAllester, 1998) pour le bandit contextuel hors ligne. L’analyse
produit des principes qui sont plus faciles à optimiser, ne nécessitent pas d’hyperparamètres
supplémentaires à régler et bénéficient, pour certains, de meilleures garanties de performance,
ce qui nous rapproche de l’apprentissage de politiques améliorant π0 hors ligne.

Dans le monde réel, les systèmes interactifs sont souvent confrontés à des scénarios à grande
échelle, dans lesquels ils doivent apprendre à partir d’un nombre considérable d’interactions
(n≫ 1) et opérer sur des catalogues massifs (|A| ≫ 1). Pour que ces systèmes puissent fournir
des recommandations en quelques millisecondes, ils sont limités à une certaine structure (Shri-
vastava and Li, 2014; Aouali et al., 2022) afin de permettre une réponse rapide aux requêtes.
Pendant longtemps, les systèmes de recommandation à grande échelle ont été formés à la prédic-
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tion des préférences (Harper and Konstan, 2015; Gomez-Uribe and Hunt, 2016) ou à la prédiction
de l’élément suivant (Hidasi et al., 2015; Wu et al., 2019). Ces approches de modélisation sont
généralement considérées comme de piètres substituts à la récompense que nous souhaitons op-
timiser (Jannach and Jugovac, 2019). L’adaptation de la boîte à outils de bandits contextuels
hors ligne à l’apprentissage de systèmes de recommandation à grande échelle aura un impact
considérable sur le secteur. Ces outils peuvent permettre d’aligner les recommandations sur des
signaux de récompense complexes, améliorant ainsi la satisfaction des utilisateurs et la rentabil-
ité des entreprises qui développent ces systèmes. Comme nous l’avons vu précédemment, nous
pouvons soit adopter la méthode directe si nous savons comment modéliser la récompense, soit
utiliser des principes d’apprentissage avec des estimateurs d’échantillonnage préféren-
tiel pour apprendre une politique directement. Ces deux méthodes permettent d’apprendre de
manière fiable un système de recommandation performant. Malheureusement, ces méthodes,
dans leur forme simple, présentent des inconvénients lorsqu’elles traitent des problèmes à grande
échelle. La deuxième partie de la thèse aborde ces limitations et permet un apprentissage efficace
et rapide des systèmes de recommandation à grande échelle.

La méthode directe repose entièrement sur notre capacité à apprendre un modèle qui reflète
les propriétés de la récompense. La compréhension parfaite du problème réduit le biais lié à la
modélisation, mais il existe un autre problème, lié à l’apprentissage à partir de Dn, qui devient
plus prononcé dans les scénarios à grand catalogue. En effet, l’apprentissage naïf du modèle de
récompense à partir de Dn souffre du déséquilibre présent dans les données collectées. Le modèle
de récompense sera bien estimé pour les actions qui sont susceptibles d’être échantillonnées sous
π0, et mal estimé pour le reste. Cette différence dans la qualité de l’estimation peut rendre les
décisions prises par la politique dérivée peu fiables (Smith and Winkler, 2006). Ce phénomène
est accentué lorsqu’on a affaire à des catalogues de grande taille, car π0 ne peut jamais collecter
suffisamment d’échantillons pour couvrir l’ensemble de l’espace d’action. Nous consacrons le
chapitre 6 à l’examen d’une solution bayésienne à ce problème. Nous introduisons une structure
au modèle et utilisons une autre source de données pour apprendre efficacement le modèle de
récompense. Plus de détails sur cette approche peuvent être trouvés dans la section contribution.

Les objectifs d’échantillonnage préférentiel deviennent intéressants lorsque le signal de récom-
pense est complexe. Toutefois, dans les scénarios à grande échelle, ces objectifs d’apprentissage
souffrent de deux problèmes majeurs. Le premier problème est lié à la variance de ces estima-
teurs, qui augmente avec la taille de l’espace d’action. En effet, la variance des estimateurs
courants (Horvitz and Thompson, 1952; Ionides, 2008; Dudík et al., 2014) devient incontrôlable
lorsque les politiques opèrent sur des catalogues massifs (Saito and Joachims, 2022b). Comme
cette variance peut être très importante, l’ajout d’une pénalisation de la variance, par exemple,
obligera la politique nouvellement apprise π à imiter le comportement de π0. Ce phénomène
rend nos principes d’apprentissage trop conservateurs, en renvoyant des politiques très proches
de π0. Cette observation a motivé la construction d’une nouvelle famille d’estimateurs (Saito
and Joachims, 2022a; Saito et al., 2023) pour atténuer ce problème de variance. Ces contribu-
tions récentes traitent des limites statistiques des objectifs d’échantillonnage préférentiel dans
les scénarios à grand catalogue, mais les problèmes de temps de calcul liés à l’optimisation de ces
objectifs restent non résolus. Les systèmes à grande échelle sont fréquemment mis à jour, et des
routines d’optimisation rapides sont hautement souhaitables dans ce contexte. Les méthodes
existantes proposent des itérations de gradient dont l’échelle est au moins linéaire sur la taille
du catalogue. Cette complexité peut être préjudiciable à l’apprentissage des systèmes de recom-
mandation fonctionnant sur des milliards d’éléments. Les deux derniers chapitres (chapitres 7
et 8) se concentrent sur l’aspect computationnel et proposent des routines d’optimisation avec
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des complexités sous-linéaires. Ces solutions seront développées plus en détail dans la section
contribution.

Dans cette thèse, nous couvrons différentes disciplines connectées, tout en équilibrant les outils
théoriques et les algorithmes pratiques. Pour faciliter la présentation, nous souhaitons donner
aux lecteurs un aperçu de l’avancement de chaque domaine de recherche. À cette fin, nous
consacrons un chapitre à l’examen de la littérature existante, que nous jugeons utile pour tout
chercheur.

Chapter 2. Literature Review. Ce chapitre présente une revue de la littérature couvrant
ainsi les différents outils utilisés tout au long de cette thèse. Nous donnons un bref aperçu de
la littérature sur le Bandit Contextuel, un formalisme pratique pour étudier la recommandation
basée sur la récompense, en présentant à la fois ses formulations en ligne et hors ligne. En
nous concentrant sur le cadre hors ligne, nous consacrons une section à la présentation des
outils d’apprentissage statistique, nécessaires à l’étude des systèmes de décision d’apprentissage
avec des garanties de performance. Nous présentons ensuite le développement des systèmes
de recommandation et la manière dont la modélisation de la recommandation est passée de
la prédiction des préférences à la maximisation de la récompense, et nous concluons par les
considérations algorithmiques qui se posent dans le contexte de la prise de décision à grande
échelle.

Part I - Offline Learning with Performance Guarantees. La première partie de la
thèse se concentre sur les limites des principes d’apprentissage actuels. Ces principes ont été
proposés pour améliorer la politique d’enregistrement π0, en atténuant les problèmes liés à
l’échantillonnage préférentiel. Sans perte de généralité, nous présentons le problème à l’aide du
IPS : Inverse Propensity Scoring (Horvitz and Thompson, 1952), sans doute l’estimateur le plus
simple et le plus étudié. Pour une politique π, nous rappelons son expression :

R̂
IPS
n (π) = − 1

n

n∑︂
i=1

π(ai|xi)
π0(ai|xi)

ri.

Lorsqu’elle est évaluée sur π0, IPS donne la moyenne empirique des coûts collectés en tant
qu’estimation du risque, ce qui est considéré comme un estimateur sans biais de R(π0). Toutefois,
une simple analyse de la variance de cet estimateur montre que le fait de s’éloigner de π0 entraîne
une baisse de la qualité de l’estimation. Si la récompense observée est bornée (par exemple,
r ∈ [0, 1]), nous avons :

V
[︂
R̂

IPS
n (π)

]︂
= 1
n

(︄
Ex∼ν,a∼π0(·|x),r∼p(·|x,a)

[︄(︃
π(a|x)
π0(a|x)

)︃2
r2
]︄
− Ex∼ν,a∼π(·|x) [r̄(a, x)]2

)︄

≤ 1
n
Ex∼ν,a∼π0(·|x),r∼p(·|x,a)

[︄(︃
π(a|x)
π0(a|x)

)︃2]︄
= 1
n

(︂
χ2(π, π0) + 1

)︂
,

avec χ2(π, π0) la divergence χ-deux entre π et π0. La variance a à peu près le même com-
portement que la divergence χ-deux, augmentant lorsque π s’éloigne de π0. En particulier, la
variance augmente avec les poids d’importance. Les poids d’importance sont très élevés lorsque
la nouvelle politique π attribue une forte probabilité à des actions qui étaient très peu sus-
ceptibles d’être jouées sous π0. Cela signifie que la qualité de l’estimation dépend fortement
de la politique évaluée π, ce qui rend IPS1 indigne de confiance pour les politiques éloignées

1Tous les estimateurs basés sur les poids d’importance souffrent de la même limitation.
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du voisinage de π0. Cette observation est confirmée dans la pratique, en particulier lorsque
l’on utilise ces estimateurs comme objectif d’apprentissage. Par exemple, la minimisation de
l’estimateur IPS par rapport à une classe de politiques peut conduire à des politiques ayant de
mauvaises performances en ligne. Lorsque la politique apprise π est éloignée de π0, l’estimation
IPS du risque de π ne reflète pas son risque réel, car π se trouve dans une partie de l’espace
qui induit un estimateur avec une grande variance. Pour contourner ces limitations, il faudrait
restreindre l’optimisation aux politiques autour de la politique π0. Le CRM : Minimisa-
tion du risque contrefactuel (Swaminathan and Joachims, 2015a) formalise cette idée en
utilisant des arguments d’apprentissage statistique. Motivé par la construction d’une borne
empirique de type Bernstein (Maurer and Pontil, 2009), le principe préconise la minimisation
de l’estimateur IPS pénalisé par sa variance. Ce principe est ensuite utilisé pour produire un
algorithme d’apprentissage de politiques "softmax" (Mei et al., 2020b) de la forme :

∀(x, a) πθ(a|x) = softmaxA (fθ(x, a))

= exp(fθ(x, a)∑︁
a′∈A exp(fθ(x, a′)) . (1)

avec θ un paramètre provenant d’un espace paramétrique θ ∈ Θ et fθ : X × A une fonction
qui encode la pertinence de l’action a par rapport au contexte x. L’algorithme proposé est
appelé POEM : Policy Optimizer for Exponential Models (Swaminathan and Joachims, 2015a)
et résout l’objectif suivant pour les politiques softmax :

arg min
θ∈Θ

{︃
R̂

IPS
n (πθ) + λ

√︂
V̂

IPS(πθ)
}︃
,

avec λ un hyperparamètre généralement défini à l’aide de données de validation, et V̂ IPS(πθ) la
variance empirique induite par l’évaluation de π avec IPS :

V̂
IPS(πθ) = 1

n− 1

n∑︂
i=1

(︃
π(ai|xi)
π0(ai|xi)

ri + R̂
IPS
n (πθ)

)︃2
.

Swaminathan and Joachims (2015a) a démontré empiriquement la supériorité de ce principe ; les
politiques renvoyées par POEM présentent un risque beaucoup plus faible que celles obtenues en
minimisant naïvement l’objectif IPS. L’ajout de la régularisation rend l’approche plus fondée,
mais souffre encore de limitations qui réduisent son applicabilité dans les scénarios de la vie
réelle:

(1) Mise à l’échelle. La plus grande limitation du principe CRM est sa capacité à s’adapter
à de grands ensembles de données Dn. La présence du terme de variance fait que le calcul du
gradient de l’objectif CRM se fait en O(n), en termes de coûts de calcul et de mémoire, car il
nécessite de parcourir l’entièreté des données. Dans un scénario de système de recommanda-
tion, des millions d’interactions sont enregistrées chaque jour. Ces applications traitent un très
grand nombre d’échantillons n et ne peuvent se permettre ce coût de calcul. Ce problème est
généralement résolu en recourant à un algorithme d’optimisation stochastique, qui ne nécessite
qu’un accès aux gradients stochastiques non biaisés de l’objectif. Ceux-ci sont particulièrement
faciles à obtenir lorsque l’objectif se décompose en une somme sur les entrées de l’ensemble de
données, car il suffit de calculer la somme sur des lots pour obtenir des gradients non biaisés.
Malheureusement, l’objectif CRM n’est pas adapté à l’optimisation stochastique, car le terme
de pénalisation ne s’écrit pas comme une somme. Swaminathan and Joachims (2015a) a proposé
une relaxation de l’objectif CRM, basée sur une stratégie de minimisation/majoration, qui peut
bénéficier partiellement des gradients stochastiques. Leur approche nécessite toujours de passer
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par l’ensemble des données enregistrées de temps à autre, ce qui permet d’obtenir une procédure
d’une complexité informatique identique.

London and Sandler (2019) propose un principe amélioré qui traite de la première limitation
du CRM. Au lieu de s’appuyer sur la borne empirique de type Bernstein (Maurer and Pontil,
2009), London and Sandler (2019) adapte la borne PAC-Bayesienne de McAllester (2003) pour
dériver des objectifs d’apprentissage pour ce problème. Le principe obtenu motive l’utilisation
d’une régularisation L2 vers le paramètre θ0 de la politique π0. Cette régularisation est contrôlée
par un hyperparamètre λ, ce qui donne le problème d’optimisation suivant pour les politiques
softmax paramétrées :

arg min
θ∈Θ

{︂
R̂

IPS
n (πθ) + λ∥θ − θ0∥2

}︂
,

L’objectif d’optimisation se prête à l’optimisation stochastique (décomposable en une somme),
s’adapte à de grands ensembles de données et produit des politiques avec de meilleures per-
formances empiriques. Cependant, ce principe, comme le CRM, souffre d’autres limitations,
présentées ci-après :

(2) Pas de garanties de performance. Les deux principes dérivés sont motivés par la
construction de bornes couvrant le risque réel des politiques. Ces bornes, dans leur forme
brute, ne peuvent pas être utilisées directement comme objectif d’apprentissage. En effet, la
borne dérivée dans Swaminathan and Joachims (2015a) contient des quantités théoriques et
celle dérivée dans London and Sandler (2019) donne une couverture triviale. L’introduction de
l’hyperparamètre λ permet d’obtenir des objectifs pratiques, qui perdent les garanties théoriques
données par les bornes initiales. Ces objectifs ne couvrent pas nécessairement le risque réel, et
leur optimisation peut conduire à des politiques pires que π0. Des preuves empiriques peuvent
être trouvées dans (Chen et al., 2019b) où le principe CRM ne parvient pas à améliorer π0.

(3) Rajout d’hyperparamètre. Un autre problème majeur de ces principes est également
causé par l’introduction de λ et sa sélection. Le paramètre libre λ nécessite un réglage minutieux,
car son choix a un impact considérable sur les performances de la politique obtenue. Comme
il n’existe pas de lignes directrices théoriques pour définir une bonne valeur de λ, la stratégie
consiste à procéder à une validation croisée du paramètre sur une grille relativement fine en
utilisant l’estimateur IPS. La validation croisée ajoute à la complexité de l’algorithme. Cette
procédure nécessite également de disposer d’un ensemble de validation qui ne sera pas utilisé
pour l’apprentissage, ce qui accentue le problème de la variance. En outre, comme l’estimateur
IPS est toujours utilisé pour sélectionner la meilleure valeur de λ, la politique renvoyée à la
fin est celle qui minimise le risque IPS sur l’ensemble de validation, ce qui rend l’ensemble du
principe incohérent.

L’objectif de cette première partie est de fournir aux praticiens de meilleurs principes qui con-
tournent complètement ces limitations, en bénéficiant de meilleures garanties statistiques et de
performances empiriques.

Chapter 3. Offline Learning with Distributionally Robust Optimization. Dans ce
chapitre, nous présentons une formulation alternative au principe CRM en recourant au cadre de
l’optimisation distributionnellement robuste (DRO) (Duchi et al., 2021). Ces outils permettent
de construire élégamment des intervalles de confiance sensibles à la variance sur le vrai risque
en utilisant des ensembles d’ambiguïté basés sur la f -divergence. Nous appliquons ce principe



Contents 17

au problème de l’évaluation et de l’optimisation des politiques hors ligne. L’objectif résultant
traite des limites (1) et (3) ; il bénéficie des mêmes garanties statistiques que le CRM, peut être
calibré automatiquement en utilisant des arguments de couverture asymptotique et se prête à
l’optimisation stochastique. Nous présentons des expériences numériques solides montrant que
l’approche proposée traite efficacement les lacunes de la CRM. Ce chapitre est adapté de la
publication suivante :

• Otmane Sakhi, Louis Faury, and Flavian Vasile (2020b). Improving Offline Contextual
Bandits with Distributional Robustness. Proceedings of the ACM RecSys Workshop on
Reinforcement Learning and Robust Estimators for Recommendation Systems, 2020.

Chapter 4. Offline Learning with PAC-Bayesian Theory. Dans ce chapitre, nous remet-
tons complètement en question le paradigme de l’apprentissage hors politique et préconisons
une stratégie théoriquement fondée pour améliorer avec certitude la politique déployée π0. La
méthode proposée consiste à créer des bornes inférieures de la quantité d’améliorations uiv-
ante I(π) = R(π0) − R(π), et à déployer de nouvelles politiques uniquement lorsque nous
sommes sûrs que I(π) > 0. Nous basons notre approche sur la théorie de l’apprentissage PAC-
Bayesien (Alquier, 2021) et démontrons que ses outils conviennent parfaitement au problème
de l’apprentissage hors ligne. En particulier, en interprétant les politiques comme des mélanges
de règles de décision, nous dérivons une borne PAC-Bayesienne étroite, de type Bernstein, qui
rend notre stratégie viable. La stratégie résultante traite les trois limitations ; nous montrons
que l’algorithme résultant peut donner des certificats d’amélioration, se prête à l’optimisation
stochastique et ne nécessite aucun réglage d’hyperparamètre, ce qui constitue un grand pas en
avant vers la réalisation d’un apprentissage hors politique pratique avec de véritables garanties
de performance. Ce chapitre est basé sur la publication suivante :

• Otmane Sakhi, Pierre Alquier, and Nicolas Chopin (2023a). PAC-Bayesian Offline Con-
textual Bandits with Guarantees. Proceedings of the 40th International Conference on
Machine Learning, 2023.

Chapter 5. A Better PAC-Bayesian Analysis of Offline Learning. Dans ce chapitre,
nous poursuivons le développement de l’analyse PAC-Bayesienne du problème de l’apprentissage
hors ligne des politiques. En exploitant la nature négative du risque, nous dérivons de nouvelles
bornes plus étroites qui s’appliquent à une classe plus large d’estimateurs de risque. L’idée
est basée sur un traitement raffiné de la fonction génératrice de moments du risque et étend
les limites empiriques de Bernstein à des ordres supérieurs. La particularité de ces résultats
est qu’ils sont entièrement empiriques ; nous ne supposons pas l’accès à π0 contrairement aux
bornes dérivées précédemment. Nous observons que nos résultats peuvent donner de meilleures
garanties et nous permettent d’obtenir de nouvelles informations sur les estimateurs utilisés. Ce
chapitre se concentre sur la fourniture de résultats techniques et est basé sur un travail non
publié.

Part II - Offline Learning of Large Scale Recommendation. L’apprentissage hors ligne
offre des solutions pratiques pour aligner efficacement les systèmes de décision sur des signaux
de récompense complexes. Si la communauté des chercheurs s’est concentrée sur l’amélioration
des estimateurs et des paradigmes d’apprentissage existants, peu d’attention a été accordée à
l’adaptation de ces approches au contexte des grands espaces d’action. Ceci est intéressant
pour les moteurs de recherche d’apprentissage, les systèmes de recommandation et pratique-
ment toutes les applications où le nombre d’interactions n et la taille de l’espace d’action |A|
sont massifs. Le principal défi dans ces applications est de concevoir des règles de décision qui
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satisfont aux contraintes d’ingénierie, tout en fournissant des algorithmes pratiques qui per-
mettent leur alignement avec les signaux de récompense d’une manière rapide et fiable. Les
moteurs de recherche doivent répondre aux requêtes en quelques millisecondes, et les systèmes
de recommandation du monde réel (pensez à une plateforme de streaming vidéo) doivent rem-
plir de manière rapide la page d’accueil avec du contenu. Ces contraintes de vitesse doivent être
respectées même si le catalogue (espace d’action) contient des milliards d’éléments. Un autre
aspect à prendre en considération est que ces systèmes sont fréquemment mis à jour, ce qui
impose une contrainte considérable sur le temps d’apprentissage de ces systèmes. En effet, si
nous devons mettre à jour notre système de décision quotidiennement sur la base de ses inter-
actions, le temps d’apprentissage devrait être nettement inférieur à unjour car il faut collecter
suffisamment d’interactions et mettre à jour le système dans le même laps de temps. Dans leurs
implémentations naïves, la prise de décision et l’apprentissage de ces systèmes sont linéairement
proportionnels à la taille de l’espace d’action O(|A|), ce qui n’est pas possible dans les scénarios
d’espace d’action massif. Dans ce qui suit, nous développons la discussion autour de ces deux
aspects importants et présentons nos contributions dans ce domaine.

Prise de décision rapide. La politique déployée permet de répondre à une requête ou de
fournir des recommandations précises. Quelle que soit la nature de la politique et de sa mise
en œuvre, cette étape se résume généralement à l’identification rapide d’un sous-échantillon de
taille K ≥ 1 de bonnes actions (Chen et al., 2019a) à partir de l’espace d’action potentiellement
massif. En règle générale, et pour un utilisateur x, la qualité des actions est encodée dans la
fonction de score fθ(·, x) : A → R tandis que les bonnes actions sont identifiées en trouvant les
actions ayant le meilleur score, en résolvant le problème suivant :

[a1, ..., aK ] =
K

arg sort
a′∈A

{︁
fθ(a′, x)

}︁
, (2)

avec l’opérateur arg sortKa′∈A qui renvoie les K actions les mieux notées. Cette opération de
tri a une complexité linéaire sur la taille de l’espace des actions O(|A| logK) et ne peut pas
être adoptée dans un environnement de production à grande échelle. La solution courante pour
réduire cette complexité consiste à imposer une structure à la fonction de score. En limitant
l’espace de la fonction de score à ce qui suit :

∀(x, a) fθ(a, x) = hΞ(x)⊺βa

avec θ = [Ξ, β], la fonction de score devient un produit scalaire entre une transformation du
contexte hΞ(x) et une transformation de l’action βa, tous deux résidant dans un espace latent
Rl de dimension l ≪ |A|. Avec cette structure, l’équation (2) peut être résolue en approximant
MIPS : Maximum Inner Product Search (Shrivastava and Li, 2014) dans une complexité tem-
porelle de O(log |A|) au lieu de O(|A|), ce qui rend possible une prise de décision rapide sans
considérations supplémentaires.

Apprentissage efficace pour la méthode directe. La méthode directe dérive une politique
optimale, qui identifie pour chaque contexte les actions ayant le meilleur score selon le modèle
de récompense rM. Cela signifie que si rM est correctement paramétré, une prise de décision
rapide est possible. L’apprentissage d’un bon modèle rM nécessite une excellente compréhension
du problème sous-jacent et est généralement obtenue par maximum de vraisemblance (Aouali
et al., 2023b) ou des heuristiques de classement (Rendle et al., 2009), qui sont des méthodes
dont l’apprentissage est indépendant de la taille de l’espace d’action. Ces algorithmes peuvent
toutefois présenter d’autres lacunes si nous ne prenons pas garde aux particularités de ce cadre.
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Dans les scénarios à grand espace d’action, il est impossible pour la politique déployée de collecter
suffisamment d’interactions pour chaque action dans A. Le signal de récompense est inégalement
réparti, car la majorité des données collectées proviennent d’actions très probables sous π0 et
peu ou pas de données sont disponibles pour le reste des actions. Cela signifie que si nous
utilisons le principe du maximum de vraisemblance, la qualité du modèle appris rM dépendra
de la paire contexte/action ; l’estimation est précise pour les paires action/contexte qui sont
suffisamment présentes dans les données. Ce déséquilibre dans la qualité de l’estimation a un
impact négatif sur la politique dérivée, car les décisions basées sur le MLE peuvent souffrir
d’une déception post-décisionnelle (Smith and Winkler, 2006). L’un des moyens d’atténuer ce
problème est de l’inscrire dans le cadre de la théorie de la décision Bayesienne (West et al.,
2021). Par exemple, Jeunen and Goethals (2021) démontre que même une simple modélisation
bayésienne de la récompense permet d’améliorer le comportement des politiques. Avec l’aide
de distribution à priori bien choisis, cette formulation peut également intégrer des corrélations
supplémentaires entre les contextes et les actions, ce qui rend l’apprentissage encore plus efficace
(Aouali et al., 2023c). Cependant, le principal défi de la modélisation bayésienne est d’ordre
computationnel ; l’approximation des distributions à posteriori sur des milliards d’interactions,
à l’aide de modèles, est difficile et nécessite un soin particulier (Chopin and Papaspiliopoulos,
2020). Nous consacrons un chapitre à cette discussion et construisons un modèle de récompense
bayésien pour la recommandation en utilisant des à priori bien construit, tout en fournissant
des outils appropriés pour accélérer son apprentissage dans des applications à grande échelle.

Chapter 6. Scalable Bayesian Reward Modelling. Dans ce chapitre, nous empruntons la
voie de la méthode directe et développons un modèle bayésien de la récompense dans le cas de la
recommandation d’un seul article. Nous reconnaissons la présence de deux types de signaux dans
les problèmes de recommandation : les signaux organiques et les signaux de bandits. Alors que
nous conditionnons notre modèle au retour bandit, les interactions organiques entre les contextes
et les actions nous aident à construire une distribution a priori qui incorpore trois similarités :
la similarité contexte-action, la similarité action-action et la similarité contexte-contexte. Ces
similarités nous permettent d’obtenir de bonnes estimations de la récompense dans toutes les
régions de l’espace, même pour les actions et les contextes les moins explorés. Le modèle
proposé est flexible, utilise efficacement les données existantes mais produit une distribution à
posteriori intraitable. Nous fournissons des outils computationnels faciles à mettre en œuvre
pour approximer sa solution en nous basant sur des approches variationnelles (Blei et al., 2017).
L’algorithme résultant s’adapte à de grands ensembles de données, peut apprendre efficacement
dans différents scénarios et bénéficie de la paramétrisation du produit scalaire, ce qui permet
une prise de décision rapide. Ce chapitre est basé sur la publication suivante :

• Otmane Sakhi, Stephen Bonner, David Rohde and Flavian Vasile (2020a). BLOB: A Prob-
abilistic Model for Recommendation that Combines Organic and Bandit Signals. KDD ’20:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining.

Apprentissage rapide avec les estimateurs d’échantillonnage préférentiel Dans notre
quête d’algorithmes évolutifs d’apprentissage de politiques hors ligne, nous exprimons également
notre intérêt pour les paradigmes d’apprentissage basés sur l’échantillonnage préférentiel. Cette
approche apprend une politique directement, et même les opérations simples impliquent le calcul
de sommes sur l’ensemble de l’espace d’action. En particulier, nous devons être très prudents
lorsque nous calculons/approximons les gradients de nos objectifs, car cette opération se cal-
cule linéairement dans |A|, ce qui peut ralentir considérablement la routine d’optimisation. La
question de la mise à l’échelle des objectifs généraux d’apprentissage hors politique a attiré
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peu d’attention ; Chen et al. (2019a) a appris une politique prête pour la production avec un
objectif basé sur IPS sans se préoccuper de l’aspect computationnel. Nous nous intéressons
à cette question et souhaitons fournir des méthodes d’accélération générales. Nous étudions
la famille spécifique d’objectifs qui peuvent être écrits comme des espérances sous la politique
évaluée. Cette famille comprend les estimateurs couramment adoptés (Horvitz and Thomp-
son, 1952; Dudík et al., 2014; Wang et al., 2017; Saito and Joachims, 2022a; Saito et al., 2023;
Aouali et al., 2023a), et les nouveaux objectifs d’apprentissage (London and Sandler, 2019; Sakhi
et al., 2023a). Nous commençons par étudier l’accélération de cette famille spécifique d’objectifs
d’apprentissage et fournissons des procédures d’optimisation en temps logarithmique pour les
politiques à article unique, en nous concentrant particulièrement sur les politiques paramétrées
avec la fonction de lien softmax.

Chapter 7. Fast Offline Learning for One-Item Recommendation. Dans ce chapitre,
nous nous attachons à fournir une méthode pour accélérer l’apprentissage des politiques de soft-
max à produit scalaire pour un large panel d’objectifs. Nous identifions les problèmes posés par
les gradients couramment adoptés et proposons une solution basée sur trois ingrédients : une
nouvelle formule de gradient de covariance, l’exploitation de la structure MIPS : Maximum Inner
Product Search dans la phase d’apprentissage et la conception d’outils Monte Carlo appropriés
(Chopin and Papaspiliopoulos, 2020) pour obtenir des approximations accélérées. Il en résulte
un algorithme d’apprentissage avec des mises à jour de gradient sous-linéaires (logarithmiques
ou constantes). Nous menons des expériences approfondies sur des ensembles de données de
recommandation à grande échelle et démontrons l’impact de notre approche ; la méthode pro-
posée est jusqu’à 25 fois plus rapide que la méthode de base tout en produisant des politiques
de qualité similaire. Ce chapitre est basé sur la publication suivante :

• Otmane Sakhi, David Rohde, and Alexandre Gilotte (2023c). Fast Offline Policy Opti-
mization for Large Scale Recommendation. Proceedings of the 37th AAAI Conference on
Artificial Intelligence, AAAI 2023.

Après avoir abordé le problème de l’apprentissage de systèmes de décision à grande échelle
à un élément avec des objectifs linéaires, nous étendons notre analyse au cas plus difficile de
l’apprentissage de systèmes de décision à ardoise. Au lieu de jouer une action, nos politiques
doivent délivrer des ardoises, une liste ordonnée d’éléments de taille K ≥ 1. Cela signifie que nos
règles de décision et nos politiques sont construites pour agir sur l’espace combinatoire SK de
permutations tronquées à K. La taille de cet espace est O(|A|K) et rend les opérations de base,
du calcul d’une moyenne à la recherche de la meilleure ardoise, infaisables. Nous nous concen-
trons sur une famille de systèmes de décision qui réduisent l’espace de recherche de l’ensemble
combinatoirement grand des ardoises SK à l’espace d’action original A. Pour un contexte donné
x, cette réduction consiste à attribuer un score fθ(a, x) à chaque action a et à recommander
une liste composée des K premiers éléments ayant les scores les plus élevés. Cela conduit à un
temps de livraison de O(log |A|) lorsque nous adoptons la structure de produit scalaire pour
fθ(a, x). Aouali et al. (2023b) propose une méthode directe pour apprendre les systèmes de
recommandation d’ardoises à grande échelle. Dans le chapitre suivant, nous présentons les défis
posés par l’apprentissage des systèmes de décision en ardoise et proposons des solutions pour
accélérer leur apprentissage.

Chapter 8. Fast Offline Learning for Slate Recommendation. Dans ce chapitre, nous
nous concentrons sur l’accélération de l’apprentissage des politiques d’ardoise, un élément om-
niprésent des systèmes en ligne modernes. Nous commençons par présenter le problème et
par analyser les algorithmes existants, leurs hypothèses communes et leurs limites. Nous pro-
posons ensuite une nouvelle classe d’algorithmes, basée sur une nouvelle relaxation qui traite
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élégamment les contraintes à grande échelle. La méthode résultante fonctionne avec des récom-
penses arbitraires, possède de meilleures propriétés statistiques tout en réalisant des mises à jour
d’apprentissage sous-linéaires. Nous menons des expériences à grande échelle et démontrons que
l’approche proposée est plus rapide de plusieurs ordres de grandeur que les lignes de base, tout
en produisant des politiques plus performantes. Ce chapitre est basé sur la publication suivante:

• Otmane Sakhi, David Rohde, and Nicolas Chopin (2023b). Fast Slate Policy Optimization:
Going Beyond Plackett-Luce. Transactions on Machine Learning Research.



Chapter 1

Introduction

1.1 Overview
This manuscript presents recent contributions, ranging from theory to large scale applications, to
an offline formalism of the problem of sequential decision-making under uncertainty. An impor-
tant problem with numerous real-world applications where a decision maker, tasked with solving
a specific goal, interacts with an unknown environment, log these interactions and leverage them
in order to better solve the task. In this context, we want to answer the following:

How can we leverage previous interactions of the decision-maker to improve its performance?

Answering this question can have a big impact on real world practical problems. For example,
it may help a charity online marketing campaign get more donations for a good cause, it may be
of service to doctors improving the quality of drug prescription, or it may simply improve the
recommendation quality of your favourite music streaming service making it easier to discover
new artists. In this introduction, we showcase the problem of learning decision-makers using the
example of recommendation, as it will be the focus of a big part of this thesis. Recommender
systems are the backbone of the modern internet experience. In each interaction, these systems
silently navigate an overwhelming amount of information and filter it to cater to the specific
needs of the user. An interaction of a recommendation engine can be summarized in the follow-
ing: the system encounters a user, the system chooses an item (or multiple items) to recommend
from a potentially large catalogue and observes a feedback.

The feedback received is valuable as it represents successes and failures of past interactions.
These interactions are logged and are later used to improve the recommendation quality of the
system. The interactive nature of the collected dataset makes common learning paradigms, such
as supervised learning, not adapted to study such problem. Recently, there has been an interest
in adapting sequential decision-making framework to improve recommendation based on the log
of interactions. Reinforcement learning (RL) (Sutton and Barto, 2018) and Contextual bandits
(CB) (Lattimore and Szepesvári, 2020) start to take the spotlight as good candidates to model
this learning problem. The RL framework builds on the idea that performed actions may impact
the environment. This paradigm can model complex sequential decision problems, is versatile
and allows for planning. Its tools can optimize recommender systems for long term metrics;
for example, increase user engagement and retention (Afsar et al., 2022). This versatility how-
ever comes with a cost. Taking into account the long term effects of recommendation on users
makes the analysis more difficult, prompting us to consider a simpler formalism. Contextual
Bandit offers a useful compromise between principled analysis and practical impact. Its under-
lying assumption is that actions made by the system do not influence future outcomes. If this
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xi ai ri

i ∈ [n]

Figure 1.1: The logged dataset Dn representing n interactions of the recommender system. All
(context, action, reward) triplets are independent.

formulation is less compelling when dealing with delayed rewards (Afsar et al., 2022), its use
is reasonable if we want to focus on learning recommender systems that optimize short-term,
action-bounded metrics, such as click-through rate (Sakhi et al., 2020a) or watch time (Chen
et al., 2019a). In this thesis, we adopt the offline contextual bandits’ (Bottou et al., 2013;
Nguyen-Tang et al., 2022) toolbox to formalize learning from interaction logs. We give new
principled approaches to learn policies with strong performance guarantees and propose new
algorithms to widen the impact of this framework to large scale, real world applications.

An interaction of a user with a recommended item can be reduced to the following example.
A user navigates a website, the recommender system chooses an item from a catalogue and
shows it to the user, the user interacts with the item (either clicks or not) and the result of this
interaction is encoded in a feedback (presence/absence of click) that the system logs. Within the
Contextual Bandit framework, a user is represented by a context x, usually a real vector living
in a d-dimensional space X ⊆ Rd. These contexts, and thus users, are sampled independently
from the same, unknown distribution ν(X ). After seeing a user, the recommendation engine
delivers an item a from a catalogue A of size |A| ∈ N. The recommender system is modelled as
a policy π : X → P (A), which is a function that takes a context x and produces a distribution
π(·|x) over the space of possible actions A. Recommending an item a for the context x boils
down to sampling the item from the produced distribution a ∼ π(·|x). After delivering the item
a to the user of context x, our system receives feedback; a stochastic reward r ∈ R+ coming
from an unknown distribution p(·|x, a). This reward encodes how well the recommended item
has performed on our desired metric; the higher the reward, the higher the performance. Our
goal is to find policies of great performance, achieved by minimizing the risk, defined as the
expected negative reward under the actions of the policy. The risk of any given policy π can be
expressed as:

R(π) = −Ex∼ν,a∼π(·|x)
[︂
Er∼p(·|x,a)[r]

]︂
.

This risk is an expectation under actions taken by the policy evaluated. As we do not have access
to interactions of the new policy π with the environment, a simple way to estimate this quantity
is to let π interact with users online. In most scenarios, this is not possible, as we do not have the
luxury to deploy bad policies. In real world applications, we already have the current version of
our recommender system, represented by the policy π0, that interacts with the environment and
logs the feedbacks. Our primary focus is to assess how well a new iteration of the system will
improve upon the currently deployed version. A common way to achieve this is by conducting
online A/B-tests (Kohavi et al., 2012). This is considered the "gold standard" approach to
estimate the effect of replacing the current policy π0 by a potentially better one (Gupta et al.,
2019). A/B-tests however require substantial engineering effort, constant monitoring and need
several days to be properly analysed. Ideally, we want offline evaluation and learning tools
that can give us promising policies to reduce the number of unnecessary A/B-tests. When the
contextual bandit assumptions are satisfied, we can use the framework’s toolbox to achieve this
(Bottou et al., 2013). The idea is to leverage the existing interactions of π0 to find policies
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of greater performance. The interaction dataset is called in the literature the logged bandit
feedback dataset (Swaminathan and Joachims, 2015a):

Dn = {xi ∼ ν, ai ∼ π0(·|xi), ri ∼ p(·|xi, ai), π0(ai|xi)}i∈[n].

A graphical representation of the data is shown in Figure 1.1. The main challenge encountered
when learning from this data is the potential bias created by the collection procedure; we only
have access to the outcome of actions sampled from π0. The offline learning framework of con-
textual bandit offers two distinct approaches to solve this issue; the model-based approach and
the importance weighting approach.

The model-based approach or the direct method leverages the interaction data Dn to construct
a reward model (Sakhi et al., 2020a; Jeunen and Goethals, 2021). An optimal policy is then
naturally derived by playing for each context x, the action with the highest reward according
to the model. The direct method is straightforward to implement, as it reduces the learning to
a regression problem (Brandfonbrener et al., 2021). This approach is theoretically well-studied
and benefits from strong guarantees (Nguyen-Tang et al., 2022). However, it will suffer from
a substantial, uncontrolled bias whenever the reward is complex, making its efficiency entirely
dependent on our ability to model the problem’s structure. The direct method is efficient when
we are confident in our ability to understand the problem. When the reward signal is complex,
we may prefer another approach that does not completely rely on our modelling effort.

The Importance-weighting approach (Horvitz and Thompson, 1952; Bottou et al., 2013; Dudík
et al., 2014), often called off-policy learning, is agnostic to the reward model. It learns a new
policy π directly from the interactions Dn using estimators corrected with importance sampling
(Chopin and Papaspiliopoulos, 2020). Under mild assumptions (Horvitz and Thompson, 1952),
this method can produce unbiased estimators, which are arguably easier to analyse and opti-
mize (Ajalloeian and Stich, 2020). These estimators however suffer from a potentially large
variance once the learned policy drifts away from the logging policy π0, making them unreliable
for learning. It is empirically proven that learning with these estimators can result in bad per-
forming policies (Swaminathan and Joachims, 2015a,b), sometimes even worse than π0 (Chen
et al., 2019b; London and Sandler, 2019). This observation motivates the use of learning theory
tools (Zhou, 2002; McAllester, 1998) to come up with principled objectives that are agnostic
to the reward structure. The objective of this research effort is to produce new policies that
are provably better than the logging policy without engaging with the environment. This is
beneficial in production settings where we would like to propose a new system, that will improve
on the current production system with high probability.

The first effort in this direction was driven by Swaminathan and Joachims (2015a) and re-
sulted in the CRM: Counterfactual Risk Minimization principle. The CRM principle
builds on tools from Statistical Learning Theory (Vapnik, 1998), a framework that has great
success studying the generalization ability of learning algorithms. Motivated by the construc-
tion of an Empirical Bernstein Upper Bound (Maurer and Pontil, 2009) on the true risk of
policies, and using covering number arguments (Zhou, 2002), this principle advocates for pe-
nalizing importance weights estimators with their square-root sample variance. This penalty
is controlled by a hyperparameter λ that needs to be cross-validated on a hold-out set. The
underlying intuition is that to improve on the logging policy, we should look for policies that
have a small empirical risk while staying close to the logging policy π0. This principle results
in better performing policies compared to optimizing crude importance weighting estimators
(Swaminathan and Joachims, 2015a,b). However, its learning paradigm suffers from different
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limitations, hindering its applicability to simple scenarios. In particular, adding the sample
variance penalization makes the learning objective non-convex and non-decomposable, which
forbids the use of stochastic gradient methods. This penalty is also controlled with a new hy-
perparameter λ that is difficult to tune and adds to the complexity of the approach. Finally,
the CRM principle fails to provide performance certificates on the newly trained policy. These
limitations will be discussed in details later in the introduction. More recently, a new principle
was introduced to mitigate some of these limitations. By analysing this learning problem from
the PAC-Bayesian lens (McAllester, 1998; Alquier, 2021), London and Sandler (2019) develop an
improved approach. The authors build their analysis around McAllester (2003)’s PAC-Bayesian
bound. For parametric policies, this motivates an L2 regularization of the parameter of the
new policy towards the parameter of the logging policy π0. The regularization is also controlled
by a hyperparameter λ that requires tuning. This principle is based on the same intuition of
staying close to π0, but this time, it is carried out on the parameter space. The adoption of an
L2 regularization instead of a sample variance penalization makes the optimization smoother
and allows the use of stochastic gradient descent. However, the L2 regularization parameter
λ suffers from the same limitations and the principle cannot produce provably better policies.
Empirical findings demonstrate that these principles sometimes fail at improving the logging
policy π0 (Chen et al., 2019b). These limitations will be developed even further in the next
section, before we present the contributions of the first part of the thesis. Chapter 3 reframes
CRM using tools from Distributionally Robust Optimization (Duchi et al., 2021), a statis-
tical framework designed for decision-making under uncertainty. Furthermore, Chapters 4 and
5 build on London and Sandler (2019)’s work and continue the development of PAC-Bayesian
tools (McAllester, 1998) for offline contextual bandit. The analysis yields principles that are
easier to optimize, do not require additional hyperparameters to tune and enjoy, for some, even
better performance guarantees, taking us a step closer to learn provably better policies offline.

In real world problems, interactive systems often deal with large scale scenarios, where they
need to learn from enormous number of interactions (n≫ 1) and operate on massive catalogues
(|A| ≫ 1). For these systems to deliver recommendations in a matter of milliseconds, they are
restricted to a certain structure (Shrivastava and Li, 2014; Aouali et al., 2022) to allow for rapid
query response. For a long time, large scale recommender systems were trained for preference
prediction (Harper and Konstan, 2015; Gomez-Uribe and Hunt, 2016) or next-item prediction
(Hidasi et al., 2015; Wu et al., 2019). These modelling approaches are usually considered poor
proxies to the reward we are interested to optimize (Jannach and Jugovac, 2019). Adapting
the offline contextual bandit toolbox to learn large scale recommender systems will have a great
impact on the industry. These tools can enable the alignment of recommendation with complex
reward signals, enhancing both user satisfaction and the profitability of the businesses operating
these systems. As presented earlier, we can either adopt the direct method if we know how
to model the reward, or importance weighting estimators with learning principles to
learn a policy directly. Both can reliably learn a performing recommender system. Unfortu-
nately, these methods in their simple form present some caveats when dealing with large scale
problems. The second part of the thesis addresses these limitations and allows for efficient and
fast training of reward optimizing, large scale recommender systems.

The direct method relies completely on our ability to learn a model that reflects the prop-
erties of the reward. Understanding perfectly the problem lowers the bias linked to modelling,
but there is another problem, linked to learning from Dn, that becomes more pronounced in
large catalogue scenarios. Indeed, naively learning the reward model using Dn suffers from the
unbalance present in the collected data. The reward model will be well estimated for actions
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that are likely to be sampled under π0, and poorly estimated for the rest. This difference in
the estimation quality can make the decisions taken by the derived policy unreliable (Smith and
Winkler, 2006). This phenomenon is accentuated when dealing with large catalogue sizes, as π0
can never collect enough samples to cover the whole action space. We dedicate Chapter 6 to
discuss a Bayesian solution to this issue. We introduce structure to the model and use another
valuable source of data to efficiently learn the reward model. More details about this approach
can be found in the contribution section.

Importance-weighting objectives become interesting when the reward signal is complex. How-
ever, in large scale scenarios, these learning objectives suffer from two major caveats. The
first issue is linked to the variance of these importance-weighting estimators, which grows with
the size of the action space. Indeed, the variance of common importance weighting estimators
(Horvitz and Thompson, 1952; Ionides, 2008; Dudík et al., 2014) become uncontrollable when
the policies operate on massive catalogues (Saito and Joachims, 2022b). As this variance can
be very large, adding a variance penalization for example will force the newly learned policy π
to mimic the behaviour of π0. This phenomenon makes our learning principles too conserva-
tive, returning policies very close to π0. This observation motivated the construction of a new
family of importance weighting estimators (Saito and Joachims, 2022a; Saito et al., 2023) to mit-
igate this variance problem. These recent contributions deal with the statistical limitations of
importance-weighting objectives in large catalogue scenarios, but computational issues linked to
optimizing these objectives remain unsolved. The importance weighting approach learns policies
directly, and use gradient-based methods to computationally optimize the learning objectives.
Large scale systems are updated frequently, and fast optimization routines are highly desirable
in this context. Existing methods offer gradient iterations that scale at least linearly on the
catalogue size. This complexity can be detrimental to learning recommender systems operating
on billions of items. The last two chapters (Chapters 7 and 8) focus on the computational
aspect and propose optimization routines with sublinear complexities. These solutions will be
developed more in the contribution section.

We cover different, connected disciplines in this thesis while balancing between theoretical
tools and practical algorithms. To ease the presentation, we want to give readers an overview
of the advancement of each research field. To this end, we dedicate a chapter to review exist-
ing literature, that we deem valuable to researchers, whether they come from a theoretical or
practical background.

Chapter 2. Literature Review. This chapter conducts a literature review to cover the dif-
ferent tools used throughout this thesis. We give a brief overview of the literature of Contextual
Bandit, a practical formalism to study reward-driven recommendation, presenting both its on-
line and offline formulations. With a focus on the offline setting, we dedicate a section to present
statistical learning tools, necessary to study learning decision systems with online performance
guarantees. We then present the development of recommender systems and how modelling rec-
ommendation shifted from predicting preferences to reward maximization, and conclude with
the algorithmic considerations that arise in the context of large scale decision-making.

Part I - Offline Learning with Performance Guarantees. The first part of the thesis
focuses on addressing the limitations of current learning principles. These principles were pro-
posed to allow learning policies that improve on the logging policy π0, mitigating the problems
of importance weighting approaches. Without any loss of generality, we present the problem
with the help of the IPS: Inverse Propensity Scoring estimator (Horvitz and Thompson, 1952),
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arguably the simplest and most studied estimator. For a policy π, we recall its expression:

R̂
IPS
n (π) = − 1

n

n∑︂
i=1

π(ai|xi)
π0(ai|xi)

ri.

When evaluated on π0, IPS gives the empirical mean of the collected costs as an estimation of
the risk, which is considered to be a well-behaved, unbiased estimator of R(π0). However, a
simple analysis of the variance of this estimator demonstrates that drifting away from π0 leads
to poorer estimation quality. If the observed reward is bounded (i.e. r ∈ [0, 1]), we have:

V
[︂
R̂

IPS
n (π)

]︂
= 1
n

(︄
Ex∼ν,a∼π0(·|x),r∼p(·|x,a)

[︄(︃
π(a|x)
π0(a|x)

)︃2
r2
]︄
− Ex∼ν,a∼π(·|x) [r̄(a, x)]2

)︄

≤ 1
n
Ex∼ν,a∼π0(·|x),r∼p(·|x,a)

[︄(︃
π(a|x)
π0(a|x)

)︃2]︄
= 1
n

(︂
χ2(π, π0) + 1

)︂
,

with χ2(π, π0) the χ-Square divergence between π and π0. The variance has roughly the same
behaviour as the χ-Square divergence, growing when π is far from π0. In particular, the variance
grows with the importance weights. Importance weights are very large when the new policy
π assigns high probability to actions that were very unlikely to be played under π0. This
means that the estimation quality is highly dependent on the policy evaluated π, making IPS1

untrustworthy for policies far from the neighbourhood of π0. This observation is confirmed in
practice, especially when using importance weights-based estimators as a learning objective. For
example, minimizing the IPS estimator with respect to a policy class can lead to policies with
bad online performance. When the learned policy π is far from π0, the IPS estimation of the
risk of π will not reflect its true risk, as π will lie in a part of the space that induces an estimator
with large variance. To circumvent these limitations, one would want to restrict the optimization
to policies around the logging policy π0. The CRM: Counterfactual Risk Minimization
Principle (Swaminathan and Joachims, 2015a) formalizes this idea using statistical learning
arguments. Motivated by the construction of an Empirical Bernstein Bound (Maurer and Pontil,
2009) covering the true risk of policies in a class of policies, the principle advocates for minimizing
a sample variance penalized IPS estimator. This principle is then used to produce a tractable
algorithm for learning, parametrized softmax policies (Mei et al., 2020b) of the form:

∀(x, a) πθ(a|x) = softmaxA (fθ(x, a))

= exp(fθ(x, a)∑︁
a′∈A exp(fθ(x, a′)) . (1.1)

with θ a parameter coming from a parametric space θ ∈ Θ and fθ : X ×A → R a function that
encodes the relevance of action a to the context x. The algorithm proposed is named POEM:
Policy Optimizer for Exponential Models (Swaminathan and Joachims, 2015a) and solves the
following objective for softmax policies:

arg min
θ∈Θ

{︃
R̂

IPS
n (πθ) + λ

√︂
V̂

IPS(πθ)
}︃
,

with λ a tuning parameter usually set with the help of a validation split, and V̂
IPS(πθ) the

sample variance term induced by evaluating π with IPS:

V̂
IPS(πθ) = 1

n− 1

n∑︂
i=1

(︃
π(ai|xi)
π0(ai|xi)

ri + R̂
IPS
n (πθ)

)︃2
.

1All importance weights based estimators suffer from the same caveat.
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Swaminathan and Joachims (2015a) reported empirically the superiority of this principle; the
policies returned by POEM have much lower risk than those obtained by naively minimizing
the IPS objective. Adding the sample variance regularizer makes the approach more principled,
but still suffers from limitations that reduce its applicability in real-life scenarios:

(1) Scalability. The biggest limitation of the CRM principle is its scalability to large logged
datasets Dn. The presence of the sample variance term makes computing the gradient of the
CRM objective scale in O(n) in both computational and memory cost, as it requires going
through the entire dataset. In a recommender system scenario, millions of interactions are logged
daily. Such applications deal with extremely large number of samples n and cannot afford the
cost of these computations. This issue is usually solved by resorting to stochastic optimization
algorithm, which requires only access to unbiased stochastic gradients of the objective. Those
are particularly easy to obtain when the objective decomposes into a sum over the dataset’s
entries, as computing the sum on batches of the dataset is enough to obtain unbiased gradients.
Unfortunately, the CRM objective is not suited for stochastic optimization, as the square-root
empirical variance term does not write as a sum. Swaminathan and Joachims (2015a) proposed
a relaxation of the CRM objective, based on a majorization-minimization strategy, that can ben-
efit partially from stochastic gradients. Their approach still requires passing through the whole
logged dataset once in a while, obtaining a procedure of the same computational complexity.

London and Sandler (2019) propose an improved principle that deals with the first limitation of
CRM. Instead of relying on Maurer and Pontil (2009)’s Empirical Bernstein Bound, London and
Sandler (2019) adapts McAllester (2003)’s PAC-Bayesian bounds to derive learning objectives
for this problem. The derived principle motivates the use of an L2 regularization towards the
parameter θ0 of the logging policy π0. This regularization is controlled by a hyperparameter λ,
giving the following optimization problem for parametrized softmax policies:

arg min
θ∈Θ

{︂
R̂

IPS
n (πθ) + λ∥θ − θ0∥2

}︂
,

The optimization objective is amenable to stochastic optimization (decomposable into a sum),
scales to large datasets and returns policies with better empirical performance. However, this
principle, like CRM, suffers from other limitations, presented in the following:

(2) No Performance Guarantees. Both principles derived are motivated by the construc-
tion of bounds covering the true risk of policies. These bounds in their raw form cannot be
used directly as a learning objective. Indeed, the bound derived in Swaminathan and Joachims
(2015a) contains an intractable quantity and the one derived in London and Sandler (2019) is
vacuous. Introducing the hyperparameter λ helps us obtain practical objectives, that lose the
theoretical guarantees given by the initial bounds. These objectives do not necessarily cover
the true risk, and optimizing them can lead to policies worse than the logging π0. Empirical
evidence can be found in (Chen et al., 2019b) where the CRM principle fails to improve on π0.

(3) Hyper-parameter Selection. Another major problem of these principles is also caused
by the introduction of λ and it is selected. The free-parameter λ requires careful tuning, as its
choice drastically impacts the performance of the obtained policy. As there are no theoretical
guidelines to define a good value of λ, the strategy consists of cross-validating the parameter
over a relatively fine grid using the IPS estimator. Cross validation adds to the complexity of the
algorithm. This procedure also requires having a hold-out set that will not be used for training,
accentuating the variance problem. In addition, as the IPS estimator is still used to select the
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best value of λ, the policy returned in the end is the one that minimizes the IPS risk on the
validation set, which renders the whole principle incoherent.

The goal in this first part is to provide practitioners with better principles that circumvent such
limitations altogether, enjoying better statistical guarantees and empirical performance.

Chapter 3. Offline Learning with Distributionally Robust Optimization. In this
chapter, we present an alternative formulation to the CRM principle by resorting to the dis-
tributionally robust optimization (DRO) framework (Duchi et al., 2021). These tools enable
elegant construction of variance-sensitive confidence upper-bounds on the true risk by using
f -divergence based ambiguity sets. We apply this principle to the problem of offline policy eval-
uation and optimization. The resulting objective deals with limitations (1) and (3); it enjoys
the same statistical guarantees than CRM, can be automatically calibrated using asymptotic
coverage arguments and is amenable to stochastic optimization. We display strong numerical ex-
periments showing that the proposed approach effectively deals with the shortcomings of CRM.
This chapter is adapted from the following publication:

• Otmane Sakhi, Louis Faury, and Flavian Vasile (2020b). Improving Offline Contextual
Bandits with Distributional Robustness. Proceedings of the ACM RecSys Workshop on
Reinforcement Learning and Robust Estimators for Recommendation Systems, 2020.

Chapter 4. Offline Learning with PAC-Bayesian Theory. In this chapter, we question
the off-policy learning paradigm completely and advocate for a theoretically-grounded strategy
to confidently improve on the deployed policy π0. The proposed method revolves around creating
tight, empirical lower bounds on the improvement I(π) = R(π0) − R(π), and deploying new
policies only when we are confident of I(π) > 0. We base our approach on PAC-Bayesian
learning theory (Alquier, 2021) and demonstrate that its tools suit perfectly the problem of off-
policy learning. In particular, by interpreting policies as mixtures of decision rules, we derive a
tight, Bernstein-type PAC-Bayes bound that makes our strategy viable. The resulting strategy
deals with all three limitations; we show that the resulting algorithm can give improvement
certificates, is amenable to stochastic optimization and does not require any hyperparameter
tuning, making a big step towards achieving practical off-policy learning with true performance
guarantees. This chapter is based on the following publication:

• Otmane Sakhi, Pierre Alquier, and Nicolas Chopin (2023a). PAC-Bayesian Offline Con-
textual Bandits with Guarantees. Proceedings of the 40th International Conference on
Machine Learning, 2023.

Chapter 5. A Better PAC-Bayesian Analysis of Offline Learning. In this chapter,
we continue the development of the PAC-Bayesian analysis of the problem of offline policy
learning. By exploiting the negative nature of the risk, we derive new, tighter bounds that hold
for a larger class of risk estimators. The idea is based on a refined treatment of the moment
generating function of the risk and extend empirical Bernstein bounds to higher orders. The
particularity of these results is that they are fully empirical; we do not assume access to π0
contrary to previously derived bounds. We observe that our findings can give better guarantees
and allow us to derive new insight about the estimators used. This chapter is focused on
providing technical results and is based on new, unpublished work.
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Part II - Offline Learning of Large Scale Recommendation. The offline learning set-
ting provides practical solutions to efficiently align decision systems with complex reward sig-
nals. If the research community has focused on improving the existing estimators and learning
paradigms, little attention was directed towards adapting these approaches to the large action
space setting. This is of interest to learning search engines, recommender systems and practi-
cally any application where the number of interactions n and the size of the action space |A|
are massive. The main challenge in these applications is to design decision rules that satisfy
engineering constraints, while providing tractable algorithms that enable their alignment with
reward signals in a fast and reliable manner. Search engines must answer queries in a matter of
milliseconds, and real-world recommender systems (think of a video streaming platform) must
seamlessly fill the landing page with content the user may like. These delivery speed constraints
should be respected even if the catalogue (action space) contains billions of items. Another
aspect to take into consideration is that these systems are updated frequently, putting a consid-
erable constraint on the training time of such systems. Indeed, if we need to update our decision
system daily based on its interactions, the training time should be substantially smaller than a
day as you need to collect enough interactions and update the system in the same time frame.
In their naive implementations, both the decision-making and training of these systems scale
linearly in the size of the action space O(|A|), which cannot be allowed in massive action space
scenarios. In the following, we develop the discussion around these two important aspects and
present our contributions in this field.

