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Although interactions between academic

.1)

• The law of dominance and uniformity: if only one parental trait is passed on to the progeny, then one of the transmitted parental alleles is dominant over the other.

• The law of segregation: gametogenesis causes the segregation of the two copies of the parental heredity information to produce two gametes with one copy each.

• The law of independent segregation: alleles segregate independently. A heterozygous individual could produce gametes with different combinations of alleles.

.

Box 2: Definition of the basic concepts Allele: a version of a gene. Zygote: the product of gamete fertilization. Heterozygote: an individual with different alleles at a given locus. Homozygote: an individual with identical alleles at a given locus. Genetics: the science of trait inheritance and variation. Genotype: the complete set of an individual's genetic material. Gene: the basic unit of inheritance.

Titre: Exploitation des données multi-omiques pour élucider les bases génétiques et moléculaires de caractères complexes : Une étude de génétique des systèmes de la réponse du maïs à la sécheresse Mots clés: biologie des systèmes, génétique d'association, intégration de données multi-omiques, réseaux moléculaires, relation génotype-phénotype, interaction génotype-environnement Résumé: Bien que les interactions entre la recherche académique et les entreprises semencières au cours du siècle dernier aient permis une avancée significative dans l'amélioration des plantes cultivées , cela fait plusieurs années que les rendements des grandes cultures n'ont pas augmenté de manière significative.

De plus, selon le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC), les émissions de gaz à effet de serre ont déclenché une hausse irréversible des températures qui rendra les terres agricoles plus sèches et augmentera considérablement les mauvaises récoltes au cours des 30 prochaines années. Nourrir près de dix milliards de personnes dans ce contexte de changement climatique est donc l'un des plus grands défis de ce siècle. Parmi les cultures touchées par la sécheresse, le maïs est au centre des recherches visant à améliorer les variétés pour les rendre plus résistantes au stress hydrique. Cependant, la tolérance à la sécheresse est un caractère polygénique (i.e., un caractère contrôlé par plusieurs gènes) qui dépend fortement de l'environnement, ce qui fait de la compréhension de son déterminisme génétique une tâche considérable. En effet, après avoir perçu un stress hydrique, les plantes déclenchent de multiples voies moléculaires affectant leur développement et leur rendement. Grâce aux avancées biotechnologiques, il est possible de générer des ensembles de données multi-omiques permettant d'appliquer des approches de génétique des systèmes dans l'étude de la tolérance à la sécheresse. Ma thèse visait à mieux comprendre les bases génétiques et moléculaires de la réponse du maïs à la sécheresse en réalisant une analyse intégrative de données multi-omiques (génomique : un million de SNP, protéomique : 2000 protéines, métabolomique : 1500 métabolites, et phénomique : 6 traits écophysiologiques liés à la sécheresse) mesurées pour 254 hybrides de maïs cultivés sous deux régimes hydriques contrastés. Dans la première partie de la thèse, je me suis concentré sur l'analyse des données phénomiques afin de quantifier la pertinence de l'intégration des indices de plasticité dans les études de génétique d'association pour détecter des QTLs impliqué dans l'interaction génotype-disponibilité en eau (GxW). Le principal résultat de cette partie est que les QTL de plasticité ne se chevauchent pas avec les QTL détectés sur les moyennes phénotypiques, et qu'ils capturent exclusivement une partie importante de la variance GxW (10-70% en fonction des caractères). Outre l'identification de nouvelles régions génétiques potentiellement impliquées dans la réponse à la sécheresse, mes résultats soutiennent le postulat selon lequel la plasticité phénotypique est un caractère indépendant avec son propre déterminisme génétique. Dans la deuxième partie de la thèse, j'ai mené une approche de génétique des systèmes en intégrant les données de génomique, de protéomique et de phénomique pour i) inférer un réseau multi-échelles révélant les bases génétiques et moléculaires de la réponse au stress hydrique, ii) évaluer les apports des données de protéomique pour expliquer la variance GxW, et iii) fournir une annotation fonctionnelle des QTLs maximisant la proportion de variance GxW capturée. Tout d'abord, j'ai pu identifier des régions génomiques enrichies en pQTLs et les traduire en réseaux d'interactions protéine-protéine. Cela m'a permis de montrer que les protéines associées à des pQTLs situés dans ces régions pouvaient interagir physiquement avec des protéines codées par des gènes couverts par ces régions. Deuxièmement, j'ai identifié un ensemble de QTL et de pQTL qui, ensemble, capturent 84% de la variance GxW. Troisièmement, j'ai inféré un réseau multi-échelle comprenant 531 loci, 63 protéines et 6 caractères répondant à la sécheresse. Ces résultats mettent en avant le potentielle des données omiques afin de révéler les bases génétiques et moléculaires de caractères complexes tels que la tolérance à la sécheresse.

research and plant breeding companies over the last century have enabled significant progress in crop improvement by producing high-yielding varieties, it has been several years since major crop yields have increased significantly. In addition, according to the Intergovernmental Panel on Climate Change (IPCC), anthropogenic greenhouse gas emissions have triggered an irreversible rise in temperatures that will make agricultural land drier and significantly increase crop failures over the next 30 years. Feeding nearly ten billion people in the face of climate change is, therefore, one of the greatest challenges of this century. Among crops affected by drought, maize is at the center of research into improving varieties to make them more resilient to water stress. However, drought tolerance is a polygenic trait (i.e., a trait under the control of multiple genes) that is highly dependent on the environment, which makes understanding its genetic determinism a tremendous task. After perceiving water stress, plants trigger multiple molecular pathways that moderate root water uptake and leaf evapotranspiration, which can affect their development and reduce yield. Thanks to advances in biotechnology, it is now possible to generate multi-omics datasets that can be used to conduct systems genetic approaches to address the complexity of drought tolerance. My PhD thesis aimed to gain insight into the genetic and molecular basis of maize drought response by performing an integrative analysis of multi-omics data (genomics: one million SNPs, proteomics: 2,000 proteins, metabolomics: 1,500 metabolites, and phenomics: 6 drought-related ecophysiological traits) measured for 254 maize hybrids grown in a greenhouse under two contrasting water regimes. In the first part of the thesis, I focused on the analysis of phenomics data to quantify the relevance of inte-grating plasticity indices in genome-wide association studies to detect QTLs involved in the genotypeby-water availability interaction (GxW). The main result of this part was that plasticity QTLs do not overlap with QTLs detected on phenotypic means, and they exclusively capture an important part of the GxW variance (10-70% depending on the traits). Besides identifying novel genetic regions potentially involved in drought response, my results support the postulate that phenotypic plasticity is an independent trait with its own genetic determinisms. The latter could be advantageous in breeding in order to design high-yielding varieties that optimize their water management through plastic ecophysiological traits. In the second part of the thesis, I conducted a systems genetics approach by integrating genomics, proteomics, and phenomics to i) infer a multiscale network revealing the genetic and molecular basis of the response to water stress, ii) assess the contribution of proteomics data in explaining GxW variance, and iii) provide a functional annotation of QTLs maximizing the proportion of GxW variance captured. Firstly, I was able to identify genomic regions enriched in pQTLs and translate them into protein-protein interaction networks. This enabled me to show that proteins associated with pQTLs located in these regions could physically interact with proteins encoded by genes covered by these regions. Secondly, I identified a set of QTLs and pQTLs that together capture 84% of the GxW variance. Thirdly, I inferred a multi-scale network comprising 531 loci, 63 proteins, and 6 droughtresponsive traits. These results highlight the potential of omics data to reveal the genetic and molecular basis of complex traits such as drought tolerance. Overall, the results of my thesis encourage the consideration of phenotypic plasticity and the use of omics data to facilitate the design of droughttolerant varieties in molecular-assisted selection.
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Résumé (French)

Bien que les interactions entre la recherche académique et les entreprises semencières au cours du siècle dernier aient permis une avancée significative dans l'amélioration des plantes cultivées en produisant des variétés à haut rendement, cela fait plusieurs années que les rendements des grandes cultures n'ont pas augmenté de manière significative. De plus, selon le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC), les émissions anthropiques de gaz à effet de serre ont déclenché une hausse irréversible des températures qui rendra les terres agricoles plus sèches et augmentera considérablement les mauvaises récoltes au cours des 30 prochaines années. Nourrir près de dix milliards de personnes dans ce contexte de changement climatique est donc l'un des plus grands défis de ce siècle. Parmi les cultures touchées par la sécheresse, le maïs est au centre des recherches visant à améliorer les variétés pour les rendre plus résistantes au stress hydrique. Cependant, la tolérance à la sécheresse est un caractère polygénique (i.e., un caractère contrôlé par plusieurs gènes) qui dépend fortement de l'environnement, ce qui fait de la compréhension de son déterminisme génétique une tâche considérable. En effet, après avoir perçu un stress hydrique, les plantes déclenchent de multiples voies moléculaires qui modèrent l'absorption d'eau par les racines et l'évapotranspiration des feuilles, et qui peuvent affecter leur développement et leur rendement. Grâce aux avancées biotechnologiques, il est maintenant possible de générer des ensembles de données multi-omiques permettant d'appliquer des approches de génétique des systèmes dans l'étude des caractères complexes tels que la tolérance à la sécheresse. Ma thèse de doctorat visait à mieux comprendre les bases génétiques et moléculaires de la réponse du maïs à la sécheresse en réalisant une analyse intégrative de données multiomiques (génomique : un million de SNP, protéomique : 2000 protéines, métabolomique : 1500 métabolites, et phénomique : 6 traits écophysiologiques liés à la sécheresse) mesurées pour 254 hybrides de maïs cultivés dans une serre sous deux régimes hydriques contrastés. Dans la première partie de la thèse, je me suis concentré sur l'analyse des données phénomiques afin de quantifier la pertinence de l'intégration des indices de plasticité dans les études de génétique d'association pour détecter des QTLs impliqué dans l'interaction génotype-disponibilité en eau (GxW). Le principal résultat de cette partie est que les QTL de plasticité ne se chevauchent pas avec les QTL détectés sur les moyennes phénotypiques, et qu'ils capturent exclusivement une partie importante de la variance GxW (10-70% en fonction des caractères). Outre l'identification de nouvelles régions génétiques potentiellement impliquées dans la réponse à la sécheresse, mes résultats soutiennent le postulat selon lequel la plasticité phénotypique est un caractère indépendant avec son propre déterminisme génétique. Ce dernier point pourrait être avantageux pour la sélection afin de concevoir des variétés à haut rendement qui optimisent leur gestion de l'eau grâce à des caractéristiques écophysiologiques plastiques. Dans la deuxième partie de la thèse, j'ai mené une approche de génétique des systèmes en intégrant les données de génomique, de protéomique et de phénomique pour i) inférer un réseau multiéchelles révélant les bases génétiques et moléculaires de la réponse au stress hydrique, ii) évaluer les apports des données de protéomique pour expliquer la variance GxW, et iii) fournir une annotation fonctionnelle des QTLs maximisant la proportion de variance GxW capturée. Tout d'abord, j'ai pu identifier des régions génomiques enrichies en pQTLs et les traduire en réseaux d'interactions protéine-protéine. Cela m'a permis de montrer que les protéines associées à des pQTLs situés dans ces régions pouvaient interagir physiquement avec des protéines codées par des gènes couverts par ces régions. Deuxièmement, j'ai identifié un ensemble de QTL et de pQTL qui, ensemble, capturent 84% de la variance GxW. Troisièmement, j'ai inféré un réseau multi-échelle comprenant 531 loci, 63 protéines et 6 caractères répondant à la sécheresse. Ces résultats mettent en avant le potentielle des données omiques afin de révéler les bases génétiques et moléculaires de caractères complexes tels que la tolérance à la sécheresse. Dans l'ensemble, les résultats de ma thèse encouragent la prise en compte de la plasticité phénotypique et l'utilisation de données omiques pour faciliter la conception de variétés tolérantes à la sécheresse dans le cadre de la sélection assistée par marqueurs. (Mendel, 1865;[START_REF] Gayon | From Mendel to epigenetics: History of genetics[END_REF]. Although this work represented a major scientific contribution, it was not recognized until thirty years later. Indeed, in 1900, Mendel's experimental work on plant hybridization was rediscovered by three independent researchers Hugo de Vries, Carl Correns, and Erich von Tschermak. In 1902, Willam Bateson, a biologist who was convinced by Mendel's experiments on heredity, wrote a book,Mendel's Principles of Heredity [START_REF] Bateson | The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?[END_REF], in which he summarized Mendel's discoveries in three laws (Box 1 and Fig. 1.1) and defined the terms allele, zygote, homozygote, and heterozygote (Box 2). He was also the one who, in 1905, coined the word "Genetics" (Box 2) to refer to the discipline of studying the heredity and variation of traits. two traits controlled by two distinct loci. Two versions (alleles) for the locus determining the color of the pea are set as "A" for green and "a" for yellow. Two versions (alleles) for the locus determining the shape of the pea are set as "B" for round and "b" for wrinkled. The F1 individuals were obtained by crossing two homozygotes parents P with extreme phenotypes. The F2 individuals were obtained by crossing two F1 individuals.
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Fisher published in 1918, The Correlation between Relatives on the Supposition of Mendelian Inheritance [START_REF] Fisher | XV.-The Correlation between Relatives on the Supposition of Mendelian Inheritance[END_REF], where he postulated that the continuous range of variation of complex traits could be the effect of many genes combined with the environment. He named such traits quantitative traits, and for the first time, he gave a mathematical relationship between the genotype and the phenotype.

Fisher's proposal was to build a statistical model to characterize a population's continuous range of phenotypic values as a random variable P following a normal distribution. Thus, the distribution of P can be defined by two parameters: the phenotypic mean µ (or the expectation of P , E(P )) and the phenotypic variance V (P ) = E((P -E(P )) 2 . He started to decompose the phenotypic value P as a sum of genotypic and environment random effects:

P = G + E (1.1)
As the phenotypic value P , the genotypic effect G is a random variable defined by a genotypic mean E(G) and a genotypic variance V (G). Then, he decomposes the genotypic effect G as a sum of independent random effects defined by their transmission mode (G = A + D + I):

P = A + D + I + E (1.2)
with:

• A: The additive effect, i.e., the effect related to the sum of the effect of each allele at each locus.

• D: The dominance effect, i.e., the allele interactions in the same locus.

• I: The epistasis effect, i.e., the allele interactions at different loci.

• E: The environment effect.

We illustrate the additive and dominance effects in the phenotypic mean with the simple case of a single locus (no epistasis, i.e., I = 0) under the biallelic model. Let P be the set of phenotypic values of a studied population, p the frequency of the dominant allele A 2 , and q the frequency of the recessive allele A 1 with p + q = 1. Assuming panmixia and the Hardy-Weinberg equilibrium (Box 3), the frequencies of the genotypes as p 2 for A 2 A 2 , q 2 for A 1 A 1 , and 2pq for A 2 A 1 .

Box 3: Genotype frequencies under panmixia and the Hardy-Weinberg equilibrium Genotype frequencies under panmixia Assuming random mating between individuals (and gamete random fertilization as well) in a population, the proportions of different genotypes in the biallelic case are:

• Genotype A 1 A 1 (G 11 ): to produce a zygote A 1 A 1 , two gametes bearing the allele A 1 of frequency q have to mate. The probability of random occurrence of two alleles A 1 is q × q = q 2

• Genotype A 2 A 2 (G 22 ): to produce a zygote A 2 A 2 , two gametes bearing the allele A 2 of frequency p have to mate. The probability of random occurrence of two alleles A 2 is p × p = p 2

• Genotype A 2 A 1 (G 21 ): to produce a zygote A 2 A 1 , A gamete carrying the allele A 1 and with frequency q has to mate a gamete carrying the allele A 2 and with frequency p. Since there are two ways to produce a zygote A 2 A 1 , depending on which parents the gametes carrying the alleles A 1 and A 2 come from, their probability random occurrence is equal to 2 × p × q = 2pq

The Hardy-Weinberg equilibrium

The Hardy-Weinberg frequencies are stable over the generations if the size of the population is large and if there is no evolutionary constraint (i.e. no migration, no sexual selection, no natural selection, and no mutation).

The genotypic values G 11 , G 22 , and G 21 can be estimated as the respective phenotypic means E(P A 1 A 1 ), E(P A 2 A 2 ), and E(P A 2 A 1 ). Thus, the phenotypic midpoint can be calculated as

m = G 11 + G 22 2
The additive effect |a| is equal to the deviation of G 11 (or G 22 ) to m (Fig. 1.2). Assuming that the allele A 2 is dominant over A 1 , a > 0 for genotype A 2 A 2 and a < 0 for genotype A We can express the genotypic effect G as the sum of genotype frequencies weighted by their respective effects:

G = ap 2 + 2pqd -aq 2
= a(p 2q 2 ) + 2pqd = a (p + q)

1 (pq) + 2pqd = a(pq) + 2pqd

(1.

3)

The phenotypic mean µ = E(P ) can be expressed as the deviation caused by the addition of the genotypic effect to m:

µ = m + G = m + a(p -q) + 2pqd
Since parents pass half of their genetic makeup to their offspring and not their entire genome, we can express the effect of each allele rather than genotypes. The average effect of allele A 2 (α 2 ) is the deviation between the mean of the offspring receiving allele A 2 and the mean of all offspring (Fig. 1.3a). It can be calculated as the sum of the probability that a gamete with allele A 2 will mate with another gamete with allele A 2 (p) multiplied by G 22 (m + a) and the probability that a gamete with allele A 2 will mate with a gamete of allele A 1 (q) multiplied by G 21 (m + d):

α 2 = p(m + a) + q(m + d) = m + pa + qd
Similarly for allele A 1 we obtain α 1 = mqa + pd (Fig. 1.3a). The difference α 2α 1 is equal to the effect of allele substitution α i.e., the change in phenotypic mean when an allele A 2 is substituted by an allele A 1 (Fig. 1.3a). Expressing the genotypic values according alleles i and j with their respective additive (α i and α j ) and dominance (δ ij ) effects, we obtain:

G ij = µ + (α i + α j ) A + δ ij D (1.4)
with the dominance effect δ ij corresponding to interaction between alleles i and j at the same locus.

For a given locus and given alleles (i = 1, j = 2), genotype A 1 A 1 can be assumed to be the reference, and Equation (1.4) can be rewritten as:

G ij = µ + 2α 1 + α (α 2 -α 1 )
N + δ ij (1.5) Where α is the effect of substituting the allele α 1 for α 2 , and N is the number of alleles A 2 carried by the individuals. The last equation is the most common regression formula for expressing phenotypic values as a function of the allelic dose of the A 2 allele (Fig. 1.3b).

In 1930, Fisher was interested in studying phenotypic and genotypic variance to formulate changes in population fitness attributed to allele frequency [START_REF] Fisher | The Genetical Theory of Natural Selection. The Genetical Theory of Natural Selection[END_REF]. Hence, as expressed in Equation (1.2), the phenotypic variance can be formulated as:

V (P ) = V (G) + V (E) + 2Cov(G, E) (1.6)
The proportion of phenotypic variance explained by the genetic variance is the broad-sense heritability H 2 , also known as the linear regression coefficient of the genotype over the phenotype:

H 2 = V (G) V (P )
As the genotypic variance can be decomposed by the additive and the dominance variance V (G) = V (A) + V (D) + 2Cov(A, D), we can define the narrow sense heritability h 2 as the part of phenotypic variance explained by the additive fraction of the genetic variance:

h 2 = V (A) V (P )
The narrow-sense heritability is the part of the phenotypic variance transmissible from the parents to their progeny. Being able to quantify the contribution of genetics to the population mean and variance allowed further development in animal and plant breeding, especially by giving the possibility to make predictions. 

. The genotype-by-environment interaction

Referring to Equation (1.1), phenotypic values comprise a genetic and environmental component. Unlike the additive component of G, E is not predictable, yet Yates and Cochran (1938) showed in plants that micro and macro-environmental changes can affect the phenotypic value of individuals differently according to their genotypes. This interaction between G and E is important for varietal improvement, especially for plant adaptation (Finlay and Wilkinson, 1963).

P = G + E + G × E
This so-called phenotypic plasticity (Bradshaw, 1965) is often represented as reaction norms, with the phenotypic values in the y-axis and the different environments in the x-axis (Fig. 1.4). Phenotypic plasticity variation between genotypes leads to G × E. Phenotypic plasticity contributes to adaptation and can consequently improve individual fitness in response to environmental changes. Conferring an advantage on individual fitness, phenotypic plasticity can be subjected to evolutionary pressure and then be selected. To better understand the mechanistic phenomenon underlying phenotypic plasticity, three genetics models explaining the expression of plasticity were hypothesized (Scheiner, 1993;Via et al, 1995):

• The overdominance model: phenotypic plasticity is related to the number of heterozygous loci (Gillespie and Turelli, 1989).

• The allele sensitivity model: the environment affects the allelic effect of the genetic factors determining a trait.

• The gene-regulatory model: phenotypic plasticity results from epistatic interactions between structural and regulatory alleles.

The three models can co-exist and are not mutually exclusive. Nonetheless, the gene-regulatory model supported by Bradshaw (1965) statement considering phenotypic plasticity as an independent trait with its own genetic determinism is the most advantageous for plant breeding. Democratization of genetics in the 20th century, thanks to the rediscovery of Mendel's studies by de Vries, Correns, and von Tschermak, intensified scientific debates on Darwin's evolution theory very anchored at this epoch. The mathematical formalization of the genotype-phenotype relationship (GP) relationship has led to various applications, from medicine to animal and plant breeding. However, these scientific advances in genetics were made before there was any real understanding of the physical objects that carry the genetic material. The following section focuses on the molecular biological discoveries that contributed to the progress of genetics.

. Molecular foundations of genetics supporting the understanding of the genotype-phenotype relationship

At the beginning of the 20th century, elucidating the mitosis and meiosis processes drove scientific attention to chromosomes. In 1902, two cytologists, Walter Sutton and Theodor Boveri, postulated that chromosomes are the component carrying the "Mendelian's heredity unit" [START_REF] Sutton | The Chromosomes in Heredity[END_REF][START_REF] Gayon | From Mendel to epigenetics: History of genetics[END_REF]. They were authors of a book entitled The Chromosomes in Heredity, where they conceptually demonstrated the relevance of linking the process of meiosis with the Mendelian laws of segregation. In 1915, Thomas Hunt Morgan provided much of the mechanistic evidence for combining Mendelian genetics with the chromosomal theory of heredity [START_REF] Morgan | The Physical Basis of Heredity[END_REF].

Using this chromosome property of making crossing-overs (i.e., the process by which genetic material is exchanged between two homologous chromosomes during meiosis) (Fig. 1.5), Alfred Henry Sturtevant, a Thomas Morgan apprentice, had the idea to relatively locate on one chromosome genes associated with different Drosophila (Drosophila Melanogaster ) traits (color of the body, color of eyes, and wings size) by retracing the recombinations events over generations (Fig. 1.6a). Thus, the first genetic map in history could be edited, allowing to spatially locate functional genetic regions on a chromosome from their proportion of recombination, called the centiMorgan (cM) (Fig. 1.6b).
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One possible chromatide after gametogenesis if another crossing over occurs Before the 1940s, the physical nature of genes remained unknown, and the scientific community believed that proteins carried heredity. This belief changed in 1940 when Oswald Avery, Colin MacLeod, and Maclyn McCarty demonstrated through genetic transformations [START_REF] Griffith | The Significance of Pneumococcal Types[END_REF] that the deoxyribonucleic acid (DNA) was the molecule carrying heredity [START_REF] Avery | STUDIES ON THE CHEMICAL NATURE OF THE SUB-STANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : INDUCTION OF TRANS-FORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III[END_REF]. In 1953, after the discovery of the renowned double helix structure of DNA by [START_REF] Watson | Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid[END_REF], a sequence of molecular biology discoveries was initiated (Box 4).

Box 4: Molecular biology discoveries between [START_REF] Watson | Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid[END_REF] and [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF] • 1955 -1958: creation of the central dogma of molecular biology by [START_REF] Crick | On protein synthesis[END_REF]. DNA can be replicated by the DNA polymerase to give the same molecule of DNA. DNA can also be transcribed into a ribonucleic acid (RNA) thanks to the RNA polymerase. Finally, RNA is translated by ribosomes into protein.

• 1955 -1960: elucidation of the genetic code in 1955 by Har Gobind Khorana. A sequence of three nucleotides is called a codon, and each codon corresponds to one amino acid. A short sequence of amino acids is called a peptide, and a polypeptide having a functional role is called a protein.

• 1977: the discovery of RNA splicing and alternative splicing by [START_REF] Berget | Spliced segments at the 5' terminus of adenovirus 2 late mRNA[END_REF]. The DNA is transcribed into messenger RNA (mRNA), which comprises coding and non-coding sequences.

Among the non-coding sequences, there are introns, and the coding regions are exons. During RNA splicing, the spliceosome, a protein complex, removes introns and clipped exons to give an RNA ready to be translated into protein. The process of alternative splicing allows the composition of exons to vary, resulting in multiple proteins with one mRNA.

• 1977: development of DNA sequencing by [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF]. The method is based on the determination of the chain-terminating nucleotide incorporated by a DNA polymerase during the replication of a DNA fragment.

In the 1980s, began the development of molecular markers, highly supported by one of the major progress in biotechnologies, the polymerase chain reaction (PCR) of Kary Mullis [START_REF] Mullis | Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction[END_REF]. The PCR allowed the amplification of a section of DNA in large quantities. That technology has enabled cheaper and automated protocols for designing molecular markers. Following the definition of Amiteye ( 2021), a molecular marker can be defined as the difference in DNA nucleotide sequence between individual organisms or species (called a genetic polymorphism) in the proximity of a target gene. Usually, a molecular marker does not refer only to the polymorphisms identified but to the complete procedure allowing its detection.

Few non-PCR-based markers exist, such as the random fragment length polymorphism (RFLP), identifying polymorphisms located on enzyme restriction sites. Probed fragments of DNA belonging to different individuals are compared after enzyme digestion. If the DNA fragments revealed by the probe on electrophoresis gel have different weights, it means that one mutation is present in an enzyme restriction site in one individual. However, this method is time-consuming and can't be automated compared to molecular markers based on PCR, which are also cheaper. The most common molecular markers based on PCR are:

• Randomly amplified polymorphic DNA (RAPD): identification of polymorphism at random genome locations by amplifying DNA fragments with short arbitrary oligonucleotide primers. Thus, polymorphism on primers' hybridization sites is revealed if, for one sample, the amplicons resulting from the hybridization of flanking primers are not observed on electrophoresis gel.

• Amplified fragment length polymorphism (AFLP): techniques integrating RFLP and PCR to identify polymorphisms located on enzyme restriction sites. DNA fragments are first obtained by enzyme digestion, which are then amplified with primers recognizing enzyme restriction sites in DNA fragments.

If, for one sample, the amplicons resulting from the hybridization of flanking primers are not observed on the electrophoresis gel, it means that a polymorphism is located in one enzyme restriction site.

• Simple sequence repeat (SSR: SSRs are tandemly repeated motifs of one to six nucleotides (also called microsatellites). The nature of polymorphisms based on SSRs depends on the number of repeated motifs. It was confirmed that this kind of repeated sequence is present in protein-coding genes. To reveal polymorphisms in SSR, primers are designed to hybridize with microsatellites' left and right borders. Then, if the weight of the SSR fragment amplified is different between individuals on electrophoresis gel, it means that there is a polymorphism in the number of repeated motifs on the genome location studied.

A decade after the development of PCR, a new method of DNA hybridization arose, the DNA microarrays. This technique is founded on an arrangement of thousands of microscopic DNA spots on a solid substrate. Each DNA spot comprises a specific DNA sequence, usually a small gene segment. The principal benefit of DNA microarray is its potential for high throughput genotyping, enabling the analysis of thousands of polymorphisms simultaneously. The technology uses single-nucleotide polymorphism (SNP) as a molecular marker, a type of marker with a higher level of polymorphism. The last-mentioned technology has widespread usage and generates large-scale genotyping data for various organisms.

Identifying genetic polymorphism between individuals allowed quantitative genetics studies to pinpoint genetic regions that could be causally linked with the expression of traits. Nevertheless, despite the employment of the cutting-edge technologies mentioned earlier, their utility for understanding the genetic determinism of quantitative traits is not sufficient on its own. In contrast to the monogenic determinism of Mendelian traits, quantitative traits exhibit polygenic determinism, whereby numerous genetic regions are involved in trait elaboration. To address this, statistical models have been designed to evaluate whether a relationship exists between the variations of quantitative traits and the displayed polymorphisms of molecular markers. This method, known as association mapping, facilitates the detection of loci linked with the variation of quantitative traits. These corresponding loci are referred to as quantitative trait loci (QTLs), and their identification is elaborated on in the subsequent section.

. Handling the complexity of the genotype-phenotype relationship

1.2.1 . Linking genotype to phenotype through association mapping

The use of molecular markers allows to pinpoint the genetic regions where polymorphism exists between a group of individuals. Consequently, the molecular markers give the genotypes of the studied individuals at each marked position. If the same group of individuals has also been phenotyped, a linear model based on the allelic dose regression presented in Equation (1.5) can be applied for each marked position.

Y ij = µ + M j + ε ij (1.7)
Y ij is the phenotypic value of the individual i with a dose j of the dominant allele (j ∈ {0; 1, 2}); µ is the phenotypic mean; M j is the effect of the dose j of dominant allele possessed by the individual i at the marked genetic position; ε ij is the residual error. If M j is significantly different from zero, we can suppose that a statistical relationship exists between the polymorphism at the molecular marker and the variations observed on phenotypic values. However, we can not affirm that the polymorphism identified is causal. Indeed, it is important to consider the genetic linkage. Genetic linkage refers to the observation of a higher probability that two adjacent DNA sequences located on the same chromosome will be conserved during recombination events. Thus, applying this notion to population genetics, a non-random association between alleles located in different loci in a given population can exist. These loci are defined as being in linkage disequilibrium (LD). Hence, because a molecular marker can be in linkage disequilibrium with the causal polymorphism, we can not affirm that the marked genetic polymorphism is one of the causes of the observed phenotypic variation. On the left is represented the linkage analysis based on a mapping population. Generation of a F2 population obtained from two contrasted inbred lines. In this population, the linkage disequilibrium windows are wide because of the limited events of recombination that occurred. Thus, it requires a low number of markers to capture the effect of a causal polymorphism, but the resolution on the position of this polymorphism is weak. On the right is represented the principle of genome-wide association study (GWAS) based on a natural population. The population studied comes from the random mating of an ancestral population. As a consequence, a high number of recombinations occurred, resulting in small linkage disequilibrium windows. The strength of this approach resides in its high resolution for identifying the position of a causal polymorphism using a dense set of molecular markers. The approach aiming to find associations between genetic polymorphisms and trait variation is called association mapping. This method is based on the LD to estimate genetic regions from the significant markers called quantitative trait loci (QTLs). Two approaches exist to conduct association mapping: the linkage analysis and the genome-wide association study (GWAS). Thus, the approach used to detect a QTL will determine the precision and accuracy of its location. The choice of the method is mainly driven by the population studied and the number of molecular markers used.

PHENOTYPING

Box 5: Consideration of the genetic stratification (population structuration and cryptic relatedness) in GWAS (Astle and Balding, 2009) Genetic stratification is important to consider in GWAS to prevent an excess of spurious associations due to:

• Population structuration: Even though the genotyping data were generated on a natural population, it is possible that high fragments of DNA (called haplotype blocks) are shared between individuals, and distant markers (that can even be located on different chromosomes) can be in LD (Fig. 1.9a). This phenomenon is called genetic structuration, and it is mostly explained by the fact that natural populations are not in panmixia and can share a recent common ancestry. Thus, individuals in the same geographical zone are more susceptible to sharing the same alleles because their ancestors were submitted to the same selection pressures.

• Cryptic relatedness: Contrary to population structuration, which describes patterns of relatedness in a large group of individuals, cryptic relatedness refers to the genetic distance among a smaller group of individuals regarding a common ancestry.

The first approach of association mapping, called linkage analysis, was based on the use of a limited population of individuals whose parental genotypes were known (mapping population) to be able to follow the recombination events (Fig. 1.7). Each individual of the population is phenotyped for the trait of interest and genotyped using a modest collection of molecular markers (∼ 100-500 random fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), or simple sequence repeat (SSR) markers for the first rigorous applications). Using Equation (1.7), single marker analyses were made to identify polymorphisms significantly associated with the phenotypic variations of the trait (Fig. 1.8a). The QTLs identified with this approach could be very large (Fig. 1.7). Other approaches consisting of considering several markers to gain precision in the location of QTLs were developed, such as the interval mapping [START_REF] Lander | Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps[END_REF] and the composite interval mapping (Zeng, 1994). One major advantage of interval mapping approaches is that the presence of QTLs is tested with a likelihood ratio test [START_REF] Morton | Logarithm of odds (lods) for linkage in complex inheritance[END_REF] across a genetic region (a portion of chromosome marked with molecular markers). Thus, the continuous profile of the likelihood ratio test allows drawing results as LOD curves, which gives a comprehensive view of QTLs position in the genetic region studied (Fig. 1.8b).

The development of DNA arrays considerably increased the number of available molecular markers, which opened the way to a second approach of association mapping called genome-wide association study (GWAS), enables the carrying of association mapping studies on natural populations (Fig. 1.7) with a dense set of single nucleotide polymorphism (SNP) markers (> 1M.). These kinds of studies are called Genomewide association studies (GWAS) and became the reference of quantitative genetics for identifying QTLs [START_REF] Visscher | From R.A. Fisher's 1918 Paper to GWAS a Century Later[END_REF]. As the studied population is natural, we assumed that the proportion of recombination events between individuals is sufficiently large to drastically reduce the genetic linkage across the genome (Fig. 1.7). Thus, using a denser set of markers increases genome coverage and, therefore, resolution. The most common statistical method used in GWAS is the single marker analysis mentioned in Equation (1.7), but by considering the relatedness and the genetic structuration of the population . One example of a robust GWAS model used in plant genetics is the linear mixed model of Yu et al (2006), where the genetic structuration S is considered as a fixed effect and the relatedness R as a random effect:

Y ijk = µ + M j + S k + R i + ε ijk (1.8)
Y ijk is the phenotypic value of the individual i in the group k with a dose j of the dominant allele (j ∈ {0; 1, 2}); µ is the phenotypic mean; M j is the effect of the dose j of dominant allele possessed by the individual i at the marked genetic position; S k is the effect of the group of individuals k; R i ∼ N (0, σ 2 g .K)

the random genetic effect of the individual i, considering its relatedness with the other individuals of the population through the kinship matrix K; ε ijk ∼ N (0, σ 2 ) is the residual error. Practically, S is often neglected because R allows the capture of a significant part of S.

In practice, GWAS tests a large number of markers individually, so it is necessary to control the false positive rate using a correction for multiple testing. A very popular representation of GWAS results is the Manhattan plot where the -log(pvalue) of SNPs tested are represented according to their position on the genome (Fig. 1.9c).

