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Résumé : L’objectif de cette thèse est de rendrel’apprentissage profond plus efficace en termesde ressources en appliquant le principe de mo-dularité. La thèse comporte plusieurs contribu-tions principales : une étude de la littérature surla modularité dans l’apprentissage profond ; laconception d’OmniPrint et de Meta-Album, desoutils qui facilitent l’étude de la modularité desdonnées ; des études de cas examinant les ef-fets de l’apprentissage épisodique, un exemplede modularité des données ; un mécanismed’évaluation modulaire appelé LTU pour éva-luer les risques en matière de protection dela vie privée ; et la méthode RRR pour réutili-ser des modèles modulaires pré-entraînés afind’en construire des versions plus compactes.La modularité, qui implique la décomposition

d’une entité en sous-entités, est un concept ré-pandu dans diverses disciplines. Cette thèseexamine la modularité sur trois axes de l’ap-prentissage profond : les données, la tâche etle modèle. OmniPrint et Meta-Album facilitentde comparer les modèles modulaires et d’ex-plorer les impacts de la modularité des don-nées. LTU garantit la fiabilité de l’évaluation dela protection de la vie privée. RRR améliore l’ef-ficacité de l’utilisation des modèles modulairespré-entraînés. Collectivement, cette thèse faitle lien entre le principe de modularité et l’ap-prentissage profond et souligne ses avantagesdans certains domaines de l’apprentissage pro-fond, contribuant ainsi à une intelligence artifi-cielle plus efficace en termes de ressources.

Title :Modularity in Deep Learning
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Abstract : This Ph.D. thesis is dedicated to en-hancing the efficiency of Deep Learning by le-veraging the principle of modularity. It containsseveral main contributions : a literature surveyon modularity in Deep Learning ; the introduc-tion of OmniPrint and Meta-Album, tools thatfacilitate the investigation of data modularity ;case studies examining the effects of episodicfew-shot learning, an instance of data modula-rity ; a modular evaluation mechanism namedLTU for assessing privacy risks ; and the me-thod RRR for reusing pre-trained modular mo-dels to create more compact versions. Modula-rity, which involves decomposing an entity into

sub-entities, is a prevalent concept across va-rious disciplines. This thesis examines modula-rity across three axes of Deep Learning : data,task, and model. OmniPrint and Meta-Albumassist in benchmarking modular models andexploring data modularity’s impacts. LTU en-sures the reliability of the privacy assessment.RRR significantly enhances the utilization effi-ciency of pre-trained modular models. Collecti-vely, this thesis bridges themodularity principlewith Deep Learning and underscores its advan-tages in selected fields of Deep Learning, contri-buting tomore resource-efficient Artificial Intel-ligence.
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Summary

The current trend in Artificial Intelligence is to rely heavily on systems ca-
pable of learning from examples, such as Deep Learning models, a modern
embodiment of artificial neural networks. While numerous applications have
made it to market in recent years (including self-driving cars, automated as-
sistants, booking services, chatbots, improvements in search engines, recom-
mendations, advertising, and healthcare applications, to name a few), Deep
Learningmodels are still notoriously hard to deploy. During the training phase,
these models typically demand a massive number of training examples and
substantial computational resources. On the other hand, during real-time uti-
lization, trained models encounter challenges such as latency, storage con-
straints, and power consumption.

Modularity is a general principle present in many fields, such as biology,
system design, computer science, and graph theory. It is the property of an
entity, whereby it can be broken down into a number of sub-entities (referred
to as modules). It offers attractive advantages, which include, among others,
ease of conceptualization, interpretability, scalability, andmodule reusability.
The goal of this Ph.D. thesis is to contribute to the field of low-resource Deep
Learning. Themodularity principle, which suggests that complex systems can
be broken down into smaller components, serves as the guiding principle. In
particular, we focus on reducing the computational resource requirements
associated with Deep Learning and enhancing the reusability of existing re-
sources.

The first contribution of this thesis is a literature survey [1] of the notion
of modularity present in the field of Deep Learning. We discuss the definition
of modularity and review the modularity principle present in Deep Learning
around three axes: data, task, and model, which characterize the life cycle of
Deep Learning. Data modularity refers to the observation or creation of data
groups for various purposes. Task modularity refers to the decomposition
of tasks into sub-tasks. Model modularity means that the architecture of a
neural network system can be decomposed into modules. We describe dif-
ferent instantiations of the modularity principle, and we contextualize their
advantages in different Deep Learning sub-fields.

We have made a series of contributions in the scope of data modular-
ity. We introduce OmniPrint [2], a data synthesizer designed to provide full
control over latent factors in the data generation process. Alongside, we in-
troduce Meta-Album [3], a meta-dataset distinguished by its vast diversity in
terms of data domains and sources. Both OmniPrint and Meta-Album are
characterizedby their rich datamodularity information, including super-classes,
extensive metadata, and varied domains. This information richness helps ex-
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plore the effects of data modularity e.g., the effects of using heterogeneous
data episodes when training few-shot learning models. Additionally, both the
OmniPrint and Meta-Album datasets lend themselves to benchmarking mod-
ular models for tasks such as few-shot learning, transfer learning, and meta-
learning. In our research, we have used them in organizing few-shot learning
challenges. Our subsequent post-challenge analyses [4, 5] investigated the
effects of episodic training in the context of few-shot learning.

Wehavemadeone contribution in the scopeof taskmodularity. Wepresent
a modular evaluation mechanism, termed LTU [6], for assessing the privacy
risks of Deep Learningmodels. This evaluation breaks down into twoparts: an
Attacker and an Evaluator. While the Evaluator conducts leave-two-unlabeled
evaluation rounds, the Attacker simulates privacy attacks.

We have also made one contribution in the scope of model modularity.
Reusing models pre-trained on large datasets has become a common prac-
tice in computer vision and other Deep Learning fields. However, the high
performance of these pre-trained models often comes with large sizes and
high inference latency, making them less suitable for resource-constrained
machines. To address this, we introduced an approach to reuse these pre-
trained models, delivering faster inference speed without compromising on
performance. Grounded in the “Reuse, Reduce, and Recycle” philosophy, our
approach, RRR [7], employs reduction and recycling techniques. The results
indicate that our refined model significantly enhances utilization efficiency
while preserving the performance of the original.

In conclusion, this Ph.D. thesis is devoted to connecting the modularity
principle and Deep Learning to make Deep Learning more resource-efficient.
We investigated howmodularity is present in Deep Learning and how to lever-
age it from different axes (data, task, model) of Deep Learning. We demon-
strated the benefits of the modularity principle in some selected subjects of
Deep Learning. These studies pave the way for more resource-efficient Artifi-
cial Intelligence.
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Résumé

La tendance actuelle en Intelligence Artificielle est de s’appuyer fortement
sur des systèmes capables d’apprendre à partir d’exemples, tels que les mod-
èles de Deep Learning, une incarnation moderne des réseaux de neurones
artificiels. Bien que de nombreuses applications aient été commercialisées
ces dernières années (y compris les voitures autonomes, les assistants au-
tomatisés, les services de réservation, les chatbots, les améliorations dans les
moteurs de recherche, les recommandations, la publicité et les applications
de santé, pour n’en nommer que quelques-unes), lesmodèles de Deep Learn-
ing restent notoirement difficiles à déployer. Durant la phase d’apprentissage,
cesmodèles exigent typiquement unnombremassif d’exemples d’entraînement
et d’importantes ressources computationnelles. D’autre part, lors de l’utilisation
en temps réel, ces modèles rencontrent des défis tels que la latence, les con-
traintes de stockage et la consommation d’énergie.

Lamodularité est unprincipe général présent dans denombreuxdomaines,
tels que la biologie, la conception de systèmes, l’informatique et la théorie
des graphes. C’est la propriété d’une entité, qui peut être décomposée en
un certain nombre de sous-entités (appelées modules). Elle offre des avan-
tages attrayants, qui incluent, entre autres, la facilité de conceptualisation,
l’interprétabilité, la scalabilité et la réutilisabilité des modules. L’objectif de
cette thèse de doctorat est de contribuer au domaine du Deep Learning à
faibles ressources. Le principe de modularité, qui suggère que des systèmes
complexes peuvent être décomposés en composants plus petits, sert de principe
directeur. En particulier, nous nous concentrons sur la réduction des exi-
gences en ressources computationnelles associées au Deep Learning et sur
l’amélioration de la réutilisabilité des ressources existantes.

La première contribution de cette thèse est une revue de la littérature [1]
sur la notion de modularité présente dans le domaine du Deep Learning.
Nous discutons de la définition de la modularité et examinons le principe de
modularité présent dans le Deep Learning autour de trois axes : les données,
la tâche et le modèle, qui caractérisent le cycle de vie du Deep Learning. La
modularité des données se réfère à l’observation ou à la création de groupes
de données à diverses fins. La modularité des tâches se réfère à la décom-
position des tâches en sous-tâches. La modularité des modèles signifie que
l’architecture d’un système de réseau de neurones peut être décomposée en
modules. Nous décrivons différentes incarnations du principe de modularité
et contextualisons leurs avantages dans différents sous-domaines du Deep
Learning.

Nous avons réalisé une série de contributions dans le domaine de lamod-
ularité des données. Nous introduisons OmniPrint [2], un synthétiseur de
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données conçu pour offrir un contrôle total sur les facteurs latents dans le
processus de génération dedonnées. Parallèlement, nous introduisonsMeta-
Album [3], un méta-dataset caractérisé par sa grande diversité en termes de
domaines et de sources de données. OmniPrint et Meta-Album se carac-
térisent tous les deux par leur riche information de modularité des données,
incluant des super-classes, des métadonnées et des domaines variés. Cette
richesse d’information aide à explorer les effets de lamodularité des données,
par exemple les effets de l’utilisation d’épisodes de données hétérogènes lors
de l’entraînement de modèles d’apprentissage avec peu d’exemples. De plus,
les données d’OmniPrint et de Meta-Album se prêtent au benchmarking de
modèlesmodulaires pour des tâches telles que l’apprentissage avec peud’exemples,
l’apprentissage par transfert et le méta-apprentissage. Dans notre recherche,
nous les avons utilisés pour organiser des compétitions d’apprentissage avec
peu d’exemples. Nos analyses post-compétition [4, 5] ont étudié les effets
de l’entraînement épisodique dans le contexte de l’apprentissage avec peu
d’exemples.

Nous avons réalisé une contribution dans le domaine de la modularité
des tâches. Nous présentons un mécanisme d’évaluation modulaire, appelé
LTU [6], pour évaluer les risques de confidentialité desmodèles deDeep Learn-
ing. Cette évaluation se décompose en deux parties : un Attaquant et un Éval-
uateur. Alors que l’Évaluateur conduit des tours d’évaluation LTU, l’Attaquant
simule des attaques de confidentialité.

Nous avons également réalisé une contribution dans le domaine de la
modularité des modèles. La réutilisation de modèles pré-entraînés sur de
grands ensembles de données est devenue une pratique courante en vision
par ordinateur et dans d’autres domaines du Deep Learning. Cependant, la
haute performance de ces modèles pré-entraînés s’accompagne souvent de
grandes tailles et d’une latence d’inférence élevée, les rendant moins adaptés
aux machines à ressources limitées. Pour y remédier, nous avons introduit
une approche pour réutiliser ces modèles pré-entraînés, offrant une vitesse
d’inférence plus rapide sans compromettre les performances. Ancrée dans la
philosophie « Réutiliser, Réduire et Recycler », notre approche, RRR [7], em-
ploie des techniques de réduction et de recyclage. Les résultats indiquent que
notremodèle raffiné améliore significativement l’efficacité de l’utilisation tout
en préservant la performance du modèle original.

En conclusion, cette thèse de doctorat est consacrée à relier le principe
de modularité et le Deep Learning pour rendre le Deep Learning plus effi-
cient en termes de ressources. Nous avons étudié comment la modularité
est présente dans le Deep Learning et comment l’exploiter à partir de dif-
férents axes (données, tâche, modèle) duDeep Learning. Nous avons démon-
tré les avantages du principe de modularité dans certains sujets sélectionnés
du Deep Learning. Ces études ouvrent la voie à une Intelligence Artificielle
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plus efficiente en ressources.
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1 - The modularity principle

1.1 . Motivation

The modularity principle is omnipresent in many fields and disciplines. At
its heart, modularity is about breaking down complexity into more manage-
able parts.

In both nature and society, many complex systems are built on modu-
larity [13, 14]. Such systems are often composed of a large number of compo-
nents. Recognizing and studying themodular components or subsystems can
simplify the understanding of these complex systems. This is why modular-
ity is foundational in system design and engineering [15, 16, 17, 18]. A modular
approachmakes systemsmore flexible, scalable, and easy tomaintain. It also
allows efficiently replacing, upgrading or reusing individual modules without
disrupting the whole system.

Software development deeply adopts the principle of modularity [19, 20].
This is evident in programming languages, frameworks, and design patterns
which often highlightmodularity. Breaking software down intomodules, such
as functions, classes, or packages, improves clarity, allows for reuse, and sim-
plifies maintenance. Moreover, modularity promotes teamwork in the sense
that it enables developers to work on separate modules in parallel without
much interference.

The principle of modularity is also present in mathematics because math-
ematical knowledge can be understood as having amodular structure [21, 22].
Mathematics is based on fundamental ideas that supportmore complex theo-
ries. Proven theorems act asmodules for subsequent proofs. Once a concept
is understood, it can be reused in other contexts. Mathematicians often break
down complex problems into simpler sub-problems. This point of view sim-
plifies computations and depicts properties with better clarity, capturing the
beauty of mathematics.

Modularity is not just a human-engineered concept; it is also fundamental
to biological systems. For example, in biology,modular construction is evident
in animals like colonial cnidarians, bryozoans, and colonial ascidians. They
are subdivided into repeatedmodules, each capable of acquiring, processing,
and sharing resources [23]. Moreover, physical constraints and evolutionary
pressures [24, 25] have made modularity as a foundational feature of biolog-
ical brains [26, 27, 28, 29, 30, 31, 32, 33]. As evidenced in numerous studies,
the cerebral cortex exhibits this modularity, partitioning itself into specialized
areas responsible for distinct functions, such as processing various sensory
signals or enabling reasoning [34]. This organization is not just functional but
also structural: neuronwiring patternswithin the cortex exhibit clustering, en-
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suring neurons collaborating on a function are closely situated [35, 36]. Such
modularity is exemplified in the visual cortex, where the processing of vari-
ous visual perception properties is allocated to anatomically and functionally
distinct regions operating autonomously [37, 38].

Similar to biological brains, modularity is present in graph theory when
identifying communities [39, 40, 41, 42]. Vertices in graphs often cluster to-
gether to form these communities. Within a community, vertices are more
tightly connected to each other than to vertices outside of it. Recognizing this
modularity pattern is crucial for understanding the networks.

Figure 1.1 – Trends in Publications on “Modular Deep Learning” from 1990
to 2021. We conducted a search on Google Scholar to track the frequencyof certain keywords in academic papers. The horizontal axis represents thepublication year. (a) represents the total count of search results for the terms“deep learning” and “neural network”. (b) represents the total count of searchresults for the terms “modular deep learning” and “modular neural network”.(c) shows the proportion (b)(a) , indicating the presence of “modular” terminologywithin the academic papers about “deep learning” and “neural network”, asindexed by Google Scholar.

Back in the early years of Deep Learning research, around the end of the
last century, the researchers began exploring the idea of introducing modu-
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larity into neural networks [43, 44, 45, 46]. This interest has been revived in
recent years [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57].

To grasp the depth of this renewed interest, we used Google Scholar to
count the number of related publications over the years. The findings are
quite revealing. As shown in Figure 1.1, it is clear that there has been an in-
crease in Deep Learning research papers referencing the term “modular”.
This trend indicates that the Deep Learning community is increasingly valu-
ing the advantages of modularity, emphasizing its emergence as a compelling
research direction.
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1.2 . Definition of modularity

Modularity, as a general principle, is both a descriptive property and an
organizational scheme. It serves as a way to represent entities such as data,
tasks, andmodels, allowing for their conceptual or practical manipulation [58,
19, 20, 18].

Modularity is intuitively simple to understand as a concept. However,
defining modularity is, in itself, a challenging problem. The notion of mod-
ularity is present in literature across many different fields such as biology [59,
60, 26, 27, 28, 34, 29, 30, 61, 31, 33, 38, 25, 24], complex systems [13, 14], math-
ematics [21, 22], system design [20, 15, 16, 17, 18], computer science [19, 32],
graph theory [39, 40, 41, 42]. While many researchers have a strong intuition
about what it means for an entity to be modular, there has yet to be a univer-
sal agreement on what defines modularity [62]. The same is true even within
the field of neural networks.

Modularity of neural networks is a bit like the notion of beauty
in art: everyone agrees that it’s important, but nobody can say
exactly what it means.

(Béna et al. [63])
Despite their common use, defining intuitive concepts is not always evi-

dent, as seen with terms like intelligence, complex system, among others [64,
65, 66, 67, 13, 68, 69]. After all, the definition is a matter of social conventions,
different communitiesmayhavedifferent conventions or requirements. There
is no simple solution to determine a single definition to use in all cases [62].
However, defining the object of interest is a prerequisite to make progress in
a scientific field.

In order to define the notion of modularity, we adopt the methodology
of Legg et al. [64]: (1) we collect a list of definitions of modularity from the
literature across different disciplines, and (2) we scan through them to find
out common defining features. It is worthmentioning that, while many works
discuss modularity, not all provide an explicit definition. Our list exclusively
includes those that are clearly articulated. The exhaustive list is available in
Appendix A. A selected subset of this list is presented below.

Modularity can be defined as subdivision of a complex object into
simpler objects. The subdivision is determined either by the struc-
ture or function of the object and its subparts.

(Schmidt et al. [70])
Modularity is the property of a system whereby it can be broken
down into a number of relatively independent, replicable, and
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composable subsystems (or modules).
(Amer et al. [52])

Modularity as a system design principle is apprehended here as
the extent to which processes can be decomposed into modules
to be executed in parallel and/or in series.

(Modrak et al. [17])
From the list of modularity definitions in Appendix A, we identify a set of

defining features: decomposition, cohesion, independence, functional spe-
cialization, combinability, and replicability. While decomposition relates to
the overall entity, the other features are characteristics of the decomposed
sub-entities (modules).

• Decomposition highlights that the original entity can be broken down
into smaller components, known as sub-entities or modules.

• Cohesion indicates that elements within a module tend to have tighter
relations (e.g., connections, similarities) compared to elements spanning
different modules.

• Independence suggests minimal or no causal effects [71, 72] between
different modules. Each module can operate or change independently
without influencing the others.

• Functional specialization means that modules are specialized to im-
plement a particular functionality.

• Combinability, also termed as composability or recombinability, de-
notes the capability of modules (possibly from distinct original entities)
tomerge. This implies an interoperable interface (a communication pro-
tocol or a set of rules) that enables different modules to exchange in-
formation and collaborate seamlessly.

• Replicabilitymeans that once developed, modules can be replicated in
a large number. Examples are the consistent structures in body parts
of organisms (e.g., cells, legs, fingers), and the duplication of basic units
in electronics [70] (e.g., transistors, microprocessors, memory chips, in-
tegrated circuits).

The features we have listed are not mutually exclusive. In fact, differenti-
ating them sharply can often be challenging, as they frequently coexist. How-
ever, they each highlight distinct aspects. Decomposition acts as the founda-
tion for the others, since the subsequent features relate to the properties of
the decomposed modules. Cohesion presupposes the presence of relation-
ships between the elements of the entity, highlighting the irregular distribu-
tion of these relationships. Independence underscores the limited interac-
tions between separate modules. Functional specialization presupposes that
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the entire entity has a specific function, with each module specialized to a
particular sub-function. It’s worth noting that not all entities have a defined
function e.g., a graph of vertices and edges may lack a defined purpose. Com-
binability points to the existence of a interoperable interface, allowing for the
combination of modules, even those from different entities. Lastly, replicabil-
ity stresses the ability to duplicate modules.

Some properties can emerge from the enumerated defining features, in-
cluding the reusability and replaceability of modules. Decomposing an entity
into modules paves the way for both reusing and replacing these modules.
Features like independence, functional specialization, combinability, and repli-
cability enhance the reusability of modules. Meanwhile, replaceability is a
consequence of combinability. When an interoperable interface is in place,
maintaining the entity becomes easier as faulty components can be substi-
tuted with new ones.

After examining the list of modularity definitions in Appendix A, we sum-
marize the defining features mentioned in these definitions in Table 1.1. It is
clear that the challenge in definingmodularity arises from its association with
numerous different features. Authors across diverse fields and communities
typically retain different subsets of these features to label an entity as modu-
lar. Yet, there is one consistent feature in all these definitions: decomposition.

[70] [52] [17] [21] [38] [73] [15] [16] [39] [26] [59] [19] [25] [74] [75] [55] [76] [77] [78] [79]
Decomposition ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Cohesion × × × ✓ ✓ × × ✓ ✓ × ✓ ✓ ✓ × × × × × × ×Independence × ✓ × × × × × × × × × ✓ × × ✓ ✓ ✓ ✓ ✓ ×Functional specialization × × × × × × × × × × × × ✓ ✓ × × × × × ×Combinability × ✓ × × × ✓ ✓ × × × × × × × × × × ✓ × ×Replicability × ✓ × × × × × × × × × × × × × × × × × ×

Table 1.1 – Summary of common defining features from differ-
ent definitions of modularity. Rows denote the common features.Columns denote the reference for the modularity definitions. We seethat “Decomposition” is the only feature required by all definitions ofmodularity.

In this thesis, we choose a general definition of modularity. Such a defini-
tion offers the benefit ofmaintaining its validity across various fields and com-
munities. Drawing insights from Table 1.1, we adopt Definition 1.2.1 to define
the modularity principle. This definition is foundational, it is the prerequisite
for the other defining features mentioned above.
Definition 1.2.1 (Modularity). Modularity is the property of an entity whereby
it can be broken down into a number of sub-entities. Sub-entities are referred
to as modules.

Definition 1.2.1 involves entities. In this thesis, we define entities as any-
thing that can be represented by a set of atomic elements (indivisible ele-
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ments) or as a system. Here, a system is understood as a set of atomic el-
ements accompanied by relationships between them. This leads to Defini-
tion 1.2.2.
Definition 1.2.2 (Entity). An entity is a 2-tuple (E , C), where E is a set of atomic
elements ai, C is a set of functions Rj . ∀j, Rj : E × E → Bj , where the
codomain Bj is an arbitrary set.

We assume that E is non-empty, as an empty E would mean the entity
doesn’t exist. However, C can be the empty set ∅. When C = ∅, the entity is
simply a set. If C ̸= ∅, the entity is a system. For all j, Rj is a function of twoelements, termed a relationship. The codomain Bj determines the kind of re-
lationships Rj can represent between atomic elements, which may include
connections, similarities, distances, interactions, dependencies, or module
composition constraints. A system can have multiple relationships defined
over its atomic elements, with each relationship characterizing a different as-
pect of the entity. For instance,R1 with B1 = R canmeasure the connection’s
intensity or similarities between atomic elements. Another example of rela-
tionship isR2 with B2 = {0, 1}, introducing a module composition constraint.
In this case, two atomic elements a, a′ ∈ E can be put into the same mod-
ule only if R2(a, a

′) = 1. The way relationships are defined is subjective and
depends on the study’s purposes.

Generally, a moduleM is a subset of the set of atomic elements, denoted
asM ⊆ E . When relationships impose module composition constraints, as
in the example above, a subset of atomic elements can qualify as a module
only if all these atomic elements fulfill these constraints.