Fast Decision Making. Answering a query or delivering accurate recommendations is per-
formed by the policy deployed. No matter the nature of the policy and its delivery, this step
generally boils down to the fast identification of a sub-sample of size K ≥ 1 of good actions
(Chen et al., 2019a) from the potentially massive action space. As a general rule, and for a user
x, the quality of the actions is encoded in the score function fθ(·, x) : A → R while the good
actions are identified by finding the best scoring actions, solving the following:

[a1, ..., aK ] =
K

arg sort
a′∈A

{︁
fθ(a′, x)

}︁
, (1.2)

with the operator arg sortKa′∈A returning the K highest scoring actions. This sorting operation
has a linear complexity on the size of the action space O(|A| logK) and cannot be adopted in a
large scale production environment. The common solution to reduce this complexity is to impose
a structure for the score function. By restricting the score function space to the following:

∀(x, a) fθ(a, x) = hΞ(x)⊺βa

with θ = [Ξ, β], the score function becomes an inner product between a context embedding
hΞ(x) and an action embedding βa, both residing in a latent space Rl of dimension l ≪ |A|.
With this structure, Equation (1.2) can be solved with approximate MIPS: Maximum Inner
Product Search algorithms (Shrivastava and Li, 2014) in a time complexity of O(log |A|) instead
of O(|A|), rendering fast decision-making possible without additional considerations.

Efficient training with the direct method. The direct method derives an optimal policy
that depends on identifying the best scoring actions according to the reward model rM. This
means that if rM has the proper parameterization, fast decision-making is possible. Training a
good model rM requires an excellent understanding of the underlying problem and is usually
achieved through maximum likelihood estimation (Aouali et al., 2023b) or ranking-based heuris-
tics (Rendle et al., 2009), which are methods that scale independently of the action space size.
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These training algorithms however can have other shortfalls if we are not careful about the par-
ticularities of this setting. In large action space scenarios, it is impossible for the deployed policy
to collect enough interactions for each action in A. The reward signal is unevenly distributed,
as the majority of data collected comes from actions that are highly likely under π0 and little
to no data is available for the rest of the actions. This means that if we use the maximum
likelihood principle, the quality of the learned model rM will depend on the context/action pair;
the estimate is precise for action/context pairs that are present enough in the data. This un-
balance in the estimate quality negatively impacts the policy derived, as acting based on the
MLE might suffer from post-decision disappointment (Smith and Winkler, 2006). One prin-
cipled way to mitigate this issue is to frame the whole problem within the lens of Bayesian
decision theory (West et al., 2021). For example, Jeunen and Goethals (2021) demonstrate that
even simple Bayesian modelling of the reward result in better behaved policies. With the help of
well-chosen priors, this formulation can also incorporate additional correlations we have between
contexts and actions, making learning even more efficient (Aouali et al., 2023c). However, the
main challenge of Bayesian modelling is computational; approximating posteriors over billions
of interactions, using complex models and priors is difficult and needs particular care (Chopin
and Papaspiliopoulos, 2020). We dedicate a chapter to develop this discussion, and construct a
Bayesian reward model for recommendation with strong, data-driven priors while giving proper
tools to accelerate its training in large scale applications.

Chapter 6. Scalable Bayesian Reward Modelling. In this chapter, we take the path of
the direct method and develop a bayesian model of the reward for the case of one-item recom-
mendation. We acknowledge the presence of two types of signals in recommendation problems;
the organic and bandit signals. While we condition our model on the the bandit feedback, the
organic interactions between the contexts and actions help us construct a novel prior that in-
corporates three similarities: the context-action similarity, the action-action similarity and the
context-context similarity. These similarities allow us to obtain good estimates of the reward
on all regions of the space, even for less explored actions and contexts. The proposed model
is flexible, efficiently uses the existing data but produces an intractable posterior. We provide
easy-to-implement computational tools to approximate its solution based on ideas from Vari-
ational Bayes (Blei et al., 2017). The resulting algorithm scales to large datasets, can learn
efficiently in different scenarios and benefits from the inner-product parametrization, allowing
fast decision-making. This chapter is based on the following publication:

• Otmane Sakhi, Stephen Bonner, David Rohde and Flavian Vasile (2020a). BLOB: A Prob-
abilistic Model for Recommendation that Combines Organic and Bandit Signals. KDD ’20:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining.

Fast training with importance-weighting methods. In our pursuit for scalable offline
policy learning algorithm, we also express interest for importance weighting based learning
paradigms. This approach learns a policy directly, and even simple operations involve com-
puting sums over the whole action space. In particular, we need to be extra-careful when
computing/approximating gradients of our objectives because this operation scales linearly in
|A| which can drastically slow down the optimization routine. The question of scaling general
off-policy learning objectives attracted little attention; Chen et al. (2019a) learned a production-
ready policy with an IPS-based objective without any focus on the computational aspect. We
are interested in this question and want to provide general acceleration methods. We study
the specific family of objectives that can be written as expectations under the policy evaluated.
This family include commonly adopted estimators (Horvitz and Thompson, 1952; Dudík et al.,
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2014; Wang et al., 2017; Saito and Joachims, 2022a; Saito et al., 2023; Aouali et al., 2023a),
and principled learning objectives (London and Sandler, 2019; Sakhi et al., 2023a). We first
study the acceleration of this specific family of learning objectives and provide logarithmic time
optimization procedures for single-item policies, focusing particularly on policies parameterised
with the softmax link function.

Chapter 7. Fast Offline Learning for One-Item Recommendation. In this chapter,
we focus on providing a principled way to accelerate the learning of inner-product softmax poli-
cies for a large panel of off-policy objectives. We identify the problems of commonly adopted
gradients and propose a solution based on three ingredients; a new covariance gradient formula,
exploiting the MIPS: Maximum Inner Product Search structure in the training phase and de-
signing proper Monte Carlo tools (Chopin and Papaspiliopoulos, 2020) to achieve accelerated
approximations. This results in a training algorithm with sub-linear (logarithmic or constant)
gradient updates. We conduct extensive experiments on large scale recommendation datasets
and demonstrate the impact of our approach; the proposed method is up to 25 times faster than
the baseline while producing trained policies of similar quality. This chapter is based on the
following publication:

• Otmane Sakhi, David Rohde, and Alexandre Gilotte (2023c). Fast Offline Policy Opti-
mization for Large Scale Recommendation. Proceedings of the 37th AAAI Conference on
Artificial Intelligence, AAAI 2023.

After attacking the problem of training large scale one-item decision systems with linear
objectives, we extend our analysis to the more challenging case of training slate decision systems.
Instead of playing one action, our policies need to deliver slates; an ordered list of items of
size K ≥ 1. This means that our decision rules and policies are constructed to act on the
combinatorial space SK of K-truncated permutation. The size of this space is O(|A|K) and
makes basic operations, from computing an average to searching for the best slate infeasible.
We focus on a family of decision systems that reduce the search space from the combinatorially
large set of slates SK to the original action space A. For a given context x, this reduction
consists of assigning a score fθ(a, x) to each action a and recommend a slate composed of the
top-K items with the highest scores. This leads to a O(log |A|) delivery time when we adopt the
inner-product structure for fθ(a, x). Aouali et al. (2023b) suggest a direct method approach to
learn large scale slate recommendation systems. In the next chapter, we present the challenges
of learning slate decision systems and propose solutions to accelerate their training.

Chapter 8. Fast Offline Learning for Slate Recommendation. In this chapter, we
focus on accelerating the learning of slate policies, a ubiquitous building block of modern online
systems. We begin by introducing the problem and analysing the existing algorithms, their
common assumptions and limitations. We then propose a new class of algorithms, based on
a novel relaxation that deals elegantly with the large scale constraints. The resulting method
works with arbitrary rewards, has better statistical properties while achieving sub-linear training
updates. We conduct large scale experiments and demonstrate that the proposed approach is
orders of magnitude faster than the baselines while resulting in better performing policies. This
chapter is based on the following publication:

• Otmane Sakhi, David Rohde, and Nicolas Chopin (2023b). Fast Slate Policy Optimization:
Going Beyond Plackett-Luce. Transactions on Machine Learning Research.
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Chapter 2

Literature Review

2.1 The Landscape of Contextual Bandit

2.1.1 The Online Setting

A (stochastic)1 contextual bandit is a powerful sequential decision-making framework where an
agent interacts with an unknown environment for T ∈ N∗ rounds. This environment provides
contexts (user information, web page, etc) and a set of available actions A that our agent can
make. In each round, the agent observes a context x ∈ X , acts by taking an action a and receives
a feedback; a reward r ∈ R+ that depends on both the action and the context observed, coming
from a fixed, but unknown distribution. The particularity of this setting compared to classical
supervised learning is that we observe partial feedback; we get access to the reward associated
with the context and the action made by the agent and nothing more. Formally, for each round
t ∈ [T ]:

• The environment reveals a context xt ∈ X coming from an unknown distribution ν.

• The agent acts on the context xt by making action at. The agent is represented by a
stochastic policy πt : X → P(A), that given the context xt, defines a probability distribu-
tion πt(·|xt) ∈ P(A) over the space of available actions A. Acting boils down to sampling
from the policy given the context xt; at ∼ πt(·|xt).

• Making action at for the context xt reveals a reward rt ∈ R+ coming from an unknown
distribution rt ∼ p(·|at, xt).

• The feedback received rt updates the policy πt.

Every interaction helps the agent learn about the environment and improves it online to
better act in the future. The contextual bandit framework is flexible and can model various
problems. However, it is noteworthy to point out that it relies on the fundamental assumption
that the problem is stateless: actions made by the agent do not affect the environment; for
each round t, both contexts and rewards are drawn i.i.d. as the action at does not influence
ν. This makes contextual bandit not suitable for problems that require long-term planning, for
which we can use the more general framework of Reinforcement Learning. We direct the reader
to Sutton and Barto (2018) for a great introduction to the field. With these assumptions in
mind, we want our agent to achieve a goal that the practitioner is interested in. Depending on
the application, we are interested in either maximising the expected cumulative reward after

1Different from the adversarial setting.
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Figure 2.1: A Simple Illustration of the contextual bandit framework. One interaction consists
of the environment revealing a context, the agent acting on the context and receiving a reward.

T rounds (when playing actions is costly, think about running Ad campaigns, when one does
not own the display space and needs to pay for it) or identify the best arms given a confidence
tolerance or a fixed interactions budget (when playing actions has little to no cost, think about
a casino owner wanting to identify slot machines with high payouts to get rid of them).

Regret Minimisation. The regret of the agent (Auer et al., 2002) is defined as the gap
between the highest expected cumulative reward (achieved by an optimal policy) and the cu-
mulative reward the agent actually obtains after T round. Maximising the cumulative reward
is equivalent to minimising the regret, the latter quantity however is better suited to theoreti-
cally compare the strategies to the best attainable outcome. Figure 2.2 illustrates the regret of a
bandit strategy. Algorithms achieving optimal regret need to carefully balance between two con-
flicting objectives: increase their knowledge by playing new actions (exploration) and leverage
the information acquired so far to enhance their performance (exploitation), giving rise to the
well known explore-exploit dilemma (Lattimore and Szepesvári, 2020). Optimal strategies for
regret minimisation are based on the optimism in the face of uncertainty principle, with the most
notable strategies being UCB: Upper Confidence Bounds (Chu et al., 2011) and TS: Thomson
Sampling (Agrawal and Goyal, 2013). In each round, these strategies construct (or update) a
confidence interval around the true reward2 and play the action with the highest "potential"
outcome. We illustrate in Figure 2.3 a simplified view of the idea behind these algorithms.

Pure Exploration. Pure Exploration is a paradigm used within the contextual bandit frame-
work to identify the best policy under practical constraints. This is suitable for applications
where we do not necessarily need to exploit or gather reward to counterbalance the cost of
playing actions. The constraints can be split into two types:

• Fixed Confidence: Given a tolerance δ, we want to identify the optimal policy with
confidence at least 1− δ while reducing the number of interactions T as much as possible.
Some algorithms used for this type of problem are variants of confidence interval strate-
gies (Kalyanakrishnan et al., 2012; Degenne et al., 2019) and Track-and-Stop strategies
(Garivier and Kaufmann, 2016).

2Thomson Sampling can also be cast within this framework (Abeille and Lazaric, 2017).
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Figure 2.2: A Simple example of the regret of a strategy after T rounds: the difference (red line)
between the cumulative reward of the optimal policy (blue curve) and the cumulative reward of
our bandit strategy (the green curve). One can observe that starting a certain time, our strategy
begins to play optimal actions (both the blue and green line start having the same slope).

Figure 2.3: An Illustration of the principle of "optimism in face of uncertainty" with an example
of a contextual bandit problem with |A| = 3. At round t, we construct a confidence interval
around the reward of each arm, and choose the arm with the highest potential payout. In this
case, even if a2 has the highest empirical mean, we choose the arm a1 as it can have the best
reward in the most "optimistic" case.
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• Fixed Interactions budget: Given a number of interactions T , we want to maximise
the probability of returning the optimal policy. One of the algorithms that deal with this
type of constraint is the sequential halving algorithm developped in Karnin et al. (2013).

If it is by no mean our ambition to cover the rich literature of the bandit framework in this
introduction, the reader can already imagine the endless applications and practical impact this
modelling approach might have. All the strategies devised for these different applications benefit
from strong theoretical guarantees (achieving low regret, finding optimal policies) while letting
the agent learn by its own; besides setting parameters for the strategy, both acting and learning
is done online, automatically by the agent. As attractive this online learning setting can be,
there are some practical considerations that limit its viability, and motivate us to think about
the problem differently:

• Robust Infrastructure: Deploying a bandit algorithm online, especially for large scale
applications, requires a scalable and robust infrastructure, that is capable of handling hard
engineering constraints (asynchronous and automatic updates, monitoring capabilities,
etc) requiring a full rethinking of the model deployment pipeline. This can represent a big
engineering cost that few companies are willing to pay.

• Slower experimentation: The same decision-making problem can be attacked by dif-
ferent bandit strategies, built on different assumptions, while having different hyperpa-
rameters to tune. Testing one strategy online requires the deployment of an agent that
will learn by interacting with some traffic for enough rounds before convergence. If we
can collect n interactions per day, and let us suppose that our bandit strategy need 7n
interactions to converge, then we can only test out a bandit strategy per week (7 days)
which renders experimentation really slow and costly.

• Might be too costly: Evaluating a bandit strategy offline before deployment is hard to
do, making practitioners deploy agents "blindly’. This can result in unreasonable losses
especially in the case of high risk applications. In addition, even if we choose the best
suited bandit strategy to our problem, the level of exploration recommended by theory
is often costly in the short-mid term. While a good level of exploration is beneficial for
the long-term, it can result in immediate loss of revenue that might be detrimental to the
business operated as it needs to comply with short-term revenue constraints.

With all these limitations taken into consideration, we want to adapt this framework to
better answer the needs of industrial applications. In practice, we usually want to have full
control of the amount of exploration done by the systems and prefer being able to manipulate it
easily. In addition, businesses rarely face ’cold-start’ problems; for the majority of the problems
faced, one can leverage expert knowledge combined with non-bandit signal (information about
contexts and actions) to design reasonable strategies even before the first interactions with
the environment. The main challenge then shifts to the improvement of such strategies with
data-driven approaches. It is highly desirable to being able to train the next strategy offline
(as it reduces drastically the infrastructure prerequisites and accelerates experimentation) while
having guarantees on its performance; before deploying the brand-new recommendation engine,
one would like to make sure that it will generate at least as much revenue as its predecessor.
This requires the development of a counterfactual reasoning, and the construction of specific
estimators that allow us to answer the question: “What revenue would I have generated if I
had acted differently?”. In the hope of answering this question, the offline formulation of the
contextual bandit framework was developed with the idea of leveraging logged interactions of
an already deployed strategy, to confidently evaluate (What is the revenue generated of a given
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Figure 2.4: The difference between (Online) Contextual bandit and its offline formulation. The
online approach (on the left) updates the model every time we observe a reward on an action.
The objective is to minimize the regret in the long run. The offline setting (on the right) updates
the model once based on the logged interactions of the policy π0 with the environment. This
update is done offline and the new strategy, if better, will be deployed in the future.

policy?) and learn (Find the policy that will maximize revenue) newly constructed strategies
offline.

2.1.2 The Offline Setting

The offline contextual bandit setting is particularly interesting for industrial applications. It
provides more control to practitioners, as they can evaluate and learn new policies, and fully
decide on whether to deploy them online or not. In this formulation, the agent gathers data and
is not updated after each interaction. Instead, this data is logged and is used by practitioners
to design better performing agents for the next deployment. The current agent is represented
by the policy π0 which, in each round t ∈ [n], acts on the context xt by performing the action
at and receives the feedback rt. Figure 2.4 represents the difference between this formulation
and the classical contextual bandit. All the n interactions are logged in the so-called bandit
feedback dataset:

Dn = {xi ∼ ν, ai ∼ π0(·|xi), ri ∼ p(·|xi, ai), π0(ai|xi)}i∈[n].

The goal in this formulation is often performance driven, as we want to find policies that
minimize the risk; defined as the expected negative reward under the actions of the policy. For
a given policy π, the risk is expressed as:

R(π) = −Ex∼ν,a∼π(·|x)
[︂
Er∼p(·|x,a)[r]

]︂
= −Ex∼ν,a∼π(·|x) [r̄(a, x)]
= Ex∼ν,a∼π(·|x) [c(a, x)] .

with the cost c(a, x) defined as −r̄(a, x). These notations produce the same definition and will be
used exchangeably in the rest of the manuscript. As we cannot have access to the true expected
risk, we proceed by building an estimator of this quantity to first evaluate the risk of any policy
offline and learn reward maximizing policies in a second time.

Policy Evaluation. We want to be able to evaluate the performance of any given policy π
and be able to compare it to the performance of the policy acting in production. The most
reliable way to achieve this is to actually deploy the policy π and gather interactions under
it to estimate its expected risk. Modern online decision systems rely on A/B tests (Kohavi
et al., 2012), considered the "gold-standard" of evaluation practices. When conducted properly
(Gupta et al., 2019), an A/B test can accurately estimate the effect of replacing the current
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policy “A” with the new candidate “B”. The common protocol begins by choosing a promising
policy with the help of extensive offline experiments. The new policy is then deployed, alongside
the current system and the A/B test is conducted to decide, whether the chosen candidate
“B” improves and should replace the current system “A”. In large scale production systems,
A/B tests require substantial engineering effort, constant monitoring and need several days to
be properly analysed. Ideally, the offline selection process should produce excellent candidates
that align with the online metrics, to avoid unnecessary A/B tests. Aligning offline and online
performance is the goal of the research literature on policy evaluation. The challenge that arises
from this approach is that we can only use data collected under the policy π0 to evaluate, any,
possibly different policy π. A common idea is to correct the bias of the estimation of the risk of
new policies π with importance weighting (Chopin and Papaspiliopoulos, 2020), as we have:

R(π) = −Ex∼ν,a∼π(·|x) [r̄(a, x)]

= −Ex∼ν,a∼π0(·|x)

[︃
π(a|x)
π0(a|x) r̄(a, x)

]︃
,

The expectation becomes computed under π0 and thus can be approximated by the collected
interactions, giving the well known IPS: Inverse Propensity Scoring estimator (Horvitz and
Thompson, 1952) as a result:

R̂
IPS
n (π) = − 1

n

n∑︂
i=1

π(ai|xi)
π0(ai|xi)

ri.

This estimator of the risk of π is unbiased when the support3 of π is included in the support
of π0. This is a desirable property as it means that the estimator is easy to analyse, consistent
and will converge to the true risk with enough samples. However, as this estimator relies on
importance weighting, its variance depends on the disparity between the policy that we want to
evaluate and the policy that gathered the data (Bottou et al., 2013), its use can be problematic
when the new policy π differs drastically from π0. In these cases, one would prefer an estimator
that do not suffer from large variance problems. A common way to achieve this is to learn a
model rM : X × A → R+ of the reward mean r̄. Once we have a model rM, we can build a
simple estimator of the risk of any policy from the following observation:

R(π) = −Ex∼ν,a∼π(·|x) [r̄(a, x)]
≈ −Ex∼ν,a∼π(·|x) [rM(a, x)] .

This produces the DM: Direct Method estimator that writes:

R̂
DM
n (π) = − 1

n

n∑︂
i=1

∑︂
a∈A

π(a|xi)rM(a, xi).

The DM estimator does not suffer from variance problems coming from the mismatch of both
policies as it does not rely on importance weighting. It can evaluate any policy π, even if
π and π0 do not share the same support. The efficiency of this estimator however depends
entirely on our ability to model the problem. If this estimator enjoys a well-behaved variance,
its limitation comes from a potentially substantial bias, as it is generally hard to model the
reward perfectly. As both estimators have complementary properties, we can mitigate their
limitations by combining them. The DR: Doubly Robust estimator (Dudík et al., 2014) does

3supp(π) = {(x, a) ∈ X × A, π(a|x) > 0}
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that and results in an improved estimator. The idea behind the construction of this estimator
stems from the following identity:

R(π) = −Ex∼ν,a∼π(·|x) [r̄(a, x)]
= −Ex∼ν,a∼π(·|x) [r̄(a, x)− rM(a, x)]− Ex∼ν,a∼π(·|x) [rM(a, x)]

= −Ex∼ν,a∼π0(·|x)

[︃
π(a|x)
π0(a|x) (r̄(a, x)− rM(a, x))

]︃
− Ex∼ν,a∼π(·|x) [rM(a, x)] .

Which combines both the importance weighting technique and the use of a reward model rM,
resulting in the DR estimator:

R̂
DR
n (π) = − 1

n

n∑︂
i=1

π(ai|xi)
π0(ai|xi)

(ri − rM(ai, xi))−
1
n

n∑︂
i=1

∑︂
a∈A

π(a|xi)rM(a, xi).

The estimator obtained is unbiased under the same common support condition and enjoys a
better variance (Nguyen-Tang et al., 2022). Research in the area of offline (also called off-
policy) evaluation focuses on deriving estimators with an improved bias-variance trade-off, either
by using different importance weighting techniques (Ionides, 2008; Swaminathan and Joachims,
2015b; Wang et al., 2017; Metelli et al., 2021) or by assuming a certain structure on the reward
(Swaminathan et al., 2017; Saito and Joachims, 2022a; Saito et al., 2023). Building these
estimators help us evaluate the performance of any policy π, thus they can be used as a training
objective to find the best policy π offline.

Policy Learning. The ingredients to learn a policy are to choose an objective function; often a
regularized off-policy estimator (Swaminathan and Joachims, 2015a; Ahmed et al., 2019; London
and Sandler, 2019), and a policy class on which to optimize it. These choices dictate the
approach that will be adopted and often result in different policy learning algorithms. Let
Π = {π : X → P(A)} be the space of policies, and let us begin by introducing one of the
simplest approaches. If we are confident about our ability to model the problem, and have built
a reward model rM, we can proceed and learn a policy using the Direct Method. The idea stems
from the following:

arg min
π∈Π

R(π) = arg min
π∈Π

−Ex∼ν,a∼π(·|x) [r̄(a, x)]

≈ arg min
π∈Π

−Ex∼ν,a∼π(·|x) [rM(a, x)] .

By replacing the unknown mean reward r̄ by our model rM, we can solve the unconstrained
policy optimization problem and obtain the DM solution:

∀(x, a) πDM(a|x) = 1

[︄
arg max
a′∈A

rM(a′, x) = a

]︄
.

For each context x, the DM policy chooses the action a that has the biggest reward according
to our model rM. This approach is called the Direct Method because we can directly derive
the optimal policy from the reward model. Sometimes, we want to enforce some constraint on
the policy deployed. For example, some applications require policies that diversify the actions
played for the same context, others need some exploration to better identify the best actions.
This constraint is often encoded by adding a regularization to the learning objective. To achieve
better diversification, we add an entropy regularization (Ahmed et al., 2019) and modify our
optimization problem to solve the following:

arg min
π∈Π

{︂
R(π) + γEx∼ν,a∼π(·|x) [log π(a|x)]

}︂
≈ arg min

π∈Π

{︂
Ex∼ν,a∼π(·|x) [−rM(a, x) + γ log π(a|x)]

}︂
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with γ a positive parameter that controls the diversity level of the policy. The solution of this
optimization problem can be obtained analytically and is expressed as:

∀(x, a) πγDM(a|x) = softmaxA (rM(a, x)/γ)

= exp(rM(x, a)/γ)∑︁
a′∈A exp(rM(x, a′)/γ) .

This policy has a positive probability mass on all actions, interpolating between a uniform
distribution (γ → +∞) and πDM (γ → 0). The policies derived with the direct method depend
on the reward model, directing all our efforts towards building a rM that reflects the properties of
the true rewards and from which the policy derived fits our engineering constraints. Sometimes,
our reward model rM produces an optimal policy πDM that cannot be deployed due to application-
dependent constraints (in low latency applications, finding the action with maximum reward
for a particular context x can take more time than allowed). In these cases, we restrict our
optimization problem to a space of policies that fits the requirements of our problem. Building
a space of policies is usually done through the definition of:

• A parametric space of score functions F(Θ) = {fθ : X × A → R, θ ∈ Θ ⊂ Rd} with d the
dimension of the parameters. Given a θ ∈ Θ and for a particular context x and action a,
the value of fθ(x, a) reflects the relevance of action a to the context x.

• A link function L that takes a score function fθ and transforms it in order to define a
policy πθ. If we want to write:

∀(x, a), πθ(a|x) = L(fθ(a, x)).

L needs to be a positive, real valued function L : R → R+ that verifies the following
condition:

∀(θ, x),
∑︂
a′∈A

L(fθ(a′, x)) = 1.

The space of functions verifying these conditions will be denoted by L. Different link
functions produce policies with different properties (Mei et al., 2020a,b; Sakhi et al., 2023a).
We already saw from the DM example that the link function defining our policy can be an
indicator or a softmax function depending on the objective we aim for. In general, we
want smooth link functions that facilitate optimization making the softmax function (Mei
et al., 2020b) a commonly adopted option.

The choice of the couple (F(Θ), L ∈ L) is enough to define a parametric policy space Π(Θ)
on which the optimization of our objective function can be done. Getting back to the Direct
Method approach, we shift our focus to solving the following constrained optimization problem:

arg min
πθ∈Π(Θ)

R(πθ) = arg min
πθ∈Π(Θ)

−Ex∼ν,a∼πθ(·|x) [r̄(a, x)]

≈ arg min
πθ∈Π(Θ)

−Ex∼ν,a∼πθ(·|x) [rM(a, x)] .

As we do not know if πDM ∈ Π(Θ), we proceed by computationally solving the empirical coun-
terpart of the objective:

arg min
πθ∈Π(Θ)

{︄
− 1
n

n∑︂
i=1

∑︂
a∈A

πθ(a|xi)rM(a, xi)
}︄

= arg min
πθ∈Π(Θ)

{︂
R̂

DM
n (πθ)

}︂
.
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Which can be interpreted as distilling the potentially complicated reward model rM into a policy
that fits our constraints. In this example, our learning objective was the DM estimator. As a
general rule, off-policy learning objectives rely on optimizing a regularized risk estimator on a
parametric policy class:

arg min
πθ∈Π(Θ)

{︂
R̂n(πθ) + λC(πθ)

}︂
, (2.1)

with R̂n a risk estimator, λ a tunable parameter and C(πθ) a regularization term that is either
motivated by additional constraints we want to enforce (Ahmed et al., 2019; Schulman et al.,
2015) or statistical learning theory arguments making the learning of these policies more prin-
cipled (Swaminathan and Joachims, 2015a; Ma et al., 2019; London and Sandler, 2019). In the
next section, we will develop the policy learning discussion more, with a particular focus on
statistical learning tools that enable us to learn systems with performance certificates.

2.2 Performance Guarantees with Statistical Learning

Statistical learning theory (Vapnik, 1998) studies the problem of inference; that is, of gaining
knowledge and making predictions based on a set of data. In particular, we are interested in the
PAC: Probably Approximately Correct framework (Valiant, 1984), a branch of learning theory
that investigates the problem of generalisation, answering the question of how well a predictor
(or a family of predictors) can perform on unseen data. Developments of this branch improved
our understanding of common learning paradigms, with contributions in supervised learning
(Vapnik, 1991; Cortes and Vapnik, 1995; McAllester, 1998; Catoni, 2007; Germain et al., 2009),
unsupervised learning (Bengio et al., 2013; Saunshi et al., 2019; Nozawa et al., 2020) and online
learning (Even-Dar et al., 2002; Seldin et al., 2011; Haddouche and Guedj, 2022; Tirinzoni et al.,
2023; Al-Marjani et al., 2023). Historically, supervised learning had attracted most attention
and is best understood from this perspective. It is only natural to choose this learning paradigm
to present some of the tools used by the PAC framework. In this setting, we are given a data
set, and a loss to measure performance. We fix a set of predictors and look for a good predictor
in this set, w.r.t to the loss defined. Formally, we have:

• A dataset Sn = {Xi ∈ X , Yi ∈ Y}i∈[n] composed of n i.i.d. observations coming from an
unknown joint distribution p(X ,Y). X is the object set (text, image) and Y the label set
(sentiment of the text, class of the image).

• A loss function l : Y × Y → [0, 1] measuring the quality of the predictions, with the
convention that l(y, y) = 0.

• We look for good predictors in HΘ = {hθ : X → Y, θ ∈ Θ} a class of predictors, parame-
terized by θ coming from the parameter set Θ.

• We are interested in finding a predictor h from HΘ that will minimize the expected loss
l(h) = E(X,Y )∼ν [l(h(X), Y )]. We denote by ln(h) the empirical loss estimate.

As it is usually impossible to have access to the true, expected loss, the PAC toolbox provide
us with bounds that control this quantity for any predictor hθ ∈ HΘ. PAC bounds give us the
following result, holding with high probability over the data:

∀θ ∈ Θ : l(hθ) ≤ ln(hθ) +O (Cn(HΘ)) ,
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with Cn(HΘ) a measure of complexity (Vapnik, 1998; Zhou, 2002; Bartlett and Mendelson,
2003) of the class of predictors used. In our applications, we want to obtain a performance
guarantee on our predictors with the help of these bounds. For a predictor hθ̂, we want to
control its true expected loss with high probability. We aim at obtaining a performance guar-
antee/certificate, which is a result of the form:

l(hθ̂) ≤ 0.12. (2.2)

This result guarantees us (with high probability) that our predictor, will suffer a loss of at
most 0.12. To obtain the smallest guarantees, we seek bounds that are tight and advocate for
minimizing the right-hand side over all θ ∈ Θ in order to control and minimize expected loss.
For example, Maurer and Pontil (2009) derived an empirical Bernstein-type bound, and used
the notion of covering number (Zhou, 2002) to control the loss of a class of predictors. For a
tolerance δ ∈]0, 1], Their main result is a bound holding with probability 1− δ:

∀θ ∈ Θ : l(hθ) ≤ ln(hθ) +

√︄
18vn(hθ) ln (Mn(HΘ)/δ)

n
+ 15 ln (Mn(HΘ)/δ)

n− 1 , (2.3)

with vn(hθ) the empirical variance of the loss estimate and Mn(HΘ) a complexity measure
defined in (Maurer and Pontil, 2009, Theorem 6). This complexity is intractable even for simple
predictor classes, which means that its presence makes the bound unusable as-is for learning
purposes. Mn(HΘ) can be upper bounded by empirical quantities (Zhang, 2002) but this often
results in loose and overly conservative bounds. In particular, this complexity is known to be
very large for rich predictor classes (i.e. neural networks), making the bound vacuous. To
circumvent this limitation, the usual approach is to identify useful quantities from the bound
and propose a learning principle, replacing intractable quantities with tunable hyperparametes.
This approach motivated numerous learning principles, such as Empirical Risk Minimization
(Vapnik, 1991) and Structural Risk Minimization (Cortes and Vapnik, 1995). In this example,
the SVP principle was derived from Equation (2.3) proposing to solve the following optimization
problem:

arg min
θ∈Θ

⎧⎨⎩ln(hθ) + λ

√︄
vn(hθ)
n

⎫⎬⎭ ,
with λ a hyperparameter selected with cross-validation. Using these learning principles provide
practitioners with tractable optimization objectives, but does not result in performance certifi-
cate like in Equation (2.2). Swaminathan and Joachims (2015a) adapted these results to the
offline contextual bandit framework. See (Swaminathan and Joachims, 2015a, Table 1) for the
differences between the supervised learning problem and the offline contextual bandit problem.
Particularly, they based their analysis on cIPS: clipped IPS (Bottou et al., 2013) in order to
respect the bounded assumption of the loss. This risk estimate was used to derive a bound
similar to Equation (2.3) holding for policies πθ in a policy class Π(Θ). The obtained bound
(Swaminathan and Joachims, 2015a, Theorem 1) is intractable, and motivated the use of a sim-
ilar learning principle.

The Distributionally Robust Optimization framework (Duchi et al., 2021) provides an intuitive
approach to control the loss of our predictors. After observing the samples Sn, it treats the
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induced empirical distribution with scepticism and seeks a solution that minimizes the worst-case
expected cost over a family of distributions, described in terms of an uncertainty ball (around
the observed, empirical distribution). These tools were proven to be powerful for decision theory
(Duchi and Namkoong, 2019) and in training robust classifiers (Madry et al., 2018). Let Uϵ(p̂n)
be the uncertainty ball of radius ϵ, around the empirical distribution p̂n, and let hθ be a predictor
from HΘ. Instead of studying the empirical loss ln(hθ), the DRO formulation focuses on the
following, worst-case empirical estimator (Duchi et al., 2021):

ln(hθ,Uϵ(p̂n)) = max
q∈Uϵ(p̂n)

E(x,y)∼q [l(hθ(x), y)] .

This framework is also called generalized, empirical likelihood as a well-chosen uncertainty ball
recovers the empirical likelihood approach of Owen (2001). For a particular choice of the un-
certainty set Uχ2

ϵ (p̂n) (using the χ2 divergence to quantify the distance from the empirical dis-
tribution), Duchi and Namkoong (2019) prove that the DRO, worst-case empirical estimator is
equivalent to a variance-regularized empirical loss:

ln(hθ,Uχ
2

ϵ (p̂n)) = ln(hθ) +
√︂
ϵvn(hθ).

This result means that minimizing the worst-case empirical loss is equivalent to solving the
SVP principle. These tools were adapted to the problem of off-policy learning (Faury et al.,
2020; Dai et al., 2020) and we develop them further in Chapter 3. Their use is motivated by
asymptotic-coverage arguments (in the limit, the worst-case risk will cover the true risk) and
their finite-sample analysis is loose, failing to produce satisfying performance guarantees (a re-
sult similar to Equation (2.2)) in practical scenarios (Dai et al., 2020).

If our objective is to know how a policy will perform before it interacts with the environment,
deriving a learning principle is not enough. We are interested in obtaining performance guar-
antees; results similar to Equation (2.2), where we control with high confidence the risk of a
trained policy πθ̂:

R(πθ̂) ≤ −0.81. (The risk is in [−1, 0]) (2.4)

This result certifies that, in the worst case, our policy πθ̂ will have a risk of −0.81. This
performance guarantee give practitioners a way to identify promising policies that are worth A/B
testing. For this same example, if the logging policy π0 have a risk of −0.71, then Equation (2.4)
alone guarantee us that the new learned policy improves on π0. These results are desired in
the offline policy learning context and can have a substantial impact on real world problems.
Obtaining these results rely on the derivation of tight and tractable PAC bounds. Recently,
PAC-Bayes bounds (McAllester, 1998; Catoni, 2007), a family of PAC bounds, promise the
delivery of performance guarantees for difficult problems (Dziugaite and Roy, 2017) and present
themselves as good candidates to answer this question. If the notion of complexity in PAC
bounds limited their application to simple predictor classes, PAC-Bayes techniques can deal
elegantly with any predictor class HΘ and are proven to provide performance guarantees even
for well-known, over-parameterized neural networks (Dziugaite and Roy, 2017). However, an
artefact of these bounds is that we need to change the quantities of interest. PAC bounds study
the performance of a predictor hθ inHΘ by controlling its loss l(hθ). PAC-Bayes bounds however
study randomized predictors; obtained by sampling in a set of basic predictors, according to some
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prescribed probability distribution. Formally, let P(Θ) be the set of all probability distributions
on Θ (equipped with its σ-algebra). let Q ∈ P(Θ) a probability distribution over Θ (and thus
HΘ), PAC-Bayes bounds control the loss of randomized predictors, computed as :

Eθ∼Q [l(hθ)] .

In a supervised learning setting, this quantity can be interpreted as adopting the following
procedure: for each sample (X,Y ) ∼ ν(X ,Y), we sample a predictor hθ from Q, predict the
label Y p = hθ(X) and then compute the loss l(Y p, Y ). This is different from studying aggregated
predictors (Breiman, 2001) where for each sample, we aggregate (by either voting or averaging)
all predictor’s results to predict the label. We present the differences introduced with the PAC-
Bayesian approach for supervised learning. We have:

• A dataset Sn = {Xi ∈ X , Yi ∈ Y}i∈[n] composed of n i.i.d. observations coming from an
unknown joint distribution p(X ,Y). X is the object set (text, image) and Y the label set
(sentiment of the text, class of the image).

• A loss function l : Y × Y → [0, 1] measuring the quality of the predictions, with the
convention that l(y, y) = 0.

• We define HΘ = {hθ : X → Y, θ ∈ Θ} a class of predictors, parameterized by θ coming
from the parameter set Θ.

• (PAC-Bayes) We define a a set of probability distribution M(Θ) ⊆ P(Θ) over Θ.

• (PAC-Bayes) We are interested in finding a good distribution Q ∈ M(Θ) that will
minimize the expected loss of the randomized predictor Eθ∼Q [l(hθ)].

This is achieved through the derivation of bounds holding for all distributions Q ∈ M(Θ). Let
P ∈ P(Θ) a reference distribution that does not depend on the data Sn. The general form of
PAC-Bayesian bounds is an inequality holding with high probability:

∀Q ∈M(Θ) : Eθ∼Q [l(hθ)] ≤ Eθ∼Q [ln(hθ)] +O (KL (Q||P )) ,

with KL the KL-divergence defined by:

KL(Q||P ) =

⎧⎨⎩
∫︁

ln
{︂
dQ
dP

}︂
dQ if Q is P -continuous,

+∞ otherwise.

For example, we give below a simple PAC-Bayes bound (Catoni, 2007) to showcase the versatility
of this framework. Let P ∈ P(Θ) a reference distribution, δ ∈]0, 1] a tolerance and λ > 0, we
have with probability at least 1− δ:

∀Q ∈ P(Θ) : Eθ∼Q [l(hθ)] ≤ Eθ∼Q [ln(hθ)] + KL (Q||P ) + log 1/δ
λ

+ λ

8n (2.5)

Minimizing the r.h.s gives the smallest guarantees on aggregated predictors. We get to solve
the following optimization problem:

arg min
Q∈P(Θ)

Eθ∼Q [ln(hθ)] + KL (Q||P )
λ

,
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which happens to be analytically tractable and we obtain the Gibbs distribution (Guedj, 2019)
as a solution:

∀θ ∈ Θ, dQ̂(θ) ∝ exp (−λln(hθ))× dP (θ).

The bound also gives us an idea on the worst case performance of the randomized predictor
according to Q̂:

Eθ∼Q̂ [l(hθ)] ≤ log (Eθ∼P [exp (−λln(hθ))]) + log 1/δ
λ

+ λ

8n. (2.6)

Sampling from the distribution Q̂ is mandatory if we want to use the randomized predictor,
and computing L(P ) = log (Eθ∼P [exp (−λln(hθ))]) is desired to have an idea on its performance.
Both sampling from Q̂ and approximating L(P ) can be done with (Markov Chain/Sequential)
Monte Carlo (Chopin and Papaspiliopoulos, 2020). If these methods fail to scale to our problem,
a usual solution is to restrict the probability set M(Θ) to simple distributions. If Θ = Rd, a
common choice is to set M(Θ) =

{︂
µ ∈ Rd,N (µ, Id)

}︂
to unit-variance, isotropic Gaussians. By

fixing the reference distirbution to P = N (µ0, Id), the previous bound becomes:

∀µ ∈ Rd : Eθ∼N (µ,Id) [l(hθ)] ≤ Eθ∼N (µ,Id) [ln(hθ)] + ||µ− µ0||2 + 2 log 1/δ
2λ + λ

8n. (2.7)

Obtaining a good randomized predictor boils down to computationally solving the optimiza-
tion problem:

arg min
µ∈Rd

Eθ∼N (µ,Id) [ln(hθ)] + ||µ− µ0||2

2λ .

This optimization problem looks like Variational Bayes objectives (Blei et al., 2017) for which a
multitude of solutions were proposed to solve it efficiently (Xu et al., 2019). Once we have our
solution, obtaining the worst case loss for the randomized predictor can be done by evaluating
the bound. We can observe that, contrary to classical PAC bounds, PAC-Bayesian bounds
are tractable and benefit from various computational tools to find their minimizers. They are
also tight enough to be valuable in learning both simple (Germain et al., 2009) and complex
predictors (Dziugaite and Roy, 2017) with guarantees. To increase the impact of these bounds,
research in this area is focused on deriving new, tighter bounds (Mhammedi et al., 2019; Jang
et al., 2023), loosening assumptions (Alquier and Guedj, 2018; Kuzborskij and Szepesvári, 2020;
Haddouche and Guedj, 2023) and adapting them to various learning problems (Seldin et al., 2011;
London and Sandler, 2019; Haddouche and Guedj, 2022). To make them even more viable, new
disintegration techniques (Viallard et al., 2023) were also developed to allow these bounds to
give strong performance guarantees on single predictors drawn from the learned distribution. If
working with randomized predictors can be seen as a "bug" in most settings, it is considered a
"feature" in policy optimization as both policies and randomized predictors are closely related.

• The procedure of a randomized predictor is the following: for each sample (X,Y ) ∼
ν(X ,Y), we sample a predictor hθ from Q, predict the label Y p = hθ(X) and then suffer
the loss l(Y p, Y ).

• The procedure of a policy is the following: for each context x ∼ ν(X ), we sample an action
a from π(·|x), and receive the reward r ∼ p(·|x, a).
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The procedures are similar and both objects can be related if we work with class of predictors
that map contexts x to actions in A. Indeed, instead of sampling directly from a distribution
on the action set, we sample from a distribution on a predictor space, HΘ ⊆ {h : X → A}. As
such, for a distribution, Q over HΘ, the probability of an action, a ∈ A, given a context, x ∈ X ,
is the probability that a random predictor, hθ ∼ Q, maps x to a; that is:

πQ(a|x) = Eh∼Q [1[h(x) = a]] .

This result shows that a policy is a randomized predictor in disguise. This perspective was
developed in Seldin et al. (2012), adopted by London and Sandler (2019) and later formalized
in Sakhi et al. (2023a). This result is key to the analysis of London and Sandler (2019), that
adapted McAllester (2003)’s bound to the offline contextual bandit setting. To achieve this,
they clipped the propensity score and used the following risk estimator:

R̂
τ
n(π) = − 1

n

n∑︂
i=1

π(ai|xi)
max{π0(ai|xi), τ}

ri,

with τ ∈]0, 1]. Their analysis resulted in the bound below. Given a reference distribution P and
a tolerance parameter δ ∈]0, 1], the following holds with probability at least 1 − δ, uniformly
over all distributions Q ∈ P(Θ):

R(πQ) ≤ R̂
τ
n(πQ) +

2(KL(Q||P ) + ln 2
√
n
δ )

τn
+

√︄
2[R̂τn(πQ) + 1

τ ](KL(Q||P ) + ln 2
√
n
δ )

τn
.

One can see that for offline contextual bandits, PAC-Bayes bounds control the quantity of
interest, which is the risk of the policy directly. Working with randomized predictors for this
problem matches perfectly our needs. Another connection between the PAC-Bayes framework
and offline contextual bandits is that the reference distribution can be set naturally to match
the logging policy π0. Indeed, P can be chosen such as π0 = πP to obtain a bound that
encourages policies with low empirical risk that stay close to the logging policy π0. All of these
connections make PAC-Bayes the perfect candidate for guaranteed performance. The bound
proposed in London and Sandler (2019) however, is not tight enough and produces vacuous
results in practical scenarios (Sakhi et al., 2023a). London and Sandler (2019) avoided using
the bound and derived a learning principle for parametrized softmax policies. This principle
advocates for a L2 regularization towards the parameter of π0:

arg min
θ∈Θ

{︂
R̂
τ
n(πθ) + λ||θ − θ0||2

}︂
.

If this principle improves on CRM (Swaminathan and Joachims, 2015a), these results are far
from being satisfying if we want to have guarantees on the learned policies. To this end, we
continue the development of PAC-Bayes bounds for this problem in Chapters 4 and 5 to finally
obtain tight bounds, that certify the performance of the new policies and can confidently improve
on the logging policy π0. These results are desired in production settings where we would like to
propose a new system that will improve on the current production system with high probability.
This is the case of online decision systems, in particular, recommender systems, where our goal
is to always improve the quality of recommendation to better answer the needs of the users. In
the next section, we cover the history of recommendation and present how the offline contextual
bandit tools fit in the picture, playing a crucial role in redefining the modern internet experience.
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2.3 Online Decision Systems: History of Recommendation

Online decision systems have revolutionized the way we interact with the vast ocean of content
present on the internet. From search engines to recommender systems, they offer a personalized
experience by efficiently exploring the overwhelming amount of information and filtering it to
cater to the specific needs of the users. Although these systems are now ubiquitous, it was not
always the case during the emergence of the internet. Democratizing the access to web-based
information resulted in an exponential increase in the quantity of available data. This increase
alone did not upgrade the internet experience, as having access to non structured, vast amount
of information is not beneficial unless we have tools to efficiently explore it. This issue attracted
research interest which gave birth to the field of IR: Information Retrieval (Rijsbergen, 1979). A
natural application of IR is web search engines, now considered an integral part of the internet
experience. In their simplest form, these engines take in queries like “Is it normal to be depressed
during COVID?” and produce an ordering of, hopefully relevant web pages as a result. If we are
more ambitious, we would like to know what happens when our query is incomplete as we need
implicit information to better answer it? What happens when we do not have an explicit query
at all? What happens when we do not know which musical artist can be interesting to listen to
or which movie we would like to watch? In such scenarios, the field of Recommender Systems
comes into play, providing a needed solution to these challenges. The concept of filtering and
recommending information to users has been around for some time, with early examples dating
back to the 1990s. Belkin and Croft (1992) analyzed the two notions of Information Filtering
and Information Retrieval, arguing that the latter constitutes the fundamental technology be-
hind Search Engines, while Recommender Systems are built with ideas rooted in the former. In
the same year, Goldberg et al. (1992) proposed the "Tapestry" system allowing users, through
a graphical interface, to explicitly rate items and view recommendations based on their prefer-
ences and the ratings of other users with similar tastes. The term "Collaborative Filtering" first
appeared in this work to denote that the information extracted from other users preferences,
combined with your preferences (explaining the collaborative part) would be used to infer what
the system should recommend (explaining the filtering part) to you. During the same period,
content-based filtering also emerged, where recommendations are made based on item features
or attributes. Despite its simplicity, creating an operational content-based recommender system,
even for basic applications, was a significant challenge, as it required a deep (not in a machine
learning sense) understanding of the topic under consideration and the factors influencing the
relationship between users and the topics themselves. While modern machine learning tools,
emerging from the combination of accurate modelling and powerful computations (Blei et al.,
2003; Vaswani et al., 2017b), can now extract valuable factors from the content being recom-
mended, this was not the case in the 1990s. One of the earliest successful real-world projects in
this area was the Music Genome Project, which aimed to capture the essence of music through
its properties. This project represents any song with over 450 properties and describes the inter-
play between each one of them. Once we obtain the song’s representations, the recommendation
procedure follows a natural design. When a user likes a song, the procedure attributes positive
values to its specific properties, promoting similar songs (with similar properties) and bringing
them to the user’s attention. Collaborative filtering and content-based filtering are built on
distinct principles, each with its own strengths and weaknesses. Content-based filtering relies
on a comprehensive understanding of the recommended content, and therefore does not nec-
essarily require input from other users. In contrast, collaborative filtering depends heavily on
user interactions to identify individuals with similar preferences. Content-based filtering may,
however, have limitations when it comes to generating novel or diverse recommendations, since
it is primarily based on an understanding of the properties of the content. Fortunately, both
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Figure 2.5: An example of a rating matrix completion problem. The recommendation proce-
dure f̂ is tasked to predict the missing ratings of the incomplete user-item matrix R using the
information provided by the matrix R and some metadata M about the items, if available.
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Figure 2.6: Typical logs of views of items by users transformed into an implicit feedback matrix.
The user u1 viewed the item I1 twice, its row is highlighted with orange in the IF matrix where
these views were deduplicated and transformed to a positive signal for the item I1 (column
highlighted with yellow).

approaches offer distinct benefits, and the most successful recommender systems in use combine
the strengths of both methods (Vasile et al., 2016; Jeunen et al., 2020). The early recommender
systems were often limited by the availability of data, as well as by the computational resources
needed to process that data. However, the ideas behind them laid the groundwork for more
sophisticated recommendation paradigms that would emerge in the years to come. Even if it is
by no means our ambition to provide an exhaustive covering of the recommendation research
landscape in this introduction, we want to give the reader in the next paragraphs different
perspectives on how recommendation is modelled.

2.3.1 Recommendation as Preference Prediction

The "Tapestry" system, which was introduced earlier, approached the recommendation problem
as predicting the rating that a user would give to an item. This approach gained further
popularity with the work of Resnick et al. (1994) within the GroupLens Research Lab, which
provided a complete architecture to support research in this area. The idea is to have different
users rate items and gather this information in a dataset. Since asking each user to rate all
items is not feasible (think about massive movie catalogues, for example), users are randomly
exposed to a few items for which they give a rating as shown in Harper and Konstan (2015).
These ratings are then compiled and represented in a user-item rating matrix R of size U × I
with U and I respectively the number of users and the number of items. Each entry in R, Ru,i,
represents the given or missing rating of user u to item i. The goal is to learn a procedure f̂ that
can predict the missing ratings and complete the matrix R. In addition to the ratings’ dataset,
some metadata about the items M (relevant properties of the items) is often available (Harper
and Konstan, 2015). This allows practitioners to explore different ways to combine the users



50 2.3. Online Decision Systems: History of Recommendation

ratings data (collaborative filtering) and item specific data (content-based filtering) to obtain a
procedure that produces the most accurate predictions. The quality of the predictions is typically
measured by assessing the difference between the true and estimated ratings on a separate test
set (Salakhutdinov and Mnih, 2007). Figure 2.5 visualises an example of an incomplete rating
dataset and the expected output of the procedure f̂ . Given R and/or M as input, the learned
procedure f̂ generates potential ratings for every user item pair. These complete ratings are
then used to identify items that may be of interest to each user by selecting the ones with
high predicted ratings. The underlying assumption of this approach is that items with higher
ratings are considered suitable candidates for recommendation. This framework is referred to in
the literature as the "explicit feedback" setting, as it requires users to explicitly provide ratings
on a predefined scale. Recommendation based on explicit feedback has had a huge practical
success, and were responsible for the success of many tech companies. For example, Netflix,
a DVD rental service at the time, launched a competition rewarding a million US dollars to
whoever achieves the smallest reconstruction error of their rating dataset. Despite its success,
the "explicit feedback" paradigm suffers from significant limitations. The fundamental premise
of the approach is to build a method that, gathers in an unbiased manner, genuine ratings that
accurately reflect the user’s true appreciation of items. However, obtaining this data requires the
system to explicitly ask users to rate items, which can be costly and may be detrimental to the
user’s experience. To deal with this issue, these systems provide a non-intrusive way to rate an
item; a like button to express if they loved the content they interacted with, or a rating system
for the product bought from a retail store. These methods are integrated in the system and do
not necessarily harm the user experience, but they give the entire freedom to the user to rate an
item or not. This introduces an additional bias to the rating matrix as the presence of a rating
is influenced by the decision of the user, making ratings "Missing Not At Random" (MNAR)
(Yang et al., 2018). For example, once a user watches a movie, how much they enjoyed the
movie influences directly the likelihood that they will leave a rating. Additionally, new ratings
of an item tend to be biased by all the previous ratings that item received, making it hard to
measure how much a new user really likes an item. Actually, in depth studies have shown that
most ratings collected by these systems are biased, and correlate poorly with the true interest of
users, as evidenced by Zhang et al. (2017). A potentially better signal to consider is the organic
behaviour of users. By exploiting the information that is inherent to a user interacting with an
item, we can avoid the need for explicit ratings. Indeed, we can reasonably assume that a user
will mostly view retail product pages of items they are interested in, or movies and series that
they think they will enjoy. This information is denoted in the literature by the "implicit feedback"
as it is not asked directly from the user but reflects to a certain extent its interests through his
organic interactions with the system. Implicit-feedback recommendation took the industry by
storm and dominated the industrial applications in recent years. For example, Gomez-Uribe
and Hunt (2016) describe the recommender system recently used by Netflix and show that
they moved from their heavy dependence on rating feedback to a simpler feedback mechanism,
focusing primarily on signal acquired from interaction data. This interaction data can come
in different forms depending on the nature of the service provided. For online recommender
systems, the most common form of interaction is a view/visit (or multiple views/visits) of an
item by a user. In general, these views are logged, processed and deduplicated to build a matrix
of binary, positive-only signal as shown in Figure 2.6. This simple organic signal differs from the
explicit rating given by users, as it cannot encode negative information. When a user interacts
with an item, we assume that the user is interested in the item. In the other hand, when an
interaction is missing from the data, we do not know whether this means that the user is simply
unaware of the item, or whether it is irrelevant to the user. The absence of negative signal
motivated new collaborative filtering algorithms, sometimes augmented with item-related data,
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Figure 2.7: Typical logs of views of items by users transformed into user sessions, taking time
into consideration. The user u1 is represented by the session Su1 constructed as a time-ordered
list of the user u1 interactions.

and moved the evaluation of such systems from computing a reconstruction error to ranking
metrics which are deemed more useful in this scenario (Zangerle and Bauer, 2022). In particular
cases, available organic behaviour might encode negative feedback. For example, video streaming
platforms interpret a short watch time on a video as a negative feedback. However, this kind
of signal is application-dependent and differs from the classical implicit feedback setting these
methods are designed to solve.

2.3.2 Recommendation as Next-Event Prediction

Modelling Recommendation as Preference Prediction proved valuable in industrial applications
as it extracts strong signal from the data we have on the users and the items. This approach
relies on the underlying assumption that all the historical interactions are equally important
to the user’s current preference, which may not be true depending on the application. As
shown in Figure 2.6, this modelling approach discards temporal information present in the
logs L to construct the interaction matrix. This signal can be valuable as in a multitude
of applications, a user’s choice of items not only depends on long-term historical preference,
but also on short-term and more recent preferences. In particular, choices always have time-
sensitive context; for instance, "recently viewed" or "recently purchased" items are often more
relevant than others. These short-term preferences are embedded in the user’s most recent
interactions, but may account for only a small proportion of historical interactions. These
considerations have prompted the exploration and development of a new class of recommendation
algorithms: known as Session-Based recommendation algorithms, seeing recommendation as
NEP: Next-Event Prediction (Wang et al., 2021b). This approach heavily relies on the user’s
most recent interactions, rather than the entire user’s historical preferences. Formally, a user
session is composed of multiple interactions that happen together in a continuous period of time.
For instance, products purchased in a single transaction or item viewed in a single shopping
session. Depending on the application, the time window adopted varies and these sessions can
occur on the same day, or across several days, weeks, or months. Figure 2.7 visualises an
example transforming the raw logs of user interactions into user sessions. This paradigm wants
to answer the following question: "If a user interacted with these items in this order, what
should we recommend next?" Recommendation is framed as finding the item that will give the
most probable sequence, increasing the likelihood that our algorithm completes the user session.
The BLOB model (introduced in Chapter 6), especially its organic part, makes explicitly this
assumption to extract signal from the user session. The evaluation of such systems can be done
offline by splitting these user sessions, taking the first part as input, and measuring how well we
can predict the second part of the session. Good recommendations in an e-commerce scenario
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Figure 2.8: We come across two different logs in modern recommendation. L represents the
organic behaviour of the users without any intervention of the recommender systems; views of
items by users navigating the website. B represents the data collected from the interactions of
the recommender system with the users. We observe a signal rn (sale) after taking action an
(the item recommended) for user un.

help the user find items that complement his latest purchases, or in a streaming platform find
music that fit exactly the mood of his last listening session. Poor recommendations will, at best,
have no impact, and in the general case, result in a negative user experience. Many approaches
were designed to tackle the next event prediction task. The simplest approach recommends the
item that most frequently co-occurs with the last item in the session, as presented in Ludewig
and Jannach (2018). This heuristic can be a good baseline, but does not capture the complex
dependencies present in the user’s session history. Advanced approaches view user sessions as
sentences, drawing inspiration from recent advances in Natural Language Processing to capture
semantic complexity between the different items, with intuitive approaches suggested in Vasile
et al. (2016), which infers information about items in a similar fashion to the popular language
model "word2vec" by Mikolov et al. (2013). More recently, deep learning approaches based on
recurrent neural networks (Hidasi et al., 2015) and graph neural networks (Wu et al., 2019) have
been adapted to the problem, achieving state-of-the-art results for session completion tasks.

2.3.3 Recommendation as an Interaction

In the previous sections, we presented two different paradigms of how the recommendation
problem is modelled. These approaches cast recommendation into proxy problems that are
easier to solve; a good recommendation is an item that is likely to be viewed by the user, or an
item that complement well the user session. In the majority of applications, we are interested
in aligning recommendation with business value. As discussed in Jannach and Jugovac (2019),
the performance of modern recommender systems can be measured by its ability to retain
users, increases their engagement or have positive impact on sales. Solving recommendation
as a session completion task for example might correlate with these business metrics but is
only considered a poor proxy for the real goal that modern recommender systems want to
solve. In particular, the performance of an algorithm trained with the presented paradigms may
be very different from its actual performance once deployed (Garcin et al., 2014). Instead of
focusing on predicting the occurrence of interactions between users and items, a better modelling
approach needs to focus on the impact of the recommender system and use the observed outcomes
to update the model, making the system better aligned with business metrics at each new
deployment. Within this paradigm, we want to answer the following question; "Can we make
the recommender system more aligned with business value (generate more clicks, sales, etc) in
the next deployment?". The sequential nature of the problem, where we need to observe the
outcome of the decisions taken by the system and update it accordingly, motivated research to
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Figure 2.9: Difference between Organic behaviour and Bandit feedback.

framing recommendation as a sequential decision-making problem under uncertainty (Roijers
et al., 2013), with both Reinforcement Learning and Contextual Bandit considered suitable
candidates for the task. These frameworks model an agent that encounters a state/context,
performs an action and observes a short term/long term outcome depending on the application.
In our case, a recommendation system encounters a user, chooses which items to recommend to
this user and observes a complex signal. As such, real-world recommendation systems can be
perfectly described within these frameworks. In the majority of scenarios, the online pipeline
can log the interactions between the recommender system and the users. In addition, we also
have in our disposal data on the intrinsic behaviour of our users with different items without
the intervention of the system.