From candidate genes discovery to clarification of biological functions, association mapping facilitated discoveries in the understanding of quantitative traits [START_REF] Visscher | 10 Years of GWAS Discovery: Biology, Function, and Translation[END_REF]. Further application in the medical field allows the identification of novel genes underlying complex diseases such as diabetes [START_REF] Duggirala | Linkage of Type 2 Diabetes Mellitus and of Age at Onset to a Genetic Location on Chromosome 10q in Mexican Americans[END_REF]. In breeding, association mapping opened new avenues for animal and plant breeding, especially with the development of marker-assisted selection [START_REF] Tanksley | Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[END_REF]. 1.2.2 . A new model of inheritance for complex traits: The ominigenic model

Sea

Despite the success of GWAS in identifying several hundreds of QTLs and providing valuable insights into complex traits' genetic architecture, the QTLs identified generally have small effects and explain a small fraction of trait heritability. For instance, in [START_REF] Visscher | Sizing up human height variation[END_REF], it was demonstrated for population height, which is one of the most heritable traits with a heritability estimated at 80%, that 40 QTLs identified on 10,000 individuals explained only 5% of phenotypic variance. These observations on the small part of genetic variance explained by QTLs identified on GWAS lead to further thinking about unraveling this missing part of heritability (Manolio et al, 2009). Following Manolio et al (2009), this missing part of phenotypic variance could be hidden in:

• Many undiscovered variants with small effects.

• Rare variants that are not well adapted to being detected in a GWAS.

• Structural variants, which are genetic polymorphisms including several base pairs (e.g., Insertion/Deletions, Copy number variants, or transposable elements) not widely used yet as molecular markers.

• Gene-gene interactions, which are computationally complicated to integrate in GWAS models.

• Gene-by-environment interactions Many studies show results favoring the two first points as Yang et al (2010) and Shi et al (2016). Indeed, their studies demonstrated that by using a whole set of SNPs, which could be composed of several hundred thousand markers, they could unravel almost half part of heritability. Thus, it might be that most part of the missing heritability is hidden in several common polymorphisms having small effects that do not reach the GWAS significance threshold. These observations give further insight into the genetic basis of complex traits, in particular into the establishment of the omnigenic model proposed in 2017 by Boyle et al (2017).

The omnigenic model proposes that almost all genes present in a genome can have an influence on complex trait variations. Synthesizing results obtained in the study of complex traits genetic architecture Boyle et al (2017) concluded that complex traits are mainly controlled by central genes that play a relevant role in the biological pathways underlying the traits, but the regulatory networks of these genes can involve all genes expressed in the cell. Thus, to a lesser extent, all genes expressed in a cell can influence complex trait variation through the regulation of central genes. In such cell regulatory networks, the genes having a direct effect on the trait are referred to as "core", whereas the others which have an indirect effect on the trait by altering the function or the regulation of core genes as "peripheral" (Fig. 1.10). The high number of peripheral genes compared to core genes implies that the peripheral genes explain most of the genetic variance contribution of complex traits (Fig. 1.10).

The identification of peripheral genes altering the regulation and the functions of core genes could allow to better understand the genetic and molecular basis of complex traits. However, those peripheral genes are difficult to identify by conducting GWAS due to their weak effect on complex traits. A solution to tackle this lack of power detection is by studying intermediate molecular traits. Indeed, progress in biotechnologies opens new avenues in the generation of so-called "omics" data composed with measurements obtained from the metabolome, the proteome, or the transcriptome. Harnessing data measured from various biological complexity levels allows one to follow the flow of information from the genotype to the phenotype and identify the molecular networks underlying complex traits. 2017). An example of a cell regulatory network is represented on the left. The stars located in the center of the network represent the core genes, which are outnumbered by the other nodes representing the peripheral genes. The degree of separation of peripheral genes from core genes is illustrated with different colors. On the right represented the degrees of separation from core genes according to the cumulative distribution of heritability explained and the proportion of genes. As we can see, the further we move away from the core genes in the network, the more we integrate genes, and the more it explains heritability.

. Bridging the gap between the genotype and the phenotype through omics data integration

Nowadays, the study of the different biological complexity levels (e.g., the epigenome, the transcriptome, the proteome, and the metabolome) has taken a major step forward with the development of high-throughput technologies. That enables large-scale studies on different infra-cellular levels through the generation of omics data. Among the omics technologies most commonly used, we may cite:

• Epigenomics [START_REF] Wang | Epigenomics-Technologies and Applications[END_REF]: the study of the chromatin structure and its effects on gene expression. Several high-throughput technologies exist to analyze the epigenome, such as High Chromosome Contact map (Hi-C) ( i.e., captures the site of chromatin conformation through the measure of the frequency of physical interactions between two DNA fragments), ChIP-seq (i.e., captures the site of interactions between a DNA fragment and proteins), and ATAC-seq (i.e., identification of chromatin accessibility sites).

• Transcriptomics [START_REF] Lowe | Transcriptomics technologies[END_REF]: the study of the whole set of expressed genes through the quantification of RNA transcripts. The contemporary techniques to quantify gene expression are microarrays (i.e., measurements of the abundance of a defined set of transcripts using an array containing complementary probes. The hybridization between a transcript and its probes gives a fluorescence the intensity of which indicates the abundance of transcripts), and RNA-Seq (i.e., quantification of the whole set of transcripts in an RNA extract by counting the number of times that a same transcript was sequenced).

• Proteomics [START_REF] Aslam | Proteomics: Technologies and Their Applications[END_REF]: the study of the protein content of a cell, a tissue, an organ, or an organism. This includes the identification and quantification of the expressed proteins and their post-translational modifications. Currently, proteomics relies on the use of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).

System genetics (Civelek and Lusis, 2014;van der Sijde et al, 2014), a sub-branch of system biology, is a powerful approach to deciphering the genetic and molecular basis of complex traits. This approach is based on the combination of multi-omics data integration and association analysis to identify the molecular networks underlying complex traits with their genetic determinants. Indeed, conducting GWAS on the intermediate molecular traits (Wu et al 2018, Fig. 1.12a-b), leads to the detection of molecular QTLs (e.g., methylation-QTL, expression-QTL, protein-QTLs and metabolite-QTLs) giving more statistical power to detect relevant genetic variants. Indeed, this approach can tackle the missing heritability phenomenon by revealing genetic variations observed only by studying the molecular levels because the effect of the genetic variant on the trait does not reach the GWAS significance threshold (Fig. 1.12a). This phenomenon called phenotypic buffering (or robustness) (Félix and Barkoulas, 2015) is explained by the non-linear processes existing across the various biological complexity levels [START_REF] Kimura | The Neutral Theory of Molecular Evolution[END_REF][START_REF] De Vienne | What is a phenotype? History and new developments of the concept[END_REF]) making a trait robust in the face of genetic or environmental perturbations. The incorporation of such molecular QTLs into molecular networks underlying complex traits enables an in-depth genetic characterization in line with the omnigenic model of Boyle et al (2017). Thus, system genetics could fill the gap between the genotype and the phenotype in a comprehensive way through molecular networks inference and identification of genetic variants explaining part of the missing heritability (Fig. Figure 1.12: Bridging the gap between the genotype and the phenotype. a., Locus comprising QTL, expression-QTL, and methylation-QTL identified from GWAS conducted on trait, transcript and methylation-site (adapted from [START_REF] Wu | Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits[END_REF]). The effect of the different SNPs defining the locus decreases from the methylation site to the trait. b., Schematic on system genetic conducted on maize yields. On the left is represented a study on maize yield genetic determinisms based on GWAS performed on a direct measurement of yield. On the right is represented the same study on maize yield genetic determinisms but by following a system genetic approach. This approach leads to the detection of a limited number of QTLs insufficient to elucidate the genetic determinism of such a complex trait. Multi-omics data integration enables inference of interactions between the different molecular and phenotypic traits associated with maize yield. Moreover, GWAS conducted on all added biological entities allows the detection of a richer set of significantly associated loci composed of eQTLs, pQTLs, mQTLs, and QTLs. This approach provides information on both molecular and genetic basis underlying complex traits.

During this Ph.D. I addressed the study of the genetic and molecular basis underlying maize drought response. Indeed, regarding concern about climate change and its repercussions on crop production, the creation of drought-tolerant varieties is becoming more and more urgent. Knowing that maize is nowadays the cereal most cultivated in the world, allowing it to feed both the human population and livestock animals makes it a good model for study. Furthermore, maize is also a model organism extensively researched, which contributes to the generation of a large amount of multi-omics data for integrative analyses. In the next section, I give more details on this biological model and on its related socio-economic and scientific contexts.

1.3 . Elucidating maize drought response 1.3.1 . Maize's rise and stagnation: a production limit to break with global warming

Zea mays originated from the domestication of its wild ancestor teosinte (Zea mays subsp. parviglumis) in Mexico approximately 9,000 years ago [START_REF] Matsuoka | A single domestication for maize shown by multilocus microsatellite genotyping[END_REF]. Its domestication was spread along the American continent, resulting in the so-called maize "landraces" varieties adapted for various environments. Maize was introduced in Europe from three principal independent events (Tenaillon and Charcosset, 2011) (Fig. 1.13a). The first introduction occurred in southern Spain in 1493: Colombus brought a Caribbean variety (called tropical) adapted to hot temperatures. The second introduction concerns a northern American variety (the Nothern Flint) in northern Europe during the 16th century [START_REF] Dubreuil | More on the introduction of temperate maize into Europe: Large-scale bulk SSR genotyping and new historical elements[END_REF][START_REF] Camus-Kulandaivelu | Maize Adaptation to Temperate Climate: Relationship Between Population Structure and Polymorphism in the Dwarf8 Gene[END_REF]. The last introduction was from South America to Italy [START_REF] Tenaillon | A European perspective on maize history[END_REF]. Maize introduction in Europe allowed its cultivation to spread into the rest of the world [START_REF] Mir | Out of America: Tracing the genetic footprints of the global diffusion of maize[END_REF]. It also allowed the diversification of genetic groups adapted for a wide range of environments. Despite their ability to adapt across Europe, the first maize varieties did not produce high yields [START_REF] Tenaillon | A European perspective on maize history[END_REF][START_REF] Swarts | Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America[END_REF]. Because it is an allogamous plant, maize was first cultivated in heterogenous populations called open-pollinated varieties that included heterozygotes individuals. These varieties represented the optimal material for the breeding program before the 1900s.

In 1914, the discovery of hybrid vigor, called heterosis by [START_REF] Shull | Duplicate genes for capsule-form inBursa bursa-pastoris[END_REF], revolutionized maize breeding with the implementation of new breeding schemes based on the crossing of two genetically distant individuals. This discovery skyrocketed maize yields between 1937 and 1955, with the use of double hybrid methods where two F1 hybrids were crossed. A second surge in maize yield from 1955 to today was made by the application of a simple hybrid method where two homozygous lines are crossed. Since 1960, maize yields have kept increasing to reach a worldwide yearly production of 1.2 billion tons in 2021 (FAOSTAT), thus making maize the most cultivated cereal in the world (Fig. 1.13b). However, in temperate European regions such as France, maize production has plateaued at 15 million tonnes per year since the 1990s (Fig. 1.13c). Predictions of the future intense drought scenarios caused by global warming [START_REF] Büntgen | Recent European drought extremes beyond Common Era background variability[END_REF][START_REF] Williams | Rapid intensification of the emerging southwestern North American megadrought in 2020-2021[END_REF][START_REF] Jiang | Agricultural drought over water-scarce Central Asia aggravated by internal climate variability[END_REF]; Intergovernmental Panel on Climate Change, 2023) (Fig. 1.13d), combined with maize's susceptibility to drought, which can reduce yields by 20 to 50% (Sah et al, 2020), are raising growing concerns about global food security (Shiferaw et al, 2011;[START_REF] Grote | Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia[END_REF]. Developing more drought-tolerant varieties could therefore break the yield plateau observed in developed countries in temperate regions and mitigate future yield losses in a warmer world.

The conception of drought-tolerant maize varieties is far from trivial due to the complexity of drought tolerance. Indeed, drought tolerance is a highly integrated trait resulting from the expression of several morphological, physiological, and molecular traits depending on the phenological stage, the drought scenario, the environment, and the genotype of the plants (Fig. 1.14). Significant improvements in maize drought tolerance will require a better understanding of the genetic and molecular determinants of drought response. a. ha 1 9 6 1 1 9 6 4 1 9 6 7 1 9 7 0 1 9 7 3 1 9 7 6 1 9 7 9 1 9 8 2 1 9 8 5 1 9 8 8 1 9 9 1 1 9 9 4 1 9 9 7 2 0 0 0 2 0 0 3 2 0 0 6 2 0 0 9 2 0 1 2 2 0 1 5 2 0 1 8 2 0 2 

. The complexity of maize drought response

Water scarcity can be very detrimental to maize grain yields, especially at certain stages of development (Sah et al, 2020). The most critical stage is flowering (Fig. 1.15a), which includes the development of silks, i.e., the female reproductive organ that is essential for grain production. A lack of water at flowering can cause up to 50% yield loss [START_REF] Denmead | The Effects of Soil Moisture Stress at Different Stages of Growth on the Development and Yield of Corn1[END_REF]. At the vegetative and grain-filling stages, water deficit can also lead to significant yield losses (25% and 21%, respectively [START_REF] Denmead | The Effects of Soil Moisture Stress at Different Stages of Growth on the Development and Yield of Corn1[END_REF]). Yield losses are related to phenotypic changes due to water stress. The traits whose phenotypes are altered by water deficit include green-leaf duration, plant performance, ear length, seed weight, plant height, number of grains per ear, leaf number, ear per plant, kernel row per ear, kernels per row, and early leaf senescence. The phenotypic changes observed for these traits under water deficit can depend on the genotype. Three mechanisms of adaptation to drought were selected during the evolution of maize (Pamungkas et al 2022 and Fig. 1.15b): 

Multiple traits affected:

-biomass -number of kernels -plant size -...

Dependence on:

-Phenological stage -Drought scenario -Environment -Genotype

Multiple molecular responses:

-signalling (hormones) -regulation of transcription -accumulation of metabolites -expression of drought responsive proteins (LEA, dehydrins, HSPs) • Drought escape: This mechanism is based on stopping growth (vegetative phase) as soon as possible in order to produce seeds or fruits (generative phase).

• Drought avoidance: Plants that follow this mechanism induce a high water potential in their cells by developing a deep root system and maintaining water uptake.

• Drought tolerance: In this mechanism, plants are able to survive and withstand a water deficit.

These mechanisms include several morpho-physiological changes triggered by complex signaling pathways [START_REF] Gupta | The physiology of plant responses to drought[END_REF][START_REF] Dietz | Drought and crop yield[END_REF][START_REF] Santini | Complex drought patterns robustly explain global yield loss for major crops[END_REF] that involve several types of molecules, such as mitogen-activated protein kinase (MAPK), abscisic acid (ABA), calcium, reactive oxygen species (ROS), and transcription factors (TFs) (Fig. 1.15c). The loss of turgor in plant cells caused by water shortage allows the activation of signaling mechanisms by ABA, calcium, MAPK, and ROS. These four types of molecules lead to the activation of regulatory genes such as TFs, allowing the regulation and accumulation of functional drought-responsive genes, such as dehydrins, aquaporins, late embryogenesis abundant (LEA), and heat shock proteins (HSP) [START_REF] Valliyodan | Understanding regulatory networks and engineering for enhanced drought tolerance in plants[END_REF][START_REF] Seki | Regulatory metabolic networks in drought stress responses[END_REF]. These different pathways can lead to changes in carbohydrate metabolisms, osmoprotectant synthesis, and accumulation of ROS-scavenging species that influence plant morphology and physiology. These morpho-physiological changes can lead to drought tolerance. For example, ABA accumulation will induce stomatal closure on leaves and then improve water use efficiency by reducing transpiration [START_REF] Mahmood | Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance[END_REF]. Also, the synthesis of osmoprotectants such as sugars or proline leads to osmotic adjustments and maintains turgor pressure in cells. However, as mentioned above, these mechanisms can lead to deleterious developmental effects [START_REF] Mahmood | Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance[END_REF]. For example, stomatal closure reduces internal leaf CO 2 , which reduces photosynthesis activity and affects growth, yield, and biomass production [START_REF] Mahmood | Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance[END_REF].

The negative impact of drought on cereal production has made drought tolerance a trait of interest to the agricultural industry. In fact, according to the FAO, drought is the most costly agricultural disaster, with losses to crop and livestock production estimated at $37 billion, far exceeding those caused by floods, with losses estimated at $21 billion, and storms, with losses estimated at $19 billion. Thus, a better understanding of the genotype-phenotype in the case of maize drought response could help breeders identify interesting loci for designing drought-tolerant varieties [START_REF] Sheoran | Recent Advances for Drought Stress Tolerance in Maize (Zea mays L.): Present Status and Future Prospects[END_REF]. In the following section, I will address the major advances in maize genetics and genomics that allow further steps in our knowledge related to maize drought response. In 2009, Schnable et al (2009) published the first reference genome sequence for maize, based on the inbred line B73 (B73_RefGen_v1), enabling the development of extensive research in maize functional genomics [START_REF] Liu | The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement[END_REF]. Nowadays, the B73 genome assembly is at the fifth version (B73 RefGen_v5), which includes 40,621 gene models (Hufford et al, 2021), and the genome of several other maize lines have been sequenced [START_REF] Hirsch | Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize[END_REF][START_REF] Yang | Contributions of Zea mays subspecies mexicana haplotypes to modern maize[END_REF][START_REF] Springer | The maize W22 genome provides a foundation for functional genomics and transposon biology[END_REF][START_REF] Yang | Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement[END_REF]. In particular, high-quality assemblies have been achieved for Mo17, SK, and W22. The vast amount of genomic information generated by the maize community can be retrieved in the Maize Genetics and Genomics Database (MaizeGDB) [START_REF] Portwood | MaizeGDB 2018: The maize multi-genome genetics and genomics database[END_REF], which is the most valuable database for maize genomics. The comparison between B73 and the other inbred lines allowed the identification of millions of SNPs and structural variants (SV) [START_REF] Springer | Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content[END_REF][START_REF] Lai | Genome-wide patterns of genetic variation among elite maize inbred lines[END_REF][START_REF] Jiao | Genome-wide genetic changes during modern breeding of maize[END_REF][START_REF] Hirsch | Insights into the Maize Pan-Genome and Pan-Transcriptome[END_REF][START_REF] Sun | Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes[END_REF]. This high density of molecular markers has expanded our knowledge of the genetic basis of important traits such as yield-related traits [START_REF] Xiao | Genome-wide dissection of the maize ear genetic architecture using multiple populations[END_REF][START_REF] Liu | The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice[END_REF], plant height [START_REF] Pan | The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations[END_REF], and flowering time [START_REF] Buckler | The Genetic Architecture of Maize Flowering Time[END_REF]. However, direct selection for yield under drought stress proved ineffective in making maize more tolerant (Ziyomo and Bernardo, 2013). Indeed, drought tolerance integrates several secondary traits (e.g., flowering time, leaf area, root architecture) that are highly dependent on the environment. The study of drought tolerance, therefore, requires phenotyping experiments that measure secondary traits in drought-controlled environments. For example, multi-trial experiments (METs) (Boer et al, 2007) help increase the precision of genotypic means and assess the genotype-by-environment (GxE) interactions that are crucial for drought tolerance breeding. In addition, the development of high-throughput phenotyping platforms enables the generation of massive phenomics datasets in a more accurate and cost-effective way for complex morpho-physiological traits, including stomatal conductance, evapotranspiration, and water-use efficiency (Cabrera-Bosquet et al, 2016;Alvarez Prado et al, 2017). Together with the advancement in maize genetics and genomics, the dissection of the genetic architecture of trait related to drought becomes the solution of choice to support maize breeding.

The last decades have been relatively productive in detecting drought-responsive QTLs. For example, [START_REF] Almeida | QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance[END_REF] identified a total of 145 QTLs associated with grain yield and the anthesis-silkinginterval (i.e., the difference in days between the female and male flowering) across multiple environments and different genetic backgrounds. Similarly, Zhao et al (2018) conducted GWAS on plant height, ear height, anthesis-silking-interval, ear weight, cob weight, 100-kernel weight, and ear length under drought and control conditions, resulting in the detection of 69 QTLs explaining 4.0-17.2% of the phenotypic variation. However, the inclusion of such QTLs in maize breeding programs remains scarce due to a lack of validation. Indeed, most of the QTLs identified for drought tolerance are subject to epistasis and environmental interaction, making them unstable across genetic and environmental backgrounds. Nevertheless, this has not prevented the successful validation of a few genes that confer drought tolerance, such as ZmVPP1 [START_REF] Wang | Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings[END_REF] and ZmPP2C-A [START_REF] Xiang | Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings[END_REF].

The dissection of maize drought tolerance through the use of omics data has provided a better insight into the complex mechanisms related to drought response [START_REF] Budak | From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat[END_REF]. Up to now, omics data have been extensively used to identify genes or regulatory pathways. For example, [START_REF] Huang | Proteomics of desiccation tolerance during development and germination of maize embryos[END_REF] highlights differentially expressed proteins that could play a role in drought tolerance. Benešová et al (2012) get a closer look at the changes induced on maize leaf proteome. Several omics studies also reveal that proteins involved in maize drought response are mainly protective proteins (e.g., heat shock proteins) [START_REF] Bateson | The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?[END_REF]Wang et al, 2019), late embryogenesis abundant proteins [START_REF] Huang | Proteomics of desiccation tolerance during development and germination of maize embryos[END_REF]Wang et al, 2019), and signaling proteins (e.g., auxin repressed protein, serine/threonine protein kinase) [START_REF] Bonhomme | Phosphoproteome Dynamics Upon Changes in Plant Water Status Reveal Early Events Associated With Rapid Growth Adjustment in Maize Leaves*[END_REF][START_REF] Li | Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination[END_REF]. Among the studies that used omics data to decipher the complex mechanisms related to drought response Blein-Nicolas et al (2020) identified interesting genomics regions on chromosomes 5 and 7 by conducting a system genetics approach integrating genomics, proteomics, and phenomics data. This Ph.D. is in line with the work of Blein-Nicolas et al (2020). It aimed to gain insight into the genetic and molecular bases of maize drought response using a systems genetics approach. To do this, I analyzed previously published genomics, proteomics, metabolomics, and phenomics data generated during the Amaizing project, a research project financed by the French National Research Agency (ANR). In the following, I will present my thesis objectives in the context of the Amaizing project.

. Objectives of the thesis

This Ph.D. project is a continuation of the Amaizing project (2011-2020), which was funded by the French National Research Agency (ANR) and supervised by Alain Charcosset, an INRAE senior researcher at the Quantitative genetics and evolution -Le Moulon (GQE) research unit. This project aimed to develop knowledge of selection methods and agricultural practices for high-yielding maize varieties with better environmental values. Twenty-five partners, including fourteen INRAE laboratories, nine private breeding companies, and two technological platforms, worked together to improve our understanding of maize genome organization, adaptation, and plasticity mechanisms. The various studies carried out during this project have led to the generation of a large amount of publicly available genomic and phenomic datasets (Recherche Data Gouv).

In Rincent et al (2014), a diversity panel of 254 maize dent lines from Europe and America was identified and selected for the study of drought tolerance. These lines were selected within a restricted flowering window to avoid confounding the drought escape effect due to variation in flowering time with the expression of genomic regions involved in drought tolerance. Negro et al (2019) identified four major genetic groups within the diversity panel by analyzing and assembling a large genomic data set of 977,459 SNPs obtained from three technologies: 50K Infinium HD Illumina array (Ganal et al, 2011), 600K Axiom Affymetrix array (Unterseer et al, 2014) and genotyping-by-sequencing. Genomic data production allowed Millet et al (2016) to conduct GWAS on this panel. They considered field phenotyping data composed of grain-yield component traits measured in 25 sites located across Europe. The meta-analysis of the GWAS results obtained for each trait in each location allowed the identification of drought-responsive QTLs. These authors also quantified the contribution of QTLs to the genetic variance of the traits using linear mixed models. Alvarez Prado et al (2017) used the same approach as Millet et al (2016) to study the genetic architecture of droughtresponsive traits measured in the high-throughput phenotyping platform Phenoarch (Cabrera-Bosquet et al, 2016). They produced phenomics data that included leaf area, biomass, transportation rate, stomatal conductance, water uptake, and water use efficiency measurements made on hybrids obtained by crossing the 254 dent lines with a flint tester line. These hybrids were grown under well-watered (WW) and water deficit (WD) conditions during four independent trials conducted in spring 2012, spring 2013, winter 2013, and spring 2016. During the spring 2012 trial, leaf samples were collected for proteomic analyses. By using a mass-spectrometry-based proteomics approach, Blein-Nicolas et al (2020) thus quantified 2,055 proteins in collaboration with the PAPPSO proteomics platform. They used the proteomics data to infer protein co-expression networks for each watering condition and to detect nearly 20,000 pQTLs. By integrating genomics, proteomics, and phenomics data, they identified colocalizations between the pQTLs detected in their study and the QTLs previously identified by Alvarez Prado et al (2017). Finally, during the spring 2013 experiment, leaf samples were collected for metabolomic analyses. Metabolomics data were generated by the Bordeaux Metabolome platform using a mass-spectrometry-based approach and used for phenotypic predictions (Prigent et al., in prep). The unique multi-omic dataset generated during the Amaizing project (Fig. 1.16) provides an opportunity to take a holistic view of maize drought response. Indeed, an integrative analysis of the four biological complexity levels available, genomics, proteomics, metabolomics, and phenomics, could give further insight in plant drought tolerance mechanisms. Thus, the aim of my thesis was to gain insight into the genetic and molecular bases of maize drought response using an integrative approach based on the multi-omics data acquired during the Amazing project. To achieve this goal, I addressed the two following issues:

• Deciphering the genetic determinism of maize drought response: Drought tolerance results from adaptative changes that occur in molecular and phenotypic traits in response to water deficit. Thus, the identification of genetic regions involved in the genotype-by-water availability interaction (GxW) would be particularly relevant to deciphering the genetic bases of drought response. The identification of such genetic regions is commonly made by conducting GWAS on phenotypic measurements made on plants grown in well-watered (WW) and water deficit (WD) conditions and selecting the condition-specific QTLs. However, as plasticity is defined as the ability of a genotype to produce different phenotypes in response to environmental changes (Bradshaw, 1965), we asked whether performing GWAS on plasticity indices would improve the detection of QTL involved in GxW.

To address this question, I calculated the WD/WW ratio for each trait and for each genotype and performed GWAS on these plasticity indices. Then, I compared plasticity QTLs vs QTLs detected on WW and WD phenotypic means in terms of genomic position and their ability to capture the GxW variance of the traits. I found that plasticity QTLs were located in different genetic regions than QTLs, and that plasticity QTLs explained exclusively from 60 to 100% of the GxW traits' variance. These results are presented in the first section of the Chapter 2, corresponding to a peer-reviewed article Djabali et al (2023), accepted in the journal Theoretical and Applied Genetics. The results obtained in this first section give me intuition on the genetic control of the studied traits' plasticity. Thus, the second section addressed a functional analysis of plasticity QTLs to identify further evidence on the gene-regulatory model of plasticity.

• Integration of proteomics and metabolomics data to provide an in-depth genetic and molecular characterization of maize response to water deficit: The major goal of this chapter was to assess the benefits of omics data integration to better characterize complex traits genetic determinism such as drought response. Thus, I conducted a system genetics approach on maize water stress response by integrating molecular data. In the first section, I was able to harness proteomics data to i) translate genetic regions where are located QTLs, explaining one-third of the GxW variance, into protein-protein networks that linked proteins from proteomics data and proteins encoded by genes located in the genetic regions; ii) identify pQTLs capturing missing heritability for drought response by inferring multi-scale networks integrating genomics, proteomics, and phenomics; iii) prioritize genetics and molecular targets, which could explain nearly 10% of the GxW variance. The second section addressed the ability of mQTLs to unravel missing heritability by conducting the same integrative approach as the one used in the first section. Improve the detection of genetic determinants involved in the water stress response by considering inter-trial variation and plasticity indices

. Standfirst

The following section addresses the genetic basis of maize drought response by studying phenomics data previously published by Alvarez Prado et al (2017). This dataset was composed of six drought-responsive traits measured on 254 maize hybrids grown under well-watered (WW) and water-deficit (WD) conditions in four repeated platform trials in spring 2012, spring 2013, winter 2013, and spring 2016. Alvarez Prado et al (2017) performed single-trial genome-wide association studies (GWAS) on each trait, measured in each watering condition in each trial, leading to the identification of 531 QTLs.

The principal goal of this study was to assess the relevance of detecting plasticity QTLs to explain the genotype by water availability (GxW) interaction observed for ecophysiological traits. As we were interested in studying the genetic basis of maize drought response in general, we also decided to evaluate to what extent other non-controlled environmental factors present during phenotyping experiments and not considered in single-trial GWAS could affect QTL detection. Indeed, in platform experiments, plants are subject to uncontrolled environmental variations, for example, in incident light or vapor pressure deficit. Thus, for the experiments aiming to study the effect of one specific component of the environment, it is necessary to be able to separate the effect of this component from the other residual components of the environment. To our knowledge, the contribution of plasticity QTLs in genetic variance and the impact of dissociating watering treatment effects from the other environmental factor effects in QTL detection were never studied.

To deal with these two points, I address the following questions:

• What are the consequences of taking into account the residual environmental effects of the trials in GWAS for the detection of QTLs?

• What is the benefit of conducting GWAS on phenotypic plasticity for studying the genetic architecture of maize water stress response?

During this work, I was able to demonstrate, on the one hand, that QTLs detected with multi-trial GWAS models captured more of the GxW variance than the genotype by trial (GxT) interaction variance compared to the QTLs detected in Alvarez Prado et al (2017). On the other hand, I showed that 90% of the plasticity QTLs identified do not overlap with QTLs detected on phenotypic means, and these plasticity QTLs captured exclusively from 60 to 100% of GxW variance depending on traits. The results of this study give further evidence of the importance of considering phenotypic plasticity to identify genetic polymorphisms involved in stress response. The high proportion of non-overlapping plasticity QTLs is consistent with the results previously found by Kusmec et al (2017) and Diouf et al (2020). It supports that phenotypic plasticity and phenotypic means are independent, as stipulated by Bradshaw (1965). It also suggests that the drought response is mainly driven by the gene regulatory model, where plasticity results from epistasis between regulatory and structural genes. Following the gene regulatory model implying that plasticity results from epistasis between regulatory and structural genes, my interpretation is that the genetic factors under plasticity QTLs could regulate the genetic factors under QTLs.

To verify this assumption, we decided to continue this work by doing a functional analysis of the QTLs and the plasticity QTLs identified. This work was realized by Amal Ksontini, an M1 student intern under the supervision of Marie-Laure and me. Her work is summarized in section 2.3, and her internship report is attached in the appendix.

. Plasticity QTLs specifically contribute to the genotype x water availability interaction in maize

This section corresponds to a peer-reviewed publication accepted at Theoretical and Applied Genetics (TAG) DOI: 10.1007/s00122-023-04458-z

Plasticity QTLs specifically contribute to the genotype x water availability interaction in maize

Introduction

Maize, currently the leading cereal crop ahead of rice and wheat (FAOSTAT, 2022), is massively produced, traded and exported worldwide [START_REF] Wu | Global Maize Trade and Food Security: Implications from a Social Network Model: Global Maize Trade and Food Security[END_REF]Erenstein et al, 2022). The major maize-producing countries are the United States, China and Brazil, with production exceeding seven hundred million tons per year since 2019 (FAOSTAT, 2022). This success is due not only to advances in agronomic practices and breeding, which have improved maize agronomic performance [START_REF] Mazur | Gene Discovery and Product Development for Grain Quality Traits[END_REF][START_REF] Balconi | Gene discovery to improve maize grain quality traits[END_REF][START_REF] Kelliher | One-step genome editing of elite crop germplasm during haploid induction[END_REF][START_REF] Simmons | Successes and insights of an industry biotech program to enhance maize agronomic traits[END_REF], but also to the capacity of maize to adapt to a wide range of environments [START_REF] Lanari | Expansion of the Area of the Maize Crop[END_REF][START_REF] Rotili | Expansion of maize production in a semi-arid region of Argentina: Climatic and edaphic constraints and their implications on crop management[END_REF].

Besides being the most widely produced crop in the world, maize also has a strong social and economic impact.

As an easy and cheap source of calories and micro-nutrients, maize has become a staple food for many people, especially in Sub-Saharan countries. In developed countries, maize is also widely used in the starch industry and in the production of livestock products (Shiferaw et al, 2011;Ranum et al, 2014;[START_REF] Ekpa | Sub-Saharan African maize-based foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes[END_REF].

One of the principal threats to maize production is drought [START_REF] Zipper | Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes[END_REF]Daryanto et al, 2016;[START_REF] Song | Climatic Causes of Maize Production Loss under Global Warming in Northeast China[END_REF]. Despite having a C4 metabolism, which ensures good water use efficiency [START_REF] Crafts-Brandner | Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress[END_REF], maize can be severely affected by water deficits [START_REF] Salehi-Lisar | Drought Stress in Plants: Causes, Consequences, and Tolerance[END_REF]. The defense mechanisms that decrease water losses also reduce plant growth (Tardieu et al, 2017). For instance, the water loss / CO 2 absorption trade-off associated with stomata closure leads to a decrease in photosynthetic activity and biomass production, indirectly affecting grain yield [START_REF] Efeoglu | Physiological responses of three maize cultivars to drought stress and recovery[END_REF]Wang et al, 2019;[START_REF] Song | Effects of Severe Water Stress on Maize Growth Processes in the Field[END_REF]. Water deficit can also directly induce severe yield loss if it occurs during flowering and prevents silk development, an essential step for grain production (Sah et al, 2020). With climate change, drought scenarios are expected to occur more frequently in maize-producing regions [START_REF] Seager | Causes of Increasing Aridification of the Mediterranean Region in Response to Rising Greenhouse Gases[END_REF][START_REF] Cook | Global warming and 21st century drying[END_REF][START_REF] Gudmundsson | Anthropogenic climate change affects meteorological drought risk in Europe[END_REF]. Together with the increase in human population, this is a major concern for global food security [START_REF] Harrison | Characterizing drought stress and trait influence on maize yield under current and future conditions[END_REF][START_REF] Lobell | Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest[END_REF][START_REF] Meng | Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat Scenarios[END_REF]. Drought tolerance is a highly integrated trait resulting from the combination of many genetically variable traits, such as water uptake, leaf growth and transpiration rate [START_REF] Tardieu | Genetic and Physiological Controls of Growth under Water Deficit[END_REF]. Consequently, developing drought-tolerant maize varieties through breeding programs is a solution of choice to mitigate yield losses (Campos et al, 2004[START_REF] Campos | Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt[END_REF][START_REF] Cooper | Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product[END_REF]. Aided by advances in genomics, genome-wide association studies (GWAS) are one of the most popular and powerful approaches for identifying genetic polymorphisms associated with inter-individual variations of traits of interest [START_REF] Zhang | Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches[END_REF][START_REF] Zhao | Identification of genetic loci associated with rough dwarf disease resistance in maize by integrating GWAS and linkage mapping[END_REF]. These so-called quantitative trait loci (QTLs) are further used in breeding programs. However, detecting QTLs related to the genotype x water availability interaction is complex since drought tolerance strongly depends on the environmental conditions faced by the plants. When only a single trial is conducted to study drought response, it is impossible to dissociate the effect of water conditions from the effect of other environmental factors that may fluctuate between trials. To tackle these confounding effects, it is necessary to carry out multi-environment trials (METs) (Boer et al, 2007;[START_REF] Rodrigues | An overview of statistical methods to detect and understand genotype-by-environment interaction and QTL-by-environment interaction[END_REF].