A relationship between modules can be defined from a relationship be-
tween atomic elements. For instance, if the codomain of the relationship be-
tween atomic elements is a subset of the set of real numbersR, then the rela-
tionship betweenmodules might be defined as e.g., the minimum, maximum,
or average relationships of atomic elements from the respective modules.
This concept is closely related to the linkage criteria utilized in hierarchical
clustering methods [80].

An entity (E , C) is modular if and only if |E| > 1. By recursively applying
Definition 1.2.1, a modular entity is one that can be decomposed into sub-
entities. Each sub-entity can, in turn, be further decomposed into sub-sub-
entities, and so on. This recursive decomposition continues until atomic ele-
ments (the smallest indivisible modules) are obtained.

Many modular entities exhibit a hierarchical structure [13]. In these struc-
tures, multiple modules from a lower hierarchical level combine to constitute
a single module at a higher level. Modules in the lower level of the hierarchy
are more fine-grained than those at the higher levels. Within a given hier-
archical level, the decomposition can result in modules that either distinctly
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partition the entity (known as a hard division) or share components with other
modules (known as a soft division). The resulting modules from decomposi-
tion can either be homogeneous, where all modules are similar, or heteroge-
neous, with dissimilar modules.

Since all systems are characterized by some degree of coupling
(whether loose or tight) between components, and very few sys-
tems have components that are completely inseparable and can-
not be recombined, almost all systems are, to some degree, mod-
ular.

(Schilling [73])
Definition 1.2.1 turns out to be very general. Under this definition, almost

anything can be deemed modular to some extent, except for those entities
composed solely of one indivisible element.

The determination of what qualifies as an indivisible element is often sub-
ject to perspective and context. There can be instances where we establish a
threshold beyond which further decomposition is no longer desirable, align-
ing with the purposes of the study. On the other hand, our perceptions of
what is divisible can also be shaped by advancements in our knowledge. For
instance, atomswere once believed to be the smallest indivisible units ofmat-
ter. However, with the evolution of particle physics, we have discovered that
atoms themselves can be broken down into smaller particles [81].

What makes modularity compelling are the properties of the modules.
These properties offer a range of practical benefits. For example, the ca-
pability to reuse modules allows for efficient use of existing assets and re-
sources [21, 46, 47, 51, 53, 70, 82, 83, 18, 84, 85, 86, 87, 88, 89, 90]; the ability
to replace modules contributes to enhancing the maintainability of the entire
entity [20, 82, 83]; the independence of modules provides flexibility for the
whole entity [19, 76, 91, 92, 75].

Having adopted a general definition ofmodularity, it becomes essential to
contextualize this principle within Deep Learning. The next chapter offers a
perspective on how modularity is perceived in the context of Deep Learning.
We will provide a taxonomy of modularity in Deep Learning and use it as a
framework to review the existing literature.
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1.3 . Thesis outline

The organization of this thesis manuscript is as follows.
Chapter 1 is the introduction chapter. It provides the background andmo-

tivation of modularity. It also presents and discusses our definition of modu-
larity to establish the foundational framework of the entire thesis.

Chapter 2 discusses how the modularity principle is present in the field of
Deep Learning. We view the modularity principle from three different axes of
Deep Learning: data, task, andmodel, which characterize the life cycle of Deep
Learning. Chapter 2 provides a literature survey of the modularity principle in
Deep Learning around these three axes.

Chapter 3 presents our contributions in the scope of data modularity re-
search. It features the development of OmniPrint, a data synthesizer, and
Meta-Album, a meta-dataset. This chapter also presents cases studies that
use these tools to investigate the effects of data modularity in the context of
few-shot learning.

Chapter 4 presents our contribution in the scope of task modularity re-
search. It features the design of a modular evaluationmechanism addressing
the privacy concerns of Deep Learning models.

Chapter 5 presents our contribution in the scope of model modularity re-
search. It features our exploration of techniques to efficiently reusing pre-
trained models with the goal of creating compact, faster models without sac-
rificing performance. Grounded in the “Reuse, Reduce, and Recycle” principle,
our study presents techniques for the efficient re-utilization of a pre-trained
ResNet152 model.

Finally, Chapter 6 presents the conclusion and suggestions for futurework.
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2 - Survey on modularity in Deep Learning

As discussed in the previous chapter, modularity is a general principle
present across amultitude of disciplines, including the field of Deep Learning.
It refers to the idea that complex systems can be decomposed into smaller
components that can be easily understood and manipulated. This principle
has significant implications for the design and development of Deep Learning
systems and has been the subject of research in recent years.

In this chapter, we seek to explore the modularity principle in the context
of Deep Learning, examining it from three different yet related axes: data,
task, and model. Each of these three axes represents a critical component of
the life cycle of Deep Learning and plays a key role in the effectiveness and
efficiency of Deep Learning.

This chapter discusses how the modularity principle is presented across
these three axes and provides a literature survey. The organization of this sur-
vey chapter is illustrated in Figure 2.1. The majority of the material presented
in this chapter has been the subject of publication [1].

Modularity in 
Deep Learning

Data modularity
Intrinsic data modularity

Imposed data modularity

Parallel sub-task decomposition

Sequential sub-task decomposition

Typical modules in neural networks

Composition of modules

Modules for non-
sequential data

Modules for 
sequential data

Static composition of 
modules

Conditional composition 
of modules

Task modularity

Model modularity

Other notions of 
modularity

Figure 2.1 –Organization of this survey chapter. The first three subsectionsdiscuss how the modularity principle is instantiated in the three axes: data,task, and model architecture. We then cover other modularity notions forcompleteness.

35



2.1 . Data modularity

2.1.1 . Definition of data modularity
Data is an entity used to represent knowledge and information. In the

context of machine learning and Deep Learning, it can take various forms
e.g., image, audio sound, and text. Data samples can be interpreted as points
in a high dimensional space (fixed-length dense vectors) [93, 94, 95]. A collec-
tion of data samples is a dataset. Datasets can be used to train or test Deep
Learning models, referred to as training or test datasets. In these scenarios,
data is the input of Deep Learning models (neural networks) [96].

Data modularity is the observation or creation of data groups; it refers to
how a dataset can be divided into different modules for various purposes. In
the framework of Definition 1.2.2, the entity (E , C) can be defined to be the
dataset. The choice of the set of atomic elements E depends on the point of
view. The atomic elements could be defined to be the individual data samples,
in which case the set of relationships C could include the distances or correla-
tions between samples, enabling the definition of data sample clusters. This
logic extends to the embedding of data samples. It should be noted that each
data sample can indeed be further divided into smaller components e.g., fea-
ture vectors of reduced length in the case of tabular data or image patches in
the case of image data. The modularization could happen both at the sam-
ple dimension and the feature dimension. This is why the atomic elements
could also be defined to be every single dimension of data samples, which are
scalar numbers stored in physical computers (often represented by floating-
point numbers). In this scenario, the set of relationships C should include a
relationship for the module composition constraints, indicating which scalar
numbers should be grouped to form a data sample.

We identify two types of data modularity: intrinsic data modularity and
imposed data modularity. Intrinsic data modularity refers to the dataset di-
visions that are inherently present in the data at the time of its creation or
generation. This includes divisions stemming from class labels and latent gen-
erative factors. Imposed data modularity refers to the dataset divisions that
are introduced or imposed on the data after its creation or generation by a
Deep Learning practitioner or data analyst. This includes the organization
of data samples into random mini-batches or the assembly of data samples
from a collection of classes which are selected randomly. We review the pres-
ence of intrinsic and imposed data modularity in the field of Deep Learning in
Section 2.1.3 and Section 2.1.4, respectively.
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2.1.2 . Advantages of data modularity

This section enumerates the advantages associated with data modularity.
Bolded text references the features of the modularity principle introduced in
Section 1.2. 1

Decomposition
The division of a dataset into smaller modules can significantly enhance

the ease with which the data can be organized and manipulated. It can of-
fer several advantages in terms of data analysis, including the possibility to
perform more targeted analyses on subsets of the data and the reduction
in time and memory requirements. It can facilitate the identification of com-
plex patterns and relationships between data samples that might otherwise
be difficult to discern.
Cohesion

Data modularization can influence the training efficiency of learning ma-
chines. For example, curriculum learning [97] groups data samples based on
ameasure of difficulty or complexity of data samples, which allows presenting
training data to aDeep Learningmodel in a progressivelymore challenging se-
quence so that the model can learn more efficiently. On the other hand, sev-
eral recent works in the area of few-shot learning [98, 99] propose to decom-
pose the overall training dataset into a number of smaller training datasets,
referred to as episodes. Each episode contains a subset of the classes to be
learned. Besides varying class subsets across episodes, it is also possible to
vary latent generative factors, ensuring greater similarity of samples within
an episode than between them [2].
Functional specialization

Some algorithms leverage the concept of datamodularity to process data.
For example, Qiao et al. [100] divides the training samples to heterogeneous
subsets, each of which is processed by a different network. This modular
strategy capitalizes on the divide-and-conquer principle.
Combinability

Data modules from different datasets can be combined and repurposed
to create new datasets or meta-datasets [101, 3]. This not only facilitates the
creation ofmore challenging datasets but also enables the simulation ofmore
realistic scenarios that may involve diversified data sources.

1. We only list the modularity features for which relevant examples or scenarioshave been identified in the context of data modularity.
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Figure 2.2 – Illustration of data modularity. (a) intrinsic data modularitybased on super-classes, images, and class hierarchy in ImageNet [8]; (b) in-trinsic data modularity based on styles characterized by a set of metadata,the upper-left circle contains black-on-white characters, the upper-right circlecontains white-on-black characters, the lower circle contains characters withnatural foreground and background, all characters are drawn from the sameset of classes (small-case Latin characters), these three circles illustrate thedivision of a character dataset based on its metadata; (c) intrinsic manifoldsin the form of a moon dataset, where each data manifold can be consideredas a module; (d) few-shot learning episodes, reprinted from [9]. (a), (b) and (c)are examples of intrinsic data modularity, (d) is an example of imposed datamodularity.
2.1.3 . Intrinsic data modularity

Intrinsic datamodularity refers to the dataset divisions that are inherently
present in the data at the time of its creation or generation.

Any supervised learning datasets can be divided according to the classes
(labels); data points belonging to the same class are supposed to be close
to each other in a hidden space, which allows for solutions of classification
algorithms. Classes sharing common semantics can be further grouped to
form super-classes. For example, ImageNet [8] has a class hierarchy (see Fig-
ure 2.2 (a)) which is used byMeta-Dataset [101]. Omniglot dataset [85] andOm-
niPrint datasets [2] contain character images organized in scripts, each script
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(super-class) contains several characters (classes); Meta-Album dataset [3] is
a meta-dataset including 40 datasets, where each dataset can be considered
as a super-class. The super-classes provide information about class similarity,
allowing splitting datasets according to the semantics [102].

In addition to the classes or super-classes, data points can also be grouped
by oneor severalmetadata such as time, location, and gender. Suchmetadata
is available with the Exif data of photos. The OmniPrint data synthesizer gen-
erates data together with a comprehensive set of metadata, including font,
background, foreground, margin size, shear angle, rotation angle, etc. [2] (see
Figure 2.2 (b)). The NORB dataset collected stereo image pairs of 50 uniform-
colored toys under 36 angles, 9 azimuths, and 6 lighting conditions, where the
angles, azimuths, and lighting conditions serve as the metadata [103].

Some datasets contain intrinsic clusters in the high-dimensional feature
space. Such intrinsic clusters can stem from the underlying data generative
process, where latent categorical variables determine the natural groups of
data. An illustrative example is a Gaussian Mixture distribution where data
points are assumed to be generated from a mixture of a finite number of
Gaussian distributions with unknown parameters [104]. Some datasets have
intrinsic manifolds; an illustrative example is the moons dataset as shown in
Figure 2.2 (c), where the two manifolds interlace while preserving an identi-
fiable division, each manifold can be considered as a module. Both of the
above examples fall into the category of data clustering. When data samples
are interconnected in the form of a graph [105, 106], this is called graph parti-
tioning. One question which arises is how to determine the optimal clustering
of a dataset. Luxburg et al. [107] argue that there are no optimal domain-
independent clustering algorithms and that clustering should always be stud-
ied in the context of its end-use.

Multi-modal Deep Learning aims to build models that can process and re-
late information frommultiplemodalities. Here themodality refers to theway
in which something happens or is experienced e.g., data in the form of image,
text, audio [108]. Multi-modal datasets fall into the category of intrinsic data
modularity in the sense that the data in each modality can be considered a
module. For example, VQA v2.0 dataset [109] consists of open-ended ques-
tions about images; SpeakingFaces dataset [110] consists of aligned thermal
and visual spectra image streams of fully-framed faces synchronized with au-
dio recordings of each subject speaking.

2.1.4 . Imposed data modularity

Imposed data modularity refers to the dataset divisions that are intro-
ducedor imposedon the data after its creation or generation by aDeep Learn-
ing practitioner or data analyst.

When training Deep Learning models [96], human practitioners usually
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divide the whole training dataset into mini-batches, which can be seen as a
kind of imposed data modularity. The gradient is computed using one mini-
batch of data for each parameter update; one training epoch means passing
through all the mini-batches. This iterative learning regime is called stochas-
tic gradient descent [111]. Mini-batches reduce the memory requirement for
backpropagation, which makes training large Deep Learning models possi-
ble. On the other hand, batch size also influences learning behavior. Smith et
al. [112] showed that the benefits of decaying the learning rate could be ob-
tained by instead increasing the training batch size. Keskar et al. [113] showed
that learning with large batch sizes usually gives worse generalization perfor-
mance.

Instead of using a sequence ofmini-batches sampled uniformly at random
from the entire training dataset, curriculum learning [97] uses non-uniform
sampling of mini-batches such that the mini-batch sequence exhibits an in-
creasing level of difficulty. A related concept is active learning [114], which
assumes that different data points in a dataset have different values for the
current model update; it tries to select the data points with the highest value
to construct the actual training set.

In few-shot learning [98, 99], the model performance is usually tested
on few-shot episodes. Few-shot episodes are typically formed by drawing N

classes from the class pool andK data samples for each selected class, called
N -way-K-shot episodes [98, 99] (Figure 2.2 (d)).

Data augmentation is a way to generate more training data by applying
transformations to existing data [115]. The transformed versions of the same
data point can be seen as a module. Some transformations, such as rotation
and translation, form a group structure [116]. The effect of such data aug-
mentation can be understood as averaging over the orbits of the group that
keeps the data distribution approximately invariant and leads to variance re-
duction [117].

In addition to splitting the dataset into subsets of samples, each data sam-
ple can be split into subdivisions of features, referred to as feature partition-
ing. A dataset can be represented as amatrix where each row represents one
data sample; each column represents one feature dimension. It can then be
divided along the sample and feature dimensions. Schmidt et al. [70] process
each feature partition with a different model. For image classification tasks,
input images can be split into small patches that can be processed in paral-
lel [118, 119].
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2.2 . Task modularity

2.2.1 . Definition of task modularity

Deep Learning models are utilized to solve a wide range of tasks, ranging
from the classification of entities to the generation of realistic images. Solving
a task boils down to achieving a corresponding objective. It’s worth noting
that a task simply defines an objective; the definition of a task is separate
from the means used to accomplish it. In the context of Deep Learning, an
objective is usually modeled by an explicit differentiable objective function,
commonly referred to as a loss function, which facilitates end-to-end training.
This viewpoint can be extended to any task, even if the objective function is
implicit and lacks a differentiable form. For instance, the task of “purchasing
a cup of tea” may be defined by an indicator function that imposes a penalty
if tea cannot be purchased and a bonus if it can.

Tasks in Deep Learning are often linked with data, but they are different
from data. Different tasks can be defined using the same dataset. For in-
stance, the MNIST dataset [120] can be utilized for image classification bench-
marking [121] or pixel sequence classification benchmarking [122, 91]. Similarly,
the OmniPrint-meta[1-5] datasets [2] can be employed for few-shot learning
benchmarking or domain adaptation benchmarking.

Task modularity, also known as sub-task decomposition, refers to the fact
that a task can be broken down into a number of sub-tasks. In the frame-
work of Definition 1.2.2, the entity (E , C) is the task in question, which may be
subject to decomposition into sub-tasks. These sub-tasks, if they cannot be
further decomposed, are regarded as atomic elements. The relationships C
can include dependencies between sub-tasks e.g., when some sub-tasks rely
on the outputs of others as their inputs.

Task modularity can be categorized into two regimes: parallel decom-
position and sequential decomposition, as illustrated in Figure 2.3. Parallel
decomposition means that the sub-tasks can be executed simultaneously,
whereas sequential decompositionmeans that sub-tasks need to be executed
in a specific order, with some sub-tasks dependent on the completion of pre-
ceding ones. It is common in practice for these two regimes to be combined.
For example, a sub-task from a sequential decomposition might be further
decomposed into parallel sub-tasks, resulting in a directed acyclic graphwork-
flow.

To provide concrete examples, consider the task of building a house. This
task can be decomposed into several sub-tasks e.g., laying the foundation,
constructing the walls, and installing the roof. These sub-tasks exhibit a se-
quential relationship because the walls cannot be constructed until the foun-
dation is laid, and the roof cannot be installed until the walls are constructed.
On the other hand, the sub-task of constructing the walls can be further de-
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composed into parallel sub-tasks, such as building the front wall, back wall,
and side walls, as these can be constructed concurrently. We review the pres-
ence of parallel and sequential sub-task decomposition in the field of Deep
Learning in Section 2.2.3 and Section 2.2.4, respectively.

Figure 2.3 – Illustration of sub-task decomposition. The upper figure illus-trates the parallel decomposition of a task. The lower figure illustrates thesequential decomposition of a task.

2.2.2 . Advantages of task modularity
This section enumerates the advantages associated with task modularity.

Bolded text references the features of the modularity principle introduced in
Section 1.2. 2
Decomposition

Sub-task decomposition involves breaking downa complex task into smaller,
more manageable sub-tasks. It facilitates conceptualization because it allows
the identification and isolation of individual sub-tasks, each with its own re-
quirements and constraints. It also facilitate the identification of shared pat-
terns across sub-tasks.

On the other hand, sub-task decomposition facilitates problem-solving
following the divide-and-conquer principle [123, 100, 44, 124]. Each sub-task
is solved individually. Once the sub-tasks have been solved, the solutions are
then combined to yield a solution to the original complex task.

2. We only list the modularity features for which relevant examples or scenarioshave been identified in the context of task modularity.
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Independence
Sub-task decomposition improves the flexibility and maintainability of a

task, thereby decreasing the cost associated with problem-solving. In situa-
tions where the overall task cannot be accomplished, sub-task decomposi-
tion offers the advantage of enabling a targeted diagnosis of the failed sub-
tasks [55], thereby saving resources for the other sub-tasks.

Sub-task decomposition can promote clarity and integrity. A well-defined
decomposition simplifies resource allocation, enabling targeted allocation of
specific computing resources or personnel to sub-tasks. In scenarios where
information security is paramount, such as in the design of evaluationmecha-
nisms [6], establishing independent sub-tasks canprevent data leakage, thereby
safeguarding fairness and integrity.
Functional specialization

Sub-task decomposition facilitates the integration of expert knowledge,
which can further facilitate the problem-solving. Expert knowledge refers to
the knowledge from human experts in a particular field or the assumptions
that are already known before the problem-solving process. On one hand,
the way to divide the complex task can be guided by expert knowledge. On
the other hand, by decomposing a complex task into sub-tasks, experts can
more easily apply their specialized knowledge to each individual sub-task.
Reusability

Sub-task decomposition can promote reuse if the sub-tasks are designed
to be combinable and reusable. In such cases, solutions to sub-tasks may be
transferable to other tasks [125, 126, 127, 128, 129, 130]. This contributes to the
overall efficiency because the need to develop new solutions from scratch for
each new task is reduced.

2.2.3 . Parallel sub-task decomposition
A parallel sub-task decomposition is called homogeneous if the decom-

posed sub-tasks are similar. One typical example is dividing amulti-class clas-
sification problem into multiple smaller classification problems [58]. Given a
neural network trained to perform a multi-class classification problem, Csor-
dás et al. [53] use parameter masks to identify subsets of parameters solely
responsible for individual classes on their own. Kim et al. [131] learn to split
a neural network into a tree structure to handle different subsets of classes.
They assume that different classes use different features, and this tree-structured
neural network design guarantees that the deeper layers do not overlap fea-
tures between class subsets. Pan et al. [82, 83] and Kingetsu et al. [132] decom-
pose a multi-class classification model into reusable, replaceable and com-
binable modules, where each module is a binary classifier. Such modules
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can be recombined without retraining to obtain a new multi-class classifier.
These methods can be useful in situations where the classes to be classified
frequently change. Abbas et al. [133] use transfer learning and class decom-
position to improve the performance of medical image classification. Such
sub-task decomposability is an implicit prerequisite of themodel editing prob-
lem [134, 135, 136, 137, 138]. Model editing aims to modify a specific sub-task
learned by a trained neural network without damaging model performance
on other inputs, e.g., it aims to patch the mistake of the model for a particular
sample. If the task cannot be decomposed into disentangled sub-tasks, then
model editing cannot be achieved.

A parallel sub-task decomposition is termed heterogeneous if the decom-
posed sub-tasks are dissimilar; suchdecomposition is usually problem-dependent
and requires expert knowledge of the task at hand. Belay et al. [139] de-
compose the recognition task of Amharic characters into a vowel recogni-
tion task and a consonant recognition task to reduce overall task complex-
ity. Cao et al. [140] decompose the full self-attention into question-wide and
passage-wide self-attentions to speed up inference for question answering
tasks. Ding et al. [141] divide the facial recognition task into multiple facial
component recognition tasks. Zhou et al. [142] decompose the neural net-
work learning process into structure learning and parameter learning, allow-
ing for the automatic learning of equivariance from data. Gatys et al. [143]
break down the natural image synthesis task into two components: content
and style. This separation enables the combinatorial recombination of con-
tent and style to produce new images.

Parallel sub-task decomposition allows sub-tasks to iterate and collabo-
rate with one another. This is exemplified in some Deep Learning methods
that leverage a cooperative division of sub-tasks. For instance, in Generative
Adversarial Networks (GANs) [144, 145, 146, 147, 148, 149], the data generation
task is split between a generator, which creates data, and a discriminator, re-
sponsible for evaluating its authenticity. This dual setup transforms the gen-
eration process into a continuous feedback loop, with each component chal-
lenging the other to improve over time. The paradigmof teacher-student neu-
ral networks [150] further illustrates this cooperative interaction. It views the
learning process as a collaborative effort between the guiding teacher and the
learning student. Deep reinforcement learning brings one example with the
Actor-Critic approach [151, 152, 153, 154]. Here, two sub-tasks work in tandem:
the actor takes actions in the environment, while the critic evaluates these
actions. Based on the feedback from the critic, the actor refines its policy to
optimize its future actions, creating a cycle of action and evaluation. Continual
learning with deep replay buffer [155] offers another example. As the learner
processes new data, the replay buffer reintroduces samples from previous
experience, acting like a memory mechanism. This ensures the model revis-
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its and reinforces old knowledge even as it acquires new knowledge.
2.2.4 . Sequential sub-task decomposition

Sequential sub-task decomposition reflects the sequential pipeline of the
task. A simple example is the division of a machine learning task into a pre-
processing stage (data cleaning and normalization) and a model inference
stage [156].