E-Commerce Website. Let us study a simplified example of an e-commerce website, where
the goal is to build a recommender system that generates more sales. A customer will typically
navigate the website, searches for some items that he is interested in. In this customer session,
the recommender system intervenes and shows an item to the user in the hope to answer his
needs, we then observe the interaction between the user and the recommended item, and see
if it ends up in a sale. This use case summarizes the typical dynamics encountered in some
modern recommender systems (Rohde et al., 2018). In this example, the system logs different
information about the user behaviour, that can be split into two classes, detailed in the following:

• Organic Behaviour represents the natural interaction of the user with the website. From
searching for a specific item, to viewing products on a sub category of an e-commerce
website. This feedback is organic to the user and gives us information about users and
items regardless of the impact of the recommender system.

• Bandit Feedback represents an intervention of our system, one where we have the op-
portunity to show the user an item and observe the outcome of the interaction, in this
case, if the user did purchase the recommended item or not.

The reader can refer to Figure 2.8 to have an idea of how the data collected looks like,
and Figure 2.9 for a high level illustration of the difference between these signals. Roughly
speaking, if classical recommendation paradigms modelled the problem using the organic signal;
how likely the item is to be viewed by the user, to achieve better alignment with business
metrics, which is in this case, generating more sales, our focus should be directed to the Bandit
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Feedback that represents the outcomes that we are interested in. The main challenge inherent
to learning from this data originates from the fact that available observations are biased towards
actions favoured by the initial recommender system - the one that was previously deployed and
acting online. Addressing this bias gives birth to a new class of Recommender Systems, either
designed within the Contextual Bandit Framework to handle action-level business metrics (CTR:
Click-Through-Rate, Dwell Time, watch time, etc) as in Chen et al. (2019a); Ma et al. (2020),
or designed within the Reinforcement Learning Framework to handle long-term/timeline level
business metrics (Sales, Engagement, Retention, etc) as in Afsar et al. (2022); Chen et al.
(2022); Wang et al. (2022). This opens exciting avenues of research as industrial recommender
systems come with their own challenges; i.e. adapting these methods to large, discrete action
spaces. Indeed, recommendation in practice aims at identifying the need of users and answering
it by choosing an action from a potentially massive catalogue. These systems are tasked to
deliver recommendations rapidly, and are constrained to particular architectures to achieve this.
After taking the time to introduce the recommendation research landscape, we will cover in what
follows the various constraints imposed on recommender engines that deal with large catalogues.

2.4 Constraints of Large Scale Recommender Systems

Recommendation is the act of accurately understanding the need of a user and answering it.
This process is achieved by both learning about the users and the catalogue of items from which
recommendations are done. Different paradigms can model the recommendation problem, but
they all follow the same conception. Learning a recommender engine usually boils down to
defining a score function f : X × A → R that attributes for any user (context) x and action
(item) a a score f(x, a), with the convention that a higher score means better relevance. Once
we are convinced with the scoring function, delivering recommendations for a user x online is
done through the identification of the highest scoring actions. Our system can deliver one item
or multiple items depending on the application. Let K be the number of items needed, the
recommendation process is formalized by solving the following:

[a1, ..., aK ] =
K

arg sort
a′∈A

{f(a, x)} , (2.8)

with the operator arg sortKa′∈A returning the K highest scoring actions. This sorting operation
has a linear complexity on the size of the action space O(|A| logK) and cannot be adopted in
a large scale production environment. A simple solution to this problem is to build a two stage
decision system (Borisyuk et al., 2016). The idea is to first generate a small subset of potential
action candidates Asub ⊂ A with |Asub| ≪ |A|, and then score this subset instead to select the
top-K actions in Asub leading to a O(|Asub| logK) delivery time. This is generally achieved by
pre-constructing the subset Asub, so as the complexity of this step does not add to the time
complexity of the delivery. This approach has a major shortcoming. Usually, the candidate gen-
eration step and the scoring models are not trained jointly, which leads to delivering suboptimal
actions; the subset Asub may not contain the highest scoring actions.

A more satisfying approach is to avoid candidate generation and rely instead on the structure of
the score function to accelerate the sorting step on the entirety of the action space. Modern large
scale recommendation systems adopt the two-tower model (Huang et al., 2013; Li et al., 2022).
This architecture consists of having two encoders, that embed users and items in the same space,
followed by an Approximate Nearest Neighbour (ANN) (Wang et al., 2021a) search to select top
items given the user’s embedding. This architecture allows the delivery of recommendation in
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logarithmic time. Some score functions are compatible with this approach:

∀(x, a) fθ(a, x) = hΞ(x)⊺βa (MIPS)
∀(x, a) fθ(a, x) = −||hΞ(x)− βa||2 (L2)

with θ = [Ξ, β] the parameters of the encoders. The MIPS: Maximum Inner Product Search is
the most adopted one. In this structure, the score function becomes an inner product between a
context embedding hΞ(x) and an action embedding βa, both residing in a latent space Rl of di-
mension l≪ |A|. With this architecture, Equation (2.8) can be solved with approximate MIPS:
Maximum Inner Product Search algorithms (Shrivastava and Li, 2014) in a time complexity of
O(log |A|) instead of O(|A|), rendering fast decision-making possible without additional consid-
erations. This alleviates the need for a candidate generation step and promises the delivery of
optimal actions under the learned score function.

The second aspect to take into account is the training of such systems. Recommendation
engines need to constantly understand the ever-shifting needs of the users. These systems
are updated frequently, which makes fast training highly desirable. Large scale collaborative
filtering-based recommender systems rely on the understanding and factorization of the user-
item interaction matrix into a latent space. Accelerating the learning within this paradigm
relies on the acceleration of matrix manipulation techniques, such as the inversion or factor-
ization of a matrix. Motivated by large scale recommendation applications, various techniques
were proposed to approximate the inverse of a matrix (Steck, 2020), accelerate weighted matrix
factorization (He et al., 2016; Chen et al., 2020), alternating least square (Hastie et al., 2015)
and Singular Value Decomposition (Janeković and Bojanjac, 2021; Boulle and Townsend, 2022).
These advancements helped scale common collaborative filtering approaches to large catalogues.
Modelling recommendation as next-event prediction benefits from advances in Natural Language
processing, as both methods rely on efficiently handling sequences of tokens/items coming from
a large corpus/catalogue. Notable acceleration techniques are based on contrastive learning (Xie
et al., 2021), negative sampling (Tanielian and Vasile, 2019; Chen et al., 2023) and practically
all accelerated, sequence-based deep learning methods (Vaswani et al., 2017a; Zandieh et al.,
2023).

Our work frames the recommendation problem as an interaction, and formalizes it with the
help of offline contextual bandit tools. Learning within this framework can be achieved through
the direct method or importance weighting objectives. The direct method relies on regressing
a score function f : X × A → R on the observed reward. This method benefits naturally
from recent advances of deep learning methods that can scale the training of large models on
large datasets (Shen et al., 2023). On the other hand, we have the importance weight path that
learns a policy directly. Handling policies over large catalogues involves computing sums over the
whole action space. In particular, we need to be extra-careful when computing/approximating
gradients of our objectives because this operation scales linearly in |A|, which can drastically
slow down the optimization routine. The question of scaling general off-policy learning objectives
attracted little attention; Chen et al. (2019a) learned a production-ready policy with an IPS-
based objective without any focus on the computational aspect. We are interested in this
question and want to provide general acceleration methods. If every learning objective has its
own expression and properties, a large panel can be written under a unified framework. For a
policy π, we can recover a multitude of well-known estimators and objectives by the following
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expression:

R̂
LIN−r̂
n (π) = − 1

n

n∑︂
i=1

Ea∼π(·|xi) [r̂(a, xi)] . (2.9)

with r̂ a reward estimator, that can also include a regularizer. For example, the previously
defined risk estimators are obtained by the following:

∀(x, a) r̂DM(a, x) = rM(a, x) =⇒ R̂
DM
n (π)

∀(x, a) r̂IPS(a, x) =
{︄
ri/π0(ai|xi) if (a, x) = (ai, xi),
0 otherwise.

=⇒ R̂
IPS
n (π)

∀(x, a) r̂DR(a, x) =
{︄

(ri − rM(a, x))/π0(ai|xi) + rM(a, x) if (a, x) = (ai, xi),
rM(a, x) otherwise.

=⇒ R̂
DR
n (π).

The LIN notation in the estimator stands for linear as these estimators are linear in the pol-
icy evaluated. This family can recover commonly adopted estimators (Horvitz and Thompson,
1952; Dudík et al., 2014; Wang et al., 2017; Saito and Joachims, 2022a; Saito et al., 2023; Aouali
et al., 2023a), and principled learning objectives (London and Sandler, 2019; Sakhi et al., 2023a).

We are particularly interested in learning objectives of this form because they write down
nicely as an expectation of the quantity r̂ under actions coming from π. This means that even if
we cannot compute the expectation exactly (we want to avoid a sum over a large action spaces
|A| ≫ 1), one can still approximate it to a desired precision if we can sample efficiently from π.
The last two chapters of the thesis develop sublinear optimization routines to learn MIPS-based
policies with objectives of the form in Equation (2.9).



Part I

Offline Learning with Performance
Guarantees

57



Chapter 3

Offline Learning with
Distributionally Robust

Optimization

Abstract

This chapter extends the Distributionally Robust Optimization (DRO) approach for offline con-
textual bandits laid out in Faury et al. (2020). Specifically, we leverage this framework to
introduce a convex reformulation of the Counterfactual Risk Minimization principle introduced
in Swaminathan and Joachims (2015a). Besides relying on convex programs, the proposed ap-
proach is compatible with stochastic optimization, and can therefore be readily adapted to the
large data regime. Our procedure relies on the construction of asymptotic confidence intervals
for offline contextual bandits through the DRO framework. By leveraging known asymptotic
results of robust estimators, we also show how to automatically calibrate such confidence inter-
vals, which in turn removes the burden of hyperparameter selection for policy optimization. We
present empirical results supporting the effectiveness of our approach.
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3.1 Introduction

3.1.1 Contextual Bandits.

The Contextual Bandit (CB) framework is a formalization of an important sequential decision-
making problem, with impactful applications in recommender systems (Li et al., 2010; Valko
et al., 2014), mobile health (Tewari and Murphy, 2017) and clinical trials (Villar et al., 2015). It
describes a repeated game between a decision-maker and an environment. The latter sequentially
reveal sets of available actions to the former, along with some additional side information for
each action. Such additional information is assumed to carry informative signal about the
intrinsic value (or reward) of its associated action. Informally, the goal of the decision-maker is
to discover an efficient strategy (or policy) to select, given a context, a nearly optimal action.

3.1.2 Offline Policy Learning.

The Contextual Bandit optimization literature can be divided into two streams. The first
studies its online formulation, where the focus lies on the exploration/exploitation trade-off
for regret minimization (Lattimore and Szepesvári, 2020). This chapter is concerned with the
second, known as Off-Policy learning, or Batch Learning from Bandit Feedback (Swaminathan
and Joachims, 2015a) (BLBF). This setting is arguably better suited for applications in real-
life situations. The optimization is performed offline and based on historical data, typically
obtained by logging the interactions between an older version of the current policy and the
environment. The learning problem consists in leveraging this data (necessarily biased towards
actions favoured by the logged policy) to discover new strategies of greater performance.

3.1.3 Prior work and limitations.

The first step in addressing the Offline policy learning problem is to remove the intrinsic bias
introduced by the logging policy (Bottou et al., 2013). This however can come at the price of
building high-variance estimates (Swaminathan and Joachims, 2015a) for the performance of the
current policy, which in turns can lead to high post-decision regret. To address such challenges,
Swaminathan and Joachims (2015a) introduced the Counterfactual Risk Minimization (CRM)
principle. It combines debiasing through importance re-weighting (Horvitz and Thompson,
1952) with a modified policy-selection process that penalizes policies with high-variance esti-
mates. Recently, Faury et al. (2020) proposed a generalization of the CRM principle through
the Distributionally Robust Optimization (DRO) framework. This led them to the development
of a new BLBF algorithm, obtained through a specialization of this general framework. How-
ever, while the methods introduced in both Swaminathan and Joachims (2015a) and Faury et al.
(2020) offer some desirable theoretical guarantees for off-line policy optimization, their respec-
tive implementation suffers from important caveats. Namely, they rely on optimizing non-convex
objectives, which is notably hard from a theoretical perspective. Further, these objective are not
well-suited for stochastic optimization (useful when the logged data is large and cannot fit in
memory), as obtaining unbiased stochastic gradients for these objective is not straight-forward.
Last, they rely on the selection of rather sensitive hyperparameters, of which the (approximate)
automatic calibration (through asymptotic arguments, for instance) is unknown.

3.1.4 Contributions.

In this chapter, we further investigate the DRO framework for offline CB introduced in Faury
et al. (2020). This leads to a reformulation of the CRM principle that boils down to solving a
convex problem. This reformulation brings the first fully stochastic algorithm of CRM solving
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this objective for large logged datasets. Our approach relies on the construction of asymptotic
confidence intervals for offline CB through the DRO framework. Leveraging known asymptotic
results for DRO we show how to automatically calibrate such confidence intervals, which in
turns remove the need for hyperparameter optimization for policy optimization. We validate
our approach through extensive experiments on standard datasets for this task.

3.2 Preliminaries

3.2.1 Notations

In the following, we will write 1n to be the n-dimensional vector which entries are all equal to 1/n.
For any positive integer m, ∆m denotes the m-dimensional simplex. φ is a real-valued convex
function. We denote φ⋆(s) = supx∈R(xs − φ(x)) the Fenchel conjugate of φ. For two distribu-
tions p and q, q ≪ p means that q is absolutely continuous with respect to p (supp(q) ⊂ supp(p)).

The notation dφ refers to the f -divergence associated to φ, that is defined for discrete distri-
butions p and q in ∆m by:

dφ(q, p) =
n∑︂
i=1

piφ

(︃
qi
pi

)︃
q ≪ p.

3.2.2 Setting

We will use x ∈ X to denote a context and a ∈ A an action, where |A| denotes the number of
available actions. Given a context x, each action is associated with a cost c(x, a) ∈ [−1, 0]1, with
the convention that better actions have smaller cost. The cost function c is unknown. A decision
maker is represented by its policy π, which maps each context x ∈ X to the |A|-dimensional
simplex ∆|A|. Assuming that the contexts are stochastic and follow an unknown distribution ν,
we define the risk of the policy π as the expected cost one suffers when playing actions according
to π:

R(π) = Ex∼ν,a∼π(·|x) [c(x, a)] .

The learning problem is to find a policy π with the smallest risk. In most real world problems,
it is not reasonable to expect having the luxury of testing out several policies to compare their
empirical risk and retain whichever policy has the smallest. This issue is usually circumvented
by forecast the risk of a given policy thanks to some existing interaction data. This is formalized
through a logging policy π0 which has already been deployed in the environment (e.g a previous
version of a recommender system that the practitioner is trying to improve) for which we assume
we have the following interactions:

Dn = {xi, ai ∼ π0(xi), π0(xi, ai), c(ai, xi)}i∈[n] .

Based on this data, one can build an unbiased (under mild assumptions) estimator of the risk
of any policy π through the use of importance weights (Horvitz and Thompson, 1952):

R̂
IPS
n (π) := 1

n

n∑︂
i=1

rπ(xi, ai)

where rπ(xi, ai) := ωπ(ai|xi)c(xi, ai) and ωπ(a|x) := π(a|x)/π0(a|x). This estimate is commonly
referred to as the IPS (Inverse Propensity Scoring) risk.

1We make this assumption for ease of exposition. It can be explicitly enforced by re-scaling the cost function.
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3.2.3 Counterfactual Risk Minimization

The IPS estimator of the risk R(π) has potentially high variance, which depends on the disparity
between π and π0 (Swaminathan and Joachims, 2015a, Section 4). Hence, directly sorting
candidate policies thanks to their IPS risk is hazardous (as it boils down to comparing estimators
with potentially high and different variances) and is known to be suboptimal.

Swaminathan and Joachims (2015a) proposed to add an empirical variance term to the IPS
risk in order to penalize policies with high-variance estimate. Coined Counterfactual Risk Min-
imization (CRM) principle, this suggests finding the policy which minimizes:

Riskλn(π) = R̂
IPS
n (π) + λ

√︄ˆ︃Varn(π)
n

(3.1)

where λ is a tunable hyperparameter and ˆ︃Varn(π) = 1
n−1

∑︁n
i=1

(︂
rπ(xi, ai)− R̂n(π)

)︂2
is the em-

pirical variance of R̂n(π). This policy selection process is based on variance-sensitive confidence
intervals for the true risk obtained via empirical Bernstein bounds (Maurer and Pontil, 2009).

3.2.4 Generalization through DRO

Based on a similar intuition, Faury et al. (2020) recently introduced the idea of using Distribu-
tionally Robust Optimization (DRO) tools for this policy optimization problem. They showed
that for a particular class of φ-divergence, the robust risk RobustRiskφn(π, ϵ) defined as:

RobustRiskφn(π, ϵ) := sup
q∈∆φ

n(ϵ)

n∑︂
i=1

qirπ(xi, ai) (3.2)

where ∆φ
n(ϵ) := {q ∈ ∆n | dφ(q, 1n) ≤ ϵ} is a variance-sensitive (asymptotic) upper-bound for

the true risk. It is therefore well-suited for the policy optimization task, and generalizes (in
some sense) the CRM approach (Faury et al., 2020, Lemma 3). For the KL-divergence, the
RobustRiskKL

n (π, ϵ) has a closed-formed which can be directly minimized (Faury et al., 2020,
Lemma 4):

RobustRiskKL
n (π, ϵ) =

n∑︂
i=1

exp(rπ(xi, ai)/γ)∑︁
j exp(rπ(xj , aj))/γ)rπ(xi, ai)

with γ being a tunable hyperparameter.

3.2.5 Limitations and contributions

Variance penalization of the IPS objective, and its DRO generalization, benefit from a strong
theoretical justification and yield better performing policies. These algorithms, that were proven
to outperform the simple IPS objective empirically in Faury et al. (2020); Swaminathan and
Joachims (2015a) can still be improved as they suffer from huge limitations.

• Contrary to the IPS objective, which is linear (and therefore convex) in π, both the CRM
principle (adding a square root variance penalization) and DRO as it was introduced
in Faury et al. (2020) (the adversary distribution is exponential on the loss) break this
convexity, resulting in problems that are way harder to optimize, meaning that the benefits
from such formulations are always down weighted with the non-convexity induced.
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Divergence φ(t)φ(t)φ(t) dφ(q||p)dφ(q||p)dφ(q||p) φ∗(s)φ∗(s)φ∗(s)

χ-Square (t− 1)2 ∑︁n
i=1

(qi−pi)2

pi

{︄
s+ s2/4 s ≥ −2
− 1 s ≤ −2

Kullback-Leibler t log t− t+ 1 ∑︁n
i=1 qi log(qi/pi) es − 1

Burg entropy − log t+ t− 1 ∑︁n
i=1 pi log(pi/qi) − log(1− s), s < 1

Hellinger distance (
√
t− 1)2 ∑︁n

i=1
(︁√
pi −

√
qi
)︁2 s

1−s , s ≤ 1

Table 3.1: Some coherent φ-divergences and their characterizations.

• Another important limitation of such objectives is its scalability in the context of large
datasets. Both formulations are not well-adapted to the stochastic gradient descent algo-
rithm, and naively using it will lead to biased estimates of the gradients. The proposed
algorithm in Faury et al. (2020) works only in the batch setting as the adversary dis-
tribution needs all the data to be normalized, and even if Swaminathan and Joachims
(2015a) suggested a relaxation of CRM amenable to stochastic gradients, it is built on a
majorisation-minimisation algorithm that needs to load the entire dataset at certain times,
which is not practical in the large data regime.

• These algorithms also come with hyperparameters that need careful tuning as their choice
drastically impact the performance of the obtained policy, making the whole optimization
procedure even harder. Swaminathan and Joachims (2015a) treats λ, the weight of the
variance penalty, as a hyperparameter, while Faury et al. (2020) treat ϵ, the maximum
distance between the adversarial and the nominal distribution, which has a close connection
to λ, as a hyperparameter as well.

Both algorithms are deemed impractical in real life, as they have a non-convex loss surface to
optimize, are not applicable to huge datasets and need heavy hyperparameter tuning. This work
tries to circumvent these limitations through a more careful treatment of the DRO formulation,
leading to general algorithms that treat all these caveats in a well-defined and unified framework.

3.3 Policy Evaluation and Optimization

3.3.1 Policy Evaluation: Confidence Intervals

In this section, we briefly review and discuss how the robust risk can lead to the construction
of confidence intervals for the true risk. This is a crucial step for policy optimization, as it
will consist in minimizing the high-probability upper-bound on the true risk provided by the
policy evaluation procedure. Designing tight confidence interval for the risk can also be a goal
in itself, in order to fully evaluate the potential benefits/risks of deploying a given policy (e.g
provide an offline metric for A/B testing). In the following, we build on Faury et al. (2020) and
consider coherent φ-divergence - i.e we will assume that φ satisfies the conditions of Assumption
1 in Faury et al. (2020). We provide some examples of such functions (and their associated
divergence measure) in Table 3.1.

Under such conditions, one can show that the robust risk accounts for the variance of the IPS
risk estimator (Faury et al., 2020, Lemma 2). Further, DRO can be leveraged to build asymptotic
confidence intervals for the robust-risk. Indeed, let us introduce the following problem that
defines an Optimistic Risk OptimisticRiskφn(π, ϵ):

OptimisticRiskφn(π, ϵ) := inf
q∈∆φ

n(ϵ)

n∑︂
i=1

qirπ(xi, ai) (3.3)
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We have the following result, extending Lemma 1 of Faury et al. (2020).

Lemma 3.3.1. [Asymptotic Confidence Interval] Let δ ∈ [0, 1). For α ∈ (0, 1) denote ρα
the (1− α)-quantile of the one-dimensional χ2 distribution. We also denote RCIφn (π, ϵ),
the interval [OptimisticRiskφn(π, ϵ),RobustRiskφn(π, ϵ)] Then:

lim
n→∞

P
[︃
R(π) ∈ RCIφn (π, φ

′(1)ρα
2n )

]︃
≥ 1− δ. (3.4)

The proof of this lemma can be found in Duchi et al. (2021). This result states that the
interval [OptimisticRiskφn(π, ϵ),RobustRiskφn(π, ϵ)] is a asymptotic (1− δ) confidence interval for
the true risk, when the size of the ambiguity-set ϵ is set to φ′(1)ρα

2n . We will show in Section 3.4.1
that despite being asymptotic, this interval is empirically tight and displays satisfying coverage,
motivating its use in real-life applications. It turns out that the programs for computing the
robust and optimistic risk (Equation (3.2) and (3.3), respectively) can be efficiently solved. We
will only review here the computation of the robust risk, however a similar reasoning holds for the
optimistic risk. Notice that the objective in Equation (3.2) is linear in the variable q, which acts
as a re-weighting for the counterfactual costs. Further, the constraint set {q ∈ ∆n | dφ(q, 1n) ≤ ϵ}
is convex. The program is therefore convex and can henceforth be solved efficiently. In this work,
we rather rely on the dual formulation, which allows for efficient solving and is well adapted to
the stochastic setting. We rely on the following result to characterize the robust risk.

Lemma 3.3.2 (Dual program for the robust risk). Let:

gπ(β, γ) = β + γϵ+ 1
n

n∑︂
s=1

(γφ)⋆ (rπ(xi, ai)− β) (3.5)

where (γφ)⋆(s) = γφ⋆(s/γ), with the convention that (0φ)⋆(s) = +∞ is s > 0 and 0
otherwise. The function (π, β, γ)→ gπ(β, γ) is convex and:

RobustRiskφn(π, ϵ) = inf
β,γ≥0

gπ(β, γ) (DRO-PE)

This robust program characterization can be extracted from more general results - see for
instance (Ben-Tal et al., 2013, Section 4). We provide a detailed proof in the following for the
sake of completeness.

Proof. Recall the definition of the robust risk:

RobustRiskφn(π, ϵ) := sup
q∈∆n

{︄
n∑︂
i=1

qiωπ(xi, ai)c(xi, ai) s.t dφ(q, 1n) ≤ ϵ
}︄

(P)

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆n =
{︄
p ∈ R+

n

⃓⃓⃓⃓
⃓
n∑︂
i=1

pi = 1
}︄

1n = 1
n

(1 . . . 1)⊺ ∈ Rn

dφ(q, p) =
n∑︂
i=1

piφ

(︃
qi
pi

)︃
∀q ≪ p ∈ ∆n
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Note that the program (P) optimizes a linear objective under convex constraints (since φ is
convex). Further, when ϵ > 0, the candidate q = 1n is strictly feasible. Therefore, Slater’s
condition holds and (P) enjoys strong duality. Writing down its Lagrangian, we obtain the
following equivalence:

RobustRiskφn(π, ϵ) = sup
q⪰0

inf
β,γ≥0

n∑︂
i=1

qiωπ(xi, ai)c(xi, ai) + β

(︄
1−

n∑︂
i=1

qi

)︄
+ γ

(︄
ϵ− 1

n

n∑︂
i=1

φ(nqi)
)︄

= inf
β,γ≥0

sup
q⪰0

n∑︂
i=1

qiωπ(xi, ai)c(xi, ai) + β

(︄
1−

n∑︂
i=1

qi

)︄
+ γ

(︄
ϵ− 1

n

n∑︂
i=1

φ(nqi)
)︄

= inf
β,γ≥0

β + γϵ+ 1
n

n∑︂
i=1

sup
qi≥0
{(nqi)ωπ(xi, ai)c(xi, ai)− γφ(nqi)} (3.6)

where the first equality is a consequence of strong duality, and the second is obtained through
simple re-arranging. If γ ̸= 0, easy computations lead to:

RobustRiskφn(π, ϵ) = inf
β,γ≥0

β + γϵ+ γ

n

n∑︂
i=1

sup
qi≥0

{︃
(nqi)

ωπ(xi, ai)c(xi, ai)
γ

− φ(nqi)
}︃

= inf
β,γ≥0

β + γϵ+ γ

n

n∑︂
i=1

φ⋆
(︃
ωπ(xi, ai)c(xi, ai)

γ

)︃

by using the definition of φ⋆. The limit conditions announced in the Lemma are easily checked
by computing the dual function when γ = 0. We therefore obtain the equality announced by
using the definition of gπ:

RobustRiskφn(π, ϵ) = inf
β,γ≥0

gπ(β, γ)

The convexity of gπ can be obtained two ways; (1) by noticing that gπ is obtained through
convexity-transforming transformations of a perspective function (Combettes, 2018), or (2) by
noticing thanks to Equation (3.6) that:

(π, β, γ)→
n∑︂
i=1

sup
qi≥0
{(nqi)ωπ(xi, ai)c(xi, ai)− γφ(nqi)}

is convex as a sum of supremum of linear (and hence convex) functions. ■

In a few words, Lemma 3.3.2 states the the robust risk can be efficiently computed by solving a
two-dimensional convex program. When n is reasonably small (in other words, when the dataset
Dn fits in memory), coordinate descent (with exact line search) provides an efficient, principled
tool for computing the robust risk. The program (DRO-PE) is also well-suited for the large-
data regime - e.g large n, as it naturally adapts to stochastic optimization. Indeed, the function
g (Equation (3.5)) is composite and unbiased gradients of this objective are easily obtainable.
Stochastic gradient descent methods (e.g Ruder (2016) for a modern overview) therefore provide
efficient and flexible solutions for this problem (up to some mild modifications to account for
the fact that the g is not smooth for γ in a neighborhood of 0). To sum-up, we showed here
how the DRO method could be used to build confidence intervals for the true risk, by simply
relying on solving convex programs. This confidence intervals are however only asymptotic; we
will show in Section 3.4 that, still, they provide sufficient empirical coverage while being much
tighter than their finite-time counterparts.
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3.3.2 Policy Optimization: Towards a Convex Objective

General principle:

The CRM principle casts policy optimization in a theoretically sound framework, and interest-
ingly enough is closely related to the robust risk defined throughout the chapter. Relying on
results from Duchi et al. (2021), Faury et al. (2020) showed that the robust risk provides an
asymptotic approximation to the variance regularized empirical risk:

RobustRiskφn(π, λ2/n) = R̂n(π) + λ

√︄ˆ︃Varn(π)
n

+ o
(︁
1/
√
n
)︁
.

The original CRM principle for policy optimization (Equation (3.1)) can therefore be rethought
as the minimization of a φ-robust risk. Using the dual formulation of the robust risk given in
Equation (DRO-PE), the policy optimization objective becomes :

inf
π

RobustRiskφn(π, ϵ) = inf
π,β,γ≥0

gπ(β, γ) (DRO-PO)

Note that as a consequence of Lemma 3.3.2, this objective is convex. It can therefore be
minimized in principled ways, while enjoying similar guarantees as the original CRM objective.
Naturally, one can expect such an important transformation of the optimization properties of
the policy improvement objective to lead to greater practical performances.

There are several ways to solve the policy improvement objective (DRO-PO). For example,
we can obtain (sub-)gradients of the robust-risk (w.r.t to the policy π) by first solving the policy
evaluation program (DRO-PE). Formally, solving for (β⋆, γ⋆) ∈ arg maxβ,γ gπ(β, γ) allows to
compute the adversarial re-weighting q⋆ through the following conversion, which holds up to a
normalization constant:

∀i ∈ [n], q⋆i = φ⋆
(︃
rπ(xi, ai)− β⋆

γ⋆

)︃
.

A sub-gradient of the robust risk is then easily computable by differentiating:

π →
n∑︂
i=1

q⋆i rπ(xi, ai).

A more interesting approach is to solve the dual program jointly for:

(π⋆, β⋆, γ⋆) ∈ arg max
π,β,γ

gπ(β, γ),

feeding gradient of the function (β, γ, π) → gπ(β, γ) to a gradient optimizer. In all of our
experiments, we solve the dual program with the L-BFGS solver in the batch setting, and
with the Adam solver in the stochastic setting as this formulation is composite and allows for
stochastic optimization naturally.

Towards Better Behaved Objectives:

Variance Reduction. The methods presented so far rely on vanilla IPS. It is well known that
this estimator suffers from large variance which can lead to poor performances - whatever the
policy optimization algorithm used. Fortunately, our method easily extend to other estimators,
so long that they remain convex in π - this is the case for the Clipped IPS2 or the Doubly Robust

2as long as the costs are negative
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(Dudík et al., 2014) estimator. Still, it would be useful to extend our method to estimators that
actively reduce variance. A candidate for this task is the self-normalized importance sampling
estimator of Swaminathan and Joachims (2015b). This estimator is unfortunately not convex in
π, which goes against the efforts undertaken in this chapter to maintain well-behaved optimiza-
tion tasks. We provide here an alternative which uses a simple additive control variate (instead
of a multiplicative one). Formally, we rely on the following estimator:

Riskn,ρ(π) = 1
n

n∑︂
i=1

rρπ(xi, ai)

where rρπ(xi, ai) = (c(xi, ai)− ρ)ωπ(ai|xi) + ρ. A robust version of this estimator easily follows,
and enjoys the same convex properties of the IPS robust risk. The variance-reduction property
of the additive control variate is presented in the following Lemma.

Lemma 3.3.3 (Propensity weights as an additive control variate). For all ρ, Riskn,ρ(π)
is an unbiased estimator of R(π), achieving a better variance than naive IPS whenever:

2Cov(rπ, ωπ)
V(ωπ) ≤ ρ ≤ 0

and with optimal variance reduction V(rρ∗
π ) = (1− corr(rπ, ωπ)2)V(rπ) attained at

ρ∗ = Cov(rπ, ωπ)
V(ωπ)

In addition, if the cost is independent of the propensity weights, we obtain ρ∗ = E[c].

In practice, we don’t know how to derive ρ∗ analytically. A straightforward way to obtain
an unbiased estimator of ρ∗ is to use regression slope estimation, or the cost’s empirical mean
under π0 if the independence conditions stated in Lemma 3.3.3 are met. In our experiments, we
follow this second strategy, assuming for simplicity that such independence holds.

Parametric Policies. In practice, the actions/contexts space is extremely large and directly
optimizing the objective with respect to the policy (as a R|X |×K matrix) is unreasonable. In
such cases, policies are parametrized to drastically reduce the complexity of the problem. This
usually breaks convexity, even in the simplest case of log-linear policies - that is, policies of the
form πθ(a|x) ∝ exp(θT f(x, a)), for f(x, a) a given joint feature map. In this case, the objective
becomes a negative sum of log-concave functions resulting in a non-convex optimization surface.
Building on Roux (2017), one can bypass this non-convexity by constructing a tight convex
upper bound of the original objective, relying on the following lemma :

Lemma 3.3.4 (Convex upper-bound for log-concave policies). Let πθ be a log-concave
(w.r.t θ) policy. For a given θ0, let Riskup

n (πθ) be defined as :

1
n

n∑︂
i=1

πθ0(ai|xi)
π0(ai|xi)

(1 + log[ πθ(ai|xi)
πθ0(ai|xi)

])c(ai|xi)

Riskup
n (πθ) is a convex upper bound of the IPS risk. The closer θ0 to θ, the tighter the

upper bound, with equality at θ0 = θ.
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We can use Lemma 3.3.4 to obtain a proxy of our initial objective, building on an iterative
procedure that only uses convex losses throughout the whole optimization process. Once again,
we can build a robust version of this estimator which can be efficiently optimized. Note that
here, the robust estimator will also be convex w.r.t the parametrization θ as soon as the policy
is log-concave.

3.4 Experiments

We here describe the experimental results, backing up the idea that an improved optimization
landscape for policy optimization naturally leads to improved practical performances. We work
with the four φ-divergence presented in Table 3.1. We employ the classical supervised to bandit
conversion (Agarwal et al., 2014). Formally, denote x ∈ X a given input vector and y ∈ {0, 1}L
its label, and D⋆ = {(x1, t1), . . . , (xm, tm)} a given multi-label dataset. We create the logging
policy by training it on a fraction of D⋆ with half of its labels shuffled3. We then create the
logged interactions Dn by going repeating P times the following procedure: for every (xi, ti)
in the supervised dataset, sample ai ∼ π0(x) and log the cost c(ai, xi) = ∥ai − ti∥1. Following
Swaminathan and Joachims (2015a), we denote by P the replay count.

3.4.1 DRO Confidence Intervals

We start this experimental section by performing a sanity check on the (asymptotic) confidence
intervals that we based our policy optimization method on. Formally, we evaluate the finite-
time validity of Equation (3.4). Being asymptotic, we can safely expect DRO-based confidence
intervals to be smaller than their finite-time counterparts - i.e confidence intervals based on
Hoeffding or empirical Bernstein tail inequalities (see Thomas et al. (2015) for their application
to policy evaluation). We however wish to check that they provide reasonable coverage in non-
asymptotic regimes - that is, that the true value of the risk belongs to the interval often enough.
To do so, we train a policy π on a subset of D⋆ (randomly chosen, so the policy π trains on
different examples than π0) and evaluate the empirical mean coverage and of width of DRO-
based intervals. In Figure 3.1, we present such results on two datasets: Yeast and Scene, taken
from the LibSVM repository and standard for the policy optimization task (Swaminathan and
Joachims, 2015a). The empirical coverage and width are reported for increasing values of the
replay count P , or equivalently for increasing values of the historic data size n. The confidence
level is set to δ = 0.95 in all experiments. As expected, the asymptotic DRO-based confidence
intervals are by orders of magnitude smaller than finite-time ones. Nevertheless, we observe
that they provide almost exact (1 − δ) coverage, and it is therefore safe to use them even in
the small data regime. As a side comment, we observe that all four φ-divergence lead to very
similar results.

3.4.2 Policy Optimization

We report here the results for policy optimization, for which we follow the experimental pro-
cedure of Swaminathan and Joachims (2015a). The supervised dataset D⋆ is split into three
parts (train, validation and test). A logging policy is trained on a random fraction (5%) of D∗
with half of its labels shuffled and used to collect the history Hn by running it through the
training data P = 4 times. For DRO-based algorithms, the validation set is not used, since no
hyper-parameter needs to be tuned (we use the value recommended by the asymptotic analysis

3to avoid near optimal logging policies.
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(a) Empirical coverage of the true risk for different
confidence intervals on the Yeast dataset.
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(b) Empirical coverage of the true risk for different
confidence intervals on the Scene dataset.
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(c) Mean width of the true risk for different confi-
dence intervals on the Yeast dataset.
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(d) Mean width of the true risk for different confi-
dence intervals on the Scene dataset.

Figure 3.1: Finite-time evaluation (coverage and width) for asymptotic DRO-based confidence
intervals.

for ε, with a fixed confidence level at δ = 0.05). For POEM and its stochastic approximation,
the parameter λ is selected by cross-validation on the validation data.

Clipped IPS. We report in Figure 3.2 the risks of the policy returned by the different al-
gorithms trained using the clipped IPS estimator CIPS with M set to

√
n recommended in

Ionides (2008). We compare its performance to POEM and DRO on three multilabel LibSVM
datasets: Scene, Yeast and Mediamill4. As in Swaminathan and Joachims (2015a), all policies
are parametrized linearly, with a softmax output activation layer. We present results for both
batch algorithms optimized by L-BFGS (B) and their stochastic versions optimized by Adam for
10 epochs (S). Results are averaged over 20 random repetitions. For batch algorithms, one can
notice that DRO-based methods provide either similar or better empirical results than POEM
on the considered datasets, while being hyper-parameter free (which is not the case of POEM).
On the Yeast dataset, the improvement is quite significative for two of the four φ-divergence
(KL and Hellinger). It seems however that there is no consistency in the relative performance
of the different divergences. This can be troublesome in practice, as to the best of our knowl-

4preprocessed to reduce the number of actions
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Algorithm Scene Yeast Mediamill*
CIPS-B 1.25 (0.10) 5.08 (0.13) 2.62 (0.13)

POEM-B 1.21 (0.12) 5.00 (0.12) 2.48 (0.13)
DRO-B-χ2 1.25 (0.25) 4.96 (0.08) 2.42 (0.05)
DRO-B-KL 1.23 (0.10) 4.77 (0.10) 2.44 (0.05)

DRO-B-Burg 1.26 (0.23) 4.89 (0.12) 2.42 (0.05)
DRO-B-Hellinger 1.21 (0.11) 4.75 (0.15) 2.43 (0.05)

CIPS-S 1.29 (0.09) 5.05 (0.10) 2.52 (0.13)
POEM-S 1.28 (0.09) 5.00 (0.11) 2.47 (0.10)

DRO-S-χ2 1.27 (0.09) 4.93 (0.09) 2.42 (0.10)
DRO-S-KL 1.30 (0.09) 4.93 (0.10) 2.42 (0.08)

DRO-S-Burg 1.27 (0.09) 4.96 (0.11) 2.38 (0.09)
DRO-S-Hellinger 1.31 (0.08) 4.92 (0.08) 2.44 (0.06)

Figure 3.2: Policy optimization results: Performance of the trained policy on the test set.

Algorithm Scene Yeast Mediamill*
POEM-B 1.21 (0.12) 5.00 (0.12) 2.48 (0.13)

DRO-B-div 1.20 (0.10) 4.80 (0.15) 2.42 (0.05)
POEM-S 1.28 (0.09) 5.00 (0.11) 2.47 (0.10)

DRO-S-div 1.30 (0.09) 4.95 (0.10) 2.40 (0.08)

Figure 3.3: Policy optimization results: Performance of DRO-div on the test set.

edge there is no obvious nor preferable choice of divergences given a dataset. A solution to this
problem is to cross-validate this choice, either over a discrete or a continuous parametrization
of the divergence considered here (such as the parameter of a Cressie-Read divergence). Finally,
we note that the stochastic algorithms present the same trend, with DRO-based algorithms
resulting similar or better performance and providing the first fully stochastic algorithm for
CRM contrary to POEM-S that needs to load in memory the entire dataset at every epoch
(e.g. every time an upper-bound on the true objective is constructed). Meaning that not only
DRO-S provides better results on the experiments presented, it is significantly faster. Figure 3.3
provides the results of DRO-div, which uses the validation set to choose the best divergence to
use among the 4 presented in Table 3.1. This is still more efficient than POEM as we cross
validate 4 divergences instead of a grid over the values of λ. We can see that this approach gives
similar results than POEM on the Scene dataset, and outperforms it on the two other datasets,
choosing automatically the divergence based on its performance on the validation set.

Additive Control Variate. In this set of experiments, we call IPS-ACV, the robustified
estimator derived from Lemma 3.3.3 with ρ being equal to the empirical mean of the cost
under the logging policy. We expect that this estimator will not only behave better than clipped
IPS, but it will also benefit from the CRM principle as it was observed in Swaminathan and
Joachims (2015b) when using the SNIPS estimator. We report the results in Figure 3.4 of
IPS-ACV, IPS-ACV-POEM, and IPS-ACV-DRO-div which uses the validation set to choose
the best divergence. We can observe that IPS-ACV improves drastically over clipped IPS on
the three datasets considered and benefits slightly from CRM and DRO, meaning that even if
we can achieve better variance with an estimator, we might still need to rank the policies by the
variance induced to derive a more robust objective to optimize. This behavior was also observed
in the experiments conducted with the SNIPS estimator in Swaminathan and Joachims (2015b).
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Algorithm Scene Yeast Mediamill*
IPS-ACV-B 0.78 (0.06) 4.20 (0.16) 2.37 (0.12)

IPS-ACV-POEM-B 0.78 (0.06) 4.16 (0.16) 2.25 (0.11)
IPS-ACV-DRO-B-div 0.78 (0.06) 4.16 (0.15) 2.20 (0.08)

Figure 3.4: Policy optimization results: Performance of the trained policies using the robus-
tified estimator.

3.5 Related Work

The Offline contextual bandit problem has received increasing interest in the past years as its
an important formulation to real-world decision problems. The first step is to define a good
estimator to evaluate different policies offline. The simplest estimator for offline contextual
bandits is the "Inverse Propensity Score" (IPS) approach which is unbiased, but suffers from
high variance depending on the discrepancy between the logging policy and the policy we want
to evaluate, a natural extension of this estimator is the clipped IPS (Bottou et al., 2013) that
tries to trade off bias for variance. The Self-Normalized IPS (SNIPS) Swaminathan and Joachims
(2015b) estimate uses the propensity weights as a multiplicative control variate resulting in a
biased estimator but with a better mean squared error. Defining better estimators can also be
achieved by building a model of the reward first to define a doubly robust estimator (Dudík et al.,
2014; Su et al., 2020) or by switching (Wang et al., 2017) between a doubly robust estimator and
direct application of a reward estimator to optimize mean square error. All of these methods
focus on defining better estimators for policy evaluation, which makes its optimization more
stable. Another line of work focus more on the learnability of the problem, the Counterfactual
Risk Minimization principle Swaminathan and Joachims (2015a) provides variance sensitive
upper bounds on the true risk using empirical bernstein inequalities, Faury et al. (2020) tackles
the problem with distributional robustness and exposes its link with sample variance penalization
and London and Sandler (2019) uses PAC-Bayes learning theory to have guarantees on the risk
of the learned policy. A recent work identifies the optimization difficulty of such objectives
Chen et al. (2019b) and defines convex surrogates resulting in better learned policies. The
distributionally robust optimization framework has a rich literature (Duchi et al., 2021; Ben-Tal
et al., 2013) that focuses mainly on the statistical learning aspects, Faury et al. (2020) introduced
the idea of using this framework in the context of offline policy optimization, and we further
investigate its use in this work to define objectives that are convex on the policy, that keeps the
same statistical properties that sample variance penalization provides, and that are amenable
to stochastic gradient descent, making the optimization problem scalable to large datasets.
Concurrently to this work, DRO tools were investigated in Dai et al. (2020) to achieve confident
policy evaluation in the offline Reinforcement Learning framework (Sutton and Barto, 2018). If
we focused on both evaluation and learning aspects for CB based on asymptotic arguments, Dai
et al. (2020) provide finite sample analysis, and generalize our evaluation approach to the RL
setting with little focus on the learning aspect.

3.6 Conclusion

In this work, we leverage the Distributionally Robust Optimization framework to provide a
computationally friendly alternative to the counterfactual risk minimization principle, keeping
the same statistical properties and giving access to algorithms that are convex on the policy,
faster than POEM and that can avoid hyperparameter tuning if we choose a divergence before-
hand. The experiments conducted confirm that DRO can benefit any risk estimator. It provides
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asymptotic confidence intervals that are tight, have good coverage properties in finite-time, and
that can be exploited to learn policies with improved performance.



Chapter 4

Offline Learning with PAC-Bayesian
Theory

Abstract
This chapter introduces a new principled approach for off-policy learning in contextual bandits.
Unlike previous work, our approach does not derive learning principles from intractable or
loose bounds. We analyse the problem through the PAC-Bayesian lens, interpreting policies as
mixtures of decision rules. This allows us to propose novel generalization bounds and provide
tractable algorithms to optimize them. We prove that the derived bounds are tighter than
their competitors, and can be optimized directly to confidently improve upon the logging policy
offline. Our approach learns policies with guarantees, uses all available data, and does not
require tuning additional hyperparameters on held-out sets. We demonstrate through extensive
experiments the effectiveness of our approach in providing performance guarantees in practical
scenarios.
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4.1 Introduction

Online industrial systems encounter sequential decision problems as they interact with the en-
vironment and strive to improve based on the received feedback. The contextual bandit frame-
work formalizes this mechanism, and proved valuable with applications in recommender systems
(Valko et al., 2014) and clinical trials (Villar et al., 2015). It describes a game of repeated interac-
tions between a system and an environment, where the latter reveals a context that the system
interacts with, and receives a feedback in return. While the online solution to this problem
involves strategies that find an optimal trade-off between exploration and exploitation to mini-
mize the regret (Lattimore and Szepesvári, 2020), we are concerned with its offline formulation
(Swaminathan and Joachims, 2015a), which is arguably better suited for real-life applications,
where more control over the decision-maker, often coined the policy, is needed. The learning of
the policy is performed offline, based on historical data, typically obtained by logging the in-
teractions between an older version of the decision system and the environment. By leveraging
this data, our goal is to discover new strategies of greater performance.

There are two main paths to address this learning problem. The direct method (Sakhi et al.,
2020a; Jeunen and Goethals, 2021) attacks the problem by modelling the feedback and deriving
a policy according to this model. This approach can be praised for its simplicity (Brandfon-
brener et al., 2021), is well-studied in the offline setting (Nguyen-Tang et al., 2022) but will often
suffer from a bias as the feedback received is complex and the efficiency of the method directly
depends on our ability to understand the problem’s structure. We will consider the second
path of off-policy learning, or IPS: inverse propensity scoring (Horvitz and Thompson, 1952),
where we learn the policy directly from the logged data after correcting its bias with importance
sampling (Owen and Zhou, 2000). As these estimators (Bottou et al., 2013; Swaminathan and
Joachims, 2015b) can suffer from a variance problem as we drift away from the logging policy,
the literature gave birth to different learning principles (Swaminathan and Joachims, 2015a;
Ma et al., 2019; London and Sandler, 2019; Faury et al., 2020) motivating penalizations toward
the logging policy. These principles are inspired by generalization bounds, but introduce a hy-
perparameter λ to either replace intractable quantities (Swaminathan and Joachims, 2015a) or
to tighten a potentially vacuous bound (London and Sandler, 2019). These approaches require
tuning λ on a held-out set and sometimes fail at improving the previous decision system (London
and Sandler, 2019; Chen et al., 2019b). In this chapter, we analyse off-policy learning from the
PAC-Bayesian perspective (McAllester, 1998; Catoni, 2007). We aim at introducing a novel,
theoretically-grounded approach, based on the direct optimization of newly derived tight gen-
eralization bounds, to obtain guaranteed improvement of the previous system offline, without
the need for held-out sets nor hyperparameter tuning. We show that our approach is perfectly
suited to this framework, as it naturally incorporates information about the old decision system
and can confidently improve it.

4.2 Preliminaries

4.2.1 Setting

We use x ∈ X to denote a context and a ∈ A = [K] an action, where K denotes the number
of available actions. For a context x, each action is associated with a cost c(x, a) ∈ [−1, 0],
with the convention that better actions have smaller cost. The cost function c is unknown.
Our decision system is represented by its policy π : X → P(A) which given x ∈ X , defines a
probability distribution over the discrete action space A of size K. Assuming that the contexts
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are stochastic and follow an unknown distribution ν, we define the risk of the policy π as the
expected cost one suffers when playing actions according to π:

R(π) = Ex∼ν,a∼π(·|x) [c(x, a)] .

The learning problem is to find a policy π which minimizes the risk. This risk can be naively
estimated by deploying the policy online and gathering enough interactions to construct an
accurate estimate. Unfortunately, we do not have this luxury in most real-world problems, as
the cost of deploying bad policies can be extremely high. We can obtain instead an estimate by
exploiting the logged interactions collected by the previous system. Indeed, the previous system
is represented by a logging policy π0 (e.g a previous version of a recommender system that we
are trying to improve), which gathered interaction data of the following form:

Dn = {xi, ai ∼ π0(·|xi), ci}i∈[n] , with ci = c(xi, ai).

Given this data, one can build various estimators, with the clipped IPS Bottou et al. (2013) the
most commonly used. It is constructed based on a clipping of the importance weights or the
logging propensities to mitigate variance issues (Bottou et al., 2013). We are more interested in
clipping the logging probabilities, as we need objectives that are linear in the policy π for our
study. The cIPS estimator is given by:

R̂
τ
n(π) = 1

n

n∑︂
i=1

π(ai|xi)
max{π0(ai|xi), τ}

ci (4.1)

with τ ∈ [0, 1] being the clipping factor. Choosing τ ≪ 1 reduces the bias of cIPS. We recover
the classical IPS estimator (Horvitz and Thompson, 1952) (unbiased under mild conditions) by
taking τ = 0. Another estimator with better statistical properties is the doubly robust estimator
(Ben-Tal et al., 2013), which uses the importance weights as control variates to reduce further
the variance of the cIPS estimators. This estimator is asymptotically optimal (Farajtabar et al.,
2018) (in terms of variance) amongst the class of unbiased and consistent off-policy estimators.

We consider a simplified version of this estimator, which replaces the use of a model ĉ of the
cost by one parameter ξ ∈ [−1, 0] that can be chosen freely. We define the control variate clipped
IPS, or cvcIPS as follows:

R̂
τ,ξ
n (π) = ξ + 1

n

n∑︂
i=1

π(ai|xi)
max{π0(ai|xi), τ}

(ci − ξ). (4.2)

The cvcIPS estimator can be seen as a special case of the doubly robust estimator when the cost
model ĉ = ξ is constant and τ = 0. cIPS is recovered by setting ξ = 0. This simple estimator is
deeply connected to the SNIPS estimator (Swaminathan and Joachims, 2015b) and was shown
to be more suited to off-policy learning as it mitigates the problem of propensity overfitting
(Joachims et al., 2018).

4.2.2 Related Work: Learning Principles

The literature so far has focused on deriving new principles to learn policies with good online
performance. The first line of work in this direction is CRM: Counterfactual Risk minimization
Swaminathan and Joachims (2015a) which adopted SVP: Sample Variance Penalization Maurer
and Pontil (2009) to favour policies with small empirical risk and controlled variance. The
intuition behind it is that the variance of cIPS depends on the disparity between π and π0,
making the estimator unreliable when π drifts away from π0. The analysis focused on the cIPS
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estimator and used uniform bounds based on empirical Bernstein inequalities Maurer and Pontil
(2009), where intractable quantities were replaced by a tuning parameter λ, giving the following
learning objective:

arg min
π

⎧⎨⎩R̂τn(π) + λ

√︄
V̂ n(π)
n

⎫⎬⎭ (4.3)

with V̂ n(π) the empirical variance of the cIPS estimator. A majorisation-minimisation algorithm
was provided in Swaminathan and Joachims (2015a) to solve Equation (4.3) for parametrized
softmax policies. In the same spirit, Faury et al. (2020); Sakhi et al. (2020b) generalize SVP using
the distributional robustness framework, showing that the CRM principle can be retrieved with
a particular choice of the divergence and provide asymptotic coverage results of the true risk.
Their objectives are competitive with SVP while providing simple ways to scale its optimization
to large datasets.

Another line of research, closer to our work, uses PAC-Bayesian bounds to derive learning
objectives in the same fashion as Swaminathan and Joachims (2015a). Indeed, London and
Sandler (2019) introduce the Bayesian CRM, motivating the use of L2 regularization towards
the parameter θ0 of the logging policy π0. The analysis uses McAllester (2003)’s bound, is
conducted on the cIPS estimator and controls the L2 norm by a hyperparameter λ, giving the
following learning objective for parametrized softmax policies:

arg min
θ

{︂
R̂
τ
n(πθ) + λ||θ − θ0||2

}︂
. (4.4)

London and Sandler (2019) minimize a convex upper-bound of objective (4.4) (by taking a log
transform of the policy) which is amenable to stochastic optimization, giving better results than
(4.3) while scaling better to the size of the dataset.

Limitations. The principles found in the literature are mainly inspired by generalization
bounds. However, the bounds from where these principles are derived either depend on in-
tractable quantities Swaminathan and Joachims (2015a) or are not tight enough to be used
as-is London and Sandler (2019). For example, Swaminathan and Joachims (2015a) derive a
generalisation bound (see Theorem 1 in Swaminathan and Joachims (2015a)) for offline policy
learning using the notion of covering number. This introduces the complexity measure QΠ(n, γ)
that cannot be computed (even for simple policy classes) making their bound intractable. This
forces the introduction of a hyperparameter λ that needs further tuning. Unfortunately, this
approach suffers from numerous problems:

• No Theoretical Guarantees. Introducing the hyperparameter λ in Equations (4.3) and
(4.4) gives tractable objectives, but loses the theoretical guarantees given by the initial
bounds. These objectives do not necessarily cover the true risk, and optimizing them can
lead to policies worse than the logging π0. Empirical evidence can be found in Chen et al.
(2019b); London and Sandler (2019) where the SVP principle in Equation (4.3) fails to
improve on π0.

• Inconsistent Strategy. These principles were first introduced to mitigate the subop-
timality of learning with off-policy estimators, deemed untrustworthy for their potential
high variance. The strategy minimizes the objectives for different values of {λ1, ..., λm},
generating a set of policy candidates {πλ1 , ..., πλm}, from which we select the best policy
πλ∗ according to the same untrustworthy, high variance estimators on a held-out set. This
makes the selection strategy used inconsistent with what these principles are claiming to
solve.
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• Tuning requires additional care. Tuning λ needs to be done on a held-out set. This
means that we need to train multiple policies (computational burden) on a fraction of the
data (data inefficiency), and select the best policy among the candidates using off-policy
estimators (variance problem) on the held-out set.

In this chapter, we derive a coherent principle, that learns policies using all the available data and
provides guarantees on their performance, without the introduction of new hyperparameters.

4.2.3 Learning With Guaranteed Improvements

Our first concern in most applications is to improve upon the actual system π0. As Dn is
collected by π0, we have access to R(π0)1. Given a new policy π, we want to be confident that
the improvement I(π, π0) = R(π0)−R(π) is positive before deployment.

Let us suppose that we are restricted to a class of policies Π, and have access to a generalization
bound that gives the following result with high probability over draws of Dn:

R(π) ≤ UBn(π) ∀π ∈ Π.

with UBn an empirical upper bound that depends on Dn. For any π, we define the guaranteed
improvement:

GIUBn(π, π0) = R(π0)− UBn(π).

We can be sure of improvingR(π0) offline if we manage to find π ∈ Π that achieves GIUBn(π, π0) >
0 as the following result will hold with high probability:

I(π, π0) ≥ GIUBn(π, π0) > 0.

To obtain such a policy, we look for the minimizer of UBn over the class of policies Π as:

π∗
UBn ∈ arg min

π∈Π
UBn(π) = arg max

π∈Π
GIUBn(π, π0).

We define the best guaranteed risk and the best guaranteed improvement follows:

GR∗
UBn = UBn(π∗

UBn)
GI∗

UBn(π0) = R(π0)− GR∗
UBn .

A theoretically-grounded strategy to improve π0 will be to deploy π∗
UBn if we obtain a

positive guaranteed improvement GI∗
UBn(π0) > 0, otherwise continue collecting data with

the current system π0.

This strategy will always produce policies that are at least as good as π0, optimizes directly a
bound over all data and does not require held-out sets nor new hyperparameters. However, the
tightness of the bounds UBn will play an important role. Indeed, If we fix Dn and π0, GI∗

UBn(π0)
will only depend on the minimum of UBn, motivating the derivation of bounds that are tractable
and tight enough to achieve the smallest minimum possible.

In this regard, we opt for the PAC-Bayesian framework to tackle this problem as it is proven
to give tractable, non-vacuous bounds even in difficult settings (Dziugaite and Roy, 2017). Its
paradigm also fits our application, as we can incorporate information about the previous system
π0 in the form of a prior; see Alquier (2021) for a recent review.

1up to a small O(1/
√

n) approximation error.
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Contributions. We advocate for a theoretically grounded strategy that uses generalization
bound to improve π0 with guarantees. So far, the existing bounds are either intractable (Swami-
nathan and Joachims, 2015a) or can be proven to be suboptimal (London and Sandler, 2019).
In this work,

• we derive new, tractable and tight generalization bounds using the PAC-Bayesian frame-
work. These bounds are fully tractable unlike Swaminathan and Joachims (2015a)’s bound
and are tighter than London and Sandler (2019)’s bound.

• we provide a way to optimize our bounds over a particular class of policies and show
empirically that they can guarantee improvement over π0 in practical scenarios.

4.3 Motivating PAC-Bayesian tools

As previously discussed, in the contextual bandit setting, we seek a policy that minimizes the
expected cost:

R(π) = Ex∼ν,a∼π(·|x) [c(x, a)] .

The minimizer of this objective over the unrestricted space of policies is a deterministic decision
rule defined by:

∀x, a π∗(a|x) = 1[argmin
a′

c(x, a′) = a].