METs are experiments where a trait of interest is measured in several trials. For example, in Millet et al (2016), yield was measured in 29 different fields representing multiple trials with contrasting conditions. More complex METs can include paired conditions in each trial. For example, in Alvarez Prado et al (2017), stomatal conductance in maize was measured in four trials, each with two different watering conditions (well-watered and water deficit). To detect QTLs of interest from METs, GWAS can be carried out for each trial separately. Then, among all identified QTLs, some are selected for their contribution to the genetic effects using a modeling approach (Diouf et al, 2020) or because they are present in a specific set of trials (Millet et al, 2016;Alvarez Prado et al, 2017;[START_REF] Touzy | Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (T. aestivum L.)[END_REF][START_REF] Hu | QTL analysis across multiple environments reveals promising chromosome regions associated with yield-related traits in maize under drought conditions[END_REF]. Another approach in METs with paired conditions is based on phenotypic plasticity, i.e. the variation in phenotype for a given genotype in response to different conditions (Bradshaw, 1965). Plasticity indices can be computed for each trait with regression models as proposed by Finlay and Wilkinson (1963) or by computing the relative difference or ratio between two studied conditions [START_REF] Peleg | Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population[END_REF][START_REF] Zhai | A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs[END_REF][START_REF] Dos | Genome-wide association study of drought tolerance in cassava[END_REF]. Performing GWAS on plasticity indices then allows the detection of condition-responsive QTLs, hereafter called plasticity QTLs [START_REF] Wang | A dynamic framework for quantifying the genetic architecture of phenotypic plasticity[END_REF][START_REF] Zhai | A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs[END_REF][START_REF] Ye | Np2 QTL: Networking phenotypic plasticity quantitative trait loci across heterogeneous environments[END_REF]. Recent studies in rice and wheat have shown that plasticity QTLs tend to be positioned near stress-responsive genes [START_REF] Mai | Discovery of new genetic determinants of morphological plasticity in rice roots and shoots under phosphate starvation using GWAS[END_REF][START_REF] Fatiukha | Genomic Architecture of Phenotypic Plasticity in Response to Water Stress in Tetraploid Wheat[END_REF] and that many of them do not overlap with the QTLs detected separately in each studied condition (Kusmec et al, 2017;Diouf et al, 2020).

In this study, we investigated the genetic bases of the drought response in maize using a MET approach. To this end, we analyzed previously published phenotypic data acquired for six drought-related ecophysiological traits and 254 maize genotypes grown under two watering conditions repeated in four independent trials (Alvarez Prado et al, 2017). Because the four trials were conducted over three years and two seasons, high variations in vapor pressure deficit and light were observed (Alvarez Prado et al, 2017) and were considered as trial effects. We first assessed the effect of the trial on QTL detection by performing multi-trial GWAS on well-watered and water deficit phenotypic means. Then, considering plasticity indices as different traits, as postulated by Bradshaw (1965), we investigated the relative contribution of QTLs and plasticity QTLs to the genotype by water availability interaction for the six studied ecophysiological traits.

Methods

Description of the phenotypic and genomic data used

The phenotypic dataset used in this study was previously published by Alvarez Prado et al (2017). This dataset consisted of six ecophysiological traits, namely biomass (Biom), leaf area (LA), transpiration rate (Transp), stomatal conductance (gs max), water uptake (WU) and water use efficiency (WUE), measured on a diversity panel of maize hybrids obtained by crossing 254 dent lines selected for their restricted flowering window with a standard flint line (UH007). Three replicates of each hybrid were grown under two watering conditions (well-watered, WW, and water deficit, WD). This experimental design was replicated in four different trials during three different years and two different seasons: spring 2012, spring 2013, spring 2016 and winter 2013. Plants were grown at the INRAE PhenoArch phenotyping platform located in France at Montpellier (Cabrera-Bosquet et al, 2016;Alvarez Prado et al, 2017), with applied soil water potentials equal to -0.05 MPa for the WW condition and ranging from -0.3 to -0.6 MPa for the WD condition. For each trait, watering condition and trial, the average of the three replicates (hereafter called the phenotypic mean) was adjusted by taking into account the greenhouse spatial effect , as described in Alvarez Prado et al (2017).

The genomic dataset contained 977,459 SNPs obtained using a combination of a 50K Infinium HD Illumina array (Ganal et al, 2011), a 600K Axiom Affymetrix array (Unterseer et al, 2014) and 500K markers obtained by genotyping by sequencing (Negro et al, 2019). SNPs with a minor allele frequency (MAF) below 0.05 or a heterozygosity rate above 0.15 were filtered. Missing values were imputed by Beagles 3.1 (Browning and Browning, 2007). SNPs were mapped on the Zm00001d.2 gene models annotation of the B73 reference assembly (ZmB73 RefGen v4) of the maize genome obtained from MaizeGDB (https://www.maizegdb.org/assembly#downloads)

Calculation of plasticity indices

Plasticity indices were calculated as ecophysiological trait-related stability indices [START_REF] Bouslama | Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance1[END_REF]. They are defined as ratios between the phenotypic mean of a trait for a genotype under water deficit to the phenotypic mean of the same trait for the same genotype under the well-watered condition. These plasticity indices were computed for each ecophysiological trait in each trial.

Multi-trial GWAS

Multi-trial GWAS was performed by adding a fixed effect of the trial in the single locus mixed model of Yu et al (2006) :

Y gt = µ + T t + α.X g + G g + ε gt (1)
where Y gt is a plasticity index or a phenotypic mean under the WW or the WD condition of genotype g in the trial t; µ is the overall mean; T t is the fixed effect of trial t; α is the fixed effect of the SNP allelic dose X g (coded as 0,1 and 2) for the genotype g; G g ∼ N (0, σ 2 g .K) is the random effect of genotype g, with K the kinship matrix; ε gt ∼ N (0, σ 2 .I n ) is the residual error. The kinship matrix K was computed with the whole set of SNPs except those located on the same chromosome as the tested SNP (Rincent et al, 2014), following the approach published by Astle and Balding (2009) and implemented in the R package statgenGWAS. Model (1) was run using the function GWAS of the R package rrBLUP [START_REF] Endelman | Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP[END_REF].

SNPs were considered to be significantly associated if their p-values were below 10 -5 . SNPs less than 0.1 cM apart were clumped into QTLs identified by the ecophysiological trait to which they are related and the most significant SNP.

QTLs associated with plasticity indices were defined as plasticity QTLs while those associated with phenotypic means each of the two watering conditions were defined as QTLs.

QTL colocalization is defined by the overlap of the linkage disequilibrium (LD) windows of QTLs as described in Negro et al (2019). Genes associated with QTLs, i.e. genes located in QTL LD windows, were retrieved from the Zm00001d.2 gene models annotation .gff3 of the B73 reference assembly (https://www.maizegdb.org/assembly#downloads)

Estimation of the relevance of QTLs and plasticity QTLs

To assess the biological relevance of the detected QTLs and plasticity QTLs, we followed the approach previously described by van Eeuwijk et al (2010). A multi-environment mixed model with random effects for genotype (G), genotype by water availability interaction (G×W ), genotype by trial (G×T ) was first fitted following Alvarez Prado et al (2017) in order to estimate the variance components of random effects by the restricted maximum likelihood (REML):

Y gwt = µ + E wt + P C g + (P C × E) gwt + G g + (G × W ) gw + (G × T ) gt + ε gwt (2) 
where : Y gwt is the phenotypic mean of genotype g in the watering condition w and the trial t; µ is the overall mean; E wt is the fixed effect of the environment defined as the combination between the watering condition w and the trial t; P C g are coordinates of genotype g projected onto principal component analysis axes built with the kinship matrix K. The number of axes used was chosen following the Kaiser criterion; (P C × E) gwt are the fixed interaction effects between the genetic structure P C g and the environment defined as the combination between the watering condition w and the trial t; ε gwt is the residual of the model.

For each ecophysiological trait, the significance of G, G × W , G × T random effects were tested by comparing the model defined Equation ( 2) and the same model without the tested random effect. These random effects were considered to be significant if their p-values were below 0.05.

Then, a multi-locus multi-environment mixed model (van Eeuwijk et al, 2010;Alvarez Prado et al, 2017) was fitted by adding the fixed effects of the QTLs and QTLs by environment interaction in (2):

Y gwt = µ + E wt + P C g + P CQ g + (P C × E) gwt + (P CQ × E) gwt + G g + (G × W ) gw + (G × T ) gt + ε gwt (3)
where P CQ g is the fixed effect of a given set of QTLs or plasticity QTLs. P CQ g are coordinates of the genotype g projected onto principal component analysis axes built with a kinship matrix computed with a set of significant SNPs that describe the QTLs or plasticity QTLs. The number of axes used was chosen following the Kaiser criterion.

Let r be one of the three random effects : G, GxT, and GxW. The proportion of variance γ qr explained by a given set of SNPs q for the random effect r is defined by:

γ qr = Γ r -Γ * r Γ r (4) 
where: Γ r is the variance component of the random effect r in ( 2) and Γ * r is the variance component of the random effect r in (3).

Results

GxE interactions are driven more by trial effects than by water availability

To evaluate the trial effects, we calculated the Pearson correlation coefficients between the four trials for each phenotypic mean and plasticity index (Fig. 1). This showed that the phenotypic means or plasticity indices computed for a same ecophysiological trait in two different trials are more distant from each other than the phenotypic means or plasticity indices computed for different ecophysiological traits in the same trial. This is even more apparent for plasticity indices (Fig. 1B) than for phenotypic means (Fig. 1A and Fig. S1). This result highlights the importance of the effects of the trials on the phenotypes and response phenotypes of drought-related ecophysiological traits.

Table 1: Variance components of each random effect calculated from (2) and their contribution in percentage to the total ecophysiological trait variance. The p-values in brackets indicate the significance of the associated effect. 23456789 (0,15) 3 582 48 Transp 0,007 (0,6) 1 0,05 (0,005) 6 0,54 65 gs max 9,234567891011121314151661 (0,4) 1 2,8 (0,015) 7 28,9 70 WU 0,8910111213141516009 (0,001) 4 0,017 (5,1 To further quantify the contribution of the trials to genetic variance, we computed, for each ecophysiological trait, the significance of the G, GxT and GxW effects and their variance components (Table 1). We observed that G effect was significant for all ecophysiological traits, and it was the most important effect explaining 19-44% of the trait variances. Concerning the GxW effect, the contributions in the trait variance was low (1 -9%) and this effect was not significant for LA, Transp, and gs max. The contribution on the GxT effect on the trait variance was 2 to To assess the effect of the trials on QTL detection, we performed multi-trial GWAS on phenotypic means. This allowed us to detect 102 QTLs, (60 in the WD condition and 42 in the WW condition) (Table S1), spanning 395 genes in total (Table S4). Compared to the QTLs previously obtained by single-trial GWAS with a p-value threshold of 10 -5 (Alvarez Prado et al, 2017), QTLs obtained by multi-trial GWAS were less numerous (2.9 to 7.9 times less for all traits except WUE) and were mainly new QTLs (see the Venn diagrams in Fig. 3, Fig. S2). We then compared the contribution of all QTLs detected in the four single-trial GWAS vs those detected by multi-trial GWAS to the variations due to G, GxT and GxW (see bar plots in Fig. 3, Fig. S2, Table S2). For three traits, (Biom, gs max and Transp), the QTLs detected only by multi-trial GWAS contributed less to the variations due to G, GxT and GxW than the QTLs detected only by single-trial GWAS. For gs max and Transp, this may be explained by the fact that the number of multi-trial QTLs considered was very low compared to that of single-trial GWAS (2 and 5 vs 45 and 53, respectively). For the two traits LA and WU, the QTLs detected only by multi-trial GWAS contributed less to the variations due to G and GxT but much more to the variations due to GxW. Finally, for WUE, the QTLs detected only by multi-trial GWAS contributed more to the variations due to G, GxT and GxW. Overall, these results show that for half of the traits considered, multi-trial GWAS allowed to decrease the noise from the trials and detect new QTLs that were more responsive to water availability than to the trials. Single-trial Multi-trial
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Plasticity QTLs specifically contribute to the GxW interaction

Using multi-trial GWAS, we identified 40 plasticity QTLs (Table S1), none of which overlapped with the 102 QTLs (see the Venn diagrams in Fig. 4 and Fig. S3). These plasticity QTLs are highlighted on the karyoplot shown in Fig. 5, and cover 240 genes (Table S4).

Fig. 4: Comparison between QTLs and plasticity QTLs detected from multi-trial GWAS for WU and WUE. The barplots show the proportions of variance of the G, GxT interaction and GxW interaction effects that were captured by a given QTL set, as computed from ( 2) and ( 3). For each trait, 1000 control sets were constituted with the QTLs and n SNPs randomly selected among the total number of SNPs available (977,459) in order to control over-fitting.

With n the number of plasticity QTLs detected for the trait. Results for the others traits are shown in Fig. S3. S3). However, excepted for gs max, plasticity QTLs strongly contributed to the variance due to GxW effects (60 -100%). QTLs mainly contributed to the variance due to GxW effects in four traits (LA, gs max, WU and WUE), as well as to the effects of G and GxT. Plasticity QTLs contributed more to the GxW effect than QTLs. To evaluate to what extent plasticity QTLs were complementary to QTLs, we considered jointly plasticity QTLs and QTLs and compared their biological relevance to a control set comprising QTLs and randomly selected SNPs (Fig. 4 and Fig. S3). Excepted for gs max, QTLs and plasticity QTLs jointly contributed more to the GxW effect than the union of the QTLs and randomly selected SNPs. Altogether, these results show that plasticity QTLs are good candidates for understanding the genetic architecture of the GxW interaction.

WUE WU

Steady_state

Discussion

Plants being sessile, they are continuously exposed to variable and potentially harsh environmental conditions that can cause biotic or abiotic stress. In crops, the ability to resist or tolerate such stresses is of great importance to maintain productivity without resorting to inputs. Here, we investigated the genetic bases of the drought response in maize using a MET approach. The objectives of our study were i) to assess the effect of the trials on QTL detection, and ii) to estimate the extent to which plasticity QTLs contribute to the GxW effect on drought-related ecophysiological traits in maize compared to QTLs.

Even though the trials were carried out in a greenhouse with well-controlled watering conditions, the meteorological conditions outside the greenhouse were different from one trial to the other. We took these different meteorological conditions into account, which allowed us to decompose the GxE interaction into GxW and GxT. We showed that the GxE interactions observed in the data were driven more by trial effects than by water availability. This may explain the low overlap between the sets of QTLs identified from each trial by Alvarez Prado et al (2017).

Compared to single-trial GWAS, multi-trial GWAS allowed to better fit the ecophysiological traits related to drought response: residual errors and GxT interactions were both smaller in multi-trial GWAS than in single-trial GWAS. In addition, the newly detected QTLs captured a larger part of the GxW variability for LA, WU and WUE. For the three other traits (Biom, Transp and gs max), results are more mitigated: the number of newly detected QTLs was small compared to the several dozens of QTLs detected by the single-trial GWAS, which already explained a large part of the GxW interaction. Overall, by performing multi-trial GWAS, we multiplied individual observations and thereby increased the power to detect QTLs across trials [START_REF] Cantor | Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application[END_REF][START_REF] Thomas | Gene-environment-wide association studies: Emerging approaches[END_REF]. These results are consistent with those of [START_REF] Benaouda | Identification of QTLs for wheat heading time across multipleenvironments[END_REF], who showed that four multi-environment QTLs explained 20.6% of the heading time variance in wheat compared to 9.5% for the six single-environment QTLs detected by [START_REF] Langer | Flowering time control in European winter wheat[END_REF].

In this study, we also explored the gain provided by performing GWAS on six plasticity indices for dissecting the genetic architecture of ecophysiological trait response to drought. We identified 40 plasticity QTLs and highlighted 38 genetic regions that differed from those associated with the QTLs. The results obtained with the multi-locus multi-environment model showed that plasticity QTLs specifically captured the variance of the GxW interaction. By comparison, QTLs not only captured the variance of the GxW interaction, but also a large part of the G variance and, to a lesser extent, part of the variance of the GxT interaction. These results indicate that, for the ecophysiological traits studied, the genetic control of phenotypic plasticity in response to drought does not completely overlap with that of the genetic control of the phenotypic mean. Similar results were previously observed in maize (Kusmec et al, 2017), tomato (Diouf et al, 2020) and cassava [START_REF] Dos | Genome-wide association study of drought tolerance in cassava[END_REF].

All together, our results help dissecting the genetic basis of response to water deficit. Indeed, three mutually non exclusive genetic models have been proposed to explain phenotypic plasticity (Scheiner, 1993;Via et al, 1995). First, the over-dominance model assumes that phenotypic plasticity is related to the number of heterozygous loci (Gillespie and Turelli, 1989). Second, the allelic-sensitivity model considers that the environment affects the allelic effect of the genetic factors that determine a trait. Third, the gene-regulatory model assumes that phenotypic plasticity results from epistatic interactions between structural and regulatory alleles. Our results favor this last model, in agreement with the hypothesis of Bradshaw (1965) stating that the plasticity of a trait is an independent property of that trait and is under its own specific genetic control.

In conclusion, considering phenotypic means and plasticity as different traits and taking trial effects into account allow us to gain a more precise understanding of how ecophysiological traits respond to water availability. In the short term, our perspective is to go deeper into the functional annotation of the genes associated with the QTLs and plasticity QTLs. By comparing the two gene lists against gene regulatory databases, a strong result in favor of the gene-regulatory model would be to find that genes associated with the plasticity QTLs are regulators of genes associated with the QTLs. These findings may shed further light on the genetic regulatory system underlying the response of plants to stress.

. Functional analysis of plasticity quantitative trait loci related to water stress response in maize

Considering phenotypic plasticity as an independent and heritable trait (Bradshaw, 1965) leads to the elaboration of two genetic control assumptions: the allele sensitivity and gene regulatory hypothesis.

The allele sensitivity hypothesis implies that genes underlying phenotypic means and phenotypic plasticity are the same, and as a consequence, the environment directly influences the expression of these genes. In opposition, the gene regulatory hypothesis affirms that genes underlying phenotypic means and phenotypic plasticity are different, and as a consequence, plasticity genes are regulators of phenotypic means genes (Scheiner, 1993;Via et al, 1995).

The results presented in section 2.2 suggest that the plasticity of the ecophysiological traits studied follows the gene regulatory model. Thus, to verify this hypothesis, Amal Ksontini conducted a comparative functional annotation analysis of the genes located in QTLs and plasticity QTLs identified in section 2.2. Her work, which is attached as an annex, dealt with the following two questions:

• What are the biological functions of the genes located in QTLs and plasticity QTLs?

• Can we find any further evidence of the gene regulatory model of plasticity of ecophysiological traits by functionally analyzing QTLs and plasticity QTLs?

Briefly, Amal found no functional enrichment among the genes covered either by QTLs or plasticity QTLs. However, by analyzing the proximal regions of genes covered by QTLs, she was able to find enriched patterns [START_REF] Bernard | TC-motifs at the TATA-box expected position in plant genes: A novel class of motifs involved in the transcription regulation[END_REF] recognized by a class of transcription factors encoded by genes located in plasticity QTLs. By contrast, no pattern enrichment was found in the proximal regions of genes covered by plasticity QTL recognized by a class of transcription factors encoded by genes located in QTLs. These two last results support our intuitions on the regulatory role of genes located in plasticity QTLs.

NB: As Amal's report was written before receiving reviewers' comments on the article presented in Chapter 2, some jargon terms are present in the report :

• steady-state QTLs → QTLs detect on phenotypic means

• Multi-environment GWAS → Multi-trial GWAS 59 Chapter 3
Systems genetics provide an in-depth genetic and molecular characterization of maize response to water deficit

. Standfirst

In the following section, I conducted a systems genetics approach integrating genomics, proteomics, and phenomics data to provide an in-depth genetic characterization of maize response to water deficit. The genomics and phenomics data presented in Chapter 2 were integrated with proteomics data generated by Blein-Nicolas et al (2020). Briefly, proteomics data consisted of 2,055 protein abundances quantified from leaf samples taken on 251 hybrids grown in WW and WD conditions during the spring 2012 trial. Blein-Nicolas et al (2020) conducted single-trial GWAS on each protein abundance obtained in each condition, leading to the identification of more than 22,000 pQTLs. They showed that several of the pQTLs colocalized with the 531 QTLs detected by Alvarez Prado et al (2017) and give further intuition on the uses of proteomics to better characterize the genetic determinism of ecophysiological traits.

Here, based on the previous results and those obtained in Chapter 2, we decided to go further by better estimating an overall genotype x watering availability interaction (GxW) variance by fitting the whole set of phenomics data into a multi-trait, multi-environment linear mixed model. Then, using the QTLs and plasticity QTLs identified in Chapter 2, I investigated which set of QTLs captured the maximum part of GxW variance with multi-locus multi-trait multi-environment linear mixed models. From here, I addressed these questions:

• How the integration of proteomics data, pQTLs, and plasticity (PL) pQTLs with QTLs explaining the highest part of GxW variance can provide a comprehensive molecular insight into to genetic determinism of water deficit response?

• Do the pQTLs that do not colocalize with QTLs capture an additional part of the GxW variance? How can we select pQTLs that maximize the part of the GxW variance captured?

• What are the genetic and molecular bases of maize response to water deficit?

The major result of this study was the inference of a multi-scaled network with an original method combining Gaussian graphical models and multi-locus multi-trait multi-environment linear mixed models. This method allowed a simultaneous selection of proteins linked with ecophysiological traits and pQTLs that captured an additional part of the GxW variance. Thus, we inferred a multi-scaled network capturing 84% of the GxW variance comprising 531 associated loci, 63 proteins, and the 6 ecophysiological traits. Among the 531 associated loci, 48 were located in genomics regions enriched in pQTLs (hotspots). Three hotspots were considered as the most important as a loss of 7 points in the part of the GxW variance was observed if we removed the QTLs and pQTLs that constituted them. Using StringDB, I integrated proteins coded by genes located in these hotspots in protein-protein interaction networks (PPI) involved in the biosynthesis of amino acids and aminoacyl-tRNA, RNA degradation, and oxidative phosphorylation. I also identified a PPI network integrating 29 of the 63 proteins present in the multi-scaled network, highlighting groups of proteins highly connected and involved in response to stress, protein folding, and the oxidation-reduction process.

Together, our results first show the benefit of integrating intermediate molecular traits, such as protein abundances, to unravel the missing heritability of a combination of ecophysiological traits related to drought response. Second, our results provide an in-depth genetic characterization of water stress response. Third, they give further insight into the involvement of the genetic and molecular factors driving phenotypic changes from WW condition to the WD condition.

In addition to proteomics data, we applied our system genetics approach on metabolomics data produced by the Metabolomics Bordeaux platform (Prigent et al., unpublished). This work was realized by Romain Poupon, an M1 student intern under the supervision of Marie-Laure and me. His work is summarized in section 3.3, and his internship report is attached in the appendix.

. Integration of phenomics, proteomics, and genomics

data into a multi-scale network unravels missing heritability for maize response to water deficit

. Introduction

Advances in high-throughput technologies now make it possible to genotype several hundred individuals with marker densities easily approaching several million single nucleotide polymorphisms. This increase in the amount of genomic data is dramatically improving the study of the genetic determinism of phenotypic traits through genome-wide association studies (GWAS) [START_REF] Cano-Gamez | From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases[END_REF]Uffelmann et al, 2021). However, despite the success of GWAS in identifying and fine-mapping quantitative trait loci (QTLs), the genetic determinism for complex traits is generally not fully unraveled since a part of the heritability remains unexplained by QTLs. This missing heritability phenomenon, as defined by Manolio et al (2009), is mainly explained by the lack of statistical power (Yang et al, 2010;Shi et al, 2016).

To address this lack of heritability, Boyle et al (2017) proposed a new model of heritability for complex traits, called the omnigenic model, which suggests that most genes influence complex traits through highly connected regulatory networks. The authors distinguish between two types of genes. Core genes, which are limited in number, are thought to have direct effects on complex traits but make a small contribution to total heritability. Peripheral genes do not directly affect complex traits, but because they are much more numerous than core genes, they can explain a large proportion of total heritability. The development of omics technologies, such as transcriptomics, proteomics, or metabolomics, now enables large-scale phenotyping of intermediate molecular traits. This provides a route to identifying QTLs with indirect effects on complex phenotypic traits by establishing relationships between phenotypic traits, intermediate molecular traits, and genetic polymorphisms.

Bridging the genotype-phenotype gap by linking different levels of biological complexity is far from trivial. Systems genetics is an approach that aims to improve our understanding of this relationship by unraveling the genetic variants and the molecular networks that underlie complex traits (Civelek and Lusis, 2014;van der Sijde et al, 2014). Until recently, this approach was based on the comparison between the position of QTLs underlying phenotypic trait variation to that of QTLs underlying the variation of intermediate molecular traits such as transcript expression (eQTLs) or protein abundance (pQTLs) [START_REF] Christie | Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem[END_REF]Blein-Nicolas et al, 2020). However, although the inclusion of such QTLs directly into inferred molecular networks showed its effectiveness in providing an in-depth genetic characterization of complex traits (Fagny et al, 2017;[START_REF] Capriotti | Integrating molecular networks with genetic variant interpretation for precision medicine[END_REF], to our knowledge, this approach is still rare in the study of plant drought response and has not been used to unravel missing heritability. Several methods based on molecular network modeling have been proposed to link phenotypic and intermediate molecular traits (Hawe et al, 2019). Among these, Gaussian graphical models (GGMs) are powerful tools that allow the inference of conditional dependencies between phenotypic and molecular traits by generating a conditional dependency network (Shutta et al, 2022). The ability of GGMs to build sparse networks that consist only of direct effects enhances the relevance and interpretability of this approach for incorporating QTLs, eQTL, and pQTLs compared to the other networks based on classical correlation measures.

Here, we aimed to harness the potential of systems genetics approaches to gain insight into the genetic and molecular basis of complex traits to unravel the missing heritability of maize (Zea mays) drought re-sponse. Maize is one of the most widely cultivated cereals in the world, with a production of more than 1.2 billion tonnes in 2021 (FAOSTATS, 2023). However, water deficit can lead to significant yield losses, ranging from 20% to 50%, depending on the developmental stage (Sah et al, 2020). The development of more drought-tolerant maize varieties is therefore becoming urgent to address the increasing frequency and intensity of droughts caused by climate change [START_REF] Cook | Climate Change and Drought: From Past to Future[END_REF]Intergovernmental Panel on Climate Change, 2023).

To carry out our study, we used data and results previously generated from the same maize diversity panel composed of hybrids obtained after crossing 254 dent lines with a single flint tester. These data are composed of i) nearly one million SNPs obtained using a combination of high-throughput genotyping approaches (Negro et al, 2019), ii) six drought-adaptive ecophysiological traits measured under well-watered (WW) and water deficit (WD) conditions in four trials conducted on a high-throughput phenotyping platform (Alvarez Prado et al, 2017), and iii) 2,055 proteins quantified by mass spectrometry-based proteomics in leaves from plants grown in one of the four aforementioned trials (Blein-Nicolas et al, 2020). In a first study, Alvarez Prado et al (2017) associated the genomics and phenomics data through single-trial GWAS to analyze the genetic architecture of environmental effects on stomatal conductance. They could detect 531 QTLs spread across the trials and the watering conditions. Then, Blein-Nicolas et al (2020) associated the genomics and proteomics data, also through single-trial GWAS, to decipher the molecular mechanisms associated with the genetic polymorphisms underlying the variations of ecophysiological traits. They detected a set of 10,906 pQTLs in the WW condition (referred to as the pQ w set) and a set of 11,930 pQTLs in the WD condition (referred to as the pQ d set). Several of the pQTLs colocalized with QTLs previously detected by Alvarez Prado et al (2017). Altogether, these first two studies allowed to establish links between SNPs, proteins, and ecophysiological traits. Lastly, Djabali et al (2023) used the genomics and phenomics data to perform multi-trial GWAS, which allowed the detection of 42 QTLs for the ecophysiological traits in the WW condition (the Q w set), 60 QTLs for the ecophysiological traits in the WD condition (the Qd set), and 40 QTLs for PL indices calculated from the phenotypic measurements made in the WW and WD conditions (the Qp set). Their results show that plasticity QTLs (PL QTLs) specifically contribute to the genotype x water availability (GxW) interaction.

In the present study, we go one step further by integrating phenomics, proteomics, and genomics data into a multi-scale network. To this end, we have developed an original systems genetics method that combines GGMs with the genetic information present in proteins. This allowed us to explain a part of the GxW variance of ecophysiological traits that was previously unraveled if only QTLs were considered.

. Results

One-third of the heritability for maize drought response is not explained by QTLs

In this first part, we aimed to estimate the proportion of missing heritability for maize drought response using the three QTLs sets previously reported by Djabali et al (2023) (i.e., Q w , Q d , and Q p ). To this end, we sought to identify which set of QTLs, or combination thereof, best explained the GxW variance of the drought-related ecophysiological traits. We first analyzed the degree of overlap between Q w , Q d , and Q p by looking at the colocalization between QTLs. This showed that the 142 QTLs actually covered 109 unique loci, of which five were common between Q w and Q d , two were common between the Q d and Q p , and one was common between Q w and Q p (Fig. 3.1a). This result shows that there is little redundancy between Q w , Q d , and Q p .

We then assessed how the phenotypic variance in drought response was captured by Q w , Q d , Q p , and their combinations by using a modeling approach similar to that described in Djabali et al (2023). This approach compares the variance components of a reference multi-environment mixed model, which does not include fixed effects of QTLs, to those of a multi-locus multi-environment mixed model which includes QTLs as fixed effects. Assuming that drought response is a highly integrated trait resulting from the combination of many genetically variable traits, we considered ecophysiological traits altogether rather than separately by fitting a multi-locus multi-trait multi-environment linear mixed model instead of single-trait multi-locus multi-trait multi-environment linear mixed models as in Djabali et al (2023). In this model, the total phenotypic variance was decomposed into five components: genotype (G), genotype by water availability interaction (G × W ), genotype by ecophysiological trait interaction (G × P ), genotype by trial interaction (G × T ), and the residuals (ε). For the model of reference M 0 , which does not include fixed effects of QTLs, the genotype contributed to 13% of the total phenotypic variance, the G × W interaction to 7%, the G×P interaction to 21%, the G×T interaction to 9%, and the residuals to 50% (Fig. 3.1b).

We defined then seven multi-locus multi-trait multi-environment linear mixed models (M 1 -M 7 ), each one including one of the three Q w , Q d , or Q p sets, or a combination of them (Fig. 3.1c). The genetic variances captured by these sets of QTLs are presented in Table 3.1, and the proportion of captured variance is illustrated in Fig. 3.1d. Depending on the model, QTLs captured 5%-80% of the G variance, 2%-65% for the G × W variance, 5%-78% for the G × P variance, 5%-20% for the G × T variance, and 1%-5% of the ε variance. The combination of Q w and Q p in M 5 captured the highest proportion of the GxW variance (65%). By comparison, the combination of Q w , Q d , and Q p in M 7 captured 60% of the GxW variance. This result indicates that WD QTLs are not required to explain the GxW interaction. This is confirmed by M 2 , where Q d alone captured only 7% of the GxW variance. Together, Q w and Q p gathered 82 QTLs spanning 351 genes with no functional enrichment (Table S1).

Overall, this work shows that the combination of Q w and Q p , denoted to as Q ref in the following, best explains the phenotypic variations in maize drought response, with a baseline at 65% of explained GxW variance. Considering these QTLs, the proportion of missing heritability for maize drought response is, therefore 35%. Contribution on the total phenotypic variance 2020) has shown that pQTL/QTL colocalization can occur for co-expressed proteins whose abundance is correlated with ecophysiological traits, suggesting that the same genetic polymorphism may be responsible for both protein co-expression and phenotypic trait variation. Based on these results, for those proteins whose abundance is correlated with phenotypic traits, we hypothesize that pQTLs not colocalized with QTLs may also influence the traits and thus be part of the missing heritability. Under such a hypothesis, we expect the number of pQTLs that do not colocalize with QTLs to be high. To test this, we compared the genetic landscape of the proteome with that of the drought response as determined by Q ref .

Model σ 2 G σ 2 G×W σ 2 G×T σ 2 G×F σ 2 M 0 0.
G G x W G x P G x T M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7
We first complemented the two pQTL sets previously detected by Blein-Nicolas et al (2020), pQ w and pQ d , with a set of 10,073 plasticity pQTLs, denoted pQ p , thus bringing the total number of available pQTLs to 32,909. We then performed a pQTLs colocalization analysis for each protein and observed that the intersection between pQ w , pQ d , and pQ p was always empty (Fig. S1a). Furthermore, the intersections between pQ w and pQ p and between pQ d and pQ p were also empty for more than 90% of the proteins having at least one pQTL in each pQTL set. The intersection between pQ w and pQ d was also empty for more than 75% of the proteins. However, when we analyzed the colocalization of pQTLs for all proteins simultaneously, we showed that 5,006 (59%) of the 8,476 unique loci spanned by the 32,909 pQTLs were shared between pQ w , pQ d , and pQ p (Fig. 3.2a). This means that the same locus can be shared by several pQTLs sets while being associated with different proteins according to the plant water status and its plasticity. We, therefore, examined how the 8,476 unique loci represented by the three pQTL sets were distributed across the genome. This allowed us to identify 100 loci associated with more than twenty different proteins, which we call hereafter hotspots (Table S2).

We then analyzed the position of the QTLs in Q ref relative to that of the pQTLs. In total, Q ref , pQ w , pQ d , and pQ p represented 8,488 unique loci (Fig. 3.2a), of which 8,416 (99.2%) were spanned by pQTLs only, 12 (0.1%) were spanned by QTLs only, and 60 (0.7%) were spanned by both pQTLs and QTLs. Of these 60 loci, five correspond to hotspots of pQTLs located on chromosomes 1, 8, and 10 (Fig. 3.2b). These five hotspots included 156 proteins that were associated with a total of 2,645 pQTLs. Among these pQTLs, 93% were located outside the five hotspots that colocalized with QTLs.