In reinforcement learning, a complex task canusually be decomposed [128]
into a sequence of sub-tasks or steps. An illustrative example is to imagine
that the task of manufacturing an artifact Z requires purchasing the raw ma-
terialX , forgingX to produce parts Y , and then assembling the parts Y into
the end product Z. Both X and Y can take different values independently
(X ∈ {x1, x2, x3, ...}, Y ∈ {y1, y2, y3, ...}). Different values of X and Y can be
recombined, which forms a combinatorial number of possible scenarios to
learn. This pipeline can be factorized into three stages: (1) raw material pur-
chase, (2) forging to produce parts, and (3) assembling of parts. Reinforce-
ment learning agents would learn more efficiently if the learning happens
at the granularity of the factorized stages instead of the overall task [130].
Furthermore, such a factorization enables the independence of credit assign-
ment [71]; the failure of the overall task can be traced back to the problematic
stages, while the other stages can remain untouched. For example, if the
raw material is of bad quality, then the purchase sub-task needs to be im-
proved; the forging sub-task and the assembling sub-task do not need to be
changed [55].

The sequential pipeline is omnipresent in practical applications e.g., opti-
cal character recognition (OCR) [157, 158, 159, 160], natural language process-
ing (NLP) [161]. When facing a multi-script (multi-language) recognition task,
the pipeline can consist of a script identification stage and a script-specific
recognition stage [162, 163], which decouples the domain classifier and the
domain-specific solver. The text-in-the-wild recognition task [158] usually con-
sists of decoupled text detector (to localize the bounding box of the text) and
recognizer (recognize the text from the bounding box) [158]. Traditional OCR
methods also decompose the word recognition task into a character segmen-
tation task and a character recognition task [164, 165, 166, 167]. Traditional NLP
pipeline includes sentence segmentation, word tokenization, part-of-speech
tagging, lemmatization, filtering stop words, and dependency parsing [161].
In bioinformatics, the scientific workflow (data manipulations and transfor-
mations) groups similar or strongly coupled workflow steps into modules to
facilitate understanding and reuse [18].
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2.3 . Model modularity

2.3.1 . Definition of model modularity
Modelmodularity denotes the presence of sub-entities (referred to asmod-

ules) within the architecture of a neural network system. A neural network
system may be comprised of a single neural network or a set of neural net-
works which interact with each other.

In the framework of Definition 1.2.2, the entity (E , C) is the neural network
system under consideration. The choice of the set of atomic elements E de-
pends on the point of view. The atomic elements could be defined to be the
individual neurons within an artificial neural network, in which case the rela-
tionships could be defined to be the dependencies between neurons along
the feedforward pass. It is worth noting that neurons can also be broken
down into smaller components e.g., scalar parameters. Indeed several works
in the Deep Learning literature [53, 63, 168, 132] have defined modules via
parameter masking, indicating that modularization of neural networks can
be performed at the granularity of scalar parameters. In consequence, the
atomic elements could also be defined to be the scalar parameters within a
neural network system. In this case, the set of relationships C would need to
include a relationship concerning the module composition constraints. This
relationship would serve to specify the organizational arrangement of each
scalar parameter along the feedforward pass within the computational graph
of the neural networks.

Model modularity is different from task modularity. A task defines an ob-
jective to be attained, task modularity focuses on decomposing the objective
into sub-objectives. Model modularity focuses on the architecture of the neu-
ral network system, it decomposes the solution into sub-solutions.

2.3.2 . Advantages of model modularity
This section enumerates the advantages associated with model modular-

ity. Bolded text references the features of themodularity principle introduced
in Section 1.2. 3
Replicability

Model modularity provides ease of conceptual design and implementa-
tion. For example, modern neural networks consist of repeated layer/block
patterns (modules). Such examples include fully-connectedneural networks [96],
vanilla convolutional neural networks, ResNets [10, 169], Inception [170] and
models searched by Neural Architecture Search (NAS) [171, 172]. The design
with homogeneousmodules allows for amore concise description of themodel

3. We only list the modularity features for which relevant examples or scenarioshave been identified in the context of model modularity.
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architecture in the sense of Kolmogorov complexity (short description length) [173,
174]. For example, insteadof specifying howeachprimitive operation (e.g., sum,
product, concatenation) interacts in a computational graph, themodel can be
described as a collection of modules that interact with each other [58]. The
standardization of such neural network building blocks (fully-connected lay-
ers, convolutional layers) also enabled the development of highly optimized
hardware and software ecosystems for fast computation [175, 176, 177, 178,
179].

Modular neural network systems also facilitate model scaling in two ways.
(1) Modular models like fully-connected models and ResNet can be scaled up
(or down) by simply stacking more (or less) modules to increase (or decrease)
the model capacity to fit larger (or smaller) datasets [10]. (2) Modular meth-
ods based on sparsely activated Mixture-of-Experts [48] decouple computa-
tion cost from model size. They allow drastically increasing the model ca-
pacity without increasing compute cost because only a small fraction of the
model is evaluated on each forward pass [180, 48, 181, 182, 183, 184]. The ex-
treme example of these sparsely activatedmodels is Switch Transformer [185]
which contains 1.6 trillion parameters, pushing the competition of largemodel
sizes [186, 187] to the next level.
Functional specialization

Together with task modularity, model modularity offers ease of expert
knowledge integration [47, 144, 152, 155, 139] and interpretability [50, 84, 124,
188]. Interpretability can have different forms. For example, each neural net-
workmodule could be assigned a specific interpretable sub-task. On the other
hand, selective module evaluation provides insights on how different sam-
ples/tasks are related [45, 48, 47, 51] in the context of conditional computa-
tion [189].
Reusability

The model decomposition into modules promotes reusability and knowl-
edge transfer [190]. Though each neural network is typically trained to per-
form a specific task, its (decomposed) modules could be shared across tasks
if appropriate mechanisms promote such reusability. The simplest example
would be the classical fine-tuning paradigm of large pretrained models [191,
102, 192, 193]. This paradigm typically freezes the pretrained model and only
retrains its last classification layer to adapt it to the downstream task. Pre-
trained models are typically pretrained on large datasets [194, 195, 196]. The
large amount and diversity of training data make pretrained models’ inter-
mediate features reusable for other downstream tasks. More recently, the
finer-grained reusability of neural network systems has attracted the atten-
tion of researchers. Such methods assume that the tasks share underlying
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patterns and keep an inventory of reusable modules (each module is a small
neural network) [47, 50, 51, 56]. Eachmodule learns different facets (latent fac-
tors or atomic skills) of the knowledge required to solve each task. The selec-
tive/sparse use and dynamic reassembling/recombination of these modules
can promote sample efficiency [84] and combinatorial generalization [47, 197,
51, 198].

Combinatorial generalization is also known as compositional generaliza-
tion, “infinite use of finite means” [199], and systematic generalization. It aims
to generalize to unseen compositions of known functions/factors/words [200,
201, 202, 203, 125, 204, 129], it is the ability to systematically recombine previ-
ously learned elements to map new inputs made up from these elements to
their correct output [205]. For example, new sentences consist of new com-
positions of a known set of words. Combinatorial generalization is argued
to be important to achieve human-like generalization [68, 84, 206, 207, 67,
208, 132, 77, 85, 209, 210, 211]. Learning different facets of knowledge with
different modules in a reusable way could be one solution to combinato-
rial generalization. Modular systems have been shown effective for combi-
natorial generalization [212] in various fields e.g., natural language process-
ing [213, 84, 67, 208, 214], visual question answering [47, 197, 215], object recog-
nition [129, 85, 87, 204], and robotics [51, 127, 216, 88].
Independence

The modularization of neural network systems promotes knowledge re-
tention. If different knowledge is localized into different modules, targeted
knowledge updates and troubleshooting [132, 82, 83] will be possible. This
can alleviate gradient interference of different tasks [217, 218, 219] and catas-
trophic forgetting [56, 220, 221, 222, 223, 224, 51, 225, 226, 227, 228].

2.3.3 . Typical modules in Deep Learning models
This section reviews some typicalmodules in the Deep Learning literature.
Almost all systems are modular to some degree [73], neural network sys-

tems can almost always be decomposed into subsystems (modules) [229] fol-
lowing different points of view. More specifically, they usually consist of a
hierarchical structure in which a module of a higher hierarchy level is made
of modules of a lower hierarchy level. The elementary layer of modern neu-
ral networks (e.g., fully-connected layer, convolutional layer) can be seen as
a module on its own. On the other hand, any neural network as a whole can
also be considered as amodule e.g., in the context of ensemble [230], Mixture-
of-Experts [45], and Generative Adversarial Networks (GAN) [144]. Some liter-
ature [53, 63, 168, 132] define modules as sub-neural networks where part of
the parameters are masked out (set to 0). In these cases, overlapping mod-
ules can be obtained when the masks overlap.
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Figure 2.4 – Examples of a module. (a) a fully-connected layer; (b) a basicResNet module, reprinted from [10]; (c) an LSTM module, reprinted from [11].

2.3.3.1 Modules for non-sequential data

Fully-connected layers (Figure 2.4 (a)) imitate the connections between
neurons in biological neural networks but connect every input neuron to ev-
ery output neuron [96]. In practice, a fully-connected layer is implemented as
amatrixmultiplication between input data and learnable parameters. Convo-
lutional layers introduce the inductive bias of translation equivariance. Con-
ceptually, a convolutional layer (with a single output channel) can be obtained
from a fully-connected layer by enforcing local connectivity and parameter
sharing [96]. Local connectivity means that each neuron only connects to a
subset of neurons of the previous layer; parameter sharing means that the
same learnable parameters are used across receptive fields. In practice, a
convolutional layer is implemented as a collection of kernels/filters shifted
over the input data [175, 176]. Each kernel performs a dot product between in-
put data and learnable parameters. Depending on the number of dimensions
over which kernels are shifted, a convolutional layer is termed e.g., 1D, 2D, 3D.
2D convolutional layers are widely used in computer vision tasks [231, 95].
Locally connected layers are similar to convolutional layers except that they
remove the constraint of parameter sharing (across kernels). It helps if one
wants to impose local receptive fields while there is no reason to think each
local kernel should be the same [96]. Low-rank locally connected layers relax
spatial equivariance and provide a trade-off between locally connected layers
and convolutional layers. The kernel applied at each position is constructed
as a linear combination of a basis set of kernels with spatially varying com-
bining weights. Varying the number of basis kernels allows controlling the
degree of relaxation of spatial equivariance [232]. Standard convolutional lay-
ers offer translation equivariance; a line of research focuses on generalizing
this to other equivariances (rotation, reflection), referred to as group convo-
lutional layers [233, 234, 235, 236, 237, 238, 239, 240]. On the other hand,
depthwise separable convolutional layers [241, 242, 243] factorize a standard
convolutional layer into a depthwise convolutional layer and a pointwise con-
volutional layer, which reduces model size and computation.
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Multiple layers can be grouped into a building block (a module of a higher
hierarchy level). Such examples include the building blocks of ResNet [10], In-
ception [170, 244], ResNeXt [169], Wide ResNet [245]. Inception [170, 244] has
parallel kernels of multiple sizes within each block and merges their results
to extract information at varying scales. Inception also includes several tech-
niques to reduce computation cost e.g., factorizing large kernels into smaller
kernels andusing 1×1 convolution to reduce dimensionality. A ResNet block [10]
(Figure 2.4 (b)) contains a sequence of convolutional layers; it adds a skip-
connection (also known as residual connection, identity mapping) from the
beginning to the end of the block to alleviate vanishing gradients. Many vari-
ants of the ResNet block havebeenproposed. For example,WideResNet [245]
increases the block width; ResNeXt [169] aggregates parallel paths within each
block.

The block design could be automatically searched instead of handcrafted.
In order to narrow down the model search space, some Neural Architecture
Search methods [172, 246, 171, 247] automatically search the optimal design
pattern for a block (also known as a cell) while fixing the block composition
scheme (also known as meta-architecture). Once the block design patterns
are searched, the full model is instantiated by repeating the searched blocks
following thepredefinedblock composition scheme. For example, NAS-Bench-
101 [247] defines the block search space as all possible directed acyclic graphs
on V vertices (V ⩽ 7) while limiting the maximum number of edges to 9.

McNeely-White et al. [248] report that the features learned by Inception
and ResNet are almost linear transformations of each other, even though
these two architectures have a remarkable difference in the architectural de-
sign philosophy. This result explains why the two architectures usually per-
form similarly and highlights the importance of training data. This result is
corroborated by Bouchacourt et al. [249], who argue that invariance generally
stems from the data itself rather than from architectural bias.
2.3.3.2 Modules for sequential data

When the input data is sequential e.g., time series, text, audio, video, Re-
current Neural Networks (RNN) [250] come into play. The RNN module pro-
cesses the sequential data one at a time; the output (also known as the hidden
state) of the RNN module at the previous time step is recursively fed back
to the RNN module, which allows it to aggregate information across differ-
ent time steps. The vanilla RNN module suffers from short-term memory is-
sues; it cannot effectively preserve information over long sequences. To over-
come this issue, gated recurrent unit (GRU) [251] and long short-term mem-
ory (LSTM) [252] module use gates to control which information should be
stored or forgotten in the memory, which allows better preservation of long-
term information. In GRU and LSTMmodules, gates are neural networks with
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trainable parameters. While GRUmodules are faster to train than LSTMmod-
ules, their performance comparison varies depending on the scenario. GRU
surpasses LSTM in long text and small dataset scenarios while LSTM outper-
forms GRU in other scenarios [253].

Contrary to RNN, GRU, and LSTM, which process sequential data one at
a time, self-attention layers [254] process the data sequence in parallel. For
each data point in a data sequence (e.g., each time step of a time series), a
self-attention layer creates three transformed versions, referred to as query
vector, key vector, and value vector, through linear transformations. Between
eachpair of data points, the dot product between the query vector and the key
vector of the pair reflects how much those two data points are related within
the sequence. These dot products are then normalized and combined with
the corresponding value vectors to get the new representation of each data
point in the sequence. An enhanced version of self-attention layers is multi-
head self-attention layers, which extract different versions of query vector,
key vector, and value vector for each data point. Multi-head self-attention
layers improve performance by capturing more diverse representations. A
transformer block combines multi-head self-attention layers, fully-connected
layers, normalization layers, and skip-connections. Models built upon trans-
former blocks have achieved state-of-the-art performance in a wide range of
tasks such as natural language processing [255] and speech synthesis [256].
Transformer models can be applied to image modality by transforming each
input image into a sequence of small image patches [119]. Despite the lack of
image-specific inductive bias (translation equivariance, locality), vision trans-
formers can achieve state-of-the-art performancewhen combinedwith a large
amount of training data [119, 257, 258].

2.3.4 . Composition of modules
Section 2.3.3 presents typical modules in the literature. Section 2.3.4 dis-

cusses how to organize these modules to form a model (or a module of a
higher hierarchy level).
2.3.4.1 Static composition of modules

Static compositionmeans that the composed structure does not vary with
input; the same structure is used for all input samples or tasks.

One straightforward way to compose modules is sequential concatena-
tion (Figure 2.5 (a)). It implies that multiple (typically homogeneous) modules
are sequentially concatenated into a chain to form amodel, where amodule’s
output is the next module’s input. Examples of sequential concatenation in-
clude fully-connected models [96] and ResNet models [10]. This composition
scheme typically does not assume an explicit sub-task decomposition; the
chain of concatenatedmodules can instead be seen as a series of information
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Figure 2.5 – Illustration of module composition. (a) Sequential concatena-tion. (b) Ensembling. (c) Tree-structure composition. (d) General DirectedAcyclic Graph. (e) Conditional composition. (f) Cooperation composition.

extraction steps [102, 259, 260], extracted features transition from low-level to
high-level.

Ensembling composition [230, 261, 262], on the other hand, organizesmod-
ules in a parallel manner (Figure 2.5 (b)). The principle of ensembling is to ag-
gregate (e.g., averaging) the results of multiple modules (weaker learners) to
obtain a more robust prediction. The rationale is that different modules are
expected to provide complementary and diverse views of input data. Each
module’s data is processed independently without relying on the other mod-
ules at inference time. The regularization method Dropout [263], which ran-
domly deactivates neurons during training, can be seen as an implicit ensem-
ble method of overlapping modules.

Sequential composition and parallel composition can be combined, e.g., in
the form of a tree structure (Figure 2.5 (c)). A typical scenario of tree-structure
composition is a model with a shared feature extractor and multiple task-
specific heads [264, 265]. All the above composition schemes are special cases
of DAG (Directed Acyclic Graph, Figure 2.5 (d)). The general DAG composition
scheme is typically found inmodels searchedbyNeural Architecture Search [266,
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267, 46].
Cooperation composition (Figure 2.5 (f)) often coexists with task modular-

ity, it suggests that each module is a standalone neural network with a spe-
cific purpose. These networks collaborate during training or inference, form-
ing a system of multiple distinct neural networks. Unlike ensembling com-
position, modules within the cooperation composition are typically hetero-
geneous. Such examples include siamese networks [268, 269, 270], Genera-
tive Adversarial Networks (GAN) [144, 145], and deep reinforcement learning
methods guided by the Actor-Critic approach [151, 152, 153, 154]. Continual
learning methods that rely on a generative replay buffer [155] or incorporate
new modules to enhance model capacity for future tasks [220, 221, 222, 56]
also exemplify cooperation composition.
2.3.4.2 Conditional composition of modules

Conditional composition (Figure 2.5 (e)) is complementary to static compo-
sition in the sense that the composed modules are selectively (conditionally,
sparsely, or dynamically) activated (used or evaluated) for each particular in-
put. The input conditioning can happen at the granularity of individual sam-
ple [47, 50, 45] as well as task [84, 219, 168, 271, 124]. In the literature, this
paradigm is also termed conditional computation [189, 272].

The idea of conditional computation can be traced back to Mixture-of-
Experts (MoE) introduced in the last century. AnMoE is a system composed of
multiple separate neural networks (modules), each of which learns to handle
a sub-task of the overall task [124, 273] e.g., a subset of the complete train-
ing dataset. A gating network computes the probability of assigning each ex-
ample to each module [45, 274] or a sparse weighted combination of mod-
ules [48]. Two issues of MoE are module collapse [48, 50, 206] and shrinking
batch size [48], both of which are related to the balance of module utilization.
Module collapse means under-utilization of modules or lack of module diver-
sity. Due to the self-reinforcing behavior of the gating network during training,
premature modules may be selected and thus trained even more. The gating
networkmay end up converging to always selecting a small subset ofmodules
while the othermodules are never used. Shrinking batch sizemeans the batch
size is reduced for each conditionally activated module. Large batch sizes are
necessary for modern hardware to make efficient inferences because they
alleviate the cost of data transfers [48].

MoE can be generalized to e.g., stacked MoE [275, 50, 276, 49, 277] or hi-
erarchical MoE [48, 278] (Figure 2.6). Eigen et al. [275] first explored stacked
MoE; they introduced the idea of using multiple MoE with their own gating
networks. In order to train stacked MoE, Kirsch et al. [50] use generalized
Viterbi Expectation-Maximization algorithm, Rosenbaum et al. [276] employ a
multi-agent reinforcement learning algorithm, Fernando et al. [49] use a ge-
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netic algorithm. MoE systems do not always have explicit gating networks;
for instance, Fernando et al. [49] rely on the results of the genetic algorithm
to decide the module routing scheme.

Figure 2.6 – Extension ofMixture-of-Experts (MoE). (a) A stackedMoE, whichstacks multiple MoE layers into a chain. (b) A hierarchical MoE, where a pri-mary gating network chooses a sparse weighted combination of “modules”,each of which is an MoE with its own gating network.
InspiredbyMoE, someDeep Learningmethods keep an inventory of reusable

specialized modules that can be conditionally reassembled for each input.
This approach has been advocated to promote knowledge transfer, sample
efficiency, and generalization. For example, in visual question answering, Neu-
ral Module Networks [47, 279, 197] dynamically reassemble modules into a
neural network to locate the attention (region of interest) on the questioned
image. The question’s parsing guides the reassembling process so that the
reassembled model reflects the structure and semantics of the question. For
this particular task, the compositionality ofmodules comes from the composi-
tionality of visual attention. Following the question’s syntax, the reassembled
modules sequentially modify the attention onto the questioned image. For
example, the module associated with the word “cat” locates the image region
containing a cat, and the module associated with the word “above” shifts up
the attention. Zhang et al. [280] investigated adding new abilities to a generic
network by directly transplanting the module corresponding to the new abil-
ity, dubbed network transplanting.
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Some work relies on the hypothesis that the tasks at hand share some
commonalities i.e., hidden factors are shared across tasks. Each hidden factor
can be learned by a separate module from the module inventory for transfer
learning andmeta-learning. For example, Alet et al. [51] use simulated anneal-
ing to meta-learn an inventory of modules reusable across tasks to achieve
combinatorial generalization. The parameters of an inventory of modules are
optimized duringmeta-training; the trainedmodules are reassembled during
the meta-test with an optional parameter fine-tuning process. They demon-
strated the utility of their method for robotics tasks. Ponti et al. [84] assume
that each task is associated with a subset of latent discrete skills from a skill
inventory. They try to generalize more systematically to new tasks by disen-
tangling and recombining different facets of knowledge. More precisely, they
jointly learn a skill-specific parameter vector for each latent skill and a binary
task-skill allocation matrix. For each new task, the new model’s parameter
vector is created as the average of the skill-specific parameter vectors corre-
sponding to the skills present in the new task (in addition to a shared base
parameter vector).

The conditional composition scheme also has other forms. For example,
Teerapittayanon et al. [281] save computation on easy input data via early exit-
ing; deeper layers will be skipped if the intermediate feature’s prediction con-
fidence passes a predefined threshold. Fuengfusin et al. [282] train models
whose layers can be removed at inference time without significantly reduc-
ing the performance to allow adaptive accuracy-latency trade-off. Similarly,
Yu et al. [283] train models which are executable at customizable widths (the
number of channels in a convolutional layer). Xiong et al. [284] sparsely ac-
tivate convolutional kernels within each layer for each particular input sam-
ple, which provides an example of the conditional composition of overlapping
modules.
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2.4 . Other notions of modularity in Deep Learning

There remain some other notions of modularity in the Deep Learning lit-
erature.

In graph theory, the term “modularity” refers to a measure commonly
used in community detection. It measures the density of connections within
a community compared to between communities [39]. This measure can
be applied to graph clustering problems in the form of modularity optimiza-
tion [285, 286, 287, 288]. Inspired by this measure, Filan et al. [54] investigate
the parameter clustering pattern that emerged from the training of a neu-
ral network. They view a neural network as an undirected weighted graph
(edge weights are the absolute value of network parameters) and apply spec-
tral clustering on the obtained graph. They observe that some neural net-
works trained on image classification tasks have some clustering properties
of their parameters: edge weights are stronger within one cluster than be-
tween clusters. Watanabe et al. [289] have obtained similar results. Béna et
al. [63] adapted the graph-theoretic modularity measure to define structural
modularity and define functional specialization through three heuristic mea-
sures. The functional specialization can be intuitively understood as the ex-
tent to which a sub-network can do a sub-task independently. To investigate
the relationship between structural and functional modularity, they design a
scenario where a model with two parallel modules (with an adjustable num-
ber of interconnections) is used to predict whether the parity of the two digits
is the same or different. They show that enforcing structural modularity via
sparse connectivity between two communicating modules does lead to func-
tional specialization of the modules. However, this phenomenon only hap-
pens at extreme levels of sparsity. With even a moderate number of inter-
connections, the modules become functionally entangled. Mittal et al. [206]
observed thatweighted combinations of parallelmoduleswith a goodmodule
specialization are good in terms of the overall system performance, however
end-to-end training itself is not enough to achieve a good module specializa-
tion.