Given a context x, the solution will always choose the action that has the minimum cost.
However, as the function c is generally unknown, we instead learn a parametric score function
fθ ∈ FΘ = {fθ : X × [K]→ R, θ ∈ Θ} that encodes the action’s relevance to a context x. Given
a function fθ, we define the decision rule dθ by:

dθ(a|x) = 1[argmax
a′

fθ(x, a′) = a].

These parametric decisions rules will be the building blocks of our analysis. We view stochastic
policies as smoothed decision rules, with smoothness induced by distributions over the space
of score functions FΘ. Given a context x, instead of sampling an action a directly from a
distribution on the action set, we sample a function fθ from a distribution over FΘ and compute
the action as a = argmaxa′ fθ(x, a′). With this interpretation, for any distribution Q on FΘ,
the probability of an action, a ∈ A, given a context x ∈ X , is defined as the expected value of
dθ over Q, that is:

πQ(a|x) = Eθ∼Q [dθ(a|x)]

= PQ

(︃
argmax

a′
fθ(x, a′) = a

)︃
.

Policies as mixtures of decision rules. This perspective on policies was introduced in
Seldin et al. (2011) and later developed in London and Sandler (2019). Constructing policies as
mixtures of deterministic decision rules does not restrict the class of policies our study applies
to. Indeed, if the family FΘ is rich enough (e.g, neural networks), we give the following theorem
that proves that any policy π can be written as a mixture of deterministic policies.
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Theorem 4.3.1. Let us fix a policy π. Then there is a probability distribution Qπ on the
set of all functions f : X × [K]→ {0, 1} such that

∀x, a π(a|x) = Ef∼Qπ

[︃
1

[︃
argmax

a′
f(x, a′) = a

]︃]︃
.

A formal proof of Theorem 4.3.1 is given in Appendix 4.8.1. This means that adopting this
perspective on policies does not narrow the scope of our study. For a policy πQ defined by a
distribution Q over FΘ, we observe that by linearity, its true risk can be written as:

R(πQ) = Eθ∼Q[R(dθ)].

Similarly, clipping the logging propensities in our empirical estimators allows us to obtain a
linear estimator in π. For instance, we can estimate empirically the risk of the policy πQ with
cvcIPS (as it generalizes cIPS) and obtain:

R̂
τ,ξ
n (πQ) = Eθ∼Q[R̂τ,ξn (dθ)].

By linearity, one can see that both the true and empirical risk of a policy πQ can also be
interpreted as the average risk of decision rules drawn from the distribution Q. This duality is
at the heart of our analysis and paves the way nicely to the PAC-Bayesian framework, which
studies generalization properties of the average risk of randomized predictors Alquier (2021). If
we fix a reference distribution P over FΘ and define the KL divergence from P to Q as:

KL(Q||P ) =

⎧⎨⎩
∫︁

ln
{︂
dQ
dP

}︂
dQ if Q is P -continuous,

+∞ otherwise,

we can construct with the help of PAC-Bayesian tools bounds holding for the average risk of
decision rules over any distribution Q;

Eθ∼Q[R(dθ)] ≤ Eθ∼Q[R̂τ,ξn (dθ)] +O (KL(Q||P )) .

Our objective will be to find tight generalisation bounds of this form as this construction, coupled
with the linearity of our objective and estimator, allows us to obtain tight bounds holding for
any policy πQ;

R(πQ) ≤ R̂τ,ξn (πQ) +O (KL(Q||P )) .
The PAC-Bayesian Paradigm. Before we dive deeper into the analysis, we want to em-

phasize the similarities between the PAC-Bayesian paradigm and the offline contextual bandit
problem. This learning framework proceeds as follows: Given a class of functions FΘ, we fix a
prior (reference distribution) P on FΘ before seeing the data, then, we receive some data Dn
which help us learn a better distribution Q over FΘ than our reference P . With the previous
perspective on policies, the prior P , even if it can be any data-free distribution, will be our
logging policy (i.e. π0 = πP ), and we will use the data Dn to learn distribution Q, thus a new
policy πQ that improves the logging policy π0.

4.4 PAC-Bayesian Analysis

4.4.1 Bounds for clipped IPS

The clipped IPS estimator (Bottou et al., 2013) is often studied for offline policy learning (Swami-
nathan and Joachims, 2015a; London and Sandler, 2019) as it is easy to analyse, and have a
negative bias (once the cost is negative) facilitating the derivation of learning bounds.
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London and Sandler (2019) adapted McAllester (2003)’s bound to derive their learning objec-
tive. We state a slightly tighter version in Proposition 4.4.1 for the cIPS estimator. The proof of
this bound cannot be adapted naively to the cvcIPS estimator, because once ξ ̸= 0, the bias of
the estimator, an intractable quantity that depends on the unknown distribution ν, is no longer
negative and needs to be incorporated in the bound, making the bound itself intractable.

Proposition 4.4.1. Given a prior P on FΘ, τ ∈ (0, 1], δ ∈ (0, 1], the following bound
holds with probability at least 1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ R̂
τ
n(πQ) +

2(KL(Q||P ) + ln 2
√
n
δ )

τn
+

√︄
2[R̂τn(πQ) + 1

τ ](KL(Q||P ) + ln 2
√
n
δ )

τn
.

The upper bound stated in the previous proposition will be denoted by LSP,δ,τn (πQ). When
there is no ambiguity, we will also drop P, δ, τ (all fixed) and only use LSn(πQ).

McAllester (2003)’s bound can give tight results in the [0, 1]-bounded loss case when the
empirical risk is close to 0 as one obtains fast convergence rates in O(1/n). However, its use in
the case of offline contextual bandits is far from being optimal. Indeed, to achieve a fast rate in
this context, one needs R̂τn(πQ) + 1

τ ≈ 0. This is hardly achievable in practice especially when
n is large and τ ≪ 1. To defend our claim, let us suppose that for each context x, there is one
optimal action a∗

x for which c(x, a∗
x) = −1 and it is 0 otherwise. Let us write down the clipped

IPS:

R̂
τ
n(π) = 1

n

n∑︂
i=1

π(ai|xi)
max{π0(ai|xi), τ}

ci ≥ −
1
τ
.

To get equality, we need:

∀i ∈ [n], ci = −1, π0(ai|xi) ≤ τ, π(ai|xi) = 1.

If n is large, the first condition on the costs means that π0 is near optimal and the played actions
ai are optimal. For this, we get that ∀i ∈ [n], π0(ai|xi) ≈ 1. This, combined with the second
condition on π0 gives that τ ≈ 1. In practice, π0 is never the optimal policy and τ ≪ 1 which
makes the fast rate condition R̂

τ
n(π) + 1

τ ≈ 0 unachievable. In the majority of scenarios, as we
penalize πQ to stay close to π0 through the KL divergence, we will have R̂τn(πQ) ∈ [−1, 0], thus
R̂
τ
n(πQ) + 1

τ ≈
1
τ , giving a limiting behaviour:

LSn(πQ) = R̂
τ
n(πQ) +O

⎛⎝1
τ

√︄
KL(Q||P )

n

⎞⎠ .
If we want to get tighter results, we need to look for bounds with better dependencies on τ and
n. In our pursuit of a tighter bound, we derive the following result:

Proposition 4.4.2. Given a prior P on FΘ, τ ∈ (0, 1], δ ∈ (0, 1], the following bound
holds with probability at least 1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ min
λ>0

⎧⎨⎩1− exp
(︂
−τλR̂τn(πQ)− 1

n

[︂
KL(Q||P ) + ln 2

√
n
δ

]︂)︂
τ(eλ − 1)

⎫⎬⎭ .
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We will denote by CP,δ,τn (πQ) the upper bound stated in this proposition. When there is no
ambiguity, we will also drop P, δ, τ (all fixed) and only use Cn(πQ).

This is a direct application of Catoni (2007)’s bound to the bounded loss cIPS while exploiting
the fact that its bias is negative. A full derivation can be found in Appendix 4.8.2. Note that
Proposition 4.4.2 cannot be applied to the cvcIPS estimator (ξ ̸= 0) as its bias is non-negative
and intractable. To be able to measure the tightness of this bound, we estimate its limiting
behaviour to understand its dependency on τ and n. We derive in Appendix 4.8.3 the following
result:

Cn(πQ) = R̂
τ
n(πQ) +O

(︃KL(Q||P )
τn

)︃
.

This shows that Cn has a better dependency on n compared to LSn. Actually, we can prove
that Cn will always give tighter results, as the next theorem states that it is smaller than LSn
in all scenarios.

Theorem 4.4.1. For any Dn ∼ (µ, π0)n, any distributions P,Q, any τ ∈ (0, 1], δ ∈ (0, 1],
we have:

CP,δ,τn (πQ) ≤ LSP,δ,τn (πQ).

One can refer to Appendix 4.8.4 for the full proof. This result confirms that the bound given
by Proposition 4.4.2 is theoretically tighter than the bound in Proposition 4.4.1, making LSn
unusable if we seek tight guarantees on R(πQ).

4.4.2 Going beyond clipped IPS

The cvcIPS estimator in Equation (4.2) generalizes cIPS, and can behave better as it achieves
improved variance with a well-chosen ξ. To study its learning properties, we derive a novel
Bernstein-type PAC-Bayesian bound that holds for the cvcIPS estimator. Let g be the function

g : u −→ exp(u)− 1− u
u2 .

We define the conditional bias Bτn and the conditional second moment Vτn :

• Bτn(π) = 1
n

n∑︂
i=1
Eπ(.|xi)

[︃
1[π0(a|xi) < τ ]

(︃
1− π0(a|xi)

τ

)︃]︃

• Vτn(π) = 1
n

n∑︂
i=1
Eπ(.|xi)

[︃
π0(a|xi)

max{π0(a|xi), τ}2
]︃
.

With these definitions, we can state our proposition:

Proposition 4.4.3. Given a prior P on FΘ, ξ ∈ [−1, 0], τ ∈ (0, 1], δ ∈ (0, 1] and a set
of strictly positive scalars Λ = {λi}i∈[nΛ]. The following bound holds with probability at
least 1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ R̂τ,ξn (πQ)− ξBτn(πQ) +

√︄
KL(Q||P ) + ln 4

√
n
δ

2n

+ min
λ∈Λ

{︄
KL(Q||P ) + ln 2nΛ

δ

λn
+ λlξg (λbξ)Vτn(πQ)

}︄

with lξ = max
[︁
ξ2, (1 + ξ)2]︁, bξ = (1 + ξ)/τ − ξ.
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The choice of Λ as well as the full proof of a more general version of Proposition 4.4.3 can be
found in Appendix 4.8.5. The upper bound given by Proposition 4.4.3 (with P, τ, δ fixed) will
be denoted by CBBξn(πQ).

Proposition 4.4.3 covers the general cvcIPS estimator (ξ ̸= 0) and its objective is decomposable
into a sum, making it amenable to stochastic first order optimization (Robbins and Monro,
1951a). However, minimizing it requires access to the logging policy π0. This is reasonable as
π0 represents the currently deployed decision system, which we want to improve. In the limit,
the bound is estimated to behave like:

CBBξn(πQ) = R̂
τ,ξ
n (πQ)− ξBτn(πQ) +O

⎛⎝(︃ 1
2
√

2
+
√︂
lξVτn(πQ)

)︃√︄KL(Q||P )
n

⎞⎠
A derivation of this result can be found in Appendix 4.8.5. We have Vτn ≤ 1/τ and expect this
bound to give tight results when Vτn(πQ)≪ 1/τ . However, once π0 is uniform and τ = 1/K, we
can never have the previous condition as:

∀π, Vτn(π) = 1/τ.

This means that the worst regime for CBBξn is when π0 is uniform, and even in that case, this
bound should be tighter than LSn as it has a better dependency on τ . We can also get an
intuition about the impact of ξ, in particular:

• ξ = 0 recovers cIPS. This estimator has the best dependency on the bias (it nullifies the
impact of Bτn(πQ)) and the worst dependency on Vτn(πQ) as lξ = 1.

• ξ = −0.5 obtains the best dependency on Vτn(πQ) as lξ reaches its minimum and make the
bound suffer only half the bias Bτn(πQ).

• ξ = −1 in the other hand, has both the worst dependencies on the bias and the variance,
and can be considered a bad choice. Actually, this value of ξ shifts the costs to be always
positive (∀i, ci − ξ ≥ 0), which is known to make the off-policy risk estimators not suited
for policy learning (Swaminathan and Joachims, 2015a, Section 4.1).

These observations point to the importance of the choice of ξ, which can drastically change
the behaviour of the bound. We will empirically study the impact of two candidate values of
ξ ∈ {0,−0.5} on the tightness of the bound.

4.5 Restricting the Space of Policies

Our PAC-Bayesian bounds hold for any policy πQ. However, to obtain policies of practical use,
we ask for some desired properties that are summarized in the points below.

Sampling. Being able to efficiently sample actions from our policy is crucial, as the decisions
taken by our online system boil down to sampling. For a given context x, we have:

a ∼ πQ(·|x) ⇐⇒ a = argmax
a′

fθ(x, a′), θ ∼ Q.

The complexity of sampling from πQ depends on the difficulty of sampling from Q.
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Computing propensities. Computing propensities for a given pair (x, a) is essential for off-
policy evaluation. A generic estimate can be obtained by:

π̂naive
Q (a|x) = 1

S

S∑︂
i=1

dθi(a|x)

with {θi}Si=1 samples from Q. This estimator will behave badly once we deal with large action
spaces and/or high-dimensional distributions parameters. Ideally, we would like to exploit the
family of distributions Q considered and the form of the function fθ to come up with a better
behaved estimator for the propensities.

Numerical optimization. If we restrict our study to a parametric family QΨ = {Qψ, ψ ∈ Ψ},
computing gradients will be essential to minimising the bounds. For a given pair (x, a), we can
compute for any parameterized distribution Qψ the score function gradient estimator (Williams,
1992) of πQψ(a|x):

∇ψπQψ(a|x) = ∇ψEθ∼Qψ [dθ(a|x)]
= Eθ∼Qψ [dθ(a|x)∇ψ logQψ(θ)].

This gradient suffers from a variance problem (Xu et al., 2019) and we might need to choose a
specific family of distributions QΨ, or/and specify a form of fθ to obtain ψ → πQψ(a|x) with
better behaved gradients.

London and Sandler (2019) restricted their study to Mixed Logit policies (Hensher and Greene,
2003). These policies are easy to sample from, and have easy to compute propensities and
gradients. However, their learning properties are demonstrated to be suboptimal (Mei et al.,
2020a). To this end, we adopt another class of policies that we deem better behaved for our
objective. We discuss the reasons behind this choice in detail in Appendix 4.8.7.

4.5.1 Linear Independent Gaussian Policies

As mentioned previously, even if our analysis is valid for all distributions Q and any form of fθ,
we need to restrict our space to obtain practical policies. We restrict fθ to:

∀x, a fθ(x, a) = ϕ(x)T θa (4.5)

with ϕ a fixed transform2 over the contexts. This form of fθ is widely used in this context (Faury
et al., 2020; Swaminathan and Joachims, 2015a). This results in a parameter θ of dimension
d = p × K with p the dimension of the features ϕ(x) and K the number of actions. We also
restrict the family of distributions Qd+1 = {Qµ,σ = N (µ, σ2Id),µ ∈ Rd, σ > 0} to independent
Gaussians with shared scale. With these choices of fθ and Q, the induced πµ,σ, that we call LIG:
Linear Independent Gaussian policies, will provide fast sampling and easily computable
propensities and gradients. Indeed, sampling from πµ,σ will reduce to sampling from a normal
distribution θ ∼ Qµ,σ and computing a = argmaxa′ fθ(x, a′). When it comes to estimating
the propensity of a given x, we can suggest another expression of πµ,σ(a|x) that reduces the
computation to a one dimensional integral:

πµ,σ(a|x) = Eϵ∼N (0,1)

⎡⎣∏︂
a′ ̸=a

Φ
(︄
ϵ+ ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)︄⎤⎦ (4.6)

= Eϵ∼N (0,1) [Gµ,σ(ϵ, a, x)] ,
2The analysis can be naturally extended to the more general case where ϕψ is a parameterized neural network

that we learn.
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Figure 4.1: The Guaranteed Risk given by LSn optimized over Mixed Logit and LIG policy
classes while changing π0. The LSn bound fails to guarantee improvement (GR∗

LSn > R(π0)) in
all scenarios considered.

with Φ the cumulative distribution function of the standard normal. See Appendix 4.8.6 for
a full derivation. The computation of πµ,σ(a|x) becomes easier as one dimensional standard
normal integrals can be well approximated. The gradient can also be derived from this new
expression:

∇µ,σπµ,σ(a|x) = Eϵ∼N (0,1) [∇µ,σGµ,σ(ϵ, a, x)]

which can be seen as a one dimensional reparametrization trick gradient, and is known to behave
better than the score function gradient estimator (Xu et al., 2019).

Optimising the bounds. For their practicality, we focus on the class of LIG policies to
optimise the bounds. As these policies are built with Gaussian distributions Q, we also adopt
Gaussian priors3 P = N (µ0, σ0Id) to obtain an analytical expression for KL(Q||P ). We state the
bounds for LIG policies with Gaussian priors in Appendix 4.8.8. Optimizing for LIG policies,
the best guaranteed risk defined in Section 4.2.3 and the minimizer π∗

UBn for the different bounds
UBn ∈ {LSn, Cn, CBBξn} are given by:

GR∗
UBn = min

πµ,σ
UBn(πµ,σ) (4.7)

π∗
UBn = arg min

πµ,σ

UBn(πµ,σ). (4.8)

The best guaranteed improvement GI∗(π0) with these bounds follows as the difference between
R(π0) and GR∗.

4.6 Experiments
We are interested in studying the effectiveness of the proposed bounds in providing guaranteed
improvement of the previously deployed system π0 after collecting Dn.

Experimental Setup. For ease of exposition, we use a softmax logging policy of parameter
µ0 ∈ Rp×K :

πS
µ0(a|x) ∝ exp(ϕ(x)Tµ0a).

µ0a ∈ Rp is the parameter associated with action a. The policy πS
µ0 is used to generate the logged

interactions data Dn and its parameter µ0 constructs the reference distribution P = N (µ0, Id)
3The prior uses the parameters of the logging policy π0.



84 4.6. Experiments

for all bounds. We adopt the standard supervised-to-bandit conversion to generate logged data
in all of our experiments (Swaminathan and Joachims, 2015a). We use two mutliclass datasets:
FashionMNIST (Xiao et al., 2017) and EMNIST-b (Cohen et al., 2017), alongside two mul-
tilabel datasets: NUS-WIDE-128 (Chua et al., 2009) with 128-VLAD features (Spyromitros-
Xioufis et al., 2014) and Mediamill (Snoek et al., 2006) to empirically validate our findings.
The statistics of the datasets are described in Table 4.1 in Appendix 4.9.1; N the size of the
training split, K the number of actions and p the dimension of the features ϕ(x). We take a small
fraction (5%) of the training data that will only be used to learn µ0 in a supervised manner.
With µ0 obtained, we introduce an inverse temperature parameter α to our softmax logging
policy πS

αµ0 , giving a prior P = N (αµ0, Id). Changing α allows us to cover logging policies with
different entropies (α ≈ 0 gives a uniform π0 and α ≈ 1 gives a peaked π0). We run παµ0 on
the rest (nc = 0.95N) of the training data to generate Dn. For a context x and an action a, we
define in our setting the cost as c = −1[a ∈ y] with y the set of true labels for x. Learning µ0
on a split different from the one logged allows us to use the previous bounds as the parameter
µ0 does not depend on the logged interactions, making the reference distribution P data-free.
We set the allowed uncertainty to δ = 0.05. For all datasets, τ will be set to τ = 1/K to get no
bias when the logging policy is close to uniform. We use Adam (Kingma and Ba, 2014) with a
learning rate of 10−3 for 100 epochs to optimize the bounds w.r.t their parameters. More details
on the training procedure can be found in Appendix 4.9.2.

LSn is not tight enough. We demonstrated in this work that the LSn bound used by London
and Sandler (2019) is suboptimal, as it generally shows a worse dependence on τ and can be
shown to be theoretically dominated by Cn (Theorem 4.4.1). However, we want to verify if
it can guarantee the improvement of the logging policy π0. Given logged data Dn generated
by π0, we optimize the LSn bound with both the LIG (Equation (4.7)) and Mixed Logit
(Theorem 3 in London and Sandler (2019)) policy classes. In Figure 4.1, we plot R(π0), the
true risk of π0 alongside the best guaranteed risk GR∗

LSn given by the two policy classes, while
changing the logging policies π0 (going from uniform to peaked policies by changing α). We
can observe, for the two policy classes and all scenarios considered, that this bound fails at
providing guaranteed improvement as its guaranteed risk GR∗

LSn is always smaller than R(π0)
and is vacuous (GR∗

LSn ≥ 0) for some datasets. This bound is not tight enough to be used with
our strategy.

Cn and CBBξn do guarantee improvement. Given logged data Dn, we optimize Cn and
CBBξn for LIG policies (Equation (4.7)) and plot in Figure 4.2 the guaranteed risk GR∗, the
true risk of the minimizer R(π∗) as well as the positive guaranteed improvement by the bound
max(GI∗, 0). To answer our question, we are interested in the first row (best guaranteed risk
GR∗) and last row (best guaranteed improvement GI∗) of Figure 4.2. For the CBBξn bound,
we study particularly the two values of ξ ∈ {0,−1

2}. We can observe that contrary to LSn,
our bounds can guarantee improvement over π0 in the majority of scenarios. The Cn bound
gives great results when π0 is close to uniform (α → 0) but sometimes fails (when α → 1)
at improving the logging policy, and one can observe that in the context of FashionMNIST
and EMNIST-b. As for the CBBξn bound, we can observe that choosing ξ = −1

2 consistently
give the best results as it reduces considerably the dependency on Vτn . Note that CBBξ with
ξ = −1

2 never fails to produce guaranteed improvement across all settings. Having a uniform
logging policy π0 is the worst regime for this bound, as Vτn reaches its highest value 1/τ . This is
empirically confirmed with our experiments. We can see in Figure 4.2 that, for small values of
α, the CBBξn bound suffers the most; CBBn(ξ = 0) is always worse than Cn and CBBn(ξ = −1

2)
produces worse guarantees than Cn in the NUS-WIDE-128 dataset. Once we drift away from
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Figure 4.2: Behavior of the guaranteed risk GR∗ (↓ is better), the risk of the minimizer R(π∗)
(↓ is better) and the guaranteed improvement GI∗ (↑ is better) given by the bounds (optimized
with LIG policies) while changing π0. We can observe that the newly proposed bounds can
efficiently improve on π0, with CBBξn (ξ = −1

2) giving the best results.

uniform logging policies, the CBBξ bound, especially with ξ = −1
2 gives the best guarantees on

all the datasets considered.

Tighter bounds give the best true risk. In real-world problems, we cannot have access
to R(π∗) before deployment. In our experiments, we can compute R(π∗) on the test sets as we
have access to the true labels4. We are interested in this quantity, as we want to make sure that
the bounds giving low guaranteed risk GR∗ will produce policies π∗ with low true risk R(π∗).
Even if the limiting behaviours of the bounds give an intuition of how they compare, this will
further confirm that the gap between the bounds is not linked to constants but to quantities
valuable to learning π∗. The second row on Figure 4.2 confirms that the bounds with the best
GR∗ reliably give the best R(π∗) in all settings.

Take away. These experiments confirm that the policies π∗ obtained by optimising our newly
proposed bounds improve, with high confidence, the logging policies π0. The results also suggest
the use of the variance sensitive bound CBBn(ξ = −1/2) for its consistent results across the
different scenarios. However, if computing expectations under π0 is difficult, one can adopt Cn
as it showed great results.

4up to a small O(1/
√

nt) approximation error.



86 4.7. Conclusion

4.7 Conclusion

In this work, we introduce a new theoretically grounded strategy for offline policy optimization.
This approach is based on generalization bounds, uses all the available data and does not require
additional hyperparameters. Leveraging PAC-Bayesian tools, we provide novel generalization
bounds tight enough to make our strategy viable, giving practitioners a principled way to con-
fidently improve over the previous decision system offline. Our results can nicely be extended
to learning efficient policies over slates (Swaminathan et al., 2017) or continuous action policies
(Kallus and Zhou, 2018). We believe that our work brings us closer to offline policy learning
with online performance certificates. In the future, we would like to investigate tighter bounds
for this problem and loosen our assumptions; e.g. to remove the need for having access to the
logging policy π0.

4.8 Appendix: Technical Results

4.8.1 Policies as mixtures of deterministic decision rules

As described in the chapter, a policy π takes a context x ∈ X and defines a probability distri-
bution over the K-dimensional simplex ∆K . In our work, we reinterpret policies as mixtures of
deterministic decision rules.

Let f be the function that encodes the relevance of the action to the context x. Given a
distribution Q over the functions f ∈ FΘ = {fθ, θ ∈ Θ}, we define a policy as:

∀x, a πQ(a|x) = Ef∼Q

[︃
1

[︃
argmax

a′
f(x, a′) = a

]︃]︃
.

A natural question is: can any policy π be written in this form?
In general, the answer depends on the set FΘ = {fθ, θ ∈ Θ} we are considering. When the

class FΘ is rich enough, answer is yes, as proven by the following theorem.

Theorem 4.8.1. Let us fix a policy π. Let

G = {g : X ×A → {0, 1} such that ∀x,∃!a, g(x, a) = 1}.

Then, there is a σ-algebra S on G and a probability distribution Qπ on (G,S) such that

∀x, a π(a|x) = Ef∼Qπ

[︃
1

[︃
argmax

a′
f(x, a′) = a

]︃]︃
.

Proof. Fix a policy π. Define the set Ω = [K]X . That is, an element ω of Ω is a family of
elements of [K] indexed by X : ω = (ωx)x∈X . Define the set of cylinders

C =
{︄
A ⊂ Ω : A =

∏︂
x∈X

Ax and card({x : Ax ̸= [K]}) <∞
}︄
.

For such a set A = ∏︁
x∈X Ax we define

Pπ(A) =
∏︂

x:Ax ̸=Ω

⎡⎣ ∑︂
a∈Ax

π(a|x)

⎤⎦ .
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Note in particular that, for a fixed x ∈ X and a ∈ [K], we have

Pπ({ω ∈ Ω : ωx = a}) = π(a|x). (4.9)

Then, Kolmogorov extension theorem guarantees that there is a unique extension of Pπ to the
σ-field D generated by C, that is D = σ(C). We have thus built a probability space (Ω,D, Pπ).

Now, for any ω = (ωx)x∈X , we define the function fω : X×A → {0, 1} by fω(x, a) = 1 [ωx = a].
Define, for any C ∈ D, SC := {fω, ω ∈ C} and Qπ(SC) = Pπ(C), and finally put S = {SC , C ∈
D}. As the function F : ω ↦→ fω is a bijection from Ω to G, S is a σ-field and Qπ is a probability
distribution. We have thus equiped G with a σ-field S and a probability Qπ: (G,S, Qπ) is a
probability space. Now, we check that

Ef∼Qπ

[︃
1

[︃
argmax

a′
f(x, a′) = a

]︃]︃
= Qπ

(︃{︃
f ∈ G : argmax

a′
f(x, a′) = a

}︃)︃
= Pπ

(︃{︃
ω ∈ Ω : argmax

a′
fω(x, a′) = a

}︃)︃
= Pπ ({ω ∈ Ω : ωx = a})
= π(a|x)

thanks to (4.9). This ends the proof. ■

4.8.2 Proof of Proposition 1

Proposition 4.4.2 is a direct application of Catoni (2007)’s bound (see Theorem 3 in Letarte
et al. (2019)) to the rescaled cIPS 0 ≤ 1 + τ · R̂τn(·) ≤ 1 with deterministic decision functions dθ.

Proof. Let us fix a prior P over FΘ and τ ∈ (0, 1]. For any δ ∈ (0, 1], we have with probability
at least 1− δ over draws of Dn ∼ (ν, π0)n: for any Q that is P -continuous, any λ > 0:

1 + τE(Q,ν,π0)
[︂
R̂
τ
n(dθ)

]︂
≤ 1

(1− e−λ)

⎛⎝1− exp

⎡⎣−λ · (1 + τEQ[R̂τn(dθ)])−
KL(Q||P ) + ln 2

√
n
δ

n

⎤⎦⎞⎠ .
By linearity of the expectation and our clipped estimator R̂τn(·), we get:

1 + τ ·E(ν,π0)
[︂
R̂
τ
n(πQ)

]︂
≤ 1

(1− e−λ)

⎛⎝1− exp

⎡⎣−λ · (1 + τ · R̂τn(πQ))−
KL(Q||P ) + ln 2

√
n
δ

n

⎤⎦⎞⎠ .
Rearranging the terms gives:

E(ν,π0)
[︂
R̂
τ
n(πQ)

]︂
≤ e−λ

τ(1− e−λ)

⎛⎝1− exp

⎡⎣−λ · τ · R̂τn(πQ)−
KL(Q||P ) + ln 2

√
n
δ

n

⎤⎦⎞⎠
≤ 1
τ(eλ − 1)

⎛⎝1− exp

⎡⎣−λ · τ · R̂τn(πQ)−
KL(Q||P ) + ln 2

√
n
δ

n

⎤⎦⎞⎠ .
The last step is to exploit the fact that the bias of R̂τn(·) is negative (because the cost c ≤ 0),
we have for any π:

Ex∼ν,a∼π0(·|x)
[︂
R̂
τ
n(π)

]︂
= Ex∼ν,a∼π0(·|x)

[︃
π(a|x)

max(π0(a|x), τ)c(x, a)
]︃

≥ Ex∼ν,a∼π0(·|x)

[︃
π(a|x)
π0(a|x)c(x, a)

]︃
= R(π)
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which gives the result stated in Proposition 4.4.2 by taking the minimum over λ > 0:

R(πQ) ≤ min
λ>0

1
τ(eλ − 1)

⎛⎝1− exp

⎡⎣−λ · τ · R̂τn(πQ)−
KL(Q||P ) + ln 2

√
n
δ

n

⎤⎦⎞⎠ .
■

4.8.3 Limiting behavior of Cn
To build an intuition of the dependency of Cn on both n and τ , we can linearize the bound by
exploiting the well-known inequality 1− exp(−x) ≤ x for x ∈ [−1, 1]. This gives:

Cn(πQ) ≤ min
λ>0

λ

(eλ − 1)R̂
τ
n(πQ) +

KL(Q||P ) + ln 2
√
n
δ

τ(eλ − 1)n .

As the upper bound is a minimum over λ > 0, fixing λ = 1
50 for example still gives a valid upper

bound. This value leads to λ
(eλ−1) ≈ 1 and eλ − 1 ≈ 1

50 , giving an approximated behaviour of
the upper bound on Cn of:

Cn(πQ) ≤ R̂τn(πQ) + 50 ·
KL(Q||P ) + ln 2

√
n
δ

τn

≤ R̂τn(πQ) +O

⎛⎝KL(Q||P ) + ln 2
√
n
δ

τn

⎞⎠ .
This result shows that Cn improves the dependency on n compared to LSn.

4.8.4 Proof of Theorem 1

Proof. We fix Dn ∼ (µ, π0)n, τ ∈ (0, 1]. To prove Theorem 4.4.1, we use the equality stated in
Theorem 3 from Letarte et al. (2019) applied to the rescaled cIPS 0 ≤ L̂n(·) = 1 + τ · R̂τn(·) ≤ 1.
For any distribution P , any distribution Q that is P -continuous, δ ∈ (0, 1], we have:

sup
0≤p≤1

⎧⎨⎩p : kl(L̂n(πQ)||p) ≤
KL(Q||P ) + ln 2

√
n
δ

n

⎫⎬⎭ = 1 + τ · CP,δ,τn (πQ)

with CP,δ,τn (πQ) := min
λ>0

1− e−τλΓτn(Q,λ,δ)

τ(eλ − 1) , Γτn(Q,λ, δ) = R̂
τ
n(πQ) + KL(Q||P )+ln 2

√
n
δ

τλn and kl(q||p) =

q log( qp) + (1− q) log( 1−q
1−p), the KL divergence between two Bernoulli variables of parameters p

and q. This means that:

kl(L̂n(πQ)||1 + τ · CP,δ,τn (πQ)) ≤
KL(Q||P ) + ln 2

√
n
δ

n
.

By leveraging the following inequality: p ≤ q +
√︁

2qkl(q||p) + 2kl(q||p) for p ≤ q, we get:

1 + τCP,δ,τn (πQ) ≤ 1 + τR̂
τ
n(πQ) +

√︄
2[1 + τR̂

τ
n(πQ)](KL(Q||P ) + ln 2

√
n
δ )

n
+

2(KL(Q||P ) + ln 2
√
n
δ )

n
.

Giving the result of Theorem 4.4.1:

CP,δ,τn (πQ) ≤ R̂τn(πQ) +

√︄
2[ 1
τ + R̂

τ
n(πQ)](KL(Q||P ) + ln 2

√
n
δ )

τn
+

2(KL(Q||P ) + ln 2
√
n
δ )

τn
.

■
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4.8.5 Bernstein-Type bound beyond the i.i.d. case

xi aj
i cj

i

j ∈ {1, ..., mi}

i ∈ {1, ..., nc}

Figure 4.3: The "Multiple Interactions" Setting.

In a multitude of applications, the i.i.d. assumption made on {xi, ai, ci}i∈[n] can be violated.
Indeed, a decision system can interact with the same context xi multiples times, trying different
actions and logging the feedbacks as represented in Figure 4.3. Let mi be the number of times
the system interacted with context xi. The logged dataset in this case can be represented by

D{mi}i∈[nc]
nc =

{︂
xi, {aji , c

j
i}j∈[mi]

}︂
i∈[nc]

with nc representing the number of contexts and n = ∑︁nc
i mi the total number of datapoints.

As soon as we have an mi0 > 1, the i.i.d. assumption does not hold anymore as the samples
{xi0 , {a

j
i0
, cji0}

mi0
j=1} share the same observation xi0 and thus are dependent. In this case, the

cvcIPS estimator will be written as:

R̂
τ,ξ
n (πQ) = ξ +

nc∑︂
i=1

mi∑︂
j=1

ωτπQ(aji |xi)(c
j
i − ξ)

ncmi

We recover the i.i.d. case by taking mi = 1 ∀i. Under this weaker assumption, Catoni (2007)
or any classical PAC-Bayesian bound cannot be applied directly.

Proof of Proposition 3

In this section, we begin by stating Proposition 4.4.3 for the more general case of multiple
interactions, where we have a logged dataset D{mi}i∈[nc]

nc .
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Proposition 4.8.1. Given a prior P on FΘ, ξ ∈ [−1, 0], τ ∈ (0, 1], δ ∈ (0, 1] and a set of
strictly positive scalars Λ = {λi}i∈[nΛ]. We have with probability at least 1− δ over draws
of D{mi}i∈[nc]

nc ∼
∏︁nc
i=1(ν, πmi0 ): For any Q that is P -continuous, any λ ∈ Λ:

R(πQ) ≤ R̂τ,ξn (πQ)− ξBτnc(πQ) +

⌜⃓⃓⎷KL(Q||P ) + ln 4√
nc
δ

2nc

+
KL(Q||P ) + ln 2nλ

δ

λ
+ λlξ
nc

nc∑︂
i=1

1
minc

g

(︃
λbξ
minc

)︃
Vτ,i(πQ)

with g : u −→ exp(u)−1−u
u2 , lξ = max

(︁
ξ2, (1 + ξ)2)︁, bξ = 1+ξ

τ − ξ,

Vτ,i(π) = Eπ(.|xi)

[︃
π0(a|xi)

max(τ, π0(a|xi))2

]︃
,

Bτnc(π) = 1
nc

nc∑︂
i=1
Eπ(.|xi)

[︃
1[π0(a|xi) < τ ]

(︃
1− π0(a|xi)

τ

)︃]︃
.

We use a decomposition similar to Kuzborskij et al. (2021) and rewrite the difference R(πQ)−
R̂
τ,ξ
n (πQ) = D1(πQ) +D2(πQ) +D3(πQ) with:

D1(πQ) = R(πQ)− 1
nc

nc∑︂
i=1

R(πQ|xi)

D2(πQ) = 1
nc

nc∑︂
i=1

R(πQ|xi)−
1
nc

nc∑︂
i=1

ξ +Ea∼π0(·|xi)
[︂
ωτπQ(aji |xi)(c(a, xi)− ξ)

]︂
D3(πQ) = 1

nc

nc∑︂
i=1

ξ +Eπ0(·|xi)
[︂
ωτπQ(a|xi)(c(a, xi)− ξ)

]︂
− R̂τ,ξn (πQ).

For the first difference D1, we use McAllester (1998) PAC-Bayesian bound applied on the
shifted [0, 1]-bounded loss of 0 ≤ 1 +R(πQ|xi) ≤ 1. We get with probability at least 1− δ, For
any Q that is P -continuous:

D1(πQ) ≤

⌜⃓⃓⎷KL(Q||P ) + ln 2√
nc
δ

2nc
. (4.10)

The second difference quantifies the bias of our estimator given the contexts {xi, ..., xnc}. Even
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if we cannot compute it, we can give an upper bound for D2. We have:

D2(πQ) = 1
nc

nc∑︂
i=1

R(πQ|xi)−
1
nc

nc∑︂
i=1

ξ +Ea∼π0(·|xi)
[︂
ωτπQ(a|xi)(c(a, xi)− ξ)

]︂
= 1
nc

nc∑︂
i=1
Ea∼π0(·|xi)

[︂
(ω0
πQ

(a|xi)− ωτπQ(a|xi))(c(a, xi)− ξ)
]︂

= 1
nc

nc∑︂
i=1
Ea∼π0(·|xi)

[︃
1[π0(a|xi) < τ ](πQ(a|xi)

π0(a|xi)
− πQ(a|xi)

τ
)(c(a, xi)− ξ)

]︃

= 1
nc

nc∑︂
i=1
Ea∼πQ(·|xi)

[︃
1[π0(a|xi) < τ ](1− π0(a|xi)

τ
)(c(a, xi)− ξ)

]︃
(c ≤ 0)

≤ − ξ

nc

nc∑︂
i=1
Ea∼πQ(·|xi)

[︃
1[π0(a|xi) < τ ](1− π0(a|xi)

τ
)
]︃

= −ξBτnc(πQ).

We obtain −ξBτnc(πQ), an empirical upper bound to D2(πQ). The last step is to control the
difference D3. Before doing this, we need to state two lemmas that will help us control the
difference D3.

Lemma 4.8.1. Change of measure: Let f be a function of the parameter θ and data S,
for any distribution Q that is P continuous, for any δ ∈ (0, 1], we have with probability
1− δ :

Eθ∼Q[f(θ, S)] ≤ KL(Q||P ) + ln Ψf

δ
(4.11)

with Ψf = ESEθ∼P [ef(θ,S)].

Lemma 4.8.1 is the backbone of many PAC Bayes bounds. It is proven in many references,
see for example Alquier (2021) or Lemma 1.1.3 in Catoni (2007). We will combine it with
an inequality on the moment generating function to prove a Bernstein-like PAC-Bayes bound
(Seldin et al., 2012).

Lemma 4.8.2. Let W be a r.v with E[W 2] < ∞, we suppose that E[W ] −W ≤ B. Let
g : u −→ exp(u)−1−u

u2 , we have for all η ≥ 0:

E[exp(η(E[W ]−W )− η2g(ηB)V[W ])] ≤ 1. (4.12)

Lemma 4.8.2 is stated and proven in McDiarmid (1998). Combining both lemmas allows us
to control the difference D3 with a conditional Bernstein PAC-Bayesian bound:

Corollary 4.8.1. Conditional Bernstein PAC-Bayesian Bound: Let’s fix a λ > 0 and
a prior P , for any distribution Q that is P continuous, for any δ ∈ (0, 1], we have with
probability at least 1− δ:

D3(πQ) ≤
KL(Q||P ) + ln 1

δ

λ
+ λlξ
nc

nc∑︂
i=1

1
minc

g

(︃
λbξ
minc

)︃
Vτ,i(πQ) (4.13)

with lξ = max
(︁
ξ2, (1 + ξ)2)︁, bξ = 1+ξ

τ − ξ, V
τ,i(π) = Eπ(.|xi)

[︂
π0(a|xi)

max(τ,π0(a|xi))2

]︂
.
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Proof. Let us fix a context xi and an action aji and let θ ∼ P . We have:

Dj
i (θ) = Eπ0(·|xi)

[︂
ωτdθ(a|xi)(c(a, xi)− ξ)

]︂
− ωτdθ(a

j
i |xi)(c(a

j
i , xi)− ξ) ≤ bξ = 1 + ξ

τ
− ξ.

We fix a λ > 0 and choose:

f(θ, S) =
nc∑︂
i=1

mi∑︂
j=1

[︃
λ

minc
Dj
i (θ)− ( λ

minc
)2g

(︃
λbξ
minc

)︃
Eπ0(·|xi)[Di(θ)2]

]︃

=
nc∑︂
i=1

mi∑︂
j=1

[︂
∆j
i (θ)

]︂
.

From Lemma 2 and because the prior P does not depend on the data, we have:

Ψf = E∏︁
i
π0(·|xi)Eθ∼P [ef(θ,S)] = Eθ∼PE

∏︁
i
π0(·|xi)[e

f(θ,S)]

= Eθ∼P
∏︂
i

(Eπ0(·|xi)[e
∆0
i (θ)])mi ≤ 1.

It means that ln Ψf ≤ 0. Using this in Lemma 1, we get:

D3(πQ) ≤
KL(Q||P ) + ln 1

δ

λ
+

nc∑︂
i=1

mi∑︂
j=1

λ

(minc)2 g

(︃
λbξ
minc

)︃
Eπ0(·|xi)

[︂
Eθ∼Q[Di(θ)2]

]︂

=
KL(Q||P ) + ln 1

δ

λ
+ λ

nc

nc∑︂
i=1

1
minc

g

(︃
λbξ
minc

)︃
Eθ∼Q

[︂
Eπ0(·|xi)

[︂
Di(θ)2

]︂]︂
.

we also use the following inequality to upper bound Eπ0(·|xi)[Di(θ)2]:

Eπ0(·|xi)[Di(θ)2] ≤ Ea∼π0(·|xi)

[︃
dθ(a|xi)

max(π0(a|xi), τ)2 (c(a, xi)− ξ)2
]︃

≤ max(ξ2, (1 + ξ)2)Ea∼π0(·|xi)

[︃
dθ(a|xi)

max(π0(a|xi), τ)2

]︃
because both c, ξ ∈ [−1, 0]

= lξVτ,i(dθ).

As the quantity Vτ,i is linear in dθ, the result in Corollary 1 follows:

D3(πQ) ≤
KL(Q||P ) + ln 1

δ

λ
+ λlξ
nc

nc∑︂
i=1

1
minc

g

(︃
λbξ
minc

)︃
Vτ,i(πQ).

Finally, We take a union bound of Corollary 1 over Λ, a discrete set with cardinal nΛ, and com-
bine its result with the bound giving (4.10) through another union bound to obtain Proposition
4.8.1.

■

Choice of Λ when mi = m

When the number of interactions m is constant across all contexts, the result in Corollary 1
becomes for a fixed λ:

D3(πQ) ≤
KL(Q||P ) + ln 1

δ

λn
+ λlξg (λbξ)Vτnc(πQ)
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where Vτnc(πQ) was defined in Proposition 4.4.3. We would like to choose a λ that minimizes
the bound on D3. Unfortunately, we cannot do it because the minimizer λ∗ depends on Q.
Instead, we build an interval in which λ∗ can be found. The function g : u −→ exp(u)−1−u

u2 behaves
like exp(u)

u2 when u is big enough, meaning that we should control the values of g, and thus λ
by an upper bound. Choosing λ ≤ b = 2n

bξ
allows us to control the function g

(︂
λbξ
n

)︂
≤ g(2) ≤ 1.1.

Now that an upper bound is found, we still need to find the lowest possible value for λ∗. Of
course, choosing the interval [0, b] can be enough but we want to do more than that. λ∗ verifies
the following equality:

λ∗ =

⌜⃓⃓⃓
⎷ KL(Q||P ) + ln 1

δ
lξ
n g
(︂
λ∗bξ
n

)︂
Vτnc(πQ) + λ∗lξbξ

n2 g′
(︂
λ∗bξ
n

)︂
Vτnc(πQ)

.

Let’s assume that λ⋆ ≤ b. (If not, we can still restrict to λ ∈ [a, b], with the value of a found
below.) We have that KL(Q||P ) ≥ 0, and Vτnc ≤

1
τ . As the function g is increasing and convex

(g′ increasing), we get the following inequality:

λ∗ ≥

⌜⃓⃓⎷ nτ ln 1
δ

lξg(2) + 2lξg′(2) .

Using the fact that g′(2) = 1/2 and g(2) + 1 ≤ 5/2, we get:

λ∗ ≥

⌜⃓⃓⎷ nτ ln 1
δ

lξg(2) + lξ
≥

⌜⃓⃓⎷2nτ ln 1
δ

5lξ
= a.

We now have an interval λ∗ ∈ [a, b]. One can observe that the optimal O(
√
n) ≤ λ∗ ≤ O(n).

We choose the set Λ to be a linear discretization of [a, b] giving Λ = {a+ i(b− a)}i∈[nΛ].

Dependencies of the bound

The bound for the i.i.d. case can be written as:

R(πQ) ≤ R̂τ,ξn (πQ)− ξBτn(πQ) +

√︄
KL(Q||P ) + ln 4

√
n
δ

2n + min
λ∈Λ

{︄
KL(Q||P ) + ln 2nΛ

δ

λn
+ λlξg (λbξ)Vτn(πQ)

}︄

with Λ = {ab + i (b−a)
n }i∈[nΛ]. We know that the biggest value of λ ∈ Λ is b = 2

bξ
and that

g(2) ≈ 1. This gives:

min
λ∈Λ

A(λ) = min
λ∈Λ

KL(Q||P ) + ln 2nΛ
δ

λn
+ λlξg (λbξ)Vτn(πQ)

≤ min
λ∈Λ

KL(Q||P ) + ln 2nΛ
δ

λn
+ λlξg (2)Vτn(πQ)

⪅ min
λ∈R+

KL(Q||P ) + ln 2nΛ
δ

λn
+ λlξVτn(πQ) = 2

⌜⃓⃓⎷ lξVτn(πQ)
(︂
KL(Q||P ) + ln 2nΛ

δ

)︂
n

We make the hypothesis that our Λ is well built to have a value of λ close to the true minimizer
most of the time. This gives the following limiting behavior:

CBBξn(πQ) = R̂
τ,ξ
n (πQ)− ξBτn(πQ) +O

⎛⎝(︃ 1
2
√

2
+
√︂
lξVτn(πQ)

)︃√︄KL(Q||P )
n

⎞⎠ .
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4.8.6 Linear Independent Gaussian Policies

To obtain these policies, we restrict fθ to:

∀x, a fθ(x, a) = ϕ(x)T θa (4.14)

with ϕ a fixed transform over the contexts. This results in a parameter θ of dimension d = p×K
with p the dimension of the features ϕ(x) and K the number of actions. We also restrict the
family of distributions Qd+1 = {Qµ,σ = N (µ, σ2Id),µ ∈ Rd, σ > 0} to independent Gaussians
with shared scale.

Estimating the propensity of a given x reduces the computation to a one dimensional integral:

πµ,σ(a|x) = Eϵ∼N (0,1)

⎡⎣∏︂
a′ ̸=a

Φ
(︄
ϵ+ ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)︄⎤⎦
with Φ the cumulative distribution function of the standard normal.

Proof. We rewrite the definition of πµ,σ as a probability and exploit the stability of the Gaussian
distribution.

πµ,σ(a|x) = Eθ∼N (µ,σ2Id)
[︂
1[argmaxa′ ϕ(x)T θa′ = a]

]︂
= ES∼N (ϕ(x)Tµ,σ2||ϕ(x)||2IK) [1[argmaxa′ Sa′ = a]]
= PS∼N (ϕ(x)Tµ,σ2||ϕ(x)||2IK) (argmaxa′ Sa′ = a)
= PS∼N (ϕ(x)Tµ,σ2||ϕ(x)||2IK)

(︁
Sa ≥ Sa′ , ∀a′ ̸= a

)︁
= PZ∼N (0K ,IK)

(︄
Za + ϕ(x)T (µa − µa′)

σ||ϕ(x)|| ≥ Za′ , ∀a′ ̸= a

)︄
.

We condition on Za to obtain independent events as for all a, the random variables Za are
independent.

πµ,σ(a|x) = PZ∼N (0K ,IK)

(︄
Za + ϕ(x)T (µa − µa′)

σ||ϕ(x)|| ≥ Za′ , ∀a′ ̸= a

)︄

= Eϵ∼N (0,1)

[︄
PZ∼N (0K ,IK)

(︄
ϵ+ ϕ(x)T (µa − µa′)

σ||ϕ(x)|| ≥ Za′ , ∀a′ ̸= a|Za = ϵ

)︄]︄

= Eϵ∼N (0,1)

⎡⎣∏︂
a′ ̸=a

Pz∼N (0,1)

(︄
z ≤ ϵ+ ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)︄⎤⎦
= Eϵ∼N (0,1)

⎡⎣∏︂
a′ ̸=a

Φ
(︄
ϵ+ ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)︄⎤⎦ .
■

4.8.7 Why not Mixed Logit Policies?

London and Sandler (2019) used in their analysis Mixed Logit Policies to derive a learning
principle for softmax policies. Mixed Logit Policies can be written as:

∀(a, x), πML
µ,σ (a|x) = Eθ∼N (µ,σ2Id)[softmaxK(ϕ(x)T θa)].

Even if these policies can behave properly (reparametrization trick gradient for instance),
they are not ideal for learning with guarantees in the context of Offline Contextual Bandits.
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Indeed, we know that the solution of the contextual bandit problem is a deterministic decision
function d∗, always choosing the action with the minimum cost. Let us suppose that there exists
a parameter µ∗ such that:

∀(a, x), d∗(a|x) = dµ∗(a|x) = 1[argmaxa′∈A(ϕ(x)Tµ∗
a′) = a]

We also suppose that we have access to its parameter µ∗. To recover dµ∗ with LIG policies, we
need to have the scale parameter small enough σ → 0 as :

πµ∗,σ(a|x) −−−→
σ→0

dµ∗(a|x) ∀x, a.

For Mixed Logit policies however, having σ → 0 is not enough as:

πML
µ∗,σ(a|x) −−−→

σ→0
softmaxK(ϕ(x)Tµ∗

a) ∀x, a.

One should also increase the norm of µ∗ enough (||µ∗|| → ∞) to obtain dµ∗ .
Let us suppose that we start with the same prior P = N (µ∗, Id) in our bounds. The price

to pay in terms of complexity KL(Qµ,σ||P ) to obtain the solution; a deterministic policy, will
be much higher for Mixed Logit policies (as we should decrease σ and increase the norm of
µ) than LIG policies (only decrease σ and let µ = µ∗). This means that for a fixed number of
samples n, we will always get better results with LIG policies than Mixed Logit policies.

4.8.8 The bounds stated for LIG policies

In this section, we want to state the previous Propositions 4.4.2 and 4.4.3 (valid for any policy)
for the class of LIG policies. This class of policies uses Independent Gaussian distributions
with shared scale so we will begin by stating the KL divergence between P = N (µ0, σ0Id) and
Q = N (µ, σId). We have:

KL(Q||P ) = D[µ, σ,µ0, σ0] = ||µ− µ0||2

2σ2
0

+ d

(︄
σ2

2σ2
0

+ ln σ0
σ
− 1

2

)︄
.

We write the bounds slightly differently by taking the minimimum over the considered λ (if
the bound is true for any λ, it is true for the minimum of the bound over λ). We state Catoni’s
bound for LIG policies:

Corollary 4.8.2. LIG policies with Catoni’s bound
Given a Gaussian prior P = N (µ0, σ0Id), τ ∈ (0, 1], δ ∈ (0, 1]. We have with probability
1− δ over draws of Dn ∼ (ν, π0)n:
∀µ ∈ Rd, σ > 0:

R(πµ,σ) ≤ min
λ>0

1
τ(eλ − 1)

⎡⎣1− exp

⎛⎝−τλR̂τn(πµ,σ) +
D[µ, σ,µ0, σ0] + ln 2

√
n
δ

n

⎞⎠⎤⎦
We call Cn(πµ,σ) the upper bound stated by this corollary. We get:

GR∗
C = min

πµ,σ
Cn(πµ,σ)

π∗
C = arg min

πµ,σ

Cn(πµ,σ)

GI∗
C = R(π0)− GR∗

C .
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Similarly, we state our variance sensitive bound for LIG policies:

Corollary 4.8.3. LIG policies variance sensitive bound. Given a Gaussian prior P =
N (µ0, σ0Id), ξ ∈ [−1, 0], τ ∈ (0, 1], δ ∈ (0, 1] and a set of strictly positive scalars Λ =
{λi}i∈[nΛ]. We have with probability at least 1− δ over draws of Dmnc ∼

∏︁nc
i=1(ν, πm0 ):

∀µ ∈ Rd, σ > 0:
R(πµ,σ) ≤ R̂τ,ξn (πµ,σ)− ξBτnc(πµ,σ) +

⌜⃓⃓⎷D[µ, σ,µ0, σ0] + ln 4√
nc
δ

2nc

+ min
λ∈Λ

{︄
D[µ, σ,µ0, σ0] + ln 2nλ

δ

λ
+ λlξ

n
g

(︃
λbξ
n

)︃
Vτnc(πµ,σ)

}︄

We call CBBn(πµ,σ, ξ,m) the upper bound stated by this corollary. Similarly we get:

GR∗
CBB(ξ,m) = min

πµ,σ
CBBn(πµ,σ, ξ,m)

π∗
CBB(ξ,m) = arg min

πµ,σ

CBBn(πµ,σ, ξ,m)

GI∗
CBB(ξ,m) = R(π0)− GR∗

CBB(ξ,m).

4.9 Appendix: Additional Experiments

4.9.1 Detailed Statistics of the dataset splits used

As described in the experiments section, we use the supervised to bandit conversion to simulate
logged data as previously adopted in the majority of the literature (Swaminathan and Joachims,
2015a,b; London and Sandler, 2019; Faury et al., 2020; Sakhi et al., 2020b). In this procedure,
you need a split Dl (of size nl) to train the logging policy π0, another split Dc (of size nc) to
generate the logging feedback with π0, and finally a test split Dtest (of size ntest) to compute
the true risk R(π) of any policy π. In our experiments, we split the training split Dtrain (of size
N) of the four datasets considered into Dl (nl = 0.05N) and Dc (nc = 0.95N) and use their test
split Dtest. The detailed statistics of the different splits can be found in Table 4.1.

Datasets N nl nc ntest K p

FashionMNIST 60 000 3000 57 000 10 000 10 784
EMNIST-b 112 800 5640 107 160 18 800 47 784

NUS-WIDE-128 161 789 8089 153 700 107 859 81 128
Mediamill 30 993 1549 29 444 12 914 101 120

Table 4.1: Detailed statistics of the splits used.

4.9.2 Detailed hyperparameters

Contrary to previous work, our method does not require tuning any loss function hyperparameter
over a hold out set. We do however need to choose parameters to optimize the policies.

The logging policy. π0 is trained on Dl (supervised manner) with the following parameters:

• We use L2 regularization of 10−6. This is used to prevent the logging policy π0 from being
close to deterministic, allowing efficient learning with importance sampling.

• We use Adam (Kingma and Ba, 2014) with a learning rate of 10−1 for 10 epochs.
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Figure 4.4: Behavior of the guaranteed risk GR∗ (↓ is better), the risk of the minimizer R(π∗)
(↓ is better) and the guaranteed improvement GI∗ (↑ is better) given by changing the number
of interactions m and π0.

Optimising the bounds. All the bounds are optimized with the following parameters:

• The clipping parameter τ is fixed to 1/K with K the action size of the dataset.

• We use Adam (Kingma and Ba, 2014) with a learning rate of 10−3 for 100 epochs.

• For the bounds optimized over LIG policies, the gradient is a one dimensional integral,
and is approximated using S = 32 samples.

πµ,σ(a|x) = Eϵ∼N (0,1)

⎡⎣∏︂
a′ ̸=a

Φ
(︄
ϵ+ ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)︄⎤⎦
≈ 1
S

S∑︂
s=1

∏︂
a′ ̸=a

Φ
(︄
ϵs + ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)︄
ϵ1, ..., ϵS ∼ N (0, 1).

• For Cn, we treat λ as a parameter and we look for the minimum of the bound with respect
to µ, σ and λ.

• For CBBξn, we choose the size of Λ to be nΛ = 100 and for each iteration j of the opti-
mization procedure, we take λj ∈ Λ that minimizes the estimated bound and proceed to
compute the gradient w.r.t µ and σ with λj .
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4.9.3 Impact of changing the number of interactions m

The bound proposed in Proposition 4.4.3 can work beyond the i.i.d. setting and applies to the
"multiple interactions" case. Intuitively, adding more interactions with the contexts x allows
us to reduce the uncertainty on the cost and thus learn better policies. We want to explore
this in Figure 4.4. We construct with π0 a logged dataset with the number of interactions
m ∈ {1, 2, 4, 8} using both FashionMNIST and Mediamill datasets. Once m > 1, we can
only use the CBB bound. We stick to the values of ξ previously used ξ ∈ {0,−1/2}.

We can observe that increasing the number of m consistently give better results, in terms of
guarantees and also the quality of the policy π∗ minimizing the bounds. We can also observe
that even though m reduces the gap between the two estimators (ξ = 0 compared to ξ = −1/2),
the cvcIPS estimator with ξ = −1/2 still gives the best results.