For each of the five hotspots that included a QTL, we performed a functional analysis of the pQTLassociated proteins and we constructed a protein-protein interaction (PPI) network taking into account both the pQTL-associated proteins and the genes covered by the hotspot. The results of these analyses are summarized in Table 3.2 (Hotspots c242, c267, c268, c6902, and c8174). They show that, i) regardless of the hotspot considered the pQTL-associated proteins show a significant functional enrichment; ii) many pQTL-associated proteins (48% to 57%) and only a few genes covered by the hotspot (3% to 17%) are involved in PPI network; iii) many of the interactions in the PPIs (25% to 53%) are experimentally validated, iv) depending on the hotspots, many of the experimentally validated interactions in the PPIs (17% to 66%) link a gene covered by the hotspot to a pQTL-associated protein. For example, for hotspot c242, the gene encoding the unannotated protein GRMZM2G087275_P01 was linked to the pQTL-associated protein GRMZM2G017110_P01 (glutamate decarboxylase). For hotspot c267, the gene encoding the unannotated protein GRMZM2G309363_P01 was linked to three pQTL-associated proteins: GRMZM2G154595_P01 (malate dehydrogenase 2), GRMZM2G415359_P02 (malate dehydrogenase 4) and GRMZM2G033208_P01 (transketolase 1). These three proteins were exclusively linked by experimentally validated interactions (Fig. 3.2c). For hotspot c268, the gene encoding the protein GRMZM2G102365_P02 (thioredoxin-like 1-1 chloroplastic) was linked to the pQTL-associated proteins GRMZM2G577677_P02 (peptide methionine sulfoxide reductase msrB) and GRMZM2G011025_P01 (methionine sulfoxide reductase 6). For hotspot c6902, the gene encoding the protein GRMZM2G085577_P01 (alpha-1,4-glucan phosphorylase) was linked to the pQTL-associated protein GRMZM2G155253_P02 (fructose-bisphosphate aldolase). Finally, for hotspot c8174, the gene encoding the protein GRMZM2G124411_P04 (60S ribosomal protein) was linked to the pQTL-associated proteins GRMZM2G448151_P01 (30S ribosomal protein) and GRMZM2G448142_P02 (NAD(P)H-quinone oxidoreductase subunit K) (Fig. 3.2c). These two proteins were linked by a non-experimentally validated interaction and are encoded by genes with overlapping coding DNA sequences.

Hotspot Chr. Start-End (Mb.) # G1 # P2 PPIs Comp. 3 Exp./Tot. 4 # G/Exp. 5 Overall, the PPI analysis of five hotspots of pQTLs shows that the proteins associated with pQTLs located in the same hotspot can physically interact with each other. These interactions can occur between proteins associated with the three types of pQTLs. This result thus confirms that it is highly relevant to jointly analyze the genetic landscapes of the proteome obtained from different datasets. Furthermore, we showed that physical interactions can also occur between the pQTL-associated proteins and the proteins encoded by the genes covered by the hotspot. This provides clues to identify the candidate genes and the molecular mechanisms underlying pQTLs. Finally, we identified a large number of pQTL hotspots distributed across the genome, only a few of which also included QTLs. For those that contained loci shared between pQTLs and QTLs, the pQTL-associated proteins were also associated with many other pQTLs located elsewhere in the genome. These results suggest that pQTLs represent an important potential reservoir of genetic polymorphisms for unraveling missing heritability. pQTLs that capture missing heritability for drought response can be identified using systems genetics

In order to unravel the 35% of missing heritability observed for maize drought response, we implemented an approach of systems genetics, which aims to identify pQTLs that could capture part of this missing heritability. This approach is based on the inference of trait-protein co-expression networks using Gaussian graphical models (GGMs), which have the advantage of estimating the strength of the relationship between two variables while taking into account the effects of the other variables. We inferred trait-protein networks from the three following datasets: i) the phenotypic means in the WW condition (WW dataset); ii) the phenotypic means in the WD condition (WD dataset); iii) the plasticity indices (PL dataset). To avoid the ultra-high dimension phenomenon, we reduced the number of proteins used as input in the GGMs by focusing on the 951 proteins that had at least one pQTL in each of the pQ w , pQ d , and pQ p sets. These 951 proteins represented a pool of 7,385 unique loci out of the 8,437 total loci spanned by pQ w , pQ d , and pQ p .

For each of the three datasets considered, we first estimated a GGM by using the Glasso procedure. To examine how the networks evolved, we considered the same regularization grid of length 100 (the lower the regularization parameter, the higher the number of nodes and edges). This allowed us to examine how the networks evolved with the regularization parameter λ (Fig. 3.3a). We observed that, regardless of the dataset, trait-trait edges appeared before trait-protein edges. Furthermore, the number of traitprotein edges was much higher for WU, Biom, and LA than for gs_max, WUE, and Transp. This difference between the ecophysiological traits was more important in the WD dataset than in the WW and PL datasets.

Several choices of mathematical criteria exist to select the most relevant regularization parameter and get the coexpression network. These criteria are based on mathematical considerations to be sure that the estimated network has good statistical properties. Here, we decided to select the regularization parameter that maximizes the proportion of GxW variance explained by adding the pQTLs of the proteins in the neighborhood of the traits in the M 5 model. We limited the research to the first 70 proteins present in the neighborhood of the traits. Thus, for the WW and PL datasets, we could select a regularization parameter λ equals to 0.40 and 0.25, respectively, but none could be selected for the WD dataset (Fig. 3.3b).

The network obtained for the WW dataset contained 7 proteins associated with 54 pQTLs, eight of which were located in pQTL hotspots (one of these hotspots was hotspot c8174 described above). The network representation is shown in Fig. 3.3c. When added to Q ref in M 5 , the pQTLs associated with the proteins in the network increased the proportion of GxW variance explained from 64% to 70%. To better illustrate the influence of these pQTLs on ecophysiological traits, we focused on SNP S7_70368465 which was significantly associated with protein GRMZM2G079256_P01 (p-value < 1e-16) but not with WU (p-value = 0.085) in the WW condition. By considering the abundance of GRMZM2G079256_P01 as a fixed covariate in the GWAS model used for QTL detection, S7_70368465 became significantly associated with WU (pvalue = 0.012, Fig. 3.3d). This result confirms that S7_70368465 is part of the missing heritability for WU.

The network obtained for the PL dataset, whose representation is shown in Fig. S2, contained 45 proteins, three of which were shared with those of the network obtained for the WW dataset. These 45 proteins were associated with 258 pQTLs, 31 of which were located in pQTL hotspots, including hotspots c267, c242, and c268. When added to M 5 , these pQTLs increased the proportion of GxW variance explained from 64% to 69%. Therefore, despite its proteins being associated with the highest number of pQTLs, the network obtained for the PL dataset did not allow to improve the proportion of GxW variance explained as compared to the network obtained for the WW dataset.

Altogether, these results show that pQTLs can actually capture missing heritability for drought response. These genetic polymorphisms were not detected directly from the traits by GWAS because of a lack of statistical power and an effect of genetic buffering, as illustrated by SNP S7_70368465. As the networks were obtained from the WW and PL datasets on the basis of maximizing the proportion of GxW variance explained, they are expected to reflect molecular mechanisms that occur in response to drought. The fact that they share proteins suggests that they may not be independent of each other.

An incremental systems genetics approach allows to increase the part of missing heritability captured by pQTLs

To take into account that networks inferred from the WW, WD, and PL datasets may not be independent, we developed a variant of our systems genetic approach to unravel missing heritability called the incremental approach. In practice, this consists of selecting the values of λ to infer networks from successive datasets using multi-locus multi-trait multi-environment linear mixed models that incrementally take into account the pQTLs associated with the proteins of the successively inferred networks. Since no network could be selected from the WD dataset (Fig. 3.3b), we explored all the possible incremental paths starting from the networks inferred either from the WW or the PL dataset. This led us to define ten multi-locus multi-trait multi-environment linear mixed models (M 8 to M 17 ), which are presented in Table 3.3. These models all included as fixed effects the set Q ref supplemented by one, two or three sets of pQTLs, depending on the incremental path. Models M 8 and M 13 correspond to the one-step incremental paths that gave rise to the two networks previously inferred from the WW and PL datasets.

Starting from the network inferred from the WW dataset, two two-step incremental paths were possible: W W → P L (model M 9 ) and W W → W D (model M 11 ). Using model M 9 , a network was inferred from the PL dataset. It contained 48 proteins associated with 271 pQTLs, allowing to gain 8 points in GxW variance as compared to M 8 (78% vs 70%). Model M 11 allowed to infer a network from the WD dataset. This network contained 30 proteins associated with 272 pQTLs, allowing a gain of only 1 point in GxW variance as compared to M 8 .

Starting from the network inferred from the PL dataset, two two-step incremental paths were possible: P L → W W (model M 14 ) and P L → W D (model M 16 ). Using model M 14 , a network was inferred from the WW dataset. It contained 8 proteins associated with 56 pQTLs that allowed to gain only 1 point in GxW variance as compared to model M 13 (70% vs 69%). No network could be inferred from the WD dataset using model M 16 .

Three three-step incremental paths were then possible: W W → P L → W D (model M 10 ), W W → W D → P L (model M 12 ), and P L → W W → W D (model M 15 ). Models M 10 and M 15 both allowed the inference of networks from the WD dataset. The network obtained using M 10 contained 23 proteins associated with 228 pQTLs, allowing a gain of 6 points in GxW variance as compared to M 9 (84% vs 78%, respectively). The network obtained using M 15 also contained 23 proteins, but these were associated with 228 pQTLs that allowed a gain of 11 points in GxW variance as compared to M 14 (81% vs 70%, respectively). Finally, model M 12 allowed the inference of a network from the PL dataset. This network contained 11 proteins associated with 52 pQTLs that increased the proportion of GxW variance explained to 82%, a gain of 11 points as compared to M 11 .

Altogether, these results show that the protein composition of networks inferred from the same dataset varies according to the incremental path. For example, the networks inferred from the PL dataset using M 9 , M 12 , and M 13 , respectively, contain 48 proteins associated with 271 pQTLs, 11 proteins associated to 52 pQTLs, and 45 proteins associated to 258 pQTLs. This indicates that the networks inferred from two different datasets are not independent. Our results also show that the proportion of GxW variance explained depends on the incremental order. This is illustrated by M 10 , M 12 , and M 15 : these three models correspond to different three-step paths, but they explain 84%, 82% and 81% of GxW variance, respectively. Interestingly, the incremental path that gave the best result was W W → P L → W D (M 12 , 84% of GxW variance explained). This path is consistent with the watering changes undergone by plants cultivated in the WD condition. Indeed, these plants were first grown under optimal soil water content before being submitted to progressive mild water deficit. first-degree neighbors in coexpression networks according to the regularization parameter. b., Gain in the part of GxW variance captured by adding pQTLs according to the number of proteins present in the traits' first-degree neighbors at each λ. c., Representation of the multi-scaled network selected in the WW condition.d., Illustration of the buffering effect of pQTLs "S7_70368465" on WU through the associated proteins GR-MZM2G079256_P01. Orange and green boxplots represent maize genotypes at marker S7_70368465 according to the abundance of GRMZM2G079256_P01 and the measurement of WU, respectively. The scatter plot shows the abundance of GRMZM2G079256_P01 in function of WU measurement in the WW condition. Each point is colored according to the genotype at marker S7_70368465. 

Modeling a multiscale network of maize drought response

Since the genomics landscape related to the networks obtained from the three WW, WD, and PL datasets following the incremental path W W → P L → W D were not independent (Fig. 3.4), we represented them as a single multiscale network. To do that, we collapsed their 553 (54+271+228) pQTLs and QTLs in Q ref , into 531 unique loci (Fig. 3.4). If a protein or a trait appeared in several networks, it was represented as a single node. The resulting network, shown in Fig. 3.5, included 600 nodes and 996 edges. Sixty-three (10%) of the nodes were proteins. Of them, three were linked to traits only in the network inferred for the WW dataset, 35 were linked to traits only in the network inferred for the PL dataset, and 11 were linked to traits only in the network inferred for the WD dataset. This result shows that for capturing the highest proportion of GxW variance, it was necessary to combine information from the three datasets. We further investigated these proteins by constructing a PPI network (Fig. 3.5b). The major component of the PPI network was composed of 29 nodes and 52 edges, 37 of which were experimentally verified and linked proteins selected in different networks. This component included a strongly connected clique mainly composed of proteins involved in response to stress and protein folding all linked by experimentally verified interactions: four heat-shock proteins (GRMZM2G063676_P01, GRMZM2G002220_P01, GRMZM2G153815_P01, and GRMZM5G813217_P01), two chaperons (GR-MZM2G127609_P06, GRMZM5G856084_P01), one endoplasmin-like protein (GRMZM2G141931_P01), and an unannotated protein (GRMZM2G130121_P01). This clique is connected with two translationally controlled tumor proteins (TCTP) known to be involved in drought stress signalization (Kim et al, 2012) and with another group of highly connected proteins involved in the oxidation-reduction process. This group is composed of an NADH-cytochrome b5 reductase (GRMZM2G061830_P02), a putative citrate synthase (GRMZM2G063909_P01), an enoyl-(acyl-carrier-protein) reductase (GRMZM2G079256_P01), a ferredoxin-1 (GRMZM2G043162_P01), an aldose reductase (GRMZM2G479423_P01), and a pheophorbide a oxygenase (GRMZM2G349062_P01).

Among the 531 unique loci involved in the network and representing 89% of the nodes, 48 were located in pQTL hotspots. To evaluate the importance of these hotspots, we calculated the loss in GxW variance induced when model M 10 was run without the pQTLs and QTLs determined by the loci located in the same hotspot (Table S2). The top three most important hotspots were c8166, c7403, and c8174, causing a loss of GxW variance of -7.35, -7.29, and -7.13 points, respectively. Hotspots c7403 and c8166 globally had the same characteristics as the hotspots colocalizing with QTLs previously described and including c8174 (Table 3.2). Briefly, hotspot c7403 contained pQTLs associated with proteins enriched in proteins involved in the biosynthesis of amino acids, RNA degradation, and oxidative phosphorylation. Eight experimentally verified PPI linked pQTL-associated proteins to genes covered by hotspot c7403. One of these linked the gene encoding the unannotated protein GRMZM2G309363_P01 to four highly interconnected pQTL-associated proteins: GRMZM2G027451_P04 (60S ribosomal protein), GRMZM2G099352_P03 (ribosomal protein S3), GRMZM2G072315_P01 (mouse transplantation antigen homolog), and GRMZM2G315088_P01 (unannotated). Hotpot c8166 gathered pQTLs associated with proteins showing no functional enrichment. One of these protein, GRMZM2G140288_P01 (histone acetyltransferase) was linked by an experimentally verified a. 

Associated loci in pQTLs hotspots

. Discussion

To better characterize the genetic determinism of maize drought response, we conducted an integrative analysis of phenomics, proteomics, and genomics data obtained on a diversity panel of 254 maize genotypes. These analyses were based on detecting and evaluating QTLs and pQTLs from the joint use of GWAS and multi-environment multi-locus mixed linear models. Multi-environment multi-locus mixed linear models (van Eeuwijk et al, 2010) are a powerful approach to decompose the GxE variance into more precise secondary interactions and evaluate to which random variances a set of QTLs contributes (Millet et al, 2016;Alvarez Prado et al, 2017). However, the extension of such models to incorporate measurements obtained in several traits is limited to GWAS [START_REF] Korte | A mixed-model approach for genome-wide association studies of correlated traits in structured populations[END_REF] or genomic predictions [START_REF] Runcie | MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits[END_REF]. Here, we used the set of drought adaptative traits present in phenomics data to better take into account the drought response complexity and estimate an overall GxW variance. Thus, we showed that the major part of GxW variance could be explained by the complementarity between QTLs detected in the WW condition and plasticity QTLs, excluding the QTLs detected in the WD condition.

The functional analysis of the global set of QTLs maximizing the part of GxW captured showed as not able to highlight molecular insights. This supports one attribute of the omnigenic model of (Boyle et al, 2017) that stipulates that the enrichment of signal in relevant genes is weak for complex traits overall. Thus, we decided to conduct a more targeted functional analysis on genetic regions presenting pleiotropic effects on protein abundances. We identified pQTLs hotspots [START_REF] Porth | Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce[END_REF]Blein-Nicolas et al, 2020;[START_REF] Acharjee | Genetical genomics of quality related traits in potato tubers using proteomics[END_REF]) associated with protein plasticity and protein abundances quantified in the two watering conditions. The discovery of pQTL hotspots that also included QTLs gave us the possibility to transcribe genetic variations, capturing GxW variance into biological pathways. Indeed, the identification of PPI between proteins encoded by genes located in hotspots with proteins associated with the pQTLs that defined the hotspots allowed us to place genetic variations into glutathione, fructose, and alpha-linolenic acid metabolism pathways known to be directly related to drought response and drought tolerance [START_REF] Hasanuzzaman | Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance[END_REF][START_REF] Guo | Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings[END_REF][START_REF] Zi | Alpha-Linolenic Acid Mediates Diverse Drought Responses in Maize (Zea mays L.) at Seedling and Flowering Stages[END_REF]. Our results showed the potential of QTL integration in PPI to provide comprehensive functional support by incorporating candidate genes into known biological networks.

Previous work by Blein-Nicolas et al (2020) has shown that pQTL/QTL colocalization can occur for co-expressed proteins whose abundances are correlated to ecophysiological traits, suggesting that the same genetic polymorphism can be responsible for both the co-expression of proteins and the variations of ecophysiological traits. This hypothesis is supported by the results presented above. Based on these results, we hypothesized that, for those proteins whose abundance is correlated with a phenotypic trait, the pQTLs that do not colocalize with a QTL for the trait in question may also influence the trait. To test this hypothesis and further exploit the proteome, we implemented an original approach of systems genetics combining network modeling with multi-locus multi-trait multi-environment linear mixed models. This approach allowed us to jointly identify a protein set directly related to ecophysiological traits with their attributed pQTLs, capturing an additional part of the GxW variance. Relations between ecophysiological traits, the selected proteins, and the associated loci were modeled as multi-scale networks, highlighting the indirect relation of pQTLs with ecophysiological traits. Indeed, an explanation of the non-detection of these QTLs on the ecophysiological traits could be explained by the lack of statistical power in the detection of all genetic polymorphisms involved in trait variation (Yang et al, 2010;Shi et al, 2016). These undetected QTLs include rare variants but also variations affecting molecules that are not translated into variation on the complex trait due to genetic buffering [START_REF] Gibson | Uncovering cryptic genetic variation[END_REF][START_REF] Fu | System-wide molecular evidence for phenotypic buffering in Arabidopsis[END_REF]Félix and Barkoulas, 2015). Thus, we showed that by exploiting the intermediate molecular traits, we could enrich our analysis with molecular QTLs that were not detected on the complex traits. Together, we identify 473 additional loci, bringing a gain of 20 points on the captured GxW variance. Our findings are consistent with the omnigenic model (Boyle et al, 2017) that stipulates that part of the missing heritability (Manolio et al, 2009) can be unraveled by considering peripheral genes.

GWAS provides a fixed picture of the genetic landscape of the proteome, obtained from a dataset representing a particular context (WW, WD or PL). However, these pictures are not independent of each other, as the response to drought is a dynamic process that allows the plant to modify its metabolism and cellular function according to the availability of water in the soil. Given this observation, we therefore hypothesised that the previously inferred WW, PL and WD networks are not independent of each other, and that taking into account a dependency structure between the WW, WD and PL networks could provide a better explanation for the GxW variance. Thus, by applying our integrative approach incrementally, we are able to verified our hypothesis by showing that the maximum part of GxW captured is obtained by following an incremental path consistent with the watering changes undergone by the plants cultivated in the WD condition (W W → P L → W D). Thus, the representation of these results as a multi-scale network gives rich support to genetic and molecular annotations related to drought response. The proteins that are directly related to the traits in the network highlight the process of signalization, protein folding, and oxidation-reduction processes. Finally, we identify two hotspots spanned exclusively detected by pQTLs contributing near to 10 points of the total part of the GxW variance captured. These two hotspots provide a list of candidate genes interacting with functionally known proteins using the PPIs identified.

. Methods

Description of the plant material and the platform experiments

The diversity panel includes 254 maize dent lines originating from Europe and the Americas (Rincent et al, 2014b). It can be subdivided into four genetic subgroups: Iodent, Lancaster, Stiff-stalk, and F252-like. Lines were selected within a restricted flowering window to avoid confounding drought escape effect due to variation in flowering time with the expression of genomic regions involved in drought response (Millet et al, 2016;Alvarez Prado et al, 2017;Negro et al, 2019). The panel was genotyped using a 50K Infinium HD Illumina array (Ganal et al, 2011), a 600K Axiom Affymetrix array (Unterseer et al, 2014) and 500K markers obtained by genotyping by sequencing (Negro et al, 2019). The genomic dataset thus generated consisted 977,459 SNPs mapped to the maize reference genome B73_AGP_v2 (release 5a) (Schnable et al, 2009;Negro et al, 2019). Only SNPs with a minor allele frequency (MAF) below 0.05 and a heterozygosity rate above 0.15 were considered. Missing values were imputed using Beagles 3.1 (Browning and Browning, 2007).

Hybrids have been produced by crossing each of the 254 dent lines with a tester flint line (UH007). Hybrids were sowed in four trials carried out at the INRAE PhenoArch phenotyping platform (Montpellier, France) (Cabrera-Bosquet et al, 2016;Alvarez Prado et al, 2017;Welcker et al, 2022) in spring 2012, spring 2013, winter 2013, and spring 2016. The four trials followed an alpha-lattice design, including two watering conditions and three replicates. The applied soil water potentials were -0.05 MPa for the well-watered (WW) conditions and ranged from -0.3 to -0.6 MPa, for the water deficit condition (WD).

Phenomics data description

The phenotypic dataset used in this study was previously published by Alvarez Prado et al (2017). It comes from phenotypic measurements taken during plant growth in each of the four above-mentioned trials. This dataset consists of six ecophysiological traits, namely biomass (Biom), leaf area (LA), transpiration rate (Transp), stomatal conductance (gs_max), water uptake (WU), and water use efficiency (WUE). For each trait, watering condition, trial, and hybrid, the average of the three replicates was adjusted by taking into account the spatial greenhouse effect as described in Alvarez Prado et al (2017). For each trial, two phenomics datasets of dimension 254 x 6 were generated, hereafter called WW and WD phenomics datasets. A third dataset, called PL phenomics dataset, was produced from the first two by computing plasticity indices for each hybrid x trial combination, as described in Djabali et al (2023).

Proteomics data description

The proteomics dataset used in this study was previously published by Blein-Nicolas et al (2020). It comes from the proteomics analysis of leaf samples collected on plants of the spring 2012 trial at the preflowering stage. This dataset contains the abundance values for 2,055 proteins in 502 hybrids x watering condition combinations (251 out of 254 hybrids could be properly analysed by proteomics). For details about proteomics data acquisition and processing, see Blein-Nicolas et al (2020). Two proteomics datasets of dimension 251 x 2,055 were generated, hereafter called WW and WD proteomics datasets. A third proteomics dataset, called PL proteomics dataset, was produced from the first two by computing plasticity indices as abundance log 2 (fold-change) between the WD and WW conditions for each protein and each hybrid.

QTLs and pQTLs detection

The QTLs used in this study were previously published by Djabali et al (2023). These are 42, 60, and 40 QTLs identified from the WW, WD, and PL phenomics datasets and called WW QTLs, WD QTLs, and PL QTLs, respectively. These QTLs were identified by adapting the single locus mixed model of Yu et al (2006) to take into account trial effects as mentioned in Djabali et al (2023).

Part of the pQTLs used in this study were previously published by Blein-Nicolas et al (2020). The are 10,906 and 11,930 pQTLs identified from the WW and WD proteomics datasets and hereafter called WW pQTLs and WD pQTL, respectively. In this study, we completed this first pQTLs set by identifying PL pQTLs from the PL proteomics dataset. PL pQTLs were identified following the same approach as Blein-Nicolas et al (2020). Briefly, SNPs significantly associated with the variation of the plasticity indices of proteins were first detected by using the single locus mixed model of Yu et al (2006) :

Y g = µ + α.X g + G g + ε g (3.1)
where: Y g is the plasticity index of a protein quantified in genotype g; µ is the overall mean; α is the fixed effect of the SNP allelic dose X g (coded as 0,1 and 2) for the genotype g; G g ∼ N (0, σ 2 g .K) is the random effect of genotype g, with K the kinship matrix computed with the whole set of SNPs except those located on the same chromosome as the tested SNP (Rincent et al, 2014a), following the approach published by Astle and Balding (2009) and implemented in the R package statgenGWAS; ε g ∼ N (0, σ 2 .I n ) is the residual error. This model was run using the Fast-LMM algorithm [START_REF] Lippert | FaST linear mixed models for genomewide association studies[END_REF].

Then, the pQTLs were identified from the associated SNPs following the geometric method described in (Blein-Nicolas et al, 2020). After ordering, for each chromosome, SNPs according to their physical position, the -log(pvalue) signal was smoothed by computing the maximum -log(pvalue) in a sliding window containing N consecutive SNPs. An association peak was detected when the smoothed -log(pvalue) signal exceeded a max threshold M . Two consecutive peaks were considered two different pQTLs when the -log(pvalue) signal separating them dropped below a minimum threshold m. The parameters for pQTL detection were fixed empirically at N = 500, M = 5, and m = 4.

A colocalization between two QTLs/pQTLs is defined by the overlap of the linkage disequilibrium (LD) windows of these QTLs/pQTLs as described in Negro et al (2019). A QTLs/pQTLs hotspot is characterized as a colocalization regions comprises pQTLs associated with more than twenty different proteins. The start of the hotspot region is defined with the upper bound of the first marker's LD windows at the beginning of the colocalization regions, and the end of the hotspot region is defined with the lower bound of the last marker's LD windows at the end of the colocalization regions.

Multi-trait multi-environment modelling

A multi-trait multi-environment mixed model (van Eeuwijk et al, 2010) with random effects for genotype (G), genotype by water availability interaction (G × W ), genotype by ecophysiological trait interaction (G × P ), genotype by trial interaction (G × T ) was first fitted to estimate the variance components of random effects by the restricted maximum likelihood (REML):

Y gwpt = µ + E wt + P p + (E × P ) wtp + P C g + (P C × E) gwt + (P C × P ) gp + G g + (G × W ) gw + (G × P ) gp + (G × T ) gt + ε gwpt (3.2)
where: Y gwtf is the phenotypic value of genotype g in the watering condition w for the ecophysiological trait p in the trial t; µ is the overall mean; E wt is the fixed effect of the environment defined as the combination between the watering condition w and the trial t; P p is the fixed effect of the ecophysiological trait p; (E × P ) wtp the fixed interaction effects between the environment wt and the ecophysiological trait p; P C g are coordinates of genotype g projected onto principal component analysis axes built with the kinship matrix K. The number of axes used was chosen following the Kaiser criterion; (P C ×E) gwt are the fixed interaction effects between the genetic structure P C g and the environment wt; (P C × P ) gp are the fixed interaction effects between the genetic structure P C g and the ecophysiological trait t; ε gwpt are the residuals of the model.

To simplify mathematical notations, equation 3.2 was referred as the reference model M 0 and rewritten under matrices form:

M 0 : Y ∼ N (Xβ, Zu) (3.3)
where: Xβ is all fixed effects described in Equation (3.2); Zu is all random effects described in Equation (3.2).

The significance of G, G × W , G × P , G × T random effects was tested by comparing the model defined in Equation (3.2) with the same model without random effects.

Multi-trait multi-environment multi-locus modelling

To assess the biological relevance of the detected QTLs and pQTLs, we first fitted a multi-trait, multienvironment multi-locus mixed model (van Eeuwijk et al, 2010) by adding fixed effects of a QTL set Q (with Q containing QTLs and/or pQTLs) as in Equation (3.3):

Y ∼ N (Xβ + Q, Zu) (3.4)
with Q = P CQ g + (P CQ × E) gwt + (P CQ × P ) gp . P CQ g is the fixed effect of the QTL set Q. P CQ g are coordinates of the genotype g projected onto principal component analysis axes built with the kinship matrices computed with the sets of significant SNPs that describe each QTL of Q. (P CQ × E) gwt is the interaction between the genotype g at the QTLs of set Q and environment wt. (P CQ × P ) gp is the interaction between the genotype g at the QTLs of set Q and trait p.

Let M Q a multi-trait multi-environment multi-locus mixed model defined by the addition of a QTL set Q. The proportion of G × W variance explained by Q, γ Q , was calculated as:

γ Q = Γ -Γ Q Γ
where: Γ is the variance component of the G × W random effect in Equation (3.2) and Γ Q is the variance component of the G × W random effect in Equation (3.4) with the QTL set Q.

Gaussian graphical models estimation and coexpression network inference

Gaussian graphical models (GGMs) were used to build networks between proteins and ecophysiological traits. Only the 951 proteins for which WW, WD, and PL pQTLs were detected were kept to avoid the ultra-high dimension phenomenon. Spring 2012 phenomics and proteomics datasets were first merged on genotype identifiers after data scaling. This resulted in three multi-omics datasets (WW, WD, and PL) of dimensions 248 x 957. Then, each multi-omics dataset was transformed with a non-paranormal Gaussianization [START_REF] Liu | The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs[END_REF] with the function npn() of the huge package in R (Team, 2022;[START_REF] Zhao | The huge Package for High-dimensional Undirected Graph Estimation in R[END_REF] using the shrunken Empirical Cumulative Distribution Functions (ECDF) method.

Finally, GGMs were estimated by following the graphical lasso (Glasso) approach [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF]Mazumder and Hastie, 2012) proposed in the function huge() of the huge package in R (Team, 2022;[START_REF] Zhao | The huge Package for High-dimensional Undirected Graph Estimation in R[END_REF]. A unique, irregular grid Λ composed of a hundred values of regularization parameters λ ranging from 0.09 to 0.99 was generated for the three multi-omics datasets.

The coexpression network inference consisted of choosing one λ from Λ that does not exceed 70 proteins in the traits' 1st-degree neighborhood and maximizes the proportion of GxW variance explained by adding the pQTLs of the proteins in relation to the traits. Let γ(Q) and γ(Q λ ), the proportions of G×W variances explained by a set of QTLs Q which does not contain pQTLs, and a set of QTLs Q λ which contains pQTLs of proteins in relation to the trait for the regularization parameters λ. The formalized selection criterion can be written as :

argmax λ∈Λ f = γ(Q λ ) -γ(Q) ≥ 0 (3.5)
Functional classification and analysis of proteins and genes identified

The genes underlying QTLs and hotspots were those located in QTLs LD windows and hotspots interval. They were retrieved from the B73_AGP_v2 gene models annotation .gff3 of the B73 reference assembly. The v3, v4, and v5 gene identifiers were translated sequentially from v2 genes using the Translate Gene Model IDs tools provided by MaizeGDB (https://www.maizegdb.org/gene_center/gene).

Functional annotation of V5 genes underlying QTLs was based on Gene Ontology (GO) from MaizeMine [START_REF] Shamimuzzaman | MaizeMine: A Data Mining Warehouse for the Maize Genetics and Genomics Database[END_REF]. Functional enrichment analysis of genes located under a set of QTLs was performed by comparing the relative occurrence of each term to its relative occurrence in the list of genes present in the entire B73 reference genome RefGen_v5 Zm00001eb.1 [START_REF] Woodhouse | A pan-genomic approach to genome databases using maize as a model system[END_REF]) using a hypergeometric test with the R function phyper. P-values were adjusted by the Benjamini-Hochberg (BH) procedure to control the False Discovery Rate (FDR). An enriched term had its adjusted P-value lower than 0.05.

The protein-protein interaction networks (PPI) were retrieved by using Stringdb v11. 5 Szklarczyk et al (2021) from the V3 genes identifiers, which code the set of proteins. Functional annotation of proteins was based on KEGG [START_REF] Kanehisa | KEGG: Kyoto Encyclopedia of Genes and Genomes[END_REF] enrichment analysis provided by Stringdb using the entire maize genome as a reference.

Hotpost importance on the GxW variance captured is equal to the difference between the maximum part of GxW variance captured with the full set of QTLs and pQTLs minus the part of GxW variance captured without the set of QTLs and pQTLs located in a given hotspot.

Network representation and analysis

All network representations and analysis were conducted using Cytoscape v3.10 [START_REF] Shannon | Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks[END_REF]. Multi-scaled networks were first built in R with the package iGraph and then transferred into a Cytoscape session with the R package Ryc3 and the function createNetworkFromIgraph(). PPI networks were transferred from Stringdb v11.5 to a Cytoscape session using the stringApp v2.0.1 Cytoscape's app and the "send to Cytoscape" functionality present in the Stringdb v11.5 website platform.

. Application of our multi-scaled networks inference approach on metabolomics data

In the preceding section, we highlighted how proteomics data has the potential to offer extensive functional evidence for QTLs that capture the majority of the genotype by watering availability variance (GxW) via protein-protein interaction networks. Additionally, we showed that pQTLs can be used as an allele reservoir to explain an additional proportion of the GxW variance. In the subsequent study, Romain Poupon applied the same multi-omics approach but using metabolomics instead of proteomics.

Although metabolomics data can really provide functional clues through metabolism pathways, this particularity of metabolomics data was not been possible to be fully exploited in this thesis because of time constraints, and this data has not yet been published. Thus, we decided to limit the study to the detection of metabolites QTLs (mQTLs) by conducting GWAS on metabolomics data.

The metabolomics data comprised 1,416 secondary metabolite abundances quantified from leaf samples taken on 237 hybrids grown in WW and WD during the spring 2013 trial (Fig. 3.6a). During the first year of my thesis, I performed GWAS on each metabolite's abundance for the two contrasting watering conditions but also on metabolite plasticity indices. In total, 17 174, 16 885, and 4 731 WW, WD, and PL mQTLs were detected, respectively, which spanned 8,422 unique loci (Fig. 3.6b). As proteomics, more than 99% of loci do not overlap with QTLs in Q ref , and the goal of Romain was to apply the multi-scaled networks inference approach presented in the previous section to quantify the contribution of mQTLs on the GxW variance. Romain's work, which is attached as an annex, dealt with the following questions: Do mQTLs that do not overlap with QTLs capture an additional part of GxW? To what extent could multi-scale network inference applied to proteomics data be applied to metabolomics data? He first showed that mQTLs, as pQTLs, can capture an additional part of the GxW variance. Then, he showed that selecting mQTLs of metabolites most correlated with ecophysiological traits allowed him to capture a better part of the GxW variance than using the full set of mQTLs and plasticity mQTLs detected on all metabolites. NB: As Romain's report was written before receiving reviewers' comments on the article presented in Chapter 2 and before I finished the study related to the previous section, some jargon terms and slightly methodological differences are present in the report :

• steady-state QTLs → QTLs detect on phenotypic means

• Multi-environment GWAS → Multi-trial GWAS
• G × F (Genotype by fluctuating environment interaction) → G × T (Genotype by trial interaction)

• G × T (Genotype by ecophysiological trait interaction) → G × P • The trait WUE was excluded from the analysis first but re-integrated in section 3.2

• As M5 QTLs was not yet identified as those capturing the maximum part of GxW variance, Romain integrate also the WD QTLs.

• An arbitrary method for choosing λ was first used. It was based on the 5th, 10th, and 20th first metabolites linked to ecophysiological traits in conditional networks.