The term “modularity” is related to the notion of independence in some
literature. For example, Galanti et al. [76] use modularity to refer to the ability
of hypernetworks [290] to learn a different function for each input instance.
A line of research has been carried out on learning disentangled representa-
tion. Intuitively, disentangled representation aims to reverse the underlying
data generating process and retrieve its latent factors into the learned rep-
resentation (Figure 2.7). One of the desirable properties of a disentangled
representation [291, 292, 78] is “modularity”. In this context, a modular rep-
resentation is a representation where each dimension of the representation
conveys information about at most one latent generative factor.

Moreno-Muñoz et al. [293] introducemodularGaussianprocesses for trans-
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Figure 2.7 – Illustration of a disentangled representation.

fer learning. They build a dictionary of Gaussian process modules where they
train each module on a subset of data. In some literature, some plug-in mod-
ules have been proposed to enable a specific functionality to a neural net-
work. For example, the STN module [294] helps learn various invariances;
the test-time adjustment module [295] replaces the model’s last classification
layer with template matching to promote domain generalization.
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2.5 . Conclusion

In this chapter, we introduced a taxonomy ofmodularity in Deep Learning
around three axes: data, task, and model. Each of these axes represents a
component of the Deep Learning life cycle. For each axis, we provided the
definition and contextualization of modularity:

• Data modularity: This concept refers to observing or creating data
groups, where a dataset is segmented into modules.

• Task modularity: This concept refers to the breakdown of a task into
sub-tasks, also known as sub-task decomposition.

• Model modularity: This concept refers to the presence of sub-entities,
termed modules, within the architecture of a neural network system.
This system may comprise a single neural network or multiple neural
networks that interact with each other.

Using this taxonomy as the guiding framework, we conducted a review of
the Deep Learning literature, exploring howmodularity has been approached
and implemented in the literature. Our exploration shed light on the advan-
tages of modularity: ease of conceptualization and manipulation, reduction
of the cost of problem-solving, enhanced reusability of existing assets, pre-
vention of interference among individual components, and scalability, among
others. These advantages align with the features of modularity, such as de-
composition, independence, functional specialization, replicability, whichwere
discussed in the previous chapter (see Section 1.2). Our survey reveals that
modularity is pervasive in Deep Learning.

In the chapters that follow, wewill organize the presentation of our contri-
butions around these three axes. Chapter 3 presents our research contribu-
tions in the scope of data modularity, Chapter 4 presents our research contri-
bution in the scope of task modularity, and Chapter 5 presents our research
contribution in the scope of model modularity.
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3 - Contributions in the scope of data modu-
larity

Benchmarks and datasets have been fostering progress in Deep Learning.
We have contributed to this progress by designing and creating two tools for
data andbenchmarks: (1) OmniPrint, a data synthesizer, and (2)Meta-Album, a
meta-dataset for image classification. OmniPrint [2] was published at NeurIPS
2021 Datasets and Benchmarks Track, and Meta-Album [3] was published at
NeurIPS 2022 Datasets and Benchmarks Track. Both tools exhibit data modu-
larity properties in the form of super-classes, rich metadata, and diverse do-
mains, thereby helping the investigation of data modularity effects, for ex-
ample, on model training efficiency. Moreover, OmniPrint allows full control
over the data-generating process’s latent factors, while Meta-Album provides
a large diversity in terms of data domain and sources. They lend themselves
to benchmarking modular models for a wide variety of tasks, including few-
shot learning, transfer learning, and meta-learning.

We also present case studies on episodic few-shot learning as a contri-
bution in the scope of data modularity. We interpret few-shot learning data
episodes as an instance of data modularity. More specifically, we view the
data episodes in few-shot learning as data modules, where data samples are
organized in a particular manner (see Section 2.1). We aim to investigate the
effects of such modularization of data samples.

This chapter is structured into three sections: Section 3.1 is dedicated to
OmniPrint, Section 3.2 is dedicated to Meta-Album, and Section 3.3 presents
case studies on episodic few-shot learning. Most of the content of this chap-
ter has been the subject of publications, including two papers accepted at
NeurIPS data and benchmark track [2, 3] and two papers for the post-analysis
of NeurIPS competitions [4, 5].
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3.1 . OmniPrint: generation of data with intrinsic modularity

One of the most popular benchmarks is MNIST [120], which is used all
over the world in tutorials, textbooks, and classes. Many variants of MNIST
have been created including: Omniglot [85]. This dataset includes characters
from many different scripts. Among machine learning techniques using such
benchmark datasets, Deep Learning techniques are known to be very data
hungry. Thus, while there is an increasing number of available datasets, there
is a need for larger ones. But, collecting and labeling data is time consum-
ing and expensive, and systematically varying environment conditions [296]
is difficult and necessarily limited. Therefore, resorting to artificially gener-
ated data is useful to drive the research in Deep Learning. This motivated us
to create OmniPrint, as an extension to Omniglot, geared to the generation of
an unlimited amount of printed characters. Some sample images synthesized
by OmniPrint are shown in Figure 3.1.

Figure 3.1 – Sample images synthesized by OmniPrint.

Of all Deep Learning problems, we direct our attention to classification
and regression problems in which a vector y (discrete or continuous labels)
must be predicted from a real-valued input vector x of observations (in the
case of OmniPrint, an image of a printed character). Additionally, data are
plagued by nuisance variables z, another vector of discrete or continuous la-
bels, called metadata or covariates. z is a form of intrinsic data modularity as
it segments the dataset, and this segmentation is inherently present in the
data at the time of its generation. In the problem at hand, zmay include var-
ious character distortions, such as shear, rotation, line width variations, and
changes in background. Using capital letters for random variable and lower-
case for their associated realizations, a data generating process supported by
OmniPrint consists in three steps:
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z ∼ P(Z) (3.1)
y ∼ P(Y|Z) (3.2)
x ∼ P(X|Z,Y) (3.3)

Oftentimes, Z and Y are independent, so P(Y|Z) = P(Y). This type of
data generating process is encountered in many scenarios such as image,
video, sound, and text applications (in which objects or concepts are target
values y to be predicted from percepts x); medical diagnoses of genetic dis-
ease (for which x is a phenotype and y a genotype); analytical chemistry (for
which x may be chromatograms, mass spectra, or other instrument mea-
surements, and y compounds to be identified), etc. Advancements achieved
through the utilization of OmniPrint as a benchmarking tool for Deep Learn-
ing systems could stimulate progress in other related scenarios.

Casting the problem in such a generic way allows researchers to target a
variety of Deep Learning research topics. Indeed, character images provide
excellent benchmarks for Deep Learning problems because of their relative
simplicity, their visual nature, while opening the door to high-impact real-
life applications. No publicly available data synthesizer fully suits our pur-
poses: generating realistic quality images x of small sizes (to allow fast exper-
imentation) for a wide variety of characters y (to study extreme number of
classes), and wide variety of conditions parameterized by z (to study invari-
ance to realistic distortions). A conjunction of technical features is required
to meet our specifications: pre-rasterization manipulation of anchor points;
post-rasterizationdistortions; natural background and seamless blending; fore-
ground filling; anti-aliasing rendering; importing new fonts and styles.

Modern fonts (e.g., TrueType or OpenType) are made of straight line seg-
ments and quadratic Bezier curves, connecting anchor points. Thus it is easy
to modify characters by moving anchor points. This allows users to perform
vectors-space pre-rasterization geometric transforms (rotation, shear, etc.)
as well as distortions (e.g.,modifying the length of ascenders of descenders),
without incurring aberrations due to aliasing, when transformations are done
in pixel space (post-rasterization). To our knowledge, OmniPrint is the first
text image synthesizer geared towardML research, supporting pre-rasterization
transforms. This allows Omniprint to imitate handwritten characters, to some
degree.

The generative process of OmniPrint is illustrated in Figure 3.2. Briefly,
here are some highlights of the pipeline:

1. Parameter configuration file: We support both TrueType or Open-
Type font files. Style parameters include rotation angle, shear, stroke
width, foreground, text outline and other transformation-specific pa-
rameters.
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Figure 3.2 – Basic character image generative process in OmniPrint. Thegenerative process produces imagesX as a function ofY (label or characterclass) and Z (nuisance parameter). Only a subset of anchor point (red dots)are shown in steps (2) and (3). A subset of nuisance parameters are chosen forillustration. Z represents a form of intrinsic data modularity i.e., data sampleswith similar Z values can be organized into clusters.

2. FreeType vector representation: The chosen text, font and style pa-
rameters are used as the input to the FreeType rasterization engine [297].

3. Pre-rasterization transformed character: FreeType also performs all
the pre-rasterization (vector-based) transformations, which include lin-
ear transforms, stroke width variation, random elastic transformation
and variation of character proportion. TheRGBbitmaps output by FreeType
are called the foreground layer.

4. Pixel character on white background: Post-rasterization transforma-
tions are applied to the foreground layer. The foreground layer is kept
at high resolution at this stage to avoid introducing artifacts. The RGB
image is then resized to the desired size with anti-aliasing techniques.
The resizing pipeline consists of three steps: (1) applying Gaussian filter
to smooth the image; (2) reducing the image by integer times; (3) resiz-
ing the image using Lanczos resampling. The second step of the resizing
pipeline is an optimization technique proposed by the PIL library [298].

5. Pixel character on texturedbackground: The resized foreground layer
is then pasted onto the background at the desired position.

6. Final image: Someother post-rasterization transformationsmay be ap-
plied after adding the background e.g., Gaussian blur of the whole im-
age. Before outputting the synthesized text image, the imagemode can
be changed if needed (e.g., changed to grayscale or binary images).
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Labels Y (isolated characters of text) and nuisance parameters Z (font,
style, background, etc.) are output together with imageX. Z serve as "meta-
data" to help diagnose learning algorithms. The role of Y and (a subset of)
Z may be exchanged to create a variety of classification problems (e.g., clas-
sifying alphabets or fonts), or regression problems (e.g., predicting rotation
angles or shear).

We rely on the Unicode 9.0.0 standard [299], which consists of a total of
128172 characters from more than 135 scripts, to identify characters by "code
point". A code point is an integer, which represents a single character or part
of a character; some code points can be chained to represent a single char-
acter e.g., the small Latin letter o with circumflex ô can be either represented
by a single code point 244 or a sequence of code points (111, 770), where 111
corresponds to the small Latin letter o, 770 means combining circumflex ac-
cent. In this work, we use NFC normalized code points [300] to ensure that
each character is uniquely identified.

We have included 27 scripts: Arabic, Armenian, Balinese, Bengali, Chinese,
Devanagari, Ethiopic, Georgian, Greek, Gujarati, Hebrew, Hiragana, Katakana,
Khmer, Korean, Lao, Latin, Mongolian, Myanmar, N’Ko, Oriya, Russian, Sin-
hala, Tamil, Telugu, Thai, Tibetan. For each of these scripts, we manually se-
lected characters. Besides skipping unassigned code points, control charac-
ters, incomplete characters, we also filtered Diacritics, tone marks, repetition
marks, vocalic modification, subjoined consonants, cantillation marks, etc.
For Chinese and Korean characters, we included the most commonly used
ones. In total, we have selected 12729 characters from 27 scripts (and some
special symbols) and 935 fonts.

Figure 3.3 – Some available transformations.

We are interested in all “label-preserving” transformations on text images
as well as their compositions. A transformation is said to be label-preserving
if applying it does not alter the semantic meaning of the text image, as inter-
preted by a human reader. Examples of available transformations are shown
in Figure 3.3.

Available transformations are classified as geometric transformations
(number 1-4: each class is a subset of the next class), local transformations,
and noises:
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1. Isometries: rotation, translation. Isometries are bijective maps be-
tween twometric spaces that preserve distances, they preserve lengths,
angles and areas. In our case, rotation has to be constrained to a cer-
tain range in order to be label-preserving, the exact range of rotation
may vary in function of scripts. Reflection is not desired because it is
usually not label-preserving for text images. For human readers, a re-
flected character may not be acceptable or may even be recognized as
another character.

2. Similarities: uniform scaling. Similarities preserve angles and ratios
between distances. Uniform scaling includes enlarging or reducing.

3. Affine transformations: shear, stretch. Affine transformations pre-
serve parallelism. Shear (also known as skew, slant, oblique) can be
done either along horizontal axis or vertical axis. Stretch is usually done
along the four axes: horizontal axis, vertical axis, main diagonal and
anti-diagonal axis. Stretch can be seen as non-uniform scaling. Stretch
along horizontal or vertical axis is also referred to as parallel hyperbolic
transformation, stretch alongmain diagonal or anti-diagonal axis is also
referred to as diagonal hyperbolic transformation [301].

4. Perspective transformations. Perspective transformations (also known
as homographies or projective transformations) preserve collinearity.
This transformation can be used to imitate camera viewpoint i.e., 2D
projection of 3D world.

5. Local transformations: Independent random vibration of the anchor
points. Variation of the stroke width e.g., thinning or thickening of the
strokes. Variation of character proportion e.g., length of ascenders and
descenders.

6. Noises related to imaging conditions e.g., Gaussian blur, contrast or
brightness variation.

We used OmniPrint to generate two sets of datasets: OmniPrint-meta[1-
5] and OmniPrint-MD. OmniPrint-meta[1-5] datasets, which are detailed in
Section 3.3.1, provide a prototype of benchmarking few-shot learning and
transfer learning algorithms. OmniPrint-MD datasets inherit similar design
as OmniPrint-meta[1-5] and is part of Meta-Album, a meta-dataset of image
classification (see Section 3.2). Details of OmniPrint-MDdatasets can be found
in the publication [3].
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3.2 . Meta-Album: amulti-domainmeta-dataset for image clas-
sification

Figure 3.4 –Meta-Album sample images.

We introduce Meta-Album, an image classification meta-dataset consist-
ing of 40 datasets from 10 domains. Meta-Album covers a variety of domains,
including ecology, manufacturing, textures, object classification, and charac-
ter recognition, as well as a variety of scales: microscopic, macroscopic (hu-
man scale), or distant (remote sensing). Figure 3.4 shows example images
from Meta-Album. While mostly re-purposing public datasets from hetero-
geneous sources to maximally vary recording conditions, we also introduce
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Table 3.1 – Comparison between Meta-Album and other large-scale or(meta-) datasets
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Meta-Dataset 7 10 53 068 000 43/1 696 3/140 000 210 GB ✓ ✗ ✗ ✗ ✗VTAB 3 19 2 244 000 2/397 40/1 000 100 GB ✓ ✗ ✗ ✗ ✗MS-COCO 1 1 328 000 80/80 9/10 777 44 GB ✗ ✗ ✗ ✗ ✗Mini Imagenet 1 1 60 000 100/100 600/600 1 GB ✗ ✓ ✓ ✓ ✗Omniglot 1 1 32 000 1 623/1 623 20/20 148 MB ✗ ✓ ✓ ✓ ✗CUB-200 1 1 6 000 200/200 20/39 647 MB ✗ ✓ ✗ ✗ ✗CIFAR-100 3 1 60 000 15/50 600/600 161 MB ✗ ✓ ✓ ✓ ✗

Meta-Album Micro 10 40 32000 19/20 40/40 380 MB ✓ ✓ ✓ ✓ ✓

Meta-Album Mini 10 40 220950 19/706 40/40 3.9 GB ✓ ✓ ✓ ✓ ✓

Meta-Album Extended 10 40 1583624 19/706 1/187384 15 GB ✓ ✓ ✗ ✓ ✓

new datasets. These include e.g., the 4 datasets for the character recognition
domain, termed as OmniPrint-MD datasets [3], which were newly synthesized
by OmniPrint (presented in Section 3.1) with different styles. All datasets are
preprocessed, annotated, and formatted uniformly. Meta-Album comprises
3 different versions to be used for different scenarios and different amounts
of computational resources. These 3 versions are Micro ⊂Mini ⊂ Extended:

• Micro: a minimal version with 20 randomly selected classes and 40 im-
ages per class;

• Mini: a medium version with all classes having at least 40 images per
class, including 40 randomly selected images per class;

• Extended a full version that consists of all classes and all images per
class.

The variety of versions positions Meta-Album anywhere amongst small-
scale datasets such as Omniglot [85], miniImageNet [302, 9] and CUB [303],
which usually have at most 70000 images in total and weigh at most a few GB,
or very large-scale benchmarks such as Meta-dataset [101] and VTAB [304],
which have more than 50 million images, weigh at least a few hundreds GB,
and require high-end super-computer clusters. We compareMeta-Albumwith
previous benchmarks/datasets in Table 3.1.

The principal distinguishing feature of Meta-Album is that it has, by far,
the largest number of domains and datasets, collected in different conditions.
Secondly, while other benchmarks usually provide only raw data, we format
all images uniformly as 128×128 pixelmaps, which has two benefits: reducing
the storage/memory footprint and facilitating the benchmarking of methods
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Table 3.2 – Summary of the first 30 Meta-Album datasets (Mini version)
Domain ID Domain Name Set # Dataset ID Dataset Name # Classes # Images Original source

LR_AM Large Animals 0 BRD Birds 315 12 600 Birds 400 [305]1 DOG Dogs 120 4800 Stanford Dogs [306]2 AWA Animals with Attributes 50 2 000 AWA [307]
SM_AM Small Animals 0 PLK Plankton 86 3440 WHOI [308]1 INS_2 Insects 2 102 4 080 Pest Insects [309]2 INS Insects 104 4 160 SPIPOLL [310]
PLT Plants 0 FLW Flowers 102 4 080 Flowers [311]1 PLT_NET PlantNet 25 1 000 PlantNet [312]2 FNG Fungi 25 1 000 Danish Fungi [313]
PLT_DIS Plant Diseases 0 PLT_VIL PlantVillage 38 1 520 PlantVillage [314, 315]1 MED_LF Medicinal Leaf 25 1 000 Medicial Leaf [316]2 PLT_DOC PlantDoc 27 1 080 Plant Doc [317]
MCR Microscopy 0 BCT Bacteria 33 1 320 DiBas [318]1 PNU PanNuke 19 760 PanNuke [319, 320]2 PRT Subcel. Human Protein 21 840 Protein Atlas [321]
REM_SEN Remote Sensing 0 RESISC RESISC 45 1 800 RESISC45 [322]1 RSICB RSICB 45 1 800 RSICB128 [323]2 RSD RSD 38 1 520 RSD46 [324, 325]
VCL Vehicles 0 CRS Cars 196 7840 Cars [326]1 APL Airplanes 21 840 Multi-type Aircraft [327]2 BTS Boats 26 1 040 MARVEL [328]
MNF Manufacturing 0 TEX Textures 64 2 560 KTH-TIPS [329, 330] Kylberg [331] UIUC [332]1 TEX_DTD Textures DTD 47 1 880 Texture DTD [333]2 TEX_ALOT Textures ALOT 250 10 000 Texture ALOT [334]
HUM_ACT Human Actions 0 SPT 100 Sports 73 2 920 100 Sports [335]1 ACT_40 Stanford 40 Actions 39 1 560 Stanford 40 Actions [336]2 ACT_410 MPII Human Pose 29 1 160 MPII Human Pose [337]
OCR Optical Char. Recog. 0 MD_MIX OmniPrint-MD-mix 706 28 2401 MD_5_BIS OmniPrint-MD-5-bis 706 28 240 OmniPrint [2]2 MD_6 OmniPrint-MD-6 703 28 120

independent of preprocessing steps. To that end, we optimized cropping and
resizing to reduce dimensions as much as possible without degrading per-
formance too much. In addition, Meta-Album includes datasets that have a
large number of classes and class hierarchy annotations when available, with
a minimum number of classes and examples per class: at least 20 classes (ex-
cept two datasets having only 19 classes) with a minimum of 40 examples per
class. Finally and importantly, we selected datasets that are not typically used
in transfer learning or meta-learning benchmarks, e.g., for pre-training back-
bone networks, such as ImageNet (which is included in e.g.,Meta-Dataset), or
for conducting other meta-learning or transfer learning experiments, such as
Omniglot, CIFAR-100, SVHN, or MNIST (which are included in e.g., VTAB). This
avoids giving an unfair advantage tomethods that were developed using such
commonly used datasets.

The 40 datasets of Meta-Album are grouped into 10 domains: large ani-
mals, small animals, plants, plant diseases, microscopy, remote sensing, vehi-
cles, manufacturing, human actions, and optical character recognition (OCR).
The datasets in each domain are presented in Table 3.2.
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3.3 . Episodic few-shot learning: an instance of datamodularity

3.3.1 . Episodic few-shot learning and OmniPrint

Few-shot learning is a machine learning problem in which new classifi-
cation problems must be learned from just a few training samples per class
(shots). This problem is particularly important in domains inwhich few labeled
training samples are available, and/or in which training on new classes must
be done quickly episodically, for example if an agent is constantly exposed to
new environments [98, 338].

Recently, interest in few-shot learning has been revived (e.g., [98, 99, 69])
and a novel setting proposed. The overall problem is divided into many sub-
problems, called episodes. Data are split for each episode into a pair (sup-
port set, query set). The support set plays the role of a training set and the
query set that of a test set. In the simplified research setting, each episode
is supposed to have the same number N of classes (characters), also called
“ways”. For each episode, learning machines receiveK training samples per
class, also called “shots”, in the “support set”; and a number of test sam-
ples from the same classes in the “query set”. This yields a N -way-K-shot
episode. In some few-shot learning datasets, classes have hierarchical struc-
tures [101, 85, 194] i.e., classes sharing certain semantics are grouped into
super-classes. In such cases, episodes can coincide with super-classes, and
may have a variable number of “ways”. As discussed in Section 2.1.1, few-shot
learning episodes are an instance of imposed data modularity.

To performmeta-learning, data are divided between ameta-training set
and ameta-test set. In the meta-training set, the support and query set la-
bels are visible to learning machines; in contrast, in the meta-test set, only
support set labels are visible to learning machines; query set labels are con-
cealed and only used to evaluate performance.

We use OmniPrint to investigate few-shot learning. Indeed, alphabets
from many countries are seldom studied and have no dedicated OCR prod-
ucts available. A few-shot learning recognizer could remedy this situation by
allowing users to add new alphabets with e.g., a single sample of each char-
acter of a given font, yet generalize to other fonts or styles. Alphabets or
partitions of alphabets in OmniPrint provide an instance of super-classes as
discussed above.