Chapter 5

A Better PAC-Bayesian Analysis of
Offline Learning

In this chapter, we aim at refining the PAC-Bayesian analysis provided earlier. Instead of
adapting known proof techniques to our estimators, we want to derive bounds that exploit the
structure of the problem while reducing the requirements to use the bounds. Our previous
analysis relied on risk estimators that are bounded, assumed the knowledge of the structure of
π0 to build a prior (πP = π0), and also assumed the full access to the logging policy π0 to
compute both the bias and the variance. We provide new, fully empirical bounds, based on a
more accurate analysis of the risk, that combined with a novel procedure, gets completely rid of
the assumption of accessing π0 or knowing its structure.
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100 5.1. Introduction

5.1 Introduction

In the previous chapter, we advocated for a new, theoretically grounded strategy to confidently
improve on the logging policy π0 based on tight generalization bounds. We motivated PAC-
Bayesian theory as a good candidate to answer this need. The whole paradigm behind off-policy
learning resembles the PAC-Bayesian one; we start from a distribution and want to improve it
with data-driven methods. In addition, PAC-Bayes is proven to give tight generalization bounds
that can be used in our framework to give guarantees about the policy we want to deploy.
Our previous analysis demonstrated the effectiveness of our approach in multiple scenarios; our
bounds guarantee improvement over π0, providing an optimization algorithm that scales to large
datasets and requires no hyperparameter tuning. Our strongest results came from a variance
sensitive bound that needs full access to the currently deployed policy π0. We recall the bound
in the following. Let g be the function:

g : u −→ exp(u)− 1− u
u2 .

We recall the expressions of the control variate risk R̂
τ,ξ
n , the conditional bias Bτn and the con-

ditional second moment Vτn :

• R̂
τ,ξ
n (π) = ξ + 1

n

n∑︂
i=1

π(ai|xi)
max{π0(ai|xi), τ}

(ci − ξ)

• Bτn(π) = 1
n

n∑︂
i=1
Eπ(.|xi)

[︃
1[π0(a|xi) < τ ]

(︃
1− π0(a|xi)

τ

)︃]︃

• Vτn(π) = 1
n

n∑︂
i=1
Eπ(.|xi)

[︃
π0(a|xi)

max{π0(a|xi), τ}2
]︃
.

With these definitions, we can state the strongest result of the previous chapter:

Proposition 5.1.1. Given a prior P on FΘ, ξ ∈ [−1, 0], τ ∈ (0, 1], δ ∈ (0, 1] and a set
of strictly positive scalars Λ = {λi}i∈[nΛ]. The following bound holds with probability at
least 1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ R̂τ,ξn (πQ)− ξBτn(πQ) +

√︄
KL(Q||P ) + ln 4

√
n
δ

2n

+ min
λ∈Λ

{︄
KL(Q||P ) + ln 2nΛ

δ

λn
+ λlξg (λbξ)Vτn(πQ)

}︄

with lξ = max
[︁
ξ2, (1 + ξ)2]︁, bξ = (1 + ξ)/τ − ξ.

To make the use of this bound viable, we need to define a good prior P and be able to compute
both the conditional bias and the conditional second moment. This requires the access to π0 as:

• The prior P was fixed to the distribution that induced π0 (πP = π0). As we are using this
prior, the procedure assumed access to P and thus π0.

• The values of the probabilities of π0 on all actions is needed to compute both the conditional
bias and the conditional second moment. This requires full access to π0.
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Contributions. In some applications, π0 has a simple structure satisfying these assumptions.
In general, especially for complex decision systems, the policy deployed π0 is a combination of
different policies that are called upon depending on the context, making the reduction of this
potentially complicated system to a simple structure (find a P that gives πP = π0) infeasible. In
other applications, even computing the probabilities of π0 is difficult, which makes the previous
assumption hard to satisfy. In this chapter, we want to provide practitioners with a procedure
that keeps the same or even improves the guarantees given by this bound while loosening the
requirement of access to π0. To achieve this:

• We derive a new family of fully empirical PAC-Bayesian bounds that is tighter than Propo-
sition 5.1.1 with no quantity requiring access to π0.

• We define a procedure that allows the use of data-dependent priors P , which alleviates
the need to fix the prior to the logging policy π0.

• We demonstrate empirically the superiority of this procedure in providing better policies
while loosening the assumptions.

5.2 A Family of Estimators
In the offline learning paradigm, we start by defining the estimator of the risk that is suitable
for our analysis. In this chapter, our purpose is to study a family of risk estimators that can
cover various well-known estimators for our analysis to be as general as possible. Let us recall
the assumption on the cost gathered;

∀(x, a) c(a, x) ∈ [−1, 0].

This is easily obtained as the cost can be rescaled within this interval. Given the logged inter-
actions Dn of our logging policy π0, and for any policy π, we define the following estimator of
the risk R̂pn(π), with the help of a function p : R→ R as:

R̂
p
n(π) = 1

n

n∑︂
i=1

π(ai|xi)
p(π0(ai|xi))

ci

with the only condition on p to be {C1 : ∀x, p(x) ≥ x}. This condition helps us control the
impact of actions with low probabilities under π0. This risk estimator encompasses well known
risk estimators depending on the choice of p, we can recover:

∀x, p(x) = x =⇒ IPS estimator (Horvitz and Thompson, 1952)
∀x, p(x) = max(τ, x), τ ∈ [0, 1] =⇒ cIPS estimator (Bottou et al., 2013)
∀x, p(x) = xα, α ∈ [0, 1] =⇒ Exponential Smoothing IPS estimator (Aouali et al., 2023a)
∀x, p(x) = x+ γ, γ ≥ 0 =⇒ Linear Smoothing IPS estimator (Kuzborskij et al., 2021)

With this condition alone, our estimator is not necessarily bounded (from below) and needs
careful treatment, as common PAC-Bayesian tools cannot be easily adapted. The condition
C1 however results in risk estimators with a positive bias, which is a needed property for our
analysis. For a policy π, let Rp(π) be the expectation of our estimator:

Rp(π) = Ex∼ν,a∼π0(·|x)
[︂
R̂
p
n(π)

]︂
.

We have the following properties:
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Proposition 5.2.1. The bias of the estimator:
The bias of this estimator writes:

Bp(π) = Rp(π)−R(π)

= Ex∼ν,a∼π0(·|x)

[︃(︃ 1
p(π0(a|x)) −

1
π0(a|x)

)︃
π(a|x)c(a, x)

]︃
≥ 0

The bias is positive, thus we have:

R(π) ≤ Rp(π), (5.1)

recovering equality when using the IPS estimator, i.e. p : x→ x the identity function.

Equation 5.1 is a needed inequality for our analysis in order to obtain upper bounds on the
true risk. Indeed, the idea is that any upper bound on the expectation of our estimator is an
upper bound on the true risk. This enables us to focus on the analysis of the expectation of our
estimator. With the estimator chosen, we provide our first result in the next section.

5.3 A Refined PAC-Bayesian Analysis

Now that we defined the estimator covered by our study, we attack the problem of deriving
generalization bounds. We begin by stating the important change of measure lemma:

Lemma 5.3.1. Change of measure:
Let f be a function of the parameter θ and data Dn, for any distribution Q that is P

continuous, for any δ ∈ (0, 1], we have with probability 1− δ :

Eθ∼Q[f(θ,Dn)] ≤ KL(Q||P ) + ln Ψf

δ
(5.2)

with Ψf = EDnEθ∼P [ef(θ,Dn)].

Lemma 5.3.1 is the backbone of a multitude of PAC-Bayesian bounds. With this result, the
recipe of constructing a generalisation bound reduces to choosing an adequate function f for
which we can control Ψf . We want to construct fully empirical generalisation bounds that are
tight enough to compete with our previous results. We derive a novel, empirical high order
bound expressed in the following:

Proposition 5.3.1. Empirical High Order PAC-Bayes bound:
Let K ≥ 1. Given a prior P on FΘ, δ ∈ (0, 1] and λ > 0, the following bound holds with

probability at least 1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ R̂pn(πQ) +
KL(Q||P ) + ln 1

δ

λn
+

2K∑︂
k=2

λk−1

k
M̂p,k

n (πQ) (5.3)

with:
M̂p,k

n (πQ) = 1
n

n∑︂
i=1

πQ(ai|xi)
p(π0(ai|xi))k

cki .
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Proof. Let K ≥ 1 and fK be the following function:

fK(x) =
log(1 + x)−∑︁K

k=1
(−1)k−1

k xk

(−1)KxK+1

We begin by demonstrating that fK is a decreasing function in R+. Let x ∈ R+, we have the
following identity holding ∀t > 0 and ∀n ≥ 0:

1 + (−1)ntn+1

1 + t
=

n∑︂
k=0

(−1)ktk ⇐⇒ 1
1 + t

=
n∑︂
k=0

(−1)ktk + (−1)n+1tn+1

1 + t
.

Combined with the integral form of the log:

log(1 + x) =
∫︂ x

0

1
1 + t

dt,

we show that the numerator is equal to:

log(1 + x)−
K∑︂
k=1

(−1)k−1

k
xk = (−1)K

∫︂ x

0

tK

1 + t
dt

which rewrites the function fK to:

fK(x) = 1
xK+1

∫︂ x

0

tK

1 + t
dt.

Using the change of variable t = ux, we obtain:

fK(x) =
∫︂ 1

0

uK

1 + xu
dt

which is clearly decreasing for x ∈ R+. Now for K ≥ 1, we have for a positive random variable
X ≥ 0 and λ > 0:

f2K−1(0) = 1
2K ≥ f2K−1(λX) = −

log(1 + λX)−∑︁2K−1
k=1

(−1)k−1

k (λX)k

(λX)2K

which is equivalent to:

2K∑︂
k=1

(−1)k−1

k
(λX)k ≤ log(1 + λX) ⇐⇒ exp

(︄ 2K∑︂
k=1

(−1)k−1

k
(λX)k

)︄
≤ 1 + λX

=⇒ E

[︄
exp

(︄ 2K∑︂
k=1

(−1)k−1

k
(λX)k

)︄]︄
≤ 1 +E [λX]

=⇒ E

[︄
exp

(︄ 2K∑︂
k=1

(−1)k−1

k
(λX)k

)︄]︄
≤ exp (E [λX])

=⇒ E

[︄
exp

(︄
λ(X −E [X]) +

2K∑︂
k=2

(−1)k−1

k
(λX)k

)︄]︄
≤ 1.

For any X ≤ 0, we can inject −X ≥ 0 to obtain:

∀X ≤ 0, E

[︄
exp

(︄
λ(E [X]−X)−

2K∑︂
k=2

1
k

(λX)k
)︄]︄
≤ 1. (5.4)
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Let λ > 0. The adequate function f we are going to use in combination with Lemma 5.3.1 is:

f(θ,Dn) =
n∑︂
i=1

λ

(︃
Rp(dθ)−

dθ(ai|xi)
p(π0(ai|xi))

ci

)︃
−

2K∑︂
k=2

1
k

(︃
λ

dθ(ai|xi)
p(π0(ai|xi))

ci

)︃k

=
n∑︂
i=1

λ

(︃
Rp(dθ)−

dθ(ai|xi)
p(π0(ai|xi))

ci

)︃
−

2K∑︂
k=2

dθ(ai|xi)
k

(︃
λ

p(π0(ai|xi))
ci

)︃k
.

By exploiting the i.i.d. nature of the data and exchanging the order of expectations (P is
independent of Dn), we can naturally prove using (5.4) that:

ψf = EP

[︄
n∏︂
i=1
E

[︄
exp

(︄
λ

(︃
Rp(dθ)−

dθ(ai|xi)
p(π0(ai|xi))

ci

)︃
−

2K∑︂
k=2

1
k

(︃
λ

dθ(ai|xi)
p(π0(ai|xi))

ci

)︃k)︄]︄]︄
≤ 1,

as we have :
dθ(ai|xi)

p(π0(ai|xi))
ci ≤ 0 ∀i.

Injecting ψf in Lemma 5.3.1, rearranging terms and using (5.1) concludes the proof. ■

To the best of our knowledge, this is the first time an empirical, high order PAC-Bayes bound
was derived. The particularity of this bound is that it does not necessarily suppose the existence
of the moments to be valid, as all quantities are finite sums. The value of K determines which
(even) moment we want to stop. At a first glance and for some particular values of λ, it seems
that increasing K makes the bound tighter but increases the computation needed to evaluate
the bound. We prove the following result linking the value of K to the tightness of the bound:

Proposition 5.3.2. Impact of K on the tightness of the bound:
Let P a prior, Q a distribution on FΘ, δ ∈ (0, 1] and a λ > 0. For any K ≥ 1, let
BK(πQ) be defined as:

BK(πQ) = R̂
p
n(πQ) +

KL(Q||P ) + ln 1
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂p,k

n (πQ).

Then:

λ < min
i∈[n]

{︃(︃2K + 2
2K + 1

)︃
p(π0(ai|xi))
|ci|

}︃
=⇒ BK+1(πQ) < BK(πQ) (5.5)

which implies that:

λ < min
i∈[n]

{︃
p(π0(ai|xi))
|ci|

}︃
=⇒ BK(πQ) is a strictly decreasing function w.r.t K.

Proof. We want to prove the implication (5.5) from which the condition on the decreasing nature
of our bound will follow. Indeed, Let us suppose that (5.5) is true, we have:

λ < min
i∈[n]

{︃
p(π0(ai|xi))
|ci|

}︃
=⇒ ∀K ≥ 1, λ < min

i∈[n]

{︃(︃2K + 2
2K + 1

)︃
p(π0(ai|xi))
|ci|

}︃
=⇒ ∀K ≥ 1, BK+1(πQ) < BK(πQ) (Using (5.5))
=⇒ BK(πQ) is a strictly decreasing function w.r.t K.
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Now let us prove the implication in (5.5). Let pi = π0(ai|xi), we have for any K ≥ 1:

BK+1(πQ) < BK(πQ) ⇐⇒
2K+2∑︂

k=2K+1

λk−1

k
M̂p,k

n (πQ) ≤ 0

⇐⇒ λ2K

n

n∑︂
i=1

πQ(ai|xi)
(︃
ci
pi

)︃2K+1 (︃ 1
2K + 1 + λci

(2K + 2)pi

)︃
≤ 0

As ci ≤ 0, we can assure this inequality by choosing a λ that verifies:

∀i ∈ [n], λ <

{︃(︃2K + 2
2K + 1

)︃
pi
|ci|

}︃
⇐⇒ λ < min

i∈[n]

{︃(︃2K + 2
2K + 1

)︃
pi
|ci|

}︃
which concludes the proof of (5.5). ■

From this proposition, we obtain a sufficient condition for which our bound gets tighter with
K. This condition implies a hard constraint on λ, being smaller than a data-dependent value.
This result, even if it is weak, may give us some insight into the bound behaves. One can deduce
that the bigger K, the harder the constraint on λ; for example, for any πQ, it is easier to have
B2(πQ) < B1(πQ) than B100(πQ) < B99(πQ). A bigger λ, in the other hand, means that we can
move even further from the prior. This can guide us towards the following; If our prior is close
to the optimal distribution Q, using a big K can be beneficial, in the other hand, if our prior is
far from the optimal solution, a smaller K might be better. In practice, we do not know how
close we are to the optimal policy, and we do not know if the best values for λ will verify the
conditions in Proposition 5.3.2. This means that determining the tightest bound w.r.t K will
depend on the application. To this end, let us study two particular cases of this bound; its value
when K = 1 and when K →∞.

Empirical Second Moment Bound. With K = 1, we obtain the following:

Corollary 5.3.1. Second Moment Upper bound:
Given a prior P on FΘ, δ ∈ (0, 1] and λ > 0. The following bound holds with probability

at least 1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ R̂pn(πQ) +
KL(Q||P ) + ln 1

δ

λn
+ λ

2 Ŝ
p
n(πQ) (5.6)

with:
Ŝpn(πQ) = 1

n

n∑︂
i=1

πQ(ai|xi)
p(π0(ai|xi))2 c

2
i

With K = 1, our bound looks similar to the one derived in Mhammedi et al. (2019). However,
our result is slightly tighter as it drops the multiplicative factor on the second moment. We
can compare this result to previously derived PAC-Bayesian bounds for off-policy learning. We
start by writing down the conditional Bernstein bound of Proposition 5.1.1 for the (linear) cIPS
(p : x→ max(x, τ)). For a policy πQ and a λ > 0, we have:

R(πQ) ≤ R̂τn(πQ) +

√︄
KL(Q||P ) + ln 4

√
n
δ

2n +
KL(Q||P ) + ln 2

δ

λn
+ λg (λ/τ)Vτn(πQ). (C-Bern)

R(πQ) ≤ R̂τn(πQ) +
KL(Q||P ) + ln 1

δ

λn
+ λ

2 Ŝ
τ
n(πQ). (K = 1)
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We can observe that the previously derived conditional Bernstein bound has several terms that
make it less tight:

• It has an additional, strictly positive square root KL divergence term.

• The multiplicative factor g(λ/τ) is always bigger than 1/2, and diverges when τ → 0.

• With enough data (n≫ 1), we also have:

Ŝτn(πQ) ≈ E
[︃

πQ(a|x)
max{π0(a|x), τ}2 c(a, x)2

]︃
≤ E

[︃
πQ(a|x)

max{π0(a|x), τ}2
]︃
≈ Vτn(πQ).

These observations confirm that the new bound derived with K = 1 is tighter than what
was previously proposed for cIPS, especially when n ≫ 1. As our bound can work for other
estimators, we also compare it to a recently proposed PAC-Bayes bound in Aouali et al. (2023a)
for the exponentially-smoothed estimator (p : x→ xα) with α ∈ [0, 1]:

R(πQ) ≤ R̂αn(πQ) +

√︄
KL(Q||P ) + ln 4

√
n
δ

2n +
KL(Q||P ) + ln 2

δ

λn
+ λ

2
(︂
Vαn (πQ) + Ŝαn(πQ)

)︂
.

(α-Smooth)

R(πQ) ≤ R̂αn(πQ) +
KL(Q||P ) + ln 1

δ

λn
+ λ

2 Ŝ
α
n(πQ). (K = 1)

We can clearly see that the previously proposed bound for the exponentially smoothed estimator
has two additional positive quantities that makes it less tight than our bound. In addition,
computing our bound does not rely on expectations under π0 (contrary to the previous bounds
that have Vn) which alleviates the need to access the logging policy and reduce the computations.
Another particularity of our bound is that it works for a large family of estimators, parameterized
by the function p. A natural question to ask is what is the form of p that gives the tightest
results? The answer to this question depends on the form of the bound we consider. Let us keep
focusing on the case of K = 1. We have the following result:

Proposition 5.3.3. Optimal p for K = 1:
For a fixed prior P on FΘ, δ ∈ (0, 1] and a λ > 0. The function p that minimizes the

bound for K = 1, giving the tightest result is:

∀i, pi = p(π0(ai, xi)) = max{π0(ai|xi), λ|ci|}. (5.7)

This means that when the costs are binary, we obtain the classical cIPS estimator, with
pi = max{π0(ai|xi), λ}.

Proof. We want to look for the value of p that minimize the bound. Formally, by fixing all
variables of the bound, this problem reduces to:

arg min
p∈C1

R̂
p
n(πQ) + λ

2 Ŝ
p
n(πQ) = arg min

p∈C1

1
n

n∑︂
i=1

πQ(ai|xi)
(︃ 1
p(π0(ai|xi))

ci + λ

2p(π0(ai|xi))2 c
2
i

)︃
.

The objective decomposes across data points. For any i ∈ [n], we set:

li = 1
pi

= 1
p(π0(ai|xi))

.

Let us fix a j ∈ [n], if πQ(aj |xj)cj = 0, then any lj is a minimizer.
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In the other case, the following problem:

arg min
lj∈R

R̂
p
n(πQ) + λ

2 Ŝ
p
n(πQ) = arg min

lj∈R

1
n

n∑︂
i=1

πQ(ai|xi)
(︃
lici + λ

2 l
2
i c

2
i

)︃
subject to lj ≤

1
π0(aj |xj)

is strongly convex in lj . We write the KKT conditions for lj to be optimal; there exists α∗ that
verifies:

cj + 2λc2
j lj + α∗ = 0 (5.8)

α∗ ≥ 0 (5.9)

α∗
(︄
lj −

1
π0(aj |xj)

)︄
= 0 (5.10)

lj ≤
1

π0(aj |xj)
(5.11)

We study the two following two cases:

1.

lj ≥
1

λ |cj |
⇐⇒ pj ≤ λ |cj | :

we have α∗ = |cj | − λc2
j lj ≤ 0 =⇒ α∗ = 0, meaning that:

lj = 1
λ |cj |

⇐⇒ pj = λ |cj |

2.

lj <
1

λ |cj |
⇐⇒ pj > λ |cj | :

we have α∗ = |cj | − λc2
j lj > 0, which combined to condition (4.9) gives:

lj = 1
π0(aj |xj)

⇐⇒ pj = π0(aj |xj).

The two results combined mean that we always have:

pj ≥ λ |cj | , with pj > λ |cj | =⇒ pj = π0(aj |xj).

We deduce that pj has the following form when cj ̸= 0:

pj = p(π0(aj |xj)) = max {λ |cj | , π0(aj |xj)} (5.12)

α∗ = |cj | − λ
c2
j

max {2λ |cj | , π0(aj |xj)}
(5.13)

These values verify the KKT conditions. As the problem is strongly convex, pj has a unique
possible value and must be equal to equation (4.11). The form of pj resembles an adaptive
version of cIPS. In the case where the cost function c is binary:

∀i ci ∈ {−1, 0},
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we recover the classical cIPS as an optimal solution for p:

pj = max {λ, π0(aj |xj)} .

■

This result strengthens the use of the (linear) cIPS estimator for policy learning as it is found
to be optimal in the sense of minimizing the empirical second moment PAC-Bayesian bound.
We also want to explore the more extreme case when increasing K towards infinity.

Limit Upper Bound. We tend K towards infinity to obtain the following:

Corollary 5.3.2. Limit Upper Bound:
Given a prior P on FΘ, δ ∈ (0, 1] and a controlled value of λ > 0 so as:

λ < min
i∈[n]

{︃
p(π0(ai|xi))
|ci|

}︃
.

The following bound holds with probability at least 1− δ uniformly for all distribution Q
over FΘ:

R(πQ) ≤ − 1
n

n∑︂
i=1

πQ(ai|xi)
λ

log
(︃

1− λci
p(π0(ai|xi))

)︃
+
KL(Q||P ) + ln 1

δ

λn
(5.14)

Proof. For any fixed K, we have the following bound holding with high probability:

R(πQ) ≤ R̂pn(πQ) +
KL(Q||P ) + ln 1

δ

λn
+

2K∑︂
k=2

λk−1

k

1
n

n∑︂
i=1

πQ(ai|xi)
p(π0(ai|xi))k

cki

≤ R̂pn(πQ) +
KL(Q||P ) + ln 1

δ

λn
+ 1
λn

n∑︂
i=1

πQ(ai|xi)
2K∑︂
k=2

1
k

(︃
λci

p(π0(ai|xi))

)︃k

≤
KL(Q||P ) + ln 1

δ

λn
+ 1
λn

n∑︂
i=1

πQ(ai|xi)
2K∑︂
k=1

1
k

(︃
λci

p(π0(ai|xi))

)︃k
.

Let SKi be defined:

SKi =
2K∑︂
k=1

1
k

(︃
λci

p(π0(ai|xi))

)︃k
.

For all series SKi to converge, we need to choose a λ < mini∈[n]
{︂
p(π0(ai|xi))

|ci|

}︂
. Having this

condition insures that:

∀i ∈ [n], lim
K→∞

SKi = − log
(︃

1− λci
p(π0(ai|xi))

)︃
Injecting this result in the bound ends the proof. ■

To the best of our knowledge, this is the first time a bound of this form was suggested in
the context of off-policy learning. A bound of a similar nature was presented in (Alquier, 2021,
Theorem 5.2) for unbounded losses, our proof technique however is different, and the connexion
between the bounds will be explored in the future. The expression of the obtained bound is
simple, it is easy to interpret, but puts a hard constraint on λ making it less flexible than the
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previously derived bound for K ∈ N. We will however investigate its potential use and tightness
in the experimental section. As in the case of K = 1, the question of finding the optimal p for
this bound is interesting, and we provide the following proposition as an answer:

Proposition 5.3.4. Optimal p for K →∞:
For a fixed prior P on FΘ, δ ∈ (0, 1] and a λ > 0. The function p that minimizes the

bound for K →∞, giving the tightest result is:

∀i, pi = p(π0(ai|xi)) = π0(ai|xi) (5.15)

recovering the IPS estimator.

Proof. The proof of this proposition is quite simple. The functions:

fi(x) = − log
(︃

1− λci
x

)︃
are increasing. As our function p respects the condition ∀x, p(x) ≥ x, p : x → x gives the
tightest result, recovering the IPS estimator as an optimal choice for this bound. ■

In this chapter, we wanted to loosen the requirements used for our theoretically grounded
strategy, which previously needed access to π0 to compute important statistics in our tightest
bound and to construct the prior P . Now that we have suggested new generalization bounds
that do not use π0, and are potentially tighter than what was previously suggested as shown
with the example of K = 1, our aim is to propose a procedure to obtain bounds that are tight
empirically without constructing P with the help of the logging policy.

5.4 Unknown Structure of the Logging Policy

We use the procedure of Mhammedi et al. (2019) to construct priors that are data-dependent,
alleviating the requirement of having access to π0, thus, to a good prior P . The underlying
idea resembles cross-validation (Arlot and Celisse, 2010). We split the logged data Dn into two
disjoint subsets S1 and S2 with Dn = S1 ∪ S2. These two subsets are used to learn two priors
P1 from S1 and P2 from S2. As P1 (respectively P2) is learned using S1 (respectively S2), with
the i.i.d. assumption on how data is collected, P1 is independent of S2 and the same is true
for P2 and S1. This independence help us define two bounds, one on S1 with the prior P2, the
second one on S2 with the prior P1, these two bounds are combined using a union argument to
construct a bound on the whole logged dataset Dn, with two data-dependent priors P1 and P2,
making access to π0 unnecessary. Using this idea with Proposition 5.3.1, we give the following
result:

Proposition 5.4.1. CV-type Empirical High Order PAC-Bayes bound:
Let K ≥ 1. Given a split Dn = S1 ∪ S2, and learned priors P1 on S1 and P2 on S2, a
δ ∈ (0, 1] and λ > 0. The following bound holds with probability at least 1 − δ uniformly
for all distribution Q over FΘ:

R(πQ) ≤ R̂pn(πQ) +
KL(Q||P1) +KL(Q||P2) + ln 2

δ

λn
+

2K∑︂
k=2

λk−1

k
M̂p,k

n (πQ). (5.16)
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Proof. Let Dn = S1 ∪ S2, a disjoint partition with Card(S1) = n1 and Card(S2) = n2. Let P1
(respectively P2) a prior trained on S1 (respectively S2). As the priors are constructed using S1
and S2. We state Proposition 5.3.1 for S1 with P2 and for S2 with P1. We obtain two bounds
holding simultaneously with probability 1− δ/2 for all Q:

n2R(πQ) ≤ n2R̂
p
n2(πQ) +

KL(Q||P1) + ln 2
δ

λ
+ n2

2K∑︂
k=2

λk−1

k
M̂p,k

n2 (πQ)

n1R(πQ) ≤ n1R̂
p
n1(πQ) +

KL(Q||P2) + ln 2
δ

λ
+ n1

2K∑︂
k=2

λk−1

k
M̂p,k

n1 (πQ).

We take a union of the bounds and sum the two inequalities to obtain a new bound holding
with probability 1− δ for all distributions Q:

R(πQ) ≤ R̂pn(πQ) +
KL(Q||P1) +KL(Q||P2) + ln 2

δ

λn
+

2K∑︂
k=2

λk−1

k
M̂p,k

n (πQ)

ending the proof. ■

In the previous form of the bound, we had the term KL(Q||P ) penalizing how far our new
distribution Q is from the prior P . By fixing P to the distribution inducing the logging policy,
this term quantified how the new policy πQ is far from π0. For LIG policies and given an
(PAC-Bayesian) upper bound UBn, the old procedure of learning the new candidate policy πnew
looked like this:

Algorithm 1: Learning with access to π0
Inputs: Logged dataset Dn, Logging policy π0.
Initialise: P such as πP = π0, α = α0 (all other parameters of the bound, τ and δ for
example).

Compute:

πnew = arg min
πQ∈Π

UBn(πQ, P, α0)

return πnew.

With the new form of the bound in Proposition 5.4.1, the term KL(Q||P1) + KL(Q||P2) has
a different interpretation. It quantifies how stable our learning algorithm of Q, P1 and P2 is;
for this term to be small, we need to have Q ≈ P1 ≈ P2. This means that the learned P1 on S1
should not be different from the learned P2 on S2. In addition, as our purpose is to obtain the
tightest/smallest upper bound, the priors P1 and P2 should verify the following:

1. The bound needs to be small when Q = P1:

R̂
p
n(πP1) +

KL(P1||P2) + ln 2
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂p,k

n (πP1) should be small.

2. The bound needs to be small when Q = P2:

R̂
p
n(πP2) +

KL(P2||P1) + ln 2
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂p,k

n (πP2) should be small.
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From these two conditions, we want both P1 and P2 to induce a small risk (and empirical
moments), while both P1 and P2 being close (in the Jensen-Shannon divergence sense). As P1
(respectively P2) can only depend on S1 (respectively S2), these observations give us an idea on
how to construct both P1 and P2. We want to:

• Construct a prior P1 that depends on S1 (Card(S1) = n1) for which:

R̂
p
n1(πP1) +

ln 2
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂p,k

n1 (πP1) is small.

• Construct a prior P2 that depends on S2 (Card(S2) = n2) for which:

R̂
p
n2(πP2) +

ln 2
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂p,k

n2 (πP2) is small.

• Both P1 and P2 should be close, which can be achieved by regularizing them towards a
carefully chosen distribution P0.

For LIG policies (Equation (4.6)) with distributions
{︂
N (µ, Id), µ ∈ Rd

}︂
, previous observations

motivate the following learning strategy:

Algorithm 2: Learning with CV-type bound for LIG policies
Inputs: Logged dataset Dn.
Initialise:

• Strategy parameters: a reference mean µ0, a regularization parameter β.

• Bound parameters: the parameter K, Lambda set Λ, clipping parameter τ and
tolerance δ.

Split: Dn = S1 ∪ S2 with n1 = n2 = n/2.
Optimize:

• Train on S1:

µ1 = arg min
µ∈Rd

min
λ>0

{︄
R̂
τ
n1(πµ) +

ln 2
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂τ,k

n1 (πµ) + β||µ− µ0||22

}︄
.

• Train on S2:

µ2 = arg min
µ∈Rd

min
λ>0

{︄
R̂
τ
n2(πµ) +

ln 2
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂τ,k

n2 (πµ) + β||µ− µ0||22

}︄
.

• Minimize the bound on Dn:

µ̂ = arg min
µ∈Rd

min
λ∈Λ

{︄
R̂
τ
n(πµ) +

ln 2nΛ
δ

λn
+ ||µ− µ1||22 + ||µ− µ2||22

2nλ +
2K∑︂
k=2

λk−1

k
M̂τ,k

n (πµ)
}︄
.

return πµ̂.

The new strategy developed in Algorithm 2 bypasses the use of a prior specified to match π0.
It does require however a reference mean µ0 and a hyperparameter β that controls how close
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the learned priors (learned means) should be. This reference can be set to be the null vector
µ0 = 0. Ideally, µ0 should be informative and penalize our policies towards a good region of
the space. Previously, we had access to π0 and its parameter helped us learn new policies. An
idea that can be explored in the absence of π0 is to use S1 and S2 to imitate π0 (London and
Sandler, 2019). Imitating π0 with S1 results in µ01 and imitating π0 with S2 results in µ02. As
imitation learning do not suffer from high variance, we will have µ01 ≈ µ02. This observation
motivates another strategy, described below:

Algorithm 3: Learning with CV-type bound with Imitation for LIG policies
Inputs: Logged dataset Dn.
Initialise:

• Strategy parameters: a regularization parameter β.

• Bound parameters: the parameter K, Lambda set Λ, clipping parameter τ and
tolerance δ.

Split: Dn = S1 ∪ S2 with n1 = n2 = n/2.
Optimize:

• Train on S1:

µ01 = arg min
µ∈Rd

⎧⎨⎩− 1
n1

∑︂
i∈S1

log πµ(ai|xi) + 1
n1
||µ||22

⎫⎬⎭ Imitate π0 with S1.

µ1 = arg min
µ∈Rd

min
λ>0

{︄
R̂
τ
n1(πµ) +

ln 2
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂τ,k

n1 (πµ) + β||µ− µ01||22

}︄
.

• Train on S2:

µ02 = arg min
µ∈Rd

⎧⎨⎩− 1
n2

∑︂
i∈S2

log πµ(ai|xi) + 1
n2
||µ||22

⎫⎬⎭ Imitate π0 with S2.

µ2 = arg min
µ∈Rd

min
λ>0

{︄
R̂
τ
n2(πµ) +

ln 2
δ

λn
+

2K∑︂
k=2

λk−1

k
M̂τ,k

n1 (πµ) + β||µ− µ02||22

}︄
.

• Minimize the bound on Dn:

µ̂ = arg min
µ∈Rd

min
λ∈Λ

{︄
R̂
τ
n(πµ) +

ln 2nΛ
δ

λn
+ ||µ− µ1||22 + ||µ− µ2||22

2nλ +
2K∑︂
k=2

λk−1

k
M̂τ,k

n (πµ)
}︄
.

return πµ̂.

This new strategy does not require setting a reference mean µ0 but is computationally more
expensive. We will investigate the the effectiveness of all the strategies presented in the experi-
ments section.
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5.5 Experiments

Experimental Setup. We follow the same experimental setup than the previous chapter. For
ease of exposition, we use a softmax logging policy of parameter µ0 ∈ Rp×K :

πS
µ0(a|x) ∝ exp(ϕ(x)Tµ0a).
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Figure 5.1: Behaviour of the guaranteed risk GR∗ (↓ is better), the risk of the minimizer R(π∗)
(↓ is better) and the guaranteed improvement GI∗ (↑ is better) given by the bounds (optimized
with LIG policies) while changing π0. We can observe that the new family of empirical moments
bounds performs better than CBBξn(ξ = −1

2) in most scenarios. K between 2 and 8 seems to
gives the best results.

µ0a ∈ Rp is the parameter associated with action a. The policy πS
µ0 is used to generate

the logged interactions’ data Dn. We adopt the standard supervised-to-bandit conversion to
generate logged data in all of our experiments (Swaminathan and Joachims, 2015a). We use
two mutliclass datasets: FashionMNIST (Xiao et al., 2017) and EMNIST-b (Cohen et al.,
2017), alongside two multilabel datasets: NUS-WIDE-128 (Chua et al., 2009) with 128-VLAD
features (Spyromitros-Xioufis et al., 2014) and Mediamill (Snoek et al., 2006) to empirically
validate our findings. The statistics of the datasets are described in Table 4.1 in Appendix 4.9.1;
N the size of the training split, K the number of actions and p the dimension of the features
ϕ(x). We take a small fraction (5%) of the training data that will only be used to learn µ0 in a
supervised manner. We introduce an inverse temperature parameter α to our softmax logging
policy πS

αµ0 . Changing α allows us to cover logging policies with different entropies (α ≈ 0 gives
a uniform π0 and α ≈ 1 gives a peaked π0). We run παµ0 on the rest (nc = 0.95N) of the
training data to generate Dn. For a context x and an action a, we define in our setting the cost
as c = −1[a ∈ y] with y the set of true labels for x.
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5.5.1 Tightness of the new bounds

As we proposed a new family of bounds, we want to measure how well they compare to the best
performing bound so far, the CBBn bound (with ξ = −0.5) defined in Proposition 5.1.1. To this
end, we follow our old strategy to setting the prior P such as P = π0 (Strategy described in
Algorithm 1) and use LIG policies to optimize the bounds. We compare CBBn(ξ = −0.5) to
our empirical moment bound Bn(K) for different values of K ∈ {1, 2, 8,∞}.

We set the allowed uncertainty to δ = 0.05. For all datasets, τ will be set to τ = 1/K to
get no bias when the logging policy is close to uniform. We use Adam (Kingma and Ba, 2014)
with a learning rate of 10−3 for 100 epochs to optimize the bounds w.r.t their parameters. The
results of these experiments are shown in Figure 5.1.

We can observe that the new family of bounds achieves strong performance. As expected,
these bounds give guaranteed risks that are lower than the risk of π0, which means that they
are capable of guaranteeing the improvement of the logging policy π0. In addition, we can see
that their performance is on par with the state-of-the-art CBBn(ξ = −0.5) bound on Fash-
ionMNIST and Mediamill, while outperforming it on more difficult datasets (EMNIST and
NUS-WIDE-128). These empirical results confirm the practicality of the newly proposed
bounds. The new family achieves superior performance, while being fully empirical, contrary to
CBBn that requires access to π0 to compute certain statistics. Another observation from these
experiments is that there is, unfortunately, no value of K that always gives the best results. The
condition described in Proposition 5.3.2 to have a decreasing bound with K is not respected as
K =∞ does not result in the tightest bound. In our experiments, it seems that values between
K = 2 (stop at the 4th moment) and K = 8 (stop at the 16th moment) give the best results in
terms of tightness of the bound and performance of the derived policies.

5.5.2 Effectiveness of the new strategies

After demonstrating the tightness of the newly proposed family of bounds, we want to test
new strategies to guarantee improvement with PAC-Bayesian bounds in the case where access
to π0 is difficult. To this end, we choose our empirical moment bound Bn(K = 2), as it is
not computationally expensive and does not require access π0. We optimize this bound over
LIG policies, in all strategies adopted. We also fix the allowed uncertainty to δ = 0.05 and set
τ = 1/K in all scenarios. We compare the following approaches:

• Strategy 1 consisting of minimizing the bound while fixing the parameter µ0 (the prior)
such that π0 = πµ0 . This approach assumes access to π0.

• Strategy 2 with β = 0.1 and we fix the reference parameter µ0 (the prior) such that
π0 = πµ0 . This approach assumes access to π0.

• Strategy 2 with β = 0.1 and we fix the reference parameter µ0 = 0. This approach does
not assume access to π0.

• Strategy 3 with β = 0.1. We use Imitation learning and do not need a reference parameter
µ0. This approach does not assume access to π0.

We plot all results in Figure 5.2. Our first observation is that adopting Strategy 1, which
consists of minimizing the bound after fixing the prior to π0 is not optimal. This strategy has
the advantage of being computationally straightforward, but requires access to π0 and can be
largely improved. CV-type bounds (Proposition 5.4.1) help us define new strategies that result
in better performing policies.
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Strategy 2. This strategy learns two data-dependent priors (µ1 and µ2) while regularizing
both of them towards a fixed, reference distribution µ0. We test this strategy with µ0 set such
that π0 = πµ0 (assuming access to π0) and with µ0 = 0 (no access to π0). We first observe that
this strategy, even without access to π0, gives good results. We also observe that, as predicted,
setting the reference parameter µ0 to a good value helps this strategy improve the obtained
policy. We can see that this strategy results in better performing policies than Strategy 1.
These results suggest that even if we have access to π0, we should prefer Strategy 2 (CV-type
bound) over Strategy 1 (Data-free Prior) as the former dominates the latter in all scenarios.

Strategy 3. This strategy works with CV-type bounds and also learns two data-dependent
priors (µ1 and µ2). For some additional computations, it gets rid of the need for specifying a
reference parameter µ0. Instead, it imitates the logging policy and learns a reference parameter
using S1 and S2. This strategy gives the best guarantees, results in the best performing policies,
and is on par with Strategy 2 (with access to π0). If our application does not mind additional
computations, this strategy should be adopted, as it gives the best results without assuming
access to the policy π0 or its structure.

CV-type strategies. All newly proposed strategies have the particularity to not only give
superior policies, but their guaranteed risk is tight and is close to the real performance of
the policies. For example, in the EMNIST-b dataset and for α = 0.1, Strategy 1 gives a
guaranteed risk that differs from the true risk by more than 0.1, which is not the case for the
CV-type strategies which guarantee risks close to the true risk. This is true for all scenarios and
is worth investigating in the future.

5.6 Conclusion
In this chapter, we derive a new family of bounds, based on a finer analysis of the moment
generating function of commonly used estimators. Our analysis results in bounds with high
order empirical moments, that are tractable and can be computed without access to π0. We
study the newly proposed bounds and show that they are tighter than the best bounds derived
so far. In our pursuit to lessen the assumptions of our previous learning with performance
guarantees approach, we suggest new learning strategies, that do not require access to the
structure of π0. We demonstrate empirically the superiority of the new strategies, as they
require fewer assumptions and result in policies with greater performance guarantees. In the
future, we want to theoretically investigate the strategies proposed. We are also interested in
studying the tightness of the bounds to predict more accurately the performance of trained
policies before deploying them. We believe that these research avenues will drive us closer to
understanding the problem of learning policies offline.
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Figure 5.2: The effect of adopting different strategies to optimize the PAC-Bayesian bound
(Bn(K = 2)).We plot the guaranteed risk GR∗ (↓ is better), the risk of the minimizer R(π∗) (↓
is better) and the guaranteed improvement GI∗ (↑ is better) given by the different strategies for
different logging policies. We can observe that adopting Strategy 1 (fixing the prior to π0) is not
the best. Strategies building on CV-type bounds give better guarantees and result in superior
policies, even if we do not have access to π0 (Strategy 3).
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Chapter 6

Scalable Bayesian Reward Modelling

Abstract
A common task for recommender systems is to build a profile of the interests of a user from
items in their browsing history, and later to recommend items to the user from the same cat-
alogue. The users’ behaviour consists of two parts: the sequence of items that they viewed
without intervention (the organic part) and the sequences of items recommended to them and
their outcome (the bandit part). In this chapter, we propose Bayesian Latent Organic Bandit
model (BLOB), a probabilistic approach to combine the ‘organic’ and ‘bandit’ signals in or-
der to improve the quality of recommendation. The bandit signal is valuable as it gives direct
feedback of recommendation performance, but the signal quality is very uneven, as it is highly
concentrated on the recommendations deemed optimal by the past version of the recommender
system. In contrast, the organic signal is typically strong and covers most items, but is not al-
ways relevant to the recommendation task. In order to leverage the organic signal to efficiently
learn the bandit signal in a Bayesian model, we identify three fundamental types of distances,
namely action-history, action-action and history-history distances. We implement a scalable
approximation of the full model using variational auto-encoders and the local reparametrization
trick. We show using extensive simulation studies that our method out-performs or matches the
value of both state-of-the-art organic-based recommendation algorithms, and of bandit-based
methods (both value and policy-based) both in organic and bandit-rich environments.
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6.1 Introduction

The recommender systems literature is somewhat bifurcated into two distinct branches. One
branch concerns analysing logs of organic user sessions where similar items co-occur (Adomavi-
cius and Tuzhilin, 2005; Koren and Bell, 2015; Hidasi and Karatzoglou, 2018; Liang et al., 2018).
A distinguishing feature of this research is that it focuses on logs of organic user sessions, where
users view variable numbers of (usually) related items in a shopping session.

A second branch of research explicitly (and entirely) focuses on the logs of the recommender
system, using the history of successful and unsuccessful recommendations in order to discover a
good recommender system policy. This branch uses off policy learning in order to discover new
policies with good actions (Beygelzimer and Langford, 2009; Bottou et al., 2013; Swaminathan
and Joachims, 2015a). This work is distinguished by its use of recommender system logs for
training and its anonymous feature vector (usually called the context).

The purpose of this work is twofold. Firstly, we pose a simple yet powerful model, that com-
bines these two distinct data sources in order to efficiently learn good recommendation policies.
Secondly, we develop a fully probabilistic approach to recommendation and outline its benefits
and consequences. The probabilistic formulation gives insights into user embedding creation and
the alternative frameworks of value (direct method) and policy learning (importance weighting
methods).

The remainder of the chapter is structured as follows: In Section 2 we introduce our prob-
abilistic model of organic and bandit behaviour and discuss its properties. In Section 3 we
describe the training of the model. In section 4 we apply our model to the RecoGym simulator
(Rohde et al., 2018) and present results. Concluding remarks are made in Section 5.

6.2 Probabilistic Model of Organic and Bandit Sessions

We develop a simple probabilistic model that allows us to build a representation of a user from
a variable length organic sequence of items, and then predict accurately how probable the user
is to respond positively to each recommendation in the catalogue.

Throughout this chapter, we will make use of the notation introduced in Table 6.1. We use
u to denote a user or a session, we use t time to denote sequential time and v to denote which
product they viewed from 1 to P where P is the number of products (P = |A|). User u will also
be given some recommendations (or actions) au,1, ..., au,n again which can take values from 1 to
P and we will observe a reward (or a click) for each of these recommendations cu,1, ..., cu,n. The
organic part of the session are the items the user views without any encouragement from the
recommender system i.e. vu,1, ...vu,Tu , the bandit part of the session refers to the recommender
system log: au,1, ..., au,nu ; cu,1, ..., cu,nu . Thus, the size of the organic dataset is U , the number of
users, and the bandit dataset size is ∑︁u nu = N . We drop the u subscript and treat the bandit
dataset as records with n ∈ [1, ..., N ].

In our model, the user’s interest is described by a K dimensional variable ωu, which can be
interpreted as the user’s interest in K topics. We then assume the following generative process
for the organic views in each session:

ωu ∼ N (0K , IK), vu,1, .., vu,Tu ∼ categorical(softmax(Ψωu + ρ))
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Symbol Dimension Description

u Scalar A given user’s id.
t Scalar sequential time.
P Scalar Total number of products.
K Scalar The size of the embedding.
vu,t Scalar Product id for user u at time t.
ωu K × 1 A given user’s state.
Ψ P ×K Organic embedding matrix.
Ψv 1×K Organic embedding for v.
β P ×K Bandit embedding matrix.
βv 1×K Bandit embedding for v.
ρ P × 1 Item popularity intercept.
κ P × 1 Item recommendability intercept.
Tu Scalar Session length for u.
N Scalar The size of the Bandit dataset.
U Scalar The number of user sessions.

Table 6.1: Notations and Definitions

The organic embedding matrix Ψ is P×K and represents information about how items correlate
in a user’s session organically (i.e. without any intervention from the recommender system). The
P dimensional vector ρ is related to the organic popularity of each of the items. Once this session
is generated, a recommendation or actions is made to user u denoted au and a reward or click
will be observed cu.

cu|au,β,ω,κ ∼ Bernoulli{sigmoid(βauωu + κau)}

The bandit embedding matrix β is P ×K and represents information about how to personalise
recommendations to a user u with a latent user representation ωu. The organic behaviour is
parameterized by Ψ,ρ and the bandit behaviour is parameterized β,κ in order to relate the
two we use the following matrix variate prior distribution of β:

β|Ψ ∼MN (s+(wa)Ψ, s+(wb)ΨΨT , s+(wb)
1
P

ΨTΨ).

Where MN (·) is the matrix variate normal distribution1. We will show how each of the three
terms in the matrix variate normal allow us to include in our model one of the three fundamental
differences of recommendation. The softplus function is defined:

s+(w) = log{1 + exp(w)}.

We also put a prior on κ, which is P × 1:

κ ∼ N (wc, IPσ2
κ).

The hyperparameters wa, wb, wc are also given normal priors:

wa ∼ N (µwa0
, σ2

wa0
), wb ∼ N (µwb0 , σ

2
wb0

), wc ∼ N (µwc0
, σ2

wc0
).

1The matrix normal distribution can be defined by its connection to the multivariate normal. If β ∼
MN (M , R, S), where mean matrix M is M × N , and R is M × M and S is N × N - then: vec(β) ∼
N (vec(M), R ⊗ S). In this way the matrix variate normal has a more compact and restricted representation
of the co-variance than the matrix variate normal. Here ⊗ denotes the Kronecker product.



Chapter 6. Scalable Bayesian Reward Modelling 121

vt Ψ

ρ

ωu

t = 1..Tu

u = 1...U

Figure 6.1: A graphical model of the organic behaviour.
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Figure 6.2: A graphical model of the bandit behaviour.

In this chapter, we will mostly consider the organic and bandit behaviour as separate but re-
lated processes. A graphical model defining the organic portion of the model is given in Figure
6.1. This graphical model has a similar structure to the latent Dirichlet Allocation model (LDA,
(Blei et al., 2003)) , the difference being that where we model v ∼ categorical{softmax(Ψω+ρ)},
LDA uses v ∼ categorical(Ψω) putting simplex constraints on Ψ and ω, similarly correlated
topic models (Lafferty and Blei, 2006) use v ∼ categorical{Ψsoftmax(ω)} where the simplex con-
straint is only on Ψ. This model can also be viewed as a linear version of the Multi-VAE (Liang
et al., 2018). We will show that using variational autoencoders with the re-parameterization
trick is an effective way to train the organic model.

The approach developed in this chapter takes the organic model and estimates Ψ by maxi-
mum likelihood and ω by the posterior mean (denoted ω̂) and then treats Ψ and ω̂ as observed
in the bandit model. The graphical model is shown in Figure 6.2. In this probabilistic model
we will develop full Bayesian inference of the β, κ, wa, wb and wc this is important because the
bandit signal is very uneven. Lots of information is available on past actions that the previous
recommender system favoured and little information or no information is available on many
other actions, this means the posterior is tight in some regions but broad and highly influenced
by the prior in others. We use variational approximations and the local re-parameterization
trick in order to capture this complex structure.

We refer to the organic only component of the model as BLO (Bayesian Latent Organic)
model (we apply maximum likelihood to Ψ,ρ and integrate ω). The full model is referred to as
BLOB (Bayesian Latent Organic Bandit Model).
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6.2.1 Intuition for the model

The model presented embodies a fundamental implicit assumption in the traditional recommen-
dation system, the assumption that auto-completion of a session results in good recommen-
dations being made. This is one of the three fundamental distances of recommendation, the
action-history distance.

The implicit assumption in traditional recommendation: good recommendations
are (usually) similar to the items in the user’s history

Algorithms in the recommendation literature look at items in a user’s history and attempt to
predict the final element in this session. The fraction of times that the predicted item is within
the top K items in a held out data set is a key metric called precision@K that measures a models’
ability to “auto-complete” a users’ behaviour. The organic performance is therefore computed:

P (vu,Tu |vu,1, .., vu,Tu−1).

Metrics such as NDCG, recall@K or log likelihood are computed on this auto-completion task.
However auto-completion is not the same as recommendation. In fact, to reduce recommen-

dation to auto-completion removes the opportunity for a recommender system to help a user
discover new things which arguably is the primary objective of recommendation. That said,
organic data is usually plentiful and this implicit assumption that recommendation as auto-
completion certainly has some merit. We can state this assumption as, if:

P (Vu,Tu = va|vu,1, .., vu,Tu−1) > P (Vu,Tu = vb|vu,1, .., vu,Tu−1)

Then item va is probably better than item vb as a recommendation, i.e. the following holds
often:

P (c = 1|A = va, vu,1, .., vu,Tu−1) > P (c = 1|A = vb, vu,1, .., vu,Tu−1).

Although this relationship often holds, it need not hold in every single instance. Maybe the
user already knows about item va, maybe the recommendation for va is unattractive or maybe
the reason the user never visited item vb is lack of knowledge, and it is actually a very valuable
recommendation. We want our recommender system to make use of the organic relationship,
but we also want to learn from the logs of the recommender system itself which records if the
recommendations that we chose to deliver were successful or not. This “bandit feedback” is in
some sense the true arbiter of if a recommendation is good or not, but the bandit signal is usually
highly concentrated around what the previous version of the recommendation system judged to
be a good recommendation, so it cannot reliably be used over the entire recommendation space.
For example, the organic session might contain information that two products (say) rice and
a phone are rarely viewed together in the same organic session. However, it probably will not
contain many events where a phone is recommended to a user with rice in their history. If the
recommender system is to infer that this is likely a poor recommendation, it must do so through
a prior linking the bandit behaviour to the organic behaviour.

When deployed in a production recommender system, the model operates in the following
way. First, a posterior over a user embedding is approximately calculated:

P (ωu|vu,1, ..., vu,Tu ,Ψ,ρ)
A fast variational approximation can be made of ωu ∼ N (µωq ,Σωq) which gives both a mean

and a variance (this can be done using either a variational EM algorithm or a VAE).
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For our purposes we make the pragmatic compromise that we can summarise the user history
with a posterior mean point estimate ω̂ = µωq , this prevents numerical integration of ωu at
recommendation time. Once this compromise is made, it also makes sense to train the organic
and bandit components separately. The probability of a click is given by:

P (c|ω̂,β,κ, a) = sigmoid(βaω̂ + κa)

The recommender system will then choose a recommendation that will optimise this reward
(or a combination of reward and exploration - but the explore-exploit dilemma (Lattimore and
Szepesvári, 2020) is beyond the scope of this chapter).

The organic parameters Ψ and ρ are not required in order to deliver a recommendation. They
are used only to put a prior on the bandit embeddings. We note parenthetically that due to
the fact that once the user embedding ω̂ is created, the model is linear, and we can exploit
fast algorithms to quickly find the optimal recommendation over large catalogues (Gionis et al.,
1999; Malkov and Yashunin, 2018).

The organic user session

The organic user session model we propose can be understood in a number of ways. It can be
viewed as a user item matrix factorization where the user has a latent interest in K topics - a
discussion of this interpretation is given in the supplementary material.

It can also be viewed as an i.i.d. categorical process with a (usually) low-rank multivariate
normal prior. The prior causes similar items to co-occur in a session with high probability.
Because of this assumption, seeing an item will always make it more likely to be viewed again.
If we had a full rank model, the user session would imply the law of large numbers where the
next item prediction will converge to the empirical frequency. In practice, the session history is
short, and the embedding size is much lower than the number of products, but the assumption
remains that viewing an item makes the conditional probability for that same item increase
(also, the conditional probability that similar items will be viewed also increases).

This is a relatively strong assumption compared to powerful sequential models such as re-
current neural networks (Hidasi and Karatzoglou, 2018), which can model complex sequences.
Recurrent neural networks excel at text processing tasks where there is need to do things like
close brackets in text. The simpler and stronger assumption made by BLO is reasonable in
many settings and greatly simplifies learning.

The bandit session and the three distances in recommendation

The auto-complete assumptions as embodied in the recommendation research measures the
similarity between the recommendation and the items in history. This is the first similarity or
distance, the distance between the history and the action. The mean of the matrix normal Ψ
embodies this assumption.

The second similarity in recommendation is the similarity between actions. That is if action
a1 and a2 are similar then we expect that the responses to these actions to the same (or similar)
users be correlated. This distance is encoded with the first (low rank) co-variance ΨΨT in the
matrix normal prior on β.
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The third similarity in recommendation is the similarity between users. If user u1 and u2
are similar, then we expect the response to the same (or similar) action on these users to be
correlated. This distance is encoded with the second co-variance ΨTΨ in the matrix normal
prior on β.

The effect of the first distance is to seed the recommendation using the organic similarities,
the effect of the second and third is to borrow strength, allowing the bandit signal to be used
more effectively. Finally, the parameters wa and wb control the strength of the influence of
the first and second distance. The relative strength of the first distance and the second is an
extremely important hyperparameter.

6.2.2 Value vs policy learning

The method proposed here is a value based (direct) method, as it learns the value for every
action and then can determine a decision rule using unconstrained optimisation. In this way
it differs from alternative methods for learning from bandit feedback that have been recently
proposed Beygelzimer and Langford (2009); Bottou et al. (2013); Swaminathan and Joachims
(2015a) which learns a policy directly using importance weighting objectives.

Bayesian methods are inherently value based and bring the benefit of being able to synthesis
data sources such as organic and bandit, they also produce uncertainty that is useful for explore-
exploit strategies such as upper confidence bound and Thompson sampling (Lattimore and
Szepesvári, 2018). From a purely statistical point of view, principles such as the conditionality
and the likelihood principle actually forbid the use of the propensity score (Berger et al., 1988;
Hernan and Robins, 2010). Given that training on bandit feedback is sometimes considered
to be synonymous with using the inverse propensity score (IPS), it is worth reviewing some
advantages of Bayesian value based methods.

It has been shown in Ritov et al. (2014), that under regularity conditions that apply in
the recommendation case, the Bernstein-von Mises theorem applies, and that the Bayesian
estimator is efficient,

√
n consistent and necessarily better than the IPS (or Horvitz-Thompson)

estimator2. However, note that a real recommender system log will be of sufficient dimension-
ality that even with terabytes of logs, asymptotic theory is usually not relevant (i.e. priors will
have real impacts).

It is also sometimes argued that the IPS score is necessary to apply in counterfactual settings
due to the domain shift which occurs in causal settings (Johansson et al., 2016). However,
this argument does not apply when the model has enough capacity to accurately predict the
value everywhere (Storkey, 2009) and there is no need to constrain capacity to reduce estimator
variance when applying Bayesian methods (Neal, 2012). It seems that some of the positive
aspects of value based methods have been overlooked due to criticisms that apply only in the
non-Bayesian case.

Policy learning also suffers from some drawbacks. Policy learning extends the principle of
Statistical Learning Theory (SLT) to the counterfactual setting. The idea of SLT is that a
decision rule is fit to the historical data from a constrained set. If a decision rule from a
restricted set has good performance (low risk) then it is likely to also have low risk on out

2They additionally show that IPS based methods can have better frequentist properties than Bayesian esti-
mators when these regulatory conditions break down.
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of sample data (Vapnik, 2013). These analyses are based upon treating empirical risk or
counterfactual risk as a statistic, but these are highly non-sufficient statistics and there is no
ability to order decision rules that have the same empirical risk even when away from the
data they are very different. The theory is heavily based on having a restricted set of decision
rules, but restricting the set might exclude good decisions. Value based methods make no such
restriction.

Extending SLT to the counterfactual setting requires some additional ideas because the con-
sequences of decisions the new policy will make are not available. IPS-based methods have been
a recent research focus that extend the empirical risk minimisation to the counterfactual setting.
Technical challenges are being addressed, such as the fact that the variance of the decision rule
can vary depending on how much it differs from the historical logging policy Swaminathan and
Joachims (2015a). As well as the problem of propensity overfitting i.e. decision rules can achieve
an estimated reward of 0 by avoiding past decisions (0 might be good or bad depending on how
the reward is defined) causing decision rules either to cling to the old policy or to be driven
away from it3. It is usually considered a better heuristic for the new policy to cling to the old one.