Chapter 4

General discussion

. Standfirst

During these three years, the overall goal of my PhD was to gain a better understanding of the genetic and molecular basis of drought tolerance in maize. To achieve this goal, I had to develop interdisciplinary approaches at the interface of quantitative genetics, biostatistics and data science. Thanks to the Amazing project, I had a unique multi-omics dataset, including genomics, proteomics, metabolomics, and phenomics data measured in 254 maize genotypes, which allowed me to address my objectives holistically. However, the study of the genotype-phenotype relationship (GP) for a trait as complex as drought tolerance was very challenging for me. Therefore, to cope with the complexity of studying drought tolerance, I decided to divide my research into two main axes, corresponding to Chapters 2 and 3.

In Chapter 2, my research focused on the identification of genetic determinants involved in the genotypeby-environment (GxE) interaction and, in particular, the genotype-by-water availability (GxW) interaction. Indeed, since drought tolerance is expressed until the plant perceives water stress, the identification of QTLs contributing to the GxW is of particular interest, especially if they are associated with drought-responsive morphophysiological traits. Therefore, I decided to investigate the genetic architecture associated with the plasticity of six drought-responsive traits by performing GWAS on plasticity indices. The results obtained showed that the detected plasticity QTL exclusively captured 60 to 100% of the GxW variance for almost all the traits studied. Moreover, the plasticity QTLs did not overlap with the QTLs detected on the phenotypic means of the traits obtained in the two irrigation conditions. My results encourage the consideration of plasticity measurements in association studies to detect consistent QTLs involved in GxE that cannot be identified by studying phenotypic means alone. Furthermore, the low overlap between plasticity QTLs and QTLs associated with the phenotypic means of traits supports the gene regulatory model as the main model for the genetic control of phenotypic plasticity. This regulatory model proposes that plasticity results from the interaction between regulatory and structural genes (Bradshaw, 1965;Kusmec et al, 2017;Diouf et al, 2020).

In Chapter 3, I proceed through the study of the GP in regard to drought tolerance, taking into account the results obtained in Chapter 2 and using the proteomics data. I conducted a systems genetics approach to decipher the genetic and molecular basis of the drought response. My approach was based on the inference of molecular networks as a function of plant water status but also plant plasticity, integrating genomics, proteomics and phenomics data. Using an approach that combined network inference and estimation of the contribution of pQTLs to GxW variance, I was able to construct a multi-scale network that included 63 proteins directly associated with traits and trait plasticity, and a total of 531 loci, 86% of which contained only pQTLs. The addition of proteomics data was beneficial for i) providing a comprehensive annotation of genetic regions enriched in pQTLs through the hotspots PPIs, and ii) unraveling the missing heritability of drought response by considering pQTLs in the multi-locus multi-trait multi-environment linear mixed models. Indeed, characterizing hotspots as PPIs highlighted experimentally verified physical interactions between proteins encoded by genes located in the hotspots and proteins associated with pQTLs located in the hotspots. This approach is relatively powerful and demonstrates how proteomics can be used to link genetic variants in molecular pathways. Moreover, the addition of pQTLs in the multi-locus, multi-environment mixed models allows the proportion of GxW variance captured to be increased to 20 points, demonstrating the power of using intermediate molecular traits in association studies to highlight specific genetic variants and unravel the missing heritability of complex traits. This last result was also validated with the integration of metabolomics. Overall, the results presented in this last chapter strongly support the consideration of omics data to bridge the gap between genotype and phenotype for complex traits. Although the omics data used were measured in only one trial, I have shown that they can contribute to a detailed genetic characterization of the drought response and open up new avenues for their use in breeding for the selection of new drought-tolerant varieties.

Although systems genetics studies are still scarce for understanding the genetic determinism of plants related to drought response, they represent one of the most methodological advances for unraveling the omnigenic determinism of complex traits [START_REF] Wu | Analyses fonctionnelle de loci de caractères quantitatifs (QTLs) associés à la plasticité au stress hydrique chez le maïs Amal KSONTINI Master 1 GENIOMHE 2022-2023 Enseignant référent[END_REF]. Conducting such studies is complex and requires interdisciplinary skills. At present, systems genetics is an emerging approach, and there is no "gold standard" method. In Chapter 3, I proposed a novel approach to performs system genetics and the first part of my discussion will be about the limitations, advantages, and disadvantages of the method. Furthermore, this research was motivated by the increasing concern about climate change and its impact on maize production. To address this issue, the aim of this thesis was to provide insight into the genetic basis of drought tolerance for varietal improvement. In the second part of my discussion, I will ask how the results presented in this thesis could be used or exploited to progress in the identification of drought-tolerant maize varieties. Finally, I close this herein manuscript by enumerating the perspectives of my PhD work and giving a personal conclusion.

. Original methods for conducting systems genetics studies

Understanding the flow of biological information that underlies complex traits is the main goal of systems genetics (Civelek and Lusis, 2014). This approach aims to identify all molecular interactions and their underlying genetic polymorphisms that may influence a phenotypic trait. Systems genetics requires the ability to interpret results from the integration of different types of omics data. However, multi-omics data integration is still a challenging task with many possible methodological approaches (Ritchie et al, 2015). In Chapter 3, I present a systems genetics study by following two original steps of data integration that allow the functional and quantitative exploitation of omics data. The first one is based on the identification of colocalization between QTLs and pQTLs, and the second one is based on the combination of multi-scaled network inference and estimation of QTLs contribution on the genetic variance of traits.

Identification of colocalization between QTLs and molecular QTLs is the most straightforward approach to identifying molecular actors involved in complex trait variations. Indeed, this approach is based on the identification of genetic polymorphisms associated with both complex trait variation and molecular trait variation (Giambartolomei et al, 2014). Thus, to identify such shared genetic polymorphisms between molecular and complex phenotypic traits, several approaches can be used. Indeed, [START_REF] Nica | Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic Associations[END_REF] proposed an empirical approach based on the consideration of the linkage disequilibrium (LD) structure around the most associated SNPs resulting in "colocalized" genomic regions. Whereas, Giambartolomei et al ( 2014), was more interested in detecting "the" SNP significantly associated with both complex and molecular trait variations through hypothesis testing. The approach conducted in Chapter 3, is analogous to the method developed by [START_REF] Nica | Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic Associations[END_REF], because a co-localization between a QTL and pQTL was defined by the overlapping of their physical LD windows. Although this approach is not as specific as the one proposed by Giambartolomei et al (2014), it allowed us to be less conservative and consider genetic regions containing several polymorphisms that could interact with each other or be in LD. Moreover, by following this approach, as Blein-Nicolas et al (2020), I was able to pinpoint genomic regions enriched in pQTLs called hotspots. These hotspots are of particular interest because we can hypothesize that the polymorphisms located in the hotspot could have an effect on the abundance of several proteins involved in a common biological pathway. To be in line with this hypothesis in Chapter 3, I proposed to take advantage that the molecular traits were proteins to investigate protein-protein interaction networks (PPIs) on the basis of their colocalized genomic regions. This original manner to functionally analyze pQTL hotspots allowed us to highlight several experimentally verified interactions between proteins encoded by genes located in the hotspots and proteins having pQTLs located in the hotspot. By conducting this approach on hotpots comprising QTLs detected on ecophysiological traits, we were able to simultaneously provide a functional annotation and to identify potential molecular networks underlying these traits. However, one of the major drawbacks of integrative analysis based on colocalization between QTLs and molecular QTLs is that it is restricted to genetic regions detectable with GWAS conducted on the traits. Indeed, GWAS are based on statistical tests and may suffer from a lack of power despite the number of genotypes considered (Manolio et al, 2009). To tackle this problem, we investigated directly the associations between the complex phenotypic traits and the molecular traits by using Gaussian graphical models (GGMs).

Gaussian graphical models (GGMs) allow the inference of conditional dependencies between a set of variables, assuming that their distribution is a multivariate Gaussian distribution [START_REF] Altenbuchinger | Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools[END_REF]. The major advantage of GGMs is the generation of a conditional dependency network where the edges between variables correspond to partial correlations [START_REF] Baba | Partial Correlation and Conditional Correlation as Measures of Conditional Independence[END_REF]. In contrast to classical pairwise association measures such as Pearson's correlation, partial correlation discriminates between direct and indirect effects by estimating the strength of the relationship between two variables while accounting for the effects of the other variables (Hawe et al, 2019). Thus, conditional dependency networks generated by GGMs are sparser than correlation-based networks and provide a straightforward interpretation in terms of conditional dependence given the state of the measured biological system (Shutta et al, 2022). In Chapter 3, we applied GGMs to infer multi-scale networks, including both proteins and ecophysiological traits as nodes.

In our case, we restricted the powerfulness of GGMs on the ability to find trait-protein interactions, which is a tool that overcomes our goal. Knowing the complexity of applying GGMs on datasets presenting high dimensionality, perhaps a more straightforward method, such as proteome-wide association study (PWAS) [START_REF] Brandes | PWAS: Proteome-wide association study-linking genes and phenotypes by functional variation in proteins[END_REF], would be simpler and more relevant. Indeed, one must pay attention to the problem of high dimensionality when using GGMs. The parameter of the GGMs is estimated through the optimization of a regularized function. As a consequence, we have to follow the GLasso procedure (Mazumder and Hastie, 2012), which requires choosing a regularization parameter that does not conduct to a network with too many edges. Several choices of mathematical criteria exist to select the most relevant regularization parameter, such as the extended Bayesian information criteria (eBIC), and the stability approach for regularization selection (StARS) [START_REF] Liu | Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models[END_REF]. These criteria are based on mathematical considerations to be sure that the estimated network has good statistical properties. In Chapter 3, we used an original method of selection based on the combination of empirical and biological prior-driven criteria. Indeed, we selected the regularization parameter that did not exceed 70 proteins in the traits' 1st-degree neighborhood and maximized the proportion of GxW interaction variance explained by adding the pQTLs of the proteins in relation to the traits. To be able to apply this criterion, I combined GGMs with the multi-locus multi-trait multi-environment linear mixed models (van Eeuwijk et al, 2010). The great strength of this method is the inference of multi-scale networks, including both the genetic and molecular actors, explaining specifically the maximum part of a targeted component of the phenotypic variance.

. Putting my results into a plant breeding perspective

Optimizing plasticity in selection could be a solution for exploiting GxE and keeping yields high and stable even in case of environmental fluctuations [START_REF] Kusmec | Harnessing Phenotypic Plasticity to Improve Maize Yields[END_REF][START_REF] Monforte | Time to exploit phenotypic plasticity[END_REF]. As Kusmec et al (2017) and Diouf et al (2020), our results presented in Chapter 2 support the gene-regulatory model (Scheiner, 1993;Via et al, 1995) as the genetic control underlying phenotypic plasticity. In this model, phenotypic plasticity results from epistasis between regulator genes and structural genes. As a consequence, as Bradshaw (1965) stipulated, plasticity can be considered an an independent trait with its own genetic determinism. The validity of this hypothesis through association studies (Kusmec et al, 2017;Diouf et al, 2020;Djabali et al, 2023) suggests that phenotypic means and phenotypic plasticity of traits could be selected independently. Two types of phenotypic plasticity exist: active and passive plasticity [START_REF] Brooker | Active and adaptive plasticity in a changing climate[END_REF]. Active plasticity is the phenotypic changes induced by the activation of physiological or molecular mechanisms in response to environmental changes. Passive plasticity corresponds to phenotypic changes induced by the environment but not linked to physiological or molecular response mechanisms (e.g., resource shortage limiting plant growth). Improving plant adaptability in response to environmental change requires being able to make a selection on active plasticity. However, as GxE is displayed by both passive and active plasticity, the first challenge is to be able to differentiate the part of GxE variance induced by the two types of plasticity [START_REF] Brooker | Active and adaptive plasticity in a changing climate[END_REF]. To tackle this, the experimental design and the methodological approach described in Chapter 2 could be viewed as a way to remove the most passive component of plasticity. Indeed, first, the study of plasticity was carried out on ecophysiological traits known to be responsive to drought. Sec-ond, the plasticity indices used were specific to changes induced by drought (WD/WW ratios), and third, plasticity QTLs were identified by considering the residual environmental trial effect on GWAS model. All these steps contribute to being more focused on the active part of plasticity induced by water deficit. The second challenge is to select plasticity conferring an agronomic advantage regarding environmental changes. Indeed, the goal of the breeding programs is to keep high and stable yields. It will be interesting to understand how the QTLs identified affect the plasticity of the traits studied and how these modifications could affect yields and yield stability. To do that, it will be necessary to cross the results presented in Chapter 2 with yield measurements made on the same diversity panel. Finally, Welcker et al (2022) addressed an interesting question about the margin of progress existing in the exploitation of QTLs detected on the ecophysiological traits studied in Chapter 2 for selection. Indeed, we can wonder if the selection of adaptive traits is still possible regarding the past breeding programs. Indeed, we can imagine that in the current elite varieties obtained from the selection on yield, indirectly, the selection on adaptive was already made. Thus, Welcker et al (2022) showed in their study evidence that past breeding programs on yields did not affect adaptive traits, and a margin of progress exists by exploiting alleles affecting the adaptive plasticity.

In line with the study of Welcker et al (2022), it will be possible that a margin of progress in varietal improvement exists not only by exploiting QTLs in favor of adaptive traits but also on molecular traits. Thus, an omic-driven selection could give the possibility to make a fine-tuned varietal improvement by selecting in the scale of biological pathways.

According to [START_REF] Shen | Omics-based interdisciplinarity is accelerating plant breeding[END_REF], the recent progress in the generation of multi-omics datasets will lead to interdisciplinary studies that could be favorable for another breakthrough innovation in plant breedings. Indeed, where the first complex traits genetic dissection with GWAS showed a limit (Manolio et al, 2009;Yang et al, 2010;Shi et al, 2016), the addition of several omics layers could give enough statistical power to reveal new candidates genes and molecular pathways underlying traits. The different omics layers can be treated as causal factors for complex traits but also as intermediate traits to identify additional genetic variants. Estimation of interactions between all actors, as we did in Chapter 3 with our systems genetics study, leads to modeled complex traits of genetic determinism as molecular networks. Such models could support the identification of candidate genes for selection by identifying genetic and molecular targets in the networks. For instance, in Chapter 3, we were able to weight hotspots according to their importance for capturing GxW interaction variance. Thus, based on these results, we can provide a list of candidate genes by exploiting the PPIs of the most important hotspots. The importance of genetic and molecular targets can also be measured through their capacity to improve phenotypic prediction. However, the interdisciplinary of several scientific fields, such as mathematics, biology, chemistry, computer science, or even physics, is crucial to making this type of breeding practicable.

. Perspectives

My Ph.D. thesis showed the benefit of using omics data to gain insight into the genetic and molecular basis underlying complex traits. Indeed, the addition of proteomics data allowed us to go deeper into the genetic determinism related to maize water stress response by highlighting important genetic regions and providing a comprehensive functional annotation. Considering the results obtained with proteomics, we can imagine that adding other types of omics data could be beneficial for the understanding of the genetic determinism of maize water stress response. To this end, the analysis made on metabolomics data can be integrated with those obtained with proteomics to provide a more complete view of the molecular pathways underlying water stress response. Moreover, transcriptomics data (about 20,000 quantified transcripts) were also generated on the same diversity panel. The addition of the transcriptomics data could be beneficial by considerably increasing the number of potential molecular actors through the identification of eQTLs. Finally, we could further enrich the multi-omics data by estimating metabolic fluxes. Indeed, the study by [START_REF] Petrizzelli | Mathematical modelling and integration of complex biological data : Analysis of the heterosis phenomenon in yeast[END_REF] in yeast showed that protein abundances are good predictors of metabolic fluxes when integrated into a genome-scale metabolic model. Thus, metabolic fluxes could be estimated by integrating the leaf metabolic model of maize [START_REF] Seaver | Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm[END_REF] with proteomics data. Similarly to the other omics data, flux QTLs could be detected and used to provide information on the potential metabolic reactions linked to water stress response.

The studies I made during my Ph.D. has exclusively an explanation goal. I identified significant associations between biological features and ecophysiological traits. A very popular front of research in plant breeding is genomic selection [START_REF] Crossa | Genomic Selection in Plant Breeding: Methods, Models, and Perspectives[END_REF]. Genomic selection is based on the ability of genotypic data to predict trait values. One of the most popular genomics selection models is Genomic Best Linear Unbiased Prediction (GBLUP) [START_REF] Kärkkäinen | Fast Genomic Predictions via Bayesian G-BLUP and Multilocus Models of Threshold Traits Including Censored Gaussian Data[END_REF][START_REF] Clark | Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding Values[END_REF]. This method uses genomic relationships to estimate an individual's genetic contribution to a trait. This is done using a genomic relationship matrix estimated from DNA marker information (also called kinship matrix). The kinship matrix defines the covariance between individuals based on observed similarity at the genomic level, resulting in accurate predictions of the genetic contributions. As this method includes all the information contained in the whole set of DNA markers, this method does not use knowledge of the biological mechanisms underlying trait variation. Thus, [START_REF] Sarup | Increased prediction accuracy using a genomic feature model including prior information on quantitative trait locus regions in purebred Danish Duroc pigs[END_REF] developed Genomic Feature Best Linear Unbiased Prediction (GFBLUP), an extension of GBLUP, that can assess the collective effects of sets of DNA markers. Our results presented in Chapter 3 allowed us to highlight a set of QTLs, pQTLs and proteins involved in GxW variance. It will be interesting to see to what extent these biological features can improve phenotype prediction for traits measured under water-deficit conditions.

Finally, it would be interesting to functionally validate candidate genes identified from the results obtained in Chapter 3, for example, by starting on genes located in the most important hotspots. This would give more confidence and legitimacy to our in silico approaches and perhaps interest more collaborators. L'Institut des Plantes Paris-Saclay est un laboratoire de recherche spécialisé dans les sciences du végétal. L'établissement est dédié à approfondir la compréhension des mécanismes génétiques et moléculaires régissant les plantes ainsi que leur régulation par des signaux endogènes et exogènes. Dans le but de favoriser la collaboration et le partage des connaissances, l'IPS2 dispose de 5 plateformes comprenant la biologie translationnelle , la transcriptomique , la métabolomique, l'interactomique et l'épigénomique.
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J'ai effectué mon stage au sein de l'équipe Réseaux Génomiques Gnet qui travaille sur le développement de méthodes statistiques et d'approches bioinformatiques pour répondre à des questions d'intérêt agronomique.

Contexte

Les changements atmosphériques causés par les activités humaines sont la source d'une augmentation rapide des températures dans différentes régions du monde. Selon les estimations du GIEC pour le court terme (2021-2040), le réchauffement climatique atteindra 1.5 C°par rapport à 1850-1900 même dans le cas d'une émission très diminuée de gaz à effet de serre.

Les phénomènes climatiques sont la cause principale d'insécurité alimentaire pour 56.8 millions de personnes dans 12 pays différents (FAO, 2022). En effet, les augmentations de température contribuent aux scénarios de sécheresse impactant les rendements des cultures en raison du stress hydrique. La perte de rendement pour certaines cultures comme le blé, le riz ou encore le maïs provoquerait un accroissement de l'insécurité alimentaire (FAO, 2023). L'environnement qui nous attend dans les prochaines décennies intensifiera ces défis. Il est donc important de trouver des solutions pour rendre les espèces d'intérêt agronomiques plus résistantes au stress hydrique et améliorer leur rendement.

Parmi les cultures impactées par le stress hydrique il y a le maïs, la céréale la plus cultivée dans le monde avec une production de 1.151 million de tonnes en 2022 (Statista, 2022(Statista, -2023)). Cette céréale est sollicitée dans l'approvisionnement alimentaire au niveau mondial, elle est utilisée majoritairement pour nourrir le bétail mais est également utilisée comme source de nourriture pour certaines populations de pays en voie de développement. Les plus grands producteurs de maïs sont les États-Unis, la Chine et le Brésil avec respectivement 383.943.000, 272.552.000 et 88.461.943 tonnes de maïs produit pour l'année 2021 (FAOSTAT, 2021). Ces trois grands producteurs localisés dans des différentes régions du monde montrent à quel point cette espèce possède une grande capacité d'adaptation à son environnement. Cela fait de lui un bon candidat dans un éventuel futur où les échanges intercontinentaux seraient limités.

Cependant, cette espèce reste très sensible à la sécheresse malgré un métabolisme C4 lui conférant une efficacité d'utilisation de l'eau. Les carences en eau notamment au moment de la floraison déclenchent des mécanismes qui réduisent les pertes d'eau mais cela entrave la croissance des plantes. Le rendement en grains peut également être compromis indirectement sous l'effet de la fermeture des stomates induisant une diminution de l'activité photosynthétique et de la production de biomasse. De plus, il a été montré que la sécheresse a un effet significatif sur la phénologie du maïs altérant les étapes de croissance végétative et raccourcissant les étapes de reproduction [START_REF] Qi | Effects of high temperature and drought stresses on growth and yield of summer maize during grain filling in north china[END_REF]. Le remplissage des grains est également affecté leur poids peut être réduit de 20 à 40 % en cas de stress hydrique aigu. Ainsi la physiologie du maïs est considérablement affectée en réponse au stress hydrique.

La diversité phénotypique présente chez cette céréale a fait d'elle une espèce très étudiée des biologistes et est devenue un modèle biologique sur lequel plusieurs études génétiques ont été réalisées. En effet, l'exploration de son génome constitué de 2,4 Giga pb et de près de 56000 gènes répartis sur 10 chromosomes (Schnable et al., 2009) pourrait amener à mieux comprendre ses mécanismes de tolérance à la sécheresse dans une optique d'amélioration variétale. L'approche consiste alors à utiliser des marqueurs moléculaires pour identifier des gènes candidats impliqués dans les mécanismes de réponse à la sécheresse. Mon travail se place sur ce front de recherche en identifiant et en caractérisant ces gènes candidats.

Etat de l'art

Les études d'association génétique permettent d'identifier des polymorphismes génétiques (ex : SNPs single nucleotide polymorphisms) en étudiant la variabilité interindividuelle d'un caractère observé sur un ensemble d'individus. Des régions du génome sont cartographiées par l'intermédiaire des polymorphismes retenus et sont appelés locis de traits quantitatifs (QTLs). Un QTL est une région du génome associée à une variation quantitative d'un trait phénotypique. Il s'agit d'une séquence d'ADN qui est corrélée de manière statistiquement significative avec des variations observées dans les mesures phénotypiques d'un trait donné. Les QTLs peuvent être identifiés à l'aide de techniques telles que les études de liaison génétique ou les analyses d'association pangénomique. Ils jouent un rôle clé dans la compréhension de la base génétique des caractères complexes et dans la cartographie des gènes responsables de ces traits.

Dans le cas du maïs, où de nombreux efforts ont été mis en place grâce au projet investissement d'avenir Amaizing, il existe un jeu de données sur un ensemble de 254 hybrides de maïs. Ils on été cultivés dans deux conditions dépendant de l'apport en eau des plantes : Bien irrigué (WW) et en déficit en eau (WD). Des GWAS singleenvironnement sur 4 expériences conduites pour trois années et deux saisons différentes ont permis d'identifier 402 QTLs à partir de 6 caractères phénotypiques (Prado et al., 2018). Cependant il y avait peu de reproductibilité d'une expérience à une autre dans les QTLs détectés. Ainsi (Djabali et al.,in revision) a réalisé un GWAS multi-environnement pour dissocier l'effet du déficit hydrique des autres effets liés à l'environnement de culture. De plus, il a considéré dans son analyse une étude de la plasticité qui est une mesure de réponse au stress. Elle représente la façon dont un génotype peut donner différents phénotypes en fonction de l'environnement (Via et al., 1995). Pour cela il a réalisé une étude d'association sur le ratio entre la condition de déficit hydrique et la condition d'irrigation normale des 6 caractères. Ce travail qui améliore la modélisation du jeu de données a permis d'identifier 102 QTLs d'état stationnaire associés à la condition d'irrigation et 40 QTLs associés à la réponse au déficit hydrique Les QTLs détectés par ce modèle sont pour la plupart nouveaux par rapport à ceux qui ont identifié dans l'étude de Prado et al., 2018. (Kusmec et al., 2017, Djabali et al.,in revision) ont montré que les QTLs d'état stationnaire et les QTLs de plasticité ne se superposent pas et sont situés dans des régions génétiques différentes. Cela implique que le contrôle génétique sous-jacents à la variation phénotypique dans des conditions stables (état stationnaire) diffère de celui impliqué dans la réponse phénotypique en réponse à des variations environnementales (plasticité). Cela souligne l'importance d'étudier à la fois les gènes candidats qui sont à l'origine des deux types de QTLs pour comprendre le mécanisme de régulation en réponse au stress hydrique. Une hypothèse présente dans la littérature indique que les gènes associés à la plasticité seraient des régulateurs de gènes associés aux états stationnaires Via et al., 1995. Ce modèle postule que la plasticité phénotypique est le résultat de l'interaction épistatique entre les éléments structuraux (gènes qui seraient associés aux QTLs d'états stationnaires) et les éléments régulateurs (gènes qui seraient associés aux QTLs de plasticité).

Objectifs du stage

Dans ce contexte à partir des résultats du travail de Yacine Djabali sur l'identification de QTLs de plasticité et des deux états stationnaires des 6 caractères écophysiologiques, l'objectif de mon stage était de faire la caractérisation fonctionnelle des gènes situés sous les QTLs et de vérifier l'hypothèse de régulation génique formulée dans (Via et al., 1995) Un panel de diversité a été obtenu en croisant 254 individus de lignée dentée avec une lignée flint standard (UH007). Trois plantes de chaque hybride ont été cultivées dans deux conditions d'irrigation. Dans la première condition, les plantes étaient arrosées suffisamment (WW) et dans l'autre condition, elles souffraient d'un déficit hydrique (WD).

Ces plantes ont été cultivées à la plateforme de phénotypage PhenoArch d'INRAE située à Montpellier. Six caractères écophysiologiques ont été mesurés : la Biomasse (Biol), la surface foliaire (LAl), le taux de transpiration (Trate), la conductance stomatique (gs_max), l'utilisation de l'eau (WU) et l'efficacité d'utilisation de l'eau (WUE). La moyenne génotypique, correspondant à la moyenne des trois réplicats, a été calculée et ajustée en prenant en compte l'effet spatial de la serre pour chaque trait et condition d'arrosage.

Données des QTLs

Au début de mon stage, j'ai reçu un tableau contenant pour chaque trait la liste des QTLs d'états stationnaires (WW ou WD) et de la plasticité. Chaque QTL est caractérisé par l'identifiant du SNP le plus significatif. Sur ce fichier, figure également la position des QTLs ainsi que le chromosome sur lequel chacun des QTLs est localisé. Ces informations sont indispensables pour identifier les gènes localisés sous les QTLs.

Annotation structurale 2.2.1. La base de données MaizeGDB

MaizeGDB1 est une base de données organisant toutes les connaissances disponibles sur l'organisme modèle Zea mays. C'est un membre fondateur d'AgBioData, un consortium de ressources en ligne liées à l'agriculture qui s'engage à rendre les données de recherche en agriculture accessibles, interopérables et réutilisables. Cette plateforme facilite la navigation dans le génome du maïs, la recherche de gènes, l'analyse de QTL et l'annotation fonctionnelle.

Les versions du génome de Zea mays

La première version du génome de référence du maïs B73 a été publié en 2009 (Schnable et al., 2009), il s'agissait d'un assemblage BAC by BAC, qui consiste à cloner de larges fragments d'ADN dans des bactéries artificielles (BACs) afin de séquencer et assembler le génome par morceaux distincts. Depuis sa publication initiale, le génome de référence a été révisé 4 fois.

La version actuelle de l'assemblage B73, ZmB73-REFERENCE-NAM-5.02 , a été publié en janvier 2021 (Hufford et al., 2021) . Elle a été séquencée et assemblée à partir d'un ensemble de 25 lignées consanguines par le Consortium NAM en utilisant une stratégie mate-pair sur de longs reads PacBio. Les Scaffolds ont été validés par cartographie optique BioNano, puis ordonnés à l'aide des données de liaison et des marqueurs pangénomes. De plus, des données RNA-seq mesurant l'expression des gènes dans différents tissus ont été intégrées afin d'améliorer l'annotation structurale du génome.

Les trois premiers assemblages B73 RefGen_v1, B73 RefGen_v2, et B73 RefGen_v3 étaient tous fondés sur une stratégie de séquençage par BAC et les changements entre les versions concernent l'assemblage. La version v3 a permis de compléter des régions manquantes entre les Bac de la V2 ainsi que de compléter l'annotation structurale par rapport aux gènes de la version 2 en utilisant des reads Roche/454 produits par WGS (Whole Genome Shotgun). Ainsi plusieurs contigs ont été déplacés ou inversés.

Pour l'assemblage B73 RefGen_v4, une nouvelle approche a été utilisée. C'est un assemblage de novo complet utilisant la technologie PacBio sur l'ADN extrait d'un descendant de l'accession utilisé pour les assemblages v1-v3. Le séquençage PacBio SMRT (Single Molecule Real Time) a été effectué au laboratoire Cold Spring Harbor avec une couverture de 60X, les scaffolds ont été créés à l'aide de cartographie optique du génome entier. Cependant comme les reads PacBio ont typiquement un taux d'erreur relativement élevé 15%, une correction des séquences PacBio a été effectuée en utilisant du séquençage long read Illumina qui a un taux d'erreur autour de 0.1%. L'annotation structurale a été réalisée en utilisant environ 111,000 long reads de transcrits PacBio provenant de six tissus de mais.

Pour aider la communauté à suivre ces évolutions dans leur travail de recherche, ces informations ainsi qu'une nomenclature des différents assemblages sont disponibles sur MaizeGDB3 

Les gènes de la V2 à la V5

Pour ce projet, on utilise au départ les gènes identifiés sur la version B73 RefGen_v2 du génome de Zea mays car les QTLs de plasticité et des états stationnaires ont été cartographiés sur cette version. Étant donné qu'une analyse fonctionnelle des gènes candidats va être conduite, les gènes en v2 doivent être traduits la version V5 qui dispose d'une annotation fonctionnelle plus récente. Pour passer de la V2 à la V5, nous avons utilisé l'outil de traduction d'identifiants disponible sur MaizeGDB4 en réalisant 3 étapes de traduction. Au lieu de demander la traduction directement en V5, j'ai réalisé la traduction de manière incrémentale en passant de la V2 à la V3, puis de la V3 à la V4 pour terminer par la traduction de la V4 en V5. Pour obtenir un tableau avec tous les gènes identifiés pour l'espèce Zea mays selon l'assemblage B73 RefGen_v2, j'ai traité le fichier en utilisant des fonctions codées sur le logiciel R. J'ai chargé les données sous la forme d'un tableau, j'ai renommé les colonnes et n'ai gardé que les lignes correspondant à des gènes.

Dans ce fichier, les identifiants de gènes sont dans des lignes qui contiennent d'autres attributs. J'ai donc réaménagé ces informations pour ne garder que les identifiants des gènes. Ainsi le tableau final contient pour chaque gène sur la version v2 leur identifiant, la localisation chromosomique ainsi que la position de début et de fin.

Au début de mon stage, on m'a fourni un tableau contenant une liste de 977,459 SNPs. Ces SNPs ont été obtenus en combinant une puce Illumina Infinium HD 50K (Ganal et al., 2011), une puce Affymetrix Axiom 600K (Unterseer et al., 2014) et 500.0000 marqueurs obtenus par génotypage et par séquençage (Negro et al., 2019). Seuls les SNPs avec une fréquence allélique mineure (MAF) supérieure à 0,05 ou un taux d'hétérozygotie inférieur à 0,15 ont été gardés. Les SNPs ont été cartographiés sur la version v2 du génome de Zea mays. Dans ce tableau, les colonnes importantes sont :

-"SNP.name" l'identifiant des SNPs -"Chromosome" qui est le chromosome où sont localisés les SNPs -"Position" qui indique la position fixe du SNP -"BeginPhys_Interval_DL01" est la borne inférieur de l'intervalle de confiance 5 sur la position du SNP -"EndPhys_Interval_DL01" est la borne supérieur de l'intervalle de confiance sur la position du SNPs

Analyse fonctionnelle

On note que l'analyse fonctionnelle a été conduite sur les gènes identifiés sur l'assemblage ZmB73-REFERENCE-NAM-5.0 dont les identifiants ont été obtenu en suivant l'approche mentionnée dans la partie 2.2.3.

Outil MaizeMine

MaizeMine 6 est une ressource scientifique basée sur la plateforme InterMine, offrant un accès convivial aux données génomiques, protéomiques, d'interactions et de littérature pour la culture du maïs. Elle a été créee pour MaizeGDB. Cet outil offre la possibilité d'explorer et analyser les informations disponibles sur les gènes, les transcrits Les recherches de motifs ont été faites en utilisant l'outil PlantPLMView 7 . Le principe de l'outil Plant-PLMview est d'analyser les génomes de plantes afin de détecter des motifs d'ADN spécifiques qui sont préférentiellement situés dans les régions proximales des gènes. Ces motifs, appelés PLM (Preferentially Located Motifs), sont considérés comme des candidats prometteurs pour des sites de liaison de facteurs de transcription (TFBS). L'outil permet aux utilisateurs d'accéder aux régions proximales des gènes de 20 génomes de plantes, de rechercher des motifs d'ADN, d'utiliser un outil de correspondance pour caractériser les motifs sur-représentés, et de visualiser les résultats sous forme de graphiques. L'objectif est de faciliter l'identification de motifs d'ADN associés à des processus biologiques spécifiques dans les plantes.

Pour l'analyse, j'ai testé les 840 motifs d'ADN issus de JASPAR, AGRIS et PLACE et mis à disposition dans PlantPLMView. Pour Zea mays, la liste des gènes doit être fournie dans la version v4. Donc les loci définissant les QTL de plasticité associés à deux traits écophysiologiques différents n'ont pas de traits communs auxquels ils sont associés. Chacun est associé à un caractère écophysiologique sensible à un déficit hydrique mais le fait qu'ils soient associé à une combinaison de 2 traits différents suggère une possibilité de réponse complémentaire pour réguler les processus biologiques impliqués dans la réponse au stress hydrique.

Les QTLs par caractère écophysiologique et par type

La surface foliaire présente le plus grand nombre de QTLs associés parmi les différents traits étudiés. La majorité des QTLs de chaque type (plasticité, déficit en eau et bien irrigué) sont associés à ce trait en particulier. Pour chaque trait étudié, on retrouve au moins un QTL de chaque type qui est associé à la variation phénotypique de ce trait. Cette observation souligne la grande variabilité génétique de ce caractère. En condition 

Identification des gènes sous les QTLs

A partir des 142 QTLs identifiés, j'ai analysé les gènes qui se trouvent à l'intérieur de la fenêtre de déséquilibre de liaison de chacun des QTLs. Initialement, nous avons identifié 142 QTLs associés aux différents traits écophysiologiques regroupés sur 123 loci. Parmi ces 123 loci, 120 sont des régions génomiques qui contiennent des gènes (qui correspondait à 40 QTLs de plasticité et 102 QTLs d'état stationnaire). Les 3 loci restants sont situés dans des régions intergéniques. Néanmoins, cela n'écarte pas la possibilité qu'ils aient un rôle dans le processus de régulation de la réponse au stress hydrique. Ils pourraient par exemple faire partie d'un motif de fixation de facteurs de transcription ou d'un site de fixation d'une protéine régulatrice.