Using OmniPrint to benchmark few-shot learning methods was inspired
byOmniglot [85], a popular benchmark in this field. A typical way of usingOm-
niglot is to pool all characters from different alphabets and sample subsets
of N characters to create episodes (e.g., N = 5 andK = 1 results in a 5-way-
1-shot problem). While Omniglot has fostered progress, it can hardly push
further the state-of-the-art since recent methods, e.g., MAML [98] and Pro-
totypical Networks [99] achieve a classification accuracy of 98.7% and 98.8%
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respectively in the 5-way-1-shot setting. Furthermore, Omniglot was not in-
tended to be a realistic dataset: the characters were drawn online and do not
look natural. In contrast OmniPrint provides realistic data with a variability
encountered in the real world, allowing us to create more challenging tasks.
Table 3.3 – OmniPrint-meta[1-5] datasets of progressive difficulty.Elasticmeans randomelastic transformations. Fonts are sampled fromall the fonts available for each character set. Transformations includerandom rotation (within -30 and 30 degrees), horizontal shear and per-spective transformation.
X Elastic # Fonts Transformations Foreground Background
1 Yes 1 No Black White2 Yes Sampled No Black White3 Yes Sampled Yes Black White4 Yes Sampled Yes Colored Colored5 Yes Sampled Yes Colored Textured

Figure 3.5 – OmniPrint-meta[1-5] sample data: Top: The same character ofincreasing difficulty. Bottom: Samples of characters showing the diversity ofthe 54 super-classes.
We created 5 datasets called OmniPrint-meta[1-5] of progressive difficulty,

fromwhich few-shot learning episodes canbe carved (Table 3.3 and Figure 3.5).
These 5 datasets imitate the setting of Omniglot, for easier comparison and
to facilitate replacing it as a benchmark. The OmniPrint-meta[1-5] datasets
share the same set of 1409 characters (classes) from 54 super-classes, with 20
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Table 3.4 – N -way-K-shot classification results on the fiveOmniPrint-meta[1-5] datasets.
Setting meta1 meta2 meta3 meta4 meta5
N=5
K=1

Naive 66.1± 0.7 43.9± 0.2 34.9± 0.3 20.7± 0.1 22.1± 0.2Proto [99] 97.6± 0.2 83.4± 0.7 75.2± 1.3 62.7± 0.4 61.5± 0.7MAML [98] 95.0± 0.4 84.7± 0.7 76.7± 0.4 63.4± 1.0 63.5± 0.8

N=5
K=5

Naive 88.7± 0.3 67.5± 0.5 52.9± 0.4 21.9± 0.1 26.2± 0.3Proto [99] 99.2± 0.1 93.6± 0.9 88.6± 1.1 79.2± 1.3 77.1± 1.5MAML [98] 97.7± 0.2 93.9± 0.5 90.4± 0.7 83.8± 0.5 83.8± 0.4

N=20
K=1

Naive 25.2± 0.2 14.3± 0.1 10.3± 0.1 5.2± 0.1 5.8± 0.0Proto [99] 92.2± 0.4 66.0± 1.8 52.8± 0.7 35.6± 0.9 35.2± 0.7MAML [98] 83.3± 0.7 65.8± 1.3 52.7± 3.2 42.0± 0.3 42.1± 0.5

N=20
K=5

Naive 40.6± 0.1 23.7± 0.1 16.0± 0.1 5.5± 0.0 6.8± 0.1Proto [99] 97.2± 0.2 84.0± 1.1 74.1± 0.9 56.9± 0.4 54.6± 1.3MAML [98] 93.1± 0.3 83.0± 1.0 75.9± 1.3 61.4± 0.4 63.6± 0.5

samples each, but they differ in transformations and styles. Transformations
and distortions are cumulated from dataset to dataset, each one including
additional transformations to make characters harder to recognize. We syn-
thesized 32×32 RGB images of isolated characters.

Weperformed learning experiments onOmniPrint-meta[1-5] datasetswith
classical few-shot-learning baseline methods: Prototypical Networks [99] and
MAML [98] (Table 3.4). The naive baseline trains a neural network fromscratch
for each meta-test episode with 20 gradient steps. MAML and Prototypical
Networks were trained during 300 epochs, where each epoch is defined to be
6 batches of episodes, each batch contains 32 episodes. Duringmeta-training,
the model checkpoints were evaluated on meta-validation episodes every 5
epochs. The model having the highest accuracy on meta-validation episodes
during training is selected to be tested on meta-test episodes. We split the
data (1409 classes) into 900 characters for meta-training, 149 characters for
meta-validation, 360 characters for meta-test. Performance is evaluated with
the average classification accuracy over 1000 randomly generated meta-test
episodes. The reported accuracy and 95% confidence intervals are computed
with 5 independent runs (5 random seeds). The backbone neural network ar-
chitecture is the same for each combination of method and dataset except
for the last fully-connected layer, if applicable. It is the concatenation of three
modules of Convolution-BatchNorm-Relu-Maxpool.

Our findings include that, for 5-way classification of OmniPrint-meta[1-
5], MAML outperforms Prototypical Networks, except for OmniPrint-meta1;
for 20-way classification, Prototypical Networks outperforms MAML in eas-
ier datasets and are surpassed by MAML for more difficult datasets. One
counter-intuitive discovery is that themodeling difficulty estimated from learn-
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Figure 3.6 –Difficulty ofOmniPrint-meta[1-5] (few-shot learning): We aver-aged the results ofN -way-K-shot experiments of Table 3.4. The height of theblue bar represents the performance of the naive baseline (low-endmethod).The top of the orange bar is the max of the performance of Prototypical Net-works and MAML (high-end methods). Difficulty progresses from meta1 tometa4, but is (surprisingly) similar between meta4 and meta5.

ing machine performance (Figure 3.6) does not coincide with human judge-
ment. One would expect that OmniPrint-meta5 should be more difficult than
OmniPrint-meta4, because it involves natural backgrounds, making charac-
ters visually harder to recognize, but the learning machine results are similar.

We also used OmniPrint to investigate the influence of the training data
size for few-shot learning i.e., the number of meta-training episodes. For this
purpose, we generated a larger version of OmniPrint-meta3 with 200 images
per class (OmniPrint-meta3 has 20 images per class), to study the influence of
the number of meta-training episodes. We compared the behavior of MAML
[98] and Prototypical Network [99] on a log scale of number of meta-training
episodes (from 100 to 105 meta-training episodes). The experiments visual-
ized in Figure 3.7 show that the learning curves cross and Prototypical Net-
work [99] ends with higher performance thanMAML [98] when the number of
meta-training episodes increases. Generally Prototypical Network performs
better on this larger version of OmniPrint-meta3 than it did on the smaller
version. This outlines that few-shot learning algorithms such as Prototypical
Network can better leverage the availability of large data size than MAML.

OmniPrint provides extensively annotated metadata, recording all distor-
tions. Thus more general paradigms of few-shot learning can be considered
than the classical few-shot learning setting stated above. Such paradigmsmay
include concept drift or covariate shift. In the former case, distortion param-
eters, such as rotation or shear, could slowly vary in time; in the latter case
episodes could be defined to group samples with similar values of distortion
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Figure 3.7 – Influence of the number of meta-training episodes with alarger version of OmniPrint-meta3. 95% confidence intervals are computedwith 5 random seeds.

parameters.
To illustrate this idea, we generate episodes differently than in the “stan-

dard way” [99, 98, 302]. Instead of only varying the subset of classes consid-
ered from episode to episode, we also vary transformation parameters (con-
sidered nuisance parameters). This imitates the real-life situation in which
data sources or recording conditions may vary between data subsets. We
use OmniPrint-meta3 and OmniPrint-meta5, two datasets from OmniPrint-
meta[1-5] described above, and generate episodes imposing that rotation and
shear be more similar within episode than between episodes. In doing so,
each episode becomes more internally cohesive, as support samples closely
resemble query samples, while the episodes as a whole display greater di-
versity. The metadata-based episode generation algorithm is presented in
Algorithm 1.

The experimental results, as depicted in Figure 3.8, reveal thatwithmetadata-
based episodes, the learning problem becomes less complex, leading few-
shot learning algorithms to achieve superior classificationperformance. While
initially surprising, these results make sense when considering that query
samples becomemore similar to support samples inmeta-test episodes,mak-
ing them easier to learn. This research could be developed in various direc-
tions, including defining episodes differently at meta-training and meta-test
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Algorithm 1: Metadata-based few-shot learning episode gen-eration.
Input: Number of support images S, number of query images

Q
// Assuming that metadata consists of real numbers.

1 for each episode do
2 Randomly sample N classes c1, c2, ..., cN
3 for each class cn do
4 Find all samples Ecn = {e1, e2, ...} of class cn, themetadatami of each sample ei ∈ Ecn is a real-valuedvector.
5 Compute the bounding box Bcn of the metadata vectors

mi.
6 Randomly sample a centroid D within Bcn .
7 Select the (S +Q) nearest neighbors

M = {mx,my, ...,m(S+Q)} from all the metadata vectors
m1,m2, ...

8 An sample ei is selected to be part of the episode if andonly ifmi ∈M , all the selected samples form the set
Êcn,D

9 Randomly draw S samples from Êcn,D to form thesupport set, the remaining samples serve as the queryset.
10 end
11 end

time e.g., to study whether algorithms are capable of learning better from
more diverse meta-training episodes, given fixed meta-test episodes.
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Figure 3.8 – Comparing the difficulty of metadata-based episodes with
that of standard episodes. The height of the blue bar represents the perfor-mance of the naive baseline (low-end method). The top of the orange baris the max of the performance of Prototypical Networks and MAML (high-end methods). (a) “Standard” episodes with uniformly sampled rotation andshear. (b) “Metadata” episodes: images within episode share similar rotationand shear; resulting tasks are easier than corresponding tasks using standardepisodes.

3.3.2 . Episodic vs. batch meta-training
We used Meta-Album [3], introduced in Section 3.2, to organize a series

of meta-learning competitions: MetaDL competition at NeurIPS 2021 [4] and
Cross-DomainMetaDL competition atNeurIPS 2022 [5]. Both challenges aimed
at assessing few-shot learning algorithms in a fair way.

Meta-learning is commonly employed to solve few-shot learning prob-
lems. It aims at leveraging similar task experiences to enable efficient adap-
tation to new tasks via a phase of meta-training. As the end-goal of few-shot
classification is to produce a model that can effectively learn to recognize
new episodes with few samples, the meta-test performance is evaluated on
episodes of data, as described in Section 3.3.1. The meta-training phase, on
the other hand, has the choice over different strategies.

Classical few-shot learning methods [98, 99] organize meta-training data
into episodes with the intention of simulating the scenario encountered at
meta-test time; each episode contains data from a subset of classes. We refer
to this paradigm as episodicmeta-training. On the other hand, a non-episodic
approach [101] can be considered, this approach ignores the episodic struc-
ture of few-shot learning andmerges all meta-training episodes into one “flat”
dataset of labeled samples, it trains the model over all of the meta-training
classes of the “flat” dataset at once. We refer to this paradigm as batchmeta-
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training. The choice between episodic meta-training and batch meta-training
has been a topic of discussion among the research community [339, 340]. This
debate highlights the effects of data modularity on the learning machines.
Episodic meta-training is an instance of imposed data modularity because it
groups data into episodes. Its monolithic counterpart is batch meta-training.

We investigate the choice betweenepisodicmeta-training andbatchmeta-
training through the post-analysis of competitions we organized using Meta-
Album (presented in Section 3.2). Competitions provide an equitable means
to evaluate diverse approaches and stimulate contributions from the broader
research community [341, 342, 343].

By analyzing the solutions of the top-ranked teams of MetaDL competi-
tion at NeurIPS 2021 [4] and Cross-Domain MetaDL competition at NeurIPS
2022 [5], we found that top-ranked participants do not use episodic meta-
training, neural networks of top-ranked solutions are fine-tuned with batches
of meta-training data instead of episodes.

We aim to do ablation studies to further investigate the effect of episodic
meta-training using the same competition protocol as Cross-Domain MetaDL
competition at NeurIPS 2022 [5]. However, the top-ranked solutions are too
complex to modify to have a fair comparison. We instead chose to do the ab-
lation studies on classical few-shot learning methods. The considered meth-
ods include Train-from-scratch, Prototypical Networks [99], Fine-tuning, and
MAML [98]. Train-from-scratch does not perform any meta-training; instead,
it directly learns eachmeta-test episode using only its support set. Fine-tuning
consists of pre-training a backbone network with meta-training datasets and
then only fine-tuning the last layer at meta-test time. All compared methods
use a ResNet18 backbone.

The ablation studies follow the same competition protocol as Cross-Domain
MetaDL competition at NeurIPS 2022 [5]. The number of classes in the meta-
test episodes ranges from 2 to 20 (“ways”, N ∈ [2, 20]), the support set con-
tains 1 to 20 labeled samples per class (“shots”, K ∈ [1, 20]), and the query
set contains 20 samples per class. Furthermore, since this competition fo-
cuses on cross-domain meta-learning, all the episodes are carved out from
Meta-Album [3] that contains datasets from 10 domains. In this competi-
tion, the data in one episode belongs to one dataset. Nevertheless, different
episodes may come from different datasets, each belonging to a particular
domain e.g., insect classification, medical image classification, car classifica-
tion. Since meta-test episodes can have a variable number of ways and shots,
this competition uses the balanced accuracy (bac) normalized with respect to
the number of ways N as the evaluation metric. This metric is defined as

Normalized Accuracy =
bac − bacRG

1− bacRG
, (3.4)
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where bac is defined as
bac =

1

N

N∑
i=1

correctly classified samples of class i

total samples of class i
, (3.5)

and bacRG is the accuracy of random guessing, i.e., 1
N .For the meta-training strategy, we consider three cases: None (i.e., the

meta-training phase is skipped), batch meta-training (i.e., the model is meta-
trained with batches), or episodic meta-training (the model is meta-trained
with episodes i.e., N -way-K-shot episodes). At the same time, we also com-
pare different classifiers on top of the backbone network: linear and nearest
centroid classifier. Nearest centroid classifier is the strategy of Prototypical
Networks where the flatten representation produced by the backbone is used
to compute the centroids of each class and then the images on the query set
are assigned to the closest centroid based on the Euclidean distance. On the
other hand, the linear classifier consists of adding a linear layer to process the
flatten representation produced by the backbone.

Inspired by the top-ranked solutions of the competition, we analyzed the
impact of freezing different number of blocks of the backbone. We used Pro-
totypical Networks for this analysis. Figure 3.9 shows that freezing 8 of the 9

blocks of ResNet18 (the backbone used by all analyzed methods) leads to the
highest normalized accuracy. Therefore, we conduct all the previously men-
tioned ablation studies for two scenarios: (1) using an unfrozen ResNet18 and
(2) using a ResNet18 with 8 of its 9 blocks frozen.
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Figure 3.9 – Analysis of the impact of freezing a varying number of ResNet18blocks (9 blocks in total) using Prototypical Networks. Each dot shows theaverage normalized accuracy over 6000meta-test episodes.
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Table 3.5 – Ablation studies of the meta-training strategy. Thebackbone is a pre-trained ResNet18. “Unfrozen backbone” means thatall layers are updated during meta-training, “frozen backbone” meansthat the first 8 blocks are frozen (ResNet18 has 9 blocks in total). “NCC”refers to a nearest centroid classifier. The normalized accuracy is an av-erage over 18000 [2-20]-way [1-20]-shot meta-test episodes (3 runs with
6000 episodes per run). The bold values indicate the best performancein each case.

Method Meta-training Strategy Classifier Normalized Accuracy
None Batch Episodic Linear NCC UnfrozenBackbone FrozenBackbone

Train-from ✓ ✓ 24.35± 0.31 45.93± 0.39-scratch ✓ ✓ 43.54± 0.40 43.54± 0.40Prototypical ✓ ✓ 43.54± 0.40 43.54± 0.40Networks ✓ ✓ 34.13± 0.37 40.87± 0.38
✓ ✓ 40.93± 0.39 44.92± 0.39Fine-tuning ✓ ✓ 38.56± 0.41 38.56± 0.41

✓ ✓ 41.44± 0.39 41.44± 0.39
✓ ✓ 23.24± 0.33 42.91± 0.41
✓ ✓ 36.99± 0.38 44.77± 0.40

✓ ✓ 3.03± 0.12 20.75± 0.34
✓ ✓ 37.12± 0.37 45.30± 0.40MAML ✓ ✓ 20.32± 0.35 19.08± 0.34

✓ ✓ 43.54± 0.40 43.54± 0.40
✓ ✓ 18.72± 0.34 16.33± 0.30
✓ ✓ 22.14± 0.34 39.85± 0.40

✓ ✓ 23.33± 0.34 27.03± 0.36
✓ ✓ 43.00± 0.38 47.01± 0.40

Table 3.5 shows the results for all the experiments. It is worth noting
that this table does not include the results of Train-from-scratch with batch
or episodic meta-training because this method does not perform any meta-
training by definition. Similarly, Prototypical Networks uses a nearest centroid
classifier by definition.

We adopt amarginalized approach to compare the axes of variation of the
ablation studies rather than analyzing them jointly. Thismarginalized analysis
could offer insights into the design of novel algorithms.

We compare the effect of different meta-training strategies (skipping the
meta-training phase, batchmeta-training, and episodicmeta-training) as shown
in Figure 3.10. The left part of Figure 3.10 shows that when using an unfrozen
backbone, episodic meta-training outperforms batch meta-training with both
better mean normalized accuracy and median normalized accuracy. How-
ever, skipping themeta-training phase outperforms both batchmeta-training
and episodic meta-training in the case of an unfrozen backbone. The use of
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Figure 3.10 – Boxplot for the effect of different meta-training strategies in theablation studies. The comparedmethods include Prototypical Networks, Fine-tuning, and MAML. Data is from Table 3.5. “frozen” means that 8 of the 9blocks of the ResNet18 backbone are frozen during meta-training, whereas“unfrozen”means that the whole ResNet18 backbone is updated duringmeta-training. “none” means that the meta-training phase is skipped. “batch”means that the backbone is meta-trained with batches, “episodic” means thatthe backbone is meta-trained with episodes.

meta-training data harms the performance even if the meta-training data is
supposed to bemore similar to themeta-test data than the data used for pre-
training (ImageNet). This result indicates that even if a meta-dataset is avail-
able for meta-training and contains the same domains as the meta-test data,
it is tricky to benefit from it because the pre-trained backbones are already
good and trained on a lot of data. When starting with pre-trained parameters,
there is a risk of overfitting the meta-training data. This highlights the impor-
tance of regularization during meta-training e.g., fine-tuning only the last few
layers of the backbones, adding weight decay, and dropout.

We compare the effect of meta-training strategies separately for unfrozen
backbone and frozen backbone. The right part of Figure 3.10 shows the results
when the first 8 blocks are frozen during meta-training. There are 9 blocks in
total in a ResNet18 backbone, so only the last block is updated during meta-
training. With a frozen backbone, the best result is achieved by episodicmeta-
training (MAML + Episodic meta-training + Nearest Centroid Classifier), which
outperforms the best performance with an unfrozen backbone by 3.47%. As
shown in Figure 3.10, episodic meta-training shows a higher variance of per-
formances than batch meta-training or skipping meta-training. Nevertheless,
episodic meta-training shows advantages with a frozen backbone in that it
achieves the best median and best-case performances; it also achieves the
best worst-case performance when taking outliers into account. The mean
performance is almost the same for these three meta-training strategies in
the case of frozen backbone.

78



Furthermore, we also checked the performance change in Table 3.5 in a
pairwise manner i.e., comparing performances of the same ablation combi-
nation except for the choice of batch or episodic meta-training. This pairwise
comparison shows that the use of episodic meta-training improves perfor-
mances in almost all cases except for the fine-tuning approach with a linear
classifier.

In summary, episodic meta-training should be carefully considered when
designing novel few-shot learning algorithms, as it has the potential to pro-
vide good performances if applied judiciously. Although the winners of Cross-
Domain MetaDL competition at NeurIPS 2022 relied on batch meta-training,
which built upon the winning solution of MetaDL competition at NeurIPS 2021,
our post-challenge analyses indicate that episodic meta-training could pro-
vide improved performance, in combination with e.g., prevention of overfit-
ting.
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3.4 . Conclusion

In this chapter, we present our research contributions that revolve around
the concept of data modularity. Central to our discussions are three contri-
butions: OmniPrint, Meta-Album, and our case studies on episodic few-shot
learning.

OmniPrint is a data synthesizer designed for images of isolated characters,
showcasing modularity through its super-classes and latent generative fac-
tors. It grants complete control over the latent factors of the data-generating
process, enabling the customization of the synthesized data.

Meta-Album is a meta-dataset containing 40 image classification datasets
spread over 10 domains, ranging from ecology to manufacturing. Its mod-
ularity is evident through domain-based structure, and it includes datasets
from OmniPrint. Meta-Album serves as an invaluable tool for benchmarking
modular models in various applications, including few-shot learning, transfer
learning, and meta-learning.

Few-shot learning enables Deep Learning models to train with minimal
training data requirements, aligning with our objective of resource-efficient
Deep Learning. We presented case studies on episodic few-shot learning.
Here, data episodes in few-shot learning are regarded as datamodules, where
data samples are organized in a particular manner e.g., by class subsets. One
illustrative study uses OmniPrint to produce metadata-based episodes, ad-
justing latent generative factors to enhance data similarity within an episode,
in line with the cohesion feature of modularity (presented in Section 1.2). Re-
sults suggested that few-shot learning algorithms can learn better with this
new setting.

In another case study, we analyzed themerits of episodic meta-training in
comparison to itsmonolithic counterpart, batchmeta-training. While episodic
meta-training leverages data episodes, batch meta-training merges all these
episodes into one single dataset, training themodel across all classes simulta-
neously. We investigated this problem through the post-analysis of few-shot
learning competitions we organized using Meta-Album. Our findings indicate
that, when episodic meta-training is judiciously employed e.g., combined with
overfitting prevention, it can improve the learning performance. This demon-
strates the potential of using a modular approach to organize training data
for improved learning performance.

In conclusion, this chapter showcases the practical implementation of data
modularity and its impact on theDeep Learningmodels that utilize such struc-
tured data. Through the introduction of tools like OmniPrint andMeta-Album,
which inherently embrace modular design, we contribute resources that can
catalyze advancements in the field. Meanwhile, our case studies, utilizing
these tools, provide tangible insights into the effects and benefits of data
modularity.
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4 - Contributions in the scope of task modu-
larity

This chapter offers a concrete example of task modularity to which we
made a contribution. As explained in Chapter 2, task modularity can manifest
in various forms, involving the decomposition of a task into sub-tasks, each
with a specific objective. In this specific context of task modularity, we narrow
our focus to adversarial scenarios. Here, an Attackermodule and an Evaluator
module serve as the critic or teacher to a Defender module. Specifically, we
present a modular evaluation mechanism for membership inference attacks,
aiming to assess the privacy of Deep Learning models. The majority of the
content in this chapter has been the subject of publication [6].

4.1 . LTU: modular evaluation against membership inference
attacks

4.1.1 . Introduction
In today’s data-driven landscape, organizations from large corporations to

academic institutions are cautious with their information. This caution stems
from concerns about privacy breaches and potential legal consequences. The
current challenge is to develop protocols that protect data while still lever-
aging its potential value. Even though sensitive data should remain strictly
confinedwithin the source organization (Source), authorized researchers (De-
fender) can utilize it to develop predictive models (Defender model). These
models, seen as the product of this effort, can be released provided that they
maintain desired levels of utility and privacy.

Such application scenarios haveprompted research into privacy challenges
in Deep Learning [344, 345]. Our focus is on the setting of membership in-
ference attack. In this context, attackers try to determine whether specific
samples are part of the training dataset of the Defender model [345]. Our
study considers themost complete release scenario: the predictive model, its
training algorithm, and all its hyper-parameters.

At the core of our research is the design of amodularized evaluationmech-
anism, aimed at evaluating the robustness of Defender models against mem-
bership inference attacks. This tool assists the Source in deciding whether
to release the Defender model (Figure 4.1). This evaluation mechanism con-
sists of two modules: the Evaluator and the Attacker. The Evaluator conducts
an assessment called the leave-two-unlabeled (LTU) evaluation. Through this
process, it provides the Attacker with extensive information, excluding the
membership label of two samples.