One simple method to control variance is to cap large weights (Bottou et al., 2013) (neces-
sarily associated with actions that are different to the logging policy). This method controls
the bias-variance trade-off. Another method that more explicitly discourages deviation from
the logging policy is to apply variance penalization (Swaminathan and Joachims, 2015a) here
rather than optimizing the counterfactual risk directly a penalized term is instead optimized,
this penalization naturally goes up if the recommendations are rare under the logging policy
(and hence have a high IPS weight).

Many of the standard policy learning settings 4 have the property that the learnt policy will
only deviate from the preferred decision of the logging policy in the face of considerable evidence.
This is a good heuristic in cases where the logging policy is good, but can be a problem in other
situations. The potential strength of policy based approaches is due to the fact they do not use
a model, and they focus directly on the decision rule, focusing optimisation and capacity on the
parts of the problem that matters most. Bayesian value based methods cannot do this because
the modelling step is made before and separately to the decision-making step.

6.3 Model Training

6.3.1 Organic session training: learning the organic embeddings

The log likelihood of the organic model has the form:

log p(v1, .., vT ,ωu|Ψ) =
(︄

T∑︂
t

Ψvtωu + ρvt

)︄
− T log

{︄
P∑︂
p

exp(Ψpωu + ρp)
}︄

+ log p(ωu)

As the posterior on ω is intractable, we use a normal distribution ωu ∼ N (µqω ,Σqω) to approx-
imate it, we get a variational lower bound (ELBO) of the form:

3The self normalized importance sampling variant of IPS is one proposal to remove this sensitivity to the
definition of the reward (Schnabel et al., 2016)

4This includes having reward positive and no-reward zero, capping and variance penalization
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L = E
q(ωu)

[log p(v1, .., vT ,ωu|Ψ)− log q(ωu)]

=
(︄

T∑︂
t

Ψvtµqω + ρvt

)︄
− T E

q(ωu)

[︄
log

{︄
P∑︂
p

exp(Ψpωu + ρp)
}︄]︄
−KL(q(ωu)||p(ωu)).

Where KL is a closed form KL divergence between the variational posterior and the prior (a
multivariate standard normal distribution). We see that there is a problematic term associated
with the denominator of the softmax. We use the re-parameterization trick (Kingma and Welling,
2014) to approximate the gradient of this term. It is also possible to use the Bouchard bound
(which also enables an EM algorithm) and the log concave bound, both bounds can alleviate
computational issues associated with the softmax sum (Bouchard, 2007), details of these lower
bounds and the EM and simulated EM algorithm are given in the supplementary material.

Re-parameterization Trick

An effective approach to computing expectations with respect to the denominator of the softmax
is to use the re-parameterization trick (Kingma and Welling, 2014), which allows us to take a
sample of ω from the variational distribution and compute a noisy derivative of the lower bound.
Within each iteration, we proceed by simulating:

ϵ(s) ∼ N (0K , IK),

and then computing:

ω(s) = LΣqω
ϵ(s) + µqω .

Where LΣqω
LT

Σqω
= Σqω , we can then optimize an approximation of the lower bound:

LMC =
(︄

T∑︂
t

Ψvtµqω + ρvt

)︄
−KL(q(ωu)|p(ωu))

− T log
{︄

P∑︂
p

exp
(︂
Ψp(LΣqω

ϵ(s) + µqω) + ρp

)︂}︄

Often Σqω is taken to be diagonal, which makes computing LΣqω
simply an element-wise square

root. A naive application of the algorithm discussed so far would have the number of variational
parameters µqω ,Σqω growing with the number of user sessions. We propose instead to limit the
number of parameters by the use of a variational auto-encoder (Kingma and Welling, 2014).
This involves using a flexible function and optimizing it to do the job of the EM algorithm, i.e.

µqω , Σqω = fΞ(v1, ...vT ),

Where any function (e.g. a deep net) can be used for fΞ(·).

6.3.2 Bandit session training: learning the bandit embeddings

For every user we compute: ω̂u = f(vu) (uncertainty over ωu is ignored and a point estimate
taken). The hierarchical model has the form:

wa ∼ N (µ0wa , σ
2
0wa ), wb ∼ N (µ0wb , σ

2
0wb

), wc ∼ N (µ0wc , σ
2
0wc )
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κ′ ∼ N (0P , σ2
κ0IP ), κ = κ′ + wc

β|Ψ, wa, wb ∼MN (s+(wa)Ψ, s+(wb)ΨΨT , s+(wb)
1
P

ΨTΨ)

cn|an,β,ω,κ ∼ Bernoulli{sigmoid(βanωn + κan)}.

While β is a [P×K] random variable, we can leverage its low rank covariance matrix to transform
the problem to inferring a posterior on a [K ×K] random variable. This reduces dramatically
the training time as P , the size of the catalogue items is usually very large compared with K.
The low rank alternative parameterization of this distribution can be set as follows. Let:

ζ ∼MN (0K,K , IK , IK).

If we let L be the result of a Cholesky decomposition of 1
P ΨTΨ, i.e. LLT = 1

P ΨTΨ. A valid
way to sample from a matrix variate normal gives:

β = s+(wa)Ψ + s+(wb)ΨζLT

As mentioned before, we treat the problem in a Bayesian way and approximate the posterior
over all the parameters. We use variational inference to transform the problem into an optimiza-
tion problem. We use a univariate normal variational approximation on wa, wb, wc with means
µqwa , µqwb , µqwc and variance σ2

qwa
, σ2

qwb
, σ2

qwc
. The variational approximation on κ is a diagonal

covariance multivariate normal, with mean given by µqκ and covariance given by diag(σ2
qκ).

Similarly, we put a univariate normal variational approximation over each element of ζ param-
eterized so that ζi,j has mean µqζi,j and variance σ2

qζi,j
. This gives us 2(P +K2 + 3) parameters

to estimate. We denote Q as the Gaussian variational posterior over all the parameters, and P
the prior and maximize :

L =E
Q

[cn log {sigmoid(λn)}+ (1− cn) log {1− sigmoid(λn)}]− 1
N
KL(Q||P ), (6.1)

where:

λn = βanω̂n + κan

= s+(wa)Ψanω̂n + s+(wb){(Lω̂n)T ⊗Ψan}vec(ζ) + κan .

We use the local re-parameterization trick (Kingma et al., 2015) which uses the Affine transform
properties of the multivariate Gaussian distribution to allow the re-parameterization trick to be
employed on lower dimensions. This results in sampling at lower dimensions and more impor-
tantly makes the derivatives of the loss less noisy. To implement the local re-parameterization
trick, we draw random samples:

ϵwa ∼ N (0, 1), ϵwb ∼ N (0, 1), ϵlrt ∼ N (0, 1), ϵκ ∼ N (0, 1).

with Rn = (Lω̂n)T ⊗Ψan , we can get a one dimensional noisy estimate of λn :

λ̂n =s+(µqwa + ϵwaσqwa )Ψanω̂n

+ s+(µqwb + ϵwbσqwb )(Rn vec(µqζ
) + ∥RT

n ⊙ vec(σqζ )∥2ϵlrt)

+ µqκa
+ µqwc + ϵκ

√︂
σ2
qκa

+ σ2
qwc
.
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where ∥ · ∥2 denotes the L2 norm and ⊙ element wise multiplication. We can optimize a noisy
version of our objective :

L̂n =cn log
{︂

sigmoid(λ̂n)
}︂

+ (1− cn) log
{︂

1− sigmoid(λ̂n)
}︂
− 1
N
KL(Q||P ) (6.2)

We call the solution of this optimization problem BLOB-NQ as we considered a Normal
approximation for the posterior on ζ.

An alternative approach is to use a matrix variate normal distribution as the variational
approximation of ζ with mean matrix µqζ

and the two covariance matrices given by: diag(σ2
qζ1

)
and diag(σ2

qζ2
). This reduces the number of variational parameters used for representing the

variance of the variational posterior. We thus need to estimate 2(P + 3) +K2 + 2K parameters,
which is less than the previous approximation for K ≥ 2. To apply the local re-parameterization
trick, let:

stdn =
√︂

(σ2
qζ1
·Ψ2

an)(σ2
qζ2
· (LT ω̂n)2)

ϕ̂n =s+(µqwa + ϵwaσqwa )Ψanω̂n

+ s+(µqwb + ϵwbσqwb ){Ψanµqζ
LT ω̂n + stdnϵlrt}

+ µqκa
+ µqwc + ϵκ

√︂
σ2
qκa

+ σ2
qwc
.

A noisy estimate of the lower bound can then be computed by substituting ϕ̂n into Equation
(6.2). We call its solution of (6.2) with ϕ̂n substituted in BLOB-MNQ as we use a Matrix
Normal variational posterior.

In both approximations and when the objective is at its maximum, we can take a point
estimate of the bandit embeddings:

β̂ = s+(µqwa )Ψ + s+(µqwb )Ψµqζ
LT .

The bandit embedding can be interpreted as a weighted sum of the organic embedding and the
organic embedding multiplied by a K ×K matrix that can adjust the bandit embeddings based
on the bandit signal.

6.4 Results

6.4.1 Organic Evaluation

We demonstrate that our method produces useful user representations on next item prediction
using the RecoGym simulation environment (Rohde et al., 2018). RecoGym is a framework for
simulating a recommender system and enables the simulation of A/B tests, although here we
simply use it to create organic sequences of item views and test the organic model’s ability to
do next item prediction. We split both the datasets into train and test so that sessions reside
entirely in one of the two groups. We fit the model to the training set, we then evaluate by
providing the model v1, ..vTu−1 events and testing the model’s ability to predict vTu .

The organic model was implemented using the PyTorch automatic differentiation package in
Python (Paszke et al., 2017) and trained using Stochastic Gradient Descent (SGD), specifically
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the RMSProp variant. We set the learning rate to 10−3 and tune the other hyperparameters,
including L2 regularization, for each dataset based upon a validation set5.

The various models are evaluated using recall at K (RC@K) and truncated discounted cu-
mulative gain at K (DCG@K), which are defined below. Let rk be the kth highest value of
p(ωvTu |v1, ..vTu−1). For all results presented in this chapter, we set K to 5.

RC@K =
{︄

1, if vTu ∈ {r1, ..., rK}.
0, otherwise.

DCG@K =
∑︂
i

2ri1{vTu∈{r1,...,rK}} − 1
log i+ 1 .

We compute the average of these quantities over all sessions in the test set. We consider two
alternative methods for training the model:

• Bouch/AE - A linear variational auto-encoder using the Bouchard bound (see the sup-
plementary material).

• RT/AE - A deep auto-encoder again using the re-parameterization trick. The deep auto-
encoder consists of mapping an input of size P to three linear rectifier layers of K units
each.

When we update the posterior over a user’s latent variable representation at test time, we
assess both using the auto-encoder denoted AE and using the 100 iterations of the EM algorithm
denoted EM in the results. When we compute next item predictions we consider both using
a 100 sample Monte Carlo approximation denoted MC and just taking the mean as a point
estimate denoted mean. To demonstrate the effectiveness of our approach, we present results
from the following baseline approaches:

• Popularity: Item popularity provides no personalization, but is nonetheless a strong
baseline for certain recommendation tasks.

• Item KNN: Item K Nearest Neighbors (KNN) involves computing the correlation matrix
of the sample data adding the identity to prevent division by zero and then using these
correlations as recommendations based on a user’s most recent historical item. The limi-
tations of this technique is that it ignores item popularity and multiple items in the user’s
history, but despite these limitations it is often a strong baseline.

• Recurrent Neural Network: For this baseline, we make use of a recurrent neural
network to learn a user representation by predicting the next item in the session. The
model architecture we employ is similar to that of Hidasi and Karatzoglou (2018), in that
we feed the output from an embedding layer into a Gated Recurrent Unit (GRU) (Cho
et al., 2014) with 64 hidden units to learn the temporal dynamics of the user’s session.
The output from the GRU is then passed through a final softmax layer, which gives the
probability of the next item in the sequence. The network is trained to minimize the
categorical cross-entropy over the training sessions via RMSProp.

For our organic experiment we use the RecoGym simulator with 2000 products and σω = 0,
i.e. a static user state, we generate a training set of 100 sessions and a test set of 100 sessions,

5All code will be released upon acceptance. The RecoGym simulator allows reproducible results for all recom-
mendation algorithms and policies.
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Algorithm Latent Next Item RC@5 DCG@5

Pop 0.020 0.016
ItemKNN 0.020 0.024
RNN 0.035 0.033
Bouch/AE AE MC 0.082 0.128
Bouch/AE AE mean 0.082 0.079
Bouch/AE EM MC 0.117 0.128
Bouch/AE EM mean 0.117 0.130
RT/AE AE MC 0.090 0.105
RT/AE AE mean 0.080 0.068
RT/AE EM MC 0.090 0.105
RT/AE EM mean 0.090 0.106

Table 6.2: Results on the testset of the RecoGym dataset with 2000 products. For both metrics,
a higher value is better.

this results in 21852 and 19533 events for train and test respectively. The BLO models were
all trained using 15000 epochs using the RMSProp algorithm, the embedding size was set to
10. The RNN was trained with K = 200 for 5000 epochs (it performed slightly worse with
a training run of 25000). The results are shown in Table 6.2. BLO is much better than the
baselines at standard organic recommender systems metrics. However, if being able to build an
adequate model of organic behaviour is sufficient for building a recommender system depends
on if the organic behaviour is aligned with bandit behaviour. This requires using RecoGym
for its intended purpose, simulating A/B tests and varying the agreement between the organic
behaviour and bandit behaviour using the provided flips parameter.

6.4.2 The Complete Model - Organic and Bandit

Experimental Setup

Unfortunately, no real world dataset exhibits the required properties (both organic and bandit
behaviour). Moreover, no real world dataset including counterfactual datasets allow us to
evaluate the quality of a recommender systems recommendations reliably. For this reason, for
the complete dataset, we do our evaluations completely in the RecoGym simulator. A strong
advantage of the simulation environment is that not only can we compute offline organic metrics
but we can also simulate A/B tests.

Another advantage of the RecoGym simulator that simulates both organic and bandit
behaviour is that algorithms from the traditional organic part of recommender systems research
and bandit algorithms can be compared side by side. We consider traditional organic algorithms
like ItemKNN (Davidson et al., 2010) along side our organic Bayesian Latent Organic model
(BLO) and sophisticated deep learning approaches such as the MultiVAE (Liang et al., 2018).
In the case of bandit algorithms, we can test value based logistic regression as well as the policy
based contextual bandit. In order to apply any bandit algorithm, we need to perform feature
engineering in order to transform the history consisting of item views into a vector of history.
For the logistic regression, we elect to make a P dimensional feature vector crossed with the
action also of size P giving P 2 features. Similarly, the contextual bandit is a linear model that
maps the P dimensional vector of historical counts to a P dimensional action space.
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We are interested to see how the recommender system responds to different logging policies,
we therefore test it using a good logging policy based on the session popularity. That is the
probability 1 − ϵ is shared proportionally to the items in a users history we use considerable
exploration (ϵ = 0.3). We are interested in the (common) case where we have plentiful organic
data, so we set RecoGym to have 20000 organic sessions. Finally, we are interested in situations
where the next item prediction is an optimal recommendation and cases where the organic
signal alone is misleading to recommendation quality. This connection between the organic
and the bandit signal is controlled with the flips parameter in RecoGym. The flips parameter
permutes the behaviour of two actions.

A unique feature of RecoGym is that we are able to simulate both organic and bandit feedback,
this means we are able to compare algorithms that operate on the bandit signal (both policy
and value based) with algorithms that operate on the organic signal. We consider the following
baselines:

• Logistic regression (bandit, value): Perhaps the simplest way to process a bandit
signal. We regress the reward on features derived from the users history and the recom-
mended action. In order to deliver the recommendation, we predict the reward for every
action and select the highest.

• Contextual bandit (bandit, policy): The contextual bandit is a policy based method
that maps a context to a recommendation in one-of-n coding a vector of length P . The
algorithm is trained using the IPS score logged by RecoGym without any clipping or
variance penalty.

• Session ItemKNN (organic): This organic algorithm operates by determining for each
session if an item was present or absent, from this dataset a correlation matrix is computed.
At recommendation is delivered by computing the average correlations for each item in
history as a single vector and then taking the maximum. We take the whole session into
account rather than the most recent item (unlike most recent ItemKNN used above).

• Multi-VAE (organic): A state-of-the-art deep learning recommendation algorithm sim-
ilar to the organic portion of the model presented here, except the model is non-linear and
uses some non-standard heuristics such as ’beta-annealing’.

• BLO (organic): The organic portion of the model developed here. We set the embedding
size to be K=20 and use a linear variational auto-encoder. This is implemented in PyTorch.
A learning rate of 0.0001 is used with 1000 epochs and an embedding size of K = 20.

• BLOB (organic and bandit combined): The complete model developed here. We
use priors: wa ∼ N (−1, 12), wb ∼ N (−6, 12), wc ∼ N (−4.5, 102), κ ∼ N (wc, 0.012I). We
consider both the normal variational approximation NQ and the matrix normal variational
approximation MNQ. The bandit layer is implemented using TensorFlow with a learning
rate of 0.001 and 800 epochs for the P = 100 and 1200 epochs for the P = 1000, with a
batch size of 1024 and using the RMSprop training algorithm.

• Random: The actions are recommended randomly. A weak baseline, but useful to cali-
brate performance.

Experimental Results

The first experiment considers the catalogue size to be P = 100, the number of user sessions to
be 1000, the simulated A/B test is done over 4000 users and the logging policy being session
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popularity with epsilon greedy exploration (epsilon=0.3). This means that the bandit signal
will resemble that found in real systems with a strong signal around some actions favoured by
the previous version of the recommender system (session popularity policy - a decent baseline)
and a weak signal over much of the remaining action space. Results are shown in Table 6.3.

In the flips=0 scenario, RecoGym is configured so that next item prediction based on organic
data is a perfect proxy for delivering good recommendations. As a consequence, all the organic
based methods do well including the BLO (organic), both our methods that combine organic
and bandit BLOB-NQ and BLOB-MNQ and the Multi-VAE baseline. the Session ItemKNN
baseline while organic does not perform well.

When the flips=50 scenario, RecoGym internally permutes 50 actions behavior. This means
that next item prediction is now a poor proxy of recommendation performance. We see this as
all purely organic based agents now perform poorly. Indeed, the connection between organic
and bandit is reduced to the point that Session ItemKNN, the Multi-VAE and BLO all perform
worse than random. It is in this case that the value of our BLOB model is demonstrated, as
both BLOB-NQ and BLOB-MNQ perform strongly.

For the pure bandit algorithms, the value based Log Reg and the policy based CB perform
similarly to each other in both scenarios (flips=0 and flips=50). They perform a little better
than random (except for CB flips=50) demonstrating that there is some usable signal in
the bandit feedback but are far from state of the art, especially in the flips=0 case where
ignoring the organic signal profoundly limits recommendation quality. In the flips=50 case, the
pure bandit approaches outperform the purely organic algorithms but the combined approach
performs significantly better, giving a click-through rate of 1.57% for the BLOB-NQ compared
to 1.21% for the logistic regression.

Importantly, the BLOB-NQ and BLOB-MNQ are on par or outperform the other methods
in the flips=0 setting, and significantly outperform the other methods in the flips=50 setting.

Table 6.3: Simulated A/B test results on the RecoGym simulator using: P = 100, U = 1000,
organic only sessions=20 000.

Agent Type CTR (%) CTR (%)
flips=0 flips=50

Log Reg (bandit) 1.37 1.21
CB (bandit) 1.37 1.09
ItemKNN (organic) 1.39 0.92
MultiVAE (organic) 2.43 0.76
BLO (organic) 2.42 0.76
BLOB-NQ (combined) 2.42 1.57
BLOB-MNQ (combined) 2.40 1.56
Random 1.09 1.11

The second experiment considers the same setup but with P = 1000, we also increase the
number of epochs on the bandit component of the model to 1200. Results are shown in Table 6.3.

Again we see that the methods that use the organic data either the purely organic or the
combined BLOB methods we propose perform work well when flips=0, but when flips=500 the
purely organic methods fall in performance to little above random yet the combined methods
BLOB-MNQ and BLOB-NQ continue to perform well beating all other baselines.

The policy based contextual bandit shows a small improvement over the value based logistic
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regression in the flips=0 case, although this advantage vanishes when flips=500, this is may
be due to the fact that the contextual bandit "clings" to the logging policy and the session
popularity logging policy is better in the case where flips=0.

Table 6.4: Simulated A/B test results on the RecoGym simulator using: P=1000, U=1000,
organic only sessions=20 000.

Agent Type CTR (%) CTR (%)
flips=0 flips=500

Log Reg (bandit) 1.26 1.30
CB (bandit) 1.38 1.29
ItemKNN (organic) 1.39 0.87
MultiVAE (organic) 2.43 1.15
BLO (organic) 2.42 1.13
BLOB-NQ (combined) 2.40 1.51
BLOB-MNQ (combined) 2.39 1.62
Random 1.13 1.12

6.5 Conclusion

We focus on a particular recommendation task, one where a user profile is defined by a history
of items in a catalogue and the recommendation task is to recommend items from the same
catalogue. Our model is able to learn both from the organic signal and the bandit signal
jointly beating baselines in a range of settings by exploiting the three fundamental distances of
recommendation action-history, action-action and history-history.

We use computational techniques which allow large scale Bayesian inference suitable for
Recommendation with large catalogues. The local re-parameterization trick was particularly
valuable in reducing the variance in our optimisation problem.

BLOB is able to perform well both in situations where next item prediction is a good proxy
for recommendations and situations where it is poor. Meeting the performance of pure organic
algorithms in settings where the organic signal is sufficient and exceeding all baselines in more
realistic scenarios. This strongly validates the value of Bayesian methods to infer in the cases
of a signal of varying strength and their practical value thanks to modern developments in
Bayesian deep learning.

There are many possible extensions to this work, one is to produce end to end training, i.e.
training both the organic and bandit component simultaneously. To apply this approach would
require a more complicated training procedure. We also expect there are other useful ways
to combine organic and bandit signal, perhaps based on models that avoid the softmax and
sigmoid transform such as LDA for the organic and using the approach out lined in (Lumbreras
et al., 2018) for the Bandit. Avoiding softmax and sigmoid transforms has both computational
advantages and can increase interpretability.
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6.6 Appendix

6.6.1 Approximating expectations under the log softmax

The variational lower bound of BLO (and BLOB) contains a log softmax term. An alternative
to using the re-parameterization trick is to use The Bouchard bound, which removes the need for
Monte Carlo methods. The Bouchard bound introduces a further approximation and additional
variational parameters a, ξ but produces an analytical bound:

L ≥ LBouch =
(︄

T∑︂
t

Ψvtµqω + ρvt

)︄

− T [a+
P∑︂
p

Ψpµqω + ρp − a− ξp
2

+ λJJ(ξp){(Ψpµqω + ρp − a)2 + ΨpΣqωΨT
p − ξ2

p}+ log(1 + eξp)]

− K

2 log(2π)− 1
2{µ

T
qωµqω + trace(Σqω)}+ 1

2 log |2πeΣqω |.

Because the Bouchard bound causes the softmax to decompose into a sum, we can avoid the
expensive normalization by subsampling some of the terms in the softmax.

L̂Bouch(v1, ..., vT , n1, ...nS ,Ξ,Ψ) =
(︄

T∑︂
t

Ψvtµqω + ρvt

)︄

− T [a+ P

S

S∑︂
s′=1

Ψns′ µqω + ρns′ − a− ξns′

2

+ λJJ(ξns′ ){(Ψns′ µqω + ρns′ − a)2 + Ψns′ ΣqωΨT
ns′ − ξ

2
ns′}+ log(1 + eξns′ )]

− K

2 log(2π)− 1
2{µ

T
qωµqω + trace(Σqω)}+ 1

2 log |2πeΣqω |.

where v1, ..., vT are the items associated with the session and n1, ...nS are S < P negative items
randomly sampled, and λJJ(·) is the Jaakola and Jordan function (Jaakkola and Jordan, 1997):

λJJ(ξ) = 1
2ξ

(︃ 1
1 + e−ξ −

1
2

)︃
.

This algorithm is similar to the word2vec algorithm (Mikolov et al., 2013), but without any
non-probabilistic heuristics.

6.6.2 Log concavity bound

The log concave bound (Ruiz et al., 2018; Blei and Lafferty, 2005; Bouchard, 2007) also breaks
the log softmax into a sum

log p(v1, .., vT ,ωu|Ψ) =
(︄

T∑︂
t

Ψvtωu + ρvt

)︄
− T log

{︄
P∑︂
p

exp(Ψpωu + ρp)
}︄
− K

2 log(2π)− 1
2ωT

uωu

≥
(︄

T∑︂
t

Ψvtωu + ρvt

)︄
− Tϕ

{︄
P∑︂
p

exp(Ψpωu + ρp)
}︄

+ T log ϕ+ T

− K

2 log(2π)− 1
2ωT

uωu

= Llog.
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Taking an expectation under q of this lower bound gives:

Eq(ω)[Llog] = Llog =
(︄

T∑︂
t

Ψvtµqω + ρvt

)︄
− Tϕ{

P∑︂
p

exp(Ψpµqω + ρp + 1
2ΨpΣqωΨT

p )}+ log ϕ+ 1

−KL(Q||P ).

A fast approximation of the bound can be retrieved by subsampling the items in the catalogue:

L̂log(v1, .., vT , n1, nSneg) =
(︄

T∑︂
t

Ψvtµqω + ρvt

)︄
−KL(Q||P )

− T P

Sneg
ϕ{

Sneg∑︂
s′

exp(Ψns′ µqω + ρns′ + 1
2Ψns′ ΣqωΨT

ns′ )}+ T log ϕ+ T.

Finally the one vs each bound (Titsias, 2016) also breaks the log softmax into a sum without
introducing any variational parameter whatsoever.

We can also use a variational auoto-encoders for a, ξ in the case of the Bouchard bound and
ϕ in the case of the log concave bound to prevent variational parameters growing with the size
of the dataset. This is similar to the augment and reduce approach (Ruiz et al., 2018) but has
no requirement to be in complete data exponential family form.

The computational impact of turning the log softmax into a sum computationally is driven
by P and GPU size. If P is small compared to the GPU it may be preferable to avoid using any
additional approximations and compute the full softmax using the re-parameterization trick.

6.6.3 The EM Algorithm - an alternative to the VAE

Standard EM algorithm

If the parameters Ψ,ρ are already known then the posterior over the user embedding ω may
be calculated by optimizing the lower bound using the following variational EM algorithm. The
EM algorithm exploits the fact that the Bouchard bound is quadratic and conjugate to the
Gaussian distribution. The algorithm here is the dual of the one presented in Bouchard (2007)
as we assume the embedding Ψ is fixed and ω is updated where the algorithm they present does
the opposite. The EM algorithm consists of cycling the following update equations:

Σ−1
qω = Ik + 2T

∑︂
p

λJJ(ξp)ΨT
p Ψp,

µqω = Σqω

(︄
(
T∑︂
t

ΨT
vt)− T

[︄
P∑︂
p

{1
2 + 2(ρp − a)λJJ(ξp)}ΨT

p

]︄)︄
,

a =
−1 + P

2 +∑︁
p 2λJJ(ξp)(Ψpµqω + ρp)

2∑︁p λJJ(ξp)
,

ξp = h(Ψp,ρp, a,Σqω ,ρq) =
√︂

ΨpΣqωΨT
p + (Ψpµqω + ρp − a)2.

Fast online EM algorithm

We further note that the EM algorithm is (with the exception of the a variational parameter)
a fixed point update (of the natural parameters) that decomposes into a sum. The terms in
the sum come from the softmax in the denominator. After substituting a co-ordinate descent
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update of a with a gradient descent step update, then the entire fixed point update becomes a
sum:

(Σ−1
qω )new = Ik + 2

∑︂
p

λJJ(h(Ψp,ρp, a,Σqω ,ρq))ΨT
p Ψp,

(Σ−1
qω µqω)new = (

T∑︂
t

ΨT
vt)− T

[︄
P∑︂
p

{1
2 + 2(ρp − a)λJJ{h(Ψp,ρp, a,Σqω ,ρq)}}ΨT

p

]︄

anew = a+
−1 + P

2
2 +

∑︂
p

λJJ{h(Ψp,ρp, a,Σqω ,ρq)}(Ψpµqω + ρp)− aλJJ{h(Ψp,ρp, a,Σqω ,ρq)}

That is the EM algorithm can be written:

(︂
(Σ−1

qω )new, (Σ−1
qω µqω)new, anew

)︂
=

P∑︂
p

g(Ψp,ρp,Σ−1
qω ,Σ

−1
qω µqω , a).

As noted in Cappé and Moulines (2009) when an EM algorithm can be written as a fixed point
update over a sum, then the Robbins-Monro algorithm can be applied. Allowing updates of the
form (p is chosen randomly):

(Σ−1
qω )(s),(Σ−1

qω µqω)(s), a(s)

= (1−∆s)
(︂
(Σ−1

qω )(s−1), (Σ−1
qω µqω)(s−1), a(s−1)

)︂
+ ∆sg(Ψp,ρp, (Σ−1

qω )(s−1), (Σ−1
qω µqω)(s−1), a(s−1)).

where ∆ is a slowly decaying Robbins Monro sequence (Robbins and Monro (1951b)) with
∆1 = 1 (meaning no initial value of (Σ−1

qω )(0), (Σ−1
qω µqω)(0), a(0)) is needed. For large P this

algorithm is many times faster than the generic EM algorithm. Note that (unusually) the
Robbins Monro algorithm is applied to the softmax of a large categorical variable and not to
individual records under a conditionally independent assumption.

There are other variational bounds that may be considered for this problem most notably the
tilted bound (Knowles and Minka, 2011). For the tilted bound the known fixed point algorithms
are not guaranteed to be stable and are not always stable in practice (Nolan and Wand, 2017;
Rohde and Wand, 2016) so extra methods such as line searches need to be considered. The
tilted bound also does not decompose into a sum. We do not further consider alternative bounds.

The computational cost of this algorithm depends on the number of products P linearly and
the embedding size K cubicly, if P and K are modest it can take less than a second making
it potentially deployable at prediction time. In practice we found the cost of large P might
be prohibitive due to the sums over all P embeddings, in these cases a variational auto-encode
described in the next section, is to be preferred.

6.6.4 Next Item Prediction

The predictive distribution required to do next item prediction is also not trivial in this case,
i.e. approximating:

p(vu,T+1|vu,1, .., vu,T ) =
∫︂
p(vu,T+1|ω,Ψ,ρ)p(ω|vu,1, .vu,T )dωu
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is not trivial even if p(ω|vu,1, ..vu,Tu) is approximated with a Gaussian distribution ωu|v1, ..vT ∼
N (µqω ,Σqω). We are interested in computing:

p(vn+1|v1, ...vn) ≈ E
q(ω)

[︃ exp(Ψvω + ρ)∑︁
v′ exp(Ψv′ω + ρ)

]︃
.

We considered using a Monte Carlo based approximation, first by drawing S samples:

ω(s) ∼ N (µqω ,Σqω),

p(vn+1|v1, ...vn) ≈ 1
S

S∑︂
s

exp(Ψvω
(s) + ρ)∑︁

v′ exp(Ψv′ω(s) + ρ)
,

as well as using a number of fast approximations such as:

p(vn+1|v1, ...vn) ≈
exp(Ψvµqω + ρ)∑︁
v′ exp(Ψv′µqω + ρ) .

while we investigated more complex approximations (such as normalizing the exponential of the
lower bound) we did not find they helped in practice.



Chapter 7

Fast Offline Learning for One-Item
Recommendation

Abstract
Personalised interactive systems such as recommender systems require selecting relevant items
from massive catalogs dependent on context. Reward-driven offline optimisation of these sys-
tems can be achieved by a relaxation of the discrete problem resulting in policy learning or
REINFORCE style learning algorithms. Unfortunately, this relaxation step requires computing
a sum over the entire catalogue making the complexity of the evaluation of the gradient (and
hence each stochastic gradient descent iterations) linear in the catalogue size. This calculation is
untenable in many real world examples such as large catalogue recommender systems, severely
limiting the usefulness of this method in practice. In this chapter, we derive an approximation of
these policy learning algorithms that scale logarithmically with the catalogue size. Our contri-
bution is based upon combining three novel ideas: a new Monte Carlo estimate of the gradient of
a policy, the self normalised importance sampling estimator and the use of fast maximum inner
product search at training time. Extensive experiments show that our algorithm is an order of
magnitude faster than naive approaches yet produces equally good policies.
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7.1 Introduction
Large Scale Recommender systems are helping users navigate the enormous amount of content
present on the internet, allowing them to identify relevant items. From movie recommendation,
basket completion to ad placement, all of these systems need to make decisions in an accurate
and fast manner. In this work, we cast the problem of recommendation in the offline contextual
bandit framework Swaminathan and Joachims (2015a); Dudík et al. (2014). Given a context
x, the decision system performs an action a, the context then interacts with the action recom-
mended and we receive a reward r(a, x). We represent the recommender system as a stochastic
parametric policy πθ : X → P(A), which given a context x ∈ X , defines a probability distribu-
tion over the discrete action space A of size P . We suppose that the contexts x are stochastic
and coming from an unknown distribution ν on X . Our objective is to maximize w.r.t to our
parameter θ the average reward over contexts and actions performed by πθ. It can be written
as:

R(πθ) = Ex∼ν(X ),a∼πθ(.|x)[r(a, x)] (7.1)
= Ex∼ν(X )[

∑︂
a∈A

πθ(a|x)r(a, x)] (7.2)

In real world applications, we usually have access to a finite number of context observations
{xi}Ni=1 and a reward estimator r̂(a, x) built depending on the application and the task our
system is trying to solve. We define an empirical estimator aligned with Equation (7.1) by:

R̂(πθ) = 1
N

N∑︂
i=1

Ea∼πθ(.|xi)[r̂(a, xi)] (7.3)

= 1
N

N∑︂
i=1

∑︂
a∈A

πθ(a|xi)r̂(a, xi). (7.4)

This simple equation actually encompasses the majority of the objectives used in the of-
fline bandit literature depending on the reward estimator chosen. For example, if we have
access to a bandit dataset with the actions done, their propensities and the reward obtained
{ai, pi, ri}Ni=1, the IPS/Horwitz-Thompson estimator and its clipped variant Swaminathan and
Joachims (2015a); Bottou et al. (2013) can be obtained by choosing a reward estimator of the
following form :

r̂τIPS(a, xi) =

⎧⎨⎩
ri

max(τ,pi) if a = ai

0 otherwise

with τ the clipping factor between 0 and 1, with the original IPS retreived when τ = 0. With
the additional assumption that we have access to a reward model rM, we can similarly define
the Doubly Robust estimator Dudík et al. (2014) and its clipped variant Su et al. (2020) by
choosing a reward estimator of the form :

r̂τDR(a, xi) =

⎧⎨⎩
ri−rM(a,xi)

max(τ,pi) + rM(a, xi) if a = ai

rM(a, xi) otherwise .

One can also cast other methods Wang et al. (2017) into this framework or just optimize any
offline metric by designing an adequate reward estimator r̂ and plugging it in the simple objective
defined in Equation (7.3). Our method is versatile and can deal with different applications as
long as we provide the right reward estimator. In the rest of the chapter, we will not make any
assumptions on the reward estimator used unless stated explicitly.
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7.2 Parametrizing the Policy
In the problem of recommendation, our objective is to find the best product that matches the
current interest of the user. As we deal with distinct enumerable products, we consider our
action space discrete and we opt naturally for a policy, that is, conditioned on the context x, of
the softmax form (Swaminathan and Joachims, 2015a):

πθ(a|x) = exp{fθ(a, x)}∑︁
b exp{fθ(b, x)} = exp{fθ(a, x)}

Zθ(x)

with fθ a parametric transformation of the context and the action that encodes the relevance
of the action a for the context x. After training the policy and given a context x, the best
recommendation online is retrieved by computing the action that maximizes the scores:

a∗
x = argmaxa fθ(a, x). (7.5)

This recommendation needs to be done in milliseconds over large catalog sizes making the
form of fθ crucial to performing Equation (7.5) rapidly. By restricting the policy to the following
form:

fθ(a, x) = hΞ(x)Tβa
with θ = [Ξ, β], hΞ a transform that creates a user embedding and βa the item embeddings.
Equation (7.5) becomes:

a∗
x = argmaxa hΞ(x)Tβa

which is precisely the problem that approximate MIPS: Maximum Inner Product Search algo-
rithms Malkov and Yashunin (2020); Johnson et al. (2019) solves quickly (if approximately).
This is achieved by first building a fixed index with a particular structure Malkov and Yashunin
(2020) allowing fast identification of the item with the largest inner product with the query
hΞ(x). With this index, solving Equation (7.5) is done in a time complexity logarithmic in the
the size of the action space P making it possible to deliver recommendations quickly from a
large catalog.

7.3 Optimizing the Objective
In large scale recommendation problems, we usually deal with a considerable amount of
observations making stochastic gradient descent and its variants Ruder (2016) suitable for
such application. As our objective is decomposable, we are interested in the gradient of
R̂i(πθ) = Ea∼πθ(.|xi)[r̂(a, xi)] for a single observation xi. A gradient can be derived using the log
trick Williams (1992):

∇θR̂i(πθ) = Ea∼πθ(.|xi)[r̂(a, xi)∇θ log πθ(a|xi)]. (7.6)

When the action space is of small size Swaminathan and Joachims (2015a); Dudík et al.
(2014); Su et al. (2020), this gradient can be computed exactly as an expectation over the
discrete distribution πθ. Once the size of the catalog P is in the order of millions, an exact
gradient update becomes a bottleneck for the optimization process because of the complexity of
the following computations:
1 - Computing ∇θ log πθ(.|xi): We need to deal with the normalizing constant Zθ(xi) present
in the computation of ∇θ log πθ(.|xi). Indeed, Zθ(xi) is a sum over all the action space and its
computation needs to be avoided if we hope to reduce the complexity of the gradient update.
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2 - Computing the expectation: The expectation is a sum over all the action space and
is obviously computed in O(P ). To avoid this expensive sum, we can resort to sampling from
πθ to approximate the gradient. This allows us to obtain the REINFORCE estimator Williams
(1992), an unbiased estimator of the expectation but does not change the complexity of the
method which stays linear in the catalog size. Indeed, sampling needs the computation of
Zθ(xi) or can be done with the gumbel trick Huijben et al. (2021) which both scale in O(P ).
To lower the time complexity, we need to avoid sampling directly from πθ and use Monte Carlo
techniques instead such as importance sampling Owen (2013) with carefully chosen proposals to
achieve fast sampling and accurate gradient approximation.

The proposed approach will try to reduce the complexity of the gradient computation by
separately dealing with the issues mentioned above in a principled manner. This will achieve a
faster offline training, and will hopefully not suffer a loss in the quality of the policy learned.

Remark. The problem we are interested in should not be confused with the maximum log-
likelihood problem which is to maximize:

L =
∑︂
n

hΞ(xn)Tβan − log(
∑︂
i

exp(hΞ(xn)Tβi)). (7.7)

In the context of policy learning, we are seeking a decision rule that maps x to the highest
reward action according to r(a, x). This is different from maximising Equation (7.7) which
enables us to find the model P (a|x,Ξ) that fits the data the most and totally ignores r(a, x).
While both approaches slow down when the catalogue size P is very large due to the sum,
they are not the same problem. Many existing methods in the literature have been proposed
to optimize Equation (7.7) when dealing with large action spaces. These include Bengio and
Senecal (2003); Blanc and Rendle (2018); Rawat et al. (2019); Mikolov et al. (2013). There are
some overlaps between the two problems above, as both require calculating expectations under
a large categorical distribution, but the difference in the loss functions makes the solutions of
these problems different as well. For instance, the solution of the policy learning problem is
a deterministic policy, putting, conditionally on x, all the mass on the action that maximizes
r(a, x). If any of the methods suggested to solve the maximum likelihood problem can be
adapted to the policy learning case is beyond the scope of this chapter.

7.4 The Proposed Method
As pointed out in the previous section, we need a workaround to deal with the presence of the
normalizing constant in the gradient. For a fixed observations xi and similar to the derivations
found in Masrani et al. (2019), we can push further the computation of ∇θ log πθ(a|xi) to obtain
a quantity that does not involve Zθ(xi). Indeed, we have for a fixed action a:

∇θ log πθ(a|xi) = ∇θfθ(a, xi)−∇θ logZθ(xi)

= ∇θfθ(a, xi)−
∇θZθ(xi)
Zθ(xi)

= ∇θfθ(a, xi)−
∑︂
b

πθ(b|xi)∇θfθ(b, xi)

= ∇θfθ(a, xi)− Eb∼πθ(.|xi)[∇θfθ(b, xi)]

Injecting the above expression of ∇θ log πθ(a|xi) in Equation (7.6) leads us to the following
covariance gradient Masrani et al. (2019):

∇θR̂i(πθ) = Cova∼πθ(.|xi)[r̂(a, xi),∇θfθ(a, xi)] (7.8)
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with Cov[A,B] = E[(A−E[A]).(B−E[B])], which is a covariance between A a scalar function,
and B a vector. To estimate this, we first estimate the two inner expectations which are then
used in estimating the outer expectation. Note that the covariance in Equation (7.8) is between
two deterministic functions of one single random variable a that follows the distribution of
πθ. The gradient expression in Equation (7.8) has an intuitive interpretation, as the covariance
quantifies how two quantities evolve together, gradient descent using (7.8) will move in directions
where the reward and the gradient of the relevance function have the same evolution w.r.t to
the action drawn from the policy πθ enabling our algorithm to favor reward maximization.

The new gradient formula helps us get rid of the normalizing constant present in∇θ log πθ(a|xi)
but transforms the expectation we had in Equation (7.6) into a double expectation; a covariance
between the reward estimator and the gradient of our relevance function fθ. By exploiting this
identity, we remove the requirement to compute Zθ(xi) which scales linearly with the catalogue
size if we have available to us two (or more) samples from the policy πθ(.|xi) (computing covari-
ances requires multiple samples). Unfortunately, sampling from πθ(.|xi) also scales in O(P ) so
it seems that no progress has been made.

Wanting to avoid sampling from the current policy πθ, we use self normalized importance
sampling Owen (2013) to approximate the expectations without relying on the computation of
the normalizing constant Zθ. Indeed, for a fixed xi, if we have access to a discrete proposal
q over the action space, one can build an estimator of the expectation of a general function g
under πθ(.|xi) by:

Eπθ(.|xi)[g(a)] ≈
S∑︂
s=1

ω̄sg(as)

with as ∼ q ∀s, ωs = exp{f(as,xi)}
q(as) and ω̄s = ωs∑︁S

s′=1 ωs′
.

This algorithm removes the dependency on the catalogue size by avoiding the computation of
Zθ(xi). The cost for this is that the estimator is now biased with a bias decreasing with how close
the proposal q is to the policy πθ Agapiou et al. (2017). This means that if we want to exploit
self normalized importance sampling efficiently, we need to have access to a proposal q that is
fast to sample from, easy to evaluate as its needed to compute the weights ω̄s and close to the
actual policy πθ to reduce the bias and the variance of the method. To build such proposal q
that respects the three conditions, we need an additional assumption on the parameters learned
of our policy πθ.

Assumption 1: The item embedding matrix β is fixed and we are only interested in learning
the user embedding transform hΞ, which means Ξ = θ.

Making this assumption in the context of recommendation is reasonable Koch et al. (2021).
We can learn different representations of the items from collaborative filtering data, text data or
even images making learning meaningful embeddings possible without relying on the downstream
task we are trying to solve.

This assumption allows us to fully exploit approximate MIPS algorithms in the training phase
by building an index over the item embeddings β and fixing it before beginning the optimization
of our policy. Indeed, while we can modify existing embeddings in the index for a logarithmic
complexity Malkov and Yashunin (2020) in the training phase, this procedure will further slow
down the method as we need to update the items in the index for each training iteration.

Making Assumption 1 simplifies drastically the procedure as β are considered fixed and we
only need to compute the index once before the start of the training of our policy. With the help
of the approximate MIPS index, and for any xi, we define the proposal q as a mixture between
a distribution over the K most probable actions under πθ(.|xi) retrieved by the approximate
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MIPS algorithm i.e αK(xi) = argsort(hθ(xi)Tβ)1:K and a uniform distribution over actions. It
can be expressed as:

qK,ϵ(a|xi) =
{︄
ϵ
P + (1− ϵ)κ(a|xi), if a ∈ αK(xi)
ϵ
P , otherwise .

Where ϵ is a parameter that controls the mixture and

κ(a|xi) = exp(hθ(xi)Tβa)∑︁
a′∈αK(xi) exp(hθ(xi)Tβa′)1[a ∈ αK(xi)].

This proposal answers the necessary conditions to make self normalised importance sampling
works efficiently:

• It is fast to sample from as a mixture of a uniform distribution and a distribution
constructed with approximate MIPS making the time complexity O(logP ) Malkov and
Yashunin (2020). Indeed, solving the argsort, thus constructing αK can be done logarith-
mically in the catalog size with the help of approximate MIPS.

• Easy to evaluate as once we have the set αK , the computation will require at maximum
a sum over the top K retrieved actions with K ≪ P .

• Close to πθ as it exploits information about the top actions under πθ and covers well the
early stage (when πθ close to uniform) and late stage (when πθ is degenerate on the top
actions) of the optimization process.

Algorithm 4: Fast Offline Policy Learning
Inputs: D = {xi}Ni=1, reward estimator r̂, the item embeddings β
Parameters: T ≥ 1, α,K, S ≥ 2, ϵ ∈ [0, 1]
Initialise: θ = θ0, approximate MIPS index for qϵ,K
for t = 0 to T do

x ∼ D
query hθ(x) to get the approx. top K actions set αK
build the proposal qϵ,K(.|x)
sample a1, ..., aS ∼ qϵ,K(.|x)
Estimate the covariance gradient:
r̂s = r̂(as, x),∇fs = ∇θfθ(as, x) ∀s
ωs ← exp{f(as,x)}

qϵ,K(as|x) , ω̄s ← ωs∑︁
s
ωs
∀s

r̄ ←
∑︁S
s=1 ω̄sr̂s, ∇f̄ ←

∑︁S
s=1 ω̄s∇fs

gradθ ←
∑︁S
s=1 ω̄s[r̂s − r̄][∇fs −∇f̄ ]

Update the policy parameter θ:
θ ← θ − αgradθ

end
return θ

The performance of the self normalized importance sampling algorithm using our proposal is
controlled by the number of Monte Carlo samples S, the mixture parameter ϵ and the number of
items returned by the maximum inner product search K. This performance can also be impacted
by the parameters of the approximate MIPS algorithms that trade-off speed of retrieval for the
accuracy of the argsort, changing the parameters seemed to have little to no impact on the study
so we decided to fix them for the whole experiments.
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Catalog size Number of users
Twitch 790K 500K

GoodReads 2.33M 300K

Table 7.1: The statistics of the datasets after processing

By combining the self normalized importance sampling algorithm with our mixture proposal,
a stochastic gradient descent Ruder (2016) version of the algorithm we suggest can be described
in Algorithm 4.

This procedure is compatible with any stochastic first order optimization algorithm Ruder
(2016); Kingma and Ba (2014). In the next section, we will validate the approach on real world
datasets and study the impact of our method on the training speed and the quality of the learned
policy.

7.5 Experimental Results

We test our approach on a session completion task using a collaborative filtering dataset. In the
training phase, we split randomly the user-item interaction session into two parts, X and Y . X
is used as observed and we will condition on it to predict items that are found in Y , or in other
words, predict items that complements the vector X. Our goal is to build an algorithm that
given a user-item interaction vector Xnew, predict or recommend items that may interest the
user. This can be cast into an offline bandit framework where our policy πθ takes the observed
part X as a context, recommends an item a and receives the binary reward r̂(a,X) = 1[a ∈ Y ].
The goal then is to learn a policy πθ that will maximize the reward r̂ allowing it to solve the
session completion task. Note that our method is very versatile and can deal with different
problems as long as they can be cast into an offline policy learning problem as described in the
introduction. We chose a session completion task for simplicity as user-item interaction datasets
are public making the experiments easily reproducible.

To prepare our experiment, we begin by splitting the user-item sessions into two indepen-
dent sessions with the same number of interactions: the observed items X and the comple-
mentary items Y . Once this split performed, we also split the whole dataset into a train
Dtrain = [Xtrain, Ytrain] and test split Dtest = [Xtest, Ytest]. Given the train split Dtrain, we
use the observed contexts Xtrain to first compute the item embeddings β using SVD matrix
decomposition Klema and Laub (1980) of dimension [P,L] with L ≪ P that will be fixed to
create the approximate MIPS index. This index is then used by our proposal q in the learning
phase, but also used to get the best recommendation rapidly in the testing phase as described
in Equation (7.5).

Once we have the item embedding matrix β, we compute the user contexts x as the mean
embeddings Koch et al. (2021) of the items that the user interacted with. For Xi the observed
item interactions of user i and ni the number of items the same user interacted with, we define
xembi = 1

ni

∑︁
a∈Xi βa. The obtained vector xembi is of dimension L and will be the user context

in our experiment, meaning that we will use Demb
train = [xembtrain, Ytrain] and Demb

test = [xembtest , Ytest]
instead of Dtrain and Dtest.

The next step is to parametrize the policy πθ that we will train using our algorithm. With
the item embeddings β fixed, we only need to define the user transform hθ. We take hθ to be
a linear function of the user context xemb defined above, ie. hθ(xemb) = θTxemb making the
dimension of the parameter learned θ equals to [L,L]. After training the policy πθ, we validate
its performance on the test split Demb

test by computing the average reward collected after querying
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Figure 7.1: The speedups of the proposed algorithms on the Twitch and GoodReads datasets,
with and without GPU acceleration.

Dataset L rP rS

Twitch 10 0.54 1.01
100 0.40 1.01

GoodReads 10 0.83 1.00
100 0.71 1.01

Table 7.2: Impact of fixing the product embeddings.

the argmax of our policy using approximate MIPS, ie.

Rtest = 1
Ntest

Ntest∑︂
j=1

1[argmaxafθ(a, xembj ) ∈ Yj ]

We choose two collaborative filtering datasets with large catalogue sizes to validate our approach.
the Twitch dataset (Rappaz et al., 2021) and the GoodReads user-books interaction dataset
(Wan and McAuley, 2018; Wan et al., 2019) with both representing a good test bed for the
scalability of the proposed methods. We transform the datasets into a user-item interaction
matrix with statistics represented in Table 7.1. To build the approximate MIPS index, we use
the HNSW algorithm (Malkov and Yashunin, 2020) bundled in the FAISS library (Johnson et al.,
2019). The optimization routine is implemented using Pytorch (Paszke et al., 2019), and we opt
for the Adam optimizer Kingma and Ba (2014) with a batch size of 32 and a learning rate of
10−4 for all the experiments with the twitch dataset and 5.10−5 for the goodreads dataset. The
source code1 to reproduce the results has all implementation details.

With the experimental protocol described above, we want to study the speed improvement
brought by our method, and the effect of the parameters controlling our proposal qϵ,K , namely
the mixture parameter ϵ and the number of top K retrieved items on the speed and the quality
of the policy learned. The rest of the experiments section will be decomposed into different
research questions that we would like to answer for a better understanding of the approach
proposed.

RQ0 - What is the cost of fixing the embeddings? To verify the impact of making As-
sumption 1, we compare the performance and speed of REINFORCE with the item embeddings
β fixed to REINFORCE with β initialised with the SVD decomposition and trained. We report in
Table 7.2, for both datasets and two different values of the embedding dimension L ∈ {10, 100},
the relative speed-up rS = Ttrained/Tfixed and the relative performance rP = Rtrained/Rfixed with
Tmethod and Rmethod are respectively the run time and reward of a method after training.

1https://github.com/criteo-research/fopo
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Figure 7.2: The performance of the algorithms while changing the mixture parameter ϵ on both
Twitch and GoodReads datasets.

We observe that training β have no to little impact on the training time, but hurts the
performance of REINFORCE mainly due to the variance introduced by having more parameters
to optimize. Indeed, we observe that increasing the dimension L worsens the relative performance
rP in Table 7.2. We conclude that in our experiments, Assumption 1 can be made as it does
not negatively affect the training.

RQ1 - What is the speed gain over REINFORCE? This work addresses the computa-
tional inefficiency of vanilla REINFORCE as we previously described. To show that our proposed
method is a good solution to the problem presented, we conduct extensive experiments to study
the acceleration brought by our methods relatively to our baseline. In this section, we quantify
the gains in form of a relative speed-up of the proposed methods compared to REINFORCE;
for the same experimental setup, if Tmethod is the wall time of a method, we define the relative
speed-up to our baseline as RSmethod = TREINFORCE/Tmethod.

Before we dive into the experiments, we first identify the different parameters that can have
a big impact on the running time of the learning algorithm. As Matrix-vector multiplication is
naively done in O(L2) with L being the embedding dimension, we conduct multiple experiments
on the datasets we have at our disposal, on CPU and GPU devices while changing the em-
bedding dimension L to have a good understanding of the speed gains in different settings. In
Figure 7.1, we compare REINFORCE, the algorithm that approximates the gradient expression
in Equation (7.6) by samples from the true policy, with the proposed approach for ϵ = 1 for
which our proposal becomes uniform, and the mixture algorithm with ϵ ̸= 1, represented in
these experiments by a run with ϵ = 0.8. Note that the value of ϵ does not affect the running
time as long as it is different from 1. In these experiments, we fix K = 256 and S = 1000.

We can see from Figure 7.1 that we gain significant speed-ups in the different settings con-
sidered ranging from 5 to 25 faster offline policy training compared to REINFORCE, with the
largest speed-ups observed on CPU machines (no massive parallelization contrary to GPUs)
and with small embedding dimension L as the complexity of matrix-vector multiplication O(L2)
does not dominate the gradient update complexity. We can see that even if we have access
to a GPU, and we make L big enough to learn better user embeddings, the speed-up is still
interesting as we still obtain 5-10 times speed-up compared to our baseline. Note that all the
run times were averaged over 5 epochs, and that these time comparisons can differ depending
on the computational resources at one’s disposal, but we argue that the differences should be
more important when training on CPU machines, especially when the user embeddings are easy
to compute, making offline policy training on less powerful machines possible. We also expect
bigger gains when dealing with larger action spaces, given that our method scales better with
growing catalogues.
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Figure 7.3: Training performance given a fixed time budget.

RQ2 - What is the impact of changing ϵ? We have seen that changing ϵ, especially setting
it to 1, can have a significant impact on the iteration cost of the optimization procedure. To get
a better understanding of our method, we need to study the effect of the mixture parameter on
the quality and thus the performance of the trained policies. In this section, we investigate the
impact of changing ϵ on the average reward, on the same problem with an embedding dimension
set to L = 1000 to make the learning problem difficult, while also fixing the other parameters
to K = 256 and S = 1000. The algorithms were run on the datasets considered for 50 epochs,
and GPU training was used to be fair to the baseline, as the speed-up gains in this particular
setting are the lowest. We plot the results of these runs on Figure 7.2. We observe that, even if
REINFORCE has a much bigger time complexity per iteration (scales linearly on the catalogue
size), it does not outperform the optimization routines suggested by our approach. Indeed, we
can achieve the same level of performance, sometimes performances beyond what REINFORCE
can reach with much faster training, so not only our method is faster than REINFORCE, it can
also lead to a better optima as we suspect that using the index on the training phase helps the
policies be better aligned with how the recommendation is done after deployment, as the same
index is used online.

From the same plots, we can also conclude that fixing ϵ = 1, even if it provides the fastest
approximation as it boils down to using a uniform proposal, is far from being optimal if our
main goal is to obtain the policy with the best average reward. Indeed, the optimal policy is
obtained with values of ϵ ̸= 1 (ϵ = 0.8 for the Twitch Dataset and ϵ = 0.5 for the Goodreads
dataset). Even if this means that we need to try out different values of ϵ to get the best out
of our approach, it confirms that our first intuition of building a mixture proposal between the
uniform distribution and a TOP-K distribution brings value, in terms of iteration speed and
quality of the policy learned as our proposal is expected to behave well in all training phases;
ϵ ≈ 1 is expected to work well in the beginning of the optimization while ϵ close to 0 is expected
to work when the policy is close to convergence.

Figure 7.2 plot the evolution per epoch of the performance of the policies trained with the
different algorithms. As the cost of iteration significantly changes depending on the algorithm
used, we might be interested in a comparison given a fixed time budget, allowing us to train the
policy with different methods for the same amount of time.

We provide Figure 7.3 to shed more light on how the different algorithms perform on the
training phase with a fixed time budget. As the uniform proposal provides the fastest training, we
consider its running time after 50 epochs the allowed time budget and compare the performance
of all the other methods to it given that fixed running time. We can observe that REINFORCE
is the worst behaving algorithm as its iteration cost scales linearly with P and that a well-chosen
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Figure 7.4: The effect of changing K and S on the training.

mixture have always a slight edge over the uniform proposal on both training datasets.

RQ3 - What is the impact of changing the number of the top retrieved items K?
As our approach have different hyperparameters, we want to understand how changing them
affect the behaviour of the algorithms proposed. To quantify the impact of K, we focus on
the Twitch dataset and fix ϵ to 0.8, L = 1000 and S = 1000. We then try different values for
K ∈ {32, 64, 128, 256, 512}, the number of top items returned by approximate MIPS. We run the
optimization for 50 epochs and plot the reward of the policies on the training phase in Figure
7.4. We observe that the performance is robust to the choice of K as long as it is selected big
enough to cover most of the top candidates. Even if it is not apparent on the plot, we can also
confirm that the iteration cost is not greatly influenced by the choice of K, as long as it is orders
of magnitude smaller than the catalogue size.

RQ4 - What is the impact of changing the number of Monte Carlo samples S?
The number of Monte Carlo samples S controls the approximation accuracy of the gradient, as
increasing it will reduce the bias (when using the covariance gradient with our proposal qϵ,K)
and the variance of our gradient estimate for an additional computation cost. To understand
the impact of S on the training, we restrict ourselves to the Twitch dataset and use qϵ=0.8,K as
a proposal. We fix L = 1000, K = 256 and plot the results of changing S ∈ {50, 200, 500, 1000}
in Figure 7.4. We run the optimization for 50 epochs. We observe that our policies converge to
a better optima when we increase S, and that is expected as less noise is present in the gradient
approximation Owen (2013). We also observed from our experiments that the average run time
only increased slightly from S = 50 to S = 1000, suggesting that increasing S to a higher value
(S ≪ P ) is beneficial for training policies offline, as the additional computational cost on GPU
is minimal compared to the convergence speed gains achieved.