A partir des 120 loci, j'ai identifié 1348 gènes en v2 associés à l'état stationnaire et 648 gènes en v2 associés à la plasticité. J'ai remarqué que 62 gènes présents dans la fenêtre de déséquilibre de liaison des QTLs associés à l'état stationnaire tombent également dans la fenêtre de déséquilibre de liaison des QTLs associés à la plasticité (exemple :GRMZM2G395153). Pour trois positions sur les chromosomes 3, 4 et 8, les fenêtres de déséquilibre de liaison de certains QTLs de plasticité et d'état stationnaire se recouvrent, ainsi les gènes localisés sous ces QTLs se recouvrent également. Donc ces gènes ne respectent pas l'hypothèse Gene-regulatory. En conséquence, pour les gène associés à l'état stationnaire, on passe de 1348 à 390 gènes et pour les gènes associés à la plasticité on passe de 648 à 231 gènes. Le test d'enrichissement fonctionnel (termes GO) avec une correction du FDR à 5% n'a donné aucun résultat significatif.

Classification fonctionnelle

Pour la plasticité et l'état stationnaire, la majorité des gènes n'ont pas été associés à une catégorie fonctionnelle Panther connue. Cependant, certains gènes des deux types appartiennent à la classification "binding" et "Catalytic Activity" (Figures 5,6).

La fonction binding fait référence à liaison spécifique d'une protéine à une autre molécule (ADN, ARN, ligand, une autre protéine). Cette liaison joue un rôle clé dans dans divers processus biologiques tel que la signalisation cellulaire, le transport des molécules, la régulation génique, etc. Le terme "catalytic activity" fait référence à la capacité d'une protéine (enzyme) à catalyser une réaction chimique spécifique. Ainsi, retrouver ces deux catégories fonctionnelles pour les deux listes de gènes suggère que les protéines codées par ces gènes sont impliqués dans des processus métaboliques variés ainsi que des processus cellulaires essentiels.

Des gènes associés à la plasticité et à l'état stationnaire sont classifiés dans la catégorie fonctionnelle "transcription regulator activity" (Figure 5,6). Cela signifie qu'ils codent pour des protéines impliqués dans la régulation de la transcription de gènes.

Identification et Analyse des régulateurs

Pour chercher des motifs reconnus par des facteurs de transcription, j'ai lancé la détection de motifs sur les gènes associés à l'état stationnaire, ensuite j'ai cherché si parmi les facteurs de transcription codés par les gènes de plasticité, il existe certains reconnaissant les motifs mentionnés précédemment. Ensuite j'ai fait la même analyse dans le sens inverse , c'est-à-dire la recherche de motifs sur les gènes de plasticité et la recherche de facteurs de transcription parmi les gènes d'état stationnaire. annexe (10). Selon les résultats d'un test de Chi-deux réalisé à 5%, la présence de facteurs de transcription ne dépend pas du type des gènes.

Résultats PLM View

En plus des informations fournies par PlantPLMView sur les facteurs de transcription, j'ai récupéré certaines descriptions fonctionnelles des facteurs de transcriptions sur la base de données PlantTFBS 8 qui utilise les annotations fonctionnelles disponibles sur Uniprot.

Ainsi, pour 252 des 370 gènes associés à l'état stationnaire fournis en entrée à PlantPLMView, 58 TFBS uniques ont été détectés (Figure 7 en annexe). Les 118 gènes qui n'ont pas été inclus dans l'analyse sont des gènes dont le TSS n'est pas bien localisé. Parmi l'ensemble des motifs détectés pour ces gènes, j'ai identifié 4 TFBS qui sont de la même classe que les facteurs de transcription codés par 3 gènes de plasticité.

J'ai donc pu associer les motifs GAGAC et TCTCTCTC à deux facteurs de transcription codés par le gène Zm00001eb036170 qui est sous un QTL de plasticité. Ces facteurs de transcription reconnaissent et se fixent sur le motif GAGA pour activer la transcription. Ils sont également de la même famille BBR-BPC et présentent une description fonctionnelle identique. Ils sont des régulateurs de la transcription qui se fixent sur des éléments riches en répétitions GA et présents dans les régions régulatrices des gènes impliqués dans les processus de développement.

Les motifs GAAAAA et GRWAAW qui sont des motifs consensus reconnus par les protéines de la famille GT-1, j'ai trouvé un facteur de transcription codé par le gène Zm00001eb425230 qui est sous un QTl de plasticité. Ce facteur de transcription est de la famille protéique Trihélix et reconnait des motifs de la famille GT-1. Il est impliqué dans les processus de régulation de la transcription et peut agir comme un "molecular switch" en réponse à un signal lumineux.

Pour le motif GRSCCCAC, j'ai trouvé un facteur de transcription (BHLH153) codé par le gène Zm00001eb425590 qui est sous un QTL de plasticité. Ce facteur de transcription reconnaît des motifs de la classe BHLH, il se lie à une séquence d'ADN spécifique se situant en cis par rapport au TSS d'un gène transcrit par l'ARN polymérase II 9 . J'ai également remarqué la présence du motif CANNTG qui est enrichi dans certains gènes d'état stationnaire. Il correspond à une séquence consensus connu sous le nom de boite E à laquelle se lie les facteurs de transcription de la famille BHLH. Donc c'est également un motif auxquels le facteur de transcription codé par le gène Zm00001eb425590 peut probablement se lier.

Concernant la plasticité, j'ai trouvé 36 TFBS sur 159 gènes de plasticité (52 gènes sont écartés de l'analyse)(Figure 8 en annexe) et les gènes d'état stationnaire ne semblent pas coder pour des facteurs de transcription qui reconnaissent ces motifs. Pour les deux analyses réalisées, j'ai remarqué qu'il existe des ensemble de TFBS qui sont présents dans plusieurs gènes simultanément. Ceci peut suggérer que les gènes qui portent 8. http://planttfdb.gao-lab.org/ 9. https://www.uniprot.org/uniprotkb/Q84RD0/entry 13 ces TFBS dans leur promoteur sont régulés de manière coordonnée. Les facteurs de transcription se lient aux TFBS et activent ou répriment simultanément l'expression de ces gènes dans le cadre d'une réponse spécifique ou un processus biologique commun. Ceci peut également suggérer l'existence d'un réseau de régulation génétique ou les facteurs de transcription agissent entre eux pour réguler l'expression des gènes.

Discussion -Perspectives

Dans ce projet notre point de départ était des régions génomiques associées à des caractères phénotypiques liés à la sécheresse. Ces régions génomiques ont été classées par Yacine Djabali pendant sa thèse en deux catégories : celles qui sont associées à la condition d'irrigation (WW ou WD) et celles qui sont associées à la plasticité.

Dans un premier temps, la méta-Analyse que j'ai effectuée sur ces régions génomiques (QTL) a permis d'identifier certaines régions qui sont responsables de la variation de deux ou trois traits écophysiologiques différents liés à la réponse à la sécheresse. Ceci suggère une corrélation génétique entre ces caractères. Pour les loci définissant les QTLs de plasticité qui sont associés à deux traits écophysiologiques, j'ai pu constaté qu'ils n'étaient pas associés à un même caractère écophysiologique. De plus comme ils sont sensibles au déficit hydrique, cela suggère une réponse complémentaire pour réguler la réponse au stress hydrique.

Par ailleurs, nous avons identifié la surface foliaire comme présentant une grande variabilité génétique puisqu'elle regroupe le plus grand nombre de QTLs associés. Nous avons également identifié la condition de déficit d'eau comme mobilisant le plus grand nombre de régions génomiques. Ces deux observations attestent de la grande variabilité génotypique ainsi que la complexité du mécanisme de réponse au stress hydrique.

Pour étudier la corrélation génétique entre les caractères écophysiologiques étudiés ainsi que les caractéristiques géniques des deux type de QTLs, nous avons identifié les gènes sous chaque QTL. A partir des 142 QTLs regroupés sur 123 loci, 3 QTL ne contiennent pas de gènes, c'est-à-dire que les SNPs représentatifs de ces loci sont dans des régions intergéniques. Pour les autres loci nous avons identifié en v2, 1348 gènes associés à l'état stationnaire et 648 gènes associés à la plasticité. Nous avons également remarqué qu'il existe un recouvrement de 62 gènes associés à la plasticité et à un état stationnaire. Ces gène ne respectent pas l'hypothèse gene-regulatory.

Concernant la description des gènes et des QTLs, il existe des gènes qui sont responsables de la variation de plus d'un caractère écophysiologique. L'état stationnaire présente une proportion plus élevé de gènes associés à plusieurs traits que la plasticité.

Pour réaliser la caractérisation fonctionnelle des gènes, il était nécessaire d'utiliser la version v5 des gènes. Pour le passage de la v2 à la v5, nous avons choisi la méthode de traduction d'Id des gènes en 3 étape. Or, en suivant cette méthode, on passe de 648 gènes de plasticité en v2 à 231 en v5 et de 1348 gène d'état stationnaire en v2 à 390 en v5. Ceci est dû aux différentes modifications qu'il y eu en terme de séquençage et d'assemblage entre la v2 et la v5. Nous aurions pu adopter une autre stratégie en utilisant l'outil disponible sur EnsemblPlant permettant de donner des correspondances de positions dans le génome mais je n'ai pas pu mettre cette alternative en place par manque de temps.

Pour les gènes de plasticité comme pour ceux associés à un état stationnaire, aucun enrichissement fonctionnel significatif en terme GO n'a été trouvé. Ceci peut être dû à un problème de puissance du test statistique. Toutefois, les gènes ont pu être classifié dans des catégories fonctionnelle en utilisant leurs identifiants Uniprot.

Les principales catégories fonctionnelles sont communes entre les deux types de gènes à savoir la fonction liée à la fixation à l'ADN, l'activité catalytique et une activité lié à la régulation de la transcription.

Par ailleurs, nous avons tenu compte des régulateurs dans l'analyse fonctionnelle. Parmi les 58 TFBS identifiés sur les gènes d'état stationnaire, 4 motifs sont de la même classe que 3 facteurs de transcription codés par des gènes de plasticité. Tandis que les gènes d'état stationnaire ne semblent pas coder pour des facteurs de transcription reconnaissant les TFBS présents sur les gènes de plasticité. Dans les deux types de gènes, il existe des groupes de TFBS qui sont présents ensemble sur les gènes. Ceci suggère que ces gènes sont régulés de la même manière. Il serait intéressant de regarder si les TFBS identifiés sur les gènes d'état stationnaire et reconnus par des facteurs de transcription codés par les gènes de plasticité correspondent à des gènes associés à plusieurs traits écophysiologiques. Si c'est le cas cela indiquerait que les gènes de plasticité sont impliqués dans des voies de régulation des gènes d'état stationnaire affectant plusieurs traits.

Il existe un gène associé à l'état stationnaire qui code pour un facteur de transcription qui se fixe sur les promoteurs de gènes impliqués dans la réponse à un choc thermique 10 . Il serait intéressant d'explorer la piste selon laquelle ce facteur de transcription serait lui-même régulé par un facteur de transcription codé par un gène de plasticité.

Pour le mois qui me reste en stage, j'aimerais explorer et caractériser plus en profondeur les TFBS identifiés sur les deux types de gènes notamment en testant l'enrichissement des TFBS dans la fenêtre fonctionnelle des gènes par rapport à tous le génome de Zea mays pour savoir s'ils sont vraiment spécifiques aux conditions d'irrigation et à la réponse d'un déficit hydrique.

Conclusion

Au cours de ce stage, j'ai eu l'opportunité d'acquérir une bonne maîtrise de plusieurs outils bioinformatiques utilisés pour l'analyse de données biologiques. Ayant précédemment effectué un stage axé sur le développement d'un outil bioinformatique, cette expérience m'a permis de comprendre la distinction entre l'utilisation d'outils existants pour répondre à des questions biologiques et le processus de développement d'un nouvel outil répondant à des besoins spécifiques d'analyse de données biologiques. 

Résumé

Ce projet vise à caractériser des gènes impliqués dans la réponse du maïs au stress hydrique. Le maïs est largement cultivé dans le monde, mais il est sensible à la sécheresse, ce qui peut réduire considérablement les rendements dans un contexte mondial de réchauffement climatique.

Le projet s'appuie sur des études d'association génétique pour identifier les régions génomiques (QTLs) associées à des caractères phénotypiques liés à la sécheresse. Lors de sa thèse, Yacine Djabali a identifié des régions génomiques associées à la condition d'irrigation et des régions génomiques associées à la réponse du maïs à un déficit hydrique. L'objectif de ce stage a été de caractériser les régions génomiques ainsi que les gènes associés à ces régions.

Pendant ce stage, les gènes couverts par les QTLs ont été identifiés en utilisant des intervalles de confiance et les positions des gènes du maïs. Ensuite, les annotations fonctionnelles des gènes ont été recherchées dans différentes bases de données afin de réaliser une analyse d'enrichissement fonctionnel. La dernière partie du stage a consisté à étudier les motifs cis-régulateurs pour mettre en évidence des mécanismes de régulation impliqués dans la réponse au déficit hydrique.

Abstract

This project aims to characterize genes involved in maize response to water stress. Maize is a widely cultivated crop worldwide, but it is susceptible to drought, which can significantly reduce yields in the global context of climate change.

The project relies on genetic association studies to identify genomic regions (QTLs) associated with drought-related phenotypic traits. During his thesis, Yacine Djabali identified genomic regions associated with irrigated conditions and genomic regions associated with maize response to water deficit. The objective of this internship was to characterize these genomic regions and the genes associated with them.

During the internship, genes covered by the QTLs were identified using confidence intervals and maize gene positions. Functional annotations of the genes were then searched in various databases to perform functional enrichment analysis. The final part of the internship involved studying cis-regulatory motifs to highlight regulatory mechanisms involved in the response to water deficit. L'institut des sciences des plantes -Paris-Saclay (IPS2) est un laboratoire de recherche dont le but est de mieux comprendre les mécanismes génétiques et moléculaires qui contrôlent la croissance de la plante ainsi que la régulation de ces mécanismes en interaction avec son environnement et en particulier dans le cadre du changement climatique.

J'ai effectué mon stage au sein de l'équipe Gnet qui fait partie du département « Interaction plantes micro-organismes et réseaux ». L'objectif de ce département est d'étudier les plantes, au sein de leur environnement dans le but de mieux comprendre les interactions entre les plantes et l'environnement, et d'appliquer ces connaissances aux conditions réelles.

L'équipe GNet, animée par Marie-Laure Martin, développe des modèles statistiques et des approches de biologie computationnelle pour améliorer les connaissances biologiques et génétiques des mécanismes de réponse aux contraintes environnementales des plantes. Les principales études se font sur la plante modèle Arabidopsis thaliana mais l'équipe travaille également sur des espèces d'intérêt agronomiques comme le blé ou le maïs. Dans le cadre de mon stage, j'ai travaillé sur le maïs.

Contexte

Le maïs est la céréale la plus produite au monde en volume devant le riz et le blé. Il est indispensable dans le système agro-alimentaire mondial où il joue un rôle croissant dans l'alimentation humaine et animale (FAOSTAT, 2023). De plus, il est largement utilisé dans les produits industriels, y compris pour la production de biocarburants. Ainsi, au cours de la prochaine décennie, il est en passe de devenir la culture la plus répandue en termes de superficie (Erenstein et al., 2022). Il fournit au moins 30% des calories alimentaires à plus de 4,5 milliards de personnes dans 94 pays en développement. Il est donc important pour la sécurité alimentaire mondiale, notamment pour son rôle dans le régime alimentaire des populations pauvres en Afrique et en Amérique latine (Ranum et al., 2014 ;Shiferaw et al., 2011).

La culture du maïs demande beaucoup d'eau ce qui le rend très sensible à la sécheresse, en particulier durant la phase de reproduction (Daryanto et al., 2016). Ainsi, les changements de température ainsi que les périodes de sécheresse liés au réchauffement climatique risquent de faire baisser les rendements agricoles et menacent la sécurité alimentaire mondiale [START_REF] Bezner Kerr | Food, Fibre, and Other Ecosystem Products[END_REF]. Pour répondre à la future demande en maïs, une solution est de faire de l'amélioration génétique afin de créer des variétés de maïs plus résistantes à la sécheresse (Campos et al., 2004).

Cependant, la conception de variété tolérante à un déficit hydrique est difficile, car la capacité à résister au manque d'eau est une caractéristique complexe qui dépend de l'interaction de plusieurs caractères comme l'utilisation de l'eau, la croissance des feuilles et le taux de transpiration (Tardieu et al., 2017). De plus, ces caractères sont le résultat d'interactions moléculaires au niveau des gènes, des protéines ou encore des métabolites.

Etat de l'art

Des études de génétiques d'associations (GWAS) on été faites afin d'identifier des gènes impliqués dans la résistance à la sécheresse (Prado et al., 2018). Elles consistent à identifier sur un ensemble d'hybrides de maïs les polymorphismes génétiques pouvant être responsables de la variation inter-hybride observée sur un caractère. Ce type d'étude permet de détecter des régions d'ADN associés a un caractère quantitatif. Ces régions sont appelées des QTLs (quantitative trait loci). Ainsi, sur le jeu de données auquel j'ai pu avoir accès, Prado et al., 2018, a Cependant, comme dit précédemment, la réponse à un déficit hydrique implique des réponses moléculaires complexes. Ainsi, la thèse de Yacine Djabali qui a débuté en 2020 a pour objectif de développer des méthodes de biologie computationnelle pour intégrer dans un modèle de génétique d'association les données moléculaires aux données mesurant les caractères écophysiologiques. Dans une première partie de sa thèse, il a travaillé sur les caractères et il a montré qu'en analysant les 4 années dans un même modèle linéaire mixte, il identifiait 142 QTLs. Il montre que ces QTLs capturent plus de 75 % de la variance de l'interaction génotype x disponibilité de l'eau.

Dans une seconde partie de sa thèse, il a développé une méthode qui a permis d'identifier 28 protéines corrélées aux caractères écophysiologiques et il a montré que l'intégration des 237 pQTLS associées aux 28 protéines permet de mieux capturer la variance génétique et la variance de l'interaction génotype x disponibilité en eau des caractères écophysiologiques.

Objectifs du stage

Mon travail se situe dans la continuité du travail de la seconde partie de thèse de Yacine Djabali. En effet en plus des données protéomiques, des données métabolomiques sont également disponibles et l'objectif principal du stage a été d'appliquer l'approche développée pour les protéines pour quantifier l'apport d'information génétique contenue dans les données métabolomiques pour la modélisation des caractères écophysiologiques. Pour cela, j'ai d'abord mesuré le gain d'information apporté par l'ensemble des mQTLs. Ensuite, j'ai cherché à affiner l'intégration des métabolites dans le modèle en sélectionnant un sous-ensemble de métabolites pour faciliter l'interprétation des résultats.

Matériel & méthodes 2.1 Matériel végétal

Les données proviennent du projet Amaizing, financé par l'Agence Nationale de la Recherche. Elles ont été produites par la plateforme PhenoArch du M3P (Montpellier Plant Phenotyping Platforms) (Cabrera-Bosquet et al., 2016 ;Prado et al., 2018). Les plantes étudiées sont des hybrides provenant d'un croisement entre un parent d'une lignée corné (UH007) et 254 lignées dentées sélectionnées pour leur fenêtre de floraison restreinte . Les 254 lignées de maïs ont été génotypés à l'aide de trois technologies de génotypage (Genotyping-By-Sequencing, Illumina Infinium 50 K et Affymetrix Axiom 600 K arrays) ce qui a permis d'identifier 977,459 SNPs (Negro et al., 2019).

Les hybrides ont été cultivés sous deux conditions d'irrigations : bien irrigué (WW, potentiel hydrique du sol de -0.05 Mpa ) et en déficit d'eau (WD, potentiel hydrique du sol moyen de -0.45 MPa ) au printemps 2012, en hiver 2013, aux printemps 2013 et 2016. Durant ces 4 expériences, 6 caractères écophysiologiques on été mesuré : biomass (Biom), leaf area (LA), transpiration rate (Transp), stomatal conductance (gs_max), water uptake (WU) et water use efficiency (WUE).

En plus des caractères écophysiologiques, des données protéomiques ont été recueillies sur les individus du printemps 2012 et des analyses LC-MS ont permis de quantifier 2055 protéines (Blein-Nicolas et al., 2020). Au printemps 2013, ce sont des données métabolomiques qui ont été recueillies sur les hybrides et des analyses GC-MS, réalisées par la plateforme Bordeaux Métabolome 1 , ont permis de quantifier 1,416 métabolites. Contrairement aux données protéomiques, ces données ne sont pas encore publiées, elles ont été mises à notre disposition dans le cadre d'une collaboration.

Des indices de plasticité (Bouslama & Schapaugh, 1984) ont été calculés pour chaque génotype en faisant le ratio entre la moyenne génotypique d'un caractère donné en condition WD, sur celle en condition WW. Les QTLs détectés sous les conditions d'irrigation WW et WD sont par la suite appelés 1. https://metabolome.cgfb.u-bordeaux.fr/ 2 des QTLs d'état stationnaire et ceux associés indices plasticité sont par la suite appelés des QTLs de plasticité.

Décomposition de la variance génétique à l'aide d'un modèle linéaire mixte

Des modèles linéaires mixtes multi-environnements et multi-caractères ont été utilisés pour décomposer la variance. Par la suite, je présente les 4 modèles utilisés durant mon stage.

Modèle M1 : sans QTL

Ce premier modèle décompose le signal sans intégrer de QTLs dans la décomposition de la moyenne. Il sera le modèle de référence pour mesurer la part de variance expliquée pour un effet aléatoire donné par l'ensemble des QTL intégré dans les autres modèles où des QTLs sont ajoutés.

Y gw f t = µ + T t + E w f + K g + (T × E) w f t + (K × E) gw f + (K × T ) gt + G g + (G × T ) gt + (G × W) gw + (G × F) g f + ε gw f où :
-Y gw f t est la moyenne du caractère t, corrigée des effets spatiaux de la serre, des 3 réplicas mis en culture pour le génotype g dans la condition d'irrigation w pendant l'expérience f ; µ est la moyenne générale ; -T t est l'effet fixe lié au caractère t ; -E w f est l'effet fixe de l'environnement défini par la condition d'irrigation w et l'expérience f ; -K g les coordonnées du génotype g projeté sur les axes d'une analyse en composante principale à partir de la matrice d'apparentement. Le nombre d'axes utilisés a été choisi selon le critère de Kaiser ; -(T × E) est l'effet fixe lié à l'interaction du caractère t avec l'environnement défini par la condition d'irrigation w et l'expérience f ; -(K × E) gw f est l'effet fixe liés à l'interaction de la structure génétique avec l'environnement ; -(K × T ) gt est l'effet fixe liés à l'interaction de la structure génétique et du caractère ; -G g l'effet aléatoire de la variance du génotype ; -(G × T ) gt est l'effet aléatoire lié à l'interaction du génotype avec le caractère ; -(G × W) gw est l'effet aléatoire lié à l'interaction du génotype avec la disponibilité en eau ; -(G × F) g f est l'effet aléatoire lié à l'interaction du génotype avec l'environnement ; ε gw f est le vecteur d'erreurs aléatoires.

Tous les effets aléatoires suivent une loi gaussienne centrée dont la variance sera estimée en même temps que les paramètres de la moyenne par restricted maximum likelihood (REML). -QS g les coordonnées du génotype g, projeté sur les axes d'une analyse en composante principale à partir de la matrice d'apparentement, calculée avec un ensemble de SNP qui décrivent le set de QTL correspondant (le nombre d'axes utilisés a été choisi selon le critère de Kaiser) ; -QP g les coordonnées du génotype g projeté sur les axes d'une analyse en composante principale à partir de la matrice d'apparentement, calculée avec un ensemble de SNP qui décrivent le set de QTL correspondant (le nombre d'axes utilisés a été choisi selon le critère de Kaiser) ; -(QS × E) gw f est l'effet fixe lié à l'interaction des QTLs de caractère d'état stationnaire avec l'environnement ; -(QS × T ) gt est l'effet fixe lié à l'interaction des QTLs de caractère d'état stationnaire avec le caractère ; -(QP × E) gw f est l'effet fixe lié à l'interaction des QTLs de caractère de plasticité avec l'environnement ; -(QP × T ) gt est l'effet fixe lié à l'interaction des QTLs de caractère de plasticité avec le caractère.

Modèle M3 : intégrant les mQTLs d'état stationnaire

Ce troisième modèle décompose le signal en intégrant en plus des QTLs de caractère les mQTLs d'état stationnaire dans la décomposition de la moyenne. Il permettra de mesurer le gain apporté par les mQTLs d'état stationnaire.

Y gw f t = µ + T t + E w f + K g + QS g + QP g + MQS g + (T × E) w f t + (K × E) gw f + (K × T ) gt + (QS × E) gw f + (QS × T ) gt + (QP × E) gw f + (QP × T ) gt + (MQS × E) gw f + (MQS × T ) gt + G g + (G × T ) gt + (G × W) gw + (G × F) g f + ε gw f
Où : -MQS g les coordonnées du génotype g projetés sur les axes de l'analyse en composante principale obtenu grâce une matrice de parenté, calculée avec un ensemble de SNP qui décrivent le set de QTL correspondant (le nombre d'axes utilisés a été choisi selon le critère de Kaiser) ; -(MQS × E) gw f est l'effet fixe lié à l'interaction des mQTLs d'état stationnaire avec l'environnement ; -(MQS × T ) gt est l'effet fixe lié à l'interaction des mQTLs d'état stationnaire avec le caractère. Où : -MQP g les coordonnées du génotype g projetés sur les axes de l'analyse en composante principale obtenu grâce une matrice de parenté, calculée avec un ensemble de SNP qui décrivent le set de QTL correspondant (le nombre d'axes utilisés a été choisi selon le critère de Kaiser) ; -(MQP × E) gw f est l'effet fixe lié à l'interaction des mQTLs de plasticité avec l'environnement ; -(MQP × T ) gt est l'effet fixe lié à l'interaction des mQTLs de plasticité avec le caractère. 

Inférence du réseau incluant les caractères et les métabolites

Les modèles graphiques gaussiens (GGM) sont un cas particulier de modèle graphique non orienté qui représente un vecteur aléatoire multivarié X = (X 1 , ..., X p ) sous la forme d'un graphe G(V, E), où V est l'ensemble des noeuds représentant les p composantes de X et E est un ensemble d'arêtes entre ces noeuds, représentant les dépendances conditionnelles entre les variables (Shutta et al., 2022).

A l'aide de cette modélisation, j'ai estimé pour les 2 conditions d'irrigation WW et WD ainsi que pour la réponse, les dépendances conditionnelles entre les 5 caractères et les 1421 métabolites.

L'estimation d'un GGM dépend d'un paramètre λ compris entre 0 et 1 qui contrôle la densité du réseau. Plus le paramètre λ est proche de 0, plus le réseau est dense. Tous les réseaux sont estimés sur une grille de taille 100, constituée de λ rangés en ordre décroissant entre 1 et 0. Cela permet d'ordonner en ordre croissant les dépendances conditionnelles et comme la grille est la même pour les trois réseaux, cela va permettre de les comparer (Shutta et al., 2022).

Comme les données ne suivent pas forcément une loi normale multivariée, j'ai procédé à une transformation qui cherche à trouver un ensemble de fonctions monotones f 1 , ..., f p telles que la distribution de f (X) = ( f 1 (X 1 ), ..., f p (X p )) soit normale [START_REF] Liu | High-dimensional semiparametric Gaussian copula graphical models[END_REF].

Le logiciel R

Les analyses ont été effectuées sur R (R Core Team 2022) version 4.2.1. (R Core Team, 2023). Les modèles linéaires mixtes ont été ajustés avec le package lme4 [START_REF] Bates | Fitting Linear Mixed-Effects Models Using lme4[END_REF]. Les GGM ont été estimés avec le package huge [START_REF] Jiang | huge : High-Dimensional Undirected Graph Estimation[END_REF] en utilisant la fonction huge.glasso après avoir procédé à la transformation nonparanormale des données avec la fonction huge.npn. Enfin, les réseaux ont été visualisés avec le package igraph [START_REF] Csardi | The igraph software package for complex network research[END_REF] .

Pour que les trois réseaux aient le même vecteur de λ, on le construit en suivant la méthode de la fonction huge.glasso mais en prenant pour lambda.max le maximum entre les lambda.max des 3 jeux de données et pour lambda.min le minimum des lambda.min des trois jeux de données [START_REF] Jiang | huge : High-Dimensional Undirected Graph Estimation[END_REF]. 5 de voisins du caractère "absorption d'eau" (WU) par rapport aux autres caractères : quand la valeur du λ diminue, le nombre de voisins du caractère "absorption d'eau" (WU) augmente plus vite que celui des autres caractères. Ce décrochage est moins marqué pour le GGM de plasticité. Le nombre de voisins des caractères écophysiologique augmente plus rapidement dans le GGM en condition d'irrigation "bien irrigué" (WW) que dans le réseau "en déficit d'eau" (WD). Dans le réseau "en déficit d'eau" (WD), il augmente plus vite que dans le réseau de plasticité. Les caractères qui ont un nombre de voisins qui augmente le plus vite sont les caractères "absorption d'eau" (WU), "biomasse" (Biom) et "surface foliaire" (Lal). Ceux qui augmentent le moins vite sont les caractères "conductance stomatique" (gs_max) et "taux de transpiration" (Trate).

Sélection d'un ensemble de mQTLs à intégrer

J'ai cherché dans chacun des réseaux à identifier les métabolites qui sont le plus lié aux caractères selon le critère de dépendance conditionnelle. Il s'agit des métabolites qui se lient en premiers aux caractères quand λ décroit. Ensuite, j'ai récupéré les mQTLs associés à ces métabolites pour les intégrer dans le modèle M4. J'ai essayé en intégrant les 5, 10 et 20 premiers métabolites à se lier aux caractères, dans les trois GGM.

J'ai calculé et comparé les gains de part de variance expliquée, par rapport au modèle M2 qui inclut uniquement les QTLs, des modèles M4 intégrant les mQTLs associés aux 5, 10 et 20 premiers métabolites (Fig. 3). Pour ce faire, j'ai soustrait les parts de variance expliquée dans le modèle M2 à celles des modèles M4, et ce, pour chaque effet aléatoire. Ces gains correspondent à un gain d'information apporté par un ensemble donné de mQTLs. J'ai observé un gain dans chacun des effets aléatoires sauf pour l'effet G × F. Cette augmentation reste néanmoins inférieure à celle observée chez le modèle intégrant l'ensemble des mQTLs sauf pour G × W où elle est supérieure. Ainsi, lorsque l'on intègre un nombre restreint, mais bien choisis de mQTLs, on observe un gain comparable et parfois même supérieur au gain observé lorsque l'on intègre l'ensemble 8 des mQTLs. Parmi nos modèles avec un sous-ensemble de mQTLS, le modèle « 20 premiers » est celui qui maximise le gain pour les effets G et G × W. Il permet des gains de part de variance expliqué pour chaque effet sauf G × F et a des résultats comparables, voir supérieur avec G × W au modèle intégrant l'ensemble des mQTLs.

Discussion

Bien que les données métabolomiques n'aient été produites que durant une seule année sur les quatre que comptent les expériences, l'intégration de l'ensemble des mQTLs capture de la variance génétique des caractères. Ce travail montre donc l'intérêt d'intégrer des données métabolomiques pour améliorer la compréhension du déterminisme génétique des caractères. De plus, l'intégration des mQTLs de plasticité permet un gain d'information plus important, il est donc pertinent de les intégrer aussi. Yacine Djabali avait mis au point la méthodologie à partir de données protéomiques et avait également vu un gain dans les parts variance expliquée par les effets aléatoires. Mon stage sur les données métabolomiques, suivant la même méthodologie, a permis de générer des résultats confirmant l'intérêt d'intégrer des données moléculaires dans des études d'association génétiques de caractères ecophysiologiques.

Les graphes nous ont permis de sélectionner les métabolites les plus fortement dépendantes des caractères écophysiologiques. Cependant, le critère de sélection est arbitraire et il faudrait trouver des moyens plus efficaces de sélectionner des métabolites. Yacine Djabali propose actuellement sur les protéines un critère du choix du λ qui maximise les gains de variance pour les effets aléatoires G et G × W. Il serait intéressant de le faire également sur les métabolites.

Dans les trois graphes, les métabolites se lient en premier au caractère "absorption d'eau" (WU) et son nombre de voisins augmente plus vite que les autres caractères. Ainsi, dans les conditions de stress hydrique, les métabolites sont plus corrélées au caractère "absorption d'eau" qu'aux autres caractères.

Le meilleur modèle semble être le modèle intégrant les mQTLs associés aux 20 premiers métabolites qui obtient des résultats équivalents voir meilleurs que le modèle avec tout les mQTLs. Cette approche semble donc être la plus efficace. Ainsi, ce travail m'a permis de sélectionner 532 mQTLs qui pourrait permettre de trouver des gènes candidats pour de l'amélioration génétique et de créer des variétés de maïs plus résistantes à la sécheresse. De plus, ce travail a permis d'identifier 20 métabolites impliqués dans la gestion du déficit hydrique chez le maïs.

Nous n'avons pas accès aux noms des métabolites, mais si c'était le cas, on pourrait vérifier si les métabolites sélectionnés sont connues comme étant impliqués dans des voies en lien avec la résistance au déficit d'eau.

Les résultats obtenus, lorsqu'on prend les modèles intégrant les mQTLs associés aux 5,10 et 20 premiers métabolites, sont différents de ceux obtenus par Yacine Djabali sur ces mêmes modèles, avec les données protéomiques. Ici, on observe des gains plus importants sur les effets aléatoires G × W et G × T , alors que pour les données protéomiques, on observe peu de gains, voir des pertes pour ces effets. A l'inverse, pour l'effet G × F, on observe des gains avec les données protéomiques et des pertes pour les données métabolomiques.

Une perspective supplémentaire à un choix judicieux du serait d'intégrer dans le même modèle des données métabolomiques et des données protéomiques et ainsi voir si cela apporte un gain ou une perte d'information. On peut aussi faire le même travail, mais avec des données transcriptomiques, quantifier le gain d'information et comparer les résultats obtenus avec les données métabolomiques et protéomiques. 9
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 11 Figure 1.1: Mendel's Pisum sativum heredity experiment. The pea's color and shape were represented as

1 A 1 .Figure 1 . 2 :

 1112 Figure 1.2: Additive and dominance effects. As the allele A 2 is dominant over A 1 for the phenotype P , the homozygotes individuals A 2 A 2 have, on average, higher phenotypic values than the homozygotes individuals A 1 A 1 . The midpoint m is represented in red, the additive effect |a| in blue, and the dominance effect |d| in green.