81



Task modularity emerges as a vital design choice. Drawing parallels from
the dynamics in Generative Adversarial Networks and the teacher-student
paradigm (discussed in Section 2.2.3), our Evaluator and Attacker function in
roles resembling a teacher or critic, closely monitoring the Defender’s learn-
ing process. The Evaluator, representing a specialized sub-task, ensures the
integrity of the assessment. Without the Evaluator, the Attacker would have
full access to the dataset, including all membership labels, which could com-
promise the evaluation’s credibility. By separating these sub-tasks, the Eval-
uator acts as a safeguard, withholding certain information in its evaluation
process. This approach exemplifies “independence” and “functional special-
ization”, features ofmodularity as discussed in Section 1.2. In this context, task
modularity ensures the evaluation’s reliability and integrity.

4.1.2 . Problem statement and methodology

Weconsider the scenariowhere a data owner possesses a dataset, termed
Source data and denoted as DS . This data owner intends to develop a pre-
dictive model using a portion of this dataset, while ensuring that privacy is
preserved, especially against membership inference attacks. To achieve this,
the data owner delegates the task to an agent named Defender, granting ac-
cess to a random subset DD ⊂ DS (Defender dataset). We denote byMDthe trained model (Defender model) and by TD the algorithm used to train it
(Defender training algorithm). The data owner wishes to releaseMD and TD,provided that certain standards of privacy and utility ofMD are met.

To evaluate such utility and privacy, the data owner reserves a dataset
DR ⊂ DS , disjointed fromDD. It gives bothDD andDR to a trustworthy agent
called Evaluator. The Evaluator tags the samples with “membership labels”:
Defender or Reserved. Then, the Evaluator performs repeated rounds. In each
round, the Evaluator randomly selects one Defender sample d and one Re-
served sample r, which results in an attack datasetDA = DD−{membership(d)}∪
DR − {membership(r)} for the Attacker. The attack dataset retains all infor-mation except for the membership labels of the two selected samples. The
two unlabeled samples are referred to as u1 and u2, with each being equallylikely to be from the Defender dataset. We refer to this procedure as leave-
two-unlabeled (LTU) (see Figure 4.1).

The Attacker also has access to the Defender training algorithm TD, allits hyper-parameters, and the trained Defender modelMD. This is the worst-
case scenario in terms of attacker knowledge, as the only additional knowledge
that could aid in amembership attackwould bepossession of the actualmem-
bership labels. The objective of the Attacker is correctly predicting which of
the two samples u1 and u2 belongs to DD for each LTU round.

We use the LTU membership classification accuracy Altu from N indepen-
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dent LTU rounds (as defined above) to define the privacy score:
Privacy =min{2 (1−Altu), 1}

± 2
√
Altu(1−Altu)/N , (4.1)

where the error bar is an estimator of the standard error of the mean (ap-
proximating the Binomial law with the Normal law [346]). The weaker the
performance of the LTU Attacker (Altu ≃ 0.5 for random guessing), the larger
Privacy, and the betterMD should be protected from attacks.

The Evaluator also uses DuE = DR to evaluate the utility of the Defender
modelMD. We focus on multi-class classification for c classes, and measure
utility with the classification accuracy AD ofMD, defining utility as:

Utility =max{(c AD − 1)/(c− 1), 0}

± c
√
AD(1−AD)/|DR| , (4.2)

The Attacker can use different strategies to make membership predic-
tions. As an illustration, a selection of attacker strategies is shown below.
In each LTU round, u1 and u2 denote the samples that were deprived of their
labels.

1. The Attacker can rely on the generalization gap. It classifiesu1 as belong-ing toDD if the loss function ofMD(u1) is smaller than that ofMD(u2).
2. The Attacker trains an attacker modelMA to predict membership.MAuses any internal state or the output ofMD as input. Following its train-

ing,MA is used to predict the labels of u1 and u2.
3. The Attacker trains twomockDefendermodelsM1 andM2. The former

is trained using (DD − {d}) ∪ {u1} and the latter with (DD − {d}) ∪
{u2}. Both uses the training algorithm TD. If TD is deterministic and
independent of training sample ordering, eitherM1 orM2 should be
identical toMD. Otherwise, one of them should be “closer” toMD. Thesample corresponding to the model closest toMD is classified as being
a member of DD.

4. Starting from the trained Defender modelMD, the Attacker executesone gradient learning step with either u1 or u2 using TD. The Attackerthen contrasts the outcomes based on gradient norms and sample pre-
diction changes. The sample associated with smaller gradient norms or
fewer changes in sample predictions is classified as being a member of
DD. It should be noted that this strategy presupposes that the Defendertraining algorithm TD allows computing gradients.

The first two attack strategies only attack onMD, while the last two attackstrategies attack on bothMD and TD.
83



(a)  Defender

Attack 
predictions

Defender 
model 

(b) LTU Attacker

Hold-out evaluation: Repeatedly 
remove membership label from 
1 sample in R and 1 sample in D

Reserved 
dataDR

Defender 
model
trainer

TD

Defender 
dataDD

MD

Attack 
program

PA

Attack
data

DA

Source 
dataDS

Membership 
labeling

Privacy
Evaluation

data
DpE

Utility evaluation

Attack 
predictions

(c) Evaluator

Utility 
Scoring
program

PuS

Privacy evaluation

Privacy 
Scoring 
program

PpS

Defender 
model MD

Privacy
Evaluation

data
DpE

Reserved 
dataDR

Figure 4.1 – Illustration of our modularized evaluation mechanism for
membership inference attack. Source data are divided into Defender data,to train the predictive model under attack (Defender model) and Reserveddata to evaluate such a model. The Defender model training algorithm cre-ates a model optimizing a utility objective, while being as resilient as possibleto privacy attacks. The evaluation mechanism includes an Attacker and anEvaluator: The evaluation mechanism performs an LTU evaluation by repeat-edly providing the Attacker with all of the Defender and Reserved data sam-ples, together with their membership label, hiding only the membership labelof 2 samples. The Attacker must turn in themembership label (Defender dataor Reserved data) of these 2 samples (Attack predictions). The Evaluator com-putes two scores: Attacker prediction error (Privacy metric), and Defendermodel classification performance (Utility metric).
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4.1.3 . Experiments
In this section, we showcase the usage of the LTU evaluation mechanism.
We utilize neural networks as the Defender model and implement the at-

tack strategy leveraging gradient descent. Our exploration covers two kinds
of Defender models: one based on supervised learning and the other on un-
supervised domain adaptation (UDA) [347]. Our experiments use theQMNIST
dataset [348], an expanded version of the popular MNIST [120] dataset.

For the supervised approach, we employed ResNet50 [10] pre-trained on
ImageNet [8]. We then retrained it on the Defender set of QMNIST using the
cross-entropy loss. Results from this are reported in Table 4.1 (line “Super-
vised learning”), indicating both good utility and privacy.

Defender Model Utility Privacy

Supervised learning 1.00± 0.00 0.97± 0.03

Unsupervised domain adaptation 0.99± 0.00 0.94± 0.03

Table 4.1 – Utility and privacy of ResNet50 Defender models trained onQMNIST.
In an effort to still improve privacy, we explored the potential of UDA algo-

rithms. UDA, a type of transfer learning, leverages labeled data from a source
domain to train models to excel in an unlabeled target domain. This implies
that, when the Defender set is used as the target domain, its labels are not
used during Defender model training. We hypothesized that this technique
might improve privacy against membership inference attacks. We use large-
Fake-MNIST as the source domain. Large-Fake-MNIST is a synthetic dataset
generated by OmniPrint (presented in Section 3.1), it is similar to MNIST [120]
and consists of 500000white-on-black images distributed evenly across digits.
The target domain, meanwhile, is a subset of QMNIST.

OurUDAmethodof choice isDSAN [347] because of its goodperformance [2].
DSANoptimizes the neural networkwith the sumof a classification loss (cross-
entropy loss) and a transfer loss (local MMD loss [347]). We experimented
with three variants of attacks on this UDA model: (1) attacking only the classi-
fication loss, (2) attacking only the transfer loss, and (3) attacking both losses.
Interestingly, the first variant proved most effective, treating the model as if
trained with supervised learning. However, as shown in Table 4.1, UDA did not
yield improved performance. We attribute this to the fact that the supervised
model under attack performswell on this dataset and already has a very good
level of privacy.
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4.2 . Conclusion

This chapter delved into the role of task modularity in addressing privacy
issues associated with Deep Learning models. In particular, we introduced a
modular evaluation mechanism, termed LTU, designed to analyze the worst-
case scenarios regarding the knowledge level of membership inference at-
tackers.

Task modularity advocates for the breakdown of a task into sub-tasks. In
the approach we proposed, we decomposed the evaluation process into two
sub-tasks: those of the Evaluator and the Attacker. The Evaluator’s sub-task
involves conducting successive LTU rounds, ensuring that in each round, two
examples’ labels are kept hidden from the Attacker. This division allows for
an authentic evaluation process since the Attacker’s sub-task centers on simu-
lating attack strategies with only the remaining data. This separation ensures
that the assessment maintains its fairness and integrity, preventing the At-
tacker from leveraging the ground-truth membership labels.

In conclusion, this chapter showcases how task modularity can be advan-
tageous through one example problem: addressing the privacy issues inher-
ent in Deep Learning models. Task modularity offers benefits such as im-
proved clarity and enhanced integrity due to the independence of modules.
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5 - Contributions in the scope of model modu-
larity

This chapter contains our research contribution regarding model modu-
larity. As discussed in Section 2.3, the modularity of pre-trained neural net-
works is inherent in their architecture, which can be decomposed into a col-
lection of modules. These modules can take various forms, such as convolu-
tional kernels, blocks, and so on, depending on the level of granularity. This
modular characteristic facilitates the application of pruning techniques, which
involve the removal of redundant modules, therebymaking pre-trainedmod-
els more lightweight and efficient for utilization. Additionally, modules can be
assembled into an ensemble to boost performance (refer to Section 2.3.4.1
for more details).

Our proposed approach for the efficient reuse of a pre-trained model is
termed RRR, which stands for “Reuse, Reduce, and Recycle". This approach
employs reduction and recycling techniques to adjust the pre-trainedResNet152
model. Most of the content of this chapter has been the subject of publica-
tion [7].

5.1 . RRR-Net: reusing, reducing, and recycling a modular neu-
ral network

5.1.1 . Introduction
Over the last decade, Deep Learning has set new standards in computer

vision. While it has achieved state-of-the-art in various academic and indus-
trial fields, training deep networks from scratch requires massive amounts of
data and hours of GPU training, which limits its application in data-scarce and
resource-scarce scenarios.

This limitation has been mainly addressed through the notion of Trans-
fer learning [349, 350]. Here, knowledge is transferred from a source domain
(typically learned from a large dataset) to one or several target domains (typ-
ically with less available data). A common transfer learning approach is fine-
tuning [191], inwhich a considerable part (the backbone) of a pre-trainedneural
network is reused; the last layer (classification head) is replaced with a new
classifier and the last layers are retrained to the new task at hand.

As discussed in Section 2.3, the architectural design of pre-trained neu-
ral networks inherently possesses modularity, allowing them to be broken
down into separate modules. On the other hand, modern neural networks
are thought of as being “the bigger, the better” as big networks keep beating
large benchmarks (such as ImageNet [194]). However, they are considerably
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over-parameterized when applied to smaller tasks. There is evidence that
low-complexity models can, in some conditions, lead to comparably good or
better performance [351].

Building on these insights, our initiative is to implement the three classi-
cal resource-saving principles “Reuse, Reduce, and Recycle” (RRR) [352] to the
maximum extent possible on pre-trained modular neural networks. The “Re-
duce” step means reducing the number of modules in the pre-trained modu-
lar neural network, while the “Recycle” step is realized by constructing a voting
ensemble ofmodules from the existing pre-trainedmodules. We leverage the
reusability of parts, rather than the entirety, of a pre-trained modular neural
network. To showcase the feasibility of this idea, we selected the popular
ResNet152 model [10] as our foundational modular model.

This work combines several ideas: reusing a pre-trained neural network,
reducing it, and splitting the model into several branches to use ensemble
techniques (recycling). We briefly discuss related work in these three do-
mains.

• Reusing pre-trained neural networks has been a common practice
in Deep Learning. Given the availability of neural networks trained on
large datasets, the vanilla fine-tuning approach [191] remains themethod
of choice for transfer learningwith neural networks. Guo et al. [353] pro-
pose to adaptively fine-tune pre-trained models on a per-instance ba-
sis. Wortsman et al. [354] and Liu et al. [355] proposemethods tomerge
knowledge frommultiple pre-trained models. Our method can be seen
as performing neural architecture searches in the search space defined
by ResNet152 [10], which allows reusing its pre-trained parameters.

• Model pruning is one way to reduce the storage/computing resource
requirements of neural networks. It removes redundant parts (param-
eters, channels, etc.) that do not significantly contribute to the perfor-
mance. Model pruning can happen at different granularities, depend-
ing on the topology constraints of the removed parts [174, 356, 357,
358, 359]. The reduction step of our methodology (Section 5.1.2.2) can
be categorized as a coarse-grained (block-wise) pruning approach, as
opposed to finer-grained (element/channel-wise) pruning approaches.
We compare our reduction step and finer-grained pruning approaches
in Section 5.1.3.2.

• Ensemblemethods [261, 360, 230] combinemultiplemodels to improve
generalization and robustness. Neural network ensemble methods in-
clude bagging [361], Snapshot Ensemble [362], and Fast Geometric En-
semble [363]. Severalworks [141, 131, 262, 364] investigate tree-structured
neural networks. The regularization technique dropout [365] can also
be interpreted as an implicit ensemble technique. In this work, we use
ensembling to recycle parts of the pre-trained network, as described in
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Phases output size Blocks Num. parameters FLOPs (106)
Baseline Ours (conv4_x, conv5_x: each branch) Baseline Ours Baseline Ours

conv1 32× 32
7×7, 64, conv (stride 2) 7×7, 64, conv (stride 2) 9.5k 9.5k 40 403×3, max-pool (stride 2) 3×3, max-pool (stride 2)

conv2_x 32× 32

 1× 1, 64
3× 3, 64
1× 1, 256

×3
 1× 1, 64

3× 3, 64
1× 1, 256

×1 70k (75k) 70k (75k) 73 (78) 73 (78)

conv3_x 16× 16

 1× 1, 128
3× 3, 128
1× 1, 512

×8
 1× 1, 128

3× 3, 128
1× 1, 512

×1 280k (379k) 280k (379k) 72 (123) 72 (123)

conv4_x 8× 8

 1× 1, 256
3× 3, 256
1× 1, 1024

×36
 1× 1, 256/

√
b− a

3× 3, 256/
√
b− a

1× 1, (256/
√
b− a)× 4

×1 1.12M (1.51M) 136k (333k) × 8 72 (122) 9 (30) × 8

conv5_x 4× 4

 1× 1, 512
3× 3, 512
1× 1, 2048

×3
 1× 1, 512/

√
b− a

3× 3, 512/
√
b− a

1× 1, (512/
√
b− a)× 4

×1 4.46M (6.04M) 553k (745k) × 8 72 (122) 9 (15) × 8
Total 58.23M 9.09 M 3799 601

Table 5.1 – The structure and approximated statistics of ResNet152
and RRR-Net. We call “Baseline" the original ResNet152 [10]. We call“Ours" the reduced and recycled architecture. Reduction means re-moving blocks from each phase (until one block in each phase). Recy-cling means splitting blocks in the conv4_x and conv5_x phases intomultiple branches while preserving the total number of parametersand FLOPs. This table assumes the input size is 128× 128. Buildingblocks are shown in brackets, with the numbers of blocks stacked.For conv4_x and conv5_x in the “Ours" column, blocks are split intobranches, where b denotes the number of branches, and a is a scalarto adjust themodel size. The “Num. parameters" and “FLOPs" columnsassume b = 8. The values in parentheses indicate the statistics of thefirst block of each phase, which is responsible for downsampling. k
= 103, M = 106. FLOPs mean floating-point operations or multiply-adds; they are measured with respect to a single 128 × 128 × 3 imageusing the open source software Pytorch-OpCounter [12].

Section 5.1.2.3.
This study aims at boosting the compactness and efficacy of a pre-trained

modular neural network. Beyond just introducing amodel compression tech-
nique, this research emphasizes howefficiently one could reuse existing knowl-
edge in a pre-trained modular model.

5.1.2 . The RRR principle for image classification

When creating an artifact based on the RRR principle [352], one selects
an object of interest for reuse, then reduces its complexity, and finally recycles
parts of it for some innovative modification. Adopting the RRR principle, our
suggestion to arrive at a high-quality neural network for image classification
is as follows:
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• Reuse: Due to its great performance and simplicity, we choose aResNet152
pre-trained on ImageNet [194] as the basis (backbone).

• Reduction: We reduce the backbone to its basic version by eliminating
potentially dispensable blocks (modules).

• Recycling: We keep the first few blocks (stump) as the feature extractor
and split the remaining blocks into multiple branches to create a voting
ensemble.

We next describe each of these points in more detail.
5.1.2.1 Reuse: description of the pre-trained backbone

+

b=8

+

1 x 1, 64

256-d

relu

relu

relu

1 x 1, 256

3 x 3, 64

(b) Block (c) Branches

+ +

+

+

...

(a) Phase

...

Figure 5.1 – Illustration of phase, block, and branches. (a) A phase representsa group of blocks. (b) A block, also called bottleneck block, stacks 3 convolu-tional layers with a skip-connection. (c) A block can be split into b branches.
We reuse a ResNet152 [10] model pre-trained on ImageNet [194]. This

model consists of five groups of blocks, which we call phases (Table 5.1): conv1,
conv2_x, conv3_x, conv4_x, conv5_x. The conv1 phase contains a convolutional
layer and a max-pooling layer; this can be seen as a special block. All other
phases include multiple bottleneck blocks (Figure 5.1 (a)). A bottleneck block
(Figure 5.1 (b)) consists of 3 convolutional layers and a skip-connection path
(directly connecting input and output). All bottleneck blocks within a phase
are identical, with the exception of the first one, which includes an additional
convolutional layer in its skip-connection path. Feature map downsampling
is performed by conv1, conv3_1, conv4_1, and conv5_1. As seen in Table 5.1,
ResNet152 repeats the same blocks many times in each phase.

While our study focuses on ResNet152, the reduction step described in
Section 5.1.2.2 can, in principle, also be applied to other ResNet architectures.
The important properties are the skip-connections and that we have phases
consisting of identical blocks. In this case, we can configure the phases by
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deciding upon the number of blocks they contain; the initial ResNet152 serves
as a template.

5.1.2.2 Reducing: model block pruning

The ResNet architecture has the benefit of a modular structure consist-
ing of identical blocks with skip-connections. It allows us to perform a neural
architecture search that aims to find the optimal number of blocks in each
phase. Since the goal here is to reduce the network, the maximum number
of blocks in each phase is determined by the original ResNet152 architecture.
To ease the notation, we will name the architectures as ResNet_x1_x2_x3_x4,where xi is the number of blocks used in phase i, the conv1 phase is phase 0.
Following this notation, the original ResNet152 is written as ResNet_3_8_36_3;
the smallest possible network in this regime is ResNet_1_1_1_1, which contains
only one block per phase.

For ResNet152, the search space consists of 2592 possible architectures.
Extensively evaluating all of them once on one dataset could take several
weeks using GPU, which is computationally expensive. Thus, we resort to a
greedy forward selection approach to narrow down the search space. This
approach, termed forward block selection v1, starts with the simplest archi-
tecture ResNet_1_1_1_1 and successively adds one block at a time until no im-
provement can be observed. Within this logic, we fill one phase beforemoving
to the next phase until we get ResNet152 (ResNet_3_8_36_3). The pseudocode
of the procedure is given in Algorithm 2. This method reuses parameters pre-
trained on ImageNet as initialization.

An alternative approach would be to add blocks in a cyclic way i.e., always
add the block to the phase with the fewest blocks and where blocks may still
be added. However, we found in preliminary experiments that these two ap-
proaches lead to the same results, so we do not present results for different
approaches.

5.1.2.3 Recycling: ensembling network branches

One way to recycle a given pre-trained backbone is to split a part of it into
an ensemble of branches. It means, starting from a certain layer, partitioning
convolutional filters and adjusting layer connections so that all subsequent
layers are influenced by exactly one of the filter sets in the partition. It creates
one sub-network (branch) for each filter set in the partition (Figure 5.1 (c)).
Each branch ends with a branch-specific output layer with softmax activation.
The branches aremerged by averaging the probability distributions predicted
by different branches. In this sense, the branches can be seen as ensemble
members whose votes are aggregated with an average.
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Algorithm 2: The forward block selection v1 algorithm for re-ducing ResNet.
1 Input: ResNet152, Task={TrainSet, TestSet}
2 Output: MiniNet

1: Initialize
2: MiniNet = ResNet_1_1_1_1 + new_classification_layer
3: MiniNet.train_all_layers(TrainSet, epochNum)
4: Accuracy∗ = MiniNet.evaluate(TestSet)
5: OldAccuracy = Accuracy∗
6: # Traverse phases
7: for P = 2 : 5 do
8: # Traverse blocks
9: #maxBlock(2) = 3,maxBlock(3) = 8
10: #maxBlock(4) = 36,maxBlock(5) = 3
11: for i = 2 : maxBlock(P ) do
12: # Add block i in phase P .
13: MiniNet = MiniNet +convP _i
14: # Continue training, no re-initialization.
15: MiniNet.train_all_layers(TrainSet, epochNum)
16: Accuracy = MiniNet.evaluate(TestSet)
17: if (Accuracy - OldAccuracy) / Accuracy∗ ≥ ϵ then
18: OldAccuracy = Accuracy
19: continue
20: else
21: returnMiniNet −convP _i
22: end if
23: end for
24: end for

We seek to do the branching in such a way that the overall model size and
FLOPs (multiply-adds) are preserved. Each branch is constructed by adjusting
the number of output channels of convolutional layers. For each branch, the
number of output channels Cb is computed as follows:

Cb =

⌊
Co√
b

⌋
− a (5.1)

whereCo is the number of output channels in the original pre-trained con-
volutional layer, ⌊·⌋ is the floor function, and b is the number of branches to
create. The variable a in Equation 5.1 is useful to ensure that the total num-
ber of parameters in the branches is reduced or equal to the original model’s
parameter count. The value of a relies on: the number of branches b, the
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starting point from which to split the model, the number of classes of the
downstream task, and themodel structure (e.g., ResNet_1_1_1_1 or ResNet152).
a can be empirically computed by finding the smallest value that satisfies the
total parameter count constraint. This computation results in each branch
having Cb output channels as shown in Table 5.1 (“Ours” columns).

Each branch is initialized with a part of pre-trained kernels. In Algorithm 3,
we describe the process of splitting pre-trained layers into a set of branches.
The input to Algorithm 3 is the parameter tensors P of the pre-trained model
and the number of desired branchesN . The output of this algorithm is the pa-
rameter tensors T of the branches. Here, tensor indices are assumed to start
at 1. At layer k, the shape of the 4-dimensional parameter tensor in a con-
volutional layer is (Ck,out, Ck,in, sh, sw). Ck,out means the number of output
channels, Ck,in means the number of input channels, sh and sw are height
and width of convolutional kernels. For the pre-trained model, we add the
subscript o; for the branch, we add the subscript b. This is also illustrated in
Figure 5.2.
Algorithm3: The algorithmdescribing how to split pre-trainedkernels into branches.
Require: P the parameter tensors of the pre-trained model
Require: N denotes the number of branches
1: # Traverse pre-trained layers to split
2: for k = 1 : size(P ) do
3: # Traverse input channels at layer k
4: for x = 1 : Ck,in

b do
5: # Compute output channel indices I
6: if Ck,out

o ⩾ (Ck,out
b ×N) then

7: I = 1 : (Ck,out
b ×N)

8: else
9: I = 1 : Ck,out

o10: while size(I) < (Ck,out
b ×N) do

11: I = concatenate(I, shuffled(1 : Ck,out
o ) )

12: end while
13: I = I[: (Ck,out

b ×N)]
14: end if
15: start = 1, end = Ck,out

b16: for i = 1 : N do
17: Tk[i][:, x, :, :] = Pk[I[start : end], x, :, :]18: start = start+ Ck,out

b , end = end+ Ck,out
b19: end for

20: end for
21: end for
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Figure 5.2 – Illustration of the way to split pre-trained kernels into
branches in RRR-Net.