7.6 Related Work
There has been a surge of interest in off-policy learning in the last decade. Most of these
contributions have focused upon improving the estimate of the reward function, including the
development of estimators for the reward representing sophisticated modifications of the esti-
mators r̂IPS and r̂DR introduced in the first section. Correctly estimating the reward is an
extremely difficult problem and naive estimators suffer from very high variance, especially when
the new policies we want to evaluate are far from the logging policy Agapiou et al. (2017). Many
new methods improved the bias-variance trade-off of the reward estimators (Bottou et al., 2013;
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Dudík et al., 2014; Su et al., 2020; Wang et al., 2017; Swaminathan and Joachims, 2015b) and
tackled the learning problem by using these estimators within the framework of Empirical Risk
Minimization Bottou et al. (2013); Dudík et al. (2014); Su et al. (2020), or by leveraging re-
fined statistical learning techniques, giving birth to Sample Variance Penalization (Swaminathan
and Joachims, 2015a), Distributionally Robust Counterfactual Risk Minimization (Faury et al.,
2020; Sakhi et al., 2020b), PAC-Bayesian Counterfactual Risk Minimization (London and San-
dler, 2019) and Imitation Offline Learning (Ma et al., 2019). Alternatively, instead of using
an estimator, an explicit reward model can be used (Sakhi et al., 2020a; Jeunen and Goethals,
2021). Our contribution is orthogonal to these developments, as we consider the problem of how
to efficiently find a good policy given a reward function. Most past work assumes the action
space is small, and hence the optimization problem is tractable. Our algorithm reduces the op-
timization cost associated with large action spaces, but the estimation challenges of the reward
function remain.

Policy learning emerges as the optimisation problem of a reward driven recommender system.
Recommender system training is also sometimes formulated as a maximum likelihood approach
when training a model (Liang et al., 2018; Steck, 2020) to predict missing entries (e.g. predicting
missing elements of the MovieLens dataset (Harper and Konstan, 2015)). Maximum likelihood
estimation also suffers from a computational cost that scales in O(P ) but the problem has a dif-
ferent mathematical form to policy learning and methods developed in the maximum likelihood
context (Tanielian and Vasile, 2019; Gutmann and Hyvärinen, 2010; Rendle et al., 2009) cannot
be applied to policy learning.

There has been limited attention in the literature regarding scaling offline policy learning
methods to the problems of recommendations with large discrete action spaces. For example,
Dulac-Arnold et al. (2015) considered the acceleration of reinforcement learning Sutton and
Barto (2018) which is an online learning framework by definition. Their proposed approach
uses Fast K-NN Malkov and Yashunin (2020) algorithms to generate action candidates for the
critic to choose from, in contrast to our approach which deals with offline learning and uses
approximate MIPS algorithms to define a proposal to better estimate the gradient.

Recently Chen et al. (2019a) showed that offline policy learning methods can perform well
on large scale production systems, introducing a correction to the REINFORCE gradient with
little focus on the scalability of the method. Our work addresses the computational issues linked
to offline policy learning, making it fast to achieve without deteriorating the performance of the
obtained policy.

7.7 Conclusion

Offline Policy learning is a powerful paradigm for recommender system training, as it seeks to
align the offline optimization problem with the real world reward measured at A/B test time.
Unfortunately, the O(P ) cost of training traditional policy learning algorithms has limited the
widespread application of these methods in large scale decision systems when P is often very
large. To deal with this issue, we introduced an efficient offline optimization routine for softmax
policies, tailored for the problem of large scale recommendation. Our algorithm makes the
training orders of magnitude faster (up to 30x faster in our experiments). The quality of our
policies were at least as good as those found with slower baselines. This work can enable
practitioners to explore policy learning methods when dealing with large action spaces without
relying on huge computational resources. We hope that the solution provided in this chapter is
a first step towards the adoption of offline policy methods for large scale recommender systems.

There are a number of avenues of open research. Self normalized importance sampling pro-
duces biased gradients that can affect the convergence of stochastic gradient descent, convergence
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in this setting is not well studied apart from some special cases (Robbins and Monro, 1951a;
Hsieh et al., 2021). We showed that fixing ϵ works well in our experiments, but maybe an adap-
tive ϵ may work better still. We would expect ϵ = 0 to work well in the early stages of training
and ϵ → 1 in the late stages, but robustly determining how to evolve ϵ is unclear. Finally, we
would also want to explore ways to enable fast training without fixing the item embeddings β.



Chapter 8

Fast Offline Learning for Slate
Recommendation

Abstract
An increasingly important building block of large scale machine learning systems is based on
returning slates; an ordered list of items given a query. Applications of this technology include:
search, information retrieval and recommender systems. When the action space is large, decision
systems are restricted to a particular structure to complete online queries quickly. This chap-
ter addresses the optimization of these large scale decision systems given an arbitrary reward
function. We cast this learning problem in a policy optimization framework and propose a new
class of policies, born from a novel relaxation of decision functions. This results in a simple,
yet efficient learning algorithm that scales to massive action spaces. We compare our method
to the commonly adopted Plackett-Luce policy class and demonstrate the effectiveness of our
approach on problems with action space sizes in the order of millions.
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8.1 Introduction
Large scale online decision systems, ranging from search engines to recommender systems, are
constantly queried to deliver ordered lists of content given contextual information. As an ex-
ample a user who has just seen the film ‘Batman’, might be recommended: Superman, Batman
Returns, Bird Man, or a user that is reading a page about ‘technology’ might be interested in
other stories about biotechnology, solar power, and large language models. A large scale produc-
tion system must therefore be able to rapidly respond to a query like ‘Batman’ or ‘technology’
with an ordered list of relevant items.

A proven solution to this problem is to generate the ordered list using an approximate maxi-
mum inner product search (MIPS) algorithm (Shrivastava and Li, 2014), which at the expense of
a constraint in the decision rule provides extremely rapid querying even for massive catalogues.
While MIPS based systems are a proven technology at deployment time, the offline optimization
of them is not, and the standard algorithm based on policy learning using the Plackett-Luce dis-
tribution is infeasibly slow as the algorithm both iterates slowly and requires very large numbers
of iterations to converge. Fortunately, other approaches are possible which both iterate faster
and require fewer iterations. In this chapter we demonstrate such an algorithm and show it has
vastly better convergence properties than competitors.

We denote by x ∈ X a context; it can be the history of the user, a search query or even a
whole web page. The decision system is tasked to deliver, given the context x, an ordered list of
actions AK = [a1, ..., aK ], coined slates, of arbitrary size K. This slate can be an ad banner, a list
of recommended content or search results. Our decision system, given contextual information
x, constructs a slate by selecting a subset of actions {a1, ..., aK} ⊂ A from a potentially large
discrete set A and ordering them. Let P = |A| be the size of the action set. Fixing the slate
size K, we model our system by a decision function d : X → SK(A) that maps contexts x to the
space SK(A) of ordered lists of size K. Each pair of context x and slate AK is associated with
a reward function1 r(AK , x) that encodes the relevance of the slate AK for x. Our objective is
to find decision systems that maximize the expected reward under the unknown distribution of
contexts ν(X ):

Ex∼ν(X ) [r(AK = d(x), x)] .

Assuming that we have access to the reward function, the solution of this optimization problem
is given by:

∀x ∈ X , d(x) = arg max
AK∈SK(A)

r(AK , x) (8.1)

This solution, while optimal, is intractable as it requires, for a given context x, the search in the
enormous space SK(A) of size O(PK) to find the best slate. Instead of maximizing the expected
reward over the whole space, we want to restrict ourselves to decision functions of practical use.
In this direction, we begin by defining the parametric relevance function fθ : A×X → R:

∀(a, x) ∈ A× X , fθ(a, x) = hΞ(x)⊺βa

with the learnable parameter θ = [Ξ, β], a parametric transform hΞ : X → RL that creates a
context embedding of size L, and βa the embedding of action a in RL. the embedding dimension
L is usually taken to be much smaller than P , the size of the action space. We then define our
decision function:

∀x ∈ X , dθ(x) = argsortK

a∈A
{hΞ(x)⊺βa} . (8.2)

1motivated by business metrics and/or users engagement.
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with argsortK the argsort function truncated at the K-th item. Restricting the space of decision
functions to this parametric form reduces the complexity of returning a slate for the context x
from O(PK) to O(P logK). This complexity can be further decreased. Equation (8.2) trans-
forms the querying problem to the MIPS: Maximum Inner Product Search problem (Shrivastava
and Li, 2014), for which different algorithms were proposed (Gionis et al., 1999; Malkov and
Yashunin, 2020; Guo et al., 2020) to find a solution in a logarithmic time complexity. These
algorithms build fixed indexes over the action embeddings β, with particular structures to allow
the identification (sometimes approximate) of the K actions with the largest inner product with
the query hΞ(x). This allows us to reduce even further the complexity of the argsortK operator
from O(P logK) to a logarithmic time complexity O(logP ), making fast decisions possible in
problems with massive action spaces A. This leaves us with the problem of finding the optimal
decision function within the constraints of this parametric form. This is achieved by solving the
following:

θ∗ ∈ arg max
θ=[Ξ,β]

Ex∼ν(X ) [r(AK = dθ(x), x)] .

As we do not have access to ν(X ), we replace the previous objective with its empirical counter-
part:

θ∗ ∈ arg max
θ=[Ξ,β]

1
N

N∑︂
i=1

r̂ (AK = dθ(xi), xi) (8.3)

with {xi}i∈[N ] observed contexts and r̂ an offline reward estimator; it includes the Direct Method,
Inverse Propensity Scoring (Horvitz and Thompson, 1952), Doubly Robust Estimator (Dudík
et al., 2014) and many other variants, as presented in (Sakhi et al., 2023c). The optimization
problem of Equation (8.3) is complicated by the fact that the reward can be non-smooth and that
our decision function is not differentiable. A way to handle this is by relaxing the optimization
objective. Differentiable sorting algorithms (Grover et al., 2019; Prillo and Eisenschlos, 2020)
address a similar problem but make strong assumptions about the structure of the reward
function, and cannot scale to large action space problems. To be as general as possible, we
take another direction and relax the problem into an offline policy learning formulation (Bottou
et al., 2013; Swaminathan and Joachims, 2015a). We extend our space of parametrized decision
functions to a well-chosen space of stochastic policies πθ : X → P(SK(A)), that given a context
x, define a probability distribution over the space of slates of size K. Given a policy πθ, we relax
Equation (8.3), taking an additional expectation under πθ to obtain:

θ∗ ∈ arg max
θ=[Ξ,β]

R̂(πθ) = 1
N

N∑︂
i=1
EAK∼πθ(·|xi) [r̂(AK , xi)] . (8.4)

The most common policy class for this type of problem is Plackett-Luce (Plackett, 1975), that
generalises the softmax parametrization to slates of size K > 1. Under this policy class, com-
puting exact gradients is intractable, but we can obtain approximate gradients w.r.t to θ of
Equation (8.4). Common approximations (Williams, 1992) are based on sampling from the pol-
icy, are computed in O(P logK), and suffer from a variance that grows with the slate size K.
In the special case of decomposable rewards over items on the slate (Swaminathan et al., 2017),
exploiting this linearity structure (Oosterhuis, 2022) provides gradient estimates with better
variance. However, training speed still scales linearly with P making policy learning infeasible
in large action spaces.

In this work, we propose LGP: Latent Gaussian Perturbation, a new policy class based on
smoothing the latent space, that is perfectly suitable to optimize decision functions of the form



154 8.2. Plackett-Luce Policies

Arbitrary Reward Low Variance Time Complexity Space Complexity
PL-PG ✓ ✗ O(SP ) O(SP )

PL-Rank ✗ ✓ O(SP ) O(SP )
LGP ✓ ✓ O(SP ) O(SL)

LGP-MIPS ✓ ✓ O(S log P ) O(SL)

Table 8.1: High level comparison between the different optimization algorithms for slate decision
functions, with P the size of the action space, L the size of the embedding space and S the
number of samples used to approximate the gradient. PL-PG is Plackett-Luce trained with the
Score Function Gradient (Williams, 1992). PL-Rank is the algorithm proposed in Oosterhuis
(2022). LGP is our proposed method and LGP-MIPS is its accelerated variant. Our method works
with arbitrary rewards, scales logarithmically with P and have low memory footprint (L≪ P ).

described in (8.2). As shown in Table 8.1, our method provides fast sampling, low memory usage,
gradient estimates with better computational and statistical properties while being agnostic to
the reward structure. When the embeddings are prefixed, this class naturally benefits from
approximate MIPS technology, making sampling logarithmic in the action space size and opening
the possibility for policy optimization over billion-scale space sizes.

This chapter will be structured as follows. In Section 8.2, we will review the Plackett-Luce
policy class and present its limitations. Section 8.3 will introduce our newly proposed relaxation,
motivate its use and propose a learning algorithm. We focus in Section 8.4 on experiments to
validate our findings empirically. Section 8.5 will cover the related work, and we conclude with
Section 8.6.

8.2 Plackett-Luce Policies

8.2.1 A Simple Definition

We relax our objective function and model online decision systems as stochastic policies over
the space of slates; ordered lists of actions. There are some natural parametric forms to define
a policy on discrete action spaces. If we are dealing with the simple case of K = 1 (slate of
one action), we can adopt the softmax policy (Swaminathan and Joachims, 2015a; Sakhi et al.,
2023c) that, conditioned on the context x ∈ X and for a particular action a ∈ A, is of the form
:

πθ(a|x) = exp{fθ(a, x)}∑︁
b exp{fθ(b, x)} = exp{fθ(a, x)}

Zθ(x)
This softmax parametrization found great success (Swaminathan and Joachims, 2015a; Chen
et al., 2019a; Sakhi et al., 2023c), and is ubiquitous in applications where the goal is to learn
policies or distributions over discrete actions. Once we deal with K > 1, one can generalize
the previous form, giving us the Plackett-Luce policy (Plackett, 1975). For a given x and a
particular slate AK = [a1, ..., aK ], we write its probability:

πθ(AK |x) =
K∏︂
i=1

exp{fθ(ai, x)}
Zi−1
θ (x)

=
K∏︂
i=1

πθ(ai|x,A1:i−1) (8.5)

with Z0
θ (x) = Zθ(x) and Ziθ(x) = Zi−1

θ (x)− exp{fθ(ai, x)}.
Computing these probabilities can be done in O(P ) which is comparable to the simple case

where K = 1. The probabilities given by the Plackett-Luce policy are intuitive. Equation
(8.5) can be seen as the probability to generate the slate AK = [a1, ..., aK ] by sampling without
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replacement from a categorical distribution over the discrete space A with action probabilities
proportional to exp{fθ(a, x)}. This sampling procedure can be done inO(KP ), but its sequential
nature is a bottleneck for parallelization. Another way to sample from this distribution is to
exploit the following expression:

πθ(AK |x) = Eγ∼GP (0,1)

[︄
1

[︄
AK = argsortK

a′∈A

{︁
fθ(a′, x) + γi

}︁]︄]︄

with γ ∼ GP (0, 1) a vector of P independent Gumbel random variables. This is known in
the literature as the Gumbel trick (Huijben et al., 2021). This means that sampling from a
Plackett-Luce boils down to sampling P independent Gumbel random variables, which costs
O(P ), and then computing an argsortK of the noised f(·, x) over the discrete action space. We
cannot exploit approximate MIPS for this computation as the noise is added after computing
the inner product f(a, x), making this step cost O(P logK), which makes the total complexity
of sampling O(P logK), slightly better than the first procedure while compatible with parallel
acceleration.

8.2.2 Optimizing The Objective

We want to learn slate policies that can maximize the objective in Equation (8.4). As our
objective is decomposable over contexts, stochastic optimization procedures can be adopted
Ruder (2016) making optimization over large datasets possible. For this reason, we can focus
on the gradient of the objective for a single context x. We derive the score function gradient
(Williams, 1992):

∇θR̂(πθ|x) = Eπθ(·|x) [r̂(AK , x)∇θ log πθ(AK |x)] (8.6)

=
K∑︂
i=1
Eπθ(·|x) [r̂(AK , x)∇θ log πθ(ai|x,Ai−1)] . (8.7)

This gradient is defined as an expectation under πθ(·|x) over all possible slates. Computing
it exactly requires summing O(PK) terms which is infeasible. This allows us to approximate
the gradient by sampling, which reduces the computation complexity, but we will see that this
gradient suffers from further problems.

Computational Burden. The computational complexity of the gradient is crucial for allow-
ing fast learning of slate, as it impacts the running time of every gradient step. Even if we avoid
computing the gradient exactly, its approximation can still be a bottleneck when dealing with
large action spaces for the following reasons: (1) Sampling: Approximating the expectation
by sampling slates from πθ(·|x) can be done in O(P logK). However, if the action space is large
(P in the order of millions), even a linear complexity on P can be problematic, massively slow-
ing down our optimization procedure. (2) The Normalizing Constant: Approximating the
gradient needs the computation of ∇θ log πθ(AiK |x) for the sampled slates {AiK}i∈[S]. This can
slow down the optimization procedure as computing the normalizing constant Zθ(x) requires
summing over all actions, making the complexity of the operation linear in P .

We can solve this computational burden by tackling the two previous problems separately.
We can get rid of the normalizing constant in the gradient by generalizing the results of Sakhi
et al. (2023c). For a single context x, we can derive a covariance gradient that does not require
Zθ(x):

∇θR̂(πθ|x) = CovAK∼πθ(.|x)

[︄
r̂(AK , x),

K∑︂
i=1
∇θfθ(ai, x)

]︄
(8.8)
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with Cov[A,B] = E[(A − E[A]).(B − E[B])] a covariance between A a scalar function, and
B a vector. The proof of this new gradient expression is developed in the Appendix. One can
see that for K = 1, we recover the results of Sakhi et al. (2023c). This form of gradient does
not involve the computation of a normalizing constant, which solves the second problem, but
still requires sampling from the policy πθ(·|x) to get a good covariance estimation. To lower
the time complexity of this step, we can use Monte Carlo techniques such as Importance Sam-
pling/Rejection Sampling (Owen, 2013) with carefully chosen proposals to achieve fast sampling
without sacrificing the accuracy of the gradient approximation. We develop a discussion around
accelerating Plackett-Luce training in the Appendix. While we may have ways to deal with
the computation complexity, the Plackett-Luce Policy gradient estimate still suffers from the
following problems:

Variance Problems. Let us focus on the gradient derived in Equation (8.6). Its exact com-
putation is intractable, and we need to estimate it by sampling from πθ(·|x). Let us imagine we
sample a slate AK = [a1, ..., aK ] to estimate the gradient:

Gθ(x) = r̂(AK , x)∇θ log πθ(AK |x)

= r̂(AK , x)
K∑︂
i=1

giθ(x)

with giθ(x) set to ∇θ log πθ(ai|x,Ai−1) to simplify the notation. Gθ(x) is an unbiased estimator of
the gradient ∇θR̂(πθ|x) and can be used in a stochastic optimization procedure in a principled
manner (Ruder, 2016). However, the efficiency of any stochastic gradient descent algorithm
depends on the variance of the gradient estimate (Ajalloeian and Stich, 2020), which is defined
for vectors X as:

V[X] = E

[︂
||X −E[X]||2

]︂
∈ R+.

Gradients with small variances allow practitioners to use bigger step sizes, which reduces the
number of iterations as it makes the whole optimization procedure converge faster. Naturally,
we would want the variance of our estimator to be small. Unfortunately, the variance of Gθ(x)
grows with the slate size K. Writing down the variance w.r.t πθ(·|x) of Gθ(x):

V[Gθ(x)] = V[r̂(AK , x)∇θ log πθ(AK |x)]

=
K∑︂
i=1
V[r̂(AK , x)giθ(x)] + 2

∑︂
i<j

Cov[r̂(AK , x)giθ(x), r̂(AK , x)gjθ(x)].

The first term of this variance is a sum over the slate of individual variances, which clearly grows
as K grows. For the covariance terms, we argue that, especially when initializing the parameter
θ randomly, the gradients giθ(x) and gjθ(x) will have in expectation different signs making the
covariance terms cancel out, leaving the sum of the individual variance terms dominate. This
gives a variance that grows in O(K).

Previous work already showed empirically that the score function gradient for the Plackett-
Luce distribution has a large variance (Gadetsky et al., 2020; Buchholz et al., 2022), large enough
that learning is not possible in difficult scenarios without considering variance reduction methods
(Gadetsky et al., 2020). A possible solution is Randomized Quasi-Monte Carlo (Buchholz et al.,
2022; L’Ecuyer, 2016), which produces more accurate estimates by covering the sampling space
better. Its value is only significant when we sample few slates {AsK}s∈[S] to approximate the
gradient (Buchholz et al., 2022; L’Ecuyer, 2016). Another direction explores control variates
(Gadetsky et al., 2020) as a variance reduction technique. This method requires additional
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computational costs and a perfect modelling of a differentiable reward proxy to expect variance
reduction (Grathwohl et al., 2018).

We want to find a way to both reduce the variance of our method and the computational
burden. One of the simplest methods to reduce the variance and gain in computation speed is
to reduce the number of parameters we want to train (Koch et al., 2021). In our problem of
online decision systems, some parameters can be learned independently, making policy learning
easier (Sakhi et al., 2023c).

8.2.3 Fixing The Action Embeddings

As we are dealing with large action spaces, we are constrained to the following structure on the
relevance function fθ for fast querying:

fθ(a, x) = hΞ(x)⊺βa, ∀a ∈ A.

with both hΞ(x) and βa living in an embedding space RL with L ≪ P . The dimension of the
matrix β is [L × P ], which is enormous when P is large and dominates Ξ in terms of number
of parameters (Koch et al., 2021; Sakhi et al., 2023c). If we can fix the matrix β, it would
benefit our approach both in terms of computational efficiency and variance reduction. Indeed,
reducing the number of parameters accelerates learning, makes the problem more identifiable,
and reduces drastically the gradient variance as:

V[Gθ(x)] = E[||Gθ(x)||2] = E[||GΞ(x)||2] +E[||Gβ(x)||2]
= V[GΞ(x)] +V[Gβ(x)]≫ V[GΞ(x)].

with Gθ(x) = Gθ(x) − ∇θR̂(πθ|x) the centred gradient estimate. In many applications (think
about information retrieval, recommender systems or ad placement), the action embeddings can
be learned from the massive data we have on the actions. In these scenarios, actions boil down
to web pages, products we want to recommend or place in an ad. We usually have collaborative
filtering signal (Sakhi et al., 2020a; Liang et al., 2018) and product descriptions (Vasile et al.,
2016) to learn embeddings from. These signals help us obtain good action embeddings β and
allow us to fix the action matrix before proceeding to the downstream task we are solving. This
approach of fixing β is not new, Koch et al. (2021) fix β to learn a large scale recommender
system deployed in production, and Sakhi et al. (2023c) show empirically that learning β actually
hurts the performance of softmax policies in large scale scenarios.

We can still learn more about the actions. Even with β fixed, there are sufficient degrees
of freedom to solve our downstream task. If we write down:

hΞ(x) = hΞ′(x)Z

with Ξ = [Ξ′, Z], Z being a learnable matrix of size [L′, L]. the relevance function can be written
as:

fθ(a, x) = hΞ′(x)⊺(Zβa), ∀a ∈ A.

This means that, even though the matrix β is fixed, we can learn a linear transform of β with
the help of Z, injecting information from the downstream task and learning a transformed
representation of the actions in the embedding space. In the rest of the chapter, we will fix the
action embeddings β making the parametrization of the relevance function fθ reduce to θ = Ξ,
giving for any x:

fθ(a, x) = hθ(x)⊺βa, ∀a ∈ A.
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8.3 Latent Random Perturbation
Fixing the embeddings helps to decrease the variance and the number of parameters to optimize
substantially, which makes our policy learning routine converge faster. This approach, however,
does not deal with the fundamental limit of the Plackett-Luce variance, which grows with the
slate size K. This policy class also needs particular care to accelerate its learning; we should
adopt the new gradient formula stated in (8.8) combined with advanced Monte Carlo techniques
to approximate the gradient efficiently, making the implementation of such methods difficult to
achieve. A discussion can be found in the Appendix.

These issues come intrinsically with the adoption of the Plackett-Luce policy suggest we should
think differently about how we define policies over slates. Let us look at how the Plackett-Luce
policy is defined. For a particular context x and a slate AK , we write down its Gumbel trick
(Huijben et al., 2021) expression:

πθ(AK |x) = Eγ∼GP (0,1)

[︄
1

[︄
AK = argsortK

a′∈A
{hθ(x)⊺βa′ + γi}

]︄]︄
.

The Plackett-Luce policy is a smoothed, differentiable relaxation of the following deterministic
policy:

bθ(AK |x) = 1

[︄
AK = argsortK

a′∈A
{hθ(x)⊺βa′}

]︄
= 1 [AK = dθ(x)] .

bθ is a deterministic policy putting all its mass on the actions chosen by our decision function dθ.
Note that, taking an expectation under bθ in Equation (8.4) recovers Equation (8.3). It means
that introducing noise relaxed Equation (8.3) to a differentiable objective. This relaxation is
achieved by randomly perturbing the scores of the different actions with Gumbel noise (Huijben
et al., 2021). As this perturbation is done in the action space level, it induces properties that
are hard to deal with: (1) The gradient of this policy is an expectation under a potentially
large action space, accentuating variance problems. (2) The perturbation scales with the size of
the action space, as we need P random draws of Gumbel noises. (3) Sampling from this policy
cannot naturally benefit from approximate MIPS algorithms, as discussed previously.

We observe that the majority of these problems emerge from doing this perturbation in the
action space level. With this in mind, we introduce the LRP: Latent Random Perturbation
policy, that for a context x and a slate AK , is given by:

πQ
θ (AK |x) = Eϵ∼Q

[︄
1

[︄
AK = argsortK

a′∈A
{(hθ(x) + ϵ)⊺βa′}

]︄]︄
with Q a continuous distribution on the latent space RL. the LRP policy defines a smoothed,
differentiable relaxation of the deterministic policy bθ by adding noise in the latent space RL.
This class of policies present desirable properties:

Fast Sampling. For a given x, sampling from a LRP policy boils down to sampling from Q
and computing an argsort as:

AK ∼ πQ
θ (·|x) ⇐⇒ AK = argsortK

a′∈A
{(hθ(x) + ϵ)⊺βa′} , ϵ ∼ Q.

Let us suppose the sampling from Q is easy. As the action embeddings β are fixed, and we
are performing a perturbation in the latent space, we can set hϵθ(x) = hθ(x) + ϵ which makes
sampling compatible with approximate MIPS technology making the sampling achievable in
O(logP ), better than the sampling complexity O(P logK) of the Placett-Luce family.
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Low variance gradient. Similar to the gradient under the Plackett-Luce policy (8.6), we can
derive a score function gradient for LRP policies. For a given x, let us write its expected reward
under πQ

θ :

R̂(πQ
θ |x) = EAK∼πQ

θ
(·|x) [r̂(AK , x)]

= Eϵ∼Q [r̂(AK{hθ(x) + ϵ}, x)]
= Eh∼Qθ(x)[r̂(AK{h}, x)]

h ∼ Qθ(x) ⇐⇒ h = hθ(x) + ϵ, ϵ ∼ Q
AK{h} = argsortK

a′∈A
{h⊺βa′} .

Qθ(x) is the induced distribution on the user embeddings. Qθ(x) has a tractable density if we
choose a classical noise distribution Q (e.g. Gaussian, Laplace). Working with the induced dis-
tribution Qθ(x) transforms the learning parameters θ to parameters of the distribution, allowing
us to derive the following gradient:

∇θR̂(πQ
θ |x) = ∇θEh∼Qθ(x)[r̂(AK{h}, x)]

= Eh∼Qθ(x)[r̂(AK{h}, x)∇θ log qθ(x, h)]

with log qθ(x, h) the log density of Qθ(x) evaluated in h. We can obtain an unbiased gradient
estimate by sampling h ∼ Qθ(x):

GQ
θ (x) = r̂(AK{h}, x)∇θ log qθ(x, h) (8.9)

This gradient expression solves all issues that the Plackett-Luce gradient estimate suffered from:

Fast Gradient Estimate. This gradient can be approximated in a sublinear complexity
O(logP ). Building an estimator of the gradient follows these three steps: (1) We sample
h ∼ Qθ(x), which boils down to adding the noise ϵ ∼ Q to hθ(x). This can be done in a
complexity O(L) ≪ O(P ) if Q is chosen properly. (2) We evaluate the gradient of the log
density ∇θ log qθ(x, h) on h. With a well-chosen Q, this can be done in O(L) as we do not need
to normalize over a large discrete action space. (3) We generate the slate AK{h}. This boils
down to computing an argsort which can be accelerated using approximate MIPS technology,
giving a complexity of O(logP ).

Better Variance. LRP’s gradient estimate have better statistical properties for two main
reasons: (1) The gradient is defined as an expectation under a continuous distribution on the
latent space RL, instead of an expectation under a large discrete action space A of size P ≫ L.
This can have an impact on the variance of the gradient estimator as the sampling space is
smaller. (2) The approximate gradient defined in Equation (8.9) does not depend on the slate
size K. This results in a variance that does not grow with K. This means that we will notice
substantial gains when training policies with larger slates.

LRP policies present themselves as good candidates for learning slate policies, with both
computational and statistical benefits compared to the Plackett-Luce family. To derive practical
policies, we still need to specify the noise distribution Q on the latent space. A natural choice
is to set Q to a Centred Independent Gaussian distribution on RL, with a shared standard
deviation σ giving:

ϵ ∼ N (0, σ2IL) ⇐⇒ h = hθ(x) + ϵ ∼ N (hθ(x), σ2IL).
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This choice of distribution makes sampling the noise ϵ fast. It also means that the induced
distribution on the user embeddings Qθ(x) is a normal distribution with mean parameter hθ(x),
making the evaluation of its the log density gradient easy for any h:

∇θ log qθ(x, h) = − 1
2σ2

L∑︂
i=1
∇θ(hi − hiθ(x))2 = 1

σ2

L∑︂
i=1

(hi − hiθ(x))∇θhiθ(x)

= 1
σ2

L∑︂
i=1

ϵi∇θhiθ(x) = 1
σ
∇θ(ϵ⊺0hθ(x))

with ϵ0 ∼ N (0, IL). This gradient is a sum over the latent space of size L and does not depend
on the size of the action space P nor the slate size K. The expression of this gradient also
suggests that the standard deviation σ will play an important role in the optimization process,
as the variance of the gradient estimate defined in Equation (8.9) will scale in O(1/σ2). Even if
σ can be treated as an additional parameter, we fix it to σ = 1/L in all our experiments for a
fair comparison.

The resulting policy, that we name LGP: Latent Gaussian Perturbation, will be hy-
perparameter free, and will show both statistical and computational benefits. With our policy
defined, we give a sketch of its optimization procedure in Algorithm 5. This procedure is easy to
implement in any automatic differentiation package (Paszke et al., 2019) and is compatible with
stochastic first order optimization algorithms (Ruder, 2016). In the next section, we will mea-
sure empirically the performance of the different algorithms and show our algorithm efficiency
in different scenarios.

Algorithm 5: Learning with Latent Gaussian Perturbation
Inputs: D = {xi}Ni=1, reward estimator r̂, the action embeddings β
Parameters: T ≥ 1, Monte Carlo samples number S ≥ 1
Initialise: θ = θ0, MIPS index of β, σ = 1/L
for t = 0 to T − 1 do

sample a context x ∼ D
sample S standard Gaussian noises ϵ1, ..., ϵS ∼ N (0, IL)
compute for s ∈ [S], hs = hθ(x) + ϵs
compute slates AK{hs} for s ∈ [S] with MIPS
Estimate the gradient:

gradθ ←
1
Sσ

S∑︂
s=1

r̂(AK{hs}, x)∇θ(ϵ⊺shθ(x))

Update the policy parameter θ:
θ ← θ − αgradθ

end
return θ

8.4 Experiments

8.4.1 Experimental Setting

For our experiments, we focus on learning slate decision functions for the particular case of recom-
mendation as collaborative filtering datasets are easily accessible, facilitating the reproducibility
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of our results. We choose three collaborative filtering datasets with varying action space size,
MovieLens25M (Harper and Konstan, 2015), Twitch (Rappaz et al., 2021) and GoodReads (Wan
and McAuley, 2018; Wan et al., 2019). We process these datasets to transform them into user-
item interactions of shape [U,P ] with U and P the number of users and actions. The statistics
of these datasets are described in Table 8.2.

We follow the same procedure as Sakhi et al. (2023c) to build our experimental setup. Given
a dataset, we split randomly the user-item interaction session UI = [X,Y ] into two parts; the
observed interactions X and the hidden interactions Y . the observed part X represents all
the information we know about the user, and will be used by our policy πθ to deliver slates of
interest. The hidden part Y is used to define a reward function that will drive the policy to solve
a form of session completion task. For a given slate AK = [a1, ..., aK ], we define the reward as:

r̂(AK , X) =
K∑︂
k=1

1[ak ∈ Y ]
2k−1 .

Although we can adopt an arbitrary form for the reward function, we want rewards that depend
on the whole slate (Aouali et al., 2023b) and that take into account the ordering of the items. We
choose a linear reward to be able to compare our method to PL-Rank (Oosterhuis, 2022), which
exploits the reward structure to improve the training of Plackett-Luce policies. The objective
we want to optimize is the following:

R̂(πθ) = 1
U

U∑︂
i=1
EAK∼πθ(·|Xi) [r̂(AK , Xi)] .

The next step is to parametrize the policy πθ. For large scale problems, and for a given X, we
are restricted to use the following parametrization of the relevance function fθ:

fθ(a,X) = hθ(X)⊺βa, ∀a ∈ A.

Given the observed interactions X, we compute the action embeddings β using an SVD matrix
decomposition (Klema and Laub, 1980). This allows us to project the different action into a
latent space of lower dimension L≪ P , making β of dimension [L,P ]. In all experiments, β will
be fixed unless we want to study the impact of training the embeddings. When β is fixed, we
create an approximate MIPS index using the HNSW algorithm (Malkov and Yashunin, 2020)
with the help of the FAISS library (Johnson et al., 2019). This index will accelerate decision-
making online as described in Equation (8.2) and can also be exploited to speed up the training
of LGP policies. With β defined, we still need to parametrize the user embedding function hθ.
Given X, we first define the mean embedding function M : X → RL:

M(X) = 1
|X|

∑︂
a∈X

βa.

The function M computes the average of the item embeddings the user interacted with in X
(Koch et al., 2021). hθ follows as:

hθ(X) = M(X)⊺θ (8.10)

with θ a parameter of dimension [L,L], much smaller than [L,P ], the dimension of β. All policies
in these experiments will use this parametrization. Experiments with deep policies can be found
in the Appendix. The training is conducted on a CPU machine, using the Adam optimizer
(Kingma and Ba, 2014), with a batch size of 32. We tune the learning rate on a validation set
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#Actions #Users Interactions Density
MovieLens 25M 55K 162K 0.24%

Twitch 750K 580K 0.008%
GoodReads 2.23M 400K 0.01%

Table 8.2: The statistics of the datasets after preprocessing

for all algorithms. We adopt Algorithm 5 to train LGP and its accelerated variant, LGP-MIPS.
We denote by PL-PG, the algorithm that trains the Plackett-Luce policy trained with the score
function gradient; we sample S ≥ 1 slates {A1

K , ..., A
S
K} from πθ to derive the gradient estimate

for a given X:

GSθ (X) = 1
S

S∑︂
i=1

r̂(AsK , X)∇θ log πθ(AsK |X). (8.11)

We also compare our results to PL-Rank (Oosterhuis, 2022) that exploits the linearity of the
reward to have a better gradient estimate. As we are mostly interested in the performance of
the decision system dθ, all the rewards reported in the experiments are computed using:

R̂(dθ) = 1
U

U∑︂
i=1

r̂(dθ(Xi), Xi).

In the next section, we study empirically the performance of these approaches by training them
with the same time budget on the different datasets. Additional experiments can be found in the
Appendix to better understand the behaviour of both the Plackett-Luce policy and the newly
introduced LGP policy.

8.4.2 Performance

To measure the performance of our algorithms, we use all three datasets with their statistics
described in Table 8.2. We fix the latent space dimension L = 100 and use a slate size of K = 5
for all experiments. We split each dataset by users and keep 10% to create a validation set,
on which the reward of the decision function is reported. As these algorithms present different
iteration speeds, we fix the same time budget for all training methods for a fair comparison.
Training with a time budget also simulates a real production environment, where practitioners
are bounded by time constraints and scheduled deployments. For all datasets and training
routines, we allow a runtime of 60 minutes, and evaluate our policies on the validation set for 10
equally spaced intervals. The results of these experiments are presented in Figure 8.1 where we
plot the evolution of the validation reward on all datasets, for different values of S ∈ {1, 10, 100};
the number of samples used to approximate the gradient.

Our first observation from the graph is that PL-PG cannot compete with other algorithms, even
in the simplest scenario of the MovieLens dataset. Its poor performance is mainly due to the high
variance of its gradient estimate. This is confirmed by the performance of PL-Rank. Indeed,
the PL-Rank algorithm works with the same policy class, has the same iteration cost (scales
linearly in P ) and only differs on the quality of the gradient estimate; exploiting the structure
of the reward allow us to obtain an estimate with lower variance. These results confirm our first
intuition. PL-PG suffer from large variance problems (even in modest sized problems) and is not
suitable to solve large scale slate decision problems.

Let us now focus on our newly proposed algorithms; LGP and its accelerated variant, LGP-MIPS.
We observe that in all scenarios considered, the acceleration brought by the approximate MIPS
index benefits our algorithm in terms of performance. For the same time budget, LGP-MIPS
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Figure 8.1: The performance of slate decision functions obtained after optimizing them by
different training algorithms for the same time budget of 60 minutes. Each evaluation on the
validation data is done after 6 minutes of training.

obtains better reward than LGP, with the biggest differences observed on datasets with large
action spaces; Twitch and GoodReads. LGP-MIPS always gives the best performing decision
function, for all datasets and number of Monte Carlo samples S considered. These results are
promising as our algorithm which is agnostic to the form of the reward outperforms PL-Rank
that is solely designed to tackle the particular case of linear rewards. This performance is due
to LGP-MIPS’s superior sampling complexity combined with a low variance gradient estimate. It
is also worthy to note that we were unable to run algorithms optimizing Plackett-Luce policies
(PL-PG and PL-Rank) on the GoodReads dataset with S = 100 due to its massive memory
footprint. As sampling is done on the action space, Plackett-Luce-based methods need for
each iteration samples of size O(SP ) compared to LGP-based method for which the sampling
is done in the latent space requiring O(SL) memory usage. Being able to increase the number
of Monte Carlo Samples S is desirable, as it helps reduce the variance of the gradient estimates
and accelerates further the training.

These results demonstrate the utility of our newly proposed method over Plackett-Luce for
learning slate decision systems. The LGP policy class combined with accelerated MIPS indices
produces low variance gradient estimates that are fast to compute, can scale to massive action
spaces and exhibit low memory usage, making our algorithm the best candidate for optimizing
large scale slate decision systems.

8.5 Related work

Learning from interactions. Recent advances in learning large scale decision systems adopt
the offline Contextual Bandit/Reinforcement Learning framework (Chen et al., 2022; Wang
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et al., 2022; Ma et al., 2020; Chen et al., 2019a), proving itself as a powerful paradigm to align
business metrics with the offline optimization problem. Research in this direction either explore
the use of known policy learning algorithms (Chen et al., 2022) for learning online decision
systems or define better rewards to guide this learning (Wang et al., 2022; Christakopoulou
et al., 2022). Chen et al. (2019a) showed that large scale recommender systems can benefit from
the contextual bandit formulation and introduced a correction to the REINFORCE gradient
to encourage softmax policies to recommend multiple items. Their method can be seen as
a heuristic applicable when the slate level reward is decomposable into a sum of single item
rewards. This assumption is violated in settings where strong interactions exist between the
items in the slate. Our method is versatile, does not assume any structure on the reward, and
is able to optimize slate decision systems by introducing a new relaxation, smoothing them into
a policy that has a better learning behaviour than classical Plackett-Luce.

Scalability. The question of scaling offline policy learning to large scale decision systems has
received limited attention. It has been shown that offline softmax policy learning can be scaled
to production systems (Chen et al., 2019a). The previous chapter focused on studying the
scalability of optimizing policies tailored to one item recommendation, using the covariance gra-
dient estimator combined with importance sampling (Owen, 2013) to exploit approximate MIPS
technology in the training phase. The proposed gradient approximation is provably biased, sac-
rificing the convergence guarantees provided by stochastic gradient descent (Ruder, 2016). Our
method extends the scope of the previous chapter, as it can be applied to slate recommendation.
It provides a simpler relaxation than Plackett-Luce, producing a learning algorithm that ben-
efits from approximate MIPS technology, naturally obtaining unbiased gradient estimates with
better statistical properties.

Learning to Rank. The learning to rank literature separates algorithms by the output space
they operate on, making a clear distinction between pointwise, pairwise and listwise approaches
(Liu, 2009) . Our method falls in the latter (Xia et al., 2008), as we operate with policies on
the slate level. The majority of work in LTR trains decision systems through the optimization
of ranking losses (Wang et al., 2018; Oosterhuis, 2022), defined as differentiable surrogates of
ranking metrics or by an adapted maximum likelihood estimation (Rendle et al., 2009; Ma et al.,
2021). In the same direction, differentiable sorting algorithms (Grover et al., 2019; Prillo and
Eisenschlos, 2020) aim at producing a differentiable relaxation to sorting functions that handle
reward on the item level These methods also require linear rewards in addition to training an
item-item interaction matrix, quadratic on the action space size, making them unsuitable to
massive action spaces. We are interested in training reward-driven, large scale slate decision
systems, to learn rankings that are more aligned with arbitrary, complex rewards functions.

Smoothing non-differentiable objectives. Our procedure can be interpreted as a stochas-
tic relaxation of non-differentiable decision functions. This relaxation is achieved by introducing
a well-chosen noise in the latent space. PAC-Bayesian policy learning (London and Sandler,
2019; Sakhi et al., 2023a; Aouali et al., 2023a) and Black-Box optimization algorithms (Bajaj
et al., 2021; Beyer and Schwefel, 2002; Staines and Barber, 2012) adopt a similar paradigm to
optimize non-smooth loss functions. They proceed by injecting noise in the parameter space
and derive a gradient with respect to the noise distribution. This parameter level perturbation
can suffer from computational issues when the number of parameters increases. Our method is
agnostic to the number of parameters. By perturbing the latent space directly, we bypass this
problem and simplify the sampling procedure, resulting in faster and more efficient training.
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8.6 Conclusion
Countless large scale online decision systems are tasked with delivering slates based on contextual
information. We formulate the learning of these systems in the offline contextual bandit setting.
This framework relaxes decision systems to stochastic policies, and proceeds at learning them
through REINFORCE-like algorithms. Plackett-Luce provides an interpretable distribution over
ordered lists of items, but its use in a large scale policy learning context is far from being optimal.
In this chapter, we motivate the Latent Gaussian Perturbation, a new policy class over
ordered lists defined as a stochastic, differentiable relaxation of the argsort decision function,
induced by perturbing the latent space. The LGP policy provides gradient estimates with better
computational and statistical properties. We built an intuition on why this new policy class is
better behaved and demonstrated through extensive experiments that not only LGP is faster
to train, considerably reducing the computational cost, but it also produces policies with better
performance, making the use of Plackett-Luce policies in this context obsolete. This work gives
practitioners a new way to address large scale slate policy learning and aim at contributing into
the adoption of REINFORCE decision systems. The results obtained in this chapter suggest
that the relaxations used to define policies have a big role in optimization, and that we might
need to take a step backward and reconsider the massively adopted Softmax/Plackett-Luce
parametrization. As we only focused on simple noise distributions, a nice avenue of research will
be to study the impact of the choice of these distributions on the learning algorithm produced.

8.7 Appendix

8.7.1 Accelerating Plackett-Luce training.

As it was discussed previously, we can derive a covariance gradient that does not require the
computation of the normalizing constant Zθ(x):

∇θR̂(πθ|x) = CovAK∼πθ(.|x)

[︄
r̂(AK , x),

K∑︂
i=1
∇θfθ(ai, x)

]︄

with Cov[A,B] = E[(A−E[A]).(B −E[B])] a covariance between A a scalar function, and B
a vector. The proof follows:

∇θR̂(πθ|x) = Eπθ(·|x)[r̂(AK , x)∇θ log πθ(AK |x)]

=
K∑︂
i=1
Eπθ(·|x)[r̂(AK , x)∇θ log πθ(ai|x,Ai−1)]

=
K∑︂
i=1
Eπθ(·|x)

[︂
r̂(AK , x)

(︂
∇θfθ(ai, x)−∇θ logZi−1

θ (x)
)︂]︂

Using the log trick, we derive the following equality:

∇θ logZi−1
θ (x) = Eπθ(ai|x,Ai−1)[∇θfθ(a, x)].

This equality is then injected in the gradient formula derived above to obtain:

∇θR̂(πθ|x) = CovAK∼πθ(.|x)

[︄
r̂(AK , x),

K∑︂
i=1
∇θfθ(ai, x)

]︄
.
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This concludes the proof. One can see that for K = 1, we recover the results of Sakhi et al.
(2023c). This form of gradient still requires sampling from the policy πθ(·|x) to get a good covari-
ance estimation. To lower the time complexity of this step, we can use Monte Carlo techniques
such as Importance Sampling/Rejection Sampling (Owen, 2013) with carefully chosen proposals
to achieve fast sampling without sacrificing the accuracy of the gradient approximation.

Algorithm 6: Categorical Distribution: Rejection sampling using MIPS
Input: hΞ, β, x, and indexes on β and parameter K, catalogue size P
Output: a which is a sample from P (A = a) = exp(hΞ(x)⊺βa)∑︁

a′ exp(hΞ(x)⊺βa′ )
α1, ..., αK = argsort(hΞ(x)⊺β)1:K
Z ′ = P exp(hΞ(x)⊺βαK )
Z ′′ = ∑︁K

a′ exp(hΞ(x)⊺βa′)− exp(hΞ(x)⊺βαK )
PK = [exp(hΞ(x)⊺βα1)/Z ′′, ..., exp(hΞ(x)⊺βαK )/Z ′′]
while True do

d ∼ cat([tail, head], [ Z′

Z′+Z′′ ,
Z′′

Z′+Z′′ ])
if d=head then

r ∼ cat(α1, ..., αK , PK)
return r

end
if d=tail then

Sample q uniformly from the set {1, ..., P}
Sample u from a uniform distribution
if exp(hΞ(x)⊺βq)

exp(hΞ(x)⊺βαK ) > u then
return q

end
end

end

In Sakhi et al. (2023c), a softmax policy learning algorithm was accelerated by approximating
the gradients using a self normalized importance sampling algorithm with a proposal distribution
that can both exploit the MIPS structure and is a good approximation of the target softmax
distribution. This idea can also be used to motivate a rejection sampling algorithm, as a similar
proposal can be shown to form an envelope of the target density. It can also be extended
from softmax to Plackett-Luce. When the idea of rejection sampling is combined with the MIPS
proposal, it results in the rejection sampling algorithm shown in Algorithm 6. While Algorithm 6
can be extended to the slate policy case, enabling the fast evaluation of the covariance gradient
estimator, it will still suffer from high variance gradient estimates.

8.7.2 Additional Experiments

Effect of fixing β

In this section, we want to validate the intuition we built throughout the chapter about the
behaviours of both the Plackett-Luce and LGP policy classes. We focus on MovieLens (Harper
and Konstan, 2015), a medium scale dataset that will allow us to test all our methods, regardless
of their potential to scale to harder problems. For all experiments in this section, we fix L =
100 ≪ P and we study the impact of fixing the action embeddings β. As discussed in Section
3, having the embeddings fixed is a natural solution to improve the learning of these large scale
decision systems, as it can reduce both the variance of the gradient estimates and the running
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Figure 8.2: Experiments on the MovieLens dataset: We look at the effect of fixing the action
embeddings β on the training of Plackett-Luce policies. Training β results in a slow optimization
procedure and gradient estimates with bigger variance.

time of the optimization procedure. To validate this, we focus on the Plackett-Luce policy and
define two slightly different parametrizations:

• Learn θ: this is the parametrization introduced in Equation (8.10), with β fixed and we
only learn the parameter θ.

• Learn β: We treat β as a parameter after initializing it with the SVD values. Because
our user embedding function hθ is linear in θ, we get rid of this parameter as it becomes
redundant once β can be optimized. This gives the following parametrization:

∀(x, a) ∈ X ×A, fβ(a, x) = M(X)⊺βa

We train a Plackett-Luce policy with both parametrizations for one epoch, while fixing the
slate size K = 2 and the Monte Carlo samples to S = 1. In this experiment, our objective is
not to produce the best policies, but to understand how fixing the embeddings can impact the
optimization procedure. We report in Figure 8.2 the evolution of both the gradient estimate
variance and the reward on the training data for both parametrizations. We can observe that
treating β as a parameter to optimize, even when initialized properly, leads to slow learning.
The variance of the gradient estimate when learning β is bigger than the variance when learning
θ with β fixed, and this will get bigger for problems with larger action spaces as P ≫ L. We
suspect that this is one of the reasons that explain the pace of learning when optimizing β. The
same phenomenon was observed in Sakhi et al. (2023c). The same experiments demonstrated
that training θ alone was twice as fast as training β in this experiment. This suggests that
fixing β to a good value is beneficial for training large scale decision systems, both in terms of
iteration efficiency. We advocate for fixing the action embeddings β when learning large scale
MIPS systems.

Impact of the slate size K.

One of the caveats of the Plackett-Luce slate policy is that its gradient estimate has a variance
that grows with the slate size K, reducing its scope of applications to modest slate sizes. the
gradient estimate of LGP however does not suffer from this issue, and we want to showcase
that with a simple experiment. We derived gradient estimates for LGP-based methods that
have a variance that scales in O(1/σ2). Although the standard deviation σ can be treated as
a hyperparameter depending on the task, To allow a fair comparison of the gradient variance
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Figure 8.3: Impact of the slate size K on the log variance of the gradient estimate of both PL-PG
and LGP on MovieLens. Contrary to LGP, PL-PG has a gradient estimate with a variance that
grows with K.

of these methods, we set σ to a particular value coming from the following observation. For a
particular action a:

h ∼ N (hθ(x), σ2IL) =⇒ h⊺βa ∼ N (hθ(x)⊺βa, σ2||βa||2)
=⇒ h⊺βa = hθ(x)⊺βa + ϵa

with ϵa ∼ N (0, (σ||βa||)2). This can be interpreted as adding a scaled Gaussian noise to the
score of action a. As we add standardized Gumbel noise γa ∼ G(0, 1) to the action scores to
define the Plackett-Luce policy, we want, for a fair comparison, to have:

∀a ∈ A, σ||βa|| ≈ 1

One heuristic to approximately achieve that is to compute the empirical mean of the β norms
B = 1

P

∑︁
a∈A ||βa|| and set σ = 1/B. This value will be used for this experiment.

We use the MovieLens dataset, and train the LGP policy without exploiting the MIPS index on
β, and Plackett-Luce with the parametrization of Equation (8.10) for 10 epochs with S = 1, while
varying the slate size K ∈ {2, 5, 10}. Note that all policies are initialized with the same random
seed for a fair comparison. We report the evolution of the variance of the gradient estimate
alongside the reward on the training data. The results of these experiments are presented in
Figure 8.3.

Focusing on the evolution of the variance, we can see that Plackett-Luce does indeed have
a variance that grows with K contrary to LGP that has a variance of its gradient estimate
staying at the same scale no matter the value of K. We argue that this has a direct impact on
the optimization procedure as for the same value of K, we observe in Figure 8.1 that LGP-based
methods outperform Plackett-Luce learning schemes consistently, making it a good candidate
for learning slate policies.

Experiments with Neural Networks.

For these experiments, we want to explore deep policies and see if we can still empirically validate
our findings in this case as well. For this, we adopt the following function to compute the user
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Figure 8.4: The performance of slate decision functions, with Neural Network Backbones, ob-
tained by our different training algorithms after running the optimization for 60 minutes.

embedding hθ1,θ2 :

hθ1,θ2(X) = sigmoid (M(X)⊺θ1) θ2, (8.12)

which boils down to a sigmoid, two layer feed forward neural network with both θ1 and
θ2 of size [L,L]. We run PL-PG, PL-Rank and LGP-MIPS on the three datasets, for the same
running time (60 minutes) and cross-validate the learning rate choosing the best value for each
algorithm. We aggregate the results on Figure 8.4. The plot suggests that even for deep policies,
LGP-MIPS outperforms Plackett-Luce-based methods on all datasets and for different values
of the number of Monte Carlo samples S. We also observe that training in this case is more
unstable, especially for Plackett-Luce-based methods, as having more parameters accentuate
the variance problems of their gradient estimates. It is noteworthy that, the reward obtained
with deep policies in our experiment is less than the one achieved by linear policies. This suggests
that deep policies require additional care when training, and we might want to stick to simple
policies if we are interested in fast and reliable optimization.



Bibliography

Marc Abeille and Alessandro Lazaric. Linear Thompson Sampling Revisited. In Aarti Singh and
Jerry Zhu, editors, Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pages 176–184. PMLR,
20–22 Apr 2017. URL https://proceedings.mlr.press/v54/abeille17a.html.

Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on
knowledge and data engineering, 17(6):734–749, 2005.

M. Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. ACM Comput. Surv., 55(7), dec 2022. ISSN 0360-0300. doi: 10.1145/
3543846. URL https://doi.org/10.1145/3543846.

Sergios Agapiou, Omiros Papaspiliopoulos, Daniel Sanz-Alonso, and Andrew M Stuart. Im-
portance sampling: Intrinsic dimension and computational cost. Statistical Science, pages
405–431, 2017.

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.
Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits. In International
Conference on Machine Learning, pages 1638–1646, 2014.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 127–135, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.
mlr.press/v28/agrawal13.html.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding
the impact of entropy on policy optimization. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 151–160. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/ahmed19a.html.

Ahmad Ajalloeian and Sebastian U. Stich. On the convergence of sgd with biased gradients,
2020. URL https://api.semanticscholar.org/CorpusID:234358812.

Aymen Al-Marjani, Andrea Tirinzoni, and Emilie Kaufmann. Active coverage for pac reinforce-
ment learning. In Gergely Neu and Lorenzo Rosasco, editors, Proceedings of Thirty Sixth
Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research,
pages 5044–5109. PMLR, 12–15 Jul 2023. URL https://proceedings.mlr.press/v195/
al-marjani23a.html.

170

https://proceedings.mlr.press/v54/abeille17a.html
https://doi.org/10.1145/3543846
https://proceedings.mlr.press/v28/agrawal13.html
https://proceedings.mlr.press/v28/agrawal13.html
https://proceedings.mlr.press/v97/ahmed19a.html
https://api.semanticscholar.org/CorpusID:234358812
https://proceedings.mlr.press/v195/al-marjani23a.html
https://proceedings.mlr.press/v195/al-marjani23a.html


Bibliography 171

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. ArXiv, abs/2110.11216, 2021.
URL https://api.semanticscholar.org/CorpusID:239049660.

Pierre Alquier and Benjamin Guedj. Simpler PAC-Bayesian bounds for hostile data. Machine
Learning, 107(5):887–902, 2018. doi: 10.1007/s10994-017-5690-0. URL https://doi.org/
10.1007/s10994-017-5690-0.

Imad Aouali, Amine Benhalloum, Martin Bompaire, Achraf Ait Sidi Hammou, Sergey Ivanov,
Benjamin Heymann, David Rohde, Otmane Sakhi, Flavian Vasile, and Maxime Vono. Reward
optimizing recommendation using deep learning and fast maximum inner product search.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD ’22, page 4772–4773, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3542622. URL https://doi.org/
10.1145/3534678.3542622.

Imad Aouali, Victor-Emmanuel Brunel, David Rohde, and Anna Korba. Exponential smoothing
for off-policy learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara En-
gelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 984–1017. PMLR, 23–29 Jul 2023a. URL https://proceedings.mlr.press/v202/
aouali23a.html.

Imad Aouali, Achraf Ait Sidi Hammou, Sergey Ivanov, Otmane Sakhi, David Rohde, and Flavian
Vasile. Probabilistic Rank and Reward: A Scalable Model for Slate Recommendation. working
paper or preprint, January 2023b. URL https://hal.science/hal-03959643.

Imad Aouali, Branislav Kveton, and Sumeet Katariya. Mixed-effect thompson sampling. In
Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors, Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings
of Machine Learning Research, pages 2087–2115. PMLR, 25–27 Apr 2023c. URL https:
//proceedings.mlr.press/v206/aouali23a.html.

Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model selection.
Statistics Surveys, 4(none):40 – 79, 2010. doi: 10.1214/09-SS054. URL https://doi.org/
10.1214/09-SS054.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2):235–256, 2002. doi: 10.1023/A:1013689704352.
URL https://doi.org/10.1023/A:1013689704352.

Ishan Bajaj, Akhil Arora, and M. M. Faruque Hasan. Black-Box Optimization: Methods
and Applications, pages 35–65. Springer International Publishing, Cham, 2021. ISBN
978-3-030-66515-9. doi: 10.1007/978-3-030-66515-9_2. URL https://doi.org/10.1007/
978-3-030-66515-9_2.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. J. Mach. Learn. Res., 3(null):463–482, mar 2003. ISSN 1532-4435.