Figure 1 . 3 :

 13 Figure 1.3: Schematic of the alleles' contributions on the phenotypic mean. a., Representation of the density of the phenotypic values according to the proportion of alleles A 1 (red) and A 2 (blue) in the population. The deviation of the phenotypic mean of the individuals carrying the allele A 1 (E(P A1 )) is the allelic effect α 1 (red). The deviation of the phenotypic mean of the individuals carrying the allele A 2 (E(P A2 )) is the allelic effect α 2 (blue). b., Regression on genotypic values according to the number of alleles A 2 possessed. The crosses on the regression line are the values we can predict for one individual according to the number of alleles A 1 possessed. The slope of the regression line depicted in purple is the effect of allele substitution α. The black circles are the observed genotypic values. The green deviations δ 11 , δ 12 , and δ 22 are the deviations caused by dominance. With δ 11 = -2q 2 d, δ 12 = 2pqd, and δ 22 = -2p 2 d.
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 14 Figure 1.4: Consideration of the environment on phenotypic variation. Three different cases of reaction norms displayed by two genotypes in two environments (E 1 and E 2 ).
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 15 Figure 1.5: Process of crossing over during meiosis, Simple case of gametogenesis during meiosis on a diploid cell with one chromosome. Two different colors (blue and orange) for the two homologous chromosomes indicate two different genetic materials provided by parents. Fertilization occurred with another gamete produced by another individual having two genetic materials (red and purple).
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 16 Figure 1.6: Genetic map. a, Gene mapping approach based on recombination events. b, Sturtevant's gene map, six traits are arranged along a linear chromosome according to the relative distance of each trait. Adapted from Pierce (2005) provided by Nature Education 2013.
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 17 Figure 1.7: Linkage disequilibrium usage for QTL detection (Adapted from Cardon and Bell (2001) made by S.D. Nicolas and M. Blein-Nicolas).On the left is represented the linkage analysis based on a mapping population. Generation of a F2 population obtained from two contrasted inbred lines. In this population, the linkage disequilibrium windows are wide because of the limited events of recombination that occurred. Thus, it requires a low number of markers to capture the effect of a causal polymorphism, but the resolution on the position of this polymorphism is weak. On the right is represented the principle of genome-wide association study (GWAS) based on a natural population. The population studied comes from the random mating of an ancestral population. As a consequence, a high number of recombinations occurred, resulting in small linkage disequilibrium windows. The strength of this approach resides in its high resolution for identifying the position of a causal polymorphism using a dense set of molecular markers.
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 18 Figure 1.8: Schematic of association study analysis based on mapping population. a, QTLs detection from a maize mapping population generated by two parent inbred lines contrasted on height. The mapping population is genotyped with two molecular markers m 1 and m 2 , and phenotyped on plant height. The markers regressions shows that m 1 has a significant effect and a height QTL could be located in the tested chromosome. b, LOD curves representation showing QTLs positioning from an interval mapping study.
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 19 Figure 1.9: Schematic of Genome-wide association study analysis based on a natural population. a., Genotyped natural population presenting genetic structuration. The squared Pearson's correlation r 2 on the individual allelic dose is usually used as an indicator of LD between molecular markers (Adapted from Walton et al (2005)). Usually, a r 2 > 0.9 means that the alleles displayed between the two tested markers are in LD. Thus, we can observe clusters of adjacent SNPs with high r 2 characterizing the haplotype blocks, a consequence of genetic structuration. b., Effect of GWAS model specification on p-value distribution (Adapted from Yu et al (2006)). Under the null hypothesis of the GWAS model, we expect that the p-values of all tests follow a uniform distribution between 0 and 1. This expectation on p-values distribution is represented by the dashed orange line where the observed P-values are plotted according to their cumulative sum. The other lines correspond to results obtained with different GWAS models conducted in maize flowering time. Simple (black) corresponds to a GWAS model with no correction, Q (red) is a GWAS model corrected on population structuration, K (blue) is a GWAS model corrected on cryptic relatedness, and Q+K (green) is a GWAS model corrected on population structuration and cryptic relatedness. c., Example of Manhattan plot obtained by conducting GWAS with 1M SNPs and leaf area measurements on 254 maize genotypes. The significance threshold is set at -log(pvalue) > 5 (dashed red line). The SNPs significantly associated with trait variations correspond to dots above the significance threshold.
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 1 Figure 1.10: The omnigenic model adapted from Boyle et al (2017). An example of a cell regulatory network
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 113 Figure 1.13: Context and socio-economics issues of maize. a., Map of maize introgression in America and Europe (adapted from Tenaillon and Charcosset (2011)). b., Worldwide maize production (FAOSTAT). c., French maize production (FAOSTAT). d., Prediction of precipitation changes relative to 1850-1900 according to temperature increases caused by global warming (Figure from Intergovernmental Panel on Climate Change (2023))
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 1 Figure 1.14: The different factors associated with maize drought response.

Figure 1 .

 1 Figure 1.15: Mechanism related to maize drought response. a., Maize susceptibility to water deficit according to its phenological stages. b., The three main mechanisms of drought adaptation (adapted from Pamungkas et al (2022)). c., Molecular signaling pathways related to water stress (adapted from Yang et al (2021)).
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 33 The starting point in the study of the genetic determinism related to maize drought response
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 116 Figure 1.16: Omics data generated during the Amaizing project and exploited during this thesis

Fig. 1 :

 1 Fig. 1: Correlogram of Pearson's correlations obtained for WD phenotypic means and plasticity indices between each pair of trial x trait combinations. The correlogram obtained for WW phenotypic means is shown in Fig. S1.

Fig. 2 :

 2 Fig.2: Venn diagrams showing the overlap between the QTL sets detected by AlvarezPrado et al (2017) in four trials by using single-trial GWAS.

Fig. 3 :

 3 Fig.3: Comparison between QTLs detected by single-trial and multi-trial GWAS for WU and WUE. The Venn diagrams show the overlap between the two QTL sets. The barplots show the proportions of variance of the G, GxT interaction and GxW interaction effects that were captured by a given QTL set, as computed from (2) and(3). Results for the others ecophysiological traits are shown in Fig.S2.

Fig. 5 :

 5 Fig. 5: Karyoplot showing the results of the multi-trial GWAS performed on phenotypic means and plasticity indices. The QTLs identified on phenotypic means are depicted in red and those identified on plasticity indices in purple. Asterix correspond to a colocalization between QTLs and plasticity QTLs.

Figure 3 . 1 :

 31 Figure 3.1: Genome-wide association studies exhibit a genetic architecture related to water deficit response. a., Schematic representation of the study design and summary of the results of the GWAS performed byDjabali et al (2023). A panel of 254 maize hybrids was grown in well-watered (WW) and water-deficit (WD) conditions in a phenotyping platform during four trials: spring 2012, spring 2013, winter 2013, and spring 2016. From the four trials, six drought-related ecophysiological traits were measured: leaf area (LA), biomass (Biom), transpiration rate (Transp), stomatal conductance (gs_max), water uptake (WU), and water use efficiency (WUE). Phenotypic plasticities were calculated as the ratio between WD and WW phenomics data. A multi-trial GWAS was conducted on WW, WD and PL phenomics data. The Venn diagram displays the colocalization between the QTLs in Q w , Q d , and Q p . b., Schematic representation of the multi-trait multi-environment linear mixed model M 0 . All phenotypic means were scaled and concatenated together in one vector Y. Xβ corresponds to fixed effects: the genotype relatedness, the water availability (W), the ecophysiological trait (P), and the trial (T). Zu corresponds to random effects: the genotype (G), the genotype by the water availability interaction (GxW), the genotype by the ecophysiological trait interaction (GxP), the genotype by the trial (GxT), and the residual error. c., Description of the multi-locus multi-trait multi-environment linear mixed models M 1 -M 7 . d., Proportion of random effect variances captured by QTLs in the M 1 to M 7 model

:Figure 3 . 2 :

 32 Figure 3.2: Harnessing proteomics data to identify and characterize genomic regions enriched in pQTLs a., Schematic representation of the proteomics study design and GWAS related to protein abundances. Protein abundances were quantified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) from leaf samples taken on plants grown during the spring 2012 trial. Phenotypic plasticities were calculated as the ratio between WD and WW proteomics data. Then, single-environment GWASs were performed on the WW, WD, and PL proteomics data. The Venn diagram displays the colocalization between Q ref , pQ w , pQ d , and pQ p . b., Physical positions of the QTLs in Q ref and pQTL hotspots on the maize genome. The position of hotspots colocalizing with QTLs in Q ref are represented in black. c.,PPI networks obtained for hotspots c267 and c8174.

Figure 3 . 3 :

 33 Figure 3.3: Identification of pQTLs capturing additional part of GxW variance. a., Number of the traits'

Figure 3 . 5 :

 35 Figure 3.5: Functional annotation of the multi-scaled network explaining the highest part of the GxW variance a., Representation of the multi-scaled network inferred following the incremental path W W → P L → W D. b., PPI network obtained on the final set of proteins directly linked to ecophysiological traits in the multiscaled network, explaining the highest part of the GxW variance. c., PPI networks obtained for hotspots c7403 and c8166.

Figure 3 . 6 :

 36 Figure 3.6: Schematic representation of the metabolomics study design and GWAS related to metabolites abundances. Metabolite abundances were quantified by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) from leaf samples taken on plants grown during the spring 2013 trial. Phenotypic plasticities were calculated as the ratio between WD and WW metabolomics data. Then, single-environment GWASs were performed on the WW, WD, and PL metabolomics data. The Venn diagram displays the colocalization between Q ref , mQ w , mQ d , and mQ p .
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2. 4 .

 4 Le logiciel R L'identification des gènes et la caractérisation ont été réalisé sur le logiciel R version 4.3.0 sur une plateforme x86_64-pc-linux-gnu.

1 .Figure 1 -

 11 Figure 1 -Schéma représentant les loci en fonction du nombre de Traits écophysiologiques associés

Figure 2 -Figure 3 -

 23 Figure 2 -Distribution des QTL par trait et type

Figure 4 -

 4 Figure 4 -Schéma représentant les gènes candidats en fonction du nombre de traits écophysiologiques associés en discernant le type des QTLs associés

10 3 . 3 .

 33 Description des gènes sous les QTLsPour les gènes sous les QTLs d'état stationnaire, j'ai identifié 1250 associés à un seul trait écophysiologique, 78 gènes associés à deux traits différents et 20 gènes associés à 3 traits différents. Pour les gènes sous les QTLs de plasticité, j'ai identifié 617 gènes associés à un seul trait écophysiologique et 31 gènes associés à 2 traits différents. Ainsi il y a plus de gènes sous les QTLs d'état stationnaire que sous les QTLs de plasticité.

Figure 5 - 3 . 4 .

 534 Figure 5 -Classification fonctionnelle des gènes associés à l'état stationnaire

3. 4 . 3 . 1

 431 Identification des facteurs de Transcription J'ai identifié 17 facteurs de transcription parmi les 390 gènes associées aux deux conditions d'irrigation, soit 4.3% (Figure 9 en annexe ) et 12 facteurs de transcription parmi les 231 gènes associés à la plasticité, soit 5.2% (Figure 10 en annexe).

139 Figure 8 -

 1398 Figure 7 -schéma représentatif des TFBS détecté sur les gènes d'état Stationnaire

  Fig.S1: a, Proportion of proteins having at least one localization between WW, WD, and/or PL pQTLs. b, c6902, c242, and c268 hotspots PPIs. The deep blue, light blue, and green nodes represent WW, WD, and PL proteins associated with the hotspots, and the purple diamond nodes represent proteins coded by genes located in the hotspot. The size of nodes represents their betweenness. The edges in purple inform that the interaction between two proteins was experimentally verified, and edges in grey correspond to functional interactions..

Fig. S2 :

 S2 Fig.S2: Representation of the multi-scaled network selected in PL. The green square represents the traits, the green circles the proteins, the purple diamond the associated loci located in hotspots, and the white diamonds the associated loci. The edges colorized in red represent GGM relationship between traits and proteins, and those colorized in dashed gray represent the GWAS relationship between associated loci and proteins or traits.
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 1 déjà identifié 16 QTLs associé à la conductance stomatique, un caractère qui joue un rôle central dans la résistance au déficit d'eau chez le maïs. Ils ont également montré que ces QTLs se superposent à des QTLs de transpiration et de biomasse deux caractères impactés par un déficit hydrique. De plus, Blein-Nicolas et al., 2020 a identifié plus de 22,000 pQTLs associés à 2,055 abondances de protéines. La recherche de QTLs réalisé par Prado et al., 2018 a été faite sur les caractères écophysiologiques et celle réalisé par Blein-Nicolas et al., 2020 a été faite sur les protéines.

2. 2 . 2

 22 Modèle M2 : intégrant les QTLs de caractères (d'état stationnaire et de plasticité)Ce deuxième modèle décompose le signal en intégrant les QTLs de caractères dans la décomposition de la moyenne. Il sera le modèle de référence pour mesurer le gain des autres modèles où des mQTLs sont ajoutés.Y gw f t = µ + T t + E w f + K g + QS g + QP g + (T × E) w f t + (K × E) gw f + (K × T ) gt + (QS × E) gw f + (QS × T ) gt + (QP × E) gw f + (QP × T ) gt + G g + (G × T ) gt + (G × W) gw + (G × F) g f + ε gw f

2. 2 . 4

 24 Modèle M4 : intégrant les mQTLs d'état stationnaire et de plasticité Ce quatrième modèle décompose le signal en intégrant dans la décomposition de la moyenne, en plus des QTLs de caractère et des mQTLs d'état stationnaire, les mQTLs de plasticité. Il permettra de mesurer le gain apporté par les mQTLs d'état stationnaire et de plasticité.Y gw f t = µ + T t + E w f + K g + QS g + QP g + MQS g + MQP g + (T × E) w f t + (K × E) gw f + (K × T ) gt + (QS × E) gw f + (QS × T ) gt + (QP × E) gw f + (QP × T ) gt + (MQS × E) gw f + (MQS × T ) gt + (MQP × E) gw f + (MQP × T ) gt + G g + (G × T ) gt + (G × W) gw + (G × F) g f + ε gw f

4 169 2 . 3

 423 Calcul du gain apporté par un ensemble donné de mQTLs Posons r un des effets aléatoires. La part de variance expliquée pour cet effet par l'ensemble des QTL intégré dans le modèle est : r la variance de l'effet aléatoire r dans le modèle M1 et Γ r la variance de l'effet aléatoire r dans le modèle intégrant des QTLs (M2, M3 ou M4).

Figure 3 -

 3 Figure 3 -Gains de part de variance expliquée par rapport au modèle M2, en fonction de la composante d'effet aléatoire, pour les modèles M4 intégrant les mQTLs associés aux 5,10 et 20 premier métabolites à se lier aux caractères dans trois GGM, et le modèle M4 intégrant tous les mQTLs.
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Table 3 .

 3 

							Genotype relatedness	Water availability (W)	Ecophysiological trait (P)	Trial (T)
		Trials (T) x 4	1. LA	Ecophysiological traits (P) x 6	1. LA				
			2. Biom		2. Biom				
			3. Transp		3. Transp				
			4. gs_max		4. gs_max				
			5. WU			5. WU				
			6. WUE		6. WUE				
				Phenotyping						
		Genotypes (G) x 254	Genotypes (G) x 254				
	Winter 2013 Spring 2013 Spring 2012	-0.05 MPa	WW	Water avalaibility (W) x 2 -0.6 MPa	WD	13%	7%	21%	9%	49%
	Spring 2016									
				PHENOME PLASTICITY					
		PHENOME WW		WD		PL (WD/WW)	d.			
		GWAS		GWAS						
					GWAS				
		QTLs_WW 109 unique loci QTLs_WD						
		5								
		31	38						
		0								
		1	2							
		32								
		QTLs_Plasticity							

1: Random effects variances captured by the different set of QTLs included in the models M 1 -M 7 . The model M 0 is the reference model without QTLs. a.

  Part of GxW variance captured 2 Number of proteins in the inferred network.3 Number of pQTLs associated with the proteins in the inferred network.

	Model	Incremental path	σ 2 G×W	γ 1	# P 2	# pQTLs 3
	M 8	W W	0.0044	70	7	54
	M 9	W W → P L	0.0032	78	48	271
	M 10	W W → P L → W D	0.0024	84	23	228
	M 11	W W → W D	0.0043	71	30	272
	M 12	W W → W D → P L	0.0026	82	11	52
	M 13	P L	0.0045	69	45	258
	M 14	P L → W W	0.0044	70	8	56
	M 15	P L → W W → W D	0.0028	81	23	228
	M 16	P L → W D	NA	NA	NA	NA
	M 17	P L → W D → W W	NA	NA	NA	NA
	1					

Table 3 .

 3 3: Description of ten multi-trait multi-environment linear mixed models quantifying the GxW variance captured by the associated multi-scaled network.

Table S1 :

 S1 List of WD, WW plasticity QTLs detected on the studied traits

	S7_121192950 AX-90658062		121192950 29790479		Biom Transp plasticity	5.26986109582027 5.05968638908001	-5.433 0.009	Phenotypic mean (WD) Plasticity	
	S7_125348551 AX-90659369		125348551 34663629		Transp WU plasticity	5.34597680112097 5.3955205503559	-0.225 0.038	Phenotypic mean (WD) Plasticity	
	S7_125348551 AX-90660998 Model	Trait	125348551 40421472	G	gs_max LA plasticity	5.17538408646068 5.4784060084063 GxW	-2.612 -0.014	Phenotypic mean (WD) Plasticity GxT	Residual error
	S7_125348551 AX-90673821 Control (no QTLs)	LA	125348551 88324138 0.000539977032044924 WU LA plasticity	5.52994308431201 5.2460071241887 2.68765961589647e-05	-0.132 0.01	Phenotypic mean (WD) Plasticity 0.000108153237154901	0.000490398087550201
	S8_123323084 AX-90686976 Single-trial	LA	123323084 141532437 0.000143503703233023 LA LA plasticity	5.27991838387333 5.05033250573513 2.57871971390649e-05	0.031 -0.007	Phenotypic mean (WD) Plasticity 6.36230516555747e-05	0.000407640374801496
	S8_124644939 AX-90698746 Multi-trial	LA	124644939 187643875 0.000326458674696746 Biom LA plasticity	5.10617729247593 5.26379587077178 1.27551287473551e-05	22.442 0.007	Phenotypic mean (WD) Plasticity 0.000106207146214463	0.000484577151895041
	S8_147276130 AX-90798967 Control (no QTLs)	Biom	147276130 19796584 484.045110680815 Biom plasticity WU	5.00379074917294 5.63240870000244 104.181418819259	0.092 -0.041	Phenotypic mean (WD) Plasticity 31.8939326255071	581.942890271104
	S9_139985370 AX-90833610 Single-trial	Biom	139985370 153768601 170.342920922118 WU plasticity LA	5.07084051243007 5.39214991244562 31.7894620773865	0.022 0.071	Phenotypic mean (WD) Plasticity 7.98417259757167	474.973451101123
	S9_20467522 AX-90857499 Multi-trial	Biom	20467522 7305553 292.471992200434 WUE gs_max plasticity	5.44355860655464 5.52017842153297 65.0252772931579	0.558 0.086	Phenotypic mean (WD) Plasticity 32.7259349125706	572.853108500744
	AX-90591657 AX-90857499 Control (no QTLs)	WU	11498756 7305553 0.0846528958941729 WUE Transp plasticity	5.03634440153841 5.89390290456927 0.00943251329467889	-0.046 0.028	Phenotypic mean (WW) Plasticity 0.0170260277369968	0.0997286722145494
	AX-90617893 AX-90998624 Single-trial	WU	204172495 84786567 0.0387619751214422 LA WU plasticity	5.57542313187026 5.17150245273568 0.00579235610812599	-0.033 0.036	Phenotypic mean (WW) Plasticity 0.00729447298868563	0.0916932982609004
	AX-90703311 AX-91380622 Multi-trial	WU	205531946 20218168 0.058774832644887 gs_max Biom plasticity	5.21738448697405 5.14368635887928 0.00447412824885227	-3.662 0.038	Phenotypic mean (WW) Plasticity 0.0136795837783194	0.100766843948894
	AX-90795567 AX-91411976 Control (no QTLs)	WUE	6520929 53151661 6.48108106199427 LA plasticity LA	5.06127109847071 5.69227045129072 1.66247148787375	-0.038 -0.05	Phenotypic mean (WW) Plasticity 4.96197652104105	21.6412359282072
	AX-90904002 AX-91447668 Single-trial	WUE	183600566 172020935 5.96012005446033 WUE LA plasticity	5.64088159461552 5.08015828766336 1.77244371741201	3.389 0.053	Phenotypic mean (WW) Plasticity 4.65413989321912	20.4116196566939
	AX-90970356 AX-91457267 Multi-trial	WUE	190229458 20280276 2.42549546232121 Biom plasticity LA	5.87351584110113 5.31438779799967 0.477987002818191	0.038 -0.048	Phenotypic mean (WW) Plasticity 4.15417293152019	21.2973645802754
	AX-90984392 AX-91457270 Control (no QTLs)	Transp	28147127 20382187 0.234289573175583 gs_max Biom plasticity	5.18235386497565 5.14368635887928 0.00715361788886021	-3.321 0.038	Phenotypic mean (WW) Plasticity 0.0546680090972899	0.49567477118405
	AX-91048276 AX-91458327 Single-trial	Transp	101578020 26333618 0.077210666144033 WU WU plasticity	5.08476133911149 5.08702686502756 2.02180755745129e-09	0.158 -0.051	Phenotypic mean (WW) Plasticity 0.0242972201615929	0.436403828442915
	AX-91217929 AX-91458327 Multi-trial	Transp	17282972 26333618 0.174981178983491 Biom plasticity LA	5.19479735012346 5.82375518394043 0.00662864490812369	-0.018 -0.052	Phenotypic mean (WW) Plasticity 0.0507658615075576	0.495902476360516
	AX-91436202 AX-91461738 Control (no QTLs)	gs_max	12215772 44735660 9.0257057730995 LA plasticity LA	5.79588422197806 5.43123254068514 0.610324495960822	0.001 0	Phenotypic mean (WW) Plasticity 2.79801938173239	28.8834441943793
	AX-91436202 AX-91577322 Single-trial	gs_max	12215772 126445639 3.43897760810407 Biom plasticity WU	5.30394556457377 6.17386324371565 0	-0.027 0.059	Phenotypic mean (WW) Plasticity 2.22384670646459	23.4962861002188
	AX-91436202 PZE-101089042 Multi-trial	gs_max	12215772 80680115 8.06213014429586 Biom LA plasticity	5.64641195781851 5.97338998007367 0.641728713885699	9.817 -0.022	Phenotypic mean (WW) Plasticity 2.60014432014139	28.8509420970091
	AX-91529215 PZE-108089331		107020947 146380069		gs_max WUE plasticity	5.72290353598346 5.18967259403665	-6.212 -0.045	Phenotypic mean (WW) Plasticity	
	AX-91577233 PZE-110070241	10	125732326 127247580		WUE Biom plasticity	5.16866756435054 5.11940757332394	2.334 0.025	Phenotypic mean (WW) Plasticity	
	AX-91645061 S1_190702732		17478458 190702732		LA LA plasticity	5.01161606219548 6.12549564007344	-0.004 -0.043	Phenotypic mean (WW) Plasticity	
	AX-91676735 S1_192453061		189909534 192453061		LA LA plasticity	6.73855395017276 5.08269539001494	0.045 -0.047	Phenotypic mean (WW) Plasticity	
	AX-91678360 S1_25414680		198818515 25414680		Biom Biom plasticity	5.15928694517604 5.45895030379211	30.612 -0.055	Phenotypic mean (WW) Plasticity	
	AX-91735439 S1_25717036		122811242 25717036		WU WU plasticity	5.13273234883376 5.33377582252341	0.268 -0.054	Phenotypic mean (WW) Plasticity	
	S1_21713786 S1_26437971		21713786 26437971		WUE WU plasticity	5.25973490034444 5.66406731026335	-1.556 -0.063	Phenotypic mean (WW) Plasticity	
	S2_110086525 S1_32839020		110086525 32839020		Transp LA plasticity	5.12286706015051 5.22305002714836	-0.758 -0.038	Phenotypic mean (WW) Plasticity	
	S3_171437400 S1_52765910		171437400 52765910		WUE WU plasticity	6.88896255175746 5.24502360267145	7.014 -0.049	Phenotypic mean (WW) Plasticity	
	S3_6098394 S1_52922759		6098394 52922759		LA LA plasticity	5.26454617353703 5.04809081814444	-0.032 -0.018	Phenotypic mean (WW) Plasticity	
	S4_16979538 S1_77411465		16979538 77411465		WU LA plasticity	5.2908890289459 5.59622163656739	0.286 -0.055	Phenotypic mean (WW) Plasticity	
	S4_23073199 S2_221753995		23073199 221753995		WUE WUE plasticity	5.57584186144312 5.17253779102185	3.129 0.023	Phenotypic mean (WW) Plasticity	
	S4_236976065 S4_180444282		236976065 180444282		LA WUE plasticity	5.21829845206766 5.92861201754642	-0.038 0.044	Phenotypic mean (WW) Plasticity	
	S4_236976065 S9_136840702		236976065 136840702		Biom LA plasticity	5.66746475498211 5.57138776978068	-42.081 0.033	Phenotypic mean (WW) Plasticity	
	S4_237611655 SYN5704		237611655 181726408		Biom WUE plasticity	5.00334774780448 5.13759734752962	-7.883 -0.031	Phenotypic mean (WW) Plasticity	
	S5_16428195		16428195		LA	5.15267497029268	0.005	Phenotypic mean (WW)	
	S5_184347132		184347132		WU	5.04301241957428	-0.228	Phenotypic mean (WW)	
	S5_190042338		190042338		LA	5.93598336653756	0.026	Phenotypic mean (WW)	
	S5_199208460		199208460		Biom	5.18980955712004	9.823	Phenotypic mean (WW)	
	S5_199976003		199976003		Biom	5.11661064145599	-21.258	Phenotypic mean (WW)	
	S5_199978118		199978118		LA	5.03092129298598	-0.021	Phenotypic mean (WW)	
	S5_200117524		200117524		Biom	5.21413085462961	-4.148	Phenotypic mean (WW)	
	S5_202298957		202298957		LA	5.14085777735796	-0.032	Phenotypic mean (WW)	
	S7_100476901		100476901		WU	5.28906251079118	-0.02	Phenotypic mean (WW)	
	S7_122921991		122921991		Biom	5.14753166836813	-38.527	Phenotypic mean (WW)	
	S7_122921991		122921991		WU	5.34514716018255	-0.195	Phenotypic mean (WW)	
	S7_128740287		128740287		Transp	5.20499467447904	0.184	Phenotypic mean (WW)	
	S7_156270246		156270246		Biom	5.42563378954195	40.023	Phenotypic mean (WW)	
	S7_161348225		161348225		Biom	5.06088811246865	28.112	Phenotypic mean (WW)	
	S7_8177978		8177978		LA	5.03816703948701	0.055	Phenotypic mean (WW)	
	AX-90600662		79997930		LA plasticity	5.13724869419477	0.028	Plasticity	
	AX-90655484		20115983		Biom plasticity	5.12373079190998	0.038	Plasticity	
	AX-90655531		20528160		Biom plasticity	5.14368635887928	0.038	Plasticity	
	AX-90655539		20634797		Biom plasticity	5.18699866714987	-0.005	Plasticity	

Table S2 :

 S2 Trait variance components captured by single-trial and multi-trial GWAS according each random effect

	Model	Trait	G	GxW	GxT	Residual error
	Control (no QTLs)	LA	0.000539977032217229	2.68765960019925e-05	0.000108153237270391	0.000539977032217229
	QTLs	LA	0.000239551884594056	8.51462388703905e-06	9.44640273868594e-05	0.000239551884594056
	plasticity QTLs	LA	0.000563553143509639	0	0.000104592422091411	0.000563553143509639
	QTLs union plasticity QTLs	LA	0.000251784326637073	0	9.13465116019307e-05	0.000251784326637073
	Control (no QTLs)	Biom	484.045109890096	104.181419186009	31.8939330617905	484.045109890096
	QTLs	Biom	206.095951770734	56.7875360792459	37.870742696219	206.095951770734
	plasticity QTLs	Biom	460.007222162509	35.3039177328937	32.8339461340679	460.007222162509
	QTLs union plasticity QTLs	Biom	221.006979304091	13.3214126800512	35.2215145293967	221.006979304091
	Control (no QTLs)	WU	0.0846528959561735	0.00943251324484503	0.0170260277018061	0.0846528959561735
	QTLs	WU	0.0537533051977796	0.00356302853548683	0.01172705212541	0.0537533051977796
	plasticity QTLs	WU	0.0868822947329495	0.00178979108262136	0.0159256719025715	0.0868822947329495
	QTLs union plasticity QTLs	WU	0.0561378869780664	0	0.0121824385416397	0.0561378869780664
	Control (no QTLs)	WUE	6.48108107672992	1.66247148684198	4.96197649541997	6.48108107672992
	QTLs	WUE	2.42549545563629	0.477986990870019	4.15417291701369	2.42549545563629
	plasticity QTLs	WUE	7.31533167626109	4.22619000904989e-09	4.92510653852224	7.31533167626109
	QTLs union plasticity QTLs	WUE	2.76285944857558	0	4.38857503375215	2.76285944857558
	Control (no QTLs)	Transp	0.234289573195733	0.00715361785570571	0.0546680088814755	0.234289573195733
	QTLs	Transp	0.137218042732734	0.00529237510308876	0.0503153297139926	0.137218042732734
	plasticity QTLs	Transp	0.235098901925917	0.000548197861639742	0.0597454933944119	0.235098901925917
	QTLs union plasticity QTLs	Transp	0.137968117581682	0.00122693008433319	0.0558456814122731	0.137968117581682
	Control (no QTLs)	gs_max	9.02570577137586	0.610324499192428	2.79801937352893	9.02570577137586
	QTLs	gs_max	5.26719673512929	0.0962822636919747	2.08438386570734	5.26719673512929
	plasticity QTLs	gs_max	8.93765024665016	0.610660194895303	2.79621178372672	8.93765024665016
	QTLs union plasticity QTLs	gs_max	5.31836105353881	0.103698841841343	2.43280698167131	5.31836105353881

Table S3 :

 S3 Trait variance components captured by QTLs and plasticity QTLs according each random effect