In our design, we keep the conv1, conv2_x, and conv3_x phases as the
shared stump (preprocessor), andwe create the branches starting fromconv4_1
i.e., the first block of the conv4_x phase. This way, conv4_x and conv5_x ef-
fectively constitute an ensemble of independent sub-networks (branches).
The reason for branching at the last two phases is that these two phases
include the most number of parameters and output channels, allowing for
more branches to be made. By maintaining the total parameter count, the
more branches are created, the fewer parameters each branch will have.

There can be many methods to train this ensemble of branches. One
method is to train branches as if they were individual models without using
specific ensemble training techniques. We call this training approach naive
ensemble. Other choices include bagging [361], Snapshot Ensemble [362] and
Fast Geometric Ensemble [363]. All ensemble trainingmethods can be accom-
panied by random data augmentation to create diverse ensemble members.
The stump (conv1, conv2_x, conv3_x) shared by branches is frozen; it keeps
the pre-trained parameters.

5.1.3 . Experiments
We carry out comprehensive experiments in this section. We evaluate our

methodology’s reduction step compared to finer-grainedpruning approaches.
We performmodel selection and evaluation for our methodology’s reduction
and recycling steps. Finally, we demonstrate the performance of the pro-
posed model on a large benchmark. We also report results from a multi-
criteria comparison, including accuracy, inference time, and the number of
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parameters.
5.1.3.1 Experimental settings

We conduct experiments on Meta-Album micro [3], which is presented in
Section 3.2. It consists of 40 datasets and represents a diverse and challenging
set of data for our models to learn. Each dataset contains 128 × 128 images,
and there are 20 classes per dataset (except for two datasets which only have
19 classes). Each class in each dataset has 20 images for the training and 20

images for the testing (i.e., both the training set and the test set contain 400

images each). The choice of using this benchmark for our experiments is due
to its diversity of problems and because it demonstrates low-resource sce-
narios (i.e., few training examples available). These scenarios are common in
real-world applications and highlight challenges facedwhen developing learn-
ing models with limited data.

Figure 5.3 – Sample images from ICDAR-micro.

We formatted an extra held-out dataset to perform model selection and
hyper-parameter validation: we carved out a dataset from an OCR dataset of
images of alphanumeric characters in the wild [366]. This dataset is dimen-
sioned similarly to the Meta-Album benchmark. It has 20 classes, 15 images
per class for training, 5 images per class for validation, and 20 images per class
for the test. We call this dataset ICDAR-micro (named after its original source).
Some sample images are shown in Figure 5.3.

In the spirit of Automated Machine Learning, we optimize all the hyper-
parameters of our model with the ICDAR-micro dataset. 1 This allows us to
use a simple train/test split whenwe evaluate ourmethod on theMeta-Album
benchmark since we do not need validation splits to select any setting.

Experimenting on the ICDAR-micro dataset allowed us to determine the
following settings: The AdamW optimizer [367] has been chosen, the learning
rate is set to 10−3, the weight decay equals 0.01, the batch size is set to 32, the
cross-entropy has been chosen as the loss function, the model parameters

1. Admittedly, we could have used more datasets, but, as it turns out, we alreadyobtained quite good results with this strategy.
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are initialized with parameters pre-trained on ImageNet [194] (as opposed to
training from scratch). Data augmentation transformations include rotation,
translation, scaling, shear, random brightness/contrast/color change, sharp-
ening, image inverting, gaussian noise, motion blur, Jpeg compression, pos-
terization, histogram equalization, and solarization. Two transformations are
drawn uniformly at random with replacement and then sequentially applied
to each training example.

The number of training epochs for eachmodel is 300. Except for the prun-
ing experiments, we perform model exponential moving average (EMA) dur-
ing the last 60 epochs with a decay rate d = 0.9833 for all compared models
(if applicable). Model exponential moving average is one way to stabilize the
model training and smooth out noises. It keeps a running average θEMA of
the model parameters θ during training. θEMA is updated after each training
epoch as follows:

θEMA
t+1 = dθEMA

t + (1− d)θt+1 (5.2)
where θEMA

t+1 is themodel parameter running average at epoch t+1, θEMA
t is

the model parameter running average at epoch t, θt+1 is the current value ofthe model parameter at epoch t+1, d is the decay rate. The running average
θEMA is used to report the performance (error rate) on the test split.

We also used the ICDAR-micro dataset to tune the reduction and recy-
cling procedure for our low-resource regime: (1) how much pruning of the
original backbone we could do (to reduce inference time and storage); (2)
into how many branches we should split the pre-trained backbone (to gain
performance by ensembling). All experimental results are averaged over re-
peated runs. 95% confidence intervals are computed over repeated runs us-
ing t-distribution.
5.1.3.2 Results from the reduction procedure

In this section, we summarize two results observed in the reduction proce-
dure. First, we compare the inference speed of our methodology’s reduction
step with finer-grained pruning approaches that could be applied to reduce
the network. Second, we study the extent to which we could reduce the net-
work without significantly degrading performance on the validation dataset
ICDAR-micro.
Comparing pruning granularities

This section investigates the potential gain in hardware inference speed
of different pruning granularities; here, we ignore the classification perfor-
mance. We compare 3 levels of pruning granularity: (1) element-wise prun-
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ing, which treats individual parameters as removable modules; (2) channel-
wise pruning, in which channels within a convolutional layer act as removable
modules; (3) block-wise pruning, where a single ResNet block (as seen in Fig-
ure 5.1, one block contains three layers) is considered as amodule that can be
removed (one at a time). Among these, our RRR approach adopts the latter,
the block-wise pruning. Element-wise pruning implementation is the official
pruning package of PyTorch [175], where pruned individual parameters are
set to zero. Channel-wise pruning is the Torch-Pruning implementation [368],
where parameter tensors are effectively slimmed to removepruned channels.
Block-wise pruning skips pruned blocks.

We compare all pruning granularities on the same backbone network:
ResNet152 [10]. To measure the potential gain in hardware inference speed,
we report inference time in seconds, both on CPU (Intel Xeon Gold 6126) and
GPU (GeForce RTX 2080 Ti), across different sparsity levels (Figure 5.4). Spar-
sity is the fraction of parameters that are removed compared to the full ResNet152.
In our experiments, individual parameters or convolutional channels are re-
moved randomly for element-wise pruning and channel-wise pruning, and
the sparsity is approximately uniformly distributed among layers; block-wise
pruning removes blocks following the block order (Algorithm 2).

The results show that element-wise pruning (yellow curves in Figure 5.4)
provides limited speedup, which is expected because the number of parame-
ters does not effectively change, tensor sparsity is not exploited; curve fluctu-
ation corresponds to noise in evaluation. Channel-wise pruning (blue curves
in Figure 5.4) provides limited speedup on GPU but effectively accelerates the
inference on CPU. Our block-wise pruning strategy (red curves in Figure 5.4)
results in the most significant computational gain on both CPU and GPU, par-
ticularly when sparsity increases. The advantage of block-wise pruning over
channel-wise pruning and the poor result of channel-wise pruning on GPU
can be explained by the use of parallel computing in modern CPUs and GPUs.
The computation within each layer is parallelized because it involves matrix
multiplications [369, 370]. The effect of channel-wise pruning boils down to
reducing the parameter tensor size within each layer. Its benefit diminishes
when there is more parallelism in the hardware processor, which is the case
of GPUs [371, 372]. On the other hand, ResNet152, like many other modern
neural networks, consists of sequentially concatenated layers. Computation
between layers is blocking; the execution of one layer needs to wait for the
result of the previous layer. Removing blocks (hence layers) reduces the num-
ber of sequentially blocking computations.
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Figure 5.4 – Inference timeof the prunedmodel. The upper figure (A) showsthe evaluation on CPU; the lower figure (B) shows the evaluation on GPU. Ver-tical axes show the number of seconds required to run one forward pass forone image; the lower, the better. Horizontal axes denote sparsity. 0%meansno pruning, 90% means 90% of parameters are removed. Curves and 95%confidence interval are computed with at least 200 independent runs.
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Figure 5.5 –Optimizing the number of blocks. Experiments on ICDAR-microdata, applying the forward selection algorithm presented in Algorithm 2 (bluecurve). The red horizontal line indicates the final performance of the controlexperiment. The vertical axis denotes the error rate (1 - accuracy) on the testset; the lower, the better. Curves and 95% confidence intervals are computedwith 5 independent runs (5 random seeds).

Reducing the number of blocks

We ran the forward selection algorithm, presented in Algorithm2, on ICDAR-
micro to determine the smallest number of blocks we could keep in our low-
resource regimewithout significantly degrading performance. The results are
shown in Figure 5.5. The blue curve is the learning curve of the forward se-
lection algorithm, where each point in the curve is obtained by training the
candidate architecture for 300 epochs. In this plot, the stopping criterion is
deactivated, so the forward selection algorithm added 47 blocks in the end,
which corresponds to 14100 epochs in total. As a control experiment, we
compare the performance of the forward selection algorithm with training
ResNet_1_1_1_1 for the same overall budget of epochs; the red horizontal line
shows the final performance of training ResNet_1_1_1_1 for 14100 epochs. We
observe that the final point of the blue curve does not significantly improve
upon the red horizontal line.

Hence, these results showed that themodel ResNet_1_1_1_1 is sufficient for
the given type of tasks and budget, and addingmore blocks does not result in
significant improvement. Therefore, the recycling/ensembling technique will
be applied to ResNet_1_1_1_1 in subsequent experiments.
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5.1.3.3 Results from the recycling procedure (varying thenumber
of branches)

Since our approach preserves the total parameter count in the Recycling
step, the number of branches provides a trade-off between the number of
ensemble members and the capacity of each member. We used ICDAR-micro
again to determine anoptimal number of branches for our low-resource regime.

In Figure 5.6, we vary the number of branches recycled from our back-
bone (trained by the naive ensemble approach). The results show that “8
branches” is optimal (performances are quite insensitive to the exact number
of branches around that point). In what follows, we use ResNet_1_1_1_1 with 8

branches (splitting starts from conv4_1), denoted as ResNet_1_1_1_1-8_branch
or RRR-Net.

We also tried alternative ensembling methods, including bagging [361],
Snapshot Ensemble [362], and Fast Geometric Ensemble (FGE) [363], to train
branches on the ICDAR-micro data. However, the experiments showed that
the naive ensemble approach leads to better performances than the alter-
native ensembling methods. For this reason, we adopt the naive ensemble
approach to train branches.
5.1.3.4 Results on the Meta-Album benchmark

The results on theMeta-Albumbenchmark [3] are shown in Figure 5.7. We
compare 5 models:

• [A] blue Training the last layer of the pre-trained ResNet152
• [B] red Retraining all layers of the pre-trained ResNet152
• [C] green ResNet_1_1_1_1 without splitting
• [D] purple ResNet_1_1_1_1 without splitting but we apply dropout [365]
on the last two blocks

• [E] yellow ResNet_1_1_1_1-8_branch (RRR-Net) trained by the naive en-
semble approach.

We use models [A] and [B] as baselines. Depending on the distribution
shift between thepre-training dataset (ImageNet) and the target dataset,mod-
els [A] and [B] can have different relative rankings. Model [E] is our proposed
model using ensembling with 8 branches. Models [C] and [D] are controls
for [E]. Model [C] is the reduced network without splitting and ensembling;
it only has one branch. Model [D] replaces the recycling step of model [E]
with dropout [365]: in the last two blocks, we inserted dropout after each ac-
tivation function (except for the softmax activation). Of several tried dropout
rates (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), we report the most favorable result for
model [D] (dropout rate = 0.05).

The Meta-Album benchmark [3] is challenging since it covers a wide diver-
sity of domains and scales. As shown in Figure 5.8, the ranking of different
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Figure 5.6 – Optimizing the number of branches. Experiments on IDCAR-micro data, varying the number of branches. Branches are trained by thenaive ensemble approach. In this plot, the number of branches is doubledeach time, starting from 1 (ResNet_1_1_1_1 without splitting) up to 128. The op-timum (lowest error rate) is at 8 branches. Curves and 95% confidence inter-vals are computed with 5 independent runs (5 random seeds).

models varies with respect to each dataset. None of the models consistently
outperforms all others in all datasets. For example, the overall best baseline
model [A] failed on datasets such as ARC and ASL_ALP. The degree of simi-
larity between the target dataset and the pre-training dataset (ImageNet) af-
fects the models’ relative performance. This pattern is particularly visible for
datasets of macroscopic animals (DOG, AWA), for which last-layer fine-tuning
([A]) clearly outperforms the other models. Pre-trained features are readily
available for these datasets, except for the last layer. On the other hand,
the character recognition datasets (MD_6, MD_5_T, MD_MIX, MD_5_BIS) are
very dissimilar to ImageNet; retraining all layers ([B]) clearly outperforms the
other models in these character recognition datasets. In contrast, the pro-
posed model [E] outperforms the other models on a wide variety of datasets,
including datasets that are quite different from ImageNet e.g., BCT, PNU, and
POT_TUB from themicroscopy domain; BRK, TEX, and TEX_ALOT from the tex-
ture domain; UCMLU and RSICB from the remote sensing domain.

The diversity of the Meta-Album benchmark [3] made us consider the
overall performance of the models under examination. We calculated the
average error rates of these 5 models by averaging over the 40 datasets in
Meta-Album. The average error rates for these 5 models are 35.8%, 36.0%,
40.3%, 39.9%, 35.5%. Similarly, the median error rates of these 5 models
are 32.0%, 34.1%, 38.2%, 36.0%, 29.2%. Our proposed model [E] is found to
have the best average and median error rates, as shown in Figure 5.9. To fur-
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Figure 5.7 – RRR-Net results on the Meta-Album benchmark. The verticalaxis is the error rate on the test set; the lower, the better. Five models areshown for each dataset: [A] training the last layer (classification head) of thepre-trained ResNet152; [B] retraining all layers of the pre-trained ResNet152;[C] ResNet_1_1_1_1 without splitting; [D] ResNet_1_1_1_1 without splitting but weapply dropout on the last two blocks; [E] ResNet_1_1_1_1-8_branch (RRR-Net)trained by the naive ensemble approach. The 95% confidence intervals arecomputed with 3 independent runs (3 random seeds).
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Figure 5.10 – Multi-criteria comparison. Our model [E] performs similarlyto the overall best baseline [A] while being significantly smaller and faster.Hardware inference time (for one image) is measured with Intel Xeon Gold6126 and GeForce RTX 2080 Ti.

ther validate these findings, we conducted Wilcoxon signed-rank tests (one-
tailed) [373]. These statistical tests indicated that model [E] significantly out-
performs model [D] with a p-value of 3× 10−12 and significantly outperforms
model [C] with a p-value of 8×10−11. Model [E] is also found to be significantly
better than model [B] with a p-value of 0.036. On the other hand, model [E]
performs comparably well to model [A] with a p-value of 0.16. These results
indicate that the proposed model [E] performs well on this benchmark with
40 datasets.

Furthermore, we compared the overall best baseline model [A] and our
proposed model [E] with respect to five evaluation criteria. These criteria
include (1) the average error rate across all 40 datasets in Meta-Album; (2)
the number of parameters; (3) the FLOPs (multiply-adds), which indicate the
theoretical inference speed; (4) the inference time on CPU; and (5) the infer-
ence time on GPU. We represent the comparison as a spider graph depicted
in Figure 5.10. Here the baseline error rate (35.8%) corresponds to the av-
erage of the blue bars ([A]) in Figure 5.7, which is the strongest baseline on
this benchmark. “ours” refers to model [E] ResNet_1_1_1_1-8_branch, whose
error rate (35.5%) corresponds to the average of the yellow bars ([E]) in Fig-
ure 5.7. We observe that model [E] uses significantly fewer parameters and
FLOPs (multiply-adds) and achieves faster inference speed on both CPU and
GPU. In summary, Figure 5.10 supports the advantage of our model; it indi-
cates that our model ([E]) performs similarly well to the overall best baseline
while being significantly more frugal.
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5.1.4 . Discussion
In this section, we studied the benefits of adjusting pre-trained modular

neural network architectures for image classification, emphasizing their com-
pactness and efficiency. Our Reduction step can be categorized as a pruning
technique performed at the coarse granularity, while our Recycling step par-
titions pre-trained parameters into multiple branches.

Beyond merely suggesting a model compression technique, this study
highlights the strategic reuse of knowledge from pre-trained models, follow-
ing the “Reuse, Reduce, and Recycle” paradigm (Section 5.1.2). Empirically,
we showed that by removing a large number of blocks (one form of mod-
ularity) from a large pre-trained ResNet model, significant resource savings
(in computation and storage) could be achieved without considerable loss in
classification accuracy. This highlights the feasibility of repurposing parts of
a pre-trained modular neural network instead of using it wholesale. On the
other hand, our findings indicate that branching a pre-trained neural network
into an ensemble (another form of modularity) could boost classification per-
formance while preserving the same amount of computation and storage.

Overall, the resulting model matches the performance of the overall best
baseline (if not better) while being smaller and faster, demonstrating the fea-
sibility of efficiently reusing a pre-trained modular neural network.

It is worth noting that these results are obtained by performing all model
selection processes (the Reduction step in Section 5.1.3.2, the Recycling step
in Section 5.1.3.3) on a validation dataset (as outlined in Section 5.1.3.1). We
have refrained from adjusting the Reduction and Recycling steps for each of
the 40 datasets present in the final evaluation benchmark (Meta-Album). This
approach strengthens the robustness and relevance of our results.

Building upon the insights presented in this section, we are expanding
our exploration to other modular neural network architectures, notably the
increasingly popular vision transformer models [119, 374]. In our ongoing re-
search, we are exploring a differentiable method anchored by performance
proxies. This pursuit is currently a work in progress.
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5.2 . Conclusion

In this chapter, we focused on the modularity in neural network archi-
tectures. Pre-trained neural networks are valuable assets in Deep Learning
because many computational resources and human efforts have been put
into building them. Reusing such assets aligns with our objective: achieving
resource-efficient Deep Learning.

The modularity of pre-trained neural networks is evident in their architec-
ture, segmented into modules. These can be convolutional kernels, blocks,
and others, depending on granularity. Thismodular design allows for pruning
techniques, aiming to eliminate unnecessary modules, leading to improved
utilization efficiency, such as faster inference speed and reduced storageneeds.

In this context, we introduced RRR. RRR uses a forward search process
to discard unnecessary modules. Additionally, it uses an innovative recycling
technique, breaking a pre-trained neural network into an ensemble of mod-
ules with the aim of enhancing performance. Results indicated that we can
significantly enhanceutilization efficiency of amodular pre-trainedmodelwhile
preserving performance, demonstrating the viability of using only parts of a
modular model.

In conclusion, this chapter highlights the benefits of leveragingmodularity
in the architecture of neural networks to enhance utilization efficiency.
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6 - Conclusion and future work

In this final chapter, we summarize the main contributions of this thesis,
discuss the implications and limitations, and suggest directions for future re-
search.

6.1 . Summary of main contributions

The objective of this thesis is to improve the efficiency of Deep Learning
in low-resource scenarios. The principle of modularity, which suggests that
complex systems can be decomposed into smaller components or modules,
serves as the guiding principle. As it offers various advantages e.g., ease of
conceptualization, scalability, module reusability, this concept is prevalent in
different fields and disciplines e.g., biology, system design, computer science,
mathematics.

Thoughmodularity is intuitively simple to understand as a concept, defin-
ing it is not evident. We began by comparing different definitions of modular-
ity and found the foundational definition, which serves as the framework of
this thesis. Using this definition, we conducted a literature survey of themod-
ularity principle in Deep Learning. We reviewed its presence in Deep Learning,
categorizing it along three axes: data, task, andmodel, which characterize the
life cycle of Deep Learning. Data modularity refers to the observation or cre-
ation of data groups for various purposes, task modularity refers to the de-
composition of a task into sub-tasks, and model modularity means that the
architecture of a neural network system can be decomposed into modules.

In this thesis, we havemade contributions in the scope of data modularity
and model modularity, which focus on improving the training and utilization
efficiency of Deep Learningmodels, respectively. We have also contributed to
the field of task modularity when considering the privacy evaluation process
for Deep Learning models.

Our contributions in the field of data modularity include the proposition
of OmniPrint, a data synthesizer, and Meta-Album, a meta-dataset, as well as
an investigation into the effects of data modularity. This investigation, aided
by the proposed OmniPrint and Meta-Album, delves into the relationship be-
tween training efficiency and the way to organize training data samples in the
context of few-shot learning.

Our contribution in the field of task modularity centers on the conception
of LTU, a modular evaluation mechanism tailored to safeguard the privacy of
Deep Learningmodels. By decomposing the evaluation process into indepen-
dent modules, we ensured the reliability of the assessment.
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Our contribution in the field of model modularity focuses on the efficient
reuse of a pre-trainedmodularmodel to improve utilization efficiency. Specif-
ically, we introduced the “Reuse, Reduce, and Recycle” approach, which ap-
plies reduction and recycling techniques to a pre-trained ResNet model. Re-
sults show that our approach significantly improves utilization efficiency.

The work presented in this thesis has several implications.
• This thesis highlights the significance of themodularity principle in Deep
Learning and demonstrates its benefits in selected subjects of Deep
Learning.

• OmniPrint and Meta-Album provide valuable assets for the research
community to investigate the effects of datamodularity and benchmark
few-shot learning, transfer learning, and meta-learning algorithms.

• Our results of the investigation of data modularity reveals that episodic
meta-training, an instance of datamodularity, could improve the perfor-
mance of few-shot learning methods if applied judiciously e.g., in com-
bination with monitoring the depth of fine-tuning. This also highlights
the importance of careful reuse of pre-trained models.

• The LTU evaluation mechanism echoes the interplay observed in Gen-
erative Adversarial Networks and the teacher-student paradigm, high-
lighting the significance of adversarial learning.

• The “Reuse, Reduce, and Recycle” strategy showcases the potential of
reusing segments of pre-trainedDeep Learningmodels rather than their
entirety. Unlike themajority of existing pruningmethods, our approach
operates at a coarse-grained level, pruning entire blocks within the se-
quential chain of a neural network. This coarse-grained pruning enables
a substantial gain in inference speed on modern hardware.
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6.2 . Limitations and directions for future work

Data modularity, task modularity and model modularity
As elaborated in Chapter 2, we interpret the modularity principle in Deep

Learning through three different yet related axes: data modularity, task mod-
ularity, and model modularity, which collectively characterize the life cycle of
Deep Learning. In this thesis, we have made contributions related to all three
forms of modularity. A potential avenue for future work could involve exam-
ining the interrelationships between these three forms ofmodularity i.e., their
mutual influence and how to leverage this interplay to enhance the efficiency
of Deep Learning models. For instance, task modularity often correlates with
model modularity as sub-tasks are typically managed by separate neural net-
work modules e.g., in Mixture-of-Experts models [45, 124, 48]. It would be
worthwhile to explore whether certain forms of data modularity could have a
synergy withmodelmodularity. Additionally, it would be beneficial to develop
a quantitative measure for the degree of modularity in the context of Deep
Learning. This would enable the optimization towards an optimal degree of
modularity for some purposes.