Nicholas J. Belkin and W. Bruce Croft. Information filtering and information retrieval: Two
sides of the same coin? Commun. ACM, 35(12):29–38, dec 1992. ISSN 0001-0782. doi:
10.1145/138859.138861. URL https://doi.org/10.1145/138859.138861.

https://api.semanticscholar.org/CorpusID:239049660
https://doi.org/10.1007/s10994-017-5690-0
https://doi.org/10.1007/s10994-017-5690-0
https://doi.org/10.1145/3534678.3542622
https://doi.org/10.1145/3534678.3542622
https://proceedings.mlr.press/v202/aouali23a.html
https://proceedings.mlr.press/v202/aouali23a.html
https://hal.science/hal-03959643
https://proceedings.mlr.press/v206/aouali23a.html
https://proceedings.mlr.press/v206/aouali23a.html
https://doi.org/10.1214/09-SS054
https://doi.org/10.1214/09-SS054
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1007/978-3-030-66515-9_2
https://doi.org/10.1007/978-3-030-66515-9_2
https://doi.org/10.1145/138859.138861


172 Bibliography

Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.
Robust solutions of optimization problems affected by uncertain probabilities. Management
Science, 59(2):341–357, 2013.

Yoshua Bengio and Jean-Sébastien Senecal. Quick training of probabilistic neural nets by im-
portance sampling. In Christopher M. Bishop and Brendan J. Frey, editors, Proceedings
of the Ninth International Workshop on Artificial Intelligence and Statistics, volume R4
of Proceedings of Machine Learning Research, pages 17–24. PMLR, 03–06 Jan 2003. URL
https://proceedings.mlr.press/r4/bengio03a.html. Reissued by PMLR on 01 April
2021.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: a review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798—
1828, August 2013. ISSN 0162-8828. doi: 10.1109/tpami.2013.50. URL http://arxiv.org/
pdf/1206.5538.

James O Berger, Robert L Wolpert, MJ Bayarri, MH DeGroot, Bruce M Hill, David A Lane,
and Lucien LeCam. The likelihood principle. Lecture notes-Monograph series, 6:iii–199, 1988.

H.G. Beyer and HP. Schwefel. Evolution strategies - a comprehensive introduction. Natural
Computing, 1(1):3–52, March 2002. doi: 10.1023/A:1015059928466.

Alina Beygelzimer and John Langford. The offset tree for learning with partial labels. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 129–138. ACM, 2009.

Guy Blanc and Steffen Rendle. Adaptive sampled softmax with kernel based sampling. In
International Conference on Machine Learning, pages 590–599. PMLR, 2018.

David M. Blei and John D. Lafferty. Correlated topic models. In Advances in Neural Information
Processing Systems 18 [Neural Information Processing Systems, NIPS 2005, December 5-8,
2005, Vancouver, British Columbia, Canada], pages 147–154, 2005. URL http://papers.
nips.cc/paper/2906-correlated-topic-models.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3(null):993–1022, mar 2003. ISSN 1532-4435.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, apr 2017.
doi: 10.1080/01621459.2017.1285773. URL https://doi.org/10.1080%2F01621459.2017.
1285773.

Fedor Borisyuk, Krishnaram Kenthapadi, David Stein, and Bo Zhao. Casmos: A frame-
work for learning candidate selection models over structured queries and documents. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’16, page 441–450, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939718. URL
https://doi.org/10.1145/2939672.2939718.

Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles, D. Max Chickering,
Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and
learning systems: The example of computational advertising. Journal of Machine Learning
Research, 14(65):3207–3260, 2013. URL http://jmlr.org/papers/v14/bottou13a.html.

https://proceedings.mlr.press/r4/bengio03a.html
http://arxiv.org/pdf/1206.5538
http://arxiv.org/pdf/1206.5538
http://papers.nips.cc/paper/2906-correlated-topic-models
http://papers.nips.cc/paper/2906-correlated-topic-models
https://doi.org/10.1080%2F01621459.2017.1285773
https://doi.org/10.1080%2F01621459.2017.1285773
https://doi.org/10.1145/2939672.2939718
http://jmlr.org/papers/v14/bottou13a.html


Bibliography 173

Guillaume Bouchard. Efficient bounds for the softmax function, applications to inference in
hybrid models, 2007.

Nicolas Boulle and Alex Townsend. A generalization of the randomized singular value de-
composition. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=hgKtwSb4S2.

David Brandfonbrener, William Whitney, Rajesh Ranganath, and Joan Bruna. Offline con-
textual bandits with overparameterized models. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 1049–1058. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/brandfonbrener21a.html.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. ISSN 0885-6125. doi:
10.1023/A:1010933404324. URL http://dx.doi.org/10.1023/A%3A1010933404324.

Alexander Buchholz, Jan Malte Lichtenberg, Giuseppe Di Benedetto, Yannik Stein, Vito Bellini,
and Matteo Ruffini. Low-variance estimation in the plackett-luce model via quasi-monte carlo
sampling, 2022. URL https://arxiv.org/abs/2205.06024.

Olivier Cappé and Eric Moulines. On-line expectation–maximization algorithm for latent data
models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):
593–613, 2009.

Olivier Catoni. PAC-Bayesian supervised classification: The thermodynamics of statistical
learning. IMS Lecture Notes Monograph Series, page 1–163, 2007. ISSN 0749-2170. doi:
10.1214/074921707000000391. URL http://dx.doi.org/10.1214/074921707000000391.

Chong Chen, Weizhi Ma, Min Zhang, Chenyang Wang, Yiqun Liu, and Shaoping Ma. Revisiting
negative sampling vs. non-sampling in implicit recommendation. ACM Trans. Inf. Syst., 41(1),
feb 2023. ISSN 1046-8188. doi: 10.1145/3522672. URL https://doi.org/10.1145/3522672.

Jiawei Chen, Can Wang, Sheng Zhou, Qihao Shi, Jingbang Chen, Yan Feng, and Chun Chen.
Fast adaptively weighted matrix factorization for recommendation with implicit feedback. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34(04):3470–3477, Apr. 2020. doi:
10.1609/aaai.v34i04.5751. URL https://ojs.aaai.org/index.php/AAAI/article/view/
5751.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H. Chi. Top-k
off-policy correction for a reinforce recommender system. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, WSDM ’19, page 456–464, New
York, NY, USA, 2019a. Association for Computing Machinery. ISBN 9781450359405. doi:
10.1145/3289600.3290999. URL https://doi.org/10.1145/3289600.3290999.

Minmin Chen, Ramki Gummadi, Chris Harris, and Dale Schuurmans. Surrogate ob-
jectives for batch policy optimization in one-step decision making. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019b. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
84899ae725ba49884f4c85c086f1b340-Paper.pdf.

Minmin Chen, Can Xu, Vince Gatto, Devanshu Jain, Aviral Kumar, and Ed Chi. Off-Policy
Actor-Critic for Recommender Systems. In Proceedings of the 16th ACM Conference on

https://openreview.net/forum?id=hgKtwSb4S2
https://openreview.net/forum?id=hgKtwSb4S2
https://proceedings.mlr.press/v139/brandfonbrener21a.html
http://dx.doi.org/10.1023/A%3A1010933404324
https://arxiv.org/abs/2205.06024
http://dx.doi.org/10.1214/074921707000000391
https://doi.org/10.1145/3522672
https://ojs.aaai.org/index.php/AAAI/article/view/5751
https://ojs.aaai.org/index.php/AAAI/article/view/5751
https://doi.org/10.1145/3289600.3290999
https://proceedings.neurips.cc/paper_files/paper/2019/file/84899ae725ba49884f4c85c086f1b340-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/84899ae725ba49884f4c85c086f1b340-Paper.pdf


174 Bibliography

Recommender Systems, RecSys ’22, page 338–349, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450392785. doi: 10.1145/3523227.3546758. URL
https://doi.org/10.1145/3523227.3546758.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1724–1734. ACL, 2014.
URL http://aclweb.org/anthology/D/D14/D14-1179.pdf.

Nicolas Chopin and Omiros Papaspiliopoulos. An introduction to Sequential Monte Carlo / Nico-
las Chopin, Omiros Papaspiliopoulos. Springer Series in Statistics. Springer, Cham, Switzer-
land, 1st ed. 2020. edition, 2020. ISBN 3-030-47845-9.

Konstantina Christakopoulou, Can Xu, Sai Zhang, Sriraj Badam, Trevor Potter, Daniel Li,
Hao Wan, Xinyang Yi, Ya Le, Chris Berg, Eric Bencomo Dixon, Ed H. Chi, and Minmin
Chen. Reward shaping for user satisfaction in a reinforce recommender, 2022. URL https:
//arxiv.org/abs/2209.15166.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 208–214, Fort Lauderdale, FL, USA, 11–13
Apr 2011. PMLR. URL https://proceedings.mlr.press/v15/chu11a.html.

Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. Nus-
wide: A real-world web image database from national university of singapore. In Proceedings
of the ACM International Conference on Image and Video Retrieval, CIVR ’09, New York,
NY, USA, 2009. Association for Computing Machinery. ISBN 9781605584805. doi: 10.1145/
1646396.1646452. URL https://doi.org/10.1145/1646396.1646452.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension
of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

Patrick L Combettes. Perspective Functions: Properties, Constructions, and Examples. Set-
Valued and Variational Analysis, 26(2):247–264, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995.

Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvari, and Dale Schu-
urmans. Coindice: Off-policy confidence interval estimation. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 9398–9411. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
6aaba9a124857622930ca4e50f5afed2-Paper.pdf.

James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi,
Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. The youtube video recommen-
dation system. In Proceedings of the fourth ACM conference on Recommender systems, pages
293–296, 2010.

https://doi.org/10.1145/3523227.3546758
http://aclweb.org/anthology/D/D14/D14-1179.pdf
https://arxiv.org/abs/2209.15166
https://arxiv.org/abs/2209.15166
https://proceedings.mlr.press/v15/chu11a.html
https://doi.org/10.1145/1646396.1646452
https://proceedings.neurips.cc/paper_files/paper/2020/file/6aaba9a124857622930ca4e50f5afed2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6aaba9a124857622930ca4e50f5afed2-Paper.pdf


Bibliography 175

Rémy Degenne, Thomas Nedelec, Clément Calauzènes, and Vianney Perchet. Bridging the gap
between regret minimization and best arm identification, with application to a/b tests. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages 1988–1996.
PMLR, 2019.

John Duchi and Hongseok Namkoong. Variance-based regularization with convex objectives.
Journal of Machine Learning Research, 20(68):1–55, 2019. URL http://jmlr.org/papers/
v20/17-750.html.

John C Duchi, Peter W Glynn, and Hongseok Namkoong. Statistics of robust optimization:
A generalized empirical likelihood approach. Mathematics of Operations Research, 46(3):
946–969, 2021.

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy evaluation
and optimization. Statistical Science, 29(4):485–511, 2014.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep
reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data. In
Proceedings of the 33rd Annual Conference on Uncertainty in Artificial Intelligence (UAI),
2017.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and
markov decision processes. In Jyrki Kivinen and Robert H. Sloan, editors, Computational
Learning Theory, pages 255–270, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN
978-3-540-45435-9.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust
off-policy evaluation. In International Conference on Machine Learning, pages 1447–1456.
PMLR, 2018.

Louis Faury, Ugo Tanielian, Flavian Vasile, Elena Smirnova, and Elvis Dohmatob. Distribution-
ally robust counterfactual risk minimization. In AAAI, 2020.

Artyom Gadetsky, Kirill Struminsky, Christopher Robinson, Novi Quadrianto, and Dmitry
Vetrov. Low-variance black-box gradient estimates for the plackett-luce distribution. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 34(06):10126–10135, Apr. 2020. doi:
10.1609/aaai.v34i06.6572. URL https://ojs.aaai.org/index.php/AAAI/article/view/
6572.

F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber. Offline and
Online Evaluation of News Recommender Systems at Swissinfo.Ch. In Proc. of the 8th ACM
Conference on Recommender Systems, RecSys ’14, pages 169–176, 2014.

Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence.
In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on
Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages 998–1027,
Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR. URL https:
//proceedings.mlr.press/v49/garivier16a.html.

http://jmlr.org/papers/v20/17-750.html
http://jmlr.org/papers/v20/17-750.html
https://ojs.aaai.org/index.php/AAAI/article/view/6572
https://ojs.aaai.org/index.php/AAAI/article/view/6572
https://proceedings.mlr.press/v49/garivier16a.html
https://proceedings.mlr.press/v49/garivier16a.html


176 Bibliography

Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. PAC-Bayesian
Learning of Linear Classifiers. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09, page 353–360, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553419. URL https:
//doi.org/10.1145/1553374.1553419.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Conference on Very Large Data Bases,
VLDB ’99, page 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.
ISBN 1558606157.

David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative filtering
to weave an information tapestry. Commun. ACM, 35(12):61–70, dec 1992. ISSN 0001-0782.
doi: 10.1145/138859.138867. URL https://doi.org/10.1145/138859.138867.

Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
value, and innovation. ACM Trans. Manage. Inf. Syst., 6(4), dec 2016. ISSN 2158-656X. doi:
10.1145/2843948. URL https://doi.org/10.1145/2843948.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. In Inter-
national Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=SyzKd1bCW.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=H1eSS3CcKX.

Benjamin Guedj. A Primer on PAC-Bayesian Learning, 2019.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Ku-
mar. Accelerating large-scale inference with anisotropic vector quantization. In International
Conference on Machine Learning, 2020. URL https://arxiv.org/abs/1908.10396.

Somit Gupta, Ronny Kohavi, Diane Tang, Ya Xu, Reid Andersen, Eytan Bakshy, Niall Cardin,
Sumita Chandran, Nanyu Chen, Dominic Coey, Mike Curtis, Alex Deng, Weitao Duan, Pe-
ter Forbes, Brian Frasca, Tommy Guy, Guido W. Imbens, Guillaume Saint Jacques, Pranav
Kantawala, Ilya Katsev, Moshe Katzwer, Mikael Konutgan, Elena Kunakova, Minyong Lee,
MJ Lee, Joseph Liu, James McQueen, Amir Najmi, Brent Smith, Vivek Trehan, Lukas Ver-
meer, Toby Walker, Jeffrey Wong, and Igor Yashkov. Top challenges from the first practi-
cal online controlled experiments summit. SIGKDD Explor. Newsl., 21(1):20–35, may 2019.
ISSN 1931-0145. doi: 10.1145/3331651.3331655. URL https://doi.org/10.1145/3331651.
3331655.

M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Y.W. Teh and M. Titterington, editors, Proc. Int. Conf. on
Artificial Intelligence and Statistics (AISTATS), volume 9 of JMLR W&CP, pages 297–304,
2010.

Maxime Haddouche and Benjamin Guedj. Online PAC-bayes learning. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=4pwCvvel8or.

https://doi.org/10.1145/1553374.1553419
https://doi.org/10.1145/1553374.1553419
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/2843948
https://openreview.net/forum?id=SyzKd1bCW
https://openreview.net/forum?id=SyzKd1bCW
https://openreview.net/forum?id=H1eSS3CcKX
https://arxiv.org/abs/1908.10396
https://doi.org/10.1145/3331651.3331655
https://doi.org/10.1145/3331651.3331655
https://openreview.net/forum?id=4pwCvvel8or


Bibliography 177

Maxime Haddouche and Benjamin Guedj. PAC-bayes generalisation bounds for heavy-tailed
losses through supermartingales. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=qxrwt6F3sf.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL
https://doi.org/10.1145/2827872.

Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-
rank svd via fast alternating least squares. J. Mach. Learn. Res., 16(1):3367–3402, jan 2015.
ISSN 1532-4435.

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix factorization
for online recommendation with implicit feedback. In Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16,
page 549–558, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450340694. doi: 10.1145/2911451.2911489. URL https://doi.org/10.1145/2911451.
2911489.

David A. Hensher and William H. Greene. The mixed logit model: The state of practice.
Transportation, 30(2):133–176, 2003. doi: 10.1023/A:1022558715350. URL https://doi.
org/10.1023/A:1022558715350.

Miguel A Hernan and James M Robins. Causal inference, 2010.

Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains for
session-based recommendations. In Alfredo Cuzzocrea, James Allan, Norman W. Paton,
Divesh Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk Candan,
Alexandros Labrinidis, Assaf Schuster, and Haixun Wang, editors, Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, CIKM 2018,
Torino, Italy, October 22-26, 2018, pages 843–852. ACM, 2018. ISBN 978-1-4503-6014-2. doi:
10.1145/3269206.3271761. URL https://doi.org/10.1145/3269206.3271761.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a
finite universe. Journal of the American Statistical Association, 47(260):663–685, 1952. ISSN
01621459. URL http://www.jstor.org/stable/2280784.

Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher. The limits of min-max optimiza-
tion algorithms: Convergence to spurious non-critical sets. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 4337–4348. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/hsieh21a.html.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning
deep structured semantic models for web search using clickthrough data. In Proceedings of the
22nd ACM International Conference on Information & Knowledge Management, CIKM ’13,
page 2333–2338, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450322638. doi: 10.1145/2505515.2505665. URL https://doi.org/10.1145/2505515.
2505665.

https://openreview.net/forum?id=qxrwt6F3sf
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2911451.2911489
https://doi.org/10.1145/2911451.2911489
https://doi.org/10.1023/A:1022558715350
https://doi.org/10.1023/A:1022558715350
https://doi.org/10.1145/3269206.3271761
http://www.jstor.org/stable/2280784
https://proceedings.mlr.press/v139/hsieh21a.html
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665


178 Bibliography

Iris AM Huijben, Wouter Kool, Max B Paulus, and Ruud JG van Sloun. A review of the
gumbel-max trick and its extensions for discrete stochasticity in machine learning. arXiv
preprint arXiv:2110.01515, 2021.

Edward L Ionides. Truncated importance sampling. Journal of Computational and Graphical
Statistics, 17(2):295–311, 2008. doi: 10.1198/106186008X320456. URL https://doi.org/
10.1198/106186008X320456.

Tommi Jaakkola and Michael Jordan. A variational approach to bayesian logistic regression
models and their extensions. In Sixth International Workshop on Artificial Intelligence and
Statistics, volume 82, page 4, 1997.

Darko Janeković and Dario Bojanjac. Randomized algorithms for singular value decomposition:
Implementation and application perspective. In 2021 International Symposium ELMAR, pages
165–168, 2021. doi: 10.1109/ELMAR52657.2021.9550979.

Kyoungseok Jang, Kwang-Sung Jun, Ilja Kuzborskij, and Francesco Orabona. Tighter PAC-
Bayes Bounds Through Coin-Betting. In Gergely Neu and Lorenzo Rosasco, editors, Proceed-
ings of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine
Learning Research, pages 2240–2264. PMLR, 12–15 Jul 2023. URL https://proceedings.
mlr.press/v195/jang23a.html.

Dietmar Jannach and Michael Jugovac. Measuring the business value of recommender systems.
ACM Trans. Manage. Inf. Syst., 10(4), dec 2019. ISSN 2158-656X. doi: 10.1145/3370082.
URL https://doi.org/10.1145/3370082.

Olivier Jeunen and Bart Goethals. Pessimistic Reward Models for Off-Policy Learning in Rec-
ommendation, page 63–74. Association for Computing Machinery, New York, NY, USA, 2021.
ISBN 9781450384582. URL https://doi.org/10.1145/3460231.3474247.

Olivier Jeunen, Jan Van Balen, and Bart Goethals. Closed-form models for collaborative
filtering with side-information. In Proceedings of the 14th ACM Conference on Recom-
mender Systems, RecSys ’20, page 651–656, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450375832. doi: 10.1145/3383313.3418480. URL https:
//doi.org/10.1145/3383313.3418480.

Thorsten Joachims, Adith Swaminathan, and Maarten de Rijke. Deep learning with logged
bandit feedback. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SJaP_-xAb.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual
inference. In International Conference on Machine Learning, pages 3020–3029, 2016.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Nathan Kallus and Angela Zhou. Policy evaluation and optimization with continuous treatments.
In AISTATS, 2018.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection
in stochastic multi-armed bandits. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML’12, page 227–234, Madison, WI, USA,
2012. Omnipress. ISBN 9781450312851.

https://doi.org/10.1198/106186008X320456
https://doi.org/10.1198/106186008X320456
https://proceedings.mlr.press/v195/jang23a.html
https://proceedings.mlr.press/v195/jang23a.html
https://doi.org/10.1145/3370082
https://doi.org/10.1145/3460231.3474247
https://doi.org/10.1145/3383313.3418480
https://doi.org/10.1145/3383313.3418480
https://openreview.net/forum?id=SJaP_-xAb
https://openreview.net/forum?id=SJaP_-xAb


Bibliography 179

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed
bandits. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th In-
ternational Conference on Machine Learning, volume 28 of Proceedings of Machine Learn-
ing Research, pages 1238–1246, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
https://proceedings.mlr.press/v28/karnin13.html.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL
https://openreview.net/group?id=ICLR.cc/2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local repa-
rameterization trick. In Advances in Neural Information Processing Systems, pages 2575–2583,
2015.

V. Klema and A. Laub. The singular value decomposition: Its computation and some appli-
cations. IEEE Transactions on Automatic Control, 25(2):164–176, 1980. doi: 10.1109/TAC.
1980.1102314.

David A. Knowles and Tom Minka. Non-conjugate variational message passing for multinomial
and binary regression. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 1701–1709.
Curran Associates, Inc., 2011.

Olivier Koch, Amine Benhalloum, Guillaume Genthial, Denis Kuzin, and Dmitry Parfenchik.
Scalable representation learning and retrieval for display advertising. arXiv preprint
arXiv:2101.00870, 2021.

Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, and Ya Xu. Trust-
worthy online controlled experiments: Five puzzling outcomes explained. In Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’12, page 786–794, New York, NY, USA, 2012. Association for Computing Machin-
ery. ISBN 9781450314626. doi: 10.1145/2339530.2339653. URL https://doi.org/10.1145/
2339530.2339653.

Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recommender systems
handbook, pages 77–118. Springer, 2015.

Ilja Kuzborskij and Csaba Szepesvári. Efron-Stein PAC-Bayesian Inequalities, 2020.

Ilja Kuzborskij, Claire Vernade, Andras Gyorgy, and Csaba Szepesvari. Confident off-policy
evaluation and selection through self-normalized importance weighting. In Arindam Banerjee
and Kenji Fukumizu, editors, Proceedings of The 24th International Conference on Artifi-
cial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research,
pages 640–648. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/
kuzborskij21a.html.

John D. Lafferty and David M. Blei. Correlated topic models. In Y. Weiss, B. Schölkopf, and J. C.
Platt, editors, Advances in Neural Information Processing Systems 18, pages 147–154. MIT
Press, 2006. URL http://papers.nips.cc/paper/2906-correlated-topic-models.pdf.

https://proceedings.mlr.press/v28/karnin13.html
https://openreview.net/group?id=ICLR.cc/2014
https://doi.org/10.1145/2339530.2339653
https://doi.org/10.1145/2339530.2339653
https://proceedings.mlr.press/v130/kuzborskij21a.html
https://proceedings.mlr.press/v130/kuzborskij21a.html
http://papers.nips.cc/paper/2906-correlated-topic-models.pdf


180 Bibliography

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. preprint, page 28, 2018.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.
doi: 10.1017/9781108571401.

Pierre L’Ecuyer. Randomized Quasi-Monte Carlo: An Introduction for Practitioners. In
12th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Sci-
entific Computing (MCQMC 2016), Stanford, United States, August 2016. URL https:
//hal.inria.fr/hal-01561550.

Gaël Letarte, Pascal Germain, Benjamin Guedj, and Francois Laviolette. Di-
chotomize and generalize: PAC-Bayesian binary activated deep neural networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
7ec3b3cf674f4f1d23e9d30c89426cce-Paper.pdf.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World Wide Web, pages 661–670, 2010.

Xiangyang Li, Bo Chen, Huifeng Guo, Jingjie Li, Chenxu Zhu, Xiang Long, Sujian Li, Yichao
Wang, Wei Guo, Longxia Mao, Jinxing Liu, Zhenhua Dong, and Ruiming Tang. Inttower:
The next generation of two-tower model for pre-ranking system. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management, CIKM ’22,
page 3292–3301, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392365. doi: 10.1145/3511808.3557072. URL https://doi.org/10.1145/3511808.
3557072.

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Variational au-
toencoders for collaborative filtering. In Proceedings of the 2018 World Wide Web Con-
ference, WWW ’18, page 689–698, Republic and Canton of Geneva, CHE, 2018. Inter-
national World Wide Web Conferences Steering Committee. ISBN 9781450356398. doi:
10.1145/3178876.3186150. URL https://doi.org/10.1145/3178876.3186150.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Found. Trends Inf. Retr., 3(3):
225–331, mar 2009. ISSN 1554-0669. doi: 10.1561/1500000016. URL https://doi.org/10.
1561/1500000016.

Ben London and Ted Sandler. Bayesian counterfactual risk minimization. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 4125–4133.
PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/london19a.html.

Malte Ludewig and Dietmar Jannach. Evaluation of session-based recommendation algo-
rithms. User Modeling and User-Adapted Interaction, 28(4-5):331–390, oct 2018. doi:
10.1007/s11257-018-9209-6. URL https://doi.org/10.1007%2Fs11257-018-9209-6.

Alberto Lumbreras, Louis Filstroff, and Cédric Févotte. Bayesian mean-parameterized nonneg-
ative binary matrix factorization. arXiv preprint arXiv:1812.06866, 2018.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong, and Ed H.
Chi. Off-policy learning in two-stage recommender systems. In Proceedings of The Web

https://hal.inria.fr/hal-01561550
https://hal.inria.fr/hal-01561550
https://proceedings.neurips.cc/paper/2019/file/7ec3b3cf674f4f1d23e9d30c89426cce-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ec3b3cf674f4f1d23e9d30c89426cce-Paper.pdf
https://doi.org/10.1145/3511808.3557072
https://doi.org/10.1145/3511808.3557072
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1500000016
https://proceedings.mlr.press/v97/london19a.html
https://doi.org/10.1007%2Fs11257-018-9209-6


Bibliography 181

Conference 2020, WWW ’20, page 463–473, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450370233. doi: 10.1145/3366423.3380130. URL https:
//doi.org/10.1145/3366423.3380130.

Jiaqi Ma, Xinyang Yi, Weijing Tang, Zhe Zhao, Lichan Hong, Ed Chi, and Qiaozhu Mei.
Learning-to-Rank with Partitioned Preference: Fast Estimation for the Plackett-Luce Model.
In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 928–936. PMLR, 13–15 Apr 2021. URL https://proceedings.
mlr.press/v130/ma21a.html.

Yifei Ma, Yu-Xiang Wang, and Balakrishnan Narayanaswamy. Imitation-regularized offline
learning. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings of the Twenty-
Second International Conference on Artificial Intelligence and Statistics, volume 89 of Pro-
ceedings of Machine Learning Research, pages 2956–2965. PMLR, 16–18 Apr 2019. URL
https://proceedings.mlr.press/v89/ma19b.html.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Yu A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell.,
42(4):824–836, apr 2020. ISSN 0162-8828. doi: 10.1109/TPAMI.2018.2889473. URL https:
//doi.org/10.1109/TPAMI.2018.2889473.

Yury A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE transactions on pattern analysis
and machine intelligence, 2018.

Vaden Masrani, Tuan Anh Le, and Frank Wood. The thermodynamic variational ob-
jective. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
618faa1728eb2ef6e3733645273ab145-Paper.pdf.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample-variance
penalization. In Annual Conference Computational Learning Theory, 2009. URL https:
//api.semanticscholar.org/CorpusID:17090214.

David McAllester. Simplified PAC-Bayesian margin bounds. In Bernhard Schölkopf and Man-
fred K. Warmuth, editors, Learning Theory and Kernel Machines, pages 203–215, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-45167-9.

David A. McAllester. Some PAC-Bayesian theorems. In Proceedings of the Eleventh Annual
Conference on Computational Learning Theory, COLT’ 98, page 230–234, New York, NY,
USA, 1998. Association for Computing Machinery. ISBN 1581130570. doi: 10.1145/279943.
279989. URL https://doi.org/10.1145/279943.279989.

Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics,
pages 195–248. Springer, 1998.

https://doi.org/10.1145/3366423.3380130
https://doi.org/10.1145/3366423.3380130
https://proceedings.mlr.press/v130/ma21a.html
https://proceedings.mlr.press/v130/ma21a.html
https://proceedings.mlr.press/v89/ma19b.html
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://proceedings.neurips.cc/paper/2019/file/618faa1728eb2ef6e3733645273ab145-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/618faa1728eb2ef6e3733645273ab145-Paper.pdf
https://api.semanticscholar.org/CorpusID:17090214
https://api.semanticscholar.org/CorpusID:17090214
https://doi.org/10.1145/279943.279989


182 Bibliography

Jincheng Mei, Chenjun Xiao, Bo Dai, Lihong Li, Csaba Szepesvari, and Dale Schuurmans.
Escaping the gravitational pull of softmax. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 21130–21140. Curran Associates, Inc., 2020a. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/f1cf2a082126bf02de0b307778ce73a7-Paper.pdf.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global conver-
gence rates of softmax policy gradient methods. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 6820–6829. PMLR, 13–18 Jul 2020b. URL
https://proceedings.mlr.press/v119/mei20b.html.

Alberto Maria Metelli, Alessio Russo, and Marcello Restelli. Subgaussian and differ-
entiable importance sampling for off-policy evaluation and learning. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 8119–8132. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/4476b929e30dd0c4e8bdbcc82c6ba23a-Paper.pdf.

Zakaria Mhammedi, Peter Grünwald, and Benjamin Guedj. PAC-Bayes Un-Expected Bern-
stein Inequality. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/3dea6b598a16b334a53145e78701fa87-Paper.pdf.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. CoRR, abs/1301.3781, 2013. URL http://dblp.uni-trier.de/
db/journals/corr/corr1301.html#abs-1301-3781.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

Thanh Nguyen-Tang, Sunil Gupta, A. Tuan Nguyen, and Svetha Venkatesh. Offline neural
contextual bandits: Pessimism, optimization and generalization. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=sPIFuucA3F.

Tui H Nolan and Matt P Wand. Accurate logistic variational message passing: algebraic and
numerical details. Stat, 6(1):102–112, 2017.

Kento Nozawa, Pascal Germain, and Benjamin Guedj. PAC-Bayesian Contrastive Unsu-
pervised Representation Learning. In Jonas Peters and David Sontag, editors, Proceed-
ings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), volume 124 of
Proceedings of Machine Learning Research, pages 21–30. PMLR, 03–06 Aug 2020. URL
https://proceedings.mlr.press/v124/nozawa20a.html.

Harrie Oosterhuis. Learning-to-rank at the speed of sampling: Plackett-luce gradient esti-
mation with minimal computational complexity. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’22,
page 2266–2271, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450387323. doi: 10.1145/3477495.3531842. URL https://doi.org/10.1145/3477495.
3531842.

https://proceedings.neurips.cc/paper_files/paper/2020/file/f1cf2a082126bf02de0b307778ce73a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f1cf2a082126bf02de0b307778ce73a7-Paper.pdf
https://proceedings.mlr.press/v119/mei20b.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/4476b929e30dd0c4e8bdbcc82c6ba23a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4476b929e30dd0c4e8bdbcc82c6ba23a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3dea6b598a16b334a53145e78701fa87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3dea6b598a16b334a53145e78701fa87-Paper.pdf
http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-3781
http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-3781
https://openreview.net/forum?id=sPIFuucA3F
https://proceedings.mlr.press/v124/nozawa20a.html
https://doi.org/10.1145/3477495.3531842
https://doi.org/10.1145/3477495.3531842


Bibliography 183

Art Owen and Yi Zhou. Safe and effective importance sampling. Journal of the American
Statistical Association, 95(449):135–143, 2000. ISSN 01621459. URL http://www.jstor.
org/stable/2669533.

Art B Owen. Empirical likelihood. CRC press, 2001.

Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/mc/,
2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society. Series
C (Applied Statistics), 24(2):193–202, 1975. ISSN 00359254, 14679876. URL http://www.
jstor.org/stable/2346567.

Sebastian Prillo and Julian Martin Eisenschlos. Softsort: A continuous relaxation for the argsort
operator. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

Jérémie Rappaz, Julian McAuley, and Karl Aberer. Recommendation on Live-Streaming
Platforms: Dynamic Availability and Repeat Consumption, page 390–399. Association for
Computing Machinery, New York, NY, USA, 2021. ISBN 9781450384582. URL https:
//doi.org/10.1145/3460231.3474267.

Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X Yu, Ananda Theertha Suresh, and Sanjiv
Kumar. Sampled softmax with random fourier features. Advances in Neural Information
Processing Systems, 32, 2019.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09, page 452–461, Arlington, Vir-
ginia, USA, 2009. AUAI Press. ISBN 9780974903958.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens:
An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work, CSCW ’94, page 175–186, New York,
NY, USA, 1994. Association for Computing Machinery. ISBN 0897916891. doi: 10.1145/
192844.192905. URL https://doi.org/10.1145/192844.192905.

C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 2nd edition, 1979.

Ya’acov Ritov, Peter J Bickel, Anthony C Gamst, Bastiaan Jan Korneel Kleijn, et al. The
bayesian analysis of complex, high-dimensional models: Can it be coda? Statistical Science,
29(4):619–639, 2014.

http://www.jstor.org/stable/2669533
http://www.jstor.org/stable/2669533
https://artowen.su.domains/mc/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.jstor.org/stable/2346567
http://www.jstor.org/stable/2346567
https://doi.org/10.1145/3460231.3474267
https://doi.org/10.1145/3460231.3474267
https://doi.org/10.1145/192844.192905


184 Bibliography

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400 – 407, 1951a. doi: 10.1214/aoms/1177729586. URL https:
//doi.org/10.1214/aoms/1177729586.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of math-
ematical statistics, 22(3):400–407, 1951b.

David Rohde and Matt P Wand. Semiparametric mean field variational bayes: General principles
and numerical issues. The Journal of Machine Learning Research, 17(1):5975–6021, 2016.

David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros Karatzoglou.
Recogym: A reinforcement learning environment for the problem of product recommendation
in online advertising. In REVEAL workshop, ACM Conference on Recommender Systems
2018, 2018.

David Rohde, Flavian Vasile, Sergey Ivanov, and Otmane Sakhi. Bayesian value based recom-
mendation: A modelling based alternative to proxy and counterfactual policy based recom-
mendation. In Proceedings of the 14th ACM Conference on Recommender Systems, RecSys
’20, page 742–744, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450375832. doi: 10.1145/3383313.3411544. URL https://doi.org/10.1145/3383313.
3411544.

D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey of multi-objective sequential
decision-making. Journal of Artificial Intelligence Research, 48:67–113, oct 2013. doi: 10.
1613/jair.3987. URL https://doi.org/10.1613%2Fjair.3987.

Nicolas Le Roux. Tighter bounds lead to improved classifiers. In International Conference on
Learning Representations, 2017. URL https://openreview.net/forum?id=HyAbMKwxe.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Francisco JR Ruiz, Michalis K Titsias, Adji B Dieng, and David M Blei. Augment and reduce:
Stochastic inference for large categorical distributions. arXiv preprint arXiv:1802.04220, 2018.

Yuta Saito and Thorsten Joachims. Off-policy evaluation for large action spaces via embed-
dings. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 19089–19122. PMLR, 17–23
Jul 2022a. URL https://proceedings.mlr.press/v162/saito22a.html.

Yuta Saito and Thorsten Joachims. Counterfactual evaluation and learning for interactive sys-
tems: Foundations, implementations, and recent advances. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, page 4824–4825,
New York, NY, USA, 2022b. Association for Computing Machinery. ISBN 9781450393850.
doi: 10.1145/3534678.3542601. URL https://doi.org/10.1145/3534678.3542601.

Yuta Saito, Qingyang Ren, and Thorsten Joachims. Off-Policy Evaluation for Large Action
Spaces via Conjunct Effect Modeling. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 29734–29759. PMLR, 23–29 Jul 2023. URL https://proceedings.
mlr.press/v202/saito23b.html.

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1145/3383313.3411544
https://doi.org/10.1145/3383313.3411544
https://doi.org/10.1613%2Fjair.3987
https://openreview.net/forum?id=HyAbMKwxe
https://proceedings.mlr.press/v162/saito22a.html
https://doi.org/10.1145/3534678.3542601
https://proceedings.mlr.press/v202/saito23b.html
https://proceedings.mlr.press/v202/saito23b.html


Bibliography 185

Otmane Sakhi, Stephen Bonner, David Rohde, and Flavian Vasile. Reconsidering analytical
variational bounds for output layers of deep networks, 2019.

Otmane Sakhi, Stephen Bonner, David Rohde, and Flavian Vasile. BLOB: A Probabilistic Model
for Recommendation That Combines Organic and Bandit Signals. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &; Data Mining, KDD ’20,
page 783–793, New York, NY, USA, 2020a. Association for Computing Machinery. ISBN
9781450379984. doi: 10.1145/3394486.3403121. URL https://doi.org/10.1145/3394486.
3403121.

Otmane Sakhi, Louis Faury, and Flavian Vasile. Improving Offline Contextual Bandits with
Distributional Robustness. In Proceedings of the ACM RecSys Workshop on Reinforcement
Learning and Robust Estimators for Recommendation Systems (REVEAL ’20), 2020b. URL
https://arxiv.org/abs/2011.06835.

Otmane Sakhi, Pierre Alquier, and Nicolas Chopin. PAC-Bayesian Offline Contextual Bandits
With Guarantees. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 29777–
29799. PMLR, 23–29 Jul 2023a. URL https://proceedings.mlr.press/v202/sakhi23a.
html.

Otmane Sakhi, David Rohde, and Nicolas Chopin. Fast Slate Policy Optimization: Going
Beyond Plackett-Luce. Transactions on Machine Learning Research, 2023b. ISSN 2835-8856.
URL https://openreview.net/forum?id=f7a8XCRtUu.

Otmane Sakhi, David Rohde, and Alexandre Gilotte. Fast Offline Policy Optimization for Large
Scale Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 37(8):
9686–9694, Jun. 2023c. doi: 10.1609/aaai.v37i8.26158. URL https://ojs.aaai.org/index.
php/AAAI/article/view/26158.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Proceedings of
the 20th International Conference on Neural Information Processing Systems, NIPS’07, page
1257–1264, Red Hook, NY, USA, 2007. Curran Associates Inc. ISBN 9781605603520.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khande-
parkar. A theoretical analysis of contrastive unsupervised representation learning. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5628–5637. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
saunshi19a.html.

Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and Thorsten
Joachims. Recommendations as treatments: Debiasing learning and evaluation. In Proceed-
ings of the 33rd International Conference on International Conference on Machine Learning
- Volume 48, ICML’16, pages 1670–1679, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pages 1889–1897, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/schulman15.html.

https://doi.org/10.1145/3394486.3403121
https://doi.org/10.1145/3394486.3403121
https://arxiv.org/abs/2011.06835
https://proceedings.mlr.press/v202/sakhi23a.html
https://proceedings.mlr.press/v202/sakhi23a.html
https://openreview.net/forum?id=f7a8XCRtUu
https://ojs.aaai.org/index.php/AAAI/article/view/26158
https://ojs.aaai.org/index.php/AAAI/article/view/26158
https://proceedings.mlr.press/v97/saunshi19a.html
https://proceedings.mlr.press/v97/saunshi19a.html
https://proceedings.mlr.press/v37/schulman15.html


186 Bibliography

Yevgeny Seldin, Peter Auer, John Shawe-taylor, Ronald Ortner, and François Laviolette. PAC-
Bayesian analysis of contextual bandits. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 24.
Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/
58e4d44e550d0f7ee0a23d6b02d9b0db-Paper.pdf.

Yevgeny Seldin, Nicolò Cesa-Bianchi, Peter Auer, François Laviolette, and John Shawe-Taylor.
PAC-Bayes-Bernstein Inequality for Martingales and its Application to Multiarmed Bandits.
In Dorota Glowacka, Louis Dorard, and John Shawe-Taylor, editors, Proceedings of the Work-
shop on On-line Trading of Exploration and Exploitation 2, volume 26 of Proceedings of Ma-
chine Learning Research, pages 98–111, Bellevue, Washington, USA, 02 Jul 2012. PMLR.
URL https://proceedings.mlr.press/v26/seldin12a.html.

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training
of large-scale deep learning models: A literature review, 2023.

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum in-
ner product search (mips). In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
310ce61c90f3a46e340ee8257bc70e93-Paper.pdf.

James E. Smith and Robert L. Winkler. The optimizers curse: Skepticism and postdecision
surprise in decision analysis. Manage. Sci., 52(3):311–322, mar 2006. ISSN 0025-1909. doi:
10.1287/mnsc.1050.0451. URL https://doi.org/10.1287/mnsc.1050.0451.

Cees G. M. Snoek, Marcel Worring, Jan C. van Gemert, Jan-Mark Geusebroek, and Arnold
W. M. Smeulders. The challenge problem for automated detection of 101 semantic concepts
in multimedia. In Proceedings of the 14th ACM International Conference on Multimedia,
MM ’06, page 421–430, New York, NY, USA, 2006. Association for Computing Machin-
ery. ISBN 1595934472. doi: 10.1145/1180639.1180727. URL https://doi.org/10.1145/
1180639.1180727.

Eleftherios Spyromitros-Xioufis, Symeon Papadopoulos, Ioannis Yiannis Kompatsiaris, Grigorios
Tsoumakas, and Ioannis Vlahavas. A comprehensive study over VLAD and product quantiza-
tion in large-scale image retrieval. IEEE Transactions on Multimedia, 16(6):1713–1728, 2014.
doi: 10.1109/TMM.2014.2329648.

Joe Staines and David Barber. Variational Optimization, 2012. URL https://arxiv.org/abs/
1212.4507.

Harald Steck. Autoencoders that don't overfit towards the identity. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 19598–19608. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
e33d974aae13e4d877477d51d8bafdc4-Paper.pdf.

A. Storkey. When training and test sets are different: characterizing learning transfer. Dataset
shift in machine learning, pages 3–28, 2009.

Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy, and Miroslav Dudík. Doubly robust off-
policy evaluation with shrinkage. In International Conference on Machine Learning, pages
9167–9176. PMLR, 2020.

https://proceedings.neurips.cc/paper/2011/file/58e4d44e550d0f7ee0a23d6b02d9b0db-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/58e4d44e550d0f7ee0a23d6b02d9b0db-Paper.pdf
https://proceedings.mlr.press/v26/seldin12a.html
https://proceedings.neurips.cc/paper/2014/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://doi.org/10.1287/mnsc.1050.0451
https://doi.org/10.1145/1180639.1180727
https://doi.org/10.1145/1180639.1180727
https://arxiv.org/abs/1212.4507
https://arxiv.org/abs/1212.4507
https://proceedings.neurips.cc/paper_files/paper/2020/file/e33d974aae13e4d877477d51d8bafdc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e33d974aae13e4d877477d51d8bafdc4-Paper.pdf


Bibliography 187

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from
logged bandit feedback. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 814–823, Lille, France, 07–09 Jul 2015a. PMLR. URL https://proceedings.
mlr.press/v37/swaminathan15.html.

Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual
learning. In NIPS, 2015b.

Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford,
Damien Jose, and Imed Zitouni. Off-policy evaluation for slate recommendation. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
page 3635–3645, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Ugo Tanielian and Flavian Vasile. Relaxed Softmax for PU Learning. In Proceedings of the 13th
ACM Conference on Recommender Systems, RecSys ’19, page 119–127, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450362436. doi: 10.1145/3298689.
3347034. URL https://doi.org/10.1145/3298689.3347034.

Ambuj Tewari and Susan A Murphy. From Ads to Interventions: Contextual Bandits in Mobile
Health. In Mobile Health, pages 495–517. Springer, 2017.

Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-Confidence Off-
Policy Evaluation. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Andrea Tirinzoni, Aymen Al-Marjani, and Emilie Kaufmann. Optimistic pac reinforcement
learning: the instance-dependent view. In Shipra Agrawal and Francesco Orabona, editors,
Proceedings of The 34th International Conference on Algorithmic Learning Theory, volume
201 of Proceedings of Machine Learning Research, pages 1460–1480. PMLR, 20 Feb–23 Feb
2023. URL https://proceedings.mlr.press/v201/tirinzoni23a.html.

Michalis Titsias. One-vs-each approximation to softmax for scalable estimation of probabilities.
In Advances in Neural Information Processing Systems, pages 4161–4169, 2016.

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, nov 1984. ISSN
0001-0782. doi: 10.1145/1968.1972. URL https://doi.org/10.1145/1968.1972.

Michal Valko, Rémi Munos, Branislav Kveton, and Tomáš Kocák. Spectral Bandits for Smooth
Graph Functions. In International Conference on Machine Learning, pages 46–54, 2014.

V. Vapnik. Principles of risk minimization for learning theory. In Proceedings of the 4th Inter-
national Conference on Neural Information Processing Systems, NIPS’91, page 831–838, San
Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. ISBN 1558602224.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec: Product embeddings
using side-information for recommendation. In Proceedings of the 10th ACM Conference on

https://proceedings.mlr.press/v37/swaminathan15.html
https://proceedings.mlr.press/v37/swaminathan15.html
https://doi.org/10.1145/3298689.3347034
https://proceedings.mlr.press/v201/tirinzoni23a.html
https://doi.org/10.1145/1968.1972


188 Bibliography

Recommender Systems, RecSys ’16, page 225–232, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450340359. doi: 10.1145/2959100.2959160. URL https:
//doi.org/10.1145/2959100.2959160.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017a. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems, NIPS’17, page 6000–6010,
Red Hook, NY, USA, 2017b. Curran Associates Inc. ISBN 9781510860964.

Paul Viallard, Pascal Germain, Amaury Habrard, and Emilie Morvant. A General Framework
for the Practical Disintegration of PAC-Bayesian Bounds, 2023.

Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal
design of clinical trials: benefits and challenges. Statistical science: a review journal of the
Institute of Mathematical Statistics, 30(2):199, 2015.

Mengting Wan and Julian J. McAuley. Item recommendation on monotonic behavior chains. In
Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John O’Donovan, editors, Proceed-
ings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC,
Canada, October 2-7, 2018, pages 86–94. ACM, 2018. doi: 10.1145/3240323.3240369. URL
https://doi.org/10.1145/3240323.3240369.

Mengting Wan, Rishabh Misra, Ndapa Nakashole, and Julian J. McAuley. Fine-grained
spoiler detection from large-scale review corpora. In Anna Korhonen, David R. Traum,
and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 2605–2610. Association for Computational Linguistics, 2019. doi:
10.18653/v1/p19-1248. URL https://doi.org/10.18653/v1/p19-1248.

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor search. Proc. VLDB
Endow., 14(11):1964–1978, jul 2021a. ISSN 2150-8097. doi: 10.14778/3476249.3476255. URL
https://doi.org/10.14778/3476249.3476255.

Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, and Defu Lian. A
survey on session-based recommender systems. ACM Comput. Surv., 54(7), jul 2021b. ISSN
0360-0300. doi: 10.1145/3465401. URL https://doi.org/10.1145/3465401.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Mike Bendersky, and Marc Najork. The Lamb-
daLoss Framework for Ranking Metric Optimization. In Proceedings of The 27th ACM Inter-
national Conference on Information and Knowledge Management (CIKM ’18), pages 1313–
1322, 2018.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudık. Optimal and adaptive off-policy evalu-
ation in contextual bandits. In International Conference on Machine Learning, pages 3589–
3597. PMLR, 2017.

https://doi.org/10.1145/2959100.2959160
https://doi.org/10.1145/2959100.2959160
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.18653/v1/p19-1248
https://doi.org/10.14778/3476249.3476255
https://doi.org/10.1145/3465401


Bibliography 189

Yuyan Wang, Mohit Sharma, Can Xu, Sriraj Badam, Qian Sun, Lee Richardson, Lisa Chung,
Ed H. Chi, and Minmin Chen. Surrogate for Long-Term User Experience in Recommender
Systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD ’22, page 4100–4109, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539073. URL https:
//doi.org/10.1145/3534678.3539073.

Robert West, Smriti Bhagat, Paul Groth, Marinka Zitnik, Francisco M. Couto, Pasquale Lisena,
Albert Meroño Peñuela, Xiangyu Zhao, Wenqi Fan, Dawei Yin, Jiliang Tang, Linjun Shou,
Ming Gong, Jian Pei, Xiubo Geng, Xingjie Zhou, Daxin Jiang, Benjamin Ricaud, Nicolas
Aspert, Volodymyr Miz, Jennifer Dy, Stratis Ioannidis, undefinedlkay Yıldız, Rezvaneh Reza-
pour, Samin Aref, Ly Dinh, Jana Diesner, Alexey Drutsa, Dmitry Ustalov, Nikita Popov,
Daria Baidakova, Shubhanshu Mishra, Arjun Gopalan, Da-Cheng Juan, Cesar Ilharco Ma-
galhaes, Chun-Sung Ferng, Allan Heydon, Chun-Ta Lu, Philip Pham, George Yu, Yicheng
Fan, Yueqi Wang, Florian Laurent, Yanick Schraner, Christian Scheller, Sharada Mohanty,
Jiawei Chen, Xiang Wang, Fuli Feng, Xiangnan He, Irene Teinemaa, Javier Albert, Dmitri
Goldenberg, Flavian Vasile, David Rohde, Olivier Jeunen, Amine Benhalloum, Otmane Sakhi,
Yu Rong, Wenbing Huang, Tingyang Xu, Yatao Bian, Hong Cheng, Fuchun Sun, Junzhou
Huang, Shobeir Fakhraei, Christos Faloutsos, Onur Çelebi, Martin Müller, Manuel Schnei-
der, Olesia Altunina, Wolfram Wingerath, Benjamin Wollmer, Felix Gessert, Stephan Succo,
Norbert Ritter, Evann Courdier, Tudor Mihai Avram, Dragan Cvetinovic, Levan Tsinadze,
Johny Jose, Rose Howell, Mario Koenig, Michaël Defferrard, Krishnaram Kenthapadi, Ben
Packer, Mehrnoosh Sameki, and Nashlie Sephus. Summary of tutorials at the web conference
2021. In Companion Proceedings of the Web Conference 2021, WWW ’21, page 727–733, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383134. doi:
10.1145/3442442.3453701. URL https://doi.org/10.1145/3442442.3453701.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256, 1992. doi: 10.1007/BF00992696.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-
based recommendation with graph neural networks. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):346–353, jul 2019. doi: 10.1609/aaai.v33i01.3301346. URL
https://doi.org/10.1609%2Faaai.v33i01.3301346.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise Approach to Learning
to Rank: Theory and Algorithm. In Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, page 1192–1199, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390306. URL https:
//doi.org/10.1145/1390156.1390306.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Bolin Ding, and Bin Cui. Contrastive
learning for sequential recommendation, 2021.

Ming Xu, Matias Quiroz, Robert Kohn, and Scott A. Sisson. Variance reduction properties of the
reparameterization trick. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceed-
ings of the Twenty-Second International Conference on Artificial Intelligence and Statistics,
volume 89 of Proceedings of Machine Learning Research, pages 2711–2720. PMLR, 16–18 Apr
2019. URL https://proceedings.mlr.press/v89/xu19a.html.

https://doi.org/10.1145/3534678.3539073
https://doi.org/10.1145/3534678.3539073
https://doi.org/10.1145/3442442.3453701
https://doi.org/10.1609%2Faaai.v33i01.3301346
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/1390156.1390306
https://proceedings.mlr.press/v89/xu19a.html


190 Bibliography

Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin.
Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In
Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, page 279–287,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450359016. doi:
10.1145/3240323.3240355. URL https://doi.org/10.1145/3240323.3240355.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. KDEformer: Accelerating trans-
formers via kernel density estimation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learn-
ing Research, pages 40605–40623. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/zandieh23a.html.

Eva Zangerle and Christine Bauer. Evaluating recommender systems: Survey and framework.
ACM Comput. Surv., 55(8), dec 2022. ISSN 0360-0300. doi: 10.1145/3556536. URL https:
//doi.org/10.1145/3556536.

Tong Zhang. Covering number bounds of certain regularized linear function classes. J. Mach.
Learn. Res., 2:527–550, 2002. URL http://dblp.uni-trier.de/db/journals/jmlr/jmlr2.
html#Zhang02.

Xiaoying Zhang, Junzhou Zhao, and John C.S. Lui. Modeling the assimilation-contrast effects
in online product rating systems: Debiasing and recommendations. In Proceedings of the
Eleventh ACM Conference on Recommender Systems, RecSys ’17, page 98–106, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346528. doi: 10.1145/
3109859.3109885. URL https://doi.org/10.1145/3109859.3109885.

Ding-Xuan Zhou. The covering number in learning theory. Journal of Complexity, 18(3):739–
767, 2002. ISSN 0885-064X. doi: https://doi.org/10.1006/jcom.2002.0635. URL https:
//www.sciencedirect.com/science/article/pii/S0885064X02906357.

https://doi.org/10.1145/3240323.3240355
https://proceedings.mlr.press/v202/zandieh23a.html
https://proceedings.mlr.press/v202/zandieh23a.html
https://doi.org/10.1145/3556536
https://doi.org/10.1145/3556536
http://dblp.uni-trier.de/db/journals/jmlr/jmlr2.html#Zhang02
http://dblp.uni-trier.de/db/journals/jmlr/jmlr2.html#Zhang02
https://doi.org/10.1145/3109859.3109885
https://www.sciencedirect.com/science/article/pii/S0885064X02906357
https://www.sciencedirect.com/science/article/pii/S0885064X02906357


Titre : Bandit contextuel hors-ligne : théorie et applications à grande échelle
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Bayésien, Recommandation en grande échelle.

Résumé : Cette thèse s’intéresse au problème de
l’apprentissage à partir d’interactions en utilisant le
cadre du bandit contextuel hors ligne. En particu-
lier, nous nous intéressons à deux sujets connexes :
(1) l’apprentissage de politiques hors ligne avec des
certificats de performance, et (2) l’apprentissage ra-
pide et efficace de politiques, pour le problème de
recommandation à grande échelle. Pour (1), nous ti-
rons d’abord parti des résultats du cadre d’optimi-
sation distributionnellement robuste pour construire
des bornes asymptotiques, sensibles à la variance,
qui permettent l’évaluation des performances des po-
litiques. Ces bornes nous aident à obtenir de nou-
veaux objectifs d’apprentissage plus pratiques grâce
à leur nature composite et à leur calibrage simple.
Nous analysons ensuite le problème d’un point de
vue PAC-Bayésien et fournissons des bornes, plus
étroites sur les performances des politiques. Nos
résultats motivent de nouvelles stratégies, qui offrent
des certificats de performance sur nos politiques
avant de les déployer en ligne. Les stratégies nouvel-

lement dérivées s’appuient sur des objectifs d’appren-
tissage composites qui ne nécessitent pas de réglage
supplémentaire. Pour (2), nous proposons d’abord un
modèle bayésien hiérarchique, qui combine différents
signaux, pour estimer efficacement la qualité de la
recommandation. Nous fournissons les outils com-
putationnels appropriés pour adapter l’inférence aux
problèmes à grande échelle et démontrons empi-
riquement les avantages de l’approche dans plu-
sieurs scénarios. Nous abordons ensuite la ques-
tion de l’accélération des approches communes d’op-
timisation des politiques, en nous concentrant par-
ticulièrement sur les problèmes de recommandation
avec des catalogues de millions de produits. Nous
dérivons des méthodes d’optimisation, basées sur de
nouvelles approximations du gradient calculées en
temps logarithmique par rapport à la taille du cata-
logue. Notre approche améliore le temps linéaire des
méthodes courantes de calcul de gradient, et permet
un apprentissage rapide sans nuire à la qualité des
politiques obtenues.

Title : Offline Contextual Bandit : Theory and Large Scale Applications

Keywords : Offline Contextual Bandit, Off-Policy learning, PAC-Bayesian learning, Large Scale Recommen-
dation.

Abstract : This thesis presents contributions to the
problem of learning from logged interactions using
the offline contextual bandit framework. We are in-
terested in two related topics : (1) offline policy lear-
ning with performance certificates, and (2) fast and
efficient policy learning applied to large scale, real
world recommendation. For (1), we first leverage re-
sults from the distributionally robust optimisation fra-
mework to construct asymptotic, variance-sensitive
bounds to evaluate policies’ performances. These
bounds lead to new, more practical learning objectives
thanks to their composite nature and straightforward
calibration. We then analyse the problem from the
PAC-Bayesian perspective, and provide tighter, non-
asymptotic bounds on the performance of policies.
Our results motivate new strategies, that offer perfor-
mance certificates before deploying the policies on-

line. The newly derived strategies rely on composite
learning objectives that do not require additional tu-
ning. For (2), we first propose a hierarchical Bayesian
model, that combines different signals, to efficiently
estimate the quality of recommendation. We provide
proper computational tools to scale the inference to
real world problems, and demonstrate empirically the
benefits of the approach in multiple scenarios. We
then address the question of accelerating common
policy optimisation approaches, particularly focusing
on recommendation problems with catalogues of mil-
lions of items. We derive optimisation routines, based
on new gradient approximations, computed in loga-
rithmic time with respect to the catalogue size. Our
approach improves on common, linear time gradient
computations, yielding fast optimisation with no loss
on the quality of the learned policies.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Présentation générale
	Introduction
	Overview
	List of Publications

	Literature Review
	The Landscape of Contextual Bandit
	Performance Guarantees with Statistical Learning
	Online Decision Systems: History of Recommendation
	Constraints of Large Scale Recommender Systems

	I Offline Learning with Performance Guarantees
	Offline Learning with Distributionally Robust Optimization
	Introduction
	Preliminaries
	Policy Evaluation and Optimization
	Experiments
	Related Work
	Conclusion

	Offline Learning with PAC-Bayesian Theory
	Introduction
	Preliminaries
	Motivating PAC-Bayesian tools
	PAC-Bayesian Analysis
	Restricting the Space of Policies
	Experiments
	Conclusion
	Appendix: Technical Results
	Appendix: Additional Experiments

	A Better PAC-Bayesian Analysis of Offline Learning
	Introduction
	A Family of Estimators
	A Refined PAC-Bayesian Analysis
	Unknown Structure of the Logging Policy
	Experiments
	Conclusion


	II Offline Learning of Large Scale Decision Systems
	Scalable Bayesian Reward Modelling
	Introduction
	Probabilistic Model of Organic and Bandit Sessions
	Model Training
	Results
	Conclusion
	Appendix

	Fast Offline Learning for One-Item Recommendation
	Introduction
	Parametrizing the Policy
	Optimizing the Objective
	The Proposed Method
	Experimental Results
	Related Work
	Conclusion

	Fast Offline Learning for Slate Recommendation
	Introduction
	Plackett-Luce Policies
	Latent Random Perturbation
	Experiments
	Related work
	Conclusion
	Appendix