	1. Introduction						
	Table S4 : Genes located into QTL and plasticity QTL disequilibrium windows gramene plasticity QTLs 84773604 84774833 gramene plasticity QTLs 84776706 84778799 gramene plasticity QTLs 126088939 126092644 gramene plasticity QTLs 126104284 126105794 8 gramene plasticity QTLs 146725502 146726798 8 gramene plasticity QTLs 146781789 146783051 gramene plasticity QTLs 32801911 32809405 gramene plasticity QTLs 32816668 32820422 gramene QTLs 28070797 28073319 gramene QTLs 28113842 28124886 gramene QTLs 90487714 90495272 gramene QTLs 90494901 90498102 gramene QTLs 124926387 124927241 gramene QTLs 125020876 125028056 gramene QTLs 79242210 79243503 gramene QTLs 79250420 79253647 gramene QTLs 203287605 203291085 gramene QTLs 203313532 203322278 gramene QTLs 150587103 150594630 gramene QTLs 150600170 150603876 gramene QTLs 89382778 89386161 gramene QTLs 100204794 100211183 1.1. Présentation de l'IPS2 et de l'équipe GNet	. . . . . . . . . . . . . . . . . . . . . .	-+ + --+ + + ---+ -+ -+ --+ + -+	. . . . . . . . . . . . . . . . . . . . . .	Zm00001d036339 Zm00001d036340 Zm00001d041531 Zm00001d041533 Zm00001d011326 Zm00001d011327 Zm00001d028384 Zm00001d028385 Zm00001d035467 Zm00001d035468 Zm00001d015444 Zm00001d015445 Zm00001d041509 Zm00001d041510 Zm00001d015204 Zm00001d015205 Zm00001d006269 Zm00001d006270 Zm00001d016212 Zm00001d016214 Zm00001d015423 Zm00001d020208
	Chr 8	Database gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	type plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	Start 20219977 126106707 146855836 32857622 28271626 90502234 125028657 79254798 203376662 150673357 100243410	Stop 20230817 126109981 146859841 32861798 28278463 90559505 125033309 79255229 203391214 150674317 100247563	Strand . . . . . . . . . . .	Sens -+ --+ ---+ + +	Frame . . . . . . . . . . .	ID Zm00001d028009 Zm00001d041534 Zm00001d011328 Zm00001d028386 Zm00001d035470 Zm00001d015446 Zm00001d041511 Zm00001d015206 Zm00001d006271 Zm00001d016216 Zm00001d020209
	8	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	79984693 52850182 126110008 146863198 52499430 28314084 90859128 125119438 79389803 203379297 150753673 100351627	79986558 52853358 126110211 146868117 52509398 28314467 90860638 125121733 79395312 203381647 150756808 100351913		. . . . . . . . . . . .	+ + --+ -+ -+ ---	. . . . . . . . . . . .	Zm00001d029620 Zm00001d028955 Zm00001d041535 Zm00001d011329 Zm00001d028946 Zm00001d035471 Zm00001d015448 Zm00001d041513 Zm00001d015208 Zm00001d006272 Zm00001d016217 Zm00001d020210
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	20105976 52860772 126130758 126527371 52515222 28367590 90918110 125122808 79498782 203395420 150960524 100353278	20131237 52861856 126132890 126529992 52517115 28369394 90920511 125126410 79511605 203402757 150964808 100354591		. . . . . . . . . . . .	-+ -+ + + + + + ---	. . . . . . . . . . . .	Zm00001d028007 Zm00001d028957 Zm00001d041536 Zm00001d025694 Zm00001d028947 Zm00001d035473 Zm00001d015449 Zm00001d041514 Zm00001d015209 Zm00001d006274 Zm00001d016219 Zm00001d020211
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	20133912 52873169 126166316 126530158 52518690 28423443 90962311 125289850 79546867 203397990 150963096 100359175	20136948 52879776 126167305 126532242 52523101 28424771 90968591 125330088 79550125 203399055 150964787 100364348		. . . . . . . . . . . .	----+ ---+ + -+	. . . . . . . . . . . .	Zm00001d028008 Zm00001d028958 Zm00001d041537 Zm00001d025695 Zm00001d028948 Zm00001d035474 Zm00001d015450 Zm00001d041515 Zm00001d015210 Zm00001d006275 Zm00001d016220 Zm00001d020213
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	20533271 52938630 126304770 126532005 52582858 28512487 91106167 125552392 79551939 203401394 150977946 100369403	20539413 52945326 126305192 126537113 52587987 28520162 91109100 125557077 79555712 203401852 150978437 100370862		. . . . . . . . . . . .	+ --+ -+ + + + + + -	. . . . . . . . . . . .	Zm00001d028020 Zm00001d028960 Zm00001d041538 Zm00001d025696 Zm00001d028949 Zm00001d035475 Zm00001d015451 Zm00001d041516 Zm00001d015211 Zm00001d006276 Zm00001d016221 Zm00001d020214
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	20540461 53030837 126342753 126601226 52644689 28516750 91146435 125560575 79554503 203403246 151001655 100656060	20546803 53032126 126344912 126609111 52645454 28525006 91148057 125561600 79570576 203403638 151004102 100660194		. . . . . . . . . . . .	-+ + -+ -+ ----+	. . . . . . . . . . . .	Zm00001d028021 Zm00001d028962 Zm00001d041539 Zm00001d025697 Zm00001d028950 Zm00001d035476 Zm00001d015452 Zm00001d041518 Zm00001d015212 Zm00001d006277 Zm00001d016223 Zm00001d020219
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	20604487 53142425 126429213 126604796 52645733 101174606 91150513 125563618 79757206 203403256 151007142 100663432	20614451 53144911 126430962 126605766 52648243 101177305 91151598 125564283 79759176 203403672 151007609 100666790		. . . . . . . . . . . .	+ + + + -+ -+ -+ -+	. . . . . . . . . . . .	Zm00001d028022 Zm00001d028963 Zm00001d041541 Zm00001d025698 Zm00001d028951 Zm00001d020228 Zm00001d015453 Zm00001d041519 Zm00001d015213 Zm00001d006278 Zm00001d016224 Zm00001d020220
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	29770419 53145602 126522185 126708804 52672158 101183127 91154171 125608671 79824018 203405094 151044249 100722127	29781683 53154854 126523196 126710162 52680876 101183962 91158469 125609400 79825123 203405564 151046438 100724203		. . . . . . . . . . . .	+ + ---+ + + + + --	. . . . . . . . . . . .	Zm00001d028302 Zm00001d028964 Zm00001d041544 Zm00001d025699 Zm00001d028952 Zm00001d020229 Zm00001d015454 Zm00001d041520 Zm00001d015215 Zm00001d006279 Zm00001d016225 Zm00001d020222
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	29785411 53169397 126535818 126772727 52749160 101295370 91162670 125708192 79871178 203487434 151100013 100770949	29788053 53176921 126539525 126775435 52749765 101299977 91169361 125710214 79872762 203487826 151100423 100773059		. . . . . . . . . . . .	-----+ + -+ -+ +	. . . . . . . . . . . .	Zm00001d028303 Zm00001d028965 Zm00001d041545 Zm00001d025700 Zm00001d028953 Zm00001d020230 Zm00001d015455 Zm00001d041521 Zm00001d015216 Zm00001d006280 Zm00001d016227 Zm00001d020223
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	29830012 53177235 126536801 126776580 52836664 101354950 91172191 125843356 79954321 203487444 151137109 100781683	29832203 53181012 126539525 126778346 52841244 101357248 91173713 125846615 79956357 203487860 151142706 100784608		. . . . . . . . . . . .	-+ + -+ -+ -+ + --	. . . . . . . . . . . .	Zm00001d028304 Zm00001d028966 Zm00001d041546 Zm00001d025701 Zm00001d028954 Zm00001d020231 Zm00001d015456 Zm00001d041522 Zm00001d015217 Zm00001d006281 Zm00001d016228 Zm00001d020224
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	29833586 53183379 126563754 126789244 77398644 101449550 91310895 125849221 79960119 203489297 151210417 100911743	29835464 53188438 126564497 126793900 77401233 101452600 91315659 125851417 79963951 203489769 151211022 100932200		. . . . . . . . . . . .	-+ + + + + -+ -+ + +	. . . . . . . . . . . .	Zm00001d028305 Zm00001d028967 Zm00001d041547 Zm00001d025703 Zm00001d029577 Zm00001d020232 Zm00001d015457 Zm00001d041523 Zm00001d015219 Zm00001d006282 Zm00001d016229 Zm00001d020225
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34508764 53190337 126577794 126794136 77449634 101487360 91323709 125901674 79981188 203490871 151213035 101004708	34510317 53190834 126583834 126795161 77455875 101490008 91324631 125905287 79994280 203491346 151216982 101009836		. . . . . . . . . . . .	+ -+ --+ + -+ ---	. . . . . . . . . . . .	Zm00001d028422 Zm00001d028968 Zm00001d041548 Zm00001d025704 Zm00001d029578 Zm00001d020233 Zm00001d015458 Zm00001d041525 Zm00001d015220 Zm00001d006283 Zm00001d016230 Zm00001d020227
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34540138 53292747 126665476 126856805 221755305 101492829 55227577 125967179 80009524 203553961 151405284 146781789	34541979 53300706 126667691 126878792 221756948 101504550 55229673 125969813 80019739 203554453 151407104 146783051		. . . . . . . . . . . .	+ + --+ ------+	. . . . . . . . . . . .	Zm00001d028423 Zm00001d028971 Zm00001d041549 Zm00001d025705 Zm00001d007076 Zm00001d020234 Zm00001d003701 Zm00001d041526 Zm00001d015221 Zm00001d006285 Zm00001d016231 Zm00001d011327
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34542493 53302218 126862145 126880549 221760272 101645190 55231147 125971928 80021026 203633940 151417504 146855836	34546543 53303096 126865908 126888843 221762560 101646950 55233488 125972875 80021571 203638997 151418350 146859841		. . . . . . . . . . . .	+ ---+ ----+ --	. . . . . . . . . . . .	Zm00001d028424 Zm00001d028972 Zm00001d041550 Zm00001d025706 Zm00001d007077 Zm00001d020236 Zm00001d003702 Zm00001d041528 Zm00001d015223 Zm00001d006286 Zm00001d016232 Zm00001d011328
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34589914 53309064 126876629 126903970 180435545 101648949 55390825 126000149 80045134 203642768 151507764 146863198	34593828 53309600 126878600 126906191 180436378 101652728 55395981 126004313 80047032 203644284 151512142 146868117		. . . . . . . . . . . .	+ + + + -+ + -+ + --	. . . . . . . . . . . .	Zm00001d028425 Zm00001d028973 Zm00001d041551 Zm00001d025707 Zm00001d052129 Zm00001d020237 Zm00001d003703 Zm00001d041529 Zm00001d015224 Zm00001d006287 Zm00001d016234 Zm00001d011329
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34649020 53368438 126926038 126927635 180439840 101652755 55527083 126035560 80063827 203647462 151552379 146957682	34655072 53370381 126926802 126928758 180442555 101657949 55529059 126036633 80067249 203651595 151552993 146961482		. . . . . . . . . . . .	+ + --+ -+ + + + + +	. . . . . . . . . . . .	Zm00001d028426 Zm00001d028974 Zm00001d041553 Zm00001d025709 Zm00001d052130 Zm00001d020238 Zm00001d003705 Zm00001d041530 Zm00001d015225 Zm00001d006288 Zm00001d016235 Zm00001d011330
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34657783 53393407 127112005 126946639 180443235 101925496 55636062 126088939 80066943 203652583 162045948 147057186	34659222 53405238 127118515 126951605 180444935 101931975 55638024 126092644 80069666 203653658 162047120 147058121		. . . . . . . . . . . .	+ --+ -+ + + --+ -	. . . . . . . . . . . .	Zm00001d028427 Zm00001d028975 Zm00001d041556 Zm00001d025710 Zm00001d052131 Zm00001d020242 Zm00001d003706 Zm00001d041531 Zm00001d015226 Zm00001d006289 Zm00001d016427 Zm00001d011331
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34690471 53415528 127251972 126996928 181715802 101933697 55659655 126104284 80071631 203787929 162048202 147150138	34704954 53416657 127252855 126997912 181717531 101935610 55661242 126105794 80074957 203790186 162048648 147150711		. . . . . . . . . . . .	--+ --+ ---+ --	. . . . . . . . . . . .	Zm00001d028428 Zm00001d028976 Zm00001d041558 Zm00001d025711 Zm00001d052174 Zm00001d020243 Zm00001d003707 Zm00001d041533 Zm00001d015227 Zm00001d006291 Zm00001d016428 Zm00001d011333
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34709436 53417301 127255197 126998464 181724426 101950149 55723782 126106707 80071631 203858974 163090196 147199565	34713166 53424648 127260823 127006041 181727817 101950695 55724426 126109981 80077888 203864535 163091701 147204907		. . . . . . . . . . . .	--+ -+ + + + -+ -+	. . . . . . . . . . . .	Zm00001d028429 Zm00001d028977 Zm00001d041559 Zm00001d025712 Zm00001d052176 Zm00001d020245 Zm00001d003709 Zm00001d041534 Zm00001d015228 Zm00001d006293 Zm00001d016460 Zm00001d011334
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34818314 53451859 127262273 127154778 181728119 102017704 55847268 126110008 80099849 203866427 163098850 147223917	34833657 53454849 127263420 127159945 181728577 102020268 55852437 126110211 80104698 203867230 163102287 147226682		. . . . . . . . . . . .	+ + --+ -+ ---+ +	. . . . . . . . . . . .	Zm00001d028431 Zm00001d028980 Zm00001d041560 Zm00001d025713 Zm00001d052177 Zm00001d020246 Zm00001d003710 Zm00001d041535 Zm00001d015229 Zm00001d006294 Zm00001d016461 Zm00001d011335
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34899450 172056749 127265528 127160289 181729433 102055809 55894819 126130758 80210099 203933323 184324784 147228068	34900187 172058475 127267097 127165558 181731132 102057946 55896267 126132890 80215267 203937922 184338621 147231731		. . . . . . . . . . . .	--+ ---+ -+ -+ -	. . . . . . . . . . . .	Zm00001d028432 Zm00001d030984 Zm00001d041561 Zm00001d025714 Zm00001d052178 Zm00001d020248 Zm00001d003712 Zm00001d041536 Zm00001d015231 Zm00001d006295 Zm00001d017068 Zm00001d011336
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34919688 172065913 127274051 127294441 204181533 102059093 56082381 126166316 80234208 203995835 190041422 147322981	34921312 172071656 127280589 127299500 204182126 102060260 56097514 126167305 80239340 204009490 190045024 147323332		. . . . . . . . . . . .	--+ + + + + -+ + -+	. . . . . . . . . . . .	Zm00001d028433 Zm00001d030985 Zm00001d041563 Zm00001d025715 Zm00001d017684 Zm00001d020249 Zm00001d003713 Zm00001d041537 Zm00001d015233 Zm00001d006296 Zm00001d017238 Zm00001d011340
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34926403 20263677 127280924 127318068 12228329 35652118 56092761 126304770 80281071 54981065 190049317 147353740	34927063 20268913 127282074 127321356 12230206 35654852 56093555 126305192 80289642 54984287 190050888 147354088		. . . . . . . . . . . .	+ --+ ------+ +	. . . . . . . . . . . .	Zm00001d028434 Zm00001d028010 Zm00001d041564 Zm00001d025716 Zm00001d013465 Zm00001d040281 Zm00001d003714 Zm00001d041538 Zm00001d015234 Zm00001d003696 Zm00001d017239 Zm00001d011342
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	34959814 20291775 127284443 127360555 213778926 35692155 56141056 126342753 80463268 55078599 190054668 147384452	34966593 20293058 127285976 127364032 213779774 35692739 56143346 126344912 80472312 55079495 190058017 147384742		. . . . . . . . . . . .	+ -+ -+ -+ + -+ + +	. . . . . . . . . . . .	Zm00001d028436 Zm00001d028011 Zm00001d041565 Zm00001d025717 Zm00001d032120 Zm00001d040285 Zm00001d003715 Zm00001d041539 Zm00001d015238 Zm00001d003698 Zm00001d017240 Zm00001d011345
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40117200 20300349 80665246 127367089 213709256 35721411 56144508 126429213 213876669 55135625 190060998 147385385	40118564 20303168 80665596 127369910 213712753 35728565 56147710 126430962 213877625 55136584 190063941 147385869		. . . . . . . . . . . .	+ + ----+ + + -+ -	. . . . . . . . . . . .	Zm00001d028591 Zm00001d028012 Zm00001d029630 Zm00001d025718 Zm00001d032118 Zm00001d040286 Zm00001d003716 Zm00001d041541 Zm00001d032125 Zm00001d003699 Zm00001d017241 Zm00001d011346
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40123313 20304479 80672733 127374340 136545200 35732184 106617018 126522185 213878646 85517707 199282391 147387271	40123759 20310840 80673116 127375910 136546312 35735342 106618030 126523196 213879350 85522558 199283780 147396132		. . . . . . . . . . . .	+ -----+ --+ --	. . . . . . . . . . . .	Zm00001d028592 Zm00001d028013 Zm00001d029631 Zm00001d025719 Zm00001d041766 Zm00001d040287 Zm00001d004364 Zm00001d041544 Zm00001d032126 Zm00001d004135 Zm00001d017548 Zm00001d011347
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40162847 20351878 145974288 127515419 136598676 35908042 106625633 126535818 213895961 85695276 201699854 147533284	40168804 20352705 145978521 127518791 136603856 35908935 106628492 126539525 213901572 85704125 201703271 147535094		. . . . . . . . . . . .	+ + + + --+ -+ + + -	. . . . . . . . . . . .	Zm00001d028593 Zm00001d028015 Zm00001d011287 Zm00001d025720 Zm00001d041767 Zm00001d040289 Zm00001d004365 Zm00001d041545 Zm00001d032127 Zm00001d004136 Zm00001d017613 Zm00001d011348
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40221978 20354036 145979013 127518803 136774212 35941532 106628660 126536801 213904619 85731223 80579817 147535376	40223031 20360460 145985394 127520726 136776802 35951651 106630400 126539525 213907090 85732587 80605889 147539282		. . . . . . . . . . . .	+ + + -+ + -+ + + --	. . . . . . . . . . . .	Zm00001d028594 Zm00001d028016 Zm00001d011288 Zm00001d025721 Zm00001d041768 Zm00001d040290 Zm00001d004366 Zm00001d041546 Zm00001d032128 Zm00001d004137 Zm00001d015239 Zm00001d011349
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40238228 20410911 145986281 127556445 136872860 36013414 106726023 126563754 213957721 85736310 80675439 147564557	40239306 20411813 145987233 127565804 136877613 36017372 106726880 126564497 213959642 85737686 80680775 147566080		. . . . . . . . . . . .	+ --+ -+ + + + -+ -	. . . . . . . . . . . .	Zm00001d028595 Zm00001d028017 Zm00001d011289 Zm00001d025722 Zm00001d041769 Zm00001d040291 Zm00001d004370 Zm00001d041547 Zm00001d032130 Zm00001d004138 Zm00001d015242 Zm00001d011350
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40240031 26334264 145988735 127571715 136898355 36020981 106774658 217573164 21680697 85783948 80676960 147718573	40250055 26346936 145990140 127575954 136898755 36021268 106775819 217581039 21686575 85803502 80685239 147727814		. . . . . . . . . . . .	+ + --+ --+ + --+	. . . . . . . . . . . .	Zm00001d028596 Zm00001d028207 Zm00001d011290 Zm00001d025723 Zm00001d041770 Zm00001d040292 Zm00001d004371 Zm00001d044042 Zm00001d028050 Zm00001d004139 Zm00001d015243 Zm00001d011351
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40253344 44512777 146006899 127578165 136996989 36027929 106904147 17465790 21690752 86026385 80936638 20480509	40260838 44518048 146007294 127583188 137007669 36029668 106908784 17467595 21692638 86044778 80937557 20481751		. . . . . . . . . . . .	+ + -+ + -+ ---+ +	. . . . . . . . . . . .	Zm00001d028597 Zm00001d028727 Zm00001d011291 Zm00001d025724 Zm00001d041772 Zm00001d040293 Zm00001d004372 Zm00001d013689 Zm00001d028051 Zm00001d004140 Zm00001d015244 Zm00001d045392
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40268286 44521225 146006924 127600573 137017318 36194689 107040785 160377553 110107388 86093715 88146164	40268585 44532226 146007241 127605016 137022601 36199305 107042488 160379112 110108146 86098066 88150303		. . . . . . . . . . .	-+ + -+ -----+	. . . . . . . . . . .	Zm00001d028598 Zm00001d028728 Zm00001d011292 Zm00001d025725 Zm00001d041773 Zm00001d040294 Zm00001d004375 Zm00001d011737 Zm00001d004405 Zm00001d004143 Zm00001d015394
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40283742 44532354 146062014 127609718 137063373 36255672 107046240 160386965 110120314 86233344 88158162	40287068 44536303 146075281 127611616 137063753 36256522 107049098 160392640 110125179 86236604 88161170		. . . . . . . . . . .	-+ -+ --+ + + --	. . . . . . . . . . .	Zm00001d028599 Zm00001d028730 Zm00001d011294 Zm00001d025726 Zm00001d041774 Zm00001d040295 Zm00001d004376 Zm00001d011738 Zm00001d004407 Zm00001d004146 Zm00001d015395
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40428759 44536542 146093892 127668399 137091203 36259400 107365020 108518434 110207245 86359248 88228087	40431019 44539529 146095667 127678365 137104652 36260123 107365884 108535572 110210898 86367245 88230594		. . . . . . . . . . .	+ -+ -+ + --+ + -	. . . . . . . . . . .	Zm00001d028601 Zm00001d028731 Zm00001d011297 Zm00001d025727 Zm00001d041775 Zm00001d040296 Zm00001d004379 Zm00001d004392 Zm00001d004409 Zm00001d004147 Zm00001d015396
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40510526 44548793 146108765 127881516 137250657 36319753 107469703 108539540 110216975 171421717 88306260	40516015 44552517 146113773 127887702 137254412 36320169 107470980 108542092 110222616 171425401 88306964		. . . . . . . . . . .	--+ ----+ -+ +	. . . . . . . . . . .	Zm00001d028603 Zm00001d028732 Zm00001d011298 Zm00001d025733 Zm00001d041776 Zm00001d040297 Zm00001d004380 Zm00001d004394 Zm00001d004410 Zm00001d042541 Zm00001d015397
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40561826 44554395 146128641 127905113 137266061 36417931 53767845 108736242 110288909 171440599 88328874	40563132 44560803 146131503 127929830 137269605 36418257 53777713 108762263 110290031 171442476 88330634		. . . . . . . . . . .	+ + + + + -+ ----	. . . . . . . . . . .	Zm00001d028604 Zm00001d028733 Zm00001d011299 Zm00001d025734 Zm00001d041777 Zm00001d040298 Zm00001d040611 Zm00001d004396 Zm00001d004411 Zm00001d042542 Zm00001d015398
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40564067 44718501 146136810 127934025 137460338 36490987 53863310 108913222 110310942 179131107 88372291	40565906 44719536 146145088 127936164 137470304 36491586 53874662 108913905 110312623 179131481 88376274		. . . . . . . . . . .	+ + -+ + + + + -+ +	. . . . . . . . . . .	Zm00001d028605 Zm00001d028735 Zm00001d011300 Zm00001d025735 Zm00001d041778 Zm00001d040299 Zm00001d040612 Zm00001d004397 Zm00001d004412 Zm00001d042765 Zm00001d015399
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40594616 44721407 146174056 127951568 137588464 36498228 53996519 109230347 110314499 179135191 88443306	40599175 44722183 146176755 127954961 137590201 36498710 53997786 109237741 110316622 179136021 88448870		. . . . . . . . . . .	+ + + + + + --+ + +	. . . . . . . . . . .	Zm00001d028606 Zm00001d028736 Zm00001d011301 Zm00001d025737 Zm00001d041780 Zm00001d040300 Zm00001d040613 Zm00001d004400 Zm00001d004413 Zm00001d042766 Zm00001d015400
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	40713008 44733389 146180242 127957093 137903169 36557966 54002070 109327004 110343635 6094711 88448697	40718506 44733898 146181231 127963022 137908918 36563190 54005318 109328229 110345001 6099557 88451738		. . . . . . . . . . .	+ ------+ ---	. . . . . . . . . . .	Zm00001d028608 Zm00001d028737 Zm00001d011302 Zm00001d025738 Zm00001d041781 Zm00001d040301 Zm00001d040614 Zm00001d004401 Zm00001d004414 Zm00001d039505 Zm00001d015401
	10	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	88322356 44765885 146189282 128021608 137921659 36669164 54060892 154614760 110345638 16983481 88484657	88323479 44768411 146189740 128027534 137922555 36675206 54062596 154616824 110358087 16984955 88490422		. . . . . . . . . . .	+ + + -+ --+ --+	. . . . . . . . . . .	Zm00001d029816 Zm00001d028738 Zm00001d011303 Zm00001d025739 Zm00001d041782 Zm00001d040302 Zm00001d040617 Zm00001d005026 Zm00001d004415 Zm00001d049129 Zm00001d015404
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	141705734 44836475 146192052 190649919 137968493 36817316 54065171 154617731 110383916 18913325 88491212	141709496 44837783 146196828 190653721 137970915 36823842 54067102 154621976 110417211 18914911 88497833		. . . . . . . . . . .	+ + + -+ + + + --+	. . . . . . . . . . .	Zm00001d030526 Zm00001d028739 Zm00001d011304 Zm00001d031454 Zm00001d041784 Zm00001d040303 Zm00001d040618 Zm00001d005027 Zm00001d004416 Zm00001d049169 Zm00001d015405
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	187563113 44843630 146317656 192424400 138022243 36892545 54139362 154629678 110448343 23084615 88518024	187564209 44844552 146322089 192424708 138030035 36892988 54139841 154631157 110449312 23087441 88520798		. . . . . . . . . . .	+ -+ -+ + + ---+	. . . . . . . . . . .	Zm00001d031370 Zm00001d028740 Zm00001d011308 Zm00001d031513 Zm00001d041785 Zm00001d040304 Zm00001d040619 Zm00001d005028 Zm00001d004417 Zm00001d049256 Zm00001d015406
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	187621387 44865682 146353906 192436661 138047384 36893536 54202177 154743078 110450100 150295060 88561896	187624780 44866604 146364466 192437457 138065736 36902030 54203490 154746493 110451204 150299829 88565000		. . . . . . . . . . .	---------+ -	. . . . . . . . . . .	Zm00001d031372 Zm00001d028741 Zm00001d011309 Zm00001d031514 Zm00001d041786 Zm00001d040305 Zm00001d040620 Zm00001d005029 Zm00001d004418 Zm00001d016197 Zm00001d015407
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	187625250 44975070 146409219 192483919 138087163 36998433 54361997 154831004 110481721 150300976 88962266	187625966 44978277 146411054 192484951 138091017 36999059 54365806 154835182 110482872 150305724 88972559		. . . . . . . . . . .	-+ + + + -+ ---+	. . . . . . . . . . .	Zm00001d031373 Zm00001d028742 Zm00001d011311 Zm00001d031515 Zm00001d041787 Zm00001d040306 Zm00001d040621 Zm00001d005030 Zm00001d004419 Zm00001d016198 Zm00001d015409
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	187631492 125608671 146414508 25715085 138093726 36999882 54366428 154983726 155778352 150352205 89049594	187632082 125609400 146420244 25717227 138100085 37000898 54368879 154985286 155779569 150353890 89053097		. . . . . . . . . . .	+ + -+ ----+ -+	. . . . . . . . . . .	Zm00001d031375 Zm00001d041520 Zm00001d011312 Zm00001d028181 Zm00001d041788 Zm00001d040307 Zm00001d040622 Zm00001d005031 Zm00001d005043 Zm00001d016199 Zm00001d015410
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	187718812 125708192 146490050 25720877 183587060 37004302 54606634 155039785 155847589 150355001 89059774	187721184 125710214 146490819 25723883 183587659 37006317 54607098 155042337 155848806 150356922 89060808		. . . . . . . . . . .	--+ + ----+ --	. . . . . . . . . . .	Zm00001d031377 Zm00001d041521 Zm00001d011314 Zm00001d028182 Zm00001d052220 Zm00001d040308 Zm00001d040623 Zm00001d005032 Zm00001d005044 Zm00001d016200 Zm00001d015411
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	19801735 125843356 146513037 25725534 183593619 37107695 54717613 155214141 155849179 150380818 89090290	19803372 125846615 146520523 25732327 183599554 37114751 54718843 155229333 155854203 150382317 89091195		. . . . . . . . . . .	+ ---+ + + + + + +	. . . . . . . . . . .	Zm00001d039927 Zm00001d041522 Zm00001d011315 Zm00001d028183 Zm00001d052221 Zm00001d040309 Zm00001d040624 Zm00001d005035 Zm00001d005045 Zm00001d016202 Zm00001d015412
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	19804533 125849221 146523359 25734022 190228612 37114976 54768172 155301263 203038721 150386027 89126963	19805393 125851417 146524518 25737544 190230421 37116953 54773642 155306254 203039941 150389534 89129557		. . . . . . . . . . .	+ + -+ + --+ + -+	. . . . . . . . . . .	Zm00001d039928 Zm00001d041523 Zm00001d011316 Zm00001d028184 Zm00001d017246 Zm00001d040310 Zm00001d040625 Zm00001d005036 Zm00001d006260 Zm00001d016203 Zm00001d015414
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	19809738 125901674 146546991 25738664 190232645 17281947 54948300 155349292 203134987 150391274 89132049	19810514 125905287 146554204 25741208 190237410 17287115 54950704 155350224 203135343 150394468 89135337		. . . . . . . . . . .	+ ----+ -+ + --	. . . . . . . . . . .	Zm00001d039929 Zm00001d041525 Zm00001d011319 Zm00001d028185 Zm00001d017247 Zm00001d049135 Zm00001d040627 Zm00001d005037 Zm00001d006261 Zm00001d016204 Zm00001d015415
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	19815106 125967179 146619391 25742203 27973065 90212611 55023821 155403486 203183372 150429683 89200500	19816391 125969813 146622999 25745382 27977307 90212916 55026070 155405109 203184196 150431718 89201452		. . . . . . . . . . .	+ -+ + + -+ + + -+	. . . . . . . . . . .	Zm00001d039930 Zm00001d041526 Zm00001d011321 Zm00001d028186 Zm00001d035462 Zm00001d015437 Zm00001d040628 Zm00001d005038 Zm00001d006262 Zm00001d016206 Zm00001d015417
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	19818598 125971928 146669804 25755280 28055121 90267647 55075888 155435155 203194535 150432936 89294499	19829515 125972875 146671210 25759748 28055806 90277773 55088174 155436114 203195885 150435131 89295622		. . . . . . . . . . .	+ -+ + ---+ + --	. . . . . . . . . . .	Zm00001d039931 Zm00001d041528 Zm00001d011323 Zm00001d028187 Zm00001d035463 Zm00001d015440 Zm00001d040629 Zm00001d005039 Zm00001d006263 Zm00001d016207 Zm00001d015419
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	19837328 126000149 146675491 26428405 28058154 90343794 55088527 155438279 203274963 150578014 89297902	19837744 126004313 146676993 26434744 28062105 90344970 55091474 155441199 203284292 150578814 89299723		. . . . . . . . . . .	+ --+ --+ -+ -+	. . . . . . . . . . .	Zm00001d039932 Zm00001d041529 Zm00001d011324 Zm00001d028208 Zm00001d035465 Zm00001d015442 Zm00001d040630 Zm00001d005040 Zm00001d006267 Zm00001d016208 Zm00001d015420
	1	gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene gramene	plasticity QTLs plasticity QTLs plasticity QTLs plasticity QTLs QTLs QTLs QTLs QTLs QTLs QTLs QTLs	19846081 126035560 146690622 32771811 28062742 90418616 124919974 79214291 203285298 150582724 89376383	19846545 126036633 146694044 32783919 28064462 90437459 124923682 79242188 203286451 150584481 89379344		. . . . . . . . . . .	-+ --+ + + + -+ +	. . . . . . . . . . .	Zm00001d039933 Zm00001d041530 Zm00001d011325 Zm00001d028382 Zm00001d035466 Zm00001d015443 Zm00001d041508 Zm00001d015203 Zm00001d006268 Zm00001d016211 Zm00001d015421

  2.2.4. Données génomiques J'ai téléchargé un fichier d'annotation de référence des données du génome du maïs intitulé ZmB73_5a.59_WGS.gff sur MaizeGDB. Chaque ligne de ce fichier représente un élément génétique (CDS, element transposable,exon,intron, gene etc. . .) et permet d'extraire les informations structurales nécessaires pour la réalisation d'une analyse.

  5. L'intervalle de confiance correspond à la fenêtre de déséquilibre de liaison des QTLs dont la longueur a été estimé par un modèle statistique(Negro et al., 2019) 6. http://maizemine.maizegdb.org 6 et les voies biologiques spécifiques au maïs. L'interface utilisateur donne accès à un nombre d'outils permettant la recherche, le filtrage et la récupération de données ainsi que l'utilisation d'outils d'analyse et de visualisation des données. Pour l'utiliser, il faut fournir une liste de gènes en v5, l'outil lance les analyses dont un test d'enrichissement fonctionnel. C'est un test hypergéométrique permettant de rechercher les termes GO enrichis. Le principe est de déterminer s'il existe des termes GO dont la proportion dans la liste de gènes d'intérêt est supérieure à la proportion dans les gènes annotés dans la v5. Puisque qu'un test est réalisé par terme GO, nous sommes dans un contexte de test multiple et pour contrôler la proportion de faux-positifs, j'ai choisi d'appliquer la correction de Benjamin-Hochberg.2.3.2. Recherche de sites de fixation de facteurs de transcription (TFBS)
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• Metabolomics[START_REF] Ashrafian | Metabolomics: The Stethoscope for the Twenty-First Century[END_REF]: the study of the metabolite content of a cell, tissue, organ or organism. Metabolomics is based on mass spectrometry and nuclear magnetic resonance

times higher than the variance explained by GxW, and the GxT was significant except for Biom. These results indicate that by conducting single-trial GWAS, the probability of detecting a trial-responsive QTL is higher than that of detecting a water availability-responsive QTL. This result is supported by the fact that there is almost no overlap between the sets of QTLs detected by AlvarezPrado et al (2017) in the four trials (Fig.2).

Number of genes located in the hotspot.

Number of proteins associated with pQTLs located in the hotpot.

PPIs composition: Number proteins encoded by genes located in hotspot -Number of proteins associated with pQTLs located in the hotpot.

Number of experimentally verified interactions / Total number of the interactions present in the PPIs

Number of experimentally verified interactions linked to proteins encoded by genes located in hotspot / Total number of experimentally verified interactions present in the PPIsTable 3.2: Composition and PPI associated with selected pQTLs hotspots
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The various information brought by the different types of omics data displayed by the different types of omics data can be viewed as an advantage by providing different types of analysis such as the identification of differentially expressed genes, proteins, or metabolites [START_REF] Hu | Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears[END_REF][START_REF] Freeman | Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome[END_REF] to molecular networks inference [START_REF] Langfelder | WGCNA: An R package for weighted correlation network analysis[END_REF]Hawe et al, 2019). However, from a data integration perspective, linking the different molecules and traits to each other can become very complex. Indeed, depending on the technologies, omics data can differ in the type (binary, count, or continuous) or in the scale. In addition, each omics data has its proper steps of data preprocessing composed of control quality filters and normalization (López de [START_REF] De Maturana | Challenges in the Integration of Omics and Non-Omics Data[END_REF]. The approach aiming at integrating different biological entities from different complexity levels is called system biology and is based on vertical integration of omics data (Fig. 1.11a).

The integration of multi-omics data requires sophisticated statistical methods to handle high-dimensioned and heterogeneous data [START_REF] Picard | Integration strategies of multi-omics data for machine learning analysis[END_REF]. It is important to know which methods are the most appropriate depending on the objectives (predict or explain the phenotype) and the type of data. Two major frameworks of multi-omics data integration were reported in Ritchie et al (2015): the multi-staged integration and the multi-dimensional integration. The multi-staged integration combines results obtained from each omics in an asynchronous way. For instance, the relationship between a phenotypic and a molecular trait can be found by conducting two independent GWAS. Indeed, an SNP significantly associated with both phenotypic and molecular trait variations can be used as an anchor to assume a potential relationship. An advantage of this framework is that it allows to easily interpret the results. It is also highly modulable in the way that at each two-by-two analysis, any methods can be used to integrate, such as linear relationship, non-linear, predictive ability, and so on. Also, it can be the advantage that for data with high dimensionality, each step consists of reducing the dimension by keeping only the important features. The multi-dimensional integration consists of integrating each omics data in a synchronous way. Three approaches allow to conduct a multidimensional integration: concatenation-based, transformation-based, and model-based (Fig. 1.11b).

Horizontal integration

Vertical integration Diagonal integration a.

Concatenation

Transformation Model b.

Figure 1.11: Multi-omics data integration. a., The different types of omics data integration adapted from [START_REF] Argelaguet | Computational principles and challenges in single-cell data integration[END_REF]. The horizontal integration consists of increased observations of the same measured features. This type of integration does not lead to the integration of different omics data types. The vertical integration aims to increase the number of measured features on the same observation. The features added can come from different omics data types. The diagonal integration integrates datasets comprising measurements obtained on new observations and not for the same biological features. b., Multi-dimensional integration adapted from Ritchie et al (2015). Three approaches allow integrated multi-omics data in a synchronous way.

The concatenation-based: all omics data are merged into a matrix to apply statistical methods such as multifactorial analysis [START_REF] Argelaguet | Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets[END_REF][START_REF] Singh | DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays[END_REF]. The transformation-based: Approach consisting of transforming omics data into an intermediate format allowing to describe the relation between individuals such as individual networks (Kim et al, 2012) or kernels [START_REF] Lanckriet | A statistical framework for genomic data fusion[END_REF]). The model-based: Approach mostly used for predicting the phenotypes. For each omics data, the best predictive models is selected, and then these models are merged to generate the final one [START_REF] Holzinger | ATHENA: The analysis tool for heritable and environmental network associations[END_REF].
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Suplementary material Chapter 2

Supplementary figures and tables related to section 2. 3 Résultats J'ai calculé la composante de variance de chaque effets aléatoire et leur contribution en pourcentage à la variance totale, à partir du modèle M1 (Tab. 1). L'effet de la résiduel est le plus important, vient ensuite celui de la variance du génotype qui explique 23% de la variance totale. Les effets G × W, G × T et G × F expliquent entre 10% et 14% de variance totale. Toutes les p-values sont très faibles donc tous les effets aléatoires sont significatifs. 3.1 L'intégration de tout les mQTLs capture de la variance génétique des caractères J'ai calculé les parts de variance capturée par chaque effet aléatoire et je les ai comparées entre le modèle M2, le modèle M3 intégrant l'ensemble des 27,629 mQTLs d'état stationnaire et le modèle M4 intégrant l'ensemble des mQTLS d'état stationnaire et de plasticité (Fig. 1). Lorsque j'intègre les mQTLs de plasticité en plus des mQTLs d'état stationnaire, les parts de variance expliquées sont supérieures à celles observées lorsque l'on intègre que les mQTLs d'état stationnaire, et ce, pour chaque effet aléatoire. L'intégration des données métabolomiques permet donc de mieux capturer la variance génétique et l'intégration des mQTLs de plasticité est pertinent car il permet de mieux capturer cette variance génétique. Pour chacun des trois GGM, j'ai regardé le nombre de voisins de degré 1 de chaque caractère écophysiologique en fonction de la valeur de l'hyperparamètre λ (Fig. 2). J'observe qu'il y a des différences entre les trois GGM : il y a un décrochage de la courbe du nombre 7