Chapter 2 also provides a survey on modularity in Deep Learning. Its find-
ings unveil potential directions for future research. For instance, McNeely-
White et al. [248] and Bouchacourt et al. [249] demonstrated that, given the
same training data, learned features exhibit similar properties across models
with markedly different architectural inductive biases. This raises a pivotal
question: is it still worthwhile to enhance neural network architectures if data
predominantly influence learning outcomes [375]? Future studies could cor-
roborate the findings ofMcNeely-White et al. [248] andBouchacourt et al. [249]
by extending their research to a broader range of models and datasets. If
these results persist, it would be crucial to theoretically ground these results.
Another openquestion for future research involves determiningwhether neu-
ral networks can learn and behave compositionally [67, 376], which necessi-
tates a domain-agnostic approach to test the compositionality of neural net-
works.
OmniPrint and Meta-Album

In Section 3.1, we introduced OmniPrint, a data synthesizer for printed
isolated characters. While it should provide a useful tool to conduct Deep
Learning research as is, it can also be customized to become an effective OCR
research tool [158]. In some respects, OmniPrint goes beyond state-of-the-
art software to generate realistic characters. In particular it has the unique
capability of incorporating pre-rasterization transformations, allowing users
to distort characters by moving anchor points in the original font vector rep-
resentation. Still, many synthetic data generators meant to be used for OCR
research put emphasis on other aspects, such as more realistic backgrounds,
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shadows, sensor aberrations, etc., which havenot beenour priority. Ourmod-
ular program interface should facilitate such extensions. Another limitation
of OmniPrint is that, so far, emphasis has been put on generating isolated
characters, although words or sentences can also be generated. Typeset text
is not the focus of this work. Future work could involve enhancing OmniPrint
by adding more transformations and utilizing it in a number of other applica-
tions, including recognizing printed text in the wild and generating captchas.

In Section 3.2, we presented Meta-Album, a meta-dataset consisting of 40
image classification datasets. While preparing the datasets, we identified sev-
eral biases, including correlations between class labels and nuisance variables
e.g., background, luminosity, contrast, color spectrum, position, and orienta-
tion of objects. In this thesis, we avoided correcting such biases, to avoid
introducing yet more bias. Future work could involve examining the problem
of bias [377, 378] in these datasets and potentially organizing competitions
where training and test data exhibit intentional distribution shifts.
Episodic meta-training in few-shot learning

In Section 3.3.1, we observed that, in the context of few-shot learning [98],
having internally cohesivemetadata-based episodes, where data samples are
more similar within episodes than between episodes for both meta-training
and meta-test, simplifies the learning problem for few-learning algorithms.
This line of research could be extended to explore the influence of cohesion
levels in meta-training episodes on the performance and efficiency of few-
shot learning algorithms, while keeping the meta-test episodes fixed.

Section 3.3.2 demonstrates that episodicmeta-training, an instance of data
modularity, can yield superior performances compared to batchmeta-training.
This analysis was conducted using classical few-shot learning algorithms, such
as MAML [98] and Prototypical Networks [99]. We did not extend this study to
the top-ranked solutions of the competition as those solutions are too com-
plex to modify for a fair comparison [5]. In future competitions, we could
encourage participants to propose solutions using a more unified API. This
would facilitate the ablation studies in Section 3.3.2, allowing further investi-
gation into the effects of episodic meta-training.

In Section 3.3.2, we empirically investigated the impacts of episodic meta-
training. It would also be interesting to theoretically examine the benefits of
episodic meta-training, which could guide the design of novel few-shot learn-
ing algorithms in a more principled manner.
LTU for assessing privacy concerns

In Chapter 4, we proposed the LTU evaluation mechanism for assessing
the robustness of Deep Learning models against membership inference at-
tacks. In this thesis, we illustrated its usage using a ResNet model defended
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by either supervised learning or unsupervised domain adaptation, with the at-
tack strategy rooted in gradient descent. Potential future avenues include the
exploration of diverse defender and attacker strategies, as well as the possi-
bility of organizing membership inference attack competitions leveraging the
LTU evaluation mechanism.
RRR for pre-trained models

In Chapter 5, we proposed the RRR approach to improve the utilization ef-
ficiency of a pre-trained model. In this thesis, we demonstrated its utilities on
ResNet [10]. A promising future direction involves exploring its potential with
other neural network architectures and proposing necessary adaptations.

On the other hand, the RRR approach has an ensemble nature as its recy-
cling step splits pre-trained parameters into parallel branches. A future direc-
tion could involve improving the ensemble training method with the objec-
tive of improving classification performance [230]. Moreover, the ensemble
nature of the RRR approach lends itself to the predictive uncertainty compu-
tation [379, 380], and this combination could be explored in future work.

6.3 . Conclusion

The emphasis on modularity throughout this thesis highlights its signifi-
cance in Deep Learning. By breaking down various aspects of Deep Learn-
ing into separate modules, we have illustrated how complex challenges can
be addressed, whether by optimizing data organization, refining tasks, or im-
proving model architectures.

The advantages of this modular perspective are clear. It promotes adapt-
ability, reduces interference, and enhances the reusability of existing assets.
Embracing modularity could pave the way for more efficient Deep Learning.
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A - List of definitions of modularity from the
literature

Modularity can be defined as subdivision of a complex object into
simpler objects. The subdivision is determined either by the struc-
ture or function of the object and its subparts.

(Schmidt et al. [70])
Modularity is the property of a system whereby it can be broken
down into a number of relatively independent, replicable, and
composable subsystems (or modules).

(Amer et al. [52])
Modularity as a system design principle is apprehended here as
the extent to which processes can be decomposed into modules
to be executed in parallel and/or in series.

(Modrak et al. [17])
In a wide range of fields, the word “modular” is used to describe
complex systems that can be decomposed into smaller systems
with limited interactions between them. [...] Roughly speaking,
a complex system is said to be modular when it can be decom-
posed into smaller systems, or components, with limited or con-
trolled interactions between them.

(Avigad [21])
Modularity is an attribute of a system that can be decomposed
into a set of cohesive entities that are loosely coupled.

(Pereira-Leal et al. [38])
The modularity is a general systems concept: it is a continuum
describing the degree to which a system’s components can be
separated and recombined.

(Schilling [73])
A module is an entity which owns a function (or service) at a de-
fined performance and can share that function through the em-
ployment of an integral interface. A modular architecture is a
entity composed of multiple modules, requiring (1) Behavior and
boundary conditions to be compatible and consistent for module
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types to join; (2) Contains least 2 modular functions and 2 inter-
face; (3) Of any size and complexity; (4) Will merge or join through
interoperable interfaces; (5) Can transfer and/or share functional
content; (6) The propensity to form modular entities exists prior
to the formation of modules.

(Gentile [15])
From a manufacturing perspective, a system is deemed modular
if: (1) the equipment units that comprise it form clusters (mod-
ules) of dense connectivity (i.e., difficult module assembly tasks
are performedoff-site), (2) connectivity betweenmodules is sparse
(i.e., easy assembly tasks are performed on-site), (3) the num-
ber of modules is small, and (4) the module dimensions facilitate
transportation.

(Shao et al. [16])
The modularity is, up to a multiplicative constant, the number
of edges falling within groups minus the expected number in an
equivalent network with edges placed at random.

(Newman [39])
A system can be considered ’modular’ if its functions are made of
multiple dimensions or units to some degree.

(Fodor [26])
Modularity can be intuitively defined as “the integration of func-
tionally related structures and the dissociation of unrelated struc-
tures”.

(Bongard [59])
(Modularity is) a particular design structure, in which parameters
and tasks are dependent within units (modules) and independent
across them.

(Baldwin et al. [19])
[...] the widespread modularity of biological networks—their or-
ganization as functional, sparsely connected subunits.

(Clune et al. [25])
Modularity is the localization of function within an encapsulated
unit.

(Huizinga et al. [74])
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Modular— (modules) can be formulated independently of each
other.

(Goyal et al. [75])
Modularity, or the capacity for the mechanisms in a system to be
independently modified, [...].

(Chang et al. [55])
In this paper, we define the property of modularity as the ability
to effectively learn a different function for each input instance

(Galanti et al. [76])
the networks are modular in the sense that we could locally (per
node/neuron) ensemble the two networks, [...]

(Wang et al. [77])
Factor independence means that variation in one factor does not
affect other factors, i.e. there is no causal effect between them.
In a disentangled representation factors are also independent in
the representation space. In other words, a factor affects only a
subset of the representation space, and only this factor affects
this subspace. [...] In this paper, we [...] refer to this property as
modularity.

(Zaidi et al. [78])
[...] factored as a set of specialists (incorporating modularity). [...]
there is only a single specialist i.e., without any modularity.

(Goyal et al. [79])
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B - Pre-rasterization transformations in Om-
niPrint

The rendering process of modern digital fonts (TrueType/OpenType) is di-
vided into two phases by the rasterization. Digital fonts are originally stored
as anchor points expressed in font units within the EM square. Before being
able to be rendered into bitmaps, the anchor points are scaled to be aligned
with the device pixel grid. The grid-fitting (also called hinting) and rasterization
are performed by the FreeType engine (Figure B.1).

Figure B.1 – Conversion process from TrueType/OpenType fonts to digital
images. In OmniPrint, pre-rasterization elastic transformation is performedon the original anchor points (yellow), linear transformations of anchor pointsare performed on the scaled anchor points (green).

Pre-rasterization transformations refer to direct manipulation of the an-
chor points of the digital font files. Modern fonts (e.g., TrueType or Open-
Type) are made of straight line segments and quadratic Bézier curves, con-
necting anchor points. OmniPrint uses the low-level Freetype font rasteri-
zation engine [297] (Python binding [381] which is under BSD license), which
makes direct manipulation of anchor points possible. With pre-rasterization
transformations, one can deform the characters without incurring aberra-
tions due to aliasing and generate some local deformations that would be
difficult to achieve with post-rasterization transformations (digital image pro-
cessing) i.e., natural elastic transformation, variation of character proportion,
structured deformation of specific characters, etc.

The implemented pre-rasterization transformations are listed as follows:
• Elastic transformation (pre-rasterization) corresponds to random vi-
bration of independent anchor points. The pseudocode is shown in Al-
gorithm 4. Of note is that elastic transformations are implemented in
both pre-rasterization phase and post-rasterization phase, which can
also be used together. All the elastic transformations mentioned in the
main paper refer to pre-rasterization elastic transformation.

• Stroke width variation Variation of the stroke width e.g., thinning or
thickening of the strokes. Only variable fonts support stroke width vari-
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Algorithm 4: Pre-rasterization elastic transformation
Input: A sequence of characters S, a digital font F , aprobability distribution D
Output: Rendered text image I
// C denotes characters, P denotes anchor points, the function
load loads the initial anchor points of a digital font for a
certain character. The function enumerate returns the index as
well as the value of an array.
// First pass to compute bounding box of the sequence

1 xmin, xmax, ymin, ymax = 0, 0, 0, 0
2 Initialize cache // In order to save random vibration
3 for C in S do
4 for P in load(C, F) do
5 xdelta ∼ D
6 ydelta ∼ D
7 P .x← P .x + xdelta
8 P .y← P .y + ydelta
9 cache.append( (xdelta, ydelta) )
10 xmin, xmax, ymin, ymax← update(xmin, xmax, ymin,ymax, P )
11 end
12 end
13 I ← build_image(xmin, xmax, ymin, ymax)

// Second pass to render text
14 for i, C in enumerate(S) do
15 for j, P in enumerate( load(C, F) ) do
16 P .x← P .x + cache[i][j][0]
17 P .y← P .y + cache[i][j][1]
18 end
19 I ← fill_image(I, C)
20 end

154



ation, each variable font has its own continuous range of permissible
stroke width.

• Variationof character proportion e.g., variation of length of ascenders
and descenders by some font units.

• Linear transformations Rotation, shear, scaling, stretch are assem-
bled into a 2 × 2 matrix, see Equation B.1. θ denotes the angle (in de-
gree) of counter clockwise rotation, λ1, λ2 denote the shear parameters
along horizontal axis and vertical axis respectively, s1, s2 denote the scal-ing (stretch) parameters along horizontal axis and vertical axis respec-
tively. If s1 = s2, this corresponds to a scaling operation, otherwise
this corresponds to a stretch operation along horizontal or vertical axes.
The stretch along main diagonal axis and anti-diagonal axis by setting
β = γ ∈ R or λ1 = λ2 ∈ R [301]. The four parameters α, β, γ, δ allow in-
serting an arbitrary linear transform into the default linear transforma-
tion pipeline. Users are also allowed to directly set the values of a, b, d, e
i.e., the composed linear transformation matrix L.

L =

(
a b
d e

)
=

(
cos θ − sin θ
sin θ cos θ

)(
1 λ1

λ2 1

)(
α β
γ δ

)(
s1 0
0 s2

)
=

(
s1((α+ γλ1) cos θ − (αλ2 + γ) sin θ) s2((β + δλ1) cos θ − (βλ2 + δ) sin θ)
s1((α+ γλ1) sin θ + (αλ2 + γ) cos θ) s2((β + δλ1) sin θ + (βλ2 + δ) cos θ)

)
(B.1)
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C - Post-rasterization transformations in Om-
niPrint

• Translation is performed, if any, when the foreground text is blended
into the background.

• Perspective transformations can be used to imitate the effect of dif-
ferent camera viewpoints. A perspective transformation is generally pa-
rameterized by a 3×3matrix in homogeneous coordinates. The homo-
geneous matrix coefficients are computed from 4 pairs of 2D points in
the two projection planes by solving a linear system.

• Morphological image processing is a set of operations on the shape
of the character and they operate onbinary images (foreground vs back-
ground). In total, 7morphological transformations are available viaOpenCV [382]:
morphological erosion, morphological dilation, morphological opening,
morphological closing, morphological gradient, Top Hat, Black Hat.
• Morphological erosion can be used to thin the stroke width in the
post-rasterizationphase. It erodes away theboundaries of foreground
text and it can detach some previously connected strokes. The prin-
ciple is to apply a 2D convolution, a pixel in the foreground text layer
will be kept only if all the neighbor pixels are within the foreground
area, otherwise it is eroded. The neighborhood is defined by a convo-
lution kernel whose shape can be selected among rectangle, ellipse
or cross-shaped.

• Morphological dilation can be used to thicken the stroke width in
the post-rasterization phase and join detached strokes, which is the
opposite of morphological erosion. A pixel will be put into the fore-
ground if at least one neighbor pixel is within the foreground area.

• Morphological opening is themorphological erosion followedbymor-
phological dilation. It can remove small pixel noises in the background,
if any.

• Morphological closing is the morphological dilation followed by the
morphological erosion, which is the opposite of morphological open-
ing. It can close small holes inside the foreground text, if any.

• Morphological gradient is the difference between morphological di-
lation and morphological erosion of the input image. It can render
hollow text in the post-rasterization phase.

• Top Hat is the difference between the input image and the morpho-
logical opening of the input image.

• Black Hat is the difference between the morphological closing of the
input image and the input image.
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• Gaussian blur is implemented using scikit-image [383]. In the synthesis
pipeline, Gaussian blur is usually applied before downsampling to avoid
aliasing.

• Variation of contrast, brightness, color enhancement, sharpness is
implemented using jungImgaug2020 [384].

• Elastic transformation (post-rasterization) [115, 384] moves pixels lo-
cally around using displacement field. Depending on parameters, this
transform can produce pixelated images or smooth deformation.

• Foregroundfilling Foreground text can be filled either by uniform color
or by natural image/texture. The sampling distribution (Figure C.1) of
random color is from [385] (MIT License). When using random color
for both foreground text and background, OmniPrint automatically en-
sures that foreground and background colors are visually distinguish-
able by thresholding the Delta E value (CIE2000). The computation of
the Delta E value (CIE2000) is enabled by [386] (BSD-3-Clause License).

• Text outline can be generated and filled either by uniform color or by
natural image/texture.

• Background blending can be done in two ways: (1) naively paste the
foreground text onto the background while considering the mask; (2)
Poisson Image Editing [387] which ensures seamless blending, this is
particularly useful in case of natural background. The implementation is
from [388], which is under Apache License 2.0. Background can be filled
by uniform color, natural image/texture or uniform color augmented
with a random regular polygon.

Figure C.1 – Kernel density estimation of the marginal color distribution.Each curve is the estimated distribution of one color channel.
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D - Alphabets in OmniPrint

Here we present the character selection criteria for OmniPrint:
• For Latin script, we included basic uppercase and lowercase letters, all
the variants in different European languages as well as the International
Phonetic Alphabet. They are classified into basic Latin uppercase, basic
Latin lowercase, Latin-1 Supplement, Latin Extended-A, Latin Extended-
B, IPA letters and IPA for disordered speech and sinology, as defined in
Unicode standard.

• Chinese characters, also known as CJK Unified Ideographs, are numer-
ous and their usage in real life are extremely imbalanced. In conse-
quence, weonly includedChinese characters fromTable ofGeneral Stan-
dard Chinese Characters [389]. These Chinese characters are divided
into three levels containing 3500, 3000 and 1605 characters respectively.
Characters in group 1 and 2 (the first 6500) are designated as common.
Different from other writing systems, the distinction between simplified
Chinese characters, traditional Chinese characters, Japanese Kanji and
Korean Hanja is only handled by fonts in principle, because many of
them share the same code points. The only way to distinguish them is
the fonts’ rendering. Generally, the fonts that were designed for sim-
plified Chinese characters should never be used when rendering tradi-
tional Chinese text or Japanese text, and vice versa. Otherwise, it can
be unintelligible or be unacceptable for native speakers. To avoid this
overhead, we only aim to render simplified Chinese characters.

• For Japanese, all of Hiragana and Katakana are included. Note that each
letter of these two scripts appears twice in the Unicode standard, one
corresponds to the normal-sized version, the other is the smaller ver-
sion. We only included the normal-sized versions.

• For Korean, there are up to 11172 unique syllabic blocks, we only included
2350 syllabic blocks which are assumed to be commonly used.

• All letters of Cyrillic script are not included. Only modern Russian alpha-
bet is included, which consists of 66 upper case and lower case letters.

• Writing systems like Abjad (Arabic, Hebrew, etc.) and Abugida (Thai,
Lao, Tibetan, Devanagari, Bengali, etc.) are only partly included. Typ-
ically, we only included consonants, independent vowels and digits of
these languages. For these scripts (Khmer, Balinese, Bengali, Devana-
gari, Gujarati, Myanmar, Oriya, Sinhala, Tamil, Telugu, Tibetan, Thai and
Lao.), dependent vowel signs were excluded, independent vowels were
included if there are any.

• Even though the Mongolian script has been adapted to write languages
such asOirat andManchu, we only included basicMongolian letters and
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Mongolian digits.
• For the Arabic script, we only included the 29 Arabic letters. For the
Hebrew script, we only included the 27 Hebrew letters.

• All of the Ethiopic syllables available in the Unicode standard are in-
cluded.

• Commonpunctuations and symbols, ASCII digits, somemusical symbols
and some mathematical operators are also included. However, neither
of the collected fonts fully support these musical symbols.
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E - OmniPrint for benchmarkingdomainadap-
tation algorithms

Figure E.1 – Domain adaptation. A → B means OmniPrint-metaA is sourcedomain and OmniPrint-metaB is target domain, A,B ∈ 3, 4, 5. F → MmeansFake-MNIST is source domain andMNIST is target domain. Mean andmedianare computed over 5 methods tried.
This section showcases the utility of OmniPrint in benchmarking domain

adaptation [395], one formof transfer learning [349]. SinceOmniPrint-meta[1-
5] datasets, introduced in Section 3.3.1, share the same label space and only
differ in styles and transforms, they lend themselves to benchmarking domain
adaptation. We created a domain adaptation benchmark, called OmniPrint-
metaX-31 based on OmniPrint-meta[3-5] (last 3 datasets). Inspired by Office-
31 [396], a popular domain adaptation benchmark, we only used 31 randomly
sampled characters (out of 1409), and limited ourselves to 3 domains, and 20
examples per class. This yields 6 possible domain adaptation tasks, for each
combinations of domains.

We tested each one with the 5 DeepDA unsupervised domain adaptation
methods [397]: DAN [390, 391], DANN [392], DeepCoral [393], DAAN [394] and
DSAN [347]. The experimental results are summarized in Figure E.1 and Ta-
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Table E.1 – Unsupervised domain adaptation results on OmniPrint-metaX-31. metaA → metaB means the source domain is OmniPrint-metaA, the target domain is OmniPrint-metaB, where A,B ∈ 3, 4, 5.The 95% confidence intervals are computed with 8 random seeds.
meta3→meta4 meta4→meta3 meta3→meta5 meta5→meta3 meta4→meta5 meta5→meta4

DAN [390, 391] 18.0 ± 2.4 3.2 ± 0.0 25.8 ± 1.7 3.5 ± 0.3 10.1 ± 16.0 10.7 ± 16.5DANN [392] 72.2 ± 2.8 96.8 ± 0.5 65.6 ± 2.9 82.2 ± 2.7 79.8 ± 1.2 81.5 ± 2.1DeepCoral [393] 22.9 ± 2.5 84.6 ± 1.5 28.6 ± 1.7 69.6 ± 2.5 57.0 ± 1.3 60.2 ± 1.0DAAN [394] 22.3 ± 1.8 84.5 ± 2.1 25.1 ± 1.7 59.9 ± 5.9 50.9 ± 1.5 53.3 ± 2.3DSAN [347] 79.3± 2.3 96.9± 0.3 66.4± 2.5 93.5± 0.8 80.5± 1.0 82.8± 1.9

Average 42.9 73.2 42.3 61.7 55.7 57.7Median 22.9 84.6 28.6 69.6 57.0 60.2

Figure E.2 – Example images from Fake-MNIST. Random pre-rasterizationelastic transformation, horizontal shear, rotation and translation were used.

ble E.1. We observe that transfers A → B when A is more complex than
B works better than the other way around, which is consistent with the do-
main adaptation literature [398, 399, 400]. The adaptation tasks 4 → 5 and
5 → 4 are similarly difficult, consistent with Section 3.3.1. We also observed
that when transferring from the more difficult domain to the easier domain,
the weakest baseline method (DAN [390, 391]) performs only at chance level,
while other methods thrive.

We also performed unsupervised domain adaptation from a dataset gen-
erated with OmniPrint, which we call Fake-MNIST, to MNIST [120], as shown
in Figure E.1. Fake-MNIST contains 3000 white-on-black character images for
each of the 10 digits. Random pre-rasterization elastic transformation, hor-
izontal shear, rotation and translation were used to synthesize Fake-MNIST.
Figure E.2 shows some example images from Fake-MNIST. The performances

Table E.2 – Unsupervised domain adaptation from Fake-MNIST to
MNIST. 95% confidence intervals are computed with 27 random seeds.

DAN DANN DeepCoral DAAN DSAN Average Median
Fake-MNIST→MNIST 94.8 ± 0.1 98.0 ± 0.1 92.4 ± 0.2 93.3 ± 0.2 98.2± 0.1 95.34 94.8
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of the 5 DeepDA unsupervised domain adaptation methods (Table E.2) range
from 92% to 98% accuracy, which is very honorable (current supervised learn-
ing results on MNIST are over 99%).
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